

Lecture Notes in Computer Science 6037
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Danny De Schreye (Ed.)

Logic-Based
Program Synthesis
and Transformation

19th International Symposium, LOPSTR 2009
Coimbra, Portugal, September 2009
Revised Selected Papers

13

Volume Editor

Danny De Schreye
K.U.Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: danny.deschreye@cs.kuleuven.be

Library of Congress Control Number: 2010924453

CR Subject Classification (1998): F.3, D.3, D.2, F.4.1, I.2.3, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-12591-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12591-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains a selection of the papers presented at the 19th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2009) held September 9-11, 2009 in Coimbra, Portugal. Information about the
conference can be found at http://www.cs.kuleuven.be/conference/
lopstr09+. Previous LOPSTR symposia were held in Valencia (2008), Lyngby
(2007), Venice (2006 and 1999), London (2005 and 2000), Verona (2004), Upp-
sala (2003), Madrid (2002), Paphos (2001), Manchester (1998, 1992, and 1991),
Leuven (1997), Stockholm (1996), Arnhem (1995), Pisa (1994), and Louvain-la-
Neuve (1993).

The aim of the LOPSTR series is to stimulate and promote international
research and collaboration on logic-based program development. LOPSTR tra-
ditionally solicits papers in the areas of specification, synthesis, verification,
transformation, analysis, optimization, composition, security, reuse, applications
and tools, component-based software development, software architectures, agent-
based software development, and program refinement. LOPSTR has a reputation
for being a lively, friendly forum for presenting and discussing work in progress.
Formal proceedings are produced only after the symposium so that authors can
incorporate any feedback in the published papers.

I would like to thank all those who submitted contributions to LOPSTR in the
categories of full papers and extended abstracts. Each submission was reviewed
by at least three Program Committee members. The committee decided to accept
three full papers for immediate inclusion in the final proceedings, and ten papers
were accepted after revision and another round of reviewing. In addition to the
accepted papers, the program also included an invited talk by Germán Vidal
(Technical University of Valencia).

I am grateful to the Program Committee members who worked hard to pro-
duce high-quality reviews for the submitted papers in a tight schedule, as well
as all the external reviewers involved in the paper selection. I also would like
to thank Andrei Voronkov for his excellent EasyChair system that automates
many of the tasks involved in chairing a conference.

LOPSTR 2009 was co-located with PPDP 2009 and CSL 2009. Many thanks
to the local organizers of these events, in particular, to Ana Almeida, the LOP-
STR 2009 Local Organization Chair.

January 2010 Danny De Schreye

Conference Organization

Program Chair

Danny De Schreye
Department of Computer Science
Katholieke Universiteit Leuven
B-3001 Heverlee, Belgium
Email: danny.deschreye@cs.kuleuven.be

Local Organization Chair

Ana Almeida
Departamento de Matematica
Faculdade de Ciencias e Tecnologia
Universidade de Coimbra
Coimbra, Portugal
Email: amca@mat.uc.pt

Program Committee

Slim Abdennadher German University Cairo, Egypt
Maŕıa Alpuente Frasnedo Technical University of Valencia, Spain
Roberto Bagnara University of Parma, Italy
Danny De Schreye K.U. Leuven, Belgium (Chair)
John Gallagher Roskilde University, Denmark
Robert Glück University of Copenhagen, Denmark
Michael Hanus University of Kiel, Germany
Reinhard Kahle Universidade Nova de Lisboa, Portugal
Andy King University of Kent, UK
Michael Leuschel University of Düsseldorf, Germany
Fabio Martinelli Istituto di Informatica e Telematica Pisa, Italy
Fred Mesnard Université de La Réunion, France
Mario Ornaghi Università degli Studi di Milano, Italy
Germán Puebla Technical University of Madrid, Spain
Sabina Rossi Università Ca’ Foscari di Venezia, Italy
Josep Silva Technical University of Valencia, Spain
Peter Schneider-Kamp University of Southern Denmark, Denmark
Tom Schrijvers K.U. Leuven, Belgium
Petr Stepanek Charles University Prague, Czech Republic
Wim Vanhoof University of Namur, Belgium

VIII Organization

Organizing Committee

Ana Almeida
Pedro Quaresma
Reinhard Kahle

External Reviewers

Jesper Louis Andersen Federico Bergenti
Ulrich Berger Carl Friedrich Bolz
Pedro Cabalar Gabriele Costa
François Degrave Marc Denecker
Camillo Fiorentini Sebastian Fischer
Emilio Jesus Gallego Arias Michael Gelfond
Pepe Iborra Haythem Ismail
Leanid Krautsevich Joao Leite
Gift Nuka Etienne Payet
Paolo Pilozzi Frank Raiser
Juan Rodriguez-Hortalá Cesar Sanchez
Anton Setzer Maja Tonnesen
Peter Van Weert Dean Voets
Gianluigi Zavattaro

Table of Contents

Towards Scalable Partial Evaluation of Declarative Programs
(Invited Talk) . 1

Germán Vidal

Deciding Full Branching Time Logic by Program Transformation 5
Alberto Pettorossi, Maurizio Proietti, and Valerio Senni

A Transformational Approach for Proving Properties of the CHR
Constraint Store . 22

Paolo Pilozzi, Tom Schrijvers, and Maurice Bruynooghe

The Dependency Triple Framework for Termination of Logic
Programs . 37

Peter Schneider-Kamp, Jürgen Giesl, and Manh Thang Nguyen

Goal-Directed and Relative Dependency Pairs for Proving the
Termination of Narrowing . 52

José Iborra, Naoki Nishida, and Germán Vidal

LP with Flexible Grouping and Aggregates Using Modes 67
Marcin Czenko and Sandro Etalle

On Inductive and Coinductive Proofs via Unfold/Fold
Transformations . 82

Hirohisa Seki

Coinductive Logic Programming with Negation . 97
Richard Min and Gopal Gupta

Refining Exceptions in Four-Valued Logic . 113
Susumu Nishimura

Towards a Framework for Constraint-Based Test Case Generation 128
François Degrave, Tom Schrijvers, and Wim Vanhoof

Using Rewrite Strategies for Testing BUpL Agents 143
Lăcrămioara Aştefănoaei, Frank S. de Boer, and
M. Birna van Riemsdijk

Towards Just-In-Time Partial Evaluation of Prolog 158
Carl Friedrich Bolz, Michael Leuschel, and Armin Rigo

X Table of Contents

Program Parallelization Using Synchronized Pipelining 173
Leonardo Scandolo, César Kunz, and Manuel Hermenegildo

Defining Datalog in Rewriting Logic . 188
M. Alpuente, M.A. Feliú, C. Joubert, and A. Villanueva

Author Index . 205

Towards Scalable Partial Evaluation of

Declarative Programs�

Germán Vidal

DSIC, Universidad Politécnica de Valencia, Spain
gvidal@dsic.upv.es

1 Introduction

Partial evaluation is a well-known technique for program specialization [4]. Es-
sentially, given a program and part of its input data—the so-called static data—a
partial evaluator returns a new, residual program which is specialized for the
given data. The residual program is then used for performing the remaining
computations—those that depend on the so-called dynamic data.

There are two main approaches to partial evaluation, depending on the way
termination issues are addressed. On the one hand, online partial evaluators take
decisions on the fly while the constructs of the source code are partially evalu-
ated and the corresponding residual program is built. Offline partial evaluators,
on the other hand, require a binding-time analysis (BTA) to be run before spe-
cialization, which annotates the source code to be specialized. Basically, every
call of the source program is annotated as either unfold (to be executed by the
partial evaluator) or memo (to be executed at run time, i.e., memoized), and
every argument is annotated as static (known at specialization time) or dynamic
(only definitely known at run time). Offline partial evaluators are usually faster
but less accurate than online ones since the BTA phase is performed—and also
termination issues are addressed—using an approximation of the static data.

There are several basic properties of a partial evaluator that can be addressed:

– correctness: is the specialized program equivalent to the original one for the
considered static data?

– accuracy: is the residual program a good specialization of the original pro-
gram for the static data? is it fast enough compared to a hand-written spe-
cialization?

– efficiency: is the partial evaluator fast? does it scale up well to large source
programs?

– predictability: is it possible to determine the achievable run time speedup
before partial evaluation starts?

Here, we are mainly concerned with efficiency issues in offline partial evaluation.

� This work has been partially supported by the Spanish Ministerio de Ciencia e
Innovación under grant TIN2008-06622-C03-02, by Generalitat Valenciana under
grant ACOMP/2009/017, and by UPV (programs PAID-05-08 and PAID-06-08).

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 1–4, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 G. Vidal

2 Accuracy vs. Efficiency

Clearly, there is a trade-off between accuracy and efficiency. For instance, some
accurate BTAs are rather inefficient because the termination analysis and the
algorithm for propagating static information should be interleaved, so that every
time a call is annotated as memo, the termination analysis has to be re-executed
to take into account that some bindings will not be propagated anymore.

Consider, for instance, the following logic programming clause:

p(s(X), s(Y)) ← q(X, Z), p(Z, Y).

with variable X static1 and variable Y dynamic. A traditional BTA initially
marks every predicate call as unfold and proceeds as follows:

– First, it runs a procedure for propagating static information (i.e., a sort of
groundness analysis). Let us assume that, in every successful computation
for q(X, Z) with X ground, variable Z becomes ground too. Therefore, by
assuming a fixed left-to-right selection strategy, this procedure may conclude
that variable Z in p(Z, Y) is static too.

– Now, a termination analysis—that takes into account which variables are
marked as static—is used to infer annotations for predicate calls. We also con-
sider a fixed left-to-right selection strategy (i.e., a so called left-termination
analysis). Let us now assume that this analysis is not able to ensure termi-
nation for predicate q and, thus, it is now marked as memo.

– Since q is annotated as memo, the call to q will not be unfolded at partial
evaluation time. Therefore, we should run again the procedure for propagat-
ing static information, now assuming that q is not unfolded. Clearly, this will
imply that we cannot ensure that variable Z is static in p(Z, Y) anymore.
Therefore, since the static/dynamic annotations have changed, the termina-
tion analysis should also be run again, and so forth. This iterative process is
computationally very expensive, so it does seem a good candidate as a basis
for designing a scalable partial evaluator.

Our recent work [1,6,7,8,9] shows that this drawback can be overcome by using
instead a strong termination analysis [3], i.e., an analysis that considers ter-
mination for every possible selection or evaluation strategy. In this case, both
tasks—termination analysis and propagation of static information—can be kept
independent, so that the termination analysis is done once and for all before
the propagation phase, resulting in major efficiency improvements over previous
approaches.

For instance, given the previous clause, p(s(X), s(Y)) ← q(X, Z), p(Z, Y).,
the BTA would now proceed as follows:

– First, the strong termination analysis is executed. For this purpose, we have
adapted the size-change analysis originally introduced for functional pro-
grams by Lee, Jones and Ben-Amram [5]. Roughly speaking, this analysis

1 For simplicity, here we assume that a static variable is ground.

Towards Scalable Partial Evaluation of Declarative Programs 3

traces the size changes of arguments when going from one call to another by
means of so called size-change graphs.
The strong termination analysis for logic programs was introduced in [9]
and later refined and extended in [7,6]. Basically, for every program clause
H ← B1, . . . , Bn, the analysis constructs n size-change graphs, each of them
stating the relation between the sizes of the arguments of H and the sizes
of the arguments of every atom Bi in the body. For instance, for the above
clause, the analysis constructs two size-change graphs, one that relates the
sizes of (s(X), s(Y)) and (X, Z), and another one that relates the sizes of
(s(X), s(Y)) and (Z, Y).2 The output of the analysis is then a set of con-
ditions for the termination of every predicate call that depends on which
variables are marked as static.

– Then, in a second step, the BTA applies a standard procedure for the prop-
agation of static/dynamic information that uses the output of the strong
termination analysis to infer the right annotations for both predicate calls
and their arguments. The details of this procedure can be found in [7].

As expected, the accuracy of the resulting scheme is not comparable to that of
previous approaches, but can nevertheless be improved in a number of ways:

– Firstly, the information gathered from a left-termination analysis (which
would be run only once) can still be used to improve the accuracy in those
cases where the order of evaluation is partially known. For instance, for the
clause above, if we know that q(X, Z) always terminates with a left-to-right
selection rule (e.g., because q is not recursive), then one can safely mark q as
unfold and take it into account in the size-change analysis to propagate some
additional static information to the calls that occur to its right (p(Z, Y) in
the example, so that the size relation between s(X) and Z can again be
inferred, as in the traditional approach).

– Secondly, we could allow the user to provide manual annotations to improve
the accuracy in some cases. We have experimentally checked that even for
large programs, a few annotations suffice to get an optimal result [7].

– We may also replace some memo and/or dynamic annotations by online, a
new annotation that delays the corresponding decisions to partial evaluation
time. We note, however, that one should be very careful with these anno-
tations since they may involve expensive computations at partial evaluation
time (i.e., some heuristics is needed to decide when replacing memo/dynamic
by online might be critical to get a good specialization).

3 Concluding Remarks

Although there is ample room for improving accuracy, we consider our approach
a promising framework for developing scalable partial evaluators for declarative
2 Observe that, in contrast to the traditional approach that uses a left-termination

analysis, now we cannot infer any size relation between s(X) and Z (and, as a
consequence, the termination of p cannot be proved). Some possibilities to improve
this situation are mentioned in the following.

4 G. Vidal

programs. A promising line of research is based on the use of SAT solving tech-
niques to improve the accuracy of the BTA while still keeping its scalability. For
instance, one could extend the SAT-based approach to size-change analysis of
[2] in order to compute unfold/memo annotations in polynomial time (despite
the fact that a left-termination analysis is considered).

Finally, we note that the underlying techniques are essentially the same no
matter the considered declarative programming language. Actually, we have ap-
plied similar principles to the partial evaluation of both functional (logic) pro-
grams [8,1] and logic programs [9,7,6].

Acknowledgements. I would like to thank the participants of LOPSTR 2009 for
their useful feedback. I would also like to thank Michael Codish for suggesting
the use of SAT-based techniques to improve the accuracy of the BTA.

References

1. Arroyo, G., Ramos, J.G., Silva, J., Vidal, G.: Improving Offline Narrowing-Driven
Partial Evaluation using Size-Change Graphs. In: Puebla, G. (ed.) LOPSTR 2006.
LNCS, vol. 4407, pp. 60–76. Springer, Heidelberg (2007)

2. Ben-Amram, A., Codish, M.: A SAT-Based Approach to Size Change Termination
with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2007. LNCS, vol. 5028, pp. 46–55. Springer, Heidelberg (2008)

3. Bezem, M.: Strong Termination of Logic Programs. Journal of Logic Program-
ming 15(1,2), 79–97 (1993)

4. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

5. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The Size-Change Principle for Program
Termination. In: SIGPLAN Notices (Proc. of POPL 2001), vol. 28, pp. 81–92 (2001)

6. Leuschel, M., Tamarit, S., Vidal, G.: Fast and Accurate Size-Change Strong Ter-
mination Analysis with an Application to Partial Evaluation. In: Escobar, S. (ed.)
WFLP 2009. LNCS, vol. 5979, pp. 111–127. Springer, Heidelberg (2009)

7. Leuschel, M., Vidal, G.: Fast Offline Partial Evaluation of Large Logic Programs. In:
Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 119–134. Springer, Heidelberg
(2009)

8. Ramos, J.G., Silva, J., Vidal, G.: Fast Narrowing-Driven Partial Evaluation for
Inductively Sequential Systems. In: Proc. of the 10th ACM SIGPLAN Int’l Conf. on
Functional Programming (ICFP 2005), pp. 228–239. ACM Press, New York (2005)

9. Vidal, G.: Quasi-Terminating Logic Programs for Ensuring the Termination of Par-
tial Evaluation. In: Proc. of the ACM SIGPLAN 2007 Workshop on Partial Evalu-
ation and Program Manipulation (PEPM 2007), pp. 51–60. ACM Press, New York
(2007)

Deciding Full Branching Time Logic by

Program Transformation

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. We present a method based on logic program transforma-
tion, for verifying Computation Tree Logic (CTL∗) properties of finite
state reactive systems. The finite state systems and the CTL∗ properties
we want to verify, are encoded as logic programs on infinite lists. Our
verification method consists of two steps. In the first step we transform
the logic program that encodes the given system and the given property,
into a monadic ω-program, that is, a stratified program defining nullary
or unary predicates on infinite lists. This transformation is performed by
applying unfold/fold rules that preserve the perfect model of the initial
program. In the second step we verify the property of interest by using
a proof method for monadic ω-programs.

1 Introduction

The branching time temporal logic CTL∗ is among the most popular temporal
logics that have been proposed for verifying properties of reactive systems [4]. A
finite state reactive system, such as a protocol, a concurrent system, or a digital
circuit, is formally specified as a Kripke structure and the property to be verified
is specified as a CTL∗ formula. Thus, the problem of checking whether or not a
reactive system satisfies a given property is reduced to the problem of checking
whether or not a Kripke structure is a model of a CTL∗ formula.

There is a vast literature on the problem of model checking for the CTL∗ logic
and, in particular, its two fragments: (i) the Computational Tree Logic CTL, and
(ii) the Linear-time Temporal Logic LTL (see [2] for a survey). Most of the known
model checking algorithms for CTL∗ either combine model checking algorithms
for CTL and LTL [2], or use techniques based on translations to automata on
infinite trees [6].

In this paper we extend to CTL∗ a method proposed in [11] for LTL. We
encode the satisfaction relation of a CTL∗ formula ϕ with respect to a Kripke
structure K by means of a locally stratified logic program PK,ϕ. The program
PK,ϕ belongs to a class of programs, called ω-programs, which define predicates
on infinite lists. Predicates of this type are needed because the definition of the
satisfaction relation is based on the infinite computation paths of K. The seman-
tics of PK,ϕ is provided by its unique perfect model [12] which for ω-programs is
defined in terms of a non-Herbrand interpretation for infinite lists.

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 5–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

6 A. Pettorossi, M. Proietti, and V. Senni

Our verification method consists of two steps. In the first step we transform
the program PK,ϕ into a monadic ω-program, that is, a stratified program that
defines nullary or unary predicates on infinite lists. This transformation is per-
formed by applying unfold/fold transformation rules similar to those presented
in [5,14,15] according to a strategy which is a variant of the specialization strategy
presented in [5]. Similarly to [5,14], the use of those unfold/fold rules guarantees
the preservation of the perfect model of PK,ϕ.

In the second step of our verification method we apply a proof method for
monadic ω-programs which is sound and complete with respect to the perfect
model semantics.

The paper is structured as follows. In Section 2 we introduce the class of
ω-programs and we show how to encode the satisfaction relation for any given
Kripke structure and CTL∗ formula as an ω-program. In Section 3 we present
our verification method. In particular, in Section 3.1 we present the special-
ization strategy for transforming an ω-program into a monadic ω-program and
in Section 3.2 we present the proof method for monadic ω-programs. Finally,
in Section 4 we discuss related work in the area of model checking and logic
programming.

2 Encoding CTL∗ Model Checking as a Logic Program

In this section we describe a method which, given a Kripke structure K and
a CTL∗ state formula ϕ, allows us to construct a logic program PK,ϕ and to
define a nullary predicate prop such that ϕ is true in K, written K � ϕ, iff
prop is true in the perfect model of PK,ϕ, written M(PK,ϕ) � prop. Thus, the
problem of checking whether or not K � ϕ holds, also called the problem of model
checking ϕ with respect to K, is reduced to the problem of testing whether or
not M(PK,ϕ) � prop holds.

Now we briefly recall the definition of the temporal logic CTL∗ (see [2] for more
details). A Kripke structure is a 4-tuple 〈Σ, s0, ρ, λ〉, where: (i) Σ={s0, . . . , sh}
is a finite set of states, (ii) s0 ∈ Σ is the initial state, (iii) ρ ⊆ Σ×Σ is a total
transition relation, and (iv) λ : Σ → P(Elem) is a total function that assigns
to every state s ∈ Σ a subset λ(s) of the set Elem of elementary properties.
A computation path of K from a state s is an infinite list [a0, a1, . . .] of states
such that a0 = s and, for every i ≥ 0, (ai, ai+1) ∈ ρ. Given an infinite list
π = [a0, a1, . . .] of states, by πj , for any j≥ 0, we denote the infinite list which
is the suffix [aj , aj+1, . . .] of π.

Definition 1 (CTL∗ Formulas). Given a set Elem of elementary properties,
a CTL∗ formula ϕ is either a path formula ϕp or a state formula ϕs defined as
follows:

(path formulas) ϕp ::= ϕs | ¬ϕp | ϕp ∧ ϕp | X ϕp | ϕp U ϕp

(state formulas) ϕs ::= d | ¬ϕs | ϕs ∧ ϕs | E ϕp

where d∈Elem .

Deciding Full Branching Time Logic by Program Transformation 7

As the following definition formally specifies, (i) Xϕ holds on a computation
path π if ϕ holds in the second state of π, (ii) ϕ1 U ϕ2 holds on a computation
path π if ϕ2 holds in a state s of π and ϕ1 holds in every state preceding s in π,
and (iii) E ϕ holds in a state s if there exists a computation path starting from s
on which ϕ holds.

Definition 2 (Satisfaction Relation for CTL∗). Let K = 〈Σ, s0, ρ, λ〉 be a
Kripke structure. For any CTL∗ formula ϕ and infinite list π ∈ Σω, the relation
K, π � ϕ is inductively defined as follows:
K, π � d iff π = [a0, a1, . . .] and d∈λ(a0)
K, π � ¬ϕ iff K, π
� ϕ
K, π � ϕ1 ∧ ϕ2 iff K, π � ϕ1 and K, π � ϕ2
K, π � X ϕ iff K, π1 � ϕ
K, π � ϕ1 U ϕ2 iff there exists i≥0 such that K, πi � ϕ2

and, for all 0≤j<i, K, πj � ϕ1
K, π � E ϕ iff π = [a0, a1, . . .] and there exists a computation path π′

from a0 such that K, π′ � ϕ.
Given a state formula ϕ, we say that K is a model of ϕ, written K � ϕ, iff there
exists an infinite list π ∈ Σω such that the first state of π is the initial state s0
of K and K, π � ϕ holds.

The above definition of the satisfaction relation for CTL∗ formulas is a shorter,
yet equivalent, version of the usual definition one can find in the literature [2].

In order to encode the satisfaction relation for CTL∗ formulas as a logic pro-
gram, we will introduce in the next section a class of logic programs, called
ω-programs. In this class the arguments of predicates may denote infinite lists.

2.1 Syntax and Semantics of ω-Programs

Let us consider a Kripke structure K. Let us also consider a first order lan-
guage Lω given by a set Var of variables, a set Fun of function symbols, and
a set Pred of predicate symbols. We assume that Fun includes: (i) the set Σ
of the states of K, each state being a constant of Lω, (ii) the set Elem of the
elementary properties of K, each elementary property being a constant of Lω ,
and (iii) the binary function symbol [|] which is the constructor of infinite lists.
Thus, for instance, [H |T] is the infinite list whose head is H and whose tail is
the infinite list T .

We assume that Lω is a typed language [9] with the following three basic types:
(i) fterm, which is the type of finite terms, (ii) state, which is the type of states,
and (iii) ilist, which is the type of infinite lists of states. Every function symbol
in Fun − (Σ ∪ {[|]}), with arity n (≥0), has type fterm×· · ·×fterm→ fterm,
where fterm occurs n times to the left of →. Every function symbol in Σ has ar-
ity 0 and type state. The function symbol [|] has type state×ilist→ilist.
A predicate symbol of arity n (≥0) in Pred has type of the form τ1×· · ·×τn, where
τ1, . . . , τn ∈ {fterm, state, ilist}. An ω-program is a logic program constructed

8 A. Pettorossi, M. Proietti, and V. Senni

as usual (see, for instance, [9]) from symbols in the typed language Lω. In what
follows, for reasons of simplicity, we will feel free to say ‘program’, instead of
‘ω-program’.

Given a term or a formula t, by vars(t) we denote the set of variables occurring
in t. The same notation will be used for sets of terms and sets of formulas. The
existential closure of a formula ϕ, denoted ∃(ϕ), is the formula ∃X1 . . . ∃Xn ϕ
where {X1, . . . , Xn} is the set of the free variables occurring in ϕ. The universal
closure of a formula ϕ, denoted ∀(ϕ), is defined in a similar way by using ∀,
instead of ∃. Note that if vars(ϕ) = ∅, then ∃(ϕ) is ϕ itself.

An interpretation for our typed language Lω, called ω-interpretation, is given
as follows. Let HU be the Herbrand universe constructed from the set Fun−(Σ∪
{[|]}) of function symbols and let Σω be the set of the infinite lists of states.
An ω-interpretation I is an interpretation such that: (i) I assigns to the types
fterm, state, and ilist, respectively, the sets HU, Σ, and Σω, (ii) I assigns
to the function symbol [|] the function [|]I such that, for any state a ∈ Σ
and infinite list [a1, a2, . . .] ∈ Σω, [a|[a1, a2, . . .]]I is the infinite list [a, a1, a2, . . .],
(iii) I is an Herbrand interpretation for all function symbols in Fun−(Σ∪{[|]}),
and (iv) I assigns to every n-ary predicate p ∈ Pred of type τ1×. . .×τn a relation
on D1×· · ·×Dn, where, for i = 1, . . . , n, Di is either HU or Σ or Σω, according
to the case where τi is either fterm or state or ilist, respectively. We say that
an ω-interpretation I is an ω-model of a program P iff for every clause γ∈P we
have that I � ∀(γ).

A level mapping is a function
 : Pred → N. A level mapping is extended to
literals as follows: for any literal L having predicate p, if L is a positive literal,
then
(L) =
(p) and, if L is a negative literal then
(L) =
(p) + 1. An ω-
clause γ of the form H ← L1 ∧ . . . ∧ Lm is stratified w.r.t.
 if, for i = 1, . . . , m,

(H) ≥
(Li). An ω-program P is stratified if there exists a level mapping
 such
that all clauses of P are stratified w.r.t.
.

A valuation is a function v : Var → HU ∪ Σ ∪ Σω such that: (i) if X has
type fterm then v(X)∈HU , (ii) if X has type state then v(X)∈Σ, and (iii) if
X has type ilist then v(X) ∈ Σω. For any term t, literal L, and clause γ,
we define v(t), v(L), and v(γ), by induction on the structure of t, L, and γ,
respectively. We will say that v(t), v(L), and v(γ), is ‘a term’, ‘a literal’, and
‘a clause’, respectively, also when they are infinite structures.

We extend the notion of Herbrand base [9] to the case of ω-programs by
introducing the set Bω defined as follows:
Bω ={p(v(X1), . . . , v(Xn)) | p is an n-ary predicate symbol and

v is a valuation}
Thus, any ω-interpretation can be identified with a subset of Bω.

A local stratification is a function σ: Bω → W , where W is the set of count-
able ordinals. Given A ∈ Bω, we define σ(¬A) = σ(A)+1. Given a clause γ
of the form H ← L1 ∧ . . . ∧ Lm in an ω-program P and a local stratification
σ, we say that γ is locally stratified w.r.t. σ if for i = 1, . . . , m, for every valua-
tion v, σ(v(H)) ≥ σ(v(Li)). An ω-program P is locally stratified w.r.t. σ, or σ is a

Deciding Full Branching Time Logic by Program Transformation 9

local stratification for P , if every clause in P is locally stratified w.r.t. σ. An
ω-program P is locally stratified if there exists a local stratification σ such that
P is locally stratified w.r.t. σ.

Clearly, every stratified ω-program is a locally stratified ω-program. Similarly
to the case of logic programs, for every locally stratified ω-program P (and,
hence, for every stratified ω-program P), we can construct a unique perfect ω-
model (or perfect model, for short) denoted by M(P) [1,12] (an instance of this
construction is presented in Example 1).

Definition 3 (Monadic ω-Programs). A monadic ω-clause is an ω-clause of
the form A0 ← L1 ∧ . . . ∧ Lm, with m ≥ 0, such that: (i) A0 is an atom of the
form p0 or q0([s|X0]), where q0 is a predicate of type ilist and s∈Σ, (ii) for
i = 1, . . . , m, Li is either an atom Ai or a negated atom ¬Ai, where Ai is of the
form pi or qi(Xi), and qi is a predicate of type ilist, and (iii) there exists a level
mapping
 such that, for i = 1, . . . , m, if Li is an atom and vars(A0)
⊇ vars(Li),
then
(A0) >
(Li) else
(A0) ≥
(Li). A monadic ω-program is a finite set of
monadic ω-clauses.

Note that in Definition 3 the predicate symbols p0, q0, . . . , pm, qm and the vari-
ables X0, . . . , Xm are not necessarily distinct. Condition (iii) ensures that a
monadic ω-program is stratified. This condition, which is actually stronger than
stratification, is also needed for guaranteeing the completeness of the proof
method for monadic ω-programs (see Section 3.2).

Example 1. Let r, q, and p be predicates of type ilist. The following set of
clauses is a monadic ω-program P (and, thus, also an ω-program):

p([a|X])← p(X) q([a|X])← q(X) r([a|X])← r(X)
p([b|X])← ¬ q(X) q([a|X])← ¬ r(X) r([b|X])←

q([b|X])← q(X)
Program P is stratified by the level mapping
 : Pred → N such that
(p) = 2,

(q)=1, and
(r)=0. The perfect model M(P) is constructed starting from the
ground atoms of level 0 and going up, level-by-level, as we now indicate. We start
from the ground atoms of level 0, that is, the ground atoms with predicate r.
For all w ∈ {a, b}ω, r(w) ∈ M(P) iff w ∈ a∗b(a + b)ω. Thus, r(w)
∈ M(P) iff
w∈ aω, that is, ¬ r(w) holds in M(P) iff w∈ aω. Then we consider the ground
atoms of level 1, that is, the ground atoms with predicate q. For all w∈{a, b}ω,
q(w)∈M(P) iff w∈(a+b)∗aω (that is, w has finitely many occurrences of b). Thus,
¬ q(w) holds in M(P) iff w∈ (a∗b)ω (that is, w has infinitely many occurrences
of b). Finally, we consider the ground atoms of level 2, that is, the ground atoms
with predicate p. For all w ∈ {a, b}ω, p(w) ∈M(P) iff w ∈ (a∗b)(a∗b)ω, that is,
p(w)∈M(P) iff w∈(a∗b)ω.

2.2 Encoding the CTL∗ Satisfaction Relation as an ω-Program

Given a Kripke structure K and a CTL∗ state formula ϕ, we introduce a locally
stratified ω-program PK,ϕ which defines, among others, the following three pred-
icates: (i) the unary predicate path such that path(π) holds iff π is an infinite list

10 A. Pettorossi, M. Proietti, and V. Senni

representing a computation path of K, (ii) the binary predicate sat that encodes
the satisfaction relation for CTL∗ formulas, in the sense that for all computation
paths π and CTL∗ formulas ψ, we have that M(PK,ϕ) � sat(π, ψ) iff K, π � ψ,
and (iii) the nullary predicate prop that encodes the property ϕ to be verified,
in the sense that prop holds iff there exists an infinite list π whose first element
is the initial state s0 of K and K, π � ϕ.

When writing terms that encode CTL∗ formulas, such as the second argument
of the predicate sat , we will use the function symbols e, x, and u standing for
the operator symbols E, X, and U, respectively.

Definition 4 (Encoding Program).Given a Kripke structureK=〈Σ, s0, ρ, λ〉
and a CTL∗ formula ϕ, the encoding program PK,ϕ is the following ω-program:

1. prop ← sat([s0|X], ϕ)
2. sat([S|X], F)← elem(F, S)
3. sat(X,not(F)) ← ¬ sat(X, F)
4. sat(X, and(F1, F2)) ← sat(X, F1) ∧ sat(X, F2)
5. sat([S|X], x(F)) ← sat(X, F)
6. sat(X, u(F1, F2))← sat(X, F2)
7. sat([S|X], u(F1, F2)) ← sat([S|X], F1) ∧ sat(X, u(F1, F2))
8. sat([S|X], e(F))← exists sat(S, F)
9. exists sat(S, F) ← path([S|Y]) ∧ sat([S|Y], F)

10. path(X)← ¬notpath(X)
11. notpath([S1, S2|X])← ¬ tr(S1, S2)
12. notpath([S|X])← notpath(X)

together with the clauses defining the predicates tr and elem , where:
(1) for all states s1, s2∈Σ, tr(s1, s2) holds iff (s1, s2)∈ρ, and
(2) for every property d∈Elem and state s∈Σ, elem(d, s) holds iff d∈λ(s).

Clause 1 of Definition 4 asserts that the property ϕ holds for an infinite list
of states whose first element is s0. Clauses 2–9 define the satisfaction relation
sat(X, ϕ) for any infinite list X and CTL∗ formula ϕ. The definition of sat(X, ϕ)
is by structural induction on ϕ. Clauses 10–12 establish that path(X) holds iff for
every pair (ai, ai+1) of consecutive elements on the infinite list X , we have that
(ai, ai+1) ∈ ρ. Indeed, clauses 11 and 12 establish that notpath(X) holds iff in the
list X there exist two consecutive elements ai and ai+1 such that (ai, ai+1)
∈ ρ.

The program PK,ϕ is locally stratified w.r.t. the stratification function σ from
ground literals to natural numbers, defined as follows (in what follows, for any
CTL∗ formula χ, we will denote by |χ| the number of occurrences of function
symbols in r): for all states a∈Σ, for all infinite lists π∈Σω, and for all CTL∗

formulas ψ, (i) σ(prop)= |ϕ|+1, where prop←sat([s0|X], ϕ), (ii) σ(sat(π, ψ))=
|ψ|+1, (iii) σ(exists sat(a, ψ))= |ψ|+2, (iv) σ(path(π))=2, (v) σ(notpath(π))=1,
(vi) for every ground atom A, σ(¬A) = σ(A)+1, and (vii) in all other cases σ
returns 0.

Example 2. Let us consider: (i) the set Elem = {a, b, tt} of elementary prop-
erties, where tt is the elementary property which holds in every state, and

Deciding Full Branching Time Logic by Program Transformation 11

(ii) the Kripke structure K = 〈{s0, s1, s2}, s0, ρ, λ〉, where ρ is the transition
relation {(s0, s0), (s0, s1), (s1, s1), (s1, s2), (s2, s1)} and λ is the function such
that λ(s0) = {a}, λ(s1) = {b}, and λ(s2) = {a}. Let us also consider the for-
mula ϕ = E (a U¬E (tt U¬ (tt U b))), which can be abbreviated as E (a U AGF b),
where: (i) for every state formula ψ, Fψ (read ‘eventually ψ’) stands for tt U ψ,
and Gψ (read ‘always ψ’) stands for ¬F¬ψ, and (ii) for every path formula ψ,
Aψ (read ‘for all computation paths ψ’) stands for ¬E¬ψ. The encoding pro-
gram PK,ϕ is as follows:
prop ← sat([s0|X], e(u(a,not(e(u(tt ,not(u(tt , b))))))))
tr(s0, s0)← tr(s0, s1)← tr(s1, s1)← tr(s1, s2)← tr(s2, s1)←
elem(a, s0)← elem(b, s1)← elem(a, s2)← elem(tt , S)←

together with clauses 2–12 of Definition 4 defining the predicates sat, path, and
notpath.

Since K � ϕ holds iff there exists an infinite list π ∈ Σω such that the first
state of π is the initial state s0 of K and K, π � ϕ holds (see Definition 2), we
have that the correctness of PK,ϕ can be expressed by stating that K � ϕ holds
iff M(PK,ϕ) � ∃X sat([s0|X], ϕ) iff (by clause 1 of Definition 4) M(PK,ϕ) � prop.
The correctness of PK,ϕ is stated in the following theorem.

Theorem 1 (Correctness of the Encoding Program). Let PK,ϕ be the
encoding program for a Kripke structure K and a state formula ϕ. Then, K � ϕ
iff M(PK,ϕ) � prop.

3 Transformational CTL∗ Model Checking

In this section we present a technique based on program transformation for check-
ing whether or not, for any given structure K and state formula ϕ, M(PK,ϕ) �
prop holds, where PK,ϕ is constructed as indicated in Definition 4 above. Our
technique consists of two steps. In the first step we transform the ω-program PK,ϕ

into a monadic ω-program T such that M(PK,ϕ) � prop iff M(T) � prop. In the
second step we check whether or not M(T) � prop holds by using a proof method
for monadic ω-programs.

3.1 Transformation to Monadic ω-Programs

The first step of our model checking technique is realized by applying special-
ized versions of the following transformation rules: definition introduction and
elimination, instantiation, positive and negative unfolding, clause deletion, pos-
itive and negative folding (see, for instance, [5,14,15]). These rules are applied
according to a strategy which is a variant of the specialization strategy presented
in [5].

Our specialization strategy starts off from the clause γ1: prop ← sat([s0|X], ϕ)
in PK,ϕ (see clause 1 in Definition 4) and a set of clauses, called InDefs which is
initialized to {γ1}. Then, our strategy iteratively applies two procedures: (i) the
instantiate-unfold procedure, and (ii) the define-fold procedure. At each iteration,

12 A. Pettorossi, M. Proietti, and V. Senni

the set InDefs is transformed into a set Ds of monadic ω-clauses, at the expense
of possibly introducing some auxiliary, non-monadic clauses which are stored
in the set NewDefs. These auxiliary clauses are given as input to a subsequent
iteration of the strategy. The strategy terminates when no new auxiliary clauses
are introduced and, when this happens, in a final step we apply the definition
elimination rule by keeping only the clauses whose head predicate is either prop
or a predicate on which prop depends.

The Specialization Strategy.
Input: An ω-program PK,ϕ for a Kripke structure K and a state formula ϕ.
Output: A monadic ω-program T such that M(PK,ϕ) � prop iff M(T) � prop.
Q := PK,ϕ; InDefs := {prop ← sat([s0|X], ϕ)}; Defs := InDefs ;
while InDefs
=∅do

instantiate-unfold(Q , InDefs ,Cs);
define-fold(Cs ,Defs ,NewDefs ,Ds);
Q := (Q− InDefs) ∪NewDefs ∪Ds;
InDefs := NewDefs ; Defs := Defs ∪ NewDefs

od;
T := {γ | γ ∈Q and the head predicate of γ is either prop or a predicate on

which prop depends}.

Let us now introduce two notions which are needed for presenting the instantiate-
unfold and the define-fold procedures. A definition clause is a non-monadic
ω-clause of the form H ← A where: (1) H is an atom of the form p or q(X),
where q is a predicate of type ilist, (2) A is an atom, and (3) vars(H) =
vars(A). A quasi-monadic clause is an ω-clause of the form H ← L1 ∧ . . . ∧ Lk,
with k ≥ 0, such that: (i) H is an atom of the form p or q([s|X]), where p is
a predicate of type ilist and s ∈ Σ, and (ii) for i = 1, . . . , k, there exists a
variable Y (possibly equal to X) of type ilist such that vars(Li) ⊆ {Y }.

The instantiate-unfold procedure transforms a given set InDefs of definition
clauses into a set Cs of quasi-monadic clauses by: (1) instantiating each clause
in InDefs , (2) applying the positive (or negative) unfolding rule to clauses of the
form p([s|X])← BL ∧ L ∧ BR, whenever L is a positive literal (or a negative
literal, respectively), and (3) deleting subsumed clauses.

Given a clause δ, a variable X , and a term t, we denote by δ{X/t} the clause δ
with every occurrence of X replaced by t.

The instantiate-unfold Procedure.
Input : An ω-program Q and a set InDefs ⊆ Q of definition clauses.
Output : A set Cs of quasi-monadic clauses.
(Instantiation)
Let Y be a new variable of type ilist and let Σ be the set of states of K;
S := { δ{X/[s|Y]} | δ ∈ InDefs and vars(δ)={X} and s∈Σ}∪

{ δ | δ ∈ InDefs and vars(δ) = ∅};

Deciding Full Branching Time Logic by Program Transformation 13

Cs := ∅;
(Unfolding)
while there exists a clause γ in S do

(Case 1. Positive Unfolding)
if (i) γ is of the form H← BL ∧A ∧BR, where A is an atom,

(ii) K1 ← B1, . . . , Km ← Bm are all clauses in PK,ϕ such that A is
unifiable with K1, . . . , Km with most general unifiers ϑ1, . . . , ϑm, and
(iii) for i = 1, . . . , m, A = Kiϑi (that is, A is an instance of Ki)

then S := (S − {γ})∪ {H ← BL ∧B1ϑ1 ∧BR, . . . , H ← BL ∧Bmϑm ∧BR}
(Case 2. Negative Unfolding)

elseif (i) γ is of the form H← BL ∧ ¬A ∧BR, where A is an atom,
(ii) K1 ← B1, . . . , Km ← Bm are all clauses in PK,ϕ such that A is
unifiable with K1, . . . , Km with most general unifiers ϑ1, . . . , ϑm,
(iii) for i = 1, . . . , m, A = Kiϑi (that is, A is an instance of Ki), and
(iv) for i = 1, . . . , m, vars(Bi) ⊆ vars(Ki)

then from BL∧¬(B1ϑ1 ∨ . . . ∨ Bmϑm)∧BR we get an equivalent disjunction
Q1 ∨ . . .∨Qr of conjunctions of literals, with r ≥ 0, by first pushing ¬
inside and then pushing ∨ outside;
S := (S − {γ}) ∪ {H ← Q1, . . . , H ← Qr}

(Case 3. No Unfolding)
else S := S − {γ}; Cs := Cs ∪ {γ} fi

od;

(Subsumption)
while there exists a unit clause γ1 in Cs of the form H← and a variant of a
clause γ2 in Cs − {γ1} of the form H ← B do Cs := Cs − {γ2} od

The define-fold procedure transforms the quasi-monadic ω-clauses of Cs into
monadic ω-clauses by applying the definition introduction rule and the (positive
or negative) folding rule. In particular, for any given quasi-monadic clause γ:
H ← L1∧ . . .∧Lk in Cs and for i = 1, . . . , m, the define-fold procedure performs
the following steps.

Let Li be either the positive literal Ai or the negative literal ¬Ai. We consider
the following two cases. Case (1): If in Defs ∪NewDefs there is a clause δi of the
form Ki ← Ai, then γ is folded using δi, that is, the occurrence of Li in the body
of γ is replaced either (i) by Ki, if Li = Ai (positive folding), or (ii) by ¬Ki, if
Li = ¬Ai (negative folding). Case (2): Otherwise, if in Defs ∪ NewDefs there is
no clause of the form Ki ← Ai, then the definition clause δi: Ki ← Ai, where
Ki has a new predicate symbol newpi, is added to NewDefs (by applying the
definition introduction rule). Then, clause γ is folded using the newly introduced
clause δi as in Case (1).

The clause H ← M1 ∧ . . . ∧Mk derived by folding γ using clauses δ1, . . . , δk

is a monadic ω-clause. Indeed, we have that: (1) H is either of the form p or of
the form q([s|X]) (because γ is quasi-monadic), (2) for i = 1, . . . , k, Mi is either
the atom Ki or the negated atom ¬Ki, where Ki is either of the form newpi or

14 A. Pettorossi, M. Proietti, and V. Senni

of the form newpi(Y) (this follows from the definition of δi and the fact that γ is
quasi-monadic), and (3) Condition (iii) of Definition 3 holds by defining
 as fol-
lows: let σ be the stratification function for the encoding program PK,ϕ (see Sec-
tion 2.2), (i)
(prop) = σ(prop) = |ϕ|+1, and (ii) for every predicate newpi that
occurs in the head of a clause Ki ← Ai introduced during any execution of the
define-fold procedure,
(newpi) = σ(A′

i), where A′
i is any ground instance of Ai.

For example, if we introduce the definition clause newpi(X)← sat(X, e(u(a, b))),
then we define
(newpi) = σ(sat(π, e(u(a, b)))) = |e(u(a, b)))| + 1 = 5, where π
is any infinite list. Note that
 does not depend on the particular instance of Ai,
because the value of σ is independent of the infinite list which (possibly) occurs
as an argument of Ai.

The define-fold Procedure.
Input : (i) A set Cs of quasi-monadic clauses and (ii) a set Defs of definition
clauses;
Output : (i) A set NewDefs of definition clauses, and (ii) a set Ds of monadic
ω-clauses.

NewDefs := ∅; Ds := ∅;

for each clause γ in Cs do
let the clause γ be of the form H ← L1 ∧ . . . ∧ Lk;
for i = 1, . . . , k do

let Li be either Ai or ¬Ai, for some atom Ai;
(Definition Introduction)

if a clause δ with body Ai has a variant in Defs ∪NewDefs
then take Ki to be the head of δ
else take Ki to be: (i) newpi(Y), if vars(Ai)= {Y }, and (ii) newpi, if

vars(Ai)=∅, where newpi is a new predicate symbol;
NewDefs :=NewDefs ∪ {Ki←Ai} fi;

(Positive or Negative Folding)
if Li is Ai then Mi := Ki else Mi := ¬Ki fi

od; Ds := Ds ∪ {H ←M1 ∧ . . . ∧Mk}
od

The specialization strategy, which from the initial program PK,ϕ produces the
final program T , is correct w.r.t. the perfect model semantics, in the sense that
M(PK,ϕ) � prop iff M(T) � prop. This correctness result can be proved similarly
to [5,14]. Note that the instantiation rule that we use in the unfold procedure, is
not present in [5,14], but its application can be viewed as an unfolding of an addi-
tional atom ilist(X) defined by the clauses: ilist([s0|Y]) ←, . . . , ilist([sh|Y]) ←,
where Σ = {s0, . . . , sh} is the set of states of K.

Our specialization strategy terminates for every input program PK,ϕ because:
(i) both the instantiate-unfold and define-fold procedures terminate, and (ii) the
while loop of the strategy terminates.

Deciding Full Branching Time Logic by Program Transformation 15

The termination of the instantiate-unfold procedure is a consequence from the
following properties. (1) The Instantiation and Subsumption steps terminate.
(2) The predicates path, tr, and elem do not depend on themselves in program
PK,ϕ. (3) For each clause in PK,ϕ defining the predicate notpath, either the
predicate of the body literal does not depend on notpath (see clause 11) or the
term occurring in the body is a proper subterm of the term occurring in the
head (see clause 12). (4) For each clause in PK,ϕ whose head is of the form
sat(l1, ψ1) and for each literal of the form sat(l2, ψ2) occurring (positively or
negatively) in the body of that clause, either ψ2 is a proper subterm of ψ1 or
ψ1 = ψ2 and l2 is a proper subterm of l1. (5) For each state s and formula ψ,
the literal esists sat(s, ψ) depends on itself through a call to the predicate sat
(see clauses 8 and 9) and by consuming at least one operator e in the formula
ψ. (6) The applicability conditions given in the instantiate-unfold procedure (see
Point (iii) of Case 1 and Case 2) do not allow the unfolding of a clause γ if this
unfolding instantiates a variable in γ.

The termination of the define-fold procedure is straightforward.
Finally, the proof of termination of the while loop of the specialization strat-

egy follows from the fact that only a finite number of definition clauses can be
introduced by the define-fold procedure. Indeed, every definition clause is of the
form H ← A, where: (i) A is an atom in the finite set Δ = {notpath([s|X]) |
s∈Σ}∪ {exists sat(s, ψ) | s∈Σ and ψ is a subformula of ϕ} ∪ {sat(X, ψ) | ψ is
a subformula of ϕ}, and (ii) for any A∈Δ the define-fold procedure introduces
at most one definition clause.

Theorem 2 (Correctness and Termination of the Specialization
Strategy). Let PK,ϕ be the encoding program for a Kripke structure K and
a state formula ϕ. The specialization strategy terminates for the input program
PK,ϕ and returns an output program T such that: (i) T is a monadic ω-program
and (ii) M(PK,ϕ) � prop iff M(T) � prop.

Example 3. Let us consider program PK,ϕ of Example 2. Our specialization strat-
egy starts off from the sets Q = PK,ϕ and InDefs = Defs = {γ1}, where γ1 is
the following definition clause (that is, clause 1 of PK,ϕ):

γ1: prop ← sat([s0|X], e(u(a,not(e(u(tt ,not(u(tt , b))))))))
In the first execution of the loop body of our strategy we apply the instantiate-
unfold procedure to the set InDefs . We get the set Cs = {γ2, γ3} of quasi-
monadic clauses, where:

γ2: prop ← ¬notpath([s0|X]) ∧ sat(X, u(a,not(e(u(tt ,not(u(tt , b)))))))
γ3: prop ← ¬notpath([s0|X]) ∧ ¬ exists sat(s0, u(tt ,not(u(tt , b))))

Then, by applying the define-fold procedure, we get the set NewDefs ={γ4, γ5, γ6}
of definition clauses and the set Ds = {γ′

2, γ
′
3} of monadic ω-clauses, where:

γ4: p1(X)← notpath([s0|X])
γ5: p2(X)← sat(X, u(a,not(e(u(tt ,not(u(tt , b)))))))
γ6: p3 ← exists sat(s0, u(tt ,not(u(tt , b))))
γ′
2: prop ← ¬ p1(X) ∧ p2(X)

γ′
3: prop ← ¬ p1(X) ∧ ¬ p3

16 A. Pettorossi, M. Proietti, and V. Senni

At the end of the first execution of the body of the while loop of our strat-
egy, we get: Q = (PK,ϕ − {γ1}) ∪ {γ′

2, γ
′
3}, InDefs = {γ4, γ5, γ6}, and Defs =

{γ1} ∪ {γ4, γ5, γ6}. Since InDefs
= ∅ the execution of the while loop continues.
After a few more executions of the loop body, the define-fold procedure does not
introduce any new clause in NewDefs . Thus, we get InDefs = ∅ and we derive
the final program Q. By keeping every clause in Q whose head predicate is ei-
ther prop or a predicate on which prop depends, we get the following monadic
ω-program T :
prop ← ¬ p1(X) ∧ p2(X)
prop ← ¬ p1(X) ∧ ¬ p3
p1([s0|X])← p1(X)
p1([s1|X])← p4(X)
p1([s2|X])←
p2([s0|X])← ¬ p3
p2([s0|X])← p2(X)
p2([s1|X])← ¬ p5
p2([s2|X])← ¬ p6
p2([s2|X])← p2(X)

p3 ← ¬ p1(X) ∧ ¬ p7(X)
p3 ← ¬ p1(X) ∧ p8(X)
p4([s0|X])←
p4([s1|X])← p4(X)
p4([s2|X])← p9(X)
p5 ← ¬ p4(X) ∧ p8(X)
p6 ← ¬ p9(X) ∧ ¬ p7(X)
p6 ← ¬ p9(X) ∧ p8(X)
p7([s0|X])← p7(X)
p7([s1|X])←

p7([s2|X])← p7(X)
p8([s0|X])← ¬ p7(X)
p8([s0|X])← p8(X)
p8([s1|X])← p8(X)
p8([s2|X])← ¬ p7(X)
p8([s2|X])← p8(X)
p9([s0|X])←
p9([s1|X])← p4(X)
p9([s2|X])←

3.2 A Proof Method for Monadic ω-Programs

In this section we present the second step of our model checking technique. In
particular, we present a method for checking whether or not M(P) � F holds,
for any monadic ω-program P and any formula F which is either of the form p
or of the form ∃X(L1∧ . . .∧Ln), with n≥1, where, for i=1, . . . , n, Li is either a
positive literal qi(X) or a negative literal ¬qi(X). In what follows the set of the
formulas F of this form will be denoted by F . In particular, our method allows
us to check whether or not M(T) � prop holds for the monadic ω-program T
that we derive by the specialization strategy presented in Section 3.1.

First, we introduce the notion of a derivation tree and, then, the notion of
a proof of a formula F in F w.r.t. a monadic ω-program P . Every node of a
derivation tree has: (i) a depth which is the number of its ancestor nodes (in
particular, the root has depth 0), and (ii) a label which is either
(1) the empty conjunction true, or
(2) the empty disjunction false , or
(3) a literal of the form: either p, or ¬ p, or q(X), or ¬ q(X), or
(4) a formula of the form: either ∃X (L1∧ . . .∧Ln) or ¬∃X (L1∧ . . .∧Ln), with

n≥1, where, for i = 1, . . . , n, Li is either qi(X) or ¬ qi(X).
We denote by L the set of formulas of the forms (3) and (4). Let us also introduce
the following notation: (i) for any atom A, A denotes ¬A and ¬A denotes A,
and (ii) for any formula B, ∃X B denotes ¬∃X B.

In order to construct a derivation tree of a formula in F w.r.t. a given monadic
ω-program P , we begin by rewriting the program P as follows. (Recall that in
the body of a monadic ω-clause at most one variable occurs in a literal and two
distinct literals may have a variable in common.) For every clause H←B in P
and for every variable Y in vars(B)−vars(H), we replace the literals L1, . . . , Lm

Deciding Full Branching Time Logic by Program Transformation 17

of B such that vars(L1)= . . .=vars(Lm)={Y } by the formula ∃Y (L1∧. . .∧Lm).
Thus, every clause in P is rewritten as H←F1 ∧ . . .∧Fk, where, for i=1, . . . , k,
Fi is a formula in L.

For instance, clause q0([s|X])←q1(X)∧ q2(Y)∧ p1 ∧¬ q3(Y)∧ p2 is rewritten
as q0([s|X])←q1(X) ∧ ∃Y (q2(Y) ∧ ¬ q3(Y)) ∧ p1 ∧ p2.

Definition 5 (Derivation Tree). Given a monadic ω-programP and a formula
F in F , a derivation tree of F w.r.t. P is a finite tree T constructed as follows:

1. the root node is labeled by F , and if F is of the form ∃X (L1 ∧ . . . ∧ Ln)
then the root node has n children labeled by L1, . . . , Ln, respectively,

2. if a non-root node N is labeled by: (i) true, or (ii) false , or (iii) ∃X B, or
(iv) ¬∃X B (that is, N is not labeled by a literal), then N is a leaf,

3. for every integer d≥0, consider the nodes N1, . . . , N�, with
≥1, of depth d:
if there exists an integer c, with 0≤ c < d, such that for every literal L

labeling a node of depth d, there exists a node of depth c labeled by L
then the nodes N1, . . . , N� are leaves
else choose a state s∈Σ and, for i = 1, . . . ,
, if the node Ni is labeled by

a literal Li, then construct a child node of Ni with label F , for each
formula F in the set Ci of formulas in L ∪ {true, false} constructed
from the state s, the literal Li, and the program P , as we now indicate.
There are two cases.
Case (i): Li is an atom q(X) (or p). If in P there is no clause whose
head is q([s|X]) (or p), then take Ci to be {false}. Otherwise, choose a
clause q([s|X])← F1 ∧ . . . ∧ Fk (or p ← F1 ∧ . . . ∧ Fk) in P , where, for
i = 1, . . . , k, Fi ∈ L. If k = 0 then take Ci to be {true}, else take Ci to
be {F1, . . . , Fk}.
Case (ii): Li is a negated atom ¬q(X) (or ¬p). Let q([s|X]) ← B1, . . . ,
q([s|X])← Bk (or p ← B1, . . . , p← Bk) be all clauses in P whose head
is q([s|X]) (or p). If k=0 then take Ci to be {true}. If k≥1 and there
exists i, with 1≤ i≤k, such that Bi is the empty conjunction, then take
Ci to be {false}. Otherwise, for i = 1, . . . , k, choose a formula Fi ∈ L
such that Bi = G1 ∧ Fi ∧ G2, where G1 and G2 are (possibly empty)
conjunctions, and take Ci to be {F 1, . . . , F k}.

By construction, for any derivation tree T there exist: (i) an integer m which is
the maximal depth of a node of T , and (ii) a least integer c, with 0≤c<m, such
that for every literal L labeling a node of depth m, there exists a node of depth
c labeled by L. Now, we introduce a relation rT between literals as follows. For
any two literals L1 and L2, rT (L1, L2) holds iff: (i) there exists a node M of
depth c in T whose label is L1, (ii) there exists a node N of depth m in T whose
label is L2, and (iii) M is an ancestor of N in T . We denote by r+

T the transitive
closure of rT .

Proposition 1. Let P be a monadic ω-program and F be a formula in F . (i) Ev-
ery derivation tree T of F w.r.t. P is minimal, in the sense that no proper subtree
of T is itself a derivation tree of F w.r.t. P . (ii) There exists a finite number of
derivation trees of F w.r.t. P .

18 A. Pettorossi, M. Proietti, and V. Senni

Now we present the definitions of proof and refutation, which are based on the
notion of derivation tree.

Definition 6 (Proof and Refutation). Let P be a monadic ω-program and F
be a formula in F . We say that F has a proof w.r.t. P iff there exists a derivation
tree T of F w.r.t. P which satisfies the following conditions:
1. every leaf N of T is labeled by: either (i) true, or (ii) a literal of the form

p, or ¬p, or q(X), or ¬q(X), or (iii) a formula of the form ∃X B that has a
proof w.r.t. P , or (iv) a formula of the form ¬∃X B such that ∃X B has a
refutation w.r.t. P ,

2. for every positive literal L labeling a leaf of T , r+
T (L, L) does not hold.

We say that F has a refutation w.r.t. P iff no derivation tree of F w.r.t. P is a
proof of F w.r.t. P .

By Proposition 1 it is decidable whether or not a there exists a proof of a
formula in F w.r.t. a monadic ω-program. Moreover, by induction on the level
of the predicates occurring in the monadic ω-program P , we can show that our
proof method is sound and complete for showing that a formula in the set F is
true in the perfect model of P . Thus, we have the following result.

Theorem 3. Let P be a monadic ω-program and F a formula in F . Then:
(i) there is an algorithm to check whether or not F has a proof w.r.t. P , and
(ii) F has a proof w.r.t. P iff M(P) � F .

Now we present an example of application of the second step of our transfor-
mational method for proving CTL∗ properties of the Kripke structures which
encode reactive systems.

Example 4. Let us consider: (i) the monadic ω-program T , obtained as the out-
put of our specialization strategy (see Example 3), and (ii) the formula prop,
that encodes the CTL∗ property ϕ of the Kripke structure K introduced in Ex-
ample 2. We can construct a proof for the formula prop w.r.t. T as shown by the
various derivation trees depicted in Figure 1. As a consequence, we have that
M(PK,ϕ) � prop holds and, thus, the formula ϕ holds in the Kripke structure K.

4 Related Work and Concluding Remarks

Various logic programming techniques and tools have been developed for model
checking. In particular, tabled resolution has been shown to be quite effec-
tive for implementing a modal μ-calculus model checker for CCS value pass-
ing programs [13]. Techniques based on logic programming, constraint solving,
abstract interpretation, and program transformation have been proposed for
performing CTL model checking of finite and infinite state systems (see, for in-
stance, [3,5,8,10]). In this paper we have extended to CTL∗ model checking the
transformational approach which was proposed for LTL model checking in [11].

The main contributions of this work are the following. (i) We have proposed a
method for specifying CTL∗ properties of reactive systems based on ω-programs,

Deciding Full Branching Time Logic by Program Transformation 19

prop

∃X (¬ p1(X) ∧ p2(X))

(A)

∃X (¬ p1(X) ∧ p2(X))

�
�

�
�

¬ p1(X)

s1

p2(X)

s1

¬ p4(X)

s1

¬ p5

¬ p4(X) ¬∃X (¬ p4(X) ∧ p8(X))

(B)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s0

p8(X)

s0

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s0

p8(X)

s0

false p8(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s1

p8(X)

s1

¬ p4(X) p8(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s0

¬ p7(X)

s0

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s1

¬ p7(X)

s1

¬ p4(X) false

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s2

¬ p7(X)

s2

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s0

p8(X)

s0

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s0

p8(X)

s0

false p8(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s1

p8(X)

s1

¬ p4(X) p8(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s2

p8(X)

s2

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

�
�

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s2

p8(X)

s2

false p8(X)

(C)

Fig. 1. The tree in (A) is a proof of prop w.r.t. T . The tree in (B) is a proof of
∃X (¬ p1(X) ∧ p2(X)) w.r.t. T . The 11 trees in (C) are all the derivation trees of
∃X (¬ p4(X) ∧ p8(X)) w.r.t. T and none of them is a proof. The labels of the arcs are
the states s∈Σ to be chosen according to Point (3) of Definition 5.

20 A. Pettorossi, M. Proietti, and V. Senni

that is, logic programs acting on infinite lists. This method is a proper exten-
sion of the methods for specifying CTL or LTL properties, because CTL and
LTL are fragments of CTL∗. (ii) We have introduced the subclass of monadic
ω-programs for which the satisfaction relation w.r.t. the perfect model is de-
cidable. This subclass of programs properly extends the class of linear monadic
ω-programs introduced in [11]. (iii) Finally, we have shown that we can trans-
form, by applying semantics preserving unfold/fold rules, the logic programming
specification of a CTL∗ property into a monadic ω-program.

Our transformation strategy can be viewed as a specialization of the Encoding
Program (see Definition 4) w.r.t. a given Kripke structure K and a given CTL∗

formula ϕ. However, it should be noted that this program specialization could
not be achieved by using partial deduction techniques (see [7] for a brief survey).
Indeed, our specialization strategy performs instantiation and negative unfolding
steps that cannot be realized by partial deduction.

Our two step verification approach bears some similarities with the automata-
theoretic approach to CTL∗ model checking, where the specification of a
finite state system and a CTL∗ formula are translated into alternating tree
automata [6]. The automata-theoretic approach is quite appealing because many
useful techniques are available in the field of automata theory. However, we be-
lieve that also our approach has its advantages because of the following reasons.
(1) The specification of properties of reactive systems, together with the trans-
formation of these specifications into monadic ω-programs, and the proofs of
properties of monadic ω-programs, can all be done within the single framework
of logic programming, while in the automata-theoretic approach one has to trans-
late the temporal logic formalism into the distinct formalism of automata theory.
(2) The translation of a specification into a monadic ω-program can be performed
by using semantics preserving transformation rules, thereby avoiding the burden
of proving the correctness of the translation by ad-hoc methods. (3) Finally, due
its generality, we believe that our approach can be extended without much effort
to the case of infinite state systems.

Issues that can be investigated in the future include: (i) the complexity of
our verification method and, in particular, an efficient implementation of the
proof method presented in Section 3.2, (ii) the relationship between monadic
ω-programs and alternating tree automata, (iii) the applicability of our trans-
formational approach to other logics, such as the monadic second order logic of
successors, and (iv) the experimental evaluation of the efficiency of our trans-
formational approach by considering various test cases and comparing its per-
formance in practical examples w.r.t. that of other model checking techniques
known in the literature.

References

1. Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. Journal of Logic
Programming 19, 20, 9–71 (1994)

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

Deciding Full Branching Time Logic by Program Transformation 21

3. Delzanno, G., Podelski, A.: Constraint-based deductive model checking. Interna-
tional Journal on Software Tools for Technology Transfer 3(3), 250–270 (2001)

4. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

5. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite
state systems by specializing constraint logic programs. In: Proceedings of the ACM
Sigplan Workshop on Verification and Computational Logic VCL 2001, Florence
(Italy), Technical Report DSSE-TR-2001-3, pp. 85–96. University of Southampton,
UK (2001)

6. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)

7. Leuschel, M.: Logic program specialisation. In: Hatcliff, J., Thiemann, P. (eds.)
DIKU 1998. LNCS, vol. 1706, pp. 155–188. Springer, Heidelberg (1999)

8. Leuschel, M., Massart, T.: Infinite state model checking by abstract interpretation
and program specialization. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817,
pp. 63–82. Springer, Heidelberg (2000)

9. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
10. Nilsson, U., Lübcke, J.: Constraint logic programming for local and symbolic

model-checking. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V.,
Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000.
LNCS (LNAI), vol. 1861, pp. 384–398. Springer, Heidelberg (2000)

11. Pettorossi, A., Proietti, M., Senni, V.: Transformational verification of linear tem-
poral logic. In: 24th Italian Conference on Computational Logic Ferrara, Italy
(CILC 2009), June 24-26 (2009), http://www.ing.unife.it/eventi/cilc09

12. Przymusinski, T.C.: On the declarative semantics of stratified deductive databases
and logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and
Logic Programming, pp. 193–216. Morgan Kaufmann, San Francisco (1988)

13. Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift,
T., Warren, D.S.: Efficient model checking using tabled resolution. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)

14. Seki, H.: Unfold/fold transformation of stratified programs. Theoretical Computer
Science 86, 107–139 (1991)

15. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In:
Tärnlund, S.-Å. (ed.) Proceedings of the Second International Conference on Logic
Programming (ICLP 1984), pp. 127–138. Uppsala University, Uppsala (1984)

http://www.ing.unife.it/eventi/cilc09

A Transformational Approach for Proving

Properties of the CHR Constraint Store

Paolo Pilozzi�, Tom Schrijvers��, and Maurice Bruynooghe

Department of Computer Science, K.U. Leuven, Belgium
{Paolo.Pilozzi,Tom.Schrijvers,Maurice.Bruynooghe}@cs.kuleuven.be

Abstract. Proving termination of, or generating efficient control for
Constraint Handling Rules (CHR) programs requires information about
the kinds of constraints that can show up in the CHR constraint store.
In contrast to Logic Programming (LP), there are not many tools avail-
able for deriving such information for CHR. Hence, instead of building
analyses for CHR from scratch, we define a transformation from CHR to
Prolog and reuse existing analysis tools for Prolog.

The proposed transformation has been implemented and combined with
PolyTypes 1.3, a type analyser for Prolog, resulting in an accurate descrip-
tion of the types of CHR programs. Moreover, the transformation is not
limited to type analysis. It can also be used to prove other properties of
the constraints showing up in constraint stores, using tools for Prolog.

Keywords: Constraint Handling Rules, Program Transformation.

1 Introduction

Proving termination of, or generating efficient control for Constraint Handling
Rules (CHR) programs requires information about the kinds of constraints that
can show up in the CHR constraint store. In particular, type information is
useful in this context. When used as a basis for determining the possible calls to
the program, it leads to compiler optimisations [11], more precise termination
conditions [4,7] and more refined interpretations for proving termination [1, 9].

In Logic Programming (LP), many tools are available for performing such
analyses [5,2, 12]. Hence, instead of building analyses for CHR from scratch, it
is interesting to explore whether one can define transformations from CHR to
Prolog and reuse existing analysis tools for Prolog to obtain properties about
the constraints that are in the CHR constraint store during computations.

One approach would be to build a faithful CHR meta-interpreter in Prolog
and to analyse this meta-interpreter or to transform the CHR program into a
Prolog meta-program and to analyse the meta-program. A difficulty with this
approach is capturing the “fire-once” policy of CHR which prescribes that a
rule cannot be applied twice to the same combination of constraints. This policy

� Supported by I.W.T. - Flanders (Belgium).
�� Post-Doctoral Researcher of F.W.O. - Flanders (Belgium).

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 22–36, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Transformational Approach 23

prevents the infinite application of propagation rules, that add constraints to
the store without removing any. The approach in [10] has a problem with this.

Fortunately, it often suffices to have an over-approximation of the constraints
that can show up in the constraint store. In that case, one does not need a meta-
interpreter or transformation that rigorously preserves the run-time behaviour
of the CHR program and one can simply ignore the “fire-once” policy. This
sometimes results in the presence of constraints in the approximated store that
cannot be present at run-time, e.g., because some rule needs different occurrences
of the same constraint before it can fire. But this is not too much of a problem,
if only because one is typically interested in a whole class of queries (initial
constraint stores), and queries in the class can have multiple occurrences of
constraints, hence rules that need multiple occurrences can fire anyway.

For CHR, some direct approaches were developed [3, 11], mainly based on
approaches developed for LP. Direct approaches usually make use of abstract
interpretation. For CHR, not much work has been done on the topic of abstract
interpretation [11] and thus not many analyses resulted from it. The transforma-
tional approach hasn’t received much attention either. To the best of our knowl-
edge, except for the termination preserving transformation discussed in [10], no
transformational approaches have been attempted.

We have implemented the transformation and combined it with PolyTypes
1.3 [2] in a tool called CHRTypes. We plan to use CHRTypes as a source of
information to obtain the call types of a CHR(Prolog) program. The computed
call types can then be used as input to our termination analyser CHRisTA [8],
instead of providing them ourselves, resulting in a fully automated termination
analyser for CHR(Prolog).

The paper is organised as follows. In the next section we introduce CHR syntax
and the abstract CHR semantics. Then, in Section 3, we discuss a transformation
of CHR(Prolog) to Prolog. Section 4, discusses the application of our transfor-
mation to type analysis of CHR(Prolog), using PolyTypes 1.3 (based on [2]) on
the transformed programs. Then, in Section 5, we evaluate our transformational
approach using CHRTypes, a fully automated type analyser for CHR(Prolog).
Finally, in Section 6, we conclude the paper.

2 Preliminaries

2.1 CHR Syntax

CHR is intended as a programming language for implementing constraint solvers.
To implement these solvers, a user can define CHR rules which rewrite conjunc-
tions of constraints. The constraints of a CHR program are special first-order
predicates c(t1, . . . , tn) on terms, like the atoms of an LP program. There are two
kinds of constraints defined in a CHR program: CHR constraints are user-defined
and solved by the CHR program. Built-in constraints are pre-defined and solved
by an underlying constraint theory, CT , defined in the host language. We con-
sider Prolog, thus definite LP with a left-to-right selection rule, as host language.
We assume the reader to be familiar with Prolog syntax and semantics.

24 P. Pilozzi, T. Schrijvers, and M. Bruynooghe

A CHR program, P , is a finite set of CHR rules, defining the transitions of the
program. To provide the analyser with information about the built-ins one can
add some Prolog clauses that capture their essential properties. In CHR, there
are three different kinds of rules. Simplification rules replace CHR constraints
by new CHR and built-in constraints. On the presence of CHR constraints, prop-
agation rules only add new constraints. Finally, simpagation rules replace CHR
constraints by new constraints, given the presence of other CHR constraints.

Let Hk, Hr and C denote conjunctions of CHR constraints and let G and B
denote conjunctions of built-in constraints. Then, a simplification rule takes the
form, R @ Hr ⇔ G | B, C, a propagation rule the form, R @ Hk ⇒ G | B, C, and
a simpagation rule the form, R @ Hk \Hr ⇔ G | B, C. Like in Prolog syntax,
we write a conjunction of constraints as a sequence of conjuncts separated by
commas. Rules are named by adding “rulename @” in front of the rule.

