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Preface 

The International Gesture Workshops (GW) are interdisciplinary events for those 
researching gesture-based communication across the disciplines. The focus of these 
events is a shared interest in understanding gestures and sign language in their many 
facets, and using them for advancing human–machine interaction. Since 1996, 
International Gesture Workshops have been held roughly every second year, with fully 
reviewed proceedings published by Springer.  

The International Gesture Workshop GW 2009 was hosted by Bielefeld 
University’s Center for Interdisciplinary Research (ZiF – Zentrum für interdisziplinäre 
Forschung) during February 25–27, 2009. Like its predecessors, GW 2009 aimed to 
provide a platform for participants to share, discuss, and criticize recent and novel 
research with a multidisciplinary audience. More than 70 computer scientists, 
linguistics, psychologists, neuroscientists as well as dance and music scientists from 
16 countries met to present and exchange their newest results under the umbrella 
theme “Gesture in Embodied Communication and Human–Computer Interaction.” 

Consistent with the steady growth of research activity in this area, a large number 
of high-quality submissions were received, which made GW 2009 an exciting and 
important event for anyone interested in gesture-related technological research 
relevant to human–computer interaction. In line with the practice of previous gesture 
workshops, presenters were invited to submit theirs papers for publication in a 
subsequent peer-reviewed publication of high quality. The present book is the 
outcome of this effort. Representing the research work from eight countries, it 
contains a selection of 28 thoroughly reviewed articles.  

An invited contribution by keynote speaker Asli Özyürek (Radboud University 
Nijmegen and Max Planck Institute for Psycholinguistics) addressed behavioral and 
brain research on the mechanisms that underlie processing of high-level multimodal 
semantic information conveyed through speech and hand gestures during production 
and comprehension of utterances. The invited contribution by keynote speaker 
Antonio Camurri and colleagues (InfoMus Lab, DIST – University of Genova) 
presented a survey of their research on analysis of expressive gesture and how it is 
evolving toward the analysis of expressive social interaction in groups of users. 
Further included is the extended abstract of keynote speaker Alex Waibel’s 
contribution on multimodal interfaces in support of human–human interaction. 

The papers in this book are ordered in eight sections pertaining to the following 
themes:  

− Brain and Behavioral Analysis of Gesture 
− Concepts of Gesture 
− Gesture Recognition 
− Gesture Processing 
− Gesture Simulation 
− Gesture-Based Interfaces 
− Sign Language  



 Preface VI 

The work presented in these papers encompasses a multitude of research areas from 
among: cognitive and psychological mechanisms of gesture; gestures in context and 
multi-modality; theoretical conceptions of gesture; automatic recognition, interpre 
tation, and synthesis of gestures and sign language; specification and computational 
representation of gestures; real-time and continuous gesture and human-movement 
tracking; automatic processing and analysis of gestural behaviors; gesture and musical 
performances; user issues and interface paradigms; application in interactive systems.  

We are grateful to the authors of the articles in this volume as well as to the interna-
tional reviewers who provided very helpful input. We hope that the results of their 
hard work will be perceived as a timely and inspiring reference for an interdisciplinary 
audience of researchers and practitioners interested in gesture in embodied communi-
cation and human–computer interaction. Thanks also to the local committee, Kirsten 
Bergmann, Hendrik Buschmeier and Petra Udelhoven, as well as Marina Hoffmann 
and the whole ZiF team for hosting the event and contributing to a well-attended and 
lively meeting. Last but not least, financial support by the ZiF, as well as by the Center 
of Excellence “Cognitive Interaction Technology (CITEC)” and the Collaborative 
Research Center “Alignment in Communication,” is gratefully acknowledged. 

 

January 2010 Stefan Kopp  
Ipke Wachsmuth 

 
 

Notes 

Webpages for GW 2009 can be accessed under http://www.gw2009.de/. 
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Martin Haker, Martin Böhme, Thomas Martinetz, and Erhardt Barth



X Table of Contents

Gesture Processing

Towards Analysis of Expressive Gesture in Groups of Users:
Computational Models of Expressive Social Interaction
(Invited Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Antonio Camurri, Giovanna Varni, and Gualtiero Volpe

On Gestural Variation and Coarticulation Effects in Sound Control . . . . . 134
Tommaso Bianco, Vincent Freour, Nicolas Rasamimanana,
Frederic Bevilacqua, and René Caussé
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The Role of Iconic Gestures in Production and 
Comprehension of Language:  

Evidence from Brain and Behavior 

Asli Özyürek 

Radboud University Nijmegen, Center for Language Studies &  
Max Planck Institute for Psycholinguistics 

Abstract. Speakers in all cultures and ages use gestures as they speak (i.e., 
cospeech gestures). There have been different views in the literature with regard 
to whether and how a specific type of gestures speakers use, i.e., iconic 
gestures, interacts with language processing. Here I review evidence showing 
that iconic gestures are not produced merely from the spatial and/or motoric 
imagery but from an in interface representation of imagistic and linguistic 
representation during online speaking Similarly, for comprehension, 
neuroimaging and behavioral studies indicate that speech and gesture influences 
semantic processing of each other during online comprehension. These findings 
show overall that processing of information in both modalities interacts during 
both comprehension and production of language arguing against models that 
propose independent processing of each modality.  They also have implications 
for AI models that aim to simulate cospeech gesture use in conversational 
agents. 

Keywords: iconic, cospeech gesture, interface, production, comprehension, 
brain, behavior. 

1   Introduction 

Face-to-face communication involves continuous coordination and processing of 
information across modalities such as from speech, lips, facial expressions, eye gaze, 
hand gestures etc. Previous studies investigating multi modal processing during 
communication have focused mostly on the relationship between lip movements and 
speech (e.g., McGurk effect, [1]). However, during everyday face-to-face 
communication, we almost always use and view meaningful hand movements, i.e., 
gestures, along with speech. Although both gestures and lip movements are examples 
of the natural co-occurrence of auditory and visual information during 
communication, they are fundamentally different with respect to their relationship to 
the speech they accompany. Whereas there is a clear one-to-one overlap of speech 
sounds and lip movements in terms of their form, the mapping between the forms of 
gesture and speech is different [2]. Consider for example an upward hand movement 
in a climbing manner when a speaker says: “He climbed up the ladder”. Here, the 
gesture might depict the event as a whole, describing the figure (crawled hands 
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representing as that of the agent, ‘he’), manner (‘climb’) and direction (‘up’) 
simultaneously. In speech, however, the message unfolds over time, broken up into 
smaller meaningful segments (i.e. words). Because of such differences, the mapping 
of speech and gesture information has to happen at a higher, semantic level. In this 
paper I will address the question of what are the mechanisms that underlie processing 
of such high level multi-modal semantic information, specifically conveyed through 
speech and hand gestures both during production and comprehension of utterances.  

Speakers use gestures at all ages (starting from around 9 months) and cultures. The 
use of gesture is so robust in human communication that it is visible in people blind 
from birth, when people talk on the phone –albeit less than during face-to face 
communication [3]- and can be found in sign languages where the same modality is 
used for both sign and gesture (see for a review [4]). 

Research on gestures that people produce while speaking has identified different 
types of gestures [2],[5]. Some of the hand gestures that speakers use, such as 
emblems, are highly conventionalized and meaningful even in the absence of speech 
(e.g., a thumbs up gesture for O.K.). Some others, such as pointing gestures are 
meaningful in the context of both the speech and the extra linguistic context of the 
utterance that the point is directed to (e.g., pointing to a lamp and say “ turn on that 
lamp”). However, others are less conventionalized, represent meaning by their 
resemblance to different aspects of the events they depict (e.g., wiggling fingers 
crossing space to represent someone walking) and rely more on speech for their 
meaning. The latter have been called iconic or representational gestures in the 
literature and how they are processed in relation to speech both during production and 
comprehension of utterances is the topic of this paper.  

It is important to note here that previous research has shown evidence both of 
speaker-oriented (cognition centered) as well as addressee-oriented (context centered) 
factors in shaping gestures and their relation to speech. Here I will review speaker-
oriented evidence to explain the interactions between speech and gesture-without 
denying that social context or communicative intention to convey a message designed 
for the addressee are also additional factors that shape iconic gesture production  
(e.g., [3], [5], [14]) and are needed for a full account of speech and gesture production 
and comprehension.  

2   Previous Studies on Relations between Gesture and Speech 

Previous work by McNeill ([6],[2]) has shown that iconic gestures reveal speakers’ 
imagistic representations during speaking. For example, a circular hand gesture 
representing the shape of a table, which accompanies the speech referring to the table, 
provides information about the speaker’s mental image of the table at the moment of 
speaking. Due to differences in modality, iconic gestures reveal information in a 
different schema than verbal expressions. Gestures represent meaning as a whole, not 
as a construction made out of separate meaningful components as in speech.  

However, although gestures reveal the information in a different representational 
format than speech, the two modalities are systematically related to each other and 
convey the speaker’s meaning together as a “composite signal” [7]. This unified 
meaning representation is achieved by semantic relatedness and temporal congruity 
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between speech and gesture [2]. First of all, there is semantic overlap between the 
representation in gesture and the meaning expressed in the concurrent speech, 
although gesture usually also encodes additional information that is not expressed in 
speech. Consider the example of a narrator telling an animated cartoon story. In the 
relevant scene, a cat that has swallowed a bowling ball rolls down the street into a 
bowling alley from left to the right on the TV screen. The narrator describes this 
scene with the sentence “the cat rolls down the street” accompanied by a hand gesture 
consisting of the hand moving from left to right while the fingers wiggle repetitively. 
In this example, a single gesture exhibits simultaneously the manner, the change of 
location, and the direction of the movement to the right. Speech expresses the manner 
and the path of the movement, but not the direction. Thus there is informational 
overlap between speech and gesture, but also additional information in the gesture [8].  

The second systematic relationship between speech and gestures is temporal. A 
gesture phrase has three phases: preparation, stroke (semantically the most 
meaningful part of the gesture), and retraction or hold [2]. All three phases together 
constitute a gesture phrase. McNeill [2] has also shown that in 90% of speech-gesture 
pairs, the stroke coincides with the relevant speech segment, which might be a single 
lexical item or a phrase. For example the stroke phase of the climb up gesture 
exemplified above is very likely to occur during the bracketed part of the following 
utterance “he [climbed up] the ladder”.  

Thus research has shown that, at least at the surface level, there is semantic and 
temporal coordination in the production of semantic information in the two channels 
during communication. The question I address here it whether two streams of 
communication interact and are integrated during the language production and 
comprehension process or alternatively can be conceived as two independent but 
parallel streams of communication. Most studies and models of gesture processing 
have been designed for production but less is known about the interaction processes 
between the two for comprehension. The purpose of this paper is then to review 
recent evidence showing that speech and gesture interact during both production 
(section 4.1) and comprehension (section 4.2) of language. Before that I briefly 
outline some competing views proposed about the relations between speech and 
gesture during processing in section 3. 

3   Models of Speech and Gesture Processing: Competing Views  

Even though the speech and gesture seem tightly coordinated according to behavioral 
measures, there is controversy in their literature with regard to their underlying 
interaction during the production and comprehension processes.  

According to some views ([9],[10],[11]) speech and gesture are processed 
independently and in a parallel fashion (i.e., that explains their overt coordination at 
the behavior level). According to these view gestures are generated and processed 
directly and solely from the spatial and motoric representations, whereas speech is 
generated from propositional representations and without interactions between the 
two during the production process. For example according to Krauss [10], gestures 
are generated from spatial representations, “prelinguistically”, and independent from 
how certain information is linguistically formulated. One of the functions of gestures 
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is to keep memories of such representations active and facilitate lexical retrieval 
through cross-modal priming (from gesture to speech). However how information is 
semantically or grammatically encoded for example would not change the 
representational format of such gestures. Also according to a new framework, Gesture 
as Simulated Action (GSA) [9], gestures arise simply out of simulations of actions 
and do not interact with the language production process.   

However, according to other views ([12],[13],[2],[8],[14]) there is interaction 
between the production  of two systems either at the conceptual, or grammatical 
encoding level of speech production process–even though there is further controversy 
with regard to which level the interaction occurs and to what extent among the latter 
set of researchers.  

Even though most models have been proposed for production but not 
comprehension, the existing production models also have different views for how 
listeners/viewers might comprehend information from both modalities. The 
independence models claim that gesture is used–if ever–as “add-on” information 
during comprehension and only after speech has been processed [15]). However, 
interaction models [16] claim that there are mutual, simultaneous and even obligatory 
interactions between processing of speech and gesture during  comprehension.  

Below I review studies from my own collaborative work that provide evidence for 
the fact that speech and gesture processing interact during both in production and 
comprehension of utterances, arguing against the independent and sequential models 
of processing.  

4   Evidence for Interactions between Speech and Gesture 

4.1   Production   

As a first step to test whether speech and gesture processing interacts during 
production we  investigated whether gestures of the same motion event would differ 
according the language- specific semantic and grammatical encoding of spatial 
information in different languages The independence models would predict that the 
way certain elements of an event are encoded linguistically will not change the form 
of gestures, since gestures are generated from and shaped solely by  spatial 
representations (i.e., which would be similar across speakers of different languages). 
However according to interaction models (i.e., specifically the Interface Model [8], 
the linguistic encoding of the event would change the shape of gestures, due to an 
interaction between linguistically formulating the message (i.e., specific for 
requirements of each language) and the formation of the gesture during online 
production. 

The cross-linguistic variation in gestural representation was demonstrated by 
comparing how Japanese, Turkish, and English speakers verbally and gesturally 
express motion events, which were presented as a part of an animated cartoon ([8], 
[17]). Japanese and Turkish differed from English typologically which allowed us to 
look whether and how gestures of the same event differed due to linguistic encoding 
possibilities among the speakers of these languages. Two analyses were carried out. 
The first analysis concerned an event in which a protagonist swung on a rope like 
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Tarzan from one building to another. It was found that English speakers all used the 
verb swing, which encodes the arc shape of the trajectory, and Japanese and Turkish 
speakers used verbs such as go, which does not encode the arc trajectory. In their 
conceptual planning phase of the utterance describing this event, Japanese and 
Turkish speakers presumably got feedback from speech formulation processes and 
created a mental representation of the event that does not include the trajectory shape. 
If gestures reflect this planning process, the gestural contents should differ cross-
linguistically in a way analogous to the difference in speech. It was indeed found that 
Japanese and Turkish speakers were more likely to produce a straight gesture, which 
does not encode the trajectory shape, and most English speakers produced just 
gestures with an arc trajectory ([18], [8]).  

The second analysis concerned how speech and gesture express the Manner and 
Path of an event in which the protagonist rolled down a hill. It was found that verbal 
descriptions differed cross-linguistically in terms of how manner and path information 
is lexicalized [19]. English speakers used a Manner verb and a Path particle or 
preposition (e.g., he rolled down the hill) to express the two pieces information within 
one clause. In contrast, Japanese and Turkish speakers separated Manner and Path 
expressions over two clauses, path as in the main clause and manner as in the 
subordinated clause (e.g., he descended as he rolled). Given the assumption that a 
clause approximates a unit of processing in speech production ([20], [21]), 
presumably English speakers were likely to process both Manner and Path within a 
single processing unit, whereas Japanese and Turkish speakers were likely to need 
two processing units. Consequently, Japanese and Turkish speakers should be more 
likely to separate the images of Manner and Path in preparation for speaking so that 
two pieces of information could be dealt with in turn, as compared to English 
speakers. The gesture data confirmed this prediction ([17], [8]). In depicting how an 
animated figure rolled down a hill having swallowed a bowling ball in the cartoon, 
Japanese and Turkish speakers were more likely to use separate gestures, one for 
manner and one for path and English speakers were more likely to use just one 
gesture to express both manner and path.  

These findings were further replicated in a recent study where Turkish and English 
speakers were asked to talk about 10 different motion events that involved different 
types of manner (jump, roll, spin, rotate) and path (descend, ascend, go around). 
Furthermore in cases where only manner or only path was expressed in an utterance, 
speakers of both languages were more likely to express congruent information in 
gesture to what is expressed with speech (e.g., he went down the slope: Gesture: index 
finger moving down expressing just the path information) [22]. 

In addition to the cross-linguistic variation in gestural representation, it was found 
that gestures encoded certain spatial details of motion events that were never 
verbalized due to modality. For example, in the description of the above two motion 
events, none of the participants in any of the languages verbally encoded whether the 
motion was to the right or to the left, but this information was reflected in the 
direction of the gestures very accurately [8]. 

These findings are line with the view (i.e., Interface Hypothesis, [8]) that the 
representations underlying a gesture is shaped simultaneously by 1) how information 
is organized according to easily accessible linguistic expression in a given language 
and at the moment of speaking and 2) the spatio-motoric properties of the referent 
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which may or may not be verbally expressed. These findings are counter evidence for 
the models that argue that the only source that shapes gestural information is spatial 
representations independent of linguistic conceptualization for speaking.  

However one concern regarding the above studies was that different gestures 
produced by speakers of different languages could have still originated from spatial 
representations that are shaped differently due to difference cultural ways of thinking 
or habitually using language in a certain way-i.e., in line with Whorfian Hypothesis  
[23]. If this were the case the difference in gestures across speakers of different 
languages would not be evidence for the online  interaction between gesture and 
language production processes but rather gestures could still be considered to be 
originated and shaped solely by the spatial representations (i.e., shaped in language-
specific ways a priori to the encoding of each message). To clear out which of these 
processes could be responsible for our initial findings about gestural differences 
across languages, we asked English speakers to describe motion events using different 
syntactic frames –one in which manner and path expressed in one verbal clause (i.e., 
roll down) and one where manner and path are in separate clauses (i.e., went down the 
hill rolling) (less preferred but not ungrammatical for English speakers). We found 
that English speakers gestures changed with the syntactic frames they chose reflecting 
differences in the same way we found between English and Turkish speakers’ 
gestures [24]. These findings rule out the possibility that spatial gestures are generated 
from language- or culture-specific spatial representations prior to the online linguistic 
formulation of the event. If the former were the case, we would have expected 
English speakers to use also conflated gestures when they used the less preferred 
syntactic frame –but instead they used segmented gestures as Turkish speakers. This 
finding provided further evidence that iconic gestures are shaped by speaker’s online 
syntactic choices rather than a priori by habitual language-specific representations. 

4.2   Comprehension 

Neural Evidence: If speech and gestures are two interacting systems of 
communication in comprehension as well as in production then we expect speech and 
gesture processing to use similar neural resources during comprehension. Even 
though previous research has shown that listeners/ viewers pay attention to gestures 
and pick up information from gestures [25], only recently researches have  
begun to investigate the interactions between speech and gesture during language 
comprehension. In two studies we investigated the neural correlates of speech and 
gesture comprehension. 

One of these studies used an ERP (event related potentials) technique, which 
measured electrophysiological responses to events by electrodes attached to the scalp 
as listeners/viewers listened sentences and saw accompanying gestures. In the 
sentence-gesture pairs we manipulated the semantic fit of a verb or of a temporally 
overlapping iconic gesture to the preceding sentence context (see Table 1). In the 
control condition both a critical verb and accompanying gesture fitted semantically to 
the previous sentence context. In the experimental conditions either speech or gesture 
or both did not fit semantically to the previous context. Recordings were measured, 
time-locked to the beginning of the critical verb and stroke of gesture, which were 
presented simultaneously. The results showed similar N400 effects (showing 
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Table 1. Examples from speech gesture pairs used in [26] 
 

Control condition (speech and gesture match to previous context) 

(1) He slips on the roof and [rolls down]  

                                              G: ROLL DOWN 

Experimental conditions (speech and/or gesture (in bold) mismatch to previous 

context) 

(2) He slips on the roof and [writes] a note  (speech mismatch only) 

                                             G: ROLL DOWN 

(3) He slips on the roof and [rolls down] (gesture  mismatch only) 

                                                 G: WRITE  

(4) He slips on the roof and [writes] a note  (speech and gesture mismatch) 

                                                 G: WRITE 

 

detection of semantic unfit) for sentences where either language or gesture did not fit 
semantically to the previous context. These results show that the information form 
both speech and gesture are integrated to previous context of the utterance at the same 
time providing evidence against independent and sequential models of speech and 
gesture comprehension processes [26]. Note that if gesture was processed after the 
verb or vice versa we would have expected either speech or gesture anomaly to be 
detected later than 400 ms but we did not. 

In the second study we used fMRI technique to identify brain regions activated 
during understanding iconic gestures versus verbs in a sentence context using the 
same stimuli (Table 1) in the ERP study above. Integration load was expected to vary 
with this manipulation due to the increased load of semantic integration, thereby 
showing regions specific for speech and gesture processing as well as areas common 
to the integration of both information types into the prior sentence context.  

Analysis of both gesture and speech mismatch versus correct conditions showed 
overlapping areas for both comparisons in the left inferior frontal gyrus, (LIPC) 
corresponding to Brodmann area (BA) 45. That is, gesture mismatches as well as 
speech mismatches recruited LIPC showing common areas of processing of semantic 
information from both modalities. Intraparietal and superior temporal regions also 
showed gesture and language specific responses respectively for mismatches than 
matches [27]. 

Gesture-mismatch activating similar areas as those of language mismatch are in 
line within a neurobiological theory of language, ‘Broca’s complex’ (including BA 
47, 45, 44 and the ventral part of BA 6) in the left frontal cortex, serves as a 
unification space for language comprehension, in which lexical information retrieved 
from memory (i. e. from the mental lexicon) is integrated into a unified representation 
of a multi-word utterance, such as a sentence ([28], [29]). The current findings further 
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suggest that integration of semantic information from linguistic elements as well as 
from both language and gesture share similar processes during comprehension.  

Behavioral Evidence: Thus both the ERP and the fMRI measurements show that the 
brain comprehends speech and gesture in relation to a previous sentence context in 
similar ways; both are processed as semantically, using similar time course and neural 
correlates. However these studies do not directly show whether the semantic 
processing of each modality interacts with the other. Thus in a third study we 
investigated this possibility in a behavioral experiment [16]. We asked whether 
listeners/viewers do process the meaning of speech and gesture separately or whether 
the meaning of one interacts with processing the meaning of the other during 
comprehension. We presented participants with action primes (someone chopping 
vegetables) and bi-modal speech and gesture targets. Participants were faster and 
more accurate to relate primes to targets that contained congruent (Speech: “CHOP”; 
gesture: CHOP) versus incongruent information (Speech: “CHOP”; gesture: TWIST). 
Moreover, the strength of the incongruence affected processing, with fewer errors for 
weak (Speech: “CHOP”; gesture: CUT) versus strong incongruities (Speech: 
“CHOP”; gesture: TWIST). Furthermore, this influence was bi-directional. A follow 
up study demonstrated that gesture’s influence on speech was obligatory. That is even 
though subjects were asked only to decide whether the verb followed an action prime 
matched to the prime, whether gesture was congruent or incongruent to the 
accompanying verb influenced subjects responses. These results show that 
listeners/viewers process the meaning of one modality in relation to the meaning of 
the other rather than processing each in an independent manner.   

5   Conclusion 

Both the results of the production and the comprehension studies reported above 
suggest that multi modal semantic information, specifically from speech and gesture, 
is processed in an interactive way -at both semantic and syntactic levels for 
production and semantic for comprehension- and recruiting similar neural correlates 
brain rather than being processed in a distinct modular fashion. It is important to note 
here that the model proposed by Interface Hypothesis [8] for production is also 
successfully implemented in AI models that try to simulate iconic gesture production 
in conversational agents [30]. In the future it would be useful to see whether AI 
models can be also extended to comprehension which simulates the interaction 
between the two modalities as proposed in Integrated Systems Hypothesis [16]. 

Further research is necessary to delineate the exact level where these cross modal 
semantic interaction processes take place during processing as well as the role of 
communicative intentions of the speakers in gesture processing and to situate gesture 
production and comprehension in a larger interactional-situational context than we 
have done so far.  
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Abstract. This study experimentally manipulates common ground (the 
knowledge, beliefs and assumptions interlocutors mutually share [6]) and 
measures the effect on speakers’ use of interactive gestures to mark common 
ground. The data consist of narratives based on a video of which selected 
scenes were known to both speaker and addressee (common ground condition) 
or to only the speaker (no common ground condition). The analysis focuses on 
those interactive gestures that have been described in the literature as ‘shared 
information gestures’ [4]. The findings provide experimental evidence that 
certain interactive gestures are indeed linked to common ground. Further, they 
show that speakers seem to employ at least two different forms of shared 
knowledge gestures. This difference in form appears to be linked to speakers’ 
use of gesture in the grounding process, as addressees provided feedback more 
frequently in response to one of the gesture types.  

Keywords: common ground, interactive gestures, gestural markers, pointing, 
palm up open hand gesture. 

1   Introduction 

Much research in the field of gesture has focused on those speech-accompanying 
movements representing semantic information related to the content of speech. 
McNeill [1], [2] has termed these iconic and metaphoric gestures. Co-speech gestures 
that have received far less attention are those termed ‘interactive gestures’ [3], [4], 
[5]. In contrast to iconic and metaphoric gestures, interactive gestures do not represent 
any propositional information. Instead, they are closely tied to the social context in 
which they occur; speakers direct interactive gestures at their addressees, thus 
involving them in the interaction. The specific functions they fulfil at any given 
moment depend on the context in which they are embedded.  

Bavelas et al. [4], [5] have shown through systematic, fine-grained analyses that it 
is possible to interpret the functions of individual interactive gestures when 
considering the gestures in social context. These studies have led to a categorisation 
scheme including four broader categories (delivery gestures, citing gestures, seeking 
gestures and turn gestures), and twelve specialised sub-categories. The present paper 
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focuses on one of the sub-categories of delivery gestures, called ‘shared information 
gestures’, which comprises gestures that refer to information the addressee is assumed 
to already know. Their meaning can be paraphrased as ‘as you know’. Bavelas et al. 
[4] provide the example of a speaker referring to the subject he studies, and referring 
back to this information about a minute later (while still talking to the same 
addressee). Together with this second reference, ‘his hand quickly came up from his 
lap and rotated toward the addressee; his fingers uncurled to point at the addressee; 
then his hand returned to his lap’ ([4] p.395). The meaning and function of this type 
of interactive gesture is, in their analyses, based on the analyst’s interpretation (in the 
form of a verbal explication), supported by strong inter-observer agreement between 
several independent judges. In addition, Bavelas et al. [4] have provided empirical 
evidence that the functions of interactive gestures they attributed to the different 
gesture categories do indeed elicit the predicted addressee responses. 

The knowledge, beliefs and assumptions that are mutually shared by interlocutors 
in a conversation tends to be referred to as their common ground (e.g., [6]). We 
already know from a host of experimental and field studies that this kind of common 
ground influences our use of verbal language. For example, the use of definite 
references, such as in the utterance ‘Have you ever seen the movie showing at the 
Roxy tonight?’ [7] presupposes mutual knowledge, here about the fact that a film is 
playing that evening, which film is being shown, and what the Roxy is. Experimental 
studies have shown, for example, that speakers tend to use fewer words [8], [9], [10] 
and less informative utterances [11] when more common ground exists. 

The vast majority of studies investigating the influence of common ground on 
language have focused on the verbal side of utterances. However, some studies have 
started to explore the connection between speech, co-speech gesture and common 
ground (e.g., [12], [13], [14], [15], [16]). These studies have yielded mixed results. 
Some suggest that gestures become less precise, carry less information and are 
produced at a lower rate when common ground exists compared to when it does not, 
whereas others have shown that gesture rate increases and that the gestures often 
remain informative and full-blown. More research is clearly needed in this area. 

Another aspect which we know very little about is the use of interactive gestures in 
connection with common ground. The studies mentioned above have focused 
exclusively on iconic, metaphoric and abstract deictic gestures. In terms of interactive 
gestures, all we know (such as from the example by Bavelas et al. [4], cited above) is 
that certain gestures seem to refer specifically to mutually shared knowledge  
(i.e., ‘shared information gestures’, in their terms). The present paper is a step to 
advance this area of research. It aims to do so by experimentally testing the claim that 
certain interactive gestures are specifically used to mark mutually shared information. 
So far, we have evidence that independent analysts can reliably identify and agree on 
the paraphrasing of these shared information gestures [4]. While this is compelling 
evidence that the respective gestures evoke the same interpretation in different 
observers of an interaction, critics could argue that this does not necessarily mean that 
individuals directly participating in it actually use these gestures with the intent to 
mark common ground.  

Experimental studies manipulating common ground and measuring speakers’ use 
of such gestures could provide further insights here. In the present study, dyads either 
had pre-existing mutual knowledge about parts of a video one speaker was telling  
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the other about, or they did not. Thus, the experiment involved a manipulation of the 
kind of common ground which is based on ‘prior physical co-presence’ [7]. The focus 
of the analysis is on the narrative of those parts of the video that formed part of the 
interlocutors’ common ground in one condition but not in the other. If there are 
indeed interactive gestures whose function is to mark common ground, then speakers 
in the Common Ground condition (CG) should use more of these gestures than those 
in the No Common Ground condition (NCG). (Of course, in the NCG condition some 
common ground-related gestures may still occur due to the fact that mutually shared 
knowledge also accumulates over the course of an interaction [based on ‘linguistic co-
presence’ [7]]; however, this should be the same in both conditions and therefore 
should not interfere with the experimental manipulation.) 

The second way in which the study explores the link between interactive gestures 
and common ground is by examining differences in the form of these shared 
information gestures. When eye-balling the data it was noticeable that speakers 
appear to use two forms of gestures here. One is a deictic gesture, pointing directly at 
the addressee, with a clearly protruding index finger (in a couple of cases the middle 
finger was also extended) and with the palm facing either to the side, down or 
upwards. The second type of gesture involves a flat hand (although the fingers may be 
slightly curled in), no individual finger protruding distinctly, and with the palm facing 
upwards (Palm Up Open Hand, or PUOH [17], see also [18]; the example provided by 
Bavelas et al. [4], cited above, also seems to belong into this category, as all of the 
fingers are pointing towards the addressee). In both cases the gestures motion towards 
the addressee, although the pointing gestures tended to often flick out more rapidly 
and with more emphasis. Of course, this difference in hand shape might seem small 
and may not matter at all. In fact, Bavelas et al. [4] state that, while all interactive 
gestures share the general feature of palm or finger orientation towards the addressee, 
the function of interactive gestures does not depend on the exact form, which is 
idiosyncratically determined and improvised. In other words, unlike with emblems 
[19], for example, there is no simple form-function mapping. A PUOH gesture can, 
for instance, have the function of someone handing over the speaking turn to another 
(thus belonging to the class of ‘turn gestures’), but it can also be used to indicate 
someone else’s earlier conversational contribution (thus falling into the category of 
‘citing gestures’) or to provide new information (thus being a ‘delivery gesture’). 
However, we also know that, in certain contexts at least, the form of gestures (in 
particular pointing gestures) is not idiosyncratic, with the morphological parameters 
and exact hand configuration being ‘a patterned component of the utterance 
ensemble’ ([18], p.223). The second part of the present analysis focuses on 
differences in the form of gestures which have the same general function (i.e., both 
are ‘delivery gestures’ used to mark shared information). In other words, this analysis 
focuses on differences within one of the sub-categories established by Bavelas and 
colleagues. From their 1995 analysis, it is clear that there is some variation in 
addressee responses to interactive gestures from the same sub-category. For example, 
for shared knowledge gestures (as for some other categories, too), they predicted a 
‘confirming response or no new response (Bavelas et al. [4], p.402, emphasis added). 
The second part of the present analysis therefore aims to uncover whether there is any 
particular pattern underlying this variation which is based on morphological 
differences in gesture form. 
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The rationale behind this idea is that hand gestures are believed to have evolved 
from manipulations of the physical world (e.g., [20], [21]). As such, using a PUOH 
gesture is like offering, presenting or giving something imaginary placed on the 
surface of the hand, such as the current discourse focus, or to receive something, such 
as feedback or a comment ([18]; see also [17]). A pointing gesture, on the other hand, 
does not direct attention to something that is placed on top of the palm. Rather, it has 
a trajectory which singles out a referent in the surrounding environment (or in fictive 
space). Here, the gesture’s trajectory singles out the addressee. It thus reaches, 
through its vector, into the addressee’s gesture space. If we assume that gestures 
evolved from object manipulation and acting in a physical world, then one possibility 
is that pointing gestures evolved from touching or reaching with the index finger. This 
would mean that through the trajectory the interactive pointing gesture is somewhat 
like touching the addressee. As such, this pointing gesture may be perceived as 
somewhat more imperative, a more demanding request for a response than one which 
offers something that may be considered for responding to, or not.  

Speakers’ use of these two different kinds of gesture forms to mark common 
ground may relate to Clark’s [6] notion of ‘projected evidence’. In order for the joint 
activity of conversation to be successful, interactants need to ground their discourse 
contributions [22]. Grounding is the process by which interactants establish the 
mutual belief that they have understood the meaning of a discourse contribution ‘to a 
criterion sufficient for current purposes’ ([22], p. 129). For this to happen, 
contributors require from their partners some form of positive evidence of 
understanding (or, in case of negative evidence, the contributor can rephrase or in 
some other form repair their previous contribution). One way in which addressees 
often provide such positive evidence is through acknowledgements, such as ‘yeah’, 
‘ok’ or ‘uhu’.  A might say to B ‘I’m gonna go to a gig at the Academy tonight’ to 
which B responds ‘uhu’. In this case, A’s contribution has been grounded. Another 
basic form of positive evidence is continued attention. In face-to-face interaction, 
speakers can express their undisturbed attention through eye gaze (e.g., [22]). In order 
to ground contributions in discourse, and thus to accumulate common ground in a 
conversation, contributors signal when they need positive evidence of understanding 
from their addressee. Further, by presenting an utterance in a particular way, speakers 
project which kind of evidence they require [6]. According to Clark [6], gestures are 
one way by which speakers can elicit this evidence, including interactive gestures. 
The idea tested here is that speakers may use different forms of shared-knowledge 
gestures depending on what kind of positive evidence they require and how urgent 
this response is. The focus is on how speakers use interactive gestures in grounding 
references to common ground that they acquired through prior physical co-presence 
with their addressee. 

In sum, the first part of the analysis aims to provide experimental evidence for 
speakers’ use of interactive gestures in association with experimentally induced 
common ground. The second part of the analysis tests whether two forms of gestures 
occurring with references to common ground function the same or differently in terms 
of involving the addressee in the communication process. To test this, the focus is on 
two aspects, namely whether a new response occurs or not, and how quickly this 
response is elicited.  
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Of course, it would be interesting to also consider a range of other aspects. Because 
of this, and because the present study uses a dataset that is more monologue-like in 
nature with one person in each dyad having the speaking part, the present analysis 
needs to be considered work in progress. However, it offers a first insight into how 
speakers may use interactive gestures in the context of common ground. 

2   Method 

2.1   Participants and Design  

80 students (40 female and 40 male) from the University of Manchester took part in 
the experiment (for either payment or experimental credits). All individuals were right 
handed native English speakers, unacquainted with each other prior to the experiment. 
Each participant was allocated to a same-sex pairing, which was then randomly 
assigned to one of two experimental conditions: 1) a ‘common ground’ (CG) 
condition, in which mutually shared knowledge about the stimulus material was 
experimentally induced, and a ‘no common ground’ condition (NCG), in which 
participants did not share any experimentally induced common ground.   

2.2   Apparatus and Materials  

A video recording, about 8 minutes in length, from a children’s television program 
(showing various characters involved in a range of everyday activities, such as 
grocery shopping, playing in a barn) was used as the stimulus material (‘Neues aus 
Uhlenbusch’, ZDF, Germany; the video was played without the sound, but was still 
easily understandable). Six individual scenes, each just a few seconds long, were 
selected from this video and recorded onto a second tape to induce common ground. 
Participants were filmed split screen with two wall-mounted video cameras, each 
providing a view of one of the participants. 

2.3   Procedure  

In both the CG and the NCG condition the participants were randomly allocated to a 
speaker and to an addressee role. The speaker was asked to watch the stimulus video 
while the addressee was absent. However, in the CG condition, both participants first 
watched the six selected scenes together before the speaker saw the entire video. (In 
the NCG condition, the speaker also watched the six scenes, alone, to keep salience 
and memory constant across conditions). The addressee was then asked back into the 
room and the speaker was instructed to tell them what happened in the story as a 
whole. In the CG condition, the speaker-participant was reminded that the addressee 
already shared some knowledge about the video with them. In the NCG condition 
they were reminded that their addressee had no pre-existing knowledge about the 
story. In both conditions, addressees were told to not interrupt the speaker with 
questions but that they could signal their understanding or lack thereof in any other 
way they deemed appropriate (such as backchannel responses, uhum, yeah, ok, or 
nonverbally). The reason for this restriction was that the dataset was also used for an 
analysis of gesture rate [14], and differences in the number of questions asked by 
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addressees would affect gesture frequency [23] and thus could result in a confound 
with differences due to the experimental manipulation of common ground. 

2.4   Analysis 

Gesture Categorisation. In the first instance, all gestures identified were categorised 
according to Bavelas (e.g., [3]) into ‘topic’ and ‘interactive’ gestures. The inter-
observer reliability between two independent coders using these two categories to 
code the data from six randomly selected participants (three from each condition)  
was 95%.  

Then, the gestures were divided into more detailed categories, distinguishing 
iconic, metaphoric and abstract deictic gestures [1], as well as interactive pointing 
gestures towards the addressee with the hypothesised function of marking common 
ground, and palm up open hand gestures [17] related to common ground. In addition, 
a category including all other forms of interactive gestures was used, as well as a 
category for pragmatic gestures [18]. The agreement of two independent judges 
categorising all gestures using these seven categories was 86%.  

The data from this experiment were subjected to a range of different analyses. 
However, the present study focuses exclusively on common ground related pointing 
gestures made towards the addressee (hereafter termed CG-ADD-pointing gestures) 
and common ground related palm up open hand gestures (hereafter termed CG-PUOH 
gestures), as described in the Introduction. Only gestures accompanying parts of 
speech that referred to content from the six selected scenes were considered (see [14], 
for more detail on the segmentation of the narratives)). 

Addressee Responses. The second and third analyses take into account i) whether 
addressees responded, and ii) how promptly this response was issued. In terms of 
addressee responses, both verbal and nonverbal responses were included. Usually, the 
responses consisted of either a head nod or a backchannel response (such as uhu, 
yeah, ok), or a combination of the two. These were ‘new’ responses in a way, as 
addressees usually respond through continued attention, signalled, for example, 
through eye gaze directed at the speaker. The responses coded here were therefore 
new responses which occurred in addition to continued eye gaze. With regard to 
response timing, the delay from the peak of the gesture to the onset of the addressee’s 
immediate response was evaluated, with a maximum delay of two seconds being 
considered immediate. Although this criterion is somewhat arbitrary, the decision was 
based on Bavelas et al.’s statement that most of the addressee responses to interactive 
gestures occurred within a 2 second window in their analysis ([4], p. 402-403). Two 
delay categories were used, 0s delay, capturing responses whose onset coincided with 
the peak of the gesture (or even preceded it due to the response starting towards the 
end of the preparation phase of the gesture), and up to 2s delay, which captured any 
other new responses occurring after the peak of the gesture. A third category called 
‘no response’ captured those cases where either no new response occurred at all, or 
the delay was longer than two seconds and therefore the response did not seem 
directly related to the gesture. 
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3   Results 

This section reports three analyses. The first one tests the link between shared 
information gestures and common ground. The second and third one consider the two 
forms of shared information gestures found in the present dataset individually to 
compare the frequency with which they elicit addressee responses, and how prompt 
these responses are.  

3.1   Do Interactive Gestures Mark Common Ground? 

This analysis tests the claim that there are indeed certain kinds of interactive gestures 
associated with the delivery of shared information. If this is the case, speakers in the 
CG condition should use more CG-PUOH and more CG-ADD-pointing gestures when 
referring to the six selected scenes than speakers in the NCG condition. While the latter 
group of speakers may, on occasion, use these gestures to refer to information they 
have already provided (i.e., when referring to shared knowledge that has accumulated 
during the conversation), speakers in the CG condition should use them also when 
referring to the information from the six experimental scenes as common ground. And 
this is what we found (see Table 1). A Mann-Whitney U test showed that speakers in 
the CG condition used significantly more CG-PUOH gestures and CG-ADD-pointing 
gestures towards the addressee (combined data) when referring to the six selected 
scenes (Mdn = 1.5, Range = 6.00) than speakers from the NCG condition (Mdn = 0.00, 
Range = 2.00), U = 59.50, n1 = 20, n2 = 20, p = .0001. 

Table 1. Frequency of CG-ADD-pointing and CG-PUOH gestures in the common ground (CG) 
and no-common ground (NCG) conditions 

 Interactive gesture type 
 

 ADD PUOH 
 

CG 
 

31 
 

11 
 

NCG 
 

1 
 

3 

3.2   Do CG-PUOH and CG-ADD-Pointing Gestures Differ in the Amount of 
Addressee Responses They Elicit? 

This analysis focuses only on speakers in the CG condition. It compares the frequency 
with which addressees provide a feedback response immediately following the two 
kinds of interactive gestures marking shared information. Goodman and Kruskal’s 
Tau (dependent variable = response) showed a significant association between 
interactive gesture type and response frequency (τB = .098, p = .045), with CG-ADD-
pointing gestures eliciting proportionally more responses than CG-PUOH gestures. 
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Fig. 1. Frequency of CG-ADD-pointing gestures and CG-PUOH gestures receiving an 
addressee response 

3.3   Do Addressees Respond More Promptly to Either CG-PUOH or CG-ADD-
Pointing Gestures? 

This analysis is based on those gestures examined in section 3.2 that did receive a 
response within the 2s time window (see Table 2). It tested the hypothesis that the two 
different forms of the common ground related interactive gestures identified in the 
present corpus affect the speed with which addressees respond. When speakers refer 
to the information that constitutes common ground and mark this with the respective 
interactive gestures which aim to involve the addressee, then addressees should 
provide some feedback as to whether they have understood and recall the respective 
aspects of the video. One idea is that they may do so with more urgency in response 
to CG-ADD-pointing gestures, as they could be viewed as more imperative and a 
more direct demand for feedback (compared to the possibly more ‘subtle’ CG-PUOH 
invitation to provide feedback). However, although we see a pattern that could be 
interpreted as suggestive of such an association (in that in almost a third of the cases 
participants’ responses coincided with the peak of the CG-ADD-pointing gesture, 
whereas for CG-PUOH gestures, none of the responses coincided with the peak of the 
gesture), no significant association was found, τB = .055, p = .243.  

(Only two CG-ADD-pointing gestures occurred within the 2nd second following the 
peak of a gesture; although the pattern becomes slightly stronger when excluding these 
two cases when reducing the time window to 1 second as an alternative analysis (with 
almost half of the responses to CG-ADD-pointing gestures then coinciding with the 
gesture peak), the association remains statistically non-significant, τB = .067, p = .216.)   
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Table 2. Frequency of gestures eliciting addressee responses coinciding with (0s) or following 
(2s) the gesture 

 Response delay 
 0s up to 2s 
CG-ADD-point 6 16 
 
CG-PUOH 

 
0 

 
4 

4   Discussion 

The present analysis set out to show two things. First, it tried to experimentally 
validate the claim that one particular category of interactive gestures fulfils the 
function of marking shared knowledge. Previous studies have provided some 
evidence for this in that independent analysts agree in their identification of such 
gestures and on the interpretation of the function they fulfil. The present analysis has 
provided supporting experimental evidence for this claim. From examining the data, it 
appeared that there are at least two different forms of interactive gestures that 
speakers use for marking common ground (i.e., two different gesture forms that would 
both fall into Bavelas et al.’s [4] category of ‘shared information gestures’). One is a 
flat hand shape, the palm facing up, fingers (either slightly curled or extended) facing 
towards the addressee, without any individual fingers protruding distinctly more than 
the others in an indexical manner. This type of hand gesture has been termed ‘palm up 
open hand’ (PUOH) by Müller [17] and is considered to be part of the ‘open hand 
supine’ (OHS) family of gestures [18]. The other form is a common pointing gesture, 
with the index finger (and in a few cases also the middle finger) clearly protruding 
more than any other finger, and with the point being directed at the addressee. Here, 
we termed these gestures CG-PUOH and CG-ADD-pointing, respectively.  

The findings from the first analysis showed that, indeed, speakers who talk to 
addressees with whom they share experimentally induced common ground (based on 
a prior shared visual experience and experimental instructions) use significantly more 
of both of these types of interactive gestures than speakers who talk about the same 
semantic events but without these being part of the common ground. This is clear 
evidence that common ground between interlocutors encourages the use of interactive 
gestures which fulfil the specific function of marking this mutually shared knowledge 
for the addressee. Important to note is that co-speech gestures were not more frequent 
in the common ground condition in general. An earlier analysis based on data from 
the same experiment [14] focused on iconic and deictic gestures (here pointing 
gestures used in a non-interactive manner) and found no significant difference 
between the CG and NCG conditions; in fact, the tendency was in the opposite 
direction, with numerically more gestures being used in the NCG than in the CG 
condition. In addition, this earlier analysis also found that speakers in the CG 
condition used significantly fewer words than when no experimentally induced 
common ground existed. This means that, in the present analysis, the higher number 
of common ground related interactive gestures in the CG condition cannot be 
accounted for simply by the fact that speakers talked more and therefore had more 
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opportunity to produce more of these gestures. As another side point, the present 
findings relate mainly to common ground based on prior co-presence, but in some 
cases shared knowledge gestures were also used for the kind of common ground that 
builds up during conversation (based on linguistic co-presence) [7].  

Whereas the first analysis combined the two different gesture forms to tap the 
general category of shared information gestures, the second and third analyses 
considered them individually. They showed that the difference in form seems to be 
functional at a micro-level (i.e., within the category of shared knowledge gestures 
established by Bavelas et al. [4]). There was a clear association between CG-ADD-
pointing gestures and new addressee responses, whereas this was not the case for CG-
PUOH gestures. (Although the third analysis also revealed a tendency for CG-ADD-
pointing gestures being responded to more promptly than CG-PUOH gestures, this 
association was not significant.) It therefore seems that, in the context of 
communicating mutually shared knowledge, pointing gestures directed at the 
addressee are perceived as somewhat more urgent requests for addressee feedback 
than palm up open hand gestures are.  

Although the relationship between form and function of interactive gestures is 
idiosyncratic with no fixed one-to-one mapping (e.g., a PUOH gesture may occur in 
any of the main categories of interactive gestures [4]), it seems that within one sub-
category, small differences in the morphological form of gestures may impact on the 
interactive process between speaker and addressee (at least in the case of shared 
knowledge gestures). Thus, within the group of gestures sharing the general function 
of marking common ground, CG-ADD-pointing gestures may be considered the more 
imperative form of common ground related interactive gestures. With reference to 
Clark [6], we may conclude that different gestural signals are used by speakers to 
project different kinds of evidence of understanding. Whereas in some cases the 
speaker may perceive continued attention (e.g., expressed by the addressee’s eye 
gaze) a sufficient indicator that their contribution has been understood ‘well enough 
for current purposes’, they may require more explicit evidence in others (such as a 
new response in the form of a verbal or nonverbal acknowledgement). This suggests 
that interactive gestures may play an important role in the process of grounding – at 
least in the context of grounding speakers’ reference to common ground based on 
prior physical co-presence.  

However, because the present analysis constitutes work in progress, we have to be 
tentative with interpretations. After all, there are a host of additional, unexplored 
factors that may play a role here. One of the most important next steps is to examine 
the interplay of these interactive gestures with the verbal components of the 
utterances they form part of. Also, the kinds of responses addressees provided have 
here been grouped together. A more fine-grained analysis differentiating verbal, 
nonverbal and multi-modal responses (including gaze, facial expressions and 
intonation) is needed. Moreover, the current findings are restricted in generalisability 
as they are based on more monologue-type contexts where one person speaks and the 
other provides backchannel responses, similar to telling an anecdote, a close-call 
story, a joke, and so forth. More dialogic interactions may potentially differ in terms 
of how speakers mark common ground and how addressees respond to these markers. 
Yet another avenue for advancing this work is to apply a more micro-analytic 
procedure taking into account morphological differences also at other parameter 
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levels, such as differences in palm orientation (for pointing gestures). This may yield 
further sub-classifications. It is obvious that much work remains to be done on this 
issue, but the present study has thrown light on some potentially very important 
associations between interactive gestures, common ground and grounding.    
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Abstract. This pilot study focuses on aspects of cultural variation in cospeech 
gestures in two interactions with Angolan and European Portuguese 
participants. The elements compared are gesture features - extension, drawn 
path, articulation points - and generated gesture spaces. Posture, interpersonal 
distance and other speech-correlated movements were taken into account as 
essential parameters for the definition of different kinds of physical spaces. 
Some differences were obvious: gestures performed by Angolan speakers were 
articulated at the levels of the shoulders, elbows and wrists, thus tracing 
considerable larger angles than those traced by gestures performed by 
Portuguese speakers. As the Angolan participants sit close to one another, their 
extended arms constantly invade the other participants’ personal spaces.  

Keywords: gesture, cultural variations in cospeech gestures, gesture space. 

1   Introduction 

As is well known, gesture choreography and gesture space vary considerably from 
culture to culture. The paths followed by gestures, the hand configuration, as well as 
the amplitude of shoulder, elbow, and wrist angles have distinct features and reveal 
not only individually but also culturally determined tendencies (Chienki, Müller, 
2008, Efron, 1972, Hall, 1974, Müller, 1998). The same can be said concerning 
distances and positions of interactants’ bodies in relation to each other (Argyle, 1994, 
Özyürek, 20002, Sweetser, Sizemore, 2006). The analysis of face-to-face interaction 
offers the possibility of considering, among numerous other aspects, both gesture 
amplitude and the paths pursued by fingers, hands and arms, as well as issues 
regarding proxemics and haptics. Comparing interactions in Portuguese spoken in 
Portugal with Portuguese spoken in Luanda (Angola) can show cultural tendencies 
gesture choreography and gesture space. The next section of this paper explores the 
different kinds of space(s) in the context of face-to-face interaction as well as the 



24 I.G. Rodrigues 

topics of body contact and touch. This is followed by a description of some examples 
of how gesture space1 and gesture features are generated. 

2   Physical Spaces  

Within the context of this paper, space(s) in interaction are understood to mean the 
areas defined by the orientation and the movements of the participants’ bodies in a 
face-to-face interaction. The dimensions of these spaces depend on different factors:  

a) engagement in interaction, state of mind (Yngve, 1970) or socio-cognitive 
state (Rodrigues, 2007b: 245);  

b) common ground (Holler, 2007); 
c) size of the bodies (when standing, taller people have the tendency to keep 

their hands at a lower level (lap), while short people prefer to perform 
gestures at a higher level (chest, shoulder height), arm length; 

d) individual variables like age, gender, status and other socio-cultural 
elements; 

e) physical setting (size of space participants are in, posture, postural habits: 
sitting on a chair, on the floor, standing, lying on a sofa, on the floor). 

f) the orientation of the participants’ bodies (location of the space shared by 
participants) (Özyürek, 2002); 

g) affect display rules (Ekman, Friesen, 1969). (This item is inspired by the 
works of several authors (Efron, 1972, Hall, 1974, Müller, 1998, Chienki, 
Müller, 2000, Kendon, 2004) who focus on cultural tendencies related to 
gesture amplitude and gesture articulation points.) 

As pointed out by Kita (2009: 5), the physical space around us has some influence in 
the organization of space in our brain. I believe in the reflexivity (as commented by 
Tuan (1977, 8-18) already some decades ago) between, on the one hand, bodily 
experience in the world and conceptualization of space, and, on the other hand, space 
definition/mapping according to this bodily experience in a certain environment. Also 
Hall emphasizes the experienced aspects of the relation between body and 
environment (which involves parameters like population density, topography, living 
habits) when he writes, “people from different cultures inhabit different sensory 
worlds […] they do not structure space differently, but experience it differently” 
(Hall, 1974, 207). 

Several researchers have defined different kinds of spaces which are to be 
considered in face-to-face interaction:  

                                                           
1 In the literature gesture space is generally defined as follows:  “the space speakers use to 

gesticulate.” I would be careful with the word use, as it seems to assign static properties to the 
concept of gesture space; I prefer expressions like “the space defined by…”, as space is a 
dynamic dimension. Space in general only exists as the result of the imposition of limits, 
marks or borders, and gesture space is the space defined/mapped by gesticulation, thus being 
subjected to changes of its dimensions and location in the course of face-to-face interaction. 
So gesture space should be seen as a continuously changing area, with more or less 
considerable variations according to different movement units. 
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Personal space – the area an individual feels as his/her territory, the body buffer zone 
(Wallbott, 1995) whose dimensions can vary according to individual, cultural and 
context (topographic and relational) features. These features determine the proximity-
distance maintained by interactants, which can be individually or culturally 
determined. There are in fact cultural tendencies, so that we could say that, while in 
some societies people position themselves close to each other and often touch each 
other when they interact, in other societies touch and proximity are avoided.  
 
Gesture space - the area determined by the performance of gestures, created through 
the movements of hands/arms. Generally the definition of gesture space does not 
include the position/movements of trunk and head, but in my opinion these modalities 
have an important influence on the physical area where a gesture is performed and, 
consequently, on the mapping of the gesture space itself. Özyürek (2002, 690) defines 
it as “the intersection of the individual gesture space of the participants”. She also 
explores the fact that gesture space varies according to the position of the participants 
in relation to each other (side-by-side, face-to-face). Furthermore, as Sweetser and  
Sizemore argue, “there is no fixed size for a person’s gesture space” as it depends on 
cultural and linguistic community and it is polyfunctional: “it can be used for 
interactional regulation, as well as to gesture about content (…) when gestures reach 
outside their personal space it is a sign that (1) they are engaged in regulating the 
speech interaction and (2) that the regulation is highlighted rather than backgrounded” 
(Sweetser, Sizemore, 2006, 33). 
 
Interactional space – (inter-speaker space (Sweetser, Sizemore, 2006, 31) is the area 
defined by the orientation of the interaction partners’ bodies. I should say this space 
corresponds to the shared space (“the intersection of the individual gesture spaces of 
the participants”) (Özyürek, 2002, 690) together with a possible in-between space 
(Sweetser, Sizemore, 2006, 32) if the interactants are not seated too close to each 
other. The location and the size of the interactional space clearly depend on the 
position of participants and on the location of their gesture spaces. In addition, in the 
case of the recordings made for this pilot study (where the interactants are seated in a 
semi-circle in front of the camera) it can also be argued that the interactional space 
includes the area between the camera and the interactants. In fact, it should, at least 
when the interactants look at the camera while speaking. The definition of spaces in 
interaction should also account for the level of abstraction, as suggested by Haviland 
(2000), who distinguishes between a local and a narrated space besides the 
interactional space.  

Conceiving different  types of spaces is important not only for the description and 
definition of the areas (spaces) crossed by hands, arms and other body parts in the 
performance of co-speech gestures, but also for the explanation of the relation 
between performed concepts and interactional signals, and spoken concepts and 
interactional signals. 

3   Gesture Choreography  

I use the expression gesture choreography to refer to: a) the paths traced by the upper 
limbs along several axes, creating a three-dimensional space in front of the speaker’s 
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Fig. 1. Representation of the vertices, angles and hand rotation 

body, b) the movement features (energy or tension put in the performance of a 
gesture), as well as the movement speed (how fast gestures are performed) and 
movement frequency (how many gestures are performed per unit of time), c) the way 
fingers, hands and arms articulate, and d) hand shape – the anatomy of hand and 
fingers allows a remarkable accuracy in the micro-representation of concepts, as well 
as more or less culturally determined movements related to habitual activities and 
(emotional) experiences. For this reason, the variables ‘hand shape’ and ‘hand 
rotation’ (palm orientation, degree of openness, fingers and thumb flexibility) are of 
great importance for the description of a gesture. 

The vertices shoulder (1), elbow (2) and wrist (3) were used to describe gesture 
extension. Fig. 1 illustrates the angles that can be formed at these vertices, as well as 
hand rotation (hand shape). Obviously, it is the degree of the angles formed at the 
shoulders and elbows that determines the range of gesture space. Furthermore, other 
modalities (such as head and trunk movements) can also be taken into account when 
they are present in the gesticulation process, as can be frequently witnessed, for 
instance, in South European and African cultures. 

4   Analysis of Two Case Studies  

The analysed corpus consists of two interactions: one between three Portuguese male 
students and another between three Angolan male students. They were instructed to 
position their chairs in a semicircle in front of the camera (so that the video camera 
could capture the full image of their bodies) and they were asked to discuss about 
several themes, like the adoption of children by homosexual couples, or women’s 
roles in different societies around the world. Their communication is spontaneous, 
although this laboratorial context may condition the quality of their movements. Due 
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to the limit of pages imposed in this paper, preference was given to the description of 
the interaction between Angolans, as the movement features of the African students 
are considerably different from the movements of Portuguese, which were already 
described in detail in previous publications (Rodrigues, 2006, 2007a, 2007b). 

4.1   Interpersonal Distance and Defined Spaces 

Interpersonal distance - as we can see from the frames below (Fig.2), the three 
participants are engaged in a face-to-face interaction. They are sitting in semicircle so 
they can easily look at each other. They maintain a certain distance from each other 
and they do not touch each other. The first image represents the gesture with the 
biggest amplitude in the whole sequence (these four images were selected from the 
whole sequence). In this interaction, gesture space does not go beyond the personal 
space of any of the speakers.  

     

Fig. 2. Interaction between Portuguese students 

 

Fig. 3. Location and orientation of the interactants’ bodies 

As represented in Fig.3, the circles around speakers’ heads roughly correspond to 
the space defined by the movements of their arms and hands, i.e., the gesture space.  
The small grey circle in front of the three speakers is the video camera.  

As for the interaction between the three Angolan students, the situation is quite 
different: they placed their chairs side-by-side and close to each other so that they 
could all directly face the camera. Their lower limbs come into physical contact. The 
frames below show that they move their hands beyond the limits of the area generally 
defined as personal space and ‘invade’ the other participants’ personal space (cf.  
Fig 4, pictures 5, 7, 8, 9, 10, 11, 14). 

Pictures 5-8 illustrate a sequence where the participant in the middle has his turn. 
He opens his arms wide to both sides, entering the other participants’ territory. 

Fig. 5 illustrates the gesture space of the Angolan interactants. It is formed by the 
total extension of the speakers’ arms of towards the interactional space.  
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Fig. 4. Interaction between Angolan students 

 
Fig. 5. Location and orientation of the interactants’ bodies 

Pictures 9 and 14 show how gestures enter the personal space of both the first and 
the third participant. In both cases the speaker focuses on an important part of his 
speech. In the first case, the gesture, together with the linguistic elements “porque é 
assim”, functions as an announcement (Rodrigues, 2007) of what is going to be said 
and done next; in the second case, it introduces an aside to the utterance which is 
being produced. Both speakers orient their gestures to the centre of the interactional 
space, to the others 2. 
                                                           
2 As this paper concerns the theme gesture choreography and gesture space, detailed description 

about gesture functions and forms were omitted. Further descriptions on this sequence can be 
read in Rodrigues (2007a, 2008).  
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Fig. 6. a video of three seated figures is transformed into a sequence of moving silhouettes, and 
the sequence is then viewed as a single 2D image. The large white region in the center reveals 
the wide and varied range of the central speaker’s hands over time. 

Pictures 10-12 illustrate a moment when Speaker 1 moves his trunk forwards and 
raises his shoulders, modifying the dimension and location of his gesture space. This 
new posture is relevant at the interactional level since it reveals the speaker’s 
intention to keep his turn. Leaning forwards and towards the other participants, the 
speaker also creates an atmosphere of more intimacy: it is a way of catching their 
attention and eliciting their cooperation as hearers3.  

Defined spaces - The images below are visualizations of a small sequence of the 
second interaction, kindly created by Jeremy Douglas, with the support of Lev 
Manovich4. Using McNeill’s scheme (McNeill, 1992) of several areas in gesture 
space, we can say that the speaker’s hands frequently move in the peripheral space. 

Fig. 7 shows a longer sequence of frames from another perspective. In this 
sequence, Speaker 2 and Speaker 3 have the floor at different times. For each of the 
speakers, gesture space is the area defined by the positions of their hands in different 
points in space. As the extension of the movements reaches a location beyond the 
place occupied by their bodies, the gesture spaces of each of the interactants overlap. 
In other words, the shared space is created by the three speakers’ overlapping gesture 
spaces, i.e., gesture space of speaker 1 overlaps with gesture space of speaker 2; 
gesture space of speaker 2 overlaps with the gesture spaces of both other participants; 
gesture space of speaker 3 overlaps with gesture space of speaker 2. As none of the 
participants seem to be bothered by the closeness of their body parts, we can suppose 
that these overlaps are common, and that this is a culturally determined feature of co-

                                                           
3 These aspects are similar to the results obtained by Özyürek (2002), although the position of 

the speakers here is different from the position of those described in her experiments. 
4 Jeremy Douglass (http: jeremydouglass.com) and Lev Manovich (http:www.manovich.net), 

University of California in San Diego. Lev Manovich is the director of the Software Studies 
Initiative at the California Institute for Telecommunications and Information Technology 
(Calit2). Jeremy Douglass and Lev Manovich are engaged in the development of cultural 
analytics projects.  
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verbal gestures in Angolan speakers. However, it is evident that further analyses of 
Angolan speakers (considering also age, gender and status), as well as of speakers 
from other cultures, are needed.  

   
Fig. 7. Here a video of three seated figures is transformed into a sequence of moving 
silhouettes, and the sequence is then viewed as a 3D volume view to reveal the shared gestural 
space. The three fairly stationairy heads form three ridges, with the rhythms of arm motions 
between the figures appearing as a texture in the furrows. 

Gesture type in gesture space - regarding the distribution of the different types of 
gestures (iconic, metaphoric, deictic) in gesture space, it can be noted that gestures 
referring to oneself were generally performed in the upper central region (according 
to McNeill’s scheme of gesture space); presenting gestures (metaphoric) were more 
often found in the peripheral lower areas in the form of palm-ups; while gestures 
illustrating movements and objects were more frequently performed in peripheral 
upper areas. It is important to emphasize the qualitative – and not quantitative – 
nature of this study, which takes into account only three speakers. The pictures below 
illustrate three of these situations for speaker 2:  

           

Fig. 8. McNeill’s grid defining different areas of gesture space 
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4.2   Gesture Choreography 

As mentioned before, describing gesture space implies the reference to the movement 
features of the body parts which are responsible for the dimensions of the generated 
space. The following drawings show the different kinds of movements performed by 
speaker 2 in a few seconds of this interaction:  

 

Fig. 9. Drawings at some crucial points of speaker’s movements 

This representation shows the following approximate measures for the different 
angles:        

     shoulders: 45º – 90º 
elbows:  15º - 180º 
wrists: 90º to the outside / 90º to the inside 

      (degree 0º corresponds to the axis of the arm) 

The hand-shape and hand configuration were characterized by a frequent rotation at 
the wrists as well as the articulation of the fingers / thumbs. As for the energy/tension 
of the movements performed, it is to be noted that the movements were relaxed and 
the focus of tension was located at shoulder level: as if the motion force was located 
at that level, elevating the limbs from there. Because the bodies are relaxed, the force 
that causes the articulation of hands and arms seems to result from the swinging of the 
whole arm.  

In the case of the Portuguese speakers, the approximate measures of the angles are:  

shoulders:  45º(to the side) and 60º (to the front),  
elbows:   45º - 115º 
wrists:  around 10º to the outside / 45º to the inside.  

In these movements, the focus of tension is in the hands. As the strokes are shorter, 
these movements also seem to be performed with a higher degree of tenseness.  



32 I.G. Rodrigues 

5   Final Remarks 

The objective of this pilot study was to look for interesting cues regarding cultural 
variations in the performance of gesture when using the same language system.  As 
Portuguese is spoken in several parts of the world, it offers an interesting research 
field for studies which seek to compare gesture features, the relation of gestures to the 
linguistic content of the utterances they accompany, the rhythm of speech and body 
movements, as well as the functions of spatial parameters in face-to-face interaction. 
By focusing on such aspects as gesture space and gesture choreography, it was 
possible to observe a number of differences between Angolan and Portuguese 
speakers, differences which are mostly related to the extension of the movements as 
well as the articulation of several parts of the upper limbs. In particular, the proximity 
between the Angolan interactants and the overlap of their spaces (personal – gesture – 
interactional) led to a closer examination of gesture space and interactional space. 
Thus, it became evident that there is a need for a more flexible definition of concepts 
such as personal space, gesture space and interactional space and the further research 
is needed to validate the results obtained.  
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Abstract. The paper presents some empirical studies aimed at singling out the 
meanings of specific items of gaze and of some of their parameters. It argues 
that the values on some parameters of gaze items are not comparable to 
phonemes in a verbal language, but rather to morphemes, since by themselves 
they convey some specific meanings. The different positions of the upper and 
lower eyelids are combined and the meanings conveyed by their possible values 
are investigated. It is found that wide open upper eyelids and raised lower 
eyelids convey activation and effort, while half open and half closed upper 
eyelids convey de-activation and relaxation. These embodied morphemes, 
stemming from particular physical states, become part of the meanings of gaze 
items conveyed by the combination of these eyelid positions.  

Keywords: multimodality, gaze, lexicon, morphemes, embodied. 

1   Gaze Communication  

After the pioneering studies of Kendon (1967) and Argyle & Cook (1976), 
communication through gaze has captured attention in the last ten years. In 
Psychology and Linguistics, gaze has been investigated as to the evolutionary 
differences between humans’ and apes’ (Tomasello, 2007), as to its role in imagery 
and text comprehension (Underwood, 2005), in face-to-face interaction (Goodwin, 
2000; Bavelas, 2000; Rossano, 2005; Allwood et al., 2005; Poggi and Roberto, 2007) 
and persuasion (Poggi & Vincze, 2008). In the field of Embodied Agents, gaze has 
been studied as a sign of interest (Peters et al., 2005), for its semantic subleties  
(Poggi, Pelachaud & de Rosis, 2000; Heylen, 2005), and for simulation in Virtual 
Agents (Cassell, 2000; Bevacqua et al., 2007; Maatman et al., 2005; Poel et al., 2009). 

Most of these studies, though, generally deal with a single dimension: gaze 
direction. Which has, in fact, many important functions: looking at the interlocutor 
asks him to follow or to provide feedback; averting gaze tells you are thinking, trying 
to retrieve words; and if you are the interlocutor, gazing at the speaker assures about 
your interest and attention. Yet, beside eye direction many other aspects of eye 
behavior are relevant, and their function is not only to establish the setting for 
interaction, but to tell things: gaze conveys specific meanings, it is a rich and 
consistent communicative system that deserves being described in a systematic way.  
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Some research in these domains has been done; Eibl-Eibesfeldt (1972) and Ekman  
(1979) analyzed some of the conversational, emotional and syntactic functions of the 
eyebrows; Sign Language scholars (Baker-Schenk, 1985; Volterra, 1987; Thompson 
et al., 2006) have studied the syntactic and semantic role of gaze in ASL (American 
Sign Language) and LIS (Italian Sign Language). In Hearing people, the repertoire of 
gaze meanings has been investigated by Kreidlin’s “Oculesics” (2002), and Poggi 
(2007) proposed to write a lexicon of gaze, arguing it is a communicative system as 
complex and sophisticated as facial expression or gesture can be.   

2   The Communicative System of Gaze 

According to Poggi (2007), beside being used to see, to look, to feel, and to favour 
thought processes, gaze can be seen as a communication system, i.e. a system of rules 
to put signals and meanings in correspondence, just like a verbal system, or a system 
of symbolic gestures, where a particular combination of sounds, or a particular shape 
and movement of the hands, corresponds to a specific meaning. In gaze, the signals – 
the perceivable stimuli an interlocutor can see and interpret by attributing them some 
meaning – are morphological features and muscular actions exhibited in the eye 
region, that includes eyebrows, eyelids, eyelashes, eyes and eye-sockets. The 
meanings are imagistic or conceptual representations that, in the minds of both S and 
A, are linked to those signals.  

Given this definition of gaze, its communicative system can be analysed on both 
the signal and the meaning side. On the signal side you can find the elements that 
compose all the possible signals of gaze, and their combination rules, thus writing the 
“optology” (“phonology” of gaze), while on the meaning side, the correspondences 
between signals and meanings (“lexical items” of gaze) can be found.  

As to the former issue, to describe the signal of gaze Poggi (2007) proposed, like 
did Stokoe (1978) for the Signs of Sign Languages, a set of parameters to analyze the 
morphological features and muscular movements that form items of gaze. As shown 
by Stokoe (1978) and Klima & Bellugi (1979), any Sign can be analyzed in terms of a 
small number of parameters – handshape, orientation, location and movement –, 
where for each parameter the Sign can assume a number of possible values, and the 
combination of values in all parameters allows to describe the Sign thoroughly.  

Also to establish the “optology” of gaze you can single out its parameters and their 
possible values, and describe each single item of gaze as a combination of specific 
values in all parameters. The parameters considered pertinent for gaze (in that 
changing a value on a parameter implies switching the gaze item analyzed to no 
meaning or to a different meaning) are the following (Poggi, 2007): 

• movements of the eyebrows (for example, eyebrow frowning means worry or 
concentration, eyebrow raising, perplexity or surprise)  

• position, tension and movement of the eyelids (in hate one lowers upper 
eyelids and raises lower eyelids with tension; in boredom upper eyelids are 
lowered but relaxed) 
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• various aspects of the eyes: humidity (see the bright eyes of joy or 
enthusiasm), reddening (bloodshot eyes in rage), pupil dilation (a cue to 
sexual arousal); focusing (stare out into space when thoughtful), direction of 
the iris with respect to direction of the Speaker’s head and to the Interlocutor 
(which allows a deictic use of eyes) 

• size of the eye sockets (to express tiredness) 
• duration of movements (a defying gaze focuses longer over the other’s eyes).   

Through careful analysis of videos, items of gaze in conversation have been described 
in terms of these parameters (Poggi, 2007; Poggi & Vincze, 2008). 

To find the meanings of gaze items, a deductive method was first adopted: a list was 
produced of the types of information that people may need to convey; then, analysing 
videorecorded data, the types of meanings hypothesized and their corresponding gaze 
items were found. Fragments of a lexicon of gaze were described, showing that gaze 
conveys very specific meanings by exploiting the richness of its optology.  

It bears information about entities (its deictic use: gazing at something or someone 
to refer to it) or about properties (squeezing eyes to mention something very little, 
opening eyes wide for something big: an iconic use of gaze). Eyelid shape reveals 
Western vs. Eastern ethnicity; bright eyes reveal aspects of personality. Gaze can also 
tell how certain we are of what we are saying (a slight frown means “I am serious, not 
kidding”; raised eyebrows with half open eyes means “I am perplexed, not sure”), and 
what is the source of what we are saying (eyes left-downward mean “I am retrieving 
from memory”). Further, gaze communicates the goal of our sentence (staring  at the 
Interlocutor conveys a performative of requesting attention; a frown communicates a 
question; a fixed stare, defiance); topic-comment distinction (by averting vs. directing 
gaze to Interlocutor);  turn-taking moves (gazing at the Speaker to take the floor) and 
feedback (frowning to express incomprehension or disagreement, see Heylen, 2005; 
Poggi, 2007; Bevacqua, 2009).  

3   Subtle Differences in the Meanings of Gaze 

To investigate some specific items of gaze two empirical studies were conducted 
(Poggi & Roberto, 2007).  

The first study aimed to assess whether people attribute specific meanings to 
specific items of gaze in a systematic way, and whether the meaning attributed to each 
item is shared. 10 static items of gaze were constructed by using “Greta face-library” 
(Bevacqua et al., 2007), a tool that allows to set Greta’s face on whatever facial 
expression, by changing facial parameters of head, mouth and eye region. The 
following parameters were varied in the eye region: 

1. Eyelids aperture: half closed (upper eyelids lowered and lower eyelids 
raised), half open (upper eyelids lowered), wide open up (upper eyelids 
raised showing the sclera over the iris), wide open up and down (upper 
eyelids raised showing the sclera over the iris, and lower eyelids lowered 
showing the sclera under the iris) 

2. Eyes direction: forward, upward, downward, rightward, left-downward 
3. Eyebrows position: default, all raised, internal parts raised, internal parts 

lowered and external parts raised.  
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By combining these parameters 10 items of gaze were constructed, and for each a 
hypothesis was made about its meaning. The 10 items were submitted to 100 students 
of a high school near Rome, between 18 and 20, 86 females and 14 males, through a 
questionnaire of multiple choice questions. For each item, the meaning hypothesized 
was mentioned among three distractors, in random order, with a further open 
alternative offered (“other…”).  