Example 1 (Merge-sort). The program below implements the merge-sort algo-
rithm. The query mergesort(L), with L a list of natural numbers of length exactly
2n , yields a tree-representation of the order, which then is rewritten into a sorted
list of elements. Note that in this version of merge-sort we represent the natural
numbers using a symbolic form: 0, s(0), s(s(0)),

R1 @ msort([]) ⇔ true.
R2 @ msort([L|Ls]) ⇔ r(0, L), msort(Ls).
R3 @ r(D, L1), r(D, L2) ⇔ leq(L1, L2) | r(s(D), L1), a(L1, L2).
R4 @ a(L1, L2) \ a(L1, L3)⇔ leq(L2, L3) | a(L2, L3).

The first two rules decompose a list of elements, while adding new r/2 constraints
to the store. The constraints r(D, L) represent trees of depth D (initially 0) and
root value L. The third and fourth rule perform the actual merge-sorting. The
third rule joins two trees of equal depth. It replaces both trees by a new tree of
incremented depth, where the largest root becomes a child node of the smallest
hence the branch is ordered. Note that the initial list needs to have a length that
is a power of 2 to ensure that one ends with a single tree. The order in a branch
is represented by a/2 constraints. Finally, the fourth rule merge-sorts different
branches of a tree into a single branch, i.e., an ordered list of elements. �

2.2 The Abstract CHR Semantics

In general, CHR is defined as a state transition system. In its simplest form,
called the abstract semantics, it defines a state as a conjunction, or alternatively
a multi-set, of constraints, called the constraint store.

Definition 1 (CHR state). A CHR state S is a conjunction or multi-set of
built-in and CHR constraints. An initial state or query is a finite conjunction of
constraints. In a final state or answer, either the built-in constraints are incon-
sistent (failed state) or no more transitions are possible. �

The rules of a CHR program determine the possible transitions between con-
straint stores. Since the abstract semantics ignores the fire-once policy, we have

A Transformational Approach 25

that all three kinds of rules are essentially simplification rules. Consider for ex-
ample the propagation rule, R @ Hk ⇒ B, C. Given the abstract CHR semantics,
it is equivalent to the simplification rule, R @ Hk ⇔ Hk, B, C. Similarly, a sim-
pagation rule, R @ Hk \Hr ⇔ B, C, can be represented as a simplification rule,
R @ Hk, Hr ⇔ Hk, B, C.

The transition relation relates consecutive CHR states on the presence of
applicable CHR rules. The built-ins are non-deterministically solved by the CT .

Definition 2 (Transition relation). Let θ denote a substitution corresponding
to the bindings generated when resolving built-in constraints. Let σ denote a
matching substitution of the variables in the head and an answer substitution of
the variables appearing in the guard but not in the head. The transition relation,
→, between CHR states, given a constraint theory CT for the built-ins and a
CHR program P for the CHR constraints, is defined as follows.

1. Solve transition:
if S = b ∧ S′ and CT |= bθ then S → S′θ

2. Simplification:
given a fresh variant of a rule in P : Hr ⇔ G | B, C
if S = H ′

r ∧ S′ and CT |= (H ′
r = Hrσ) ∧Gσ then S → (B ∧C ∧ S′)σ

We assume built-ins not to introduce new CHR constraints and thus solving these
can only generate binding for variables. If built-in constraints cannot be solved
by the CT , the CHR program fails. �

Note that by adding variable bindings to the constraint store (solving built-ins),
a guard can become true. Also note that the selection of an answer substitution
for the local variables in the guard is a committed choice. To denote the host
language CT we write CHR(CT), e.g. CHR(Prolog).

3 Transforming CHR(Prolog) to Prolog

In Section 2.2, we discussed the representation of the three kinds of CHR rules
into simplification rules, thus safely over-approximating the contents of the con-
straint store with respect to the original theoretical CHR semantics. This choice
was motivated in the introduction. We assume this transformation to take place
prior to the transformation to Prolog that we discuss in this section.

3.1 Representing the CHR Constraint Store in Prolog

The CHR constraint store is a conjunction of constraints. To represent it in
Prolog, we fix some order and represent it as a list, called the storelist. The code
handling the firing of a rule will cope with the fact that the storelist is equivalent
to any of its permutations. That there are n! permutations for an n-element store
is of no concern as the transformed program will be analysed, not executed.

Thus, for a constraint store S = constr1∧constr2∧ . . .∧constrn, we obtain as
a possible storelist representation R = [constr1, constr2, . . . , constrn]. Note that

26 P. Pilozzi, T. Schrijvers, and M. Bruynooghe

according to the abstract CHR semantics, a CHR query is an initial constraint
store. Its representation by a storelist in Prolog is therefore identical to that of
any other constraint store.

3.2 Representing CHR Rules in Prolog

A CHR rule defines transitions between constraint stores. Which transitions
are applicable for a constraint store is determined by the presence of matching
constraints for the heads of rules such that the guards of these rules are entailed.
Multiple rules can be simultaneously applicable, in which case CHR commits to
a particular choice. The following example illustrates this.

Example 2 (Non-determinism). Consider an initial store a ∧ b for the program:

R1 @ a ⇔ c. R2 @ b⇔ d. R3 @ a, d⇔ a, a, b.

The program may or may not end for the initial constraint store. If we apply
the first rule, then the program terminates immediately. If we apply the second
and third rule repeatedly, then the program runs forever. �

To model possible constraint stores that can exist during execution of a CHR
program, it suffices to represent the non-determinism of CHR by search in Prolog.
This is achieved by transforming every CHR rule to a Prolog clause of the rule/2
predicate. The clause describes the relationship between the store before and
after rule application. To perform the matching between the store and the head
of the rule, it is checked whether the storelist starts with the constraints in the
rule head. Thus, a CHR rule of the form:

H1, . . . , Hn ⇔ G1, . . . , Gk | B1, . . . , Bl, C1, . . . , Cm

becomes a Prolog clause:

rule([H1, . . . , Hn|R], [B1, . . . , Bl, C1, . . . , Cm|R]) :- G1, . . . , Gk.

Here, H1, . . . , Hn are head constraints. Built-in guards and bodies are repre-
sented respectively by G1, . . . , Gk and B1, . . . , Bl. The CHR body constraints are
represented by C1, . . . , Cm. Note that the head of the CHR rule is represented
as a list with a variable as tail. This tail binds with the unused constraints in the
current store. When the guards succeed, the new store consists of these unused
constraints extended with the new constraints from the body.

As the CHR(Prolog) program has no rules for the built-in predicates, we need
to add to the translation, rules that process them. For each built-in predicate p/n,
there is therefore a clause rule([p(X1, . . . , Xn)|R], R) :- p(X1, . . . , Xn) present
in the transformed CHR(Prolog) program.

3.3 Representing the Abstract Semantics of CHR in Prolog

The operational semantics of CHR programs is already largely represented by
the rule clauses. Matching of constraints in the store with heads of the rules is

A Transformational Approach 27

done by unification with the storelist. The resulting store is contained in the
second argument of the rule clause. We only have to call rules repeatedly.

goal(S) :- perm(S, PS), rule(PS, NS), goal(NS). goal().

Note that we must permute the storelist – the call perm(P, PS) – to bring the
matching constraints to the front. Also note that whenever the program cannot
call any of the rule/2 clauses, it will end up in a refutation, representing termina-
tion in CHR. In fact, any call to goal/1 can result in a refutation. Nevertheless,
no further approximations of the contents of the CHR constraint store result
from this. Finally, notice that CHR queries are represented by a call to goal/1
with a storelist representation of the CHR query as argument.

Example 3 (Transforming merge-sort). We revisit merge-sort from Example 1
and transform every rule into its clausal form. First, we represent all rules by
simplification rules. This is already the case for the first three rules. The fourth
rule on the other hand is a simpagation rule and is transformed into

R4 @ a(L1, L2), a(L1, L3)⇔ leq(L2, L3) | a(L1, L2), a(L2, L3).

Next, the CHR program is transformed into the following Prolog program.
goal(S) :- perm(S, PS), rule(PS, NS), goal(NS).
goal().

rule([msort([])|R], R).
rule([msort([L|List])|R], [r(0, L), msort(List)|R]).
rule([r(D, L1), r(D, L2)|R], [r(s(D), L1), a(L1, L2)|R]) :- leq(L1, L2).
rule([a(L1, L2), a(L1, L3)|R], [a(L1, L2), a(L2, L3)|R] :- leq(L2, L3).

A query for the transformed program is of the form goal([msort(L)]), where L
is a list of natural numbers in symbolic form, as in Example 1. �

3.4 Transformation Summary

To transform CHR states to Prolog queries, we introduce a mapping, α : S → Q,
from a constraint store, S, to a Prolog query, Q, of the form goal(R). Here, R
is the storelist representation of S, as defined in Subsection 3.1. We define also
the inverse of α as γ = α−1.

We introduce an operator, C2P , transforming a CHR program, P , to a Prolog
program, ℘, and define it as follows.

Definition 3 (C2P). A CHR program P is transformed into the following Pro-
log program ℘ = C2P (P).

• The Prolog program ℘ contains following clauses:
goal(S):- perm(L, [X |P]):- del(X, [Y |T], [Y |R]):-

perm(S, PS), del(X, L, L1), del(X, T, R).
rule(PS, NS), perm(L1, P). del(X, [X |T], T).
goal(NS). perm([], []).

goal().

28 P. Pilozzi, T. Schrijvers, and M. Bruynooghe

• The Prolog program ℘ contains for every rule,
H1, . . . , Hn ⇔ G1, . . . , Gk | B1, . . . , Bl, C1, . . . , Cm.

in P , where B1, . . . , Bl are added built-in constraints and C1, . . . , Cm are
added CHR constraints, the following clause:

rule([H1, . . . , Hn|R], [B1, . . . , Bl, C1, . . . , Cm|R]) :- G1, . . . , Gk.
• The Prolog program ℘ contains for every built-in predicate p/n in P , a clause:

rule([p(X1, . . . , Xn)|R], R) :- p(X1, . . . , Xn). �
We connect the CHR program, P , and its corresponding Prolog program, ℘,
using α. We show that if a transition exists between two CHR states S and S′,
then there must exist a corresponding derivation in the transformed program.
This derivation, however, is, in contrast to the CHR transition, no single-step
operation. Between a call to goal/1 and a next call to goal/1, one needs to
resolve the calls to perm/2 and rule/2, implementing the CHR transition. This
property is illustrated in the diagram of Figure 1.

Q
℘

�� Q′

γ

��
S

α

��

P
�� S′

Fig. 1. Connection ℘ and P . Here, Q and Q′ are Prolog queries and S and S′ CHR
states. The vertical arrows represent mappings of α and γ. The horizontal arrows
represent CHR transitions in P and derivations in ℘.

Theorem 1 (Connecting ℘ and P). Consider CHR(Prolog). Let S be a con-
straint store and let Q be a goal statement such that Q = α(S). Let S′ be the
constraint store that is the result of applying a CHR transition on S, given by
a CHR program P . Then, there exists a partial LD-derivation in ℘ = C2P (P)
(SLD with Prolog’s left to right selection rule) that starts in Q and leads to a
goal Q′ with the property that S′ = γ(Q′). �
Proof. We need to show that for every transition between consecutive states S
and S′ in the CHR program P , as given by the abstract CHR semantics, there
exists a corresponding partial LD-derivation for the definite program C2P (P)
and the goal Q = α(S) that leads to some Q′ with the property that γ(Q′) = S′.

According to Definition 2, we can distinguish between two kind of transitions.
We proof the property for each of them. In the proof, we use multi-sets to
represent the constraint store, and use set-notation to denote them.

Solve transition. In this case, the constraint store S holds a constraint b that
refers to a built-in Prolog predicate b/n and that can be successfully solved by
the underlying Prolog system. More precisely, the constraint store contains

{b(X1, . . . , Xn)σ, c1, . . . , ck}

for some k ≥ 0. Solving b(X1, . . . , Xn)σ results in the application of a substi-
tution θ and the resulting constraint store S′ equals {c1, . . . , ck}θ. The goal

A Transformational Approach 29

Q corresponding to the initial constraint store S is of the form

goal([a1, . . . , ak+1])

with [a1, . . . , ak+1] a permutation of [b(X1, . . . , Xn)σ, c1, . . . , ck]. When per-
forming a resolution step on this goal with the program C2P (P), either the
fact goal() is applied, yielding a refutation, or the clause

goal(A) :- perm(A, Ap), rule(Ap, An), goal(An)

is applied, yielding the resolvent

perm([a1, . . . , ak+1], Ap), rule(Ap, An), goal(An).

The latter is of interest to us. Resolving the subgoal perm([a1, . . . , ak+1], Ap)
completely, leads to goals of the form

rule([b1, . . . , bk+1], An), goal(An)

with [b1, . . . , bk+1] a permutation of [a1, . . . , ak+1] and hence a permutation
of [b(X1, . . . , Xn)σ, c1, . . . , ck]. Let us consider one with b1 = b(X1, . . . , Xn)σ.
In that case, we can write the goal as

rule([b(X1, . . . , Xn)σ, b2, . . . , bk+1], An), goal(An)

with [b2, . . . , bk+1] a permutation of [c1, . . . , ck].
We can solve this goal with

rule([b(X1, . . . , Xn)|R], R) :- b(X1, . . . , Xn),

yielding the new goal

b(X1, . . . , Xn)σ, goal([b2, . . . , bk+1]).

Solving the built-in predicate results — by our assumptions about the con-
straint store — in the substitution θ and the new goal goal([b2, . . . , bk+1]θ)
with [b2, . . . , bk+1]θ a permutation of [c1, . . . , ck]θ. Hence,

γ(goal([b2, . . . , bk+1]θ) = {c1, . . . , ck}θ = S′

which completes the proof for this case.

Simplification. In this case, the constraint store S holds a number of con-
straints h1, . . . , hn that match the head of a CHR rule in P , i.e. it is of the
form

{h1, . . . , hn, c1, . . . ck}

for some k ≥ 0. The CHR rule is of the form

H1, . . . , Hn ⇔ G1, . . . , Gr | B1, . . . , Bl, C1, . . . , Cm.

30 P. Pilozzi, T. Schrijvers, and M. Bruynooghe

Moreover, it is the case that there exists a matching substitution σ such
that, for all i ∈ [1..n] Hiσ = hi and that the guard (G1, . . . , Gr)σ can be
successfully solved, resulting in a substitution θ. As a next state, we thus
obtain

S′ = {B1, . . . , Bl, C1, . . . , Cm}σθ � {c1, . . . , ck}θ.
The goal Q corresponding to the initial constraint store S is of the form

goal([a1, . . . , an+k])

with [a1, . . . , an+k] a permutation of [h1, . . . , hn, c1, . . . , ck]. Similar as in the
first case, we can apply the clause

goal(A) :- perm(A, Ap), rule(Ap, An), goal(An)

and obtain the resolvent

perm([a1, . . . , an+k], Ap), rule(Ap, An), goal(An).

Completely resolving the subgoal perm([a1, . . . , an+k], Ap) leads to goals of
the form

rule([b1, . . . , bn+k], An), goal(An)
with [b1, . . . , bn+k] a permutation of [a1, . . . , an+k] and hence a permutation
of [h1, . . . , hn, c1, . . . , ck]. Let us consider one with b1 = h1, . . . , bn = hn. In
that case, we can write the goal as

rule([h1, . . . , hn, bn+1 . . . , bn+k], An), goal(An)

with [bn+1, . . . , bn+k] a permutation of [c1, . . . , ck].
We can solve this goal with

rule([H1, . . . , Hn|R], [B1, . . . , Bl, C1, . . . , Cm|R]) :- G1, . . . , Gr;

we have that, for all i, hi = Hiσ, hence we obtain the resolvent

G1σ, . . . , Grσ, goal([B1σ, . . . , Blσ, C1σ, . . . , Cmσ, bn+1 . . . , bn+k]).

By our assumptions about the store, resolving the guards G1σ, . . . , Gnσ one
by one results in an accumulated substitution θ and the new goal

goal([B1σ, . . . , Blσ, C1σ, . . . , Cmσ, bn+1 . . . , bn+k]θ)

with [bn+1 . . . , bn+k]θ a permutation of [c1, . . . ck]θ. Hence,

γ(goal([B1σ, . . . , Blσ, C1σ, . . . , Cmσ, bn+1 . . . , bn+k]θ) =

{B1σ, . . . , Blσ, C1σ, . . . , Cmσ, c1, . . . , ck}θ = S′

which completes the proof for this case. �
This relation establishes that the analysis of properties of constraints, part of
the CHR constraint store during execution of a CHR(Prolog) program, can take
place on its transformed program C2P (P) instead. After all, for every two con-
secutive CHR states, consecutive calls to goal/1 with storelist representations of
these states exist. Stating the inverse is not true. For the transformed program,
a refutation exists for every call to goal/1 and matching in CHR is replaced by
the more general concept of unification in Prolog.

A Transformational Approach 31

4 Application of the Transformation to Type Analysis

In the previous section, we discussed the correctness of our transformation for
the analysis of constraints present in constraint stores during computations of
a CHR(Prolog) program P . That is, for every constraint store {c1, . . . , cn} that
appears during the execution of P starting from some initial constraint store
S, there is a corresponding goal goal([c1, . . . , cn]) that appears in the execution
of C2P (P) starting from the goal goal(α(S)). After introducing the notion of
call set, we can formulate this in a more precise way as a corollary of the above
theorem. Restricting the call set of C2P (P) to the predicate goal/1 yields an
over-approximation of the call set of the constraint store, defined similar to the
call set of a Prolog program.

Definition 4 (Call set of a Prolog program). Let S be a set of atomic goals.
The call set, Call(P, S), is the set of all atoms A, such that a variant of A is
the selected atom in some derivation for (P, Q), for some Q ∈ S. �

Corollary 1. Let S be the initial constraint store of a CHR program P . Let C be
the set Call(C2P (P), {α(S)}) restricted to calls of the predicate goal/1. Then,
{S′ | ∃c ∈ C such that γ(c) = S′} is an over-approximation of the constraint
stores that can occur during execution of the CHR program with S. �

The corollary implies that the transformation preserves properties of the con-
straints in constraint stores that may occur during execution of the original CHR
program. Although the transformation yields an over-approximation, it provides
us with accurate information regarding the calls in the CHR program. Such in-
formation is derived top-down and does not depend much on the presence of a
fire-once policy as argued in the introduction. After all, multiple applications
of rules are considered anyways as we analyse the constraint store for classes of
initial constraint stores. Approximations resulting from the refutations due to
the fact goal(), do not influence the analysis of calls either.

Using unification instead of matching can introduce unwanted constraints.
Consider for example the CHR rule, a(1) ⇔ c, and an initial constraint store
{a(X)}, where X is some free variable. Then in CHR, the program would termi-
nate immediately as the constraint in the store cannot be matched with the head
of the rule. When transforming the CHR rule to a Prolog clause using C2P , we
obtain: rule([a(1)|R], [c|R]); and for the the initial constraint store: goal([a(X)]).
Due to unification in Prolog, the transformed program does allow the applica-
tion of the transformed CHR rule. Consequently, a type analyser for Prolog will
derive incorrectly that the constraint c can be part of the constraint store. Mak-
ing the process of matching explicit would resolve the issue, however, doing so
requires the use of Prolog built-ins. Type analysers for Prolog, typically, have a
problem with this. In general, they do not take information of Prolog systems
into account. Making matching explicit can thus only result in inaccurate types.
This is in contrast to unification, where we might overestimate the constraints
in constraint stores, but will compute the correct types.

32 P. Pilozzi, T. Schrijvers, and M. Bruynooghe

A consequence of the corollary is that useful analyses of the resulting Prolog
program are those that infer properties about the call set of the program. So,
analyses that derive properties about the success set are useless (Unless combined
with magic set transformation, so that the success set characterises the call set).

As an illustration of a useful analysis, below we apply the inference of well-
typings [2] on the resulting Prolog programs. As well-typed programs cannot go
wrong, all calls are well-typed and in particular, the type of the goal/1 predicate
provides a well-typing for the constraints that can appear in the constraint store.

Other potentially useful analyses are mode analyses. As modes of arguments
positions are not useful, one should derive modes annotating the type compo-
nents; [13] is an example of such an analysis. Then the modes annotating the type
of the elements in the list, that is the type of the goal/1 predicate (the constraint
type below) would provide information about the modes of the constraints in the
store. Finally, a proof of termination of goal(α(S)) is a sufficient condition for
termination of the CHR program. However, as CHR programs with propagation
are transformed into simplification only programs, we introduce non-termination.
Therefore, proving termination on the transformed programs can only be done
for programs without propagation [10].

The next example demonstrates a type analysis on C2P(merge-sort) from
Example 1. First, all rules become simplification rules, as in Example 3. Then,
the program is transformed according to Definition 3:

goal(S):- perm(L, [X |P]):- del(X, [Y |T], [Y |R]):-
perm(S, PS), del(X, L, L1), del(X, T, R).
rule(PS, NS), perm(L1, P). del(X, [X |T], T).
goal(NS). perm([], []).

goal().

leq(s(X), s(Y)) :- leq(X, Y). leq(0, X).

rule([msort([])|T], T).
rule([msort([L|List])|T], [r(0, L), msort(List)|T]).
rule([r(D, L1), r(D, L2)|T], [r(s(D), L1), a(L1, L2)|T]) :- leq(L1, L2).
rule([a(L1, L2), a(L1, L3)|T], [a(L1, L2), a(L2, L3)|T]) :- leq(L2, L3).

Notice that we have added a definition for the built-in leq/2 for the sake of the
analysis. Performing a type analysis on the transformed program with PolyTypes
1.3, yields the following result:

Type definitions:
constraint→ msort(list); a(sym nat1, sym nat1); r(sym nat2, sym nat1)
list→ []; [sym nat1|list]
sym nat1 → 0; s(sym nat1)
sym nat2 → 0; s(sym nat2)
storelist→ []; [constraint|storelist]

A Transformational Approach 33

Signatures:
goal(storelist)
perm(storelist, storelist)
del(constraint, storelist, storelist)
leq(sym nat1, sym nat1)

For readability, we have replaced the type names generated by PolyTypes 1.3 by
more meaningful ones. Note that sym nat1 and sym nat2 are equivalent types
representing symbolic natural numbers. As these types do not interact through
unification, the type inference keeps them separate.

For the analysis of types in CHR, we are only interested in the types present
in the storelist of the transformed program. This is given by the signature
for goal/1. It expresses that the type of its argument is a storelist. That is,
a list of elements of type constraint. Thus, terms of the form msort(list),
a(sym nat1, sym nat1) or r(sym nat2, sym nat1). Hence PolyTypes 1.3 cor-
rectly derives the types of the constraints that can occur in the storelist and
thus in the constraint store.

The reason why PolyTypes is able to derive that we are using a list of sym-
bolic integer values in msort/1 is because we have provided for the definition
of leq/2. This is noticeable as its signature is present in the output generated
by PolyTypes. Would we have not provided the implementation of leq/2, Poly-
Types could not have derived the type definition (sym nat1 → 0; s(sym nat1))
and would have concluded that (sym nat1 →) is a type that can cover any
term.

One could add a query to the program. Adding a query can only increase
the type inferred by the PolyTypes analysis. For example, adding the CHR
query msort(l(s(s(s(0))), l(s(s(0)), n))), which translates into the Prolog query
goal([msort(l(s(s(s(0))), l(s(s(0)), n)))]), will extend the type definition list as
the argument of msort/1 in the query uses different list constructors than
those in the msort-rules. That is, we use l/2 as list constructor yielding the
type definitions (list → list1; list2), (list1 → []; [sym nat1|list1]), and (list2 →
n; l(sym nat1, list2)). Actually, the obtained type is then a grave overestimation
of the actual contents of the constraint store as no CHR rule can fire on the
query. Here a call type analysis [6] would give more precise results.

Instead of specifying an initial query, one could also specify the type of the
initial query, i.e. specifying that a call to goal/1 has the type storelist and
providing for the initial type(s) for constraint, e.g. constraint → msort(list).
Translating these types into input for PolyTypes, the tool will then extend these
types and obtain the same types as the ones shown above.

5 Evaluation of the Transformation

The transformation to Prolog from Definition 3 has been implemented and inte-
grated with PolyTypes 1.3 in a tool called CHRTypes1. CHRTypes derives the

1 Available at http://www.cs.kuleuven.be/∼paolo/c2p/

34 P. Pilozzi, T. Schrijvers, and M. Bruynooghe

Table 1. Benchmark results CHRTypes = C2P + PolyTypes 1.3

CHR(swi) T(sec) CHR(swi) T(sec) CHR(swi) T(sec)

ackermann 0.067 color3 0.068 concat 0.066
constr121 0.068 constr122 0.062 dcons2sat 0.582
dfsearch 0.067 dijkstra 0.070 fib bu 0.074
fib td 0.068 gcd 0.068 genchrnet 0.178
gencss 0.181 gensccs 0.277 hamming 0.118
knapsack 0.101 lazychr 0.158 linpoleq 0.072
mergesort 0.082 nqueen 0.090 oddeven 0.073
power 0.067 primes3 0.079 revlist 0.064
rsa 0.113 shortest path 0.069 solvecases 0.203
strips 0.089 trans closure1 0.072 unionfind 0.087
uf opt 0.152 weight 0.078 ztoa 0.065

types of CHR(Prolog) programs in a fully automated way, using only PolyTypes
1.3 and our transformation.

Using CHRTypes, we ran 10 tests on a benchmark of 98 CHR(Prolog) pro-
grams using a system with an Intel(R) Pentium(R) D CPU 2.80GHz and 2G
of RAM . In Table 1, we have listed the averages of these results for a represen-
tative subset of the CHR(Prolog) programs in the benchmark. Next to a set of
28 constructed examples, compli and constri, the greater part of the benchmark
consists of practical programs, among which the more complex CHR(Prolog)
programs that we are aware of. The 37 example programs originating from We-
bCHR2 consist of both small (such as gcd) and regular sized (such as unionfind)
programs. The 33 designed by us consist of small (such as revlist), large (such
as genchrnet), and large and complex (such as gensccs) programs.

For all programs, CHRTypes computes the correct types within 0.6s. For each
program, a correct classification of signatures for CHR constraints and Prolog
built-ins is given together with the correct set of type definitions.

In the next example, we show the output generated by CHRTypes for merge-
sort, however, implemented here for integers and not their symbolic counterparts.
As such, we use =</2 instead of leq/2. The definition of =</2 is not made explicit
in the program as it is provided by the host language Prolog.

Example 4 (Output of CHRTypes). CHRTypes generates the following output
for integer merge-sort:

% Type definitions:
(P1 →) (t42(P1) → []; [P1|t42(P1)]) (t37 → 0; s(t37))

% Signature CHR constraints:
mergesort(t42(P1)) edge(P1, P1) root(t37, P1)

% Signature Prolog Built-ins:
true P1=<P1

% Parsing: 0.0110s; Transforming: 0.0588s; PolyTypes 1.3: 0.0094s (Total: 0.0793s)

In the output of CHRTypes for this version of merge-sort (implemented for
integers), the arguments of =</2 can take any term. This is because PolyTypes
2 http://chr.informatik.uni-ulm.de/∼webchr/

A Transformational Approach 35

does not know the implementation of =</2. Nevertheless, PolyTypes correctly
infers that both arguments of =</2 must be of the same type. �

The current version of CHRTypes consists of a pipeline of three tools. A parser
which actually computes more information than required by the next stage, a
transformer interpreting the result of the parser and outputting a Prolog program
and finally PolyTypes, which reads the Prolog program and computes the types.
Although far from optimal, from a performance point of view, the benchmark
results show that performance is acceptable.

This shows in the results we obtained. Although we haven’t included in Table
1 the timings for each separate tool, it is generally the case that the time required
to compute the well-typing is not proportional to the time required to parse and
to transform. Consider for example the following timings for unionfind and gcd,
both representative for a normal and toy program, respectively. The unionfind
program requires 0.012s to parse, 0.051s to transform, and 0.022s to compute the
types. The gcd program requires much less time to compute the types, 0.009s,
but still needs a lot of time to parse, 0.011s, and to transform, 0.045s.

This can easily be overcome by better integration of the tools. The parser
can easily be stripped of unnecessary components and could integrate with the
transformation. PolyTypes could be adapted to accept a program as a list of
clauses, avoiding as such the reading and writing of the Prolog program.

Although we demonstrated our transformation by a fully automated type
analyser for CHR(Prolog), we could have adapted our system to other kinds of
analyses of the calls in CHR programs, such as groundness information, modes
and even call types, provided the appropriate analysis tools for Prolog.

6 Conclusion

We have presented a transformation from CHR(Prolog) programs to Prolog pro-
grams that respects the abstract CHR semantics. The transformed program de-
scribes transitions between storelists. Analysing it with respect to the storelist
yields an overestimate of the CHR constraint store.

This way, existing tools for LP can be used to analyse the contents of the CHR
constraint store. We have demonstrated this in the context of a type analysis,
using the tool PolyTypes 1.3 integrated in our system CHRTypes, and obtained
accurate type descriptions for the CHR constraints and Prolog built-ins of a
CHR(Prolog) program. CHRTypes is therefore also applicable to pure Prolog
programs providing the same accuracy as PolyTypes on Prolog programs.

PolyTypes 1.3 does not take query information into account. There are how-
ever other tools which do so, such as the one in [5] for deriving call types. We have
demonstrated that given a CHR query specification, there is a straightforward
representation into a Prolog query specification for the transformed program.
Essentially such a representation from CHR to Prolog corresponds to making
the constraint store explicit as a list, enumerating the constraints in the store.

Our transformation does not prioritise on the rules to apply first. In most prac-
tical implementations, there is however some kind of selection rule, e.g. based on

36 P. Pilozzi, T. Schrijvers, and M. Bruynooghe

rule orderings. In the context of termination this information is essential to prove
termination of certain programs. Future work will therefore be directed towards
a better understanding of this problem. We will also apply groundness and call
type analysis on the result of the transformation and will, based on CHRTypes,
develop a call type analyser for integration with CHRisTA [8], yielding the first
fully automated termination analyser for CHR(Prolog).

References

1. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Termina-
tion analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems 29(2), 10 (2007)

2. Bruynooghe, M., Gallagher, J.P., Van Humbeeck, W.: Inference of Well-Typings
for Logic Programs with Application to Termination Analysis. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 35–51. Springer, Heidelberg
(2005)

3. Coquery, E., Fages, F.: A Type System for CHR. In: CHR 2005: Proceedings of
the 2nd International Workshop on Constraint Handling Rules, pp. 19–33 (2005)

4. De Schreye, D., Decorte, S.: Termination of Logic Programs: The Never-Ending
Story. Journal of Logic Programming 19/20, 199–260 (1994)

5. Janssens, G., Bruynooghe, M.: Deriving descriptions of possible values of pro-
gram variables by means of abstract interpretation. Journal of Logic Programming
13(2-3), 199–260 (1992)

6. Nguyen, M.T.: Termination Analysis: Crossing Paradigm Borders. PhD thesis,
Katholieke Universiteit Leuven, Departement Computer Wetenschappen, Belgium
(2009)

7. Pilozzi, P., De Schreye, D.: Termination Analysis of CHR Revisited. In:
Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 501–515. Springer, Heidelberg (2008)

8. Pilozzi, P., De Schreye, D.: Automating termination proofs for CHR. In: Hill, P.M.,
Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 504–508. Springer, Heidelberg
(2009)

9. Pilozzi, P., De Schreye, D.: Proving termination by invariance relations. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 499–503. Springer,
Heidelberg (2009)

10. Pilozzi, P., Schrijvers, T., De Schreye, D.: Proving termination of CHR in Prolog:
A transformational approach. In: WST 2007: Proceedings of the 9th International
Workshop on Termination (2007)

11. Schrijvers, T.: Analyses, optimizations and extensions of Constraint Handling
Rules. PhD thesis, Katholieke Universiteit Leuven, Departement Computer Weten-
schappen, Belgium (2005)

12. Schrijvers, T., Bruynooghe, M., Gallagher, J.P.: From monomorphic to polymor-
phic well-typings and beyond. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438,
pp. 152–167. Springer, Heidelberg (2009)

13. Vanhoof, W., Bruynooghe, M., Leuschel, M.: Binding-time analysis for mercury.
In: Bruynooghe, M., Lau, K.-K. (eds.) Program Development in Computational
Logic. LNCS, vol. 3049, pp. 189–232. Springer, Heidelberg (2004)

The Dependency Triple Framework for

Termination of Logic Programs�

Peter Schneider-Kamp1, Jürgen Giesl2, and Manh Thang Nguyen3

1 IMADA, University of Southern Denmark, Denmark
2 LuFG Informatik 2, RWTH Aachen University, Germany
3 Department of Computer Science, K.U. Leuven, Belgium

Abstract. We show how to combine the two most powerful approaches
for automated termination analysis of logic programs (LPs): the direct
approach which operates directly on LPs and the transformational ap-
proach which transforms LPs to term rewrite systems (TRSs) and tries
to prove termination of the resulting TRSs. To this end, we adapt the
well-known dependency pair framework from TRSs to LPs. With the
resulting method, one can combine arbitrary termination techniques for
LPs in a completely modular way and one can use both direct and trans-
formational techniques for different parts of the same LP.

1 Introduction

When comparing the direct and the transformational approach for termination of
LPs, there are the following advantages and disadvantages. The direct approach
is more efficient (since it avoids the transformation to TRSs) and in addition
to the TRS techniques that have been adapted to LPs [13,15], it can also use
numerous other techniques that are specific to LPs. The transformational ap-
proach has the advantage that it can use all existing termination techniques for
TRSs, not just the ones that have already been adapted to LPs.

Two of the leading tools for termination of LPs are Polytool [14] (implementing
the direct approach and including the adapted TRS techniques from [13,15]) and
AProVE [7] (implementing the transformational approach of [17]). In the annual
International Termination Competition,1 AProVE was the most powerful tool
for termination analysis of LPs (it solved 246 out of 349 examples), but Polytool
obtained a close second place (solving 238 examples). Nevertheless, there are
several examples where one tool succeeds, whereas the other does not.

This shows that both the direct and the transformational approach have their
benefits. Thus, one should combine these approaches in a modular way. In other
words, for one and the same LP, it should be possible to prove termination of
some parts with the direct approach and of other parts with the transformational

� Supported by FWO/2006/09: Termination analysis: Crossing paradigm borders and
by the Deutsche Forschungsgemeinschaft (DFG), grant GI 274/5-2.

1 http://www.termination-portal.org/wiki/Termination Competition

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 37–51, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

38 P. Schneider-Kamp, J. Giesl, and M.T. Nguyen

approach. The resulting method would improve over both approaches and can
also prove termination of LPs that cannot be handled by one approach alone.

In this paper, we solve that problem. We build upon [15], where the well-
known dependency pair (DP) method from term rewriting [2] was adapted in
order to apply it to LPs directly. However, [15] only adapted the most basic
parts of the method and moreover, it only adapted the classical variant of the
DP method instead of the more powerful recent DP framework [6,8,9] which can
combine different TRS termination techniques in a completely flexible way.

After providing the necessary preliminaries on LPs in Sect. 2, in Sect. 3 we
adapt the DP framework to the LP setting which results in the new dependency
triple (DT) framework. Compared to [15], the advantage is that now arbitrary
termination techniques based on DTs can be applied in any combination and
any order. In Sect. 4, we present three termination techniques within the DT
framework. In particular, we also develop a new technique which can transform
parts of the original LP termination problem into TRS termination problems.
Then one can apply TRS techniques and tools to solve these subproblems.

We implemented our contributions in the tool Polytool and coupled it with
AProVE which is called on those subproblems which were converted to TRSs. Our
experimental evaluation in Sect. 5 shows that this combination clearly improves
over both Polytool or AProVE alone, both concerning efficiency and power.

2 Preliminaries on Logic Programming

We briefly recapitulate needed notations. More details on logic programming can
be found in [1], for example. A signature is a pair (Σ, Δ) where Σ and Δ are finite
sets of function and predicate symbols and T (Σ,V) resp. A(Σ, Δ,V) denote the
sets of all terms resp. atoms over the signature (Σ, Δ) and the variables V . We
always assume that Σ contains at least one constant of arity 0. A clause c is
a formula H ← B1, . . . , Bk with k ≥ 0 and H, Bi ∈ A(Σ, Δ,V). A finite set of
clauses P is a (definite) logic program. A clause with empty body is a fact and
a clause with empty head is a query. We usually omit “←” in queries and just
write “B1, . . . , Bk”. The empty query is denoted �.

For a substitution δ : V → T (Σ,V), we often write tδ instead of δ(t), where t
can be any expression (e.g., a term, atom, clause, etc.). If δ is a variable renaming
(i.e., a one-to-one correspondence on V), then tδ is a variant of t. We write δσ to
denote that the application of δ is followed by the application of σ. A substitution
δ is a unifier of two expressions s and t iff sδ = tδ. To simplify the presentation,
in this paper we restrict ourselves to ordinary unification with occur check. We
call δ the most general unifier (mgu) of s and t iff δ is a unifier of s and t and
for all unifiers σ of s and t, there is a substitution μ such that σ = δμ.

Let Q be a query A1, . . . , Am, let c be a clause H ← B1, . . . , Bk. Then Q′

is a resolvent of Q and c using δ (denoted Q �c,δ Q′) if δ = mgu(A1, H), and
Q′ = (B1, . . . , Bk, A2, . . . , Am)δ. A derivation of a program P and a query Q is
a possibly infinite sequence Q0, Q1, . . . of queries with Q0 = Q where for all i, we
have Qi �ci,δi Qi+1 for some substitution δi and some renamed-apart variant ci of

The Dependency Triple Framework for Termination of Logic Programs 39

a clause of P . For a derivation Q0, . . . , Qn as above, we also write Q0 �n
P,δ0...δn−1

Qn or Q0 �n
P Qn, and we also write Qi �P Qi+1 for Qi �ci,δi Qi+1. A LP P is

terminating for the query Q if all derivations of P and Q are finite. The answer
set Answer(P , Q) for a LP P and a query Q is the set of all substitutions δ such
that Q �n

P,δ � for some n ∈ N. For a set of atomic queries S ⊆ A(Σ, Δ,V), we
define the call set Call(P ,S) = {A1 | Q �n

P A1, . . . , Am, Q ∈ S, n ∈ N}.

Example 1. The following LP P uses “s2m” to create a matrix M of variables
for fixed numbers X and Y of rows and columns. Afterwards, it uses “subs mat”
to replace each variable in the matrix by the constant “a”.

goal(X, Y,Msu) ← s2m(X, Y, M), subs mat(M,Msu).
s2m(0, Y, []). s2m(s(X), Y, [R|Rs]) ← s2�(Y, R), s2m(X, Y,Rs).
s2�(0, []). s2�(s(Y), [C|Cs]) ← s2�(Y,Cs).
subs mat([], []). subs mat([R|Rs], [SR|SRs]) ← subs row(R,SR), subs mat(Rs,SRs).
subs row([], []). subs row([E|R], [a|SR]) ← subs row(R,SR).

For example, for suitable substitutions δ0 and δ1 we have goal(s(0), s(0),Msu)
�δ0,P s2m(s(0), s(0), M), subs mat(M,Msu) �8

δ1,P �. So Answer(P , goal(s(0),
s(0),Msu)) contains δ = δ0δ1, where δ(Msu) = [[a]].

We want to prove termination of this program for the set of queries S =
{goal(t1, t2, t3) | t1 and t2 are ground terms }. Here, we obtain

Call (P ,S) ⊆ S ∪ {{s2m(t1, t2, t3) | t1 and t2 ground} ∪ {s2
(t1, t2) | t1 ground}
∪ {subs row(t1, t2) | t1 ∈ List} ∪ {subs mat(t1, t2) | t1 ∈ List}

where List is the smallest set with [] ∈ List and [t1 | t2] ∈ List if t2 ∈ List .

3 Dependency Triple Framework

As mentioned before, we already adapted the basic DP method to the LP setting
in [15]. The advantage of [15] over previous direct approaches for LP termination
is that (a) it can use different well-founded orders for different “loops” of the
LP and (b) it uses a constraint-based approach to search for arbitrary suitable
well-founded orders (instead of only choosing from a fixed set of orders based
on a given small set of norms). Most other direct approaches have only one of
the features (a) or (b). Nevertheless, [15] has the disadvantage that it does not
permit the combination of arbitrary termination techniques in a flexible and
modular way. Therefore, we now adapt the recent DP framework [6,8,9] to the
LP setting. Def. 2 adapts the notion of dependency pairs [2] from TRSs to LPs.2

Definition 2 (Dependency Triple). A dependency triple (DT) is a clause
H ← I, B where H and B are atoms and I is a list of atoms. For a LP P, the
set of its dependency triples is DT (P) = {H ← I, B | H ← I, B, . . . ∈ P}.
2 While Def. 2 is essentially from [15], the rest of this section contains new concepts

that are needed for a flexible and general framework.

40 P. Schneider-Kamp, J. Giesl, and M.T. Nguyen

Example 3. The dependency triples DT (P) of the program in Ex. 1 are:

goal(X, Y,Msu) ← s2m(X, Y, M). (1)

goal(X, Y,Msu) ← s2m(X, Y, M), subs mat(M,Msu). (2)

s2m(s(X), Y, [R|Rs]) ← s2�(Y, R). (3)

s2m(s(X), Y, [R|Rs]) ← s2�(Y, R), s2m(X, Y,Rs). (4)

s2�(s(Y), [C|Cs]) ← s2�(Y,Cs). (5)

subs mat([R|Rs], [SR|SRs]) ← subs row(R,SR). (6)

subs mat([R|Rs], [SR|SRs]) ← subs row(R,SR), subs mat(Rs,SRs). (7)

subs row([E|R], [a|SR]) ← subs row(R, SR). (8)

Intuitively, a dependency triple H ← I, B states that a call that is an instance of
H can be followed by a call that is an instance of B if the corresponding instance
of I can be proven. To use DTs for termination analysis, one has to show that
there are no infinite “chains” of such calls. The following definition corresponds
to the standard definition of chains from the TRS setting [2]. Usually, D stands
for the set of DTs, P is the program under consideration, and C stands for
Call(P ,S) where S is the set of queries to be analyzed for termination.

Definition 4 (Chain). Let D and P be sets of clauses and let C be a set of
atoms. A (possibly infinite) list (H0 ← I0, B0), (H1 ← I1, B1), . . . of variants
from D is a (D, C,P)-chain iff there are substitutions θi, σi and an A ∈ C such
that θ0 = mgu(A, H0) and for all i, we have σi ∈ Answer(P , Iiθi), θi+1 =
mgu(Biθiσi, Hi+1), and Biθiσi ∈ C.3

Example 5. For P and S from Ex. 1, the list (2), (7) is a (DT (P),Call (P ,S),P)-
chain. To see this, consider θ0 = {X/s(0), Y/s(0)}, σ0 = {M/[[C]]}, and θ1 =
{R/[C],Rs/[],Msu/[SR,SRs]}. Then, for A = goal(s(0), s(0),Msu) ∈ S, we
have H0θ0 = goal(X, Y,Msu)θ0 = Aθ0. Furthermore, we have σ0 ∈ Answer(P ,
s2m(X, Y, M)θ0) = Answer(P , s2m(s(0), s(0), M)) and θ1 = mgu(B0θ0σ0, H1) =
mgu(subs mat([[C]],Msu), subs mat([R|Rs], [SR|SRs])).

Thm. 6 shows that termination is equivalent to absence of infinite chains.

Theorem 6 (Termination Criterion). A LP P is terminating for a set of
atomic queries S iff there is no infinite (DT (P),Call (P ,S),P)-chain.

Proof. For the “if”-direction, let there be an infinite derivation Q0, Q1, . . . with
Q0 ∈ S and Qi �ci,δi Qi+1. The clause ci ∈ P has the form Hi ← A1

i , . . . , A
ki

i .
Let j1 > 0 be the minimal index such that the first atom A′

j1
in Qj1 starts

an infinite derivation. Such a j1 always exists as shown in [17, Lemma 3.5]. As
we started from an atomic query, there must be some m0 such that A′

j1 =

3 If C = Call(P ,S), then the condition “Biθiσi ∈ C” is always satisfied due to the
definition of “Call”. But our goal is to formulate the concept of “chains” as general
as possible (i.e., also for cases where C is an arbitrary set). Then this condition can
be helpful in order to obtain as few chains as possible.

The Dependency Triple Framework for Termination of Logic Programs 41

Am0
0 δ0δ1 . . . δj1−1. Then “H0 ← A1

0, . . . , A
m0−1
0 , Am0

0 ” is the first DT in our
(DT (P),Call(P ,S),P)-chain where θ0 = δ0 and σ0 = δ1 . . . δj1−1. As Q0 �j1

P Qj1

and Am0
0 θ0σ0 = A′

j1 is the first atom in Qj1 , we have Am0
0 θ0σ0 ∈ Call (P ,S).

We repeat this construction and let j2 be the minimal index with j2 > j1 such
that the first atom A′

j2 in Qj2 starts an infinite derivation. As the first atom of
Qj1 already started an infinite derivation, there must be some mj1 such that
A′

j2
= A

mj1
j1

δj1 . . . δj2−1. Then “Hj1 ← A1
j1

, . . . , A
mj1−1
j1

, A
mj1
j1

” is the second DT
in our (DT (P),Call(P ,S),P)-chain where θ1 = mgu(Am0

0 θ0σ0, Hj1) = δj1 and
σ1 = δj1+1 . . . δj2−1. As Q0 �j2

P Qj2 and A
mj1
j1

θ1σ1 = A′
j2

is the first atom in Qj2 ,
we have A

mj1
j1

θ1σ1 ∈ Call(P ,S). By repeating this construction infinitely many
times, we obtain an infinite (DT (P),Call(P ,S),P)-chain.

For the “only if”-direction, assume that (H0 ← I0, B0), (H1 ← I1, B1), . . .
is an infinite (DT (P),Call(P ,S),P)-chain. Thus, there are substitutions θi,
σi and an A ∈ Call(P ,S) such that θ0 = mgu(A, H0) and for all i, we have
σi ∈ Answer(P , Iiθi) and θi+1 = mgu(Biθiσi, Hi+1). Due to the construction
of DT (P), there is a clause c0 ∈ P with c0 = H0 ← I0, B0, R0 for a list of
atoms R0 and the first step in our derivation is A �c0,θ0 I0θ0, B0θ0, R0θ0. ¿From
σ0 ∈ Answer(P , I0θ0) we obtain the derivation I0θ0 �n0

P,σ0
� and consequently,

I0θ0, B0θ0, R0θ0 �n0
P,σ0

B0θ0σ0, R0θ0σ0 for some n0 ∈ N. Hence, A �n0+1
P,θ0σ0

B0θ0σ0, R0θ0σ0. As θ1 = mgu(B0θ0σ0, H1) and as there is a clause c1 = H1 ←
I1, B1, R1 ∈ P , we continue the derivation with B0θ0σ0, R0θ0σ0 �c1,θ1 I1θ1, B1θ1,
R1θ1, R0θ0σ0θ1. Due to σ1 ∈ Answer(P , I1θ1) we continue with I1θ1, B1θ1, R1θ1,
R0θ0σ0θ1 �n1

P,σ1
B1θ1σ1, R1θ1σ1, R0θ0σ0θ1σ1 for some n1 ∈ N.

By repeating this, we obtain an infinite derivation A �n0+1
P,θ0σ0

B0θ0σ0, R0θ0σ0

�n1+1
P,θ1,σ1

B1θ1σ1, R1θ1σ1, R0θ0σ0θ1σ1 �n2+1
P,θ2σ2

B2θ2σ2, . . . �n2+1
P,θ3σ3

. . . Thus, the
LP P is not terminating for A. ¿From A ∈ Call (P ,S) we know there is a Q ∈ S
such that Q �n

P A, . . . Hence, P is also not terminating for Q ∈ S. ��

Termination techniques are now called DT processors and they operate on so-
called DT problems and try to prove absence of infinite chains.

Definition 7 (DT Problem). A DT problem is a triple (D, C,P) where D
and P are finite sets of clauses and C is a set of atoms. A DT problem (D, C,P)
is terminating iff there is no infinite (D, C,P)-chain.

A DT processor Proc takes a DT problem as input and returns a set of DT
problems which have to be solved instead. Proc is sound if for all non-terminating
DT problems (D, C,P), there is also a non-terminating DT problem in Proc((D,
C,P)). So if Proc((D, C,P)) = ∅, then termination of (D, C,P) is proved.

Termination proofs now start with the initial DT problem (DT (P),Call (P ,
S),P) whose termination is equivalent to the termination of the LP P for the
queries S, cf. Thm. 6. Then sound DT processors are applied repeatedly until
all DT problems have been simplified to ∅.

42 P. Schneider-Kamp, J. Giesl, and M.T. Nguyen

4 Dependency Triple Processors

In Sect. 4.1 and 4.2, we adapt two of the most important DP processors from
term rewriting [2,6,8,9] to the LP setting. In Sect. 4.3 we present a new DT
processor to convert DT problems to DP problems.

4.1 Dependency Graph Processor

The first processor decomposes a DT problem into subproblems. Here, one con-
structs a dependency graph to determine which DTs follow each other in chains.

Definition 8 (Dependency Graph). For a DT problem (D, C,P), the nodes
of the (D, C,P)-dependency graph are the clauses of D and there is an arc from
a clause c to a clause d iff “c, d” is a (D, C,P)-chain.

Example 9. For the initial DT problem (DT (P),Call(P ,S),P) of the program
in Ex. 1, we obtain the following dependency graph.

(1) ��

������������� (3) �� (5)
��

(2) ��

������������� (6) �� (8)
��

(4)

����� ��
(7)

����� ��

As in the TRS setting, the dependency graph is not computable in general.
For TRSs, several techniques were developed to over-approximate dependency
graphs automatically, cf. e.g. [2,9]. Def. 10 adapts the estimation of [2].4 This
estimation ignores the intermediate atoms I in a DT H ← I, B.

Definition 10 (Estimated Dependency Graph). For a DT problem (D, C,
P), the nodes of the estimated (D, C,P)-dependency graph are the clauses of
D and there is an arc from Hi ← Ii, Bi to Hj ← Ij , Bj, iff Bi unifies with a
variant of Hj and there are atoms Ai, Aj ∈ C such that Ai unifies with a variant
of Hi and Aj unifies with a variant of Hj.

For the program of Ex. 1, the estimated dependency graph is identical to the
real dependency graph in Ex. 9.

Example 11. To illustrate their difference, consider the LP P ′ with the clauses
p ← q(a), p and q(b). We consider the set of queries S′ = {p} and obtain
Call (P ′,S′) = {p, q(a)}. There are two DTs p ← q(a) and p ← q(a), p. In the es-
timated dependency graph for the initial DT problem (DT (P ′),Call (P ′,S′),P ′),
there is an arc from the second DT to itself. But this arc is missing in the real
dependency graph because of the unsatisfiable body atom q(a).

The following lemma proves the “soundness” of estimated dependency graphs.
4 The advantage of a general concept of dependency graphs like Def. 8 is that this

permits the introduction of better estimations in the future without having to change
the rest of the framework. However, a general concept like Def. 8 was missing in [15],
which only featured a variant of the estimated dependency graph from Def. 10.

The Dependency Triple Framework for Termination of Logic Programs 43

Lemma 12. The estimated (D, C,P)-dependency graph over-approximates the
real (D, C,P)-dependency graph, i.e., whenever there is an arc from c to d in the
real graph, then there is also such an arc in the estimated graph.

Proof. Assume that there is an arc from the clause Hi ← Ii, Bi to Hj ← Ij , Bj

in the real dependency graph. Then by Def. 4, there are substitutions σi and θi

such that θi+1 is a unifier of Biθiσi and Hj . As we can assume Hj and Bi to be
variable disjoint, θiσiθi+1 is a unifier of Bi and Hj . Def. 4 also implies that for
all DTs H ← I, B in a (D, C,P)-chain, there is an atom from C unifying with
H . Hence, this also holds for Hi and Hj . ��

A set D′
= ∅ of DTs is a cycle if for all c, d ∈ D′, there is a non-empty path from
c to d traversing only DTs of D′. A cycle D′ is a strongly connected component
(SCC) if D′ is not a proper subset of another cycle. So the dependency graph
in Ex. 9 has the SCCs D1 = {(4)}, D2 = {(5)}, D3 = {(7)}, D4 = {(8)}. The
following processor allows us to prove termination separately for each SCC.

Theorem 13 (Dependency Graph Processor). We define Proc((D, C,P))
= {(D1, C,P), . . . , (Dn, C,P)}, where D1, . . . ,Dn are the SCCs of the (estimated)
(D, C,P)-dependency graph. Then Proc is sound.

Proof. Let there be an infinite (D, C,P)-chain. This infinite chain corresponds
to an infinite path in the dependency graph (resp. in the estimated graph, by
Lemma 12). Since D is finite, the path must be contained entirely in some SCC
Di. Thus, (Di, C,P) is non-terminating. ��

Example 14. For the program of Ex. 1, the above processor transforms the initial
DT problem (DT (P),Call(P ,S),P) to (D1,Call (P ,S),P), (D2,Call (P ,S),P),
(D3,Call(P ,S),P), and (D4,Call (P ,S),P). So the original termination problem
is split up into four subproblems which can now be solved independently.

4.2 Reduction Pair Processor

The next processor uses a reduction pair (�,�) and requires that all DTs are
weakly or strictly decreasing. Then the strictly decreasing DTs can be removed
from the current DT problem. A reduction pair (�,�) consists of a quasi-order �
on atoms and terms (i.e., a reflexive and transitive relation) and a well-founded
order � (i.e., there is no infinite sequence t0 � t1 � . . .). Moreover, � and �
have to be compatible (i.e., t1 � t2 � t3 implies t1 � t3).5

Example 15. We often use reduction pairs built from norms and level map-
pings [3]. A norm is a mapping ‖ · ‖ : T (Σ,V) → N. A level mapping is a
mapping | · | : A(Σ, Δ,V) → N. Consider the reduction pair (�,�) induced6

5 In contrast to “reduction pairs” in rewriting, we do not require � and � to be closed
under substitutions. But for automation, we usually choose relations � and � that
result from polynomial interpretations which are closed under substitutions.

6 So for terms t1, t2 we define t1 (�) t2 iff ‖t1‖ (≥)‖t2‖ and for atoms A1, A2 we define
A1 (�)A2 iff |A1| (≥) |A2|.

44 P. Schneider-Kamp, J. Giesl, and M.T. Nguyen

by the norm ‖X‖ = 0 for all variables X , ‖ [] ‖ = 0, ‖s(t)‖ = ‖ [s | t] ‖ =
1+‖t‖ and the level mapping |s2m(t1, t2, t3)| = |s2
(t1, t2)| = |subs mat(t1, t2)| =
|subs row(t1, t2)| = ‖t1‖. Then subs mat([[C]], [SR | SRs]) � subs mat([],SRs),
as |subs mat([[C]], [SR | SRs])| = ‖[[C]]‖ =1 and |subs mat([],SRs)| = ‖ [] ‖ =0.

Now we can define when a DT H ← I, B is decreasing. Roughly, we require
that Hσ � Bσ must hold for every substitution σ. However, we do not have
to regard all substitutions, but we may restrict ourselves to such substitutions
where all variables of H and B on positions that are “taken into account” by �
and � are instantiated by ground terms.7 Formally, a reduction pair (�,�) is
rigid on a term or atom t if we have t ≈ tδ for all substitutions δ. Here, we define
s ≈ t iff s � t and t � s. A reduction pair (�,�) is rigid on a set of terms or
atoms if it is rigid on all its elements. Now for a DT H ← I, B to be decreasing,
we only require that Hσ � Bσ holds for all σ where (�,�) is rigid on Hσ.

Example 16. The reduction pair from Ex. 15 is rigid on the atom A = s2m([[C]],
[SR |SRs]), since |Aδ| = 1 holds for every substitution δ. Moreover, if σ(Rs) ∈
List , then the reduction pair is also rigid on subs mat([R | Rs], [SR | SRs])σ.
For every such σ, we have subs mat([R | Rs], [SR |SRs])σ � subs mat(Rs ,SRs)σ.

We refine the notion of “decreasing” DTs H ← I, B further. Instead of only
considering H and B, one should also take the intermediate body atoms I into
account. To approximate their semantics, we use interargument relations. An
interargument relation for a predicate p is a relation IRp = {p(t1, . . . , tn) | ti ∈
T (Σ,V) ∧ ϕp(t1, . . . , tn)}, where (1) ϕp(t1, . . . , tn) is a formula of an arbitrary
Boolean combination of inequalities, and (2) each inequality in ϕp is either si �
sj or si � sj , where si, sj are constructed from t1, . . . , tn by applying function
symbols of P . IRp is valid iff p(t1, . . . , tn) �m

P � implies p(t1, . . . , tn) ∈ IRp for
every p(t1, . . . , tn) ∈ A(Σ, Δ,V).

Definition 17 (Decreasing DTs). Let (�,�) be a reduction pair, and R =
{IRp1 , . . . , IRpk

} be a set of valid interargument relations based on (�,�). Let
c = H ← p1(t1), . . . , pk(tk), B be a DT. Here, the ti are tuples of terms.

The DT c is weakly decreasing (denoted (�, R) |= c) if Hσ � Bσ holds for
any substitution σ where (�,�) is rigid on Hσ and where p1(t1)σ ∈ IRp1 , . . . ,
pk(tk)σ ∈ IRpk

. Analogously, c is strictly decreasing (denoted (�, R) |= c) if
Hσ � Bσ holds for any such σ.

Example 18. Recall the reduction pair from Ex. 15 and the remarks about its
rigidity in Ex. 16. When considering a set R of trivial valid interargument re-
lations like IRsubs row = {subs row(t1, t2) | t1, t2 ∈ T (Σ,V)}, then the DT (7) is
strictly decreasing. Similarly, (�, R) |= (4), (�, R) |= (5), and (�, R) |= (8).

We can now formulate our second DT processor. To automate it, we refer to [15]
for a description of how to synthesize valid interargument relations and how to
find reduction pairs automatically that make DTs decreasing.
7 This suffices, because we require (�,�) to be rigid on C in Thm. 19. Thus, � and
� do not take positions into account where atoms from Call(P ,S) have variables.

The Dependency Triple Framework for Termination of Logic Programs 45

Theorem 19 (Reduction Pair Processor). Let (�,�) be a reduction pair
and let R be a set of valid interargument relations. Then Proc is sound.

Proc((D, C,P)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(D \ D�, C,P)}, if
• (�,�) is rigid on C and
• there is D� ⊆ D with D�
= ∅ such that (�, R) |= c

for all c ∈ D� and (�, R) |= c for all c ∈ D \ D�
{(D, C,P)}, otherwise

Proof. If Proc((D, C,P)) = {(D, C,P)}, then Proc is trivially sound. Now we
consider the case Proc((D, C,P)) = {(D\D�, C,P)}. Assume that (D\D�, C,P)
is terminating while (D, C,P) is non-terminating. Then there is an infinite (D, C,
P)-chain (H0 ← I0, B0), (H1 ← I1, B1), . . . where at least one clause from
D� appears infinitely often. There are A ∈ C and substitutions θi, σi such
that θ0 = mgu(A, H0) and for all i, we have σi ∈ Answer(P , Iiθi), θi+1 =
mgu(Biθiσi, Hi+1), and Biθiσi ∈ C. We obtain

Hiθi

≈ Hiθiσiθi+1 (by rigidity, as Hiθi = Bi−1θi−1σi−1θi

and Bi−1θi−1σi−1 ∈ C)
� Biθiσiθi+1 (since (�, R) |= ci where ci is Hi ← Ii, Bi,

as (�,�) is also rigid on any instance of Hiθi,
and since σi ∈ Answer(P , Iiθi) implies Iiθiσiθi+1 �n

P �
and R are valid interargument relations)

= Hi+1θi+1 (since θi+1 = mgu(Biθiσi, Hi+1))
≈ Hi+1θi+1σi+1θi+2 (by rigidity, as Hi+1θi+1 = Biθiσiθi+1 and Biθiσi ∈ C)
� Bi+1θi+1σi+1θi+2 (since (�, R) |= ci+1 where ci+1 is Hi+1 ← Ii+1, Bi+1)
= . . .

Here, infinitely many �-steps are “strict” (i.e., we can replace infinitely many
�-steps by �-steps). This contradicts the well-foundedness of �. ��

So in our example, we apply the reduction pair processor to all 4 DT prob-
lems in Ex. 14. While we could use different reduction pairs for the different
DT problems,8 Ex. 18 showed that all their DTs are strictly decreasing for the
reduction pair from Ex. 15. This reduction pair is indeed rigid on Call (P ,S).
Hence, the reduction pair processor transforms all 4 remaining DT problems to
(∅,Call(P ,S),P), which in turn is transformed to ∅ by the dependency graph
processor. Thus, termination of the LP in Ex. 1 is proved.

4.3 Modular Transformation Processor to Term Rewriting

The previous two DT processors considerably improve over [15] due to their
increased modularity.9 In addition, one could easily adapt more techniques from
8 Using different reduction pairs for different DT problems resulting from one and the

same LP is for instance necessary for programs like the Ackermann function, cf. [15].
9 In [15] these two processors were part of a fixed procedure, whereas now they can

be applied to any DT problem at any time during the termination proof.

46 P. Schneider-Kamp, J. Giesl, and M.T. Nguyen

the DP framework (i.e., from the TRS setting) to the DT framework (i.e., to the
LP setting). However, we now introduce a new DT processor which allows us to
apply any TRS termination technique immediately to LPs (i.e., without having
to adapt the TRS technique). It transforms a DT problem for LPs into a DP
problem for TRSs.

Example 20. The following program P from [11] is part of the Termination Prob-
lem Data Base (TPDB) used in the International Termination Competition.
Typically, cnf’s first argument is a Boolean formula (where the function symbols
n, a, o stand for the Boolean connectives) and the second is a variable which
will be instantiated to an equivalent formula in conjunctive normal form. To this
end, cnf uses the predicate tr which holds if its second argument results from its
first one by a standard transformation step towards conjunctive normal form.

cnf(X, Y)← tr(X, Z), cnf(Z, Y). cnf(X, X).
tr(n(n(X)), X). tr(o(X1, Y), o(X2, Y))← tr(X1, X2).
tr(n(a(X, Y)), o(n(X), n(Y))). tr(o(X, Y 1), o(X, Y 2))← tr(Y 1, Y 2).
tr(n(o(X, Y)), a(n(X), n(Y))). tr(a(X1, Y), a(X2, Y))← tr(X1, X2).
tr(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))). tr(a(X, Y 1), a(X, Y 2))← tr(Y 1, Y 2).
tr(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))). tr(n(X1), n(X2)) ← tr(X1, X2).

Consider the queries S = {cnf(t1, t2) | t1 is ground} ∪ {tr(t1, t2) | t1 is ground}.
By applying the dependency graph processor to the initial DT problem, we
obtain two new DT problems. The first is (D1,Call (P ,S),P) where D1 contains
all recursive tr-clauses. This DT problem can easily be solved by the reduction
pair processor. The other resulting DT problem is

({cnf(X, Y) ← tr(X, Z), cnf(Z, Y)},Call(P ,S),P). (9)

To make this DT strictly decreasing, one needs a reduction pair (�,�) where
t1 � t2 holds whenever tr(t1, t2) is satisfied. This is impossible with the orders �
in current direct LP termination tools. In contrast, it would easily be possible if
one uses other orders like the recursive path order [5] which is well established
in term rewriting. This motivates the new processor presented in this section.

To transform DT to DP problems, we adapt the existing transformation from
logic programs P to TRSs RP from [17]. Here, two new n-ary function symbols
pin and pout are introduced for each n-ary predicate p:

• Each fact p(s) of the LP is transformed to the rewrite rule pin(s)→ pout(s).
• Each clause c of the form p(s) ← p1(s1), . . . , pk(sk) is transformed into the

following rewrite rules:
pin(s)→ uc,1(p1in(s1),V(s))

uc,1(p1out(s1),V(s))→ uc,2(p2in(s2),V(s) ∪ V(s1))
. . .

uc,k(pkout(sk),V(s) ∪ V(s1) ∪ . . . ∪ V(sk−1))→ pout(s)

Here, the uc,i are new function symbols and V(s) are the variables in s.
Moreover, if V(s) = {x1, . . . , xn}, then “uc,1(p1in(s1),V(s))” abbreviates
the term uc,1(p1in(s1), x1, . . . , xn), etc.

The Dependency Triple Framework for Termination of Logic Programs 47

So the fact tr(n(n(X)), X) is transformed to trin(n(n(X)), X) → trout(n(n(X)),
X) and the clause cnf(X, Y)← tr(X, Z), cnf(Z, Y) is transformed to

cnfin(X, Y) → u1(trin(X, Z), X, Y) (10)
u1(trout(X, Z), X, Y) → u2(cnfin(Z, Y), X, Y, Z) (11)

u2(cnfout(Z, Y), X, Y, Z)→ cnfout(X, Y) (12)

To formulate the connection between a LP and its corresponding TRS, the sets
of queries that should be analyzed for termination have to be represented by an
argument filter π where π(f) ⊆ {1, . . . , n} for every n-ary f ∈ Σ∪Δ. We extend π
to terms and atoms by defining π(x) = x if x is a variable and π(f(t1, . . . , tn)) =
f(π(ti1), . . . , π(tik

)) if π(f) = {i1, . . . , ik} with i1 < . . . < ik.
Argument filters specify those positions which have to be instantiated with

ground terms. In Ex. 20, we wanted to prove termination for the set S of all
queries cnf(t1, t2) or tr(t1, t2) where t1 is ground. These queries are described
by the filter with π(cnf) = π(tr) = {1}. Hence, we can also represent S as S =
{A | A ∈ A(Σ, Δ,V), π(A) is ground}. Thm. 21 shows that instead of proving
termination of a LP P for a set of queries S, it suffices to prove termination
of the corresponding TRS RP for a corresponding set of terms S′. As shown
in [17], here we have to regard a variant of term rewriting called infinitary
constructor rewriting, where variables in rewrite rules may only be instantiated
by constructor terms,10 which however may be infinite. This is needed since LPs
use unification, whereas TRSs use matching for their evaluation.

Theorem 21 (Soundness of the Transformation [17]). Let RP be the TRS
resulting from transforming a LP P over a signature (Σ, Δ). Let π be an argu-
ment filter with π(pin) = π(p) for all p ∈ Δ. Let S = {A | A ∈ A(Σ, Δ,V),
π(A) is finite and ground } and S′ = {pin(t) | p(t) ∈ S}. If the TRS RP termi-
nates for all terms in S′, then the LP P terminates for all queries in S.

The DP framework for termination of term rewriting can also be used for infini-
tary constructor rewriting, cf. [17]. To this end, for each defined symbol f , one
introduces a fresh tuple symbol f 	 of the same arity. For a term t = g(t) with
defined root symbol g, let t	 denote g	(t). Then the set of dependency pairs for
a TRS R is DP (R) = {
	 → t	 |
 → r ∈ R, t is a subterm of r with defined
root symbol}. For instance, the rules (10) - (12) give rise to the following DPs.

cnf	in(X, Y)→ tr	in(X, Z) (13)

cnf	in(X, Y)→ u	
1(trin(X, Z), X, Y) (14)

u	
1(trout(X, Z), X, Y)→ cnf	in(Z, Y) (15)

u	
1(trout(X, Z), X, Y)→ u	

2(cnfin(Z, Y), X, Y, Z) (16)

Termination problems are now represented as DP problems (D,R, π) where D
and R are TRSs (here, D is usually a set of DPs) and π is an argument filter. A
10 As usual, the symbols on root positions of left-hand sides of rewrite rules are called

defined symbols and all remaining function symbols are constructors. A constructor
term is a term built only from constructors and variables.

48 P. Schneider-Kamp, J. Giesl, and M.T. Nguyen

list s1 → t1, s2 → t2, . . . of variants from D is a (D,R, π)-chain iff for all i, there
are substitutions σi such that tiσi rewrites to si+1σi+1 and such that π(siσi),
π(tiσi), and π(q) are finite and ground, for all terms q in the reduction from tiσi

and si+1σi+1. (D,R, π) is terminating iff there is no infinite (D,R, π)-chain.

Example 22. For instance, “(14), (15)” is a chain for the argument filter π with

π(cnf	in) = π(trin) = {1} and π(u	
1) = π(trout) = {1, 2}. To see this, consider the

substitution σ = {X/n(n(a)), Z/a}. Now u	
1(trin(X, Z), X, Y)σ reduces in one

step to u	
1(trout(X, Z), X, Y)σ and all instantiated left- and right-hand sides of

(14) and (15) are ground after filtering them with π.

To prove termination of a TRS R for all terms S′ in Thm. 21, now it suffices
to show termination of the initial DP problem (DP (R),R, π). Here, one has to
make sure that π(DP (RP)) and π(RP) satisfy the variable condition, i.e., that
V(π(r)) ⊆ V(π(
)) holds for all
 → r ∈ DP (R)∪R. If this does not hold, then π
has to be refined (by filtering away more argument positions) until the variable
condition is fulfilled. This leads to the following corollary from [17].

Corollary 23 (Transformation Technique [17]). Let RP ,P , π be as in
Thm. 21, where π(pin) = π(p	

in) = π(p) for all p ∈ Δ. Let π(DP (RP)) and
π(RP) satisfy the variable condition and let S = {A | A ∈ A(Σ, Δ,V), π(A) is
finite and ground}. If the DP problem (DP (RP),RP , π) is terminating, then the
LP P terminates for all queries in S.

Note that Thm. 21 and Cor. 23 are applied right at the beginning of the termi-
nation proof. So here one immediately transforms the full LP into a TRS (or a
DP problem) and performs the whole termination proof on the TRS level. The
disadvantage is that LP-specific techniques cannot be used anymore. It would
be better to only apply this transformation for those parts of the termination
proof where it is necessary and to perform most of the proof on the LP level.

This is achieved by the following new transformation processor within our
DT framework. Now one can first apply other DT processors like the ones from
Sect. 4.1 and 4.2 (or other LP termination techniques). Only for those subprob-
lems where a solution cannot be found, one uses the following DT processor.

Theorem 24 (DT Transformation Processor). Let (D, C,P) be a DT prob-
lem and let π be an argument filter with π(pin) = π(p	

in) = π(p) for all predicates
p such that C ⊆ {A | A ∈ A(Σ, Δ,V), π(A) is finite and ground} and such that
π(DP (RD)) and π(RP) satisfy the variable condition. Then Proc is sound.

Proc((D, C,P)) =
{

∅, if (DP (RD),RP , π) is a terminating DP problem
{(D, C,P)}, otherwise

Proof. If Proc((D, C,P)) = {(D, C,P)}, then soundness is trivial. Now let
Proc((D, C,P)) = ∅. Assume there is an infinite (D, C,P)-chain (H0 ← I0, B0),
(H1 ← I1, B1), . . . Similar to the proof of Thm. 6, we have

A �H0←I0,B0, θ0 I0θ0, B0θ0 �n0
P,σ0

B0θ0σ0 �H1←I1,B1, θ1 I1θ1, B1θ1 �n1
P,σ1

B0θ1σ1 . . .

The Dependency Triple Framework for Termination of Logic Programs 49

For every atom p(t1, . . . , tn), let p(t1, . . . , tn) be the term pin(t1, . . . , tn). Then by
the results on the correspondence between LPs and TRSs from [17] (in particular
[17, Lemma 3.4]), we can conclude

Aθ0σ0 (ε→RD◦
> ε→∗

RP)
+

B0θ0σ0, B0θ0σ0θ1σ1 (ε→RD◦
> ε→ ∗

RP)
+

B1θ0σ0θ1σ1, . . .

Here,→R denotes the rewrite relation of a TRS R, ε→ resp. >ε→ denote reductions
on resp. below the root position and →∗ resp.→+ denote zero or more resp. one
or more reduction steps. This implies

A
�
θ0σ0 (

ε→DP (RD)◦ > ε→ ∗
RP)

+
B0

�
θ0σ0, B0

�
θ0σ0θ1σ1 (

ε→DP (RD)◦ > ε→ ∗
RP)

+
B1

�
θ0σ0θ1σ1,

etc. Let σ be the infinite substitution θ0σ0θ1σ1θ2σ2 . . . where all remaining vari-
ables in σ’s range can w.l.o.g. be replaced by ground terms. Then we have

A
	
σ (ε→DP (RD)◦ > ε→ ∗

RP)
+

B0
	
σ (ε→DP (RD)◦ > ε→∗

RP)
+

B1
	
σ . . . , (17)

which gives rise to an infinite (DP (RD),RP , π)-chain. To see this, note that
π(A) and all π(Biθiσi) are finite and ground by the definition of chains of DTs.
Hence, this also holds for π(A

	
σ) and all π(Bi

	
σ). Moreover, since π(DP (RD))

and π(RP) satisfy the variable condition, all terms occurring in the reduction
(17) are finite and ground when filtering them with π. ��
Example 25. We continue the termination proof of Ex. 20. Since the remaining
DT problem (9) could not be solved by direct termination tools, we apply the
DT processor of Thm. 24. Here, RD = {(10), (11), (12)} and hence, we obtain
the DP problem ({(13), . . . , (16)},RP , π) where π(cnf) = π(tr) = {1}. On the
other function symbols, π is defined as in Ex. 22 in order to fulfill the variable
condition. This DP problem can easily be proved terminating by existing TRS
techniques and tools, e.g., by using a recursive path order.

5 Experiments and Conclusion

We have introduced a new DT framework for termination analysis of LPs. It
permits to split termination problems into subproblems, to use different orders
for the termination proof of different subproblems, and to transform subproblems
into termination problems for TRSs in order to apply existing TRS tools. In
particular, it subsumes and improves upon recent direct and transformational
approaches for LP termination analysis like [15,17].

To evaluate our contributions, we performed extensive experiments comparing
our new approach with the most powerful current direct and transformational
tools for LP termination: Polytool [14] and AProVE [7].11 The International Ter-
mination Competition showed that direct termination tools like Polytool and
11 In [17], Polytool and AProVE were compared with three other representative tools for

LP termination analysis: TerminWeb [4], cTI [12], and TALP [16]. Here, TerminWeb
and cTI use a direct approach whereas TALP uses a transformational approach. In
the experiments of [17], it turned out that Polytool and AProVE were considerably
more powerful than the other three tools.

50 P. Schneider-Kamp, J. Giesl, and M.T. Nguyen

transformational tools like AProVE have comparable power, cf. Sect. 1. Never-
theless, there exist examples where one tool is successful, whereas the other fails.

For example, AProVE fails on the LP from Ex. 1. The reason is that by Cor. 23,
it has to represent Call(P ,S) by an argument filtering π which satisfies the
variable condition. However, in this example there is no such argument filtering π
where (DP (RP),P , π) is terminating. In contrast, Polytool represents Call (P ,S)
by type graphs [10] and easily shows termination of this example.

On the other hand, Polytool fails on the LP from Ex. 20. Here, one needs
orders like the recursive path order that are not available in direct termination
tools. Indeed, other powerful direct termination tools such as TerminWeb [4]
and cTI [12] fail on this example, too. The transformational tool TALP [16] fails
on this program as well, as it does not use recursive path orders. In contrast,
AProVE easily proves termination using a suitable recursive path order.

The results of this paper combine the advantages of direct and transforma-
tional approaches. We implemented our new approach in a new version of Poly-
tool. Whenever the transformation processor of Thm. 24 is used, it calls AProVE
on the resulting DP problem. Thus, we call our implementation “PolyAProVE”.

In our experiments, we applied the two existing tools Polytool and AProVE as
well as our new tool PolyAProVE to a set of 298 LPs. This set includes all LP ex-
amples of the TPDB that is used in the International Termination Competition.
However, to eliminate the influence of the translation from Prolog to pure logic
programs, we removed all examples that use non-trivial built-in predicates or
that are not definite logic programs after ignoring the cut operator. This yields
the same set of examples that was used in the experimental evaluation of [17].
In addition to this set we considered two more examples: the LP of Ex. 1 and
the combination of Examples 1 and 20. For all examples, we used a time limit
of 60 seconds corresponding to the standard setting of the competition.

Below, we give the results and the overall time (in seconds) required to run
the tools on all 298 examples.

PolyAProVE AProVE Polytool
Successes 237 232 218
Failures 58 58 73
Timeouts 3 8 7
Total Runtime 762.3 2227.2 588.8
Avg. Time 2.6 7.5 2.0

Our experiments show that PolyAProVE solves all examples that can be solved
by Polytool or AProVE (including both LPs from Ex. 1 and 20). PolyAProVE
also solves all examples from this collection that can be handled by any of the
three other tools TerminWeb, cTI, and TALP. Moreover, it also succeeds on LPs
whose termination could not be proved by any tool up to now. For example,
it proves termination of the LP consisting of the clauses of both Ex. 1 and 20
together, whereas all other five tools fail. Another main advantage of PolyAProVE
compared to powerful purely transformational tools like AProVE is a substantial
increase in efficiency. PolyAProVE needs only about one third (34%) of the total

The Dependency Triple Framework for Termination of Logic Programs 51

runtime of AProVE. The reason is that many examples can already be handled
by the direct techniques introduced in this paper. The transformation to term
rewriting, which incurs a significant runtime penalty, is only used if the other
DT processors fail. Thus, the performance of PolyAProVE is much closer to that
of direct tools like Polytool than to that of transformational tools like AProVE.

For details on our experiments and to access our collection of examples, we
refer to http://aprove.informatik.rwth-aachen.de/eval/PolyAProVE/

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice Hall, London (1997)
2. Arts, T., Giesl, J.: Termination of Term Rewriting using Dependency Pairs. The-

oretical Computer Science 236(1,2), 133–178 (2000)
3. Bossi, A., Cocco, N., Fabris, M.: Norms on Terms and their use in Proving Universal

Termination of a Logic Program. Th. Comp. Sc. 124(2), 297–328 (1994)
4. Codish, M., Taboch, C.: A Semantic Basis for Termination Analysis of Logic Pro-

grams. Journal of Logic Programming 41(1), 103–123 (1999)
5. Dershowitz, N.: Termination of Rewriting. J. Symb. Comp. 3(1,2), 69–116 (1987)
6. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The Dependency Pair Frame-

work: Combining Techniques for Automated Termination Proofs. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer,
Heidelberg (2005)

7. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination
Proofs in the DP Framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

8. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

9. Hirokawa, N., Middeldorp, A.: Automating the Dependency Pair Method. Infor-
mation and Computation 199(1,2), 172–199 (2005)

10. Janssens, G., Bruynooghe, M.: Deriving Descriptions of Possible Values of Pro-
gram Variables by Means of Abstract Interpretation. Journal of Logic Program-
ming 13(2,3), 205–258 (1992)

11. Jurdzinski, M.: LP Course Notes, http://www.dcs.warwick.ac.uk/mju/CS205/
12. Mesnard, F., Bagnara, R.: cTI: A Constraint-Based Termination Inference Tool for

ISO-Prolog. Theory and Practice of Logic Programming 5(1,2), 243–257 (2005)
13. Nguyen, M.T., De Schreye, D.: Polynomial Interpretations as a Basis for Termina-

tion Analysis of Logic Programs. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005.
LNCS, vol. 3668, pp. 311–325. Springer, Heidelberg (2005)

14. Nguyen, M.T., De Schreye, D.: Polytool: Proving Termination Automatically
Based on Polynomial Interpretations. In: Puebla, G. (ed.) LOPSTR 2006. LNCS,
vol. 4407, pp. 210–218. Springer, Heidelberg (2007)

15. Nguyen, M.T., Giesl, J., Schneider-Kamp, P., De Schreye, D.: Termination Analysis
of Logic Programs based on Dependency Graphs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915, pp. 8–22. Springer, Heidelberg (2008)

16. Ohlebusch, E., Claves, C., Marché, C.: TALP: A Tool for the Termination Analysis
of Logic Programs. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 270–273.
Springer, Heidelberg (2000)

17. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termi-
nation Proofs for Logic Programs by Term Rewriting. ACM Transactions on Com-
putational Logic 11(1) (2009)

http://www.dcs.warwick.ac.uk/mju/CS205/

Goal-Directed and Relative Dependency Pairs

for Proving the Termination of Narrowing�

José Iborra1, Naoki Nishida2, and Germán Vidal1

1 DSIC, Universidad Politécnica de Valencia, Spain
{jiborra,gvidal}@dsic.upv.es

2 Graduate School of Information Science, Nagoya University, Nagoya, Japan
nishida@is.nagoya-u.ac.jp

Abstract. In this work, we first consider a goal-oriented extension of
the dependency pair framework for proving termination w.r.t. a given
set of initial terms. Then, we introduce a new result for proving rela-
tive termination in terms of a dependency pair problem. Both contribu-
tions put together allow us to define a simple and powerful approach to
analyzing the termination of narrowing, an extension of rewriting that
replaces matching with unification in order to deal with logic variables.
Our approach could also be useful in other contexts where considering
termination w.r.t. a given set of terms is also natural (e.g., proving the
termination of functional programs).

1 Introduction

Proving that a program terminates is a fundamental problem that has been
extensively studied in almost all programming paradigms. In term rewriting,
where termination analysis has attracted considerable attention (see, e.g., the
surveys of Dershowitz [8] and Steinbach [23]), the termination of a rewrite system
is usually proved for all possible reduction sequences.

In some cases, however, one is only interested in those sequences that start
from a distinguished set of terms. This case has been already considered in some
previous works, e.g., for proving the termination of logic programs [20], for prov-
ing the termination of Haskell programs [10], and for proving the termination
of narrowing [25], an extension of rewriting to deal with logic variables. Un-
fortunately, these works do not focus on proving termination from an initial
set of terms—only consider this problem to some extent—and are difficult to
generalize.

In this paper, we first extend the well-known dependency pair framework [3,11]
for proving the termination of rewriting in order to only consider derivations

� This work has been partially supported by the Spanish Ministerio de Ciencia e
Innovación under grant TIN2008-06622-C03-02, by Generalitat Valenciana under
grants ACOMP/2009/017 and GV/2009/024, and by UPV (programs PAID-05-08
and PAID-06-08). The second author has been partially supported by a grant from
Nagoya Industrial Science Research Institute.

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 52–66, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Goal-Directed and Relative Dependency Pairs 53

from a given initial set of terms. The fundamental improvements are twofold:
firstly, we introduce a notion of chain which considers only reachable loops, thus
reducing the number of pairs to consider; secondly, we also present a notion of
usable rules that regards as usable only those rules which occur in the derivation
from an initial term, allowing us to reduce the number of rules.

As a second contribution of this paper, we study a direct application of the
dependency pair approach to the solution of relative termination problems when
the involved TRSs form a hierarchical combination. Roughly speaking, we can
study whether R terminates relative to B (i.e., whether all→R ∪ →B reductions
contain only finitely many→R steps) in those cases where B does not make calls
to functions defined in R. Although this application is arguably folklore in the
literature (see, e.g., the work of [24]), to our knowledge this is the first time
that the necessary conditions have been ascertained and proved in a formal
publication.

Finally, we illustrate the usefulness of our developments by applying them to
proving the termination of narrowing starting from initial terms. Our results are
more general and potentially more accurate than previous approaches (e.g., [25]).
Moreover, our approach could also be useful in other contexts where considering
termination w.r.t. a given set of terms is also a natural requirement, like the ap-
proach to proving the termination of Haskell programs of [10] or that to proving
the termination of logic programs by translating them to rewrite systems of [20].

The paper is organized as follows. After introducing some preliminaries in
the next section, we present the goal-directed dependency pair framework in
Section 3. Then, Section 4 first states a useful result for proving the relative
termination of a rewrite system and, then, presents a new approach for proving
the termination of narrowing. Finally, Section 5 reports on the implementation
of a termination prover based on the ideas of this paper and concludes. An
extended version including proofs of technical results can be found in [15].

2 Preliminaries

We assume familiarity with basic concepts of term rewriting and narrowing. We
refer the reader to, e.g., [4] and [13] for further details.

Terms and Substitutions. A signature F is a set of function symbols. We
often write f/n ∈ F to denote that the arity of function f is n. Given a set
of variables V with F ∩ V = ∅, we denote the domain of terms by T (F ,V).
We assume that F always contains at least one constant f/0. We use f, g, . . .
to denote functions and x, y, . . . to denote variables. A position p in a term t is
represented by a finite sequence of natural numbers, where ε denotes the root
position. Positions are used to address the nodes of a term viewed as a tree. The
root symbol of a term t is denoted by root(t). We let t|p denote the subterm of t
at position p and t[s]p the result of replacing the subterm t|p by the term s. Var(t)
denotes the set of variables appearing in t. A term t is ground if Var(t) = ∅. We
write T (F) as a shorthand for the set of ground terms T (F , ∅).

54 J. Iborra, N. Nishida, and G. Vidal

A substitution σ : V �→ T (F ,V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x
= σ(x)} is its domain. The set of variables introduced
by a substitution σ is denoted by Ran(σ) = ∪x∈Dom(σ)Var(xσ). Substitutions are
extended to morphisms from T (F ,V) to T (F ,V) in the natural way. We denote
the application of a substitution σ to a term t by tσ (rather than σ(t)). The
identity substitution is denoted by id.

TRSs and Rewriting. A set of rewrite rules l → r such that l is a non-variable
term and r is a term whose variables appear in l is called a term rewriting system
(TRS for short); terms l and r are called the left-hand side and the right-hand
side of the rule, respectively. We restrict ourselves to finite signatures and TRSs.
Given a TRS R over a signature F , the defined symbols D are the root symbols
of the left-hand sides of the rules and the constructors are C = F \ D.

We use the notation F = D � C to point out that D are the defined function
symbols and C are the constructors of a signature F , with D∩C = ∅. The domains
T (C,V) and T (C) denote the sets of constructor terms and ground constructor
terms, respectively. A substitution σ is (ground) constructor, if xσ is a (ground)
constructor term for all x ∈ Dom(σ).

A TRSR is a constructor system if the left-hand sides of its rules have the form
f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C,V), for all i = 1, . . . , n.
A term t is linear if every variable of V occurs at most once in t. A TRS R is
left-linear if l is linear for every rule l → r ∈ R.

For a TRS R, we define the associated rewrite relation →R as follows: given
terms s, t ∈ T (F ,V), we have s →R t iff there exists a position p in s, a rewrite
rule l → r ∈ R and a substitution σ with s|p = lσ and t = s[rσ]p; the rewrite
step is often denoted by s →p,l→r t to make explicit the position and rule used
in this step. The instantiated left-hand side lσ is called a redex.

A term t is called irreducible or in normal form in a TRS R if there is no
term s with t →R s. A derivation is a (possibly empty) sequence of rewrite
steps. Given a binary relation →, we denote by →+ the transitive closure of →
and by →∗ its reflexive and transitive closure. Thus t →∗

R s means that t can
be reduced to s in R in zero or more steps; we also use t→n

R s to denote that t
can be reduced to s in exactly n rewrite steps.

Narrowing. Given a TRSR and two terms s, t ∈ T (F ,V), we have that s �R t
is a narrowing step iff there exist

• a non-variable position p of s,
• a variant R = (l → r) of a rule in R,
• a substitution σ = mgu(s|p, l) which is the most general unifier of s|p and l,

and t = (s[r]p)σ. We often write s �p,R,θ t (or simply s �θ t) to make explicit
the position, rule, and substitution of the narrowing step, where θ = σ |̀Var(s).
A narrowing derivation t0 �∗

σ tn denotes a sequence of narrowing steps t0 �σ1

. . . �σn tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id).

Goal-Directed and Relative Dependency Pairs 55

3 Goal-Directed Dependency Pairs

In this section, we present a goal-directed extension of the well-known depen-
dency pair (DP) framework [3,11]. Our framework is goal-directed since only
derivations starting from a given set of terms, denoted by means of an initial
goal, are considered.

Definition 1 (Initial Goal). Let R be a TRS over F = D � C and t0 =
f(x1, . . . , xn) be a term. We say that t0 is an initial goal for R if f ∈ D is a
defined function symbol and x1, . . . , xn ∈ V are distinct variables.

Intuitively speaking, an initial goal t0 represents the set �t0� of (non necessarily
ground) constructor instances of the term t0, i.e.,

�t0� = { t0σ | σ is a constructor substitution }

For instance, given the signature F = D � C with f/1 ∈ D and z/0, s/1 ∈ C, the
initial goal f(x) represents the set �f(x)� = {f(x), f(z), f(s(x)), f(s(z)), . . .}. In the
following, we say that a set of terms T is terminating if there is no term t1 ∈ T
such that an infinite sequence of the form t1 →R t2 →R · · · exists.

It is worthwhile to observe that there is no loss of generality in our notion of
initial goal since any arbitrary term t could be used as an initial goal by just
adding a new rule, goal(x1, . . . , xn) → t, where goal is a fresh function symbol
with Var(t) = {x1, . . . , xn}, and then considering goal(x1, . . . , xn) as initial goal.

Two key ingredients of the DP approach are the notion of dependency pairs
and that of chains of dependency pairs. The first notion remains unchanged in
our setting. Given a TRS R over a signature F , for each f/n ∈ F , we let f	/n
be a fresh tuple symbol ; we often write F instead of f	 in the examples. Given a
term f(t1, . . . , tn) with f ∈ D, we let t	 denote f	(t1, . . . , tn).

Definition 2 (Dependency Pair [3]). Given a TRS R over a signature F =
D � C, the associated set of dependency pairs, DP(R), is defined as follows:1

DP(R) = {l	 → t	 | l → r ∈ R, r|p = t, and root(t) ∈ D}

In order to formalize our definition of chains, we first introduce the notion of
reachable calls from a given term. Formally, given a TRS R and a term t, we
define the set of reachable calls, callsR(t), from t in R as follows:

callsR(t) = { s|p | t→∗
R s, with root(s|p) ∈ D for some position p }

Also, given a set of terms T , we let callsR(T) =
⋃

t∈T callsR(t).

Definition 3 (Chain). Let R and P be TRSs over the signatures F and F 	,
respectively. Let t0 be an initial goal. A (possibly infinite) sequence of pairs s1 →
t1, s2 → t2, . . . from P is a (t0,P ,R)-chain if there is a substitution σ : V �→
T (F ,V) such that the following conditions hold:2

1 Note that if R is a TRS, so is DP(R).
2 As in [3], we assume fresh variables in every (occurrence of a) dependency pair and

that the domain of substitutions may be infinite.

56 J. Iborra, N. Nishida, and G. Vidal

• there exists a term s ∈ callsR(�t0�) such that s	 = s1σ and
• tiσ →∗

R si+1σ for every two consecutive pairs in the sequence.

The chain is minimal iff all tiσ are terminating w.r.t. R.

Note that the only difference with the standard notion of chains is that only
chains which are reachable from (an instance of) the initial goal are considered.

Now, without further ado, we introduce our termination criterion:

Theorem 1 (Termination Criterion). Let R be a TRS and t0 be an initial
goal. All derivations starting from a term in �t0� in R are finite iff there are no
infinite minimal (t0,DP(R),R)-chains.

As in the standard DP framework [11], and in order to ease the automation of
the proof search, we introduce a goal-directed DP (GDP) framework as follows:

Definition 4 (GDP Problems and Processors). A GDP problem is a tuple
(t0,P ,R, f) consisting of two TRSs R and P over the signatures F and F 	,
respectively, an initial goal t0 for R, and a minimality flag f ∈ {m, a} where
m and a stand for “minimal” and “arbitrary”, respectively. A GDP problem is
finite if there is no associated infinite (minimal if f is m) (t0,P ,R)-chain, and
infinite if it is not finite or if �t0� does not terminate in R. A (standard) DP
problem is a tuple (P ,R, f) consisting of P, R and f described above.

A GDP processor is a function Proc which takes a GDP problem and returns
either a new set of GDP problems or fails. Proc is sound if for any GDP problem
M, M is finite whenever all GDP problems in Proc(M) are finite. Proc is
complete if for any GDP problem M, M is infinite whenever Proc(M) fails or
contains an infinite GDP problem.

Following [11], one can construct a tree whose root is labeled with the problem
(t0,DP(R),R,m) and whose nodes are produced by application of sound GDP
processors. If no leaf of the tree is a failure, then �t0� is terminating in R.
Otherwise, if all the processors used on the path from the root to the failure
node are complete, then �t0� is not terminating in R.

3.1 Dependency Graphs

The auxiliary notion of initial pairs denotes the pairs that match an initial goal:

Definition 5 (Initial Pairs). Let (t0,P ,R, f) be a GDP problem. The associ-
ated set of initial pairs is given by {s → t ∈ DP(R) | t#0 σ = s for some subst. σ}.

Note that the set of initial pairs associated to a GDP problem (t0,P ,R, f) need
not belong to the current set of pairs P .

We now recall the standard notion of dependency graph [11]:

Definition 6 (Dependency Graph). Given a GDP problem (t0,P ,R, f), its
dependency graph is a directed graph where the nodes are the pairs of P, and there
is an edge from s→ t ∈ P to u → v ∈ P iff s → t, u→ v is a (t0,P ,R)-chain.

Goal-Directed and Relative Dependency Pairs 57

Although we consider the standard definition of dependency graph, since our
notion of chain is different, the dependency graph of a GDP problem may contain
less pairs than the dependency graph of the corresponding standard DP problem;
in our case, all the pairs which are not reachable from the initial goal are removed
from the dependency graph.

Dependency graphs are not generally computable and, thus, several approxi-
mations have been defined. Instead of adapting one of these approximations, we
show how any arbitrary approach can easily be reused in our context:

Theorem 2 (Estimated Dependency Graph). Let (t0,P ,R, f) be a GDP
problem. Let G0 and G be estimated dependency graphs (according to [11]) for
the DP problems (DP(R),R, f) and (P ,R, f), respectively.

Assuming that the nodes of G0 and G are shared in the obvious way, the
estimated dependency graph of the GDP problem (t0,P ,R, f) is the restriction
of G to those nodes which are reachable from an initial pair in G0.

The graph obtained is an over-estimation of the dependency graph.

Example 1. Consider the following dependency graph G0 whose nodes are labeled
with (0), (1), . . . , (7):

�������	1
��
�������	2		 �������	3

��
�������	4		 �������	0

 ���������	5 ���������	6

��
�������	7		

Given a GDP problem where the only initial pair is (0), we have that pairs (1)
and (2) do not belong to its dependency graph since they are not reachable.

By using the estimated dependency graph, it is immediate to define a sound
GDP processor that takes a GDP problem (t0,P ,R, f) and divides the problem
into its strongly connected components (SCC) as usual. Note that, in contrast
to the standard processor, we remove those SCCs which are not reachable from
the initial pairs.

3.2 Usable Rules

Another way for removing pairs from P is based on the notion of reduction pair
(�,�).3 For this purpose, we first need to introduce the notion of argument
filtering [16]. An argument filtering over a signature F is a function π such that,
for every symbol f/n ∈ F , we have either π(f) ∈ {1, . . . , n} or π(f) ⊆ {1, . . . , n}.
Argument filterings are extended to terms as follows:4

• π(x) = x for all x ∈ V ;
• π(f(t1, . . . , tn)) = π(ti) if π(f) = i;
• π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim)) if π(f) = {i1, . . . , im} and 1 ≤ ii ≤ n.

3 A pair of orders (�,�) is a reduction pair if � is a quasi-order and � is a well-
founded order where � is closed under contexts, and both � and � are closed under
substitutions and compatible (i.e., � ◦ � ⊆ � and � ◦ � ⊆ � but � ⊆ � is not
necessary) [16].

4 By abuse of notation, we keep the same symbol for the original function and the
filtered function with a possibly different arity.

58 J. Iborra, N. Nishida, and G. Vidal

Given a TRS R, we let π(R) = {π(l)→ π(r) | l → r ∈ R}.
For any relation �, we let �π be the relation where t �π u holds iff π(t) �

π(u). For any TRS P and any relation �, we let P� = {s → t ∈ P | s � t}, i.e.,
P� contains those rules of P which decrease w.r.t. �.

Theorem 3 (Reduction Pair Processor). Let (�,�) be a reduction pair and
π be an argument filtering. Given a GDP problem (t0,P ,R, f), if Proc returns:

• (t0,P \ P�π ,R, f), if P�π ∪ P�π
= P, P�π
= ∅, and R�π

= R;
• (t0,P ,R, f), otherwise;

then Proc is sound and complete.

Basically, this processor can be used to remove the strictly decreasing pairs of P
when the remaining pairs of P and all rules of R are weakly decreasing. In fact,
a weak decrease is not required for all the rules but only for the usable rules [12].
These rules are a superset of the rules that may be used to connect dependency
pairs in a chain. For GDP problems, a notion of usable rules also removes those
rules which are not reachable from the initial goal.

There are several approaches for approximating the usable rules of a prob-
lem. In this section we show how any of them can be adapted to our goal-
directed setting, using as an example the usable rules of [12]. For this purpose,
we first need the following auxiliary notion: given an argument filtering π and a
term t, we let RegPosπ(t) denote the regarded positions of t w.r.t. π; formally,
RegPosπ(t) = {ε} ∪ {i.p | t = f(t1, · · · , tn), p ∈ RegPosπ(ti), and i ∈ π(f)}. In
essence, the regarded positions of t w.r.t. π are those positions of t which are
not dropped by the filtering π.

In the following, given a TRS R and symbol f ∈ F , we let DefR(f) = {l →
r ∈ R | root(l) = f} and R′

f = R \ DefR(f).

Definition 7 (Estimated Usable Rules w.r.t. an Argument Filtering
[12]). For any TRS R and any argument filtering π, we define

• Uπ
R(x) = ∅ for x ∈ V.

• Uπ
R(f(t1, · · · , tn)) = DefR(f) ∪

⋃
l→r∈DefR(f) Uπ

R′
f
(r) ∪

⋃
i∈RegPosπ(f) Uπ

R′
f
(ti)

For any set of rules P we define Uπ
R(P) =

⋃
l→r∈P Uπ

R(r).

Definition 8 (Estimated Goal-Directed Usable Rules w.r.t. an Argu-
ment Filtering). For a graph G and two set of nodes I and P, let PATH G(I,P)
denote the smallest set of nodes of G which contains both I and P and all the
nodes which are in a path from some node in I to some node in P in G.

Let (t0,P ,R, f) be a GDP problem, P0 its initial pairs, π an argument fil-
tering, and G0 a (standard) estimated dependency graph for the DP problem
(DP(R),R, f). The goal-directed usable rules of P in R w.r.t. π and t0 are
defined as follows:

GU(t0,P ,R, π) =

{Uπ
R(PATH G0(P0,P)) if Var(π(t)) ⊆ Var(π(s))

for all s → t ∈ PATH G0(P0,P)
R otherwise

Goal-Directed and Relative Dependency Pairs 59

Example 2. Let us consider again the dependency graph G0 from Example 1,
together with the set I = {(0)}. Then,

• if P is the SCC {(6), (7)} then PATH G0(I,P) = {(0), (5), (6), (7)};
• if P = {(3), (4)}, then PATH G0(I,P) = {(0), (3), (4)}.

The goal-directed usable rules coincide with the usable rules for all the chains
from an initial pair to the pairs in P . While this means that they are a superset
of the usable rules of P , they are still advantageous as they are applicable in
cases where the usable rules are not. In particular, minimality is not required.
This is critical in Section 4 where we consider the termination of narrowing
as a problem of relative termination, since in this context minimality does not
generally hold.

Theorem 4 (Reduction Pair Processor with Goal-Directed Usable
Rules w.r.t. Argument Filterings). Let (�,�) be a reduction pair and π
be an argument filtering. Given a GDP problem (t0,P ,R, f), if Proc returns:

• (t0,P \ P�π ,R,m), if f is m, P�π ∪ P�π
= P, R�π

⊇ Uπ
R(P), and � is

CE -compatible;5

• (t0,P \P�π ,R,a), if f is a, P�π ∪ P�π
= P, and R�π

⊇ GUπ(t0,P ,R, π);
• (t0,P ,R, f), otherwise;

then Proc is sound and complete.

Example 3. Consider the following GDP problem

(goal(x), {ADD(s(x), y) → ADD(x, y)},Radd, a)

where:

Radd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
goal(x) → add(x, gen)

add(s(x), y) → s(add(x, y))
add(zero, y) → y

gen → s(gen)
gen → zero

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ DP(Radd) =

⎧⎪⎪⎨⎪⎪⎩
GOAL(x) → ADD(x, gen)
GOAL(x) → GEN

ADD(s(x), y) → ADD(x, y)
GEN → GEN

⎫⎪⎪⎬⎪⎪⎭
Using the default argument filtering which filters nothing, we have that

• the usable rules w.r.t. goal(x) include only the rules for gen.

Using the argument filtering defined as π(add) = {1} (i.e., π(add(x, y)) = add(x)
and the identity otherwise), we have that

• the usable rules w.r.t. goal(x) are the empty set.

Since the rules of gen are increasing, the finiteness of the GDP problem can only
be proved in the second case.
5 A quasi-rewrite order � is CE-compatible if for a new function symbol c, c(x, y) � x

and c(x, y) � y.

60 J. Iborra, N. Nishida, and G. Vidal

As this section has shown, using this notion of usable rules it is straightforward to
adapt an existing reduction pair processor to the goal-directed setting. Adapting
other processors to the framework is straightforward too, since every GDP chain
is a DP chain and, thus, soundness is preserved as long as the processor does
not introduce new pairs in the graph. In any case, discussing the details is out
of the scope of this paper.

4 Goal-Directed Termination of Narrowing

In this section, we consider the termination of narrowing [22] and show how
this problem can be reduced to proving the relative termination (see below) of
a TRS from an initial set of terms, so that the GDP framework introduced in
the previous section can be steadily applied.

4.1 Relative Termination

First, we show that it is possible to cast a relative termination problem as a
standard DP problem as long as the systems involved satisfy the condition that
they form hierarchical combinations.

Definition 9 (Hierarchical Combination [19]). A system R0 ∪ R1 is the
hierarchical combination (HC) of a base R0 over F0 = D0�C0 and an extension
R1 over F1 = D1 � C0 if and only if D0 ∩ D1 = ∅ and C0 ∩ D1 = ∅.

Let us now recall the notion of relative termination:

Definition 10 (Relative Termination). Given two relations →R and →E we
define the compound relation →R/→E as →∗

E · →R · →∗
E.

Given two TRSs R1 and R0, we say that R1 terminates w.r.t. R0 if the
relation →R1/→R0 is terminating, i.e., if every (possibly infinite) →R0 ∪ →R1

derivation contains only finitely many →R0 steps.

Note that sequences of→R0 steps are “collapsed” and seen as a single→R1/→R0

step. Hence, an infinite →R1/→R0 derivation must contain an infinite number
of →R1 steps, and thus by assumption only finite →R0 subderivations.

We say that a term t is→R-terminating w.r.t. B if there is no infinite→R/→B
derivation issuing from t. Similarly, we say that T is →R-terminating w.r.t. B if
every term in T is →R-terminating w.r.t. B.

We make use of the standard notion of minimal (non-terminating) term, i.e.,
a term which starts an infinite derivation while all its proper subterms are ter-
minating. We say that a term that is not →R-terminating w.r.t. B is →R/→B-
minimal if all its proper subterms are →R-terminating w.r.t. B.

Lemma 1. Let R and B be two TRSs over FR and FB respectively, such that
R ∪ B is the HC of the base B and the extension R. Every →R/→B-minimal
term t0 ∈ T (FB ∪ FR,V) starting an infinite →R/→B derivation is of the form
t0 = f(u), where f is a defined symbol from FR.

Goal-Directed and Relative Dependency Pairs 61

Now we state the main result of this section. In order to prove relative termina-
tion of a TRS R w.r.t. a TRS B, as long as they form an HC, one only needs
to prove that the pairs of R are strongly decreasing, while the pairs of B can be
ignored, even if B is not terminating.

Theorem 5 (Relative Termination Criterion). Let R and B be two TRSs
such that R∪B is the HC of the base B and the extension R. Then, R terminates
w.r.t. B if and only if there are no infinite (DP(R),R ∪ B)-chains.

Example 4. Let R = {f → gen} and B = {gen→ f} be TRSs, which are trivially
terminating. Moreover, the DP Problem (DP(R),R∪B) = (∅,R∪B) is trivially
finite (here we assume that gen is a constructor symbol in R, hence the set of
dependency pairs DP(R) is empty). However,R is not terminating w.r.t. B since
we have the following infinite derivation: f → gen→ f → . . .

In contrast to the termination criterion in [9] for relative termination, the HC
property is required in Theorem 5, i.e., the HC property is necessary to extend
the DP framework for proving relative termination. Note also that it does not
suffice to prove the absence of minimal chains, as the following example shows:

Example 5. Let R = {f(s(x)) → f(x)} and B = {gen → s(gen)}. We have that
DP(R) = {F(s(x)) → F(x)} and there are no infinite minimal chains. However
there is an infinite chain with σ = {x �→ gen}.

The relative termination criterion can be combined with Theorem 1 for relative
termination from an initial goal.

Corollary 1 (Goal-Directed Relative Termination Criterion). Let R and
B be two TRSs such that R ∪ B is the HC of the base B and the extension R.
Then, all derivations starting from a term in �t0� in R terminate w.r.t. B if and
only if there are no infinite (t0,DP(R),R ∪ B)-chains.

4.2 Termination of Narrowing via Relative Termination

Recently, [18,25] introduced a termination analysis for narrowing which is roughly
based on the following process6. First, following [2,7], logic variables are replaced
with a fresh function, called gen, which can be seen as a data generator that can
be non-deterministically reduced to any ground (constructor) term. A first result
relates the termination of narrowing in the original TRS and the relative termi-
nation of rewriting using occurrences of gen to replace logic variables. However,
in order to avoid dealing with relative termination, [25] considers the use of an
argument filtering to filter away occurrences of gen in the considered computa-
tions so that relative termination and termination coincide. Finally, termination
is analyzed using the DP framework [11] for proving the termination of rewriting
over the filtered terms.
6 The termination analysis of logic programs of [20] follows a similar pattern but logic

variables are replaced with infinite terms (the net effect, though, is similar).

62 J. Iborra, N. Nishida, and G. Vidal

This approach has several problems all related to the use of an argument
filtering to filter the occurrences of gen. The most important one is that the
search for an argument filtering that allows to prove termination is exponential
in the arities of the signature, and even worse, this search cannot be casted as
an optimization problem. This leads to the application of complex heuristics
(as in [20]) which complicate the approach and diminish the effectiveness of the
automation. Another issue is related to collapsing rules. Consider, for instance,
a collapsing rule, i.e., a rule of the form f(x, y) → y, together with the argument
filtering π(f) = {1}. The filtered rule f(x) → y contains an extra variable, y, and
no refinement7 of π will be able to eliminate it.8

Here, we argue that there is a better way to approach this problem. Instead of
using a global argument filtering to filter away occurrences of gen, we propose to
not filter them at all, and instead use the GDP framework developed in Section 3.
As we show next this effectively solves the mentioned issues.

In order to formalize our approach, we first need to recall some existing no-
tation and terminology from the literature.

Given a left-linear constructor TRS R over the signature F = D�C, we define
the generator of R, GEN(R), as the following set of rules:

GEN(R) = { gen→ c(
n times︷ ︸︸ ︷

gen, . . . , gen) | c/n ∈ C, n � 0 }

Given a left-linear constructor TRS R, we denote by Rgen the set of rules result-
ing from augmenting R with GEN(R), in symbols Rgen = R∪ GEN(R).

Following [25], variables are then replaced by generators in the obvious way:
given a term t ∈ T (F ,V), we let t̂ = tσ, with σ = {x �→ gen | x ∈ Var(t)}.
Also, given a TRS R, possibly with extra variables,9 we denote by R̂ the result
of replacing every extra variable in R (if any) with gen.

Note that t̂ is ground for any term t since all variables occurring in t are
replaced by the function gen. As for R̂, we note that it contains no extra variables
by definition.

The completeness of replacing logic variables by generators is stated in [2,7]:

Lemma 2 (Completeness). Let R be a left-linear constructor TRS over a
signature F = D � C and s ∈ T (F ,V) be a term. If s �p,R,σ t in R, then
ŝ →∗

GEN(R) ŝσ →p,R t̂ in Rgen.

In the following, we say that a set of terms T is �R-terminating if there is no
term t1 ∈ T such that an infinite sequence of the form t1 �R t2 �R . . . exists.

In [25], the (possibly infinite) set of initial terms T was described by means
of an abstract term f(m1, . . . , mn), where f is a defined function symbol and
m1, . . . , mn are either g (a definitely ground constructor term) or v (a possibly
7 An argument filtering π′ is a refinement of another argument filtering π if it filters

the same or more arguments, i.e., either π′(f) = π(f) or π′(f) ⊆ π(f) for every f.
8 This is not a limitation of [20] since the considered rewrite systems that are produced

from the translation of logic programs never have collapsing rules.
9 Extra variables are variables that appear in the rhs of a rule but not in its lhs.

Goal-Directed and Relative Dependency Pairs 63

variable constructor term). Given an abstract term tα, we let γ(tα) denote the
set of terms that can be obtained by replacing every argument g with a ground
constructor term and every argument v with any arbitrary constructor term.
Then, [25] shows that the termination of narrowing can be recast in terms of the
relative termination of rewriting as follows:

Theorem 6 (Termination of Narrowing). Let R be a left-linear constructor
TRS and tα an abstract term. Then, γ(tα) is �R-terminating if γ̂(tα) is →R-
terminating relative to GEN(R).

In the next result we apply the framework of goal-directed dependency pairs to
solve this kind of problems. First, let us recall that our GDP problems consider
an initial goal rather than an abstract term. So we embed the abstract goal into
the TRS by means of an additional rule. To be precise, given an abstract term
tα = f(t1, . . . , tn) with m occurrences of g, we let goal (tα) be the rule

goal(xj1 , . . . , xjm)→ f(x1, . . . , xn)

where x1, . . . , xn are (fresh) distinct variables and j1, . . . , jm are the positions of
the g arguments of tα. Given a TRS R and an abstract term tα, we denote by
Rtα the TRS that extends R with this rule; formally, Rtα = R∪ {goal(tα)}.

In other words, we replace v arguments of the abstract term tα by extra
variables. Extra variables occur very naturally in the context of narrowing since
they behave as free variables which can only be instantiated to finite constructor
terms. In our context they are simply replaced by occurrences of gen in R̂.

The following result combining Theorems 1 and 6 is the basis of our termina-
tion proving method.

Theorem 7. Let R be a left-linear constructor TRS (possibly with extra vari-
ables) and tα an abstract term. Then, γ(tα) is �R-terminating if the GDP prob-
lem (goal(x1, . . . , xn),DP(R̂tα), R̂tα∪GEN(R), a) is finite, where goal(x1, . . . , xn)
is the left-hand side of goal(tα).

Example 6. Consider the following TRS that is part of Example 3:

R =
{

add(s(x), y) → s(add(x, y))
add(zero, y)→ y

}
For the abstract term tα = add(g,v), the initial GDP problem (goal(x),DP(R̂tα),
R̂tα ∪GEN(R),a) is reduced to the finite GDP problem in Example 3. Therefore,
γ(add(g,v)) is �R-terminating.

Example 7 ([20]). Consider the TRS and its associated set of pairs:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

pin(g(X)) → u3(pin(X), X)
pin(X) → u1(qin(f(Y)),X)

qin(g(Y)) → qout(g(Y))
u1(qout(f(Y)), X) → u2(pin(Y), X, Y)
u2(pout(Y), X, Y) → pout(X)

u3(pout(X), X) → pout(g(X)

Pin(g(X)) → U3(pin(X), X)
Pin(g(X)) → Pin(X)

Pin(X) → U1(qin(f(Y)), X)
Pin(X) → Qin(f(Y))

U1(qout(f(Y)), X) → U2(pin(Y), X, Y)
U1(qout(f(Y)), X) → Pin(Y)

GOAL(X) → Pin(X)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

64 J. Iborra, N. Nishida, and G. Vidal

where the last pair is the initial pair, added to model the abstract goal pin(g). A
similar rule is implicitly added to R, together with the rules for gen. Also, note
the presence of extra variables, which in our approach would be replaced by calls
to gen. An estimation of the dependency graph can detect that the only SCC is
the pair Pin(g(X)) → Pin(X), and that there is only the trivial path from the
initial pair to this pair which includes both. As the goal-directed usable rules are
the empty set, it is trivial to find an RPO that orients this pair and solves the
termination problem. On the other hand, the technique of [20] needs a global
argument filtering that removes every extra variable, which ultimately has to
filter either the argument of Pin or g, precluding a successful termination proof.
The same remark applies to [18,25] after filtering out the extra variables.

5 Results and Discussion

The technique for proving termination of narrowing introduced in the previous
section is not directly comparable to [18,25] due to the loss of minimality. This
means that many desirable techniques, such as the subterm criterion of [14],
cannot be applied without restrictions. The same remarks apply when compar-
ing our new approach to the infinitary rewriting framework of [20], which also
employs a global argument filtering and heuristics.

In order to see how well the new approach behaves, we benchmark it versus
[25,18] and [20]. We emply a set of examples generated from the LP category
of the Termination Problem Database (TPDB) 5.0 [17] using the transform of
[20], minus those examples containing cuts, impure primitives or arithmetic. A
huge number of techniques for termination have been developed in the recent
years. In order to provide a fair comparison we focus on a small set of these: the
dependency graph processor, the RPO reduction pair implemented by means of
the SAT encoding of [5,21,6] extended to account for our notion of goal-directed
usable rules, the subterm criterion of [14] and the narrowing and instantiation
graph refinement processors. The (very fast) subterm criterion processor is in-
cluded to illustrate the shortcomings of losing minimality.

We have implemented our approach in the termination tool Narradar, avail-
able at http://safe-tools.dsic.upv.es/narradar. The tool recognizes the
TPDB format [17] with extensions for expressing initial goals and narrowing. In
order to perform the test Narradar was extended to implement the approach of
[18,25] and [20]. For [18,25] Narradar uses a simple heuristic which always filters
the innermost position. Also, although this approach does not consider extra
variables, we filter them from the initial problem assuming that this is safe. For
[20] Narradar uses the unbounded positions heuristic which does a type analysis
of the logic program and computes an optimal heuristic.

All the problems were run on a 2.5Ghz Intel CPU with a 60 seconds timeout.
The results are displayed in the table below, where the new approach is the
best performer overall, even though the average success time is higher. It is easy
to see why: the RPO constraints generated are slightly more complex, and the
fast subterm criterion processor cannot be employed. There were four examples

Goal-Directed and Relative Dependency Pairs 65

which Narradar failed to solve where the other techniques succeeded. These fall
into two categories: the incompleteness of the generator approach due to the
problem of admissible derivations [25] (e.g. SGST06/toyama.pl), or the inability
of the RPO processor to solve a given problem where the subterm criterion suc-
ceeds easily (e.g. SGST06/prime.pl). While the former is an intrinsic limitation
of the approach, the latter can be fixed by means of more powerful termina-
tion processors. The full results, including the proofs generated by Narradar,
are available at http://www.dsic.upv.es/~gvidal/lopstr09. Let us remark
that the results for [20] must be regarded as orientative only, for it is in fact a
technique for the termination of logic programs.

Successes Failures Timeouts Average success time

Narradar 183 113 9 1.67 seconds
[25] 167 122 16 0.33 seconds
[20] 178 111 16 0.29 seconds

Future work. Although the new technique outperforms the state of the art, there
is still ample room for improvement ahead. We could pursue the approach of
[2] and replace every extra variable by the generator of the terms it can get
instantiated to, by means of a previous static analysis step. Moreover, minimality
could be recovered under some conditions. Finally, although we have defined our
method for left-linear constructor systems, it remains to be seen whether this
restriction can be lifted using the LL-DPs of [1].

Acknowledgements. The first author is in debt to Peter Schneider-Kamp for many
insightful discussions during a research visit to South Denmark. We also thank
Raúl Gutiérrez for his numerous relevant remarks on a draft of this paper, and
Nao Hirokawa for his insights on relative termination.

References

1. Alpuente, M., Escobar, S., Iborra, J.: Termination of Narrowing Using Dependency
Pairs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 317–331. Springer, Heidelberg (2008)

2. Antoy, S., Hanus, M.: Overlapping Rules and Logic Variables in Functional Logic
Programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 87–101. Springer, Heidelberg (2006)

3. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236(1-2), 133–178 (2000)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

5. Codish, M., Lagoon, V., Stuckey, P.J.: Solving partial order constraints for lpo
termination. CoRR, abs/cs/0512067 (2005)

6. Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: Sat solving
for argument filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)

66 J. Iborra, N. Nishida, and G. Vidal

7. de Dios-Castro, J., López-Fraguas, F.: Extra Variables Can Be Eliminated from
Functional Logic Programs. In: Proc. of the 6th Spanish Conf. on Programming
and Languages (PROLE 2006), ENTCS, vol. 188, pp. 3–19 (2007)

8. Dershowitz, N.: Termination of Rewriting. Journal of Symbolic Computa-
tion 3(1,2), 69–115 (1987)

9. Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Infor-
matik, Universität Passau, Germany (1990)

10. Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated Termina-
tion Analysis for Haskell: From Term Rewriting to Programming Languages. In:
Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg
(2006)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The Dependency Pair Frame-
work: Combining Techniques for Automated Termination Proofs. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer,
Heidelberg (2005)

12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

13. Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming 19,20, 583–628 (1994)

14. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V.
(ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)

15. Iborra, J., Nishida, N., Vidal, G.: Goal-directed Dependency Pairs and its Appli-
cation to Proving the Termination of Narrowing (2010),
http://users.dsic.upv.es/~gvidal/german/papers.html

16. Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 48–62. Springer, Heidelberg
(1999)

17. Marche, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

18. Nishida, N., Vidal, G.: Termination of Narrowing via Termination of Rewriting,
Submitted for publication (2009)

19. Ohlebusch, E.: Advanced topics in term rewriting. Springer-Verlag, UK (2002)
20. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termina-

tion Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)

21. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving ter-
mination using recursive path orders and sat solving. In: Konev, B., Wolter, F.
(eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg
(2007)

22. Slagle, J.R.: Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity and Associativity. Journal of the ACM 21(4), 622–642 (1974)

23. Steinbach, J.: Simplification Orderings: Histrory of Results. Fundamenta Informat-
icae 24(1/2), 47–87 (1995)

24. Urbain, X.: Modular & incremental automated termination proofs. Int. Journal of
Approx. Reasoning 32(4), 315–355 (2004)

25. Vidal, G.: Termination of Narrowing in Left-Linear Constructor Systems. In:
Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989,
pp. 113–129. Springer, Heidelberg (2008)

http://users.dsic.upv.es/~gvidal/german/papers.html

LP with Flexible Grouping and Aggregates Using Modes

Marcin Czenko1 and Sandro Etalle2

1 Department of Computer Science
University of Twente, The Netherlands
marcin.czenko@utwente.nl

2 Eindhoven University of Technology and University of Twente, The Netherlands
s.etalle@tue.nl

Abstract. We propose a new grouping operator for logic programs based on the
bagof predicate. The novelty of our proposal lies in the use of modes, which
allows us to prove properties regarding groundness of computed answer substi-
tutions and termination. Moreover, modes allow us to define a somewhat declar-
ative semantics for it and to relax some rather unpractical constraints on variable
occurrences while retaining a straightforward semantics.

Keywords: Grouping in Logic Programs, Moded Logic Programming, Stratified
Logic Programs, Termination of Logic Programs.

1 Introduction

In a system designed to answer queries (be it a database or a logic program), an aggre-
gate function is designed to be carried out on the set of answers to a given query rather
than on a single answer. For example, in a Datalog program containing one entry per
employee, one needs aggregate functions to compute data such as the average age or
salary of the employee, the number of employees etc.

Grouping and aggregation are useful in practice, and paramount in database systems.
In fact, the reason why we address the problem here is of a practical nature: we are de-
veloping a language for trust management [5,7,18] called TuLiP [8,9,10]. TuLiP is
based on (partially function-free) moded logic programming, in which a logic program
is augmented with an indication of which are the input and the output positions of each
predicate. Modes allow to prove program properties such as groundness of answers
and termination for those programs which respect them (also called well-moded pro-
grams) [2]. The problem we faced is the following: in order to write reputation-based
rules within TuLiP, we must extend it in such a way that it allows statements such as
“employee X will be granted access to confidential document Y provided that the ma-
jority of senior executives recommends him”, which require the use of grouping and
aggregation.

To realise aggregates in logic programming, there are two possible approaches. In
the first approach, grouping and aggregation is implemented as one atomic operation.
This is equivalent to having aggregates as built ins. In the second one, one first calls a
grouping query (like bagof), and then computes the aggregate on the result of the group-
ing. We prefer this second approach for a number of reasons: first, grouping queries are

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 67–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

68 M. Czenko and S. Etalle

interesting on their own, especially in Trust Management where sometimes we need
to query a specific subset of entities without performing any aggregate operation; sec-
ondly, by separating grouping from aggregation one can use the same data set for dif-
ferent aggregate operations.

So, basically, what we need then is something similar to the well-known bagof pred-
icate, which, however, is not suitable for our purposes for two reasons: first, it is not
moded and – being a higher-order predicate – there is no straightforward way to as-
sociate a mode to it; secondly, it imposes a somewhat restrictive condition on variable
occurrences which can be circumvented, but at the cost of using an ugly construction.

The basic contribution of this paper is the definition and the study of the properties
of a new grouping predicate moded_bagof, which can be seen as a moded counterpart
of bagof. We show that – in presence of well-moded programs – moded_bagof enjoys
the usual properties of moded predicates, namely groundness of c.a. substitutions and
(under additional conditions) termination. Moreover, modes allow to lift the restrictive
condition on variable sharing we mentioned before. As we will see – assigning modes
to moded_bagof is not trivial, as it depends on the mode of the subgoal it contains.

We define the semantics of moded_bagof in terms of computed answer substitutions.
We tried to be precise while avoiding to resort to higher order theories. We succeeded
but only to some extent: a disadvantage of having grouping and aggregation as separate
operations is that in order to be able to define fully declarative semantics for grouping,
one needs to extend the language with set-based primitives like set membership (∈) or
set-equation (=). This is a not trivial task and significant work in this area has been
carried out (see Section Related Work). Alternatively, one can use a more practical
approach and use a list as a representation of a multiset. Because a list is not a multiset
(two lists with different order of the elements are two different lists), the declarative
semantics cannot be precise in this case.

The paper is structured as follows. In Section 2 we present the preliminaries on Logic
Programming and notational conventions used in this paper. In Section 3 we state the
basic facts about well-moded logic programs. In Section 4 we show how to do group-
ing in Prolog and we define our own grouping atom moded_bagof. In Section 5 we
show an operational semantics of moded_bagof by defining the computed answer sub-
stitutions for programs that do not contain grouping subgoals. In Section 6 we show
how to use moded_bagof in programs containing grouping subgoals. Here we gener-
alise the notion of well-moded logic programs to those including grouping subgoals. In
Section 7 we discuss the properties of the well-moded programs containing grouping
atoms. In particular, we prove two important properties: groundness of computed an-
swer substitutions and termination. The paper finishes with Related Work in Section 8
and Conclusions in Section 9.

2 Preliminaries on Logic Programming (without Grouping)

In what follows we study definite logic programs executed by means of LD-resolution,
which consists of the SLD-resolution combined with the leftmost selection rule. The
reader is assumed to be familiar with the terminology and the basic results of the se-
mantics of logic programs [1]. We use boldface to denote sequences of objects; there-
fore t denotes a sequence of terms while B is a sequence of atoms (i.e. a query). We

LP with Flexible Grouping and Aggregates Using Modes 69

denote atoms by A, B, H, . . . , queries by A,B,C, . . . , clauses by c, d, . . . , and pro-
grams by P . For any atom A, we denote by Pred(A) the predicate symbol of A. For
example, if A = p(a, X), then Pred(A) = p. The empty query is denoted by � and the
set of clauses defining a predicate is called a procedure.

For any syntactic object (e.g., atom, clause, query) o, we denote by Var(o) the
set of variables occurring in o. Given a substitution σ = {x1/t1, ..., xn/tn} we say
that {x1, . . . , xn} is its domain (denoted by Dom(σ)) and that Var({t1, ..., tn}) is its
range (denoted by Ran(σ)). Further, we denote by Var(σ) = Dom(σ) ∪ Ran(σ). If,
t1, ..., tn is a permutation of x1, ..., xn then we say that σ is a renaming. The composi-
tion of substitutions is denoted by juxtaposition (θσ(X) = σ(θ(X))). We say that an
syntactic object (e.g., an atom) o is an instance of o′ iff for some σ, o = o′σ, further
o is called a variant of o′, written o ≈ o′ iff o and o′ are instances of each other. A
substitution θ is a unifier of objects o and o′ iff oθ = o′θ. We denote by mgu(o, o′) any
most general unifier (mgu, in short) of o and o′.

(LD) Computations are sequences of LD derivation steps. The non-empty query
q : B,C and the clause c : H ← B (renamed apart wrt q) yield the resolvent (B,C)θ,

provided that θ = mgu(B, H). A derivation step is denoted by B,C θ=⇒c (B,C)θ. c
is called its input clause. A derivation is obtained by iterating derivation steps. A maxi-

mal sequence δ := B0
θ1=⇒c1 B1

θ2=⇒c2 · · ·Bn
θn+1=⇒cn+1 Bn+1 · · · of derivation steps

is called an LD derivation of P ∪ {B0} provided that for every step the standardisation
apart condition holds, i.e., the input clause employed at each step is variable disjoint
from the initial query B0 and from the substitutions and the input clauses used at ear-
lier steps. If the program P is clear from the context and the clauses c1, . . . , cn+1, . . .
are irrelevant, then we drop the reference to them. If δ is maximal and ends with the
empty query (Bn = �) then the restriction of θ to the variables of B is called its
computed answer substitution (c.a.s., for short). The length of a (partial) derivation δ,
denoted by len(δ), is the number of derivation steps in δ.

A multiset is a collection of elements that are not necessarily distinct [19]. The num-
ber of occurrences of an element x in a multiset M is its multiplicity in the multiset,
and is denoted by mult(x, M). When describing multisets we use the notation that is
similar to that of the sets, but instead of { and } we use [[and]] respectively.

3 Well-Moded Logic Programs

Informally speaking, a mode indicates how the arguments of a relation should be used,
i.e. which are the input and which are the output positions of each atom, and allow one
to derive properties such as absence of run-time errors for Prolog built-ins, or absence
of floundering for programs with negation [2].

Definition 1 (Mode). Consider an n-ary predicate symbol p. By a mode for p we mean
a function mp from {1, . . . , n} to {In,Out}.

If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p (with
respect to mp). We assume that each predicate symbol has a unique mode associated to
it; multiple modes may be obtained by simply renaming the predicates. We use the nota-
tion (X1, . . . , Xn) to indicate the mode m in which m(i) = Xi. For instance, (In,Out)

70 M. Czenko and S. Etalle

indicates the mode in which the first (resp. second) position is an input (resp. output)
position. To benefit from the advantage of modes, programs are required to be well-
moded [2], which means that they have to respect some correctness conditions relating
the input arguments to the output arguments. We denote by In(A) (resp. Out(A)) the
sequence of terms filling in the input (resp. output) positions of A, and by VarIn(A)
(resp. VarOut(A)) the set of variables occupying the input (resp. output) positions
of A.

Definition 2 (Well-Moded). A clause H ← B1, . . . , Bn is well-moded if for all i ∈
[1, n]

VarIn(Bi) ⊆
⋃i−1

j=1 VarOut(Bj) ∪ VarIn(H), and

VarOut(H) ⊆
⋃n

j=1 VarOut(Bj) ∪ VarIn(H).

A query A is well-moded iff the clause H ← A is well-moded, where H is any (dummy)
atom of zero arity. A program is well-moded if all of its clauses are well-moded.

Note that the first atom of a well-moded query is ground in its input positions and a
variant of a well-moded clause is well-moded. The following lemma, due to [2], shows
the “persistence” of the notion of well-modedness.

Lemma 1. An LD-resolvent of a well-moded query and a well-moded clause that is
variable-disjoint with it, is well-moded. �
As a consequence of Lemma 1 we have the following well-known properties. For the
proof we refer to [4].

1. Let P be a well-moded program and A be a well-moded query. Then for every
computed answer σ of A in P , Aσ is ground.

2. Let H ← B1, . . . , Bn be a clause in a well-moded program P . If A is a well-moded
atom such that γ0 = mgu(A, H) and for every i ∈ [1, j], j ∈ [1, n− 1] there exists
a successful LD derivation Biγ0, . . . , γi−1

γi−→P � then Bj+1γ0, . . . , γj is a well-
moded atom.

4 Grouping in Prolog

Prolog already provides some grouping facilities in terms of the built-in predicate bagof.
The bagof predicate has the following form:

bagof(Term, Goal, List).

Term is a prolog term (usually a variable), Goal is a callable Prolog goal, and List is
a variable or a Prolog list. The intuitive meaning of bagof is the following: unify List
with the list (unordered, duplicates retained) of all instances of Term such that Goal is
satisfied. The variables appearing in Term are local to the bagof predicate and must not
appear elsewhere in a clause or a query containing bagof1. If there are free variables

1 This is the condition on variable sharing we mentioned in the introduction; it is not problematic
as it can be circumvented as follows: consider the goal bagof(p(X, Y), q(X, Y, Z), W), if X
occurs elsewhere in the clause or the query containing this goal then one should rewrite it as
bagof (T,(T=p(X,Y),q(X,Y,Z)),W).

LP with Flexible Grouping and Aggregates Using Modes 71

in Goal not appearing in Term, bagof can be re-satisfied generating alternative values
for List corresponding to different instantiations of the free variables in Goal that do
not occur in Term. The free variables in Goal not appearing in Term become therefore
grouping variables. By using existential quantification, one can force a variable in Goal
that does not appear in Term to be treated as local.

Let us look at some examples of grouping using the bagof predicate.

Example 1. Consider program P consisting of the following four ground atoms:
p(a,1), p(a,2), p(b,3), p(b,4). Now, query Q = bagof(Y,p(Z,Y),X)
receives the following two answers: (1) {X/[1,2],Z/a} and (2) {X/[3,4],Z/b}.
Here, because Z is an uninstantiated free variable, bagof treats Z as a grouping vari-
able and Y as a local variable. Thus, for each ground instance of Z, such that there
exists a value of Y such that p(Z,Y) holds, bagof returns a list X containing all in-
stances of Y. In this case bagof returns two lists: the first containing all instances of
Y such that p(a,Y) holds, the second containing all instances of Y such that p(b,Y)
holds. In the query above Y is a local variable. If we also want to make Z local,
then we have to explicitly use existential quantification for Z. The query becomes
Q = bagof(Y,Zˆp(Z,Y),X) and there is only one answer {X/[1,2,3,4]}.
Now both Y and Z are local: Y because it appears in Term, Z because it is explicitly
existentially quantified.

In TuLiP, we use modes to guide the credential distribution and discovery and to guaran-
tee groundness of the computed answer substitutions for the queries. Because we want
to state the groundness and termination results also for the programs containing group-
ing atoms, we need a moded version of bagof. Therefore we introduce moded_bagof,
which a syntactical variant of bagof and is moded. We decided to use a slightly different
syntax for moded_bagof comparing to that of the original bagof built-in. First of all we
want to make grouping variables explicit in the notation. Secondly, we want to elimi-
nate the need of using the existential quantification for making some of the variables
local in the grouping atom. By using different notation we can simplify the definition
of local variables in the grouping atom which makes the presentation easier to follow.

Definition 3. A grouping atom moded_bagof is an atom of the form:

A = moded_bagof(t, gl, Goal, x)

where t is a term, gl is a list of distinct variables each of which appears in Goal, Goal
is an atomic query (but not a grouping atom itself), and x is a free variable.

The moded_bagof grouping atom has similar semantics to that of bagof, with one ex-
ception: the original bagof fails if Goal has no solution while moded_bagof returns an
empty list (in other words moded_bagof never fails).

Definition 3 requires that Goal is atomic. This simplifies the treatment (in particular
the treatment of modes) and is not a real restriction, as one can always define new
predicates to break down a nested grouping atom into a number of grouping atoms that
satisfy Definition 3.

72 M. Czenko and S. Etalle

Example 2. Consider again the program from Example 1. The moded_bagof equivalent
for the query bagof(Y,p(Z,Y),X) is moded_bagof(Y,[Z],p(Z,Y),X) and
for the query bagof(Y,Zˆp(Z,Y),X) it is moded_bagof(Y,[],p(Z,Y),X).

5 Semantics of Atomic moded_bagof Queries

Before investigating the use of moded_bagof atoms as subgoals in programs, in this
section we first look more closely at moded_bagof atomic queries in combination with
programs in which moded_bagof atoms themselves do not occur. This way we can
focus on the semantics of moded_bagof without being immediately distracted with the
problems related to the termination of logic programs containing moded_bagof atoms
as subgoals.

A subtle difficulty in providing a reasonable semantics for moded_bagof is due to
the fact that we have to take into consideration the multiplicity of answers. In a typ-
ical situation, moded_bagof will be used to compute e.g. averages, as in the query
moded_bagof(W,[Y],p(Y,W),X), average(X,Z). To this end, X should ac-
tually be instantiated to a multiset of terms corresponding to the answers of the query
p(Y,W). A number of researchers investigated the problem of incorporating sets into
a logic programming language (see Related Work for an overview). Here, we fol-
low a more practical approach and we represent a multiset with a Prolog list. The
disadvantage of using a list is that it is order-dependent: by permuting the elements
of a list one can obtain a different list. In the (natural) implementation, given the
query moded_bagof(t, gl, Goal, x), the c.a.s. will instantiate x to a list of elements,
the order of which is dependent on the order with which the computed answer sub-
stitutions to the query Goal are computed. This depends in turn on the order of the
clauses in the program. This means that we cannot provide the declarative semantics for
our moded_bagof construct unless we introduce multisets as first-class citizens of the
language.

The fact that we are unable to give fully declarative semantics of moded_bagof does
not prevent us from proving important properties of groundness of the computed an-
swer substitutions and termination of programs containing grouping atoms. Below, we
define the computed answer substitution to moded_bagof for two cases: in the first case
we assume that multisets of terms are part of the universe of discourse and that a multi-
set operator [[]] is available, while in the second case we resort to ordinary Prolog lists.
The disadvantage of using lists is that they are order-dependent, and that if a multiset
contains two or more different elements, then there exists more than one list “repre-
senting” it. Here we simply accept this shortcoming and tolerate the fact that, in real
Prolog programs, the aggregating variable x will be instantiated to one of the possible
lists representing the multiset of answers.

Definition 4 (c.a.s. to moded_bagof (Using Multisets and Prolog Lists)). Let P be a
program, and A = moded_bagof(t, gl, Goal, x) be a query. The multiset [[α1, . . . , αk]]
of computed answer substitutions of P ∪ A is defined as follows:

1. Let Σ = [[σ1, . . . , σn]] be the multiset of c.a.s. of P ∪ Goal.
2. Let Σ1, . . .Σk be a partitioning of Σ such that two answers σi and σj belong to

the same partition iff glσi = glσj ,

LP with Flexible Grouping and Aggregates Using Modes 73

3. (Multisets) For each Σi, let tsi be the multiset of terms obtained by instantiating t
with the substitutions σi in Σi, i.e. tsi = [[tσi | σi ∈ Σi]], and let gli = glσ where
σ is any substitution from Σi.

3. (Prolog Lists) For each i ∈ [1, k], let Δi be an ordering on Σi, i.e. a list of substi-
tutions containing the same elements of Σi, counting multiplicities. Then, for each
Δi = [σi1 , . . . , σim], let tsi be the list of terms obtained by instantiating t with the
substitutions in Δi, i.e. tsi = [tσi1 , . . . , tσim], and let gli = glσ where σ is any
substitution from Δi.

4. For i ∈ [1, k], αi is the substitution {gl/gli, x/tsi}.
Example 3. Let P be a program containing the following facts: p(a,c,1),
p(a,d,1),p(a,e,3), p(b,c,2), p(b,d,2), p(b,e,4).
Let A = moded_bagof(Z,[Y],p(Y,W,Z),X). Then P ∪A yields the following
two c.a.s.: α1 = {Y/a,X/[[1,1,3]]} and α2 = {Y/b,X/[[2,2,4]]}. If, instead
of multisets, we use Prolog lists we simply have: α1 = {Y/a,X/[1,1,3]} and α2 =
{Y/b,X/[2,2,4]}.
Since Prolog does not support multisets directly, in the sequel we use lists. In or-
der to bring Definition 4 into practice, i.e. to really compute the answer to a query
moded_bagof(t, gl, Goal, x), we have to require that P ∪ Goal terminates.

6 Using moded_bagof in Queries and Programs

Because we want to use grouping in our trust management system TuLiP [10,9], we
want to be able to use grouping not only in queries but also as subgoals in programs.
In this section we discuss the use of moded_bagof in programs. In particular, we show
how to use modes and the program stratification to guarantee groundness of computed
answer substitutions and termination. Termination is of the key importance in any trust
management system, especially when the credentials are distributed. In TuLiP, we use
modes to guide credential storage and discovery and to prove the soundness and the
completeness of TuLiP’s Lookup and Inference AlgoRithm (LIAR).

We begin with the definition of a mode of the moded_bagof atom.

Modes. The mode of a query moded_bagof(t, gl, Goal, x) depends on the mode of the
Goal, so it is not fixed a priori. In addition, we introduce the concept of a local variable.

Definition 5. Let A = moded_bagof(t, gl, Goal, x). We define the following sets of
input, output and local variables for A:

– VarIn(A) = VarIn(Goal),
– VarOut(A) = (Var(gl) \VarIn(A)) ∪ {x},
– VarLocal(A) = Var(A) \ (VarIn(A) ∪ VarOut(A)),

For example, let A = moded_bagof(q(W,Y,Z),[Y],p(W,Y,Z),X) be an ag-
gregate atom, and assume that the original mode of p is (In,Out ,Out). Then,
VarIn(A) = {W}, VarOut(A) = {X,Y}, and VarLocal(A) = {Z}.

Now, we can extend the definition of well-moded programs to take into consideration
moded_bagof atoms; the only extra care we have to take is that local variables should
not appear elsewhere in the clause (or query).

74 M. Czenko and S. Etalle

Definition 6 (Well-Moded-Extended). We say that the clause H ← B1, . . . , Bn is
well-moded if for all i ∈ [1, n]

VarIn(Bi) ⊆
⋃i−1

j=1 VarOut(Bj) ∪ VarIn(H), and

VarOut(H) ⊆
⋃n

j=1 VarOut(Bj) ∪ VarIn(H).

and ∀Bi ∈ {B1, . . . , Bn}
VarLocal(Bi) ∩

⎛⎝ ⋃
j∈{1,...,i−1,i+1,...,n}

Var(Bj) ∪Var(H)

⎞⎠ = ∅.

A query A is well-moded iff the clause H ← A is well-moded, where H is any (dummy)
atom of zero arity. A program is well-moded if all of its clauses are well-moded.

LD Derivations with Grouping. We extend the definition of LD-resolution to queries
containing moded_bagof atoms.

Definition 7 (LD-Resolvent with Grouping). Let P be a program. Let ρ : B,C be a
query. We distinguish two cases:

1. if B is a moded_bagof atom and α is a c.a.s. for B in P then we say that B,C
and P yield the resolvent Cα. The corresponding derivation step is denoted by
B,C α=⇒P Cα.

2. if B is a regular atom and c : H ← B is a clause in P renamed apart wrt ρ such
that H and B unify with mgu θ, then we say that ρ and c yield resolvent (B,C)θ.

The corresponding derivation step is denoted by B,C θ=⇒c (B,C)θ.

As usual, a maximal sequence of derivation steps starting from query B is called an LD
derivation of P ∪ {B} provided that for every step the standardisation apart condition
holds. ��
Example 4. In a company, there is a policy that a confidential project document can
be read by any employee recommended by majority of senior executives of one of
the project partners. When using moded_bagof, such a policy can be modeled by the
following two rules:

read_document(company,X) :- partner(company,P),

moded_bagof(Y1,[],senior(P,Y1),Z1),

moded_bagof(Y2,[X],senior_recommends(P,Y2,X),Z2),

length(Z1,L1), length(Z2,L2), L2 > L1/2.

senior_recommends(P,X,Y) :- senior(P,X),recommends(X,Y).