Six  of the meanings hypothesized were confirmed by more than 75% subjects 
(bothered 88%, tired 86%, amazed 85%, hate 81%, repent 79%, exasperated 76%), 
three by more than 43% (absorbed 58%; scanning 54%; terrorised 43%)(absorbed 
58%; scanning 54%; terrorised 43%) and one (cautious) only by 28%. However, 
from the analysis of the subjects’ answers to the “other” alternative it resulted that 
also the meanings freely proposed by subjects generally shared some semantic 
components with those hypothesized. For example, the gaze items whose target 
meaning was terrorized was also interpreted as astonished, deranged, impressed, 
dismayed, stupefied, amazed, while amazed also as alarmed, terrorized, surprised, 
astonished.  

The second study aimed to assess if specific values in some parameters have an 
“optological” value, thus distinguishing minimal pairs. It focused on eyelids aperture; 
the hypothesis was for example that, keeping eye position in the default value (center 
of the sclera), eye direction forward, and eyebrow raised, simply changing eyelids 
aperture from wide open, to default, to half closed could switch the meaning, 
respectively, from surprise, to perplexity, to contemptuous  (Figures 1, 2, 3).  

 
 
 
 

 

 

                Fig. 1. Surprise                      Fig. 2. Perplexed                 Fig. 3. Contemptuous   

A questionnaire of 15 items was submitted to 100 high school students near Rome, 
between 16 and 20, 82 females and 12 males. The meanings hypothesized were 
generally confirmed. Again, some common semantic element is generally shared 
between the target meaning and the chosen distractors or the meanings freely 
proposed. For example, in all the items with internal parts of eyebrows raised, 
whatever the position of the iris in the sclera, upward, downward or forward, a 
meaning of an unpleasant emotion with low activation is always present: the 
attributed meanings range from trouble, to grief, sorry, disappointed, resigned, sad. 

The results of the second study show that even single values in the parameter of 
eyelids aperture have a distinctive function; wide open, default, and half-closed 
eyelids contrast items of gaze with each other; they distinguish minimal pairs, thus 
having a “phonemic” value. Thus gaze seems to entail an “optology”: a system for the 
construction of signals, whose units of analysis, equivalent to phonemes, we might 
call “optemes”.  



38 I. Poggi, F. D’Errico, and A. Spagnolo 

4   Gaze Morphemes? 

However, as we have seen, in these cases a specific value on a parameter is not 
simply distinctive of a meaning against another, like for words, where phonemes are 
not meaningful per se; these values seem to bear some meaning themselves, thus 
having not barely a phonemic, but a morphemic nature.  

More than words, gaze resembles the signs of a Sign Language, or the gestures of 
the Hearing, where sometimes a single value of a parameter may bear a specific 
meaning by itself. In various signs in LIS (Italian Sign Language) the index finger 
protrusion bears a meaning of uniqueness (Boyes-Braem, 1981; Volterra, 1987); a 
progressive movement from left to right gives the idea of numbering (Calbris, 2003); 
gestures touching or pointing at the head refer to mental functions (Kendon, 1992). 
Works by Boyes-Braem (1981) and Volterra (1987) in the domain of Sign Languages, 
and by Calbris (1990; 2003) and Kendon (2004) for Hearings’s gestures seem to 
converge on a “morpho-semantics” hypothesis (Boyes-Braem, 1981), according to 
which shared kinesic features correspond to shared semantic themes. So, like some 
gestures are “stylized and conventionalized versions of various manipulatory actions” 
(Kendon, 2004, p.224), also gaze communicative actions might derive from the 
ritualization (Posner, 2003) of actions that people do when pursuing some goal, 
feeling some emotion, showing some attitude to other people. For example, opening 
eyes wide to widen the visual field, or squeezing eyes to see better, stem from – and 
then reveal, mean – a need for knowledge. Each particular feature of a gaze item 
endows it with its particular meaning, that combines with the other meanings 
provided by other features. In other words, we might think that some “embodied 
morphemes of gaze” exist, having their roots in the physiological reactions that are 
driven by, or linked to, specific affective or cognitive states. This could account for 
the different interpretations of gaze items provided by subjects in the second study 
above. For item 3 I judge you, the subjects proposing meanings like defiance, 
determination, I dare you, I am looking at you might have relied on the feature of eye 
direction forward, as a defying gaze to the Interlocutor, while those proposing 
surprise, astonished, impressed might have focused on the raised eyebrows typical of 
unexpected information and search for knowledge. 

In this work we present a study to further investigate this topic. 

5   Eyelid Morphemes 

To test our hypothesis about the morphemic value of some optemes, we designed an 
empirical study on the position of the eyelids. 

5.1   Hypotheses 

Our general hypothesis is that, in a single item of gaze, even the different values in 
one parameter may have a “morphemic” value, in that, both singularly and in 
combination with values in other parameters, they convey a specific meaning. This 
specific meaning is not necessarily the global meaning attributed to a whole item of 
gaze, but rather a – sometimes very general and abstract – semantic theme conveyed 
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by all the items that contain that particular value in that particular parameter: in short, 
a morpheme.  

Our specific hypothesis is that, in a single item of gaze, the different values in the 
parameters “position of upper and lower eyelids” convey different levels of  
activation of the subject displaying that gaze. This activation may be of a 
physiological, emotional or mental kind. 

5.2   Experimental Design  

To test the hypothesis about the meaning conveyed by different eyelids aperture, we 
designed an empirical study. The factorial design is 3 x 3 between subject with two 
independent variables being the different positions of upper eyelids (wide-open, half-
open, half-closed) and lower eyelids (lowered, default, raised), and dependent 
variables being the meaning of the resulting gaze. 

5.3   Procedure  

We constructed a multiple choice questionnaire of 9 items of gaze. The items were 
built by using the “face-library” of Greta. This tool is very useful to build pictures 
because, different from actors’ posed photographs, it allows you to set the FAPs 
(Facial Animation Parameters) very precisely. In some cases you even see a threshold 
in changing from one to another meaning, as if discreteness in gaze held just as for 
words or acoustic parameters of voice: at a certain point, a very slight change in the 
value of the parameter suddenly changes the resulting meaning. For example, 
combining half closed upper eyelids with progressively lowering lower eyelids, if you 
change the FAP values of the lower eyelids from 540.00 to 400.00, the resulting 
meaning is still “I am trying to remember”, but suddenly if you pass to 340.00 the 
meaning changes into “I am sad”. 

With Greta’s Face Library, we combined the three positions of the upper eyelids 
(wide-open, half-open, half-closed) with the three positions of the lower eyelids 
(lowered, default, raised), resulting in 9 items of gaze.  

Then, for each gaze we made a hypothesis about its meaning, by using the method 
of Chomskian Speaker’s judgments. As previously argued (Poggi & Roberto, 2007), 
not only for words or sentences, but also for non-verbal “lexical” items (Poggi, 2007), 
one of the methods for research on gaze is to make hypotheses about their meanings 
based on the intuitive judgments of speakers. Finally, for each item, after making a 
hypothesis about its meaning, we constructed a multiple choice question including the 
verbal phrasings of the hypothesized meaning and of three distractors. Distractors 
were progressively more distant from the target meaning, with the extreme one 
opposite to it.  

Combining the value “wide-open” of parameter “upper eyelid” with the values 
“lowered” vs. “default” and “raised” of parameter “lower eyelid”, we proposed the 
following choices for the resulting items. For gaze number 1, Upper/wide-open + 
lower/lowered, (a) I want to see clearly, (b) I fear, (c) astonished, (d) I can’t see, with 
astonished as hypothesized meaning; for n.7, Upper/wide-open + lower/default, we 
proposed the meanings (a) I don’t mind, (b) look at me, (c) I am surprised, (d) I fear, 
with I fear as target meaning; for  n.4, Upper/wide-open + lower/raised, (a) dismay, 
(b) I couldn’t care less, (c) don’t you dare, (d) I implore you, with dismay as target. 
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Fig. 4. Upper/Wide open 

The possible choices for Upper/half open were the following: n. 8, Upper/half-
open + lower/lowered, (a) I am surprised, (b) I am sorry, (c) sad, (d) look at me, (sad 
as target); n. 2,  Upper/half-open + lower/default, (a) you bother me, (b) how boring, 
(c) I am trying to understand, (d) I feel superior, with how boring as target; n.5, 
Upper/half-open + lower/raised, (a) I am ready to act, (b) exhausted, (c) sleepy, (d) I 
am sorry, target sleepy. 

 
  
 
 
 
 

 
Fig. 5. Upper/Half Open 

For combinations with Upper/half closed, we proposed: for n.3, Upper/half closed 
+ Lower/lowered, (a) how boring, (b) I am feeling sick, (c) you bother me, (d) sleepy, 
with how boring as target; for n.6, Upper/half closed + Lower/default, (a) you annoy 
me, (b) I couldn’t care less, (c) teeny tiny, (d)I feel superior, with I feel superior as 
target; for n.9 Upper/half closed + Lower/raised, that we hypothesized to mean teeny 
tiny, the choices were  (a) I am about to cry, (b) I hate you, (c) teeny tiny, (d) I am 
trying to remember. We were thus testing the hypothesis that a narrow opening of 
eyes can also be iconically used to refer to very little things.  

 
 
 
 
 
 
 
 
 

Fig. 6. Upper/Half Closed 
 

Gaze n.1         Gaze n.7         Gaze n.4

              

Gaze n.8       Gaze n.2   Gaze n.5 

              

   Gaze n.3         Gaze n.6           Gaze n.9 
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The questionnaire was submitted to 360 subjects (208 females and 152 males, 
range 7 - 86 years old, mean age 36.8).  

5.4   Results 

We present the percentages of the meanings attributed to the upper eyelids by 
grouping them according to their combination with the three positions of the lower 
eyelids, lowered, default, raised. A chi-square analysis was performed for each 
position of the upper eyelids while changing that of the lower eyelids and the total 
sum of percentages amounts to the sum of the four alternatives presented for each 
item.  

Upper/Wide-Open 
The meanings attributed by subjects to the gaze items with wide-open upper eyelids 
(Figure 7), whether the lower eyelids with which it was combined was lowered, 
default or raised, in general concern emotions, but all sharing a component of high 
activation and sense of alert. For instance, picture 1 was attributed the meaning 
sbalordita = astonished by 53.10% of subjects; n.7 was interpreted as  ho paura = I 
fear, by 43.30 % subjects, and sono sorpresa = I’m surprised by, 43,60%. In both 
meanings it shared a component of cognitive novelty. Moreover, in 7 and 4 (sgomento 
= dismay, 36.40%), a component of thwarted goal is added to the alert, which is also 
present in the performative meaning, also attributed to 4, ti supplico = I implore you 
(33.6’%) [Fig.7].  

That an idea of activation is present in all these items is confirmed also by the very 
low percentage (2.8%) of subjects that, for gaze n. 4, chose the opposite distractor 
Non mi fai nè caldo nè freddo = I couldn’t care less [χ²(359); p<0.000]. 

In all other cases, that the Agent is still active is plausible because, even if the 
situation is worrying, a possibility still exists that s/he can do something to recover. 
As I implore, something bad has happened or is going to happen, but I still believe 
that someone can help. Even in dismay there is still a difference from, say, despair. 
Thus in all of these cases a common idea holds of the Agent being oriented to the 
present time or even to the future, different, as we shall see, from the cases below. 
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Fig. 7. Meanings for Upper/Wide Open 
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Upper/Half Open 
Coherent with the Darwinian principle of antithesis (Darwin, 1872), the half-open 
upper eyelid carries meanings of de-activation, that can be caused by a physical state 
(like in 2, assonnata = sleepy, 37.50%, esausta = exhausted, 31.10%), a cognitive (5, 
che noia = how boring, 44,40%) or emotional state (8, triste = sad, 58,50% and mi 
dispiace = I am sorry,  30,50%). As to the timeline, these meanings are oriented to 
past or present: past both for the physical state of tiredness in 2, that might be caused 
by a previous effort or waste of energy, and the emotional state of sadness (8); and 
present for boredom (5) [χ²(359); p<0.000]. The Agent showing upper eyelids half 
open may either afford relaxing because nothing serious is attracting his attention 
(like for boredom) or because something irreversible already happened that it is waste 
time to struggle for (sad and sorry).  
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30,50%

58,50%

10%
14,70%

44,40%

20,30% 16,70%

31,10%
37,50%
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me

w hat a
boredom

i am trying
to

understand

i feel
superior

i am ready
to act

exhausted sleepy i am sorry

low .low ered low .default low .raised
 

Fig. 8. Meanings for Upper/Half open 

Upper/Half Closed 
Also the half closed upper eyelids bears deactivation (3. che noia = how boring, 
43,90%; 6. non mi fai nè caldo nè freddo = I couldn’t care less, 39,60%), except for 
when combined with raised lower eyelids (see below), which add a component of 
effort  (9.sto cercando di ricordare = I am trying to remember 42,20%, or mi viene da 
piangere = I am about to cry, 37,50%)[χ²(359); p<0.000]. 
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Fig. 9. Meanings for Upper/Half closed 

Lower Eyelids 
Results for lower eyelids are less clear. In general the default and lowered positions 
convey the same meaning of the upper eyelid position with which they are combined, 
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that is, activation when combined with wide-open and deactivation when with half-
open and half closed upper eyelids; but the raised lower eyelids definitely bear a 
component of effort, hence of activation, when combined with half closed upper 
eyelids. See the cognitive activation of 9, that is interpreted mainly as sto cercando di 
ricordare = I am trying to remember (42,20%), or as mi viene da piangere = I am 
about to cry (37,50%), which seems to evoke the effort of one who is trying to refrain 
from crying. 

In fact, raising the lower eyelids implies some muscular tension; but why should 
this tension only appear with half-closed and not with half-open eyelids? A possible 
account, focused on the Receiver’s perception, is that the meaning of effort intervenes 
when the measure of the eyelids’ aperture is under a given threshold. There might be 
a default unmarked value of aperture that is seen as “natural”; so when, during a 
social encounter (in which, of course, people are not supposed to fall asleep), a 
person’s eyes are more closed than that, she might be supposed to deliberately – then 
actively – strive for half-closing them, hence making the meaning of effort salient.  

An alternative account might be that a value of a parameter does not always have 
the same morphemic role, but it becomes morphologically salient only in some cases. 
An analogous example in verbal language might be the “false diminutives” of 
Derivative Morphology: like for the ending -let, which is a derivative morpheme in 
the word booklet, but not in the word outlet.   

6   Conclusion  

We have investigated the semantic role of the position of the eyelids in the 
communicative system of gaze, and found that the wide open upper eyelids typically 
carry meanings of activation and alert, generally caused by external stimuli, while the 
half open eyelids convey a component of de-activation. Another meaningful eyelid 
position is lower eyelids raised, that convey a meaning of effort.  

To set analogies between the structures of verbal languages and ones of 
communicative systems in other modalities is far from trivial. In a verbal language we 
have five levels of units: distinctive feature, phoneme, morpheme, word and sentence. 
A complete item of gaze, with its combination of values in all parameters, generally 
corresponds to a sentence, since in its meaning it includes its performative (Poggi, 
2007). Distinctive features are analogous to our parameters with different values: our 
eyelid aperture, with its values “wide open”, “half open”, “half closed” and “closed” 
correspond to a distinctive feature like voicing, with its values “voiced” and “non-
voiced”; the only difference being that the latter is a binary alternative. A distinctive 
feature distinguishes two phonemes, for instance, /f/ and /v/, which in their turn 
distinguish two words, like veal and feel. Yet, here ends the analogy: a distinctive 
feature or a phoneme distinguish two words, but they do not have meaning in 
themselves. Here instead a single value in a parameter, e.g. “half closed upper 
eyelid”, bears meaning by itself: it does not have simply a phonemic, but a 
morphemic import. Is it a bound or free morpheme? Once again, the analogy is not 
straightforward, because in a verbal language a bound morpheme combines in 
sequence with another: after a root, an affix comes. But in gaze the values on various 
parameters – eyelid position, eye direction, eyebrow position – combine with each 
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other at the same time: while I may say “boy” instead of “boys”, I may not keep my 
eyelids half closed without directing my iris in some direction. So wide open and half 
open upper eyelids, or raised lower eyelids, may be viewed like roots or themes, more 
than like words, both because they combine and because the meanings they bear are 
very general – activation, deactivation, effort.  

Future work will investigate more lexical items and morphemes of gaze. New 
procedures might use (like Bevacqua, 2009) not only static images but videoclips, to 
keep into account the dynamic flow of gaze items and its influence on semantic 
interpretation. Moreover, future study about morphemes of gaze might adopt the so 
called representative design based on Brunswik’s “lens model” (1955), to support the 
attribution of meanings trough differentiation of gaze contexts, by varying, for 
instance,  eyebrows’ position and eyes’ direction.   

The study might also be replicated in different cultures, to assess whether the 
morphemes found are culture specific or not. But if they are, as we maintain, 
“embodied morphemes of gaze”, stemming from physiological reactions driven by, or 
linked to, universal affective or cognitive states, what may be subject to cultural 
variation is not their meaning but their norms of use, that is, the rules stating when 
and to whom gaze items embedding morphemes with a particular meaning can be 
used (Poggi, 2007). 

New research will widen our knowledge on gaze and elucidate the structure of this 
charming communication system. 
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On Factoring Out a Gesture Typology from the Bielefeld
Speech-and-Gesture-Alignment Corpus (SAGA)
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Abstract. The paper is based on the Bielefeld Speech-And-Gesture-Alignment
corpus (SAGA). From this corpus one video film is taken to establish a typologi-
cal grid for iconic and referring gesture types, i.e. a multiple inheritance hierarchy
of types proceeding from single gestural features like hand shape to sequences
of entities filling up the whole gesture space. Types are mapped onto a partial
ontology specifying their respective meaning. Multi-modal meaning is generated
via linking verbal meaning and gestural meaning. How verbal and gestural
meaning interface is shown with an example using a quantified NP. It is argued
that gestural meaning extends the restriction of the original quantified NP. On the
other hand it is shown that gestural meaning is not strong enough to resolve the
underspecification of the lexical information.

Keywords: SAGA corpus, iconic gesture, gesture typology, partial ontology,
speech-gesture interface.

1 Intro: Typology and Typology Work in Gesture Research

Typology is the study of types. Types are configurations of structural features. Typolo-
gies have been developed in many research fields, for example in anthropology, archae-
ology, biology, linguistics or psychology. There are linguistic typologies which classify
languages according to word order or verbal entities according to parts of speech. Both
typologies are in turn used in theory of grammar explanations: Here you have an exam-
ple showing that typologies can serve a theoretical purpose. A useful distinction can be
made into qualitative typology where you compare structures descriptively and quan-
titative typology where statistics for a well-defined field, e.g. a corpus of data is used.
This paper is about a typological grid set up for statistical investigations which will be
based on it. Essentially, a typological grid is a complex structure exhaustively cover-
ing one subset of given data set up to investigate whether it can be generalised to the
rest. The grid we’ll develop here is a set of types organised in a multiple inheritance
hierarchy. In gesture research there is a veritable typology tradition, all of it qualita-
tive research, for example there is the seminal paper of Ekman and Friesen (1969), a
chapter on types of gestures in McNeill’s (1992) book, Poggi (2002) is an example for
the use of gesture typology in generation tasks, Kendon (2004) contains two typology
chapters, Kita’s collection (2003) concentrates on pointings. This paper is based on one
route-description dialogue out of the Bielefeld Speech-And-Gesture-Alignment Corpus,
SAGA, to which I now turn.

S. Kopp and I. Wachsmuth (Eds.): GW 2009, LNAI 5934, pp. 47–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 The Bielefeld Speech-and-Gesture-Alignment Corpus, SAGA

The SAGA corpus contains 25 route-description dialogues taken from three camera
perspectives using body tracking technologies. The setting comes with a driver “riding
on a car” embedded in a VR-setting, called “router”, passing five landmarks, sculpture,
town-hall, two churches, chapel, fountain. The landmarks are connected by streets. Af-
ter his ride the router narrates his experience in detail to a follower who is supposed to
organise his own trip following the router’s instructions. We collected video and audio
data for both participants, for the router body movement tracking data due to markers
on head, wrist, elbow and eye-tracking data. The tracking data generated traces in Eu-
clidean space and provided exact measurements for positions of head, elbow, wrist etc.
The dialogues have all been annotated, the functional predicates like indexing, mod-
elling, shaping etc. used were rated. Roughly, participants can point to objects of the
VR representation, model objects by gesture or shape them. To describe these actions
one needs a set of annotation predicates (details are given in Bergmann et al. 2007 and
2008). These annotation predicates are called “functional” here. “Functional” stands in
opposition to single features which capture hand-shape, wrist position, angle of back
of hand etc. but which on their own do not have the power to depict and hence des-
ignate. An example of a gesture annotation is given in Fig. 4, describing the router’s
gesture in Fig. 3. The corpus contains ca. 5000 gestures. Roughly 400 gestures have
been investigated for establishing the typological grid detailed below.

3 Preliminary Observations, Expected Gain, Coverage of Gesture
Research, Focus of Paper

SAGA clearly demonstrates (Rieser et al. 2007) that there are recurrent patterns in one
individual‘s gesture behaviour in a chosen video film and these patterns generalize to
the gesture behaviour of other agents in other films. However, there is variation across
speakers as shown in the paper by Bergmann and Kopp (this volume): the variation ob-
served ranges from the frequency of using gestures observed with agents or preferences
for practices in gesture use to the extent of gestures, the latter meaning how much of
the McNeillan gesture space a gesturer habitually uses in gesturing; here the opposition
would be large vs small gestures, lap-oriented vs. torso-oriented ones, scale used etc.

The information of interest here is captured in the multi-modal annotation of the
data; examples are provided in sections five and six. The information of interest can be
factored out and assembled in types; the types can be represented as typed feature struc-
tures and coded in AVMs (examples of AVMs are given in Fig. 5.). This way we can
make use of AVM-technology (Carpenter 1992) to structure a really diverse domain. We
will see in a short while which kind of structures types are. There is no a priori decision
about the kind of structures that qualify as types. One has to find them out investigating
which information packages enter larger informational structures and can be used in
different gesture contexts. Feature bundles using a combination of hand-shape, palm,
back of hand or wrist are good candidates for a type as are feature bundles associated
with depicting gesture “Gestalts” such as lines, regions or three-dimensional entities.
Comparing pointing gestures, line gestures and “box” gestures we see that types can
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be ordered along dimensions and complexity (points have zero dimension, lines are
one-dimensional, signs for flat surfaces two-dimensional, gestures for containers three-
dimensional etc.). To clarify further: “line gestures” are lines drawn in gesture space
using the extended index finger; frequently these depict routes, directions or edges of
three-dimensional objects; “box gestures” are formed with both hands indicating a con-
tainer shaped like a box. Since there exists an ordering along a scale of complexity and
since there is a finite source for all gesturing, we may assume that an inheritance hierar-
chy can be established for all the gestures going into a typological grid and finally into
a full-fledged typology. Some types, the more basic ones, will pass their information
“further down” to other types. The more complex types will get their information from
different less complex ones higher up in the hierarchy. As a consequence, we will have
multiple branchings from the top and multiple branchings from the bottom, this gives
us a multiple inheritance hierarchy.

What will be the expected gain of heading towards a systematic gesture typology?
The types factored out will first of all substantiate the very notion of a gesture mor-
phology, which, for an appropriate use of the word ‘morphology’, presupposes stable,
context-independent forms. This is a methodological gain. If we find out that gestures
are built out of regular, stable parts, then we will learn something fundamental about
the compositionality property of gestures. Here the gain is both on the empirical and the
theoretical side. Finally, we can use the types isolated for gesture generation and gesture
understanding, since on the one hand, we can establish a finite set of gesture building
blocks as some sort of generating set triggering motor behaviour, on the other hand
we can associate conventionalised descriptions of partial ontology with these blocks,
whose INTERFACE with verbal meaning is conventionalised. Again, the gain is on the
side of application and theory here.

Looking at the range of gestures investigated, we see that some are fairly well known,
for example beats, emblems, pointing gestures and iconic gestures (McNeill, 1992, p.
76 for these types); however, there is a large under-researched area (double quotes in
the following indicate that the terminology, coming originally from formal semantics,
pragmatics and the theory of discourse, is used in a liberal sense)1: We certainly have
“quantificational” gestures which might perhaps qualify as iconic gestures. Some ges-
tures seem to operate on the propositional content in the role of “modifiers”. Further-
more, gestures can have pragmatic functions as is shown by gestural “denials”, others
may even express full “illocutionary acts”. A fairly difficult question is whether there
are gestures related to turn allocation and dialogue structure, however, self-selection
of next speaker or next speaker selection by current speaker can both be done by
demonstration. Finally, we have complex gestures produced by more than one agent
in successive turns. In sum, we see that there is evidence that gesture is not a mere
construction-related or even propositional phenomenon but can permeate all of the talk.
The topic of this paper is restricted to pointing and iconic gestures co-occurring with
Noun-phrases (NPs). Iconic gestures co-occurring with verb-phrases (VPs) and adver-
bial phrases (AdvPhs) were excluded, because these follow a different ontology, namely
one for states or events. So, we are concentrating on a more easy part here (cf. the
remark above about well-understood gestures).

1 Most of these are dealt with from a phenomenological perspective in Kendon (2004).
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4 Form and Meaning of Iconic Gestures

Since we are dealing with iconic gestures (IGs for short) here, especially with their
meaning and their interface potential, we set out with some simple hypotheses concern-
ing these. First, we start with a caveat: IGs are in no way similar to the entities they
somehow deal with. The similarity assumption belongs to the everlasting myths of re-
search in IGs since Peirce’s times (Houser and Kloesel 1992). Instead of resorting to
similarity, we assume that IGs carry information and moreover that the information is
tied up with depiction. Binding these two things together we say that IGs are structures
encoding meaning. This assumption does not in itself commit us to a particular stance
towards the type of meaning we have to use as will be made clear below. However, it
is further assumed that IGs can form “meaning coalitions”, they have the special prop-
erty of being able to interface with verbal meaning. This is due to various properties
of IGs the most important one being that they transport meaning in a way verbal ex-
pressions do as well. The interface point between IG meaning and verbal meaning is
the gesture stroke and perhaps the main accent of the NP tone group, i.e. the intonation
contour superimposed on syntactical material classified as NP2 (remember that we are
dealing only with NPs here). So, gestures are full triadic Peircian signs (Hartshorne
and Weiss 1965) exhibiting compositionality and interface potential, i.e. they can com-
bine with other gestural constructions yielding larger gestural units (cf. section 5) and
fuse with verbal meanings (cf. section 6.4). Especially the latter property implies that
gestures designate on the whole in a conventional way, i.e. on the meaning level they
do essentially not behave differently from words. Consequently, gestures come with
form-and-meaning properties. As we will see, semantics and pragmatics, especially the
perspective of the gesturer play a central role. The form is given by dynamically gen-
erated postures of hands, wrists etc. (see below). The existence of form-and-meaning
properties implies that IGs have a controlled variation of shape and controlled relation
to types of objects or situations. In this paper the focus will be on objects indicated. Let
us look at the form-meaning relation of IGs in more detail: form emerges from hand
postures and movements of hands/wrists. Single agents use one hand/wrist or two;
two agents cooperate in the production of gesture ensembles, so we get two-agent
composites.

Meaning is associated with rated structures by stipulation. It takes the form of (the
description of) a partial ontology. Let me explain. Gestures come in depictional frag-
ments. They do not exhaustively delineate objects such as bent lines, locations, regions,
circles, cylinders etc., besides that they are irregular and vague. So, gestures do not set
up clear geometrical forms as in geometry school books, they generate weird topolog-
ical structures: cones with hollows, instead of cylinders’ surfaces surfaces with dents
where none should be and so on. Clearly, this is due to the aspect that gestures are to-
kens, i.e. signs produced, but that’s not all. To see that, think for a moment about how
gestures differ from word tokens: in whichever bad state a word-token is in, if one still
can decode it one has something like a lexeme and hence a lexical definition for it. This
is not the case for gesture tokens. If they are in too bad a state of corruption, they can-
not produce a meaning interfacing with the verbal meaning. Stipulated gesture meaning

2 I owe this assumption (not tested as yet) to Andy Lücking.
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interacts with verbal meaning and context. If the work is all done and the interface de-
scribing the interaction of the verbal and the gestural meaning is set, there is always a
post festum way of evaluating the meaning attributed. It might not fit, it might not have
been inserted into the right position etc., roughly, it must behave like an argument to a
function in the mathematical sense.

So far, I did not say much about the notion of meaning I propose. Well, there are
various options for meaning reconstruction shown below and commented upon there-
after. In order to keep things simple, I will not deal with the question which theory
of meaning one should apply, extensional, intensional or structured, static or dynamic
meaning, DPL-, DRT- or SDRT-like and so on. These are questions to discuss if the
very principles and foundations are laid, which I set out to do here.

Perhaps the most straight-forward way to start with a theory of speech-gesture in-
teraction is to forget about gesture irregularities and to work with idealised gesture
shapes. This leads, for example, to considering a cone-gesture with erratic hollows as
a standard cylinder-shape. Proceeding in this way one has a clear idea about what the
cylinder shape depicts and hence the meaning to be attributed to the shape is also quite
clear. As a precondition for the interface of speech-meaning and gesture-meaning one
may assume that speech and gesture express the same type of meaning and that only
the way they render it on two channels is different. So one gets the same regular mean-
ing for both types of signs, say an extensional one3. Still keeping to the idealisation
assumption one might really doubt that gesture meaning and speech meaning operate
on the same level, since, for example, speech meaning might override gesture mean-
ing. Indeed, some data related to contradictory information (Goldin-Meadow 1997) for
speech and gesture in the SAGA Video Film 5 indicate that this might be the case. In
this case we may do the following: take the chosen regular meaning for speech and
a reconstruction relying on implicature for gesture. The latter amounts to using some
default inference reconstruction for gesture meaning. It might be achieved as follows:
The default inference (Reiter 1980), might be tied to a set of gesture features. It has
to be observed, however, that the resulting implicature is not Gricean (Grice 1967) any
more, since we deal with non-verbal information. Setting up a paradigm in this way has
also the consequence that we do not get a unified notion of inference (Karttunen and
Peters 1979). So much for the side of the idealisations in Fig. 1. The other main branch
of the tree in Fig. 1 takes into account that gesture shapes usually show irregularities in
various ways, they are “garbled”, accepting that one can’t idealise tout court. Since the
irregularity at stake amounts to fragmentary gestural forms one has to reside to partial-
ity and underspecification. Finally, if one still wants to do more, i.e. apply inferences
and provide an “indirect” semantics for the gesture information, one can for example
treat partiality via metonymy resolution (mostly pars pro toto) and underspecification
via resolution using relevant Gestalt principles. The approach to bind the information
together would presumably have to be abduction (Paul 1993) confronting us, however,
with massive non-monotonicity, since inferred information need not be stable.

The approach most faithful to the data is, of course, “garbled” and “indirect”. So
much is certain, the option chosen determines the interface constructions for speech and

3 This is not very realistic given the extreme context-dependence of gestures, but let us accept
that for the moment on didactic grounds.
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Options for Reconstruction of Ges-
ture Meaning in Relation to Speech

Idealised gesture
shapes

Direct

Sp & Gest:

Same type of
regular m.

Inferential

Sp: regular m.

Gest: Implica-
tures (default
inference)

“Garbled” gesture
shapes, respecting
tokens

Direct

Sp. regular m.

Gest: Partial
regular m. =
partial ontology

Inferential/indirect

Sp. regular m.

Gest: Metonomy,
e.g. part-whole
Gestalt principle

Fig. 1. Possible strategies for establishing an interface between verbal meaning and gestural
meaning

gesture: roughly, the farther to the right in the tree one moves, the more complicated
it gets. The point of view in the paper is the “garbled”-direct-partial-regular-meaning
path. The resulting meaning concept is called “partial ontology”, since we are mainly
dealing with partially specified objects due to the NPs.

5 A Typological Grid for “NP”-Gestures and How It Has Been
Extracted from the SAGA Video Film 5

As stated before, the typological grid established covers NPs and gestures co-occurring
with them, for example an utterance of the bridge overlapped by a cuboid gestured with
left hand and right hand extending from the middle stressing the horizontal axis of the
bridge. The main question is now ‘What can we take as parameters in order to get at
types’? Obviously, we need a means, instrument or source slot to start with, a plausible
option is to install agency as a root feature dominating the role features router and fol-
lower. Next we need the router’s and the follower’s left and right hands and both their
hands, all subsumed under handedness. Handedness materialises in the single features
of the hands. As single features we use all the annotation features from the chosen anno-
tation set laid down in the two manuals developed for SAGA (Bergmann, K. et al 2007
and 2008). These are HandShape, PalmDirection, BackofHandDirection, WristMove-
ment, PathofWristMovement, PositionInGestureSpace etc. Bundles of features form re-
current feature clusters. Up to now we dealt with the fine grain of ontology, now we
move on to more every-day objects. Feature clusters yield large classes of objects like
curved, vertical, horizontal etc. entities. These are used to build up shapes of differ-
ent dimensions4: we have abstract objects of 0 dimension to which belong McNeill’s

4 Here geometric names are used mnemonically. (No Platonic shapes exist, cf. the comments
on “garbled” above). Partiality and underspecification will become clear ultimately from the
specification of the partial ontology for the types.
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Agency

Handedness

Two-Handedness

Features

FeatureClusters

0-DimensionalEntities

1-DimensionalEntities:
Lines

Composite 1-
DimensionalEntities

2-DimensionalEntities:
2-DimensionalShapes

2-DimensionalEntities:
Segments

2-
DimensionalComposites

3-DimensionalEntities

3-DimensionalEntities:
Segments

3-
DimensionalComposites

MixedComposites

SequencesofComposites

Mother Category Instantiating Categories

Agency Router, Follower
Handedness LeftHand, RightHand, Two-

Handedness
LeftHand Features
RightHand Features
TwoHandedness TWH-Movement, TWH-

Configuration
Features Feature1 . . . Featuren
Feature1 . . . Featuren Feature-Clusters
Feature-Clusters Feature-Cluster1 . . . Feature-

Clustern
Feature-Clusters, TWH-M, TWH-C 0-Dimensional Entities
Feature-Clusters, TWH-M, TWH-C Lines: Straight Lines, Bent Lines
Straight Lines, Bent Lines, TWH-M,
TWH-C

Composite Lines

Feature-Clusters, TWH-M, TWH-C 2-Dimensional Shapes
2-Dimensional Shapes, TWH-M,
TWH-C

Segments&Wholes: Circles, Rectan-
gles, Regions, Locations

2-Dimensional Composites, TWH-M,
TWH-C

Circle ⊕ Region, . . .

Feature-Clusters, TWH-M, TWH-C 3-Dimensional Entities
3-Dimensional Entities, TWH-M,
TWH-C

Segments&Wholes: Cylindroids,
Frustra, Prisms, Spheroids

3-Dimensional Composites, TWH-M,
TWH-C

2 Prisms . . .

0-Dimensional Entities, Lines, 2-
Dimensional Shapes, 2-Dimensional
Composites, 3-Dimensional Entities,
3-Dimensional Composites, TWH-M,
TWH-C

Mixed Compositesrouter, Mixed
Compositesfollower, Mixed
Compositesrouter&follower

Sequences of Composites, TWH-M,
TWH-C

X +Y +Z + . . .

Fig. 2. Left-hand side: Simplified hierarchy of features and shapes. Right-hand side: the multiple
inheritance hierarchy in tabular form.

abstract deixis and the demonstration of discourse referents. Next we have one dimen-
sional things: lines straight or bent. Among the twodimensional things we encounter
locations, regions, rectangles, circles etc. Then the three dimensional sorts come up:
cuboids, cylinders, frustra, prisms, spheres and so on. Among the most interesting
objects are composites of shapes of various sorts. Abstract deixis can go with a two-
dimensional thing, a two-dimensional area may be singled out in a larger region, a line
may touch a shpere. A prism may be set up on a flat ground. An example involving
two parallel prisms will be given below. Finally, we have sequences of shapes. These
can come in all sorts of variations. A line may extend up to a prism, a curved line may
go around a circle, one three-dimensional object may be set on the top of another one
and so on. In Fig. 2 you see the hierarchy (left) and the inheritance relations of the
typological grid in tabular form (right), both simplified.

Anticipating the two towers example below, which involves two gestured partial
prisms, we comment on feature inheritance for the 2 Prisms type (right column, third
segment from the bottom). The 2 Prisms type inherits information from the type of
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The verbal expression overlapping with the gesture is

. . . und hat zwei Türme/and has two towers. One can see

that the two tower bases are indicated by the loose C

shapes produced by the right and the left hand, respec-

tively. The wrist movements are upwards, stressing the

vertical dimensions of the two objects signed. The ges-

ture and the verbal expression are reasonably matched.

Fig. 3. The router gesturing two prism fragments to the follower

3-Dimensional Composites and two-handed features. Since two prisms taken collec-
tively are made up of two single prisms they depend on 3-Dimensional single Entities,
again the features of both hands may play a role here. 3-Dimensional Entities are made
up of Feature-Clusters, again, both hands can be involved. Feature-Clusters are bun-
dles of single Features. Features belong to the RightHand, the LeftHand or both hands.
Hands are either the hands of the Router or the Follower, both of whom are agents.

6 The Two-Towers Example

6.1 Datum and Gesture-Annotation

I now want to explain the role of the typological grid in setting up a speech-gesture
interface. First I present the router’s turn and a still (Fig. 3) with the situation of the
router gesturing two partial prisms to the follower.

Router: . . . und
. . . and

[subject-ellipsis]
[subject-ellipsis]

hat
has

zwei
two

Türme.
towers.

Observe that we have an ellipsis here. The term going into the ellipsis slot is the church.
Hence the proposition expressed by the locution is The church has two towers.

Now let us have a look at the annotation of the left and the right hand carried
out in ELAN depending on the two manuals (Bergmann et al. 2007 and 2008). Here
comes a detailed comment on the left column in Fig. 4 line for line: The annotation
prefix is R.G.Left for R.outer, G.esture, Left, respectively. We have an iconic Phrase.
What semantically matters is the stroke Phase (the gesture’s most articulated form)
being the carrier of the semantic and pragmatic information. The hand-shape is loose
C. The direction of palm is away from body and towards right. The direction of the
back of the hand is up. The path described by the wrist is a line. The movement of
the wrist is up, down, up. The extent is medium. The functional predicate character-
izing the gestures is shaping, intuitively, shaping the two towers of the church. The
perspective is the router’s which can be exploited in the pragmatic interpretation (cf.
the discussion in section 6.5). The right hand is characterised by corresponding annota-
tion predicates, starting with R.G.Right for R.outer, G.esture, R.ight, respectively. What
matters are the complementary properties of the palms and the two-handed config-
urations. The two hands together express the “mirror”-predicate Mirror-sagittal. In
addition, the annotation contains the wording and the time span used up in gesturing.

Next we show how gesture types are extracted from the annotation.
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R.G.Left.Phrase iconic R.G.Left.Practice shaping
R.G.Left.Phase stroke R.G.Left.HandShapeShape loose C
R.G.Left.PalmDirection PAB/PTR R.G.Left.BackOfHandDirection BUP
R.G.Left.PathOfWristLocation LINE R.G.Left.WristLocMoveDirect MU>MD>MU
R.G.Left.Extent MEDIUM
R.G.Left.Perspective speaker

R.Two-handed.configuration BHA R.Move.relative.to.other.Hand Mirror-sagittal

Transcription und hat zwei Türme
TC 0:04:47.00 - 00:04:40.220

Fig. 4. Annotation for the example in Fig. 3 comprising the router’s left hand positions

6.2 Gesture Typology, AVMs

The potential types (remember that we are establishing a hypothesis) are obtained col-
lecting the non-0 valued annotation predicates and their values from the annotation
grid. We get three gesture types here, two One-Handed-Prism-Segments and one Two-
Handed-2-Prism-Segment generated by unification of the two single types plus the in-
formation coming from both hands. The hypothesis is motivated by the idea that the
hand-postures form a kind of Gestalt to be interpreted and that in the end the Gestalt
will be recurring in the datum chosen, in the SAGA corpus and beyond. Indeed, the
intuition connected with these shapes is that they form prisms or cylinders, something
in between a lengthier box and a tube.

G318
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S-OH-Prism-Segment
HandShape loose C
BackofHand BUP
PalmDirection PAB/PTR
PathofWrist LINE
WristLocation MU>MD>MU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G319
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S-OH-Prism-Segment
HandShape loose C
BackofHand BUP
PalmDirection PAB/PTL
PathofWrist LINE
WristLocation MU>MD>MU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G320
⎡
⎢⎢⎢⎣

S-TWH-2-Prism-Segments
G318 G319

Two-handedConfiguration BHA Movement.relative.to.other.Hand mirror-sagittal

⎤
⎥⎥⎥⎦

Fig. 5. Two single types and one composite type

6.3 Description of Partial Ontology and Position of Type Used in Typological
Grid

In section 4 I argued that IGs have meaning and that they interface with verbal
meaning. How do we get at the meaning of words? Easy, we look up the Oxford
English Dictionary (OED). But, how do we get at the meaning of IGs? The OED will
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O267
⎡
⎢⎣HandShape-looseC base(bl,pl)

WristLocationMovement height(hl,pl)
Direction-MU > MD > MU ∧ hl > bl

⎤
⎥⎦

O268
⎡
⎢⎣HandShape-looseC base(br,pr)

WristLocationMovement height(hr,pr)
Direction-MU > MD > MU ∧ hr > br

⎤
⎥⎦

O269
⎡
⎢⎢⎢⎣

O267 O268

TwoHandedConfiguration-BHA distance(d,pl,pr)
Movement.relative.to.other. parallel(pl,pr)
Hand-mirror-sagittal

⎤
⎥⎥⎥⎦

Fig. 6. Description of partial ontology

not tell us. In principle
we could rate and an-
notate as for the gesture
shapes. However, this is
far more complicated and
would mean a tremendous
lot of annotation work.
Therefore, at the moment
one has to resort to stip-
ulation. What do we stip-
ulate? We associate with
HandShape-looseC the in-
formation of the base of the
prism-segment base(bl, pl),
read bl is the base of the
left prism-segment pl . We map the WristLocationMovementDirection- MU>MD>MU
onto the height hl of the prism-segment and fix at the same time that the height extends
the base, which is a short-cut for a more complex logical formula. So we have the in-
formation that the gesture depicts or means something which has a base and is high.
The same is done for the gesture type coming from the right hand. What do we get in
the complex type? First of all, two based objects that are high, in addition, the informa-
tion that there is a distance d (TwoHandedConfiguration-BHA) between the two prism-
segments and that they are parallel (Movement.relative.to.otherHand-mirror-sagittal).
Where does the underspecification come from? It is for example tied up with the base,
since no form is given for it; it might be triangular, circular and so on. In principle
any two-dimensional shape would do. It is not expressed either which object the two
prisms are related to or are part of. This underspecification is, however, resolved by the
proposition expressed which says that The church has two towers.

As far as I can see, the roofs of the towers are in no way indicated by gestures.
Whether the description of the partial ontology should be richer is a matter of dispute,
some possible extensions are discussed in sect. 6.5.

6.4 Interface of Verbal and Gestural Meaning

Why did we develop annotation, gesture types and descriptions of partial ontology in
the first place? The answer is, in order to build an interface where verbal meaning and
gestural meaning meet. How this is accomplished is the topic of the present section.
The interface is presented in Fig. 7.

We already discussed the gesture part of Fig. 7. It proceeds from annotation up to the
description of the partial ontology. The left side is still to be explained. The grammatical
framework used is LTAG (lexicalised tree adjoining grammar, Abeillé et al. Eds., 2000).
For the verbal part under discussion, two towers, we need two LTAG-projections, one
for the quantifier two and the other for the noun tower as well as a substitution rule for
embedding the noun in the quantifier projection. This is simple.
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How do we know about the meaning of terminals like tower? Let us assume that we
can look up the OED in order to get the information about tower we are interested in.
The OED says:

(2) tower: = A tall narrow building or structure, usu. of square, circular, or rectangular
section, either standing alone or forming part of a castle, church etc.

Fig. 7. The speech-gesture interface

Remember that
the proposition
expressed by the
verbal contribution
of the router is The
church has two tow-
ers. In other words,
we have something
like ‘There are two
towers which are
part of the church’.
This means that
we can eliminate
non-relevant infor-
mation from our
lexical entry by
disjunctive syllo-
gism. I do not show
how that is done in
detail, it is fairly
trivial anyway. Let
us accept that building is also out such that the relevant remaining part of the OED
entry is

(3) tower: = A tall narrow structure, usu. of square, circular, or rectangular section,
forming part of a church.

Taking (3) as a sort of explicit definition, we can substitute the definiens for tower.
We also do not carry out that here. We are now in the second box from the top. The
semantics which we can assume at this stage is

(4) ∃x∃z.tower(x)∧ tower(z)

Next we come to the interface box1 which demands that we unify verbal and gestural
meaning. In order to do so, we have to open up the closed formula and extend the param-
eters in it. Then we update the opened formula with the partial ontology information.
Alignment of variables is done for us by λ -conversion

(5) λ R(∃x∃z.tower(x) ∧ tower(z) ∧ R(x)(z)))(λ plλ pr.parallel(pl, pr) ∧
distance(d, pl, pr)).

In the end we arrive at the formula for the multi-modal meaning which is
(∃x∃z.tower(x)∧ tower(z)∧ parallel(x,z)∧distance(d,x,z)). We do not show the role
of inference and simplification here.
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6.5 Discussion of the Two-Towers Example

The remarkable features shown by the example are: In the multi-modal meaning the
restriction of the quantifier two has been changed if we compare it to the uni-modal ver-
bal expression: from two towers we come to two parallel towers standing at a distance.
Hence, multi-modality gives us richer information than verbal meaning: Any model
which satisfies the multi-modal quantifier phrase will also satisfy the verbal one but not
vice versa. In other respects, however, we do not get more: gestural information is not
able to resolve the underspecification of the lexical information of tower taken from
the OED; the multi-modal meaning of tower still contains the disjunction of square,
circular or rectangular section. This is essentially due to the loose C shape which only
provides partial ontology information for bases.

The information contained in the example’s description of the partial ontology might
not fully do justice to our intuitions. I will briefly comment on four pertinent issues,
(a) the left and the right tower, (b) distance and position of towers, (c) the models
determined by the multi-modal description, and on (d) Is there a quantificational gesture
indicated by the router?

(a) The left and the right tower. The left-right-information is present in the gesture but
not represented in (5). Essentially, it would presuppose integration of the router’s
perspective into (5).

(b) Distance and position of towers. This information is also present in the gesture.
Distance is indicated by hands and wrists. The hands also indicate that the towers
are situated on a horizontal line running orthogonally to the router’s position, infor-
mation which is missing in (5) as well. (a) and (b) show that the partial ontology is
essentially speaker-dependent.

(c) The models determined by the multi-modal description: This is one of the most
intriguing questions for multi-modal meanings like (5). People experienced in the
use of model theory will readily have observed that (5) is satisfied by models which
intuitively won’t fit the stimulus or our world knowledge. For example, according
to (5), the distance between the two towers might be minimal or too large. This
shows that the models need to pass the “filter” of world-knowledge giving us a
preference order wrt models containing churches with two towers.

(d) Is there a quantifier gesture indicated by the router? This is a controversial point
among the raters, related to the interpretation of the down-up-down movement
of the router’s arms. If we assume that there is, we would have compositionality
between a quantifier-gesture and an N-Bar-gesture. This would have to be recon-
structed in two steps: first the quantifier gesture would have to be combined with
the quantifier two and the towers-gesture would have to be aligned with towers.
Finally, as the second step, the whole multi-modal quantifier gesture would have to
be formed by compositionality. We would need quite a lot of apparatus to get there
but the solution is straightforward.

7 What Remains to Be Done

I briefly describe here some ongoing work. Given that the typological grid shown in
Fig. 4 has been extracted from one SAGA video-film, we have to test it with respect
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to other MM dialogues in the corpus. Then statistical investigation will be employed
to yield a full-fledged typology for SAGA, essentially providing us with information
about which clusters of gestural features are recurrent in the corpus. The typological
grid described above has been designed for NPs. Hence, additional typological grids
must be developed for dynamic iconic gestures co-occurring with VPs, iconic space and
movement in space going together with AdvPhs. This having been accomplished, one
has to unify the typologies and the result can be used for establishing MM propositions
(i.e. propositions arising from verbal and gestural content) by compositionality.

Acknowledgements

Work on this Paper was supported by the German Research Foundation, CRC 673,
‘Alignment in Communication’, Bielefeld University. Thanks go to my fellow SAGA
corpus annotators, Kirsten Bergmann, Oliver Damm, Andy Lücking, Florian Hahn, and
to Stefan Kopp and Ipke Wachsmuth for general support. Special thanks go to my ‘co-
typologist’ Florian Hahn and to two anonymous reviewers who came up with many
suggestions for how to improve the original paper.

References
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Abstract. This paper examines the relationship between gestures' function and 
form in design collaboration. It adopts a cognitive design research viewpoint. 
The analysis is restricted to gesticulations and emblems. The data analysed 
come from an empirical study conducted on an architectural design meeting. 
Based on a previous analysis of the data, guided by our model of design  
as the construction of representations, we distinguish representational and 
organisational functions. The results of the present analysis are that, even if 
form-function association tendencies exist, gestures with a particular function 
may take various forms, and particular gestural movements as regards form can 
fulfil different functions. Reconsidering these results and other research on 
gesture, we formulate the assumption that, if formal characteristics do not allow 
differentiating functional gestures in collaboration, context-dependent, semantic 
characteristics may be more appropriate. We also envision the possibility that 
closer inspection of the data reveal tendencies of another nature. 

Keywords: Gestural interaction, Cognitive design research, Collaborative 
design, Collaboration, Architectural design, Gesticulations, Emblems. 

1   Introduction 

Dependent on researchers’ aims, gestures have been analysed from several 
perspectives: for example, semiotic analysis [1], language development [2], human-
computer interaction [3], gesture recognition and generation in interactive dialogue 
systems [4], and collaborative task-completion tools [5]. 

Working in the domain of cognitive design research [6], we are interested by the 
role of gesture in design collaboration. The aim of our research is double. Its main 
objective is an epistemic socio-cognitive psychology one—to understand the use of 
the different interaction modalities in professional collaboration. A long-term 
cognitive-ergonomics purpose is to contribute to the specification of remote 
collaborative-design environments, especially to facilitate the use of various semiotic 
modalities (multi-modal interaction) by designers working on remote locations. 

In the study presented here, we examine if, in a collaborative design setting, 
gestures with a particular function have a particular form and/or if gestures with a 
particular form have a particular function. This question is relevant for several 
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reasons. Data on the function-form relationship may present arguments for the debate 
concerning the idiosyncratic nature of gestures (cf. our Discussion and Conclusion). 
Further, such data may contribute to the specification of collaborative-design 
systems—or other multimodal interactive systems—in providing elements for the 
"translation" of functional, communicative, or semantic specifications into gestural 
movements [cf., for example, 7, but cf. also our Discussion and Conclusion]. 

Before introducing our analysis of the relationship between gestures' function and 
form, we shortly present our viewpoint on design and review previous research on 
gestural interaction in design collaboration. In the main section, we introduce the 
empirical study that provided the data that we use for our present analysis [8]. In the 
final section, we discuss further perspectives of this work. 

2   Gestures in Design Collaboration 

In this section, we introduce the viewpoint from which we analyse design and we 
review previous research on gestural interaction in design collaboration. 

2.1   A Cognitive Perspective on Design 

Design is an important, all-pervading domain of human activity. Not only are new 
sport cars and mobile phones the object of design, but so too are artefacts as diverse 
as traffic signals [9], route plans [10, 11], software [12], and, of course, buildings of 
all kinds [13].  

This paper presents a study on architectural design, focusing on the types of socio-
cognitive processes and structures implemented by designers collaborating on 
architectural projects.  

In accordance with our theoretical framework, we consider designing as the 
construction of representations [6]. "Globally characterised, designing consists in 
specifying an artefact, given requirements that indicate—generally neither explicitly, 
nor completely—one or more functions to be fulfilled, and needs and objectives to be 
satisfied by the artefact, under certain conditions expressed by constraints. At a 
cognitive level, this specification activity consists in developing (generating, 
transforming, and evaluating) representations of the artefact until they are so 
concrete, detailed, and precise that the resulting representation—the specifications of 
the artefact—specify explicitly and completely the implementation of the artefact." 
[14, p. 117] Designing does not consist in implementing the specifications: it is not 
the fabrication of the artefact product, that is, in case of architectural design, the 
construction of the building. The representations that come out of architectural design 
are drawings and models of this artefact product. These representations are also 
artefacts, that is, entities created by people, "man-made as opposed to natural" [15]. 

"Cognitive design research" is the qualification for studies that examine design 
focusing on its cognitive aspects [6, 14]. Researchers from the engineering domain 
often use the term "design thinking" [16]. 

Design always involves several people—at least two, a client and a designer, or a 
designer and a user. Yet, given that design projects generally require the integration of 
information and knowledge from a variety of domains, they usually involve multiple 
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competencies, and thus collaboration between people from different areas of 
expertise, working together in meetings. We consider as "designers" all those who, in 
such meetings, contribute to the specification of the artefact—even if their payslip 
may qualify them as, for example, "draftsman" or "programmer." 

2.2   Gestural Interaction in Design Collaboration: Previous Studies 

Compared with verbal and graphical interaction, gestural expression has barely been 
studied in collaborative design. In an analysis of the rare empirical studies on this use 
of gesture [17-19], we highlighted two functions [8]. (1) Gesture offers specific 
possibilities to render spatial (especially 3D) and motion-related qualities of entities, 
and to embody action sequences through their mimicked simulation. (2) Gesture plays 
an important organisational role. 

In our previous research on gestures, we have developed a description language for 
graphico-gestural design activities [20]. Using this language to analyse the interaction 
in an architectural meeting, we have interpreted co-designers' graphico-gestural 
actions according to their functional roles in the project and in the meeting [21]. We 
also examined different forms of multimodal articulation between graphico-gestural 
and verbal modalities in parallel interactions between the designers, revealing 
alignment and disalignment between the designers regarding the focus of their 
activities [22, 23]. 

3   Analysing Function and Form of Gesture in a Design Meeting 

This section presents the data we analysed to examine the function-form question, the 
functions of gestures we identified in a previous study, and our analysis of the 
relationship between function and form of gestures used in design collaboration. 

3.1   Data: An Architectural Design Meeting 

The data analysed come from the dataset for DTRS7 [The 7th Design Thinking 
Research Symposium, 24; DTRS7 dataset, P. Lloyd, J. McDonnell, F. Reid and R. 
Luck, 2007. These data are not publicly available for general distribution]. These data 
were provided to 24 researchers/research groups from different disciplines in order to 
confront, through different analyses of a same dataset, a representative variety of 
today's perspectives on design thinking. The dataset was made up of videos regarding 
naturally occurring design activity in the authentic setting of design practice. These 
were face-to-face, synchronous professional design meetings taking place in two 
different design firms (architecture and product design). We analysed the first 
architectural meeting, A1. 

The A1 meeting took place in the pre-planning application stage of a project to 
design a new municipal crematorium with chapel, to be set in a landscaped site where 
existed already another crematorium. Data supplied were a video; a transcript of the 
audible part; plans at different scales, elevations, sketches, and orthographic 
projections referred to during the meeting; a 30-min video of an informal interview 
with the principal architect describing the background to the project. The video 
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Fig. 1. Three-view video of the A1 architectural meeting (from the DTRS7 dataset, 2007,  
P. Lloyd, J. McDonnell, F. Reid, and R. Luck) 

provided three views: top-view, medium-view, long-view (see Figure 1). The meeting 
took 2h 17min. The transcript had 2,342 transcript lines, corresponding to 987 speaker 
turns. 

The meeting involved three participants: Adam, the architect in charge of the 
project, and two clients, Anna, registrar of the cemetery, and Charles, an officer from 
local government representing the municipality’s interests. A DTRS7 organiser 
(sitting at the end of the table) observed A1. Even if different roles can be 
distinguished among the three participants, we qualify them all as "designers," given 
our view of design as a cognitive activity, not necessarily the activity of somebody 
whose profession is "designer." 

In our DTRS7 study [8], we analysed the entire meeting. However, we did not 
describe (as in the examples in Tables 1 and 2) all the gestures: our aim in this first 
study was to identify as much functions as possible. We therefore viewed the A1 
video numerous times: during the first series of viewings, we noted and described an 
episode when we came across a gesture with a function not yet identified in our 
current analysis; afterwards, we went again through the video many times, searching 
for other instances of these functions. 

We restricted our analysis to (1) gesticulations, that is, spontaneous, speech-
accompanying gestures, and (2) emblems, quasi-linguistic, lexicalised gestures, with 
conventional forms and meanings, and which are not necessarily speech-
accompanying [25, 26]. The qualification "gesture" is used for both in this paper. 

In the DTRS7 study, we identified some 130 functional episodes (where an 
episode contains one or more gestures, see the two examples provided below in 
Tables 1 and 2, each one qualified "one episode"). We distinguished five main 
families of gestures, two of which each with two sub-families, two of which each 
again with their own two or three sub-families: representation (designation: 
identification, qualification, and comparison; specification), organisation (discourse 
and interaction management: management of one's own discourse, management of 
co-participants' interaction; functional design-action management), focalisation, 
modulation, and disambiguation. We did not retain all these distinctions for the 
analysis presented in this paper (see below). 
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Both in the DTRS7 and in the present analysis, we were the only judge for the 
identification of gestures, their function, and their form. In the identification of 
functions, we were guided by our model of design [6] (see below).  

3.2   Functions of Gestures Used in Design Collaboration 

We suppose that the activities that are performed or supported by gestures in design 
meetings fulfil one or more of the functions that cognitive design research has shown 
design activities to have [6]: (1) to contribute to the design per se, or (2) to have an 
organisational function.  

The first family of activities—"representational gestures"—contributes to the 
construction of the representations that are to result in the specifications of the 
artefact. We indeed identified gestures that play a role in the generation, modification, 
or evaluation of such representations. Besides these representational specification 
gestures, we identified a second type of representational gestures, that is, 
representational designation gestures. Indeed, in addition to their classical function, 
that is, to point out an entity to one's co-participants, we observed that designational 
gestures can also have a distinctive design function: a designer can design an entity 
through its designation [8]. As regards data analysis, we wish to stress that it is 
difficult for an external observer (and for a designer's co-participants in a meeting) to 
distinguish between entities that "existed" already before their being designated and 
entities that are being designed through their designation. Designing is a continuous 
process: design working meetings generally are not events where a definitely finished 
project is being reported (and once the meeting over, design generally continues) [27] 
[cf. also 28's distinction between gestures that depict—iconic gestures—and gestures 
that conceive an entity]. 

Gestures also served organisational functions: the gestures of this second family—
"organisational gestures"—contributed to the management of interaction [Bavelas' 
"interactive" gestures, 29] and to the organisation of functional design actions. 

Relative to the DTRS7 study, we brought back to two main families (each with two 
subfamilies) the five families distinguished in our first analysis [8]. Identification, 
qualification, and comparison are no longer differentiated as separate functions. 
Management of one's own discourse and management of co-participants' interaction 
are both considered management of interaction now. Focalising, modulating, and 
disambiguating gestures are considered all three organisational now. 

One may notice that the representational gestures in this study refer to a particular 
kind of representations. "Representational gestures" as identified by other authors [30, 
31] receive this name because they "[represent] attributes, actions, or relationships of 
objects or characters" [30, p. 377], they "[represent] an aspect of the content  
of an utterance" [31, p. 160]. Here, the criterion for qualifying a gesture as 
"representational" is its contribution to the construction of a cognitive artefact, that is, 
a representation that is to result in the entity to be designed. 

We chose the label "designational gestures" because it allows covering in an 
elegant way both the classical "deictics" or "pointing gestures" and the gestures that 
design through their designation. 
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3.3   The Relationship between Function and Form of Gesture in Design 
Collaboration 

Do gestures with a particular function have a particular form, and do gestures with a 
particular form fulfil a particular function? 

Data Analysed. To examine this question, we reanalysed the episodes of A1 that the 
DTRS7 study allowed identifying the functions of gesture in design collaboration, 
associating this time the form of the gestures to their function. 

Specifying Form. Form can be specified and analysed at various levels (as function 
can be). We have to establish the relevant level(s). Most formal characterisations use 
rather low-level physical kinetic features, such as hand shape, palm orientation, 
movement, and location in gesture space. Our cognitive-ergonomics aim to contribute 
to the specification of collaborative-design environments is not yet formulated in 
terms of well-circumscribed specifications. We therefore adopt a medium or even 
high-level characterisation, using McNeill’s [30] form-related subcategories for 
gesticulation: pointing, iconics/metaphorics [32], and beats. Rather than covering 
gestures with one particular form, these categories refer to families of forms: pointing 
gestures all share a movement towards the designatum [31]; iconics/metaphorics 
(re)present an object through the physical display of one or more of its characteristics; 
beats take the form of the hand beating time. If such broad categories allow for an 
association between gestures' function and form, a next step could be to examine the 
function-form relationship in terms of more low-level formal features (but cf. our 
Discussion and Conclusion section). 

Results. We did not find a one-to-one function-form relationship. 

Gestures with a Particular Function do not Systematically have a Particular Form. 
Representation was of course often performed using iconic/metaphoric gestures and 
emblems. However, it could also be through a pointing gesture. The episode presented 
in Table 1 gives an example of a pointing gesture, rather than an iconic/metaphoric 
gesture, that represents an entity. Through their designation, three possible itineraries 
are brought into life—that is, designed. Consecutively pointing with a finger three 
different routes on the plan, Adam indeed designs three possible itineraries for 
entering the cremator area. We will come back upon this analysis in the Discussion 
and Conclusion section. 

Table 1. Designing three itineraries using pointing gestures  
The first description line indicates, between square brackets, the identity of the gesturer and 

the duration of the gesture by reference to that of the corresponding portion of the verbal 
protocol 

The second line presents a brief description of the gestural movement 

34 Adam obviously there are numerous ways of getting into this accommodation  
35  that’s route number one the second route is round the end of the pondd

[g_Ad..........................................................…………………………....  
tracing with a finger consecutively three lines over the plan 

36  and the third route is through the chapel so there’s numerous ways of        
......................................……………….] 
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Table 2. Modulating discourse components using various forms of gesture  
lchoag = long continuous hands opening, advancing gestures  
This table corresponds to Extract 6 from [8] 

34 Anna yes she’s been to have a look at our existing we’re mentioned in the 
                                                                                 [g_Anna.……………...    
                                                                                  points to the book 

35  book quite a bit with the existing chapel she was quite impressed  
…....] 

36  because we’ve also got quite a lot of photographs and other things and  
[g_Anna.………………………….] 
long continuous hands opening, advancing gestures 

37  plans like the forward plan of extending the chapel originally the original 
                          [g_Anna.…………………………….……..] 
                          long continuous hands opening, advancing gestures 

38  idea so that was quite forward thinking in nineteen eighty or seventy  
39  whenever seventy eight when they decided on that + so I’ve sent off for  
40  that but you try and get them to raise a SAP order for it and you get how  

       [g_Anna.…………………………….…..…..]                [g_Anna….… 
       lchoag                                                                               sequence of 

41  often will we need the SPIRE BOOKS COMPANY I said well we’ll never use 
………………………………………………]           [g_Anna………….]  
detached short beats                                                   lchoag  

42  them again probably why do you need to do that oh for god’s sake 
                                                                             [g_Anna.……….] 
                                                                             lchoag  

43  so I just went out and bought it and the one above as well a history 
                                                  [g_Anna.…………….…..] 
                                                   lchoag 

44  of cremations that’s what we have at home on the bookshelf 
45  cheerful reading like you when you go on holiday with your part- your 

                                                                                                        [g_An 
                                                                                                        lchoag  

46  husband and wife + you see a sign for crematorium straight away  
na……………...]                                                        [g_Anna.…..] 
                                                                                    enacting how one  

47  ignoring them whether you’re abroad or in this country the 
                       [g_Anna.…………………………………] 
holds a car steering wheel 
                        enacting how one suddenly changes direction 

48  first thing you do straight away oh not another cemetery they go oh dear  

There were nevertheless tendencies. Specification (the main representational 
design function) mostly occurred using iconic/metaphoric gestures. Designation in its 
classical signalling function (indicating something that already exists) was chiefly 
performed through pointing. By definition, designation in its design function was 
performed through pointing. 

Gestures with a Particular Form do not Systematically Fulfil a Particular Function. 
We mentioned some tendencies above. Nevertheless, pointing had other uses than its 
signalling designation function; iconic/metaphoric gestures did not always specify 
design entities (cf. the example in Table 2). Pointing was also used to design  
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(as illustrated in Table 1), to manage the interaction or design actions [cf. examples in 
8], or to modulate components in one's discourse, another organisational function  
(cf. the example in Table 2). 

Table 2 presents an episode in which Anna uses a variety of gestural movements to 
modulate elements of her discourse. It shows how Anna presents a book in which the 
author ("she" in line 34) mentions the already existing crematorium. When Anna 
wanted to order the book, she encountered many administrative problems, so she 
bought it herself. Telling this, she both highlights content elements and expresses 
their emotional loading, using different types of gestures. 

• Pointing to the book, Anna uses this deictic gesture to highlight that "[they]’re 
mentioned in the book." 

• Through long continuous hands opening, advancing gestures, she metaphorically 
emphasises discourse components. 

• She also uses a sequence of detached short beats with this emphasis function (the 
"classic" use of beats).  

• Enacting how a person holds a car steering wheel and then suddenly changes 
direction, Anna uses these iconic/metaphoric gestures to highlight her idea that 
people, normally, do not wish to visit cemeteries during their holidays. 

The Multifaceted Nature of Gesture. The results presented in the two previous sub-
sections showed the multifaceted nature of gesture. Another example of this quality of 
gesture was that—as we already saw in these sub-sections—neither functional nor 
form categories were exclusive: a particular gesture could have various functions or 
combine various form-related characteristics. In A1, certain gestures used to specify 
could also serve focalisation, modulation, or disambiguation, that is, have an 
organisational function. The same observation was made for certain organisational 
gestures, which fulfilled other functions as well in a number of situations. As also 
mentioned already, gestures used to designate could have in addition an 
organisational function. 

4   Discussion and Conclusion 

We wish to highlight several outcomes with respect to the question examined in this 
paper and envision extensions of our study. 

Our analysis did not allow attributing particular forms to particular functions—and 
v.v. A gesture with a particular function could take various forms, and a particular 
gestural movement as regards form could fulfil different functions. There were 
tendencies—designation being mostly performed through pointing gestures, and 
specification mainly through iconic/metaphoric gestures—but, as we mentioned, the 
distinctions between McNeill’s [30] form-related categories are very global: a 
characterisation of the gestures in more low-level formal characteristics might not 
have shown such tendencies (but we are not going to examine this possibility,  
cf. below).  

Another example of the multifaceted nature of gestures observed in the study was 
that functional and form categories were not exclusive. On the one hand, a particular 
gesture could fulfil different functions; on the other hand, one gesture could combine 
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different form-related characteristics. Kendon [31] has also observed this in a detailed 
analysis of pointing (which he analyses as a function): pointing can be combined with 
other functions, for example, with a representational one (pp. 202-205). Nevertheless, 
Kendon notes as well that there are gestures that are "specialised" for pointing. Other 
authors have analysed as iconics, gestures that superficially may seem pointers (cf. 
our example in Table 1), observed that iconic gestures may be used as pointers [33], 
or shown that iconicity is not restricted to "iconic" gestures [34]. Doing so, they 
privilege other than formal features: they favour semantic or semiotic relations 
between the referent and its gestural expression. 

If the formal characteristics we adopted do not allow differentiating functional 
gestures in collaboration, our next concern could be to find other features—formal or 
not—that allow such differentiation. Given our results—and, even more, on the basis 
of observations by other authors in the domain of gesture studies [35, 36]—we think 
that, rather than more low-level formal features, these will be context-dependent, 
semantic characteristics. 

More tendencies than those identified here might exist—but especially tendencies 
of another than a formal nature seem to us more relevant at present. Many studies 
have shown indeed that formal features of gestural movements are not enough—and 
even not the most relevant attributes—to characterise gestures [7, 35, 36].  

"Inter-speaker systematics" [35] has been searched for—and found—in several 
directions. "Representation techniques" [31] and "modes of representation" [34] are 
two related ones. Analysing iconicity (cf. above), Müller [34] identifies four different 
modes of representation that are used to "construct gestural meaning" (p. 321). In his 
detailed analysis of pointing gestures, Kendon [31] concludes that the specific form of 
these gestures "might vary systematically in relation to semantic distinctions of 
various sorts…. The form of the pointing gesture is not a matter of idiosyncratic 
choice or variation unrelated to the other things the speaker is doing." (p. 223) The 
author identifies seven different hand shape and hand shape/forearm orientation 
configurations. 

Referring to Kendon [31], Bergmann and Kopp [35] analysed the use of iconic 
gestures in spatial descriptions. The authors examined the differential use of five 
representation techniques as a candidate for such "inter-speaker systematics." 
Analysing if there was a relationship between these representation techniques, 
Bergmann and Kopp observed inter-subjective correlations, but they also noticed 
individual differences (idiosyncratic aspects of gestures) [also underlined in 36].  

To conclude, the study presented in this paper has illustrated again the complex 
relationship between gestures' function and form. It has pointed out some tendencies 
concerning form-function relationships, but we decided to not investigate further this 
specific issue. Instead, closer inspection of the data might reveal tendencies—or even 
regularities—of another nature (especially semantic and/or context-related). 

Acknowledgments. The author wishes to thank an anonymous reviewer, whose 
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helped to advance her reflections on gesture and its relevant dimensions. 
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Abstract. We present a HMM based system for real-time gesture
analysis. The system outputs continuously parameters relative to
the gesture time progression and its likelihood. These parameters are
computed by comparing the performed gesture with stored reference
gestures. The method relies on a detailed modeling of multidimensional
temporal curves. Compared to standard HMM systems, the learning
procedure is simplified using prior knowledge allowing the system to use
a single example for each class. Several applications have been developed
using this system in the context of music education, music and dance
performances and interactive installation. Typically, the estimation of
the time progression allows for the synchronization of physical gestures
to sound files by time stretching/compressing audio buffers or videos.

Keywords: gesture recognition, gesture following, Hidden Markov
Model, music, interactive systems.

1 Introduction

Gesture recognition systems have been successively developed based on methods
such as Hidden Markov Models (HMM), finite state machines, template match-
ing or neural networks [1]. In most cases, gestures are considered as ”unbreak-
able units” that must be recognized once completed. Typically, on-line systems
output the recognition result at the end of each gesture. Motivated by the de-
velopment of interactive systems in performing arts, we present here a different
approach for online gesture analysis : the system updates ”continuously” (i.e. on
a fine temporal grain) parameters characterizing the performance of a gesture.
Precisely, these parameters are made available during the temporal unfolding of
the performed gesture.

We are first particularly interested in computing the time progression of the
performance, or in other words answering the question ”where are we within
the gesture ?”. We refer this as following the gesture. Second, we are interested
in computing likelihood values between a performed gesture and pre-recorded
gestures stored in a database. This can be used to perform a recognition task, but
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also to characterize gestures. As this will be illustrated by application examples,
these parameters are particularly useful to build systems enabling expressive
gestural control of sonic and/or visual media. Moreover, the estimation of both
the time progression and likelihood values enable another important feature of
such a system: the possibility to predict the evolution of the current gesture.

We assume here that gestures can be represented as multidimensional tempo-
ral curves. Importantly, our approach focuses on a detailed modeling of temporal
profiles. High resolution temporal modeling is indeed essential for the estima-
tion of the time progression of a gesture. This approach is thus especially suited
for cases where the gesture temporal evolution are intrinsically relevant, and
performed in a consistent manner. This is typically found in performing arts:
measurements of dancers or musicians gestures reveal very consistent temporal
profiles[2,3].

Our system is essentially based on Hidden Markov Models, with a particular
implementation guaranteeing precise temporal modeling of gesture profiles and
allowing for a simplified learning procedure. This latter point is essential for
making such a system workable in the context of performing arts. As a matter
of fact, building general gesture databases can reveal to be unpractical, as also
discussed in Ref.[4], since gesture data are typically highly dependent on the
artistic contexts and idiosyncrasies of performers. For these reasons, we devel-
oped a particular learning scheme based on a single recorded example only, using
a priori knowledge. In this case, the learning phase is simple to operate and can
be easily achieved during the normal flow of rehearsals. This approach has been
iteratively designed through several specific cases[5,6,7] and implemented in a
software called the Gesture Follower.

This paper is structured as follows. After a short summary of related works,
we describe the algorithm, along with numerical simulations using synthetic data
assessing quantitatively the algorithm. Second, we present typical applications
of this system related to music and dance practices.

2 Related Works

The use of machine learning techniques for gesture recognition has been widely
covered. Hidden Markov Models represents one of the mostly used methods
[1,8,9]. Taking notice that training Hidden Markov Models might represent a
cumbersome task, several authors proposed various approaches to facilitate the
training process. Bobick and Wilson have proposed a state-based approach using
a single prototype [10]. Using HMM they also later proposed an online adap-
tive algorithm for learning gesture models [11]. Rajko et al. also proposed a
HMM based system, with the aim of reducing training requirements and allow-
ing precise temporal gesture modeling [4,12,13]. Artieres et al. [14] proposed a
recognition scheme based on segmental HMM that can be trained with very few
examples.

Concerning realtime recognition Bloit and Rodet [15] developed a modified
Viterbi decoding, called short term Viterbi, that allows for low latency recognition.
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Mori et al. [16] proposed a system for early recognition and anticipation, based on
continuous dynamic programming.

These works are generally principally oriented towards recognition tasks. The
case of following a gesture in realtime, i.e. determining the time progression
of a gesture during a performance, is generally not explicitly covered with the
exception of score following systems for musical applications. Several authors
have proposed systems based on HMM (or Semi-Markov Models) [17,18]. Never-
theless, in such cases, the Markov structure is essentially built from a symbolic
representation given by the musical score, and not from continuous gesture data.

3 Gesture Modeling and Analysis Algorithm

As generally found in machine learning techniques, the system operation is sep-
arated into two procedures, learning and decoding. Our approach is based on
Hidden Markov Models but with a modified learning schema. The algorithm
fundamentally works with any type of regularly sampled multidimensional data
flow.

3.1 Learning

Our system has been developed with the constraint that only few examples will be
available. This constraint is incompatible with the use of statistical training (for
example using the Baum-Welch algorithm), as found in standard implementations
of Hidden Markov Models (HMM) [8].

The learning procedure is illustrated in Figure 1. The recorded temporal pro-
file is used to create a left-to-right Hidden Markov Model. We build a model
that fits the recorded reference by directly associating each sampled points to a
state in a left-to-right Markov chain.

Each state i emits an observable O with a probability bi, following a normal
distribution (the vectorial case can be generalized in a straightforward way):

bi(O) =
1

σi

√
2π

exp[−(
O − μi

2σi
)2] (1)

μi is the ith sampled value of the recorded reference. The σi parameter can be
interpreted as the standard deviation of differences in x occurring between perfor-
mances. Obviously, σi cannot be estimated from a single example. Therefore, it is
either estimated for a given context based on prior experiments and/or knowledge.
The influence of this parameter will be further discussed in section 3.4.

This HMM structure statistically models the recorded data sequence, consid-
ering additional assumptions on the transition probabilities. We define a limited
number of permitted transitions by setting the transition probabilities a0, a1,
a2 (self, next, skip transitions, see Figure1). These probabilities a0, a1, a2 must
satisfy the Equation 2.

a0 + a1 + a2 = 1 (2)
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Fig. 1. Learning procedure: a left-to-right HMM is used to model the recorded reference

As for σi, these parameters cannot be precisely estimated from a single exam-
ple. Nevertheless, their values can be set based on prior knowledge or measure-
ments in specific applications. The following discussion clarifies the role of these
parameters.

1. a0 = a1 = a2 = 1/3 : this case corresponds to have equal probabilities slower
or faster performance of the gesture.

2. a0 < a1 and a2 < a1 this case corresponds to have lower probability for
speeding up or slowing down.

3. a0 < a2 this case corresponds to have lower probability for slowing down
than speeding up

4. a0 > a2 this case corresponds to have higher probability for slowing down
than speeding up.

Note that the relative maximum speed (between the performed and reference
gesture) is 2 in the example shown in Figure1. This value can higher by setting
additional transitions (for example a3 > 0).

Based on experiments (see section 4), we found that empirical values such as
a0 = a1 = a2 = 1/3 or a0 = a2 = 0.25 and a1 = 0.5 work for a large set of
applications. A similar discussion can be found in [4].

We also implemented a further simplified HMM structure. As described in [6],
a HMM structure with only two possible transitions, self and next transitions can
be used considering a0 = 1/n and a1 = 1−1/n, and downsampling the recorded
reference by a factor n. This configuration has been used for the assessments
described in section 3.4.

3.2 Decoding

As explained in the introduction, we are interested in two types of quantities:
time progression index and likelihood values, computed from the online compar-
ison between the gesture being performed and recorded references. Similarly to
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score following algorithms [17], we base our decoding scheme on the standard
forward procedure in HMM [8].

Consider the partial observation sequence O1, O2, ...Ot. The forward proce-
dure requires the computation of the αi(t) variable which corresponds to the
probability distribution of the partial observation sequence until time t, and
state i . It is computed inductively as follows:

Initialisation

α1(i) = πibi(O1) 1 ≤ i ≤ N (3)

where π is the initial state distribution, and b is the observation probability
distribution.

Induction

αt+1(i) = [
N∑

i=1

αt(i)aij ]bi(Ot) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (4)

where aij is the state transition probability distribution.
From the αi(t) variable we can compute two important quantities:

1. Time progression of the sequence, related to the recorded example

time progression index(t) = argmax[αt(i)] (5)

Note that this index can be alternatively estimated by the mean (expected
value) of the distribution αi(t).

2. Likelihood of the sequence.

likelihood(t) =
N∑

i=1

αt(i) (6)

This quantity can been used directly as a similarity measure between the
gesture being performed and the recorded reference. Other similarity mea-
sures could also be derived by combining the likelihood and the smoothness
of the time progression index.

3.3 Windowing Technique

A major limitation of the algorithm described above is the large number of states
of the HMM when dealing with long phrases, which can be an issue for real-time
computation. For example, with a data sampling rate of 100 Hz, the number of
states is typically 600 for an one minute phrase. Typically, a number of states
larger than 1000 might be too CPU intensive for our applications. To avoid this
problem, we developed a sliding window technique that uses a fixed number of
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Fig. 2. Windowing technique used in the decoding scheme to reduce the CPU load

states, thus limiting the computation load, similarly to beam search techniques.
The method is illustrated in Figure 2.

As explained earlier, the decoding procedure requires the computation of the
probability αi(t). In the basic algorithm, this probability distribution is com-
puted on the entire state structure. In the windowed version, this computation
is limited to a section of the state structure. Precisely, it is evaluated on a win-
dow centered around the arg max of the αi(t) distribution, i.e. around the time
progression index. At each new step of the evaluation, the window location is
moved. αi values that were not considered in the previous window are initialized
to zero in the new window.

This technique allows for the computation with a fixed number of states,
that is adjustable by the user. Thus the CPU load remains a constant value
independent of the length of the gesture data. Tests showed that this method
was effective.

Importantly, this technique can also be seen as adding constraints to the esti-
mation of the time progression index, since the range of possible values is reduced
at a given time. This procedure can make the estimation of the time progres-
sion index more robust to outlier data that could otherwise provoke unrealistic
jumps.

3.4 Assessments on Synthetic Data

Simulations were performed with Matlab using synthetic signals to evaluate
quantitatively the accuracy of the time progression index. As shown in Figure 3,
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Fig. 3. Synthetic signals used for the algorithm assessment

reference and test signals were created by concatenating truncated sine functions
and constant signals.

Precisely, the reference signal was obtained by concatenating the following
parts: constant zero signal (50 samples), one period of a sine signal (40 sam-
ples), constant zero signal (50 samples), one period of a sine signal (40 samples),
constant zero signal (50 samples) (total length = 230 samples). The tests signals
were obtained from the reference signal by applying various transformations in
the amplitude, offset and noise level.

The algorithm was applied to these altered test signals, and average errors
obtained in the time progression index were computed. These error values can
be associated to a time jitter. For example, with a sampling rate of 200 Hz, an
error of one sample would correspond to a jitter of 5 ms.

The assessments reported here were performed in the case of the simplified
HMM state structure, where we retain only two types of possible transitions, self
and next transitions (a0 = a1 = 0.5). As noted in section 3.1, a downsampling
of a factor 2 was thus applied to the reference signals. In this simplified case,
the standard deviation σi is the only parameter to be adjusted. We performed
a complete set of assessments varying the σi values.

Interestingly, we found that, as long as σi values lies in an given interval,
the results for the time progression index are weakly affected by the σi absolute
value. For example, considering reference signals normalized between -1 and 1,
we found that σi should lie approximately in the interval [0.1 0.5]. This result
confirmed us that our algorithm can operate in cases where the σi values are
known only approximately.

Figure 4 (a), (b) and (c) show the results for three different signal alterations:
scaling the amplitude, adding a constant offset and adding gaussian noise, re-
spectively. The value σi is = 0.2 in all cases. These results show that, as expected,
the accuracy in the estimation of the time progression index decreases while in-
creasing the alteration level. Nevertheless, it is important to note that the errors
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Fig. 4. (a) Error in the time progression index for various amplitude scaling of the test
signals. (b) Error in the time progression index for various offset of the test signals.
(c) Error in the time progression index for various noise levels of the test signals. In
all cases, value σi = 0.2, and the reference signal were normalized between -1 and 1.
In the cases of (a) and (b), a fixed gaussian noise of 1% was also added.

.
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remain at an acceptable level considering relatively large alterations. For ex-
ample, a test signal of amplitude twice the reference signal induces an average
error less than 2 samples, for a total signal length of 250 samples (see Figure 3).
Interestingly, the algorithm is more sensitive to a decrease than to an increase
of the test signal amplitude. These results indicate that theses limits can be
large enough to work with real data, which has been confirmed later during our
applications as described in section 4.

4 Implementation and Applications

The system described in this paper is implemented as a collection of modules in
the Max environnement1 called the Gesture Follower, taking advantage of the
data structures of the FTM library2 such as matrices and dictionaries[19,20].
Recently, the core algorithm was developed as an independent C++ library and
can therefore be implemented in other environnements.

We applied the Gesture Follower to build interactive systems in music and
dance performances. The system was also applied to design experiments aimed
at studying gesture and movement sonification [21].

Most of the applications make use of the time progression index given by the
Gesture Follower. Particularly, this parameter allows for the design of applica-
tions based on a time synchronization paradigm: digital media and effects can be
synchronized to any particular moments of a given reference gesture. This refer-
ence gesture is set by the user by a simple recording. Thanks to the windowing
technique (section 3.3), there is no limitation other than the computer memory
for the gesture length. This opens interesting perspectives, such as following an
entire music performance. A particular interesting case is illustrated in Figure 5,
were the time progression index is used to synchronize the speed of the playback
of an audio recording. For example, audio time stretching/compressing can be
performed using phase vocoder techniques.

Specific cases of this paradigm were experimented in the context of music
pedagogy [22]. In particular, ”virtual” conducting was achieved using a wireless
sensor module transmitting hand gesture accelerations to the Gesture Follower
(Figure 6). With this system, students were able to control precisely the playing
speed of an orchestra recording.

A particular interesting feature of our system resides in the possibility to con-
tinuously compare the live performance with different interpretations previously
recorded. For example, the likelihood value can be therefore used to control the
sound intensity (see Figure 5) and further sound transformation.

Other applications were achieved in the fields of dance performance and inter-
active installations. Experiments showed that the system was able to distinguish
easily between fifteen short dance phrases, based on 3D accelerometers wore on a
dancer wrists. Since the likelihood parameters were continuously updated, it was

1 http://www.cycling74.com
2 http://ftm.ircam.fr
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Fig. 5. Gesture synchronization to audio time stretching/compression

Fig. 6. “Virtual” conducting using wireless motion sensors (accelerometers and gyrso-
copes and the gesture follower. The system synchronizes the gesture with the playback
of an orchestra recording.

possible to recognize a gesture early, without waiting for its completion to oper-
ate a choice in the interaction process. Parallel to this recognition procedure, it
was possible to effectively synchronize video materials to the dancer movements
using the time progression index.

5 Conclusion and Future Work

We presented a HMM based system for real-time gesture analysis. The system
relies on a detailed temporal modeling and outputs continuously two main pa-
rameters: the time progression index and likelihood values which can be used
to estimate similarities between a gesture being performed and recorded refer-
ences. One advantage of this system resides in the simplified learning process.
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Various applications, mainly based on a following paradigm, were built with this
system, and proved the validity of our approach. Refinements of this system are
currently implemented and further applications are foreseen, especially taking
advantage of the prediction capabilities of this system.
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Abstract. We describe a numerical method for scale invariant detec-
tion of gesture patterns in continuous 2D motions. The algorithm is
fast due to our rejection-based reasoning achieved using a new set of
curvature-based functions which we call Integral Absolute Curvatures.
Detection rates above 96% are reported on a large data set consisting of
72,000 samples with demonstrated low execution time. The technique
can be used to automatically detect gesture patterns in unconstrained
motions in order to enable click-free interactions.

Keywords: gesture recognition, pattern detection, multiscale, curvature,
integral of curvature, motion trajectory.

1 Introduction

Gestures have become more and more present in today’s human-computer in-
terfaces with the recent advances in robust recognition techniques as well as
in acquisition devices that became more and more available and affordable
[7,9,13,16,17,20]. However, current gesture-based interfaces still isolate gestures
by making use of user-driven discrete events such as mouse clicks, stylus up/down
movements, pushing buttons on tracking devices or by requiring users to hold
a specified hand posture in vision-based processing. Recognition techniques are
further applied on such user-segmented gestures by using shape similarity meth-
ods well established in the pattern recognition community [7,9]. By adopting this
self-segmentation approach, it is the users that let the system know when and
where the gesture commands start and end with a direct impact on the fluid-
ity of the interaction process. The alternative would be to automatically detect
gestures in constraint-free continuous motions for which we propose a novel fast
technique. The challenge is a difficult one cause of the multiscale problem: given
two motion curves G(s) and Γ (s), find the occurrences of gesture G(s) in the
user-input trajectory Γ (s) irregardless of scale.

2 Related Work

Gesture motions may be acquired using the mouse, stylus [7,16], WiiMote
[15], specialized trackers, gloves and vision-based computing with dedicated
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algorithms for detecting and tracking various regions of interest such as hands,
arms or the full body. Moeslund et. al [9] and Poppe [11] provide excellent sur-
veys on the trends in video-based human capture and visual analysis of human
movement while Pavlovic et al. [10] focus on hand gestures. Also, good courses
on sketching recognition are available [7]. With respect to gesture recognizers,
several robust approaches have been proposed such as the Rubine’s classifier
[13], the $1 recognizer [20] or elastic matching techniques [17].

Common approaches for segmenting gestures make use of predefined hand
postures that simulate click events: Vatavu et al. [17] signal the beginning and
end of a gesture by pointing and retracting the index finger; Wilson [19] uses
the pinch gesture in the TAFFI interface; Vatavu and Pentiuc [18] combine
hand open and hand close. Not only posture but location has been used as well:
Cerlinca et al. [4] use predefined regions of interest around the human body in
order to facilitate segmentation and recognition of free hand gestures; Marcel [8]
defines a body-face space with various motion and color sensitive zones.

Several attempts have been made with regards to the automatic detection of
gestures in unconstrained motion. Reng et al. [12] pose the problem of identifying
primitives in body motions and consider an error measurement based on density.
Dong et al. [5] propose a greedy approach for segmenting body motions from
long video sequences into a predefined set of motion templates. The authors
do not report execution times nor complexity orders and the technique was
evaluated for off-line segmentation. Arvo and Novins introduce fluid sketching
[1,2] as a technique for on-the-fly recognition and morphing of users sketches
to predefined classes of simple geometric shapes such as circles, boxes, lines or
Bezier shapes by least-squares approximation. The motion doodles of Thorne et
al. [16] represent a technique for parsing sketches into predefined tokens using
a corner detection algorithm and classifying segments into straight or curved.
The approach is simple and limited to 4 orientations of the straight lines and 2
directions of the curved segments.

Non-template-based approaches that split continuous motions into meaningful
gestures without previous learnt templates are worth pursuing in the context of
natural gesturing. Segmentation is handled in this case using various cues such
as pauses in motion, hand tension or movement effort [14].

2.1 Contribution

Detecting gesture patterns in unconstrained motions is a difficult problem and
current approaches address it partially by limiting the patterns to simple shapes.
The problem is hard due to the multiscale issue: a (naive) algorithm that would
try to match all the possible candidates would fail within the constrains of real-
time interfaces. The main contribution of this paper is represented by a fast
technique that rejects the majority of weak and unfit candidates. We intro-
duce for this purpose the notion of integral of absolute curvature by taking an
approach from differential geometry. By making use of a curvature-based rep-
resentation, our gesture detection is rotation invariant as well. Reported results
show detection rates above 96% for a large dataset of 72,000 samples.
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3 Motion Representation

For all our further discussions, we will consider a gesture motion as a point
moving in time, c(t) : [0, T ] → �2 in the continuous domain as well as a sequence
of sampled points, C =

{
pi = (xi, yi) , i = 0, n − 1

}
in the discrete case. We limit

our method to 2D gesture motions only. Also, we are not particularly interested
in the acquisition device as long as we dispose of the discrete representation of
the captured motion. For example, development of the technique was carried
mostly on motions acquired using the mouse while the actual testing described
in section 5 and the performance results are discussed on gestures captured using
a stylus as it best matches the real-world experience (i.e. the pen).

We briefly describe below the main notions employed throughout the pa-
per. When considering the continuous case of a motion curve, c(t) : [0, T ] →
�2, c(t) = (x(t), y(t)), we make use of arc-length s(t) =

∫ t

0 ‖c′(u)‖ dt where
‖c′(u)‖ represents the norm of the vector c′(u), ‖c′(u)‖ =

√
x′2(t) + y′2(t). The

curve c may be re-parametrized by taking the arc-length s as the new param-
eter which leads to c(s) : [0, L] → �2 where L is the length of the curve,
L =

∫ T

0 ‖c′(u)‖ dt. We equally employ the notion of curvature defined as the
signed magnitude of the second derivative of the motion curve, κ(s) = c′′(s).
Equivalently, curvature may be expressed as the rate of change of the tangential
angle with respect to arc-length, κ(s) = dφ

ds . All the above notions pertain to the
differential geometry of curves [3].

Although the reasoning will be performed using differential geometry, the
associated algorithms need to work with the discrete representation of a curve,
C =

{
pi = (xi, yi) , i = 0, n − 1

}
, for which we have the corresponding definitions

of arc-length and curvature:

si =
i−1∑
j=0

‖pj − pj+1‖, κi =
〈pi−rpr, pipi+r〉

‖pi−r − pr‖ + ‖pi − pi+r‖ (1)

where 〈·, ·〉 represents the angle between two line segments and r is a fixed value
representing the sliding window size for discrete curvature computation.

3.1 Acquisition and Preprocessing of Motion Trajectories

Acquired motions, irrespective of the capture device, are usually composed of
points sampled at a given time interval τ depending on the working frequency
of the device:

{
pi = p(τ · i) = (xi, yi) ∈ �2, i = 0, n − 1

}
. The initial trajectory

is usually raw and noisy so it needs preprocessing with a polyline reduction
technique. We use the fast version of the Douglas-Peucker algorithm [6] which
provides a set of significant points

{
pik

, k = 0, m − 1
}

and then re-sample each
interval

[
pik

, pik+1

]
at equal length with a given resolution r (r = 3 points in

our approach) in order to get a smoother version of the initial data. Figure 1
shows the result on a continuous motion trajectory including a star pattern.
Preprocessing also acts as a data reduction strategy where the initial 210 points
of the star motion are reduced to 52 with 18 most significant points.
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Fig. 1. Preprocessing of user-input motion: acquisition data (left); simplified motion
with significant points over imposed (middle); final re-sampled motion (green points,
right)

4 Multiscale Detection of Gesture Patterns

Let G(s) and Γ (s) be two curves sampled by arc-length s normalized in [0, 1].
Also, let G =

{
si/i = 0, m − 1

}
and Γ =

{
sj/j = 0, n− 1

}
be two discrete

samplings of the curves into m and n points. We pose the problem of finding the
occurrences of gesture G in the longer motion Γ irregardless of scale.

4.1 A Naive Search Algorithm

A naive algorithm would choose every pair p < q, p, q ∈ [0, n− 1] from the Γ
curve and employ a gesture recognizer R in order to get the matching result
between G and the extracted part of Γ , Γ[p,q]. The reported start location p′

and scale (q′ − p′ + 1)/n would be those for which the recognizer outputs the
minimum distance (or maximum similarity):

(p′, q′) = min
0≤p<q≤n−1

R
(
G, Γ[p,q]

)
(2)

The algorithm below illustrates this idea. Although the approach taken here is
brute (search for all pairs p < q), there is no other option when aiming at scale
invariance. Similar approaches in the literature perform this kind of multi-scale
searches in order to achieve the invariance goal.

Algorithm 1. Naive-Detection(G, m, Γ , n)
1: for p = 0 to n − 1 do
2: for q = p + step to n − 1 do
3: // compute distance between gesture G and part [p, q] of Γ
4: distance ⇐ Recognizer(G,Γ[p,q])
5: if min > distance then
6: min ⇐ distance, p′ ⇐ p, q′ ⇐ q
7: end if
8: end for
9: end for

10: return p′, q′
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The naive algorithm fails in practice due to over computations which cause
big response times. The discussion from the Results section 5 gives an overview
of the bad performances of this algorithm which do not meet the constraints of
real-time interaction. For example, searching for a pattern inside a longer motion
Γ sampled into n ≈ 100 points returned a response in ≈ 167 ms, not acceptable
when searching for multiple gestures.

4.2 The Gesture Recognizer

We use the elastic matching recognizer of Vatavu et al. [17] that computes the
minimum alignment cost between the curvature functions of a gesture and a
given template. The curvature signature function κ(s) of a planar curve C(s)
parameterized by arc-length s fully prescribes the original curve up to a rigid
motion transformation [3] which makes curvature suitable for gesture recogni-
tion. Figure 2 illustrates the alignment process between the curvature functions
of two gestures. The complexity of the recognizer is O(m × n) where m and n
are the sampling resolutions of the curves to be matched.

Fig. 2. Gesture recognition by measuring the cost of alignment between the signature
function of a gesture (green) and that of a stored template (red)

4.3 Integral of Absolute Curvature

The Naive-Detection algorithm presented previously provides a good starting
point for the scale-invariant detection problem if we set as goal filtering as many
unnecessary intervals p < q as possible. We build on top of the curvature rep-
resentation of Vatavu et al. [17] and introduce the principle of summed area
tables for the 1D case of the curvature signature function associated to a gesture
motion. We thus define the Integral Absolute Curvature, K(s), of a curve C(s)
parametrized by arc-length s:

K(s) =
∫ s

0
|κ(s)| ds (3)
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Fig. 3. Integral of absolute curvature for several gestures (multiple instances displayed
overimposed): rectangle (right), arrow (middle) and pigtail (right)

Similarly, we can define the integral absolute curvature for a portion of a curve
between arc-lengths s1 and s2 as follows:

K(s1, s2) =
∫ s2

s1

|κ(s)| ds = K(s2) − K(s1) (4)

Figure 3 illustrates the integral curvature functions for a few gesture types.
The integral absolute curvature presents a few interesting properties as given

by the following theorems:

Theorem 1. K(s) is positively increasing.

Proof. Demonstration follows easily from the definition: K(s + h) =∫ s+h

0 |κ(s)| ds =
∫ s

0 |κ(s)| ds +
∫ s+h

s
|κ(s)| ds ≥ K(s) for ∀s ∈ [0, L] and h ≥ 0.

This means we can uniquely associate a given value K(s) to an interval of
arc-length Δs.

Theorem 2. K(s) is scale invariant (Figure 4 illustrates the concept).

Proof. Let c(t) : [0, T ] → �2, c(t) = (x(t), y(t)) be a curve defined over time and
let γ(t) : [0, T ] → �2, γ(t) = λ·c(t) be the scaled version of c(t) with a given scale
λ. If we re-parametrize each curve by its arc-length we obtain c(sc) : [0, Lc] → �2

with sc(t) =
∫ t

0 ‖c′(u)‖ du and γ(sγ) : [0, Lγ] → �2 with sγ(t) =
∫ t

0 ‖γ′(u)‖ du.
It follows immediately that sγ(t) = λ · sc(t) and Lγ = λ · Lc and in consequence
we have γ(sγ) = λ · c(sc) where sγ ∈ [0, Lγ ] and sc ∈ [0, Lc].

If we compute the curvature of γ(sγ) we get consecutively:

γ′(sγ) = dγ(sγ)
dsγ

= dγ(sγ)
dsc

· dsc

dsγ
= d(λ·c(sc))

dsc
· 1

λ = dc(sc)
dsc

= c′(sc)

κγ(sγ) = γ′′(sγ) = dγ′(sγ )
dsγ

= dγ′(sγ)
dsc

· dsc

dsγ
= dc′(sc)

dsc
· 1

λ = 1
λ · c′′(sc) hence

κγ(sγ) = 1
λ · κc(sc) where sγ ∈ [0, Lγ ] and sc ∈ [0, Lc].
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Fig. 4. The left circle C(s) has been scaled down with a factor of 1:5 and inserted in the
longer motion Γ (s) from the right at location s = 0.3. The arrows show the direction
of motion. Both curves are normalized with respect to arc-length hence the length of
the downsized circle becomes 0.2. While curvature is not scale invariant: κC(s) = 1

R

and κΓ (s) = 1
R/5

, the integral absolute curvature is:
∫ 1

0
1
R
· ds =

∫ 0.5

0.3
1

R/5
· ds = 1

R
.

As for the integral of absolute curvature for γ(sγ): Kγ(Lγ) =
∫ Lγ

0 |κγ(sγ)| dsγ

and substituting sγ = λ · sc, Kγ(Lγ) =
∫ Lc

0

∣∣ 1
λ · κc(sc)

∣∣ · λ · dsc =∫ Lc

0 |κc(sc)| dsc = Kc(Lc) hence the integral absolute curvature is invariant to
scale changes.

The trapezoidal rule gives the integral absolute curvature in the discrete case:

Kq =
q∑

i=1

|κi| + |κi−1|
2

· (si − si−1) (5)

Kp,q =
q∑

i=p+1

|κi| + |κi−1|
2

· (si − si−1) = Kq − Kp (6)

The last equation shows that, having computed Kp for a given curve, the com-
putation of Kp,q of a candidate can be achieved with O(1) complexity.

4.4 Scale-Invariant Gesture Detection Algorithm

The integral absolute curvature may be used in order to design rejection rules
for a given candidate marked by indexes p < q on the continuous motion. Given
a set of training samples for a gesture pattern, we can compute the integral
absolute curvatures and store the interval [Kmin, Kmax] for that gesture type.
This will lead to a very simple yet efficient rejection rule for the candidate p, q
on the Γ curve, in accordance with Theorem 2 above:

Rule #1. Reject candidate (p, q) if Kp,q /∈ [Kmin, Kmax]

The second more powerful observation relates to Theorem 1: any integral value K
is associated to a unique arc-length interval Δs due to the monotonic ascending
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Fig. 5. Left: training set of heart-like gestures and their associated curvature functions.
Right: integral absolute curvatures computed for the heart gestures. Kmin and Kmax

as well as associations between a given K∗ value and what the curvature at that s
should be in terms of [κmin, κmax].

property of K(s). By correlating Δs with the curvature function κ(s), lower and
upper margins for curvature at K are obtained Δk = κmax − κmin from the
samples in the training set.

Rule #2. Reject candidate (p, q) if κr /∈ [κmin, κmax] for ∀r ∈ [p, q] where
κmin and κmax correspond to the value of Kp,r = Kr − Kp.

The two rules run in O(1) and O(q−p) time. Figure 5 gives a visual illustration.

5 Results and Discussion

In order to test the performance of our gesture detector we used the dataset of
Wobbrock et al. [20] composed of 1,600 already segmented gesture samples = 16
types x 10 subjects x 10 executions for each gesture type at normal speed.

The 100 samples available for each gesture type were divided into training
and testing giving sets of size p · 100 for training and (1 − p) · 100 for testing,
where p ∈ (0..1) was the training percentage. The training set was used to
generate the rejection rules parameters. Each sample from the testing set was

Fig. 6. The set of 16 gesture types of Wobbrock et al. [20]: triangle, x, rectangle, circle,
check, caret, question-mark, arrow, left square bracket, right square bracket, v, delete,
left curly brace, right curly brace, star, pigtail
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Algorithm 2. SpeedUp-Detection(G, m, Γ , n)
Require: K[p] is the integral absolute curvature at index 0 ≤ p < n
Require: κmin[K] and κmax[K] are the lower/upper curvatures at integral value K
1: for p = 0 to n − 1 do
2: for q = p + step to n − 1 do
3: Kp,q ⇐ K[q] − K[p]
4: if Kp,q < Kmin then
5: continue with next q, go to 2
6: end if
7: if Kp,q > Kmax then
8: continue with next p, go to 1
9: end if

10: k[p..q] ⇐ compute the scaled curvature of Γ for the q − p + 1 scale
11: for r = p + 1 to q − 1 do
12: Kp,r ⇐ K[r] − K[p]
13: if κ[r] < κmin[Kp,r] or κ[r] > κmax[Kp,r] then
14: continue with next q, go to 2
15: end if
16: end for
17: distance ⇐ Recognizer(G,Γ[p,q])
18: if min > distance then
19: min ⇐ distance, p′ ⇐ p, q′ ⇐ q
20: end if
21: end for
22: end for
23: return p′, q′

inserted at a random scale ∈ [0.1 − 0.5] and at a random location in a randomly
generated motion with the scale and location stored as ground truth. When
generating random trajectories there is the danger that simple gestures such as v
or check from Figure 6 are generated by chance at a different location than that
of the inserted pattern which would affect the detection rate. To avoid this we
proof checked each generated motion by running the naive algorithm in order to
test if the pattern can be detected correctly. We varied the training percentage p
from 10% to 90% of the available samples with increments of 10% (the smallest
training set had 10 samples or 1 sample from each participant). For each testing
set we computed the detection rate, start error, scale error, and execution time.
The start error (estart) represents the difference between the detected start
position of a gesture compared with the ground truth (the exact position where
the gesture was inserted) expressed as percentage of the motion length. The
scale error (escale) is defined similarly. The detection rate equals the percentage
of patterns successfully detected (for which estart < 0.1 and escale < 0.1 but the
average errors were less than 0.04 as we report below). In order to avoid biased
results due to random sampling, we repeated 10 times each splitting proce-
dure for a given p and averaged the results. We thus report results obtained from:
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Fig. 7. Detection rate (%) vs. the number of samples in the training set (p · 100)

Fig. 8. Error rates (%) vs. the number of samples in the training set (p · 100)

16 gesture types ×
10 repetitions ×
9 different testing sets (p = 0.1 to 0.9, increment of 0.1) ×
(1 − p) · 100 generated motions per set =

= 16 · 10 ·
p=0.9∑
p=0.1

(1 − p) · 100 = 72, 000 continuous motion trajectories.

Figure 7 plots the detection rate vs. the size of the training set p ·100. Even with
a small training set consisting in only 10 samples (or 1 sample per participant)
the detection rate is above 96% and raises up to 98% with a minimum of 3
samples per subject. The starting point error is approximately constant at 2%
while the scale error is below 3% of the length of the motion trajectory as
Figure 8 illustrates. Figure 9 plots the individual detection rates for each gesture
type. Rates were averaged for all the trials p ∈ [0.1, 0.9] and standard deviation
are also presented. Except for the left curly brace gesture that averages a 94.1%
detection rate, all the other patterns are detected with rates higher than 96.8%.
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Fig. 9. Detection rate (%) vs. gesture type

Fig. 10. Detection time (ms) vs. the size of the continuous motion (number of points)

The lower rate of left curly brace can be explained by its greater variation in
execution: as Wobbrock et al. [20] mention, the participants disliked the curly
braces as they felt ”clumsy” drawing them. The standard deviation across all p
has an average of 0.84% for all gestures with a maximum of 1.77% for pigtail.

The great advantage of the technique is presented in Figure 10 which illus-
trates execution time in ms versus the length of the continuous motion in points.
In order to detect the full set of 16 gestures, the naive algorithm becomes im-
practical at a trajectory size of 70 points with 58.4 ms required per gesture
while the speed-up algorithm executes in 3.3 ms. The discrepancy becomes even
greater for longer trajectories: 437.8 ms for the naive versus only 6.3 ms for the
speed-up at trajectories lengths of 130 sampled points. The measurements were
performed on a 2.66 GHz P4 desktop computer.
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6 Conclusions

We presented a new technique for the multiscale detection of gesture patterns in
2D continuous motions. The technique is fast due to several rejection rules that
filter out most of the weak candidates. Detection rates above 96% were obtained
for a large data set of 72,000 samples. We introduced the integral absolute cur-
vature and showed its application in the discrete case. Our technique makes pos-
sible automatic segmentation of continuous motions without constraining users
to segment their own gestures. As future work, it would be interesting extending
the technique to 3D for which torsion next to curvature could be employed.
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Abstract. Our aim is to put on a short play featuring a real actor
and a virtual actor, who will communicate through movements and
choreography, with mutual synchronization. Gesture recognition in our
context of Virtual Theater is mainly based on the ability of a virtual
actor to perceive gestures made by a real actor. We present a method
for real-time recognition. We use properties from Principal Component
Analysis (PCA) to create signature for each gesture and a multiagent
system to perform the recognition.

Keywords: motion-capture, gesture recognition, virtual theatre,
synthetic actor.

1 Introduction

Our test-bed is “Theater”, where actors perform on a stage in front of an audi-
ence. Our aim is to integrate virtual actors in the play and make them interact
with the real actors. We take our inspiration from the post-production stage of
a movie. Constraints appear with our specific context. Indeed, the virtual ac-
tor has to perceive the real actor in real-time and react with a good timing,
to create believable characters [1]. Our global project goal is to put on a short
play featuring a real actor and a virtual actor, who will communicate through
movements and choreography with mutual synchronization. We limit our study
to the perception of gesture. This work is an improvement of the one done for
the paper published in [2].

We will begin with a state of the art about gesture recognition and usage
criteria. The next section will describe briefly our method of signature generation
and recognition system in real-time flow. We add a little part to describe how our
model can help choreographer with gesture sequences. We will conclude with our
experiments and public demonstration to define the limitations of our system.

2 Gesture Recognition, Classification of Related Works

Before explaining related works on gesture recognition, it is important to define
the scope of our study. In the literature the word gesture has been used to identify
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many types of interactions with computer. To avoid confusion, Cadoz [3] uses
functionality to classify gestures: Ergotic, Epistemic, Semiotic. According to our
earlier decisions [2], the last category seems to be the right one.

Semiotic: the action of conveying information to the environment (or
virtual actor).

Indeed, we limit ourselves to transform the continuous flow of movements to a
sequence of symbols.

In an attempt to encompass the field of gesture based interactions, we noted the
diversity of approaches. For example, it can be the way to handle an object in a vir-
tual world or, how to change the song on your player, even finger moves on a touch
table. Faced with this amount of approaches, Karam [4] propose a taxonomy of
gestures in human-computer interaction. This work presents a unique perspective
on gesture-based interactions, categorized in terms of four key elements: gesture
functions, the application domains they are applied to, input technologies and out-
put technologies used for implementation. We do not detail this entire taxonomy,
but we pick up the relevant category. There are four classes:

– gesture functions: ’semaphoric gestures’ is a system based on a set of limited
and defined gestures. This approach is referenced as a method for commu-
nicating symbols;

– scope: ’communication interface’ is a system that try to mimic the commu-
nication between human;

– system response: ’Directed Command CPU’ is a system response that is not
directly used, but is stored or interpreted by the application;

– input: we do not want to fix the input technology.

This taxonomy allows us to select studies close to ours, in the gesture recognition
field. Briefly, all these works rely heavily on statistical tools such as principal
component analysis (PCA), the Hidden Markov Model (HMM), the K-Means or
the Gaussian models. All these methods are divided into two stages: learning and
recognition. Furthermore, we would like to clearly distinguish the static gesture
and the dynamic gestures. There are currently difficulties for the latter style of
interaction and we will only work on this one. We create a short classification of
these works into three categories as follow.

Exotic Algorithms. “Exotic” means that this set of algorithms are unusual
in the field of recognition. Few studies explain how to use these unconventional
methods. The gesture can be modeled as a finite state machine where each state
is defined by the characteristics of trajectories. Bobick [5] or Hong [6] propose the
most typical approach. Also, in this first group we put soft computing approach,
like Sandberg [7] or Zhao [8] mainly based on neural networks.

Hidden Markov Model Based Algorithms. Most studies rely on HMM. The
gesture is modeled by a Markov process of unknown parameters. The process is
a sequence of states whose transitions between states are based on probabilities
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calculated from a set of examples. The recognition is done according to the
probability that a sequence of observation belongs to this model. Yamato [9]
was the first to apply the HMM to the gesture recognition. The following works
are improvements of this approach. On the recognition side, Lee [10] suggest a
method to compute automatically the threshold of recognition by adding a global
HMM. Kim [11] solve the real-time issue with a forward spotting scheme that
executes gesture segmentation and recognition simultaneously. On the learning
side, Rajko [12] and Bevilacqua [13] aim to decrease the number of examples.
During the training, they add semantic states on the model and more prior
information about probability distribution for each state. To finish with the
HMM style, Kahol [14] addresses the problem in a very different way. He uses
the events of the movement instead of postures. An event is defined by the
stabilization of the data.

Signal Compression Based Algorithms. The class of method is quite dif-
ferent from previous ones because it can’t be used alone. Indeed, you must add
a system that will make the comparison between current observation and the
recorded signal. If the compression is appropriate, the added module can be very
simple. The main idea behind compression is the possibility to extract the essence
of a movement to keep only relevant information. One of the first work was done
by Campbell [15]. The intuition here is that the invariance of a movement can
be found in a particular subspace of this movement. The learning stage is the
creation of a predictive curve that represent the gesture. The recognition is the
computation of difference between a predictive curve and an observation curve.
More recently, Vasilescu [16] or Jenkins [17] work on signal compression with
SVD or Isomap. The following papers deal with the search of similar gesture in
a database. Although the problematic is different, the tools are very close. For
exemple, Forbes [18] uses PCA to compute a compressed database of animations.
Another way to represent gesture is to use a “dictionary compression” style, like
Muller [19]. They call their method Motion Template. They create 39 simple
geometric constraints that encode the spatial and timing data. The movement
is described with a boolean feature matrix (frame × constraint).

Conclusion. Various algorithms were discussed here, but we never discuss about
the recognition rate. Indeed, this information is irrelevant to discriminate be-
tween methods. All these algorithms have a recognition rate between 90% and
100%. In addition, these values are based on different devices, different move-
ments or different contexts. We are more interested on the usage criteria. We
create a table (tab. 1) to summarize information from every paper. According
to our context of Theater, we choose the following criteria:

– number of recognizable gestures;
– number of repetitions for learning stage;
– is the recognition in real-time ?
– is there automatic segmentation ?
– is there a simple way to expand the database ?
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Table 1. Usage criteria (�: available, X : unavailable, ? : not mention)

method nb gesture repetition real-time segmentation expansion
FSM [6] 3 30 ? ? �
Soft-computing [7] 14 333 ? X X
HMM [9] 6 30 X ? �
HMM real-time [11] 8 30 � � X
MMC learning [12] 58 3 X X X
MMC music [13] 1 1 � X ?
Comp dance [15] 9 1 X weak �
Comp devices [5] 2 40 to 70 X � �
Comp [16] 3 10 ? ? ?
Comp template [19] 64 10 to 50 X � �
Comp index [18] 70sec 1 X � ?

These points have particular interest for us. Within the context of Virtual The-
ater, the ideal situation is as follows: about twenty recognizable gesture, very
few repetitions, must be real-time, must be an automatic segmentation system
and the database must be expandable. We can note that there is no system that
met all these criteria.

3 Gesture Recognition Model

Our system works as follows: the actor performs the action, this action is trans-
lated into symbol, with this symbol, the virtual actor can choose his action ac-
cording to the story. This context creates some constraints. This is the same real
actor who records during the rehearsals and who performs on stage. Thus, the
gesture can be complicated and personal. The learning phase takes place during
rehearsals before the show. The gestures may change day after day according to
the artistic mood of the director. We cannot afford to record all actions one time.
So, the gesture must be recorded in a dynamic way to be tested by the director
and by the actor. We made the choice of a single recording, based on signal com-
pression (PCA). The generation of the signature has already been described in
the paper [2], we summarize here the main ideas. After describing the signature
generation with PCA (learning step), we report our choice of multiagent system
(recognition step), then we end up with the control of gesture sequence.

3.1 Gesture Signature Generation

By definition a gesture is a variation between two rest states. We decided to work
on this variation. PCA makes it possible to compute a space from a set of data
where the variance is maximal. Our aim is to compute a projection matrix to be
used as a data filter. It is like feature selection [20]. After applying PCA on
the data of one gesture, we generate its dedicated space. As stated by Shlens
[21], the most interesting dynamics occur only in the first dimensions. To save
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Fig. 1. The three abstraction levels of our representation of the gesture. (a) 16 relevant
points gesture. (b) cutting the space into zones of influence. (c) the three areas defining
the gesture: beginning, body and end.

computing time and eliminate all the non-impact data due to the exponential
drop-off of the variances, we decide to retain only two dimensions. Let

−→
V1 and−→

V2 ∈ �n be the eigen vectors associated with the two greatest eigen values. The
projection matrix is Π = (

−→
V1,

−→
V2).

To facilitate the recognition step, we create different layers of abstraction. The
gesture is a fine-grained curve in the 2D space. We can reduce this curve with
polygonal approximation [22]. According to these relevant points (fig. 1-a), we
can divide the 2D space using the associated Voronoi diagram (fig. 1-b). This
allows us to visualize the zone of influence of each of the relevant points. Then,
we make the assumption that the gesture is broken down into three parts as
described by the following works: beginning-body-end [23] or preparation-stroke-
recall [24]. It is reasonable to assign the first quarter of the overall gesture to
the beginning and the last quarter to the end (fig. 1-c). The central part of the
gesture should be long enough to capture the effort provided by the user, and
it seemed wise to reserve half of all the information. We end up with a gesture
composed of the following elements:

– a projection matrix Π , enabling the transition from a list of sensor values
to a point in 2D;

– an ordinate list of 2D points representing the gesture;
– the time taken to perform the gesture.

Now that we have a very synthetic representation of the gesture which is designed
to simplify the matching system, we can consider how the gesture is perceived.

3.2 Gesture Recognition in Real-Time

With our model, gestures are all independent from one other. We can find simi-
larities with multiagent systems where each agent is a gesture (perception of
the real-time flow, decision of the similarity recognition and action of sending
a recognition event). Figure 2 shows that every gesture has its own projection
matrix and is independent from the others.
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Fig. 2. The same posture from Xsens Moven is mapped in every gesture space

Two main problems are raised by recognition: segmentation (e.g. finding
the beginning and the end); recognition (e.g. fidelity computation between the
recorded gesture and the observed one). To solve these problems, we rely on
two agents: Gesture and Observer. The first one is the manager of the gesture
representation (fig. 2) and the second one is a structure to segment and stock
the real-time flow. The following part focus on the Observer. As stated by Kim
[11], we use a forward spotting scheme that executes gesture segmentation and
recognition simultaneously.

We make the assumption that the gesture is broken down into three parts:
beginning, body and end (fig. 1). To detect a hypothetical beginning, it is enough
that a posture projected in 2D space with Π is in the beginning area. For each
posture detected this way, the Gesture instantiates an Observer. Its role is to
accumulate the following postures in 2D space. Many Observers can be running
at the same time. The hypothetical end of the gesture is detected in a similar
manner. With an end detection, we can stop all the running Observers and com-
pare there stored data (e.g. list of 2D points) with the signature of the gesture.
Not all of these Observers are relevant, many of them are old or repetition or
wrong detection. The agent Gesture select the best Observers with the following
three criteria:

– the distance between curves (Dynamic Time Warping), which provides the
nonlinear difference between the two signals [25]. This measurement is the
difference between the shapes of the two curves;

– the difference of characteristic points. This measurement is the number of
validated zones;

– the time difference between the recording reference and the observation.
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Fig. 3. Algorithm of segmentation and recognition

We note these three values: fidelity values. The virtual actor receives these
information with the recognition event. They enable him to validate or not the
action. Figure 3 summarizes the overall process of segmentation and recognition.

3.3 Gesture Sequence Helper

In practice, semiotic gesture don’t follow themselves directly, there is always a
pause or recall between execution of movements. But in the particular context of
gesture sequence (like short choreography), our representation provides a bonus.
Now that we are able to recognize gesture in real-time, we plan to understand a
more abstract layer: the syntax. We can compare our work to language analysis
with different layers of abstraction as stated by Kendon [24]. Our next step is
to analyze the structure or syntax. There are two main advantages to rise up
over simple lexicon analysis. First, for the recognition part: even with the multi-
freedom degrees of our body, we cannot do all possible movements between two
gestures, we can eliminate false-positive recognition. Second, for the context
understanding: the same gesture can be repeated at different time during the
play, we can distinguish two moments with the current sequence.
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Fig. 4. Check if gesture B can follow gesture A

Technically, our model allows us to check the continuity between two gestures.
Indeed, in 2D space, we can see the overlapping of the beginning area and the
ending area. To illustrate our point, we want to check if gesture A can be followed
by the gesture B. We take the relevant point at the end of gesture A and then
we project them in the 2D space of B. If these points are in the beginning of
B, then we can assume that the action B can follow the gesture A. The figure 4
shows that we can go from the 2D space of A to the space of B with an inverse-
projection Π−1

A and a projection ΠB. It is essential to return in the n-dimension
space of sensors before projection in the B dedicated space. It is also possible to
directly test this property during recording. On one hand, this property can be
used for writing the syntax rules. For example, during the writing of the script,
the choreographer can check whether the sequence of movements can be valid
during recognition. On the other hand, recognition can eliminate false positives.
If a gesture has been recognized, then only a restricted set of gesture will follow.

4 Evaluations and Results

4.1 Experimental Measurements

We decided to improve our experiments started in our previous study [2]. We used
two existing databases. The first one comes from a different project experiment
[26]. Each gesture involves the same joints and little variation. They are very
similar to the others; even a human could be mistaken. But these gestures are
easy to reproduce. It consists of 22 gestures (8 gestures repeated 2-3 times). The
second one is the set of gesture from a reproducibility experience. With this set,
we can check if the reproducibility alter the recognition. It consists of 21 gestures
(7 gestures repeated 3 times). These seven gestures are increasingly difficult to
be reproduced. All this gestures have an average duration of 2.5 seconds. We
considered four cases:
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Table 2. Experimentation

DB nb foolp. compr. disputed unknow time
DB1 22 15 4 3 0 -0.533474
DB2 21 14 0 6 1 -0.431683

– foolproof; the gesture can be identified without any doubt. The fidelity values
are lower than the (mean − variance

2 ) of the false-positive set;
– comprehensive; the gesture can be identified, but another false-positive ges-

ture may be selected. The fidelity values are lower than the mean of the
false-positive, but greater than the (mean − variance

2 ) of the false-positive
set;

– disputed; the gesture cannot be easily identified. The fidelity values are
greater than the mean of the false-positive.

– unknown; the gesture is not recognized.

A disputed gesture is not a problem, it only means that the application has
to deal with ambiguous events. Table 2 shows the results. We can see that each
gesture is recognized 0.5 seconds before the effective end of gesture, it is a good
point for real-time recognition. 100% of the 22 gestures are recognized, and 68%
of these are easily classified without any threshold. With the second database,
only one gesture cannot be recognized. The reproducibility does not seem to be
a problem.

4.2 A Short Public Play

We have created a short demonstration featuring a fight between a real Capoeira
fighter and a virtual one. This demonstration has been produced during the win-
ter 2007/2008 for “Les Antipodes 2008”. This festival is a gathering of different
fields: dance, theater, visual arts, puppetry ... We tried to produce a lively show
with our system. It allows the real actor and the virtual one to synchronize and
react depending on the current situation. This demonstration was 15 minutes
long, repeated during three hours over seven days. This format allows spectators
to ask questions and review important elements at the end of the demonstration.
It is still available in our laboratory.

According to the short script, the actor has to perform only six different
gestures. Besides this limited number of gesture with a real impact on the script,
the recognition system was up during the three hours with a good reaction time.
And most of the gestures are difficult to reproduce because they are mainly
capoeira kick. We used the motion-capture suit Moven from Xsens1.

To conclude, in this performance held in 2008 the recognition of gestures was
robust enough for this demonstration, the actor felt comfortable and the public
was conviced. Since the recognition of this kind of gesture has been demonstrated

1 http://www.moven.com/
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Fig. 5. Demonstration at “Les Antipodes 2008”

in real-time environments, we believe that there are no technical obstacles for a
more complex and longer play.

5 Conclusion and Future Directions

We developed a model of gesture based on compression signal (PCA). This
reduction of the data representation facilitates recognition in real time. Our
system, based on a simple multiagent system, allows us to segment, recognize
and record dynamically gestures. We can complete the table 1 with our own
values:

method nb gesture repetition real-time segmentation expansion
GRIF [2] 37 1 � � �

We have not used yet the sequences of gesture to their full potential for inter-
action between user and virtual actor. This feature of gestures sequence and
its meaning will be very helpfull, associated with a script writing software and
with the improvement of the virtual actor’s behavior. The recognition system
is only a part of a continuing work of understanding and developing technology
for an interactive virtual actor. Computer Theater, as stated by Pinhanez [27],
is a good ground for research on action recognition. Defined context, exagger-
ated gestures, known and reliable mappings between symbols and real worlds
and explicite translation of intention into physical activities can provide a fertile
environment for research on perception of the human.
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pour la synthèse de mouvements réalistes. LISyC, rapport interne, Journées l’Aber
Wrac’h des 29 et 30 mai 2008 (June 2008)

27. Pinhanez, C.: Computer theater. In: International Symposium of Electronic Arts
(ISEA 1997), Chicago, Illinois (September 1997)



Deictic Gestures with a Time-of-Flight Camera
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Abstract. We present a robust detector for deictic gestures based on
a time-of-flight (TOF) camera, a combined range and intensity image
sensor. Pointing direction is used to determine whether the gesture is
intended for the system at all and to assign different meanings to the
same gesture depending on pointing direction. We use the gestures to
control a slideshow presentation: Making a “thumbs-up” gesture while
pointing to the left or right of the screen switches to the previous or next
slide. Pointing at the screen causes a “virtual laser pointer” to appear.
Since the pointing direction is estimated in 3D, the user can move freely
within the field of view of the camera after the system was calibrated.
The pointing direction is measured with an absolute accuracy of 0.6
degrees and a measurement noise of 0.9 degrees near the center of the
screen.

1 Introduction

We use a novel type of sensor, the time-of-flight (TOF) camera, to implement
simple and robust gesture recognition. The TOF camera [1] provides a range map
that is perfectly registered with an intensity image at 20 frames per second or
more, depending on the integration time. The camera works by emitting infrared
light and measuring the time taken by the light to travel to a point in the scene
and back to the camera; the time taken is proportional to the distance of the
point from the camera, allowing a range measurement to be made at each pixel.

In this paper, we use gestures recognized using the TOF camera to control a
slideshow presentation, similar to [2] where, however, a data glove was used to
recognize the gestures. Another idea we adapt from [2] is to recognize only ges-
tures made towards an “active area”; valid gestures made with the hand pointing
elsewhere are ignored. This solves the problem (also known as the “immersion
syndrome”) that unintentional hand movements or gestures made towards other
people may erroneously be interpreted as commands.

We expand this idea by allowing the same gesture to mean different things
when made towards different active areas. Specifically, the slideshow is controlled
in the following way: To go to the next slide, point to the right of the screen and
make a thumbs-up gesture with the hand; to go to the previous slide, point to
the left of the screen and make a thumbs-up gesture. Point at the screen and a

S. Kopp and I. Wachsmuth (Eds.): GW 2009, LNAI 5934, pp. 110–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The application scenario where a user controls a slideshow presentation using
deictic gestures. The gestures include switching between the slides and pointing at the
screen using a virtual laser pointer.

dot appears at the location you are pointing to, allowing you to highlight certain
elements of the slide. This scenario is depicted in Fig. 1.

To determine where the user is pointing on the screen, we need to know its
position relative to the camera. This is determined in a calibration procedure
where the user points at the four corners of the screen from two different loca-
tions; this information is sufficient to compute the position of the screen. After
calibration the user is allowed to move freely within the field of view of the cam-
era, as the system estimates both the screen and the pointing direction in 3D
with respect to the camera coordinate system.

The “thumbs-up” gesture is recognized using a simple heuristic on the silhou-
ette of the hand. This simple technique is sufficient because hand gestures are
only recognized when the user is pointing at one of the two active regions; when
pointing elsewhere, the user need not be concerned that hand movements might
be misinterpreted as gestures.

One important advantage of the TOF camera in this setting is that it directly
measures the three-dimensional position of objects in space, so that the pointing
direction can easily and robustly be obtained as a vector in space. This is much
more difficult for approaches that attempt to infer pointing direction using a
single conventional camera. One solution is to restrict oneself to pointing direc-
tions within the camera plane (see e.g. [3,4]), but this places restrictions on the
camera position and type of gestures that can be recognized. A physical arm
model with kinematic constraints (see e.g. [5]) allows arm pose to be estimated
from a single camera image, but the depth estimation can be unreliable for some
poses of the arm. In contrast, the approach we will present here is simple but at
the same time accurate and robust.
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In the remainder of the paper we will first discuss the detection of the point-
ing and the “thumbs-up” gesture. We will then describe the calibration of the
system. Finally, the accuracy of the virtual laser pointer will be evaluated in an
experimental setup where users had to point at given targets. This evaluation is
conducted in two scenarios: One, where the user does not receive visual feedback,
and another, where the estimated pointing position is indicated by the virtual
laser pointer.

2 Method

Our method can be divided into three individual components: (i) the detection
of the pointing gesture, (ii) the detection of the thumbs-up gesture used for
navigating between slides, and (iii) the calibration of the system. This section
will cover each component in the order mentioned above. For simplicity, we
assume that the user always points towards the left as seen from the camera
throughout this section although this is not a restriction of the system.

2.1 Pointing Gesture

The algorithm for detecting pointing gestures can be subdivided into four main
stages. The first stage segments the person in front of the camera from the back-
ground. The second stage uses the segmented image to identify both the head
and the extended hand that is used for pointing. During the third stage, the 3D
coordinates of head and hand in space are estimated, which are then used to
determine the location on the screen the user is pointing to during the fourth
stage. In the following, we will discuss each step of this procedure individually
in more detail.

Stage 1: The segmentation of the person in front of the camera uses combined
information from both the range and intensity data of the TOF camera. Previous
work [6,7] has shown that the combined use of both range and intensity data
can significantly improve results in a number of different computer vision tasks.
We determine adaptive thresholds for range and intensity based on histograms.
In case of the intensity data the threshold discards dark pixels. This has two
effects: Firstly, the amount of light that is reflected back into the camera decays
proportionally to the squared distance of the object from the camera, thus the
background generally appears significantly darker than the foreground. Secondly,
this procedure discards unreliable pixels from the range measurement, because
the intensity can be considered a confidence measure for the depth estimation
as it is related to the signal-to-noise-ratio. In case of the range data, peaks in
the histogram can be assumed to correspond to objects at different distances in
front of the camera. The threshold is determined as the one that separates the
peak of the closest object from the remaining range values. The final segmented
image is composed of those pixels that were classified as foreground pixels with
respect to both types of data. To ensure that only a single object is considered,
only the largest connected component of foreground pixels is retained, all other
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Fig. 2. Sample image taken with a MESA SR4000 TOF camera. The leftmost image
shows the intensity data. The range image is given in the center, and the resulting
segmentation is shown on the right.

objects are considered background. A sample TOF image showing both range
and intensity with the resulting segmented foreground is given in Fig. 2.

Stage 2: In the second stage, the segmented image is used to determine an
initial guess for the location of the head and hand in the image. We employ
a simple heuristic based on the number of foreground pixels in each column
of the segmented image. The initial guess for the hand is the topmost pixel in
the leftmost pixel column of the silhouette; the head is the topmost pixel in
the tallest pixel column. This procedure is extremely simple to implement, yet
reliable. We use a single parameter θ to determine whether we have a valid initial
estimate, i.e. whether the hand is actually extended and the person is performing
a pointing gesture:

|ihead − ihand| ≥ θ (1)

Here, ihead and ihand denote the indices of the pixel columns corresponding to the
initial guess for the head and hand, respectively, where indices of pixel columns
increase from left to right.

Stage 3: During the third stage of the method, the initial guesses are refined to
more accurate pixel positions in the image. Once these positions are determined,
the corresponding range values are estimated, and finally the coordinates of both
the head and hand can be computed in 3D by inverting the camera projection
using the known intrinsic camera parameters.

In order to refine the pixel positions of the head and hand in the image,
we define rectangular regions of interest (ROIs) around the initial guesses and
compute the centroids of the foreground pixels in the ROIs to find the centers
of the head and hand blobs; these refined positions are marked by crosses in
Figure 3.

To invert the camera projection we require the actual distance of the head
and hand from the camera. Again, we define ROIs around the estimated pixel
coordinates and take the average range value of the foreground pixels within
the ROI to obtain estimates for the two range values. Finally, from the pixel
coordinates (x, y), the distance from the camera r, and the intrinsic parameters
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Fig. 3. Segmented image of the user with the detected locations of the head and hand
marked by crosses. The time-of-flight camera measures the three-dimensional positions
of these points, which are then used to compute the pointing direction.

of the camera one can infer the 3D coordinates of the corresponding point x in
camera coordinates using the following formula:

x = r
((cx − x) · sx, (cy − y) · sy, f)T

‖((cx − x) · sx, (cy − y) · sy, f)T ‖2
(2)

Here, (cx, cy) denotes the principal point, i.e. the pixel coordinates of the point
where the optical axis intersects the image sensor. The width and height of a
pixel are defined by sx and sy, and the focal length is given by f . To obtain a
more stable estimate, a Kalman filter [8] tracks the 3D coordinates of the head
and hand from frame to frame.

Stage 4: Because the TOF camera allows us to determine the position of the
head and hand in space, we directly obtain an estimate for the pointing direction
from the ray that emanates from the head and passes through the hand. (As
Nickel and Stiefelhagen [9] show, the line connecting the head and hand is a
good estimate for pointing direction.) This ray can be represented in camera
coordinates by the following line equation:

r = o + λd (3)

Here, o denotes the origin of the ray and corresponds to the 3D position of the
head. The direction of the ray is given by d = p−o, where p denotes the position
of the hand. The parameter λ ≥ 0 defines a point r in front of the person along
the pointing direction.

We now intersect this ray with the screen used for projecting the slides. To
this end we represent the screen by its center c and the normal n of the screen
plane. Assuming that both c and n are also given in camera coordinates, the
intersection x of the ray and the screen is given by:

x = o +
〈c − o, n〉
〈d, n〉 d (4)
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The intersection is only valid if the scalar product 〈c−o, n〉 is positive, otherwise
the user is pointing away from the screen plane.

What remains to determine is if the intersection lies within the limits of the
screen. In that case, the intersection can be converted to pixel coordinates on
the screen in order to display the virtual laser pointer.

The location and size of the screen are determined by the calibration procedure
introduced in Sect. 2.3. Since the procedure determines the 3D position of the
four corners of the screen independently, the screen is generally not represented
by a perfect rectangle. Thus, we determine the intersection by considering two
triangles that are obtained by dividing the screen diagonally along the line from
the bottom left corner to the top right corner. Assume that the triangles are
defined by their three corners a, b, and c in counter-clockwise order such that
either the top left or the bottom right corner are represented by a. For both
triangles one can solve the following equation under the constraint that d1 = 1:

x =

⎛
⎝a1 b1 − a1 c1 − a1

a2 b2 − a2 c2 − a2
a3 b3 − a3 c3 − a3

⎞
⎠
⎛
⎝d1

d2
d3

⎞
⎠ (5)

Intuitively, we check if the intersection x, represented as a linear combination of
the two sides of the triangle given by b− a and c− a, lies within the bounds of
the triangle. Thus, if d2 + d3 ≤ 1 holds for the upper triangle, the intersection
x lies above the diagonal through the screen. Correspondingly, x lies below the
diagonal if d2 + d3 ≤ 1 holds for the lower triangle.

We now convert the coefficients d2 and d3 to coordinates x and y on the
screen in such a way that the top left corner corresponds to (x, y) = (0, 0)
and the bottom right corner corresponds to (x, y) = (1, 1). This is achieved by
setting (x, y) = (d2, d3) if x was above the diagonal through the screen and
setting (x, y) = (1 − d2, 1 − d3) otherwise. As a result one obtains for example
the four different interpretations of the pointing gesture listed in Tab. 1. These
interpretations correspond to the scenario depicted in Fig. 1.

In the “on screen” case, the virtual laser pointer is displayed on the screen at
the location (x, y) the user is pointing to. If the user is pointing to one of the two
active areas “left of screen” or “right of screen”, a small triangle is displayed at
the corresponding edge of the screen to indicate that the system is now expecting
input in form of the “thumbs-up” gesture to navigate between the slides of the
presentation. In all other cases, any detected pointing gesture is ignored, which
avoids the so-called immersion syndrome [2].

Table 1. Interpretation of pointing gesture

on screen 0.0 ≤ x ≤ 1.0 ∧ 0.0 ≤ y ≤ 1.0

left of screen -0.05 ≤ x < 0.0 ∧ 0.0 ≤ y ≤ 1.0

right of screen 1.0 < x ≤ 1.05 ∧ 0.0 ≤ y ≤ 1.0

off screen otherwise
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Despite the fact that the estimation of the head and hand is quite robust
and we apply a Kalman filter to the approximated 3D coordinates for temporal
smoothing, the estimated intersection of the pointing direction and the screen in
the “on screen” case is not entirely free of noise. This is dealt with by applying
a smoothing filter with an exponential impulse response. The strength of the
smoothing is adaptive and depends on the amount by which the pointing position
changed: The greater the change, the less smoothing is applied. In this way, we
suppress “jitter” in the virtual laser pointer when the user’s hand is stationary
but allow the pointer to follow large hand movements without the lag that would
be caused by a non-adaptive smoothing filter.

2.2 Thumbs-Up Gesture

The detection of the thumbs-up gesture is only triggered when a pointing gesture
made towards one of the two active areas was detected for the current frame
according to the procedure described above.

The thumbs-up detector uses the segmented image and the pixel coordinates
that were estimated for the hand. The main idea of the algorithm is that the
silhouette of an extended thumb that points upwards is significantly narrower
along the horizontal axis than a fist.

Thus, we define an ROI around the position of the hand and count the number
of foreground pixels in each row. Next, we estimate wfist, which denotes the
width of the fist, by taking the maximum number of foreground pixels counted
per row. The parameter wfist is then used to determine the presence of both
the fist and the thumb. We count the number cfist of rows containing at least
0.8 · wfist foreground pixels and the number cthumb of rows containing at least
one and at most 0.3 ·wfist foreground pixels. A thumb is detected in the current
frame if both cfist and cthumb exceed a threshold of two. Due to the fact that the
thresholds for detecting the fist and thumb depend on the estimated width of
the fist wfist in the current image, the procedure is relatively independent of the
distance of the user from the camera, i.e. the algorithm is scale-invariant.

To avoid misdetections due to noise, we keep track of the detections of the
thumb per frame over a certain time window, i.e. the command for switching to
the next slide is only issued if the thumbs-up gesture was detected in four out of
six consecutive frames. At the same time, we want to avoid multiple activations
of the command for switching to the next slide if the above criterion is fulfilled
in a number of consecutive frames. Otherwise, the user would not be able to
go from one slide to the next in a controlled fashion without unintentionally
skipping slides. Thus, we ignore any detections of the gesture for a total of 50
frames once a switch-to-next-slide command was issued. Since our system oper-
ates at roughly 25 Hz, a new command can only be issued every two seconds.
This gives the user sufficient time to end the thumbs-up gesture once the gesture
takes effect in order to prevent the system from switching directly to the
next slide.
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2.3 System Calibration

The third component of our method deals with the calibration of the system. To
determine where the user is pointing on the screen, we need to know its position
relative to the camera. This is determined in a calibration procedure where
the user points at the four corners of the screen from two different locations;
this information is sufficient to compute the position of the screen, as we will
demonstrate in more detail in the following.

During calibration the user is asked to point continuously at one of the four
corners of the screen for a total of 50 frames. This allows us to obtain a robust
estimate for the position of the head and hand for the given pointing direction.
Again, the pointing direction can be represented by a ray r = o + λd that
emanates from the head and passes through the hand. We can assume that this
ray passes through the corner the user was pointing at. However, we do not know
the exact location of the corner along the ray.

To obtain this information, the user is asked to move to a different position
in the field of view of the camera and to point again at the same corner for
a total of 50 frames. By this procedure we estimate a second ray that should
also pass through the corner of the screen. Ideally, the two rays intersect at the
position of the corner; however, this assumption does generally not hold due to
measurement noise. Nevertheless, a good estimate for the position of the corner
can be obtained from the point that is closest to both rays in 3D space.

Assuming that the two estimated pointing directions are represented by rays
ri = oi + λidi where i ∈ {1, 2}, one can obtain this point by minimizing the
squared distance (o1 + λ1d1 − o2 − λ2d2)2 between the two rays with respect
to λ1 and λ2. This leads to the following linear system of equations where we
assume ‖di‖ = 1 without loss of generality:(

1 〈d1, d2〉
−〈d1, d2〉 −1

)(
λ1
λ2

)
=
(−〈o1 − o2, d1〉
−〈o1 − o2, d2〉

)
(6)

Solving Eq. (6) yields the parameters λ1 and λ2, which specify the closest point
on one ray with respect to the other, respectively. Taking the arithmetic mean of
both solutions as specified by Eq. (7) yields the approximation of the intersection
of both rays and, thus, an estimate for the position of the corner in camera
coordinates:

x = 0.5 · (o1 + λ1d1 + o2 + λ2d2) (7)

This procedure can be repeated for the remaining three corners of the screen.
The approach does not guarantee, however, that all four corners lie in one plane.
Thus, we fit a plane through the four corners by least squares and project the
corners onto this plane to obtain their final estimates. The normal to this plane
and the four corners are used to determine where the user is pointing on the
screen, as described in Sect. 2.1. Obviously, this calibration procedure does not
generally yield a screen that resembles a perfect rectangle in 3D space. How
this problem can be treated by dividing the screen into two triangles along its
diagonal was also discussed in Sect. 2.1.



118 M. Haker et al.

We consider the procedure of not enforcing the screen to be rectangular an
advantage, because it provides an implicit way of correcting systematic errors.
Such errors may for example be caused by measurement errors or a simplified
approximation of the camera parameters. The former can e.g. be due to multiple
reflections of the scene [10]. The latter can occur if the optical system is not
modelled accurately in the process of inverting the camera projection, e.g. if
radial distortions of the lens or other effects are not taken into account.

3 Results

The method was implemented in C++ under the Windows operating system.
On a 2 GHz Intel Core 2 Duo, it requires 40 ms per frame, achieving a frame
rate of 25 frames per second.

To assess the accuracy with which the pointing direction is measured, we
performed a test with 10 users. Each user was first given a few minutes to practice
using the system. We then presented a sequence of nine targets at predefined
positions on the screen; users were instructed to point at a target as soon as it
appeared. Once a pointing gesture towards the screen was detected, each target
was presented for a total of 50 frames, which corresponds to a time interval
of roughly two seconds, before it disappeared. Users were asked to return to a
normal standing position after the target had disappeared. Before presenting
the next target, the system waited for four seconds to allow the user to rest the
arm. The order in which the targets appeared was chosen in such a way that the
average distance between successive targets on the screen was maximized.

For each user, we performed this test under two different conditions: Under
the first condition, the virtual laser pointer was switched off, i.e. the users did
not receive any feedback about the measured pointing direction. This gives an
impression of the overall accuracy of the system. For the second test condition,
the virtual laser pointer was switched on, allowing users to compensate for sys-
tematic calibration and measurement errors. This test condition therefore gives
an impression of the residual measurement noise after the temporal smoothing
described in Sect. 2.1.

Fig. 4a shows the results of the first test condition (without visual feedback)
to assess the overall accuracy of the system. Here, measured error in pointing
direction can have two sources: (i) Systematic errors due to measurement noise
and inaccurate calibration and (ii) errors induced by the assumption that the
ray emanating from the eyes across the hand corresponds to the natural human
pointing direction [11]. The horizontal axis plots the frame number after the
pointing gesture was detected, and the vertical axis plots the distance between
the target and the measured pointing position in pixels. In the test setup the
screen had a size of 1.71 m × 1.29 m and the user was standing at a distance of
roughly 3.2 m from the screen. As a result, an offset of 20 pixels corresponds to
approximately one degree. The solid line gives the mean distance, averaged over
all users and pointing targets, and the shaded area indicates an interval of two
standard deviations above and below the mean, i.e. 95% of the errors fell within
this range.
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Fig. 4. Measurement error in pointing direction (a) without visual feedback (the virtual
laser pointer was switched off) and (b) with visual feedback (virtual laser pointer
switched on). The horizontal axis plots the time in seconds after the target appeared,
and the vertical axis plots the distance between the target and the measured pointing
position.
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Fig. 5. Measurement error in pointing direction (a) without visual feedback (the virtual
laser pointer was switched off) and (b) with visual feedback (virtual laser pointer
switched on). Only targets near the center of the screen where considered.

From the plot, we can see that users took around 10 frames or 400 ms to point
at a target; after this time, the average error stabilizes at around 106 pixels (or
5.3 degrees), with 95% of error falling between 0 and 271 pixels.

Fig. 4b shows the results of the second test condition (with visual feedback).
As expected, the error stabilizes at a lower value of 23 pixels (or 1.2 degrees)
on average but also takes a longer time to do so – around 1600 ms. This is
because, after pointing at the target as in the first test, users need to correct
their hand position to compensate for the systematic measurement error and
bring the virtual laser pointer onto the target.

A closer look at the data reveals that the largest measurement errors occur
for targets that are close to the corners of the screen. This is mainly due to
shortcomings of the rather simple calibration procedure. However, the system
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is well calibrated for the center of the screen where most of the content of a
presentation is likely to be placed. Thus, the impact of calibration errors near
the corners on the usability is rather low. This becomes clear by looking at
Fig. 5a and Fig. 5b. Again, the plots show the distance between the target and
the measured pointing position without and with visual feedback, respectively.
This time however, only targets near the center were considered. In case of
the first test condition without visual feedback the average error amounts to
91 pixels (4.6 degrees). For the second test condition with visual feedback the
average error was halfed to 12 pixels, which corresponds to 0.6 degrees. Note also
that the standard deviation decreased significantly to 17 pixels (0.9 degrees) in
the test with visual feedback, which indicates that the system is very robust and
hence intuitive to use near the center of the screen.

4 Discussion

We have presented a framework that implements simple and robust gesture
recognition in the context of a slideshow presentation. The system is based on
a TOF camera that allows us to detect and interpret pointing gestures in an
intuitive and effective way, because the provided range data facilitates the lo-
calization of the user in front of the camera and allows the estimation of the
pointing direction in 3D space once the head and hand have been identified.

We believe pointing is a powerful way to determine whether a gesture is
intended for the system at all and to assign different meanings to the same
gesture depending on where the user is pointing. A simple gesture with a simple
recognition procedure is sufficient for our application because the meaning of
the gesture is strongly tied to the direction it is made in.