In TuLiP, the first rule is called a credential, the second rule is a user-defined constraint
[8]. Assume that there exist the following credentials:

partner(company,company). senior(partnerA,sandro).

partner(company,partnerA). senior(partnerA,mark).

partner(company,partnerB). senior(partnerA,pieter).

partner(company,partnerC). senior(partnerA,john).

recommends(sandro,marcin). recommends(pieter,marcin).

recommends(john,marcin).

LP with Flexible Grouping and Aggregates Using Modes 75

Now, given the query read_document(company,X), one expects to receive
{X/marcin} as the only c.a.s. Indeed, the answers for the two moded_bagof(...)
subgoals are {Z1/[sandro,mark,pieter,john]} for the first one and
{X/marcin,Z2/[sandro,pieter,john]} for the second.

Notice the importance of the correct discovery of the credentials. For instance, if
one of the recommends(...) credentials is not found, the query would fail, which
means that marcin would not be able to read the document even though he has suf-
ficient permissions. One of the things we try to handle in TuLiP [8,9,10] is where to
store the credentials so that they can be found later during the credential discovery. If
we assume that mode(read_document) = mode(partner) = mode(senior) =
mode(recommends) = (In ,Out) and mode(senior_recommends) = (In,Out ,
Out) then, by the credential storage principles of TuLiP, all the credentials and the
user-defined constraint will be stored by their issuers (indicated by the first argument
of a credential atom). For this storage configuration, TuLiP’s Lookup and Inference
AlgoRithm (LIAR) is guaranteed to find all relevant credentials.

7 Properties

There are two main properties we can prove for programs containing grouping atoms:
groundness of computed answer substitutions and – under additional constraints – ter-
mination.

Groundness. Well-moded moded_bagof atoms enjoy the same features as regular well-
moded atoms. The following lemma is a natural consequence of Lemma 1.

Lemma 2. Let P be a well-moded program and A = moded_bagof(t, gl, Goal, x)
be a grouping atom in which gl is a list of variables. Take any ground σ such that
Dom(σ) = VarIn(A). Then each c.a.s. θ of P ∪ Aσ is ground on A’s output vari-
ables, i.e. Dom(θ) = VarOut(A) and Ran(θ) = ∅.

Proof. By noticing that VarIn(A) = VarIn(Goal) and that each variable in the group-
ing list gl appears in Goal, the proof is a straightforward consequence of Lemma 1. ��

Termination. Termination is particularly important in the context of grouping queries,
because if Goal does not terminate (i.e. if some LD derivation starting in Goal is in-
finite) then the grouping atom moded_bagof(t, gl, Goal, x) does not return any answer
(it loops).

A concept we need in the sequel is that of terminating program; since we are dealing
with well-moded programs, the natural definition we refer to is that of well-terminating
programs.

Definition 8. A well-moded program is called well-terminating iff all its LD-derivations
starting in a well-moded query are finite.

Termination of (well-moded) logic programs has been exhaustively studied (see for
example [3,15]). Here we follow the approach of Etalle, Bossi, and Cocco [15].

76 M. Czenko and S. Etalle

If the grouping atom is only in the top-level query and there are no grouping atoms
in the bodies of the program clauses then, to ensure termination, it is sufficient to re-
quire that P be well-terminating in the way described by Etalle et al. [15]: i.e. that for
every well-moded non-grouping atom A, all LD derivations of P ∪A are finite. If this
condition is satisfied then all LD derivations of P ∪Goal are finite and then the query
moded_bagof(t, gl, Goal, x) terminates (provided it is well-moded).

On the other hand, if we allow grouping atoms in the body of the clauses, then we
have to make sure that the program does not include recursion through a grouping atom.
The following example shows what can go wrong here.

Example 5. Consider the following program:

(1) p(X,Z) :- moded_bagof(Y,[X],q(X,Y),Z).
(2) q(X,Z) :- moded_bagof(Y,[X],p(X,Y),Z).
(3) q(a,1). (4) q(a,2). (5) q(b,3). (6) q(b,4).

Here p and q are defined in terms of each other through the grouping operation.
Therefore p(X,Z) cannot terminate until q(X,Y) terminates (clause 1). Compu-
tation of q(X,Y) in turn depends on the termination of the grouping operation on
p(X,Y) (clause 2). Intuitively, one would expect that the model of this program con-
tains q(a,1), q(a,2), q(b,3), and q(b,4). However, if we apply the extended
LD resolvent (Definition 7) to compute the c.a.s. of p(X,Y) we see that the computa-
tion loops.

In order to prevent this kind of problems, to guarantee termination we require programs
to be aggregate stratified [17]. Aggregate stratification is similar to the concept of strat-
ified negation [1], and puts syntactical restrictions on the aggregate programs so that re-
cursion through moded_bagof does not occur. For the notation, we follow Apt et al. in
[1]. Before we proceed to the definition of aggregate stratified programs we need to for-
malise the following notions. Given a program P and a clause H ← . . . , B, ∈ P :

– if B is a grouping atom moded_bagof(t, gl, Goal, x) then we say that Pred(H)
refers to Pred(Goal);

– otherwise, we say that Pred(H) refers to Pred(B).

We say that relation symbol p depends on relation symbol q in P , denoted p q, iff
(p, q) is in the reflexive and transitive closure of the relation refers to. Given a non-
grouping atom B, the definition of B is the subset of P consisting of all clauses with
a formula on the left side whose relation symbol is Pred(B). Finally, p ! q ≡ p #
q ∧ p q means that p and q are mutually recursive, and p � q ≡ p q ∧ p
! q
means that p calls q as a subprogram. Notice that � is a well-founded ordering.

Definition 9. A program P is called aggregate stratified if for every clause H ←
B1, . . . , Bm, in it, and every Bj in its body if Bj is a grouping atom
Bj = moded_bagof(t, gl, Goal, x) then Pred(Goal)
! Pred(H).

Given the finiteness of programs it is easy to show that a program P is aggregate strati-
fied iff there exists a partition of it P = P1 ∪· · ·∪Pn such that for every i ∈ [1, . . . , n],
and every clause cl = H ← B1 . . . , Bm ∈ Pi, and every Bj in its body, the following
conditions hold:

LP with Flexible Grouping and Aggregates Using Modes 77

1. if Bj = moded_bagof(. . . , . . . , Goal, . . .) then the definition of Pred(Goal) is con-
tained within

⋃
j<i Pj ,

2. otherwise the definition of Pred(B) is contained within
⋃

j≤i Pj .

Stratification alone does not guarantee termination. The following (obvious) example
demonstrates this.

Example 6. Take the following program:

q(X,Y) :- r(X,Y).
r(X,Y) :- q(X,Y).
p(Y,X) :- moded_bagof(Z,[Y],q(Y,Z),X).

Notice that q ! r. This program is aggregate stratified, but the query p(Y,X) will not
terminate.

In order to handle the problem of Example 6 we need to modify slightly the classical
definition of termination. The following definition relies on the fact that the programs
we are referring to are aggregate stratified.

Definition 10 (Termination of Aggregate Stratified Programs). Let P be an aggre-
gate stratified program. We say that P is well-terminating if for every well-moded atom
A the following conditions hold:

1. All LD derivations of P ∪A are finite,
2. For each LD derivation δ of P ∪A, for each grouping atom moded_bagof(t, gl,

Goal, x) selected in δ, P ∪Goal terminates.

The classical definition of termination considers only point (1). Here however, we have
grouping atoms which actually trigger a side goal which is not taken into account by (1)
alone. This is the reason why we need (2) as well. Notice that the notion is well-defined
thanks to the fact that programs are aggregate stratified.

To guarantee termination, we can combine the notion of aggregate stratified pro-
gram above with the notion of well-acceptable program introduced by Etalle, Bossi,
and Cocco in [15] (other approaches are also possible). We now show how.

Definition 11. Let P be a program and let BP be the corresponding Herbrand base. A
function | | is a moded level mapping iff

1. it is a level mapping for P , namely it is a function | | : BP → N, from ground
atoms to natural numbers;

2. if p(t) and p(s) coincide in the input positions then |p(t)| = |p(s)|.

For A ∈ BP , |A| is called the level of A. ��

Condition (2) above states that the level of an atom is independent from the terms filling
in its output positions. Finally, we can report the key concept we use in order to prove
well-termination.

Definition 12. (Weakly- and Well-Acceptable [15]) Let P be a program, | | be a level
mapping and M a model of P .

78 M. Czenko and S. Etalle

– A clause of P is called weakly acceptable (wrt | | and M) iff for every ground
instance of it, H ← A, B,C,

if M |= A and Pred(H) ! Pred(B) then |H | > |B|.

P is called weakly acceptable with respect to | | and M iff all its clauses are.
– A program P is called well-acceptable wrt | | and M iff | | is a moded level mapping,

M is a model of P and P is weakly acceptable wrt them. ��

Notice that a fact is always both weakly acceptable and well-acceptable; furthermore
if MP is the least Herbrand model of P , and P is well-acceptable wrt | | and some
model I then, by the minimality of MP , P is well-acceptable wrt | | and MP as well.
Given a program P and a clause H ← . . . , B, . . . in P , we say that B is relevant iff
Pred(H) ! Pred(B). For the weakly and well-acceptable programs the norm has to
be checked only for the relevant atoms, because only the relevant atoms might provide
recursion. Notice then that, because we additionally require that programs are aggregate
stratified, grouping atoms in a clause are not relevant (called as subprograms).
We can now state the main result of this section.

Theorem 1. Let P be a well-moded aggregate stratified program.

– If P is well-acceptable then P is well-terminating.

Proof. (Sketch). Given a well-moded atom A, we have to prove that (a) all LD deriva-
tions starting in A are finite and that (b) for each LD derivation δ of P ∪A, for each
grouping atom moded_bagof(t, gl, Goal, x) selected in δ, P ∪ Goal terminates.

To prove (a) one can proceed exactly as done in [15], where the authors use the
same notions of well-acceptable program: the fact that here we use a modified version
of LD-derivation has no influence on this point: since grouping atoms are resolved by
removing them, they cannot add anything to the length of an LD derivation.

On the other hand, to prove (b) one proceeds by induction on the strata of P . Notice
that at the moment that the grouping atom is selected, Goal is well-moded (i.e., ground
in its input position). Now, for the base case if Goal is defined in P1, then, by (a) we
have that all LD-derivations starting in Goal are finite, and since we are in stratum P1
(where clause bodies cannot contain grouping atoms) no grouping atom is ever selected
in an LD derivation starting in Goal. So P ∪ Goal terminates.

The inductive case is similar: if Goal is defined in Pi+1, then, by (a) we have that all
LD-derivations starting in Goal are finite, and since we are in stratum Pi+1 if a grouping
atom moded_bagof(t′, gl′, Goal′, x′) is selected in an LD derivation starting in Goal,
we have that Goal′ must be defined in P1 ∪ · · · ∪ Pi, so that – by inductive hypothesis
– we know that P ∪Goal′ terminates. Hence the thesis. ��

8 Related Work

Aggregate and grouping operations are given lots of attention in the logic programming
community. In the resulting work we can distinguish two approaches: (1) in which the
grouping and aggregation is performed at the same time, and (2) – which is closer to

LP with Flexible Grouping and Aggregates Using Modes 79

our approach – in which grouping is performed first returning a multiset and then an
aggregation function is applied to this multiset.

In the first approach an aggregate subgoal is given by group_by(p(x, z), [x], y =
F(E(x, z))), which is equivalent to y = F([[E(x, z) : ∃(z)p(x, z)]]). Here x are the
grouping variables, p(x, z) is a so called aggregation predicate, and E(x, z) is a tuple
of terms involving some subset of the variables x ∪ z. F is an aggregate function that
maps a multiset to a single value. The variables x and y are free in the subgoal while
z are local and cannot appear outside the aggregate subgoal. In other words, except for
output variable y, if a variable does not appear on the grouping list, this variable is local.
The early declarative semantics for group_by was given by Mumick et al. [19]. In this
work, aggregate stratification is used to prevent recursion through aggregates. Later,
Kemp and Stuckey [17] provide the declarative semantics for group_by in terms of
well-founded and stable semantics. They also examine different classes of aggregate
programs: aggregate stratified, group stratified, magical stratified, and also monotonic
and semi-ring programs. From a more recent work, Faber et al. [16] also rely on ag-
gregate stratification and they define a declarative semantics for disjunctive programs
with aggregates. They use the intensional set definition notation to specify the multiset
for the aggregate function. Denecker et al. [12] point out that requiring the programs
to be aggregate stratified might be too restrictive in some cases and they propose a
stronger extension of the well-founded and stable model semantics for logic programs
with aggregates (called ultimate well-founded and stable semantics). In their approach,
Denecker et al. use the Approximation Theory [11]. The work of Denecker et al. is
continued and further extended by Pelov et al. [20].

In the second approach, where the grouping is separated from aggregation (as in
our approach), the grouping operation is represented by an intensional set definition.
This approach uses an (intensional) set construction operator returning a multiset of an-
swers which is then passed as an argument of an aggregate function: m = [[E(x, z) :
∃(z)p(x, z)]], y = F(m). To be handled correctly (with a well defined declarative se-
mantics), this approach requires multisets to be introduced as first-class citizens of the
language. Dovier, Pontelli, and Rossi [14] introduce intensionally defined sets into the
constraint logic programming language CLP({D}) whereD can be for instance FD for
finite domains or R for real numbers. In their work, Dovier et al. concentrate on the
set-based operations and so, they do not consider multisets directly. Interestingly, they
treat the intensional set definition as a special case of an aggregate subgoal in which F

is a function which given a multiset m as an argument returns the set of all elements in
m – i.e. F removes duplicates from m.

Introducing (multi)sets to a pure logic programming language (i.e. not relying on a
CLP scheme) is also a well-researched area. From the most prominent proposals, Dovier
et al. [13] propose an extended logic programming language called {log} (read “set-
log”) in which sets are first-class citizens. The authors introduce the basic set operations
like set membership ∈ and set equality = along with their negative counterparts /∈
and
=.

Concerning multisets directly, Ciancarini et al. [6] show how to extend a logic pro-
gramming language with multisets. They strictly follow the approach of Dovier et al.
[13]. Important to notice here, is that these earlier works of Dovier et al. and

80 M. Czenko and S. Etalle

Ciancarini et al. (as well as most of other related work on embedding sets in a logic
programming language – see Dovier et al. [14,13] for examples) focus on the so called
extensional set construction – which basically means that a set is constructed by enu-
merating the elements of the set. This is not suitable for our work as this does not enable
us to perform grouping.

Moded Logic Programming is well-researched area [2,21]. However, modes have
been never applied to aggregates. We also extend the standard definition of a mode to
include the notion of local variables. By incorporating the mode system we are able to
state the groundness and termination results for the bagof -like operations.

9 Conclusions

In this paper we study the grouping operations in Prolog using the standard Prolog
built-in predicate bagof. Grouping is needed if we want to perform aggregation, and we
need aggregation in TuLiP to be able to model reputation systems. In order to make the
grouping operations easier to integrate with TuLiP, we add modes to bagof (we call the
moded version moded_bagof). We extend the definition of a mode by allowing some
variables in a grouping atom to be local. Finally, we show that for the class of well-
terminating aggregate stratified programs the basic properties of well-modedness and
well-termination also hold for programs with grouping.

Future Work. At the University of Twente we develop a new Trust Management lan-
guage TuLiP. TuLiP is a function-free first-order language that uses modes to support
distributed credential discovery. In Trust Management, the need of having support for
aggregate operations is widely accepted. This would allow one to bridge two related
yet different worlds of certificate based and reputation based trust management. At the
moment TuLiP does not support aggregate operations. We are planning to incorporate
the moded_bagof operator introduced in this paper in TuLiP and investigate its appli-
cability in the Distributed Trust Management.

Acknowledgements. This work was carried out within the Freeband I-Share project.

References

1. Apt, K.R.: Introduction to Logic Programming. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science. Formal Models and Semantics, vol. B, pp. 495–574. Elsevier,
Amsterdam and The MIT Press, Cambridge (1990)

2. Apt, K.R., Marchiori, E.: Reasoning about Prolog programs: from Modes through Types to
Assertions. Formal Aspects of Computing 6(6A), 743–765 (1994)

3. Apt, K.R., Pedreschi, D.: Reasoning about termination of pure Prolog programs. Information
and Computation 106(1), 109–157 (1993)

4. Apt, K.R., Pellegrini, A.: On the occur-check free Prolog programs. ACM Toplas 16(3),
687–726 (1994)

5. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Proc. 17th IEEE
Symposium on Security and Privacy, May 1996, pp. 164–173. IEEE Computer Society Press,
Los Alamitos (1996)

LP with Flexible Grouping and Aggregates Using Modes 81

6. Ciancarini, P., Fogli, D., Gaspari, M.: A Logic Language based on GAMMA-like Multi-
set Rewriting. In: Herre, H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS,
vol. 1050, pp. 83–101. Springer, Heidelberg (1996)

7. Clarke, D., Elien, J.E., Ellison, C., Fredette, M., Morcos, A., Rivest, R.L.: Certificate Chain
Discovery in SPKI/SDSI. Journal of Computer Security 9(4), 285–322 (2001)

8. Czenko, M.R.: TuLiP: Reshaping Trust Management. PhD thesis, University of Twente,
Enschede (June 2009)

9. Czenko, M.R., Doumen, J.M., Etalle, S.: Trust Management in P2P Systems Using Stan-
dard TuLiP. In: Proceedings of IFIPTM 2008: Joint iTrust and PST Conferences on Privacy,
Trust Management and Security, IFIP International Federation for Information Processing,
Trondheim, Norway, May 2008, vol. 263, pp. 1–16. Springer, Boston (2008)

10. Czenko, M.R., Etalle, S.: Core TuLiP - Logic Programming for Trust Management. In:
Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 380–394. Springer,
Heidelberg (2007)

11. Denecker, M., Marek, V., Truszczyński, M.: Approximations, Stable Operators, Well-
Founded Operators, Fixpoints and Applications in Nonmonotonic Reasoning. In:
Minker, J. (ed.) Logic-Based Artificial Intelligence, ch. 6. The Springer International Series
in Engineering and Computer Science, vol. 597, pp. 127–144. Springer, Heidelberg (2001)

12. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded and Stable Semantics
for Logic Programs with Aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237,
pp. 212–226. Springer, Heidelberg (2001)

13. Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: {log}: A logic programming language
with finite sets. In: ICLP, pp. 111–124. MIT Press, Cambridge (1991)

14. Dovier, A., Pontelli, E., Rossi, G.: Intensional Sets in CLP. In: Palamidessi, C. (ed.) ICLP
2003. LNCS, vol. 2916, pp. 284–299. Springer, Heidelberg (2003)

15. Etalle, S., Bossi, A., Cocco, N.: Termination of well-moded programs. J. Log. Program 38(2),
243–257 (1999)

16. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

17. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. In: ISLP,
pp. 387–401. MIT Press, Cambridge (1991)

18. Li, N., Mitchell, J., Winsborough, W.: Design of a Role-based Trust-management Frame-
work. In: Proc. IEEE Symposium on Security and Privacy, pp. 114–130. IEEE Computer
Society Press, Los Alamitos (2002)

19. Mumick, I.S., Pirahesh, H., Ramakrishnan, R.: The Magic of Duplicates and Aggregates.
In: Proc. 16th International Conference on Very Large Databases, pp. 264–277. Morgan
Kaufmann Publishers Inc, San Francisco (1990)

20. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic pro-
grams with aggregates. Theory and Practice of Logic Programming (TPLP) 7(3), 301–353
(2007)

21. Somogyi, Z., Henderson, F., Conway, T.: Mercury: an efficient purely declarative logic pro-
gramming language. In: Australian Computer Science Conference (1995),
http://www.cs.mu.oz.au/mercury/papers.html

http://www.cs.mu.oz.au/mercury/papers.html

On Inductive and Coinductive Proofs via

Unfold/Fold Transformations�

Hirohisa Seki

Dept. of Computer Science, Nagoya Inst. of Technology,
Showa-ku, Nagoya, 466-8555 Japan

seki@nitech.ac.jp

Abstract. We consider a new application condition of negative unfold-
ing, which guarantees its safe use in unfold/fold transformation of strati-
fied logic programs. The new condition of negative unfolding is a natural
one, since it is considered as a special case of replacement rule. The
correctness of our unfold/fold transformation system in the sense of the
perfect model semantics is proved. We then consider the coinductive
proof rules proposed by Jaffar et al. We show that our unfold/fold trans-
formation system, when used together with Lloyd-Topor transforma-
tion, can prove a proof problem which is provable by the coinductive
proof rules by Jaffar et al. To this end, we propose a new replacement
rule, called sound replacement, which is not necessarily equivalence-
preserving, but is essential to perform a reasoning step corresponding
to coinduction.

Keywords: Preservation of equivalence, negative unfolding, coinduc-
tion, unfold/fold transformation.

1 Introduction

Since the pioneering paper by Tamaki and Sato [12], a number of unfold/fold
transformation rules for logic programs have been reported (see an excellent
survey [7] and references therein). Among them, negative unfolding is a trans-
formation rule, which applies unfolding to a negative literal in the body of a
clause. When used together with usual (positive) unfold/fold rules and replace-
ment rules, negative unfolding is shown to play an important role in program
transformation, construction (e.g., [5], [3]) and verification (e.g., [8], [10]). One
of the motivations of this paper is to re-examine negative unfolding proposed in
the literature.

The framework for program synthesis by Kanamori-Horiuchi [5] is one of the
earliest works in which negative unfolding is introduced. Pettorossi and Proietti
(resp., Fioravanti, Pettorossi and Proietti) have proposed transformation rules
for locally stratified logic programs [8] (resp., locally stratified constraint logic
programs [3]), including negative unfolding (PP-negative unfolding for short).
� This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C)

21500136.

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 82–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Inductive and Coinductive Proofs via Unfold/Fold Transformations 83

Unlike positive unfolding, however, PP-negative unfolding does not always
preserve the semantics of a given program in general, when used with unfold/fold
rules. We give such a counterexample in Sect. 2.2, which shows that, when used
together with unfolding and folding, negative unfolding requires a careful treat-
ment. In this paper, we therefore reconsider the application condition of negative
unfolding, and propose a new framework for unfold/fold transformation of strat-
ified programs which contains a replacement rule as well. We show that our
proposed framework preserves the perfect model semantics. The new condition
of negative unfolding given in this paper is a natural one, since it can be consid-
ered as a special case of the application condition of replacement.

Our motivation behind the proposed transformation system is its applicability
to proving properties of the perfect model of a (locally) stratified program. The
relationship between unfold/fold transformation and theorem proving has been
recognized; an unfolding rule corresponds to a resolution step, while a folding
operation corresponds to an application of inductive hypotheses. In fact, several
approaches of using unfold/fold transformation to proving program properties
have been reported, among others, Pettorossi and Proietti [8], Fioravanti et al.
[3] and Roychoudhury et al. [10] These are precursors of the present paper. In
this paper, we consider the coinductive proof rules proposed by Jaffar et al. [4]
We show that our unfold/fold transformation system, when used together with
Lloyd-Topor transformation [6], can prove a proof problem which is provable by
the coinductive proof rules by Jaffar et al. Our proof method based on unfold/fold
transformation has therefore at least the same power as that of Jaffar et al. To
this end, we propose a new replacement rule, called sound replacement, which is
not necessarily equivalence-preserving, but plays an important role to perform
a reasoning step corresponding to coinduction.

The organization of this paper is as follows. In Section 2, we describe a frame-
work for unfold/fold transformation of stratified programs and give the new
condition for the safe use of negative unfolding. In Section 3, we explain the
coinductive proof rules by Jaffar et al. [4], and discuss an application of our
framework for unfold/fold transformation to proving properties of constraint
logic programs. Finally, we give a summary of this work in Section 4.1

Throughout this paper, we assume that the reader is familiar with the basic
concepts of logic programming, which are found in [6,1].

2 A Framework for Unfold/Fold Transformation

In this section, we propose a framework for unfold/fold transformation of strat-
ified programs which includes negative unfolding as well as replacement rule.
Although we confine the framework to stratified programs here for simplicity, it
is possible to extend it to locally stratified constraint programs as in [3].

The frameworks proposed by Pettorossi and Proietti [8] and by Fioravanti
et al. [3] are based on the original framework by Tamaki-Sato [12] for definite
1 Due to space constraints, we omit most proofs and some details, which will appear

in the full paper.

84 H. Seki

programs, while our framework given below is based on the generalized one by
Tamaki-Sato [13]. Roychoudhury et al. [10] proposed a general framework for
unfold/fold transformation which extended the one by Tamaki-Sato [13]. Their
systems [10], [9] have a powerful folding rule (disjunctive folding), whereas they
did not consider negative unfolding.

2.1 Transformation Rules

We first explain our transformation rules here, and then prepare some conditions
imposed on the transformation rules and show the correctness of transformation
in Sect. 2.2.

We divide the set of the predicate symbols appearing in a program into two
disjoint sets: primitive predicates and non-primitive predicates.2 This partition
of the predicate symbols is arbitrary and it depends on an application area of the
user. We call an atom (a literal) with primitive predicate symbol a primitive atom
(primitive literal), respectively. A clause with primitive (resp., non-primitive)
head atom is called primitive (resp., non-primitive).

The set of all clauses in program P with the same predicate symbol p in
the head is called the definition of p and denoted by Def(p, P). The predicate
symbol of the head of a clause is called the head predicate of the clause. In the
following, the head and the body of a clause C are denoted by hd(C) and bd(C),
respectively. Given a clause C, a variable in bd(C) is said to be existential , if
it does not appear in hd(C). The other variables in C are called free variables.

A stratification is a total function σ from the set Pred(P) of all predicate
symbols appearing in P to the set N of natural numbers. It is extended to a
function from the set of literals to N in such a way that, for a positive literal A,
σ(A) = i, where i is the stratification of predicate symbol of A. We assume that
σ satisfies the following: For every primitive atom A, σ(A) = 0. For a positive
literal A, σ(¬A) = σ(A) + 1 if A is non-primitive, and σ(¬A) = 0 otherwise.
For a conjunction of literals G = l1, . . . , lk (k ≥ 0), σ(G) = 0 if k = 0 and
σ(G) = max{σ(li) : i = 1, . . . , k} otherwise.

For a stratified program P , we denote its perfect model by M(P).
In our framework, we assume that an initial program, from which an un-

fold/fold transformation sequence starts, has the structure specified in the fol-
lowing definition.3

Definition 1. Initial Program Condition
Let P0 be a program, divided into two disjoint sets of clauses, Ppr and Pnp, where
Ppr (Pnp) is the set of primitive (non-primitive) clauses in P0, respectively. Then,
P0 satisfies the initial program condition, if the following conditions hold:

1. No non-primitive predicate appears in Ppr.

2 In [8], primitive (non-primitive) predicates are called as basic (non-basic), respec-
tively.

3 When we say “an initial program P0” hereafter, P0 is assumed to satisfy the initial
program condition in Def. 1.

On Inductive and Coinductive Proofs via Unfold/Fold Transformations 85

2. Pnp is a stratified program, with a stratification σ, called the initial stratifi-
cation. Moreover, σ is defined as follows: For every non-primitive predicate
symbol p, σ(p) = max(1, m), where m := max{σ(bd(C)) | C ∈ Def(p, P0)}.

3. Each predicate symbol p in P0 is assigned a non-negative integer i (0 ≤ i ≤
I), called the level of the predicate symbol, denoted by level(p), where I is
called the maximum level of the program. For every primitive (resp. non-
primitive) predicate symbol p, level(p) = 0 (resp., 1 ≤ level(p) ≤ I). We
define the level of an atom (or literal) A, denoted by level(A), to be the
level of its predicate symbol, and the level of a clause C to be the level of
its head. Then, every predicate symbol of a positive literal in the body of a
clause in P0 has a level not greater than the level of the clause. �

Remark 1. The above definition follows the generalized framework in [13],
thereby eliminating some restrictions in the original one [12]. In [12], the number
of levels is two; each predicate in an initial program is classified as either old or
new . The definition of a new predicate consists of a single clause whose body
contains positive literals with old predicates only, thus a recursive definition of
a new predicate is not allowed. Moreover, it has no primitive predicates. ��

We now give the definitions of our transformation rules. First, positive unfolding
is defined as usual.

Definition 2. Positive Unfolding
Let C be a renamed apart clause in a stratified program P of the form: H ←
G1, A, G2, where A is an atom, and G1 and G2 are (possibly empty) conjunctions
of literals. Let D1, . . . , Dk with k ≥ 0, be all clauses of program P , such that
A is unifiable with hd(D1), . . . , hd(Dk), with most general unifiers (m. g. u.)
θ1, . . . , θk, respectively.

By (positive) unfolding C w.r.t. A, we derive from P the new program P ′ by
replacing C by C1, . . . , Ck, where Ci is the clause (H ← G1, bd(Di), G2)θi, for
i = 1, . . . , k. ��

The following definition of negative unfolding rule is due to Pettorossi and Proi-
etti (PP-negative unfolding, for short) [8].

Definition 3. Negative Unfolding
Let C be a renamed apart clause in a stratified program P of the form:
H ← G1,¬A, G2, where A is an atom, and G1 and G2 are (possibly empty)
conjunctions of literals. Let D1, . . . , Dk with k ≥ 0, be all clauses of program
P , such that A is unifiable with hd(D1), . . . , hd(Dk), with most general unifiers
θ1, . . . , θk, respectively. Assume that:

1. A = hd(D1)θ1 = . . . = hd(Dk)θk, that is, for each i (1 ≤ i ≤ k), A is an
instance of hd(Di),

2. for each i (1 ≤ i ≤ k), Di has no existential variables, and
3. from ¬(bd(D1)θ1 ∨ . . . ∨ bd(Dk)θk), we get an equivalent disjunction Q1 ∨

. . .∨Qr of conjunctions of literals, with r ≥ 0, by first pushing ¬ inside and
then pushing ∨ outside.

86 H. Seki

By negative unfolding w.r.t. ¬A, we derive from P the new program P ′ by
replacing C by C1, . . . , Cr, where Ci is the clause H ← G1, Qi, G2, for i =
1, . . . , r. ��

Next, we recall the definition of folding in [13]. The notion of a molecule [13] is
useful for clearly stating folding, replacement rule and other related terminology.

Definition 4. Molecule, Identity of Molecules [13]
An existentially quantified conjunction M of the form: ∃X1 . . . Xm(A1, . . . , An)
(m ≥ 0, n ≥ 0) is called a molecule, where X1 . . . Xm are distinct variables called
existential variables and A1, . . . , An are literals. The set of other variables in M
are called free variables , denoted by V f(M).

Two molecules M and N are considered to be identical, denoted by M =
N , if M is obtained from N through permutation of conjuncts and renaming
of existential variables. When more than two molecules are involved, they are
assumed to have disjoint sets of variables, unless otherwise stated.

A molecule without free variables is said to be closed . A molecule without free
variables nor existential variables is said to be ground . A molecule M is called
an existential instance of a molecule N , if M is obtained from N by eliminating
some existential variables by substituting some terms for them.4 ��

Definition 5. Folding, Reversible Folding
Let P be a program and A be an atom. A molecule M is said to be a P -expansion
of A (by a clause D) if there is a clause D : A′ ←M ′ in P and a substitution θ
of free variables of A′ such that A′θ = A and M ′θ = M .

Let C be a clause of the form: B ← ∃X1 . . . Xn(M, N), where M and N are
molecules, and X1 . . .Xn are some free variables in M . If M is a P -expansion
of A (by a clause D), the result of folding C w.r.t. M by P is the clause: B ←
∃X1 . . . Xn(A, N). The clause C is called the folded clause and D the folding
clause (or folder clause).

The folding operation is said to be reversible if M is the only P -expansion of
A in the above definition.5 ��

To state conditions on replacement, we need the following definition.

Definition 6. Proof of an Atom (a Molecule)
Let P be a stratified program and A be a ground atom true in M(P). A finite
successful ground SLS-derivation T with its root← A is called a proof of A by P .

The definition of proof is extended from a ground atom to a conjunction of
ground literals, i.e., a ground molecule, in a straightforward way. Let L be a
ground molecule and T be a proof of L by P . Then, we say that L has a proof
T by P . L is also said to be provable if L has some proof by P .

For a closed molecule M , a proof of any ground existential instance of M is
said to be a proof of M by P . ��
4 The variables in the substituted terms, if any, becomes free variables of M .
5 The terminology of reversible folding was used in a totally different sense in the

literature (see [7]).

On Inductive and Coinductive Proofs via Unfold/Fold Transformations 87

Definition 7. Replacement Rule
A replacement rule R is a pair M1 ⇒ M2 of molecules, such that V f(M1) ⊇
V f(M2), where V f(Mi) is the set of free variables in Mi (1 ≤ i ≤ 2). Let
C be a clause of the form: A ← M . Assume that there is a substitution θ of
free variables of M1 such that M is of the form: ∃X1 . . .Xn(M1θ, N) for some
molecule N and some variables X1 . . . Xn (n ≥ 0) in V f(M1θ). Then, the result
of applying R to M1θ in C is the clause: A ← ∃X1 . . . Xn(M2θ, N).

A replacement rule M1 ⇒ M2 is said to be correct w.r.t. an initial program
P0, if, for every ground substitution θ of free variables in M1 and M2, it holds
that M1θ has a proof by P0 iff M2θ has a proof by P0. ��

We can now define a transformation sequence as follows:

Definition 8. Transformation Sequence
Let P0 be an initial program (thus satisfying the conditions in Def.1), and R be
a set of replacement rules correct w.r.t. P0. A sequence of programs P0, . . . , Pn is
said to be a transformation sequence with the input (P0,R), if each Pn (n ≥ 1)
is obtained from Pn−1 by applying to a non-primitive clause in Pn−1 one of the
following transformation rules: (i) positive unfolding, (ii) negative unfolding, (iii)
reversible folding by P0, and (iv) some replacement rule in R. �

We note that every primitive clause in P0 remains untransformed at any step in
a transformation sequence.

2.2 Correctness of Unfold/Fold Transformation

To preserve the perfect model semantics of a program in transformation, we
need some conditions on the transformation rules. The conditions we impose on
the transformation rules are intended for the rules to satisfy the following two
properties: one is for the preservation of the initial stratification σ of an initial
program P0, and the other is for preserving an invariant of the size (according to
a suitable measure μ) of the proofs of an atom true in P0. Table 1 summarizes
the conditions imposed on the transformation rules in our framework, and they
will be explained in this section.

The following definition of the well-founded measure μ is a natural extension
of that in [13], where μ is defined in terms of an SLD-derivation.

Definition 9. Weight-Tuple, Well-founded Measure μ, i-th truncation of μ
Let P0 be an initial program with the maximum level I and A be a ground
atom true in M(P0). Let T be a proof of A by the initial program P0, and let
wi (1 ≤ i ≤ I) be the number of selected non-primitive positive literals of T
with level i. Then, the weight-tuple of T is an I-tuple 〈w1, . . . , wI〉.

We define the well-founded measure μ(A) as follows:

μ(A) := min{w | w is the weight-tuple of a proof of A}

88 H. Seki

Table 1. Conditions Imposed on the Transformations Rules

transformation rule preservation of σ preservation of μ-completeness

definition ∃ init. stratification σ ∃level : Pred(P0) → N s.t.
(init. program P0) P0 ∀C : H ← L1, . . . , Lk,

(Def. 1) level(H) ≥ level(Li), if Li is pos.

pos. unfolding − −
neg. unfolding − μ-consistent (Def. 15)

folding σ-consistent (Def. 10) TS-folding condition (Def. 12)

replacement σ-consistent (Def. 14) μ-consistent (Def. 14)
M1 ⇒ M2 σ(M1) ≥ σ(M2) μ(M1) ≥ μ(M2)

where min S is the minimum of set S under the lexicographic ordering6 over
N I , and N is the set of natural numbers. For a ground molecule L, μ(L) is
defined similarly. For a closed molecule M , μ(M) := min{w | w is the weight-
tuple of a proof of M ′, where M ′ is a ground existential instance of M}. The i-th
truncation of μ(M), denoted by μi(M), is defined by replacing w by 〈w1, . . . , wi〉
in the definition of μ(M). ��

Note that the above defined measure μ is well-founded over the set of ground
molecules which have proofs by P0. By definition, for a ground primitive atom
A true in M(P0), μ(A) = 〈0, . . . , 0〉 = 0 (I-tuple).

Conditions on Folding. We first give the conditions imposed on folding. The
following is to preserve the initial stratification σ of initial program P0, when
folding is applied.

Definition 10. σ-consistent folding
Let P0 be an initial program with the initial stratification σ. Suppose that re-
versible folding rule by P0 with folding clause D is applied to folded clause C.
Then, the application of folding is said to be consistent with σ (σ-consistent for
short), if the stratum of head predicate of D is less than or equal to that of the
head of C, i.e., σ(hd(C)) ≥ σ(hd(D)). �

The following gives a sufficient condition for folding to be σ-consistent.

Proposition 1. Let P0 be an initial program with the initial stratification σ.
Suppose further that the definition of clause D in P0 consists of a single clause,
that is, Def(p, P0) is a singleton, where p is the predicate symbol of hd(D). Then,
every application of reversible folding with folding clause D is σ-consistent. �

We note that, when Def(p, P0) is a singleton, σ(p) = max(1, σ(bd(D))) (see Def.
1). Then, the above proposition is obvious. The framework by Pettorossi-Proietti
[8] satisfies this condition, since the head predicate of D is supposed to be a new
predicate which does not appear elsewhere.
6 We use the inequality signs >,≤ to represent this lexicographic ordering.

On Inductive and Coinductive Proofs via Unfold/Fold Transformations 89

Next, we explain another condition on folding for the preservation of μ, which
is due to Tamaki-Sato [13] for definite programs.

Definition 11. Descent Level of a Clause
Let C be a clause appearing in a transformation sequence starting from an initial
program P0 with I+1 layers. The descent level of C, denoted by dl(C), is defined
inductively as follows:

1. If C is in P0, dl(C) := level(C), where level(C) is the level of C in P0.
2. If C is first introduced as the result of applying positive unfolding to some

clause C′ in Pi (0 ≤ i) w.r.t. a positive literal A in C′, then dl(C) := dl(C′),
if A is primitive. If A is non-primitive, then dl(C) := min{dl(C′), level(A)}.

3. If C is first introduced as the result of applying negative unfolding to some
clause C′, then dl(C) := dl(C′).

4. If C is first introduced as the result of folding, or applying some replacement
rule to some submolecule of the body of some clause C′, then dl(C) := dl(C′).

��
The difference between the above definition and that of the original one in [13]
is Condition 3 for negative unfolding, while the other conditions remain un-
changed.

Definition 12. TS-Folding Condition
In the transformation sequence, suppose that a clause C is folded using a clause
D as the folding clause, where C and D are the same as those in Definition 5.
Then, the application of folding is said to satisfy the TS-folding condition, if the
descent level of C is smaller than the level of D. ��
We are now in a position to give the definition of μ-completeness due to [13],
which is crucial in the correctness proof; it is a sufficient condition for the preser-
vation of equivalence. A ground instance of some clause C in P is called an
inference by P , and C is called the source clause of the inference.

Definition 13. μ-inference, μ-complete
Let P0, . . . , Pn be a transformation sequence, and μ be the well-founded measure
for P0. An inference A← L by Pn is called a μ-inference, if μi(A) > μi(L) holds,
where i is the descent level of the source clause of the inference.
Pn is said to be μ-complete if for every ground atom A true in M(P0), there is
a μ-inference A ← L by Pn such that M(P0) |= L. ��

Conditions on Replacement Rules. Next, we state our conditions imposed
on replacement rules.

Definition 14. Replacement Rules Consistent with σ and μ
Let P0 be an initial program with the initial stratification σ, and R be a replace-
ment rule of the form M1 ⇒M2, which is correct w.r.t. P0. Then, R is said to be
consistent with σ (or σ-consistent) if σ(M1) ≥ σ(M2), and it is said to be con-
sistent with the well-founded measure μ (or μ-consistent) if μ(M1θ) ≥ μ(M2θ)
for any ground substitution θ for V f(M1) such that M1θ and M2θ are provable
by P0. �

90 H. Seki

The replacement rule in Pettorossi-Proietti [8] satisfies the above conditions, since
literals appearing in their replacement rules are primitive. Then, σ-consistency is
trivial, since σ(M1) = σ(M2) = 0 by definition, while μ-consistency is due to the
fact that the weight-tuple of a proof of Miθ is 0 (I-tuple) for i = 1, 2.

The following proposition shows that the initial stratification is preserved in
a transformation sequence.

Proposition 2. Preservation of the Initial Stratification σ
Let P0 be an initial program with the initial stratification σ, and P0, . . . , Pn (n ≥
1) be a transformation sequence, where every application of folding as well as
replacement rule is consistent with σ. Then, Pn is stratified w.r.t. σ. ��

The New Condition on Negative Unfolding and the Correctness of
Transformation. We are now in a position to give an example which shows that
negative unfolding does not always preserve the semantics of a given program.

Example 1. Let P0 be the stratified program consisting of the following clauses:

P0 = { D : f ← m,¬e
m ←
e ← e
e ← ¬m. }

(1) : f ← ¬e (pos. unfolding D)

(2) : f ← ¬e, m (neg. unfolding (1))

(3) : f ← f (folding (2))

We note that M(P0) |= m ∧ ¬e, thus M(P0) |= f . Assume that the predicate
symbol of m in P0 is non-primitive. By applying positive unfolding to clause D
w.r.t. m, we derive clause (1). Then, applying negative unfolding to clause (1)
w.r.t. ¬e results in clause (2), noting that ¬(e ∨ ¬m) ≡ ¬e ∧m. Since positive
unfolding is applied to clause D w.r.t. a non-primitive atom m, the folding
condition in [8] allows us to fold clause (2) w.r.t. ¬e, m using folder clause D,
obtaining clause (3). Now, we note that clause (3) is self-recursive. Let P ′ be the
result of the program transformation starting from P0, i.e., P ′ = P0\{D}∪{(3)}.
Then, M(P0)
= M(P ′), because M(P ′) |= ¬f . ��

The application of negative unfolding always preserves the initial stratification
σ, while it does not preserve the well-founded measure μ in general. In fact,
applying negative unfolding to (1) w.r.t. ¬e in Example 1 replaces it by ¬e, m,
obtaining clause (2). We note that σ(¬e) = σ(¬e, m), while it is not always true
that μ(¬e) ≥ μ(¬e, m). To avoid the above anomaly, we therefore impose the
following condition on negative unfolding.

Definition 15. Negative Unfolding Consistent with μ
The application of negative unfolding is said to be consistent with μ (or μ-
consistent), if it does not increase the positive occurrences of a non-primitive
literal in the body of any derived clause. That is, in Def. 3, every positive literal
(if any) in Qi is primitive, for i = 1, . . . , r. ��

On Inductive and Coinductive Proofs via Unfold/Fold Transformations 91

In Example 1, μ-consistency of negative unfolding when applied to clause (1),
requires that m be primitive. Then, this prohibits the subsequent folding op-
eration in clause (3) from TS-folding condition (Def. 12). On the other hand,
when m is non-primitive, the application of negative unfolding to clause (1) is
not allowed, since it is not μ-consistent.

One way to view μ-consistent negative unfolding is that it is a special case
of replacement rule R of the form ¬A⇒ Qi, where Qi is given in Def. 3. When
M(P0) |= ¬A, it holds that μ(¬A) = 0. The μ-consistency of R requires that
μ(Qi) = 0, which means that every positive literal (if any) in Qi is primitive.

The following shows the correctness of our transformation system.

Proposition 3. Correctness of Transformation
Let P0 be an initial program with the initial stratification σ, and R be a set
of replacement rules correct w.r.t. P0. Let P0, . . . , Pn (n ≥ 0) be a transfor-
mation sequence with the input (P0,R), where (i) every application of folding
is σ-consistent and satisfies TS-folding condition, and (ii) every application of
replacement rule is consistent with σ and μ. Moreover, suppose that every ap-
plication of negative unfolding is μ-consistent. Then, M(Pn) = M(P0). ��

3 Coinductive Proofs via Unfold/Fold Transformations

In this section, we consider the applicability of our transformation system to
proving properties of the perfect model of a stratified program. Jaffar et al.
[4] consider proof obligations of the form G |= H, where G,H are conjunctions
of either an atom or a constraint, and var(H) ⊆ var(G). The validity of this
entailment means that M(P) |= ∀X̃(G → H)7, where P is a (constraint) definite
program which defines predicates, called assertion predicates, occurring in G and
H, ∀X̃ is an abbreviation for ∀X1 . . . ∀Xj (j ≥ 0) s.t. Xj ∈ var(G). As we noted
earlier, although our unfold/fold transformation system is given for stratified
programs in Sect. 2 for simplicity of explanation, it is possible to extend it to
locally stratified constraint programs as in [3]. While Jaffar et al. [4] consider
a constraint logic program as P , we hereafter consider only equality (=, and
=
for negation of an equation) constraints for the sake of simplicity, and assume
the axioms of Clark’s equality theory (CET)[6].

The proof rules by Jaffar et al. [4] are given in Fig. 1. A proof obligation is of
the form Ã � G |= H, where Ã is a set of assumption goals.

When a proof obligation G |= H is given, a proof will start with Π = {∅ � G |=
H}, and proceed by repeatedly applying the rules in Fig. 1 to it. In the figure, the
symbol � represents the disjoint union of two sets, and UNFOLD(G) is defined
to be {G′ | ∃C ∈ P : G′ = reduct(G, C)}, where G = B1, . . . , Bn is a goal (i.e.,
a conjunction of either constraints or literals), C is a clause in a given program
P , and a reduct of G = B1, . . . , Bn using a clause C, denoted by reduct(G, C), is
defined to be of the form: B1, . . . , Bi−1, bd(C), Bi = hd(C), Bi+1, . . . , Bn. Note
that a constraint Bi = hd(C) gives an m.g.u. of Bi and hd(C).
7 As noted in [4], the use of the term coinduction here has no relationship with the

greatest fixed point of a program.

92 H. Seki

(LU+I)
Π � {Ã � G |= H}

Π ∪⋃n

i=1
{Ã ∪ {G |= H} � Gi |= H}

UNFOLD(G) =
{G1, . . . ,Gn}

(RU)
Π � {Ã � G |= H}
Π ∪ {Ã � G |= H′}

H′ ∈ UNFOLD(H)

(CO)
Π � {Ã � G |= H}

Π ∪ {∅ � H′θ |= H}
G′ |= H′ ∈ Ã and there exists
a substitution θ s.t. G |= G′θ

(CP)
Π � {Ã � G ∧ p(x̃) |= H ∧ p(ỹ)}

Π ∪ {Ã � G |= H ∧ x̃ = ỹ}
(DP)

Π � {G |= H}
Π

G |= H holds by
constraint solving

Fig. 1. Coinductive Proof Rules by Jaffar et al. [4]

The left unfold with new induction hypothesis (LU+I) (or simply “left-unfold”)
rule performs a complete unfold on the lhs of a proof obligation, producing a
new set of proof obligations. The original assertion, while removed from Π , is
added as an assumption to every newly produced proof obligation.

On the other hand, the right unfold (RU) rule performs an unfold on the rhs
of a proof obligation. The (RU) rule does not necessarily obtain all the reducts.

The rule coinduction application (CO) transforms an obligation by using an
assumption which can be created only by the (LU+I) rule, thereby realizing
the coinduction principle. The underlying principle behind the (CO) rule is that
a “similar” assertion G′ |= H′ has been previously encountered in the proof
process, and assumed to be true.

The rule constraint proof (CP) removes one occurrence of a predicate p(ỹ)
appearing in the rhs of a proof obligation. Applying the CP rules repeatedly will
reduce a proof obligation to the form which contains no assertion predicates in
the rhs and consists only of constraints. Then, the direct proof (DP) rule may
be attempted by simply removing any predicates in the corresponding lhs and
by applying the underlying constraint solver assumed in the language we use.

Jaffar et al. show the soundness of the proof rules in Fig. 1 [4].

Theorem 1 (Soundness). [4] A proof obligation G |= H holds in M(P) for
a given definite constraint program P , if, starting with the proof obligation ∅ �
G |= H, there exists a sequence of applications of proof rules that results in proof
obligations Ã � G′ |= H′ such that (a) H′ contains only constraints, and (b)
G′ |= H′ can be discharged by the constraint solver. ��

The following is an example of a coinductive proof in [4], and we show how the
corresponding proof is done via unfold/fold transformations. To this end, we first
state the notion of useless predicates, which is originally due to Pettorossi and
Proietti [8], but we use it with a slight modification as follows.

On Inductive and Coinductive Proofs via Unfold/Fold Transformations 93

Definition 16. Useless Predicate
The set of the useless predicates of a program P is the maximal set U of pred-
icates of P such that a predicate p is in U if, for the body of each clause of
Def(p, P), it has (i) either a positive literal whose predicate is in U , or (ii) a
constraint which is unsatisfiable. �

It is easy to see that, if p is a useless predicate of P , then M(P) |= ¬A, where
A is a ground atom with predicate symbol p.

Example 2. A Coinductive Proof without Base Case [4]
Let P be a program consisting of the following clauses:

p(X)← q(X)
q(X) ← q(X)
r(X) ←

Suppose that the proof obligation is to prove that p(X) |= r(X), calling this
assertion A1. The proof process is shown in Fig. 2 (left). We first apply rule
(LU+I) to A1, obtaining another assertion A2: q(X) |= r(X). Again, we apply
rule (LU+I) to A2, deriving another assertion A3, which is equivalent to A2.
This time, we can apply the coinduction rule (CO) to A3, and obtain a new
assertion r(X) |= r(X). This assertion is then proved simply by applying rules
(CP) and (DP).

∅ � p(X) |= r(X)

{A1} � q(X) |= r(X)
(LU+I)

{A1, A2} � q(X) |= r(X)
(LU+I)

∅ � r(X) |= r(X)
(CO)

|= X = X
(CP)

true
(DP)

Cf : f ← ¬nf1

Cnf1 : nf1 ← p(X),¬r(X)
Cnf2 : nf2(X) ← q(X),¬r(X)

(1) : nf1 ← q(X),¬r(X) (pos. unfolding Cnf1)
(2) : nf1 ← nf2(X) (folding (1))
(3) : nf2(X) ← q(X),¬r(X) (pos. unfolding Cnf2)
(4) : nf2(X) ← nf2(X) (folding (3))

Fig. 2. A Coinductive Proof of Example 2 and the Corresponding Proof via Unfold/fold
Transformations

Fig. 2 (right) shows the corresponding proof via unfold/fold transformations.
We first consider the clause C0 corresponding to the initial proof obligation A1,
i.e., C0 : f ← ∀X(p(X) → r(X)). Then, we apply Lloyd-Topor transformation
to C0, obtaining the clauses {Cf , Cnf1}, where predicate nf1 is a new predicate
introduced by Lloyd-Topor transformation.

We assume that assertion predicates (p and q in this example) are non-
primitive. By applying positive unfolding to Cnf1 w.r.t. p(X), we have clause
(1). From this, we consider a new clause Cnf2 whose body is the same as that
of (1) and assume that Cnf2 is in initial program P0 from scratch. Therefore, let
P0 = P ∪{Cf , Cnf1 , Cnf2}. We then apply folding to clause (1), obtaining clause
(2).

On the other hand, applying positive unfolding to Cnf2 w.r.t. q(X) results in
clause (3), which is then folded by using folder clause Cnf2 , giving a self-recursive

94 H. Seki

clause (4). Let P4 = P0\{Cnf1 , Cnf2}∪{(2), (4)}. Since the above transformation
sequence preserves the perfect model semantics, it holds that M(P0) = M(P4).
Note that nf2 and nf1 are useless predicates of P4. We thus have that M(P4) |=
∀X(¬nf2(X)) ∧ ¬nf1, which means that M(P4) |= f . Therefore, it follows that
M(P0) |= f , which is to be proved. ��

Next, we consider how to realize the reasoning step corresponding to the coin-
duction rule in our transformation system. The coinduction rule (CO) in Fig.
1 requires to check whether there exists some substitution θ s.t. G |= G′θ and
H′θ |= H, which means that M(P0) |= (G ∧ ¬H) → (G′ ∧ ¬H′)θ, where P0 is a
program defining assertion predicates. In this case, if (G ∧ ¬H) has a proof by
P0, then (G′∧¬H′)θ has a proof by P0, but not vice versa. We therefore propose
a new form of the replacement rule, which is, unlike the replacement rule in Def.
7, not necessarily equivalence-preserving.

Definition 17. Sound Replacement Rule
Let P0 be an initial program with the initial stratification σ, and R be a replace-
ment rule of the form M1 ⇒ M2, which is consistent with σ and μ. Then, R is
said to be sound w.r.t. P0, if, for every ground substitution θ of free variables in
M1 and M2, it holds that, if M1θ has a proof by P0, then so does M2θ. ��

When we use the sound replacement rules in unfold/fold transformation, we can
show the following proposition in place of Proposition 3.

Proposition 4. Soundness of Transformation
Let P0, . . . , Pn (n ≥ 0) be a transformation sequence under the same assumptions
in Prop. 3, except that, in the transformation sequence, some sound replacement
rules are applied, with a proviso that, if a sound replacement rule is applied to
clause C in Pk for some k (0 ≤ k ≤ n) and it is the first time a sound replacement
rule is applied in the transformation sequence, then every application of a sound
replacement rule, if any, is applied to a clause C′ in Pi (k < i ≤ n) with
σ(hd(C′)) = σ(hd(C)) for the rest of the transformation sequence, where σ is
the initial stratification of P0.

Then, it holds that (i) M(P0) |<j= M(Pn) |<j for all j s.t. 0 ≤ j < σ(hd(C)),
and (ii) M(P0) |σ(hd(C))⊆M(Pn) |σ(hd(C)), where M |<i (M |i) is the restriction
of a perfect model M to the set of atoms whose strata are less than i (equal to
i), respectively. ��

We can now show that our proof via unfold/fold transformations including the
sound replacement rule has at least the same power as that of the coinduc-
tive proof rules by Jaffar et al. [4], assuming that our transformation system
is extended to deal with a constraint logic program with a suitable constraint
language and the constraint theory corresponding to the underlying constraint
solver. To show that, we find it convenient to use an expression, called an ex-
tended negative literal, which is defined as follows:

Definition 18. Extended Negative Literal

On Inductive and Coinductive Proofs via Unfold/Fold Transformations 95

An extended negative literal is an expression of the form: ∀X̃(H → ⊥), where H
is a conjunction of either atoms or constraints, X̃ are some free variables in H,
and ⊥ means false. �

In particular, when an extended negative literal N is of the form: h → ⊥ and h
is an atom, N is simply a negative literal ¬h. When an extended negative literal
∀X̃(H → ⊥) occurs in the body of a clause, we regard it a notational convention
of ¬newp(Ỹ), where newp is a new predicate symbol not appearing elsewhere
and is defined by clause D of the form: newp(Ỹ) ← H(X̃, Ỹ), where H(X̃, Ỹ)
means that X̃ are the existential variables in D. Therefore, although we use an
expression allowing an extended negative literal, our framework still remains in
(constraint) stratified programs.

Proposition 5. Coinductive Proofs via Unfold/fold Transformations
Let P be a given (constraint) definite program. Suppose that a proof obligation
M(P) |= ∀X̃(G → H) can be proved by the coinductive proof rules in Fig
1. Suppose further that P0 = P ∪ {Cf , Cnf}, where Cf = f ← ¬nf(X̃) and
Cnf = nf(X̃) ← G, (H → ⊥).

Then, there exists a transformation sequence P0, . . . , Pn (n ≥ 0) satisfying
the same assumptions in Prop. 4, such that nf is a useless predicate of Pn. ��

From the above proposition, our proof scheme via unfold/fold transformations
with sound replacement will be as follows: If we obtain by transformation Pn such
that nf is useless in Pn, then it follows from Prop. 5 that M(Pn) |= ∀X̃¬nf(X̃),
thus M(P0) |= f , which is to be proved.

4 Conclusion

We have considered the new application condition of negative unfolding, which
guarantees its safe use in an unfold/fold transformation system for stratified
programs. We showed that the new application condition imposed on negative
unfolding is a natural one, since it can be considered as a special case of the re-
placement rule. We proved that our unfold/fold transformation system preserves
the perfect model semantics.

We then considered the coinductive proof rules proposed by Jaffar et al. [4]
We showed that our unfold/fold transformation system, when used together with
Lloyd-Topor transformation, can prove a proof problem which is provable by the
coinductive proof rules by Jaffar et al. To this end, we proposed a new replacement
rule, called sound replacement, which is not necessarily equivalence-preserving,
but is essential to perform a reasoning step corresponding to coinduction.

In [11], a framework for unfold/fold transformation of locally stratified pro-
grams is proposed, where another well-founded ordering is introduced for the
correctness proof, thus it is non-comparable with the current work. The trans-
formation system by Roychoudhury et al. [10] used a very general measure for
proving the correctness, and they considered a disjunctive folding. On the other
hand, their systems [10,9] have no negative unfolding. In fact, the correctness

96 H. Seki

proof in [9] depends on the preservation of the semantic kernel [2], which is
not preserved in general when negative unfolding is applied. We leave it for
future research to investigate the difference of disjunctive folding and negative
unfolding in application areas such as verification.

One of the motivations of this work is to understand the close relationship
between program transformation and inductive theorem proving. We hope that
our results reported in this paper will be a contribution to promote further
cross-fertilization between the two fields.

Acknowledgement. The author would like to thank anonymous reviewers for
their constructive and useful comments on the previous version of the paper.

References

1. Apt, K.R.: Introduction to Logic Programming. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, pp. 493–576. Elsevier, Amsterdam (1990)

2. Aravindan, C., Dung, P.M.: On the Correctness of Unfold/fold Transformation of
Normal and Extended Logic Programs. J. of Logic Programming 24(3), 295–322
(1995)

3. Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation Rules for Locally Strat-
ified Constraint Logic Programs. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 291–339. Springer,
Heidelberg (2004)

4. Jaffar, J., Santosa, A., Voicu, R.: A Coinduction Rule for Entailment of Recursively
Defined Properties. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 493–508.
Springer, Heidelberg (2008)

5. Kanamori, T., Horiuchi, K.: Construction of Logic Programs Based on Gener-
alized Unfold/Fold Rules. In: Proc. the 4th Intl. Conf. on Logic Programming,
pp. 744–768 (1987)

6. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

7. Pettorossi, A., Proietti, M.: Transformation of Logic Programs: Foundations and
Techniques. J. of Logic Programming 19/20, 261–320 (1994)

8. Pettorossi, A., Proietti, M.: Perfect Model Checking via Unfold/Fold Transforma-
tions. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U.,
Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 613–628. Springer, Heidelberg (2000)

9. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.:
Beyond Tamaki-Sato Style Unfold/fold Transformations for Normal Logic Pro-
grams. Int. Journal on Foundations of Computer Science 13(3), 387–403 (2002)

10. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.:
An Unfold/fold Transformation Framework for Definite Logic Programs. ACM
Trans. on Programming Languages and Systems 26(3), 464–509 (2004)

11. Seki, H.: On Negative Unfolding in the Answer Set Semantics. In: Hanus, M. (ed.)
LOPSTR 2008. LNCS, vol. 5438, pp. 168–184. Springer, Heidelberg (2009)

12. Tamaki, H., Sato, T.: Unfold/Fold Transformation of Logic Programs. In: Proc.
2nd Int. Conf. on Logic Programming, pp. 127–138 (1984)

13. Tamaki, H., Sato, T.: A Generalized Correctness Proof of the Unfold/Fold Logic
Program Transformation, Technical Report, No. 86-4, Ibaraki Univ., Japan (1986)

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 97–112, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Coinductive Logic Programming with Negation

Richard Min and Gopal Gupta

Department of Computer Science,
The University of Texas, Dallas,

Richardson, TX 75080, USA

Abstract. We introduce negation into coinductive logic programming (co-LP)
via what we term Coinductive SLDNF (co-SLDNF) resolution. We present
declarative and operational semantics of co-SLDNF resolution and present their
equivalence under the restriction of rationality. Co-LP with co-SLDNF resolu-
tion provides a powerful, practical and efficient operational semantics for Fit-
ting’s Kripke-Kleene three-valued logic with restriction of rationality. Further,
applications of co-SLDNF resolution are also discussed and illustrated where
Co-SLDNF resolution allows one to develop elegant implementations of modal
logics. Moreover it provides the capability of non-monotonic inference (e.g.,
predicate Answer Set Programming) that can be used to develop novel and
effective first-order modal non-monotonic inference engines.

Keywords: Coinductive Logic Programming; Negation as Failure; Program
Completion; Kripke-Kleene three-valued logic.

1 Introduction

Coinduction is a powerful technique for reasoning about unfounded sets, unbounded
structures, and interactive computations. Coinduction allows one to reason about
infinite objects and infinite processes [2, 6]. Coinduction has been recently introduced
into logic programming (termed coinductive logic programming, or co-LP for brevity)
by Simon et al [17] and an operational semantics (termed co-SLD resolution) defined
for it. Practical applications of co-LP include goal-directed execution of answer set
programs [7], reasoning about properties of infinite processes and objects, model
checking and verification and planning [16]. Negation is important in logic program-
ming. Without negation, many of the interesting applications of co-LP, to planning,
goal-directed execution of answer set programs, etc. are not possible. In this paper we
extend Simon et al’s work on co-LP with negation as failure [3]. Our work can also
be viewed as adding coinduction to SLDNF resolution [10], thus we term the opera-
tional semantics of co-LP extended with negation as failure as coinductive SLDNF
resolution or co-SLDNF resolution. Co-SLDNF resolution and its correctness result
constitute the main contribution of this paper. Co-LP with co-SLDNF resolution
provides a powerful, practical and efficient operational semantics for Fitting’s Kripke-
Kleene three-valued logic [6] with restriction of rationality. The resulting language
efficiently handles many challenging problems and applications dealing with rational
infinite objects and streams, modal operators, nonmonotonic inference, etc. [3].

98 R. Min and G. Gupta

2 Preliminaries

Coinduction is the dual of induction. Induction corresponds to well-founded structures
that start from a basis which serves as the foundation for building more complex
structures. For example, natural numbers are inductively defined via the base element
zero and the successor function. Inductive definitions have 3 components: initiality,
iteration and minimality. Thus, the inductive definition of a list of numbers is as fol-
lows: (i) [] (an empty list) is a list (initiality); (ii) [H | T] is a list if T is a list and H
is some number (iteration); and, (iii) the set of lists is the minimal set of such lists
(minimality). Minimality implies that infinite-length lists of numbers are not members
of the inductively defined set of lists of numbers. Induction corresponds to least fixed
point interpretation of recursive definitions. In contrast, coinduction eliminates the
initiality condition and replaces the minimality condition with maximality. Thus, the
coinductive definition of a list of numbers is: (i) [H | T] is a list if T is a list and H is
some number (iteration); and, (ii) the set of lists is the maximal set of such lists
(maximality). There is no need for the base case in coinductive definitions, and while
this may appear circular, the definition is well formed since coinduction corresponds
to the greatest fixed point (gfp) interpretation of recursive definitions (recursive defi-
nitions for which gfp interpretation is intended are termed corecursive definitions).

The basic concepts of co-LP are based on rational, coinductive proof [17], that are
themselves based on the concepts of rational tree and rational solved form of Col-
merauer [4]. A tree is rational if the cardinality of the set of all its subtrees is finite.
An object such as a term, an atom, or a (proof or derivation) tree is said to be rational
if it is modeled (or expressed) as a rational tree. A rational proof of a rational tree is
its rational solved form computed by rational solved form algorithm [4], following
the account of [11]. The reader is referred to [4, 11] for details. Some of the notewor-
thy results for rational trees and its algebra are: (i) the rational solved form algorithm
always terminates, (ii) the conjunction of equations E is solvable iff E has a rational
solved form, and (iii) the algebra of rational trees and the algebra of infinite trees are
elementarily equivalent. For co-LP, there are three further extensions to the rational
solved form. First, we extend the concept of rational proof of rational trees of terms to
atoms with terms (predicates). Second, as we recall [8, 10, 11] the equality theory for
the algebra of rational trees, requires one modification to the axioms of the equality
theory of the algebra of finite trees for co-LP over the rational domain, namely, (i)
t(x) ≠ x, for all x and t for each “finite” term t(x) containing x that is different from x,
and (ii) if t(x) = x then x = t(t(t(...))) for all x and t for each “rational” term. Note that
this modified axiomatization of the equality theory is required for rational trees and
we will elaborate with a few examples with co-LP. Third, negation is added.

A coinductive proof of a rational (derivation) tree of program P is a rational solved
form (tree-solution) of the rational (derivation) tree. One worthy note is that irrational
atoms are generally not found in practical logic programs. Further, any irrational atom
that has an infinite derivation should have a rational cover, as noted in [9], which
could be characterized by the (interim) rational atom observed in each step of the
derivation. This observation will be used later to assure some of the results of infinite
LP also applicable to rational LP.

The Coinductive hypothesis rule (CHR) states that during execution, if the current
resolvent R contains a call C’ that unifies with an ancestor call C encountered earlier,

 Coinductive Logic Programming with Negation 99

then the call C’ succeeds; the new resolvent is R’θ where θ = mgu(C, C’) and R’ is
obtained by deleting C’ from R. With this rational feature, co-LP allows programmers
to manipulate rational (finite and rational) structures in a decidable manner as noted
earlier. To achieve this feature of rationality, unification has to be necessarily ex-
tended, to have “occurs-check” removed [4]. SLD resolution extended with the coin-
ductive hypothesis rule is called co-SLD resolution [16, 17]. Co-SLD resolution is
very similar to SLD resolution except that goals with rational proofs are permitted. In
SLD-resolution, given a call during execution of a logic program, the candidate
clauses are tried one by one via backtracking. Under co-SLD resolution, however, the
candidate clauses are extended with yet more alternatives: applying the coinductive
hypothesis rule to check if the current call will unify with any of the earlier calls. That
is, coinductive hypothesis rule computes whether current node (an atom) in a deriva-
tion tree can be unified with an earlier node (an atom) or not. Therefore, if there is a
cycle in the path of the execution, it will be detected by co-SLD and infinite traversal
of this cycle stopped. Thus by applying co-SLD resolution throughout the rational tree
(of derivation) of atoms, one may end up with a rational solved form (a coinductive
proof) of rational derivation tree. Thus, given the coinductive logic program:

stream([H | T]):- number(H), stream(T).

the goal ?-stream(X) will bind X to infinite (rational) streams of numbers. Solutions
such as X = [1 | X], X = [1, 2 | X], etc., will be produced by the co-LP system using
CHR.

The Infinitary Herbrand Universe of a logic program P, HU(P), is the set of all
ground terms formed out of the constants and function symbols appearing in P. Note
that HU contains infinite terms also (e.g., f(f(f(….)))). Herbrand Base of P, HB(P), is
the set of all ground atoms formed by using predicate symbols in P with ground terms
from HU(P), and similarly Herbrand Ground, HG(P), for all the ground clauses of P.
We denote the subset of Herbrand Universe restricted to rational terms by HUR(P);
HBR(P) and HGR(P) are similarly defined. Further, we say rational Herbrand space of
program P, denoted HSR(P), to mean the 3-tuple of (HUR(P), HBR(P), HGR(P)).

3 Coinductive SLDNF Resolution

Negation causes many problems in logic programming (e.g., nonmonotonicity). For
example, one can write programs whose meaning is hard to interpret, e.g., p :- not (p).
and whose completion [3] is inconsistent. We use the notation nt(A) to denote
negation as failure (naf) for a coinductive atom A; nt(A) is termed a naf-literal. Also
note that without occurs-check, the unification equation X=f(X) means X is bound to
f(f(f(....))) (an infinite rational term). From this point, we take all logic programs to
be normal logic programs (that is, a logic program with zero or more negative literals
in the body of a clause, and zero or one atom in the head) and finite (finite set of
clauses with a finite set of alphabets).

Definition 3.1. (Syntax of co-LP with negation as failure): A coinductive logic
program P is syntactically identical to a traditional (that is, inductive) logic program.
However, predicates executed with co-SLD resolution (gfp semantics restricted to
rational proofs) are declared as coinductive; all other predicates are assumed to be

100 R. Min and G. Gupta

inductive (i.e., lfp semantics is assumed). The syntax of declaring a clause for a coin-
ductive predicate A of arity n is as follows:

 coinductive (A/n).
 A :- L1, …, Lm.

where m ≥ 0 and A is an atom (of arity n) of a general program P, Li, (0 ≤ i ≤ m), is a
positive or naf-literal.

The major considerations for incorporating negation into co-LP are: (i) negation as
failure: infer nt(p) if p fails and vice versa, i.e., nt(p) fails if p succeeds, (ii) negative
coinductive hypothesis rule: infer nt(p) if nt(p) is encountered again in the process of
establishing nt(p), and (iii) consistency in negation, infer p from double negation, i.e.,
nt(nt(p)) = p. Next we extend co-SLD resolution so that naf-goals can also be
executed. The extended operational semantics is termed co-SLDNF resolution.
Co-SLDNF resolution further extends co-SLD resolution with negation. Essentially, it
augments co-SLD with the negative coinductive hypothesis rule, which states that if a
negated call nt(p) is encountered during resolution, and another call to nt(p) has been
seen before in the same computation, then nt(p) coinductively succeeds. To imple-
ment co-SLDNF, the set of positive and negative (ancestor) calls has to be maintained
in the positive hypothesis table (denoted χ+) and negative hypothesis table (denoted
χ-) respectively. The operational semantics of co-LP with negation as failure is de-
fined as an interleaving of co-SLD and negation as failure under the co-Herbrand
model. Extending co-SLD to co-SLDNF, the goal {nt(A)} succeeds (or has a suc-
cessful derivation) if {A} fails; likewise, the goal {nt(A)} fails (or has a failure deri-
vation) if the goal {A} succeeds. We restrict P∪{A} to be allowed [10] (p.89) to
prevent floundering and thus to ensure soundness. We also restrict ourselves to
the rational Herbrand space. Since naf-literals may be nested, one must keep track of
the context of each predicate occurring in the body of a clause, i.e., whether it is in the
scope of odd or even number of negations. If a predicate is under the scope of even
number of negations, it is said to occur in positive context, else it occurs in negative
context. In co-SLDNF resolution, negated goals that are encountered should be
remembered since negated goals can also succeed coinductively. Thus, the state is
represented as (G, E, χ+, χ-) where G is the subgoal list (containing positive or
negated goals), E is a system of term equations, χ+ is the set of ancestor calls occur-
ring in positive context (i.e., in the scope of zero or an even number of negations). χ-
is the set of ancestor calls occurring in negative context (i.e., in the scope of an odd
number of negations). Further, we need a few more requisite concepts for the defini-
tion of co-SLDNF.