Thus, we have developed an intuitive system that allows the user to control
a slideshow by switching between slides through a simple thumbs-up gesture
that is made towards one of the sides of the screen. Alternatively, we could have
implemented an additional thumbs-down gesture using a single active area, but
our intention here was to demonstrate the use of multiple active areas, i.e. the
number of active areas multiply the number of actions that can be triggered
with a given set of gestures. Finally, the user may highlight certain details on
the slides simply by pointing at them; a virtual laser pointer is displayed at the
location the user is pointing to. This virtual laser pointer has two advantages:
First, the size and appearance can be chosen depending on the context. Second,
the build-in smoothing of the pointer can veil a tremor of the users hand that
may originate from an impairment or excitement.
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Abstract. In this paper we present a survey of our research on analysis of 
expressive gesture and how it is evolving towards the analysis of expressive 
social interaction in groups of users. Social interaction and its expressive 
implications (e.g., emotional contagion, empathy) is an extremely relevant 
component for analysis of expressive gesture, since it provides significant 
information on the context expressive gestures are performed in. However, 
most of the current systems analyze expressive gestures according to basic 
emotion categories or simple dimensional approaches. Moreover, almost all of 
them are intended for a single user, whereas social interaction is often 
neglected. After briefly recalling our pioneering studies on collaborative robot-
human interaction, this paper presents two steps in the direction of novel 
computational models and techniques for measuring social interaction: (i) the 
interactive installation Mappe per Affetti Erranti for active listening to sound 
and music content, and (ii) the techniques we developed for explicitly 
measuring synchronization within a group of users. We conclude with the 
research challenges we will face in the near future. 

Keywords: expressive gesture analysis and processing, analysis of social 
interaction in small groups, multimodal interactive systems. 

1   Introduction 

This paper presents a survey of our research on analysis of expressive gesture and 
how it is evolving towards the analysis of social interaction in (small) groups of users. 

Research on expressive gesture became particularly relevant in recent years  
(e.g., see the post-proceedings of Gesture Workshops 2003, 2005, and 2007). 
Psychological studies have been a fundamental source for automatic analysis of 
expressive gesture since they identified which features are most significant (e.g., De 
Meijer, 1989; Wallbott, 1998; Boone and Cunningham, 1998). A further relevant 
source has been research in the humanistic tradition, in particular choreography. As a 
major example, in his Theory of Effort, the choreographer Rudolf Laban (1947) 
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describes the most significant qualities of movement. Starting from these sources, 
several systems for analysis of expressive gesture were developed (e.g., Camurri  
et al., 2003, 2005; Kapur et al., 2005; Bernhardt et al., 2007).  

However, most of such systems classify gestures according to basic emotion 
categories or simple dimensional approaches. Moreover, almost all of the existing 
systems are intended for a single user, whereas social interaction is neglected.  

Nevertheless, social interaction is an extremely relevant component for analysis of 
expressive gesture, since it provides significant information on the context expressive 
gestures are performed in. Social intelligence or social competencies, understood as 
the ability to deal effectively in interpersonal contexts, is a paradigmatic human 
ability, widely studied in psychology and more recently in neurophysiology, which is 
receiving a growing interest from the ICT communities. Research in experimental 
psychology and neurosciences has shown that nonverbal communication, and in 
particular expressive gesture, is a key aspect of social interaction. 

Current research on social interaction, however, does not focus on the high-level 
emotional aspects, but rather on group cohesion and decision-making. In this 
framework, pioneering studies by Pentland (2007) investigated techniques to measure 
social signals in scenarios like salary negotiation and friendship. Particular attention 
was also directed to the recognition of functional roles (e.g., most dominant people) 
played during small-group meetings (e.g., Dong et al., 2007). These works are often 
based on laboratory experiments and do not address the more subtle aspects of social 
interaction such as emotional contagion and empathy. Empathy, in fact, has been 
studied mainly in the framework of synthesis of (verbal) dialogues by virtual 
characters and embodied conversational agents (see for example de Rosis et al., 2005; 
McQuiggan and Lester, 2007). The EU-ICT project SAME (www.sameproject.eu) 
has recently developed techniques for social active listening to music by mobile 
devices, i.e., for allowing a (small) group of users to mould collaboratively a pre-
recorded music piece they are listening to (e.g., see Varni et al., 2009, for the 
description of an application presented at Agora Festival, Ircam, Paris, in June 2009). 

The major research challenge in our work consists of analyzing even the subtlest 
and most significant emotional expressions conveyed by expressive gesture in a social 
framework, such as empathy and emotional contagion. After recalling our pioneering 
studies on collaborative robot-human interaction, carried out in the late Nineties, this 
paper presents two steps in the direction of novel computational models and 
techniques for measuring social interaction: (i) the interactive installation Mappe per 
Affetti Erranti, where we first investigated social interaction in a small group of users 
and explored how to use this information in a multi-user multimodal interactive 
system for active listening of sound and music content, and (ii) the techniques we 
developed for explicitly measuring synchronization within a group of users. Such 
techniques are based on the analysis of complex systems, where each user is modelled 
as a component of a complex system, and which have been applied both in 
experiments and applications in the framework of the SAME Project.  

Finally, starting from this experience, we conclude with the research challenges we 
will face in the near future. These are in the direction of a deeper understanding of the 
mechanisms underlying phenomena such as empathy and emotional contagion, that 
are studied by considering ensemble music performance (e.g., a string quartet) as an 
ideal test-bed for experiments and proof-of-concepts. 
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2   Pioneering Studies: Collaborative Human-Robot Interaction 

Our pioneering studies on analysis of expressive gesture in social interaction date 
back to the beginning of our Lab in 1984. In particular, in the late Nineties, such 
studies were carried out in the framework of human-robot interaction (e.g., Camurri et 
al., 2000). A major goal was (and partially still is) to explore paradigms of expressive 
social interaction between humans and robots in the framework of multimodal 
environments in music, theatre, museum exhibitions, and art installations.  

In one of such works (Suzuki et al., 1998), we experimented with a small mobile 
robot on wheels (a Pioneer 1 from Stanford Research Institute) as a semi-autonomous 
agent capable of communicating with the visitors of a museum exhibit on 
contemporary art (Arti Visive 2, Palazzo Ducale, Genova, October 1998) by means of 
several channels, including sound and music, visual media, and style of movement 
(e.g., fast/slow, smooth/nervous, tail-wagging). The robot wandered in the museum 
exhibit as one of the visitors, a sort of medium between humans and machines 
inhabiting the exhibit area. Sensors allowed it to avoid collisions with the surrounding 
people and to observe artworks and visitors. The goal was to generate a musical and 
visual feedback for visitors and to interact with them (see Figure 1a). Feedback 
depended on a model of artificial emotions, simulating the internal emotional state of 
the robot. A basic idea for the visual output was to take the images the robot captured 
and to transform them in real time by “virtual mirrors” reflecting the internal state of 
the robot. For example, if the robot could not follow its path – one of its goal was to 
visit the exhibit – a mirror deformation in a sort of pulsing spiral emerged (see  
Figure 1b), accompanied by faster rhythmic music textures. More details on the 
models and the architecture we used can be found in (Suzuki et al., 1998; Camurri and 
Coglio, 1998, Camurri and Ferrentino, 1999). 

In another experimental set-up, we developed a “theatrical machine” for the 
performance of the music piece Spiral, by K. Stockhausen, for one singer or player (in 
this performance, one trombone) endowed with a short wave radio. The radio, audio 
amplifier, and loudspeakers were installed on board of a robot navigating on the stage, 
thus creating effects of physical spatialization of sound due to the movement of the 
 

  
(a) (b) 

Fig. 1. Social interaction between a robot and a group of visitors at the art exhibition Arti Visive 
2 (Genova, Italy, October 1998): (a) the robot interacting with visitors, (b) an example of visual 
output. 
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(a) (b) 

Fig. 2. Collaborative human-robot interaction in the framework of the multimedia performance 
L’Ala dei Sensi (Ferrara, Italy, November 1998): (a) robot/dancer interaction, (b) an example of 
visual feedback 

robot during the performance (trombone: Michele Lo Muto, live electronics: Giovanni 
Cospito, Civica Scuola di Musica, Sezione Musica Contemporanea, Milano, June 
1996). The movements of the robot were influenced by sound parameters and by the 
gesture of the trombone performer: for example, a high “energy” content by the 
trombonist’s gesture and a high sound spectral energy were stimuli for the robot to 
move away from the performer. Smooth and calm phrasing and movements were 
stimuli attracting the robot near and around the performer. Further, the robot sound 
and music output were part of the interaction process, i.e., the expressive gesture 
nuances and the sound produced by the performer influenced the robot, and  
vice-versa. 

For L’Ala dei Sensi (see Figures 2a and 2b), a multimedia performance about 
human perception (Director: Ezio Cuoghi; Choreographer and dancer: Virgilio Sieni, 
Ferrara, Italy, November 1998), we contributed two episodes involving interactive 
dance/music performance, making use of a small mobile robotic platform (a Pioneer 2 
from Stanford Research Institute). The robot was equipped with sensors, an on-board 
video projector and a video-camera. Sensors allowed the robot to avoid collisions 
with the scenery and the dancers. In the main episode, initially the on-board video 
projector and the video-camera were directly controlled in real-time by the director 
(off-stage). He also used the images coming from the robot (the robot’s point of view) 
to mix them in real time on a large screen. The director controlled the movements of 
the robot too. That is, the robot was a sort of passive companion of the dancer. At a 
certain point, the dancer plugged off the electric power cable of the robot. This was a 
specially important gesture: the robot came to life and a deeper dialogue with the 
dancer started. The dancer was equipped with two sensors on the palms of the hands. 
By acting on the first one, he was allowed to influence the robot towards one between 
two different styles of movement: a kind of “ordered” movement (aiming at a direct, 
constant speed movement) and a “disordered” type of movement. Through the second 
sensor the movement could be stopped and restarted. The dancer was also observed 
by a video-camera and his expressive gestures were a further stimulus for the robot, 
which was able to react by changing (morphing) its style of moving. 
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3   The Interactive Collaborative Installation Mappe Per Affetti 
Erranti 

More recently, we studied expressive gesture in social interaction in the framework of 
collaborative and active listening to sound and music content. With active listening 
we mean that listeners are enabled to interactively operate on (pre-recorded) music 
content through their movement and gesture, by modifying and moulding it in real-
time while listening. Active listening is investigated in the framework of the EU-ICT 
Project SAME (www.sameproject.eu). Mappe per Affetti Erranti is a collaborative 
multi-user multimodal interactive system, where four users collectively collaborate in 
the active listening to a music piece, by their expressive movement and gesture.  

Mappe per Affetti Erranti – literally “maps for wandering affects” – (Camurri et 
al., 2008) reworks and extends the concept of navigation and exploration of a virtual 
orchestra by introducing multiple levels: from the navigation in a physical space 
populated by virtual objects or subjects up to the virtual navigation in emotional 
spaces populated by different expressive performances of the same music piece. Users 
can navigate such emotional spaces by their expressive movement and gesture. Only 
social interaction and collaboration leads to a correct reconstruction of the music 
piece. In other words, while users explore the physical space, the (expressive) way in 
which they move and the degree of collaboration between them allow them to explore 
at the same time an emotional space, by means of transformations in real-time of the 
interpretation of the music content.  

At the physical level, space is divided in several areas. A voice of a polyphonic 
music piece is associated to each area. The music content is coded as multiple 
independent audio channels. The presence of a user (even a single user, who can vary 
from a non-expert user to a dancer) triggers the reproduction of the music piece. By 
exploring the space, the user walks through several areas and listens to the single 
voices separately. If the user stays in a single area, she listens to the voice associated 
to that area only. If she does not move for a given time interval, music fades out and 
turns off. The user can mould the voice she is listening to in several ways. At a low 
level, she can intervene on parameters such as loudness, density, amount of 
reverberation, and spatial position. At a higher level, she can intervene on the 
expressive features of the music performance, i.e., change the interpretation. This is 
done through the navigation of an emotional space. The system analyzes the 
expressive intention the user conveys with her expressive gesture and translates it in a 
position (or a trajectory) in an emotional space. Like the physical space, such 
emotional space is also divided in several areas, each corresponding to a different 
performance of the same voice with a different expressive intention. Several examples 
of such emotional spaces are available in the literature, for example the spaces used in 
dimensional theories of emotion (e.g., Russell, 1980; Tellegen et al., 1999) or those 
especially developed for analysis and synthesis of expressive music performance 
(e.g., Juslin, 2000; Vines et al., 2005). Users can thus explore the music piece in a 
twofold perspective: navigating the physical space they explore the polyphonic 
musical structure; navigating the emotional space they explore music interpretation. A 
single user, however, can only listen to and intervene on a single voice at time: she 
cannot listen to the whole polyphonic piece. 
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Only a group of users can fully experience Mappe per Affetti Erranti. In particular, the 
music piece can be listened to in its whole polyphony only if a number of users at least 
equal to the number of voices is interacting with the installation. Each user controls the 
interpretation of the performance of the voice associated to the area she occupies: e.g., a 
shy, hesitant behavior causes the corresponding voice interpretation to be whispering, 
soft; if a user is moving aggressively and with sudden impulsive gesture, the 
corresponding voice becomes interpreted correspondingly (louder, with sudden peaks, 
etc.). The whole piece is performed coherently, that is with the same expressive intention, 
only if all the users are moving with the same expressive intention. Thus, the more users 
move with different, conflicting expressive intentions, the more the musical output is 
incoherent and chaotic. But the more users move with similar expressive intentions and 
in a collaborative way, the more the musical output is coherent and the music piece is 
listened to in one of its different expressive interpretations. 

In the current instance of the system of Mappe per Affetti Erranti (Figure 3), the 
physical map is composed by four areas. Tenore and soprano voices are associated to 
the central areas and contralto and basso to the lateral ones. Four expressive 
performances of the same music piece are available: Happy/Joyful, Solemn, 
Intimate/Shy, and Angry/Aggressive. These are associated to the same four 
expressive intentions classified from users expressive gestures. Analysis of expressive 
gesture is performed by means of twelve expressive features: Quantity of Motion, 
computed on the overall body movement and on translational movement only; 
Impulsiveness, vertical and horizontal components of velocity of peripheral upper 
parts of the body; speed of the barycentre; variation of the Contraction Index; Space 
Occupation Area; Directness Index (inspired by the Space dimension of Laban’s 
Effort Theory), Space Allure (inspired by the Pierre Schaeffer’s Morphology), 
Amount of Periodic Movement, and Symmetry Index. Such descriptors are computed 
in real-time for each user. Further descriptors are computed also on the whole group 
of users: e.g., the contraction/expansion of the group and its cohesion. This 
perspective corresponds to Rudolf Laban’s General Space (Laban, 1947). 
Classification is performed following a fuzzy-logic like approach. Such approach has 
the advantage that it does not need a training set of recorded movement and it is also 
flexible enough to be applied to the movement of different kinds of users (e.g., adults, 
children, elder people). 

 

  

Fig. 3. Mappe per Affetti Erranti experienced by a group of four users (left) and by two dancers 
during a dance performance (right) 
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In Mappe per Affetti Erranti, synchronization has a particular importance. Only 
synchronization in the expressive intentions conveyed by the users allows the correct 
reconstruction of the music piece.  

Techniques for the real-time management of the synchronization of the four 
musical voices have been developed. At the audio level, each audio file is manually or 
semi-automatically segmented in phrases and sub-phrases. Changes in the expressive 
intention detected from movement trigger a switch to the corresponding audio file at a 
position, which is coherent to the position reached by that expressive interpretation as 
a result of the movement of the users. In such a way, we obtain a continuous 
resynchronization of the single voices depending on the expressive intentions 
conveyed by the users.  

The system analyzes the expressive gesture of each single user. Synchronization 
emerges as the result of the collective behavior of the users. As for the audio 
processing and real-time synchronization of the several voices, we developed a series 
of techniques to align the audio channels following the phrasing, the changing of 
interpretation of the recorded voices, and the mutual behavior of the users. For 
example, when a user imitates the expressive behavior of another, her associated 
voice changes to the same interpretation as the other one (the leader, at this moment): 
the two voices then synchronize, by aligning in real-time the second voice to the 
leader’s voice, keeping into account the phrasing for having naturalness and 
continuity in the perceived audio. The synchronization is therefore modeled at a “sub-
phrasing” level. A sudden, musically unrelated synchronization of two voices just at 
the time instant in which the system detects a change of behavior would be perceived 
unnatural. Let us consider the two-user example mentioned above. The first is moving 
joyful/happy and the second shy/intimate/hesitant, with the corresponding rendering 
of the music interpretations joyful and soft/whispering, respectively. The music 
results not synchronized: an intimate performance is usually slower than a joyful one. 
If the second user changes her behavior from shy to joyful, her corresponding voice, 
once concluded the current musical sub-phrase, will shift from the shy to the joyful 
audio file, and the time instant where it continues to play the audio will be the same of 
the other (leading) voice. This synchronization driven by the expressive gesture and 
by the semantics of the musical content causes a short delay (a few hundreds of ms, 
corresponding to sub-phrase average duration), but proved to be the best strategy: it is 
perceived as natural by users, and it also follows the natural motor task strategy that 
would be adopted by a singer to manage sudden changes in interpretation (the most 
natural way is to change interpretation at the starting of the next sub-phrase, allowing 
a preparation and re-programming of the next motor task of singing). We considered 
other synchronization strategies, e.g., time-warping of voice music signals, but these 
demonstrated to be unnatural both from the singer and listener perspective. Further, 
they destroy the naturalness of expressive interpretation, and are computationally 
much more intensive. 

The next step, still missing in Mappe per Affetti Erranti, is to explicitly measure 
the synchronization of the group. 
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4   Measuring Synchronization in a Group of Users 

Starting from the results obtained in Mappe per Affetti Erranti, the focus of our 
research is shifted to the development of methodological frameworks, computational 
models, and algorithms for the analysis of creative communication within groups of 
users in terms of synchronization.  

Synchronization can be broadly referred to as a phenomenon occurring when “two 
or many systems adjust a given property of their motion to a common behaviour, due 
to coupling or forcing” (Boccaletti et al., 2002). This definition covers different kinds 
of synchronization: from Phase Synchronization (PS), in which only the phases of the 
trajectories described from the systems in the phase space are locked, to Complete 
Synchronization (CS) in which the trajectories are almost identical.  

To date, notwithstanding the large number of works on synchronization in many 
research fields (e.g., electronics, physics, medicine, psychology), there is a lack of 
studies focusing on this phenomenon in non stereotyped and non laboratory 
conditions and taking into account non-verbal expressive communication. 

Our approach considers all interacting users as a complex system having as basic 
units the single users. It is well known that interacting units of a complex system are 
able to auto-organize and exhibit global properties, which are not obviously derived 
from their individual dynamics: synchronization is one of these properties. Each user 
is described by means of the time evolution of a N-dimensional state vector of 
behavioral expressive features. The state vector components may include, for 
example, coordinates and velocity of joints or other body parts (e.g., center of mass of 
head or limbs), energy and amount of motion, or audio and physiological features. We 
refer to such multimodal features as expressive Movement, Audio, Physiological 
(eMAP) features. eMAP features are extracted using real-time, synchronized, multi-
modal feature extraction techniques and are the inputs to the computational models 
explaining the processes underlying interpersonal creative communication. 

We chose PS as one of the baseline low-level signals to indirectly measure more 
complex phenomena like empathy and dominance in small groups of subjects. Our 
hypothesis is that empathy occurs when synchronization of specific expressive 
features emerge. Nonetheless, our hypothesis considers this a necessary, but not 
sufficient, condition: synchronization may emerge also in cases where empathy does 
not occur. Our work addresses PS exploiting the concepts of Recurrence (Poincaré, 
1890), Recurrence Plots (RP) (Eckmann et al., 1987) and Cross-Recurrence Plot 
(CRP), and their quantification by means of Recurrence Quantification Analysis 
(RQA) (Marwan et al., 2007, Zbilut et al., 1992). RP/CRP and RQA give qualitative 
and quantitative information on systems’ dynamics and their interrelations in terms of 
trajectories in the phase space, whereas RQA allows to quantify small-scale patterns 
in RP/CRP and provides quantitative information on the systems dynamics. We think 
that changes in the number of occurrences and strength of PS among users can be 
considered useful features toward evaluation of empathy.  

In our research, we focused on joint music performance, an ideal test-bed for the 
development of models and techniques for measuring creative social interaction in an 
ecologically valid framework. Music is widely regarded as the medium of emotional 
expression par excellence. Moreover, ensemble performance is one of the most 
closely synchronized activities that human beings engage in: it is believed that this 
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Fig. 4. Experiments on joint music performance: (a) music duo performance in which the two 
musicians can communicate, also exchanging visual information, (b) the famous string quartet 
Quartetto di Cremona during the experiment. Each musician wears a white hat including a 
green passive marker and a 3-axis accelerometer, plus a 3-axis accelerometer on the back, and 
physiological sensors for heart rate, breath, ocular movements, and face muscles. 

ability from individuals and groups to entrain to music is unique only to humans and 
that, unlike speech, musical performance is one of the few expressive activities 
allowing simultaneous participation.  

During the last three years, we focused on the analysis of famous string quartets 
and on duos of violin players. The ensembles Cuarteto Casal, Quartetto di Cremona, 
Quartetto Prometeo have been involved initially in feasibility studies (e.g., to study 
and understand which multimodal features can explain their expressive social 
behavior) and in experiments at our Centre and in occasion of their concerts at the 
Opera House of Genova. In addition, in collaboration with Ben Knapp (SARC, 
University of Belfast) and Carol Krumhansl (Cornell University) we carried out 
measurements of duos of violinists participating in the International Violin 
Competition Premio Paganini in 2006, in the framework of the EU Summer School of 
the HUMAINE Network of Excellence. More recently, again in collaboration with the 
SARC colleagues, we performed multimodal synchronized recordings of the 
Quartetto di Cremona. Figure 4 shows snapshots from the experiments. 

Using the PS approach described above, several results emerged: for example, in 
the case of a music duo performance, it was possible to evaluate how the visual and 
acoustic channels affect the exchange of expressive information during the 
performance and how positive emotion can affect the emergence of synchronization 
(Varni et al., 2008). Moreover, foundations for a criterion to distinguish between 
parallel and reactive empathic outcomes have been defined. Furthermore, measures of 
the direction of PS confirmed the hypothesis on egalitarian distribution of dominance 
in a duo performance . Further, preliminary results from the analysis of string quartets 
highlighted how the induction of a positive emotion in one of the musicians of the 
group resulted in an increased synchronization among musicians (in terms of heads 
movement), with respect to no emotion induction condition. In the same experiment, 
the SARC colleagues found high physiological synchronization with the structural 
changes in the music. Moreover, measures relating to performer mistakes, and the 
perceived difficulty of the music were found, which also strongly affect both intra- 
and inter-personal synchronization. This effect of emotion on synchronization 



 Towards Analysis of Expressive Gesture in Groups of Users 131 

(emotional synchronization) is an important issue that will be further explored in our 
research. 

We developed a real-time implementation of these techniques, resulting in the 
EyesWeb XMI Social Signal Processing Library (Varni et al., 2009a), which is 
employed in the framework of the SAME Project to develop applications for social 
active music listening experiences. In particular, the Sync’n’Move application 
prototype, based on EyesWeb XMI and its extensions to Nokia S60 mobile phones, 
enables users to experience novel form of social interaction based on music and 
gesture (Varni et al., 2009b). Users move rhythmically (e.g., dance) while wearing 
their mobiles. Their PS is extracted from their gesture (e.g., using the accelerometers 
data from the mobiles) and used to modify in real-time the performance of a pre-
recorded music. More specifically, every time users are successful in synchronizing 
among themselves, music orchestration and rendering is enhanced; while in cases of 
low synchronization, i.e., poor collaborative interaction, the music gradually corrupts, 
looses sections and rendering features, until it becomes a very poor audio signal. 

5   Conclusion 

This paper presented a survey of our research on analysis of expressive gesture and 
how it is evolving towards the analysis of social interaction in (small) groups of users. 
However, to date, research on measuring quantitative and qualitative interpersonal  
communication in groups and on supporting models and tools is still a broadly 
unexplored field. In this scenario, our future research directions include: investigation 
on the key factors driving interpersonal synchronization in a group and determining 
the feeling of group cohesion; how emotional, physical, and social contexts can affect 
interpersonal and intrapersonal synchronization in one or more modalities; the 
identification of specific functional roles inside a group. Further, another recent 
research project concerns the social active experience of audiovisual content, in the 
framework of museum and cultural projects: it is an extension of the concept of active 
music listening, and we are exploring directions to enhance the visiting experience of 
museum visitors. 
 
Acknowledgements. This research is partially supported by the EU 7FP ICT SAME 
Project (www.sameproject.eu). We thank our colleagues at InfoMus – Casa Paganini 
Corrado Canepa, Paolo Coletta, Donald Glowinski, Maurizio Mancini, Alberto 
Massari, and Barbara Mazzarino for their important contributes to research. We are 
grateful to Ipke Wachsmuth and Stefan Kopp for the precious suggestions. 

References 

Bernhardt, D., Robinson, P.: Detecting Affect from Non-stylised Body Motions. In: Paiva, 
A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 59–70. Springer, 
Heidelberg (2007) 

Boccaletti, S., Kurths, J., Osipov, G., Valladeres, D.L., Zhou, C.S.: The Synchronization of 
Cahotic Systems. Phys. Rep. 366(1-2), 1–101 (2002) 



132 A. Camurri, G. Varni, and G. Volpe 

Boone, R.T., Cunningham, J.G.: Children’s decoding of emotion in expressive body 
movement: The development of cue attunement. Developmental Psychology 34, 1007–1016 
(1998) 

Camurri, A., Coglio, A.: An Architecture for Emotional Agents. In: IEEE Multimedia, October-
December 1998, pp. 24–33. IEEE CS Press, Los Alamitos (1998) 

Camurri, A., Ferrentino, P.: Interactive environments for music and multimedia. Multimedia 
Systems 7, 32–47 (1999) 

Camurri, A., Coletta, P., Ricchetti, M., Volpe, G.: Expressiveness and Physicality in 
Interaction. Journal of New Music Research 29(3), 187–198 (2000) 

Camurri, A., Lagerlöf, I., Volpe, G.: Recognizing emotion from dance movement: Comparison 
of spectator recognition and automated techniques. Intl. J. Human-Computer Studies 59, 
213–225 (2003) 

Camurri, A., De Poli, G., Leman, M., Volpe, G.: Toward Communicating Expressiveness and 
Affect in Multimodal Interactive Systems for Performing Art and Cultural Applications. 
IEEE Multimedia 12(1), 43–53 (2005) 

Camurri, A., Canepa, C., Coletta, P., Ferrari, N., Mazzarino, B., Volpe, G.: The Interactive 
Piece The Bow is bent and drawn. In: Proc. 3rd ACM Intl. Conf. on Digital Interactive 
Media in Entertainment and Arts (DIMEA 2008), Athens, Greece, pp. 376–383 (2008) 

De Meijer, M.: The contribution of general features of body movement to the attribution of 
emotions. J. of Nonverbal Behavior 13, 247–268 (1989) 

De Rosis, F., Cavalluzzi, A., Mazzotta, I., Novielli, N.: Can embodied conversational agents 
induce empathy in users? In: Proceedings of AISB 2005, Virtual Social Character 
Symposium (2005) 

Dong, W., Lepri, B., Cappelletti, A., Pentland, A., Pianesi, F., Zancanaro, M.: Using the 
influence model to recognize functional roles in meetings. In: Proc. 9th Intl. ACM Conf. on 
Multimodal Interfaces, pp. 271–278 (2007) 

Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical system. Eurpph. 
Lett. 5, 973–977 (1987) 

Juslin, P.N.: Cue utilization in communication of emotion in music performance: relating 
performance to perception. Journal of Experimental Psychology: Human Perception and 
Performance 26(6), 1797–1813 (2000) 

Kapur, A., Kapur, A., Virji-Babul, N., Tzanetakis, G., Driessen, P.F.: Gesture-Based Affective 
Computing on Motion Capture Data. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. 
LNCS, vol. 3784, pp. 1–7. Springer, Heidelberg (2005) 

Laban, R., Lawrence, F.C.: Effort. Macdonald&Evans Ltd., London (1947) 
Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex 

systems. Phsysics Reports 438, 237–329 (2007) 
McQuiggan, S.W., Lester, J.C.: Modeling and evaluating empathy in embodied companion 

agents. Intl. J. Human-Computer Studies 65(4), 348–360 (2007) 
Pentland, A.: Social signal processing. IEEE Signal Processing Magazine 24(4), 108–111 

(2007) 
Poincaré, H.: Sur la problèmedes trois corps et les equations de la dynamique. Acta Math 13, 

1–271 (1890) 
Russell, J.A.: A circumplex model of affect. J. of Personality and Social Psychology 39, 1161–

1178 (1980) 
Suzuki, K., Camurri, A., Hashimoto, S., Ferrentino, P.: Intelligent Agent System for Human-

Robot Interaction through Artificial Emotion. In: Proc. IEEE Intl. Conf. on Systems Man 
and Cybernetics SMC 1998, San Diego, USA (1998) 



 Towards Analysis of Expressive Gesture in Groups of Users 133 

Tellegen, A., Watson, D., Clark, L.A.: On the dimensional and hierarchical structure of affect. 
Psychological Science 10(4), 297–303 (1999) 

Varni, G., Camurri, A., Coletta, P., Volpe, G.: Emotional entrainment in music performance. 
In: Proc. of 8th Intl. Conf. on Automatic Face and Gesture Recognition FG 2008 (2008) 

Varni, G., Camurri, A., Coletta, P., Volpe, G.: Toward Real-time Automated Measure of 
Empathy and Dominance. In: Proc. 2009 IEEE Intl. Conf. on Social Computing SocialCom, 
Vancouver, Canada (2009a) 

Varni, G., Mancini, M., Volpe, G., Camurri, A.: Sync’n’Move: social interaction based on 
music and gesture. In: Proc. 1st Intl. ICST Conference on User Centric Media, Venice, Italy, 
December 2009 (2009b) 

Vines, B.W., Krumhansl, C.L., Wanderley, M.M., Ioana, M.D., Levitin, D.J.: Dimensions of 
Emotion in Expressive Musical Performance. Ann. N.Y. Acad. Sci. 1060, 462–466 (2005) 

Wallbott, H.G.: Bodily expression of emotion. Eur. J. Soc. Psychol. 28, 879–896 (1998) 
Zbilut, J., Webber Jr., C.L.: Embeddings and delays as derived from quantification of 

recurrence plots. Phys. Lett. A 5, 199–203 (1992) 



On Gestural Variation and Coarticulation
Effects in Sound Control

Tommaso Bianco, Vincent Freour, Nicolas Rasamimanana, Frederic Bevilaqua,
and René Caussé
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Abstract. In this paper we focus on the analysis of sound producing
gestures in the musical domain. We investigate the behavior of intrao-
ral pressure exerted by a trumpet performer in the production of single
and concatenated notes. Investigation is carried out with functional data
analysis techniques. Results show that different variation patterns occur
for single note production, which depend on dynamic level, suggesting
the hypothesis that two different motor control programs are available.
Results from analysis on consecutive notes give evidence that the coar-
ticulation between two gesture curves cannot be modelled by linear su-
perposition, and that local coarticulation is affected by contiguous units.

Keywords: coarticulation, music performance, gesture synthesis,
anticipation, motor program, functional statistical analysis.

1 Introduction

In music performance, sound production is always linked to continuous gesture
processes. Thus, the subtle variations of these processes must be taken into
account to study how the musicians actually control expressively their sound.
Moreover, the variation in the execution of a gesture depends on the musical
context. When embedded into a continuous stream of units, each gesture segment
undergoes influences from the surrounding segments, a contextual modification
usually called, from phonetics literature, coarticulation.

In this paper we focus on the analysis of gestures for the production of sound
in trumpet performance. Our analysis concentrates on two main types of vari-
ability: intrinsic, that is related to the gesture for a single note execution, and
extrinsic, that is variability caused by coarticulation effects between adjacent
gesture events. We apply functional data analysis techniques in order to identify
specificities among different playing techniques.

Our aim is to give more evidence for the understanding of the underlying
process related to the sound control in trumpet performance. The results of our
analysis might be of help for recognition as well as for synthesis purposes in the
general domain of control of sound synthesis.

S. Kopp and I. Wachsmuth (Eds.): GW 2009, LNAI 5934, pp. 134–145, 2010.
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2 Related Works

The subject of coarticulation has been widely studied in phonetics [1]. Never-
theless, it is still a central and challenging theme both for automatic speech and
sign recognition [2]. Among few theories elaborated for the modeling of this phe-
nomenon (see Farnetani for a review [3]), the co-production theory of Fowler is
of particular interest for the present account. The co-production theory explains
the coarticulation between two segments as the result of their overlapping activ-
ity. The boundaries of the two segments thus extend onto each other, instead of
a common “perpendicular to the time axis” frontier [4].

There is, however, a fundamental difference between natural speech and music
performance. For the latter, in fact, the timing of gesture units is subjected to
an exogenous temporal scheduling, usually dictated by the score tempo mark,
or by the global cadence of the performers ensemble. Moreover, an expressive
taxonomy - technically referred as “articulation” and explicitly formalized in the
score notation - intervenes on the units transitions. Due to its intrinsic multi-
plicity and to the strict temporal scheduling of events, the coarticulation in the
musical domain is also related to anticipation. This refers to the adjustments
made to units of motor action in order to accommodate the instantiation of the
next units in the sequence.

Anticipation in music performance has been studied in the performance of
piano [5] [6], drums [7], and violin [8], whereas coarticulation in relation to
chunking has been tackled in [9]. To our knowledge, no work on the subject has
been done for the trumpet.

The majority of literature on trumpet performance, and on wind-instrument
in general, has focused on the analysis of steady values, such as sound dynamic
level, sound spectrum, and blowing pressure thresholds [10], and connected to
human respiratory mechanics [11]. Transient analysis has been investigated for
the relationship between mouthpiece and instrument’s bell pressures [12], and for
the tonguing and muscular synergy, with EMG [13][14] and cinefluoric techniques
[15]. We are not aware of studies of temporal behavior of intraoral pressure, for
single note as well as for coarticulation between notes.

3 Experimental Methods

Protocol. A professional trumpet player was asked to perform a combination of
C5 and B4 quarter notes with specific dynamic level and articulatory indications,
at a fixed 120 bpm tempo throughout all the recordings. An example of the
score is shown in Fig.1. A first set of measurements focused on the execution of
a single C5 quarter note with three different dynamical levels (pp, mf and ff ),
and with a staccato mark and mf dynamics. In a second set of measurements,
the performer was asked to play a sequence of quarter notes (concatenation of
C5 notes and of alternating B4-C5 notes) with mf dynamics. The last part of
the experiment involved a sequence of alternating C5 and B4 notes with fixed
mf dynamics. Two consecutive groups of four notes formed the entire sequence.
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a)

b)

c)

Fig. 1. A subset of the tasks executed by the performer, for the first (a), second (b)
and third (c) set of measurements

Each group was assigned a type of articulation: non-legato, legato, and staccato.
In all cases no measure bar was presented in the score, so as to avoid any possible
dynamic accentuation on the first note of each measure, possiblly due to cognitive
rhythmic grouping [16].

Materials and Recording. Intraoral pressure was measured with a catheter tube
of approximately 15 cm. The pressure was sensed with a SCX Pressure Sensor,
which can afford a 100 microseconds of response time. Pressure and sound were
recorded with a NI acquisition card with sampling rate set to 48 kHz. The per-
former was asked to keep one extremity of the tube proximal to the soft palate,
behind the lingua-alveolar place of occlusion for /t/ and /d/ consonants. Each
measurement was checked after each take in order to detect possible artifacts
in the measurements. The closing of the extremity of the tube by the contact
with the internal mouth surfaces or tongue could, indeed, lead to “locks” in pres-
sure, which remains constant during the closing period. Thus, such cases were
excluded from the analysis.

4 Analysis Methods

Filtering. The initial 2 seconds long sequences were filtered by a lowpass 6th
order Butterwort filter with cutoff frequency equal to 300 Hz. This process re-
moved possible sensor noise as well as the frequency of oscillation of the lips. A
comparison between the original and the filtered curves is shown in Fig.2.

Segmentation. For the analysis of single notes, the transition of the intraoral
pressure over a background threshold level determined the start and the end of
each sequence. The threshold level corresponded to the physical configuration in
which the mouth is closed onto the instrument mouthpiece, but neither an air-
flow, nor a pressure potential are present. We partitioned the single note curves
into four zones (as displayed in Fig.2a), each of them corresponding to a different
phase in the sound production. In zone 1, the performer starts increasing the
pressure in the oral cavity; its tongue closes onto the alveolar ridge, obstructing
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Fig. 2. Segments of recorded data used in the analysis. Detail of sound, original pressure
and filtered pressure (a); windows used for coarticulation (b), and single note (c) analysis.

the airflow in the vocal tract. The beginning of zone 2 marks the opening - the
detaching of the tongue from the alveolar ridge - of the vocal tract to the airflow.
The pressure instantly drops, and the lips begin to oscillate, marking the onset of
the note. This process is usually called alveolar stop in phonetics, and it charac-
terizes voiceless plosive consonants such as /t/ and /d/, which are usually used
as example in trumpet teaching. Zone 3 encloses the second pressure increase,
during which the performer brings the note sound to the sustain phase. Finally,
the pressure decreases all along zone 4 for the note closure.

This functional partition helped to identify similar zones in the recordings of
concatenated notes. Hence, the coarticulation window built upon a combination
of these four zones. The criteria based on the background level to distinguish the
end of zone 4 and the beginning of zone 1 for the single note case, has here been
substituted by a criteria based on the curve between the two notes. An example
of the resulting segment for the transition of two non-legato notes is presented in
Fig.2c. For the last part of the experiment the zone 3 of the incoming note has
been excluded from the window of analysis. Indeed, as a staccato mark imposes
the note to be played with shorter duration, a right boundary on the peak of
sustain would have shortened the segment, hence allowing an external factor to
interfere on the coarticulation study.

Length Reduction. Last, in order to obtain sequences with an equal number
of samples, and to reduce computation time in the analysis process, we extracted
1000 points from each segment, equally spaced in time from the start to the end
of the segment.

Functional Data Analysis. The curves were processed with functional anal-
ysis techniques provided by the R package of Ramsay and colleagues1 [17] [18].
Each time-series was converted into a linear combination of 200 equally spaced
6-order B-spline basis functions. Approximation to the original data points is
obtained by a combined least squares and roughness penalty, with a λ weighing
1 http://r-forge.r-project.org/projects/fda/



138 T. Bianco et al.

coefficient equal 10−0.5 on the second derivative, as delivered by the general-
ized cross validation criterion [17]. The smoothing process with 200 spline basis
functions for trajectories of 1000 points, in relation to the original lengths and
sampling rates, assures - according to the relation formula in [19] - that variations
up to 500 Hz are preserved in the functional smoothed representation.

Subsequently, a landmark registration synchronized the set of curves by per-
forming nonlinear time stretching, ensuring the concurrent occurrence of an ar-
bitrary number of key points among instances. A higher value for λ equal to 105

in the previous step was used to register velocities to guarantee equal number
of valleys-peaks in the curves, required for the convergence of the registration
process.

To investigate the primary modes of variation in the data, we recurred to
functional principal component analysis. Roughly, the functional version of PCA
replaces variable values with function values, converting the search for eigenvec-
tors of the covariance matrix with the search for orthonormal eigenfunctions
of the bivariate covariance function. Each eigenfunction ξj represents a form of
variation around the mean curve x̄(t), participating in each instance curve xi(t)
with a score given by the integral

∫
ξt(t)[xi(t) − x̄(t)]dt.

5 Results

Single Note. We registered the curves of each class separately, so as to ob-
tain a representative mean curve for each articulation. The resulting means and
standard deviations are presented in Fig.3.

A close examination of the plots show that the variability distribution among
conditions can be classified into two groups according to shape. In the first case
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Fig. 3. Mean curves with confidence intervals (upper), and standard deviations (lower)
for Pianissimo (pp), Mezzo forte (mf), Fortissimo (ff), and Mezzo forte staccato (mfs)
articulations
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Fig. 4. Mean pressure curve with addition (++) and subtraction (−−) of a suitable
multiple of the first (a) and second (b) principal components. Scores of the first two
principal components for each original instance.

there is an intensification for the main transitions, for pp, mf, and mfs cases,
where pressure is raising before the initiation of the air flow, and is subsequently
decreasing for the note closure. In the second case, for ff dynamics, the variability
increases in the sustain stage of the note.

Absolute variability also changes quantitatively among cases. Values of global
coefficients of variation (average values over the curves) for pp, mf, mfs and ff
are respectively 0.23, 0.12, 0.13 and 0.09, whereas maxima in standard deviation
fall at roughly 10% of the pressure maxima for mf, ff, and mfs cases and at 20%
for pp. Assuming that variability may increase with task demands [20], it seems
that pp performance represents a higher demanding task compared to the other
dynamics, a principle already established for vocal performance [21].

In order to better discriminate the differences of each case, we explored the
major modes of variability in the data by means of functional PCA. Fig.4 reports
the results for the first two components, which account for 97.4% of the overall
variability among the curves. In Fig.4 a) and b), the mean curve is presented,
in conjunction with the addition and subtraction of a suitable multiple of the
principal components. Plot c) reports the scores of the two principal components
for each instance, which distinctly cluster into four groups.

The results of the analysis indicate that the variation in the data, with this
set of components, is roughly two-dimensional. The first component, which dom-
inates with 90.6% of the variation, incorporates different typologies of variation:
the amplitude of the curve, which operates on the loudness of the note, the
curve span, the dynamics of the pressure decrease. However, this component
only helps to distinguish the ff instances from the other articulations. In order to
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Fig. 5. Pressure curves (upper) and first derivatives (lower) for coarticulation. Synthe-
sized case (a), non-legato transition between two C5 notes (b), non-legato transition
between C5 and B4 notes (c), legato transition between C5 and B4 notes (d). Double
arrows indicate the sound onsets of the incoming notes.

differentiate the remaining classes, one needs to consider the second component,
which accounts for 6.8% of the variation, and which represents variation on the
curve narrowness. A positive contribution of the second component on the mean
compresses the curve peak, widening and lowering its shape, and spans uniformly
the pp, mf, and mfs examples.

Coarticulation. The concurrent activation of primitives in the muscular force
field has been shown to be the result of roughly linear vectorial superposition
[22][23]. Under the assumption that intraoral pressure approximates to a uniform
scalar field inside the oral cavity, the transposition of this principle to our case
would resolve into a scalar superposition. We would expect that, in zones of
pressure overlap, the overall curve should be approximated by a direct sum of
two single note curves.

We therefore compared the recorded coarticulation segments - which com-
prised zones 4,1,2,3 as of Fig.2 - to a simulated coarticulation profile, obtained
by linearly superposing the real recordings of two isolated notes. The superpo-
sition was built upon the mean curve of mf C5 single note as follows: the curve
was first resized, in order for the corresponding sound envelope length to match
between the single and concatenated occurrences; it was then segmented into
two pieces at the pressure maximum, where the decrease in pressure begins -
start of zone 4. A shifted version of the first segment has been linearly super-
posed to the second one, so as to build a max-to-max window of the same length
as the one segmented from the real recordings. The cut-and-paste operation has
been performed by adjusting the spline coefficients level, to maintain continuity
in derivatives for the resulting curve, and therefore to assure a maximal smooth
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Fig. 6. Mean curves with confidence intervals (upper), and standard deviations (lower)
for non-legato to non-legato (nl2nl), non-legato to legato (nl2l), and legato to staccato
(l2s) coarticulations

transition. The resulting curve and the real coarticulation recordings are shown
in Fig.5. The figure shows that the synthesized curve (case a) is significantly
different from the real curves (b,c and d). First, the pressure minimum is lower
in the synthesized curve. Second, the first part of the pressure’s first derivative
is relatively constant in the real cases, whereas this is not the case in the syn-
thesized curve. And third, the intermediate pressure peak is almost absent in
the synthesized curve. In a dynamical perspective, the musician appears to hold
further the previous note, delaying to the very last instants the instantiation of
the new note.

In what follows we will show that coarticulation between two units is also af-
fected by preceding or following units. The segments analyzed correspond to the
grey window of Fig.2c (sequential union of zones 4,1 and 2), extrapolated from
the transition between the fourth and fifth notes during the performances of the
scores in Fig.1c. According to the notation in the scores, the transition in the
three occurrences should be performed in a similar fashion. Indeed, the legato
mark enclosing the outgoing note only regulates the transition with its prede-
cessor, and such transition is not considered in our segment. And the staccato
mark on the incoming note only behaves on its last part, which also is omitted
from our segment.

The registered mean curves and their standard deviation, synchronized by a
collective landmark registration process, are reported in Fig.6. The three cases
manifest a clear individual profile, with an increasing (relatively for nl2nl, l2nl,
and l2s) negative spurt just before the instantiation of the incoming note. The
peak’s amplitudes correlate with the peaks in standard deviation, which attain
between 20% and 30% of the peak amplitude. A minimum level in standard
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Fig. 7. Mean pressure curve with addition (++) and subtraction (−−) of a suitable
multiple of the first (a) and second (b) principal components, for coarticulation records.
Scores of the first two principal components for each original instance.

deviation equal to 2% of the average pressure level, and common to all records,
suggests inconsistency in the level when playing mf among executions.

In order to analytically locate the principal modes of variation, we again
turned to functional PCA, whose results are presented in Fig.7. The first com-
ponent (a), which accounts for 74.5% of the variation, represents the amount of
pressure valley, while the second (b), which accounts for 16.5% of the variation,
represents variability in the steady level and slightly in spurt over/undershoot.
The plot for components’ scores (c) tells us that the first component suffices for
classification purposes, giving evidence that the amount in pressure valley can
explain the different coarticulation behaviors.

Principal curve analysis for higher order derivatives did not improve the clus-
tering results.

6 Conclusions

Functional data modeling represents a promising tool for synthesis purposes.
First, the spline basis representation allows to easily smoothly join consecutive
curves. An arbitrary long sequence of gesture units can then be built by con-
necting single note and coarticulation segments. The presence of end-point level
differences between segments could be eliminated by using a dual representa-
tion as in [24], so to preserve the same pressure (and therefore sound output)
level among notes repetitions. Second, as shown by the low dimensional set of
eigenfunctions, functional PCA allows for the storage of a reduced set of curves
(means and dominant eigenfunctions), but with the possibility to span the set
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of original real recordings, or unrecorded but plausible instances, via their linear
combination. Further investigation have to be done on the verification of origi-
nal curves reconstruction trough principal functions, and on the relation between
components’ scores and task practice [25].

In the analysis of single notes, we showed how a single gesture unit exhibits
systematically different behaviors, depending on the dynamic level required for
the sound outcome. On the basis of a twofold shape for variability distribu-
tion, we hypothesize that two motor control programs may be available for the
completion of the task: a continuous feed-back guided control for the produc-
tion of pp, mf, and mfs notes, and a pre-planned movement control for the ff
performance. The first movement strategy is employed to target a value with a
maximal accuracy in the endpoint, that is with minimum steady-state error and
overshoot issues. In practice, the oral and respiratory systems have to raise the
pressure at the minimum level necessary to instantiate the oscillation of the lips.
The performer’s skill resides in the organization of the muscles synergy, in order
to reach the target level at a specific time instant, and starting from different
initial configurations. He continuously adjusts the forces applied to the muscles -
this is confirmed as well by a higher number of acceleration zero crossings - trans-
ferring variability from the endpoint trajectory outcome to the whole movement
pattern. Variability as a result of compensation has been defined as “adaptive
variability” [26], and it has been found in more general motor tasks [27]. The
second control strategy - the one which underlies the ff performance - draws sim-
ilarities with ballistic movement theory: a fast, preprogrammed and impulsive
movement, which lacks of on-line control, and whose purpose is to reach a target
in the shortest time. This motor program would explain the higher variability in
the sustain stage, for the occurrence of target undershoot/overshoot. In order to
validate these hypothesis, however, one should also consider the relation between
intraoral pressure variability and sound variability on a perceptive scale, for the
performer regulates expiratory airflow rate according to auditory feedback [28].

In the second part of this work, we provided evidence that further complexity
is added when individual gestures are interconnected or overlap each other in
a continuous sequence of units. At a local level, we gave evidence of the inap-
propriateness of linear superposition for the simulation of coarticulation between
two notes. The transition revealed a compund interaction between the two units,
by lenghtening the end of the first and adding extra movement (the increase for
the pressure peak) to the beginning of the second. At a contextual level, results
establish the hypothesis that the surrounding units exert influence on the local
coarticulation. Anticipatory behavior and memory effects are the most plausible
cause for regulating differently the three conditions. On one hand, anticipation
in the preparation of a staccato note before its instantiation, as shown by the
difference between l2nl and l2s curves. On the other hand, memory effects for
the use of previous legato when switching to non-legato articulations, as evident
from the comparison between nl2nl and l2nl curves. Performance memory has
proved to transfer between consecutive tasks [29]. Here, however, the performer
seems to “overreact” to a possible transfer of performance skill, emphasizing the
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abruptness in transition when departing from a legato context, and performing
what would behave as non-legato transition with increased overshoot.
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References

1. Hardcastle, W.J., Hewlett, N.: Coarticulation: theory, data, and techniques. Cam-
bridge University Press, Cambridge (1999)

2. Gineke, T.H., Hendriks, P., Andringa, T.: Why don’t you see what i mean?
prospects and limitations of current automatic sign recognition research. Sign Lan-
guage Studies 6(4), 416–437 (2006)

3. Farnetani, E.: Coarticulation and connected speech process (1999)
4. Fowler, C.: Coarticulation and theories of extrinsic timing control. Journal of Pho-

netics 8, 113–133 (1980)
5. Engel, K., Flanders, M., Soechting, J.: Anticipatory and sequential motor control

in piano playing. Experimental brain research 113(2), 189–199 (1997)
6. Loehr, J., Palmer, C.: Cognitive and biomechanical influences in pianists’ finger

tapping. Experimental brain research 178(4), 518–528 (2007)
7. Dahl, S.: The playing of an accent - preliminary observations from temporal and

kinematic analysis of percussionists. Journal of New Music Research 29(3), 225–234
(2000)

8. Rasamimanana, N.H., Bevilacqua, F.: Effort-based analysis of bowing movements:
evidence of anticipation effects. The Journal of New Music Research (2009) (in
press)

9. Gody, R., Jensenius, A., Nymoen, K.: Production and perception of goal-points
and coarticulations in music. In: Proceedings of Acoustics 2008 (2008)

10. Fletcher, N.H., Tarnopolsky, A.: Blowing pressure, power, and spectrum in trumpet
playing. Journal of Acoutical Society of America 105(2), 874–881 (1999)

11. Bouhuys, A.: Lung volumes and breathing patterns in wind-instrument players.
Journal of Applied Physiology 19(1), 967–975 (1964)

12. Campbell, M., Bromage, S., Chick, J.: Attack transients on lip reed instruments.
Journal of Acoustical Society of America 117(4), 2477 (2005)

13. White, E., Basmajian, J.: Electromyography of lip muscles and their role in trumpet
playing. Journal of Applied Physiology 35(6), 892–897 (1973)

14. Berger, K.: Electromyographic recording during wind instrument performance. An-
nals of the New York Academy of Sciences 155(1), 297–302 (1968)

15. Merriman, L.C., Meidt, J.A.: A cinefluorographic investigation of brass instrument
performance. Journal of Research in Music Education 16(1), 31–38 (1968)

16. Cooper, G., Meyer, L.B.: The Rhythmic Structure of Music. University of Chicago
Press, Chicago (1960)

17. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, Heidelberg
(2005)

18. Ramsay, J., Hooker, G., Graves, S.: Functional Data Analysis with R and MAT-
LAB. Springer, Heidelberg (2009)

19. Koenig, L.L., Lucero, J.C., Perlman, E.: Speech production variability in frica-
tives of children and adults: results of functional data analysis. The Journal of the
Acoustical Society of America 124(5), 3158–3170 (2008)



On Gestural Variation and Coarticulation Effects in Sound Control 145

20. Yan, J.H., Thomas, J.R., Stelmach, G.E., Thomas, K.T.: Developmental features of
rapid aiming arm movements across the lifespan. Journal of Motor Behavior 32(2),
121–140 (2000)

21. Coward, H.: Choral Technique and Interpretation. H.W. Gray (1914)
22. Bizzi, E., Giszterb, S.F., Loeba, E., Mussa Ivaldi, F.A., Saltiela, P.: Modular orga-

nization of motor behavior in the frog’s spinal cord. Trends in Neurosciences 18(10),
442–446 (1995)

23. Bizzi, E., d Avella, A., Saltiel, P., Tresch, M.: Modular organization of spinal motor
systems. The Neuroscientist 8(5), 437–442 (2002)

24. Ramsay, J.O., Munhall, K.G., Gracco, V.L., Ostry, D.J.: Functional data analyses
of lip motion. Journal of Acoustical Society of America 99(6), 3718–3727 (1996)

25. Sanger, T.D.: Human arm movements described by a low-dimensional superposi-
tion of principal component. The Journal of Neuroscience 20, 1066–1072 (2000)

26. Kazutoshi, K., Tatsuyuki, O.: Adaptive variability in skilled human movements.
Information and Media Technologies 3(2), 409–420 (2008)

27. Darling, W., Cooke, W.G.: Movement related emgs become more variable during
learning of fast accurate movements. Journal of Motor Behavior 19(3), 311–331
(1987)

28. Bouhuys, A.: Airflow control by auditory feedback: Respiratory mechanics and
wind instruments. Science 154(750), 797–799 (1966)

29. Palmer, C.: Nature of memory for music performance skills, pp. 39–53 (2006)



S. Kopp and I. Wachsmuth (Eds.): GW 2009, LNAI 5934, pp. 146–157, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Gesture Saliency: A Context-Aware Analysis 

Matei Mancas1, Donald Glowinski2, Gualtiero Volpe2,  
Paolo Coletta2, and Antonio Camurri2 

1 University of Mons, F.P.Ms/IT Research Center/TCTS Lab, 
31, Bd. Dolez, 7000 Mons, Belgium 
Matei.Mancas@umons.ac.be  

2 University of Genoa, INFOMUS Lab, Italy 
{Donald.Glowinski, Gualtiero.Volpe, Antonio.Camurri, 

Paolo.Coletta}@unige.it  

Abstract. This paper presents a motion attention model that aims at analyzing 
gesture saliency using context-related information at three different levels. At 
the first level, motion features are compared in the spatial context of the current 
video frame; at the intermediate level, salient behavior is analyzed on a short 
temporal context; at the third level, computation of saliency is extended to 
longer time windows. An attention/saliency index is computed at the three 
levels based on an information theory approach. This model can be considered 
as a preliminary step towards context-aware expressive gesture analysis.  

Keywords: Visual attention, expressive gesture, context-aware analysis. 

1   Introduction 

Objects and situations can lead our attention because of their emotional values. 
Neuroimaging and behavioral studies suggest that emotional signals may affect the 
allocation of attentional resources either to facilitate performance in a current task or 
to interrupt an ongoing activity and redirect attention towards a more relevant event 
[17]. In the context of social communication, body gestures appear to be a relevant 
channel in the human judgment of affective behavior. Discrete emotions like anger or 
attitudinal states like boredom can be communicated through full-body or body-parts 
movements such as the hands and head’s ones. These types of gesture that convey an 
emotional message are called expressive gestures [4].  

A better understanding of bodily communication processes can actually lead to the 
development of intelligent/affective computing that could anticipate people intention 
without request of explicit instructions by considering the spatial or temporal context 
of their behavior [16]. Affective gestural analysis, however, often applies to a single 
user which is manually selected (e.g., at the start-up of the system or when the user 
enters the area the system is operating on). In addition, the dynamics of the expressive 
gesture features is rarely considered. The naturalness of the human-computer 
interaction could highly benefit from the possibility to dynamically select the person 
to carry analysis on or from the possibility to adapt and personalize analysis to the 
context and to the current behavior of a user. We hypothesize that a system which 



 Gesture Saliency: A Context-Aware Analysis 147 

aims to recognize emotions on the basis of expressive gesture could be enhanced and 
applied in multi-user scenarios if it reproduces some of the attentional mechanisms 
present in humans. The goal of this paper is to investigate the relationship between 
part of the human attention, which is here computationally modeled, and the way to 
automatically extract expressive cues from human gestures. 

After a state of the art of computational attention models, we recall the notion of 
expressive gesture. A second section will describe how an automatic saliency index is 
modeled and implemented to highlight which movements may be the most salient for 
a human observer. In a third section, the application of motion attention is achieved 
on several scenarios that exemplify the three contexts of the analysis (spatial, short 
and long-term). Finally, we conclude by the findings on the relationship between 
gestures expressivity analysis and computational attention algorithms.  

2   State of the Art 

2.1   Computational Attention or Automatic Modeling of Human Attention 

The aim of computational attention is to automatically predict human attention on 
multimodal data such as sounds, images, video sequences, smell or taste, etc… The 
term attention refers to the whole attentional process that allows one to focus on some 
stimuli at the expense of others. Human attention mainly consists of two processes: a 
bottom-up and a top-down one. Bottom-up attention uses low-level signal features to 
find the most salient or outstanding objects. Top-down attention uses a priori 
knowledge about the scene or task-oriented knowledge in order to modify (inhibit or 
enhance) the bottom-up saliency. While numerous models were provided for attention 
on still images, time-evolving two-dimensional signals such as videos have been less 
investigated. Nevertheless, some of the authors providing static attention approaches 
generalized their models to videos, but very few to audio or time-evolving feature 
signals (for a detailed review, see [11]). Most of these methods provide bottom-up 
attention approaches. To our knowledge, a majority of these computational models 
focuses on low-level motion features (e.g., displacement of people). We suggest in 
this paper that computational models would gain considering higher-level motion 
features related to full-body movements to better capture the expressive gestures that 
characterize the communication of an emotion. Our approach is able to easily adapt to 
different spatial, short and long temporal contexts. 

2.2   Gesture Expressivity and Attention 

According to Kurtenbach and Hulteen gesture can be defined as “a movement of the 
body that contains information” [8]. Thus, gestures can be named expressive since the 
information they carry is an expressive content, i.e., content related to the emotional 
sphere. A multilayered framework for automatic expressive gesture analysis was 
proposed by Camurri et al. [4]. In this framework, expressive gestures are described 
with a set of motion features that specify how the expressive content is encoded. 
Different attempts can be found in literature to map a set of expressive gesture 
features with one of the emotional dimensions that are considered to describe the 
entire space of conscious emotional experience [18] which are valence and activation. 
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For example activation dimension has been mapped to expressive features such as the 
amount of energy of a person [3]. However, the main shortcoming of expressive 
gesture analysis is the scarce consideration of the context in which expressive 
gestures take place. The context we focus on has to be considered both related to the 
temporal dynamics of a motion feature and to the spatial context of this feature if the 
behavior analysis of more than one user is performed.  

First studies related to the context-aware analysis of expressivity which established 
a relationship between the arousal level of an emotion and the uncertainty of a visual 
stimulus can be found in [2]. Mehrabian and Russell formulated the information rate-
arousal hypothesis and confirmed a linear correlation between information rates of a 
real environment and emotion arousal [15]. These studies put in evidence that the 
saliency of an event can be related to the novelty of an expressive content.  

3   The Model of Motion Attention 

3.1   A Rarity-Based Approach 

As we already stated in [9] and [14] a feature does not attract attention by itself: 
bright and dark, locally contrasted areas or not, red or blue can equally attract human 
attention depending on their context. In the same way, motion can be as interesting as 
the lack of motion depending on the context. The main cue which involves bottom-up 
attention is the rarity and contrast of a feature in a given context. The features 
considered in this paper are speed, and the motion and contraction indexes. They are 
described in the presentation of the experiments in the next section.  

A low-computational-cost quantification of rarity was achieved referring to the 
notion of self-information. Let us note mi a message containing an amount of 
information. This message is part of a message set M. The bottom-up attention 
attracted by mi is quantified by its self-information I(mi) which will be called here 
saliency index: 

))(log()( ii mpmI −=  (1) 

where p(mi) is the occurrence likelihood of the message mi within the message set M. 
We estimate p(mi) as a combination of the global rarity of mi within M and its global 
contrast compared to the other messages from M. Mathematically, p(mi) is the result 
of a two-terms combination: 

             )()()( iii mBmAmp ×=                  (2) 

The A(mi) term is the direct use of a histogram to compute the occurrence probability 
of the message mi in the context M: 
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where H(mi) is the value of the histogram H for message mi and Card(M) the 
cardinality of M. The M set quantification provides the sensibility of A(mi): a smaller 
quantification value will let messages close to each others to be seen as the same.  
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B(mi) quantifies the global contrast of a message mi on the context M: 

)()1)((
1)(

)(

1

MMaxMCard

mm

mB

MCard

j
ji

i ×−

−
−=

∑
=

 

  
(4) 

If a message is very different from all the others, B(mi) will be low so the occurrence 
likelihood p(mi) will be lower and the message attention will be higher. B(mi) was 
introduced to avoid the cases where two messages have the same occurrence value, 
hence the same attention value using A(mi) but in fact one of the two is very different 
from the others while the other one is just a little different. The saliency index (or 
motion attention index, I(mi)) operates at three levels corresponding to three different 
time scales: up to 1s (instantaneous motion attention), from 1s to 3s (short-term 
motion attention), more than 3s (long-term motion attention).  

3.2   Instantaneous Level 

Let us consider a collective context, e.g., a group with interacting people. Motion 
features (e.g., speed, direction) characterizing each moving person are compared at 
each instant. Salient motion behavior (e.g., one person speed very different from the 
others) immediately pops-out and attracts attention. This refers to pre-attentive human 
processes, usually faster than 200 milliseconds. In our approach, motion saliency 
detection at instantaneous level is computed over time intervals of 200ms – 1s. 

3.3   Short-Term Level  

Each participant selected in the previous instantaneous level may have his motion 
features analyzed over short-term time intervals from 2 to 3 seconds. This level refers 
to the human sensory memory (SM), in the range of 2 - 3 seconds [1]. This stage goal 
is to ensure that the selected object remains outstanding compared to its past behavior 
or not. Information from SM goes then to the short-term memory (STM). The 
capacity of STM, in terms of tracked objects, is limited to about 4 simultaneous 
occurrences of instantaneous rarity [5].  

3.4   Long-Term Attention Modulation  

The long-term memory (LTM) [1] component of the model processes the saliency 
index in a time interval from several seconds to much longer periods (related to the 
application time scale). The output is a modification of the instantaneous attention 
indexes in such interval according to their considered recurrence. The attention 
amplitude map in the different locations of the observed scene along time is 
progressively built. This leads to the definition of areas, which capture attention more 
than others: e.g., a street accumulates more attention than a grassy area. The scene can 
thus be segmented into several areas of attention accumulation and the motion in 
these areas can be summarized by only one motion vector per area. If a moving object 
passes through one of these areas and it has a motion vector similar to the one 
summarizing this area, its attention is inhibited (usual motion). If this object is outside 
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those segmented attention areas or its motion vector is different from the one 
summarizing the area where it passes through, the moving object will be assigned 
with high attention (novel motion).  

4   Application to Analysis of Expressive Gesture 

4.1   Instantaneous Motion Attention  

We tested the motion attention model and the saliency index it provides during a 
dance master-class to consider the emergence of a salient behavior in the components 
of a group. The feature taken into account here was Motion Index. This index is a 
measure of the overall amount of motion detected by a video camera and is obtained 
by integrating in time the variations of the body silhouette (called Silhouette Motion 
Images - SMI). In this dance application, the value of the saliency index was 
computed for each dancer and compared in the spatial context of the current video 
frame. This salient index value controlled the transparency of the silhouette of the 
dancer, which was extracted from the live video from an infra-red video-camera using 
a multi-blob tracking technique. The higher was the dancer’s saliency index, the more 
opaque was its silhouette. Figure 1 shows some results. On the left image, the dancer 
located in the middle stays still whereas the two others are running: his behavior is 
salient relatively to the others. On the right image, the dancer, located in the right, is 
moving at a higher speed than the two others, thus having the most salient behavior. A 
following discussion with dancers put in evidence that this algorithm provide telltale 
signs of the onset or progression of their movements and forced them to be aware of 
the other’s motion pattern. A saliency index based feedback may foster a higher 
interaction in social and collective behaviors. Moreover, from a psychological point 
of view, in a collective context all the participants naturally tend to reach the 
dominant emotion through emotional contagion processes [7].  

If a minority of participants exhibit a different, salient behavior, this is worthy of 
attention because it shows at least a higher perseverance in delivering their expressive 
message. 

 

Fig. 1. Two snapshots of two situations observed during the dance master-class. In both 
situations the silhouette which appears on the video in the background is the one of the dancer 
which has the rarest behavior with respect to the two others. 



 Gesture Saliency: A Context-Aware Analysis 151 

4.2   Short-Term Motion Attention  

The saliency index was tested over short temporal periods on expressive features such 
as the motion index (MI) and the contraction index (CI) related to individual full-body 
movements. The CI measures the amount of contraction of the body with respect to its 
baricenter (i.e., contraction is high when the posture is such that limbs are kept near to 
the baricenter, e.g., arms along the body). An actor performing two sequences of 
movements was recorded. Each one of these sequences emphasizes a particular 
gestural characteristics: (i) movement activity (MI-performance: figure 2, right box) 
and (ii) arms’ extension with respect to the body (CI-performance: figure 2, left box). 

The two videos were presented to 16 participants (six males and 10 females, with a 
mean age of 26) who pointed out moments of novelty in the sequence of movements 
by pressing the space bar of a computer keyboard. Stimuli were displayed and 
participants’ responses were recorded and time-logged to the video using the 
EyesWeb-Mobile platform [6]. Participant’s motion sequence segmentations were 
collected and then compared with the automatic segmentation obtained with the 
saliency index algorithm. More details about the experiment can be found in [13].  

As proposed in [12] and [13], the mono-dimensional signal that characterizes 
saliency over time was computed on the spectrogram of each expressive feature (CI 
and MI). The following procedure was applied:  

• computation of the signal Fourier transform on a 50 ms sliding temporal 
window 

• division of the resulting spectrogram into 128 frequency bands 
• quantification of each frequency band into 16 bins  
• selection of a time window on which applying the saliency index (Eq. 1): 128 

saliency indexes corresponding to each band are obtained 
• integration on the lower frequency bands in order to neglect the effect of noise 

and to obtain a mono-dimensional signal characterizing feature signal saliency 

A preliminary analysis presented in [13] showed that for both expressive gestural 
features (MI and CI) the automatic saliency index with a temporal window of 2 s and 
a bin number of 16 provided a segmentation close to the human’s one. 

A comparison between the human observers’ segmentation variability (figure 3, 
bottom row, dotted red line) and the one provided by the saliency index (figure 3, 
bottom row, blue line) showed a very high correlation with 100% of precision (a 
measure of fidelity) and recall (a measure of completeness) for the MI feature and 
100% and 95% of precision and recall respectively for the CI feature.  
 

 

Fig. 2. Snapshots of the CI (left box) and MI (right box) performance  



152 M. Mancas et al. 

 

                     Saliency index applied on MI             Saliency index applied on CI 

Fig. 3. From top to bottom: initial feature measures (top images), participants’ mean 
segmentation (middle images) automatic saliency index segmentation (in blue) and 
participants’ mean variability in dotted red line (bottom images) 

 

  

Fig. 4. ROC curve of the saliency index 
implemented with ten different bin values (MI 
feature) 

Fig. 5. ROC curve of the saliency index 
implemented with ten different bin values (CI 
feature) 

In this paper, we completed the evaluation of the algorithm segmentation with an 
in-depth statistical analysis. We wanted in particular to observe how the performance 
can be related to the bin number used for quantifying the frequency bands in the 
algorithm. This bin number specifies the sensibility of the algorithm to distinguish 
between different events. Receiver operating characteristics (ROC) curve were 
employed to assess the saliency index algorithm performance with respect to human 
segmentation (ground truth).  

The saliency index was tested with 10 different bin number values from 3 to 256. 
Analysis of the ROC curves (figures 4 and 5) shows that changing the bin number 
considerably affect the resulting classification on both MI and CI features (i.e., the 
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distinction between rare/non-rare events). Considering in particular the area under the 
curve (AUC), the algorithm with a bin number of 16 (bin16) can be considered a good 
compromise as it shows the best performance in MI (AUC=0.88 ± 0.01 (95% C.I. 
(confidence interval) 0.86-0.91), p=0.000) and the second best performance (but very 
close to the best performance) in the CI (Contraction Index feature) case (AUC=0.83± 
0.008 (95% C.I. (confidence interval) 0.80-0.84), p=0.000). 

At the cut-off points for the MI feature (figure 4) the algorithm correctly identified 
95.4 % of the rare event indicated by subjects (accuracy). Sensitivity (true positive 
rate or the rate of salient events which are detected as so by the saliency index) is of 
78.8 % and the specificity (true negative rate or the rate of non salient events which 
are labeled as non-salient by the saliency index) is of 97.6 %. At the cut-off points for 
the CI feature (figure 5), the algorithm correctly identified 87.5 % of the rare event 
indicated by subjects (accuracy). The sensitivity is of 70.9% and the specificity  
of 92.4 %. 

4.3   Long-Term Motion Attention  

For long-term motion attention, preliminary techniques were developed to compute 
the rarity for the direction and speed of participants observed in different regions of 
the space. Generalizing the work started in [10], motion history images (MHI) were 
used to compute the position, the direction and the velocity of participants over long-
time scales (e.g., 4 minutes). The saliency index computed over these features 
allowed to build a model of the scene highlighting the regions where rare behaviors 
were observed. The model is obtained using an increment and a decrement function 
so that at each frame, when a participant is observed with a certain speed and 
direction which is already dominant for the considered region, the saliency index for 
the pixels in the region is decreased, otherwise, it is increased.  

If current motion has the same features as the model at the same locations, the 
motion detection will be inhibited: it is an already seen one, it is not rare, and thus it is 
not worthy of attention. If motion occurs with different features as those from the 
corresponding model, the motion detection will not be inhibited: it is a novel 
movement which is rare and which should attract attention. Figure 6 shows snapshots 
of a recording session in a class room where most of the participants were asked to 
move along predetermined paths while few others moved with different velocities, 
directions or positions as the majority.  

A quantitative validation of the long-term attention model was achieved with a 
dancer who walked along a 6x4 meters space in various directions and at different 
speeds. As shown in figures 7 and 8, the dancer performed six different paths. Three 
models (containing information about position, motion direction, and velocity) were 
computed for the first three more regular paths (see figure 7). An inhibition rate (IR) 
was computed to describe how much of the initial detected motion of the dancer was 
inhibited by the long term attention model. 

IR values ranged from 0 (the detected motion is inhibited because it is similar to 
the model) to 1 (the detected motion is different from the model and it can be 
considered as salient). The procedure is detailed in the following pseudo-code:  
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Fig. 6. Left column, the images show the detected motion of the participants (in red), the 
motion vector of the model (in green) and the current motion vector of the frame (in blue). 
Right column: salient motion of the participants (in red) detected after the model was applied 
(participants have different motion directions, different velocities or they are located in 
positions where few motion was detected).  

 

Fig. 7. The three regular paths followed by the dancer were used as models (model 1, 2 and 3)  
 



 Gesture Saliency: A Context-Aware Analysis 155 

 

Table 1 presents the inhibition rate (IR) values obtained through the application of the 
long-term attention models 1, 2 and 3 when the dancer moved along the paths 1, 2 and 
3 (see figure 7). When the performed trajectory is close to the model used to analyze 
it (e.g., model 1 applied to path 1), the inhibition rate (IR) values tend to 0. On the 
opposite, IR values tend to 1 when the performed path differs from the model (e.g., 
model 1 applied to path 2).  

Table 1. The comparison of the referent three models (1, 2, 3) with the three corresponding 
paths (1, 2, 3) shows a low inhibition rate (IR) value when matching between model and path is 
high and a high IR values in the opposite case 

 Path 1 Path 2 Path 3 

Model 1 0.03 0.35 0.35 

Model 2 0.15 0.01 0.20 
Model 3 0.11 0.13 0.07 

 
Table 2 shows the inhibition rate was very low for the portions of the paths 5, 6 

and 7 (see figure 8), that correspond to trajectories learnt by the model (see figure 8, 
blue lines). The inhibition rate was on the opposite very high for novel/salient motion 
that was not considered by the models (see figure 8, red lines).  

Table 2. IR values of paths 5, 6 and 7 when motion is already detected (see figure 8, blue line) 
and when motion is salient (see figure 8, red line) 

 Path 5 Path 6 Path 7 

Already detected motion 0.04 0.03 0.05 
Novel/Salient motion 0.57 0.68 0.34 

 
Top-down information let us pointing out the novel motion on one side, but it is 

also interesting in detecting already seen motion patterns. This second, long-term 
approach is related to task-driven top-down attention. 
 

 

Fig. 8. In black: trajectories 5, 6 and 7. In blue: already detected motion of the models 1, 2 and 
3 from figure 7. In red: novel/salient motion.   
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5   Conclusion 

Context-related information is naturally captured by humans through attentional 
mechanisms and help to focus limited visual resources on the most salient aspects of 
the visual scene. Our saliency index draws upon these human bottom-up attentional 
processes. It relieves on the saliency of user’s behavior by computing the probability 
of occurrence and contrast of the expressive features values during instantaneous, 
short-term, and long-term time periods. We demonstrated that human attention related 
algorithms are able to set attention focus on the person with a different behavior 
compared to the others, to a person who exhibits changes regarding his own behavior 
history, but also to people whose behavior is different from the one of the majority of 
the people passing in the same areas. Our algorithm has been successfully tested in 
applications dealing with one or several participants simultaneously. The saliency 
index algorithm can be considered as a first step to provide real-time multimodal 
interfaces with context-aware abilities and to adapt them efficiently to multi-user 
scenarios. 

We plan to further investigate the potentialities of the saliency index as a 
descriptor of human expressivity in three directions: (i) by applying it to a more 
sophisticated set of expressive features (e.g., fluidity, impulsiveness) (ii) by selecting 
the relevant expressive features according to their rarity score (iii) by analyzing how a 
visual feedback computed on the saliency index can affect user behavior (e.g., 
whether it fosters expressive behavior). 
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Abstract. This article reports on the exploration of a method based
on canonical correlation analysis (CCA) for the analysis of the relation-
ship between gesture and sound in the context of music performance
and listening. This method is a first step in the design of an analysis tool
for gesture-sound relationships. In this exploration we used motion cap-
ture data recorded from subjects performing free hand movements while
listening to short sound examples. We assume that even though the re-
lationship between gesture and sound might be more complex, at least
part of it can be revealed and quantified by linear multivariate regres-
sion applied to the motion capture data and audio descriptors extracted
from the sound examples. After outlining the theoretical background,
the article shows how the method allows for pertinent reasoning about
the relationship between gesture and sound by analysing the data sets
recorded from multiple and individual subjects.

Keywords: Gesture analysis, Gesture-Sound Relationship, Sound
Perception, Canonical Correlation Analysis.

1 Introduction

Recently, there has been an increasing interest in the multimodal analysis of
the expression of emotion as well as expressivity in music. Several works reveal
that motor expression components like body gestures are always accompany-
ing other modalities [23]. For instance, human face-to-face communication often
combines speech with non-verbal modalities like gestures. In this context, mul-
timodal analysis reveals co-expressive elements that play an important role for
the communication of emotions. In a similar way, we’d like to explore the rela-
tionship between gestures and sound in the context of music performance and
listening.

We are particularly interested in the relationship between sound and the move-
ments of an individual or a group in a listening situation as well as the movements
of a music performer that are related primarily to the production of sound, in
addition to the musical intention and the expression of emotion ([16]).

In our current project, we develop a set of methods for the analysis of the
relationship between different aspects of gestures and sound. We would like to
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be able to apply these methods to a variety of contexts, covering the perfor-
mance of traditional and electronic (virtual) instruments as well as different mu-
sic listening scenarios. The goal of this work reaches the creation of tools for the
study of gesture in musical expression and perception. In a greater context, these
tools contribute to the development of novel paradigms within the intersection
between music performance and music listening technologies.

In this paper, we present a new approach to the quantitative analysis of the
relationship between gesture and sound. The article is organized as follows. We
first present a review of related works. Then we introduce in section 3 the mul-
tivariate analysis method called canonical correlation analysis. In section 4 we
present the experimental context including our data capture methods and we
show results on feature selection and correlation analysis of collected data. We
discuss these results in 5. Finally, we conclude and give the implications on
further works in section 6.

2 Related Work

The concept of embodied cognition has been adopted by a wide community
of researchers. In this context, the relationship between gesture and sound has
come into interest to interdisciplinary research on human communication and
expression.

Some recent researches in neurosciences ([13], [25]) and others in perception
([2], [18], [26]) have shown that action plays a predominant role in perception
insisting on the inherently multimodal nature of perception. In [1], [12], [14]
the authors show that gesture and speech are to some extent complementary
co-expressive elements in human communication.

Research in the domain of music and dance has studied the embodiment of
emotion and expressivity in movement and gesture. Leman ([16]) has widely ex-
plored various aspects of music embodiment based on the correlation between
physical measurements and corporeal articulations in respect to musical inten-
tion. Camurri et al. in [4] show that emotion can be recognized in a dancing
movement following dynamic features such as quantity of motion extracted from
motion capture data. Dahl et al. in [5] show to what extent emotional inten-
tions can be conveyed through musicians’ body movements. Moreover, Nusseck
and Wanderley in [19] show that music experience is multimodal and is less de-
pend on the players’ particular body movements than the player’s overall motion
characteristics.

Several recent works have studied gestures performed while listening to music
revealing how an individual perceives and imagines sound and sound production
as well as music and music performance. In [6], [10] and [7] the authors explore
the relationship between gesture and musical sound using qualitative analysis
of the gestural imitation of musical instrument performance (air-instruments)
as well as free dance and drawing movements associated with sounds (sound-
tracing). For instance, [6] shows that air-instrument performance can reflect how
people perceive and imagine music highly depending on their musical skills.
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On the other hand, only a few works have taken a quantitative approach and
are mostly focussing on the synchronisation between gestures and music. In [15],
Large proposes a pattern-forming dynamical system modelling the perception of
beat and meter that allows for studying the synchronisation and rhythmic corre-
spondence of movement and music. Experiments in which subjects were asked to
tap along with the musical tempo have revealed other pertinent characteristics
of the temporal relationship between movement and music ([17], [22], [24]) such
as negative asynchrony, variability, and rate limits. In [17], the authors give a
quantitative analysis of the ensemble musicians’ synchronization with the con-
ductor’s gestures. The authors have used cross-correlation analysis on motion
capture data and beat patterns extracted from the audio signal to study the
correspondence between the conductor’s gestures and the musical performance
of the ensemble. Lastly, Styns ([24]) has studied how music influences the way
humans walk analysing the correspondence between kinematic features of walk-
ing movements and beat patterns including the comparison of movement speed
and walking tempo in addition to the analysis of rhythmic synchronicity. He
shows that walking to music can be modelled as a resonance phenomenon (with
resonance frequency at 2Hz).

In our work we attempt to introduce a method for the quantitative multimodal
analysis of movement and sound that allows for the selection and analysis of con-
tinuous perceptively pertinent features and the exploration of their relationship.
It focuses on free body movements performed while listening to recorded sounds.
The mathematical approach is a general multivariate analysis method that has
not been used yet in gesture-sound analysis, but that has given promising results
in the analysis of multimedia data and information retrieval ([11]).

3 Canonical Correlation Analysis: An Overview

Proposed by Hotelling in [9], Canonical Correlation Analysis (CCA) can be seen
as the problem of measuring the linear relationship between two sets of variables.
Indeed, it finds basis vectors for two sets of variables such that the correlations
between the projections of the variables onto these basis vectors are mutually
maximised. Thus, respective projected variables are a new representation of the
variables in directions where variance and co-variance are the most explained.

Let us introduce some notations: bold type will be used for matrices (X, Y,
etc...) and vectors (u, v, etc...). The matrix transpose of X will be written as XT .
Finally, an observation of a random variable v will be written as vi at time i.

Consider two matrices X and Y where the rows (resp. columns) are the ob-
servations (resp. variables). X, Y must have the same number of observations,
denoted m, but can have different numbers of variables, denoted nx resp. ny.
Then, CCA has to find two projection matrices, A and B, such as

max
A,B

[corr (XA,YB)] (1)

Here corr denotes the correlation operator between two matrices. Usually, the
correlation matrix of a matrix M of dimension m × n is the correlation matrix
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of n random variables (the matrix columns m1, ...,mn) and is defined as a n×n
matrix whose (i, j) entry is corr (mi,mj). The correlation between two matrices
is the correlation between the respective indexed columns. Therefore XA and
YB must have the same number of variables. A and B are nx×min (nx, ny) and
ny × min (nx, ny) matrices. Let h be one arbitrary variable index in XA (as in
YB), equation (1) can be written as finding ah and bh, ∀h = 1... min (nx, ny),
that maximize:

corr (Xah,Ybh) (2)

We remind the reader that the correlation coefficient between two random vari-
ables is computed as the quotient between the covariance of these two ran-
dom variables and the square root of the product of their variance. Let denote
C(X,Y) the covariance matrix. It is a positive semi-definite matrix and can be
written as

C(X,Y) = Ê

[(
X
Y

)T (X
Y

)]
=
[
Cxx Cxy

Cyx Cyy

]

Thus we can formulate the problem from equation (2) using the previous nota-
tions: find A,B such that the following quotient is maximized

corr (Xah,Ybh) =
cov (Xah,Ybh)√

var (Xah) var (Ybh)
=

aT
h Cxybh√

aT
h CxxahbT

h Cyybh

(3)

One can show that equation (3) leads to a generalized eigenproblem of the form
(see [8]):

M1v = λM2v

Efficient methods can be implemented to find interesting projection matrices.
The key terms for an understanding of CCA are: canonical weights (coefficients
in A and B); canonical variates (projected variables, XA and YB); canonical
function (relationship between two canonical variates whose strength is given by
the canonical correlation).

Interpreting canonical correlation analysis involves examining the canonical
functions to determine the relative importance of each of the original variables
in the canonical relationships. Precise statistics have not yet been developed to
interpret canonical analysis, but several methods exist and we have to rely on
these measures. The widely used interpretation methods are: canonical weights,
canonical loadings and canonical cross-loadings. In this paper we use the sec-
ond one because of its efficiency and simplicity. Canonical Loadings measure the
simple correlation between variables in each set and its corresponding canoni-
cal variates, i.e. the variance that variables share with their canonical variates.
Canonical Loadings are computed as:

Gesture loadings : LG = corr (X,U)

Sound loadings : LS = corr (Y,V)
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4 Cross-Modal Analysis

We applied the method based on CCA to some examples of data collected in
an experiment with subjects performing free body movements while listening to
sound recordings imagining themselves producing the sound. Given the setup of
the experiment, gesture and sound can be assumed as highly correlated without
knowing their exact relationship that may be related to the subjects’ sound
perception, their intention of musical control, and their musical and motor skills.
In this sense, the collected data sets have been a perfect context to explore the
developed method and its capability to support reasoning about the relationship
between gesture and sound.

4.1 Collected Data

The data has been collected in May 2008 in the University of Music in Graz. For
the experiment 20 subjects were invited to perform gestures while listening to a
sequence of 18 different recorded sound extracts of a duration between 2.05 and
37.53 seconds with a mean of 9.45 seconds. Most of the sound extracts were of
short duration. Since the experience was explorative, the sound corpus included
a wide variety of sounds: environmental and musical of different styles (classical,
rock, contemporary).

For each sound, a subject had to imagine a gesture that he or she performed
three times after an arbitrary number of rehearsals. The gestures were performed
with a small hand-held device that included markers for a camera-based motion
capture system recording its position in Cartesian coordinates. A foot-pedal
allowed to synchronise the beginning of the movement with the beginning of the
playback of the sound extract in the rehearsal as well as for the recording of the
final three performances.

4.2 Gesture Data

As input of the analysis method, a gesture is a multi-dimensional signal stream
corresponding to a set of observations. The most basic kinematic features are
the position coordinates x, y, z, velocity coordinates vx, vy, vz and acceleration
coordinates ax, ay, az derived from the motion capture data. These features give
a basic and efficient representation of postures and body movements describ-
ing their geometry and dynamics. For instance, Rasamimanana in [21] shows
that three types of bow strokes considered in the paper are efficiently charac-
terized by the features (amin, amax). In order to abstract from absolute position
and movement direction, we calculate vector norms for position, velocity, and
acceleration. To also consider movement trajectories, we additionally represent
the gestures in an adapted basis using Frenet-Serret formulas giving curvature
and torsion in the coordinate system (t,n,b). In the same coordinate system,
we add normal and tangential accelerations denoted by accN and accT (that
replace previous acceleration).
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Finally, at the input of the method a gesture is represented by a finite sequence
of observations of the following variables:

{position, velocity, accN , accT , curvature, radius, torsion}
The CCA here permits to select the most pertinent features used in further
calculations eliminating non-significant parameters.

4.3 Sound Features

The perception of sound has been studied intensively since one century and it is
now largely accepted that sounds can be described in terms of their pitch, loud-
ness, subjective duration and “timbre”. For our exploration, we extract a set
of audio descriptors from the audio files used in the experiment that have been
shown to be perceptively relevant (see [20]). While we easily can rely on loud-
ness and pitch the perceptual relevance of audio descriptors for timbre and its
temporal evolution is less assured. Nevertheless, we have chosen to use sharpness
corresponding to the perceptual equivalent to the spectral centröıd. Pitch has
been discarded since in musical performance it generally requires high precision
control associated to expert instrumental gestures (defined as selection gestures
in [3]).

At the input of the method a sound is represented by a finite sequence of
observations of the following variables:

{loudness, sharpness}
Their perceptual characteristic allows the easy interpretation of gesture-sound
relationship analysis.

4.4 Results

For free body movements performed while listening to recorded sound extracts,
we are interested in investigating how gesture can explain sound through sound
features and how sound can highlight important gesture characteristics. Among
the whole set of sounds we chose two: the sound of an ocean wave and a solo flute
playing a single note with strong timbre modulation (extract from Sequenza I
for flute (1958), by Luciano Berio). These two sounds appeared to be the most
pertinent extracts given the selection of audio descriptors discussed in 4.3. The
set of two perceptual audio descriptors computed on each sound can be seen in
figure 1.

The wave sound is characterized by a spectral distribution similar to a white
noise passing through a specific filter. It leads to a sharpness feature highly corre-
lated with the loudness (correlation coefficient of 0.814). Since the flute example
characteristic resides in a continuous transformation of its spectrum without
significatively changing the fundamental frequency, its computed loudness and
sharpness are less correlated (its correlation coefficient is -0.61).

First, gesture parameters considered as pertinent in the context cannot be
chosen arbitrarily. Our analysis method can be applied to select a subset of per-
tinent gesture parameters using one gesture and many audio descriptors. In this
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Fig. 1. Loudness and Sharpness. On the left, feature values are plotted for the wave
sound. The line corresponds to loudness, and the gray line sharpness. The same features
for the flute timbre example are plotted on the right.
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Fig. 2. Relevant gesture parameters. Each parameter is analysed together with the
audio descriptors using CCA for 42 gestures. Results for the wave sound are plotted
on the left side while flute results can be seen on the right.

way, the method operates as a multiple regression: the gesture parameter is pre-
dicted from audio descriptors. Each analysis returns one correlation coefficient
corresponding to the canonical function strength between the current gesture
parameter and the audio canonical component. 42 gestures are considered land-
ing 42 canonical analysis iterations for each gesture parameter and each sound.
Figure 2 shows two box plots corresponding to this process as applied to the wave
and flute sounds. Three principal features are emphasized: position (index 1),
velocity (index 2), and normal acceleration (index 3). Since these features have
the highest correlation means among those in the set of gesture parameters, they
constitute a set of pertinent parameters related to the wave and flute sounds.
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Nevertheless, selection based on correlation means returns more significant re-
sults for the wave sound. For both cases, torsion has been discarded because the
data derived from the motion capture recordings were very noisy.

Therefore,theselectedsubsetofgestureparametersis{position, velocity, accN}.
Canonical correlation analysis has been used as a selection tool; now we apply this
method in our search for the intrinsic relationships between the two sets of data.
In the first step, we discard outliers related to the first and the second canonical
component. This leads to two subsets: 14 gestures among 42 for the wave example
and 10 gestures for the flute example. Following the previous notations, CCA re-
turns two projection matrices A,B whose dimensions are 3 × 2 and 2 × 2 for each
gesture, respectively. Loadings are computed at each step; figure 3 and 4 illustrate
their statistics. The figures show the variance shared by each original variable with
its canonical component for all gestures. Canonical gesture loadings are on the left
side of the figures while audio descriptors respective canonical loadings are on the
right. The first component is placed above the second one.

The wave case is illustrated by figure 3 and can be interpreted as follows.
Gesture parameter velocity and normal acceleration are the most represented
in the first canonical component: around 90% of their variance is explained.
In the audio space, one original variable is clearly highlighted: the loudness
(at the top of figure 3). In other words, the first canonical function correlates
{velocity, accN} to {loudness}.

Position contributes the most to the second canonical component in the ges-
ture space while the sharpness descriptor is predominant in this case. So sec-
ond canonical function correlates {position} to {sharpness} (at the bottom of
figure 3).

One can remark that analysis reveals that loudness and sharpness descriptors
can be separated when considering sound with gesture while they were highly
correlated (figure 1).

A similar interpretation can be given for the flute timbre sound showed in
figure 4. In this case, we have:

first function : {position} → {loudness}
second function : {velocity, accN} → {sharpness}

5 Discussion

To analyse the cross-modal relationship between gesture and sound, a multi-
variate analysis method is used in two ways: first for the selection of pertinent
gesture features, then for the analysis of the correlation between the selected
features with the audio descriptors. In the first step, the selection yields a subset
of movement features that best correlate with the audio descriptors. The low
correlations obtained for some of the features have been discarded for further
exploration. This seems to be coherent with kinematic studies of human gestures:

– Tangential acceleration is the acceleration component which is collinear to
the velocity vector. If we consider the two-thirds power law by Viviani and
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Fig. 3. Canonical loadings for the wave sound. Each row is a canonical component.
Gesture parameter loadings are plotted on the left while audio descriptors can be seen
on the right. Top: velocity and accN are correlated to loudness. Bottom: position is
correlated to sharpness.

Flash (A = K.C2/3 where A is the angular velocity, C the curvature and K
a constant), normal acceleration is related to curvature by accN = K ′.C1/3,
where K ′ is a constant. In this case, tangential acceleration does not convey
relevant information.

– The fact that curvature is no longer pertinent means there is no linear relation
either between curvature and the audio descriptors or between the curvature
and other gesture parameters. This result is in agreement with the previous
kinematic law and can be also applied to the radius of curvature.

The next step of the analysis explores the correlation of selected movement fea-
tures with the audio descriptors. The results of this analysis are correlations
highlighting pertinent aspects of the gesture-sound relationship. Without sur-
prise the subjects seem to favour gestures correlating with perceptual audio
energy (loudness).
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Fig. 4. Canonical loadings for the flute sound. Each row is a canonical component.
Gesture parameter loadings are plotted on the left while audio descriptors can be seen
on the right. Top: position is correlated to loudness. Bottom: velocity and accN are
correlated to sharpness.

In the case of the wave sound, velocity or normal acceleration are highly
correlated to loudness. Confronting this result with performance videos, one
can see that the subjects are concerned about sonic dynamics and continuity.
Increasing audio energy implies increasing velocity, i.e. increasing kinetic energy.
Here the analysis reveals that the subjects tend to embody sound energy through
the energy of their movement.

On the other hand, for the gestures performed on the flute sound we observe
a high correlation between the norm of the position and the loudness. Instead of
embodying the sound dynamic the subjects rather tend to transcribe its temporal
evolution tracing the modulation of the sound feature over time. As the variation
of audio energy in the flute example is rather subtle compared to the wave sound,
the subjects seem to adapt their strategy for the imagined sound control.

At last, we have started to inspect data of particular subjects that may reveal
individual strategies and skills. For instance, considering the velocity feature,
defined as velocity2 = v2

x + v2
y + v2

z , one can bring directional information to
the analysis splitting velocity2 into three specific variables: v2

x, v2
y , v2

z . Canonical
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correlation analysis is no longer constrained to a uniform weight equal to 1 in
the resulting linear combination but finds an optimal set of weights favouring
directions. In other words, the analysis method takes into account the movement
asymmetries. For the selection of movement parameters among a redundant set
of extracted features, a trade-off has to be found between achieving a complete
description of the movement and avoiding redundancies.

6 Conclusion and Future Works

Our goal was to study the relationship between gesture and sound. Gesture
was considered as a set of kinematic parameters representing a free movement
performed on a recorded sound. The sound was considered as a signal of feature
observations. The method used in the paper arises from multivariate analysis
research and offers a powerful tool to investigate the mutual shared variance
between two sets of features. Objective results inferred from the application of
CCA as a selection tool was presented. In addition, more subjective conclusions
concerning mapping from the gesture parameter space to the audio descriptor
space was highlighted. Thereby, we saw in this paper that gestural expression
when relating to sounds can be retrieved considering gesture-sound as a pair
instead of as individual entities.

However, the method suffers from some restrictive limitations. First of all,
canonical functions correspond to linear relations so CCA cannot exhibit non-
linear relations between variables. Besides, since we must restrict the variable
sets to finite sets that encode only a part of the information contained in both
gestures and sounds, the correlation (i.e. variance) as an objective function is not
always relevant when real signals are analysed. The correlation involved in CCA
could be replaced by the mutual information. By arising the statistical order
of the multivariate relation, the main idea is to find canonical variates that are
maximally dependent. It should lead to a more complete semantic interpretation
of gesture-sound relationships in a musical context. To summarize, the method
presented in this paper has given promising results and further works will consist
in refining the method using information theory.
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Abstract. We present the implementation of two different sonifications
methods of ancillary gestures from clarinetists. The sonifications are data
driven from the clarinetist’s posture which is captured with a VICON
motion tracking system. The first sonification method is based on the
velocities of the tracking markers, the second method involves a prin-
cipal component analysis as a data preprocessing step. Further we de-
velop a simple complementary visual display with a similar information
content to match the sonification. The effect of the two sonifications
with respect to the movement perception is studied in an experiment
where test subjects annotate the clarinetists performance represented by
various combinations of the resulting uni- and multimodal displays.

Keywords: sonification, 3D movement data, ancillary gestures,
multimodal displays.

1 Introduction

Through advanced recording and simulation possibilities the amount of 3D move-
ment data is constantly growing. The standard technique to investigate such data
is the scientific 3D visualization of moving points or models, a self evident ap-
proach, since the human visual and cognitive system seems highly adapted to
perceive and interpret human motion. However, the rather young research field
of sonification offers novel inspection techniques that complement visual analysis
by transforming data into audible sound. This perception mode is beneficial for
several reasons: Firstly, sonification is ideal for representing dynamic patterns
in multivariate data sets with complex information such as fast transient mo-
tions. Secondly, sound requires neither a particular orientation of the user nor
directed attention. Thirdly, in many applications the eyes are already occupied
with a specific task and have therefore limited capacity to focus on additional
information. In this case however, the intricate interplay of multimodal displays,
specifically the one of sound and moving image has to be taken into account.
These benefits are of potential interest for the study of ancillary gestures of
instrumentalists, in our case clarinetists.
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Ancillary gestures are those body movements which are not directly involved
in the sound production [1] [2] but are omnipresent in musical performance. For
clarinet players, lip and finger motions are effective gestures, whereas motions
like weight transfer and body curvature for instance are ancillary gestures. Their
importance is due to the fact that they tend to align with musical motives in the
score [2] and are therefore an integral part of the player’s performance as these
movement patterns show consistency even for various levels of expressiveness [3].

In this paper, we develop two different sonification strategies of ancillary ges-
tures.Thefirst is a directmapping ofmarker velocities to sound, the second involves
a principal component analysis as a data preprocessing step. Specific sonifications
for this purpose have already been developed to some extent by the authors [4] [5]
[6] [7] and others [8] [9] but there is still a lack of understanding, how sonification
influences multimodal displays. and if different sonification strategies have notice-
ably different effects on how we perceive data in a in multimodal displays. Besides
the development of sonification techniques,we put our focus on assessing the effects
in a psychophysical experiment, inwhichwe ask test subjects to identify self-chosen
events and consistently detect their selection in repeated presentations.

2 The Vicon Motion Tracking Data

The motion capturing sessions were conducted in previous projects at the IDMIL.
All performers were advanced instrumentalists playing an excerpt of Brahms’
Sonata for clarinet op. 120 no 1. The movement data of the clarinetist were
recorded with a VICON system 460 system using the standard plug-in-gait
model [10], which provides 38 marker positions and gives a global description of
the body posture. We removed from the resulting data redundant channels and
decided to apply sonification to the posture information in terms of marker posi-
tions each with x, y and z Cartesian coordinates and its derivatives. This choice
was motivated by that fact that we wanted to apply sonification to aspects of the
data which could also be seen in a simple visual representation. The remaining
set consisted of 18 markers, some of them were computed as combinations of
originally measured data c.f. Table 1.

Table 1. On the left: the reduced dataset of 18 markers. On the right: clarinetists in
the VICON motion capturing system.

body part left middle right
head front back of the head front
spine neck C7

T10
end of spine

arms shoulder shoulder
Elbow Elbow

arm wrist arm wrist
legs hip hip

knee knee
ankle ankle
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The marker in the middle on the backside of the head corresponding to the
two on the front, was computed as the mean of two left and right markers in the
back. The marker at the end of the spine was the mean vector of the left right
backside of the hips. The markers on the hips are the average of two markers
back/front of each side respectively.

3 Data Preparation and Preprocessing

Before reducing the data as described above, we centered them between both
feet. This was done such that for each time frame the center of origin of the
coordinate system was moved to the middle between the left and right toe. In
general, the clarinetists left their toes in one place during the whole performance
(except one recording). Therefore, there was not much dynamics in the marker
on the toe.

The left and right as well as the back and forth movements (weight transfer,
WT) of most of the subjects dominated the whole dataset. For the PCA trans-
form this lead to the fact that the first and second components consisted of the
WT movement. In the velocity sonification approach, the WT was dominating
in a similar way, when mapping velocity to sound. Therefore we removed this
component from the data set. The WT can be understood as the moving center
of mass (COM) of the performer, like a reversed pendulum pointing up, which
is anchored between both feet of the performer and oscillates around the basis
vector z (0,0,1) in the x,y plane. After removing this motion, the COM vector
always remained parallel to (0,0,1).

4 Sound Synthesis and Mapping

4.1 Sound Synthesis

According to the Design Space Map [11] a recording rate of 100 Hz, suggested
a continuous parameter mapping sonification as an appropriate strategy. The
following two considerations were guiding us during the sonification design: The
continuous sonification should automatically lead to acoustic articulations which
segment the audio in a perceptually meaningful way according to the movement
patterns. Further, the sonification should allow to distinguish movements from
different parts of the body. Yet in order to know, what the test subjects would be
listening to, if they directed their attention towards the sonification, we decided
to design a single auditory stream. Therefore we constructed as the simplest soni-
fication unit a source filter model. using white noise filtered through a resonant
filter.

s(t) =
n∑

i=1

HResonz(ηi(t); fi, rq, g) (1)

Where HResonz is the resonant filter with the resonant frequency fi, the gain
g, the bandwidth is specified with the filter’s reciprocal q -value rq and ηi(t) is
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a white noise source. Motion data are mapped to these parameters as follows.
The resulting sonification as s(t) is the sum over all n sonified data-features.
To address the frequency loudness dependency we used basic psychoacoustic
amplitude compensation.1

These sounds of filtered noise integrated nicely into one sound stream where
the varying amplitude of the different resonant frequencies fi could be
distinguish.

4.2 Mapping

As mentioned two different mappings of the the data features to the sonification
units have been applied.

Velocity Sonification: The first was a direct mapping of the velocities of all
18 data points to the sound parameters described above. Due to the noise in
the data the derived velocity was smoothed with a rectangular window of 5
samples. Frequencies between 150 and 4000 Hz were assigned to each marker.
The gain corresponded to the velocity exponentially mapped between 0.001 and
1. The velocity of each data point modulated the center-frequencies with ±5%
and additionally the rq of each resonant filter was mapped exponentially between
0.001 and 0.1.

PCA Sonification: For the second mapping, we computed the principal com-
ponents of the data set consisting of 3 ∗ 18 = 54 features over a complete
performance.2 Since the COM corresponding to the 54d vector of the mean
posture has been subtracted before computing the data set covariance matrix
C = 1

N

∑
α xαxαT the principal components describe axis along coordinated

activity. Then we took the first 6 coefficients corresponding to the largest eigen-
values of C that that cover approx. 85 % of the data set variance. It turned
out, that taking components after the first 6, which described minute move-
ment details could not be distinguish acoustically to our experience and were
hard to identify visually too. The coefficients of the principal components were
exponetially mapped between 300 - 2000 Hz.3 The velocities of the coefficients
were exponentially mapped to gain between 0.001 and 1. Frequency modulation
corresponded to ±5% around the assigned frequency controlled by the time coef-
ficients. The rq of the resonant filters corresponded to the principal components
exponentially mapped between 0.001 and 0.1 In both approaches the resulting
sound was the sum over all sonified data features as in eq. 1.

Data Selection for the Experiment: In order to cover different ancillary ges-
ture patterns these sonifications were applied onto the data of the complete perfor-
mance of 3 clarinetists, which have been selected since they exhibited noticeably
1 For the details of the resonant filter and the amplitude compensation we refer to the

implementation details of the Resonz and AmpComp class in SuperCollider3.
2 PCA was computed via pythonSC [12].
3 Frequencies and range were chosen to yield an acoustically rich result.
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different movement patterns. Clarinetist 1 and 3 exhibited very pronounced an-
cillary gestures with lots of weight transfer movements, whereas clarinetist 2 was
only occasionally moving the whole body, but instead made rapid movements with
the elbows and the arm wrist.

5 Considerations on Sound and Image

For the design of multi modal displays it is important to consider that human
perception is not merely a superposition of moving image plus sound. The fact
that sound can give an added value to the image has already been extensively
studied by Chion [13] and Flueckiger [14] for the cinema. Some findings from
these works are particularly instructive for the design of sonifications for multi
modal displays. One is that we always look for a visual cause that explains our
acoustic impressions. Therefore the sound always seems to come from the image
and is together with a visual representation not perceived in isolation. On the
contrary, if no cause can be found in the visual display, no integrated perception
emerges. This implies in turn that complementarity receives a particular mean-
ing for multi modal displays. Sonification can most effectively be used when it
emphasizes information that is already in the visual display and can be more
precisely identified there. Unfortunately this ”searching” for a visual cause can
also lead to unwanted results as the following experience shows: In [7] a frame-
work for ancillary gestures sonifications for clarinetists was developed, where in
a first trial sonifications were combined with videos from the clarinet players
clearly showing the finger movements. The effect was that some test subjects
asked if the finger movements (effective gesture) caused the sound, where in fact
the sonification was representing only ancillary gestures such as weight transfer
and body curvature, which were less visible.

Given these considerations about the interplay of sound and image, the main
focus was if different sonifications of ancillary gestures change the way how we
perceive them and if both modalities can be efficiently integrated. By giving the
test subjects an open task we investigated if sonifications can contribute towards
a more unanimous interpretation of perceived movements amongst test subjects.

5.1 The Visual Display of Body Movements

Because of the aforementioned considerations we developed a visual display
which only shows ancillary gestures4. Figure 1 shows an abstract stick figure
in profile and from the front omitting details such as finger movements. In small
preliminary tests we received a good feedback for this display design in terms
of a consistency between sonification and image, yet people still reported diffi-
culties to identify which part of the body was responsible for a certain sound.
Therefore we added, at least for the velocity sonification, a red glyph to each
sonified joint, which changed in size and color (by varying the alpha channel)
according to the velocity. This provided visually similar information, as mapped
to sound in the velocity sonification.
4 The visualization in SuperCollider3 was implemented in SCgraph [15].
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a b

Fig. 1. Visualization of the clarinetists: (a) simple stickman (b) enhanced stickman
where the velocities of joints are additionally highlighted with red glyphs

6 Experiment

6.1 Task

Given the diverse background of the test-subjects, we designed an open task
for the experiment, which consisted of identification and detection of events in
stimuli for selected sequences of movements of the three clarinetists. All stimuli
represented the same musical phrase consisting of 4 distinct melodic units. The
test subjects were asked to look and listen to each stimulus 9 times and to identify
events that they encountered and to mark their choice in real time by mouse
clicks. The test subjects were told to consider the first two runs as test runs and
to try to repeat their selection of events consistently in the subsequent 7 runs.
At the end of all trials the test subjects were asked to fill out a questionnaire
about the different stimuli and about their musical experience.

6.2 Setup

The combination of the two visual representations and the two sonifications
resulted in 7 different stimuli, which were presented to the test subjects.

id sonification vizualization acronym
1 direct - A1 V0
2 direct stickman A1 V1
3 direct stickman + glyphs A1 V2
4 - stickman A0 V1
5 - stickman + glyphs A0 V2
6 PCA - A2 V0
7 PCA stickman A2 V1

In the case of the PCA based sonification we omitted the highlighting red
glyphs since those aspects were not sonified. For each test subject the order of
the stimuli was randomized ensuring that the 3 clarinetists were interleaved. For
clarinetists 1 and 3 the velocity sonification resulted in a very structured sound
that was easy to connect with the visual representation. The PCA sonification
for the selected region appeared less structured and was therefore more difficult
to connect with the visualization. This was reversed for clarinetist 2, where the
PCA sonification lead to more structured sounds.
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7 Experimental Data Evaluation

We recorded and analyzed data for 12 test subjects aged from 22 - 33, 11 male,
1 female, 7 of them playing an instrument. Since the movement patterns are
very different for each clarinetist, resulting in very different direct and PCA
sonifications, the analysis was made for each clarinetist individually.

Average Click Frequency: At first we are interested in the average number
of clicks given for each stimuli. The results are compiled in Figure 2. In all the
subsequent figures the results for the different stimuli are represented showing
the audio only condition on the left (A1V0, A2V0) and the visual only condition
on the right (A0V1, A0V2) , leaving the middle for the combined stimuli (A1V1,
A1V2, A2V1).

Although the click-frequency does not vary significantly across the conditions,
it is interesting to note that the highest click frequency was obtained with stimuli
that at least included a visual representation. The lowest click-frequency always
appeared with stimuli that contained an audio only condition. For clarinetist 3,
who had a very structured performance with pronounced ancillary gestures, the
standard-deviation is much smaller for most of the conditions comparing it with
the other two clarinetists. This suggests that the intersubjective convergence
in the perception of ancillary gestures is first and foremost influenced by how
pronounced the ancillary gestures themselves appear.

Kernel Estimated Click Density: In order to compare the different stimuli
along the performance of the clarinetists we visualized the results by computing
a kernel estimated click density. Selected intervals of the click densities are de-
picted in figure 3.5 The three selections (a, b, c) from figure 3 are examples for
patterns we noticed in the plots. Selection a shows that in some cases multimodal
conditions led to a noticeable delay in the reaction of the participants (we also
found a case where visualization only, V2A0, was triggering clicks faster, than
in the multimodal case V2A1). We hypothesize that integrating two perceptual
streams increases the cognitive load and therefore causes the delay. Selection b
shows that the velocity sonification seemed to dominate in clarinetist 2 and made
the test-subjects ignore an event that was selected in A0V1 and A2V1. The last
two conditions are very similar in the click-profile (except the multimodal delay
in A2V1), the sonification of A2 therefore seemed not to overrule the visualiza-
tion. Around second 6 in selection b we found that A1V1 made the test-subjects
clearly differentiate two events which we could identify as two quick arm-wrist
movements. Selection c clearly shows a peak at sec. 3 for the stimulus A1V2. At
this moment clarinetist 3 made a step, which was interestingly not noticeably
marked by clicks in any V1 or V2 only condition.

In Table 2 you find the results of the Kolmogorov Smirnov test over the
click trains comparing different stimuli. An interesting because most general

5 For an overview about all kernel estimated click densities please follow this URL:
http://www.techfak.uni-bielefeld.de/~fgrond/GW2009/

http://www.techfak.uni-bielefeld.de/~fgrond/GW2009/
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Fig. 2. Average number of clicks per trial

Fig. 3. Kernel estimated click densities. a,b and c are selected intervals of clarinetist 1,
2 and 3 respectively. The grey horizontal bar indicates the average click density

∫
= 1.

Table 2. comparing the clicktrains by the Kolmogorov Smirnov test. Values below
5% are indicated. The first block of 3 stimuli pairs (line 1-3) compares A1 in combi-
nation with V0 V1 V2. The second block of 3 stimuli pairs (line 6-9) compares V1 in
combination with A0 A1 A2.

compared stimuli clarinetist 1 clarinetist 2 clarinetist 3
A1V0 — A1V1 0.233 0.032 0.011
A1V1 — A1V2 0.010 0.493 0.302
A1V2 — A1V0 0.180 0.010 0.078
A2V0 — A2V1 0.226 0.086 0.248
A0V1 — A0V2 0.144 0.105 0.441
A0V1 — A1V1 0.618 0.018 0.127
A1V1 — A2V1 0.223 0.007 0.360
A2V1 — A0V1 0.487 0.508 0.368
A1V0 — A2V0 0.086 0.001 0.012

A1V2 — A0V2 0.006 0.006 0.104

result (last row) is that adding the velocity sonification to V2 made a significant
difference for clarinetists 1 and 2, even for clarinetist 3 the value of 10% is
low. Particularly for clarinetist 2 the click distribution of many stimuli pairs
were significantly different accepting a threshold of 5%. A qualitative analysis as
done for figure 3 reveals however that also for clarinetist 1 and particularly for 3
different choices were made by the test-subjects depending on the modality of the
stimuli. In order to illustrate those differences we plotted the click time versus
the click number as shown in figure 4. Comparing the conditions A1V0, A1V2,
A0V2 shows how adding the velocity sonification A1 to an already enhanced
visualization V2 led to a smaller distribution around the diagonal of succeeding
clicks. The condition A1V0 on the left shows the most pronounced diagonal with
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Fig. 4. Clarinetist 3, click time versus click number

Fig. 5. Self rating of test subjects. x shows the stimuli, y the mean ± standard error.

few outliers, in the condition A0V2 we find less coherence, the plot in the middle
A1V2 lies in between, this can be interpreted as intersubjective convergence,
which is that velocity sonification alone or together with a visual display forced
the test-subjects to select similar events in a similar order.

Self Rating: At the end of the experiment the participants were asked to rate
all the stimuli between 1 (difficult) and 5 (easy) with respect to how much they
helped them in achieving the given task of consistently selecting events in the
display. The results are compiled in figure 5. The multimodal conditions involv-
ing velocity sonification A1V2 A1V1 were first and second rated. Interestingly
less preference was given to the PCA sonification, which is consistent with the
findings in analyzing selection b in figure 3.

8 Conclusion

In this paper we implemented a velocity and a PCA based sonification for an-
cillary gestures and studied them as a stand alone as well as in combination
with a visual displays. Sonification as a stand alone display directed the focus
on similar events. These events were marked in their timely order in a more
unanimous way amongst test subjects. The velocity sonification seemed to be



180 F. Grond et al.

more efficient in highlighting otherwise overseen aspects of the gestures and was
preferred by the test-subjects. We hypothesize that the coordinated directions of
movement as extracted through the PCA do not necessarily correspond to what
we perceive in a visual display and we encounter therefore difficulties in connect-
ing these two display modes. The fact that the PCA extracts for each clarinetist
different coordinated directions of movement depending on their idiosyncratic
patterns means that the ”meaning” of the PCA, i.e. how it connects with the
visual display, has to be learned by the test subjects for each clarinetist anew.
For clarinetist 3 we found that, even if the visualized information was similar to
the sonification, displaying ancillary gestures visually made the subjects select
different events compared to the unanimous choice in the A1V0 and A1V2 case.
Although we set up a very open task without testing reaction time, we found
evidence that multimodal displays are processed slower by the user. Further we
found evidence that sonification has the potential to effectively guide attention
to information that is present in the visual display, but not necessarily in the
focus of attention. This might be of particular interest for annotation tools in
gesture analysis. We therefore see the main purpose of sonification in this par-
ticular setting in guiding attention rather than adding information that is not
present in the visual display or not perceivable there.
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Abstract. Why an iconic gesture takes its particular form is a largely open ques-
tion, given the variations one finds across both situations and speakers. We present
results of an empirical study that analyzes correlations between contextual factors
(referent features, discourse) and gesture features, and tests whether they are
systematic (shared among speakers) or idiosyncratic (inter-individually differ-
ent). Based on this, a computational model of gesture formation is presented that
combines data-based, probabilistic and model-based decision making.

Keywords: Iconic gesture, meaning-form mapping, systematicity, idiosyncrasy.

1 Introduction

The use of speech-accompanying iconic gestures is ubiquitous in human-human com-
munication, especially when spatial information is expressed. Current literature on ges-
ture research states that the question “why different gestures take the particular physical
form they do is one of the most important yet largely unaddressed questions in gesture
research” [2, p. 499]. This holds especially for iconic gestures, for which information
is mapped from some mental image into (at least partly) resembling gestural form. Al-
though their physical form, hence, corresponds to object or event features like shape
or spatial properties, empirical studies have revealed that similarity with the referent
cannot fully account for all occurrences of iconic gestures [19]. Rather, recent find-
ings indicate that a gesture’s form is influenced by specific contextual constraints or
the use of more general gestural representation techniques such as shaping, drawing, or
placing [17,4]. In addition to those systematic patterns in gesture use, human speakers
are of course unique and inter-subjective differences in gesturing also hold (cf. [12]).
For example, while some people rarely make use of their hands while speaking, others
gesture almost without interruption. Similarly, individual variations are seen in prefer-
ences for particular representation techniques or low-level morphological features such
as handshape [4]. Such inter-subjective differences in gesture behaviour are common
and reflect an idiosyncrasy of iconic gestures – gestures are created locally by speak-
ers while speaking, without adhering to any conventionalized standards of good form.
McNeill & Duncan [25, p. 143] conclude that, by this idiosyncracy, “gestures open a
‘window’ onto thinking that is otherwise curtained”.

S. Kopp and I. Wachsmuth (Eds.): GW 2009, LNAI 5934, pp. 182–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we look at how systematic and idiosyncratic aspects appear and inter-
relate with each other in iconic gesture production. We start with empirically analyzing
their influence in the formation of gestures, given certain visuo-spatial features of the
referent and an overall discourse context. Section 2 introduces the experimental setting
and the data coding methodology, Section 3 presents results from the corpus analysis.
Based on these findings, we describe in Section 4 a computational modeling account
that goes beyond previous systems, which either rely on generalized rule-based mod-
els that disregard idiosyncrasy in gesture use [6,18], or employ data-based methods
that approximate single speakers but have difficulties with extracting systematicities of
gesture use. These data-based approaches are typically (and successfully) employed to
generate gesturing behavior which has no particular meaning-carrying function, e.g.,
discourse gestures [27] or beat gestures (Theune & Brandhorst, this volume). We pro-
pose to combine probabilistic and rule-based decision-making. Embedded into an inte-
grated production architecture, this approach allows for generic, yet speaker-attunded
gesture production, which is driven by iconicity as well as the overall discourse context.
We conclude with modeling results from a prototype implementation.

2 Empirical Study

We aim at identifying systematic and idiosyncratic patterns in the formation of gestures.
In our experimental setup, two interlocutors engage in a spatial communication task of
direction-giving and sight description, in which they are to convey the shape of objects
and spatial relations between them (Fig. 1).

Fig. 1. Experiment setting: VR stimulus presentation (left) and dialog phase with the speaker
uttering “the left church has two towers” (right)

2.1 Data Coding

We collected a dialog corpus of 25 dyads (∼5000 gestures). In the scope of the work
reported here, we concentrate on descriptions of four different landmarks from 5 dyads
(489 noun phrases, 290 gestures). Multimodal annotation has been carried out on
several different levels as described in the following (see Table 1).

Gesture Form. All coverbal gestures have been segmented and coded for their repre-
sentation techniques for transforming perceived object information into a gesture. Rep-
resentation techniques capture the aspect that iconic gesturing does not seem to entirely
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Table 1. Coding scheme for gestures and their discourse context

Variable Annotation Primitives Agreement Coefficient

Gesture Representation Technique indexing, placing, shaping, drawing, posturing AC1 = .7841

Handedness rh, lh, 2h κ = .924

Discourse
Context

Thematization theme, rheme κ = .917

Information State private, shared κ = .802

Communicative Goal lm, lmDescrProp, lmDescrConstr, lmDescrPos κ = .847

Referent
Features

Subparts 1 or more, none

κ = .91
Symmetry sym, none

Main Axis x-axis, y-axis, z-axis, none

Position 3D vector (left, middle, right)

follow the goal to maximize similarity with the referent model, but also brings into play
conventions, experiences, and habituations, which people seem to have acquired and
apply in their multimodal deliveries (cf. [26,15,32]) According to our focus on object
descriptions we distinguish the following five categories: (1) Indexing: pointing to a
position within the gesture space; (2) Placing: an object is placed or set down within
gesture space; (3) Shaping: an object’s shape is contoured or sculpted in the air; (4)
Drawing: the hands trace the outline of an object’s shape; and (5) Posturing: the hands
form a static configuration to stand as a model for the object itself.

In addition, each gesture has been coded for its morphology in terms of handed-
ness, handshape, hand position, palm and finger orientation, and movement features
(cf. Rieser, this volume). For the scope of this paper, however, we will consider only
one of these features, namely handedness: each gesture is either performed with the
right hand (rh), with the left hand (lh) or with both hands (2h).

Discourse Context. The transcription of the interlocutor’s words is enriched with fur-
ther information about the overall discourse context. For this purpose, the utterance is
broken down into clauses, each of which holding to represent a proposition. For each
clause we annotated its communicative goal. Denis [8] developed several categories of
communicative goals that can be distinguished in route directions. As we were mainly
interested in object descriptions, we revised and refined these for this case into four cat-
egories: (1) Landmark (lm): a landmark is mentioned without further exploration, e.g.,
‘there is a chapel’; (2) Landmark property description (lmDescrProp): the properties
of an object are described as in ‘the town hall is u-shaped’; (3) Landmark construction
description (lmDescrConstr): an object’s construction is described, e.g., ‘the church
has two towers’; and (4) Landmark Position Description (lmDescrPos): the description
localizes the object as in ‘there is a tree in front of the building’.

Clauses are further divided into two smaller units of thematization partitioning of the
content of a sentence according to its relation to the discourse context. The structuring
of utterances into a topic part and a comment part is a pervasive phenomenon in human
language and there are numerous theoretical approaches describing thematization and

1 We employ the first order agreement coefficient AC since the gestural representation techniques
are data of type II according to [10].
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its semantics (cf. [21]). Following Halliday [11] we distinguish between thematization
in terms of theme and rheme on the one hand, and information focus in terms of given
and new on the other hand. According to the former, a sentence’s theme is what the sen-
tence is about. The rheme is defined as what is being said about the theme. For example,
in the utterance “the church has two towers” the first noun phrase (“the church”) is the
theme and the second noun phrase is the rheme. Focussing on noun phrases and their
accompanying gestures, to which we restrict our annotation, we annotate information
focus following Stone et al. [31] in using the terms ‘information state’ and distinguish
straight-forward between ‘private’ and ‘shared’ knowledge: a referent (or referent fea-
ture) already mentioned in the previous discourse is ‘shared’ between interlocutors,
whereas a discourse referent which lacks an antecedent in the previous discourse, is
not part of the discourse situation is assumed to be ‘private’. For instance, in the ut-
terance “the church has a dome-shaped roof” the first noun phrase (“the church”) is
shared since the must haven been introduced into the discourse before (use of definite
article). The second noun phrase (“a dome-shaped roof”), on the contrary, is private
because the object (feature) is discourse-new. As suggested in [28], thematization and
information focus are annotated independently as different dimensions of information
structure, assuming no prior relation between them. In particular, rhematic information
is not always private as for instance when content is repeated for better comprehension
or in reply to interposed questions.

Referent Features. All gestures used in the object descriptions have further been coded
for their referent and some of its spatio-geometrical properties. These object features
are drawn from an imagistic representation built for the VR stimulus of the study (e.g.,
houses, trees, streets). This hierarchical representation is called Imagistic Description
Trees (IDT) [29], and is designed to cover all decisive visuo-spatial features of objects
one finds in iconic gestures. Each node in an IDT contains an Imagistic Description
(IMD) which holds a schema representing the shape of an object or object part. Object
schemas contain up to three axes representing spatial extents in terms of a numerical
measure and an assignment value like ‘max’ or ‘sub’, classifying this axis’ extent rel-
ative to the other axes. Each axis can cover up to three spatial dimensions to account
for rotation symmetries (becoming a so-called ‘integrated axis’). The boundary of an
object can be defined by a profile vector that states symmetry, size, and edge proper-
ties for each object axis or pair of axes. Links in the tree structure represent spatial
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Fig. 2. A church tower (from the VR stimulus) and IDT representation of its shape
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relations between parts and wholes, and are defined by transformation matrices. Fig. 2
illustrates how imagery can be operationalized with the IDT model. The spatio-
geometrical features entered in the corpus are drawn from these visuo-spatial
representations (see Table 1).

3 Results—Systematicities and Idiosyncracies

As reported in [4] individuals differ significantly in the surface level of their gestural
behavior, i.e., in their gesture rate and their preferences for particular representation
techniques or morphological gesture features. Our corpus analysis here investigates
whether such aspects of iconic gesture production seem to be rather systematic, i.e.
common among speakers in the same situation, or idiosyncratic, i.e. perculiar to a cer-
tain individual. We focus on the following two generation decisions: (1) whether or
not a gesture will be produced, and (2) which hand(s) will be used. Since we are deal-
ing with data measured on a nominal scale, we employ Pearson’s chi-square test to to
judge whether paired observations on two variables, expressed in a contingency table,
are independent of each other.

One important question arising is whether the individual differences are due to the
fact that different speakers follow different subsets of (possibly shared) dependencies
between contextual factors and gestural features? Or do they rather select different fea-
tures for the same factors, i.e. do individuals diverge from the general tendencies found
in the data? We employ two different kinds of measure to investigate these questions.
First, we assessed for each individual if the particular (significant) correlation found in
the whole data is also significant for the individual. Second, as a measure for individ-
ual divergence from the significant common correlations, we assessed for each speaker
if her/his joint distributions coincide with the general distribution. Notably, we only
considered those cells in the contingency tables in which there is at least a significant
difference between observed and expected number of occurrences (p < .05).

3.1 To Gesture or Not to Gesture?

The question whether or not a gesture is produced for a particular object seems to be
highly idiosyncratic. In the whole corpus (N=25) gesture rates differ from a minimum
of 2.34 to a maximum of 32.83 gestures per minute. The mean gesture rate is 15.64
gestures per minute (SD = 7.06). For the five dyads which are analyzed in detail here,
the gesture rates vary between 12.5 to 25.0 gestures per minute. The a priori probability
for gesture occurrence during a noun phrase in speech is 58.0%. This distribution varies
inter-subjectively between a minimum of 44.4% and a maximum of 74.5%.

The choice to produce a gesture is decisively influenced by several other variables,
as displayed in Table 2. For the discourse context we found the thematization to be
decisive insofar as rhematic information is significantly more likely to be accompanied
by a gesture (χ2 = 66.396,d f = 1, p < 0.001). Individuals share this relationship: al-
though the relation is not significant for one of the speakers, all five speakers agree
on the distribution, i.e. they tend to use gestures for rhematic information whereas for
thematic information gestures are less likely to occur. Regarding the information state,
people are more likely to produce gestures for entities whose information state is private
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Table 2. Interrelation of gesture occurrence and influencing variables. Parenthetical values are
expected occurrences (*p<.05, **p<.01, ***p<.001).

Gesture (y/n) Individuals
no gesture gesture significance similar distr.

Thematization rheme 103 (142.8) *** 248 (208.2) ** 4/5 5/5theme 96 (56.2) *** 42 (81.8) ***
InfoState private 83 (102.1) 168 (148.9) 2/5 5/5shared 116 (96.9) 122 (141.1)
CommGoal lm 17 (10.6) * 9 (15.4)

2/5 5/5lmDescrProp 67 (65.1) 93 (94.9)
lmDescrConstr 54 (49.6) 68 (72.4)
lmDescrPos 61 (73.7) 120 (107.3)

MainAxis none 44 (47.2) 72 (68.8)

3/5 4/5width 44 (43.5) 63 (63.5)
height 100 (87.9) 116 (128.1)
depth 11 (20.3) * 39 (29.7)

Subparts none 68 (92.8)** 160 (135.2)* 2/5 5/51 or more 131 (106.2) * 130 (154.8) *
SymAxes none 97 (74.5) ** 86 (108.5) * 2/5 5/5sym 102 (124.5) * 204 (181.5)

(χ2 = 12.432,d f = 1, p < 0.001). This is in line with the view that new information is
introduced into the discourse by gesture [24]. Again, all individuals share the same dis-
tribution, although the relation is only significant for two of them. So it seems as if
this link between information state and gesture occurrence is not as strong as the link
between thematization and gesture occurrence. Moreover, the communicative goal has
an impact on the question whether or not to gesture (χ2 = 10.970,d f = 3, p = 0.012).
When a landmark is just mentioned (lm), this utterance is not very likely to be accom-
panied by a gesture. This dependence between variables, however, is only significant
for two individuals, although all five agree on the distribution by trend. That is, they
use less gestures than expected for landmarks which are just mentioned without further
elaboration of any kind.

As concerns the influence of referent features, three features appear to be decisive.
First, there is a significant relationship between the choice to gesture and the referent’s
main axis: if from the speaker’s point of view the main axis of an object is its depth (e.g.
a tunnel into which one is looking) a gesture is more likely to be produced than in other
cases (χ2 = 10.424,d f = 3, p = 0.015). For three of the five speakers this relation is
significant, and only one speaker does not share the trend. Moreover, the complexity of
the object (part) is influential. Utterances which refer to leaf nodes of the IDT represen-
tation are more often accompanied by gestures than utterances referring to inner nodes
of the tree representation (χ2 = 20.916,d f = 1, p < 0.001). All individuals share this
kind of distribution, however, it is only significant for two of them. Furthermore, for
objects which have at least one symmetry axis, gestures are more likely to occur than
for objects which do not have any symmetry (χ2 = 18.363,d f = 1, p < 0.001). Again,
all speakers share this kind of distribution, but it is only significant for two of them.

In summary, the decision2 to gesture is influenced by two kinds of variables, the
discourse context and referent features. As concerns the former, gestures are predom-
inantly produced for rhematic and private information. Regarding the latter, gestures

2 The term ‘decision’ is not meant to imply a conscious process here.
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occur more often for less complex (parts of) objects in the sense that they are symmetri-
cal to some degree and have no subparts in the IDT representation. These two findings
are rather systematic, i.e., uncontroversial among the five speakers we looked at. How-
ever, a significance of the very correlation is not given for all individuals. In other words,
speakers vary particularly in how strong the link between particular variables is.

3.2 Which Hand to Use?

A further analysis concerned another fundamental choice in the generation of gestures:
the question which hand(s) to use when referring to an entity. The general distribution of
handedness in our data (in which all speaker describe exactly the same spatial scenes) is
as follows: with 56.6% the majority of gestures is performed two-handed, while right-
handed gestures occur in 28.6% of the cases and left-handed gestures in 14.8%. Again,
this distribution is not shared by all speakers. To illustrate this we contrast two partic-
ular speakers, P7 and P15. P7 prefers two-handed gestures (65.8%). Accordingly, the
number of right-handed gestures (20.5%) and left-handed gestures (13.7%) is reduced.
In contrast, P7 has a strong preference for one-handed gestures: 45.1% of this speakers’
gestures are performed with the right hand and 25.5% are performed with the left hand.
The number of two-handed gestures is accordingly low (29.4%).

Again, we found several correlations in the data constraining this decision (see
Table 3). First, there is a significant relationship between the gestural representation
technique and the handedness (χ2 = 50.476,d f = 8, p < 0.001). This positive correla-
tion is due to the fact that indexing gestures are hardly ever performed with both hands.
On the contrary, shaping gestures are more likely to be performed two-handed. This dis-
tribution is shared among all five speakers, whereas significance is only given in four
speakers.

Second, there is a significant relationship between the referent’s main axis and the
gesture’s handedness (χ2 = 54.645,d f = 6, p < 0.001): for objects whose major ex-
tent is oriented horizontally, two-handed gestures are likely to occur, whereas left- and
right-handed gestures occur less often than expected. On the contrary, objects with a
main vertical axis are predominantly accompanied by left- or right-handed gestures.
The number of two-handed gestures is decreased in these cases. Here we have four
speakers sharing this kind of distribution in a significant way.

And finally, as one would expect, the referent’s position is influential for handedness
(χ2 = 50.893,d f = 4, p < .001). Referents which are on the right from the speaker’s
point of view are more likely to be accompanied by right-handed gestures and referents
which are on the speaker’s left tend to be referred to by left-handed gestures. Addition-
ally, for referents which are centered, the number of two-handed gestures is increased
compared to expectation. Four of the five individuals agree on the distribution which is
significant in three speakers.

In conclusion, we found that a gesture’s handedness is not independent from the rep-
resentation technique used as well as the referent’s main axis and position. Individual
differences, as we measured them, are not very strong in these relations. As we have al-
ready seen in the previous section, individuals tend to agree on the general distribution,
but may differ in how strong the links are.
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Table 3. Interrelation of handedness and influencing variables. Parenthetical values are expected
occurrences (*p<.05, **p<.01, ***p<.001).

Handedness Individuals
2H LH RH significance similar distr.

Technique indexing 3 (20.4) *** 12 (5.3) ** 21 (10.3) ***

4/5 5/5
placing 41 (38.5) 12 (10.1) 15 (19.5)
shaping 81 (65.0) * 13 (17.1) 21 (32.9) *
drawing 27 (25.4) 2 (6.7) 16 (12.9)
posturing 12 (14.7) 4 (3.9) 10 (7.4)

MainAxis none 47 (40.7) 8 (10.7) 17 (20.6)

4/5 4/5width 56 (43.6) *** 1 (9.3) ** 6 (18.0) **
height 39 (65.6) *** 27 (17.2) * 50 (33.2) **
depth 22 (22.1) 7 (5.8) 10 (11.2)

Position left 42 (44.1) 16 (11.6) 20 (22.3)
3/5 4/5right 32 (56.0) *** 21 (14.7) 46 (28.3)***

middle 90 (63.9) *** 6 (16.8) ** 17 (32.3) **

3.3 Which Representation Technique?

Another interesting question in gesture generation is the choice of representation tech-
niques. The distribution of representation techniques in our data is as follows: shaping
(39.7%), placing (23.4%), drawing (15.5%), indexing (12.4%) and posturing (9.0%).
As described in [4], the choice of representation technique is influenced by the commu-
nicative goal of the utterance: descriptions (lmDescrProp) come along with significantly
more depicting gestures (shaping, drawing, posturing), while the spatial arrangement
of entities is accompanied by indexing and placing gestures in the majority of cases.
Moreover, complex objects (without symmetry, or with further subparts) are likely to
be positioned gesturally, while less complex objects are more likely to be depicted by
gesture. Individuals tend to agree on this general distribution for the most part, but differ
in how strong the relations between correlated variables are. Fore a more detailed analy-
sis of the interrelation between use of gestural representation techniques and correlated
variables see [4].

4 Computational Modeling

In the previous section we have shown that decisions in the generation of iconic ges-
tures are influenced by a number of variables. Most of the correlations are shared among
individuals, whereas for some there is considerable variance among individuals. For a
computational model of speech and iconic gesture production three major conclusions
can be drawn: first, iconic gestures are not solely implied by the object they are referring
to. Rather, ‘thematization’ as a variable characterizing (part of) the linguistic context
into which a gesture is embedded is decisive. This correlation goes with empirical find-
ings that speech and gesture production mutually influence each other. On the one hand,
information packaging for iconic gestures parallels linguistic packaging (cf. [16,9,3]);
on the other hand, representational gesturing can have a significant impact on concep-
tualization as well as lexical access for language (cf. [1,13]). An adequate model for
speech and gesture production, therefore, should allow for a close interaction between
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content planning and formulation of speech and gesture. Second, generation decisions
are influenced by the overall discourse context. For a computational model this means
that a discourse record is necessary to distinguish between private and shared knowl-
edge about a referent. Such a discourse record is indispensable for speech formulation
to, e.g., decide for the adequate type of determiner (definite or indefinite), and it must
be accessible for gesture formulation too. Third, an adequate model of how speakers
produce iconic gestures must account for both types of influential patterns, general and
individual ones. Previous modeling attempts either ignored idiosyncrasy coming up
with generalized model-based approaches [18], or they employ statistical data-driven
techniques which have problems with identifying and explicating systematicities from
corpora of managable size [27].

We have proposed and described elsewhere [17,4] a production architecture that is
inspired by psycholinguistic models [16,7] and accounts for our first two requirements.
As outlined in Fig. 3 (right) it consists of interacting, modality-specific modules at
each of three stages: (1) an Image Generator and a Preverbal Message Generator are
concerned with content planning; (2) a Speech Formulator and a Gesture Formulator
compose and specify, on-the-fly, natural language sentences and gesture morphologies;
(3) Motor Control and Phonation turn them into synchronized speech and gesture an-
imations. This production model adopts a dual-coding approach to multimodal con-
tent representation in that an imagistic description (IDT), propositional knowledge, and
an interfacing representation out of so-called multimodal concepts are composed and
maintained simultaneously. These semantic representations are also utilized for a mul-
timodal discourse model that is available to both speech- and gesture-specific content
planning modules, thus meeting the second requirement.

Accounting for the third requirement, the challenge of considering general and indi-
vidual patterns in gesture formulation, we employ Bayesian decision networks (BDN)
which supplement standard Bayesian networks by decision nodes [14]. This formal-
ism suitably provides a representation of a finite sequential decision problem, com-
bining probabilistic and rule-based decision-making. Each decision to be made in the
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Preverbal Message 
Generator
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PhonationMotor Control
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Communication
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Discourse
Context

Gesture Features

Fig. 3. Overview of the speech and gesture generation model (right), and a zoom in onto the
Bayesian decision network for gesture formulation (left)
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formation of an iconic gesture, e.g., whether or not to gesture or which representation
technique to use, is represented in the network either as a decision node or as a ‘chance
node with a probability distribution. All factors which potentially contribute to these
choices are also entered in the model.

Bayesian networks can be built from the corpus data, both for the whole data corpus,
or, for each individual speaker seperately. In either case, the structure of the Bayesian
network is learned using the Necessary Path Condition (NPC) algorithm [30]. The NPC
algorithm is a constraint-based structure learning algorithm that identifies the structure
of the underlying graph by performing a set of statistical tests for pairwise independence
between each pair of variables. That is, the independence of any pair of variables given
any subset of other variables is tested. The result of structure learning is a network con-
taining all links between variables that are significant for the modeled individual. Once
the structure of the network has been found, its maximum likelihood estimates of pa-
rameters are computed employing the EM (Estimation-Maximization) algorithm [22].
However, not all variables of a complete gesture specification can be learned from the
data. This is due to the large set of values some of the variables have. Variables specify-
ing a gesture’s morphology, e.g., values for palm and finger orientation, are combined
out of six basic values which can moreover be concatenated into sequences to describe
dynamic gestures. It is therefore necessary to formulate additional rules and constraints
in decision nodes of the network to specify these values adequately.

A resulting decision network is illustrated in the left of Fig. 3. Influences of three
types of variables manifest themselves in dependencies (edges) between the large
groups of respective chance nodes (drawn as ovals): (1) referent features, (2) discourse
context, and (3) the previously performed gesture. Although not in the scope of the cur-
rent paper, some generation decisions are related to the previous gesture context, i.e.,
whether the hands have been in a rest position before, and, if already gesturing, which
gesture features were found in that gesture (handedness, representation technique). The
network is supplemented with decision nodes (drawn as rectangles) which are defined
universally, i.e., they do not vary in the individual networks. Nevertheless, each deci-
sion node has chance nodes as predecessors so that these rule-based decisions depend
on chance variables whose (individual) values have been determined previously. BDNs
are suitable for gesture formation since they provide a way to combine probabilistic
(data-driven) and model-based decision-making. Moreover, two sources of individual
differences are explicated: first, individual ‘local preferences for certain aspects are re-
flected in the respective conditional probability distributions. Second, individuals that
do not share significant correlations between variables have a different link structure in
their respective networks .

4.1 Modeling Results

A prototype of the previously described generation model has been realized using a
multi-agent system toolkit, a Prolog implementation of SPUD [31], the Hugin toolkit
for Bayesian inference [23], and the ACE realization engine [20]. In this prototype im-
plementation a virtual agent explains the same virtual reality buildings that we already
used in the previously described empirical study. Being equipped with proper knowl-
edge sources, i.e., communicative plans, lexicon, grammar, propositional and imagistic



192 K. Bergmann and S. Kopp

Fig. 4. Example gestures simulating different speakers, each of which produced for the same
referent (a round window of a church) in the same initial situation

knowledge about the world, the agent randomly picks a landmark and a certain spa-
tial perspective towards it, and then creates his explanations autonomously. Currently,
the system has the ability to simulate five different speakers by switching between the
respective decision networks built as described above. The resulting gesturing behav-
ior for a particular referent in a respective discourse context varies in dependence of
the decision network which is used for gesture formulation. In Figure 4, examples are
given from five different simulations, each of which based on exactly the same initial
situation. All gestures are referring to the same round window of a church and are gen-
erated in exactly the same discourse context (‘lmDescrConstr’, ‘rheme’, ‘private’). The
resulting gesture hence varies depending only on the employed decision network.

In a first evaluation, we measured the model’s prediction accuracy by computing how
often the models assessment agreed with the empirically observed gesturing behavior.
To evaluate the decisions for those four variables we currently assess as chance nodes,
we divided the corpus into training data (80%) and test data (20%) and used the training
set for structure learning and parameter estimation of the decision networks. In total, we
achieved a mean of 62.4% (SD=11.0) highly accurate predictions with the individual
networks. The mean accuracy for the rule-based choices made in the network’s decision
nodes is 57.8% (SD=15.5) (see [5] for details). A perception-based evaluation study is
underway to investigate how the generated behavior is judged by human observers.

5 Conclusion

Our objective in this paper was to shed light on the question how systematic (inter-
individual) and idiosyncratic patterns interrelate with each other in iconic gesture
production. Our empirical corpus analysis has shown that major decisions in the forma-
tion of speech-accompanying gestures are influenced by a number of variables, either
referent-features or variables characterizing the overall discourse context.

Some of the correlations are found among individuals, suggesting systematicity,
whereas for others there is considerable variance among individuals, hence suggest-
ing a more idiosyncratic nature. Note, however, that these latter patterns may well be
the result of the very dialog situation (including, e.g., the recipient), rather than being
hard-wired in the individual speaker. Nevertheless, the reason that different speakers
overlap in some features of iconic gestures while they tend to differ in others, suggests
that the use of iconic gestures is governed by a number of rather stable systematicities
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and, at the same time, allows for flexible attunements that may result from a personal
or context-sensitive use of iconic gesture by the speaker. A computational model has
been developed and the results from a prototype implementation are promising, so that
we are confident that our approach is a step forward towards a comprehensive account
of iconic gesture generation. Future work in this direction will need to look at a larger
spectrum of factors: from individual cognitive skills (as suggested in [12]) to features of
the current state between interlocutors. Furthermore, the limitation to five individuals
and a set of 290 gestures has to be lifted. Nevertheless, this data suffices to get a first
impression of the interrelation of systematic and idiosyncratic patterns and provided a
proof of concept for our modeling approach.
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Abstract. Research on gesture generation for embodied conversational
agents (ECA’s) mostly focuses on gesture types such as pointing and
iconic gestures, while ignoring another gesture type frequently used by
human speakers: beat gestures. Analysis of a corpus of route descriptions
showed that although annotators show very low agreement in applying
a ‘beat filter’ aimed at identifying physical features of beat gestures,
they are capable of reliably distinguishing beats from other gestures in
a more intuitive manner. Beat gestures made up more than 30% of the
gestures in our corpus, and they were sometimes used when expressing
concepts for which other gesture types seemed a more obvious choice.
Based on these findings we propose a simple, probabilistic model of beat
production for ECA’s. However, it is clear that more research is needed
to determine why direction givers in some cases use beats when other
gestures seem more appropriate, and vice versa.

Keywords: gesture and speech, gesture analysis, beats, direction giving.

1 Introduction

When humans speak, they use gestures that “are not random but convey to
listeners information that can complement or even supplement the information
relayed in speech” [1], p. 228. One type of discourse in which this relation is
undoubtedly present is direction giving. To illustrate this, consider two of the
main gesture types distinguished by gesture researcher David McNeill [2]. Deictic
gestures are pointing movements indicating the location of items being referred
to. In direction giving, such gestures are often used to indicate the location of
landmarks along a route [3]. Iconic gestures depict a physical aspect of what is
spoken about, such as the shape of an object or the trajectory of a movement.
Such gestures are often used to illustrate the shape of landmarks [4].

For another important type of gestures, however, the link with direction giv-
ing is less obvious. Beat gestures do not convey any semantic content, but reflect
discourse structure by marking important words and phrases. Unlike other ges-
tures, they tend to have the same shape regardless of the speech content. McNeill
describes their shape as follows:

S. Kopp and I. Wachsmuth (Eds.): GW 2009, LNAI 5934, pp. 195–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



196 M. Theune and C.J. Brandhorst

The hand moves along with the rhythmical pulsation of speech. [...] The
typical beat is a simple flick of the hand or fingers up and down, or back
and forth; the movement is short and quick and the space may be the
periphery of the gesture space (the lap, an armrest of the chair, etc.).
The critical thing that distinguishes the beat from other types of gesture
is that it has just two movement phases – in/out, up/down, etc. [2], p. 15

In a video corpus of people narrating the events from a Tweety cartoon, McNeill
found that beats made up 44,7% of all gestures [2], p. 93. Though the beat ratio
may be different for other types of discourse, McNeill’s finding shows that beats
are frequently used by human speakers, and therefore should not be overlooked
when developing gesture models for embodied conversational agents (ECA’s):
human-like computer characters that can employ gestures and speech to carry
out conversations with human users.

In our department we have developed an ECA that can give directions to
visitors in a virtual environment [5]. This ECA, called the Virtual Guide, can
generate deictic and (simple) iconic gestures, but it has only very limited support
for beat gestures. To improve this, we analysed the use of beat gestures in a video
corpus of human route descriptions, with the aim of using the results for a simple
beat usage model for the Virtual Guide. First, however, we needed to determine
which of the gestures in our corpus were beats and which were not.

The research questions addressed in this paper are the following:

1. How can beat gestures be distinguished from other gesture types?
2. At which points in route descriptions do people use beat gestures?
3. Knowing when to use beats, how can this be modelled for the Virtual Guide?

The remainder of the paper is structured as follows. First, in Section 2 we discuss
related work on gesture generation for (direction giving) ECA’s. In Section 3 we
describe our route description corpus. Then, in Section 4 we examine whether
beats can be distinguished from non-beats based on their physical properties.
In Section 5 we investigate when beat gestures are used during route giving
discourse. In Section 6 we propose a simple probabilistic model for the generation
of beat gestures, and in Section 7 we end with conclusions and future work.

2 Related Work

NUMACK (the Northwestern University Multimodal Autonomous Conversa-
tional Kiosk) is an ECA that can give directions to locations on the North-
western University campus, using a sophisticated ‘multimodal microplanner’ for
integrated language and gesture generation. The generation of iconic gestures is
based on a model by Kopp et al. that links visual properties of objects to gesture
features such as hand shape and trajectory [4]. Using this model, new iconic ges-
tures that appropriately reflect the shape of landmarks can be assembled on the
fly, instead of using fixed gesture animations as is done by most ECA’s (including
our Virtual Guide). NUMACK can also generate gestures indicating the location
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of landmarks, as described by Striegnitz et al. [3]. However, beat gestures do not
appear to be included in NUMACK’s gesture repertoire.

A well-known framework for automatic gesture and speech generation for
animated characters is BEAT, the Behavior Expression Animation Toolkit [6].
It can be used to animate an ECA based on an input text that is automati-
cally analysed and augmented with suggestions for nonverbal behaviour. This
augmentation is done in a “liberal and all-inclusive” fashion: any gesture that is
deemed appropriate is suggested and given a priority. Beats are used when intro-
ducing new material or when contrasting items and are always given the lowest
priority. They are only selected when no higher-priority gestures are available to
express the same information (unless they can be overlaid on top of the other
gesture). Similar approaches to gesture generation, in which the use of more
specific gestures is preferred over beat gestures, include [7,8,9].

A completely different approach to gesture generation is that by Neff et al.
[10], who create statistical models that capture the gesture style of individual
speakers based on annotated video material. In their system, gesture choice is
based on speaker profiles: probabilistic mappings from semantic tags (capturing
aspects of the semantics and communicative function of the verbal message) to
gesture types. In this approach, the probability of generating a beat gesture is
based on the frequency with which the modelled speaker used beat gestures in
combination with a particular semantic tag, as encoded in the speaker’s profile.