Given a co-LP P and an atom A in a query goal G, the set of all clauses with the
same predicate symbol A in the head is called the definition of A. Further the unifi-
able-definition of A is the set of all clauses of Ci = { Hi :- Bi } (where 1 ≤ i ≤ n) where
A is unifiable with Hi. Each Ci of the unifiable-definition of A is called a candidate
clause for A. Each candidate clause Ci of the form {Hi(ti) :- Bi.} is modified to
{Hi(xi) :- xi = ti, Bi.}, where (xi = ti, Bi) refers to the extended body of the candidate
clause, ti is an n-tuple representing the arguments of the head of the clause Ci, Bi is
a conjunction of goals, and xi is an n-tuple of fresh unbound variables (that is, stan-
dardized apart). Let Si be the extended body of the candidate clause Ci (that is, Si is

 Coinductive Logic Programming with Negation 101

(xi = ti, Bi), for each i where 1 ≤ i ≤ n). Then an extension Gi of G for A in negative
context w.r.t. Si is obtained by replacing A with Siθi where θi = mgu(A, Hi). The com-
plete-extension G’ of G for A in negative context is obtained by the conjunction of the
extension Gi for each Si where 1 ≤ i ≤ n. If there is no definition for A in P, then the
complete-extension G’ of G for A in negative context is obtained by replacing A with
false. For example, given G = nt(D1, A, D2) with the n-candidate clauses for A where
its extended body is Si(xi) where 1 ≤ i ≤ n. Then the complete-extension G’ of G for
A will be: G’ = (nt(D1, S1(x1)θ1, D2), …, nt(D1, Sn(xn)θn, D2)). Intuitively, the concept
of the complete-extension captures the idea of negation as failure that the proof of A
in negative context (that is, a negative subgoal, ¬A) requires the failure of all the
possibilities of A. That is, ¬A ↔ ¬(H1 ∨ … ∨ Hn) ↔ (¬H1 ∧ … ∧ ¬Hn) where Hi is
a candidate clause of A. Thus the complete-extension embraces naturally the dual
concepts of (i) the negation of the disjunctive subgoals (the disjunction in negative
context) with (ii) the conjunction of the negated subgoals. For example, nt(D1,
(S1(x1)θ1 ∨ … ∨ Sn(xn)θn), D2) is equivalent to (nt(D1, S1(x1)θ1, D2), …, nt(D1,
Sn(xn)θn, D2))). Co-SLDNF resolution is defined as follows.

Definition 3.2. Co-SLDNF Resolution: Suppose we are in the state (G, E, χ+, χ-)
where G is a list of goals containing an atom A, and E is a set of substitutions
(environment).

(1) If A occurs in positive context, and A’ ∈ χ+ such that θ = mgu(A,A’), then the
next state is (G’, Eθ, χ+, χ-), where G’ is obtained by replacing A with .

(2) If A occurs in negative context, and A’ ∈ χ- such that θ = mgu(A,A’), then the
next state is (G’, Eθ, χ+, χ-), where G’ is obtained by replacing A with false.

(3) If A occurs in positive context, and A’ ∈ χ- such that θ = mgu(A,A’), then the
next state is (G’, E, χ+, χ-), where G’ is obtained by replacing A with false.

(4) If A occurs in negative context, and A’ ∈ χ+ such that θ = mgu(A,A’), then the
next state is (G’, E, χ+, χ-), where G’ is obtained by replacing A with .

(5) If A occurs in positive context and there is no A’ ∈ (χ+ ∪ χ-) that unifies with A,
then the next state is (G’, E’, {A}∪χ+, χ-) where G’ is obtained by expanding A
in G via normal call expansion using a (nondeterministically chosen) clause Ci
(where 1≤ i ≤ n) whose head atom is unifiable with A with E’ as the new system
of equations obtained.

(6) If A occurs in negative context, and there is no A’ ∈ (χ+ ∪ χ-) that unifies with
A, then the next state is (G’, E’, χ+, {A}∪χ-) where G’ is obtained by the com-
plete-extension of G for A.

(7) If A occurs in positive or negative context and there are no matching clauses for
A, and there is no A’ ∈ (χ+ ∪ χ-) such that A and A’ are unifiable, then the next
state is (G’, E, χ+, {A} ∪ χ-), where G’ is obtained by replacing A with false.

(8) (a) nt(…, false, …) reduces to , (b) nt(A, , B) reduces to nt(A, B) where A and
B represent conjunction of subgoals, and (c) nt() reduces to false.

Note (i) that the result of expanding a subgoal with a unit clause in step (5) and (6) is
an empty clause (). (ii) When an initial query goal reduces to an empty clause (), it
denotes a success (denoted by [success]) with the corresponding E as the solution, and
(ii) when an initial query goal reduces to false, it denotes a fail (denoted by [fail]).

102 R. Min and G. Gupta

Definition 3.3. (Co-SLDNF derivation): Co-SLDNF derivation of the goal G of pro-
gram P is a sequence of co-SLDNF resolution steps (of Definition 3.2) with a se-
lected subgoal A, consisting of (1) a sequence (Gi, Ei, χi+, χi-) of state (i ≥ 0), of (a) a
sequence G0, G1, ... of goal, (b) a sequence E0, E1, ... of mgu's, (c) a sequence χ0+, χ1+,
... of the positive hypothesis table, (d) χ0-, χ1-, ... of the negative hypothesis table,
where (G0, E0, χ0+, χ0-) = (G, ∅, ∅, ∅) as the initial state, and (2) for step (5) or step
(6) of Definition 3.2, a sequence C1, C2, ... of variants of program clauses of P where
Gi+1 is derived from Gi and Ci+1 using θi+1 where Ei+1 = Eiθi+1 and (χi+1+, χi+1-) as its
resulting positive and negative hypothesis tables. (3) If a co-SLDNF derivation from
G results in an empty clause of query , that is, the final state of (, Ei, χi+, χi-), then
it is a successful co-SLDNF derivation, and a derivation fails if a state is reached in
the subgoal-list which is non-empty and no transitions are possible from this state (as
defined in Definition 3.2).

Note that there could be more than one derivation from a node if there is more than
one step available for the selected subgoal (e.g., many clauses are applicable for the
expansion rules of step (5) or step (6) in Definition 3.2). A co-SLDNF resolution
step may involve expanding with a program clause for Definition 3.2 (5) or (6) with
the initial goal G = G0, and the initial state of (G0, E0, χ0+, χ0-) = (G, ∅, ∅, ∅), and
Ei+1 = Eiθi+1 (and so on) may look as follows:

 C1,θ1 C2,θ2 C3,θ3
 (G0, E0, χ0+, χ0-) ⎯→ (G1, E1, χ1+, χ1-) ⎯→ (G2, E2, χ2+, χ2-) ⎯→ ...

Further, for sake of the notational simplicity, we use the disjunctive form for step (6)
of Definition 3.2 instead of the conjunctive form for our examples. For example,
nt(D1, (S1(x1)θ1; … ; Sn(xn)θn), D2) is used for (nt(D1, S1(x1)θ1, D2), …, nt(D1,
Sn(xn)θn, D2))) where “∨” is denoted by “;” as we adapt the conventional Prolog dis-
junctive operator for convenience. Next restricting ourselves to the rational Herbrand
space, the success set and finitely-failed set of co-SLDNF are defined. Let [SS] be the
(coinductive) Success Set and let [FF] be the (coinductive) Finite-Failure Set. We
assume that a query is a subset of the signed atoms from the given program P.

Definition 3.4. (Success Set and Finite-Failure Set of co-LP with negation) Let P be a
normal co-LP program with its rational Herbrand space. Then:

(1) [SS]={ A | A ∈ HBR(P), the goal { A } →* }
(2) [FF]={ A | A ∈ HBR(P), the goal { nt(A) } →* },

where →* denotes a co-SLDNF derivation of length 0 or more, and denotes an
empty clause {}.

Note that the third possibility is an irrational (infinite) derivation, considered to be
undefined in the rational space.

4 Illustrative Examples

Next we consider a few illustrative examples for co-SLDNF resolution. With the
example programs and queries, we also consider their model (fixed point) and

 Coinductive Logic Programming with Negation 103

program completion [3]. Note that we show co-SLDNF derivation in the left column
and the annotation in the right column with co-SLDNF step numbers from Def. 3.2.

Example 4.1. Consider the following program NP1:

NP1: p :- nt(q).
 q :- nt(p).

First, consider the query Q1 = ?- p generating the following derivation:

 ({p}, {}, {}, {}) by (5)
→ ({nt(q)}, {}, {p},{}) by (6)
→ ({nt(nt(p))}, {}, {p}, {q}) by (1)
→ ({}, {}, {p}, {q}) [success]

Second, consider the query Q2 = ?- nt(p) generating the following derivation:

 ({nt(p)}, {}, {}, {}) by (6)
→ ({nt(nt(q))}, {}, {},{p}) by (5)
→ ({nt(nt(nt(p)))}, {}, {q}, {p}) by (2)
→ ({}, {}, {q}, {p}) [success]

Third, the query Q3 = ?- p, nt(p) will generate the following derivation:

 ({p, nt(p)}, {}, {}, {}) by (5)
→ ({nt(q), nt(p)}, {}, {p},{}) by (6)
→ ({nt(nt(p)), nt(p)}, {}, {p}, {q}) by (1)
→ ({nt(p)}, {}, {p}, {q}) [success] for p; nt(p) by (4)
→ ({nt()}, {}, {p}, {q}) by 8(c)
→ ({false}, {}, {p}, {q}) [fail]

Finally the query Q3 = ?- p, q. will generate the following derivation:

 ({p, q}, {}, {}, {}) by (5)
→ ({nt(q), q}, {}, {p},{}) by (6)
→ ({nt(nt(p)), q}, {}, {p}, {q}) by (1)
→ ({q}, {}, {p}, {q}) [success] for p; q by (3)
→ ({false}, {}, {q}, {p}) [fail]

Note that the queries Q1 and Q2 succeed whereas the queries Q3 and Q4 fail. We
should note that the above program NP1 has two fixed points (two models, M1A and
M1B where M1A={p}, M1B={q}, M1A∩M1B=∅), that are not consistent with each
other. As we noted, the query ?- nt(p) is true with M1B={q}, while the query ?- p is
true with M1A={p}. Thus, computing with (maximal) fixed point semantics in pres-
ence of negation can be troublesome and seemingly lead to contradictions; one has to
be careful that given a query, different parts of the query are not computed w.r.t. dif-
ferent fixed points. Moreover, the query ?-p, nt(p) will never succeed if we are aware
of the context (of a particular fixed point being used). However, if the subgoals p and
nt(p) are evaluated separately and the results conjoined without enforcing their
consistency, then it will wrongly succeed. To ensure consistency of the partial inter-
pretation, the sets χ+ and χ- are employed in our operational semantics; they in effect
keep track of the particular fixed point(s) under use.

104 R. Min and G. Gupta

Example 4.2. Consider the following program NP2:

NP2: p :- p.

First, consider the query Q1 = ?- p generating the following derivation:

 ({p}, {}, {}, {}) by (5)
→ ({p}, {}, {p},{}) by (1)
→ ({}, {}, {p}, {}) [success]

Second, consider the query Q2 = ?- nt(p) generating the following derivation:

 ({nt(p)}, {}, {}, {}) by (6)
→ ({nt(p)}, {}, {},{p}) by (2)
→ ({nt(false)}, {}, {}, {p}) by (8a)
→ ({}, {}, {}, {p}) [success]

Third, consider the query Q3 = ?- p, nt(p) generating the following derivation:

 ({p, nt(p)}, {}, {}, {}) by (5)
→ ({p, nt(p)}, {}, {p},{}) by (1)
→ ({nt(p)}, {}, {p}, {}) [success] for p; nt(p) by (4)
→ ({nt()}, {}, {p}, {}) by (8c)
→ ({false}, {}, {p}, {}) [fail]

Both queries Q1 and Q2 succeed with NP2. The program NP2 has two fixed
points (two models M2A and M2B where M2A={p} and M2B={}). Further
M2A∩M2B = ∅ and M2B ⊆ M2A. M2A is the greatest fixed point and M2B is the
least fixed point of NP2. As we noted, the query ?- nt(p) is true and the query ?- p is
false with M2B = {}, while the query ?- p is true with M2A={p}. This type of the
behavior of co-LP with co-SLDNF seems to be confusing and counter-intuitive.
However, as we noted earlier with NP1, this type of behavior is indeed advantageous
as we extend traditional LP into the realm of modal reasoning. Clearly, the addition
of a clause like { p :- p. } to a program extends each of its initial models into two
models where one includes p and the other does not include p. Further, co-SLDNF
enforces the consistency of the query result causing the query ?- p, nt(p) to fail. How-
ever, the query Q4 = ?- (p; nt(p)) will then generate the following derivation with
program NP2 and succeed (in fact, there are two distinct success derivations one for p
and another for nt(p)):

 ({p ; nt(p)}, {}, {}, {}) by (5)
→ ({p ; nt(p)}, {}, {p},{}) by (1)
→ ({ ; nt(p)}, {}, {p}, {}) [success] for p; nt(p) by (4)
→ ({}, {}, {p}, {}) [success]

Example 4.3. Consider the following program NP3:

NP3: p :- nt(p).

First, consider the query Q1 = ?- p generating the following derivation:

 ({p}, {}, {}, {}) by (5)
→ ({nt(p)}, {}, {p},{}) by (4)

 Coinductive Logic Programming with Negation 105

→ ({nt()}, {}, {p}, {}) by (8c)
 → ({false}, {}, {p}, {}) [fail]

Second, consider the query Q2 = ?- nt(p) generating the following derivation:

 ({nt(p)}, {}, {}, {}) by (6)
→ ({nt(nt(p))}, {}, {},{p}) by (3)
→ ({nt(nt(false))}, {}, {}, {p}) by (8a)
→ ({nt()}, {}, {}, {p}) by (8c)
 → ({false}, {}, {}, {p}) [fail]

Third, consider the query Q3 = ?- (p; nt(p)) generating the following derivation:

 ({p ; nt(p)}, {}, {}, {}) by (5)
→ ({nt(p); nt(p)}, {}, {p},{}) by (4)
→ ({nt(); nt(p)}, {}, {p}, {}) by (8c)
 → ({false; nt(p)}, {}, {p}, {}) [fail] for subgoal p;
 → ({nt(p)}, {}, {p}, {}) by (4)
→ ({nt()}, {}, {p}, {}) by (8c)
→ ({false}, {}, {p}, {}) [fail]

The program NP3 has no fixed point (no model), in contrast to the program NP2
which has two fixed points {} and {p}. Further, the query ?- (p ; nt(p)) provides a
validation test for NP3 w.r.t. p whether NP3 is consistent or not. Consider the
program completion CP2 (of NP2) which is { p ≡ p }. In contrast, there is no consis-
tent completion of program for NP3 where its completion of program CP3 of NP3 is
{ p ≡ ¬p }, a contradiction.

Example 4.4. Consider the following program NP4:

NP4: p :- nt(q).

and reconsider program NP1:

NP1: p :- nt(q).
 q :- nt(p).

NP4 has a model MP4 = {p} whereas NP1 has two models MP1A = {p} and
MP1B = {q} as we noted earlier. Further the completion of the program CP4 for NP4
is: { p ≡ ¬q. q ≡ false. }, and the completion of the program CP1 for NP1 is: { p ≡
¬q. q ≡ ¬p. }. With co-SLDNF semantics, the query ?- p succeeds with NP1 and
NP4 whereas the query ?- q succeeds with NP1 but not with NP4. This is consistent
with the semantics of the program completion of these two programs. After discussing
the correctness of co-SLDNF resolution, we will show the equivalence of a logic
program under co-SLDNF semantics and the semantics of program completion w.r.t.
the result of a successful co-SLDNF derivation, as we noted for this example.

Example 4.5. Consider the following program NP5 with three clauses:

NP5: p :- q.
 p :- r.
 r.

NP5 has one fixed point (model), which is the least fixed point, MP5 = { p, r }. The
query ?- nt(p) will generate the following transition sequence:

106 R. Min and G. Gupta

 ({nt(p)}, {}, {}, {}) by (6)
→ ({nt(q), nt(r)}, {}, {},{p}) by (7)
→ ({nt(false), nt(r)}, {}, {}, {p,q}) by (8a)
→ ({nt(r)}, {}, {}, {p,q}) by (6)
→ ({nt()}, {}, {}, {p,q,r}) by (8c)
→ ({false}, {}, {}, {p,q,r}) [fail]

We used propositional logic programs in the examples above, but these examples
could just as easily be illustrated with predicate logic programs. Note that co-SLDNF
resolution allows one to develop elegant implementations of modal logics[12]). In
addition, co-SLDNF resolution provides the capability of non-monotonic inference
(e.g., predicate Answer Set Programming [12]) that can be used to develop novel and
effective first-order modal non-monotonic inference engines.

5 Correctness of co-SLDNF Resolution

The declarative semantics of a co-inductive logic program with negation as failure
(co-SLDNF) is an extension of a stratified-interleaving (of coinductive and inductive
predicates) of the minimal Herbrand model and the maximal Herbrand model seman-
tics with the restriction of rational trees. This allows the universe of terms to contain
rational (that is, rationally infinite) terms, in addition to the traditional finite terms. As
we noted earlier with program NP3 in Example 4.3, negation in logic program with
coinduction may generate nonmonotonicity and thus there exists no consistent
co-Herbrand model. For a declarative semantics to co-LP with negation as failure, we
rely on the work of Fitting [6] (Kripke-Kleene semantics with three-valued logic),
extended by Fages [5] for stable models with completion of a program. Their frame-
work, which maintains a pair of sets (corresponding to a partial interpretation of
success set and failure set, resulting in a partial model) provides a sound theoretical
basis for the declarative semantics of co-SLDNF. As we noted earlier, we restrict
Fitting’s and Fages’s results within the scope of rational LP over the rational space.
We summarize this framework next.

Definition 5.1. (Pair-set and pair-mapping): Let P be a normal logic program, with its
rational Herbrand Space HSR(P), and let (M, N) ∈ 2HBx2HB (where HB is the rational
Herbrand base HBR(P)) be a partial interpretation. Then the pair-mapping (TP

+, TP
-)

for defining the pair-set (M, N) are as follows:

TP
+(M,N) = {head(R) | R∈ HGR(P), pos(R) ⊆ M, neg(R) ⊆ N},

TP
-(M,N) = {A | ∀R∈ HGR(P), head(R)=A → pos(R)∩N≠∅ ∨ neg(R)∩M≠∅}

where head(R) is the head atom of a clause R, pos(R) is the set of positive atoms in
the body of R, and neg(R) is the set of atoms under negation.

It is noteworthy that the TP
+ operator w.r.t. M of the pair set (M, N) is identical to the

immediate consequence operator TP [10] where TP(I) = { head(R) | R∈HGR(P), I |=
body(R) } where body(R) is the set of positive and negative literals occurring in the
body of a clause R. We recall [10] (also noted by Fages [5] in Proposition 4.1) that a
Herbrand interpretation I (that is, I ⊆ HG(P)) is a model of comp(P) iff I is a fixed

 Coinductive Logic Programming with Negation 107

point of Tp. Intuitively, the outcome of the operator TP
+ is to compute a success set.

In contrast, the outcome of TP
- is to compute the set of atoms guaranteed to fail. Thus

the pair-mapping (TP
+, TP

-) specifies essentially a consistent pair of a success set and a
finite-failure set. Further the pair-set (M, N) of the pair-mapping (TP

+, TP
-) enjoys

monotonicity and gives Herbrand models (fixed points) under certain conditions as
follows.

Theorem 5.1. (Fages [5], Proposition 4.2, 4.3, 4.4, 4.5). Let P be an infinite LP. Then:

(1) If M ∩ N = ∅ then TP
+(M, N) ∩ TP

-(M, N) = ∅.
(2) < TP

+, TP
-> is monotonic in the lattice 2HBx2HB (where HB is the Herbrand Base)

ordered by pair inclusion ⊆, that is, (M1, N1) ⊆ (M2, N2) implies that < TP
+, TP

->
(M1, N1) ⊆ < TP

+, TP
- > (M2, N2).

(3) If M ∩ N = ∅ and (M, N) ⊆ < TP
+,TP

- > (M, N) then there exists a fixed point
(M’, N’) of < TP

+, TP
- > such that (M, N) ⊆ (M’, N’) and M’ ∩ N’ = ∅.

(4) If (M, N) is a fixed point of < TP
+, TP

- >, M ∩ N=∅ and M ∪ N = HB, then M is
a Herbrand Model (HM) of comp(P).

Note that the pair mapping <TP
+, TP

-> and the pair-set (M, N) are the declarative
counterparts of co-SLDNF resolution; the set (M, N) corresponds to (χ+, χ-) of
Definition 5.1. Thus Fages’s theorem above captures the declarative semantics of co-
SLDNF resolution of general infinite LP; and we need to see whether Theorem 5.1
for a set of finite rational logic programs (which is a subset of infinite logic programs)
over the rational space. The proofs for Theorem 5.1 (1-2) are straightforward. For
Theorem 5.1 (3) with HGR(P), the immediate consequence, that is, the pair-set (M,N)
by the pair-mapping < TP

+, TP
-> applied each time is rational, and this is true for any

finite n steps where n ≥ 0. This is due to the earlier observations: (i) that the algebra
of rational trees and the algebra of infinite trees are elementarily equivalent, (ii) that
there is no isolated irrational atom as result of the pair-mapping and pair-set for ra-
tional LP over rational space, and (iii) that any irrational atom as result of an infinite
derivation in this context should have a rational cover, as noted in [9], which could be
characterized by the (interim) rational atom observed in each step of the derivation.
For Theorem 5.1 (4), there are two cases to consider for each atom resulting in a
fixed point: rational or irrational. For the rational case, it is straightforward to see that
it will be eventually derived by the pair-mapping as there is a rational cover that even-
tually converges to the rational atom, and the rational model contains the fixed point.
For the irrational case, it does not exist in the program’s rational space but there is a
rational cover converging into the irrational fixed point over infinity. That is, there is
a fixed point but its irrational atom is not in the rational model. In this case, co-
SLDNF derivation (tree) will be irrational, and will be labeled undefined (even though
it will succeed or fail after an infinite number of steps [infinite success or infinite
failure]). Thus we have the following corollary.

Corollary 5.2. (Fages’s Theorem for Rational Models): Let P be a normal coinductive
logic program. Let (TP

+, TP
-) be the corresponding pair mappings [Definition 5.1].

Given a pair set (M, N) ∈ 2HBx2HB [where HB is the rational Herbrand base HBR(P)]
with M∩N = ∅ and (M, N) ⊆ < TP

+, TP
- >(M, N) then there exists a fixed

108 R. Min and G. Gupta

point (M’, N’) of < TP
+,TP

- > such that (M, N) ⊆ (M’, N’) and M’∩N’=∅. If (M’, N’)
is a fixed point of < TP

+,TP
->, M’∩N’=∅ and M’∪N’=HBR(P), then M’ is a (Ra-

tional) Herbrand model of P (denoted HMR(P)).

Moreover we can establish that a model of P w.r.t. a successful co-SLDNF derivation
is also a model of comp(P). Later we show that under a successful co-SLDNF resolu-
tion, a program P and its completion, comp(P), coincide. As we noted earlier, the pair
mapping <TP

+, TP
-> and the pair-set (M, N) are the declarative counterparts of

co-SLDNF resolution; the set (M, N) corresponds to (χ+, χ-) of Definition 3.2. Fur-
ther we note that there may be more than one fixed points (which are possibly incon-
sistent with each other). Note that HMR(P) is also a model of comp(P) since comp(P)
coincides with P under co-SLDNF, as we show later. As noted earlier, the condition
of mutual exclusion (that is, M∩N = ∅) keeps the pair-set (M,N) monotonic and
consistent under the pair-mapping. The pair-mapping with the pair-set maintains the
consistency of truth value assigned to an atom p. Thus, cases where both p and nt(p)
are assigned true, or both are assigned false, are rejected. Next we show that P coin-
cides with comp(P) under co-SLDNF. First we recall the work of Apt, Blair and
Walker [1] for supported interpretation and supported model.

Definition 5.2. (Supported Interpretation [1]). An interpretation I of a general pro-
gram P is supported if for each A∈I there exists a clause A1←L1,...,Ln in P and a
substitution θ such that I |= L1θ, ..., Lnθ, A=A1θ, and each Liθ is ground. Thus I is
supported iff for each A∈I there exists a clause in HG(P) with head A whose body is
true in I.

Theorem 5.3 (Apt, Blair, and Walker [1], Shepherdson [15]). Let P be a general pro-
gram. Then: (1) I is a model of P iff TP(I) ⊆ I. (2) I is supported iff TP(I) ⊇ I. (3) I is a
supported model of P iff it is a fixed point of TP, i.e., TP(I) = I.

We use these results to show that comp(P) and P coincide under co-SLDNF resolu-
tion. The positive and negative coinductive hypothesis tables (χ+ and χ-) of
co-SLDNF are equivalent to the pair-set under the pair-mapping and thus enjoy (a)
monotonicity, (b) mutual exclusion (disjoint), (c) consistency. First (1), it is straight-
forward to see that in a successful co-SLDNF derivation the coinductive hypothesis
tables χ+ and χ- serve as a partial model (that is, if the body of a selected clause is
true in χ+ and χ- then its head is also true (A ← L1,...,Ln)). Second (2), it is also
straightforward to see that a successful co-SLDNF derivation constrains the coinduc-
tive hypothesis tables χ+ and χ- at each step to stay supported (that is, if the head is
true then the body of the clause is true: (A → L1,...,Ln)). By co-inductive hypothesis
rule, the selected query subgoal (say, A) is placed first in χ+ (resp. χ-) depending on
its positive (resp. negative) context. The rest of the derivation is to find a right selec-
tion of clauses (A → L1,...,Ln) whose head-atom is unifiable with A, and whose body
is true using normal logic programming expansion or via negative or positive coin-
ductive hypothesis rule. Thus, it follows from above that a coinductive logic program
(A ← L1,...,Ln) is equivalent to its completed program (A ↔ L1,...,Ln) under
co-SLDNF resolution. Next, correctness of co-SLDNF is proved by equating the
operational and declarative semantics, as follows.

 Coinductive Logic Programming with Negation 109

Theorem 5.4. (Soundness and Completeness of co-SLDNF). Let P be a general
program over its rational Herbrand Space.

(1) (Soundness of co-SLDNF): (a) If a goal {A} has a successful derivation in pro-
gram P with co-SLDNF, then A is true, i.e., there is a model HMR(P) where A ∈
HMR(P). (b) Similarly, if a goal { nt(A) } has a successful derivation in program P,
then nt(A) is true in program P, i.e., there is a model HMR(P) such that A ∈
HBR(P)\HMR(P).
(2) (Completeness of co-SLDNF): (a) If A ∈ HMR(P), then A has a successful co-
SLDNF derivation or an irrational derivation. Further (b) if A ∈ HBR(P)\HMR(P),
then nt(A) has a successful co-SLDNF derivation or an irrational derivation.

Note that the coincidence of P and comp(P) under co-SLDNF is important. If
comp(P) is not consistent, say w.r.t. an atom p, then there is no successful rational
derivation of p or nt(p).

Example 5.1. Consider the following program IP1 = { q :- p(a). p(X) :- p(f(X). }.
This is an example of an irrational derivation (irrational proof tree) since for query
?- q the derivation (q → p(a) → p(f(a)) → p(f(f(a))) → …) is non-terminating. Similarly
the negated query ?- nt(q) is also non-terminating (i.e., nt(q) → nt(p(a)) → nt(p(f(a)))
→ nt(p(f(f(a)))) → ...). But it is clear that both q and p(a) are in the rational Her-
brand base HBR(IP1). Moreover, q and p(a) are not in HMR(IP1) but in
HBR(IP1)\HMR(IP1) as there is no rational derivation tree for q and p(a). Further, for
the second clause { p(X) :- p(f(X). }, there is only one ground (rational) atom p(X′),
where X′=f(X′)=f(f(f(...))), which satisfies the clause and makes p(X) true; all other
finite or rational atoms p(Y) are false. Thus the ground atom p(f(f(f(...)))) (p(X)
where X=f(X)) is in HMR(P), and all other finite and rational atoms p(Y) where
Y ≠ f(Y) should be in HBR(P)\HMR(P) as one would expect. The derivation of query
?- q which is irrational hence will not terminate. Thus if there is no rational coinduc-
tive proof for an atom G, then the query ?- G will have an irrational infinite derivation.

Example 5.2. Consider the program NP3A as follows:

NP3A: p :- nt(p), q.

The queries Q1 – Q3 of NP3 in Example 4.3 will generate the same result for NP3A.
Its program completion NP3B (denoted comp(NP3A)) is then defined [12] as follows:

NP3B: p :- nt(p), q.
 nt(p) :- nt(nt(p), q).
 nt(q).

The query Q1 = ?- p will fail with NP3B while the query Q2 = ?- nt(p) will succeed
with the following derivation:

 ({nt(p)}, {}, {}, {}) by (6)
 → ({nt(nt(p), q)}, {}, {},{p}) by (3)
 → ({nt(nt(false), q)}, {}, {}, {p}) by (8a)
 → ({nt(, q)}, {}, {q}, {p}) by (8c)
 → ({nt(q)}, {}, {q}, {p}) by (6)

 → ({}, {}, {q}, {p}) [success]

110 R. Min and G. Gupta

Recall that NP3 has no fixed point (no model) as its program completion is inconsis-
tent. In contrast, NP3A has a model MP3A (={}) where its program completion
CP3A is {p ≡ (¬p∧q) ≡ ¬(p∨¬q). q ≡ false.}, to illustrate the nonmonotonic capabil-
ity. In summary, co-LP with co-SLDNF provides a powerful, effective and practical
operational semantics for Fitting’s Kripke-Kleene three-valued logic [6] with restric-
tion of rationality with modal and nonmonotonic capability.

6 Applications of co-LP with co-SLDNF

Some examples of exploratory applications of co-LP with co-SLDNF can be found in
[12], for predicate Answer Set Programming (ASP) solver, Boolean SAT solver,
model checking and verification, and modal nonmonotonic inference. One major
application of co-SLDNF is the top-down goal-directed predicate ASP solver [13].
Here we present an example of Boolean SAT solver to show how one can quickly and
elegantly program Boolean SAT solver [14] using co-SLDNF resolution.

Example 6.1. Consider two programs BP1 and BP2 where each is a “naïve” coinduc-
tive SAT solver (co-SAT Solver) for propositional Boolean formulas:

 BP1: pos(X) :- nt(neg(X)).
 neg(X) :- nt(pos(X)).
 BP2: t(X) :- t(X).

Note that with a minor variation, BP1 is a predicate version of NP1 = { p :- nt(q). q :-
nt(p). }, and BP2 of NP2 = { p :- p. }. With BP1, the rules assert that the predicates
pos(X) and neg(X) have mutually exclusive values, i.e., a propositional symbol X
cannot be set simultaneously both to true and false. Next, any well-formed proposi-
tional Boolean formula constructed from a set of propositional symbols and logical
connectives { ∧, ∨, ¬} is now translated into a query that is executed under co-
SLDNF resolution. First (1), each positive propositional symbol p will be transformed
into pos(p), and each negated propositional symbol into neg(p). The Boolean operator
AND (“∧”)will be translated into “,” (Prolog’s AND-operator), while the OR (or “∨”)
operator will be translated to “;” (Prolog’s OR-operator). Thus, the Boolean expres-
sion (p1 ∨ p2) ∧ (p1 ∨ ¬ p3) ∧ (¬ p2 ∨ ¬ p4) will be translated into the query: ?-
(pos(p1); pos(p2)), (pos(p1); neg(p3)), (neg(p2); neg(p4)). This query can be executed
under co-SLDNF resolution to get a consistent assignment for propositional variables
p1 through p4. The assignments will be recorded in the positive and negative coinduc-
tive hypothesis tables (if one were to build an actual SAT solver, then a primitive will
be needed that should be called after the query to print the contents of the two
hypotheses tables). Indeed a meta-interpreter for co-SLDNF resolution has been pro-
totyped by us and used to implement the naïve SAT solver algorithm. For the query
above our system will print as one of the answers:

 positive_hypo ==> [pos(p1), neg(p2)]
 negative_hypo ==> [neg(p1), pos(p2)]

which outputs the solution p1=true and p2=false. More solutions can be obtained by
backtracking. Similarly for BP2, Boolean formula is transformed into co-LP query as
follows: (1) a positive literal p1 as t(p1), (2) a negative literal ¬p1 as nt(t(p1)), (3)

 Coinductive Logic Programming with Negation 111

(p1∧p2) as (t(p1), t(p2)), (4) (p1∨p2) as (t(p1); t(p2)), (5) (p1 ∨ p2) ∧ (p1 ∨ ¬ p3)
∧ (¬ p2 ∨ ¬ p4) as ((t(p1);t(p2)), (t(p1); nt(t(p3)), (nt(t(p2); nt(t(p4))), and so on.
The derivation of BP2 is very similar to that of NP2.

7 Conclusion and Future Work

Coinductive logic programming realized via co-SLD resolution has many practical
applications. It is natural to consider extending coinductive logic programming with
negation as failure since negation is required for almost all practical applications of
logic programming. In this paper we presented co-SLDNF resolution, which extends
Simon et al’s co-SLD resolution with negation as failure. Co-LP with co-SLDNF
resolution provides a powerful, practical and efficient operational semantics for Fit-
ting’s Kripke-Kleene three-valued logic with restriction of rationality. Co-SLDNF
resolution has many practical applications, most notably to realizing goal-directed
execution strategies for answer set programming extended with predicates.

Acknowledgments. We thank Peter Stuckey for many helpful discussions.

References

[1] Apt, K., Blair, H., Walker, A.: Towards a Theory of Declarative Knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–148.
Morgan Kaufmann Publishers, San Francisco (1988)

[2] Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded
Phenom-ena. CSLI Publications (1996)

[3] Clark, K.L.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases,
pp. 293–322. Prenum Press, New York (1978)

[4] Colmerauer, A.: Prolog and Infinite Trees. In: Clark, K.L., Tarnlund, S.-A. (eds.) Logic
Programming, pp. 293–322. Prenum Press, New York (1978)

[5] Fages, F.: Consistency of Clark’s Completion and Existence of Stable Models. Journal of
Methods of Logic in Computer Science 1, 51–60 (1994)

[6] Fitting, M.: A Kripke-Kleene Semantics for Logic Programs. Journal of Logic Program-
ming 2, 295–312 (1985)

[7] Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive Logic Programming
and Its Applications (Tutorial Paper). In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

[8] Jaffar, J., Lassez, J.-L.: Maher, M. J.: Prolog-II as an Instance of the Logic Programming
Language Scheme. In: Wirsing, M. (ed.) Formal Descriptions of Programming Concepts
III, pp. 275–299. North-Holland, Amsterdam (1986)

[9] Jaffar, J., Stuckey, P.: Semantics of Infinite Tree Logic Programming. Theoretical Com-
puter Science 46(2-3), 141–158 (1986)

[10] Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
[11] Maher, M.J.: Complete Axiomatizations of the Algebras of Finite, Rational and Infinite

Trees. In: Proc. 3rd Logic in Computer Science Conf., Edinburgh, UK, pp. 348–357
(1988)

[12] Min, R.: Predicate Answer Set Programming with Coinduction. Ph.D. Dissertation, De-
partment of Computer Science. The University of Texas at Dallas (2009),
http://www.utdallas.edu/~rkm010300/research/Min2009Thesis.pdf

112 R. Min and G. Gupta

[13] Min, R., Bansal, A., Gupta, G.: Towards Predicate Answer Set Programming Via Coin-
ductive Logic Programming. In: AIAI 2009 (2009)

[14] Min, R., Gupta, G.: Coinductive Logic Programming and Its Application to Boolean Sat.
In: Flairs 2009 (2009)

[15] Shepherdson, J.: Negation in Logic Programming. In: Minker, J. (ed.) Foundations of
Deductive Databases and Logic Programming, pp. 19–88. Morgan Kaufmann Pub.,
San Francisco (1988)

[16] Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483.
Springer, Heidelberg (2007)

[17] Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming. In:
Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345. Springer,
Heidelberg (2006)

Refining Exceptions in Four-Valued Logic

Susumu Nishimura

Dept. of Mathematics, Graduate School of Science, Kyoto University
Sakyo-ku, Kyoto 606-8502, Japan

susumu@math.kyoto-u.ac.jp

Abstract. This paper discusses refinement of programs that may raise and catch
exceptions. We show that exceptions are expressed by a class of predicate trans-
formers built on Arieli and Avron’s four-valued logic and develop a refinement
framework for the four-valued predicate transformers. The resulting framework
enjoys several refinement laws that are useful for stepwise refinement of programs
involving exception handling and partial predicates. We demonstrate some typi-
cal usages of the refinement laws in the proposed framework by a few examples
of program transformation.

1 Introduction

Program refinement has been intensively studied in the framework of refinement cal-
culus [3,16]. Refinement calculus identifies each program with a predicate transformer
and formally justifies refinement of programs by means of the so-called refinement
relation that is induced from the logical entailment. Although refinement calculus is
successfully applied to a certain extension of Dijkstra’s guarded command language
[6], fundamental difficulties arise when we try to extend the language with exceptions.

First, since exceptional termination is not discriminated from non-termination in the
predicate transformer semantics, a construct that catches exceptions would also catch
non-termination, which is counter-intuitive from the operational point of view. Second,
exceptions are not only raised explicitly by a command but also implicitly by a failure of
computation (e.g., division by zero). In this paper, we argue the latter type of exceptions
that are raised by partial predicates, whose truth value may not be defined. Partiality
poses a foundational issue in developing the theory of refinement based on the classical
logic, in which partiality is ruled out. For example, in Dijkstra’s predicate transformer
semantics, the weakest pre-condition of the conditional statement if p then S else T is
specified by a formula (p ⇒ S(ϕ))∧ (¬p ⇒ T (ϕ)) for any post-condition ϕ, but this
formula is nonsensical in the classical logic when p is undefined.

King and Morgan [14] proposed a solution to the first problem by developing an
extension to the traditional predicate transformer semantics for a language in which
exceptions are explicitly raised by the command exit and are caught by the exception
block construct try S catch T 1. They specified the input of each predicate transformer
by a pair of post-conditions 〈ϕn,ϕe〉, rather than by a single post-condition, where they
write wp(S,ϕn,ϕe) for the weakest pre-condition that guarantees the program S either

1 This extends the exception block construct proposed in [14] with exception handling.

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 113–127, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

114 S. Nishimura

to normally terminate establishing ϕn or to exceptionally terminate establishing ϕe. The
weakest pre-conditions for exit and the exception block are given as below:

wp(exit,ϕn,ϕe) = ϕe, wp(try S catch T,ϕn,ϕe) = wp(S,ϕn,wp(T,ϕn,ϕe)).

The intuition behind these specifications are explained as follows. The exit command
immediately causes an exceptional termination. Thus, the command is guaranteed to
terminate (exceptionally) establishing the pre-condition ϕe. The exception block try S
catch T executes S and terminates normally, if no exception is raised; If an exception
is ever raised, the raised exception is caught and then processed by T to resume normal
execution. Therefore, for the exception block to terminate establishing the pair 〈ϕn,ϕe〉
of post-conditions, S is either to normally terminate establishing ϕn or to exceptionally
terminate establishing wp(T,ϕn,ϕe), which guarantees T to terminate establishing the
pair of conditions 〈ϕn,ϕe〉.

In this paper, we propose a refinement calculus for a language that may raise and
catch exceptions, where exceptions can be raised not only by the exit command explic-
itly but also by the evaluation of partial predicates implicitly. For this, we develop our
theory of program refinement in a predicate transformer semantics based on Arieli and
Avron’s four-valued logic [1,2].

The four-valued predicate transformer semantics can be easily derived from King
and Morgan’s, in the following way. First, we identify each statement S by a predicate
transformer that maps a pair of (classical) predicates 〈ϕn,ϕe〉 to another pair of predi-
cates 〈ϕ′n,ϕe〉, where ϕ′n is the weakest pre-condition computed by King and Morgan’s
predicate transformer wp. This definition is intended to guarantee the program S ei-
ther to normally terminate establishing ϕn or to exceptionally terminate establishing ϕe,
whenever the preceding statement normally terminates establishing ϕ′n or exceptionally
terminates establishing ϕe. Notice that the condition ϕe for exceptional termination is
left unchanged by the transformer because no statement can cancel exceptional termi-
nation caused by the preceding statements.

Next, let us designate a classical predicate by a total function from the set of states
to {0,1}, where 0 and 1 designates the two classical truth values (i.e., false and true,
respectively). Then we identify each pair of predicates 〈ϕn,ϕe〉 by a single four-valued
predicate ϕ such that ϕ(σ) = 〈ϕn(σ),ϕe(σ)〉 for every state σ. The range of the four-
valued predicate is {〈1,0〉,〈0,1〉,〈0,0〉,〈1,1〉}, which we designate by t, f, ⊥, and &,
respectively. This structure with four truth values gives rise to the so called Belnap’s
four-valued logic [4], which has been studied by Ginsberg in the generalized setting of
bilattices [8] and was further examined by Fitting [7]. Arieli and Avron [1,2] introduced
the notion of logical bilattices and developed the corresponding proof system.

The four-valued logic provides a firm logical basis for refining exceptions, as the
original refinement calculus does for refining the guarded command language. The
constructs for exceptions and others as well are concisely specified by the formulas
of four-valued logic. The conditional control via partial predicates can be translated
into a predicate transformer, where the undefinedness of partial predicates is denoted
by the truth value ⊥. The refinement relation is induced from the logical entailment
(in the sense of four-valued logic), i.e., S # T iff S(ϕ) entails T (ϕ) for any post-
condition ϕ.

Refining Exceptions in Four-Valued Logic 115

We emphasize that we use the four-valued logic in two different ways. In the predi-
cate transformer semantics, it is used for discriminating the possible termination behav-
iors (either, both, or none of normal termination and exceptional termination), while in
modelling partial predicates, it is used as a many-valued logic that allows undefined-
ness. Although a three-valued logic would be sufficient for the latter purpose, we stick
to the four-valued logic in developing the theory of refinement in order to achieve a
smooth translation of conditional controls via partial predicates into four-valued predi-
cate transformers. For a more neat characterization of partial predicates that adheres to
the operational intuition, we also consider partial predicates in a three-valued sublogic,
whose truth values are confined to f, t, and⊥. In later sections we exploit the properties
of partial predicates in this three-valued sublogic.

Related work. It seems that there has been no attempt to formulate a predicate trans-
former semantics that gives a unifying account for both exceptions and partial predi-
cates. The exception mechanism was formulated in terms of predicate transformers in
King and Morgan’s refinement calculus [14], which was further elaborated in [21]. Par-
tial predicates are out of their concern, however. (If partial predicates are ignored at all,
the refinement calculus of theirs and that of ours are essentially the same.)

Partial predicates in program logic have been intensively studied in the context of
three-valued logic. For instance, the VDM specification language deals with undefined-
ness in a logic called LPF [12,13]; Bono et al. [5] formulated a Hoare logic with a
third truth value denoting ‘crash’ of execution. Many other variants of three-valued
logic have been proposed for the sake of a better treatment of partiality [19,13,17].
The three-valued logic, however, is not suitable for describing a predicate transformer
semantics for exceptions, because the underlying predicate logic must be able to dis-
criminate the four different status of termination. Hähnle [10] discussed that partiality
should be dealt by underspecification, rather than by a value representing undefined-
ness in a many-valued logic. His argument is, however, about predicates in specification
statements and does not consider exception catching.

Huisman and Jacobs [11] extended Hoare logic to deal with abrupt (exceptional)
termination in Java programming language. They also formulated the mechanism of
catching exceptions in their program logic by representing several different modes of
exceptional termination by different forms of Hoare triple. In contrast to theirs, ours
simply supports a single mode of exceptional termination. This does not imply ours are
less expressive than theirs. Ours can simulate different modes of exceptional termina-
tion by introducing a special variable indicating the mode of termination.

Outline. The rest of the paper is organized as follows. Section 2 introduces the notion
of bilattices and the four-valued logic. Section 3 specifies a set of program statements
as four-valued predicate transformers and we identify the class of predicate transform-
ers. The statements involve exit, exceptions blocks, and conditional controls via partial
predicates. The logical connectives for partial predicates are also discussed. In Sec-
tion 4, we investigate a set of refinement laws that hold for these statements and logical
connectives. In Section 5, we apply the refinement laws to carry out some program
transformations. Finally, Section 6 concludes the paper.

116 S. Nishimura

2 The Bilattice FOUR and the Four-Valued Logic

2.1 The Bilattice FOUR of Four Truth Values

�
≤t

�≤k

(〈0,1〉=) f
��⊥ (= 〈0,0〉)��

t (= 〈1,0〉)
��

& (= 〈1,1〉)
��

Fig. 1. The bilattice of four truth values

Let TWO be the lattice of classical truth val-
ues of 0, 1 with the trivial order 0 < 1. The
bilattice FOUR is a structure obtained by a
product construction TWO' TWO: it con-
sists of four elements 〈1,0〉, 〈0,1〉, 〈0,0〉,
and 〈1,1〉, which are alternatively written t,
f, ⊥, and &, respectively. The bilattice has
two lattice structures simultaneously (see the double Hasse diagram of Figure 1), each
characterized by the partial orders≤t and ≤k defined below.2

〈x1,y1〉 ≤t 〈x2,y2〉 iff x1 ≤ x2 and y2 ≤ y1,

〈x1,y1〉 ≤k 〈x2,y2〉 iff x1 ≤ x2 and y1 ≤ y2.

The ≤t order (resp. ≤k order) induces the meet ∧ and join ∨ operators (resp. meet ⊗
and join⊕ operators) The definitions are given below, where� and� stand for the meet
and join in TWO, respectively.

〈x1,y1〉∧ 〈x2,y2〉= 〈x1� x2,y1� y2〉, 〈x1,y1〉∨ 〈x2,y2〉= 〈x1� x2,y1� y2〉,
〈x1,y1〉⊗ 〈x2,y2〉= 〈x1� x2,y1� y2〉, 〈x1,y1〉⊕ 〈x2,y2〉= 〈x1� x2,y1� y2〉.

In addition, negation ¬ is defined by ¬〈x,y〉 = 〈y,x〉 as an operator that inverts the ≤t

order but keeps the ≤k order.
In FOUR, the operations ∨ and ∧ are De Morgan dual of each other, i.e., ¬(x∨

y) = ¬x∧¬y and ¬(x∧ y) = ¬x∨¬y, while ⊕ and ⊗ are De Morgan self-dual, i.e.,
¬(x⊕y) =¬x⊕¬y and ¬(x⊗y) =¬x⊗¬y. The four values are related with each other
by means of ∨, ∧, ⊕, and ⊗, e.g.,⊥∨ f =⊥, t⊕ f =&, x∨⊥= x⊗ t.

The bilattice FOUR is distributive, i.e., the four lattice operations ∧, ∨, ⊗, and ⊕
distribute over each other, e.g., x⊕ (y∧ z) = (x⊕ y)∧ (x⊕ z). A distributive bilattice is
also interlaced, that is, each of the four lattice operations is monotonic with respect to
both ≤t and ≤k, e.g., y≤t z implies x⊗ y≤t x⊗ z.

The bilattice structure can be made into a logical bilattice that provides suitable
notions of implications in four-valued logic [1]. With D = {t,&} being the set of des-
ignated truth values, which are the values recognized as (at least) known to be true, the
bilattice FOUR is made into a logical bilattice with two implication connectives, called
weak implication ⊃ and strong implication→, which are defined as below:

x⊃ y �
{

t (x
∈D)
y (otherwise) ,

x→y � (x⊃ y)∧ (¬y⊃ ¬x).

Using strong implication, we define the equivalence x↔ y by (x→y)∧ (y→x).
2 In the literature, ≤t is often regarded as the degree of truth and ≤k as the amount of infor-

mation. Given a product 〈x,y〉 of classical truth values, x represents the amount of evidence
for an assertion, while y represents the amount of evidence against it. However, one should
refrain from sticking to this particular interpretation, when the four-valued logic is used for
discriminating the possible termination behaviors in the predicate transformer semantics.

Refining Exceptions in Four-Valued Logic 117

2.2 The Four-Valued Predicate Logic

We give a four-valued first-order predicate logic, based on the Arieli and Avron’s four-
valued propositional system. (Extension to the predicate logic is straightforward, as
mentioned in [1].) We assume the set Value of program values (integers, etc.) and the
set Var of program variables. Let us define State to be the set of total functions from
Var to Value. Given σ ∈ State and X ∈ Var, σ(X) denotes the value that is assigned to
the program variable X in the state σ.

Four-valued predicates, denoted by p, q, etc., are total functions from State to the
four truth values in FOUR. The four-valued predicates form a bilattice, where the two
partial orders ≤t and ≤k and logical connectives ∧, ∨, ⊗, ⊕, ¬, ⊃, →, ↔ are accord-
ingly defined in the pointwise way. That is, for every state σ, p ≤t q (resp. p ≤k q)
holds iff p(σ) ≤t q(σ) (resp. p(σ) ≤k q(σ)), and also logical connectives are defined
by (p∨q)(σ) � p(σ)∨q(σ), (¬p)(σ) � ¬p(σ), etc. In abuse of notations, we will also
denote a constant predicate by the constant itself. That is, we write t for a predicate p
such that p(σ) = t for every state σ; Similarly for f,⊥, and &.

It is easy to verify that the bilattice of the four-valued predicates is distributive, in-
terlaced, bounded, and complete. (A bilattice is complete, if the two lattices induced by
the partial orders ≤t and ≤k are both complete.) The completeness indicates that we
may also define quantification by means of the infinite join or meet. Given a family of
predicates {p(i) | i ∈ Value}, we define the universal quantification (resp. existential
quantification) over i of predicate p(i) by ∀i.p(i) �∧i p(i) (resp. ∃i.p(i) �∨i p(i))

The above mentioned structure of logical bilattice induces a four-valued predicate
logic [1], which has a Gentzen-style proof system for sequents of the form p1, · · · , pn �
q1, · · · ,qm (n,m≥ 0). The sequent corresponds to the consequence relation p1, · · · , pn |=
q1, · · · ,qm, which means, for any state σ, if pi(σ) ∈ D for all i, then q j(σ) ∈ D for
some j. We say a predicate p is valid iff |= p holds (i.e., p(σ) ∈D for any state σ).

Notice that the four-valued logic is a non-classical logic. In particular it is paracon-
sistent and does not admit the law of the excluded middle, that is, we have neither
� p∨¬p nor p∧¬p � q. The connectives ⊃, →, and ↔ are a logical implication or
an equivalence in the following sense: |= p ⊃ q iff p |= q; |= p→q iff p ≤t q; |= p↔ q
iff p = q. Furthermore the logical equivalence ↔ is a congruence: |= p ↔ q implies
|= Θ(p)↔Θ(q) for any formula scheme Θ. For further details of the proof system and
logical properties of the four-valued logic, see [1,2].

Throughout the paper, we follow the convention that the negation and quantifications
bind most tightly, while implications do least tightly and associate to right. We do not
impose any particular precedence between ∨, ∧, ⊕, and ⊗.

Finally, let us introduce some notations that are related to states. A program expres-
sion e is a total function from State to Value. We write σ[X\v] for the state obtained
by updating the value assigned to the program variable X in the state σ by the value v.
Similarly, we write σ[X\e] for an update of variable X with the value of expression e,
that is, σ[X\e(σ)]. Given a four-valued predicate p, we also write p[X\v] (resp. p[X\e])
for the predicate q such that q(σ) = p(σ[X\v]) (resp. q(σ) = p(σ[X\e])) In particular,
a predicate p[X\v] can be recognized as a predicate indexed by v ranging over Value.
In abuse of notations, we may often confuse a program variable X with an expression
e such that e(σ) = σ(X). More generally, we may confuse numerical expressions and

118 S. Nishimura

predicates with their pointwise extensions. For example, when we write X + 1 ≥ Y , it
denotes a predicate q such that q(σ) =

(
σ(X)+ 1 > σ(Y)

)
, where + is the binary inte-

ger addition and ≥ is the binary predicate such that (v ≥ v′) = t if v is greater than or
equal to v′ but (v≥ v′) = f otherwise.

3 Predicate Transformers and Refinement

3.1 The Lattice of Predicate Transformers

As we have argued earlier, a predicate transformer should be a function that maps a
pair of predicates 〈ϕn,ϕe〉 to another pair 〈ϕ′n,ϕe〉. We also require every predicate
transformer to be monotonic.

Definition 3.1. A pair of four-valued predicates p and p′ is called an exception match-
ing pair if t⊕ p = t⊕ p′ holds.

A predicate transformer S over four-valued predicates is monotonic if S(ϕ)≤k S(ϕ′)
holds for every exception matching pair ϕ and ϕ′ such that ϕ≤k ϕ′. S is exception stable
if ϕ and S(ϕ) are an exception matching pair, for every ϕ.

Let PTran be the set of predicate transformers of four-valued predicates that are mono-
tonic and exception stable. Then PTran is made into a bounded complete lattice as
follows.

Theorem 3.1. Let PTran be lattice induced by the partial order# by:

S# T iff S(ϕ)≤k T (ϕ) for any ϕ,

where the join ⊕ and meet ⊗ operators are a pointwise extension of the corresponding
logical connectives, i.e., (S⊕ T)(ϕ) = S(ϕ)⊕ T (ϕ) and (S⊗ T)(ϕ) = S(ϕ)⊗ T (ϕ).
Then PTran is a bounded complete lattice.

The class PTran of predicate transformers are also closed under function composition,
where we write S;T to mean (S;T)(ϕ) = S(T (ϕ)) and intend a sequential execution of
S followed by T . The meet S⊗T and join S⊕T in PTran, called demonic choice and
angelic choice, respectively, are intended a non-deterministic choice between S and T :
The demonic choice represents the least possible non-deterministic execution that the
two statements agree, while the angelic choice represents the greatest possible one.

In order to verify that a refinement relation S # T holds, we need to show S(ϕ) ≤k

T (ϕ) holds for every ϕ. There are several different ways to verify this.

Proposition 3.1. For any S,T ∈ PTran and any four-valued predicate ϕ, S(ϕ)≤k T (ϕ)
iff S(ϕ)≤t T (ϕ) iff |= S(ϕ)→T (ϕ) iff S(ϕ) |= T (ϕ) iff S(ϕ) � T (ϕ).

Thus we may verify S # T by checking the validity of S(ϕ)→T (ϕ) in the model of
bilattice, which will be effective for the propositional cases. In case quantifiers are in-
volved, we may resort to a formal proof deriving the sequent of the form S(ϕ) � T (ϕ).
For further discussions on these alternative ways for validating refinement laws, see the
full paper [18].

Refining Exceptions in Four-Valued Logic 119

skip(ϕ) � ϕ (skip)(
X := e

)
(ϕ) � (f⊕ϕ[X\e])⊗ (t⊕ϕ) (assignment)

abort(ϕ) � f⊗ϕ (non-termination)

magic(ϕ) � t⊕ϕ (miracle)

exit(ϕ) � (t⊕ϕ)⊗¬(t⊕ϕ) (exit)

try S catch T �
(
f⊕S

(
(f⊕ϕ)⊗¬(f⊕T (ϕ))

))
⊗ (t⊕ϕ) (exception handling){

p
}
(ϕ) � ¬(p⊃&)⊗ϕ (assertion)[

p
]
(ϕ) � (p⊃⊥)⊕ϕ (assumption)〈

p
〉
(ϕ) � ((p⊃⊥)⊕ϕ)⊗¬((p⊃&)⊕ϕ) (conditional exit)

Fig. 2. Four-valued predicate transformers for program statements

3.2 Predicate Transformers for Basic Statements

Let us write 〈ϕn,ϕe〉 for the pair of predicates that a four-valued predicate ϕ encodes as
we have argued in the introduction. When we define a predicate transformer in PTran,
we often need to operate on each component of the pair separately. This can be easily
expressed by the four-valued logic formulas. For example, given four-valued predicates
p and q, we can express the pair 〈pn,qe〉 by the formula (f⊕ p)⊗ (t⊕ q).3 A simple
calculation verifies this as follows:

(f⊕ p)⊗ (t⊕q)= (〈0,1〉⊕ 〈pn, pe〉)⊗ (〈1,0〉⊕ 〈qn,qe〉) = 〈pn,1〉⊗ 〈1,qe〉= 〈pn,qe〉.

In a similar way, we can verify that (t⊕ p)⊗¬(t⊕ p) calculates 〈pe, pe〉 and (f⊕ p)⊗
¬(f⊕ p) does 〈pn, pn〉.

In Figure 2, we give the definitions of four-valued predicate transformers for a set of
basic statements. (It is easy to verify that all of them are a member of PTran.)

– skip is the idle statement. It is an identity function and hence is a neutral element
for the sequential composition, i.e., skip;S = S;skip = S.

– X := e is the assignment statement. Given a post-condition 〈ϕn,ϕe〉, it calculates
the weakest pre-condition ϕn[X\e] for normal termination and keeps the condition
ϕe for exceptional termination unchanged. Note that this assignment is total and
deterministic, that is, it always successfully assigns a unique value to the program
variable. We will discuss partial assignments in Section 5.2.

– abort and magic are extremal elements, that is, the least and greatest elements of
PTran, respectively. abort4 represents a statement that is not guaranteed to ter-
minate normally. On the other hand, magic represents a miraculous statement that
always terminates normally, establishing any required post-condition (even falsity).

3 There are different ways of expressing the same operation, e.g., (t⊗ p)⊕ (f⊗q).
4 The name ‘abort’ is historical and is not necessarily adequate in the context of this paper, but

we keep using it for compatibility.

120 S. Nishimura

They are a left-zero element of sequential composition, that is, abort;S = abort
and magic;S = magic.

– exit is the statement that raises an exception. As we discussed earlier, it is char-
acterized by a function that transforms every post-condition 〈ϕn,ϕe〉 into 〈ϕe,ϕe〉.
Again exit is a left-zero element, i.e., exit;S = exit.

– try S catch T is the exception handling statement. The statement calculates the
weakest post-condition for normal termination given by King and Morgan’s wp
function and combines it with the condition for exceptional termination, using the
formulas discussed above.

–
{

p
}

,
[
p
]
, and

〈
p
〉
, which are called assertion, assumption, and conditional exit,

respectively, are primitive forms of conditional controls, which decide how to con-
tinue the execution, depending on the value of the four-valued predicate p, which
is called a guard predicate. They are all equivalent to skip, if the predicate p has a
designated truth value (i.e., either t or &); otherwise,

{
p
}

,
[
p
]
,
〈

p
〉

are equivalent
to abort, magic, exit, respectively.5

The basic statements above can be combined to form a more complicated statement. A
conditional statement if p then S else T , which may raise an exception when a partial
predicate p evaluates to ⊥, can be defined as follows:

if p then S else T �
〈

p∨¬p
〉
;((
[
p
]
;S)⊗ (

[
p⊃⊥

]
;T)).

The partiality of predicate p is first tested by the prepended
〈

p∨¬p
〉
, which acts like

exit if p has the value ⊥ but like skip otherwise. Then, a demonic choice is made be-
tween the two branches, each prepended by an assumption statement. (The assumption
statement in the unselected branch becomes magic, which is dismissed by the outer
demonic choice.)

3.3 Logical Connectives for Partial Predicates

In the above definition of conditional statements, we interpret& as an indication of true
on the ground that & is a designated value in the four-valued logic, but this sometimes
leads to a result that runs counter to the operational intuition. (For example, some of the
laws given in Section 5.1 do not hold for arbitrary four-valued guard predicates.)

In order to obtain a more precise modelling of partial predicates that adheres to the
operational intuition, let us consider consistent predicates [7]: A four-valued predicate
p is called consistent if p(σ) ∈ {t, f⊥} for any σ. The class of consistent predicates
forms a three-valued sublogic, whose logical operators ∧ and ∨, a.k.a. strong Kleene
connectives, are non-strict operators that avoid⊥whenever possible. (For instance, both
f∧⊥ and ⊥∧ f are interpreted f rather than ⊥.) Non-strictness implies that the strong
Kleene connectives cannot be implemented in real programming languages.

5 Some programming languages provide a feature called ‘assertion’, which is used for excep-
tionally terminating the execution when some critical violation of condition is detected. Note
the difference from the assertion

{
p
}

, which is non-terminating when the test on p is false.
The name ‘assertion’ is thus somewhat confusing but we keep using it for historical reason.

Refining Exceptions in Four-Valued Logic 121

We can define logical operators that are found in practical programming languages
in the three-valued sublogic as follows. Following [7], let us write p : q for ((p⊗ t)⊕
¬(p⊗ t))⊗ q. This derived formula p : q has ⊥ if p has f or ⊥; otherwise, it has the
value of q.

We can define a ‘sequential’ disjunction ∨ and conjunction ∧ for any pair of consis-
tent predicates p and q, as follows.

p∧q � p∧ (p : q) p∨q � p∨ (¬p : q)

These operators are strict and evaluated sequentially from left to right: it becomes⊥ as
soon as the left subformula p evaluates to ⊥.

We can also define the weak Kleene connectives ∨w and ∧w as the consensus of the
corresponding two sequential connectives of opposite directions.

p∧w q � (p∧q)⊗ (q∧p) p∨w q � (p∨q)⊗ (q∨p)

In contrast to the strong Kleene connectives, the value of these connectives is defined
only if both of the subformulas are defined.

The strong Kleene connectives∧ and ∨, the sequential connectives∧ and∨, and also
the weak Kleene connectives ∧w and ∨w are all De Morgan dual for each.

4 Refinement Laws for Statements

In the rest of this paper, we assume that guard predicates occurring in control state-
ments are four-valued, unless explicitly stated otherwise. We will indicate wherever a
guard predicate is required to be consistent. We further assume that, unless it is explic-
itly stated otherwise, numerical predicates (which we mentioned in the last paragraph
of Section 2.2) are classical, that is, p(σ) ∈ {t, f} for any σ. The class of classical pred-
icates in the four-valued logic forms a classical sublogic, where the connectives ∨, ∧,
and ¬ substitute for the classical connectives of disjunction, conjunction, and negation,
respectively, and implications⊃ and→ substitute for the material implication. We may
resort to the standard classical logical reasoning in this sublogic.

Let us first examine some basic refinement laws. From the distributivity of logi-
cal connectives, we can derive several distribution laws for demonic choice. The se-
quencing operator admits the left distribution law, i.e., (S1⊗S2);T = (S1;T)⊗ (S2;T).
(The right distribution law does not hold in general, though.) The exception handling
statement also admits a distribution law try S1⊗ S2 catch T = (try S1 catch T)⊗
(try S2 catch T).

By the interlaced property of logical connectives, all the statements introduced in
the previous section are monotonic with respect to refinement of its substatements. For
instance, S1⊗T1 # S2⊗T2 holds if S1 # S2 and T1 # T2.

4.1 Refinement of Conditional Controls

The statement skip and the three conditional control statements are ordered by # as
below. {

p
}
skip#

[
p
]

(4.1)
{

p
}
#
〈

p
〉
#
[
p
]

(4.2)

122 S. Nishimura

Further, the assertion (resp. the assumption) is monotonic (resp. anti-monotonic) with
respect to the ≤t order over guard predicates. That is, if p→q is valid (or equivalently,
p |= q), we have:{

p
}
#
{

q
}

(4.3)
[
q
]
#
[
p
]

(4.4)

In contrast, the conditional exit has no such particular (anti-)monotonicity property.
Provided that p→q is valid, we have:{

p
}

=
{

p
}

;
{

q
}

=
{

p
}

;
[
q
]
=
{

p
}

;
〈
q
〉

(4.5)[
p
]
=
[
p
]
;
{

q
}

=
[
p
]
;
[
q
]
=
[
p
]
;
〈
q
〉

(4.6)〈
p
〉

=
〈

p
〉
;
{

q
}

=
〈

p
〉
;
[
q
]
=
〈

p
〉
;
〈
q
〉

(4.7)

The following laws indicate that successive conditional control statements of the same
kind can be substituted with a single control statement which combines the guard for-
mulas in the original statements by either ∧, ∧, or ∧w.{

p
}

;
{

q
}

=
{

q
}

;
{

p
}

=
{

p∧q
}

=
{

p∧q
}

=
{

p∧w q
}

(4.8)[
p
]
;
[
q
]
=
[
q
]
;
[
p
]
=
[
p∧q

]
=
[
p∧q
]
=
[
p∧w q

]
(4.9)〈

p
〉
;
〈
q
〉

=
〈
q
〉
;
〈

p
〉

=
〈

p∧q
〉

=
〈

p∧q
〉

=
〈

p∧w q
〉

(4.10)

Combining the laws (4.5) through (4.10), we can propagate a copy of a conditional
control statement past one or more successive control statements (of possibly different
kinds), e.g.,

[
p
]
;
{

q
}

;
〈
r
〉

=
[
p
]
;
{

q
}

;
〈
r
〉
;
[
p
]
.

The disjunction in the guard of an assertion or an assumption can be substituted with
an appropriate non-deterministic choice.{

p∨q
}

=
{

p
}
⊕
{

q
}

(4.11)
[
p∨q

]
=
[
p
]
⊗
[
q
]

(4.12)

From the fact that exactly one of the formulas p and p⊃⊥ can have a designated truth
value at once, we obtain the following laws.[

p
]
⊗
[
p⊃⊥

]
= skip (4.13)[

p
]
;
[
p⊃⊥

]
=magic (4.14)

〈
p
〉
;
〈

p⊃⊥
〉

= exit (4.15)

Recall that we have used
〈

p∨¬p
〉

for testing partiality of the predicate p in the def-
inition of conditional branch statement in Section 3.2. We will later make use of the
following rules in order to exploit the implicit control structure indicated by sequential
and weak Kleene connectives occurring in the test predicate.〈

(p∧q)∨¬(p∧q)
〉

=
〈

p∨¬p
〉
;
〈
¬p∨q∨¬q

〉
(4.16)〈

(p∨q)∨¬(p∨q)
〉

=
〈

p∨¬p
〉
;
〈

p∨q∨¬q
〉

(4.17)〈
(p∧w q)∨¬(p∧w q)

〉
=
〈
(p∨w q)∨¬(p∨w q)

〉
=
〈

p∨¬p
〉
;
〈
q∨¬q

〉
(4.18)

Refining Exceptions in Four-Valued Logic 123

When the predicate p is classical, the following laws hold.{
p⊃⊥

}
=
{
¬p
}

(4.19)
[
p⊃⊥

]
=
[
¬p
]

(4.20)
〈

p∨¬p
〉

= skip (4.21)

4.2 Refinement of Exceptions

The following refinement laws hold for exception statements.

exit;S = exit (4.22) try S;
〈

p
〉

catch skip = try S catch skip (4.23)

An interesting subclass of PTran is the one that never raise exceptions. We would say
that a transformer S never raises exceptions under any program context, if ψn = ψ′n holds
whenever 〈ψn,ϕe〉= S(〈ϕn,ϕe〉) and 〈ψ′n,ϕ′e〉= S(〈ϕn,ϕ′e〉). This is formally specified
in terms of four-valued logic as follows.

Definition 4.1. A predicate transformer S∈PTran is called non-exceptional, if S(ϕ) =
S(ϕ′) holds whenever f⊕ϕ = f⊕ϕ′.

It is easy to verify that all the statements introduced in Section 3, except for exit and〈
p
〉
, are non-exceptional if so are their substatements.

For any non-exceptional statement S, the following laws hold.

try S catch T = S (4.24) try S;exit catch T = S;T (4.25)

5 Examples of Program Transformation by Stepwise Refinement

We will apply the refinement laws developed in the previous section to transformation
of programs that involve exceptions and partial predicates.

5.1 Translating Conjunctions and Disjunctions into Explicit Controls

Programs often contain implicit controls by partial predicates. For example, a single
conditional statement if p∧q then S else T contains several implicit information for
control: The predicate p∧q evaluates from left to right; As soon as p evaluates to f, the
else clause is selected; exception is raised as soon as p evaluates to ⊥; q is examined
only if p evaluates to t.

We justify this operational intuition via refinement by showing that the above condi-
tional statement is equivalent to the nested conditional statement if p then (if q then S
else T) else T . Let us first give a few subsidiary refinement laws.[

p∧q⊃⊥
]
=
[
p∧q⊃⊥

]
=
[
p⊃⊥

]
⊗
[
q⊃⊥

]
. (5.1)[

p
]
;
〈
¬p∨q

〉
=
[
p
]
;
〈
q
〉

if p is consistent (5.2)〈
p∨¬p

〉
;
[
p⊃⊥

]
=
〈

p∨¬p
〉
;
[
p ⊃⊥

]
;
〈
¬p∨q∨¬q

〉
if p is consistent (5.3)

124 S. Nishimura

Then we can carry out the following derivation, provided p is consistent.

if p∧q then S else T =
〈
(p∧q)∨¬(p∧q)

〉
;
([

p∧q
]
;S⊗

[
p∧q⊃⊥

]
;T
)

=
〈

p∨¬p
〉
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p⊃⊥

]
;T ⊗

[
q⊃⊥

]
;T)
)

— by (4.16), (4.9), (5.1), and distributivity

=
〈

p∨¬p
〉
;
[
p
]
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p⊃⊥

]
;T ⊗

[
q⊃⊥

]
;T
)

⊗
〈

p∨¬p
〉
;
[
p⊃⊥

]
;
〈
¬p∨q∨¬q

〉
;
([

p
]
;
[
q
]
;S⊗

[
p ⊃⊥

]
;T ⊗

[
q⊃⊥

]
;T
)

— by (4.13) and distributivity

=
〈

p∨¬p
〉
;
([

p
]
;
〈
q∨¬q

〉
;
([

q
]
;S⊗

[
q⊃⊥

]
;T
)
⊗
[
p⊃⊥

]
;T ⊗

[
p⊃⊥

]
;
[
q⊃⊥

]
;T
)

— by (5.2), (5.3), (4.6), (4.7), (4.9), (4.10), (4.14), and distributivity

=
〈

p∨¬p
〉
;
([

p
]
;
〈
q∨¬q

〉
;
([

q
]
;S⊗

[
q⊃⊥

]
;T
)
⊗
[
p⊃⊥

]
;T
)

— by (4.9), (4.4)

= if p then (if q then S else T) else T.

We can also derive a law for the sequential disjunction:

if p∨q then S else T = if p then S else (if q then S else T),

where p is consistent. For the weak Kleene connectives, we have similar laws:

if p∧w q then S else T = if p then (if q then S else T) else
〈
q∨¬q

〉
;T and

if p∨w q then S else T = if p then
〈
q∨¬q

〉
;S else (if q then S else T),

where p need not be consistent.

5.2 Refining Exception Handling

Let us apply our refinement laws to a larger program. In the development, we will make
use of the technique that propagates context information via the assertion statement
[15,9]. Below we list several non-trivial laws for propagating context information.{

p
}

;X := e# X := e;
{
∃v.(p[X\v]∧X = e[X\v])

}
(5.4){

p
}

;
[
q
]
#
[
q
]
;
{

p∧q
}

(5.5){
p
}

;
〈
q
〉
#
〈
q
〉
;
{

p∧q
}

(5.6){
p
}

; if q then S else T # if q then (
{

p∧q
}

;S) else (
{

p∧ (q⊃⊥)
}

;T) (5.7)

if q then (S;
{

p
}
) else (T ;

{
q
}
)# (if q then S else T);

{
p∨q

}
(5.8){

p
}

; try S catch T # try
{

p
}

;S catch T (5.9)

try S;
{

p
}

catch (T ;
{

q
}
)# (try S catch T);

{
p∨q

}
; (5.10)

Let us consider the following program S0 that implements a numerical algorithm.

S0 � X := N; try repeat Y := X ;X := (Y ×Y + N)÷ (2×Y) until X ≥ Y catch skip.

Refining Exceptions in Four-Valued Logic 125

This program computes the integral value of
√

N for non-negative integer N, based
on the Newton-Raphson method [20], and assigns the answer to the variable Y . In the
repeat · · · until loop, the integer division operator ÷ may raise an exception due to
division-by-zero, in which case, however, the exception is caught and the execution
normally terminates with a correct answer.

Since PTran is a bounded complete lattice, each loop statement is specified by the
least fixpoint µ.F of a function F ∈ PTran→PTran that is monotonic w.r.t. refinement
order# [3]. The loop statement in S0 is given by the least fixpoint of the function:

F (T) � Y := X ;X := (Y ×Y + N)÷ (2×Y); if X ≥ Y then skip else T.

In order to express the partial assignment X := (Y ×Y +N)÷ (2×Y), which may raise
exception due to division-by-zero, we interpret it by the compound statement

〈
¬(Y =

0)
〉
;X := (Y ×Y + N)÷′ (2×Y), where ÷′ is a total extension of ÷ such that division

by zero yields a fixed constant value (say, 0) instead of being undefined.
In the following derivation, we refine the original program S0, with the assumption

N ≥ 0, into a program that makes no uses of exceptional statements.{
N ≥ 0

}
;S0 # X := N;

{
X = N ∧N ≥ 0

}
; try µ.F catch skip — by (5.4)

X := N;
(
(try

[
¬(X = 0)

]
;
{

0 < X ≤ N
}

;µ.F catch skip)⊗
(try

[
¬(X = 0)⊃⊥

]
;
{
¬(X = 0)⊃⊥

}
;µ.F catch skip)

)
— by (5.9), (4.13), (4.3), (4.1), (4.6), and distributivity.

In order to show the refinement of the left substatement of the demonic choice, we need
some lemmas.

Lemma 5.1.{
0 < X ≤ N

}
;repeat Y := X ;X := (Y ×Y + N)÷ (2×Y) until X ≥ Y

repeat
{

0 < X ≤ N
}

;Y := X ;X := (Y ×Y + N)÷′ (2×Y) until X ≥ Y

Lemma 5.2. Suppose F ∈ PTran→PTran is a monotonic function. Then, µ.F is non-
exceptional, if F (S) is so for every non-exceptional S.

Lemma 5.1 indicates that 0 < X ≤ N is a loop invariant and lemma 5.2 says that the
fixpoint operator on PTran preserves non-exceptionality. Proofs of these lemmas can
be found in the full paper [18].

try
[
¬(X = 0)

]
;
{

0 < X ≤ N
}

;µ.F catch skip

try
[
¬(X = 0)

]
;repeat

{
0 < X ≤ N

}
;Y := X ;X := (Y ×Y + N)÷′ (2×Y)

until X ≥ Y catch skip — by lemma 5.1

=
[
¬(X = 0)

]
;repeat

{
0 < X ≤ N

}
;Y := X ;X := (Y ×Y + N)÷′ (2×Y)

until X ≥ Y catch skip — by (4.24) and non-exceptionality
from lemma 5.2

=
[
¬(X = 0)

]
;repeat Y := X ;

{
¬(Y = 0)

}
;
〈
¬(Y = 0)

〉
;X := (Y ×Y + N)÷′ (2×Y)

until X ≥ Y — by (5.4), (4.3), and (4.5)

=
[
¬(X = 0)

]
;repeat Y := X ;X := (Y ×Y + N)÷ (2×Y) until X ≥ Y — by (4.1)

126 S. Nishimura

For the other substatement of the choice, we derive:

try
[
¬(X = 0)⊃⊥

]
;
{
¬(X = 0)⊃⊥

}
;µ.F catch skip

try
([
¬(X = 0)⊃⊥

]
;Y := X ;

{
¬(Y = 0)⊃⊥

}
;
〈
¬(Y = 0)

〉
;

X := (Y ×Y + N)÷′ (2×Y); if X ≥ Y then skip else µ.F
)

catch skip

— fixpoint; by (5.4)

= try
[
¬(X = 0)⊃⊥

]
;Y := X ;

{
¬(Y = 0)⊃⊥

}
;exit catch skip

— by (4.6), (4.10), and (4.15)

#
[
¬(X = 0)⊃⊥

]
;Y := X — by (4.25) and (4.1).

Therefore the derivation ends up with:

S0 # X := N;
〈
¬(X = 0)∨¬¬(X = 0)

〉
;(
[
¬(X = 0)

]
;µ.F ⊗

[
¬(X = 0)⊃⊥

]
;Y := X)

— by (4.21)

= X := N; if ¬(X = 0) then repeat Y := X ;X := (Y ×Y + N)÷(2×Y) until X≥Y

else Y := X .

6 Conclusion and Future Work

We proposed a refinement calculus for refining exceptions in programs. In order to model
the normal termination as well as the exceptional termination in a single unified platform,
we developed a four-valued predicate transformer semantics, which is based on Arieli
and Avron’s four-valued logic [1]. The programming constructs for raising and catching
exceptions can be concisely expressed by the formulas of four-valued logic in this frame-
work. In particular, we allow partial predicates in the conditional control statements in
order to model exceptions that are raised implicitly when the predicate in a conditional
statement is undefined. The four-valued logic provides a fruitful field for justifying re-
finement of programs that involve both explicit and implicit controls by exceptions.

This paper, with a few deviations, dealt with concrete program statements such as as-
signment, (conditional) exit, etc. Future research will concern abstract statements such
as non-deterministic (possibly partial) assignment and general specification statement
(which allows the uses of partial pre- and post-conditions) and also the methodology
for deriving concrete programs from these abstract statements.

Acknowledgment. I thank anonymous reviewers for their suggestions and comments.
This work was supported by JSPS KAKENHI(20500011).

References

1. Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language, and
Information 5(1), 25–63 (1996)

2. Arieli, O., Avron, A.: The value of four values. Artificial Intelligence 102(1), 97–141 (1998)
3. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Graduate Texts

in Computer Science. Springer, Heidelberg (1998)

Refining Exceptions in Four-Valued Logic 127

4. Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of
Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company, Dordrechtz (1977)

5. Bono, V., Kerber, M.: Extending Hoare calculus to deal with crash. Technical Report CSR-
06-08, School of Computer Science, The University of Birmingham (2006)

6. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
7. Fitting, M.: Kleene’s three-valued logics and their children. Fundamenta Informati-

cae 20(1/2/3), 113–131 (1994)
8. Ginsberg, M.L.: Multivalued logics: A uniform approach to reasoning in artificial intelli-

gence. Computational Intelligence 4, 265–316 (1988)
9. Groves, L.J.: Evolutionary Software Development in the Refinement Calculus. PhD thesis,

Victoria University of Wellington (2000)
10. Hähnle, R.: Many-valued logic, partiality, and abstraction in formal specification languages.

Logic Journal of the IGPL 13(4), 415–433 (2005)
11. Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt termination.

In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303. Springer, Heidelberg
(2000)

12. Jones, C.B.: Systematic Software Development Using VDM. International Series in Com-
puter Science. Prentice-Hall International, Englewood Cliffs (1986)

13. Jones, C.B., Middelburg, C.A.: A typed logic of partial functions reconstructed classically.
Acta Informatica 31(5), 399–430 (1994)

14. King, S., Morgan, C.: Exits in the refinement calculus. Formal Aspects of Computing 7(1),
54–76 (1995)

15. Laibinis, L., von Wright, J.: Context handling in the refinement calculus framework. Techni-
cal Report 118, TUCS Technical Report (1997)

16. Morgan, C.: Programming from specifications. 2nd edn. Prentice-Hall International Series
in Computer Science. Prentice-Hall International (1994)

17. Morris, J.M., Bunkenburg, A.: E3: A logic for reasoning equationally in the presence of
partiality. Science of Computer Programming 34(2), 141–158 (1999)

18. Nishimura, S.: Refining exceptions in four-valued logic,
http://www.math.kyoto-u.ac.jp/ susumu/papers/
lopstr09-full.pdf

19. Owe, O.: Partial logics reconsidered: A conservative approach. Formal Aspects of Comput-
ing 5(3), 208–223 (1993)

20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art
of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

21. Watson, G.: Refining exceptions using King and Morgan’s exit construct. In: 9th Asia-Pacific
Software Engineering Conference (APSEC 2002), pp. 43–51. IEEE Computer Society,
Los Alamitos (2002)

http://www.math.kyoto-u.ac.jp/~susumu/papers/lopstr09-full.pdf
http://www.math.kyoto-u.ac.jp/~susumu/papers/lopstr09-full.pdf

Towards a Framework for Constraint-Based Test

Case Generation

François Degrave1,�, Tom Schrijvers2,��, and Wim Vanhoof1

1 Faculty of Computer Science,
University of Namur

2 Department of Computer Science,
Katholieke Universiteit Leuven

Abstract. In this paper, we propose an approach for automated test
case generation based on techniques from constraint programming (CP).
We advocate the use of standard CP search strategies in order to express
preferences on the generated test cases and to obtain the desired degree
of coverage. We develop our framework in the concrete context of an
imperative language and show that the technique is sufficiently powerful
to deal with arbitrary pointer-based data-structures allocated on the
heap.

1 Introduction

It is a well-known fact that a substantial part of a software development bud-
get is spent on the act of correcting errors in the software under development.
Arguably the most commonly applied strategy for finding errors and thus pro-
ducing (more) reliable software is testing: running a software component with
respect to a well-chosen set of inputs and comparing the outputs that are pro-
duced with the expected results in order to find errors. One approach, so called
whitebox or structural testing consists in selecting a set of test inputs that to-
gether cover a substantially large part of the program’s source code, according
to some adequacy or coverage criterion. According to [22], an adequacy criterion
is considered to be a stopping rule that determines whether sufficient testing
has been done. In practice, the most used criteria are different coverage criteria,
such as statement, branch or path coverage criteria.

In the current paper, we present a technique for automatically generating test
inputs for programs written in an imperative language dealing with pointer-based
data structures. This is especially challenging, as a test input for a procedure
comprises not only a set of atomic values for the procedure’s arguments but may
also contain data structures build on the heap. The use of Constraint Program-
ming (CP) and its inherent mechanisms facilitate dealing with of a number of
important issues. First, representing the heap and environment of the program

� Supported by a grant FRIA - Belgium.
�� Post-doctoral researcher of the Fund for Scientific Research - Flanders.

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 128–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards a Framework for Constraint-Based Test Case Generation 129

by means of a symbolic data structure provides a convenient way to describe con-
straints on those structures. More importantly, we can use the search strategies
of CP in order to tackle two essential issues: the first one comprises collecting a
finite set of execution paths of the program which satisfies some given adequacy
criteria. The second one is the generation, for each such path, of concrete values
(a test input) such that when the program is executed with respect to those val-
ues, its execution will follow the corresponding path. Therefore, our technique
can be seen as parametrised with respect to a coverage criterion or a desired
degree of coverage. In order to illustrate the usefulness of this property, let us
take an example of a small procedure written in a C-like programming language,
supporting pointer-based dynamic data structures. This procedure manipulates
a pointer queu to a linked list – whose structure is examinated in further de-
tails afterwards –, an element el of type T (this type has no importance in this
example), and two integers prioD and n.

void insert (queu,el,prioD,n) {
ptr = *queu.next ;
q = queu ;
c = 1
while(ptr.prio >= prioD && c<n){

ptr = *ptr.next ; c++ }
r = new(el,max(prioD,*ptr.prio),ptr)
q.next = r}

This procedure basically inserts an element el into a priority queue queu –
represented as a linked list – with respect to a given priority prioD. The element
is inserted just after the last element having a higher priority than prioD if the
number of such elements is less than n; otherwise, the element is inserted at the
nth position, and its priority is changed to that of the n− 1th element of the
queue.

A test case for a procedure consists of an environment and a heap as they
could be at the moment of the procedure’s call. For example, a test case for the
insert procedure could be an environment in which the variables prioD and n
both map to the value 3, el maps to an arbitrary value depending on its type,
and queu maps to a reference, pointing into the heap to the first cell of a linked
list, whose cells consist of three fields: 1) a content (whose type and value have
no importance in the current example, and is represented as a small shape in
Figure 1), 2) a priority (an integer value) and 3) a reference to the next cell in
the list. Two examples of such test cases are depicted in Figure 1).

One major advantage of our framework is that it is parametrised with respect
to a given coverage criterion. Different coverage criteria can lead, of course, to
different generated test cases. For example, if statement coverage is used as the
coverage criterion, our technique might produce the test case (a) depicted in
Figure 1 as the only testcase. Indeed, execution of the procedure with respect

130 F. Degrave, T. Schrijvers, and W. Vanhoof

(a)

(b)

Fig. 1. Examples of test cases for the insert procedure

to this data will guarantee that every statement in the procedure’s body gets
executed. However, if condition coverage is used as the coverage criterion, the
test case (a) in itself is not sufficient as the test suite must guarantee that every
boolean sub-expression is evaluated both to true and false during testing while
with the test case (a), only the subexpression ptr.prio >= prioD is evaluated
both to true and false. Therefore, instantiated with condition coverage the tech-
nique will produce at least one additional testcase, for example the one depicted
in Figure 1 (b) in which the subexpression c<n is guaranteed to be eventually
evaluated to false.

Our specific contributions are:

– We show how to extend the semantics of an imperative language to deal with
unknown pointer-based input values. (Section 2.2)

– We show how concrete test cases satisfying adequacy criteria can be gener-
ated by using a suitable CP search strategy. (Section 2.5)

– We present a visualization tool and a regression test generator based on our
approach. (Section 3)

In order to focus on the essence of constraint-based test generation for im-
perative languages, we define a small imperative language supporting dynamic
pointer-based data structures and show that our approach is able to generate
test cases dealing with in-place updates of variables, pointers and a variety of
potentially cyclic data structures – for convenience, we refer to this language as
ImpL in what follows. As the definition below shows, we only consider integer
values and data structures constructed from simple “cons” cells having two fields
that we will name head and tail. We indicate in Section 2.6 how our technique
for test case generation can easily be extended to deal with a more involved
language having primitive values other than integers and full struct-like data
structures.

Towards a Framework for Constraint-Based Test Case Generation 131

integers n
variables x
expressions e ::= x | n | nil | new cons(e1, e2) | e.head | e.tail

| e1 == e2 | e1 /= e2 | e1+e2
statements s ::= skip | l := e | s1;s2 | if e then s1 else s2

| while e { s }
left-hand sides l ::= x | l.head | l.tail

As usual, expressions are used to syntactically represent values within the source
code of a program. Among the possible expressions are program variables, in-
tegers, the null-pointer nil, a reference to a newly heap-allocated cons cell new
cons(e1,e2), the selection of the head (e.head), respectively tail (e.tail) field of
the cons cell referenced by e, equality and inequality tests (== and /=), and the
arithmetic operator for addition +.1 We will assume that ImpL is simply typed
and it only allows comparison of two values belonging to the same type (either
integers or references).2 Moreover, arithmetic is only allowed on integer values;
the language does not support pointer arithmetics.

A program in ImpL is a single statement or a sequence of statements, where a
statement is either a no-op (skip), an assignment, another sequence, a selection
or a while-loop. The left-hand side of an assignment is either a variable or a
reference to one of the fields in a cons cell. Consider, for example, the following
simple program:

while (x.tail.head /= x.head) {

x := x.tail };

x.tail := nil

The above program basically manipulates a simply linked list x whose cells
consist of two fields: a head containing an integer and a tail containing a pointer
to the following cell or nil. It scans the list for two successive identical elements,
and severs the list after the first such occurrence. For example, using the notation
[1,2,3] for the nil-terminated linked list with successive elements 1,2 and 3,
the effect of running this program with x the list [1,2,3,3,4], is that, after the
statement x.tail := nil, the list will have the value [1,2,3].

2 Generating Test Inputs

2.1 Overview

The execution of an imperative program manipulates an environment E and a
heap H . An environment is a finite mapping from variables to values, where
a value is either an integer, nil or a reference to a cons cell represented by
ptr(r) with r a unique value denoting the address of the cons cell on the heap.

1 Other arithmetic operators are omitted in order to keep the formal definition of the
semantics small, but they can be added at will.

2 Integers are also used as booleans: 0 denotes false and all other integers denote true.

132 F. Degrave, T. Schrijvers, and W. Vanhoof

Likewise, a heap is a finite mapping from such references r to cons cells of the
form cons(vh,ve) with vh and ve values (possibly including references to other
cons cells). For the example given above (with x initially the list [1,2,3,3,4]),
the environment and heap before and after running the program would look as
follows:

E : x 	→ ptr(r1)
H : r1 	→ cons(1,ptr(r2)) r4 	→ cons(3,ptr(r5))

r2 	→ cons(2,ptr(r3)) r5 	→ cons(4,nil)

r3 	→ cons(3,ptr(r4))

E : x 	→ ptr(r3)
H : r1 	→ cons(1,ptr(r2))

r2 	→ cons(2,ptr(r3))

r3 	→ cons(3,nil)

Now, in order to generate test inputs for a program, the idea is to symbolically
execute the program, replacing unknown values by constraint variables. During
such a symbolic execution, each test in the program (i.e. the if-then-else and while
conditions) represents a choice; the sequence of choices made determines the
execution path followed. There are many possible execution paths through the
program. Each one of them can be represented by constraints on the introduced
variables and on the environment and heap.

Returning to our example, we would replace the concrete value for x by a
constraint variable, say V, representing an unknown value. Among the infinite
number of possible execution paths, a particular path would execute the while
condition three times, and the loop body twice. This would imply that the value
represented by V is a list of at least 4 elements, and the third and fourth element
are identical, whereas the first differs from the second and the second from the
third. This information would be represented by constraints on V and the heap
collected along the execution. Solving these constraints could get us for instance
the concrete input [1,2,3,3,4] proposed above. However, there are many other
concrete inputs that satisfy these constraints: [1,2,3,3], [0,1,0,0], or even
the cyclic list that starts with [1,2,1] and then points back the first element.

Using our constraint-based approach, we can both capture the many paths and
the many solutions for a single path as non-determinism in our constraint-based
modelling of test case generation. This allows us to use the search strategies of
CP to deal with both of them. For instance, we can find all paths up to length 6
using a simple depth-bounded search.

2.2 Constraint Generation

In order to represent unknown input data we add logical (or constraint) vari-
ables to the semantic domain of values and represent the environment and heap
by logical variables as well. In order to model symbolic execution of our lan-
guage, we introduce a semantics in which program state is represented by a
triple 〈E, H, C〉 where E and H are constraint variables symbolically represent-
ing, respectively, the environment and heap, and C is a set of constraints over
E and H . Constraints are conjunctions of primitive constraints that take the
following form:

Towards a Framework for Constraint-Based Test Case Generation 133

(Var)

(x 	→ v) ∈ E

〈E, H〉 x � v〈E, H〉

(Int)

n ∈ Z

〈E, H〉 n � n〈E, H〉
(Nil) 〈E, H〉 nil � nil〈E, H〉

(Cons)

〈E, H1〉 e1 � v1〈E, H2〉 〈E, H2〉 e2 � v2〈E, H3〉 r fresh
〈E, H1〉 new cons(e1, e2) � ptr(r)〈E, H3 � {r 	→ cons(v1, v2)}〉

(Head)

〈E, H1〉 e � ptr(r)〈E, H2〉 (r 	→ cons(vh, vt)) ∈ H2

〈E, H1〉 e.head � vh〈E, H2〉

(Tail)

〈E, H1〉 e � ptr(r)〈E, H2〉 (r 	→ cons(vh, vt)) ∈ H2

〈E, H1〉 e.tail � vt〈E, H2〉

(EqualT)

〈E, H1〉 e1 � v1〈E, H2〉 〈E, H2〉 e2 � v2〈E, H3〉 v1 ≡ v2

〈E, H1〉 e1 == e2 � 1〈E, H3〉

(EqualF)

〈E, H1〉 e1 � v1〈E, H2〉 〈E, H2〉 e2 � v2〈E, H3〉 v1 �≡ v2

〈E, H1〉 e1 == e2 � 0〈E, H3〉

(NEqualT)

〈E, H1〉 e1 � v1〈E, H2〉 〈E, H2〉 e2 � v2〈E, H3〉 v1 �≡ v2

〈E, H1〉 e1 /= e2 � 1〈E, H3〉

(NEqualF)

〈E, H1〉 e1 � v1〈E, H2〉 〈E, H2〉 e2 � v2〈E, H3〉 v1 ≡ v2

〈E, H1〉 e1 /= e2 � 0〈E, H3〉

Fig. 2. Semantics of expressions in ImpL

(Skip) 〈E, H〉 skip 〈E, H〉

(VarAss)

〈E, H1〉 e � v〈E, H2〉
〈E, H1〉 }x := e 〈E � {x 	→ v}, H2〉

(HeadAss)

〈E, H1〉 e � v〈E, H2〉 〈E, H2〉 l � ptr(r)〈E, H2〉 (r 	→ cons(vh, vt)) ∈ H2

〈E, H1〉 l.head := e 〈E, H2 � {r 	→ cons(v, vt)}〉

(TailAss)

〈E, H1〉 e � v〈E, H2〉 〈E, H2〉 l � ptr(r)〈E, H2〉 (r 	→ cons(vh, vt)) ∈ H2

〈E, H1〉 l.tail := e 〈E, H2 � {r 	→ cons(vh, v)}〉

(Seq)

〈E1, H1〉 s1 〈E2, H2〉 〈E2, H2〉 s2 〈E3, H3〉
〈E1, H1〉 s1;s2 〈E3, H3〉

(IfThen)

〈E1, H1〉 e � n〈E1, H2〉 n �≡ 0 〈E1, H2〉 s1 〈E2, H3〉
〈E1, H1〉 if e then s1 else s2 〈E2, H4〉

(IfElse)

〈E1, H1〉 e � n〈E1, H2〉 n ≡ 0 〈E1, H2〉 s2 〈E2, H3〉
〈E1, H1〉 if e then s1 else s2 〈E2, H4〉

(WhileT)

〈E1, H1〉 e � n〈E1, H2〉
n �≡ 0 〈E1, H2〉 s 〈E2, H3〉 〈E2, H3〉 while e { s } 〈E3, H4〉

〈E1, H1〉 while e { s } 〈E3, H4〉

(WhileF)

〈E1, H1〉 e � n〈E1, H2〉 n ≡ 0
〈E1, H1〉 while e { s } 〈E1, H2〉

Fig. 3. Semantics of statements in ImpL

– o1 = o2, equality of two syntactic objects,
– o1
= o2, inequality of two syntactic objects,
– (o1 �→ o2) ∈M , membership of a mapping M , and
– M1 � {o1 �→ o2} = M2, update of a mapping M1.

where a mapping M denotes a constraint variable representing an environment
or a heap. Constraint solvers for these constraints are defined in Section 2.4.

134 F. Degrave, T. Schrijvers, and W. Vanhoof

The symbolic semantics is depicted in Figures 4 and 5. In these figures and
in the remainder of the text, we use uppercase characters to syntactically dis-
tinguish constraint variables from ordinary program variables (represented by
lowercase characters). A judgement of the form 〈E0, H0, C0〉 e � v〈E0, H1, C1〉
denotes that given a program state 〈E0, H0, C0〉, the expression e evaluates to
value v and transforms the program state into a state represented by 〈E0, H1, C1〉.
Note that H1 is a fresh constraint variable that represents the possibly modi-
fied heap whose content is defined by the constraints in C1. Likewise, a judge-
ment of the form 〈E0, H0, C0〉s〈E1, H1, C1〉 denotes the fact that a statement
s transforms a program state represented by 〈E0, H0, C0〉 into the one
represented by 〈E1, H1, C1〉. Since a newly added constraint can introduce in-
consistencies in the set of collected constraints, we define the conditional eval-
uation of an expression and a statement as follows: judgements of the form
{E, H0, C0} e � v〈E, H1, C1〉 and {E0, H0, C0}s〈E1, H1, C1〉 denote, respec-
tively, 〈E, H0, C0〉 e � v〈E, H1, C1〉 and 〈E0, H0, C0〉s〈E1, H1, C1〉 under the
condition that C0 is consistent (represented by T |= C0, where T is the con-
straint theory).3 Formally:

(Cond-e)

T |= C0 〈E, H0, C0〉 e � v〈E, H1, C1〉
{E, H0, C0} e � v〈E, H1, C1〉

(Cond-s)

T |= C0 〈E0, H0, C0〉 s 〈E1, H1, C1〉
{E0, H0, C0} s 〈E1, H1, C1〉

The use of conditional evaluation avoids adding further constraints to an already
inconsistent set. This implies that search strategies (see Section 2.5) will only
explore execution paths that can model a real execution.

2.3 Properties

Given environments E, E′ and heaps H , H ′, we use 〈E, H〉 ∼= 〈E′, H ′〉 to denote
the fact that E and E′ define the same program variables and that each such
variable either has the same primitive value (integer or nil) in both environments
or points to identical data structures in both heaps. More formally, this means
that there must exist a bijective mapping σ between (a subset of) the references
used in H and (a subset of) those used in H ′ such that ∀x ∈ dom(E) = dom(E′) :
E(x) =σ E′(x) where =σ is defined as follows: nil=σnil, n =σ n for all integer
constants n and ptr(r) =σ ptr(r′) if r′ = σ(r), H(r) = cons(v1, v2) and H ′(r′) =
cons(v′1, v′2) and v1 =σ v′1 and v2 =σ v′2.

Theorem 1 (Completeness)
Let E and H be an environment and a heap, and s a statement manipulating
the variables in E. If 〈E, H〉 s 〈E′, H ′〉 then there exists a satisfiable set of
constraints C such that 〈Ev, Hv, true〉 s 〈E′

v, H ′
v, C〉 with ρ a solution for C

such that
〈E, H〉 ∼= 〈ρ(Ev), ρ(Hv)〉
〈E′, H ′〉 ∼= 〈ρ(E′

v), ρ(H ′
v)〉

3 In practice, the consistency check may be incomplete. Then unreachable execution
paths may be explored.

Towards a Framework for Constraint-Based Test Case Generation 135

(Var)

V fresh
〈E, H, C〉 x � V 〈E, H, C ∧ {x 	→ V } ∈ E〉

(Int)

n ∈ Z

〈E, H, C〉 n � n〈E, H, C〉 (Nil) 〈E, H, C〉 nil � nil〈E, H, C〉

(Cons)

〈E, H0, C0〉 e1 � v1〈E, H1, C1〉 {E, H1, C1} e2 � v2〈E, H2, C2〉 H3, r fresh
〈E, H0, C0〉 new cons(e1, e2) � ptr(r)〈E, H3, C2 ∧ H3 = H2 � {r 	→ cons(v1, v2)}〉

(Head)

〈E, H0, C0〉 e � v〈E, H1, C1〉 R, Vh, Vt fresh
〈E, H0, C0〉 e.head � Vh〈E, H1, C1 ∧ v = ptr(R) ∧ (R 	→ cons(Vh, Vt)) ∈ H1〉

(Tail)

〈E, H0, C0〉 e � v〈E, H1, C1〉 R, Vh, Vt fresh
〈E, H0, C0〉 e.tail � Vt〈E, H1, C1 ∧ v = ptr(R) ∧ (R 	→ cons(Vh, Vt)) ∈ H1〉

(EqualT)

〈E, H0, C0〉 e1 � v1〈E, H1, C1〉 {E, H1, C1} e2 � v2〈E, H2, C2〉
〈E, H0, C0〉 e1 == e2 � 1〈E, H2, C2 ∧ v1 = v2〉

(EqualF)

〈E, H0, C0〉 e1 � v1〈E, H1, C1〉 {E, H1, C1} e2 � v2〈E, H2, C2〉
〈E, H0, C0〉 e1 == e2 � 0〈E, H2, C2 ∧ v1 �= v2〉

(NEqualT)

〈E, H0, C0〉 e1 � v1〈E, H1, C1〉 {E, H1, C1} e2 � v2〈E, H2, C2〉
〈E, H0, C0〉 e1 /= e2 � 1〈E, H2, C2 ∧ v1 �= v2〉

(NEqualF)

〈E, H0, C0〉 e1 � v1〈E, H1, C1〉 {E, H1, C1} e2 � v2〈E, H2, C2〉
〈E, H0, C0〉 e1 /= e2 � 0〈E, H2, C2 ∧ v1 = v2〉

(Add)

〈E, H0, C0〉 e1 � v1〈E, H1, C1〉 {E, H1, C1} e2 � v2〈E, H2, C2〉 v fresh
〈E, H0, C0〉 e1 + e2 � v〈E, H2, C2 ∧ v = v1 + v2〉

Fig. 4. Symbolic evaluation of expressions

(Skip) 〈E, H, C〉 skip 〈E, H, C〉

(VarAss)

〈E0, H0, C0〉 e � v〈E0, H1, C1〉 E1 fresh

〈E0, H0, C0〉 x := e 〈E1, H1, C1 ∧ E1 = E0 � {x 	→ v}〉

(HeadAss)

〈E, H0, C0〉 e � v〈E, H1, C1〉 {E, H1, C1} l � vr〈E, H1, C2〉
R, Vh, Vt, H2 fresh C3 ≡ C2 ∧ vr = ptr(R) ∧ (R 	→ cons(Vh, Vt)) ∈ H1

〈E, H0, C0〉 l.head := e 〈E, H2, C3 ∧ H2 = H1 � {R 	→ cons(v, Vt)}〉

(TailAss)

〈E, H0, C0〉 e � v〈E, H1, C1〉 {E, H1, C1} l � vr〈E, H1, C2〉
R, Vh, Vt, H2 fresh C3 ≡ C2 ∧ vr = ptr(R) ∧ (R 	→ cons(Vh, Vt)) ∈ H1

〈E, H0, C0〉 l.tail := e 〈E, H2, C3 ∧ H2 = H1 � {R 	→ cons(Vh, v)}〉

(Seq)

〈E0, H0, C0〉 s1 〈E1, H1, C1〉 {E1, H1, C1} s2 {E2, H2, C2}
〈E0, H0, C0〉 s1;s2 〈E2, H2, C2〉

(IfThen)

〈E0, H0, C0〉 e � v〈E0, H1, C1〉 {E0, H1, C1 ∧ v �= 0} s1 {E1, H2, C2}
〈E0, H0, C0〉 if e then s1 else s2 〈E1, H2, C2〉

(IfElse)

〈E0, H0, C0〉 e � v〈E0, H1, C1〉 {E0, H1, C1 ∧ v = 0} s2 {E1, H2, C2}
〈E0, H0, C0〉 if e then s1 else s2 〈E1, H2, C2〉

(WhileT)

〈E0, H0, C0〉 e � v〈E0, H1, C1〉 {E0, H1, C1 ∧ v �= 0} s;while e { s } 〈E1, H2, C2〉
〈E0, H0, C0〉 while e { s } 〈E1, H2, C2〉

(WhileF)

〈E0, H0, C0〉 e � v〈E, H1, C1〉
〈E0, H0, C0〉 while e { s } 〈E0, H1, C1 ∧ v = 0〉

Fig. 5. Symbolic execution of statements

The completeness property states that any concrete execution of a program s
with respect to an initial environment E and heap H is modeled by some abstract
derivation represented by a set of constraints C such that there exists a solution
to C that models both the initial and final environment and heap. In other
words, our method is able to capture all executions of a program fragment s.
In addition, the soundness property given below states the inverse, namely that
our method does not model spurious executions.

136 F. Degrave, T. Schrijvers, and W. Vanhoof

Theorem 2 (Soundness)
Let s be a statement. If 〈Ev, Hv, true〉 s 〈E′

v, H ′
v, C〉 and if there exists a solution

ρ for the set of constraints C then 〈ρ(Ev), ρ(Hv)〉 s 〈E, H〉 such that

〈E, H〉 ∼= 〈ρ(E′
v), ρ(H ′

v)〉.

2.4 Constraint Propagation

Among the four types of primitive constraints (Section 2.2), the equality and in-
equality constraints are easily defined as Herbrand equality and inequality, and
appropriate implementations can be found in Prolog systems as, respectively,
unification and the dif/2 inequality constraint. The constraints on the environ-
ment and heap (membership and update of a mapping) on the other hand are
specific to our purpose. We define them in terms of the following propagation
rules, that allow us to infer additional constraints:

(o �→ o1) ∈M ∧ (o �→ o2) ∈ M =⇒ o1 = o2
M1 � {o �→ o1} = M2 =⇒ (o �→ o1) ∈ M2

o
= o′ ∧M1 � {o �→ o1} = M2 ∧ (o′ �→ o2) ∈ M2 =⇒ (o′ �→ o2) ∈ M1

The above rules are easily implemented as Constraint Handling Rules (CHR) [10].

2.5 Search

In order to obtain concrete test cases, our constraint solver has to overcome two
forms of non-determinism: 1) the non-determinism inherent to the extended op-
erational semantics, and 2) the non-determinism associated to the selection of
concrete values for the program’s input. Traditionally, in Constraint Program-
ming a problem with non-deterministic choices is viewed as a (possibly infinite)
tree, where each choice is represented as a fork in the tree. Each path from the
root of the tree to a leaf represents a particular set of choices, and has zero or
one solution. In our context, a solution is of course a concrete test case. As the
tree does not imply a particular order on the solutions, we are free to choose
any search strategy, which specifies how the tree is navigated in search of the
solutions. Moreover, since the problem tree can be infinite, we may select an
incomplete search strategy, i.e. one that only visits a finite part of the tree. Let
us have a more detailed look at these two forms of non-determinism and how
they can be handled by a solver.

Non-Deterministic semantics. Several of the language constructs have multiple
overlapping rules in the definition of the symbolic semantics. In particular those
for if-then-else ((IfThen) and (IfElse)) and while ((WhileT) and (WhileF))
constructs imply alternate execution paths through the program. Also, observe
that the while-construct is a possible source of infinity in the problem tree as the
latter must in general contain a branch for each possible number of iterations of
the loop body. This means that a solver is usually forced to use an incomplete

Towards a Framework for Constraint-Based Test Case Generation 137

search strategy; for example a depth-bounded search strategy which does not
explore the tree beyond a given depth.

Recall the example in Section 2.1 where the while-loop may iterate an arbi-
trary number of times. A depth-bounded search only considers test cases that
involve iterations up to a given bound.

Non-Deterministic Values. As the following example shows, even a single exe-
cution path can introduce non-determinism in the solving process. Consider the
program y := x.tail, which has only one execution path. This execution path
merely restricts the initial environment and heap to E0 = {x � ptr(A), y � Vy}
and (A � cons(Vh, Vt)) ∈ H0. There are an infinite number of concrete test cases
that satisfy these restrictions. Here are just a few:

E0 H0

{x � ptr(a1), y � nil} {a1 � cons(0, nil)}
{x � ptr(a1), y � nil} {a1 � cons(0, a1)}
{x � ptr(a1), y � nil} {a1 � cons(1, nil)}
{x � ptr(a1), y � ptr(a1)} {a1 � cons(0, nil)}
{x � ptr(a1), y � nil} {a1 � cons(0, ptr(a2)), a2 � cons(0, nil)}

There are two kinds of unknown values: unknown integer Vi and unknown refer-
ences Vr. Integers are easy: non-deterministically assign any natural number to
an unknown integer:

∨
n∈N

Vi = n.
For the references the story is more involved. Assume that R is the set of

references created so far, r′ is a fresh reference, and V ′
i and V ′

r are fresh unknown
integer and reference values. Then there are three assignments for an unknown
reference Vr: 1) nil, 2) one of the previous references R, or 3) a new reference
r′. In the last case, the heap must contain an additional cell with fresh unknown
components.

Vr = nil ∨ (
∨
r∈R

Vr = ptr(r)) ∨ (Vr = ptr(r′) ∧ (r′ �→ cons(V ′
i , V ′

r)) ∈ H0)

In practice, we must again restrict ourselves to a finite number of alternatives.
We may be interested in only a single solution: an arbitrary one, one that sat-
isfies additional constraints or one that is minimal according to some criterion.
Alternatively, multiple solutions may be desired, each of which differs sufficiently
from the others based on some measure. All of these preferences can be expressed
in terms of suitable search strategies. For instance, the minimality criterion is
captured by a branch-and-bound optimization strategy.

2.6 Generalized Data Structures

So far we have only considered data structures composed of simple cons cells, for
the sake of simplicity and concision in the definitions. However, our constraint-
based approach can easily be extended to cope with arbitrary structures. Con-
sider for instance this C-like struct for binary trees:

138 F. Degrave, T. Schrijvers, and W. Vanhoof

struct tree { int value;
tree left;
tree right; }

In order to deal with the tree type defined above , it suffices to extend both the
concrete and the constraint semantics of ImpL with 1) a new tree constructor
representing a triple and 2) three field selectors (e.g. value, left, and right)
similar to the cons constructor and the head and tail selectors. In addition, the
search process employed by the solver needs to be adjusted in order to generate
arbitrary tree values. An unknown tree value Vt is assigned as follows:

Vt = nil ∨ (
∨

r∈Rt

Vt = ptr(r)) ∨ (Vr = r′ ∧ (r′ �→ tree(V ′
i , V ′

l , V ′
r) ∈ H0)

where Rt is the set of previously created tree references, r′ is a fresh tree refer-
ence, and V ′

i , V ′
l and V ′

r are respectively a fresh unknown integer value and fresh
unknown tree values. It should be clear to the reader that the above approach
is easily generalized to arbitrary structures in a datatype-generic manner.

Also, other primitive types such as reals and booleans are easily supported by
integrating additional off-the-shelf constraint solvers for them.

Moreover, note that invariants on the data structures, such as acyclicness,
can be imposed on the unknown input in terms of additional constraints, e.g.
provided by the programmer. This allows to seamlessly incorporate specification-
level constraints into our method – similarly to [21,20].

3 Applications

In this section we propose two applications of our method for test case gener-
ation. The first one consists in providing the programmer with (a visualization
of) input/output pairs for the program under test satisfying a certain coverage
criterion. We have developed a tool that allows to visualise such input/output
pairs involving heap-allocated data structures based on Graphviz.4 This allows
the programmer to visually inspect them and verify that the program behaves
as expected. For example, Fig. 6 depicts an input/output pair for the example
program of Section 2.1.

A second application is the automatic creation of a test suite that can be
repeatedly evaluated during regression testing, for example after certain parts
of the code have been refactored. The main problem is to translate the data
structures originating from a solution to a constraint set into executable code
that 1) creates the data structures that are input to the program, and that
2) verifies whether the data structures output by the code correspond to the
expected output. Hence, a concrete test case for a program P looks like

Setup;P;Check

where Setup sets up the initial environment and heap, and Check inspects the
final environment and heap.
4 http://www.graphviz.org/

http://www.graphviz.org/

Towards a Framework for Constraint-Based Test Case Generation 139

(a) Input (b) Output

Fig. 6. Visualization of an input/output pair for the example program

// setup phase
x := new cons(7,nil);
x.tail := x;

// program under test
x := nil;

// check phase
if (x == nil) then {

accept := 1
} else {

accept := 0
}

// setup phase
x := new cons(7,nil);
x.tail := x;

// program under test
if (x == nil) then {

foundnil := 1;
x := nil

} else {
foundnil := 0;
x := nil

}
// check phase

if (x == nil) then {
accept := 1

} else {
accept := 0

}

Fig. 7. Testcase for the original (left) and refactored (right) code of Example 1

Example 1. Consider the simple program x := nil. One test configuration con-
sists of an initial environment E0 = {x � ptr(r1)} and an initial heap H0 =
{r1 � cons(7, ptr(r1))}. The final environment is E1 = {x � nil} and the
final heap H1 = H0. The concrete test case for this test configuration looks like
the code represented on the left of Figure 7. After running this test case, the
variable accept contains 1 iff the test succeeds; otherwise it contains 0.

If the program is changed, e.g. due to refactoring, the existing test case can be
used to test the modified source code (regression testing). If we replace the pro-
gram of Example 1 above by the refactored version if (x == nil) { foundnil
:= 1; x := nil } else { foundnil := 0; x := nil }, the above test case
looks as the code on the right of Figure 7. Observe that we consider neither
garbage, i.e. the parts of the heap H1 that are unreachable from the environ-
ment E1, nor newly introduced variables such as foundnil in the example.

Setup Phase. The inference rules depicted in Figure 8 explain how to construct
the setup code of the test case from an initial environment E and heap H . The
judgement H, ∅ �s E : s expresses that s is the setup code for environment E
and heap H . The set of rules basically defines an algorithm that constructs the
setup code by generating code for one element of the environment at a time.
Note the role of the set A containing the references generated so far.

140 F. Degrave, T. Schrijvers, and W. Vanhoof

(S-Done)

H, A �s ∅ : skip

(S-Int)

H, A �s E : s

H, A �s {l 	→ n} ∪ E : l := n;s

(S-Nil)

H, A �s E : s

H, A �s {l 	→ nil} ∪ E : l := nil;s

(S-NRef)

a �∈ domain(A) (a 	→ cons(vh, vt,)) ∈ H
H, A ∪ {a 	→ l} �s {l.tail : vt} ∪ E : s

H, A �s {l 	→ ptr(a)} ∪ E : l := new cons(vh, nil);s

(S-ORef)

(a 	→ l′) ∈ A H, A �s E : s

H, A �s {l 	→ ptr(a)} ∪ E : l := l′;s

Fig. 8. Setup Phase Algorithm

(C-Done)

H, A �c ∅ : accept := 1

(C-Int)

H, A �c E : s

H, A �c {l 	→ n} ∪ E : if l == n then s else accept := 0

(C-Nil)

H, A �c E : s

H, A �c {l 	→ nil} ∪ E : if l == nil then s else accept := 0

(C-NRef)

a �∈ domain(A) (a 	→ cons(vh, vt,)) ∈ H
H, A ∪ {a 	→ l} �c {l.head : vh, l.tail : vt} ∪ E : s1

l, s1 �n range(A) : s2

H, A �c {l 	→ ptr(a)} ∪ E : if l /= nil then s2 else accept := 0

(C-ORef)

(a 	→ l′) ∈ A H, A �c E : s

H, A �c {l 	→ ptr(a)} ∪ E : if l == l′ then s else accept := 0

(N-Base) l, s �n ∅ : s

(N-Rec)

l, s �n R : s′

l, s �n {l′} ∪ R : if l /= l′ then s′
else accept := 0

Fig. 9. Check Phase Algorithm

Check Phase. Likewise, the algorithm given by the inference rules in Figure 9
explains how to construct the check code of the test case from the final environ-
ment E and heap H . The judgement H, ∅ �c E : s expresses that s is the setup
code for environment E and heap H .

4 Related Work and Conclusion

A large amount of work exists in the field of automatic test case generation for
imperative programs. The arguably simplest method is random generation of
test data [3,8]. In symbolic evaluation techniques (e.g. [5,15,18]), the input pa-
rameters are replaced by symbolic values, in order to derive a symbolic expres-
sion representing the values of a program’s variables. This approach is notably
used in the ATGen tool for structural coverage of Spark ADA programs [17]. In
so-called dynamic approaches, the program is actually executed on input data
that is arbitrarily chosen from a given domain. The input data is then iteratively
refined to obtain a final test input such that the execution follows a chosen path,

Towards a Framework for Constraint-Based Test Case Generation 141

or reaches a chosen statement [14,9]. Another approach is the generation of test
cases based on a formal specification of the program, written for example in the
B language [16,2].

Constraint-based test data generation was originally introduced in [7] in the
context of mutation testing [6] and aims at transforming the automatic test data
generation problem into a CLP problem over finite domains. This approach has
been used in many works, including [12,13,1]. It is also used in two different
testing tools, Godzilla [19] and InKA [11]. The latter notably generates test
data satisfying different criteria such as statement coverage, branches coverage
and MC/DC5. The main advantage of our technique over this work is that it can
be parametrised by any coverage criterion, instead of proposing a limited set of
built-in coverage criteria.

In this paper, we have presented a constraint-based approach for generat-
ing white-box test cases for a small but representative imperative programming
language. Our technique is able to generate complex heap-allocated and pointer-
based data structures without any user intervention. The selection of both execu-
tion paths and concrete test inputs are modelled uniformly as a single constraint
problem. An interesting advantage of our technique over most existing work is
that we use parametrizable CP search strategies within the solver in order to
express (coverage) criteria the generated test suites must satisfy. Our framework
would therefore be able to generate test cases accordingly to any (coverage)
criterion, instead of proposing a predefined set of built-in criteria.

We have proposed two applications of this approach; the first one is to pro-
vide the programmer a visualization of input-output pairs for his program. The
second one is the creation of a concrete test case for checking a refactored ver-
sion of the original program. Our prototype and example programs are available
at http://www.cs.kuleuven.be/~toms/Testing/. In future work, we will in-
vestigate the exact relation between the use of particular search strategies for
constraint solving and the generation of interesting sets of test cases according
to different adequacy criteria. Other topics of further work include extending the
ImpL language towards more involved imperative and object-oriented languages.

References

1. Albert, E., Gómez-Zamalloa, M., Puebla, G.: Test data generation of bytecode by
clp partial evaluation, pp. 4–23 (2009)

2. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F.,
Utting, M., Vacelet, N.: BZ-testing-tools: A tool-set for test generation from
Z and B using constraint logic programming. In: Proceedings of FATES 2002,
pp. 105–120, August 2002, Technical Report, INRIA (2002)

3. Bird, D.L., Munoz, C.U.: Automatic generation of random self-checking test cases.
IBM Syst. J. 22(3), 229–245 (1983)

4. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Software Engineering Journal 9(5), 193–200 (1994)

5 Modified condition/decision coverage [4].

http://www.cs.kuleuven.be/~toms/Testing/

142 F. Degrave, T. Schrijvers, and W. Vanhoof

5. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Softw. Eng. 2(3), 215–222 (1976)

6. DeMillo, R.A.: Test adequacy and program mutation. In: 11th International Con-
ference on Software Engineering, May 1989, pp. 355–356 (1989)

7. DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering 17(9), 900–910 (1991)

8. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Trans. Software
Eng. 10(4), 438–444 (1984)

9. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. 5(1), 63–86 (1996)

10. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37(1-3), 95–138 (1998)

11. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using con-
straint solving techniques. SIGSOFT Softw. Eng. Notes 23(2), 53–62 (1998)

12. Gotlieb, A., Botella, B., Rueher, M.: A clp framework for computing struc-
tural test data. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V.,
Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000.
LNCS (LNAI), vol. 1861, pp. 399–413. Springer, Heidelberg (2000)

13. Gotlieb, A., Denmat, T., Botella, B.: Goal-oriented test data generation for pro-
grams with pointer variables. Computer Software and Applications Conference,
Annual International 1, 449–454 (2005)

14. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated test data generation using an
iterative relaxation method. SIGSOFT Softw. Eng. Notes 23(6), 231–244 (1998)

15. King, J.C.: Symbolic execution and program testing. ACM Commun. 19(7),
385–394 (1976)

16. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and B.
In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 21–40.
Springer, Heidelberg (2002)

17. Meudec, C.: Atgen: automatic test data generation using constraint logic pro-
gramming and symbolic executionatgen. Software Testing Verification and Reli-
ability 11(2), 81–96 (2001)

18. Müller, R.A., Lembeck, C., Kuchen, H.: A symbolic java virtual machine for test
case generation. In: IASTED Conf. on Software Engineering, pp. 365–371 (2004)

19. Offutt, A.J., Jin, Z., Pan, J.: The dynamic domain reduction procedure for test
data generation: Design and algorithms. Software - Practice and Experience 29,
167–193 (1994)

20. Offutt, A.J., Liu, S.: Generating test data from sofl specifications. The Journal of
Systems and Software 49, 49–62 (1999)

21. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java
pathfinder. SIGSOFT Softw. Eng. Notes 29(4), 97–107 (2004)

22. Zhu, H., Hall, P., May, J.: Software unit test coverage and adequacy. ACM Com-
puting Surveys 29(4) (1997)

Using Rewrite Strategies for Testing BUpL Agents

Lăcrămioara Aştefănoaei1, Frank S. de Boer1,2, and M. Birna van Riemsdijk3

1 Centrum voor Wiskunde en Informatica (CWI), P. O. Box 94079,
1090 GB Amsterdam, The Netherlands

Tel.: +31 (0)20 592 4368
L.Astefanoaei@cwi.nl

2 LIACS - Leiden University, The Netherlands
3 TU, Delft, The Netherlands

Abstract. In this paper we focus on the problem of testing agent programs writ-
ten in BUpL, an executable, high-level modelling agent language. Our approach
consists of two main steps. We first define a formal language for the specification
of test cases with respect to BUpL. We then implement test cases written in the
formal language by means of a general method based on rewrite strategies. Test-
ing an agent program with respect to a given test case corresponds to strategically
executing the rewrite theory associated to the agent with respect to the strategy
implementing the test case.

Keywords: Agent Languages, Testing, Rewriting, Strategies.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that environment
in order to meet its design objectives [12], or dynamic goals. An important line of
research in the agent systems field is the design of agent languages [3] with emphasis
on the use of formal methods. The guiding idea is that agent-specific concepts such as
beliefs (representing the environment and possibly other data the agent has to store),
goals (representing the desired state of the environment), and plans (specifying which
sequences of actions and possibly compositions of other plans to execute in order to
reach the goals) facilitate the programming of agents. Along these lines, we take as
case of study in this paper a simple variant of 3APL [7], the agent language BUpL,
which is introduced in [1]. There the authors advocate the use of the Maude language
[4] and its supporting tools for prototyping, executing, and verifying BUpL agents. One
of the main advantages of Maude is that it provides a single framework in which the
use of a wide range of formal methods is facilitated. Namely, being a rewrite-based
framework, it makes it is easy to prototype modelling languages with an operational
semantics by means of rewrite theories [8], and it provides mechanisms for verifying
programs and language definitions by means of LTL model-checking [6]. Furthermore,
the inherent reflective feature of rewriting logic (and of Maude, in particular) offers an
alternative to model-checking by means of rewrite strategies.

In this paper, we extend the results from [1]. More precisely, we investigate the prob-
lem whether a BUpL agent is conformant with respect to a given specification, however,

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 143–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

144 L. Aştefănoaei, F.S. de Boer, and M.B. van Riemsdijk

from a different perspective. We understand conformance as the refinement relation in
[1], that is, it holds when the set of traces of a BUpL agent is included in the set of traces
of the specification. In a straight-forward approach, one solution is to look at each ex-
ecution trace of the agent and to check whether it is also a trace of the specification.
However, this is often practically unfeasible due to large (possibly infinite) sets of agent
executions. A more clever way is to consider the trace inclusion problem in the oppo-
site direction, that is, to look first at the traces of the specification and to check whether
these are also traces of the agent. Usually, “check” is achieved by model-checking or
inductive verification. However, both approaches have their disadvantages: with model-
checking one might run into the state explosion problem, while inductive verification is
not automatic. An orthogonal technique is to use testing.

In the literature, the very basic idea behind testing is that it aims at showing that
the intended and the actual behaviour of a system differ by generating and checking
individual executions. Testing object-oriented software has been extensively researched
and there are many pointers in the literature with respect to manual and automated,
partition and random testing, test case generation, criteria for test selection (please see
[9] for an overview). In an agent-oriented setup, there are less references. A few pointers
are [13,10] for developing test units from different agent methodologies, however the
direction is orthogonal to the one we consider.

Our testing methodology consists of the following steps. We see the traces of the
specification as the basic constructions for test cases. Since specifications are meant to
be “small”, generating test cases is a much simpler task than exhaustively exploring
possible agent executions. Either represented by regular expressions or by finite transi-
tion systems, specifications can be used to generate test cases by model-checking, for
example. Traces are deterministic, and since we build test cases on top of traces, also
test cases are deterministic, in contrast to specifications. This is an important feature
which makes testing an efficient approach. We define test cases as pairs of tests on ac-
tions and tests on facts. The tests on actions are finite sequences of pairs (a, R) where a
is the action to be executed and R is the set of actions which are allowed to be executed
at a given state. Whenever the agent cannot execute the action specified by the test on
actions, or whenever the agent can execute a forbidden action, the corresponding trace
represents a nonconformant execution. Tests on facts are temporal formulae that are
checked on the traces generated with respect to tests on actions. They can be further
used to detect “bad” executions.

Given that we define a formal language for expressing what a test case is, we then
describe how to implement test cases. Namely, we provide a strategy-based mechanism
to define test drivers. In a rewrite-based framework, strategies are meant to control non-
deterministic executions by instrumenting the rewrite rules at a meta-level. Usually, in
concrete implementations the nondeterminism is reduced by means of scheduling poli-
cies. While testing a concrete implementation, e.g., a multi-threaded Java application,
there is no obvious distinction between testing the program itself and testing the default
scheduling mechanism of the threads. We emphasise that the language we consider,
BUpL, is a modelling language, where the nondeterminism in choices among plans,
exception handling mechanisms and internal actions is a main aspect we deal with.

Using Rewrite Strategies for Testing BUpL Agents 145

Strategies give a great degree of flexibility which becomes important when the interest
is in verification. For example, in our case, in order to analyse or experiment with a
new testing formalism one only needs to change the strategy instead of changing the
semantics of the agent language or the agent program itself.

Though test cases are deterministic, test drivers need to search all intermediary states
that can be reached by nondeterministically executing internal BUpL computations.
Defining test drivers by means of strategies is an elegant solution to the implicit non-
determinism in BUpL. However, it does not directly solve the problem of possibly di-
vergent executions of internal steps. To avoid some divergent computations, we need to
impose restrictions on the application of the strategies. This makes it less intuitive that
test drivers are faithfully implementing test cases, and thus the last issue we focus upon
is the correctness of our mapping between test cases and test drivers.

2 BUpL Agents by Example

In this section, we briefly present the syntax and semantics of BUpL for ease of ref-
erence and completeness. A BUpL agent has an initial belief base and an initial plan.
A belief base is a collection of ground (first-order) atomic formulae which we refer
to as beliefs. The agent is supposed to execute its initial plan, which is a sequential
composition and/or a nondeterministic choice of actions or composed plans. The se-
mantics of actions is defined using pre and post conditions. An action can be executed
if the precondition of the action matches the belief base. The belief base is then updated
by adding or removing the elements specified in the postcondition. When, on the con-
trary, the precondition does not match we say the execution of the action (or the plan of
which it is a part) fails. In such a case repair rules are applied (if any), and this results
in replacing the plan that failed.

Syntactically, a BUpL agent is a tuple (B0, p0, A, P , R), where B0 is the initial
belief base, p0 is the initial plan, A is the set of internal and observable actions, P are
the plans, and R are the repair rules. The initial belief base and plan form the initial
mental state of the agent. To illustrate the syntax, we take as an example a BUpL agent
that solves the Hanoi towers problem. We represent blocks by natural numbers. We
assume that the initial configuration is of three blocks arranged on a table as follows:
blocks 1 and 2 are on the table (0), and 3 is on top of 1. The agent has to rearrange them
such that they form the tower 321 (1 is on 0, 2 on top of 1 and 3 on top of 2). The only
action the agent can execute is move(x, y, z) to move block x from block y onto z, if x
and z are clear. Blocks can always be moved to the table, i.e., the table is always clear.

B0 = { on(3, 1), on(1, 0), on(2, 0), clear(2), clear(3), clear(0) }
p0 = build
A = { move(x, y, z) = (on(x, y) ∧ clear(x) ∧ clear(z), {on(x, z), ¬on(x, y), ¬clear(z))} }
P = { build = move(2, 0, 1); move(3, 0, 2) }
R = { on(x, y) ← move(x, y, 0); build }

Fig. 1. A BUpL Toy Agent

146 L. Aştefănoaei, F.S. de Boer, and M.B. van Riemsdijk

The BUpL agent from Figure 1 is modelled such that it illustrates the use of repair
rules: we explicitly mimic a failure by intentionally writing a plan to move block 2
onto 1. This is not possible, since block 3 is already on top of 1. Similar scenarios
can easily arise in multi-agent systems: imagine that initially 3 is on the table, and the
agent decides to move 2 onto 1; imagine also that another agent comes and moves 3
on top of 1, thus moving 2 onto 1 will fail. The failure is handled by the repair rule
on(x, y) ← move(x, y, 0); build. Choosing [x/3][y/1] as a matcher enables the agent
to move block 3 onto the table and then the initial plan can be restarted.

We shortly describe (please see [1] for more details) the BUpL operational semantics.
The states of BUpL agents are pairs of belief bases and plans, symbolically denoted by
(B, p). These BUpL states change with respect to the transition rules in Figure 2.

p = (a; p′) a = (ψ, ξ) ∈ A θ ∈ Sols(B |= ψ)

(B, p)
(τ/aθ)−→ (B � ξθ, p′θ)

((i/o)-act)

(B, (p1 + p2))
τ→ (B, pi)

(sumi, i ∈ {1, 2})

(B, a; p) � a→ φ ← p′ ∈ R θ ∈ Sols(B |= φ)

(B, p)
τ→ (B, p′θ)

(fail-act)

π(x1, . . . , xn) := p

(B, π(t1, . . . , tn))
τ→ (B, p(t1, . . . , tn))

(π)

Fig. 2. BUpL Rules

The rules (i-act) and (o-act)1 capture the effects of performing action a (either in-
ternal or observable), which is the head of the current plan. These rules basically say
that for a given as a pair of a precondition (i.e., a first order formula) ψ and a post-
condition (i.e., a set of literals) ξ, if θ is a solution (i.e., a substitution) such that ψ
matches2 B (i.e., B |= ψθ), then the current mental state changes to a new one, where
the belief base is updated by adding/removing the positive/negative literals from ξ. It is
also the case that the current plan becomes p′θ, that is, the “tail” of the previous plan
p instantiated with respect to θ. The transition rule (fail-act) handles exceptions. If
the head of the current plan is an action that cannot be executed (the set of solutions
for the matching problem is empty) and if there is a repair rule φ ← p′ such that the
new matching problem B |= φ has a solution θ then the plan is replaced by p′θ. The
transition rule (π) implements “plan calls”. If the abstract plan π(x1, . . . , xn) defined
as p(x1, . . . , xn) is instantiated with the terms t1, . . . , tn then the current plan becomes
p(t1, . . . , tn) which stands for p[x1/t1] . . . [xn/tn]. The transition rule (sumi) replaces
a choice between two plans by either one of them.

1 For simplicity, they are denoted by the same transition ((i/o)-act). Syntactically, the only
difference between them is that the label for i-act is τ .

2 Belief bases are sets of ground positive literals, thus we solve a generalisation of the matching
and not unification problem.

Using Rewrite Strategies for Testing BUpL Agents 147

2.1 Prototyping BUpL Agents as Rewrite Theories

In [1] it is shown how the operational semantics of BUpL can be implemented and
executed as a rewrite theory in Maude. The main advantage of using Maude for this
is that the translation of operational semantics into Maude is direct [11], ensuring a
faithful implementation. Thanks to this, it is relatively easy to experiment with different
kinds of semantics, making Maude suitable for rapid prototyping.

We do not explain here the way BUpL is prototyped in Maude but we briefly il-
lustrate at a more generic level how BUpL transition rules map into rewrite rules. A
rewriting logic specification or rewrite theory is a tuple 〈Σ, E, R〉, where Σ is a sig-
nature consisting of sorts (types) and function symbols, E is a set of equations and R
is a set of rewrite rules. The signature describes the terms that form the state of the
system. These terms can be rewritten using equations and rewrite rules. Rewrite rules
are used to model the dynamics of the system, i.e., they describe transitions between
states. Equations form the functional part of a rewrite theory, and are used to reduce
terms to their “normal form” before they are rewritten using rewrite rules. The appli-
cation of rewrite rules is intrinsically nondeterministic, which makes rewriting logic a
good candidate for modelling concurrency.

In our case, the signature (the set of terms) maps the mental states of the agents and
the rewrite rules map BUpL transitions, thus they describe how BUpL mental states
change. There is a natural encoding of transition rules as conditional rewrite rules. The
general mathematical format of a conditional rewrite rule is as follows:

l : t→ t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

It basically says that l is the label of the rewrite rule t → t′ which is used to “rewrite”
the term t to t′ when the conditions on t are satisfied. Such conditions can be either
equations like ui = vi, memberships like wj : sj (that is, wj is of type sj) or other
rewrites like pk → qk. For example, the corresponding rewrite rule for transition (act)
in the case of observable actions is:

o-act : (B, p)→ (update(B, ξθ), p′θ) if p = o-a; p′ ∧ o-a = (ψ, ξ) ∧
θ = match(B, ψ)∧ o-a : Ao

where Ao denotes the sort of observable actions. As it will be clear in the next sections,
we need the distinction between internal and observable actions for testing, in order to
have a more expressive framework.

All other transition rules are encoded as rewrite rules in a similar manner and we do
not further explain them. In what follows, we only need to remember that each transition
has a corresponding rewrite rule labelled with the same name.

2.2 Meta-controlling BUpL Agents with Rewrite Strategies

In this section we make a short overview of the strategy language presented in [5] with
illustrations of how strategies can be used to control the execution of BUpL agents.
We denote the rewrite theory that implements the operational semantics of BUpL by

148 L. Aştefănoaei, F.S. de Boer, and M.B. van Riemsdijk

T . Given a BUpL agent, we denote by ms terms corresponding to BUpL mental states
(B, p). These terms can be rewritten by the rewrite rules from T . We further denote by
S the strategy language from [5]. The strategy language S can be viewed as a transfor-
mation of the rewrite theory T into S(T) such that the latter represents the execution
of T in a controlled way. Given a strategy expression E in the strategy language S, the
application of E to ms is denoted by E@ms. The semantics of E@ms is the set of
successors which result by rewriting ms using the rewrite rules from S(T).

The simplest strategies we can define in the strategy language S are the constants idle
and fail: idle @ ms = {ms}, fail @ ms = ∅. Another basic strategy consists of applying
to a BUpL agent state ms a rule identified by one of the labels: i-act, o-act, fail-act, or
sum, possibly with instantiating some variables appearing in the rule. The semantics of
l@ms, where l is one of the above rule labels, is the set of all terms to which ms rewrites
in one step using the rule labelled l. For example, applying the strategy o-act to the ini-
tial state (B0, build) of the BUpL builder from Figure 1 has as result ∅ because initially
the only possible observable action move(2, 0, 1) fails. However, applying the strategy
fail-act has as result the set {(B0, (move(3, 1, 0); build)), (B0, (move(1, 0, 0); build)),
(B0, (move(2, 0, 0); build))} , thus the set of all possible states reflecting a solution
to the matching problem B0 |= on(x, y). Of course, some of these resulting states are
meaningless in the sense that there is no point in moving a block from the table to the
table. A much more adequate strategy is fail-act[θ ← [x/3][y/1]], that is, to explicitly
give the value we are interested in to the variable θ which appears in the rewrite rule
fail-act. This results in a set containing only the state (B0, (move(3, 1, 0); build)).

Since matching is one of the basic steps that take place when applying a rule, another
strategy one can define is match T s.t. C. When applied to a given state term ms, the
result of this strategy is {ms} if ms matches the pattern T and the condition C is sat-
isfied with the substitutions for the variables obtained in the matching, otherwise ∅. For
example, applying match (B, p) s.t. on(2, 1) ∈ B to (B0, build) has as result ∅ because
on(2, 1) is not in B0. The language S allows further strategies definitions by combining
them under the usual regular expression constructions like concatenation (“;”), union
(“|”) and iteration (“∗”, “+”). Thus, given E, E′ as already defined strategies, we have
that (E; E′)@ms = E′@(E@ms), meaning that E′ is applied to the result of apply-
ing E to ms. The strategy (E | E′)@ms defined as (E@ms) ∪ (E′@ms) means that

both E and E′ are applied to ms. The strategy E+@ms is defined as
⋃

i≥1
(Ei@ms)

with E1 = E and En = En−1; E, E∗ = idle | E+, thus it recursively re-applies
itself. It is also possible to define if-then-else combinators. The strategy E ? E′ : E′′

defined as (if (E@ms) = ∅ then E′@(E@ms) else E′′@ms fi) has the meaning that if,
when evaluated in a given state term, the strategy E is successful then the strategy E′

is evaluated in the resulting states, otherwise E′′ is evaluated in the initial state. The
if-then-else combinator is further used to define the following strategies. The strategy
not(E) = E ? fail : idle which reverses the result of applying E. The strategy try(E)
= E ? idle : idle changes the state term if the evaluation of E is successful, and if not,
returns the initial state. The strategy test(E) = not(E) ? fail : idle checks the success
(resp. the failure) result of E but it does not change the initial state. The strategy E! =
E∗ ; not(E) “repeats until the end”, that is, it applies E until no longer possible.

Using Rewrite Strategies for Testing BUpL Agents 149

3 Formalising Test Cases

Our test case format is based on two main concepts: observable actions and facts as
appearing in belief bases. Our test case format is a kind of black box testing, aimed at
testing the observable behaviour of agents. For this reason, we have made a distinction
between internal and observable actions. The idea is that the execution of observable
actions is visible from outside the agent. Observable actions can be actions the agent
executes in the environment in which it operates. In the sequel, we will sometimes omit
the adjective “observable” if it is clear from the context.

We introduce a general test case format that allows to express that certain sequences
of observable actions are executed, and that the belief bases of the corresponding trace
satisfy certain properties. That is, we consider that a test case T is a pair consisting of
a test on actions Ta and a test on facts Tf . Tests on actions are finite sequences of pairs
(a0, R0); . . . ; (an, Rn). Each pair (ai, Ri) consists of a ground observable action ai to
be executed and a set of actions Ri which are allowed to be executed from the current
state. The idea is that a test on actions controls the execution of the agent in the sense
that only those actions are executed that are in conformance with the action expression.
Furthermore, the sets R can be used to identify “bad” traces. If, at a certain state of
execution, the agent can perform a forbidden action, i.e., which is not allowed by the
test case, then the corresponding trace is seen as a counter-example. If no restriction
is imposed on the enabled actions we simply use the notation a instead of the pair
(a, R). It is then the case that a counter-example can be generated when the agent
cannot execute the action indicated by the test. Tests on actions can be derived from
a given specification by means of model-checking, for example. We stress that though
the specification may be nondeterministic, tests on actions should be deterministic. This
is crucial for reducing the state space and makes this approach essentially different
from search techniques since it is more efficient. Tests on facts are specified like LTL
formulae. For ease of presentation, we work only with a subset of basic formulae:

Tf ::= true | fact | ¬fact | �(¬© true → fact) | fact ∧ fact | �fact | ♦fact

with fact being a ground atomic formula. Observe that the syntax allows also test cases
consisting of tests on actions only, (Ta, true) which we write shortly as Ta. The LTL
formula �(¬© true → fact) can be used to check if fact holds in the last states, that
is, in the states reachable after executing the test on actions. Tests on facts are meant to
provide additional counter-examples besides those reflecting forbidden actions. While
tests on actions can be automatically derived from the specification (where the tester
needs only to choose adequate test cases), using tests on facts requires more effort
and intuition from the tester. For illustration purposes, we provide an example of an
adequate test on facts by the end of the paper.

To define formally when a BUpL agent satisfies a test we use induction on the struc-
ture of test cases. We denote the application of a test T on an initial configuration (an
initial BUpL mental state) ms0 as T @ms0. The (set) semantics is defined such that it
yields the set of final states reachable through executing the agent restricted by the test,
i.e., only those actions are executed that comply with the test. This means that an agent

150 L. Aştefănoaei, F.S. de Boer, and M.B. van Riemsdijk

with initial mental state ms0 satisfies a test T if T @ms0
= ∅, in which case we say
that a test T is successful.