Most recently, Bergmann and Kopp proposed a data-driven model for in-
tegrated language and gesture generation that can still account for systematic
meaning-form mappings, where speaker preferences are learned from corpus data
[11]. However, like [4], this model is restricted to iconic gestures.

3 Route Description Corpus

Our corpus comprises 16 short movie clips with an average duration of 38 sec-
onds. Each clip shows a person giving an indoor route description in Dutch.
All descriptions start from the same point in the building (the point where the
direction giver is standing). The movie clips differ in a number of respects:

– Route: two different routes are described. They have the same starting point
but a different destination within the same building.

– Camera viewpoint: in 8 movie clips, the direction giver explains the route to
the route seeker in a face-to-face dialogue. In the other 8 clips, the route is
described to the camera.

– Direction giver: four direction givers were filmed. All were male students or
employees in our department, and native speakers of Dutch. Each of them
explained both routes twice: first to the route seeker and then to the camera
(see the previous point). This resulted in four movie clips for each speaker.

The movie clips were transcribed and segmented into gesture clips using
Transana,1 resulting in a data set of 162 gestures.
1 www.transana.org
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4 Distinguishing Beats from Other Gestures

In this section it is examined whether beat gestures can reliably be distinguished
using physical properties only. To this end, we annotated the gestures in our
video corpus with Beat Filter scores and gesture types.

4.1 The Beat Filter

McNeill’s Beat Filter2 is a method for distinguishing imagistic gestures such as
iconics from non-imagistic gestures, i.e., beats [2]. It is a purely formal scoring
system, without reference to content or function. It only looks at the kinetics
of the gestures. Applying the beat filter to a gesture means giving it a score by
adding 1 for each positive answer to the following questions (except question 2).
The higher the resulting score, the less likely the gesture is a beat.

1. Does the gesture have more than two movement phases?3

2. How many times does wrist/finger movement OR tensed stasis appear in
any movement phase not ending in a rest position? (ignore retraction phase,
add the number of times to the score)

3. If the first movement is in non-central space: is any other movement
performed in central space?4

4. If there are exactly two movement phases: is the first phase in a different
place as the second phase?

The beat filter was applied by two annotators (the authors) to 154 of the 162
gestures in the corpus. The other 8 gestures were not clearly visible, for example
because the speaker turned his back to the camera, and could not be annotated.

4.2 Gesture Types

The Beat Filter does not explicitly group gestures into beats or non-beats; the
resulting score only represents the (un)likeliness of a gesture being a beat. To
determine the relation between Beat Filter scores and gesture type, all 154 visible
gestures from the corpus were independently annotated for gesture type by three
annotators: the authors plus a third annotator. The gesture types used were
those from McNeill [2]: beats, deictic gestures, iconic gestures, and metaphoric
gestures. The latter are like iconics, but describe non-physical, abstract entities,
for example shaping the hands like a bowl to illustrate the concept ‘group’.

Many gestures do not neatly fit into one of the four above-mentioned gesture
categories; they may have features of more than one gesture type, for example
because a beat is superimposed on another gesture [2]. Therefore we included
the possibility of annotating gestures as belonging to more than one type. In

2 Originally developed by Bill Eilfort.
3 Movement phases are preparation, stroke and retraction. Beats have no stroke.
4 The central space is the part of the gesture space directly in front of the torso,

excluding the hip area and lower [2].
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cases when no one dominant type could be established for a particular gesture,
it was annotated as a mixed type, e.g., beat/iconic.

In general, the gesture type annotations were based on the gestures’ global
shape in combination with the speech context, i.e., the words spoken while the
speaker was gesturing. For example, if the hands were moved forward in parallel,
mimicking a tunnel-like shape when talking about a “hallway”, the gesture was
annotated as iconic. If the speaker pointed in a certain direction in combination
with words such as “left”, “right” or “there” this was annotated as a deictic
gesture. Beat gestures formed an exception to this: since they have no inherent
meaning, they were classified on the basis of their shape alone.

Beat gestures and deictic gestures, which can be somewhat similar in shape,
were distinguished based on the amount of extension of the arms (the larger this
extension, the more probably it is a deictic gesture), hand shape (extension of the
index finger indicates a deictic gesture), and directional aspect in combination
with the speech context. Concerning the latter property, we assume that beats
are in principle ‘directionless’, meaning that when making a beat gesture, the
hand does not move in the horizontal plane but only in the vertical plane. This
is in line with McNeill’s characterisation of beats as low-energy gestures with
the lowest kinetic complexity [2]. So, if a speaker mentioned a specific direction
or landmark while making a somewhat beat-like gesture in the corresponding
direction, this was annotated as a deictic gesture, not a beat.

Note this means that gestures were classified as beats only when they had the
right shape and there were no indications (e.g., from the speech context) that
they were of another type. This ‘classification by negation’ approach may have
led to an underestimation of the number of beats in our data.

4.3 Results

When analysing the results, our first step was to analyse the reliability of the
annotations by computing the level of agreement between annotators in terms
of the Kappa coefficient. When considering all possible gesture types, agreement
between pairs of annotators was quite low (Kappa values ranging between .41
and .44). However, when only considering the distinction between beat gestures
and other types of gesture, i.e., when classifying all non-beat gestures as ‘other’,
agreement between annotators was much better with Kappa values of .68, .60
and .57 between annotator pairs. Though not all good according to the strictest
scale for evaluating Kappa significance, according to more lenient scales these
values indicate at least moderate agreement [12]. In the remainder of this paper,
we therefore classify the gestures in our corpus as either beats or ‘other’ gestures,
referring to more specific types only when necessary. For the final type classifica-
tion we used the type assigned by the majority of the annotators. This resulted
in 52 gestures being classified as beats, which amounts to 32,1% of all gestures in
our corpus (33,8% of all annotated gestures).5 This set includes 7 beats that were

5 The actual percentage of beats in our corpus may be slightly higher, because some
of the 8 unannotated gestures could be beats.
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Table 1. Gesture use of individual direction givers

Gestures Beats Gestures/word

Speaker 1 23 10 (43,5%) .06
Speaker 2 61 24 (39,3%) .12
Speaker 3 40 12 (30,0%) .10
Speaker 4 38 6 (15,8%) .14

Total 162 52 (32,1%)

classified as beat/other, and 2 what we termed ‘multibeats’: quick sequences of
beats that could not be separated into individual beat gestures.

We found large differences in beat usage between individual speakers. Table 1
shows the total number of gestures per speaker, the number of beats, and also
the average number of gestures per word. Note the striking contrast between
speakers 1 and 4: the former used few gestures, many of which were beats, while
the latter used many gestures, few of which were beats.

For the Beat Filter, agreement on the filter questions was unfortunately very
low. The highest agreement between the two annotators was .34 for the answers
to question 1. This means that the Beat Filter scores assigned to the gestures in
our corpus are very unreliable. Nevertheless, as illustrated by Fig. 1, the Beat
Filter does give some indication of the probability that a gesture is a beat: for
both annotators, gestures with a low score are more likely to be beats than
not. In Fig. 1, the multibeats are shown separately from the other beats. This
is because the former are always assigned a relatively high score by the Beat
Filter, since these successions of beat moves are seen as one gesture ([2], p. 381).

As can be seen in Fig. 1, several gestures were assigned a low Beat Filter
score despite not having been classified as beats. Most of the non-beat gestures
with a score of 0 or 1 were annotated (by the majority of annotators) as deictic
gestures: 13 out of 19 (68%) for annotator A and 11 out of 20 (55%) for annotator
B. This is not surprising, since deictic gestures are fairly similar in shape to beat
gestures, as discussed in Section 4.2.

4.4 Discussion

As shown above, human annotators can fairly reliably distinguish beats from
other gestures based on a global impression of their shape, but they cannot
reliably apply the Beat Filter that was designed to make the same distinction
in a more formal way. Moreover, Fig. 1 shows that although lower Beat Filter
scores do tend to correspond to higher relative numbers of beat gestures, many
gestures with a low beat score are not beats. In most cases these ‘other’ low
scoring gestures turn out to be deictic gestures, which can be very similar in
shape to beats. This holds in particular for what we call ‘weak’ deictic gestures,
i.e., deictic gestures on which the speaker did not spend much energy. They are
small and quick: the hand only moves a short distance into the direction that
is indicated, staying inside the periphery of the gesture space, and there is no
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Fig. 1. Beat Filter scores and gesture types

tensed stasis or finger movement. Both characteristics are shared by beats and
earn zero Beat Filter points for questions 2 and 3. Moreover, other features that
do distinguish deictic gestures from beats (arm extension and the presence of a
directional component) are not checked by the Beat Filter. In other words, the
Beat Filter is not well-suited to distinguish beats from deictic gestures. This can
be explained by the fact that the Beat Filter was only designed to distinguish
imagistic gestures (iconic/metaphoric) from non-imagistic gestures (beats), and
deictic gestures are somewhere in between the two.

To make the Beat Filter better suited for distinguishing between beats and
all other gestures it needs to be extended with additional questions that are
specifically aimed at filtering out deictic gestures, by checking for directional
aspects and arm extension. However, even then it will remain difficult to dis-
tinguish beats from ‘weak’ deictic gestures. In addition, the description of the
Beat Filter will have to be improved so the questions cannot give rise to different
interpretations by individual annotators, which we assume was one of the causes
for the low agreement found in our study.

5 When Are Beat Gestures Used?

This section takes a closer look at the speech context in which beat gestures are
used. We identified some important route description concepts and examined by
which type of gestures (beats or other) they were accompanied in our data.

5.1 Route Description Concepts

Conceptually, the basic elements of route descriptions are paths, instructions to
move along some pathway, turns, instructions to change direction at a choice
point, and landmarks, mentions of objects along the route that help with nav-
igation, in particular by signalling where turns are to be made [13]. A fourth
category distinguished in [13] is that of location information, indicating the spa-
tial location of the destination. For our purposes, we have replaced this concept
with two new categories: the more general spatial information indicating the
spatial location of all route objects (not just the destination) and destination,
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which are direct references to the destination. Additional concept categories we
distinguish are deictic references, situationally dependent references to points
in time and space, and hesitations. These are not specific to route descriptions,
but they occurred frequently in our corpus in combination with gestures.

Below, we list all concept categories used in our analysis, together with some
examples of how these concepts were verbally expressed in our corpus.6 In some
examples, multiple concepts are mentioned in one phrase. Here, the words that
were accompanied by a gesture are given in italics, to indicate which concept
was marked by the gesture:

– Paths: “through the corridor, “past the lavatories”, “all the way to the end”
– Turns: “turn left”, “walk downstairs”, “go in that direction”.
– Landmarks: “very long corridor”, “spiral staircase”, “windows”
– Spatial information: “then you are near”, “behind it we see lots of com-

puters”, “the tunnel on the right”
– Destination: “the East Hall”, “the practicum rooms”
– Deictic references: “now”, “here”, “over there”, “that corridor”
– Hesitations: “ehm”, “maybe”, “I don’t know”

For each of the 162 gestures in our corpus, we annotated which concept it accom-
panied. If the speech context of the gesture did not match any of the categories
given above, the concept was classified as other.

5.2 Results

Figure 2 shows the results of our analysis, where the 8 ‘unknown’ gestures are
those of which the type could not be determined (see Section 4). In our corpus,
some concepts are more often accompanied by beats than any other gestures.
In the first place we find destinations: 85,7% of all gestures accompanying the
mention of a destination are beats. Beats are also prevalent during hesitations.
Here, 53.5% of accompanying gestures are beats. Finally, almost all (81,8%) of
the gestures accompanying other concepts are beats. This category is mainly
made up of various discourse structure markers (“and because”, “so I’d say”,
“which also says”) and abstract actions (“what you want to do is”, “then you
see”). For the remaining concepts, other gestures were used more frequently than
beats, with beat frequencies ranging from 36,8% (paths) to 15% (landmarks).

5.3 Discussion

In our corpus, references to the route destination are predominantly accompa-
nied by beats. Presumably this is because these references mostly had the form
of proper names rather than descriptions referring to shape or location, meaning
that the use of an iconic or deictic gesture was not appropriate in these cases.

We also found a relatively high number of beats accompanying hesitations.7

One possible explanation for this is Krauss’ hypothesis that gesturing aids lexical
6 All examples have been translated from Dutch to English.
7 The beat ratio for hesitations in our corpus may be relatively high because one

speaker uttered relatively many hesitations, mostly accompanied by beat gestures.
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Fig. 2. Concept categories and gesture types for all 162 gestures in the corpus. For 8
gestures the type could not be determined; these are labeled as ‘unknown’.

access [14]. Interestingly, Krauss’ hypothesis was explicitly limited to ‘lexical
gestures’, i.e., non-beats, while our findings suggest that beats might play a
similar role. An alternative explanation is that the beats serve as ‘attempt-
suppressing signals’ indicating that the speaker intends to hold the turn, thus
suppressing any interruption attempts by the conversation partner while the
speaker is searching for words [15].

For the other categories besides the rest category other, beats are in a clear
minority. References to spatial locations, directions and landmarks lend them-
selves well to being illustrated by deictic or iconic gestures, which may explain
why beat gestures are only rarely used when expressing these concepts. Still, the
fact that beats are used at all, when seemingly more appropriate gestures are
available, is somewhat surprising. To shed more light on this issue, we take a
closer look within some of the concept categories, inspecting the specific cases
in which beats are used. For deictic references, it turns out that most beats
accompany references to the “here” and “now” of the speaker (4 beats out of
5 gestures) rather than references to concrete, visible locations (2 beats out of
20 gestures). This make sense, since for concrete spatial references beats are less
useful than deictic gestures (17 of 20), as the latter may help the hearer to iden-
tify the referent. On the other hand, pointing does not have much added value
in case of ‘here and now’ references, which are quite unambiguous. Gestures ac-
companying these references only seem to be used for marking them as new or
otherwise important, and this discourse function can be fulfilled with the least
effort by a beat gesture.

On a smaller scale, this ‘principle of least effort’ also seems to apply to spatial
information. If we split this category into references to topological information
and references to projective information, cf. [16], we see that beats are used more
often for topological information (3 beats out of 10 gestures) than for projective
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information (1 beat out of 10 gestures). Again, a possible explanation is that
deictic gestures have less added value for topological information (references to
a region proximal to some object, e.g., “near”, “behind”) than for projective
information (references to a particular direction relative to an object, e.g, “to
the left of”), so for topological information speakers are more likely to use the
less effortful beat gestures instead. However, in both this and the previous case,
our data are too sparse to draw any strong conclusions from them.

Another explanation for the use of beats with ‘less obvious’ concept categories
lies in the notion of information structure. McNeill claims that less informative
discourse elements are more likely to be accompanied by beats than by other
gestures [2]. This holds for example for anaphoric references to discourse elements
that have been previously mentioned. When inspecting the landmarks category,
we see that our corpus contains 8 anaphoric references to landmarks (within the
same route description) that are accompanied by a gesture, and for these the
‘beat ratio’ is 3 beats out of 8 gestures (37,5%) as opposed to 3 beats out
of 32 gestures (9,4%) for first mentions. Though again these data are too low
in number to allow any strong conclusions, they do support the information
structure explanation for the use of beats in references to landmarks. Another
finding that points in this direction is the fact that most beats were found in the
second versions of the route descriptions in our corpus. On average, the second
versions had about twice as many beats as the first.

6 A Simple Model of Beat Gesture Use

Some gesture generation models for ECA’s only select beat gestures when no
other gestures are available [8,9]. In contrast, we propose to give beat gestures
the same basic priority as other gesture types. Given the results of statistical
corpus analysis, along with the notion that the use of beat gestures also depends
on personal style of the individual speakers, the probability that a beat gesture
is generated in a certain context can be given by the following formula:

P (B|u) = P (B|cu)ms

where B is the generation of a beat gesture, u is the speech context (a
word or phrase to be uttered), cu is the concept being expressed by the
utterance, and ms is a multiplier for a specific speaker.

This probability function can also be used for other gesture types. It can be easily
applied in the Virtual Guide, which already uses a weighted randomization al-
gorithm for gesture selection [5]. It would also be applicable in other frameworks
such as BEAT [6] that assign priorities to possible gestures, which is something
a probability can be used for. Note that our proposed data-driven approach is
similar in spirit to that of Neff et al. [10], though their model is far more sophis-
ticated. Whether this sophistication also leads to better results than our simple
approach or is overly complex for a merely marginally better result is a question
that can only be answered when our model has been implemented and tested in
practice. To this end, more data have to be gathered to feed the model.
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7 Conclusions and Future Work

Our corpus analysis has shown that beat gestures are frequently used within
route descriptions. We found that, in line with the literature [2], beats are most
often used to mark important concepts in the discourse. In the case of direction
giving discourse, the concepts marked by beats tend to be the ones that cannot
be easily visualised using other gestures, such as (named) route destinations and
topological spatial information. However, beats are also used - albeit much less
frequently - with concepts for which other gestures seem a more obvious choice,
for example turn directions. These findings can be at least partially explained
in terms of information structure: information which is ‘discourse-old’ is more
likely to be accompanied by a beat than by another type of gesture (if a gesture
is used at all).

We applied McNeill’s Beat Filter on our corpus, to see if we could reliably
distinguish beats from other gestures on purely formal grounds [2]. We found
that very low agreement between annotators, probably due to different inter-
pretations of the filter questions. To avoid this a more detailed coding manual
will be required, defining exactly what counts as movement phases etc. and how
borderline cases should be handled. Probably, thorough annotator training will
be needed as well. In addition, to make the Beat Filter more useful it should
have additional questions to distinguish between beats and deictic gestures.

We have proposed a probabilistic model of beat gesture use in direction giving
in which the likelihood of using a beat gesture to mark certain concepts is derived
from corpus data, similar to the approach of Neff et al. [10]. Though this is a
step forward compared to the way beats are currently handled in the Virtual
Guide, as well as those ECA models where beats have a lower priority than
other gestures [6,7,8,9], we are aware that the model is still far too simple.
In the current version of the model, gesture choice only depends on the concept
being expressed, optionally weighted to take speaker preferences into account. In
reality, gesture choice is also influenced by other factors, including the newness
of the presented information. Nevertheless, we expect that implementing our
current model will already increase the perceived naturalness of our direction
giving ECA. Before we can test this, however, we need more – and more reliably
annotated – corpus data to derive the gesture probabilities needed by the model.
Having more data available may also help uncover additional factors influencing
direction givers’ choice to use beat gestures in certain contexts.
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Abstract. We present a comparative study of two gesture specification
languages. Our aim is to derive requirements for a new, optimal specifi-
cation language that can be used to extend the emerging BML standard.
We compare MURML, which has been designed to specify coverbal ges-
tures, and a language we call LV, originally designed to describe French
Sign Language utterances. As a first step toward a new gesture specifica-
tion language we created EMBRScript, a low-level animation language
capable of describing multi-channel animations, that can be used as a
foundation for future BML extensions.

Keywords: embodied conversational agents, gesture description
language, comparative study.

1 Introduction

Describing human movement is a challenging task, given the many degrees of
freedom of the human body. When using embodied agents in a human-computer
interface context, a formal description of gestures is needed to ensure a faithful
rendering by the underlying character animation engine. The design of a gesture
description language is determined by three factors: the producer (human author
or generation module) of the language wants it to be expressive and easy to
use, the consumer (animation module) requires it to be complete, precise and
convenient to interpret and, finally, there is usually an underlying theory that
directs the language design. The behavior markup language (BML) [1,2] offers
such a specification. However, the current version of BML focuses on the problem
of temporal synchronization between modalities, whereas the question of how to
describe the surface form of a gesture is still open. In order to get a better
understanding for how BML must be extended toward a complete specification
of gestural form, we compare in this paper two existing formalisms for specifying
human gestures. The first one, MURML, has been designed to specify coverbal
gestures for an embodied conversational agent [3]. The second one has been
designed to describe French sign language [4] and will be called LV in the further
discourse. Both models have a similar theoretical background: sign language
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phonology. MURML bases some gesture description elements on HamNoSys [5].
LV is based on the Movement-Hold model by Liddel et Johnson [6]. The insights
provided by this comparison will drive the design of a future BML extension.
This extension does not yet exist, but its specification will be supported by
EMBRScript, an intermediate animation language whose concepts can be used
as building blocks to formally describe the future BML extension.

2 Related Work

Recent research has identified three fundamental layers of processing which fa-
cilitates the creation of generic software components [1,2] for ECA applications:
intent planner, behavior planner and surface realizer, as depicted in Fig. 1. In this
framework called SAIBA[7], users work on the level of intent planning and behav-
ior planning and then dispatch high-level behavior descriptions in the behavior
markup language (BML) to the realizer which transforms it into an animation.
Because the behavior description is abstract, many characteristics of the output
animation are left for the realizer to decide.

As depicted in Fig. 1, the realizer itself can be decomposed into three compo-
nents: the motion resolver, the motion planner and the animation engine. The
role of the motion resolver is to select the motion segments that best convey the
abstract behavior specified in the BML input. If needed, the user may override
the motion resolver by embedding the description of a desired motion segment
in the BML input using an higher level of description [2]. For instance, MURML
can be directly integrated into BML on level 1. The motion segment description
is then sent to the motion planner. Its role is to timestamp every motion segment
in order to guarantee inter-channel synchronization (e.g. between prominent syl-
lable in speech and a particular point in a motion segment) and ensure realistic
velocity profiles for the character’s limbs. This results in a time-stamped motion
description which can be processed by the animation engine. Finally, the anima-
tion engine computes a geometrical description (angles, morph targets etc.) of
the characters’s animation that can be rendered by a 3D graphics engine.

Any sign language/gesture generation system based on a behavioral defi-
nition needs to map its input data to trajectories and postures. Researchers
have developed form-based description languages allowing to specify a wide
range of gestures by symbolically composing form and movement primitives in a
structured way.

A language aimed at providing an intermediate representation of motion
segments should fulfill the following requirements:

– for the user: expressive and easy to use,
– for the animation engine: complete, precise and convenient to interpret

Researchers have focused on the development of representation systems for mul-
timodal utterances [3,4,8,9]. Although such languages where initially developed
independently from the behavioral layers, it is possible to integrate them as
animation-centered description languages as extensions to existing higher-level
behavior description languages like BML.
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Fig. 1. Processing pipeline for producing human behaviors according to the SAIBA
framework

Early formal attempts to encode multimodal utterances for animated virtual
characters were motivated by the need of automatic sign language production
like the GESSYCA system [8]. In GESSYCA, simple gestures involving the arms
and the hands can be described as an arrangement of formational parameters
(hand shape, hand position and hand orientation) inspired by early studies ded-
icated to sign language phonology [10]. This pioneering work has been followed
by the Signing Gesture Markup Language (SigML [9]), which itself stems from
the HamNoSys linguistic notation system [5]. SigML can be described as medi-
ating between a behavioral and a physical/anatomical sign description for the
automatic production of sign language sequences. In 2001, Losson and Vannobel
proposed a formal description language which we will call LV [4] in the further
discourse. This language takes into account gestures and facial expression as
well as the different gesture phases (preparation, stroke, hold and retraction)
as described by Kendon [11]. More recently, Huenerfauth introduced a multi-
channel coding system for sign language called the Partition/Constitute (PC)
formalism [12]. The system uses a two-dimensional grammar (one dimension
representing time, the other representing channels) and introduces an explicit
representation of coordination and non-coordination for a multichannel anima-
tion stream. However, the described concepts have not been formalized into a
syntactic description to the best of our knowledge.

In parallel, many interactive applications featured virtual characters as a new
human-machine interaction metaphor. Early attempts did not need elaborate
multimodal specification models, as they mainly relied on pre-recorded or pre-
specified animations, either obtained using motion capture or key-framed by a
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skilled animator [13,14,15,16]. These approaches used speech as the dominant
modality to which all other modalities (gesture, facial expression etc.) would refer
for temporal synchronization. Synchrony was achieved by starting the animation
pieces simultaneously with the correlated verbal phrase. The nonverbal behaviors
are referred to by unique identifiers and are drawn from a behavior database.
In these systems, it is impossible to create nonverbal behaviors from atomic
elements and to adapt their structure in the synchronization process.

The MURML gesture description language [3] starts from straightforward de-
scriptions of the multimodal utterance in a XML-based specification language.
Such a description contains the verbal utterance augmented by nonverbal be-
haviors including gestures. In MURML, the desired gesture can be described
explicitly in terms of spatiotemporal features. In addition to gestures, further
behaviors can be incorporated such as arbitrary body movement and facial
animations given as sequences of face muscle values.

To sum up, it seems that so far both LV and MURML are the most elaborate
description languages providing an implementable grammar. However, even if
they share similar goals, there are significant differences in both their structure
and expressiveness. We thus present in the following a comparison between the
two languages.

3 Comparison of MURML and LV

We base our comparative study on a sample iconic gesture. This gesture, depicted
in Fig. 2 may be used to describe a square-shaped structure like a fireplace frame
or the structure of a bridge and we will call it BRIDGE in the following. The
BRIDGE gesture conveys two changes in wrist position (one where the wrists
follow a horizontal straight path and a one where they follow a vertical straight
path) and one change in hand orientation (the back of the hand changes form
pointing upward to pointing toward the sides) which occur before the second
wrist position’s change.

Both LV and MURML can describe multimodal gestures including hand-arms
configurations and trajectories as well as facial expressions. In both systems, ges-
ture timing is expressed symbolically and are resolved later on by the animation

Fig. 2. Iconic BRIDGE gesture
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engine. Both systems limit their descriptions to the meaningful phases of the
described gestures (stroke or independent hold). In an architecture like the one
outlined in Fig. 1, the timing of non-meaningful surrounding phases such as re-
traction, preparation and dependent hold are left to the motion planner engine
while the final realization is left to the animation engine.

3.1 MURML

MURML describes gestures in a tree structure of constraints and features, each
of which specifies either a sub-gesture (atomic gesture) or a set of feature con-
veying the configuration of one or more modalities (facial animation parameter,
hand shape, hand position, hand orientation). In MURML, two different types
of movement constraints are provided in order to specify a feature over a certain
period of time: A static constraint, which defines a postural feature that is to
be held for a certain period of time and a dynamic constraint which specifies
a significant submovement within a feature that is fluently connected with ad-
jacent movement phases. The relationships between the feature constraints can
be denoted by specific MURML elements like parallel, sequence, repetition and
symmetry. Such constraints can be arranged in a flexible fashion.

The lower part of Fig. 3 shows a MURML description of the BRIDGE gesture
presented in Fig. 2. In our example gesture, the hands are kept in the same
configuration through the entire gesture, hand configuration is thus expressed in
a separate branch under a parallel element. The remaining constraints describing
the gesture are assembled in a sequence element. Features are located under a
static or dynamic constraint depending on whether they are kept static or change
during each sequential sub-motion. At the upper end of the tree, a symmetry
constraint expresses the fact that the gesture is symmetrical, i.e. the description
applies to both hands.

The structure of MURML encourages feature factorization through hierar-
chical arrangement of constraints and features. On the one hand, by allowing
arrangements of arbitrary complexity between constraints and features, MURML
can be viewed as a concise language which prevents duplication, but, on the other
hand, because no restriction is imposed on how constraints can be arranged,
MURML allows multiple (syntactically) valid descriptions for a single gesture.
For instance, the tree depicted on the upper side of Fig. 3 shows a MURML
description of the BRIDGE gesture which is valid, but against MURML’s phi-
losophy (the handshape feature is, for instance, redundant between the three
atomic gestures).

We believe that the non-uniqueness of MURML descriptions for certain ges-
tures and the a-priori arbitrary complexity of a gesture description is a challeng-
ing aspect both for an author and for implementing a realizer based on MURML.
Furthermore, MURML does not introduce a contact constraint (see Sec. 3.2).
Finally, we believe that although very expressive, the complex tree structures
required to describe the gestures may be challenging for users.
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Fig. 3. MURML representation



Requirements for a Gesture Specification Language 213

3.2 LV

LV follows the movement-hold theory which describes a gesture in terms of pos-
tures and transitions. The illustration in Fig. 4 shows the LV description of
BRIDGE.

Like MURML, LV describes a gesture as a combination of features organized
in a tree. However, as opposed to MURML, the feature arrangement is fixed and
follows the following organization: a gesture (sign) is described as a succession
of shifts. The shifts are bundles of hand features at the beginning and end of
the sign and of the movement itself. Depending on its complexity, a shift can be
described as one of the following three options:

– single hand shift primitive
– dominant hand shift primitive plus a specification for the weak hand and a

spatial relationship (as it is the case for the description in Fig. 4)
– two shift primitives, one for each hand

The drawback of specifying hand configuration at the beginning and end of the
shift is the redundancy between the end of one shift and the beginning of the
following shift when a gesture is described as a sequence. The tree depicted on
the right side of Fig. 4 highlights this redundancy problem.

In LV, the constraints conveying relationships between features are considered
as attributes belonging to specific nodes. For instance, the repetition constraint is
a feature of the shift element and all features under a shift are realized in parallel.
For instance, shift elements belonging to the tree depicted in Fig. 4 aggregate
the simultaneous movement of both weak hand and strong hand. Finally, LV
offers a feature to represent contact gestures, i.e. gestures that touch a part of
the body (expressed using landmarks) somewhere along their trajectory.

Fig. 4. LV Representation
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First, LV leads to unique description of gestures. Second, because LV uses as-
sumptions about human modalities (e.g. symmetry is only related to arm/hands,
the default hand is strong hand), it appears that its gesture description scripts
have a comparatively flat tree structure. The following script presents the textual
version of our example gesture.

Sign %BRIDGE.
Manual:
(Shift from: (HandSpec config: #C point: #ThumbRoot

at: [Shoulders FrontProx Sagittal] ori: [f f & u])
to: [Shoulders FrontProx IpsiSide]

move: #Linear
weakMove: #Symmetrical ),

(Shift ...),
(Shift ...).

We believe that a flat description is a desirable feature for a gesture description
language, because it provides the user with a more intuitive way to specify
the character’s configuration using sets of constraints. However, the variety of
modalities LV can address are rather limited (hand and basic face). Furthermore,
LV uses a terminology and contains some elements that are too dependent on its
underlying theory (e.g. sign language modifiers, grammatical modifier element).

3.3 Discussion

Based on the gesture description we presented in the sections above, we now
draw a comparison between MURML and LV based on the complexity of their
structure, the way dynamic elements are described, the presence of convenience
features like arm-swivel or contact specification and the ability to specify co-
occurring movements in the main animation. Our comparison is summarized in
Table 1.

Although both LV and MURML use tree structures, we found descriptions
provided by LV to be flatter. We believe that flat structures are more desirable
for a high-level language dedicated to the specification of human gestures for

Table 1. Summary of limitations of MURML and LV
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two reasons: first, we believe that a flat structure is easier to author and leads
to unique less ambiguous descriptions, second, although one could argue a flat
structure narrows the range of expressiveness of the language, we believe that
this limitation can be overcome using certain assumptions on human modalities
(two hands, symmetry only applies on arms/hands, etc.).

Another issue is the redundancy introduced when describing dynamic features
that are occurring sequentially in both LV and MURML. As described in para-
graph 3.2 LV implies a duplication between the end pose of an atomic gesture
and the start pose of the subsequent atomic gesture. in MURML, this problem
can be avoided if the user carefully factorizes static and dynamic constraints.
We believe high-level features conveying contact and arm swivel are particularly
convenient for authors. LV provides a feature to describe contacts, MURML
does not. MURML takes arm swivel into account, LV does not. Finally, both LV
and MURML permit the specification of movement co-occurring with a main
gesture (e.g. fingers wriggling while tracing the BRIDGE gesture). LV uses a
set of pre-defined secondary movements as a parameter of a shift (e.g. wriggling,
rubbing, counting ). MURML can define such movements in a generic fashion
using a subtree that is a sibling of the tree depicting the main gesture, both trees
grouped under a parallel constraint.

4 The Animation Layer and EMBRScript

Having compared MURML and LV, we found that MURML was very expressive
but probably too complicated for easy authoring and that LV is an elegant
formalism for specifying gestures but may have limitations when it comes to
multi-channel coordination. But how can we devise a powerful language without
overloading the syntax in terms of structure and lexicon? We decided to start
by first creating another layer of abstraction underneath the BML layer. We call
this layer the animation layer and argue that this layer should have maximum
expressivity without regard to the question whether it is easy to author and
easy to read by humans. It should provide an abstract interface to character
animation engines and form a basis for the future development of the BML
layer which can then be built on top of it. This strategy allows us to more
systematically define the BML layer using clearly defined building blocks. In
this section we will outline the animation layer, using a concrete language we
call EMBRScript.

4.1 Overview

In the processing pipeline depicted in Fig. 1 the animation engine is the last
element which creates the animations sent to the graphics renderer. This an-
imation engine can involve multiple motion generation mechanisms acting on
different parts (channels) of the character to be animated. Because of the het-
erogeneity of the different motion generation mechanisms, we argue that a new
layer of control, the animation layer, is necessary to keep the higher-level control
layers (behavioral/functional) consistent and slim, while allowing a unified and
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Fig. 5. This illustration displays an EMBRScript based description of the BRIDGE
gesture. The description is spread over two channels, synchronization is done using key
poses which can span several channels.

abstract access to the animation engine, e.g. for the procedural animation of
nonverbal behavior. EMBRScript is the language that provides this interface.

EMBRscript is a channel-oriented, pose-based gesture description language.
Every animation is described as a succession of key poses timestamped with
absolute times and spanning multiple channels. Contrary to LV and MURML
which only depict meaningful phases of the gestures, EMBRScript does not make
distinguish between gestures phases. Fig. 5 depicts a EMBRScript description
of the BRIDGE gesture.

4.2 Description

A key pose describes the state of part of an animated character at a specific
point in time using a set of constraints. A key pose spans over at least one
channel, a channel represents one of the character’s modalities. When spanned
over multiple channels, the key pose expresses synchronization between them.
A pose can be specified using a combination of four principal methods, each
acting on a separate channel: skeletal configuration (e.g. reaching for a point in
space, bending forward), morph targets (e.g. smiling and blinking with one eye),
shaders (e.g. blushing or paling) or autonomous behaviors (e.g. breathing). In
the example we show in Fig. 5, only the skeletal configuration is specified using
spatial constraints (wrist position and wrist orientation). The skeletal configu-
rations satisfying the constraints are computed in the animation engine using
inverse kinematics.

For instance, in the EMBRScript description of the BRIDGE gesture in
Fig. 3, two channels are depicted: The wrist position channel and the wrist
orientation channel. The two first motion segments in both channels represent
the preparation phase. They are both bounded by a different key pose which
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means that there are independent in time, in this case, the preparation phase
corresponding to the wrist orientation channel is achieved before the preparation
phase corresponding to the wrist position channel.

The subsequent key poses are bundling both the wrist position and the wrist
orientation. The first key pose specifies the wrist’s position change while its
orientation is kept still, the second key pose expresses the wrist’s orientation
change while the wrist’s position is kept still, the last key pose specifies the last
wrist’s position change while the wrist orientation is kept still.

5 Conclusion

In order to identify and highlight the requirements for a high-level gesture speci-
fication language that could be integrated as a BML level of description, we con-
ducted a comparative study over two gesture specification languages: MURML,
designed to specify coverbal gestures and LV, designed to describe French Sign
Language utterances. The study gave us insights regarding the desired structure
and the level of expressivity of this new language. We found that it should have
a flat structure and take advantage of the assumptions that can be made regard-
ing the modalities of a human being. The language should take into account the
multichannel nature of gestures while being able to express both synchronization
and temporal independence between channels. The design of such a language is
a work in progress which will build on the EMBRScript animation language.
EMBRScript provides an interface to the animation layer which gives to users
the possibility to describe fine-grained output animations without requiring a
deep understanding of computer animation techniques [17]. In future work, the
concepts of EMBRScript will be used as building blocks to formally describe
fine-grained behaviors on the BML layer.
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Abstract. A challenge for 3D motion capture by monocular vision is 3D-2D 
projection ambiguities that may bring incorrect poses during tracking. In this 
paper, we propose improving 3D motion capture by learning human gesture 
models from a library of gestures with variants. This library has been created 
with virtual human animations. Gestures are described as Gaussian Process 
Dynamic Models (GPDM) and are used as constraints for motion tracking. 
Given the raw input poses from the tracker, the gesture model helps to correct 
ambiguous poses. The benefit of the proposed method is demonstrated with 
results.  

Keywords: Gaussian Process, 3D motion capture, gesture model, gesture 
library. 

1   Introduction 

Avatars are virtual self representations. They evolve in a 3D world and interact with 
other virtual entities on our behalf. Avatars are animated by their human counterpart. 
One difficulty is the control of their behaviors. Selecting behaviors from a menu or by 
using icons is tedious. Moreover the avatar animation is not lively as it moves only on 
command. Some attempts have been made to alleviate the user’s role and endow 
avatars with some autonomy [1]. These approaches are promising but require 
intensive computation to parse what the user aims to say and derive an appropriate 
nonverbal behaviors that accompany this text. In our project we aim at letting the user 
fully control his avatar [2]. 3D user motion is captured through a plain webcam using 
computer vision algorithms, and rendered by his avatar.  

Vision-based human body tracking allows inexpensive, non-obtrusive marker-less 
motion capture [ 3]. Research in this field has been motivated by numerous target 
applications: human-computer interfaces, animation, interaction with virtual 
environments, video surveillance, games, etc. Monocular vision based markerless 3D 
motion capture is a difficult problem because of the ambiguities resulting of the lack 
of depth information, partial occlusion of human body parts, high number of degrees 
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of freedom, variations in the proportions of the human body and various clothing 
[3,4,26]. It has an intrinsic limitation of poor precision and robustness. 

In this paper, we address the issue of improving motion capture with statistical 
gesture models. These models require training on some relevant gesture databases. 
Most existing databases as CMU Graphics Lab Motion Capture Database 
(http://mocap.cs.cmu.edu/) and HumanEva (http://vision.cs.brown.edu/humaneva/) 
gather data on human actions such as running, jumping and the like, but very few 
include communicative gestures. The variety of communicative gestures is a 
challenge by itself. Even though some gestures with a defined shape can be linked to 
a precise meaning, most of the communicative gestures are creative [5] that is they are 
created on the spot. Thus, gesture shape can vary a lot depending on their meaning 
and discourse context. Building a library of such gestures is a tremendous enterprise.  

To avoid this problem, we have selected the context of a recruiting interview and 
we have gathered video data from 4 interviews, each about 30 minutes. We have 
generated gesture by mimicking real user motion and their variations using the Greta 
expressive conversational agent [6]. The resulting library of gestures has then been 
described with a statistical model suitable for constraining tracking and 
disambiguating monocular 3D people tracking. 

The rest of the paper is organized as follows. Section 2 introduces the related 
works about gesture modeling in a low-dimensional space. In section 3, we present 
our real-time monocular motion capture system. Then, we present our work toward 
building a library of communicative gestures in section 4. We describe also how we 
encompass user’s communicative distinctiveness in our library. In section 5, we 
propose using Gaussian Process Dynamic Models (GPDM) [7] to statistically 
describe gesture models and use them as guides for motion tracking. The interest of 
this approach is demonstrated with results. 

2   Related Work 

Although people can perform very large variation of complex motions, their 
movements can be represented in a low-dimensional space. Pullen et al. [8] observed 
human motions have certain cooperative relationships especially when people do 
some specific movements like walking, swimming, etc. This relationship can be used 
to reduce the parameter space dimensionality while performing human motion 
analysis. Safonova et al. [9] have demonstrated that many dynamic human motions 
can be adequately represented with only five to ten parameters. Elgammal et al. [10] 
and Grochow et al. [11] observed that human activities can be described in a latent 
space. So, human motion can be modeled in a low-dimensional latent space. 

Building the latent motion space from existing motion data consists in defining a 
subspace with a lower dimension than the full motion capture data. Because human 
motion is non-linear, basic dimensionality reduction methods such as principal 
component analysis (PCA) are inadequate to describe non-linear human motion [4]. 
Other methods such as Locally Linear Embedding (LLE) [27] and Isomap[28] either 
do not provide invertible mapping from the low dimensional latent space to the 
original pose space or do not provide probability distribution over data in latent space. 
They are not suitable to build low dimensional gesture models [7]. 
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Locally Linear Coordination (LLC) [12], Gaussian Process Latent Variable Models 
(GPLVM) [13] and later appeared approaches like Gaussian Process Dynamic Models 
(GPDM) [7] and Laplacian Eigenmaps Latent Variable Model (LELVM) [14] can 
learn a non-linear mapping between the human motion parameter space and a latent 
space and they provide an inverse mapping. They allow describing human motion in a 
low-dimensional latent space. 

Recently, latent gesture models have been used as prior constraints to help 3D 
human motion tracking. Urtasun [15, 16] used GPLVM and GPDM to learn prior 
models for tracking 3D human walking. She achieved good results even in case of 
serious occlusion. Raskin et al. [17] presented an approach to combine annealed 
particle filter tracker with GPDM that allows reducing the state vector and that 
enhances tracking stability. Moon and Pavlovic [19] investigated the effect of 
dynamics in dimensionality reduction problems on human motion tracking. Lu et al. 
[20] used LELVM as constraints in the probabilistic sigma point mixture tracker for 
robust operation with missing data, noisy and ambiguous image measurements. In 
these approaches, gesture models were combined with the image-based likelihood in 
the tracker to reduce the number of state sampling particles [21]. 

3   Real-Time 3D Motion Capture with a Webcam 

Our baseline is a real-time webcam-based system for 3D motion capture that was 
previously developed in our team [18]. It works by registering an articulated 3D 
model of the human body on a video stream (Fig. 1). 

 

 

Fig. 1. Real time motion capture by monoscopic computer vision and virtual rendering 

Our 3D human model has 3 global position parameters and 20 joint angles of the 
upper-body (bust, arms, forearms, hands, neck and head), so a body-pose is 
represented by a vector of 23 parameters. For each input image we search for the 
model pose that best matches the image. Image features (color regions, edges) are 
extracted and matched with model features (colored limbs, occluding edges) projected 
in the candidate pose. For each captured image, optimal registration is searched with 
respect to the pose parameters by iteratively maximizing the color region overlap and 
by minimizing the distance between the image edges and the projected occluding 
edges of the model (Fig. 2) [18]. 



222 Z. Li et al. 

 

                                      Captured image            Color-based image segmentation 

 

Distance map image  2D projection of the  
 registered 3D body model 

Fig. 2. The captured image, the color-segmented image, distance map image edges in the 
foreground mask and finally the projection of the 3D human body model in the optimal 
matching pose [18] 

Joint angles are then output in real-time over the network as low bandwidth 
MPEG-4 body animation parameters (BAPs). The captured motion is rendered 
remotely by animating the user avatar in the virtual space (Fig. 3). 

 

Fig. 3. Real-time motion capture using a single camera for each user and virtual rendering. 
Demonstration videos are available at http://MyBlog3D.com. 
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4   Creating a Library of Gestures 

Several dictionaries of emblematic gestures have been gathered in our project. They 
are bound to a given culture. These dictionaries provide detailed information about 
the gesture shape and its associated meaning. Other attempts have looked to describe 
gesture shape in association with their physical meaning [22]. Raised hand with palm 
facing one’s interlocutor carries the meaning to stop something or somebody to do 
something. It can be viewed as symbolizing a wall between both interlocutors.  

In our work we are interested at all types of gestures as we aim to track any hand 
and arm movements done while communicating. We do not aim to recognize gestures 
or to interpret them. We are interested in detecting their shape and following their 
movement in view in reproducing them by the avatar. This reproduction does not 
require understanding the meaning of the gestures. With such an aim we decided to 
consider only one feature of the gestures: their shape.  

Most of the existing databases of motion capture data gather data on action 
movements such as walking, jumping or running. Almost no databases are centered 
on communicative gestures. In our work, our aim is to track people gesturing while 
conversing. To be able to train our tracking algorithm, we need to gather data on 
nonverbal gestures. Rather than creating a database of motion capture data, we have 
decided to use virtual agent technology as it is cheaper. We have created a database 
with the animation of the synthetic character. It is difficult to select which gestures to 
consider. Communicative gestures are often ‘creative’. It is not possible to create an 
extensive library of communicative gestures. At a first step of our work, we have 
decided to focus on one conversational domain: recruiting interviews. We have 
gathered data of real people going through job interview and we have searched for the 
gestures shapes that are the most frequent. The agent was made to replay those 
gestures. To ensure to gather gesturing variability of users, we have applied a set of 
expressivity parameters that modulate the animation of the virtual agent.  

4.1   Gesture Variability 

While communicating, people show large variability not only in their intentions but 
also in their way of expressing them. One can be characterized by a signature, a style 
one carries along in, basically, all circumstances [23].  

We have developed a model of distinctive agent that encompasses variability in the 
modality preference used to communicate a given intention and on the behavior 
expressivity [24]. In particular when modulating the last set of parameters, the agent 
can display gestures more or less extent, more or less fast and powerful, etc. These 
variations occur at the level of execution of behaviors and not on the type of 
behaviors to be displayed.  

4.2   Gesture Clustering 

In our corpus we have gathered data from 8 interlocutors. The data was annotated 
using ANVIL [25]. Around 800 communicative gestures were found in the data. We 
gathered them into classes of gestures looking alike in their shape and movement. 
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Fig. 4. Rendering by the virtual agent of a gesture belonging to a gesture class 

Our aim is to create a library to train our gesture tracking algorithm [2]. To ensure 
robustness of our tracking algorithm over a large population of users, we have 
enhanced the library of gestures of the training phase with gesture variability using 
the model of distinctive agent [24]. The gesture of each class found in our corpus is 
reproduced by a virtual agent (Fig. 4). The library contains the reproduced gesture as 
well as the same gesture with different expressivities. Thus each gesture in a class and 
its variations are present.  

5   Gesture Modeling and 3D Motion Capture 

5.1   Gaussian Process Dynamical Models 

Gaussian Process Dynamic Models (GPDMs) are a powerful approach for 
probabilistically modeling high dimensional time related data through dimension 
reduction that make it possible to learn probability gesture models from small training 
data sets [7]. We propose hereafter a brief introduction to GPDMs. 

A GPDM consists of 1) a continuous mapping between the full-dimensional data 
space (joint angles) and a low-dimensional latent space and 2) a dynamical model in 
the latent space. It is obtained by marginalizing out the parameters of the two 
mappings, and optimizing the latent coordinates of training data. 

GPDMs aim at modeling the probability density of a sequence of vector-valued 

states 1..., ,...,t Ny y y  with discrete-time index t  and D
ty R∈  where D  is the 

number of parameters that define a body pose in the full dimensional parameters 
space. These two mapping can be expressed as: 
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                                                  1 ,( ; )t t x tx f x A n−= +                                      (1) 

                                                   ,( ; )t t y ty g x B n= +                                              (2) 

where d
tx R∈ denotes the d dimensional latent coordinates at time t . ,x tn  and ,y tn are 

zero-mean white Gaussian noise processes. f and g  are (nonlinear) mappings defined 

as linear combinations of basis functions iφ  and iϕ  with weight vectors A and B : 

                                                    ( ; ) ( )i i
i

f x A a xφ=∑                                   (3) 

                                                      ( ; ) ( )j j
j

g x B b xϕ=∑                                        (4) 

where 1 2[ , ,...]A a a= , 1 2[ , ,...]B b b= . 

The specific forms of f and g will be marginalized out in GPDM. With an isotropic 

Gaussian prior on each jb , we can marginalizing over B in closed form [29] to yield a 

multivariate Gaussian data likelihood: 

                   1 2| | 1
( / , ) exp( ( ))

2(2 ) | |

N
T

YND D
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W
p Y X tr K YW Y

K
β

π
−= −                 (5) 

where 1[ ,... ]T
NY y y= is a matrix of training poses, 1[ ,..., ]T

NX x x= is a matrix of 

latent positions, YK  is a kernel matrix, and { 1, 2,..., }Wβ β β=  comprises the 

kernel hyperparameters. 1( ,..., )DW diag w w≡ is a scaling matrix used to account 

for the different variances in the different data dimensions. The kernel matrix 

elements are defined by a kernel function ,( ) ( , )Y i j Y i jK K x x= . For the latent 

mapping, X Y→ , the Radial Basis Function (RBF) kernel is used. 

                            

2 12
1 3 , '( , ') exp( ' )

2Y x xk x x x x
ββ β δ−= − − +                       (6) 

Hyperparameter 1β  represents the overall scale of the output function, while 2β  

corresponds to the inverse width of the RBFs. The variance of the noise term ,y tn  is 

given by 1
3β − . 

The dynamic mapping on the latent coordinates X is: 

      

1
1 ( 1)

X

1 1
( / ) ( ) exp( ( ))

2(2 ) | |

T
X out outN d d

p X p x tr K X X
K

α
π

−

−
= −              (7) 
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Where 2[ ,...., ]T
out NX x x= , XK  is the ( 1) ( 1)N N− × −  kernel matrix 

constructed from 1 1{ ,..., }Nx x − , and 1x  is assumed to be have an isotropic Gaussian 

prior. Where α  is a vector of kernel hyperparameters. The dynamics can be modeled 
using the following “Linear + RBF” kernel: 

                    
2 12

1 3 4 , '( , ') exp( ' ) '
2

T
X x xk x x x x x x

αα α α δ−= − − + +                  (8) 

Hyperparameters 1α , 2α  represent the output scale and the inverse width of the RBF 

terms, and 3α  represents the output scale of the linear term. Together, they control 

the relative weighting between the terms, while 1
4α −  represents the variance of the 

noise term ,x tn . 

Learning the GPDM from measurements 1[ ,..., ]T
NY y y= entails minimizing the 

negative log-posterior: 
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∑

              (9) 

5.2   Gesture Modeling  

Gesture models are learnt offline from the gesture library using GPDM. Here we use a 
3D latent space as this appears to be the lowest dimension for robustly learning 
complex motions with stylistic variability [16]. We select gestures from each subject 
for training in order to get the mean trajectories and variances of gestures in the latent 
space. The input matrix for GPDM learning is pose parameters, which are 20 joint 
angles of the upper-body (bust: 3DOFs, left shoulder: 3DOFs, right shoulder: 3DOFs, 
left forearm: 1DOFs, right forearm: 1DOFs, left hand: 3DOFs, right hand: 3DOFs, 
neck and head: 3DOFs). Fig. 5 shows two conversational gestures from our library 
and their description as trajectories in a 3D latent space. 

5.3   Gesture Modeling for 3D Motion Capture 

In our model-based approach, tracking relies on evaluating how well some 
synthesized appearance of the human body model matches the input image, i.e. how 
well some model instantiation explains the input image. However, because we only 
use a single camera, depth ambiguities can occur. Furthermore, because real-time 
processing implies limited computation power, only a limited subset of the human 
body degrees of freedom can be processed, so the hand pose cannot be captured, and 
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Fig. 5. Conversational gestures described in a 3D latent space. Each circle on the trajectories 
represents a body pose. 

 

Fig. 6. Gesture model working as constraints in tracking 

image size may even be limited. We use the gesture model as a constraint to raise 
ambiguities and augment the captured motion with details (Fig. 6). 

For each iteration, the motion tracker outputs a candidate pose to be constrained 
with the gesture model. That pose is projected from the full motion parameter space to 
the 3D latent model space and then replaced with the closest point on the latent 
motion trajectory. Since GPDM mapping is continuous, poses that are close in the full 
motion parameter space remain close in the latent space. The output constrained pose 
at each time step is the pose reconstructed into the full motion space. The point used 
for pose reconstruction is the closest point from the projected point on the model 
trajectory in the latent space. The resulting pose is then used as the initial pose for 
tracking at the next image.  
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5.4   Experiments 

We used those gesture models as constraints while tracking communicative gestures 
and actions gestures from videos. As we only using one webcam, the tracker can not 
always distinguish poses correctly due to lacking depth information (for example, 
hands orientation are sometimes incorrectness). In the gesture models based tracking, 
each candidate pose is projected into the latent gesture model space, so enforcing the 
captured motion regularity. 

We tested our approach on 4 subjects of communication gestures (each test video 
is about 90 frames). Because the output poses lay on the gesture model internal 
trajectory, most of the monocular vision ambiguities can be solved. Impossible poses 
will not happen in the gesture model space, so heuristic biomechanical constraints, 
which otherwise must be used for pruning the pose space, can be replaced with the 
gesture model that constrain the output poses to be on the learnt motion trajectory 
(fig.7). Another benefit of this approach is that the poses reconstructed in the latent 
space include motion details that cannot be captured from the input video sequence 
(such as hand shapes) (fig.8). 

     

Fig. 7. Motion tracking with biomechanical constraints vs. gesture model. Left: An input image 
where the left hand orientation can hardly be distinguished. Middle: Motion capture result with 
heuristic biomechanical constraints: the unlikely pose of the left hand is biomechanically 
possible, so it is accepted. Right: Tracking with gesture model instead of biomechanical 
constraints: the gesture model avoids the awkward pose. 

   

Fig. 8. Augmenting motion capture with gesture models. Left: Input image. Middle:  
Tracking without gesture model: the hand shape is not captured to meet real-time  
computation constraints. Right: The gesture model augments the motion capture with fingers 
movements. 
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6   Discussion and Future Work 

We have created a library of communication gestures with variants and used it to 
learn gesture models with a GPDM statistical approach. These models allow both 
non-linear mapping for reconstruction and dimension reduction between the motion 
parameters space and a low-dimensional latent space, while being simple to learn 
from small training data. The main contribution of this work is used the low-
dimensional gesture models as prior constraints for monocular motion capture while 
tracking communicative gestures. These gesture models help track ambiguous poses 
and render some motion details. 

Our approach works on specific gestures. Future work is still required to be done to 
support broader classes of gestures. 
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Abstract. This paper presents a new method to generate arm gestures
which reproduces the dynamical properties of human movements. We
describe a model of synergy, defined as a coordinative structure respon-
sible for the flexible organization of joints over time when performing a
movement. We propose a generic method which incorporates this syn-
ergy model into a motion controller system based on any iterative inverse
kinematics technique. We show that this method is independent of the
task and can be parametrized to suit an individual using a novel learning
algorithm based on a motion capture database. The method yields dif-
ferent models of synergies for reaching tasks that are confronted to the
same set of example motions. The quantitative results obtained allow us
to select the best model of synergies for reaching movements and prove
that our method is independent of the inverse kinematic technique used
for the motion controller.

Keywords: Virtual Humanoids, Movement Synthesis, Synergy,Reaching
Gesture, Joint Synergies, Movement Learning.

1 Introduction

Designing virtual characters that generate human-like gestures is still a major
challenge, the research domain ranging from interactive ergonomics or virtual
entertainment, to human gesture studies for different tasks (sport, motor dis-
abilities, etc). One of the main issues that researchers are trying to solve is
how the human performer coordinates and controls a complex musculo-skeleton
system, with many degrees of freedom (DoFs). The rotations applied by the
muscles on the DoFs controlling the different joints - shoulder, elbow, wrist -
are combined in order to perform a smooth movement. When groups of muscles,
corresponding to one or several DoFs, cooperate in this way, they form a synergy
[1,2].

We follow here the assumption that synergies can be modeled in a flexible and
dynamic fashion in order to produce a reaching movement, according to the task
to perform (reaching different target points) and to physical characteristics of the
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individual. One of the basic problems underlying this notion of synergy, from a
kinematic point of view, is the influence of use of each DoF within the formation
of a movement [2]. Moreover, we may consider that synergies dynamically evolve
through time. Therefore the temporal characteristics of the synergies along the
movement are a key issue that need to be investigated.

In this paper, we present a new approach to imitate human reaching gestures,
based on the modeling of these synergies. Here, the notion of synergy expresses
both the spatial interrelation between joints and the dynamical patterns acting
on each joint during the course of the movement. Our synergy model can be
included into any inverse kinematics (IK) technique, which iteratively computes
the posture of the arm system from the specification of goals defined as reaching
targets in the 3D space. The originality of our approach relies in the incorpo-
ration into the sensorimotor model of an explicit joint synergy function which
can be parametrized from captured movements. The goal is to finely reproduce
the gesture while preserving the natural characteristics of the real movements.
This approach is compared to other classical IK methods, and quantitatively
analyzed for a set of reaching movements.

The rest of this paper is organized as follows: in section 2, we briefly discuss
related works, and then continue with the mainstay of this paper; in section 3,
we describe our method for controlling motion and modeling joint synergies; ex-
periments and results are presented in section 5 for a set of reaching movements;
and lastly we conclude by a discussion and give future perspectives for this type
of work.

2 Related Work

Over the years, different methods aiming at producing natural gestures repro-
ducing characteristics of real movements have been proposed. We try to high-
light how these works may explain the underlying synergies when performing
movements.

Learning models of motion from examples has been an active and productive
area of research. In these approaches, the main objective consists of synthe-
sizing new sequences of movements from existing ones. Some approaches use
Hidden Markov models [3], or use a Linear Dynamic System to learn the style
of training motions [4]. Gibet et al. [5] use the Nadarada Watson estimate to
learn local transformations of the Jacobian. Rose et al. [6] and Grochow et al.
[7] propose respectively a Radial Basis Function model and a Scaled Gaussian
Process Latent Variable model to learn inverse kinematics from human poses.
Wang et al. [8] learn a probabilistic mapping between poses and style variables,
using a parametric Gaussian mixture model. Ong et al. [9] propose a novel modu-
lar neural network architecture for learning inverse kinematics. Other approaches
determine physical constraints by using Non Linear optimization techniques [10],
or clustering models [11], learned from captured motion. Chai et al. [12] learn a
statistical dynamical model from motion capture data and use this model to gen-
erate new motions from a variety of user-defined constraints. These approaches
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produce natural-looking and physically plausible motions, and have proven to
be effective for a large variety of human motions. Some of them result in the
generation of new motions by interpolating or extrapolating the learned param-
eters. But, for these new motions, the physical laws of motion are not necessarily
guaranteed. Moreover, these learning models do not explicitly incorporate the
modeling of synergies.

Numerous inverse kinematics (IK) techniques have also been developped to
produce realistic motions from the specification of geometrical user-defined con-
straints. Among these techniques, traditional IK solvers use numerical optimiza-
tion methods, such as Jacobian pseudo inverse, which implicitly capture the
correlation between joints when performing a movement. In order to avoid non
realistic situations, constraints may be introduced, such as physical-based con-
straints [13], shape constraints [14], or ergonomic constraints [15]. These methods
rely on the validity of the constraints for a given task and usually do not take
into account features specific to an individual.

In order to take advantage of both methods, example-based IK methods are
an effective alternative. They combine goal-directed and data-driven methods,
thus relying on real motions with an explicit model for solving IK. Komura et al.
[16] extract joints’ weights from captured data and re-use them during synthesis
to reproduce the synergies. Some recent studies perform inverse kinematics in
low-dimensional space, such as latent spaces [17], and [18], thus including within
the solver the linear combination between the DoF. In these cases, synergies
are explicitly specified within the motion. However, these methods make the
asumption that the inter-relation between the joints within the synergies may
be represented by linear functions. Moreover, they require the passage of one
posture to another, and do not take into account the dynamical effect of the
synergies over time when performing a movement.

Our approach is also related to example-based IK methods. But in contrast to
the above methods, we propose to model the dynamical effect of synergies over
time. In the line of previous work [19], based on a sensorimotor optimization loop,
we propose a novel approach which uses a motion capture database and a learning
technique that automatically computes the parameters of the synergy model.

3 Proposed Model

3.1 Inverse Kinematics Formulation

In this section, we consider the control of a kinematic chain C composed of n
joints linking segments of different lengths, each segment representing a bone of
the virtual character. Each joint is characterized by 1, 2 or 3 rotations, defining
several DoFs. The set of rotations can be represented by the state vector Θ =
{θ1, . . . , θn}.

We define the forward kinematic operator H which computes the end effector
location X of the chain C, given its state Θ. Usually, the location is determined
by a position and an orientation.
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X = H(Θ)

The IK problem can be defined as a method that determines a vector Θ so that
the end effector is in the desired situation Xd.

Θ = H−1(Xd)

As the human arm is a complex and redundant system, the kinematic chain C
cannot be inverted in general. Most of previous work solves the IK problem with
local linearization methods. In this case, the IK formulation determines small
variations of the posture from small variations of the end effector situation, thus
trying to converge towards the desired situation.

Different iterative methods can be used to solve IK. Whereas the
pseudo-inverse methods can be expressed as:

ΔΘ = λJ(Θ)+ΔX

where J(Θ)+ is the pseudo-inverse of the Jacobian of C corresponding to the
state Θ, and λ is a scalar changing the rate of convergence. This pseudo-inverse
can be obtained, for example, using the Singular Value Decomposition (SVD) of
the Jacobian.

Another method: JT , uses the transpose of the Jacobian J(Θ):

ΔΘ = λJT (Θ)ΔX

which, while being easier to compute, presents smaller convergence rates on
multiple effectors. In our study, we also define a slightly derived method of the
JT (called NJT ) which computes the normalized variations of the rotations.
The iterative algorithm resulting from the numerical solutions of IK can be
represented in fig. 1, where O is the optimized function (J+, SVD, JT , NJT ),
I the integration function, and H the forward kinematic transformation. The
S block, usually unavailable in conventional methods, allows us to introduce
synergies in the loop and is detailed further.

Other optimization functions may be used, thus improving the convergence
rate towards the solution, and avoiding singularities [13,20]. Whereas these meth-
ods propose optimized solutions to the problem of IK, their common use is to

Fig. 1. Optimal feedback control to reach goal XG with O an optimization function,
S the model of synergy introduced by this work (optional), I the integration block of
the command Δθ to the configuration θ and H the forward kinematic model
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drop intermediate postures, thus having to apply the loop for each point of the
effector’s trajectory. On the other side, one can use intermediate postures as part
of the motion, so that he only need the location of the target. However, one has
to keep in mind that they do not guarantee the natural quality of the movement
through time. We will introduce below a synergy model which is compatible
with the use of intermediate postures as a motion, and dynamically modifies
the temporal evolution of the synthesized motion, according to characteristics of
human movements.

3.2 Modeling Synergies

In our approach, synergies can be represented by dynamical functions interacting
within a set of joints. More precisely, we define synergies as a combination of
gains applied to each of the n DoFs and a temporal function. By modifying the
level of involvement of the DoFs along the motion, we may completely control
the velocity and the shape of the motion.

We define a synergy transformation as a function S(t, Θ) of time and joint
angular values. The calculation of the synergy gains is achieved according to the
following equation:

ΔΘ′
i = S(t, Θ).ΔΘ = φi(t).(M [Θ].ΔΘ)i

where the function φi(t) and the matrix M [Θ] represent respectively the
temporal part and the spatial part of the synergy function.

The synergy function S(t, Θ) is thus parametrized, the parameters depending
on the subject physical characteristics, as well as on the task. We will consider
in our simulation a parameter vector p with a dimension m which may vary with
S; its values are constant over the movement and is noted:

p = {p1, . . . , pm}

By using a global learning approach, based on the comparison between simu-
lated movements and captured ones, our methodology consists in determining the
generic synergy model for specific tasks and the set of parameters
corresponding to an individual.

3.3 Learning Joint Synergies Parameters

We define a meta-heuristic based on simulated annealing which requires an op-
timization function O, a synergy model S and captured movements as training
reference. A pseudo-code version of our meta-heuristic is given in algorithm 1.
The principle of our meta-heuristic is to generate a random population of para-
maters (l. 1): population = {p1, . . . , pu} and to make them evolve randomly
by applying small variations (l. 4) on each parameter. The parameters are then
evaluated for each training motion (l. 6-10), by setting the controller in the same
initial posture and by simulating the motion for a task similar to the training
motion’s one. The distance between the training and the synthesized motion is
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then computed. If the evolutionary algorithm reduces this distance, the vector
of parameters is kept otherwise previous values are restored (l. 11-16). These
steps are repeated until the average score of the population is stabilized (l. 18)
and finally the best parameter’s vector is returned (l. 19).

Algorithm 1. Meta-heuristic for determining the best parameters p

1: population ← GenerateRandom()
2: repeat
3: for all parameters ∈ population do
4: parameters.evolve()
5: for all mocap ∈ Trainings do
6: simulatedMotion = controller.synthesize(mocap.task)
7: score ← score + distance(simulatedMotion, mocap.motion)
8: end for
9: deltaScore ← parameters.previousScore− score

10: if deltaScore >= 0 then
11: parameters.restore()
12: end if
13: end for
14: until population.isStabilized()
15: result ← population.findBest()

3.4 Metric for Evaluating Synthesized Movements

The naturality of the synthesized motion is evaluated by superposing two vir-
tual characters and playing captured and synthesized movements for the same
task and comparing the two motions over time. In this case an error metric is
computed by defining a distance between the two motions, based on the mean
distance between postures along the motion. The calculation is stopped at the
end of the shortest motion:

d(MA,MB) =
mini∑
i=1

dist(PA,i,PB,i)
mini

, mini = min(length(MA), length(MB))

with MA motion A, PA,i posture from motion A at frame i and length(MA)
the number of frames in motion A.

Such a distance gives a measure which takes into account both the velocity
and the shape of the movement. First of all, by using the frame by frame com-
parison over time, we ensure that the movements’ velocities can be compared.
If both movements have a different frame rate, one of the movements has to be
interpolated to match the other’s frame rate. Secondly, the deformed shape of
the movements is computed by using the average Cartesian distance between
joints. This distance between two postures PA and PB is given by equation:

dist(PA,PB) =

⎛
⎝ l∑

j=1

||XA,j −XB,j ||
l + 1

⎞
⎠+

||XA,e −XB,e||
l + 1
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where the kinematic chain C is composed of l joints, the position of the j-th
joint in global space for the posture PA is noted XA,i and the position of the
end effector is noted XA,e. Note that all distances obtained are relative to the
environment scale, in this article humanöıd’s arm has a size of 5.97 (shoulder to
wrist) in this space and length from wrist to finger’s end is 2.0.

4 Experiments and Results

In our experiments, 14 reaching movements have been recorded for one subject.
This one is seated on a chair and targets from different colors are uniformly
distributed in front of him (cf fig. 2). He has been asked, from the rest posture,
to reach a specific target and then come back to the same rest posture. To avoid
the bias of finding the target, he has to locate the target before starting the
motion. The rest posture has been chosen by the subject and is used as the
starting position for each motion.

It should be noted that a Cartesian distance instead of an angular one allowed
us to use two characters with the same joints but different DoFs. In fact, captured
motions are recorded on 4 joints with a total of 12 DoFs, while the synthesis
model has 4 joints but only 7 DoFs.

Three different analysis are performed. First, we test different models of syn-
ergies to find the best compromise between the number of parameters and the
quality of the synthesized motions. Next, different optimization functions are
implemented in order to evaluate the genericity of our model. And finally, some
characteristics of the synthesized motion are compared to captured motions.

First of all, we define different gains models and compare their performances.
These models used for reaching tasks are composed of gains and sigmoids as
temporal functions. In particular we evaluate the influence of using same or
different gains and sigmoids functions for each DoFs.

For the gains, we use diagonal matrix, one with the same gain for each DoF
(MA) and one with a different gain for each DoF (MB). While MA requires only

(a) (b) (c)

Fig. 2. A subject is seated, his back supported by the chair. Color targets are located
in front of him. From its rest posture (a), he is asked to reach a specific target (b) and
then come back to the same rest posture (c).
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one parameter, MB will require as many parameters as DoFs. Those matrix are
defined by:

MA =

⎛
⎜⎝

g1 0
. . .

0 g1

⎞
⎟⎠ , MB =

⎛
⎜⎝

g1 0
. . .

0 gn

⎞
⎟⎠

We also defined three different time functions inspired from work of Gibet et al.
[19]: one neutral and two using sigmoids sig(t) = 1

1+et . These time functions are
defined for each DoF by:

φA,i = 1, φB,i = sig(−s.t + o), φC,i = sig(−si.t + oi)

where φB uses the same parameters s (slope) and o (offset) for each DoF while
φC uses one for each DoFs.

Therefore, four synergy functions are distinguished:

– SA(t, Θ) using MA and φA; p = {g1}
– SB(t, Θ) using MB and φA; p = {g1, . . . , gn}
– SC(t, Θ) using MB and φB ; p = {g1, . . . , gn, o, s}
– SD(t, Θ) using MB and φC ; p = {g1, . . . , gn, o1, . . . , on, s1, . . . , sn}

Taking one by one the 14 training motions, we obtained 14 sets of parameters
associated to 14 distances for each model. To reduce the field of exploration
of the meta-heuristic, we used gi ∈ [−5; 5], si ∈ [1; 10] and oi ∈ [0; 20]. These
values, obtained by experimentation, also reduced the computational cost. The
results in figure 3 show the average, minimum and maximum distances obtained
for each model.

These results clearly show the necessity to separate the gains applied to the
DoFs. In fact, a reduction of 55% of the average distance is obtained if we move
from SA to SB . Next, the insertion of a sigmoid in SC allows us to reduce of
13% more, and separating the sigmoid on each DoF gives another reduction of
10%. In addition, whereas SD gives the best results over the whole set of motions
(1.35), SC gives the minimum distance between two motions (0.90). This can be
explained by the number of parameters used by SD (21) which is more than twice
SC ’s one (9). In fact, our meta-heuristic is more efficient on a smaller number of
parameters.

For the rest of our experiments, we decide to choose the model SC , which
is a compromise between obtaining a good average result and the number of
parameters.

In order to test the genericity of our model according to optimization func-
tions, we have implemented three IK algorithms: the transposed Jacobian (JT ),
the normalized transposed Jacobian (NJT ) and the pseudoinverse Jacobian us-
ing SVD. Each optimization function is tested for each of the 14 motions, once
with SA (raw controller) and once using SC (model selected from previous ex-
periment). This experiment allowed us to compare the average distance between
motion synthesized with the raw controller and with the controller enhanced by
our synergy model.



Modeling Joint Synergies to Synthesize Realistic Movements 239

Model dim(p) Distance
avg. min. max.

SA 1 3.83 2.92 5.10
SB 7 1.71 1.28 2.28
SC 9 1.49 0.90 1.93
SD 21 1.35 1.02 1.81

Fig. 3. Average, minimum and maximum distance for the different synergy functions
SA, SB , SC , and SD

Function Distance
avg. min. max.

NJT 4.02 2.38 5.45
JT 3.42 2.32 5.65

SVD 3.86 2.62 4.66

With SA (in white)

Function Distance
avg. min. max.

NJT 2.15 1.15 2.84
JT 2.26 1.12 2.95

SVD 1.71 1.09 2.18

Using SC (in yellow)

Fig. 4. Average, minimum and maximum distance between training motion and
synthesized motion with SA (in white) or with SC (in gray)

Results are displayed in figure 4. They show that for each optimization func-
tion, our synergy model decreases the distance between synthesized and captured
motions. In fact, incorporating SC , we improve the results of 34% for JT , of 66%
for SVD, and of 47% for NJT . Furthermore, the average distance is lower when
using the SVD method (1.71 versus 2.15 and 2.26), but we can observe that
results achieved with JT and NJT can be as good as the SVD’s ones (only 6%
difference between the minimum values).

Finally, the realism of the movements is evaluated for the different synergy
models. As many researchers have demonstrated that the velocity profiles of
simple reaching arm movements are approximatively bell-shaped [19], we com-
pare the velocities of synthesized and captured trajectories during the movement
execution.

The hand velocities for recorded and synthesized movements, using a raw con-
troller SA and a SC controller is diplayed in figure 5. These curves clearly high-
light the improvement made by the synergy model. Practically, the trajectories
of the synthesized movements produced with SC are very close to the captured
ones, whereas trajectories produced by the raw controllers do not match at all
the bell-shaped curve.
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Fig. 5. Hand speed through time for captured motion (plain gray), synthesized motion
with a raw controller (dotted black), and synthesized motion with the synergy model
SC (plain black) for four different targets
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Fig. 6. Superposition of captured motion and synthesized motions both with SA and
with SC as a synergy model. Motion synthesized with SC match the captured one while
motion synthesized with SA does not (motion is quicker and elbow is moved too high).

We also produced videos1 that make possible to compare a recorded task with
the corresponding synthesized task with and without the synergy model (cf.
fig. 6). While we can see that the use of SC instead of SA allowed to the syn-
thesized motion to match the captured one both in speed and shape, these
animations still need to be perceptually evaluated.