T @ms0 =

⎧⎪⎪⎨⎪⎪⎩
{ms | ms0

a⇒ ms}, T =(a, R) ∧R(ms0) ⊆ R
∅, T =(a, R) ∧R(ms0)
⊆ R
T 2

a @(T 1
a @ms0), T =T 1

a ; T 2
a

{ms | ms ∈ Ta@ms0 ∧ΠTa
ms0

(ms) |= Tf}, T =(Ta, Tf)

The arrow
a⇒ stands for ⇒ a→⇒, where ⇒ denotes the reflexive and transitive clo-

sure of
τ→, and R(ms) denotes the set of actions ready to be executed from ms, i.e.,

R(ms) = {a | ∃ms′ s.t. ms
a⇒ ms′}. The idea behind the definition of the semantics of

(a, R)@ms0 is that the test should be successful for ms0 if action a can be executed in
ms0, while the enabled actions from the states reached by doing a should be a subset
of R (defined by R(ms) ⊆ R). The result is then the set of mental states resulting from
the execution of a, as defined by {ms | ms0

a⇒ ms}. We need to keep those mental
states to allow a compositional definition of the semantics. In particular, when defining
the semantics of T 1

a ; T 2
a we need the mental states resulting from applying the test T 1

a

, since those are the mental states in which we then apply the test T 2
a , as defined by

T 2
a @(T 1

a @ms0). In the definition of the semantics of (Ta, Tf), by abuse of notation,
we use ΠTa

ms0
(ms) to denote the paths from ms0 to ms which are taken while exe-

cuting Ta. These paths are with respect to observable actions, that is, we abstract from
intermediary states reached by doing τ steps. More specifically, each state in a path is
reached from the previous by executing an observable action and then executing a num-
ber of τ steps until an observable action is again about to be executed (or no transitions
are possible). In the initial state, first τ steps can be executed before the first observable
action is executed. Tests on facts are thus checked in states resulting from the execution
of an observable action and as many τ steps as possible. We call these states stable.
The definition says that the result of applying the test (Ta, Tf) is a subset of Ta@ms0,
namely, those states ms which are reachable after executing Ta and the corresponding
path LTL satisfies Tf .

Our language is such that tests on facts can be omitted. By design, they are meant to
provide more expressivity and to give more freedom to the tester. One might raise the
issue that inspecting facts classifies our method as white-box testing. However, since
facts can be deduced from the effects of actions, our method lies at the boundary be-
tween black-box and gray-box testing. In order to define test cases, there is no need to
understand the way BUpL agents work (i.e., the internal mechanism for updating states
or the structure of repair rules and plans), but only to look at basic actions, which we
see as the interface of BUpL agents.

4 Using Rewrite Strategies to Define Test Drivers

In this section we describe how to define test drivers for test cases by means of the
strategy language S. To give some intuition and motivation, we consider the way one
would implement the basic test case a. By definition, the application of this test case to
a BUpL mental state ms is the set of all mental states which can be reached from ms by

Using Rewrite Strategies for Testing BUpL Agents 151

executing the observable action a after eventually executing τ steps corresponding to
internal actions, applying repair rules or making choices, i.e., after computing closure
sets of particular types of rewrite rules. It thus represents a strategic rewriting of ms.
We are only interested in those rewritings which finally make it possible to execute a.
To achieve this at the object-level means to have a procedure implementing the com-
putation of the closure sets. However, the semantics of the application of the test a is
independent of the computation of closure sets. Following [5], we promote the design
principle that automated deduction methods (e.g., closure sets of τ steps) should be
specified declaratively as nondeterministic sets of inference rules and not procedurally.
Depending on the application, specific algorithms for implementing the specifications
should be given as strategies to apply the inference rules. This has the implication that
there is a clear separation between execution (by rewriting) at the object-level and con-
trol (of rewriting) at the meta-level.

In what follows, for ease of reference, we denote by S (resp. T) the set of strategies
(tests) and by s the mapping from tests to test drivers, i.e., s : T → S. Since the
definition of tests is inductive, so is the definition of s. We first consider the test drivers
for tests on actions:

s(T) =
{

allow(R) ; do(a), T = (a, R)
s(T1) ; s(T2), T = T1 ; T2

thus sequences of tests map to sequences of strategies. We describe the basic test driver
do(a) in more detail. Observe that though tests on actions are deterministic, there are
still possibly many executions due to internal actions, choices in plans and repair rules.
Thus the test driver must search “all” possible intermediary states which can be reached
by doing τ steps. By means of strategies, this is an easy process. By definition, the
transitive closure of τ steps, ⇒, is

τ→
∗
, with τ being one of the label sum, i-act, or

fail-act and the corresponding being maximal, in the sense that no τ steps are possible
from the last state. Thus, in a naive approach, we could simply consider the following
test driver:

tauClosure = (sum | i-act | fail-act)!

which is clearly implementing ⇒. However, though the order of application of the τ
steps does not matter when the computation paths are finite, this is no longer the case
when considering infinite paths. Consider an extraneous agent program with a plan
p = i-a + i-b where i-a is always enabled and i-b, on the contrary, is never enabled and
a repair rule (true ← i-b) which says that whenever there is a failure repair it by execut-
ing i-b. Applying tauClosure as defined above we obtain two solutions corresponding
to a finite path reflecting the choice for executing i-a and a divergent path reflecting the
choice for executing i-b then failing all the time. As long as we are only interested in
the “first” solution, then tauClosure is fine, however, if we want to generate also the
“next” solution then the computation will not terminate. From this we conclude that
we may lose termination if any application order is allowed while we may be able to
achieve it if we impose a certain order. Since one source of non-termination is mainly
in a sort of “unfairness” with regard to enabled internal actions, a much more adequate
test driver is implemented if we enforce the execution of internal actions after eventually
applying the sequence (sum; fail-act). That is, tauClosure becomes:

152 L. Aştefănoaei, F.S. de Boer, and M.B. van Riemsdijk

tauClosure = (try(sum); try(fail-act); i-act)!; try(sum); try(fail-act)

We make a few observations with respect to the new definition of tauClosure. First,
since one might expect multiple sum and fail applications before an internal action is
executed, it is no longer immediately clear that tauClosure faithfully implements ⇒.
We present a correctness proof by the end of the section. Second, because we use the
sequential strategy, we need to surround both sum and fail-act by try blocks. Otherwise,
if either one of them were not applicable, i.e., the current plan is not a sum and the
“head” action is enabled, then the strategy (sum ; fail-act; i-act) fails which is not what
we want. By means of the parametrised strategy try the initial state is preserved in the
case that sum or fail-act fails. Third, we order fail-act after sum because if we were to
use the strategy (try(sum | fail-act) ; i-act) and the current plan is a sum of two failing
plans, then the whole strategy fails though there might have been possible to replace the
failing plans with a “good” plan by applying fail-act. Fourth, we require that repair rules
are of a particular format, that is φ ← p with p not containing the sum operator. This
is in order to avoid situations where the application of fail-act entails the application
of sum which entails the application of fail-act and so forth (that is, non-terminating
strategies (sum ; fail-act)!). Such format does not result in the loss of expressivity since
having one repair rule φ ← p1 + p2 is equivalent to having two repair rules φ ← pi,
with i ∈ {1, 2}. Fifth, the use of strategies can be tricky. Though one might be tempted
to use the strategy try(sum ; fail-act) instead of try(sum) ; try(fail-act), the first one is
“wrong”, meaning that if fail-act is not applicable after sum then the original state is
returned instead of the one reached by applying sum. The last observation is with respect
to the normalisation strategy. Since “!” returns the state previous to the one that failed,
we need to apply again try(sum); try(fail-act) to make sure that from the resulting state
no τ steps can be taken.

By means of tauClosure, the definition of do(a) is straight-forward:

do(a) = tauClosure; o-act[o-a ← a]; tauClosure

which corresponds to the definition of
a⇒. We note that tauClosure is no longer ap-

plicable when i-act fails after sum and fail-act have been applied. This means that the
only possible scenario is that the head of the current plan is an observable action. If this
action is in fact a, then o-act[o-a← a] is successful, otherwise it fails.

The definition of the strategy allow(R) makes use of the match construction:

allow(R) = match ms s.t. ready(ms) ⊆ R

which means that allow(R) succeeds if the current mental state satisfies the condition
ready(ms) ⊆ R, where ready is a function defined on BUpL mental states. This func-
tion is implemented such that it returns the set of actions ready to be executed. For
simplicity, we do not detail its implementation but briefly describe it. Recall that BUpL
mental states are pairs of belief bases and plans. The function ready reasons on possible
cases. If the current plan is a sum of plans then ready is called recursively. Otherwise,
depending on the action a in the head of the plan, either a is enabled and so the function
ready returns a, or a fails and the function ready recursively considers all the plans that
can substitute the current one, that is, it recursively analyses the active repair rules.

Using Rewrite Strategies for Testing BUpL Agents 153

So far, we have focused on tests on actions Ta. We focus now on the general test
cases(Ta, Tf). We begin by first considering the test driver implementing the test case
for checking whether fact is in the last states reachable by executing Ta, i.e., s((Ta,
�(¬© true → fact))). For this, we consider an auxiliary strategy check(fact):

check(fact) = match(B, p) s.t. fact ∈ B

which is successful if fact is in the belief base from the current state. With this strategy
we can define s((Ta, �(¬©true → fact))) simply as s(Ta); check(fact). We can fur-
ther use check(fact) for defining test drivers working with¬fact as not(check(fact))
and with fact1 ∧ fact2 as check(fact1); check(fact2). The cases with respect to the
temporal formulae are defined by case analysis. We present only the implementation of
the non-trivial ones:

s(((a, R); Ta, ♦fact)) = check(fact) ? s((a, R); Ta) : s((a, R)) ; s((Ta, ♦fact))
s(((a, R); Ta, �fact)) = check(fact) ; s((a, R)) ; s((Ta, �fact))

which illustrates that the main difference between them is that for ♦fact we stop check-
ing fact as soon as we reached a state where fact is in the belief base; from this state
we continue with only executing the test on actions. However, for �fact we check until
the end.

Observe that the semantics of the testing language was defined such that we have
a separation between implementing test drivers and reporting the results. This is im-
portant since running a test driver should be orthogonal to the interpretation and the
analysis of the possible output. One plausible and intuitive interpretation is the follow-
ing one. When the test driver is successful the tester has the confirmation that the test
case corresponds to a “good” trace in the agent program. When the test driver fails,
the tester can further define new strategies to obtain more information. Consider, as
an example, a strategy returning the states previous to the failure. More sophisticated
implementations like gathering information about traces instead of states are left to the
imagination of the reader. These traces correspond to the shortest counter-examples.
This follows from the semantics of the testing language. At each action execution a
check is performed whether forbidden actions are possible. If this is the case, then the
test fails.

Assuming that we fix an interpretation of the results as above, we proceed by showing
that test drivers are partially correct and complete with respect to the definition of test
cases.

Definition 1. Given a test case T and the corresponding test driver s(T), we say that
the application of s(T) is correct, if, on the one hand, successful executions of the test
driver are successful applications of the test case, and if, on the other hand, the test
driver fails then test case also fails. Similarly, s is complete if (un)successful applica-
tions of the test case T are (un)successful executions of the test driver s(T).

Before stating the main result, we show two helpful lemmas. Recall that, at each repeti-
tion step, the strategy tauClosure tries to apply sum and fail-act only once. Intuitively,
this is sufficient for the following reason. Let us first consider fail-act: if, on the one
hand, after the application of fail-act no action can take place then applying fail-act
again can do no good, since nothing changed; if, on the other hand, after applying once

154 L. Aştefănoaei, F.S. de Boer, and M.B. van Riemsdijk

fail-act the first action of the new plan can be executed then we are done, the faulty plan
has been repaired. From this, we have the following lemma:

Lemma 1. The strategy try(fail-act) is idempotent, i.e., for any ms try(fail-act)2 @ms
= try(fail-act) @ms.

Proof. Let Res = try(fail-act) @ms. Any ms′ ∈ Res different from ms is the result of
applying the rewrite rule fail-act so it has the form (B, pθ), where φ ← p ∈ R (the set
of repair rules) and θ ∈ Sols(B |= φ). If fail-act were again applicable for such ms′,
the resulting term ms′′ is also of the same form sinceR is fixed and B does not change.
Thus, any ms′′ is already an element of Res and so try(fail-act) @Res = Res. ��

An analogous reasoning works also for sum. Taking into account that the “+” operator
is commutative and associative and that the “;” operator is associative, a normal form
(i.e., sum of plans with only sequence operators) always exists. Since sum is applied to
states where the plans are reduced to their normal form we have that states with basic
plans will always be in the result of trying to apply sum more than once.

Lemma 2. Given a mental state ms we have that sum! @ms ⊆ try(sum) @ms.

Proof. We only consider the interesting case where sum is applicable, that is, when

try(sum) @ms = sum @ms. Let ms = (B, p) where p has been reduced to the form
n∑

i=1

pi

and pi are basic plans (composed by only the “;” operator). Since sum is commutative,

we have that sum @ms = {(B,

k∑
j=1

pij) | ∀k, ij ∈ {1, . . . , n}}, i.e., any possible

combination of pi. On the other hand, sum! @ms = {(B, pi) | i ∈ {1, . . . , n}} which
is clearly included in sum @ms. ��

Theorem 1 (Partial Correctness & Completeness). Given ms a mental state, T a
test case we have that s(T)@ms = T @ms.

Proof. We consider only the strategy do. The proof for the compositions follows from
the definitions of the strategies. We proceed, by showing, as usually, a double inclusion.
“⊆”: By the definition of do(a) we have that the result of applying it on ms is:

Res = tauClosure @ (o-act[o-a ← a] @ tauClosure @ ms︸ ︷︷ ︸
Res′

)

︸ ︷︷ ︸
Res′′

If the normalisation strategy “!” from the definition of tauClosure terminates, then by
definition, there exists an i ≥ 0 s.t.:

Resi = i-act @ (try(fail-act) @ (try(sum)@Resi−1))

and for any msi ∈ Resi we have that i-act @ (try(fail-act) @ (try(sum) @msi)) is
empty (1). Thus, we can construct the computation:

ms0
τ→

∗
ms1

τ→
∗

. . .
τ→

∗
msi−1

τ→
∗

msi

Using Rewrite Strategies for Testing BUpL Agents 155

where we take msj ∈ Resj with j ≤ i, ms0 as ms and ∗ denotes at most 3 τ steps,
corresponding to the 3 possible rule labels for τ steps. By the definition of tauClosure,
Res′ is the union of try(fail-act) @ (try(sum)@Resi). This implies that any ms′ ∈ Res′

is obtained from a msi after eventually applying sum and fail-act. From (1) we have
that from ms′ it is not possible to apply i-act. Furthermore, by the lemmas, whatever
state can be reached from ms′ by sum and fail-act is already in Res′. Thus, ms ⇒ ms′.
By definition, Res′′ is empty iff o-act[o-a← a] @ms′ fails for any element ms′ ∈ Res′.
That is, if Res′′ is empty then ms
 a⇒ ms′ and thus a@ms returns the empty set.

If Res′′ were not empty, then for any element ms′′ contained in it we have that
ms′

a→ ms′′, thus ms ⇒ a→ ms′′. Similarly, for any element msf ∈ Res we have
ms′′ ⇒ msf and from this we can conclude that ms

a⇒ msf , thus msf is also an
element of a@ms.
“⊇”: By the definition of ⇒ we have that, if no τ divergence, then there exists a k ≥ 0

s.t. ms
τk

→ ms1 and ms1
→. The trace τk can be divided in m packages of the form:

σm = (sumim ; fail-actjm ; i-actlm)m,

with
∑

m(im + jm + lm)∗m = k. By the lemmas we have that sumim ; fail-actjm ; i-act
is obtained by applying the strategy try(sum); try(fail-act); i-act (2). As for i-actlm−1, it
is obtained by (try(sum); try(fail-act); i-act)lm−1 (3). If successive applications of i-act
are possible then neither fail-act nor sum is applicable (at most one of i-act, fail-act,
sum is enabled at a time) thus trying to applying them is harmless, i.e., does not change
the state. Repeating m times the same argument from (2) + (3) and taking into account
that we have that sequences σm where lm is 0 are mapped to try(sum); try(fail-act) we
can derive that ms1 ∈ tauClosure@ms (4).

If ms1
a→ ms′, then ms′ ∈ o-act[o-a ← a] @ms1. Applying a similar reasoning

for ms′ we obtain (4’): ms2 ∈ tauClosure@ms′. In consequence, we have that if
ms

a⇒ ms2 then also ms2 ∈ do(a)@ms.
If ms1
 a→ ms′, then o-act[o-a← a] @ms1 fails, thus this is also the case for do(a).

��

Observe that in our proof we consider only finite computations. Thus, infinite computa-
tions do not violate the result. Since τ divergence is undecidable for BUpL agents, we
cannot provide conditions such that test drivers terminate for all test cases. The most
we can do, with respect to divergent computations, is to state the following proposition
as a consequence of the above result:

Corollary 1 (Divergence). If the application of s(T) diverges then so does T .

5 A Running Example

The BUpL builder described in Figure 1 has a small number of states. Thus, verification
by model-checking is feasible. We provide now an illustration of the utility of testing.
Consider the agent from Figure 33. It is meant to implement the specification “the agent
should always construct towers, the order of the blocks is not relevant, however each

3 The code presents only the constructions which are additional to the ones from Figure 1.

156 L. Aştefănoaei, F.S. de Boer, and M.B. van Riemsdijk

A = { incLength(x) = (length(x), { ¬length(x), length(x + 1) }),
addBlock(x) = (¬on(x, 0), { on(x, 0), clear(x) }),
setMax(x, y) = (max(y), { ¬max(y),max(x) }),
finish(x, y) = (¬done(x) ∧ done(y), { ¬(done(y)), done(x) }) }

P = { build(n, c) = move(c − n, 0, c − n − 1); incLength(c − n − 1); build(n − 1, c)
generate(x,y) = addBlock(x); generate(x− 1, y),
p0(x, y) = setMax(x, y); generate(x,y)) }

R = { length(x)∧ max(y)∧ (x ≤ y) ← build(y, y + x − 1),
length(x)∧ max(x)∧ done(y) ∧ (x ≥ y) ← finish(x, y);⊥,
max(x)∧ done(x) ← setMax(x + 2, x), generate(x + 2, x) }

Fig. 3. A BUpL Builder with Infinite State Space

tower should use more blocks than the previous, and additionally, the length of the
towers must be an even number”4 (for example, 21, 4321 are “well-formed” towers).

The agent is designed such that it always builds a higher tower. The example can be
understood as a typical agent with maintenance goals. Since the number of its mental
states continuously increases, instead of model-checking, we test it. For illustration
purposes, the implementation of the agent is on purpose faulty: assuming a correct
initialisation, the agent program does not perform a sanity check with respect to the
parity of X before adding the fact done(X) to signal that it constructed a tower X .

Thanks to the fact that the strategy language S has been incorporated into the Maude
system, it was relatively easy to extend the implementation from [1]. In this way, we
provide a testing framework as alternative to the model-checking facility. We have ex-
perimented with different test cases which we applied to the Maude prototype of the
BUpL builder. For example, we have considered the test whether done(2) appears
in the belief base after executing move(2, 0, 1). To implement it, we only needed to
apply the strategy do(move(2, 0, 1)); check(done(2)). The application of the strat-
egy failed, meaning that the agent is not conformant with the test case. On the con-
trary, the application succeeded when the correct agent program is tested. We have
run our tests on a Fedora 10 system (Kernel linux 2.6.27.12-170.2.5.fc10.x86 64) with
an AMD Athlon(tm) 64 Processor 3500+ and 1 GB memory. The process of execut-
ing the BUpL builder with respect to the test case do(move(2, 0, 1)); check(done(2))
took 1876ms and generated 35745 rewrites. The number of rewrites is high mainly
because the strategy language is implemented at the meta-level and because compu-
tations at the meta-level involve many rewrite steps. For the correct agent, the output
generated by Maude illustrates that the strategy has succeeded and that the resulting
state reflects that done(2) has been updated to the belief base and that the current
tower is 21. By means of the Maude command next we can further see that
there are no more solutions (corresponding to faulty executions). More examples and
the actual Maude code (also including more test case implementations) can be down-
loaded from our website http://homepages.cwi.nl/˜astefano/agents/
bupl-strategies.php

4 Since it is just meant to be an illustration, the notion of specification is merely informal.

http://homepages.cwi.nl/~astefano/agents/
bupl-strategies.php

Using Rewrite Strategies for Testing BUpL Agents 157

6 Conclusions and Future Work

In this paper, we focused on two aspects. First, we have provided a formalisation for
testing BUpL agents. Second, we have introduced rewrite strategies to define test drivers
that implement test cases. For simplicity, we have considered testing individual agents.
Generalising our current results to multi-agent systems should be easy in a particular
framework as the one proposed in [2]. There, the interaction between agents is achieved
not by means of communication but by action-based coordination mechanisms. The
advantage of this approach is that the framework is compositional and thanks to this,
the verification problem (by model-checking) of the whole system can be reduced
to the verification of individual agents. Using the compositionality result we can ob-
tain the same reduction when we consider testing instead of model-checking.

References

1. Astefanoaei, L., de Boer, F.S.: Model-checking agent refinement. In: Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 705–712. IFAAMAS (2008)

2. Astefanoaei, L., de Boer, F.S., Dastani, M.: The refinement of choreographed multi-agent
systems. In: Baldoni, M., van Riemsdijk, M.B. (eds.) DALT 2009. LNCS, vol. 5948,
pp. 20–34. Springer, Heidelberg (2010)

3. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Programming: Lan-
guages, Platforms and Applications (Multiagent Systems, Artificial Societies, and Simulated
Organizations), vol. 15. Springer, Heidelberg (2005)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.L. (eds.):
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

5. Eker, S., Martı́-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and rewriting.
Electronic Notes in Theoretical Computer Science (ENTCS) 174(11), 3–25 (2007)

6. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In: Gadducci,
F., Montanari, U. (eds.) Proceedings of the 4th Workshop on Rewriting Logic and its Appli-
cations (WRLA). ENTCS, vol. 71. Elsevier, Amsterdam (2002)

7. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems (AAMAS) 2(4), 357–401 (1999)

8. Martı́-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In:
Meseguer, J. (ed.) Electronic Notes in Theoretical Computer Science, vol. 4. Elsevier, Ams-
terdam (2000)

9. Meyer, B.: Seven Principles of Software Testing. IEEE Computer 41(8), 99–101 (2008)
10. Nguyen, D.C., Perini, A., Tonella, P.: A Goal-Oriented Software Testing Methodology. In:

Agent Oriented Software Engineering (AOSE), pp. 58–72 (2007)
11. Serbanuta, T.-F., Rosu, G., Meseguer, J.: A rewriting logic approach to operational semantics

(extended abstract). Electronic Notes in Theoretical Computer Science (ENTCS) 192(1),
125–141 (2007)

12. Wooldridge, M.: Agent-based software engineering. IEEE Proceedings Software Engineer-
ing 144(1), 26–37 (1997)

13. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing intelligent agents in PDT.
In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), pp. 1673–1674. IFAAMAS (2008)

Towards Just-In-Time Partial Evaluation of

Prolog

Carl Friedrich Bolz, Michael Leuschel, and Armin Rigo

Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

cfbolz@gmx.de, leuschel@cs.uni-duesseldorf.de, arigo@tunes.org

Abstract. We introduce a just-in-time specializer for Prolog. Just-in-
time specialization attempts to unify of the concepts and benefits of
partial evaluation (PE) and just-in-time (JIT) compilation. It is a variant
of PE that occurs purely at runtime, which lazily generates residual code
and is constantly driven by runtime feedback.

Our prototype is an on-line just-in-time partial evaluator. A major
focus of our work is to remove the overhead incurred when executing an
interpreter written in Prolog. It improves over classical offline PE by re-
quiring almost no heuristics nor hints from the author of the interpreter;
it also avoids most termination issues due to interleaving execution and
specialization. We evaluate the performance of our prototype on a small
number of benchmarks.

1 Introduction

Just-in-time compilers have been hugely successful in recent years, often provid-
ing significant benefits over traditional (ahead-of-time) compilers.1 Indeed, much
more information is available at runtime, some of which can be very expensive
or impossible to obtain ahead-of-time by traditional static analysis. The biggest
success story is possibly the Java HotSpot [23] just-in-time compiler, which now
often matches or beats classical C++ compilers in terms of speed.

Dynamic languages have seen a recent surge in activity and industrial ap-
plications. Dynamic languages, due to their very nature, make traditional static
analysis and compilation nigh impossible. Hence, a lot of hope is put into just-in-
time compilation. Many techniques have been proposed; one of the main recent
successes is the Psyco just-in-time specializer [25] for Python. In the best cases
it can remove all the overhead incurred by the dynamic nature of the language.
Its successor, the JIT compiler generator developed in the PyPy framework [27],
is one of the bases for the present work, where we are interested in applying sim-
ilar techniques to Prolog in general and partial evaluation of Prolog programs
in particular.

1 Even though there is of course room for both. Some applications do require static
compilation techniques and validation, in the form of static analysis or type checking,
which provides benefits over runtime validation.

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 158–172, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Just-In-Time Partial Evaluation of Prolog 159

Partial evaluation [17] is a technology that has been very popular for improv-
ing the performance of Prolog programs. Indeed, for Prolog, partial evaluation
is more tractable than for imperative or object-oriented languages, such as C
or Python. Especially for interpreters (one of the typical Prolog applications),
speedups of several orders of magnitude are possible [2]. However, while some
isolated successul applications exist, there is no widespread usage of partial eval-
uation technology. One problem is that the static input needs to be known ahead
of time, whereas quite often the input that enables optimisations is only available
at runtime. Also, one faces problems such as code explosion, as the specialized
program sometimes needs to anticipate all possible runtime combinations in or-
der not to loose static information. We argue that these problems can be solved
by incorporating and adapting ideas from just-in-time compilation.

In this paper we present the technique of just-in-time partial evaluation along
with an first prototype implementation for Prolog. The key contributions of our
work are:

1. Just-in-time specialization allows us to decide which information is relevant
for good optimisation; we can decide at runtime what is static and dynamic.

2. The specializer can inspect a runtime value at any point in time, and use it
as a static value in order to partially evaluate the code that follows. We call
this concept promotion.

3. Partial evaluation is done lazily; only parts really required are specialized,
and compilation and execution are tightly interleaved.

Our paper is structured as follows. We discuss the problems that trouble classical
partial evaluation in more detail in Sect. 2. The main mechanism of just-in-time
partial evaluation is explained in Sect. 3. These goals are achieved with the use
of “lazy choice points”, which are the basic concept of this work. The control of
our partial evaluator is discussed in Sect. 4. In Sect. 5 we examine the behaviour
of our specializer for some examples. Related work and conclusion are presented
in Sect. 6 and 7 respectively.

2 Problems of Classical Partial Evaluation

Partial evaluation [17] is a well-known source-to-source program transformation
technique. It specialises programs by pre-computing those parts of the program
which depend only on statically known input. The so-obtained transformed pro-
grams are less general than the original but can be much more efficient. In the
context of logic programming, partial evaluation proceeds mostly by unfolding
[20,18] and is sometimes referred to as partial deduction.

Partial evaluation has a number of problems that have prevented it from
being widely used, despite its considerable promise. One of the hardest prob-
lems of partial evaluation is the balance between under- and over-specialization.
Over-specialization occurs when the partial evaluator generates code that is too
specialized. This usually leads to too much code being generated and can lead

160 C.F. Bolz, M. Leuschel, and A. Rigo

to “code explosion”, where a huge amount of code is generated, without signifi-
cantly improving the speed of the code.

The opposite effect is that of under-specialization. When it occurs, the resid-
ual code is too general. This happens either if the partial evaluator does not
have enough static information to make better code, or if the partial evaluator
erroneously decides that some of the information it has is actually not useful
and it then discards it.

The partial evaluator has to face difficult choices between over- and under-
specialization. To prevent under-specialization it must keep as much information
as possible, since once some information is lost, it cannot be regained. However,
keeping too much information is also not desirable, since it can lead to too much
residual code being produced, without producing any real benefit.

Figure 1 shows an example where Ecce (a partial evaluator for pure Pro-
log [19]) produces bad code when doing partial evaluation. The code in the
figure is a simple Prolog meta-interpreter which stores the outstanding goals
in a list (the point of the jit merge point predicate is explained in Sect.
4.2. Ecce just ignores it). The interpreter works on object-level representa-
tions of append, naive reverse and a predicate replacing the leaves of a tree.
When Ecce is asked to residualize a call to the meta-interpreter interpreting
the replaceleaves predicate, it loses the information that the list of goals can
only consist of replaceleaves terms. Thus eventually the residual code must
be able to deal with arbitrary goals in the list of goals, which causes the full
original program to be included in the residual code that Ecce produces (see
predicates solve 5, my clause 6 and append 7 in the residual code). This is
a case of under-specialization (the code could be more specific and thus faster)
and also of code explosion (the full interpreter is contained again, not only the
parts that are needed for replaceleaves). We will come back to this example
in Section 5.

A related problem is Prolog builtins. Many Prolog partial evaluators do not
handle Prolog builtins very well. For example Ecce only supports purely logical
builtins (which are builtins which could in theory be implemented by writing
down a potentially infinite set of facts). Some builtins are just hard to support
in principle, e.g., a partial evaluator cannot assume anything about the result of
read(X).

The fact that many classical Prolog partial evaluators do not support builtins,
means that quite often user programs have to be rewritten in non-trivial ways –
a time-consuming task.

3 Basics of Just-In-Time Specialization

3.1 Basic Setting

We propose to solve the problems described in the previous section by just-in-
time partial evaluation. The basic idea is that the partial evaluator is executed
at runtime rather than ahead of time, interleaved with the execution of the
specialized code. This allows it to observe the runtime behaviour of the program,

Towards Just-In-Time Partial Evaluation of Prolog 161

Original code:

solve([]).

solve([A|T]) :-

jit_merge_point,

my_clause(A,B), append(B,T,C), solve(C).

append([], T, T).

append([H|T1], T2, [H|T3]) :-

append(T1, T2, T3).

my_clause(app([],L,L),[]).

my_clause(app([H|X],Y,[H|Z]),[app(X,Y,Z)]).

my_clause(replaceleaves(leaf, NewLeaf, NewLeaf),[]).

my_clause(replaceleaves(node(Left, Right), NewLeaf,

node(NewLeft, NewRight)),

[replaceleaves(Left, NewLeaf, NewLeft),

replaceleaves(Right, NewLeaf, NewRight)]).

my_clause(nrev([],[]), []).

my_clause(nrev([H|T], Z), [nrev(T, T1), app(T1, [H], Z)]).

Residual code for solve([replaceleaves(A, B, C)]) by Ecce :

solve([replaceleaves(A, B, C)]) :- solve__2(A, B, C).

solve__2(leaf,A,A).

solve__2(node(A,B),C,node(D,E)) :- solve__3(A,C,D,B,E,[]).

solve__3(leaf,A,A,B,C,D) :- solve__4(B,A,C,D).

solve__3(node(A,B),C,node(D,E),F,G,H) :-

solve__3(A,C,D,B,E,[replaceleaves(F,C,G)|H]).

solve__4(leaf,A,A,B) :- solve__5(B).

solve__4(node(A,B),C,node(D,E),F) :- solve__3(A,C,D,B,E,F).

solve__5([]).

solve__5([A|B]) :-

my_clause__6(A,C),

append__7(C,B,D),

solve__5(D).

my_clause__6(app([],A,A),[]).

my_clause__6(app([A|B],C,[A|D]),[app(B,C,D)]).

my_clause__6(replaceleaves(leaf,A,A),[]).

my_clause__6(replaceleaves(node(A,B),C,node(D,E)),

[replaceleaves(A,C,D),replaceleaves(B,C,E)]).

my_clause__6(nrev([],[]),[]).

my_clause__6(nrev([A|B],C),[nrev(B,D),app(D,[A],C)]).

append__7([],A,A).

append__7([A|B],C,[A|D]) :-

append__7(B,C,D).

Fig. 1. Under-Specialization in Ecce for a Meta-Interpreter

162 C.F. Bolz, M. Leuschel, and A. Rigo

giving it more information than a static specializer to base its decisions on.
The approach we take is that the specializer produces some residual code upon
demand, uses assert to put it into the Prolog database and then immediately
runs the asserted code.2 More residual code is produced later, if that becomes
necessary. The details of when this process is started and stopped are described
below.

The specialization process itself proceeds by interpretation of the Prolog
source code. If a deterministic call to a user-predicate is interpreted, it is un-
folded; otherwise specialization stops as described in the following section. If a
call to a builtin is encountered, in the general case the call is skipped, i.e. put in
the residual code; but a number of common builtins have corresponding custom
specialization rules and produce specialized residual code (or no code at all).

3.2 Promotion: Lazy Choice Points

The fundamental building block for the partial evaluator to make use of the
just-in-time setting are lazy choice points. When reaching a choice point in the
original program, the partial evaluator does not know which choice would be
taken at runtime. Compiling all cases is undesirable, since that can lead to code
explosion. Therefore it inserts a callback to the specializer into the residual code
and stops the partial evaluation to let the residual code run. When the callback
is reached, the specializer is invoked again and specializes exactly the switch case
that is needed by the running code. After specialization has finished, this new
code is generated.

Another usage of lazy choice points by the partial evaluator is to get informa-
tion about terms which are required to obtain good specialization but are not
available statically. When the actual runtime value (or some partial info about
the value, like the functor and arity) of an unknown term is needed by the partial
evaluator during specialization, specialization stops and a callback is inserted.
Then the residual code generated so far is executed until the callback point is
reached. When this happens, the value of the formerly unknown term is available
(there are no unknown terms at runtime of course). At this point the specializer
is invoked with the now known term and more code can be produced. We call
this process promotion: it promotes a dynamic, unknown value to a static value
available to the specializer.

Our approach is best illustrated by an example. Assume we have the following
predicate:

negation(true(A), false(A)).
negation(false(A), true(A)).

First, our specializer rewrites this predicate in a pre-processing phase into the
following form, which makes the choice point and first-argument indexing visible:

2 On some Prolog systems, dynamically asserted code runs slower than static code.
We can sometimes use workarounds, like compile predicates in SWI-Prolog.

Towards Just-In-Time Partial Evaluation of Prolog 163

negation(X, Y) :- switch_functor(X, [
case(true/1, (X = true(Z), Y = false(Z))),
case(false/1, (X = false(Z), Y = true(Z)))]).

The predicate switch functor performs a switch on the functor of its first
argument, the possible cases are described by the second argument.3 It could be
implemented as a Prolog-predicate like this:

switch_functor(X, [case(F/Arity, Body)|_]) :-
functor(X, F, Arity), call(Body).

switch_functor(X, [_|MoreCases]) :- switch_functor(X, MoreCases).

If the specializer encounters the call negation(X, Y) it cannot know whether
the functor of X will be true or false (if it would know the functor of X it could
continue unfolding with the correct case immediately). Therefore the specializa-
tion process stops. At this point the following code has been generated and put
into the clause database:

’$negation1’(X, Y) :- ’$case1(X), ’$promotion1’(X, Y).
’$case1(true(_)).
’$case1(false(_)).
’$promotion1’(X, Y) :- functor(X, F, N),

callback_pe(F/N, ’$promotion1’, ...), ’$promotion1’(X, Y).

The predicate ’$negation1’ is the entry-point of the specialized version of
negation. The ’$case1’ predicate ensures that X is bound when ’$promotion1’
is called and that solutions are generated in the right order. The ’$promotion1’
predicate is the lazy choice point. At this point this predicate has only one clause,
which is for invoking the specializer again. More clauses will be added later. If it
is executed, partial evaluation will be resumed by calling callback pe, passing
in the functor and the arity of the argument as information for specializing more
code. Thus, one concrete clause of the choice point will be generated. After this
is done, the promotion predicate is called again, which will execute the newly
generated case.

The callback pe gets the functor and arity as its first argument. The second
argument is the name of the predicate that should get a new clause added. The
further arguments (shown only as ... in the code above) contain the Cases in
the switch functor call, the continuation of what the partial evaluator still has
to evaluate after the choice point. When callback pe is called, it will use its
first argument to decide which of the cases it should partially evaluate further.

Let us assume that ’$negation1’ is first called with false(A) as an ar-
gument. Then ’$promotion1’ will be executed, calling callback pe(false/1,
’$promotion1’, ...). This will resume the partial evaluator which then gener-
ates residual code only for the case where X is of the form false(). The residual
code looks as follows:
3 Calls to switch functor are generated at specialisation time, i.e., not by a static

mode analysis. The transformation takes into account the actual call pattern, and
will generate different versions of a predicate for different call patterns.

164 C.F. Bolz, M. Leuschel, and A. Rigo

’$promotion1’(false(Z), Y) :- !, Y = true(Z).

This code will be asserted using asserta, which means that it will be tried
before the clause of ’$promotion1’ shown above. This has the effect that the
next time ’$negation1’ is called with false(X) as an argument, this code will
be used and no specialization will be performed. The cut is necessary to prevent
the backtracking into the clause calling back into the specializer.

If the ’$negation1’ predicate is never actually called with an argument of
the form true(X), then the other case of the switch will never be specialized,
saving time and memory. This might not matter for such a trivial case as the
one above, but it strongly reduces specialization time and size of the residual
code for more realistic cases (e.g. consider what happens if the body of negation
contains calls to many predicates). If the other case will be specialized eventually,
the residual code would look like this:

’$promotion1’(true(Z), Y) :- !, Y = false(Z).

This code will again be inserted into the database using asserta so that it
too will be tried before the specialization case.

3.3 Other Uses of Lazy Switches

The switch functor primitive has some other uses apart from the obvious
ones that it was designed for. These other uses also exploit the laziness of
switch functor, less so the switching part. One of them is to implement a
lazy version of disjunction (the “;” builtin). In this form it is also used if several
clauses of a predicate are not mutually exclusive.

Another use of switch functor is to support the call(X) builtin (which very
few partial evaluators for Prolog do efficiently). This can be considered to be a
switch of X over all the predicates in the program. Since switch functor is lazy,
only those predicates that are actually called at runtime need to be specialized.
An example for this can be found in Sect. 4.3.

4 Control and Ensuring Termination

4.1 Code Generation and Local Control

So far we have not explained exactly how we generate the specialized code (apart
from the lazy switches). Basically, we use the well-known partial evaluation
framework as presented in [18] (which builds upon the original work in [20]).
The control of partial evaluation for logic programs is often separated into local
and global control [22], where the global control decides which calls are special-
ized and the local control performs the unfolding of those calls. In the simple
setting described so far, we can simply view the local control of our just-in-
time specializer as performing unfolding until a choice point is reached. At this
point, the specializer stops and generates a resultant clause with a callback into

Towards Just-In-Time Partial Evaluation of Prolog 165

the specializer (as explained in the last section). More precisely, the unfolding
rule will recursively process the leftmost literal in a goal that has not yet been
examined, with the following options:

1. If it is a switch functor which is sufficiently instantiated, the proper case
will be chosen.

2. If it is a switch functor which is not sufficiently instantiated, unfolding
stops and a call back into the specializer is inserted into the resultant, using
a lazy switch, as explained in the previous section.

3. If it is a builtin, then the builtin is specialized, yielding a single computed
answer along with a specialized version of the builtin to be put into the
residual code. For non-deterministic builtins, the computed answer is general
enough to cover all solutions. Failure can also sometimes be detected, in
which case the branch is pruned [24].

4. If the leftmost literal is a user-predicate, it will be simply unfolded. Ob-
serve that this is deterministic, as all choice points are encoded via the
switch functor primitive.

To ensure that the semantics are preserved in the presence of impure builtins or
predicates, we do not always left-propagate bindings (in case we do not select
the leftmost literal). Bindings are left-propagated only until impure builtins are
met, using techniques from [24].

As our just-in-time specializer interleaves ordinary execution with code gen-
eration, the overall procedure cannot always terminate (namely when the user
query under consideration does not terminate). However, we would like to ensure
that if the unspecialized program itself terminates (existentially or universally
respectively) then the just-in-time specializer process should also terminate (ex-
istentially or universally respectively). The above process does not fully guaran-
tee this, as our just-in-time specializer may not detect that a call to a builtin in
point 3 actually fails. This means that the just-in-time specializer would proceed
specialization on a computation path which does not occur at runtime, which is
a problem if this path is infinite.

One pragmatic solution is to ensure that the just-in-time specializer will maxi-
mally perform N specialization steps before executing residual code again. Every
time the residual code is executed, the computation progresses. Therefore the
presence of the just-in-time specializer can only lead to a linear slowdown, which
means in particular that it preserves termination behaviour.

4.2 Global Control

In some cases the specialization technique described so far can be sufficient.
However, it does not reuse any of the generated residual code (i.e., the specializer
produces a tree of predicates); what we want is to eventually obtain a jump to
an already-specialized predicate, typically closing a loop. Instead of a tree, the
final result should be an arbitrary graph of residual predicates.

In the current prototype, the specializer never tries to reuse existing residual
code on its own. To trigger global control, the specialized program needs to re-
quest the attempt to reuse existing residual code by inserting a call to a special

166 C.F. Bolz, M. Leuschel, and A. Rigo

predicate called jit merge point. This predicate does nothing if executed nor-
mally, but is dealt with by the partial evaluator in a special way. For an example
usage, see Figure 1.

The need for this sort of explicit hint is clearly not ideal, but we felt that
it simplified implementation enough to still be a good choice, given that most
programs with an interpretative nature need to contain only one call or a small
number of calls to this predicate. We plan to find ways of automatically placing
this call in the future.

At the places where a call to jit merge point is seen, the partial evaluator
tries to reuse an already existing residual predicate. It does this by comparing the
list of goals that the partial evaluator currently has with those it had at earlier
calls to jit merge point. If two such lists of goals are similar enough the partial
evaluator inserts a call to the residual predicate produced earlier and stops the
partial evaluation process. The exact conditions when this is possible are outside
the scope of this paper and are fully explained in [3]. In summary, the procedure
remembers which parts of the term have been used to resolve choice points; parts
which did not contribute in any way to improve the specialisation are thrown
away.4 The fact that partial evaluation happens at runtime allows us to discard
information more aggressively because it is possible to regain information at a
later point with the help of lazy choice points, if this becomes necessary.

In the next subsection we present a simple example which illustrates this
aspect of our system, and also highlights the potential of our just-in-time spe-
cialization compared to traditional partial evaluation.

4.3 A Worked Out Example: Read-Eval-Print Loop

As a showcase example we wrote a minimal read-eval-print loop for Prolog,
which can be seen in Fig. 2. Most classical partial evaluators have a hard-time
producing good code for read eval print loop, because after read(X) the value
of X is unknown, which makes it impossible to figure out which predicate call(X)
will ultimately call.

For our prototype this represents no real problem. The functor of X can be pro-
moted, thus observing at runtime which predicate is to be called. Subsequently,
this predicate can be specialized. Fig. 2 also shows an example session as well
as the residual code that our prototype generated for this session (note that the
clauses for ’$callpromotion1’ are shown in the order in which they are in the
database, which is the reverse order in which they have been generated).

5 Experimental Results

To get some idea about the performance of our dynamic partial evaluation sys-
tem, we ran a number of benchmarks. We compared the results with those of

4 In some sense this can be seen as an evolution of the generalisation operator from
[13] to a just-in-time specialisation setting.

Towards Just-In-Time Partial Evaluation of Prolog 167

Code of the read-eval-print loop and some example predicates:

read_eval_print_loop :- jit_merge_point,

read(X), call(X), print(X), nl, read_eval_print_loop.

% example predicates

f(a). f(b). f(c).

g(X) :- h(Y, X), f(Y).

h(c, d).

k(_, _, _) :- g(X), g(X).

Example session:

|: f(c).

f(c)

|: g(X).

g(d)

|: fail.

No

Produced residual code (promotion specialization cases not shown):

’$entrypoint1’ :- read(A), ’$callpromotion1’(A).

’$callpromotion1’(fail) :- !, fail.

’$callpromotion1’(g(A)) :- !, A=d,print(g(d)), nl, ’$entrypoint1’.

’$callpromotion1’(f(A)) :- !, ’$case1’(A), ’$promotion1’(A).

’$case1’(a). ’$case1’(b). ’$case1’(c).

’$promotion1’(c) :- !, print(f(c)), nl, ’$entrypoint1’.

Fig. 2. A Simple read-eval-print-loop for Prolog

Ecce [19], an automatic online program specializer for pure Prolog. The ex-
periments were run on a machine with a 1.4 GHz Pentium M processor and
1GiB RAM, using Linux 2.6.24. For running our prototype and the original and
specialized programs we used SWI-Prolog Version 5.6.47 (Multi-threaded, 32
bits). Ecce was used both in “classic mode” which uses normal partial evalua-
tion and in “conjunctive mode” (which uses conjunctive partial deduction with
characteristic trees and homeomorphic embedding; see [10]). Conjunctive partial
evaluation is considerably more powerful, but also much more complex.

Figure 3 presents five benchmarks. The first three are examples for a typical
logic programming interpreter with one and also with two levels of interpretation.
The fourth example is a higher-order example, using the meta-predicates =..
and call. Finally, the fifth is a small interpreter for a dynamic language. Note
that “spec” refers to the specialization time and “run” to the runtime of the
specialized code. The second number for the just-in-time partial evaluator is
derived by running the same goal a second time, which will not trigger more
partial evaluation. For Ecce the specialization time was not measured.

168 C.F. Bolz, M. Leuschel, and A. Rigo

Experiment Inferences CPU Time Speedup

A vanilla meta-interpreter [15, 21] run-
ning append with a list of 100000 ele-
ments. The interpreter can be seen in
Figure 1.

Vanilla - Append
original 500008 0.35 s 1.0
JIT PE, spec+run 281842 0.13 s 2.69
JIT PE, run 200016 0.11 s 3.18
ecce classic 100003 0.03 s 11.67
ecce conjunctive 100003 0.03 s 11.67

The vanilla interpreter running itself
running append with a list of 100000 el-
ements.

Vanilla - Vanilla - Append
original 2000023 1.42 s 1.0
JIT PE, spec+run 1577228 0.66 s 2.15
JIT PE, run 700020 0.32 s 4.44
ecce classic 100003 0.04 s 35.5
ecce conjunctive 100003 0.04 s 35.5

The vanilla interpreter running
replaceleaves, see Figure 1. Input was
a full tree of depth 18.

Vanilla - Replace Leaves
original 2621438 2.76 s 1.0
JIT PE, spec+run 2493636 1.77 s 1.56
JIT PE, run 2097162 1.58 s 1.75
ecce classic 2097074 2.64 s 1.05
ecce conjunctive 589825 0.78 s 3.54

A higher order example: reduce in Pro-
log using =.. and call. This is summing
a list of 100000 integers, knowing stat-
ically the functor that is used for the
summation.

Reduce - Add
original 1492586 16.73 s 1.0
JIT PE, spec+run 5082861 3.53 s 4.74
JIT PE, run 5000014 3.24 s 5.16
ecce classic 1134504 8.5 s 1.97
ecce conjunctive 2000001 1.85 s 9.04

An interpreter (∼100 lines of Prolog) for
a small stack-based dynamic language.
The benchmark is running an empty
loop of 100000 iterations.

Stack Interpreter
original 2100010 3.13 s 1.0
JIT PE, spec+run 5699992 1.46 s 2.14
JIT PE, run 200019 0.08 s 39.13
ecce classic 100003 0.05 s 62.6
ecce conjunctive 100003 0.04 s 78.25

Fig. 3. Experimental Results

Our prototype is in all cases faster than the original code, but also in all
cases slower (by a factor between 2 and 8) than Ecce in conjunctive mode.
On the other hand, our prototype is faster than Ecce in classical mode in two
cases. These are not bad results, considering the relative complexity of the two
projects. Our prototype is rather straightforward. It was written from scratch
over the course of some months and consists of about 1500 lines of Prolog code.
On the other hand, Ecce is a mature system that employs serious theoretical
machinery and consists of about 25000 lines of Prolog code.

As we have also seen in Section 2 the third benchmark is one where Ecce in
classical mode produces rather bad code. This can be seen in the benchmark re-
sults as well, there is nearly no speedup when compared to the original code. Our
prototype has the same problem, it also loses the information that all the goals
in the goal list are replaceleaves calls. However, in our case this is not a prob-
lem, since that information can be regained with a promotion, thus preventing
code explosion and under-specialization.

Towards Just-In-Time Partial Evaluation of Prolog 169

The examples above are chosen such that the loops involved run for a large
number of iterations, thus making the overhead of just-in-time partial evaluation
worthwhile. If the loop is running only a small amount of times, the overhead
of partial evaluation can sometimes not be regained. This can be solved with
the help of a hybrid interpreter/partial evaluation system, that first interprets
everything and does profiling to find commonly executed parts of the system,
and then partially evaluates only those.

6 More Related Work

Promotion is a concept that we have already explored in other contexts. Psyco
is a run-time specializer for Python that uses promotion (called “unlift” in [25]).
Similarly, the PyPy project [26,5,4], in which all three authors are also involved,
contains a just-in-time specialization system built on promotion [27].

Greg Sullivan describes a runtime partial evaluator for a small dynamic lan-
guage based on lambda calculus [28]. Sullivan [28] further distinguishes two cases
(quoting): “Runtime partial evaluation [...] defers some of the partial evaluation
process until actual data is available at runtime. However the scope and actions
related to partial evaluation are largely decided at compile time. Dynamic par-
tial evaluation goes further, deferring all partial evaluation activity to runtime.”
Using this terminology, our system does dynamic partial evaluation.

One of the earliest works on runtime specialization is Tempo for C [9,8].
However, it is essentially an offline specializer “packaged as a library”; decisions
about what can be specialized and how are pre-determined.

Another work in this direction is DyC [14], another runtime specializer for C.
Specialization decisions are also pre-determined, i.e. dynamic partial evaluation
is not attempted, but “polyvariant program-point specialization” gives a coarse-
grained equivalent of our promotion. Targeting the C language makes higher-
level specialization difficult, though (e.g. malloc is not optimized).

Polymorphic inline caches (PIC) [16] are very closely related to promotion.
They are used by JIT compilers of object-oriented language and also insert a
growable switch directly into the generated machine code. This switch exam-
ines the receiver types for a message for a particular call site. From that angle,
promotion is an extension of PICs, since promotions can be used to switch on
arbitrary values, not just receiver types.

The recent work on trace-based JITs [12] (originating from Dynamo [1]) shares
many characteristics of our work. Trace-based JITs concentrate on generating
good code for loops, and generate code by observing the runtime behaviour of
the user program. They also only generate code for code paths that are actu-
ally followed by the program at runtime. The generated code typically contains
guards; in recent research [11] on Java, these guards’ behavior is extended to
be similar to our promotion. This has been used by several implementations to
implement a dynamic language (JavaScript) [6,7].

170 C.F. Bolz, M. Leuschel, and A. Rigo

7 Conclusion and Future Work

In this paper we drew explicit parallels between partial evaluation and just-in-
time compilers. We showed with a Prolog prototype of a just-in-time partial
evaluator that these two domains might benefit a lot from a synergy. In par-
ticular, inspired by Polymorphic Inline Caches, we have developed the notion
of promotion for partial evaluation. We hope that our approach can help ad-
dress several fundamental issues that so far prevent classical partial evaluation
to reach its fullest potential: code explosion, termination, full Prolog support,
and scalability to large programs.

Due to the use of promotion our just-in-time partial evaluator works reason-
ably well for interpreters of dynamic languages and generally in situations where
information that the partial evaluator needs is only available at runtime. This is
an advantage that a classical partial evaluator can never possess for fundamen-
tal reasons. We have not tried our prototype on really large programs yet, so it
remains to be seen whether it works well for these.

There are some downsides to our approach. In particular promotion needs a
Prolog system that supports assert well, since the whole approach depends on
that in a crucial manner. We have not yet evaluated our work on any Prolog
system other than SWI-Prolog (which supports assert rather well). In the future
we would like to support other Prolog platforms like Ciao Prolog or Sicstus
Prolog as well.

Global control is another area that still needs further work. We plan to explore
ways of inserting the jit merge points automatically. Furthermore, the global
control strategy needs further evaluation and possible refinement.

Finally we need to take a look at the speed of the partial evaluator itself, which
we so far disregarded completely. Since partial evaluation happens at runtime it
is necessary for the partial evaluator to not have too bad performance. Also we
plan to incorporate profiling techniques to only apply the partial evaluator to
those parts of the program that are executed often.

References

1. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. ACM SIGPLAN Notices 35, 1–12 (2000)

2. Barker, S., Leuschel, M., Varea, M.: Efficient and flexible access control via logic
program specialisation. In: Proceedings PEPM 2004, pp. 190–199. ACM Press,
New York (2004)

3. Bolz, C.F.: Automatic JIT Compiler Generation with Runtime Partial Evaluation.
Master thesis, Heinrich-Heine-Universität Düsseldorf (2008),
http://www.stups.uni-duesseldorf.de/thesis_detail.php?id=14

4. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: PyPy’s
tracing JIT compiler. In: Proceedings of the 4th workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, Genova, Italy, pp. 18–25. ACM, New York (2009)

5. Bolz, C.F., Rigo, A.: How to not write a virtual machine. In: Proceedings of 3rd
Workshop on Dynamic Languages and Applications, DYLA 2007 (2007)

http://www.stups.uni-duesseldorf.de/thesis_detail.php?id=14

Towards Just-In-Time Partial Evaluation of Prolog 171

6. Chang, M., Bebenita, M., Yermolovich, A., Gal, A., Franz, M.: Efficient just-in-
time execution of dynamically typed languages via code specialization using precise
runtime type inference. Technical report, Donald Bren School of Information and
Computer Science, University of California, Irvine (2007)

7. Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A., Wimmer, C.,
Eich, B., Franz, M.: Tracing for Web 3.0: Trace compilation for the next gen-
eration web applications. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, Washington, DC,
USA, pp. 71–80. ACM Press, New York (2009)

8. Consel, C., Hornof, L., Noël, F., Noyé, J., Volansche, N.: A uniform approach for
compile-time and run-time specialization. In: Danvy, O., Thiemann, P., Glück, R.
(eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110, pp. 54–72. Springer, Heidelberg
(1996)

9. Consel, C., Noël, F.: A general approach for run-time specialization and its appli-
cation to C. In: POPL, pp. 145–156 (1996)

10. De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen,
M.H.: Conjunctive partial deduction: Foundations, control, algorithms and exper-
iments. The Journal of Logic Programming 41(2,3), 231–277 (1999)

11. Gal, A., Franz, M.: Incremental dynamic code generation with trace trees. Techni-
cal report, Donald Bren School of Information and Computer Science, University
of California, Irvine (November 2006)

12. Gal, A., Probst, C.W., Franz, M.: HotpathVM: an effective JIT compiler for
resource-constrained devices. In: Proceedings of the 2nd international conference
on Virtual execution environments, Ottawa, Ontario, Canada, pp. 144–153. ACM,
New York (2006)

13. Gallagher, J., Bruynooghe, M.: The derivation of an algorithm for program spe-
cialisation. New Generation Computing 9(3,4), 305–333 (1991)

14. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.J.: DyC: an expressive
annotation-directed dynamic compiler for C. Theoretical Computer Science 248,
147–199 (2000)

15. Hill, P., Gallagher, J.: Meta-programming in logic programming. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence
and Logic Programming, vol. 5, pp. 421–497. Oxford Science Publications, Oxford
University Press (1998)

16. Hölzle, U., Chambers, C., Ungar, D.: Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In: America, P. (ed.) ECOOP
1991. LNCS, vol. 512, pp. 21–38. Springer, Heidelberg (1991)

17. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

18. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduc-
tion: Control issues. Theory and Practice of Logic Programming 2(4,5), 461–515
(2002)

19. Leuschel, M., Martens, B., De Schreye, D.: Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems 20(1), 208–258 (1998)

20. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. The Jour-
nal of Logic Programming 11(3,4), 217–242 (1991)

21. Martens, B., De Schreye, D.: Two semantics for definite meta-programs, using the
non-ground representation. In: Apt, K.R., Turini, F. (eds.) Meta-logics and Logic
Programming, pp. 57–82. MIT Press, Cambridge (1995)

172 C.F. Bolz, M. Leuschel, and A. Rigo

22. Martens, B., Gallagher, J.: Ensuring global termination of partial deduction
while allowing flexible polyvariance. In: Sterling, L. (ed.) Proceedings ICLP 1995,
Kanagawa, Japan, June 1995, pp. 597–613. MIT Press, Cambridge (1995)

23. Paleczny, M., Vick, C., Click, C.: The Java HotSpot server compiler. In: Pro-
ceedings of the Java Virtual Machine Research and Technology Symposium on
Java Virtual Machine Research and Technology Symposium, Monterey, California,
vol. 1. USENIX Association (2001)

24. Prestwich, S.: An unfold rule for full Prolog. In: Lau, K.-K., Clement, T.
(eds.) Logic Program Synthesis and Transformation. Proceedings of LOPSTR
1992, Workshops in Computing. University of Manchester, pp. 199–213. Springer,
Heidelberg (1992)

25. Rigo, A.: Representation-based just-in-time specialization and the Psyco proto-
type for Python. In: Heintze, N., Sestoft, P. (eds.) PEPM, pp. 15–26. ACM Press,
New York (2004)

26. Rigo, A., Pedroni, S.: PyPy’s approach to virtual machine construction. In: Com-
panion to the 21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, Portland, Oregon, USA, pp. 944–953. ACM
Press, New York (2006)

27. Rigo, A., Pedroni, S.: JIT compiler architecture. Technical Report D08.2, PyPy
Consortium (2007),
http://codespeak.net/pypy/dist/pypy/doc/index-report.html

28. Sullivan, G.T.: Dynamic partial evaluation. In: Danvy, O., Filinski, A. (eds.) PADO
2001. LNCS, vol. 2053, pp. 238–256. Springer, Heidelberg (2001)

http://codespeak.net/pypy/dist/pypy/doc/index-report.html

Program Parallelization Using

Synchronized Pipelining

Leonardo Scandolo1, César Kunz1, and Manuel Hermenegildo1,2

1 IMDEA Software
2 Technical U. of Madrid, Spain
Firstname.Lastname@imdea.org

Abstract. While there are well-understood methods for detecting loops
whose iterations are independent and parallelizing them, there are com-
paratively fewer proposals that support parallel execution of a sequence
of loops or nested loops in the case where such loops have dependencies
among them. This paper introduces a refined notion of independence,
called eventual independence, that in its simplest form considers two
loops, say loop1 and loop2, and captures the idea that for every i there
exists k such that the i + 1-th iteration of loop2 is independent from the
j-th iteration of loop1, for all j ≥ k. Eventual independence provides
the foundation of a semantics-preserving program transformation, called
synchronized pipelining, that makes execution of consecutive or nested
loops parallel, relying on a minimal number of synchronization events
to ensure semantics preservation. The practical benefits of synchronized
pipelining are demonstrated through experimental results on common
algorithms such as sorting and Fourier transforms.

1 Introduction

Multi-core processors are becoming ubiquitous: most laptops currently on the
market contain at least two execution units, whereas servers commonly use eight
or more cores. Since the number of on-chip cores is expected to double with
each processor generation, there is a pressing challenge to develop programming
methodologies which exploit the power of multi-core processors without compro-
mising correctness and reliability. One prominent approach is to let programmers
write sequential programs and to build compilers that parallelize these programs
automatically.

Most parallelization techniques rely on some notion of independence, which
ensures that certain fragments of the program only access distinct regions of
memory, and thus execution of one such code fragment has no effect on the exe-
cution of the others. For example, code fragments written in a simple imperative
language are guaranteed to be independent if their reads and writes are disjoint,
in which case their sequential composition can be parallelized without modify-
ing the overall semantics of the program. More refined notions of independence
include the classical notions of absence of flow dependence, anti-dependence, or
output dependence [7].

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 173–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

174 L. Scandolo, C. Kunz, and M. Hermenegildo

Well-understood methods exist for detecting loops whose iterations are inde-
pendent (i.e., they do not contain loop-carried dependencies) and parallelizing
them. These techniques have been used to achieve automated/correct paral-
lelization of a number of algorithms for scientific computing such as, e.g., image
processing, data mining, DNA analysis, or cosmological simulation. However,
these parallelization methods do not provide significant speedups for other algo-
rithms which contain sequences or nesting of loops whose iterations are partially
dependent and/or irregular. Examples of such loops appear, for example, in sort-
ing algorithms or Fourier transformations. On the other hand, such algorithms
can be parallelized efficiently by the technique that we propose, synchronized
pipelining, which allows loops with dependencies to be executed in parallel by
making sparse use of synchronization events to ensure that the ahead-of-time
execution of loop iterations does not alter the original semantics.

Our proposal is illustrated in Section 2 with a mergesort algorithm. As a
warm-up to Section 2, let us first consider synchronized pipelining in its simplest
form, when it deals with two consecutive loops manipulating an array structure:

while b1 do c1; while b2 do c2

For simplicity, assume that the data dependence between c1 and c2 is restricted to
the contents of the array structure. The aim is to return code that may start the
execution of some iterations of c2 before completion of the loop with body c1. To
justify such a transformation, we rely on eventual independence, a generalization
of independence which accounts for the possibility of executing the m + 1-th
iteration of a loop ahead of time. Informally, c2 is eventually independent from c1
iff for every n2, there exists n1 such that after n1 iterations of c1 and n2 iterations
of c2, c1 and c2 are independent. Once eventual independence between the two
loops is established, it is possible to define a semantics-preserving transformation
that outputs a program:

while b1 do c′1 || while b2 do c′2

where c′1 is obtained from c1 by adding event announcements to indicate that
part of the computation of c2 can be performed, and c′2 is obtained from c2 by
inserting blocking statements that control the gradual and early computation
of c2; in both cases, the transformation of ci into c′i is guided by the eventual
independence relation.

In the course of the paper, we develop the notions of eventual independence
and synchronized pipelining, starting from the simple case discussed above and
then dealing with sequences of loops and nested loops. In addition, we illus-
trate the benefits of our approach, drawing experimental results from common
cases such as the above mentioned sorting algorithms and Fourier transforms.
We also outline the necessary procedures and tools to automatically generate
this transformation for the case in which we deal with simple data structures
(arrays), and outline future lines of research to extend this approach to more
general problems. In summary, the main contributions of this paper are the
formal definition of eventual independence (Section 4), eventual independence

Program Parallelization Using Synchronized Pipelining 175

void mergesort (int* A,int length) {
int i,j,c;

for (i = 1; i < length;i*=2) {
j = 0;
while (j < length) {
c = j; ...
while (c < j + 2*i){

...
a[c] = ... ;
...
c++;

}
j = j + 2*i;

}
}

}

void mergesort (int* A,int length) {
int i,j,c;

i = 1;
j = 0;
while (j < length) {

c = j; ...
while (c < j + 2*i){

...
c++;

}
j = j + 2*i;

}

i = 2;
j = 0;
while (j < length) {

c = j; ...
while (c < j + 2*i){

...
c++;

}
j = j + 2*i;

}

...

i = length/2;
j = 0;
while (j < length) {

c = j; ...
while (c < j + 2*i){

...
c++;

}
j = j + 2*i;

}

}

Fig. 1. Iterative mergesort algorithm

criteria for the particular case of array manipulating loops, and an experimental
evaluation of the benefits of synchronized pipelining (Section 6). Although many
of the concepts and results of the paper only make minimal assumptions on the
programming language, we carry our development in the setting of a parallel
imperative language with events, introduced in Section 3.

2 Motivating Example: Mergesort

Figure 1 presents the structure of an iterative mergesort algorithm. After un-
rolling some of the for loop iterations from the fragment shown on the right
of the figure, we have a sequence of iterations of the inner loop while(j <
length){. . .} accessing and modifying the array intervals [0, 1], [2, 3], .., [length−
1, length] in the first iteration, the intervals [0, 3], [4, 7], . . ., [length−3, length]
in the second iteration, and so on until the last iteration in which the intervals
[0, length/2] and [length/2 + 1, length] are accessed.

One can clearly see that the first and second unrolled iteration cannot be
executed in parallel (without changes) since they read and/or modify overlapping
regions of the array. However, after partial completion of the first iteration, the

176 L. Scandolo, C. Kunz, and M. Hermenegildo

while (j < length) {
c = j;
...
while (c < j + 2*i){

...
c++;

}
j = j + 2*i;

}

(a) Original

while (j < length) {
c = j;
...
while (c < j + 2*i){

τ(i− 1, c)→
{

...
c++;

}
}
j = j + 2*i;
τ(i, j)!;

}

(b) Pipelined

Fig. 2. Illustrative example of pipelined code

second iteration can advance without waiting for the first iteration to finish. For
instance, the second iteration can safely start processing the array interval [0, 3],
right after the first iteration has finished processing the array intervals [0, 1] and
[2, 3]. The parallelization technique we propose allows the second loop iteration to
gradually progress in parallel with the first one (and successive ones), introducing
synchronization primitives in order to preserve the original semantics. To this
end, we rely on a heuristic oracle Ω, defined in terms of the number of steps
already executed by the first and second loop, that determines at which point
of the first loop it is safe to enable a partial execution of the second one.

Figure 2 gives a brief but illustrative scheme of how the code in Figure 1 is
to be annotated with parallelization primitives. In this case we use τ to denote
such device, using a question mark to signify a wait event on a certain subscript
(or set of subscripts) that the current loop is waiting to use, and an exclama-
tion mark to denote a signaling event which allows other threads to continue
execution.

3 Setting

The target language for synchronized pipelining is a simple imperative language
with arrays, extended with parallel composition and synchronization primitives.

The extension includes an empty statement nil, a standard parallel composition
‖, and event-based synchronization primitives. We assume given a set of events S
used for synchronization. Let τ ∈ S and S ⊆ S represent a synchronization event
and a synchronization event set, respectively. The statement S! is a non-blocking
announcement of the events in S, whereas the statement τ → c waits for the event
τ to be announced before proceeding with the execution of c.

Let Stmt be the set of program statements, Σ be the set of mappings from
program variables to integer values, and S� be the powerset of S. The pro-
gram semantics is given by a transition relation between configurations, where
a configuration is either an exceptional configuration abort, resulting, e.g., from
and array-out-of-bound access, or a normal configuration, i.e., an element of
Stmt × Σ × S�. Formally, the semantics is given by a small-step relation: �⊆
(Stmt×Σ × S�)× ((Stmt×Σ × S�) + {abort}).

Program Parallelization Using Synchronized Pipelining 177

〈S!, σ, ε〉 � 〈nil, σ, ε ∪ S〉
τ ∈ ε

〈τ → c, σ, ε〉 � 〈c, σ, ε〉
c ≡ d 〈d, σ, ε〉 � 〈d′, σ′, ε′〉 d′ ≡ c′

〈c, σ, ε〉 � 〈c′, σ′, ε′〉
c ≡ d 〈d, σ, ε〉 � abort

〈c, σ, ε〉 � abort

〈c, σ, ε〉 � 〈c′, σ′, ε′〉
〈c ‖ d, σ, ε〉 � 〈c′ ‖ d, σ′, ε′〉

〈c, σ, ε〉 � abort

〈c ‖ d, σ, ε〉 � abort

i ‖ nil ≡ i i ‖ j ≡ j ‖ i i ‖ (j ‖ k) ≡ (i ‖ j) ‖ k

Fig. 3. Operational semantics (excerpts)

The transition rules for synchronization and parallel execution are given in
Figure 3, together with the definition of the congruence relation≡⊆ Stmt×Stmt;
all other rules are standard. Note that event announcement is asynchronous and
that event identifiers are never removed from ε. Thus, once an event has been
announced, and until the end of the program execution, every process waiting
for that event is ready to proceed.

Example 1. Consider for example the statement (x := 5; τ !) ‖ τ → x := 1.
Starting from a state where τ has not been announced, the execution terminates
with the variable x holding the value 1, since x := 1 cannot proceed before the
event τ has been announced.

As usual, we can derive from the small-step semantics an evaluation semantics
⇓⊆ (Stmt×Σ × S�)× (Σ + abort), by setting:

〈c, σ, ε〉 ⇓ σ′ iff ∃ε′. 〈c, σ, ε〉 �� 〈nil, σ′, ε′〉
〈c, σ, ε〉 ⇓ abort iff 〈c, σ, ε〉 �� abort

where �� denotes the reflexive and transitive closure of �. In turn, the evalu-
ation semantics can be used to define a notion of semantic equivalence.

Definition 1 (Semantic Equivalence). Let c1, c2 ∈ Stmt be two statements,
σ ∈ Σ be a state and ε ⊆ S be a set of synchronization events. We say that
c2 simulates c1 w.r.t. σ and ε, written [[c1]] ≤(σ,ε) [[c2]], iff for every σ′ ∈ (Σ +
abort), we have 〈c1, σ, ε〉 ⇓ σ′ ⇒ 〈c2, σ, ε〉 ⇓ σ′. We say that c1 and c2 are
semantically equivalent w.r.t. σ and ε, written [[c1]] ≡(σ,ε) [[c2]], iff [[c1]] ≤(σ,ε) [[c2]]
and [[c2]] ≤(σ,ε) [[c1]].

4 Eventual Independence

The purpose of this section is to introduce the notion of eventual independence,
and to discuss how eventual independence relations may be inferred. For the
sake of completeness, we start by recalling the semantic notion of independence
between two statements.

178 L. Scandolo, C. Kunz, and M. Hermenegildo

Definition 2 (Independent Statements). Two statements c1, c2 ∈ Stmt are
independent iff [[c1; c2]] ≡ [[c1 ‖ c2]].

Eventual independence aims to capture a relation between iterations of two loop
bodies c1 and c2, and thus would be naturally formalized as a relation between
natural numbers. For the clarity of the technical development, it is however
preferable to view eventual independence as a relation between natural numbers
and events, and assume given a function λ : N → S that assigns to each natural
number m of loop2 the event λ(m) that will release the m-th iteration of loop2.

Definition 3 (Eventual Independence Relation). Statements c1, c2 ∈ Stmt
are eventually independent w.r.t. a relation Ω ⊆ N×S iff for all m, n ∈ N, ε ⊆ S
s.t. (n, λ(m)) ∈ Ω, σ ∈ Σ and no synchronization variables in ε appear in c1 or
c2:

[[cn
1 ; cm−1

2 ; ck
1 ; c2]] ≡(σ,ε) [[cn

1 ; cm−1
2 ; (ck

1 ‖ c2)]]

for all k ∈ N. The expression ci stands for the sequential composition of i in-
stances of the statement c. Given Ω and n ∈ N, we let ω(n) = {s | (n, s) ∈ Ω}.

Example 2. Consider the following program:

while bi do {a[i] :=a[i]+1; i := i∗2}; while bj do {a[j] :=a[j]+1; j := j+1}

The two loop statements are not necessarily independent, but one can define
an eventual independence relation over the loop bodies in order to parallelize
their iterations. In this case, the loop statements are eventually independent
with respect to a relation Ω, if (n, λ(m)) ∈ Ω implies i� ∗ 2n < j� + m, where i�

is the initial value of variable i and j� is the initial value of variable j.
In practice, when considering sequential code, it is sufficient to state the se-

mantics equivalence in terms of the event set ε = ∅. From the definition of
eventual independence, if λ(m) = s, then the mth execution of c2 shall wait for
the event s to execute. Assuming (n, s) ∈ Ω then it is safe to signal the event
s after executing n times the statement c1, allowing the mth execution of state-
ment c2 to take place. Indeed, by definition of Ω, it follows from (n, s) ∈ Ω that
after n iterations of c1, any and all subsequent executions of c1 do not modify a
piece of memory on which the mth iteration of c2 depends.

The main reason for defining the Ω relation is to link the iterations of the loop
bodies that are safe to execute in parallel. If we take m = 1 in the definition, then
we see that n is simply the number of iterations of c1 that we need to execute
before we can execute the first iteration of c2 (in parallel with the remaining
iterations of the first loop) without altering the semantics of the original program.
Higher values of m are in relation through Ω with the values n after which it
is safe to execute the mth iteration of the second loop, provided that the m− 1
previous iterations where executed following the guidelines that Ω defines. This
is the basis for the transformation we are aiming at and it is formalized in the
next section.

The set ω(n), which is defined in terms of Ω, is the set of all the events that
are safe to announce after n executions of the statement c1. Since the purpose

Program Parallelization Using Synchronized Pipelining 179

of this definition is to have a construct that will allow us to denote the set of
events the first loop can safely announce after each iteration has ended, we will
mainly use ω when defining our transformation.

4.1 Inferring Eventual Independence

The eventual independence relation Ω and the function λ are essential ingredi-
ents of synchronized pipelining, as they will be used to guide the insertion of
synchronization statements in the original program. Therefore, it is important
to be able to infer Ω and λ for a large class of code fragments. We have been
able to infer this data efficiently for the algorithms under consideration, that
manipulate array structures of significant size. Consider the case in which both
c1 and c2 read and modify data from a single array a, iterating over the induc-
tion variables h1 and h2 respectively. By simple code inspection, one can easily
collect the sets of syntactic expressions e1 and e2 used to read or update the
array a inside the loop body. These array accesses are not always expressed in
terms of the induction variables h1 and h2. However, in general, we have found
that they are expressed in terms of induction variables h′

1 and h′
2 derived from

h1 and h2. In those cases, induction variable analysis [4] allows one to rewrite
the derived induction variables h′

1 and h′
2 in terms of the induction variables

h1 and h2, i.e. h′
1 = f1(h1) and h′

2 = f2(h2) for some function expressions f1
and f2.

Most frequently, when h′
i is an induction variable derived from hi, then fi

is a linear function on hi. More complex cases may arise, for instance when
fi is defined as a polynomial or geometric function on hi. In those cases, the
expressions e1(h′

1) and e2(h′
1) are easily rewritten in terms of the inductive

variables, i.e., as e1(f1(h1)) and e2(f2(h2)). By static interval analysis, we can
approximate the regions of data that are read and modified by c1 and c2, in
terms of the induction variables h1 and h2, and the expressions e1(f1(h1)) and
e2(f2(h2)).

Assume [lrw
1 , urw

1] represents the interval of the array a that is written or read
by c1, where lrw

1 , urw
1 are integer expressions that depend on h1 (and similarly

with c2). Since e(f1(h1)) and e(f2(h2)) are linear (or polynomial) functions on h1
and h2, one can determine whether they are monotonic (or determine the points
from which they are monotonic). If the l and u expressions are increasing as the h
variables grow (the decreasing case is symmetrical) one can propose an eventual
independence relation Ω. For instance when lrw

1 and urw
2 are increasing functions,

we determine the pairs (a,b) of values for h1 and h2 such that urw
2 < lrw

1 , and
then, since the bth iteration of c2 is independent of the ath iteration of c1, we
can have (a, λ(b)) ∈ Ω.

Example 3. We show in this paragraph how to determine an eventual indepen-
dence relation for this simple pair of loop statements

while b1 do c1; while b2 do c2

180 L. Scandolo, C. Kunz, and M. Hermenegildo

where c1 and c2 are defined as

c1
.= a[x] := 1; x := x + 1

c2
.= y := y + a[z]; z := z + 1

First of all, notice that statements c1 and c2 access the array a, so they are not in-
dependent. By examining statements c1 and c2, it is immediate that the indexes
of the array accesses are monotonically increasing and the relation between the
initial values of program variables (denoted x� for a variable x) define the even-
tual independence relation. In this case, a simple induction variable analysis will
define e1 and e2, and thus lrw

1 ,lrw
2 , urw

1 and urw
2 , as a linear function of the in-

duction variables: lrw
1 (h1) = urw

1 (h1) = h1+x� and lrw
2 (h2) = urw

2 (h2) = h2+z�.
Thus, the procedure’s requirements translate into: h2 + z� < h1 + x�. The argu-
ment above allows us to propose an eventual independence relation Ω.

(z� − x� + 1, λ(1)) ∈ Ωc1,c2

∀x. x ≤ z� − x� + 1⇒ (x, λ(1))
∈ Ωc1,c2

This Ω relation formalizes the intuition that c1 and c2 can be executed in parallel
as long as every iteration k of c2 executes after the iteration number z�−x�+k of
c1. Furthermore, since the size of the array a (|a|) is bounded, if c1 is executed
more than |a| − x� times, we end up at an exceptional state abort, in which
case any execution of c2 is independent. In conclusion, the following relation Ω
determines the eventual independence between c1 and c2:

x + x� ≤ |a| ∧ y ≤ x + z� − x� − 1⇒ (x, λ(y)) ∈ Ωc1,c2

x + x� > |a| ⇒ (x, λ(y)) ∈ Ωc1,c2

5 Synchronized Pipelining

We now define synchronized pipelining, starting from two consecutive loops, and
then extending the transformation to sequences of loops and nested loops.

Consider a program c of the form while b1 do c1; while b2 do c2, where c1 and
c2 are compound statements that access an array. We assume that the boolean
conditions b1 and b2 are not affected by the execution of c2 and c1, respectively.
Further, we let h1 and h2 be program counters that determine the number of
iterations already performed for the first and second loop respectively. Our aim
is to transform the program so that it executes both loops in parallel. To pre-
serve the program semantics, the transformation must insert code that ensures
a correct synchronization between the two loops, so the resulting program will
be of the form while b1 do c′1 ‖ while b2 do c′2, where c′1 is derived from c1
by adding event announcements and c′2 is derived from c2 by adding synchro-
nization guards. Both transformations are guided by a relation Ω of eventual
independence and by a function λ that are given as input to the transformation.

Program Parallelization Using Synchronized Pipelining 181

Definition 4. The synchronized pipelining of c is statement ¯̄c defined as:

¯̄c = (while b1 do c′1); S! ‖ while b2 do c′2

where c′1 = c1; ω(h1)!, c′2 = λ(h2) → c2, and S is the set of all events on which
statement c′2 can wait.

Statement S! is introduced after the execution of c′1 to ensure that all events are
indeed announced, and thus the progress of the original program is preserved. In
order to accomplish that, statement S! simply announces all events, in any order.
Since all events in which statement c′2 is waiting are eventually announced by S!,
statement c′2 cannot block indefinitely. For the same reason, c ≤ ¯̄c. Notice that
the set of events announced by c′1 and S! may be redundant. In practice, one
can reduce program size and synchronization overhead by statically removing
duplicated events. Similarly, c2 may be simplified by removing synchronization
primitives that wait on the same event. We assume, however, the definition given
above for notational simplicity.

The eventual independence condition determined by Ω is enough to show that
the semantics is preserved. That is, every execution state reached by the final
program is also reachable by the original one.

Proposition 1 (Semantics Preservation). For every initial state σ ∈ Σ and
every event set ε disjoint from the fresh synchronization variables introduced by
the transformation, we have that [[c]] ≡(σ,ε) [[¯̄c]].

5.1 Extensions

We first analyze the case of a sequence of loops. Then, we explain how we proceed
in the presence of nested loops.

Loop Sequences. Now suppose the original program is of the form:

while b1 do c1; . . . ; while bn do cn

The idea is to parallelize the whole program by progressively applying the basic
transformation to each pair of interfering loops. Therefore, we must provide for
all i, j such that i < j an eventual independence relation Ωi,j and a function
λi,j : N → S. By definition of eventual independence, we must have for every
(n, λi,j(m)) ∈ Ωi,j and for all state σ and event set ε:

[[cn
i ; cm−1

j ; ck
i ; cj]] ≡(σ,ε) [[cn

i ; cm−1
j ; (ck

i ‖ cj)]]

Since the parallel execution of the ith loop may interfere not only with its imme-
diately preceding loop, but with every preceding one, we synchronize each pair
of non-independent loops. Thus, the ith loop of the final program becomes:

while bi do
⋃

1≤j<i

λi,j(h) →

⎛⎝ci;
⋃

i<j≤n

ωi,j(h)!

⎞⎠ ; ∀i<j≤nSi,j !

182 L. Scandolo, C. Kunz, and M. Hermenegildo

where Si,j stands for all the synchronization events used to synchronize execu-
tion between while bi do ci and while bj do cj , for every i < j . From the
expression above, it may seem that excessive synchronization overhead is intro-
duced. However, the actual number of synchronization primitives depends on the
definition of λ and ω, and on the removal of duplicated synchronization events.

Nested Loops. We now turn our attention to a different but more common
program structure: nested loops. Consider the following program as the target
of the parallelization: while a do (c1; while b do c; c2). In order to be able to
apply our transformation we take the following assumptions:

1. We assume that the number of iterations of the outer loop (or an overap-
proximation) can be computed at runtime. In the rest of this section we let
β stand for the number of iterations that may be computed at runtime and,
for simplicity, we assume that the boolean condition a is of the form l ≤ β,
where l is the induction variable of the outer loop, incremented with step
1 from the initial value 1. In practice, the exact form of a may differ from
this assumption, but we assume that it is possible to evaluate the number of
iterations at runtime based on the current memory state. Intuitively, if we
can determine the exact number of iterations of the outer loop, we can un-
roll it and parallelize the resulting program by applying the transformation
on sequences of loops as explained above. However, assuming that we can
statically determine the exact number of iterations is an unnecessary and
too strong assumption.

2. We assume also that there is no interference between the scalar variables
read and modified in c1 and c. We can reduce the interference between loop
iterations by vectorizing each scalar variable v into an array v̂, with the
cost of extra memory usage. For every statement c and boolean condition
b, we denote ĉ[l] and b̂[l] the result of vectorizing scalar variables in c and
b, respectively. The value of the variable l determines which position of the
vectorized variables is in use. At the end of the transformed program, a
sync operation takes each vectorized variable v̂, and transforms it back into
the original scalar variable v, i.e., executes v = v̂[β]. The reason for this
vectorization is to avoid clashes between the values that are accessed by the
fragments while b̂[i] do ĉ[i], for different values of i.

3. The last hypothesis we make is that the scalar variables initialized by the
statement c1 are not modified by c or c2 after vectorization. This is a rea-
sonable assumption to make, since data structure accesses are in most cases
confined to the inner loop. This allows us to ignore dependencies between
these instructions and the rest of the loop.

As before, for every i, j ∈ N s.t. i < j ≤ β we need a function λi,j : N →
S mapping iterations to synchronization events. In this case, the parametric
relation Ωi,j takes into account the last instructions of the outer loop. We require,
if (n, λi,j(m)) ∈ Ωi,j and for every ε ⊆ S and σ ∈ Σ, that:

[[ĉ[i]n; ĉ[j]m−1; ĉ[i]k; ĉ2[i]; ĉ[j]]] ≡(σ,ε) [[ĉ[i]n; ĉ[j]m−1; (ĉ[i]k; ĉ2[i] ‖ ĉ[j])]]

Program Parallelization Using Synchronized Pipelining 183

The transformation is similar to the one performed for sequences of loops. Since
inner loops are syntactically equal, the value of induction variable l correspond-
ing to the outer loop is used to distinguish between different iterations. The
transformation follows, thus, the scheme:

while a do τc,l−1 → (ĉ1[l]; τc1,l!) ;
while b̂[l] do

(⋃
1≤j<l λl,j(h) →

(
ĉ[l];

⋃
l<j≤β ωl,j(h)!; ĉ2[h′]

))
;

sync

Notice that the order in which the instances of ĉ[l] are executed is preserved.

5.2 Motivating Example Revisited

Our motivating example, mergesort, was annotated with synchronization state-
ments that follow the guidelines described in our transformation. If we take two
consecutive iterations of the main loop of the program, we can sketch the con-
structs we have presented in our theoretical model.

Starting from the original code, we need first to vectorize the variables that
parameterize our inner loop. In our example this is variable i. Since we need to
spawn a new procedure in order to launch (possibly) a new thread, we encap-
sulate the inner loop in a function call, which receives i as a parameter. Then,
the stack allocation scheme automatically vectorizes variable i for us, since now
each iteration will possess its own copy of i, independent from the others, and
initialized to the value which each iteration would see in a sequential execution.
The only problem here consists in working with a language which allows function
calls to be made to run in parallel. Later we will explain how we deal with this
issue in practice.

In the original program, the variable c is the expression used for writing in
the array, and furthermore it is the lowest variable which is read or written in
the array. On the other side, the variable r is the highest variable which is read,
this is a consequence of the initial state of the inner loop and is preserved in
the loop body. We can analyze the loop and determine that c is monotonically
increasing. It follows that if we have two consecutive iterations,i and i + 1, of
the loop, the latter cannot proceed unless it can assure that the value of1 ci is
bigger than that of ri+1.

Thus, the following piece of code is added to the original code:
...
while (j < length){

while (c-j<2*i){
event_wait(r);
fromQueue = last(Q);
if (l-j > i){

...
A[c] = dequeue(Q);

}
event_announce(c);
c++;

}
...

1 We use superscripts to denote which loop variables belong to and subscripts to refer
to the value of the variable at a given iteration of its loop.

184 L. Scandolo, C. Kunz, and M. Hermenegildo

S P1 P2 P3 P4

4

0

0.5

1

1.5

2

2.5

3

3.5

S
e
c
o
n
d
s

DFT

FFT

Merge

(a) Computation Time

S P1 P2 P3 P4

4

0

0.5

1

1.5

2

2.5

3

3.5

G
a
in

DFT

FFT

Merge

(b) Speedup

Fig. 4. Experimental Results

Our function λ essentially maps m → rm. It becomes apparent now that our Ω
relation must relate every tuple (n,λ(m)) where ci+1

n is larger than rim.
We now need to determine λ and Ω for every other possible combination of

iterations. But since the same loop is repeated, with the same properties, we
require the same condition to advance, namely rim < cjn, and thus Ωi,j again
contain pairs (n,λi,j(m)) which meet that condition.

6 Experimental Results

We have experimented with the parallelizing transformation taking as input a
program written in a subset of C and returning a Cilk [5] program. Cilk is an
extension of C for multithreaded parallel programming, that provides a light-
weight thread model based on job stealing.

We proceed by annotating the source program with Cilk statements for thread
creation and synchronization, using Cilk locks and spawn procedures to imple-
ment event signaling and efficient variable synchronization. We encapsulate inner
loops in spawned procedures, and use the C stack allocation scheme to efficiently
allocate memory for vectorization.

The proposed transformation has been applied to well-known algorithms that
traverse arrays to obtain information as to the applicability and the efficiency of
our approach. In all cases, the transformation yields good results unless the input
size is tiny enough to make the synchronization overhead relatively significant.

For our tests we have used a 64bit Intel(R) Core(TM)2 Quad CPU at 2.4
GHz clock speed, 1GB of DIMM 800 MHz memory, running GNU/Linux.

In all cases we have labeled the graphics with S for the sequential (unmodified)
algorithm, running on a single processor, and we have labeled Pn for our modified,
pipelined algorithm with n processors.

Figure 4 shows the computing time and the relative performance gain of the
DFT2, FFT3, and MergeSort algorithms run under the different conditions we
have explained. The pipelined version of our DFT program is slightly slower while

2 Discrete Fourier Transform.
3 Fast Fourier Transform.

Program Parallelization Using Synchronized Pipelining 185

running with only one processor, due to the overhead of synchronization variable
allocation and signaling. Once we augment the number of available processors
the amount of time spent computing starts to decrease as the several runs on
the array on which we are working start to (safely) overlap. The efficiency gain
is almost linear, but of course the overhead of signaling and also the thread
creation and manipulation overhead add some extra work to the computation.
The algorithm used is well suited for our transformation since it copies the input
array and then modifies one element at a time incrementally, allowing several
elements to be modified at the same time without interference.

Our experiments with an FFT algorithm also yield good results, though not
as good as with the DFT algorithms. The reason for this is that unlike DFT,
FFT traverses the input array heavily and performs the computation in-place,
so it slowly gives up resources and thus the overlapping of different traversals is
smaller. Nevertheless, some performance gain is indeed achieved in our pipelined
version of the algorithm, roughly a 50% gain with 4 processors. The pipelined
version is still outperformed by the sequential one in the case we have a single
processor available, again due to synchronization overheads.

The last benchmark we present is that of our motivating example, namely
mergesort. This algorithm also traverses an array several times incrementally,
which allows us to obtain greater benefits from our transformation. The bench-
marks were made sorting an array of one million elements. The results show that
our transformation yields a 240% efficiency increase by overlapping the merging
steps that are otherwise run sequentially, for a 4 processor machine.

7 Related Work

Ottoni et al. [13] proposed a technique called Decoupled Software Pipelining
(DSWP) to extract the fine-grained parallelism hidden in most applications.
The process is automatic, and general, since it considers non-scientific applica-
tions in which the loop iterations have heavy data dependencies. It provides a
transformation that is slightly different to typical loop parallelization, in which
each iteration is assigned alternately to each core, with an appropriate synchro-
nization to prevent data races. As a result, no complete iteration is executed
simultaneously with another one, since every iteration has a data dependence
with every other one. Instead of alternating each complete loop iteration on each
core, DSWP splits each loop body before distributing them among the available
cores. This technique improves the locality of reference of standard paralleliza-
tion techniques, and thus reduces the communication latency. It is effective in a
more general set of loop bodies, but it does not take advantage of the eventual
data independence hidden in scientific algorithms.

A recent experimental study [10] analyzes particular cases in which standard
automatic parallelization fails to introduce significant improvements. This is the
case of applications that manipulate complex and mutable data structures, such
as Delauney mesh refinement and agglomerative clustering. The authors propose
a practical framework, the Galois system, that relies on syntactic constructs to

186 L. Scandolo, C. Kunz, and M. Hermenegildo

enable programmers to hint to the compiler on parallelization opportunities and
an optimistic parallelization run-time to exploit them. Due to the unpredictabil-
ity of irregular operations on mutable and complex data structures, the Galois
framework is mostly based on runtime decisions and backtracking, and does not
exploit statically inferred data dependence.

Data Parallel Haskell [14] (DPH) provides nested data parallelism to the exist-
ing functional language compiler GHC. Flat parallelism is restricted to the con-
current execution of sequential operations. Nested parallelism generalizes flat
parallelism by considering the concurrent execution of functions that may be
executed in parallel, and thus provides a more general and flexible approach,
suitable for irregular problems. DPH extends Haskell with parallel primitives,
such as parallel arrays and a set of parallel operations on arrays. The compiler
compiles these parallel constructions by desugaring them into the GHC Core
language, followed by a sequence of Core-to-Core transformations. DPH is a no-
table framework for the specification of concurrent programs, but the compiler
is not intended to automatically discover parallel evaluations.

In a different line of work, the Manticore project is developing a parallel pro-
gramming language for heterogeneous multi-core processor systems [3]. A main
feature of the language is the support for both implicit and explicit threading.
Nevertheless, as a design choice, it avoids implicit parallelism (i.e., it requires
the programmer to hint parallelism by providing annotations) since they claim
implicit parallelism to be only effective for dense regular parallel computations.

The goal of the Paraglide project at IBM is to assist the construction of
highly-concurrent algorithms. The Paraglider tool [17] is a linearization-based
framework to systematically construct complex algorithms manipulating concur-
rent data structures, from a sequential implementation. This approach combines
manual guidance with automatic assistance, focusing mainly on fine-grained
synchronization.

8 Conclusion

Synchronized pipelining is a parallelization technique that relies on eventual
independence, a new refinement of the established notion of independence, to
successfully transform programs with nested loops. This paper has set the the-
oretical foundations of the transformation, and showed its practical benefits on
representative examples.

Future work includes applying this transformation to general recursive proce-
dures, which is a possibility if the program is first transformed into an iterative
version of itself. This is a widely studied optimization problem [11] which can
significantly improve performance. Other lines of research include applying the
transformation to languages that manipulate the heap. Many concepts developed
in this paper are largely independent of the underlying programming language,
and the main issue is rather to find an analysis to detect independence. Recent
work on the use of shape analysis and separation logic for detecting data depen-
dence and for parallelization provide a good starting point (e.g., [15,16,8,6,12]).

Program Parallelization Using Synchronized Pipelining 187

References

1. Allan, V., Jones, R., Lee, R., Allan, S.J.: Software pipelining. ACM Computing
Surveys 27(3), 367–432 (1995)

2. Fahringer, T., Scholz, B.: A unified symbolic evaluation framework for parallelizing
compilers. IEEE Transactions on Parallel and Distributed Systems PDS-11(11),
1105–1125 (2000)

3. Fluet, M., Rainey, M., Reppy, J., Shaw, A.: Implicitly-threaded parallelism in man-
ticore. In: Hook, J., Thiemann, P. (eds.) ICFP, pp. 119–130. ACM, New York (2008)

4. Gerlek, M., Stoltz, E., Wolfe, M.: Beyond induction variables: detecting and classi-
fying sequences using a demand-driven SSA form. ACM Transactions on Program-
ming Languages and Systems 17(1), 85–122 (1995)

5. Supercomputing Technologies Group: Cilk 5.4.6 reference manual (1998)
6. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating

low-level software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 379–392. Springer, Heidelberg (2007)

7. Hennessy, J., Patterson, D.: Computer Architecture: a quantitative approach.
Morgan Kaufman, San Francisco (2003)

8. Hummel, J., Hendren, L., Nicolau, A.: A general data dependence test for dynamic,
pointer-based data structures. In: PLDI, pp. 218–229 (1994)

9. Joyner, M., Budimlic, Z., Sarkar, V.: Optimizing array accesses in high productivity
languages. In: Perrott, R.H., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang,
L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 432–445. Springer, Heidelberg (2007)

10. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. In: Ferrante, J., McKinley, K. (eds.)
PLDI, pp. 211–222. ACM, New York (2007)

11. Liu, Y., Stoller, S.: From recursion to iteration: What are the optimizations? In:
PEPM, pp. 73–82 (2000)

12. Marron, M., Kapur, D., Stefanovic, D., Hermenegildo, M.: Identification of Heap-
Carried Data Dependence Via Explicit Store Heap Models. In: Amaral, J.N. (ed.)
LCPC 2008. LNCS, vol. 5335, pp. 94–108. Springer, Heidelberg (2008)

13. Ottoni, G., Rangan, R., Stoler, A., August, D.I.: Automatic thread extraction with
decoupled software pipelining. In: MICRO, pp. 105–118. IEEE Computer Society,
Los Alamitos (2005)

14. Peyton Jones, S.: Harnessing the multicores: Nested data parallelism in haskell. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, p. 138. Springer, Heidelberg
(2008)

15. Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation
logic. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer,
Heidelberg (2009)

16. Rugina, R., Rinard, M.: Automatic parallelization of divide and conquer algo-
rithms. In: PPOPP, pp. 72–83 (1999)

17. Vechev, M., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
Gupta, R., Amarasinghe, S. (eds.) PLDI, pp. 125–135. ACM, New York (2008)

Defining Datalog in Rewriting Logic�

M. Alpuente, M.A. Feliú, C. Joubert, and A. Villanueva

Universidad Politécnica de Valencia, DSIC / ELP
Camino de Vera s/n, 46022 Valencia, Spain

{alpuente,mfeliu,joubert,villanue}@dsic.upv.es

Abstract. In recent work, the effectiveness of using declarative
languages has been demonstrated for many problems in program anal-
ysis. Using a simple relational query language, like Datalog, complex
interprocedural analyses involving dynamically created objects can be
expressed in just a few lines. By exploiting the power of the Rewriting
Logic language Maude, we aim at transforming Datalog programs into
efficient rewrite systems that compute the same answers. A prototype
has been implemented and applied to some real-world Datalog-based
analyses. Experimental results show that the performance of solving
Datalog queries in rewriting logic is comparable to state-of-the-art
Datalog solvers.

1 Introduction

Datalog [17] is a simple relational query language that allows complex interpro-
cedural program analyses involving dynamically created objects to be described
in an intuitive way. The main advantage of formulating data-flow analyses in
Datalog is that analyses that traditionally take hundreds of lines of code can
be expressed in a few lines [19]. In real-world problems, the Datalog rules
that encode a particular analysis must be solved generally under the huge set
of Datalog facts that are automatically extracted from the analyzed program.
In this context, all program updates, like pointer updates, might potentially be
inter-related, leading to an exhaustive computation of all results.

The aim of this paper is to provide efficient Datalog query answering in
Rewriting Logic [14], which is a very general logical and semantical framework
that is efficiently implemented in the high-level programming language Maude

[7]. Our motivation for using Rewriting Logic is to overcome the difficulty of
handling metaprogramming features such as reflection in traditional analysis
frameworks [11]. Tracking reflective methods invocations requires not just track-
ing object references through variables but actually tracking method values and
method name strings. Unless reflective calls are interpreted during the compu-
tation, analysis tools run the danger of incorrectness and incompleteness, and
� This work has been partially supported by the eu (feder), the Spanish mec/micinn

under grant tin 2007-68093-C02, the Generalitat Valenciana under grant Emergentes
gv/2009/024, and the Universidad Politécnica de Valencia under grant paid-06-07.
M. A. Feliú was partially supported by the Spanish mec fpu grant AP2008-00608.

D. De Schreye (Ed.): LOPSTR 2009, LNCS 6037, pp. 188–204, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Defining Datalog in Rewriting Logic 189

we consider it a challenge to investigate the interaction of static analysis with
metaprogramming frameworks [7]. An additional goal of this work is to deter-
mine whether Maude is able to process a sizable number of constraints that
arise in real-life problems, like the static analysis of Java programs.

In the related literature, the solution for a Datalog query is classically con-
structed following a bottom-up approach, thus the information in the query
is not taken advantage of until the model has been built [9]. In contrast, the
typical top-down, logic programming interpreter would produce the output by
reasoning backwards from the query. Between these two extremes, there is a
whole spectrum of evaluation strategies [5,6,18], but in this work, we have
considered a top-down approach for developing our transformation, since it
is closer to Maude’s evaluation principle that is based on (non-deterministic)
rewriting.

Logic and functional programming are both instances of rule-based, declar-
ative programming; hence, it is not surprising that the relationship between
them has been studied. However, the operational principle differs: logic pro-
gramming is based on resolution whereas functional programs are executed by
term rewriting. There exist many proposals for transforming logic programs into
rewriting theories [12,15,16]. These transformations aim at reusing the infras-
tructure of term rewriting systems to run the (transformed) logic program while
preserving the intended observable behavior (e.g., termination, success set, com-
puted answers, etc). Traditionally, translations of logic programs into functional
programs are based on imposing an input/output relation (mode) among the
parameters of the original program [15]. However, one distinguished feature of
Datalog programs that burdens the transformation is that predicate argu-
ments are not moded, meaning that they can be used both as input or output
parameters.

One recent transformation that does not impose modes among parameters
was presented in [16]. The authors defined a transformation from definite logic
programs into (infinitary) term rewriting for the termination analysis of logic
programs. Contrary to our approach, the transformation of [16] is not concerned
with preserving the computed answers, but only the termination behavior. More-
over, [16] does not tackle the problem of efficiently encoding logic (Datalog)
programs containing a huge amount of facts in a rewriting-based infrastructure
such as Maude. After exploring the impact of different implementation choices
(equations vs rules, etc.) in our working scenario, i.e., sets of hundreds of facts
and a few clauses that encode the analysis, in this work, we present an equation-
based transformation that leads to efficient Maude-programs.

In previous work [3], we developed a Datalog query solving technique based
on Boolean Equation Systems (Bess) [4]. In this paper, we work at a higher level,
transforming a high-level Datalog program into another high-level Maude

program. Our goal is to take advantage of the flexibility and versatility of Maude

in order to achieve scalability and meta-programming capabilities without losing
the declarative nature of specifying program analyses in Datalog.

190 M. Alpuente et al.

In Section 2, we present our running example: a program analysis expressed
as a Datalog program that we will use to illustrate the general transformation
from Datalog programs into Maude programs. In Section 3, we describe such
transformation. Section 4 formalizes the general process and establishes its cor-
rectness and completeness. Section 5 shows experimental results obtained with
realistic examples and compares our Maude implementation to state-of-the-art
Datalog solvers. We conclude and discuss future work in Section 6. More details
and missing proofs can be found in [1].

2 A Program Analysis Written as a Datalog Program

Datalog is a relational language that uses declarative clauses to both describe
and query a deductive database. A definite Datalog clause is a function-free
Horn clause over a finite alphabet of predicate symbols (e.g., relation names
or arithmetic predicates, such as <) whose arguments are either variables or
constant symbols. A Datalog program R is a finite set of Datalog clauses
[9].

Definition 1 (Syntax of Rules). Let P be a set of predicate symbols, V be
a finite set of variable symbols, and C a set of constant symbols. A Datalog

clause r, defined over a finite alphabet P ⊆ P and arguments from V ∪C, V ⊆ V
and C ⊆ C, has the following syntax:

p0(a0,1, . . . , a0,n0) : − p1(a1,1, . . . , a1,n1), . . . , pm(am,1, . . . , am,nm).
where m ≥ 0, and each pi is a predicate symbol of arity ni with arguments
ai,j ∈ V ∪ C (j ∈ [1..ni]), where p0 is not arithmetic.

The atom p0(a0,1, . . . , a0,n0) in the left-hand side of the clause is the clause’s
head. The finite conjunction of subgoals in the right-hand side of the clause is
the clause’s body, i.e., a sequence of atoms that contain all variables appearing
in the head. A clause with empty body (m = 0) is called a fact. A clause with
empty head and m > 0 is called a query, and � denotes the empty clause. A
syntactic object (argument, atom, or clause) that contains no variables is called
ground. Moreover, an existentially quantified variable is a variable that appears
in the body of a clause and does not occur in its head.1

Given a Datalog program R and a query q, we follow a top-down approach
and use SLD-resolution to compute the set of answers of q in R. Given the
successful derivation D ≡ q ⇒θ1

SLD q1 ⇒θ2
SLD . . .⇒θn

SLD �, the answer computed
by D is θ1θ2 . . . θn restricted to the variables occurring in q.

Let us now introduce the running Datalog program example that we
use throughout the paper. This program defines a simple context-insensitive
inclusion-based pointer analysis for an object-oriented language such as Java.
This analysis is defined by the following predicate vP/2 representing the fact
that a program variable points directly (via vP0/2) or indirectly (via a/2) to a

1 In the rest of the paper, Datalog programs are considered to be as defined here.

Defining Datalog in Rewriting Logic 191

given position in the heap. The second clause states that Var1 points to Heap if
Var2 points to Heap and Var2 is assigned to Var1:

vP(Var,Heap) :- vP0(Var,Heap).

vP(Var1,Heap) :- a(Var1,Var2),vP(Var2,Heap).

The predicates a/2 and vP0/2 are defined extensionally by a number of facts that
are automatically extracted from the original program being statically analyzed.
The intuition is that a/2 represents a direct assignment from a program variable
to another variable, whereas vP0/2 represents newly created pointers within the
analyzed (object-oriented) program from a program variable to the heap. The
following code excerpt contains some Datalog facts complementing the above
pointer analysis description for an object-oriented example program.

a(v1,v2). a(v1,v3). vP0(v3,h4). vP0(v2,h5).

In the considered Datalog analysis program, a query typically consists in com-
puting the objects in the heap pointed by a specific variable. We write such
a query as ?- vP(v1,Heap).. The expected outcome of this query is the set
of all possible answers, i.e., the set of substitutions mapping the variable Heap
to constants satisfying the query. In the example, the set of computed answers
for the considered query is {{Heap/h4},{Heap/h5}}. Another possible query is
?- vP(Var,h5)., where h5 stands for a heap object.

Similarly to [16], our goal is to define a mode-independent transformation
for (Datalog) logic programs in order to keep the possibility of running both
kinds of queries. Since variables in rewriting logic are input-only parameters, we
cannot use them to encode logic variables of Datalog. We follow the stan-
dard approach based on defining a ground representation for logic variables
[7,8].

3 From Datalog to Maude

As explained above, we are interested in computing all answers for a given
query by term rewriting. A näıve approach is to translate Datalog clauses
into Maude rules, and then use the search2 command of Maude in order to
mimic all possible executions of the original Datalog program. However, in the
context of program analysis with a huge number of facts, this approach results
in poor performance [2]. This is because rules are handled non-deterministically
in Maude whereas equations are applied deterministically [7].

In this section, we first formulate a suitable representation in Maude of the
Datalog computed answers. Then, we informally introduce our equation-based
transformation by means of the running example.

2 Intuitively, search t → t′ explores the whole rewriting space from the term t to any
other terms that match t′ [7].

192 M. Alpuente et al.

3.1 Answer Representation

Let us first introduce our representation of variables and constants of a
Datalog program as ground terms of a given sort in Maude. We define the
sorts Variable and Constant to specifically represent the variables and con-
stants of the original Datalog program in Maude, whereas the sort Term
(resp. TermList) represents Datalog terms (resp. lists of terms, built by simple
juxtaposition):

sorts Variable Constant Term TermList .

subsort Variable Constant < Term .

subsort Term < TermList .

op : TermList TermList -> TermList [assoc] .

op nil : -> TermList .

For instance, T1 T2 represents the list of terms T1 and T2. In order to con-
struct the elements of the Variable and Constant sorts, we introduce two
constructor symbols: Datalog constants are represented as Maude Quoted
Identifiers (Qids), whereas logical variables are encoded in Maude by means of
the constructor symbol v. These constructor symbols are specified in Maude as
follows:

subsort Qid < Constant .

op v : Qid -> Variable [ctor] .

op v : Term Term -> Variable [ctor] .

The last line of the above code excerpt allows us to build variable terms of
the form v(T1,T2) where both T1 and T2 are Terms. This is used to ensure
that the ground representation in Maude for existentially quantified variables
that appear in the body of Datalog clauses is unique to the whole Maude

program.
With ground terms representing variables, we still lack a way to collect the

answers for the variables in the query. In our formulation, answers are stored
within the term representing the ongoing partial computation of the Maude

program. Thus, we represent a (partial) answer for the original Datalog query
as a sequence of equations (called answer constraint) that represents the sub-
stitution of (logical) variables by (logical) constants computed during the pro-
gram execution. We define the sort Constraint representing a single answer
for a Datalog query, but we also define a hierarchy of subsorts (e.g., the sort
FConstraint at the bottom of the hierarchy represents inconsistent solutions)
that allows us to identify the inconsistent as well as the trivial constraints (Cst
= Cst) whenever possible. This hierarchy3 allows us to simplify constraints as
soon as possible and to improve performance. The resulting Maude program is
as follows:

3 The prefix e (resp. Ne) is used to form an abbreviated name of sorts for empty (resp.
non-empty) constraints and constraint sets.

Defining Datalog in Rewriting Logic 193

sorts Constraint eConstraint NeConstraint TConstraint FConstraint .

subsort eConstraint NeConstraint < Constraint .

subsort TConstraint FConstraint < eConstraint .

op = : Term Constant -> NeConstraint .

op T : -> TConstraint .

op F : -> FConstraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

op , : FConstraint Constraint -> FConstraint [ditto] .

op , : TConstraint TConstraint -> TConstraint [ditto] .

op , : NeConstraint TConstraint -> NeConstraint [ditto] .

op , : NeConstraint NeConstraint -> NeConstraint [ditto] .

var Cst Cst1 Cst2 : Constant . var NEC : NeConstraint .

var V : Variable .

eq (Cst = Cst) = T . --- Simplification

eq (Cst1 = Cst2) = F [owise] . --- Unsatisfiability

eq NEC,NEC = NEC . --- Idempotence

eq F,NEC = F . --- Zero element

eq F,F = F . --- Simplification

eq (V = Cst1),(V = Cst2) = F [owise] . --- Unsatisfiability

Note that the conjunction operator , has identity element T and obeys the laws
of associativity and commutativity. We express the idempotence property of the
operator by a specific equation on variables from the NeConstraint subsort NEC.
A query reduced to T represents a successful computation.

Since equations in Maude are run deterministically, all the non-determinism
of the original Datalog program has to be embedded into the carried constraints
themselves. This means that we need to carry on all the possible (partial) answers
at a given execution point. To this end, we introduce the notion of set of answer
constraints, and we implement a new sort called ConstraintSet:

sorts ConstraintSet eConstraintSet NeConstraintSet .

subsort eConstraintSet NeConstraintSet < ConstraintSet .

subsort NeConstraint TConstraint < NeConstraintSet .

subsort FConstraint < eConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

op ; : NeConstraintSet ConstraintSet -> NeConstraintSet [ditto] .

var NECS : NeConstraintSet .

eq NECS ; NECS = NECS . --- Idempotence

It is easy to grasp the intuition behind the different sorts and the subsort re-
lations in the above fragment of Maude code. The operator ; represents the
disjunction of constraints. The properties of associativity, commutativity and
identity element of ; can be easily expressed by using ACU attributes in Maude,
thus simplifying the equational specification and achieving better efficiency.

In order to incrementally add new constraints throughout the program
execution, we define the composition operator x as follows:

194 M. Alpuente et al.

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

var NEC NEC1 NEC2 : NeConstraint .

var CS : ConstraintSet . var NECS1 NECS2 : NeConstraintSet .

eq F x CS = F . --- L-Zro el.

eq CS x F = F . --- R-Zro el.

eq NEC1 x (NEC2 ; CS) = (NEC1 , NEC2) ; (NEC1 x CS) . --- L-Dist.

eq (NEC ; NECS1) x NECS2 = (NEC x NECS2) ; (NECS1 x NECS2) . --- R-Dist.

Note that, in order to keep information consistent, automatically trivial
constraints are simplified whereas inconsistent ones collapse into an F value.

3.2 A Glimpse of the Transformation

In order to mimic the execution order of the subgoals in the body of the Datalog

clauses, the first näıve idea is trying to translate each Datalog clause into a
conditional equation. The execution of these kinds of equations suffers an impor-
tant penalty within the rewriting machinery of Maude that dramatically slows
down the overall performance of the computation. In order to obtain better per-
formance, we disregard conditional equations in favor of non-conditional ones
and impose an evaluation order by means of some auxiliary unraveling [13] func-
tions that stepwisely evaluate each call and propagate the (partially) computed
information. We rely on pattern matching to ensure that a call is executed only
when the previous one has been solved.

For each Datalog predicate, we introduce a single equation that represents
the disjunction of the possible answers delivered by all the clauses defining that
predicate. In the case of predicates defined by facts, each fact can be represented
as a Constraint term in our setting. Thus, we transform the set of facts defining
a particular predicate as a single equation whose rhs consists of the disjunction
of Constraint terms representing each particular Datalog fact. Considering
the running example, facts are transformed to:

eq a(T1,T2) = ((T1 = ’v1) , (T2 = ’v2)) ; ((T1 = ’v1) , (T2 = ’v3)) .

eq vP0(T1,T2) = ((T1 = ’v2) , (T2 = ’h5)) ; ((T1 = ’v3) , (T2 = ’h4)) .

In the case of predicates defined by clauses with non-empty body, we generate
as many auxiliary functions as different clauses define the Datalog predicate.
For instance, the answers for vP/2 in the example are the disjunction of the
answers of functions vPc1 and vPc2, representing the calls to the first and second
Datalog clauses of the running example, respectively:

eq vP(T1,T2) = vPc1(T1,T2) ; vPc2(T1,T2) .

The specification for the first clause is given by the function vPc1:

eq vPc1(T1,T2) = vP0(T1,T2) .

The transformation of the second clause into the function vPc2 is a bit more
elaborated since it contains more than one subgoal. Thus, we need an auxiliary

Defining Datalog in Rewriting Logic 195

function to impose the execution order. Moreover, it contains an existentially
quantified variable which carries information from one subgoal to the other.

eq vPc2(T1,T2) = vPc2s2(a(T1,v(T1,T2)), T1 T2) .

eq vPc2s2(((v(T1,T2) = Cst) , C) ; CS, T1 T2) =

(vP(Cst,T1 T2) x ((v(T1,T2) = Cst) , C)) ; vPc2s2(CS,T1 T2) .

eq vPc2s2(F,T1 T2) = F .

As can be observed, vPc2 calls to vPc2s2, whose first argument represents the
execution of the first subgoal and the second argument is the list of parameters
in the head of the original clause. The pattern in the first argument in the lhs of
the equation for vPc2s2 forces the computation of the (partial) answers resulting
from the resolution of a(T1,v(T1,T2)) first in order to proceed. The use of the
term v(T1,T2), which represents the existentially quantified variable Var2 of
the original Datalog program, in the pattern of the equation vPc2s2 is the
key for carrying the computed information from one subgoal to the subsequent
subgoals where the variable occurs. The idea is that vPc2s2 is defined to receive
the value of the shared variable on the pattern ((V = Cst) , C) ; CS). The
recursion over vPc2s2 is needed because its first argument represents all the
possible answers computed by a(T1,v(T1,T2)); thus, we recursively compute
each solution and use the constraints composition operator to combine them.

In order to execute a query in the transformed program, we call the Maude

reduce command. The query that computes all positions to which each variable
can point to can be written in Maude as follows:

reduce vP(v(’variable),v(’heap)) .

The answers to this query are shown below. The first sentence specifies the term
that has been reduced. The second sentence shows the number of rewrites and
the execution time that Maude invested to perform the reduction. The last
sentence, which is written in several lines for the sake of readability, shows the
result of the reduction together with its sort.

reduce in ANALYSIS : vP(v(’v), v(’h)) .

rewrites: 39 in 0ms cpu5 (0ms real) (~ rewrites/second)

result NeConstraintSet:

((v(’h) = ’h4),v(’v) = ’v3) ; ((v(’h) = ’h5),v(’v) = ’v2) ;

((v(’h) = ’h4),(v(’v) = ’v1),v(v(’v), v(’h)) = ’v3) ;

(v(’h) = ’h5),(v(’v) = ’v1),v(v(’v), v(’h)) = ’v2

As expected, four answers were returned: the first two were obtained by the
function vPc1, whereas the other two were computed by the function vPc2.

4 Formal Definition of the Transformation

In this section, we first give a formal description of the new transformation from
a Datalog program into a Maude program that delivers the same answers.
The correctness and completeness of the transformation is given in Section 4.2.

196 M. Alpuente et al.

4.1 The Transformation

Let P be a Datalog program defining predicate symbols p1 . . . pn. Before de-
scribing the transformation process, we introduce some auxiliary notations. |pi|
is the number of facts or clauses defining the predicate symbol pi. Following the
Datalog standard, we assume without loss of generality that a predicate pi is
defined only by facts, or only by clauses [9]. The arity of pi is ari.

Let us start by describing the case when predicates are defined by facts. We
transform the whole set of facts defining a given predicate symbol pi into a single
equation by means of a disjunction of answer constraints. Formally, for each pi

with 1 ≤ i ≤ n that is defined in the Datalog program only by facts, we
write the following snippet of Maude code, where the symbol ci,j,k is the k-th
argument of the j-th fact defining the predicate symbol pi:

var Ti,1 . . . Ti,ari : Term .
eq pi(Ti,1,. . . ,Ti,ari) = (Ti,1 = ci,1,1,. . . , Ti,ar i = ci,1,ari) ; . . .

; (Ti,1 = ci,|pi|,1,. . . , Ti,ari = ci,|pi|,ari
) .

Similarly, our transformation for Datalog clauses with non-empty body com-
bines in a single equation the disjunction of the calls to all functions representing
the different clauses for the considered predicate symbol pi. For each pi with
1≤ i≤n with non empty body, we have the following piece of code:

var Ti,1 . . . Ti,ari : Term .
eq pi(Ti,1,. . . ,Ti,ari) = pi,1(Ti,1,. . .,Ti,ari) ; . . . ; pi,|pi|(Ti,1,. . . ,Ti,ari) .

Each call pi,j with 1 ≤ j ≤ |pi| produces the answers computed by the j-th
clause of the predicate symbol. Now we need to define how each of these clauses
is transformed. Notation τa

i,j,s,k denotes the name of the variable or constant
symbol appearing in the k-th argument of the s-th subgoal in the j-th clause
defining the i-th predicate of the original Datalog program. When s = 0, then
the function refers to the arguments in the head of the clause.

Let us start by considering the case of just one subgoal in the body. We define
the function τp

i,j,s, which returns the predicate symbol that appears in the s-
th subgoal of the j-th clause that defines the i-th predicate in the Datalog

program. For each one-subgoal clause, we get the following transformation:

eq pi,j(τa
i,j,0,1,. . . ,τ

a
i,j,0,ari

) = τp
i,j,1(τ

a
i,j,1,1, . . . , τ

a
i,j,1,r) .

In the equation, r is the arity of the predicate τp
i,j,1.

In the case where more than one subgoal appears in the body of a clause, we
want to impose a left-to-right evaluation strategy. We use auxiliary functions
defined by patterns to force such an execution order. Specifically, we set that a
subgoal cannot be invoked until the variables in its arguments that also occur in
previous subgoals have been instantiated. We call these variables linked variables.

Definition 2 (Linked variable). A variable is called linked variable iff it does
not occur in the head of a Datalog clause, and occurs in two or more subgoals.

Defining Datalog in Rewriting Logic 197

Definition 3 (Function linked). Let C be a Datalog clause. Then the func-
tion linked(C) is the function that returns the list of pairs containing a linked
variable in the first component, and the list of positions where such a variable
occurs in the body of the clause in the second component4.

For example, given the Datalog clause
C = p(X1,X2) :- p1(X1,X3), p2(X3,X4), p3(X4,X2).

we have that linked(C) = [(X3,[1.2,2.1]),(X4,[2.2,3.1])]

Now we define the notion of relevant linked variables for a given subgoal,
namely the linked variables of a subgoal that also appear in a previous subgoal.

Definition 4 (Relevant linked variables). Given a clause C and an integer
number n, we define the function relevant that returns the variables that are
common for the n-th subgoal and some previous subgoal:

relevant(n, C)={X |(X, LX)∈ linked(C), and there existsm<n, ∃j s.t. m.j∈LX}

Note that, similarly to [16], we are not marking the input/output positions of
predicates, as required in more traditional transformations. We are just identi-
fying the variables whose values must be propagated in order to evaluate the
subsequent subgoals following the evaluation strategy.

Now we are ready to address the problem of transforming a clause with more
than one subgoal (and maybe existentially quantified variables) into a set of
equations. Intuitively, the main function initially calls to an auxiliary function
that undertakes the execution of the first subgoal. We have as many auxiliary
functions as subgoals in the original clause. Also, in the rhs of the auxiliary
functions, the execution order of the successive subgoals is controlled by passing
the results of each subgoal as a parameter to the subsequent function call.

Let the function pi,j generate the solutions calculated by the j-th clause of the
predicate symbol pi. We state that psi,j,s represents the auxiliary function cor-
responding to the s-th subgoal of the j-th clause defining the predicate pi. Then,
for each clause, we have the following translation, where the variables X1...XN

of each equation are calculated by the function relevant(s,linked(clause(i,j)))5

and transformed into the corresponding Maude terms. In the equations below,
N stands for the number of relevant variables of the subgoal being transformed.

The equation for pi,j below reduces the considered Datalog predicate to a
call to the first auxiliary function that calculates the (partial) answers for the
second subgoal by first computing the answers from the first subgoal τp

i,j,1 in
its first argument. The second argument of the equations represents the list of
terms in the initial predicate call that, together with the information retrieved
from Definitions 3 and 4, allow us to correctly build the patterns and function
calls during the transformation.

eq pi,j(τ
a
i,j,0,1,. . . ,τ

a
i,j,0,ari

) = psi,j,2(τ
p
i,j,1(τ

a
i,j,1,1,. . . ,τ

a
i,j,1,r), τa

i,j,0,1 . . .τa
i,j,0,ari

) .

4 Positions extend to goals in the natural way.
5 clause(i,j) represents the j-th Datalog clause defining the predicate symbol pi.

198 M. Alpuente et al.

Then, for each auxiliary (unraveling) function, we declare as many constants as
there are relevant variables in the corresponding subgoal. The left hand side of
the equation for this auxiliary function is defined with patterns that adjust the
relevant variables to the values already computed by the execution of a previous
subgoal. Note that we may have more assignments in the constraint, which is
represented by C, and that we may have more possible solutions in CS. The auxil-
iary equation ps’i,j,s takes each possible (partial) solution and combines it with
the solutions given by the s-th subgoal in the clause (whose predicate symbol
is τp

i,j,s). Note that we propagate the instantiation of the relevant variables by
means of a substitution.

var C1 . . . CN : Constant .

var NECS : NeConstraintSet .

eq psi,j,s(NECS , T1. . . Tari) = psi,j,s+1(ps’i,j,s(NECS , T1. . . Tari), T1. . . Tari) .

eq psi,j,s(F , LL) = F .

eq ps’i,j,s(((X1=C1,. . . ,XN=CN, C) ; CS) , T1. . . Tari) =

((τp
i,j,s(τ

a
i,j,s,1,. . . ,τ

a
i,j,s,r)[X1\C1,. . . ,XN\CN]) x (X1=C1,. . . ,XN=CN, C)) ;

ps’i,j,s(CS , T1. . . Tari) .

eq ps’i,j,s((T ; CS), T1. . . Tari) = τp
i,j,s(τ

a
i,j,s,1,. . . ,τ

a
i,j,s,r) ; ps’i,j,s(CS,T1. . . Tari) .

eq ps’i,j,s(F , LL) = F .

The equation for the last subgoal in the clause is slightly different, since we need
not invoke the following auxiliary function. Assuming that g denotes the number
of subgoals in a clause, we define

eq psi,j,g(((X1=C1,. . . ,XN=CN, C) ; CS) , T1. . . Tari) =

((τp
i,j,g(τ

a
i,j,g,1,. . . ,τ

a
i,j,g,r)[X1\C1,. . . ,XN\CN]) x (X1=C1,. . . ,XN=CN, C)) ;

psi,j,g(CS , T1. . . Tari) .

eq psi,j,g((T ; CS) , T1. . . Tari) = τp
i,j,g(τ

a
i,j,g,1,. . . ,τ

a
i,j,g,r) ; psi,j,g(CS,T1. . . Tari) .

eq psi,j,g(F , LL) = F .

Finally, we define the transformation for the Datalog query q(X1, . . . , Xn)
(where Xi, 1≤i≤n are Datalog variables or constants) as the Maude code
q(τq

1,...,τ
q
n), where τq

i , 1≤i≤n is the transformation of the corresponding Xi.

4.2 Correctness of the Transformation

We have defined a transformation from Datalog programs into Maude pro-
grams in such a way that the normal form computed for a term of the
ConstraintSet sort represents the set of computed answers for a query of the
original Datalog program. In this section, we show that the transformation is
sound and complete w.r.t. the observable computed answers.

We first introduce some notation. Let CS be a ConstraintSet of the form
C1 ; C2 ; . . . ; Cn where each Ci, i ≥ 1 is a Constraint in normal form
(C1 = Cst1, . . . , Cm = Cstm), and let V be a list of variables. The restriction of
the constraint Ci to the variables in V is written as Ci|V . We extend the notion
to sets of constraints in the natural way, and denote it as CS|V . Given two terms

Defining Datalog in Rewriting Logic 199

t and t′, we write t→∗
S t′ when there exists a rewriting sequence from t to t′ in

the Maude program S. Also, var (t) is the set of variables occurring in t.
Now we define a suitable notion of (rewriting) answer constraint :

Definition 5 (Answer Constraint Set). Given a Maude program S as de-
scribed in this work and an input term t, we say that the answer constraint set
computed by t→∗

S CS is CS|var(t).

There is a natural isomorphism between the equational constraint C and an
idempotent substitution θ = {X1/C1, X2/C2, . . . , Xn/Cn}, which is given by the
following: C is equivalent to θ iff (C ⇔ θ̂), where θ̂ is the equational representa-
tion of θ. Abusing notation, given a disjunction CS of equational constraints and a
set of idempotent substitutions (Θ = ∪n

i=1θi), we define Θ ≡ CS iff CS⇔
∨n

i=1 θ̂i

Next, we prove that, for a given query and Datalog program, each answer
constraint set computed for the corresponding input term in the transformed
Maude program is equivalent to the set of computed answers of the original
Datalog program. The proof of this result is given in [1].

Theorem 1 (Correctness and completeness). Consider a Datalog pro-
gram P together with the query q. Let T (P) be the corresponding, transformed
Maude program, and let Tg(q) be the corresponding, transformed input term. Let
Θ be the set of computed answers of P for the query q, and let CS|var(Tg(q)) be
the answer constraint set computed by Tg(q)→∗

T (P) CS. Then, Θ ≡ CS|var(Tg(q)).

5 Experimental Results

This section reports on the performance of our prototype, called Datalaude
6,

implementing the transformation. First, we compare the efficiency of our imple-
mentation with respect to a näıve transformation to rewriting logic documented
in [2]; then, we evaluate the performance of our prototype by comparing it to
three state-of-the-art Datalog solvers. All the experiments were conducted us-
ing Java JRE 1.6.0, Joeq version 20030812, on a Mobile AMD Athlon XP2000+
(1.66GHz) with 700 Megabytes of RAM, running Ubuntu Linux 8.04.

5.1 Comparison w.r.t. a Previous Rewriting-Based Implementation

We implemented several transformations from Datalog programs to Maude

programs before developing the one presented in this paper [2]. The first attempt
consisted of a one-to-one mapping from Datalog rules into Maude conditional
rules. Then, in order to get rid of all the non-determinism caused by conditional
equations and rules in Maude, we restricted our transformation to produce
only unconditional equations. In the following, we briefly present the results
obtained by using the rule-based approach, the equational-based approach, and
the equational-based approach improved by using the memoization capability of
6 http://www.dsic.upv.es/users/elp/datalaude

200 M. Alpuente et al.

Maude [7]. Maude is able to store each call to a given function (in the running
example vP(X,Y)) together with its normal form. Thus, when Maude finds a
memoized call it doesn’t reduce it but it just replaces it with its normal form,
saving a great number of rewrites.

Table 1 shows the resolution times of the three selected versions. The sets
of initial Datalog facts (a/2 and vP0/2) are extracted by the Joeq compiler
from a Java program (with 374 lines of code) implementing a tree visitor. The
Datalog clauses are those of our running example: a simple context-insensitive
inclusion-based pointer analysis. The evaluated query is ?- vP(Var,Heap)., i.e.,
all possible answers that satisfy the predicate vP/2.

Table 1. Number of initial facts (a/2 and vP0/2) and computed answers (vP/2), and
resolution time (in seconds) for the three implementations

a/2 vP0/2 VP/2 rule-based equational equational+memo

100 100 144 6.00 0.67 0.02
150 150 222 20.59 2.23 0.04
200 200 297 48.48 6.11 0.10
403 399 602 382.16 77.33 0.47
807 1669 2042 4715.77 1098.64 3.52

The results obtained with the equational implementation are an order of mag-
nitude better than those obtained by the näıve transformation based on rules.
These results are due to the fact that the backtracking associated to the non-
deterministic evaluation penalizes the näıve version. It can also be observed that
using memoization allows us to gain another order of magnitude in execution
time with respect to the basic equational implementation. These results confirm
that the equational implementation fits our program analysis purposes better,
and provides a versatile and competitive Datalog solver as compared to other
implementations of Datalog.

5.2 Comparison w.r.t. Other State-of-the-Art Datalog Solvers

The same sets of initial facts were used to compare our prototype (the equational-
based version with memoization) with three state-of-the-art Datalog solvers,
namely Xsb 3.2, Datalog 1.4, and Iris 0.58 7. Average resolution times of three
runs for each solver are shown in Figure 1.

In order to evaluate the performance of our implementation with respect to
the other Datalog solvers, only resolution times are presented in Figure 1 since
the compared implementations are quite different in nature. This means that ini-
tialization operations, like loading and compilation, are not taken into account
in the results. Our experiments conclude that Datalaude performs similarly

7 http://xsb.sourceforge.net, http://datalog.sourceforge.net and
http://iris-reasoner.sourceforge.net

Defining Datalog in Rewriting Logic 201

Fig. 1. Average resolution times of four Datalog solvers (logarithmic time)

to optimized deductive database systems like Datalog 1.4, which is imple-
mented in C, although it is slower than Xsb or Iris. Therefore, under a suitable
transformation scheme such as the equational implementation extended with
memoization, Maude is able to process a large number of equations extracted
from statically analyzed, real Java programs. However, our purpose is not to
produce the faster Datalog solver ever, but to provide a tool that supports
sophisticated analyses with reasonable performance in a clean way.

5.3 Analyzing Java Programs with Reflection

Addressing reflection is considered a difficult problem in the static analysis of
Java programs, which is generally handled in an unsound or ad-hoc manner [11].
Reflection in Java is a powerful technique that is used when a program needs
to examine or modify the runtime behavior of applications running in the Java

virtual machine. For example, by using reflection, it is possible to write to object
fields and invoke methods that are not known at compile time. Java provides a
set of methods to handle reflection. These methods are found in java.lang.reflect.

In Figure 2 we show a simple example. We define a class PO with two fields:
c1 and c2. In the Main class, an object u of class PO is created by using the
constructor method new, which assigns the empty string to the two fields of u.
Then, r is defined as a field of a class, specifically, as the field c1 of an object of
class PO since v stores the value "c1". The sentence r.set(u, w) states that r
is the field object c1 of u, and its value is that of w, i.e., "c2". Finally, the last
instruction sets the new value of v to the value of u.c1, i.e., "c2".

A pointer flow-insensitive analysis of this program would tell us that r may
point not only to the field object u.c1, but also u.c2 since v in the argument of
the reflective method getField may be assigned both to string "c1" and "c2".

The key point for the reflective analysis is the fact that we don’t have all
the basic information for the points-to analysis at the beginning of the com-
putation. In fact, the variables that occur in the methods handling reflection
may generate new basic information. A sound proposal for handling Java re-
flection in Datalog analyses is proposed in [11]. It essentially consists in first

202 M. Alpuente et al.

class PO {
PO (String c1, String c2) {

this.c1 = c1;
this.c2 = c2;

}
public String c1;
public String c2;

}

public class Main {
public static void main(String[] args) {
PO u = new PO("","");
String v = "c1";
String w = "c2";
java.lang.reflect.Field r = PO.class.getField(v);
r.set(u, w);
v = u.c1;
} }

Fig. 2. Java reflection example

annotating the Datalog program and subsequently transforming it by means
of an external (to Datalog) engine. As in [11], we assume we know the name of
the methods and objects that may be used in the invocations. In our approach,
Datalog rules are transformed into Maude rules. Then, the Maude reflection
capability is used during the analysis to automatically generate the rules that
represent new deduced information without resorting to any ad-hoc notation or
external artifact.

Rewriting logic is reflective in a precise mathematical way: there is a finitely
presented rewrite theory U that is universal in the sense that we can represent (as
data) any finitely presented rewrite theory R in U (including U itself), and then
mimic the behavior ofR in U . The fact that rewriting logic is a reflective logic and
the fact that Maude effectively supports reflective rewriting logic computation
make reflective design (in which theories become data at the metalevel) ideally
suited for manipulation tasks in Maude.

Maude’s reflection is systematically exploited in our tool. On one hand, we
can easily define new rules to be included in the specification by manipulating
term meta-representations of rules and modules. On the other hand, by virtue
of our reflective design, our metatheory of program analysis (which includes a
common fixpoint infrastructure) is made accessible to the user who writes a
particular analysis in a clear and principled way.

We have endowed our prototype implementation with the capability to carry-
ing on reflection analysis for Java. The extension essentially consists of a module
at the Maude meta-level that implements a generic infrastructure to deal with
reflection. Figure 3 shows the structure of a typical reflection analysis to be run
in our tool.

The static analysis is specified in two object-level modules, a basic module
and a reflective module, that can be written in either Maude or Datalog, since
Datalog analyses are automatically compiled into Maude code. The basic
program analysis (PA) module contains the rules for the classical analysis (that
neglects reflection) whereas the reflective program analysis module contains the
part of the analysis dealing with the reflective components of the Java program.
At the meta-level, the solver module consists of a generic fixpoint algorithm that
feds the reflective module with the information inferred by the basic analysis.
Then, Maude rules encoding the new inferred information are synthesized by
the reflective analysis and added to the basic module in order to infer new

Defining Datalog in Rewriting Logic 203

Fig. 3. The structure of the reflective analysis

information, until a fixpoint is reached. For the points-to analysis with reflection,
the reflective and basic modules contain 11 rules each, whereas the generic solver
is written in just 50 rules. More details can be found in [1].

6 Conclusions

In this work, we have defined and implemented a transformation from definite
Datalog programs into Maude programs in the context of Datalog-based
static analysis. We have formalized and proved the correctness of the trans-
formation, and we have compared our implementation to standard Datalog

solvers. We confirmed that Maude is able to process a sizable number of con-
straints that arise in real-life problems, like the static analysis of Java programs.
By taking advantage of Maude’s reflective design, we have also demonstrated
how it is possible to perform efficient reflection analyses of Java programs in
Maude that are, at one time, declarative, accurate, and sound.

As future work, we plan to extend our transformation to stratified Datalog

programs in order to support richer analyses. We also plan to explore the impact
of adapting to our context more sophisticated Datalog optimizations [10].

Acknowledgements. We are grateful to Adam Kepa for his valuable contribution
to the experiments.

References

1. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Defining Datalog in Rewriting
Logic. Tech. Rep. DSIC-II/07/09, DSIC, Technical University of Valencia (2009)

2. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Implementing Datalog in
Maude. In: Proc. of I Taller de Programación Funcional (TPF 2009), 15–22 (2009)

3. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Using Datalog and Boolean
Equation Systems for Program Analysis. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 215–231. Springer, Heidelberg (2009)

4. Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Sci-
ence 126(1), 3–30 (1994)

5. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange
Ways to Implement Logic Programs. In: Proc. of the 5th ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (PODS 1986), pp. 1–15. ACM Press,
New York (1986)

204 M. Alpuente et al.

6. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

7. Clavel, M., Durán, F., Ejer, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

8. Hill, P.M., Lloyd, J.W.: Analysis of Meta-Programs. In: Proc. of the First Interna-
tional Workshop on Meta-Programming in Logic (META 1988), pp. 23–51 (1988)

9. Leeuwen, J. (ed.): Formal Models and Semantics, vol. B. Elsevier, The MIT Press
(1990)

10. Liu, Y., Stoller, S.: From Datalog Rules to Efficient Programs with Time and Space
Guarantees. ACM Transactions on Programming Languages and Systems 31(6)
(2009)

11. Livshits, B., Whaley, J., Lam, M.: Reflection Analysis for Java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

12. Marchiori, M.: Logic Programs as Term Rewriting Systems. In: Rodŕıguez-Artalejo,
M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 223–241. Springer, Heidelberg
(1994)

13. Marchiori, M.: Unravelings and ultra-properties. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 107–121. Springer, Heidelberg
(1996)

14. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science 96(1), 73–155 (1992)

15. Reddy, U.: Transformation of Logic Programs into Functional Programs. In: Proc.
of the Symposium on Logic Programming (SLP 1984), pp. 187–197. IEEE Com-
puter Society Press, Los Alamitos (1984)

16. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termina-
tion Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)

17. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. In: The New
Technologies, vol. I, II. Computer Science Press, Rockville (1989)

18. Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Ap-
proach. In: Proc. of the 1st International Conference on Expert Database Systems
(EDS 1986), pp. 253–267 (1986)

19. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with Binary Decision
Diagrams for Program Analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780,
pp. 97–118. Springer, Heidelberg (2005)

Author Index

Alpuente, M. 188
Aştefănoaei, Lăcrămioara 143

Bolz, Carl Friedrich 158
Bruynooghe, Maurice 22

Czenko, Marcin 67

de Boer, Frank S. 143
Degrave, François 128

Etalle, Sandro 67

Feliú, M.A. 188

Giesl, Jürgen 37
Gupta, Gopal 97

Hermenegildo, Manuel 173

Iborra, José 52

Joubert, C. 188

Kunz, César 173

Leuschel, Michael 158

Min, Richard 97

Nguyen, Manh Thang 37
Nishida, Naoki 52
Nishimura, Susumu 113

Pettorossi, Alberto 5
Pilozzi, Paolo 22
Proietti, Maurizio 5

Rigo, Armin 158

Scandolo, Leonardo 173
Schneider-Kamp, Peter 37
Schrijvers, Tom 22, 128
Seki, Hirohisa 82
Senni, Valerio 5

Vanhoof, Wim 128
van Riemsdijk, M. Birna 143
Vidal, Germán 1, 52
Villanueva, A. 188

	Title Page
	Preface
	Organization
	Table of Contents
	Towards Scalable Partial Evaluation of Declarative Programs
	Introduction
	Accuracy vs. Efficiency
	Concluding Remarks
	References

	Deciding Full Branching Time Logic by Program Transformation
	Introduction
	Encoding CTL* Model Checking as a Logic Program
	Syntax and Semantics of ω-Programs
	Encoding the CTL* Satisfaction Relation as an ω-Program

	Transformational CTL* Model Checking
	Transformation to Monadic ω-Programs
	A Proof Method for Monadic ω-Programs

	Related Work and Concluding Remarks
	References

	A Transformational Approach for Proving Properties of the CHR Constraint Store
	Introduction
	Preliminaries
	CHR Syntax
	The Abstract CHR Semantics

	Transforming CHR(Prolog) to Prolog
	Representing the CHR Constraint Store in Prolog
	Representing CHR Rules in Prolog
	Representing the Abstract Semantics of CHR in Prolog
	Transformation Summary

	Application of the Transformation to Type Analysis
	Evaluation of the Transformation
	Conclusion
	References

	The Dependency Triple Framework for Termination of Logic Programs
	Introduction
	Preliminaries on Logic Programming
	Dependency Triple Framework
	Dependency Triple Processors
	Dependency Graph Processor
	Reduction Pair Processor
	Modular Transformation Processor to Term Rewriting

	Experiments and Conclusion
	References

	Goal-Directed and Relative Dependency Pairs for Proving the Termination of Narrowing
	Introduction
	Preliminaries
	Goal-Directed Dependency Pairs
	Dependency Graphs
	Usable Rules

	Goal-Directed Termination of Narrowing
	Relative Termination
	Termination of Narrowing via Relative Termination

	Results and Discussion
	References

	LP with Flexible Grouping and Aggregates Using Modes
	Introduction
	Preliminaries on Logic Programming (without Grouping)
	Well-Moded Logic Programs
	Grouping in Prolog
	Semantics of Atomic moded_bagof Queries
	Usingmoded_bagof in Queries and Programs
	Properties
	Related Work
	Conclusions
	References

	On Inductive and Coinductive Proofs via Unfold/Fold Transformations
	Introduction
	A Framework for Unfold/Fold Transformation
	Transformation Rules
	Correctness of Unfold/Fold Transformation

	Coinductive Proofs via Unfold/Fold Transformations
	Conclusion
	References

	Coinductive Logic Programming with Negation
	Introduction
	Preliminaries
	Coinductive SLDNF Resolution
	Illustrative Examples
	Correctness of co-SLDNF Resolution
	Applications of co-LP with co-SLDNF
	Conclusion and Future Work
	References

	Refining Exceptions in Four-Valued Logic
	Introduction
	The Bilattice FOUR and the Four-Valued Logic
	The Bilattice FOUR of Four Truth Values
	The Four-Valued Predicate Logic

	Predicate Transformers and Refinement
	The Lattice of Predicate Transformers
	Predicate Transformers for Basic Statements
	Logical Connectives for Partial Predicates

	Refinement Laws for Statements
	Refinement of Conditional Controls
	Refinement of Exceptions

	Examples of Program Transformation by Stepwise Refinement
	Translating Conjunctions and Disjunctions into Explicit Controls
	Refining Exception Handling

	Conclusion and Future Work
	References

	Towards a Framework for Constraint-Based Test Case Generation
	Introduction
	Generating Test Inputs
	Overview
	Constraint Generation
	Properties
	Constraint Propagation
	Search
	Generalized Data Structures

	Applications
	Related Work and Conclusion
	References

	Using Rewrite Strategies for Testing BUpL Agents
	Introduction
	BUpL Agents by Example
	Prototyping BUpL Agents as Rewrite Theories
	Meta-controlling BUpL Agents with Rewrite Strategies

	Formalising Test Cases
	Using Rewrite Strategies to Define Test Drivers
	A Running Example
	Conclusions and Future Work
	References

	Towards Just-In-Time Partial Evaluation of Prolog
	Introduction
	Problems of Classical Partial Evaluation
	Basics of Just-In-Time Specialization
	Basic Setting
	Promotion: Lazy Choice Points
	Other Uses of Lazy Switches

	Control and Ensuring Termination
	Code Generation and Local Control
	Global Control
	A Worked Out Example: Read-Eval-Print Loop

	Experimental Results
	More Related Work
	Conclusion and Future Work
	References

	Program Parallelization Using Synchronized Pipelining
	Introduction
	Motivating Example: Mergesort
	Setting
	Eventual Independence
	Inferring Eventual Independence

	Synchronized Pipelining
	Extensions
	Motivating Example Revisited

	Experimental Results
	Related Work
	Conclusion
	References

	Defining Datalog in Rewriting Logic
	Introduction
	A Program Analysis Written as a Datalog Program
	FromDatalog to Maude
	Answer Representation
	A Glimpse of the Transformation

	Formal Definition of the Transformation
	The Transformation
	Correctness of the Transformation

	Experimental Results
	Comparison w.r.t. a Previous Rewriting-Based Implementation
	Comparison w.r.t. Other State-of-the-Art Datalog Solvers
	Analyzing Java Programs with Reflection

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