1 Videos are available on author’s website: http://www.enib.fr/∼aubry/
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5 Discussion and Perspectives

In this paper, we present a novel approach to finely reproduce reaching gestures
by preserving natural human characteristics for an individual. The originality of
the approach relies on the notion of joint synergy which is explicitly included
into the model as a spatio-temporal function, parametrized from motion capture
training data.

In order to precisely tune up our synergetic model, we used a preliminary
database built from 14 motions obtained from a single person. We then tried to
find a sufficiently small relevant set of synergetic parameters able to maximize
the naturality of motions. For estimating this naturality, a motion metric is
defined as an average Cartesian distance between joint positions, computed on
the whole movement. This study reveals that pointing gestures can be naturally
synthesized by the use of only one constant gain per DoF and one shared sigmoid.

The interchangeability of the optimization function, regardless of the syner-
getic function, has then been carried out by testing different numerical inversion
methods as optimization functions. A quantitative analysis of the synthesized
motions has been performed. Generated motions reveal that the specific hand’s
velocity bell-shaped profile is close to the velocity of real motions, only when the
synergetic function is employed.

Our experience has been successfully extended to a largest set of captured mo-
tions (192) from two different persons. Results highlight the ability of the model
to learn individual joint synergies regardless of the number of captured data.
Due to the genericity of our approach, we may incorporate synergy mechanisms
into a wide range of inverse kinematics motor controllers. The meta-heuritic also
proves to be fully independent of the task, of the synergetic function, and of the
number of training data.

The main limitation of the current model concerns its generalization to the
synthesis of any objective in the task space: parameters are learned motion by
motion and it is obviously inconceivable to learn parameters for each point of the
accessible space. However, we observed that for a given set of parameters learned
from a particular original target, it is possible to synthesize new motions, from
nearby targets, whose characteristics are relatively close to the features of the
original motion. The parameters’ space thus contains continuous regions that
we still have to identify in order to define the applicability domain for a set of
parameters. Moreover, this perspective should highlight the possibility to effi-
ciently map each partition of the accessible space with a valid set of parameters,
thus lowering the number of required training motions.
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1   Extended Abstract 

After building computers that paid no intention to communicating with humans, the 
computer science community has devoted significant effort over the years to more 
sophisticated interfaces that put the "human in the loop" of computers. These 
interfaces have improved usability by providing more appealing output (graphics, 
animations), more easy to use input methods (mouse, pointing, clicking, dragging) 
and more natural interaction modes (speech, vision, gesture, etc.). Yet all these 
interaction modes have still mostly been restricted to human-machine interaction and 
made severely limiting assumptions on sensor setup and expected human behavior. 
(For example, a gesture might be presented clearly in front of the camera and have a 
clear start and end time). Such assumptions, however, are unrealistic and have, 
consequently, limited the potential productivity gains, as the machine still operates in 
a passive mode, requiring the user to pay considerable attention to the technological 
artifact. 

As a departure from such classical user interfaces, we have turned our attention to 
developing user interface for use in computing services that place Computers in the 
midst of Humans, i.e. in the Human Interaction Loop (CHIL), rather than the other 
way round. CHIL services aim to provide assistance implicitly and proactively, while 
causing minimal interference. They operate in environments, where humans interact 
with humans and computers hover in the background providing assistance wherever 
needed. Providing such services in real life situations, however, presents formidable 
technical challenges. Computers must be made aware of the activities, locations, 
interactions, and cognitive states of the humans that they are to serve and they must 
become socially responsive. Services must be delivered and provided in a private, 
secure, and socially acceptable manner.  

CHIL services require perceptual technology that provides a complete description 
of human activities and interactions to derive and infer user needs, i.e., they must 
describe the WHO, WHERE, HOW, TO WHOM, WHY, WHEN of human inter-
action and engagement. Describing human-human interaction in open, natural and 
unconstrained environments is further complicated by robustness issues, when noise, 
illumination, occlusion, interference, suboptimal sensor positioning, perspective, 
localization and segmentation all introduce uncertainty. Relevant perceptual cues 
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therefore must be gathered, accumulated and fused across modalities and along time 
opportunistically, i.e., whenever and wherever such cues can be determined and 
merged reliably. And finally, gathering of such multimodal cues, should involve a 
proactive participation of the interface to seek out such cues, as the interface may 
move (Humanoid Robots), coordinate (multiple sensors), and calibrate its own 
sensors and data gathering.  

In this talk, ongoing work and results were presented from perceptual interfaces 
under development in realistic human-human interaction environments, using data 
from smart rooms and humanoid robot interaction. 
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Abstract. The hands are highly suited to interact with large public
displays. It is, however, not apparent which gestures come naturally for
easy and robust use of the interface. We first explored how uninstructed
users gesture when asked to perform basic tasks. Our subjects gestured
with great similarity and readily produced gestures they had seen before;
not necessarily in a human-computer interface. In a second investigation
these and other gestures were rated by a hundred subjects. A gesture set
for explicit command-giving to large displays emerged from these rat-
ings. It is notable that for a selection task, tapping the index finger in
mid-air, like with a traditional mouse, scored highest by far. It seems
that the mouse has become a metaphor in everyday life.

Keywords: Human-centered computing, user interfaces, input devices
and strategies, intuitive hand gestures, large display interaction.

1 Introduction

Physically large, digital surfaces can supply richly detailed yet diverse content
in our everyday environments, whether it is at home, at the office or in a public
space [1]. Such surfaces can be embedded in walls, floors, furniture and other
physical objects. Ubiquity characterizes the availability of these large digital sur-
faces in future environments. A wide range of sensors enable us users to interact
with such surfaces through very diverse modalities, resulting in an interactive
exchange of information between human and computer. Depending on the set-
tings, not all modalities will be suited for interacting with the digital surfaces,
also known as ‘displays’. For example, (parts of) the displays are not always
within reach of the user; preventing touch input. Likewise, speech input is not
always desirable, for example, in shopping malls or during conversations.

In this paper, we focus on large display interaction through hands gesturing
from beyond arm’s length [2]. The goal of interaction is to extract information
from the display by navigating through its digital contents, not through a strictly
menu-based approach per se [3]. The large display interaction may be obtain-
ing the latest fashion trends in a shopping mall to supporting discussions with
detailed results in project-based teamwork to entertainment and games [4]. The
� Corresponding author.
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common denominator for such large display interfaces as we address them is that
they offer diverse, detailed and structured information for comprehensive access
and that they require explicit command-giving. Communicative modalities in
proactive displays such as body posture or eye-contact are beyond our scope [2].

The contribution of this work is a gesture set that comes naturally and with
which commands can be issued to a large interactive display with ease [5]. A
typical way to interact with large displays through gesturing is to introduce a
gesture set that is designed to accommodate the sensors used [6]. Such a gesture
set can be difficult for users to learn and use [7]. We consider gestures that come
naturally to be intuitive but we recognize that this may have very diverse causes
ranging from strong metaphors in everyday life and work, which, we feel, by now
includes the indoctrination by decades of mouse-based interfaces.

This work is structured as follows. Section 2 starts with a categorization of the
commands that are present in an interactive system. In Section 3 we describe an
initial study aimed to discover which gestures are made by uninstructed users.
Section 4 then describes how we consulted an international population on gesture
representations for issuing specific commands. We discuss our findings in Section
5 where we also describe future work for validating this gesture set.

2 Commands to Issue with Gesturing

Explicit command-giving is the basis for the large display interfaces that we
focus on. Our aim is not to design new interaction paradigms but to discover how
existing large display interfaces might be controlled with the hands. However, it
is not clear which elementary commands are at the basis of this interface.

Navigation, selection and manipulation have been mentioned as the elemen-
tary tasks in an interface [9]. However, such tasks are often formed by chunking
together more fundamental tasks [10]. Buxton argues that human-computer in-
teraction should be regarded from a more human perspective rather than from
the device or system [8]. This approach can describe interface tasks at a more
generic level. Buxton proposed a three-state model to represent the interac-
tions such as point, select and drag for indirect devices such as the mouse, see
Figure 1. For instance, a one-button mouse can be represented to be out-of-
range (state #0) when the user is not touching it, tracking (state #1) when
the user is moving it and dragging (state #2) when pressing the button. Selec-
tion is done with a quick 1-2-1 state transition. The precise meaning of these
three states varies (slightly) with the device or interaction technique that is be-
ing represented. For example, a stylus is out-of-range when it is lifted from its

Tracking

Release

Select

     Out of 
range

Out of range

In range

Dragging

Tracking
#1

Selected
#2

Out of range
#0

Fig. 1. Buxton’s [8] three-state model for graphical input. Picture adapted from [8].
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Deselect

SelectTracking
#1

Selected
#2

Out of range
#0 Out of range

In range

L R
Manipulating

#3Activate

Release

Activate

Release

Fig. 2. Our four-state model for direct free-hand graphical input, extending the three-
state model proposed by [8]. The dynamic manipulation state (#3) represents diverse
tasks such as resize and activate. Tokens represent the left (L) and the right (R) hand.

tablet, a joystick has no out-of-range state (#0) because it keeps tracking when
untouched and a buttonless joystick does not have a dragging state (#2).

Buxton’s model can also describe direct input devices that work directly on
the display surface. For such devices, for example, light pens and touch surfaces, a
special case of the model applies with a direct transition between the #0 (passive
tracking) and #2 (dragging) states because the system does not know what is
being pointed at until contact [8]. Looking at the hands gesturing, Buxton’s
three-state model describes such interfaces adequately but not fully. The user is
out-of-range when not addressing the screen (#0). By addressing the screen, the
system switches to the track-state (#1) from which selection is possible (#2).
Manipulation of any (selected) contents is, however, not always a chunking of
these three steps. For example, resizing a selected object [2], activating a selected
object [11] or performing a ‘right-mouse’-like action on a selected object [10],
cannot be described. A five-state model was proposed in which new states are
added for each new mouse-button [10]. We propose a similar solution: adding
a dynamic state (#3) to Buxton’s three-state model to generically encompass
manipulation tasks, see Figure 2. Guiard describes the human motor system
with two motors that represent the hands [12]. These motors cooperate to form
a kinematic chain with the non-preferred hand serving as a reference frame for
the preferred hand. Based on Petri nets, we use tokens to represent the hands
(R and L). These tokens move between states separately or together, capturing
unimanual and bimanual interactions. Repeat transitions as in Buxton’s model
[8] are omitted: tokens remain in a state until an explicit transition.

3 Gestures That Come Naturally

To discover which gestures are considered natural by potential users we asked
uninstructed users to issue commands through gesturing.

3.1 Methodology

Our participants were asked to manipulate a topographic map of our university’s
local surroundings. Participants were not expected to have knowledge of the local
topography. Figure 3 shows the map and the Wizard of Oz set-up that was used1.
1 A user is fooled to believe that she is in actual control while, in fact, the wizard is.
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Fig. 3. The whole and a part of the map that the participants had to manipulate and
the set-up for this investigation. The operator sat in the back, out of view.

Three increasingly difficult assignments were executed in which the map view
needed to be moved to a specific location on a specific zoom level. Assignments
were to locate and display one or more specific town(s) and to position the view
port so that these target(s) would fill the screen. Participants could issue two
commands to complete each assignment successfully: pan and zoom in/out. We
omit the tracking state in our four-state model here because the user is either
not interacting when out-of-range(#0) or she is panning (#2) or zooming (#3).

The wizard was introduced as a technician who would perform minor ad-
justments to a working gesture interface during a brief speak-out-loud session
at the beginning of each trial. Note that during this phase, the operator chose
the coupling of gesture and state-change, including the out-of-range state. The
operator was instructed to respond only to hand movements and to ignore any
verbal commands. Visual feedback consisted of the map panning or resizing.

Each trial was video taped with a camera facing the subject. The recorded
trials were annotated in ascii Stokoe2 and analyzed based on occurrences in
Anvil [13]. ascii Stokoe is designed for sign language annotations. We expanded
the annotation with additional symbols & and Z that represent hand movements
with the same hand shape and orientation and the circumfix S(..) represented
synchronized bimanual movements. We abstracted our annotations based on the
assumption that similar gestures have a similar meaning [2]. For example, dif-
ferences between hand orientation (slightly upwards compared to fully upwards)
and hand shapes (cupped hand versus slightly stretched hand) are generalized.
The operator also mentioned to have interpreted the gestures in this manner.

3.2 Results

Nine students and colleagues from our group took part in this within-subjects
study. They were on average 27 years old (σ = 6), ranging from 19-36 years. One
participant was female, eight were male. All participants were right handed. On
a 1-3 Likert-style scale, our participants were proficient with computers (μ = 2.8,
σ = .4), the internet (μ = 3.0, σ = 0) and map applications (μ = 2.8, σ = .4).
They were somewhat familiar with the local topography (μ = 2.1, σ = .6).
2 http://www.speakeasy.org/~mamandel/ASCII-Stokoe.txt, last checked Sep. 2009.

http://www.speakeasy.org/~mamandel/ASCII-Stokoe.txt
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(a) gesture 2: Q/Mf/d (b) gesture 3: Q/C/],f{B} Q/B/& Q/B/#,t{C}

Fig. 4. The two most occurring gesture for panning (notation in gray is not depicted):
(a) pointing hand away from the user towards the display that moves around, relaxing
the hand would release (136 occurrences in 5 subjects) and (b) relaxed/cupped hand to
stretched hand that moves around for panning, relaxing or retracting the hand would
release (222 occurrences in 8 subjects)

(a) gesture 8: S(Q/C/#A Q/A/Z Q/A/]{C}) (78 occurrences in 3 subjects)

(b) gesture 9: S(Q/C/],fB Q/B/Z Q/B/#,t{C}) (74 occurrences in 4 subjects)

Fig. 5. The two most occurring gestures for zooming (notation in gray is not depicted):
(a) relaxed/cupped hands to pointing hands that move apart for zooming out and
move together for zooming in, relaxing and retracting the hands would release and (b)
relaxed/cupped hands to stretched hands that move apart for zooming out and move
together for zooming in while relaxing and retracting the hands would release

We identified 14 pan and 13 zoom gestures which we reduced to 3 distinct pan
and 6 distinct zoom gestures by generalizing. For panning, two gestures (IDs 2
and 3, see Figure 4) were observed to occur significantly (p = .01) more often
and in most users. In gesture 2 the hand changes from relaxed to stretched at
the beginning of the movement and back to relaxed at its end as if to press a
button. In gesture 3 the hand closes with an extended index finger and back to
a relaxed hand. Gestures 1 and 3 are similar but then the whole hand is closed.

For the zoom task, we observed a similar although less pronounced (p = .07)
distinction; gestures 8 and 9 (see Figure 5) occur more for zooming than the other
4 observed gestures. These two gestures are, in fact, very similar still; differing in
the hand shape only like in the pan task. Gesture 8 grabs and releases the canvas
while gesture 9 will explicitly stretch the hand during the zoom movements. We
identified 3 gestures made with one hand (by 5 subjects) and 3 others that were
made with both hands (by 8 subjects). Subjects were consistent in their choice
for using either one or two hands; some participants used both gestures.
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3.3 Wrap-Up

The gestures that we observed differ mostly in the preparation (start) and re-
traction (end) phases of the gesture phrase [14]. We found that in the stroke
phase the movements can more or less be directly used as parameter changes
for panning and zooming; the hand shape during these movements does not
matter much. Our subjects explicitly marked the start and end of their gesture
by changing their hand shape from rest to a flat hand or pointing hand for
panning and two flat or pointing hands for zooming. Subjects remarked in a
post-test interview that their gesture choices were often based on their knowl-
edge of ‘mainstream’ gesture interfaces such as the Apple iPhone or that they
had mimicked movements that they remembered from science fiction movies such
as “Minority Report”3. We are unsure how this has influenced our results here
but it is clear that users readily accept such ‘predefined’ gesturing as a natural
form of interacting. In addition, our subjects consistently apply the same idio-
syncratic combinations of gesture and command with a great deal of similarity
between users. This leads us to believe that it is possible to construct a set of
gesture-commands for large display control that comes natural to the users.

4 Gestures to Issue Commands

Gesture interfaces will make use of a broader command set than just the two that
we explored in our Wizard of Oz investigation. Section 2 already introduced three
elementary gestures (point, select, deselect). Here we add three more gestures
(activate, deactivate, resize) that address our fourth state in this model. We
performed an investigation to discover which gestures are suited for these tasks.

4.1 Methodology

Three experts cannot think up a gesture set that twenty laymen can [15]. In order
to fully appreciate or dislike a gesture for issuing a command we argue that the
user needs to have experienced it in a working system. Getting subjective results
then becomes cost-ineffective as opposed to gathering such information from a
large user group online. We must rely on the extent to which these users can
imagine operating the large display in the manner that we show them; placing
an unknown bias on the results. This bias is expected to be minimal but that will
need to be proven by comparing the results to those from a working interface.

In an online investigation4 we asked our participants to rate gestures for each
of our 6 commands. Gestures were selected from literature but also from science
fiction movies and commercial gesture interfaces such as the Apple iPhone. In
total, we selected 24 gestures for the 6 commands mentioned above. The com-
mands were ordered in a predefined sequence because users would need to make
up their mind first, for example, about how they would point before they could
select. The gestures, then, were completely randomized per command.
3 http://www.imdb.com/title/tt0181689, last checked Sep. 2009.
4 http://fikkert.net/experiment.php, last checked Sep. 2009.

http://www.imdb.com/title/tt0181689
http://fikkert.net/experiment.php
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Fig. 6. AirTap [6]

Fig. 7. ReferencedPullPush from the movie Minority Report

Some examples of the gestures that we selected follow. For pointing (3 ges-
tures) we included RayCasting [16] in addition to two more indirect approaches.
For select (5 gestures) AirTap [6] and ThumbTrigger [17] were selected. Deselect
had 4 gestures including SelectOther where another object is selected to dese-
lect the current one (from MS Windows). Activate and deactivate were taken
together (8 gestures) so that gestures that activate mirror those that deactivate,
following [6]. We included AirTap and ThumbTrigger again but also added draw-
ing a triangular ‘play’ shape that is well-known from audiovisual equipment in
the household. For resize (4 gestures) we introduced moving two fingers apart
as with the Apple iPhone. Also, ReferencedPullPush, from the movie Minority
Report, showed the dominant hand serving as a reference for resizing with the
distance to the other hand defining the amount, see Figure 7.

Gestures were presented in a video clip showing both hand movements and the
response of the interface. The interface was an abstracted system that responded
solely through visual feedback. Before the participant filled out the questionnaire
we explained this interface and how it would respond. The video clips, see Figures
6 and 7, were shot in a mocked-up setting. Participants were asked how they
score gestures (on 7-point Likert-style scales) intuitiveness (‘1: very difficult’ –
‘7: very intuitive’), physical effort (‘1: little effort’ – ‘7: much effort’) required
and if they would gesture in this way (‘1: no way’ – ‘7: for certain’).

4.2 Results

99 subjects from four Western-European countries (The Netherlands, Belgium,
Germany and The United Kingdom) participated in this investigation. Parti-
cipants were on average 28 years old (ranging 20-60 years, σ = 8 years). Our
subjects needed roughly 25 minutes to complete the entire trial. In our subject
population, 22 subjects were female and 77 were male with 25 subjects who held
a Bachelor degree, 53 a Masters, 12 a PhD and 9 had no degree. Our subjects
were very familiar with (online) video clips in which gesture interfaces play a
role (μ = 5.0, σ = 1.7, with ‘1: unfamiliar (never seen one)’ – ‘7: very familiar
(regularly)’). They were proficient with the Apple iPhone (μ = 4.5, σ = 1.9) but
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Table 1. Description of our trials data (N = 2376)

intuitiveness physical effort would use

mean 4.44 3.60 3.89
std. deviation 1.701 1.626 1.811
variance 2.892 2.643 3.280
kurtosis -0.979 -0.769 -1.135
skewness -0.238 0.340 0.039

only moderately so with PDAs, smart phones and similar hand-helds (μ = 3.7,
σ = 1.6).

The results of our analyses for normality on the collected trials indicate that
we cannot assume a normal distribution of our data. A D’Agostino-Pearson K2

analysis gave K2 = 80.504 (p < .01) on intuitiveness, K2 = 85.119 (p < .01)
on physical effort and K2 = 68.474 (p < .01) on whether the participant would
use that gesture. This is, as is often the case in count-based data, caused by
a ceiling or floor effect. We applied the non-parametric alternative to ANOVA,
Kruskal-Wallis H, to assess if there is a significant difference between gestures
while pairs were compared with a Mann-Whitney U analysis. Our trials data are
further described in Table 1 where skewness and kurtosis are reported; the trials
data are mostly deformed due to kurtosis.

Point. We found significant differences between gestures for intuitiveness (χ2 =
106.098, p < .01), physical effort (χ2 = 61.827, p < .01) and whether the par-
ticipant would use this gesture (χ2 = 138.275, p < .01). Our Mann-Whitney U
analysis results show that there are significant differences between the three ges-
tures. RayCasting scored significantly higher on intuitiveness and on ‘would use’
than both other gestures. The difference was less pronounced regarding physi-
cal effort. Fourteen subjects commented that this is highly intuitive but that it
would be fatiguing in the long run. Five subjects wondered how to stop pointing
and proposed to stop when pointing off-screen.

Select. There was a significant difference between gestures for intuitiveness
(χ2 = 98.816, p < .01), physical effort (χ2 = 58.266, p < .01) and whether
the participant would use this gesture (χ2 = 80.725, p < .01). Mann-Whitney
U analyes show that AirTap significantly scores best on intuitiveness, physical
effort and ‘would use’. In addition, FistGrab (closing the hand to a fist) and
ThumbTrigger score significantly lower than Encircling (drawing a circle around
the target with the on-screen pointer) for physical effort. Six subjects commented
that they did not like the mouse-metaphor of AirTap while three subjects disliked
the gun-metaphor of ThumbTrigger.

Deselect. We found a significant difference between gestures for intuitiveness
(χ2 = 47.743, p < .01), physical effort (χ2 = 22.817, p < .01) and whether
the participant would use this gesture (χ2 = 51.914, p < .01). Mann-Whitney U
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analyes show that DropIt (opening the hand palm-down as if dropping something
on the floor) and SelectOther scored significantly better on intuitiveness (higher),
physical effort (lower) and ‘would use’ (higher) than both RetractToRest and
JerkyRetract where the hand retracted to rest or in a jerky way, respectively.
There was no significant score difference between DropIt and SelectOther on
these three topics. Twelve subjects indicated that they found selecting another
target very familiar from WindowsTM. One of these subjects commented that
although it is familiar, he would prefer ‘some’ other gesture.

Activate and Deactivate. There was a significant difference between gestures
for intuitiveness (χ2 = 140.976, p < .01), physical effort (χ2 = 121.518, p < .01)
and whether the participant would use this gesture (χ2 = 154.250, p < .01).
Mann-Whitney U analyes show that AirTap combined with an exit cross scored
significantly better on intuitiveness, physical effort and ‘would use’ than all other
proposed gestures. Overall, we can distinguish three groups of gestures: the best
gestures are AirTap and AirTap combined with the exit cross, the worst gestures
are drawing ‘play’ and ‘stop’ shapes and using (de)activation zones [6]. The
other gestures score in between with no significant differences. Eight subjects
commented that it was confusing to use the AirTap to both activate and select.

Resize. We found a significant difference between gestures for intuitiveness
(χ2 = 74.200, p < .01), physical effort (χ2 = 64.381, p < .01) and whether the
participant would use this gesture (χ2 = 64.117, p < .01). Mann-Whitney U
analyis results show no significant score difference between FingersApart and
HandsApart on intuitiveness and ‘would use’. In these two gestures either the
fingers of one hand or the two hands are moved apart. However, with respect to
physical effort, HandsApart scored significantly poorer (35%). ReferencedPull-
Push scored significantly poorer on intuitiveness, physical effort and ‘would use’
with respect to the other three gestures. Subjects often commented (19 subjects)
that FingersApart would be too hard to do on large displays were the larger scale
is an issue. Likewise, 9 subjects commented that both FingersApart and Hands-
Apart needed some way to start resizing: “needs clicking”. Only three subjects
mentioned the Apple iPhone as the source of these resizing gestures.

4.3 Wrap-Up

We gathered subjective ratings on 24 gestures for 6 interface commands from a
large population with a similar background in our online investigation. We found
significant preferences for a specific gesture to issue a command. Based on these
findings we can construct a gesture set to issue commands with gestures that come
naturally. Users expect a gesture-based interface to allow them to point directly
at a target using pixel-precise ray-casting. For selecting, AirTap mimics clicking a
mouse button very precisely even though no actual button can be pressed [6]. The
gesture preferred for deselecting also leans heavily on existing interfaces where an-
other target is selected to deselect the current target. The gesture used for selecting
was preferred to be used for activating and deactivating targets as well. Although
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some subjects indicated that they found it confusing to have the same gesture for
two tasks (AirTap for select and activate), we believe that this simplifies the inter-
face which is indicated by the strong preference for this gesture. This also follows
from the comments made by our subjects that they missed some way to ‘click’ for
the resize command. For resizing, our subjects found that moving their fingers or
hands apart was the most intuitive while some subjects wondered if moving two
fingers apart would scale sufficiently to large displays. Common remarks through-
out our study were how to start and stop gesturing, for example, for pointing. Like
we found in our Wizard of Oz investigation, it seems that a way should be found
to explicitly mark where a gesture begins and ends: when do we move to and from
the null-state (out-of-range)? This is perhaps more delicate than simply pointing
off-screen.

5 Discussion and Future Work

Interacting with physically large, digital surfaces through explicit command-
giving can be done through the hands gesturing. A gesture is, in some cases, more
suited or desired than other modalities such as touch or speech. In a Wizard of
Oz investigation we found that uninstructed users independently generate the
same gestures for a limited command set. The stroke phase in a gesture directly
changes a parameter (zoom or pan) and the gesture was explicitly started and
ended by alternating between a tensed and a relaxed hand respectively. Our
follow-up study showed that such agreement is also found in a large user group
for a broader and more complete command set. Moreover, similar commands, for
example, select and activate, should be issued by the same gesture to simplify the
interface as much as possible. Our results so far indicate that the participants
in both our investigations were influenced by existing interfaces such as MS
Windows and the Apple iPhone. Although biased to some extent, we feel that
this made these users more open-minded to new forms of interaction that we
aim to build. However, it will also have hindered them to look past existing
solutions and to imagine what it really would be like to control an interface such
as the one we have suggested. That is why we did not expect the AirTap [6]
gesture to be the best candidate for the select and activate commands; users
will become fatigued easily, feeling like having ‘gorilla arms’ when they have to
extend their arms while interacting. Moreover, AirTap builds on the familiar
mouse with tangible feedback that is not there any more, something none of our
subjects mentioned. The gesture set we discovered so far will adequately control
large displays but it needs to be consolidated in a working environment where
users can truly experience the interaction.

We propose to continue this line of research with a third investigation in which
our previous results are validated. A working prototype allows users to experience
the gestures for our command set and thus provide us with a more in-depth
opinion. The interactions should last long enough for the user to appreciate the
gesture and to comment on it. We aim to select a focus group of participants from
our online investigation so that these users are already familiar with both the
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gestures and how to issue commands. Using a pair of data gloves and a position
tracking system we can detect both hand locations and hand shapes. The whole
gesture set from our online investigation will be included to adequately validate
our earlier findings. The interface needs be more elaborate than the map or
abstracted applications that we used previously so that users will repeatedly
issue commands through gesturing. We propose a list of search-tasks through a
collection of photos where information from multiple photos needs to be cross-
referenced. For example, we envision a virtual tourist application where a visitor
of our university will have to look for and select landmarks on the university
and to couple them to the university map.

It is surprising in some way to discover that the familiarity of the mouse has
such a strong impact on our findings. We readily accept that these results would
be very different when consulting a user group that does not have this type of
experience, from a different culture or even from another social group. However,
the standard Windows-Icon-Mouse-Pointer paradigm has, over the past decades,
indoctrinated most users of the systems that we aim to control. In that respect,
we might even argue that the author of this work was born after the invention
of the mouse and that he, like many other users of large display systems, grew
up with this input device. We feel that the mouse has become such a strong
metaphor that, even though a natural interface might be defined otherwise [1],
it has by now become an everyday metaphor that drives the formation of a
gesture set for explicit command-giving through hand gestures.
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Abstract. This paper proposes a gesture-based approach to user in-
terface sound design, which utilises projections of body movements in
sounds as meaningful attributions. The approach is founded on embod-
ied conceptualisation of human cognition and it is justified through a
literature review on the subject of interpersonal action understanding.
According to the resulting hypothesis, stereotypical gestural cues, which
correlate with, e.g., a certain communicative intention, represent specific
non-linguistic meanings. Based on this theoretical framework, a model
of a process is also outlined where stereotypical gestural cues are imple-
mented in sound design.

Keywords: gestures, user interfaces, sound design, semantics.

1 Introduction

Sound-based communication within different kinds of media has a long tradition.
Sound design practices for radio-plays from as early as the 1920s have defined the
basis for the communicative use of sound effects which is still relevant in today’s
film and video game sound design [1]. An essential part of the craftsmanship
of film sound designers has concerned the creation of sound effects that reflect
mental states of the story’s characters. The appropriate door knock for film
narration, for example, can be urging, gentle or angry, depending on the purpose
of that door knock and the feelings and intentions of the person who is knocking.
Such focus on agency behind sounds is frequently utilised in film sound design.
It exploits the perceptual bias towards understanding the human involvement
(i.e., intentionality) in the sound-causing action [2]. But when it comes to the
sound design for human-computer interaction (HCI), such interpersonal focus
on interpretation is rarely utilised in a systematic manner. This paper focuses
on this agency-orientated perspective.

Due to its history, the HCI field has its roots in information theory [3] and
”system-centred” design [4]. Compared to filmmaking tradition, functions of user
interface (UI) sounds are more easily conceived in terms of information process-
ing and transmission between machine and user than in terms of interpersonal
communication. Such a perspective is well exemplified in the design/research
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paradigm of ”earcons” [6], which usually refer to abstract user interface sounds
with highly arbitrary meanings. It has adopted a linguistically orientated view
of semantics which usually sees the semantic content as symbolic units of in-
formation essentially separable from its form of expression. The risk of such an
approach is that design can become detached from meaningful experiences that
get coupled with sounds in the interaction. It should be obvious that the role of
sound cannot be as a mere carrier of symbolic information. Indeed, reflecting the
ongoing shift towards user-centred design [5], contemporary trends in HCI sound
research have preferred to talk about sonic interaction design thus emphasising
the coupling of sound and its meanings with interaction [7].

The word gesture is used here to represent any bodily act that – observable
in interaction – operates as a vehicle for interpersonal communication. Such a
perspective is not restricted to hand movements, but takes all non-verbal forms
of body-related communication into account. In social interaction, we express
our mental states with bodily actions which can be either directly perceivable
(like in hand/facial gestures or in vocal prosody), and/or indirectly perceivable
as reflections of body movements (e.g., in sounds of objects which are acted on).
Communication with gestures is primordial [8] and often unconscious for us.
The basis for gestural communication – the physical constitution of the human
body and our ways to schematise it – is universal. Gestural communication has
also been suggested to have a strong phylogenetic background which precedes
verbal communication [8]. As Marc Leman has put it: ”Gestures form the basis
of mutual adaptive behavioral resonances that create shared attention and are
responsible for the feeling of being unified with other people” [2].

By suggesting the utilisation of gestural attributions (projections of motor-
activity/body movement) as semantics in UI sound design, this paper emphasises
bodily mediated action understanding and the role of action-relevant gestural
cues in sound as constituents of meaning-creation based on a kinaesthesic foun-
dation. In the scope of interaction design, such tacit ”sensibility for movement”
also accounts for a ”sensibility for responses to movement” [9]. We thus stress
the close engagement of interaction and meaning-creation already acknowledged
within, for example, the ecological view [10] of perception. Gestural attributions,
unlike linguistic ones, are not detached from the direct sensory-motor basis of
social interaction. According to the embodied approach to human cognition [11],
the human mind is coupled with our environment. That coupling with the en-
vironment has emerged in the course of the experiential history of using our
bodies for interacting with it. Understanding is thus inseparable from the em-
bodied experiences of the physical world including – most relevantly to this study
– interactions with other people.

The aims of this paper are to promote an idea that gestural projections of
body movement attributed to sounds could be used as semantics for UI sound
design, and to formulate this idea into a justifiable and testable hypothesis. In
addition, the aim is to outline a model of the process in which gestural cues are
implemented in sound design.
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2 Embodied Basis of Understanding Gestures

In the phylogenesis of social mammals, such as humans and non-human pri-
mates, it has proved to be beneficial – maybe even essential for survival – to
understand the actions of others [12]. Surely, without such an ability, the social
and cultural development of humans would have been impossible. In this sec-
tion we discuss the embodied basis of this attunement to interpersonal relations,
which involves shared body-related constituents. First, the neurological founda-
tion of interpersonal action understanding is reviewed, which is then applied to
the concept of body-schema and empathetic involvement in perception. Lastly,
interpersonal action understanding is viewed in terms of the Brunswikian lens
model.

2.1 The Human Mirror-Neuron Mechanism

Mirror neurons are a particular class of premotor neurons that discharge both
when one performs a specific goal-reaching action and when one observes other
individuals executing similar actions [12]. They were originally discovered in the
monkey premotor cortex, but there is also evidence for the existence of a similar
mirror system in humans [12].

Nowadays there exist two parallel and equally plausible hypotheses about the
functional role of mirror neurons. Firstly, they mediate bodily imitation and sec-
ondly, they are related to action understanding [12]. The motor representation
encoded in mirror neurons thus reflects the understanding of observed action –
not object presentation. Via motor representation, mirror neurons transform sen-
sory information into knowledge that agrees with the motor repertoire/skills of
the observer [12]. In other words, the observer understands the performed ac-
tion as she could perform it herself. Action understanding thus involves embodied
“resonances” (or embodied simulation [13]) of the observed action.

Experiments have shown that even fragmentary clues about action presented
to the observer can trigger the specific response (motor representation) in mirror
neurons [12]. Therefore, the audio-visual features of the observed actions seem to
be fundamental only to the point where they allow action understanding. For ex-
ample, the mere sound of action seems to result in a response that matches the
responses for the same action observed or executed [14]. The encoding of action in
the mirror system thus seems to be highly multimodal in nature. These above as-
pects underline thepossible role ofmirror neurons in contributing schematic gestalt
processes,which transforms sensory information (like hearing somebody laughing)
into preconceptual structures meaningful to the observer (understanding laughing
by means of mirrored motor representation of it). It is also suggested that such
action understanding operates as an enabling mechanism for empathy [13].

2.2 Interpersonal Body-Schematic Transfer

The concept of body-schema refers to a tacit understanding of one’s own body in-
the-world. As suggested in Phenomenology of Perception by Merleau-Ponty [15],
humans possess such specific schemata of our body in relation to embodied space,
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i.e., space in the environmental setting of our habitual actions. It is reasonable
to assume that such body-schemata (or kinaesthetic image schemata [16]) are
based on recurrent sensory-motor experiences of bodily interactions with the
world.

According to Merleau-Ponty [15], body-schema has a crucial function in the
perception of other individuals as human-beings. That function is related to
body-schematic transfer where the movements of other individuals are perceived
as the movements that the observer could imagine executing by her own action
repertoire. Therefore the perception of body movements is based on the per-
ceiver’s embodied knowledge of body-schema. This theoretical idea is very much
in line with the already discussed function of mirror neurons in action under-
standing. It is thus plausible that the mirror system is a part of the realisation
of body-schematic transfer [17].

Jan Almäng [17] has proposed that, at its basic level, body-schematic transfer
has at least four characteristic features, which are:

1. The perceiver observes the other as having a body-schema.
2. The perceiver can perceive the action by means of body-schema even when

she is unable, e.g. due to its complexity, to perform it herself. Thus, it is
sufficient that her body-schema can ”read” the movement.

3. Physical similarity between the perceived and perceiver is not required for an
apprehension of the movements by body-schematic transfer. Thus, it is suffi-
cient if there appear to be kinematic similarities between observed movement
and body-schematic knowledge of how to produce such movement.1

4. Body-schematic transfer of movements by itself does not imply that the
intentionality of the other person is communicated to the perceiver. This is
because understanding the mental states of someone, on the basis of physical
movement, requires contextual awareness.

Because human actions arise from intentions, emotions and other affective de-
terminants which are linked to the context, we must situate movements in the
interaction where it takes place. This broader aspect of body-schematic transfer
is discussed in the following section.

2.3 Empathetic Involvement in Perception

We normally perceive other people as engaged in situations that provide mean-
ingful references to their actions. Hence, the crucial element in the Merleau-
Pontyian view of understanding others (by means of body-schematic transfer)
lies in the ability to automatically re-center our perception of the situation to
the perspective of the other. Therefore, together with tacit perception of a per-
son’s body movements, the observer re-centers her own primordial perception
of the surrounding environment – including its action affordances – to become

1 This feature is evident in watching animated cartoons, where even objects can indi-
cate such anthropomorphism in movements that they can be perceived by means of
body-schematic transfer.
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a perception for that other person [17,13]. In this way we can understand mo-
tivations and other reflections of intentionality in actions, and we are also able
to anticipate possible actions of another person – as if they were actions of our
own. Such an attunement to another individual, not only to body movements
but also to her intentionality and action affordances, seems to be such a natural
part of our interpersonal awareness that it requires no conscious reasoning.

To sum up the discussion on the embodied understanding of movements, we
can assume that it is based on two parallel aspects in perception. The first aspect
is related to the mimetic involvement in the mirror neuron system, by which per-
ceived movement is understood in terms of body-schema and kinaesthesia. Such
corporeal resonances can range from simple synchronisations to more specific
motor mimetic attuning. The second aspect is related to empathetic involve-
ment, in which the body-schematic ”resonances” (of the first aspect) are associ-
ated with the perspective of the other individual engaged in interaction. At the
lower level, this refers to mere action-based involvement with the other’s move-
ments and thus primordial apprehension of corporeal intentionality (i.e., motor
intentionality) [2], whereas ”genuine” empathy usually refers to more participa-
tive, emotional and inferential involvement with the perspective of the other. A
similar distinction, between the degrees of motor-system involvement and the de-
grees of empathetic involvement, has also been suggested in the theory of bodily
mediated experiences in music [2].

2.4 Encoding and Decoding of Gestural Cues

We finally take a look at the Brunswikian lens model scheme initially proposed
as a framework for understanding how prosodic cues are encoded in a vocal
expression of emotion [18]. Based on the original lens model [19], it describes the
processes of various distal cues being situationally determined in articulation,
indicating affective states of a person, and how these acoustically transmitted
patterns (as proximal cues) play a role in the attribution of an affective state in
perception. The lens model simultaneously considers encoding (i.e., contextual
determination of cues) and decoding (i.e., contextual interpretation of cues). It
therefore gives a neat overview of communication, where body is acknowledged
as a mediator. The model, adapted for gestural communication, is illustrated in
Figure 1.

In the encoding of cues, Scherer has emphasised the central role of push and
pull effects [18]. Therefore intentional and affective states of a subject are situ-
ationally characterised in gestural articulation by interaction between 1) psy-
chobiological processes, intrinsically related to mental states, that provide a
natural influence on body movements (push effects) and 2) interactional pro-
cesses, which involve voluntary control over body movements and are related to
external conditions (pull effects). Conditions of interaction thus often requires a
certain strategic display (or hiding) of intentions and other mental states.

The dominance of push effects is most evident in so-called affect bursts, which
are mostly a result of physiological arousal. Push effects also have significant role
in spontaneous expressions of, for example, pain or joy, but they also influence
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Fig. 1. The Brunswikian lens model with push and pull effects [18]

even the most premeditated acts of communication. [18] At the other end of the
continuum, the dominance of pull effects is evident in expressions of an intended
purpose. John R. Searle has suggested three conditions of satisfaction that fuel
speech acts [20], but they should also apply to any acts which bear the motivation
to be understood in interaction. As determinants of gestural articulation they are
1) articulation intention; an intention to appropriately produce a certain kind of
gesture, 2) meaning intention; an intention to mean something with the gesture,
and 3) communicative intention; an intention to be understood in a certain way
– referring to the type of communicative intent such as asking. Communicative
intention essentially imposes its condition of satisfaction on the conditions of
satisfaction of both meaning something and producing a gesture accordingly.

According to the lens model, distal cues cannot be directly perceived. But on
the basis of body-schematic transfer, the proximal cues can be perceived in terms
of distal gestural movements. Proximal cues are probabilistic, partly redundant
and contribute to action understanding in an additive fashion [21]. Gestural
action understanding, in turn, provides cues for attributing intentionality [2].
Gestural attributions are thus contextually constructed in interaction between
primordial, ecologically developed gestalts and inference based on social habits
or cultural norms. These two processes can be seen as perceptual counterparts
to push and pull effects, in which proximal percepts of gestural cues resonate
with both body-schematic and conventional backgrounds.
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3 Gestural Attributions in Sound Design

This section concentrates the discussion around a gesture-based approach to UI
sound design – the principle of using sounds as the means of projecting gesturally
attributable cues of movement. The basic assumption in such an approach is that
human capacity for interpersonal awareness allows body movements of another
individual to be understood in terms of the body movements of the perceiver.
This seems to apply also in situations where the presented movement is partial or,
due to its kinematic similarities with body-schematic reference, merely implies
bodily movement. As already discussed earlier in the paper, action understanding
is not dependent on which sensory modality is utilised in providing clues of
action. Therefore the premise is that sounds can be used for presentation of
action-related features.

The lens model perspective (see 2.4) demonstrates how perceptual action un-
derstanding is an emerging resonance of the mixture of several parallel cues
encoded by the same gesture. In the context of HCI sound design, the strength
of the lens model is that it outlines successful communication by means of prob-
abilistic, multiple and redundant cues that allow discarding non-relevant cues
for the task. Due to technical or aesthetic reasons, the designer must often con-
form to a selected set of acoustic cues in attributing intended characteristics
to UI-sounds. Limitations should not undermine the utilisation of gestures, as
there should be plenty of suitable cue combinations which compensate for the
discarded ones. Indeed, it has been found that even simple acoustic cues can com-
municate the emotions of a musical performer or a speaker (with a general lack
of cue interactions) [21]. As interaction is multimodal, the action understanding
is ultimately based on the contextual whole, in which the sound instance and its
cues become perceptually fused with the other aspects of interaction [22].

3.1 Gestural Articulations Projected in Sounds

From the perspective of the observer/user, gestural projections of sound re-
fer to kinaesthetic imagery of body movement, which arise during the listen-
ing experience. The contextual creation of such gestural imagery is based on
body-schematic resonances of motor-mimetic involvement [23] in listening. It is
easiest to assume that gestural imagery is perceived in sounds that are in some
way caused by bodily excitation, hence implying sound-producing gestures. But
regardless of the type of sound production, motor-mimetic involvement applies
to the perception of music, or any sound, as long as it is able to imply physical
movement [23,2]. Thus, gestural imagery can even be attributed to abstract and
artificially produced sounds.

From the sound designer’s perspective, communication with gestural projec-
tions means defining a contextually appropriate gesture for the communicative
purpose, and then articulating and implementing it in design. Gestural articu-
lation can be a vocal act, musical expression or any physical action that itself
produces, or allows its features to be transformed into, acoustic resonances. As
discussed in 2.4, the articulation is bound up with the situation. When a gesture
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is articulated spontaneously, while being immersed in interaction, articulation is
not a subjective interpretation so much as an experience as articulated. A sound,
caused or modulated by gestural articulation consequently conveys acoustic cues
of corporeal intentionality involved in the physical articulation.

The basic principle of using gestures as part of sound production in HCI is
not new, although the idea has usually been utilised in producing immediate
environmental audio feedback on the basis of the user’s gestures (e.g. [24]) –
not in exploiting gestures as interpersonal communication. It can be argued that
traditional film sound design practices have long acknowledged the importance
of gestural articulation in creating sound effects. One prominent example of this
is a tradition called foley art [1]. Despite all the sophisticated audio technology
available today, foley art still favours manual ways of producing sounds (in real-
time). As noted above, gestural communication also refers to acting on material
objects. This is exactly the case with foley art, in which the aim is to express
through the sounds of material objects and provide ”added value” to the narra-
tive whole. We see that direct bodily involvement during sound creation – often
performed concurrently with the related visual narration – enables the intention-
ality of a performer to be communicated via gestural projection. As illustrated
in the introductory section of this paper, even simple sounds like door knocks
can have much variety both in their gesturally determined qualities and in how
these qualities can affect the contextual interpretations (see also [25]).

3.2 Utilising Stereotypical Gestural Cues in Sound Design

When treating gestural attributions as semantics, the sound designer can ap-
proach them from at least two directions: She can use the gesture as a starting
point (thus emphasising distal cues), also accounting for the situated articula-
tion and motivation of the gesture. Or she can focus on gesture-specific acoustic
characteristics (thus emphasising proximal cues), but only if she has sufficient
knowledge about the acoustic correlates of gesture-related understanding. Thus
we regard it as easier for the designer to start with communicationally appropri-
ate gestural articulation as the means to acquire and study gestural cues, which
in turn can be utilised in sound production. In this way, semantics is always
considered as being closely linked to the context.

In order to use gestural semantics systematically, one needs a way to cate-
gorise different types of meanings, i.e., gestural patterns that become contextu-
ally meaningful. In order to take advantage of the non-linguistic characteristics
of gestures, we are especially interested in discovering stereotypical gestural cues.
They reflect embodied meanings of a specific type of recurrently experienced ges-
ture and resonate with primordial gestalts for interpersonal understanding and
communication. Stereotypical cues are thus a type of gesturally perceived cues
that should communicate a specific meaning robustly, without being too strongly
dependent on cultural constraints. They differ from ”weak cues” (like indications
of direction or force), which are extremely dependent on context. They also dif-
fer from ”coded cues”, which communicate robustly, but are only meaningful
because of coding or convention.
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But how can the sound designer find gestures that convey such stereotypical
meanings? We suggest using the communicative intention of gesture as a cate-
gory of semantics. The assumption is that context-situated articulation – with
specific intention to communicate – results in stereotypical physical cues of that
intention as an outcome of push and pull effects. There is evidence, for example,
that prosodically realised acoustic patterns specific to communicative intention
exist [26,27]. Arguably, in infant-directed speech, such intention-specific prosody
(e.g., for alerting or prohibiting) functions as the first regular semantic corre-
spondence to the infant, clearly preceding any linguistically related functions of
prosody [26]. Communicative intention of gestural expression thus appears to
serve a fundamental and important prelinguistic function.

Prosodic patterns represent a subset of gestural patterns as they are caused by
”phonetic gestures”; motor movements of the phonatory apparatus, vocal tract
and respiration. Indeed, there are two reasons why prosody of vocal acts promises
to be a very important source for gestural cues being utilised in sound design.
Firstly, the evolution of the vocal apparatus is related to human communication
[26]. Secondly, in prosody, gestural cues are directly realised as acoustic cues
which are familiar and ecologically valid to us. Of course, stereotypical cues –
specific in communicating different emotions or interpersonal attitudes – exist
in other kinds of gestural expressions as well [28]. But in order to be encoded
acoustically, non-vocal gestures need to be sonified. In everyday interactions,
such sonification is a natural outcome of material resonances of motor excitation
when objects and materials are acted on. However, by using physical models
(e.g. [24]), the sounds of various material interactions can also be synthesised on
the basis of, e.g., kinematic parameters.

Figure 2 specifies the general phases of modelling, performing, utilising and
evaluating in the process of implementing gestural cues in sound design. In the
first phase, the need/purpose of an UI sound element is acknowledged on the
basis of the designer’s model of application-user interaction. Hence the commu-
nicative functions for UI sounds can be determined. The modelling of appropri-
ate gestural action requires mental exploration of interaction (see the discussion
about action models in [22]). If the designer puts herself into the dialogue be-
tween user and machine, she is able to conceive her role as a person who is
communicating with the user. The designer can thus imagine participating in
the interaction, which in reality occurs via the mediation of the machine in
use. From that perspective, she can mentally explore the patterns of contex-
tual application use and – whenever sonic feedback is required – discover ges-
tural patterns that would feel contextually appropriate for the communicative
need. The communicative intention of the modelled gesture thus conforms to the
communicative function of the propositional UI sound.

In the performing phase, the specified gesture is articulated. In order to
achieve the spontaneity in articulation, the gesture should be performed while
being immersed in interaction. To enable such immersion, a suitable scenario can
be used providing the situational flow of interaction. This can be done, for ex-
ample, in terms of metaphorical person-to-person interaction (see example cases



266 K. Tuuri

Modelling the interaction:
•

•

Modelling the type of gesture:
•

Articulation of a gesture:
•

•

Recording of a gesture:
•

•

Implementing gestural cues in sound production:
•

•

MODELLING 

PERFORMING 

UTILISING 

EVALUATING 

Evaluating communicative attributes of final sounds in their UI context

Fig. 2. The process of implementing gestural cues in sound design

in [22,27]). The articulation of a gesture needs to be recorded, either as a sound
recording (of sonic resonances of action) or as a recording of selected kinematic
parameters (by motion capture).

The utilisation of recorded gesture in sound production can be based on either
”foleyish” direct usage of recorded sound, or – in a more analytical manner –
parameterised usage of gestural cues. Parameters can be acquired, for example,
by extracting selected acoustic features from sound recording (see example cases
in [27,22]), or by utilising recorded kinematic parameters of gestural articula-
tion. Parameterised gestural cues can be implemented in sounds, for example, as
parameters for sound synthesis or sound manipulation. Alternatively they can
be used indirectly as structural ideas in sound design and production. The last
phase in the process is evaluation, where the communicative attributes of the
final UI sounds are contextually tested. When required, the sound designer can
iterate and re-evaluate the process starting from any of the previous phases.

4 Conclusions

We can now conclude this paper in the form of a hypothesis about using gestural
projections of body movement as semantics in UI sound design. The resulting
hypothesis includes the following assumptions:
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– Sound design can be founded on theory which emphasises embodied cogni-
tion and interpersonal action understanding.

– By exploiting the primordial capacity for interpersonal action understanding
in humans, sound design can utilise stereotypical, gesturally realised cues of
social interaction, which represent non-linguistic categories of meaning.

– On the basis of the theoretical framework presented, sound design can be
outlined as a process which is explicated into distinct design phases where
action-relevant cues are determined in terms of interaction and gestural
articulation.

– The approach presented results in ecologically valid semantics which should
be communicated robustly and require less learning than semantic attribu-
tions of linguistically orientated design schemes. The ongoing research, based
on the theoretical framework presented, has supported this assumption [29].

The gesture-based perspective on sound design provides an important focus on
performative aspects of sound design (i.e., direct involvement with the sound
creation), and bodily engagement with sonic communication (both in sound de-
sign and contextual perception). These aspects merit more explicit focus within
sound design research, although they are most likely tacitly acknowledged by
many professional sound designers. A linguistically orientated paradigm often
considers semantics as ”absolute”. Such a perspective easily dismisses the com-
municational potential that even a simple feedback sound can have when it is
designed as physical activity – and for physical activity.

Acknowledgments. This work is funded by Finnish Funding Agency for Tech-
nology and Innovation, and the following partners: GE Healthcare Finland Ltd.,
Suunto Ltd., Sandvik Mining and Construction Ltd. and Bronto Skylift Ltd.

References

1. Mott, R.L.: Sound effects: Radio, TV and Film. Focal Press, Boston (1990)
2. Leman, M.: Embodied Music Cognition and Mediation Technology. MIT Press,

Cambridge (2008)
3. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The

University of Illinois Press, Urbana (1949)
4. Czaja, S.J.: Systems design and evaluation. In: Salvendy, G. (ed.) Handbook of

human factors and ergonomics, 2nd edn., pp. 17–40. Wiley, New York (1997)
5. Bannon, L.J.: A human-centred perspective on interaction design. In: Pirhonen,
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Abstract. In this paper we investigate whether finger gesture input is
a suitable input method, especially for older users (60+) with respect to
age-related changes in sensory, cognitive and motor abilities. We present
a study in which we compare a group of older users to a younger user
group on a set of 42 different finger gestures on measures of speed and
accuracy. The size and the complexity of the gestures varied systemati-
cally in order to find out how these factors interact with age on gesture
performance. The results showed that older users are a little slower, but
not necessarily less accurate than younger users, even on smaller screen
sizes, and across different levels of gesture complexity. This indicates
that gesture-based interaction could be a suitable input method for older
adults. At least not a hindrance - maybe even a help.

Keywords: Gestural interfaces, aging psychology, human factors.

1 Introduction

Recent years have seen the dissemination of gestural interface technology in
mass consumer products, pioneered most notably by products such as the Apple
iPhone, or the Nintendo Wii video game console. Since then, manufactures of
consumer electronics have included gesture control elements in a whole range of
mobile electronic devices, such as laptops, cell phones, PDAs or digital cameras.
While these interfaces are generally considered to provide a very direct, natural
and intuitive way of interacting with a device, it remains unclear whether they
also meet the needs and match the capabilities of a user group that is grow-
ing more and more important: the elderly. Demographic, structural and societal
changes in most industrialized countries are leading to a dramatic increase of the
percentage of elderly among the population. Even though there is not a unitary
concept of the elderly, we refer to older adults in the following as individuals aged
60 years and above. The interaction with technology often confronts elderly peo-
ple with particular problems, because devices are not designed to accommodate
their special needs.
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1.1 Problems of an Aging User Related to Technology

The normal aging process is typically accompanied by sensory, perceptual and
cognitive changes (see e.g. [1], for a detailed review), as well as a decline in motor
skills [2]. These changes take place not only at high ages, but rather gradually
across the whole life span [3], and they affect how elderly perceive and interact
with the world, including technology.

All too often, unfortunately, elderly users are facing serious problems when
trying to use technical devices. For instance, older users report problems related
to displays that are too small and difficult to see, buttons and characters that
are too small or crammed too closely together, oversupply of functions, non-
intuitive menu arrangements or unclear instructions how to find certain functions
and services [4]. Thus, while technology in principle could help to compensate
parts of their changing physical, social and cognitive resources and enhance their
quality of life, the elderly in many cases get frustrated by and disinterested in
too complicated technology.

1.2 Can Gesture Technology Facilitate Technology Use?

What can be done to improve this situation and grant the older adults a better
access to technology? In our view, there are different strategies that complement
each other to accomplish this goal, e.g. motivation of the older users to bridge
their initial disinclination towards technology, training older users with specific
adaptive training concepts, or build devices tailored to the older user’s abilities.
While the best results in alleviating the use of technology for elderly users are
surely achieved by a combination of these strategies, our research is centered
on the problem of interface design for the older user. Finding solutions to this
problem is a tightrope walk between two pitfalls: On one hand, if technology is
designed only with respect to the older users’ deficiencies, it runs the risk of stig-
matizing them and thus being hardly accepted by the older users. On the other
hand, following strictly a philosophy of “Universal Design”, “Design-for-All” or
“Inclusive Design” might not properly address the specific problems of the el-
derly, or lead to design compromises which are neither favored by the elderly
nor by younger generations. Solutions to this predicament could emanate from
new technologies, which, on one side, are sufficiently simple and intuitive to be
used by the elderly, and on the other side sufficiently efficient and aesthetically
pleasing to be used by a broader user community. Gesture based interaction, in
our view, might be such a candidate. It remains unclear, however, how these
technologies fit the needs and abilities of the elderly, and under which circum-
stances older adults might be able to effectively use them. Key questions that
have to be addressed in this respect are:

1. What are the requirements of gesture technologies regarding mo-
tor control and manual dexterity? Do they match the sensory and motor
control abilities of the older users? Under which boundary conditions could
a match be achieved?
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2. To what extent, or under which circumstances, is gesture techno-
logy intuitive for the older user? Is there a set of gestures which are
self-descriptive, easy to understand, easy to learn and easy to remember for
the older users?

3. Does gesture technology provide a benefit for the older users? Does
it compare to (or even out-perform) traditional input methods with respect
to usability metrics, like efficiency, effectiveness and satisfaction?

4. Is this technology accepted by older users?

1.3 The Pros and Cons of Gesture Technology

Gestures, in everyday human to human interaction, are a natural and pow-
erful tool of nonverbal communication and engulf everything from speech ac-
companying gesticulations to highly structured sign languages. In the context of
human-technology interaction, we define a gesture as “a coordinated and intended
movement of body parts to achieve communication. The information which it
contains is specified by the configuration of body parts, the speed and direction
of the movement and must be interpretable by its receiver”. By this definition,
we separate gesture input from simple key presses or mouse clicks where the
button press itself carries no information. Gestural interfaces are implemented
on a huge range of technical systems and classified roughly into 2D gestures,
operating through finger or hand movements on touchscreens or interactive sur-
faces, and 3D gestures, operating through free-form movements in space [5]. We
focus our research on mobile devices, as there exist already many devices on the
market that make use of 2D finger gesture input, and present the most accessibly
gesture technology for elderly at the moment.

Studies comparing direct input devices (without translation or gain, e.g.
touchscreen) with indirect input devices (e.g. mouse or trackball), with respect
to older users have shown a general benefit of direct input devices over indirect
ones (e.g.[6,7]). The direct nature of gesture input thus might facilitate inter-
action for older users. However, the literature on motor control of the aging
adult has documented a couple of observations which might put the suitability
of finger gesture input for elderly into question: Chaparro et al. [8] found that
in comparison to younger subjects (25-35), older adults (60-69) have a reduced
wrist flexion and extension by 12% and 14%, respectively. As gesture input de-
mands even more wrist flexibility than mouse input or simple button presses,
these results might become important when deciding whether and how gestural
technology can be a suitable input mechanism for the elderly. Other studies re-
port that older adults have less efficient perceptual feedback systems and lack
the force to produce very rapid movements [9], they make more submovements
than younger ones [10], and have difficulties with continuous movements or the
coordination of movements [2]. As gesture input usually demands relative precise
execution of a continuous movement pattern, these findings are important when
designing gesture interfaces for older users: they must be tolerant against im-
precise execution of gestures, they have to provide some obvious and immediate
feedback and avoid relying on fast and jerky movements.
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1.4 Aim of the Study

The aim of this study is to provide a user-centered approach towards gesture
technology, and targets especially the older users’ abilities. This study focuses
particularly on how older users meet the motor demands of finger gesture input.
In order to establish boundary conditions under which this technology works
for elderly, we devised an experiment to investigate how the available screen
space as well as the complexity of the gesture pattern influences performance
on a stationary touchscreen device. A younger and an older user group were
compared with respect to velocity and accuracy measures in an imitation task
of previously presented gesture patterns.

2 Methods

2.1 The Gesture Set

For the first experiment, we devised a set of 42 simple one-finger gestures. The
gesture set was developed along the following goals: Overall simplicity of the
gesture shapes, coverage of simple symbolic and geometric patterns which are
already in use in finger gesture applications, and systematization regarding the
complexity of the shape. The gesture set was inspired (among others) by Mi-
crosoft Application Gestures [11] and Apple’s Trackpad Gestures [12]. The com-
plexity of the gestures varies systematically according to the number of line
segments it contains: single-line, double-line or multi-line gestures (Figure 1).

2.2 Participants and Apparatus

In total 38 participants volunteered in this experiment. The younger participants
(9m, 9f), were 21-33 years old (mean 26 years; SD: 3.4 years), while the older
ones (9m, 9f) were aged between 60-71 years (mean 63 years; SD: 3.2 years). All
participants were right-handed, had normal or corrected-to-normal vision and
no pathological condition that diminished arm, hand or finger movements on
self-report. The participants were seated in front of a 15” touch screen (Eizo

Fig. 1. Set of finger gestures used in the experiment: single-line gestures (left), double-
lines gestures (middle) and multi-line gestures (right)
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Fig. 2. A) Experimental Setup. B) Example single line gesture path, with original data
(red dots), linear fit (dark blue line), and reference line (light green line). C) Example
circular gesture patterns: all older users collapsed.

L353T-C) which was mounted on a supporting rack at an oblique angle (30◦)
and placed on a desk. (Figure 2A). The finger movements on the screen were
sampled with a frequency of 50 Hz.

2.3 Procedure and Design

The task was to retrace visually presented gestures on the touch surface. The
gestures were depicted as arrows (cf. Figure 1) and presented centrally on the
screen at different sizes. Each gesture instruction was displayed for 1.5 seconds,
and afterwards an equally sized rectangular white square appeared on the screen
on which the gesture had to be retraced. The participants received no visual
feedback of their drawn trajectory in order to measure original patterns without
corrective movements. They were instructed to copy the presented gesture within
the boundaries of the drawing area as fast and accurate as possible. The task
was structured into nine blocks of 42 gestures with short breaks in between.
The experiment was conducted as a 2 (AGE) x 3 (SIZE) x 3 (COMPLEXITY)
factorial design. AGE varied as a between-subjects variable (younger vs. older),
while SIZE (small, medium, large) and COMPLEXITY (single line, double line,
multiple line) varied as within-subject variables. The three different sizes were
chosen so that the medium size equals the display size of an Apple iPhone, the
small size corresponded to 1/4 of this size, and the large one to four times that
size. That way, the smallest size was conceived as a lower bound for possible
gesture input, the medium size as a reference size for gesture input on modern
mobile devices, and the largest size as an example of stationary touch screen
applications. The number of lines making up the gesture was chosen as a simple
means to differentiate gesture complexity. Each of the 42 different gestures was
repeated 3 times per size, resulting in a total of 378 trials, organized in 9 blocks.
Within each block the size was held constant while the sequence of gestures was
randomized. The sequence of blocks was permuted across participants.
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2.4 Analysis

The performance of gesture execution was measured through a couple of dif-
ferent parameters: Errors (when the gesture was not retraced correctly) and
boundary violations (when the finger surpassed the designated drawing space)
provided measures of task fulfillment. The average velocity of gesture execution
was calculated between the first touch down and the last touch up event. Mea-
sures of gesture accuracy can be divided in parameters of form stability (e.g.
how accurate was the form of the gesture preserved), and directional stability.
These were measured differentially for linear and circular gestures. For linear
gestures, the measure of form stability was angular deviation from one or more
reference angles. For circular gestures, form stability was measured through the
eccentricity value of the best ellipse fit to the data (a value of 0 denotes a per-
fect circle, and increasing values denote increasing asymmetry of the ellipse).
Directional stability was measured as the average deviation from the best fitted
reference line. This was an orthogonal least squares linear fit (for each line seg-
ment) for all non-circular gestures, and a geometrically fitted ellipse otherwise.
The derived measures were linear deviation and ellipse deviation. All measures
of velocity, form- and directional stability were analyzed only on non-erroneous
gestures. For each dependent variable, a separate repeated measures analysis of
variance (ANOVA) was calculated, with the between-subjects factor AGE, and
the within-subjects factors SIZE and COMPLEXITY. For some analyses, the
assumption of sphericity was not met, and the degrees of freedom were adjusted
using the Greenhouse-Geisser estimate of sphericity.

3 Results

A summary of descriptive results can be found in tables 1 and 2. The separate
parameters will be discussed more closely in the following.

Errors and Boundary Violations. For both parameters, there were no sig-
nificant effects for age or complexity. The elderly performed 1.9 % more er-
rors than the younger group, but due to huge individual differences within each
group, no group effects could be observed. There was, however, a stable in-
fluence of size (=the available space to draw the gesture) on the amount of
errors [F (1.4, 48.5) = 12.94, p < .01] and boundary violations [F (1.26, 43.05) =
12.96, p < .01]: the larger the available space, the less frequent were errors ob-
served, and, naturally, the less frequent the boundaries of the gesture space were
crossed with the finger.

Average Velocity. The velocity of gesture execution was clearly influenced by
age: across all complexity levels and gesture sizes, the elderly performed consis-
tently slower than the younger users [F (1, 34) = 6.670, p = .014]. In addition,
there was a significant effect of size on gesture execution speed: the larger the
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Table 1. Comparison of the dependent variables according to AGE. Asterisks mark
significant main effects (** p < .01, * p < .05).

parameter younger users older users
M SD M SD

errors (%) 2,65 3,08 4,54 5,87
boundary violations (%) 4,50 6,00 5,00 5,79
average velocity (cm/s) 1,39 0,44 1,07 0,37 *
angular deviation (deg) 5,39 0,66 5,46 1,21
eccentricity 0,60 0,04 0,62 0,07
line deviation (mm) 0,69 0,15 0,68 0,14
ellipse deviation (mm) 0,50 0,14 0,53 0,23

Table 2. Comparison of the dependent variables according to different levels of SIZE
and COMPLEXITY. Asterisks mark significant main effects (** p < .01, * p < .05).

size: small medium large
M SD M SD M SD

errors (%) 6,09 7,19 3,30 5,18 1,39 2,77 **
boundary violations (%) 9,14 12,48 3,62 5,59 1,48 2,07 **
average velocity (cm/s) 0,64 0,26 1,14 0,38 1,90 0,60 **
angular deviation (deg) 6,53 1,09 5,02 1,03 3,93 0,85 **
eccentricity 0,65 0,06 0,61 0,06 0,57 0,07 **
line deviation (mm) 0,46 0,10 0,65 0,15 0,94 0,22 **
ellipse deviation (mm) 0,30 0,10 0,49 0,23 0,76 0,23 **

complexity: single double multi
M SD M SD M SD

errors (%) 3,27 4,82 3,72 4,76 3,79 4,48
boundary violations (%) 4,60 5,83 4,65 6,36 4,99 6,17
average velocity (cm/s) 1,29 0,46 1,30 0,43 1,09 0,34 **
angular deviation (deg) 3,42 0,66 6,43 1,25 5,62 1,60 **
eccentricity 0,61 0,06
line deviation (mm) 0,67 0,14 0,70 0,17 0,68 0,16
ellipse deviation (mm) 0,52 0,18

gesture that should be retraced, the faster it was performed [F (1.1, 37.9) =
340.3, p < .01]. Apart from the predicted slowing effect for age, we could observe
an interesting interaction of the factors size and age [F (1.1, 37.9) = 12.139, p <
.01]: even though younger and older users both increased their drawing speed
with larger sizes, the younger users could take more advantage of the largest
size.

Form Stability Measures. The form stability of gesture execution as mea-
sured by angular deviation was influenced by the size [F (2, 68) = 232.5, p < .01]
and complexity [F (1.64, 56.58) = 83.6, p < .01] of the gesture, but no significant
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differences due to age could be observed. Across all participants, the angular
deviation decreased with increasing gesture space, resulting in a more accu-
rate reproduction of the gesture pattern. The same observation could be made
for circular gestures: The larger the drawing space, the smaller the eccentric-
ity of the best ellipse fit to the gesture, resulting in a closer approximation of
a perfect circle [F (2, 68) = 60.55, p < .01]. For both form stability measures,
contrast analysis revealed a highly significant linear trend for the factor size
[Fangle(1, 34) = 454.27, p < .01; Fecc(1, 34) = 121.67, p < .01], and pairwise
comparisons (using Bonferroni correction) between the small, medium and large
gesture spaces showed that performance means differed significantly across all
comparisons. Comparing the angular deviation between the single, double and
multi-line gestures revealed that all three different complexity levels differed sig-
nificantly from one another, with the highest deviation values encountered at
double-line gestures. Taken together, these results indicate that the form sta-
bility of gestures was not influenced by age, but it was clearly facilitated with
larger screen sizes. How the complexity might have interacted with form stability
is discussed below.

Direction Stability Measures. For both circular and linear gestures, we found
a main effect of gesture size: with increasing gesture space, there were signifi-
cantly larger deviations from the best linear fit [F (1.4, 46.4) = 232.7, p < .01]
or ellipse fit [F (2, 68) = 155.54, p < .01] respectively. A polynomial contrast
revealed clear linear trends [Fellipse(1, 34) = 324.80, p < .01; Fline(1, 34) =
281.27, p < .01] and pairwise comparisons (Bonferroni corrected) showed that
all three size levels differed significantly from one another. The larger the ges-
ture movement itself, the larger was also the movement jitter. No main effect
of complexity could be found. Importantly, there was again no main effect of
age, meaning that across all gestures and sizes, older and younger users did not
differ in directional stability. Most interestingly, the measure of linear deviation
revealed an age x size interaction effect [F (1.4, 46.4) = 5.535, p = .015], with
significant differences between small and medium (p = .04) as well as small and
large (p = .01) gesture space conditions. While in the smallest gesture space the
younger users were more accurate, in the medium sized space both groups are
roughly equal, and in the largest gesture space the older users are more accu-
rate than the younger users. A significant three-way interaction between age,
complexity and size on this measure [F (4, 136) = 5.479, p = .001] further dif-
ferentiates the previous interaction. Contrast and pairwise comparisons analyses
showed that the accuracy advantage on small screen sizes for younger users was
independent of gesture complexity, but with bigger screen sizes, also the influence
of complexity became stronger. It can be seen that the accuracy advantage at
the largest screen size for the older users is modulated by complexity, such that
the more complex the gesture gets, the bigger the direction stability difference
between older and younger users.
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4 Discussion

4.1 How Do Gesture Space and Gesture Complexity Influence
Performance?

Across all participants of the study, it could be observed that the available
space given to retrace a gesture influenced strongly the way the gesture was
performed with respect to errors and boundary violations (cf. Table 2). The
effects on errors and boundary violations should not raise too much concern,
because first, the smallest screen size in this experiment was deliberately chosen
to provide a lower bound estimate, and second, the observed overshooting of the
gesture frame is most likely an artifact of our setup and cannot be generalized to
physically bounded screens.

The variation of gesture space had also an effect on the average velocity with
which the retracing was performed: The participants were about double as fast
for the medium sized gestures, and triple as fast for the large gestures as com-
pared to the smallest size. Thus, execution speed correlates highly with the
spatial extend of the gesture. From a psychological point of view this outcome
is in line with kinematic laws that describe basic principles of human motor
pattern generation. It reflects a principle referred to as “Gesetz der konstan-
ten Figurzeit” (Derwort, 1938, cited from [13]), which postulates that the time
needed to trace identical figures of different size is constant.

With regard to accuracy, we observe that the measures of form stability and
directional stability have been affected differentially by gesture size: with in-
creasing drawing space, the form stability increased, while directional stability
decreased. This seems surprising at a first glance, but can be explained in the
light of a speed-accuracy tradeoff: If the user, during gesture execution, detects
a deviation from the optimal path and readjusts the motor pattern, overshoots
and further readjustments are more likely at higher velocities and result in a
decreased directional stability. On the contrary, form stability is preserved bet-
ter with larger gestures. In the case of angular deviation, this becomes obvious
from the fact that the same small displacement of the finger can result in large
angular deviations if the reference gestures itself is small, but results in smaller
angular deviations if the reference gesture is comparably large.

The manipulation of gesture complexity as a variation of the number of lines
did not result in a systematic effect across our measurements. A decrease in
average velocity with increasing number of line segments is explained well by the
fact that users have to decelerate and accelerate again at each turning point of the
pattern. More interesting is the effect of gesture complexity on angular deviation:
the highest angular deviation was found for double-line gestures, followed by
multi-line gestures and single-line gestures. This pattern could be explained by
the geometric properties of the gestures that make up the groups: the double-
line gesture group consisted of many gestures which included an acute angle
(see Figure 1, the multi-line group included more rectangular gestures, while
the reference angles in the single-line group were only 90◦ or 45◦. It seems that
especially right-angled patterns can be replicated more accurate than patterns
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that include more arbitrary acute angles. Finally, the reason why we did not find
a systematic effect of gesture complexity might be due to the fact that the initial
division of single-line, double-line and multi-line gestures did not reflect the
actual difficulty of the gesture. It can be easily conceived that a circular gesture
poses a much higher demand on motor control than a single horizontal line, even
though these appeared in the same category. Our classification was a simple one-
dimensional classification approach, but the qualitative data we obtained hints
at a multi-dimensional account, including for example also curvature, symmetry,
direction, or familiarity of the gesture.

4.2 How Does Age Influence Gesture Performance?

The central question of this research, however, was whether there are any age-
related differences in gesture execution performance. Of particular interest was
whether and how age interacts with the screen size and gesture complexity vari-
ations. The results showed an influence of age on the execution speed, but not
on the accuracy of gesture performance. Bearing in mind the limitations of our
user and gesture samples, this suggests that elderly users have no more problems
than younger users in performing accurate gesture input, even on small screen
devices. In our gesture retracing task we found a slowing factor of 1.3, which
is at the lower end of reported efficiency drops in studies concerned with age
effects on input device performance. These studies quantify performance decline
by factors ranging from 1.3 to 3 over a range of input devices, including mouse,
trackball, trackpoint and touchpad [10,14,15].

In the present study, age differences were smallest (0.15 cm/s) for the smallest
screen size, and largest (0.58 cm/s) for the largest screen size. It thus seems to be
the case that the speed advantage found for younger users is mainly generated
by their increased velocity in the largest screen size. It is known from aging
psychology research that older adults prefer accuracy over speed (Salthouse,
1985, in [16]). Sülzenbrück et al. note that older people even favor accuracy
if they are instructed to perform as quickly as possible, which results in higher
accuracy at the cost of slowing for all tasks that exhibit a speed-accuracy tradeoff
[16]. In fact, this might be the reasons why there are no obvious drawbacks in
gesture accuracy for older adults in the present study.

Interestingly, in their comparison of age-related slowing effects across different
motor tasks, Sülzenbrück et al. found task contingent slowing effects, and even a
performance advantage of elderly users for the line-tracing task, which resembles
our gesture retracing task most closely [16]. The authors explain this observation
with its close relation to handwriting, in which, as has been shown previously,
older adults are stronger trained with. While their highly controlled line tracing
task was still of quite a different nature and this might account for the divergent
findings, their results are encouraging in two ways: First, if a large sample of older
adults (N=180) can outperform a younger group on a lane-tracing task which
is highly similar to performing an accurate gesture pattern on the touch screen
surface, then gestures as input paradigm might indeed be suitable for elderly
adults. Second, considering the fact that elderly have usually a high proficiency
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with handwriting, they might benefit from gesture patterns that are borrowed
from or similar to patterns used in cursive writing.

5 Summary and Outlook

We presented a study which was designed to provide first insights of how ef-
fectively and efficiently elderly users can produce finger gestures pattern on a
touchscreen. Of particular interest were the questions whether small screens im-
pede their interaction, and whether performance among the elderly drops as the
gesture patterns become more complex. Our results show no systematic influence
of age on gesture accuracy. Furthermore, no consistent interaction of complexity
or size with age could be observed. This means that even on small screens (e.g.
the size of current mobile phones and smart phones), older users do not fall
behind younger ones in terms of accuracy. In fact, the tendency of older users
to prefer accuracy over speed might prevent them from performing a gesture
too fast and negligent as was observed sometimes among younger users. These
results support previous findings that direct interaction, and in particular touch
screen interaction is beneficial to elderly users (e.g.[17]). However, we extend
existing literature by showing that not only a single touch, but also more com-
plex gestural patterns could be handled effectively by older users. With regard
to suitable gesture patterns for elderly, gestures similar to the ones we tested
should be feasibly for older adults. In addition, effects like the familiarity with
handwriting, or a general bias for right angles, along with curvature, direction
and symmetry effects, might influence gesture performance and should be ac-
counted for when designing simple 2D gesture commands for older users. We
further observed that older users are slower than younger users in performing
finger gesture input patterns. However, the slowing factor is still comparably
small with regard to other input technology comparisons, and, as accuracy is
not affected, this should not impede actual device usage.

The present results were obtained on a stationary touchscreen and are not
automatically generalizable to a handheld device. Therefore, a second experiment
is currently being conducted to investigate to which extend these results can
be replicated on a mobile device (iPod Touch), and extending this research by
investigating also multi-finger gestures and the effects of device posture.

Taken together, we present a user-centered approach to gesture technology,
asking not only what is feasible from a technical point of view, but also how
gesture technology should be designed to suit the needs and abilities of the
user, and in particular the older user. There are still many important questions
to be answered, including the semiotics of gestures and the acceptance of this
technology among elderly. However, by pursuing this line of research we hope to
contribute to the development of technology which is better suited to the older
users’ abilities, empowering them to actually make use of it and help them to
ease their daily routine.
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Abstract. The traditional framework in human-computer studies is based on a 
simple input-output model of interaction. In many cases, however, splitting 
interaction into input and output is not necessarily appropriate. Gestures work 
as a good example of a modality which is difficult or inappropriate to be 
conceptualised within the traditional input-output paradigm. In the search for a 
more appropriate interaction paradigm, gestures, as modality, have potential in 
working as a meta-modality, in terms of which all other modalities could be 
analysed. This paper proposes the use of gestures and gestural metaphors in a 
central role in interaction design, and presents a case study as an illustration of 
the point. 

Keywords: gesture, metaphor, human-computer interaction. 

1   Introduction 

In the discipline of human computer interaction (HCI), the conception of human 
cognition is deeply rooted in computer metaphor. The computer metaphor and the 
related Cartesian mind-body dualism have resulted in a fairly mechanical 
comprehension of the human being using a technical device. In that conception, our 
senses work as input devices, entering information from the environment into our 
central nervous system (analogous to the central processing unit, CPU, of a 
computer). Muscles, in turn, are seen as the output devices which work according to 
the neural signals generated in the central nervous system. 

The claim above can be argued to be an oversimplification of contemporary HCI 
studies. For sure, HCI scholars who follow the related research in, for example, 
cognitive psychology or philosophy, have more sophisticated ideas of a human being 
interacting with her environment. However, the current usages of certain terms in 
most  HCI literature indicate that the computational model of human cognition is still 
the dominating one in the field of HCI. For instance, the term modality in human-
computer studies usually refers to a communication channel. The challenge of 
interaction design is to utilise these communication channels with compatible 
technology.   

This approach reflects a model of human cognition which was already questioned 
several decades ago in attention studies. In it, each modality works independently of 
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each other [1]. When we, for instance, see something with our eyes, our hearing is – 
according to this model – a completely free resource to be used for something else. 
Even though this model has been falsified in various contexts a long time ago, its 
reflections can easily be seen in the usage of the term modality. For instance, only a 
few years ago, hands-free equipment for mobile phones was introduced as a solution 
to the problem of combining phone usage and driving a car. It is not far-fetched to 
interpret this idea as being based on a model in which the modalities employed in the 
usage of a phone (‘hearing’ as input modality, ‘talk’ as output modality) were 
independent of the modalities needed in the driving process. Even though our 
everyday experience as well as empirical studies [2] falsified this conception, many 
(including politicians) continue to believe in it. The model is easy to understand and 
adopt, thus all the more difficult to question. 

The great success of the computer metaphor of human cognition is quite 
understandable in human-computer studies. In the early days of HCI, the role of the 
human being in HCI was explicitly formulated as to be a fluent component of the 
whole consisting of a technical device and its user [3]. When a machine and its user 
were handled as a whole, it was practical to conceptualise their functions within the 
same conceptual framework. Input and output, memory, information processing and 
many other concepts, were equally used whether it was a question of a machine or a 
human being. 

Over time, the idea of user as a part of the system faded and new concepts were 
introduced. User centred design and user experience, among other new buzz-words, 
stress the subjective issues rather than measurable parameters of efficiency. The 
change indicates a clear paradigm shift in HCI. This paper continues the formulation 
of a new HCI paradigm by questioning the appropriateness of the computer metaphor 
and the related input-output conception of interaction. Gestures will be used as an 
illustrative example of a modality which is hard to conceptualise within a simple 
input-output framework. 

2   Background: A Case of Conflicting User-Interface Metaphors 

Some years ago, we carried out a research project about gaze-free interaction with a 
portable music player. The project resulted in two different versions (in Table 1 and 
Figure 2, referred to as v1 and v2), which had similar basic interaction principles (the 
design process and evaluations have been widely reported [4, 5, 6, 7]). That study was 
part of a pursuit of effective use of non-speech sounds in user-interfaces. We thus 
implemented a music player in a PDA, and decided to discover how it could be 
controlled without looking at the device. The rationale was the general need for 
learning to design human-computer interaction in mobile contexts, in which gaze is 
frequently engaged in other activities than in the use of a device. The potential of 
spatial non-speech sounds as a feedback modality was given special focus. The 
success was evaluated in user studies, in which the mobile context was simulated first 
with a stepper [4, 5] and later (v2) with an exercise bike [7]. In the evaluations, the 
volunteering participants were supposed to use the exercise device while listening to 
music from the application via headphones and following instructions (e.g., ‘next 
track’). The instructions were given by the researcher in written form, one at a time. 



 Gestures in Human-Computer Interaction – Just Another Modality? 283 

Thinking back to our study, it is easy to conclude that the conceptual framework 
for the design of the player was the typical input-output paradigm. Our first task was 
to define the input and output methods for interaction. Since the primary task was to 
study spatial non-speech sounds, we obviously decided to use them as output (i.e., 
feedback). We still needed to choose an input modality. It was also necessary for 
input to be performed without gaze, to be part of a gaze-free interaction system. We 
ended up using simple hand gestures: sweeps with a finger across the touch screen of 
the device. That was supposed to be a robust enough solution for mobile contexts; all 
you would need to know is roughly where the device is, and with your finger you 
would easily find the edges of the screen. 

A portable music player was a suitable application to study interaction for at least 
two reasons. First, the basic controls of a music player are few, meaning that the risk 
of confusion among functions is small. Second, a music player and its basic controls 
is such a strong convention in our culture that we could count on a certain level of 
common understanding about it. For instance, on the control panels of most music 
players, functions which are related to going backwards are on the left and going 
forward on the right. We called the adoption of these directions of a conventional 
control panel as a ‘metaphor’ (which in fact later resulted in questioning the way in 
which the term ‘metaphor’ is used in the context of user interface design, see [7]). The 
chosen directions in each basic function of the music players are listed in Table 1. 

Table 1. Basic functions and related gestures 

Function TouchPlayer GestureJukeBox 
Next track Sweep across screen left -> right Sweep across screen left -> right 
Previous track Sweep across screen right -> left Sweep across screen right -> left 
Play / Stop Single tap Double tap 
Volume up Sweep from bottom -> top of screen Circular gesture clockwise 
Volume down Sweep from top -> bottom of screen Circular gesture anti-clockwise 
Last track - Sweep left -> right + tap 
First track - Sweep right -> left + tap 

 
The interaction scenario with the application was as follows: The user of the player 
has the device hanging on the right hand side, fixed with a hook to the pocket seam of 
the trousers (Figure 1). She listens to the 
music via headphones, which are connected to 
the device. With the gestures listed in Table 1, 
she can browse the playlist, stop and play, as 
well as adjust the volume (some of the 
gestures are illustrated in Figure 2). In each 
function except volume adjustment, she hears 
a feedback sound as confirmation of a 
successful action. Each feedback sound was 
designed to illustrate the function it 
confirmed. 

Fig. 1. Fixing in trousers 
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Fig. 2. Directions of some gestures 

In the design of both gestures and the audio feedback, directions had a central role. 
As stated above, from the beginning, we talked about metaphors when referring to the 
cognitive link between a physical gesture or audio feedback, and the directions in a 
playlist. In fact, even the verbal expression of going backward or forward in a playlist, 
is clearly metaphorical itself. For instance, the directions could as well have been 
described in the vertical dimension (up and down in a playlist). Without going into the 
details of the design process, we will now discuss the direction-dilemma and the 
hypotheses that emerged. 

2.1   Is It Forward-Backward or Left-Right? 

The fundamental directions in control gestures were in the forward-backward 
dimension of the walking direction of the user. In other words, when the user wanted 
to browse the playlist forward (e.g., choose the next track in a playlist), she was 
supposed to make a sweep forward across the touch screen. To enable these 
directions, the device needed to be fixed to the side of the user. We soon found that if 
the cut of the trousers resulted in the device hanging merely in the front rather than at 
the side, the idea of the forward-backward dimension was more difficult to 
communicate. However, most of the participants in our evaluations used jeans, the cut 
of which was perfect for side fixing. There was another peculiar issue about the 
directions of sweeps: 2 out of 20 participants in two evaluations persistently made a 
sweep from front to back, when asked to go forward in a playlist (and vice versa). In 
other words, they conceptualised a hand gesture from front to back to signify 
‘forward’. In the post interview neither of them could argue for their behaviour. 
However, we later concluded that it must have been a difference in what they 
understood to be forward or backward. We as designers found it obvious that a 
gesture which moves from back to front denotes ‘forward’. The issue is that we were 
focusing on the hand; and indeed it went forward. However, if one focuses on the 
whole body, the setting is quite the contrary. While our body is always surrounded by 
some material, like air or water, we must ‘push’ that material backwards in order to 
get forward. The phenomenon is familiar in many means of moving: swimming, 

Next  Previous Volume up Volume down Volume up Volume down 

(v1) (v2)
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rowing, cross-country skiing, to name but a few. In other words: if we link the 
coordinates to the hand, moving a hand backwards means backward. If we, on he 
contrary, fix the coordinates to the whole body, moving the hand(s) backward  
denotes an impact forward. It has to be stressed, though, that the confusion of 
forward-backward gestures only concerned 10 percent of the participants of the 
evaluations. 

Physical directions were central in the design of feedback sounds as well. We 
argued that we used the ‘control panel metaphor’ in the design of non-speech 
feedback sounds. By this we meant that we had a typical control panel of any music 
player in mind – the order of push-buttons in particular. The position of each function 
was thus illustrated with the means available. Pitch change (e.g., forward: increasing 
pitch) was important in both player versions. Since the user was supposed to use 
headphones, we could use panning of sound as well: functions related to going 
backwards were from the left, while pointing forward was from the right hand side. 
We assumed that practically all potential users have a reasonable amount of 
experience of music players whose control panels follow this order. 

The evaluations which we carried out revealed some peculiar things. Since we 
were primarily interested in the effectiveness of the specific non-speech feedback 
sounds, we tried what would happen if different sounds relating to functions were 
suddenly transposed. For instance, suddenly sounds relating to forward functions 
decreased in pitch and could be heard from the left. What we found out was 
surprising; even if the participants in the evaluation knew that at some point of time 
the sounds would be changed (and they were asked to hold up their hand when they 
noticed the change), only one participant ever noticed the change. In the post-
interview, all argued that the feedback sounds were an essential part of the interaction. 
We concluded that the sounds were important but their design failed to illustrate the 
directions. 

What went wrong with the sound design, then? In the post-interview, the 
participants found them quite relevant. The sounds just did not communicate what 
they were supposed to communicate. This mystery made us consider the use of 
metaphors again. In the control gestures (or “input”), the gestures utilised the back-
front dimension. However, the sounds relied on the left-right dimension. We thus had 
two conflicting dimensional metaphors. Since metaphors are highly subjective 
elements of the human meaning creation process [8], it can be argued that when  
the user constructs her own dimensional metaphor on the basis of interaction with the 
application, she will need to choose between these conflicting dimensional cues. The 
fact that the participants in our evaluations did not utilise the dimension-related audio 
cues at all and that they used the gestures in an extremely consistent manner (even the 
two participants behaving exceptionally were consistent in the dimensions they 
adopted), leads to the conclusion that the dimensional metaphors related to gestures 
overrode the audio ones. 

3   The Peculiarity of Gestures as Interaction Modality 

The design example above and especially the related evaluation provoked more 
questions than answers. Was the observed difference between gestural and audio 
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metaphors a result of some fundamental difference between gestures and audio as 
modalities? Or was there some other difference than the orientation between the 
metaphors? 

Recent studies based on the notion of embodied cognition provide us with an 
interesting perspective on our dilemma. They also challenge the relevance of the 
traditional input-output paradigm of human-computer interaction. 

3.1   Thinking through Action and Acting by Thinking 

The shift from Cartesian mind-body dualism has led to different concepts about the 
nature of the human being and the relationship between a human being and the world. 
The embodied cognition model focuses on the central role of bodily experience in all 
our thinking. In particular, the claim that mental events activate a similar kind of 
neural activity as physical performance [9] opens up a new perspective for 
considering interaction. 

In our music player design case, interaction was conceptualised as a combination 
of input and output. However, were gestures just a way to enter information into the 
application? And, respectively, were the feedback sounds just output signals to be 
received by the user? It has been argued, that the perception of sound is an active 
process in our consciousness [10]. User-interface feedback sounds as output is in this 
view only one side of the coin. What, then, would a more appropriate 
conceptualisation be? 

Gestures are, in the common sense, an interaction modality which cannot be split 
into input and output. On the other hand, they are physically bound to bodily 
experience, which has been found to be a fundamental issue in the embodied 
cognition paradigm. In brief, it can be argued within the embodied cognition 
framework that gestures are both a means of interacting with our physical 
environment and of thinking. 

3.2   Gestures as a Meta-modality 

If the embodied cognition paradigm were to become the dominating framework for 
conceptualising interaction in the human-computer interaction community, gestures 
would assume a much more central role as a modality than they have done so far. For 
instance, in probably the most detailed analysis of interaction modalities ever done 
(Esprit Basic Research Action 7040, Amodeus project), physical gestures are referred 
to as ‘touch’ or ‘haptics’ in the analysis of output modalities [11] and ‘kinaesthetics’ 
in input [12]. However, they are only handled as representational or sensory 
modalities. 

Vision, as an interaction modality, has dominated the conceptualisation of human-
computer interaction from the very beginning of the discipline. By user-interface is 
usually meant the visual layouts on a VDU (visual display unit). When considering 
‘alternative’ interaction modalities, visuals have most often been used as a basis for 
conceptualising other modalities. For instance, in the design of audio or tactile signs, 
the general name for these signs was a modification of ‘icon’, referring to a visual 
element of a graphical user-interface; ear+icon=earcon [13], tactile+icon=tacton [14]. 
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In other words, we argue that visual modality has been the de facto meta-modality, in 
terms of which most of the interaction has been designed. 

Visual dominance is not a unique phenomenon in human-computer interaction; it is 
easy to observe that our culture is strongly visually biased. For example, in the design 
of buildings, drawings are of great importance, as well as computerised visual 
modelling. Acoustics, on the contrary, is rarely given much attention. 

If, for example, sounds have been conceptualised in terms of visuals, it appears that 
interaction elements of one modality can be used, at least metaphorically, as a basis 
for the design of interaction elements in another modality. If this holds, we argue that 
gestures would be a promising ‘meta-modality’. Gestures, while being inherently and 
effortlessly conceivable as embodied entities, could work as a starting point for the 
design of interaction, in which the widely acknowledged view of the bodily 
engagement of cognition would be utilised. 

4   Conclusions 

The design case above is an example of problems which could have been avoided by 
relying on gestures as a primary interaction modality. If the sounds had been designed 
in terms of gestures, the conflict between the related metaphors would have been 
avoided. Ideally, articulating the same within the contemporary metaphor conception 
framework, both gestures and audio should have been expressions of the same 
metaphor. 

From the point of view of metaphor theories, this challenges the way we 
communicate metaphors. In the Aristotelian view, metaphors were defined as figures 
of speech. The modern conceptualisation of metaphors, formulated by Lakoff and 
Johnson [8], provides us with means to analyse expressions in basically any form in 
terms of metaphors. Gestures thus have potential as meta-modality from the point of 
views of both embodied cognition and metaphor theories. 
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Abstract. This article deals with the posture reconstruction from
a mono view video of a signed utterance. Our method makes no use
of additional sensors or visual markers. The head and the two hands
are tracked by means of a particle filter. The elbows are detected as
convolution local maxima. A non linear filter is first used to remove the
outliers, then some criteria using French Sign Language phonology are
used to process the hand disambiguation. The posture reconstruction
is achieved by using inverse kinematics, using a Kalman smoothing
and the correlation between strong and week hand depth that can be
noticed in the signed utterances. The article ends with a quantitative
and qualitative evaluation of the reconstruction. We show how the
results could be used in the framework of automatic Sign Language
video processing.

Keywords: Sign Language, Posture Reconstruction, Inverse Kinematics,
Mono Vision.

1 Introduction

Recent technological progress in the field of video capture devices, powerful
hardware and new computation algorithms make it possible to develop new
tools dedicated to automatic Sign Language (SL) video processing. Such tools
can be used by linguists or in the framework of SL teaching. In a long run, they
could also be embedded in automatic SL translation tools.

The low level treatment of SL videos is so difficult to solve in the case of SL
utterances, that it is necessary to have a prior knowledge of SL. In this article,
we show how a SL model can be used in SL video processing for hand and head
tracking as well as in posture reconstruction.

We decided to focus on the treatment of real videos provided by SL teacher
or by other SL professionals. Consequently, the videos used in the frame of this
article make no use of additive markers to enhance the video processing and
there is no restriction of SL utterances (limitation of the set of sign, predefined
utterance structure). To be able to process the widest range of SL videos, our
algorithm processes mono view videos.

Our paper first deals with SL specificities and their consequences on automatic
SL video processing. Then, we briefly present other studies related to body

S. Kopp and I. Wachsmuth (Eds.): GW 2009, LNAI 5934, pp. 289–300, 2010.
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tracking and posture reconstruction. We finally expose our method and show
how SL specificities can be used for a more efficient posture reconstruction. The
paper ends with a quantitative and qualitative evaluation of our algorithm.

2 The Specificities of Sign Languages : Consequences for
Automatic SL Video Processing

French Sign Language (FSL) makes use of several parameters. Hands convey
information with their shapes, placements, configurations and movements. Non
manual features (facial expression, body orientation, eye gaze ...) also convey
an important part of the utterance meaning. As a consequence, the video pro-
cessing not only has to focus on 2D hand locations but must also consider other
body parts involved in the SL production (head, shoulders, elbows).

Whereas vocal languages only use the temporal dimension, SL also use the
space around the signer to build utterances [7]. An error in the sign depth estima-
tion can therefore lead to a message misinterpretation. The posture reconstruc-
tion algorithm must then be designed to estimate hand position in the image
plan as well as its depth (distance from the camera).

FSL uses the space located near the face. As a consequence, we can observe
a lot of occlusions of the signer’s head by the two hands. These occlusions will
have to be handled by the video processing algorithm. Moreover, a lot of signs
also involve hand crossings that make the hand tracking more complicated.

All the above mentioned features make the task of finding the signer’s posture
very hard in a context of mono-vision SL videos. However, it is possible to use
SL constraint and organization principle to achieve better results.

For instance, it is possible to make use of SL phonology. As already observed
by [2], there are some strong tendencies in sign formations of American Sign
Language (ASL). Batison distinguished three categories of signs:

Signs where both hands are moving (involving symmetries)
Signs where one hand moves but the two hands have the same configurations.
Signs where one hand moves and the two hands have different configurations.

In the two last sign categories, Battison noticed that one hand is active and that
the other one is passive. Our statistics (cf. 4.3) prove that these tendencies can
also be observed for FSL.

3 State of the Art in Posture Reconstruction

In automatic SL processing, some prior knowledge can be used during the track-
ing. Three cues are relevant for any gesture video processing method:

Anappearance model (body silhouette, body texture, skin/backgroundcolour)
A kinematic model of the body
A statistical knowledge about the posture distribution
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Other cues are specific to SL and can also be used to enhance the tracking:

A phonological knowledge about SL signs (cf. 2)
A lexical model (The problem is that the standard signs can be modified by
a lot of spacial flexion which involve a lot of parameter changes.)
A syntactical model (For instance, in infering the orientation of the current
sign thanks to the previous entities placed in the signing space.)

Several approaches have been used to achieve a posture reconstruction. We can
distinguish all the methods based on external sensors (Magnetic, Inertial) de-
scribed in [30] , the methods using multiple views [8], the methods using a video
already containing depth estimation (like stereo cameras, time of flight cameras)
and the methods only using a monocular view. We will focus on this last set of
methods . The interested reader may refer to the survey of [20] about hand and
head tracking and the survey of [26] about body posture reconstruction.

The silhouette can be used to estimate the body posture [11][24]. Other stud-
ies [21] only use hand and head position and strong statistical assumptions to
estimate the body posture. Even if the 2D reconstruction seems to fit the original
video, this method is not accurate enough to provide an accurate 3D reconstruc-
tion of the body posture. Better results are achieved when both cues coming
from silhouette and hand/head tracking are merged [22].

When all body parts have been tracked, it is necessary to use a model to
find the original body posture. If the necessary body articulators have been
tracked properly, it is possible to use an inverse kinematics approach [12]. Inverse
kinematics with a simple view is a ill posed problem [16] as the same body
articulators (shoulder, elbow and hand) can correspond to at most four different
arm configurations. The pure 3D approach as already been used by [6] and the
authors mention a lack of robustness of this method. Moreover, it doesn’t always
address the problem of hand disambiguation. On the other hand, it is possible
to use a prior knowledge about postures to make the estimation from the same,
or less body part locations [29] [21]. The evaluation criteria differ between the
different studies, so that it is very hard to compare the methods [26].

We have not mentioned any article about SL automatic recognition. Readers
interested in this problematic can refer to the excellent survey of [23].

4 Description of Our Approach

In this section, we present our posture reconstruction algorithm. The descrip-
tion is structured as follows: First of all, we deal with the problem of hand and
head tracking in the video. Then, we present an original solution to handle hand
crossings that occur during the signed utterances. We finish with a description
of the way of estimating the signer’s body posture by means of inverse kinemat-
ics, extended Kalman smoothing and hand depth correlation. In these two last
parts, we show how SL specificities can be used to enable a more robust posture
estimation.
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4.1 Particle Filter Used for Hand Tracking

Unlike of other studies [12] where the signer wears coloured gloves, our tracking
algorithm does not need any additional marker. The signer has to simply wear
long-sleeved clothes which must be a different colour from the skin.

As the hand and head movements are highly non linear [25], we decided to
track them by means of particle filters. Particle filters have already been used
successfully in the frame of hand tracking and can provide very robust results
even if the targets have a similar appearance [27].

In our particle filter, the signer’s head and his two hands are tracked using
the skin colour. Several skin models can be employed [3] to achieve an accurate
colour detection. [10] [1] propose to combine the colour information with the
hand motion and report some detection enhancement. We didn’t use the motion
cue because it leads to bad skin detection when one hand remain still, which is
often the case in SL videos. Other studies [17] [28] [18] propose to update the
skin colour model during the tracking to make their tracking algorithm more
robust to lighting variation. In our implementation, the skin model is expressed
in the HSV space and learned from a skin picture, using a skin colour histogram
and a background colour histogram. The structure of our particle filter has been
inspired by [9]. Each body part is tracked by a cloud of particles. One particle
contains only the coordinates of one pixel of the body part that is being tracked.
As it is not possible to predict the hand motion from one frame to another [25],
we chose to model the 2D hand and head dynamic by a random walk.

s(t + 1) = s(t) + ε with ε ∼ N(0, Σ)

The signer’s hands and its head are tracked by means of a skin colour detection.
If the three particle filters remain totally independent, they might follow the
same target. Some solutions have already been proposed to avoid this [14].

We decided to adapt the approach proposed by [9]. Three particle filters cor-
responding to the two hands and the signer’s head are used for the tracking.
These particle filters are made of weighted particles {(s(0)

t , π
(0)
t ) . . . (s(i)

t , π
(i)
t )}

of N particles. Each particle has a state st = [x, y]T where (x, y) represents the
position of the particles at the time t. Annealed update steps are used to better
fit large and non-linear movements that often occur in SL production.

Our problematic is to track multiple objects with the same appearance. There-
fore, it is necessary to avoid the clouds to track the same body part (ie : two
particle filters on the same hand). Each frame is then processed as follows: Firstly,
the particle filter track the body part on the original skin map. Then, the clouds
are alternatively subtracted from the original detection map (For example, the
clouds corresponding to the two hands are subtracted form the skin detection
map before the head tracking). With such an algorithm, we take into account
the possible hand occlusions that can occur during the signed utterances.

4.2 Tracking of Shoulders and Elbows

In order to track elbows and shoulders in the video, we have to find the signer’s
silhouette. We use the same method for the background detection as for the
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skin detection (bayesian approach). We noticed that the shoulder appearance is
quite similar in each video frame (the same holds for the elbow silhouette). We
then constituted 8x8 convolution kernels corresponding to elbow and shoulder
silhouettes. Those body parts are then detected as convolution maxima.

In the case of self occlusion of these body parts, their appearance can vary
greatly, so that the convolution maxima indicate false detections. It is then nec-
essary to filter the entire video sequence in order to remove those outliers. This
signal processing is achieved using a non linear smoother on the whole video. The
coordinates of the right elbow on the frame t will be written E(t)(xe(t), ye(t)).
The goal is to select as many valid coordinates as possible, so that for any couple
of valid coordinates (E(t1), E(t2)) measured at the times t1 and t2, the average
speed of the elbow has its coordinates smaller than a predefined threshold thres.
The optimization is solved thanks to Viterbi algorithm.

∀ t1, t2

{ |xe(t2) − xe(t1)|/|t2 − t1| < thres
|ye(t2) − ye(t1)|/|t2 − t1| < thres

4.3 The Problem of Disambiguation

In the field of SL video processing, most of the researchers seek to estimate
the signer posture, in order to effectuate a sign recognition in a specific set of
signs. For this reason a lot of teams focus on the problem of hand tracking and
model the two hands as blobs which can merge and split without solving the
problem of hand occlusion and crossing [13]. However, hand crossing remains
a real problem when processing utterances of FSL. We made statistics on a
30s long FSL video (video (1) cf. 5) and discovered that the two hands where
crossed in more than 10% of the frames ! (see fig. 1). A promising method to
handle occlusions and hand crossings is to use multiple cues from hand and
other body parts to effectuate the hand disambiguation. [25] uses measure from
head position, hand shape, hand orientation and hand position to effectuate a
correct hand to blob assignment in a video and achieves very good results in
the framework of communicational gesture tracking. The different criteria are
aggregated by means of a bayesian network. The problem is then to know in
which case such a bayesian network model learned with one signer can be used
with an other signer, and what are the relevant parameters. We use a similar
approach as [25] to effectuate the hand disambiguation, but we also discuss about
the linguistic interpretation of those criteria in using the concept of strong and
weak hand developed by [2].

In this section, we will adopt the following notation conventions at the frame t.

Er(t)El(t) : Right and left elbow location
H1(t)H2(t) : First and second hand location (used before disambiguation)
Hr(t)Hl(t) : Right and left hand location (used after disambiguation)
I : hypothesis of assignment ( H1 = Hl and H2 = Hr)
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Fig. 1. Statistics on hands abscissa and ordinates, sigmoid regressions

Our disambiguation criteria are the comparison of hand abscissa, the comparison
of hand ordinate and the relative position of the hands and the shoulders. Each of
those criteria provides a likelihood function Pn(I) (likelihood of the hypothesis I).

As a first disambiguation criterion, we naturally decided to use the comparison
of hand abscissa as our statistics revealed that hands are crossed more than 10%
of the time. The function p(I|(xH1 − xH2)) is modelled as a sigmoid function
with the equation p(I|(xH1 − xH2)) = 1/[1 + eλ.(xH1−xH2)] (fig. 1).

The second criterion is a comparison of hands ordinates. The statistics (fig. 1)
show that this comparison can also be a determinant criterion. Those statistics
were made for a right handed signer (whose strong hand is the right one). Those
statistics can be interpreted as an outcome of the intensive use of strong hand.
In fact when signing one-handed signs, the signer mostly uses his strong hand
and the weak hand remains in front the bottom part of the torso. Using the
hand ordinate comparison to process hand disambiguation can then only be
considered in the frame of SL video processing. The likelihood function P2(t) =
P2(I|(yH1(t) − yH2(t)) is also modelled by a sigmoid in our algorithm.

The third disambiguation criterion is the comparison between hand and elbow
positions. It is a consequence of kinematic constraints. This likelyhood function
can be written as P3(t) = P3(I|(H1(t), H2(t), Er(t), El(t))).

The first three criteria are aggregated by a nave bayesian fusion as we can not
make any assumption about the independence of P1(t), P2(t) and P3(t). The confi-
dence measureB(t) = P1(t).P2(t).P3(t) indicates if the first hand is the right hand.
To enhance the disambiguation results, it is also possible to use the motion con-
tinuity. The fourth criterion then consists in minimizing the overall displacement
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of both hand. The aggregation of all the above mentioned criteria on the whole
video can be written:

argmin

( ∑
t=1..T

[dist(t − 1, t) + α.ln(B(t))]

)

dis(t − 1, t) is the sum of the hand displacement between the frame t − 1 and the
frame t. The parameter α has been determined empirically.

4.4 3D Posture Reconstruction

We decided to base our body model on an 3D explicit representation of the
kinematic chain. As the body has a lot of degrees of freedom, we had to simplify
in order to be able to find the arm posture by inverse kinematics. The head,
the torso and the shoulders are assumed to remain in the same plan Π . In the
following part, the depth Z is othogonal to Π .The arms segments are connected
with ball joints positioned at the elbows and shoulders locations. Our model
does not integrate any rotation limitation and any collision detection. It is then
important to notice several important limitation of this model before exposing
the posture reconstruction algorithm. We consider the hand as the extremity of
the forearm segment. It is only a coarse approximation as this assumption does
not take into account the wrist rotation that may cause a variation of the 3D
distance between the palm and the elbow. The problem of taking the centroid
of the visible hand part is also a source of imprecision because the location of
this point on the hand palm will depend on the current hand configuration and
on the signer’s cloths. The assumption that the head and the two shoulders are
in the image plane does not take into account any torso rotation although we
know that those rotations have a predominant role in role shift. This limitation
will have to be removed in the further versions of our posture reconstruction
algorithm.

We then have to make a choice between these four possible configurations. For
the following calculus, we assumed that the following order was always respected
Zs < Ze < Zh with Zs, Ze and Zh being respectively the shoulder, elbow and
hand depth. We checked the validity of this hypothesis and showed that it was
acceptable in the case of FSL utterances for the following reasons. Hands are
most of the time in front of the elbows. The depth difference between the elbow
and the shoulder is much smaller than the depth difference between the hand
and the elbow when signing. The cases where the real position of the elbow is
behind the shoulder ( Zs > Ze) often corresponds to the weak hand rest position
and the exact depth estimation of the weak hand location is then not relevant for
a good comprehension of the utterance meaning. However, we noticed that those
assumptions are not valid during a role shift because of the torso rotation. In this
last case, we observed that one hand can frequently be behind its corresponding
shoulder.

The posture reconstruction is first reconstructed thanks to an Extended
Kalman Smoother approach as the relationship between the body parts 2D
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locations and the hand depth is not linear. The outcome of this Kalman smooth-
ing step is an estimation of the two hand depth with their covariance. It can be
noticed that the accuracy of the strong hand depth estimation with this method
is much better than the depth of the weak hand. This is a consequence of the
very small depth difference between the shoulder, the elbow and the hand when
the weak hand is not used during signing. As mentioned in the introduction,
the two hand movements are not independent. This qualitative observation is
confirmed by the following measurement. There is a correlation of 0,24 between
the right and left hand depth (on video (1) cf. 5). It can be noticed that the
weak hand often reproduces the depth movements of the strong one, even in the
signs where the weak hand is not involved. We decided to use this correlation
to enhance the estimation of the weak hand depth. At the end of the Kalman
smoothing, we obtain:

Strong hand depth: Za
s ∼ N(μZa

s
, σZa

s
)

Weak hand depth: Za
w ∼ N(μZa

w
, σZa

w
)

The a and b superscript will respectively denote the depth estimation before
and after the enhancement taking into account the hand depth correlation.
Refined weak hand depth estimation: Zb
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The parameter β is estimated according to the dependency between the two
hand depths. If those two measures are totally independent, it has to be set to
+∞. If on the contrary, the two hands have always the same depth, it has to be
set to 1. In our experiment, we determined β = 2.5 as being the best value.

5 Evaluation

The different parts of our algorithm have been evaluated using four videos:

1. 30 second long video (706 frames) provided by Websourd society. Translation
of a piece of news. Only one view.

2. 3 minute long video (5406 frames) small sentences about the health topic.
One view, measured with motion capture (magnetic sensors) while filming.
This video has been made in our lab by a deaf signer.

3. 2 minute long video (2973 frames) description of the September 11th events
In New York. One camera facing the signer, one camera positioned at the
top. (LS-Colin project : www.irit.fr/LS-COLIN).

4. 7 min 15 s long video (10905 frames) short tale. Only a front view.This video
has been made in our lab by a deaf signer.
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5.1 Quantitative Evaluation

The disambiguation algorithm has been tested on the video (1) where the hands
were crossed in more than 10% of the frame (see fig. 1). We achieved a result of
98% good hand assignment. The question is then how to quantify the precision
of the posture reconstruction. The first method consists in evaluating the 2D
recovering between the estimated body shape and the corresponding body shapes
in the real video. It provides a good idea about the precision of the tracking
algorithm, but does not qualify the precision of depth reconstruction. A second
way of evaluating the result is to compare the angle of the body joint with the
real angles of the signer’s body. However, it is hard to determine what angle
precision has to be evaluated, as all the angle do not participate to the SL
communication at the same level. A simple average of angle imprecision on a
set of body joints is then hardly interpretable. The third evaluation protocol
would be to evaluate the precision of the 3D position estimation of the hand
location in each frame. Such a way is justified because the hand location and
movement are two major parameters conveying the message in SL utterances. As
the precision is much higher in the image plan that on the depth dimension, we
decided to dissociate the quantitative evaluation of the hand position accuracy
in (X, Y) and Z directions. The accuracy of the hand position estimation has
been estimated by means of the average squared distance between the ground
truth and the estimation of the hand location in the picture. The measures have
been made on the video (2) and the standard error includes the errors caused
by bad hands assignment during the disambiguation and bad tracking.

We obtained a 4 cm standard error which would be sufficient to make an
automatic sign recognition and could be accurate enough to perform a sign
reconstruction as long as no contact is involved in the sign (the restitution of
contacts requires a precision of less than 0.5 cm on each hand). The case of
depth dimension in the hand location should be considered separately because
the two hands are located in a neutral zone around 15 cm from the torso most of
the time. We measured on the video (2) that the standard deviation of the real
hand depth is then no more than 6 cm. In fact, only big depth changes from this
average position convey a meaning in FSL. For this reason, we decided to focus on
the correlation between the ground truth and the estimated depth to give more
importance to high values. The correlation measures were made on the video (3)
and the two views (frontal and top) have been used to create the ground truth
manually. The comparison between the ground truth and estimation showed that
it is possible to gain a significant enhancement of the correlation results in using
a posterior Kalman smoothing (for both hands) and in using the dependance
between the two hands motions (only for the weak hand). For the weak hand,
we noticed 15% of enhancement (67% thanks to the Kalman smoothing and 33%
thanks to the use of the dependance between the two hands).

The evaluation showed that the method can be adapted for each signer (several
persons signed in the test videos and some of them were left-handed). However,
our method is not able yet to handle the case of signers wearing short sleaves or
being on a cluttered background. The algorithm has been modified to run in real
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time. In this case, our disambiguation algorithm has the to be applied between
the beginning of the video and the current frame.

5.2 Qualitative Evaluation

As we want to use this posture estimation in a further higher level SL video
processing, we must test whether the depth estimation is accurate enough to
convey the meaning of the signs. We distinguished two situations where the
depth is particularly relevant for the sign or the sentence interpretation : the
depth variation is important for the sign comprehension in signs which always
include a hand movement involving depth, in directional verbs where the hand
displacement reveals the entities involved in the action, and in pointing gestures.

Our aim is to test if the depth variation and comparison have the good sign
during those sentence realizations. The measurements have been made on the
video (4) which contains a lot of directional signs and description.

In 75% of the cases, the prediction on the movement direction was accurate.
We noticed that this rate is much better for directional verbs than for other signs
like pointing gestures. It could be explained because of the bigger amplitude of
the directional verbs. It would then be possible to use those results in the frame
of automatic video analysis.

For relative depth estimation, we achieved a result of 65% good answers. This
result can be explained by the following observation. Most of the signs where
the relative depth of the two hands is relevant involve hand occlusion. In this
case, our particle filter becomes less precise and the posture reconstruction is
then also less accurate. In fact, the human vision uses occlusion to estimate the
relative depth of two objects. A good enhancement way of our algorithm would
be to use this information to refine the estimation of the relative hand depth.

6 Conclusion and Perspectives

The main contribution of this article is to take into account SL features:

– The notion of dominant hand is used to process the hand disambiguation.
– The correlation between right and left hand depth has been used to enhance

the weak hand depth estimation.
– The evaluation protocol takes into account the spatiality of the FSL.

We pointed out in our study that the laterality of the signer is a determinant
parameter of this model adjustment. The same approach should have to be used
for other parameters that could lead to enhance the posture reconstruction.
Among them, the most important is certainly the head pose, because we know
that the eye gaze is intensively used to assign a location to the entities before their
placement by the two hands. Other criteria could also be investigated like the
shoulder relative position, the hand orientations, the hand configurations that
can have a linguistic interpretation. We decided to use the correlation between
the two hands to enhance the depth estimation of the weak hand. This leads to
an improvement of the depth estimation because the weak hand often follows
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the strong one. Unfortunately, SL also contains signs in which the two hands
have alternative movement involving depth. The solution to handle such cases
would be to detect the current kind of sign (one/two handed, kind of symmetry)
and to adapt the filtering methods according to them.

The quantitative and qualitative evaluation of our method proved that it
is not accurate enough to provide an accurate posture for an virtual signer
automatic SL synthesis. Moreover, some parameters like the head pose, the hand
orientation, the hand configuration and the face expression are still missing to
achieve a full body reconstruction. However, the qualitative results showed that
the results are sufficient to provide a sign characterization. The good results for
directional verbs involving depth allow us to consider the use of those results in
the frame of signing space modelling [5]. However, more practical applications
have already been developed, as automatic sign-image generation where a simple
row figures out the 3D hand path involved in the sign.
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Abstract. Research on automatic sign language recognition (ASLR)
has mostly been conducted from a machine learning perspective. We pro-
pose to implement results from human sign recognition studies in ASLR.
In a previous study it was found that handshape is important for hu-
man sign recognition. The current paper describes the implementation
of this conclusion: using handshape in ASLR. Handshape information
in three different representations is added to an existing ASLR system.
The results show that recognition improves, except for one representa-
tion. This refutes the idea that extra (handshape) information will always
improve recognition. Results also vary per sign: some sign classifiers im-
prove greatly, others are unaffected, and rare cases even show decreased
performance. Adapting classifiers to specific sign types could be the key
for future ASLR.

Keywords: sign language, automatic sign language recognition,
handshape representation.

1 Introduction

With imaging hardware such as cameras becoming cheaper and more advanced,
the interest in ambient intelligence and natural, multi-modal (i.e. speech and
gesture) interfaces has grown over the last decade. As a consequence, the study
of automatic sign and gesture recognition has been gaining attention steadily.
Sign language signs (in their citation form) are more formal and more striclty
defined than general gestures (e.g. co-speech or emblematic gestures). As such,
recognition of (isolated) sign language signs is often used as a starting point for
general gesture recognition methods, but it has a merit of its own, too: automatic
sign language recognition techniques can facilitate communication among the
deaf, and also between deaf and hearing people.

Automatic sign language recognition (ASLR) has been studied since the early
1990s — see [1] for an overview of ASLR methods, and [2] for an impression of
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the current state of the art. Focus has mostly been on methods for capturing
a sign, on the choice of feature representation of a sign and on the pattern
recognition algorithms to recognize or detect a sign. Derpanis et al. [3] and Vogler
and Metaxas [4] are among the few who try to use sign linguistic information in
their ASLR approaches. In general, little attention has been paid to the nature of
signs and sign processing: issues such as “What are the important characteristics
of a sign?”, “Are all parts of a sign equally informative?” and “How much and
what kind of variation is allowed in a sign?”.

In previous work, we addressed such questions, performing recognition ex-
periments with human signers to gain insight into the human sign recognition
process [5,6]. In [7], it was discussed how the results of these studies could be
applied in automatic sign language recognition. One of the conclusions was that
handshapes, even in a simplified form, may be helpful for automatic sign lan-
guage recognition. Because of the environment our recognition system is used
in, a program for training sign language vocabulary, it is aimed specifically at
recognition of isolated, citation-form signs. We therefore do not address issues
of continuous sign language recognition here.

This paper describes the results of an experimental study on the implica-
tions of adding simplified handshape information to an existing ASLR system.
Though handshape is an integral part of a sign language sign, our ASLR system
can function reasonably well without it [8]. For this reason, we do not adopt
prior assumptions about the merits of adding handshape for this system. During
the study, it was noticed that results can vary substantially depending on which
subdivision of the data is made to form training– and test sets. Therefore, the
experiments described here were performed with several different subdivisions
of the dataset and results were evaluated together. It was found that handshape
information can improve recognition performance, but that results depend on
the handshape representation that is used. A second interesting finding is that
individual sign classifiers respond differently to the addition of handshape. Most
improve, but for some, performance stays the same or even deteriorates. This
concurs with the results from experiments with human signers [5], in which hand-
shape information gave varying degrees of improvement depending on the nature
of the sign tested (although here there were no cases of worsening performance).
In fact, all human signer experiments showed that results vary for individual
signs. This suggests that one probably should not try to develop one standard
for all possible signs. Instead, the future of ASLR may lie in adapting criteria
and/or methods for specific signs or sign types.

2 Method

2.1 Dataset

The dataset for training and testing consisted of 91 isolated signs from the stan-
dard lexicon of Sign Language of the Netherlands1. Each sign was recorded from
75 different persons (mostly non-signers). Signs were captured using two syn-
chronized Allied Vision Technologies ‘Guppy’ cameras, at 25 frames per second,
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resolution 640 x 480 pixels. Examples of the signs in the dataset can be viewed
online2.

2.2 Sign Recognition Algorithm

For this experiment, the ASLR method described in [8,9] was used. An overview
of its architecture is shown in figure 1. Stereo cameras are used to capture the
sign. A skin colour model is then applied to the images, so that head and hands
can be found and tracked. From the hand location in the stereo images, the 3D
hand positions can be calculated, as well as several other characteristics, such
as velocity, acceleration, and direction of motion (see [9] for the complete list).
These feature types are extracted for each frame in a sign recording, resulting
in a [number of frames x number of feature types] matrix, which is the feature
representation of a sign recording (in figure 6, examples of such matrices can be
seen). Each combination of feature type and frame is henceforth considered one
feature. The feature values are smoothed in the time dimension using a 3-frame
median filter (for outlier removal), followed by an 11-frame Gaussian filter (for
further smoothing). Dynamic time warping is used to align sign examples.

With the feature representations, classifiers can be trained. For each sign in
the set, a separate classifier is trained to distinguish that sign from all other signs.
Examples from the target class are used as target training examples, examples
of all the other classes are taken together as one large non-target class. For
training, the Combined Discriminative Feature Detectors (CDFD) method is
used (see [8] for details). In short, training consists of a feature selection step
(based on a feature’s usefulness in separating the target class from the non-
target class), followed by a training of feature detectors for the selected features.
Unknown signs are recognized by first applying the feature detectors of the
selected features, and then combining their outputs to determine if the sign is
recognized or not. The sign is recognized if a certain fraction of the selected
feature detectors gives a positive response. This fraction is determined in the
training phase. The sensitivity of the feature detectors can be varied to create
stricter or more lenient versions of the classifiers.

Fig. 1. Overview of the ASLR system. Information from two cameras is combined to
retrieve 3D position. A skin colour model is used to locate the head and hands in the
frame. In the feature extraction step, certain characteristics of the hands are extracted,
such as position and velocity. Signs are synchronized through dynamic time warping.
Finally, a classifier is built for each sign in the dataset, distinguishing that sign from
all others.
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2.3 Handshape Representation

The system described in [9] was trained without the use of handshape infor-
mation. To add handshape information, first a representation must be chosen.
There are several possible representations of handshape [11]. Because our system
is required to work real time, the method must be fast. In combination with the
fact that the dataset contains no zoom images of the hands, this means that
fitting detailed 3D hand models is not an option. Speed and robustness consid-
erations caused us to select a relatively simple but efficient shape representation.
This representation is formed by taking the bounding box of a hand in a cer-
tain frame from the image (the bounding box is always aligned with the main
axes of the frame), segmenting the subimage into hand and non-hand pixels,
dividing the subimage into a fixed number of squares, and calculating the ratio
hand/non-hand pixels for each square (see figure 2 (a)). Together, these ratios
form a feature representation of the handshape, which is translation and scale
invariant, but not rotation invariant. This means that the representation carries
some information about hand orientation as well as shape (the same handshape
under a different orientation results in a different feature description). The num-
ber of squares used in the method can be varied. We chose a 4 x 4 grid (R44),
resulting in 16 values for each hand, so 32 extra feature types in total.

For comparison, two alternative methods are tried as well: a more crude ver-
sion of the above one in which a 2 x 2 grid is used (R22), and the invariant
moments of the hand blob (INV), a representation which is translation, scale
and rotation invariant [10]. For the latter, the first seven moments are taken for

(a) (b) (c)

Fig. 2. Procedures for generating handshape representations. (a) Ratios of 4 x 4 grid
(R44). The bounding box of the hand is lifted from the frame and divided into
subregions. The image is then segmented with the skin color model, and the ratio
skin/background is calculated for each subregion. Together, the ratios form the shape
representation of the hand. (b) Ratios of 2 x 2 grid (R22). Same method as for (a).
The third representation (INV) is made by taking the first seven invariant moments
[10] of the raw hand blob shown in (c).
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each hand. These representations result in 8 resp. 14 extra feature types in total.
Figure 2 (b) and (c) refer to the alternative representations.

2.4 Missing Values

Signs where the hands overlap with each other or with the face form a problem
for the handshape representation, because the skin segmentation results in a
merged blob, the shape of which is not necessarily informative or representative
for the shape(s) of the hand(s) involved. It was decided to extract no handshape
features in these cases. As a result, the dataset is no longer complete — some
feature representations contain missing values for certain handshape features.
If the features were missing for only a few frames (maximally 5), the values
were interpolated using a Gaussian filter in the time dimension (integrated into
the filtering step). If feature values were missing for only a few examples in the
dataset (maximally 10%), average values (calculated over the other examples)
were imputed.

Remaining missing values in the dataset are handled as follows: if missing
values remain for a feature in examples of the target class of a classifier (e.g. in
the examples of the sign ‘SAW’ when training the classifier for ‘SAW’), then this
feature is rejected in the feature selection stage. Missing values in examples of
the non-target class are ignored. During testing, missing values are ignored: the
fraction of detected features is calculated over the existing features only.

2.5 Evaluation Method

To investigate the effects of handshape information, classifiers are trained and
tested on the dataset with and without handshape features added, and the results
are compared. Each classifier is trained and tested according to a five-fold cross-
validation scheme. The cross-validation is repeated 10 times for different random
orderings of the data. For each repetition and each cross-validation fold, four
versions of the classifiers (with the three handshape representations and without
handshape features) are trained and tested.

3 Results

3.1 Recognition Results

The results of the classifiers are shown as Receiver Operating Characteristic
(ROC) curves (plots of the true positive rate of a classifier against the false
positive rate, for a number of strictness settings). Figure 3 shows the average
ROC curves over all signs, cross-validation folds and –repetitions for the orig-
inal classifiers (No HS) and the three classifiers that result from training with
various handshape representations. R44 produces the best curve, and R22 gives
improvement as well. Adding INV representations actually worsens classifica-
tion performance. To investigate whether this trend is significant, a one-way,
repeated measures ANOVA was performed on the areas under the curve (AUCs)
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Fig. 3. Average ROC of recognition results for all four conditions over all signs, cross-
validation folds and cross-validation repetitions (N = 4550). No HS = no handshape
representation, INV = invariant moments, R22 = ratios of 2 x 2 grid, R44 = ratios of
4 x 4 grid.

of the ROCs of all classifiers, cross-validation folds and –repetitions. There was
a significant effect for handshape representation (F3,13647 = 546.20, p < 0.0001).
Post hoc tests, using the Bonferroni correction for multiple comparisons, showed
that the four methods all differed significantly from each other (all p < 0.0001),
with R44 giving the best performance, followed by R22, No HS, and INV —
the last handshape representation made performance significantly worse. The
explanation may be that the INV representation is more sensitive to noise than
the other two: small changes in the skin segmentation can cause differences in
the details of the hand blob shape, and thus in the higher-order shape moments.
The ratio-representations are more robust against this type of noise, since the
variation averages out over a subregion.

The same tests were performed for partial AUCs (AUCs for the false positive
(FP) range [0 – 0.1] of the ROC). The partial AUC (pAUC) is interesting because
the operating point chosen for a classifier will most often lie in this range —
a classifier with an FP rate of more than 10% is generally not acceptable in
practice. The results for pAUCs were similar to the results for AUCs (F3,13647 =
859.57, p < 0.0001, all pairwise comparisons significant at the 99.99% level).

3.2 Individual Signs

Experiments with human signers showed that there are usually great differences
between results for individual signs. In this ASLR experiment, the same effect
occurs. First of all, the ROCs of individual signs can differ substantially (see
figure 4). This is to be expected — the characteristics of some signs will make
them more easily recognizable than others. However, there are also differences
in the effects of adding handshape information. With addition of R44 features,
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Fig. 4. ROCs for No HS (dashed) and R44 (solid), for different signs and cross-
validation folds. Within each column, the difference between versions of the same sign
when trained and tested with a different subdivision of the data can be seen. Within
each row, differences between individual signs can be observed. (b) and (c) show cases
where handshape information is not helpful.

most signs (75%) improve, but for some signs performance does not change,
and for a few, there is even a decrease in performance. Paired t-tests per sign
(using cross-validation folds as repetitions) were performed to investigate which
sign classifiers benefit from the addition of R44 handshape information. Two
measurements were used: the AUC and the partial AUC.

Table 1 summarizes the findings. For the more interesting partial AUC only
one sign shows a decrease in performance. This sign, BIRD, is made by flapping
the arms and hands, which will cause a lot of variation in the precise handshapes
and -orientations. This, combined with the fact that the number of repetitive
‘flaps’ is arbitrary, makes the handshape characteristics of the sign quite variable,
and thus possibly confusing rather than informative. For twenty-two signs, there
is no significant difference. This is partially due to a ceiling effect: four signs
already show near-perfect recognition without handshape. Another cause are the
missing values: for three signs, the hands overlap for almost the entire duration
of the sign, so that nearly all handshape features are missing for all examples. In
these cases, it is logical that handshape information has no influence. The rest
were often signs which, like BIRD, contained a lot of handshape variation, or
signs with fist-like handshapes. Figure 5 shows the average partial AUC for all
signs both with and without R44.
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Table 1. Classification performance per sign after adding handshape information in
representation R44. Significant increase or decrease in performance was determined
through paired t-tests per sign over all cross-validation folds and –repetitions, α =
0.05, df = 49.

Measurement # Increase # No Difference # Decrease
AUC 69 (76%) 19 (21%) 3 (3%)

partial AUC 68 (75%) 22 (24%) 1 (1%)
[0 - 0.1]

Fig. 5. Average partial AUCs (FP range [0 – 0.1]) of all signs with and without R44.
Averages are taken over all cross-validation folds and –repetitions. The error bars
represent the standard error of the mean.

3.3 Feature Selection

Feature selection plays an important role in the CDFD-classifier. Features that
are not selected will not have any influence on classification. Since features are
selected based on their ability to separate the target class from other movements,
studying the feature selection can tell us more about which handshapes are in-
formative for ASLR. Figure 6 shows the feature selections for a few classifiers
trained with R44. The selections are averaged over all cross-validation folds and
–repetitions (for each cross-validation fold, a different classifier with a different
feature selection is trained). The gray level of a feature indicates how often it
was selected, with white representing selection always. For classifier BIRD, the
sign that drops in performance when R44 features are added, handshape fea-
tures are selected. Apparently, these features appear informative during train-
ing, but prove confusing for the test examples (an indication that our feature
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Fig. 6. Average feature selections for four signs over all cross-validation folds and –
repetitions for signs with R44. Grey level indicates how often a feature was selected
(white = always). Feature types 1–25 are the original, non-handshape feature types,
types 26–41 are R44 of the right hand, 42–57 are R44 of the left hand. BIRD and
FROG are two-handed signs, WAITER and MICROPHONE are one-handed.

0 100 200 300 400 500
−2

0

2

4

6

8

10

12
x 10

−3

# selected handshape features

pA
U

C
 d

iff
er

en
ce

Fig. 7. Scatterplot of the average number of selected R44 handshape features versus
the average increase in partial AUC (averages calculated per sign)

selection method might be improved). For classifier WAITER, many features
are selected, and this classifier shows a clear increase in performance. Classifier
MICROPHONE is an example of what happens when almost all handshape fea-
tures are missing (in MICROPHONE, the hand is in front of the mouth, so there
is facial overlap for almost the entire sign). FROG, finally, is an example of a
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classifier for which the feature selection varies (like for BIRD), but for which it
has no significant effect on the recognition performance.

To investigate the influence of handshape feature selection (R44) on perfor-
mance, the average increase in pAUC and the average number of selected hand-
shape features were calculated for each sign. Then the linear correlation between
the two was calculated. There is a slight positive correlation, which is not sig-
nificant for α = 0.01 (ρ = 0.21, p = 0.023). Figure 7 shows the scatterplot of the
two variables. It mostly shows that when handshape features are selected, they
are generally not harmful, though exceptions (such as BIRD) exist.

4 Discussion

4.1 The Merits of Adding Handshape

From the results of this experiment, it is clear that adding handshape information
is in general beneficial for ASLR. However, this is not automatically true for
every handshape representation. For the classification method described here,
using invariant moments of the handshape blob decreased performance, probably
because of its greater sensitivity to noise in combination with the low resolution
of the handshape images. The more robust R22 and R44 representations did
increase recognition performance. A second explanation for their success may be
the fact that the ratio-representations intrinsically carry some hand orientation
information as well as shape information, because they are sensitive to rotation.
The INV representation is rotation invariant, which may be a disadvantage in
the current situation: the orientation of the hand can be useful information
for detecting a sign. But rotation sensitivity can be a disadvantage, too. Signs
that show no increase or even a decrease in performance with R44 information
added, are in many cases signs with much translational and rotational hand
movement combined (such as BIRD or ELEPHANT). For these signs, individual
examples will differ in the rotation of the handshape at different moments in the
sign (because individual signers perform the combinations of translational and
rotational movements in different tempos). A rotation-invariant representation
would not reflect these variations (as long as the rotations were not out-of-
plane). The ratio-representations, on the other hand, may reflect so much of
this noisiness that the information is no longer useful for classification, or even
becomes confusing.

It is not possible to give characteristics that clearly connect the signs that did
not benefit from handshape information. The analysis is made difficult because
there are three possible causes: a ceiling effect (the classifier can hardly improve
any more), a missing values problem (there are hardly any handshape features
present), or the sign is truly ‘handshape-indifferent’. Removing the first two
categories leaves only about fifteen signs which do not improve. These tend to
contain the large variability in handshape and orientation mentioned above, or
to have fist-like handshapes, which occur commonly and thus may not be helpful
in distinguishing signs. However, the set is too small to test the significance of
said tendencies. The set of signs that does benefit from handshape information
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contains all kinds of shapes, including fists, but no signs with great variability in
path and orientation (like the ones mentioned above). The results demonstrate
that variability in performance between individual signs occurs in ASLR as well
as in human signer experiments. Future work should consider adapting recog-
nition algorithms for individual signs, or perhaps for sign types or handshape
types.

4.2 Applying Human Recognition Insights to Machine Recognition

This study was set up to implement our previous findings from human sign recog-
nition research [7] in ASLR. Direct comparison between the results here and the
outcome of our human signer experiments is not possible, because different sign
sets had to be used. However, certain tendencies can be compared. Firstly, in [5],
humans could only recognize a few signs based on location and motion alone.
In ASLR, quite reasonable performance can be achieved under these conditions
(see figure 3, ‘No HS’, which is basically the same condition). Of course, human
beings are not used to seeing signs that way, whereas an automatic algorithm is
trained to perform under certain circumstances. Secondly, in [6], it was demon-
strated that the first and last part of a sign (in time) are not necessary for
recognition; the central (‘stroke’) part suffices. The ASLR algorithm also disre-
gards the start and end of a sign. The feature selection graphs show that selected
features always come from the stroke part of the signs (see figure 6). So there
are both differences and similarities between human and automatic recognition.

An important difference between human and automatic sign processing is the
following: in experiments with human signers, more information never caused a
deterioration in performance. But the performance of an ASLR algorithm can
drop when information is added: when the INV handshape representation was
used, performance of our CDFD classifiers decreased. An ASLR algorithm has
the capability to find information in any feature that it is provided with. This
capability probably allows it to perform so much better than human signers in
recognizing signs based on location and motion alone. But the downside becomes
clear when a noisy or uninformative feature is present. Even with the precaution
of feature selection, meant to weed out uninformative features, the system can
still over-train (try to train on noise), causing a deterioration of performance.

In conclusion, we can say that it is possible to apply results from human
signer studies in ASLR — adding simplified handshape information proved ben-
eficial for ASLR, as predicted. But the problem described above shows that such
applications must be considered carefully.

Notes

1Standaard Lexicon Nederlandse Gebarentaal, deel 1. Stichting Nederlandse
Gebarencentrum, 2002.

2http://research.tenholt.nl/GW09
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Abstract. In this paper, we present a Web-based framework for interactive Sign 
Language using virtual signing agents. The main feature of this framework is 
that it is a full DOM-Integrated architecture. Firstly, we discuss the advantages 
and the constraints raised by the implementation of proper interactive Virtual 
Signers within this full DOM-integrated approach. Secondly, we discuss an 
experimental study about Web-based Virtual Signers that take advantage of the 
specific interactivity provided by our framework. This study deals with a 
structure of Sign Language utterances that requires dynamic handling of  
spatio-temporal variability and coarticulation stances in the sign generation 
phase. 

Keywords: Web-based Virtual Signers, Sign Language dynamic generation, 
Sign variability, Coarticulation. 

1   Introduction 

Whereas animated virtual characters are proliferating on the Internet Web pages, they 
raise issues in terms of 1) web-oriented software architecture, 2) specification and 
coordination of the interactional modalities (e.g. textual interaction, gestural 
integration) and 3) handling the linguistic characteristics of the various groups of 
potential users, for example those giving preference to the usage of a Sign Language 
(SL) ―like for example French Sign Language (LSF)― instead of oral language 
expressed either in vocal or written form. Virtual characters used to support Sign 
Language are commonly called Signing Avatars or Virtual Signers [1], the term 
‘signer’ meaning “a person expressing, using Sign Language”. There is no specific 
term for the Web environment mainly because there is no support for SL-based 
dialogical interaction now. Indeed, there is no written form for SL and SL inputs on a 
computer are limited to the use of Webcams (for the support of SL-chat between 
people of the deaf community); there is no actual solution to day for the recognition 
and the interpretation of real natural SL utterances. 

The development of Virtual Signers on the Internet will be of main interest for the 
deaf community to improve the access to page content but also for the fast growing 
community of ordinary people that seek basic knowledge about Sign Language or 
want to learn it. In order to guarantee the best possible acceptability of Virtual Signers 
productions in the deaf community we need to focus especially on the issue of the 
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precise modeling of SL inner functioning [2]. However, we have also to take into 
account the specific constraints imposed by the Web environment which, as showed 
further, can lead to some simplifications in the modeling. Then the problem is to 
evaluate and to assess to what extent the deployment of efficient and acceptable 
Virtual Signers on the Web is conceivable. 

This paper is organized in three parts: next section is a presentation of the main 
families of Virtual Signers with a discussion of the limitations of current systems. 
Section 3 is dedicated to the description of the architecture of the underlying Web-
oriented framework for virtual characters, called DIVA. Then, in section 4, we 
present an experimental study, carried out on this framework, dealing with a 
simplified model of two significant phenomena occurring in the dynamic generation 
of SL utterances: sign variability and coarticulation. 

2   Virtual Signers on the Web 

Sign languages, that is visuo-gestural languages as they are utilized within deaf 
communities can take into account all the functions fulfilled by Natural Languages. 
They enable people to communicate through a visual input channel and a gestural 
output channel. Hence they facilitate the emission of simultaneous information while 
using various articulators1 (hands, arms, shoulders, torso, head, face, eyes). Similarly, 
the way the discourse is organized is related to the visual perceptive capacities. For 
example, movement and relevant utilization of the space in front of the signer (the 
speaker in SL), hence named “signing space” are intensively used in Sign Language 
[3]. Finally, Sign Languages also resort to iconicity both in the lexicon and in SL 
utterances, thanks to their unique capacity of “telling without showing” but also of 
“telling by showing” [4]. 

Up to day, most Web sites that integrate support for SL rely on videos [5]. Few 
studies have been carried out upon the deployment of Virtual Signers on the Web and 
most of them are in fact autonomous applications attached, not integrated, to the Web 
pages. The technique of animation for Virtual Signers is based upon two main 
approaches:  

 

• Pre-synthesized animations: animations are synthesized a priori and then selected 
according to the context. For example, motion capture can be applied on non realistic 
simple avatars, such as the one in Fig. 1a, used in Mathsigner (see Fig. 1b), an 
interactive learning tool to improve the mathematical abilities of deaf children [6]. 
Since a few years, this technique has been introduced in order to build libraries of SL 
signs that in turn can be used to generate SL utterances [7]. Another pre-synthesized 
technique, rotoscoping, has been introduced successfully for the production of 
complete stories, such as the movie “the forest” illustrated in Fig. 1c [8]. 

• Generated animations: it consists in automatic and real-time generation of the 
animations. This is achieved from symbolic description languages of the animations. 
For example, the SigML description language [9] is based on the HamNoSys 
phonetic system dedicated to SL [10]. Used as input in a given signing animation 

                                                           
1 Articulator: any mobile part of the human body that can be articulated voluntarily and is 

functional in the process of producing speech (vocal or signed). 
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software, it allows the generation of animations that provide a better flexibility but at 
the cost of realism and naturalness. For example, a Web application using Java 
applets [11] is based on this technique. Moreover the VRML format is sometimes 
used thus allowing some kind of limited interactivity within a Web page, as for 
example the Signing Science dictionary [12] (see Fig. 1d). 

Discussion about the Chosen Approach: Generated animation approaches are in 
current progress. Presently, they cannot provide the realism and the naturalness 
required for deaf people acceptability and recognition of the signs. This was our main 
reason for choosing the pre-synthesized approach for this particular study; however, 
in future work, we intend to rely on generated animation approaches. Then we had to 
decide between motion picture and rotoscoping: the first approach is a heavy 
technology, requiring a post processing phase when fine animation is needed; on the 
contrary, rotoscoping requires less equipment (only a video recording of human 
subjects with two cameras face/profile and a software like 3DSmax™). However the 
main drawback of rotoscoping is that it relies on the artistic talent of the graphic 
designers in charge of the transformation of the videos into animated sequences. 

Discussion about the Limited Interactivity of Existing Applications: In all the 
above mentioned applications, being Web-based or not, the Virtual Signer is encased 
into a frame (a sub window) and its interaction with the content of the Web page is 
minimalistic: it is often restricted to Graphical User Interface (GUI) control on the 
display mode (frame moving or rotating, character resizing, control of animation 
speed); the character cannot perform actions upon the entities of the Web page 
application or react dynamically to user’s operations (even in the case of Fig. 1d). 

 

Fig. 1. a) Motion-capture technique; b) The Mathsigner application; c) The J. Stewart’s 3D 
movie “The Forest”; d) The Web page of the Signing Science dictionary 
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In the next section, we present the general outline of the architecture of the web-
based framework that we have chosen as a support for the deployment of the Virtual 
Signers with enhanced interactivity capabilities. 

3   Architecture of the DIVA Framework 

In the context of the research on Embodied Conversational Agents (ECA) [14, 
15, 16, 17] at LIMSI-CNRS, we have developed a Web-oriented software 
framework, called DIVA [13]. DIVA stands for DOM Integrated Virtual Agents, 
emphasizing the unique feature of DIVA virtual agents that are completely 
integrated with the DOM (Document Object Model) tree structure of web pages. 
The DOM is a standard interface, independent from any language and platform 
which allows programs and scripts to dynamically access both in read or modify 
modes the content, the structure and the style of HTML or XML-based 
documents. 

3.1   Web Architecture 

The web architecture of DIVA is displayed in Fig. 2. It has two main layers: 

1. A server layer dedicated to data base resources and symbolic computing (using 
the Wolfram Mathematica technology); 
2. A rich-client layer supporting: the specific application/service web page; the 
animation of the graphic characters; the processing of the textual natural language 
interaction. 

Apache Tomcat with JSP servlet

Wolfram Mathematica 
SYMBOLIC COMPUTING

Ajax Http link 
manager

Graphical 
Characters 
Animation 

Engine

English/French
Chat bot

Server

Client i

Mathematica

Java

JavaScript

DHTML
XML

Storage of symbolic 
external resources files 
(XML) and registration 
of client-information 

 

Fig. 2. Web architecture of the DIVA framework 
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3.2   Structure of a Virtual Character 

The first objective of DIVA is to provide a high degree of interaction with the DOM-
structure and the informational content of the Web page. Therefore, DIVA characters 
are part of the DOM structure that contains several DOM objects (mainly of type 
<div>) supporting various capabilities: display, drag&drop, resizing, iconifying, 
animation, speech display in textual ‘balloons’, etc. (see Fig. 3.). 

Here is the Earth globe…

Main mouse-sensitive area:
- mouse-clicks (select, iconifying, …)
- mouse drags (moves freely the character on screen)
- mouse resizing (resizes the character)

Balloon: textual speech display area

Head mouse-sensitive area 
(emits internal events when 
the mouse is over)

Animation area

Extra display area: 
plays animated .gifs
It is resized with the 
character)

Cyril is another male 
realistic graphic character

Marco is one of the four available 
character in ‘cartoon’ styleElsi is the main realistic character

 

Fig. 3. DOM structure of a virtual character 

The animation engine also takes advantage of this integration: it is a JavaScript 
program that directly loads .png files from the server in <div> objects and then 
animates them, at the frame level on the client machine. This makes it possible to 
compute animations movies and to compose them in JavaScript locally. This feature 
proves to be crucial in the dynamic production of Virtual Signers utterances. 

In a first version of the framework, four characters with a simple graphic ‘cartoon’ 
style were proposed (they had been originally created for experimental studies about 
the evaluation of ECA [18] ― see ‘Marco’ in Fig. 3-right). Presently, we are building 
realistic characters (see Fig. 3-left) designed with rotoscoping on 3DSmax™. The 
resulting personification is much more realistic but at the price of a slower loading 
time for the client Web pages because they require larger picture files than simple 
cartoon characters (×10). Indeed, in a Web-based architecture, such performance 
issues are very frequent and they have a significant impact on the resulting software 
architecture; however mainly practical, these issues represent de facto technological 
barriers. Hence, the trade-off graphic-quality/page-loading-time remains a serious 
barrier for the deployment of virtual characters on the Web. 

For the creation of the animations the rotoscoping was chosen because it provides a 
good trade-off between the time needed to produce the animations and the quality of 
the realistic rendering. This technique, when performed by accomplished computer 
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graphics designers, allows the quick production of predefined animations that can be 
associated with SL utterances, SL signs, gestures etc. 

For the creation of the animation picture files, we had to take into account the Web 
bandwidth constraints stated above. Thus we have to take into account both the pixel 
size of the frames and the number of frames for one animation. Presently, the 
animations’ movies are composed of 6, 15 or 30 frames in 500×500 pixels in .png 
format (.png provides the required transparency for the avatars to move freely over 
the Web page). As for the animation of the characters on screen, although it is 
supported by a rich-client engine written in JavaScript, the animations are quite fluid, 
especially with Mozilla based navigators and this is bound to improve with the new 
generation of navigators integrating JavaScript accelerators (like Google Chrome). 

A major decision was to develop an animation engine working at the frame level. 
As a consequence it is possible to control the animations at a very fine level. This 
makes it possible to dynamically generate SL utterances and to ‘play’ them in real 
time. This capability is a basic requirement for efficient interactivity between the user 
and the character on the Web page. 

3.3   Handling Deictics 

The DIVA framework provides a native support to deictic gestures within the Web 
page: given a target DOM object T of the application that is displayed on screen the 
framework can compute its physical location on screen Tx,y (e.g. being either the top-
left corner or the middle of the object display) and report them to the agent A which, 
according to its own physical position Ax,y can perform the following actions: 

- Move on screen, if necessary, to go nearer the target object position Tx,y; 
- Perform a deictic gesture with its finger pointing on Tx,y. There are six postures 

corresponding to the six possible relative A/T positions. They involve the 
orientation of the head, of the torso and the configurations of the arm and hand2 
(see Fig. 4 left). 

An example of the support of the deictics in DIVA is available on the Web page of 
the LIMSI-CNRS3. Whenever the user clicks on a balloon of the graphics that 
represent the scientific activities of the laboratory, the agent Elsi performs a tri modal 
reaction: 1) Elsi moves nearer the clicked target; 1) Elsi displays above her head a 
textual balloon giving a short explanation of the clicked activity and 2) in the same 
time, Elsi performs a pointing gesture with her finger on the middle of the clicked 
balloon (moreover, the clicked XY position is emphasized with a small red square). 

4   Experiment 

The objective of the experiment described in this section is to evaluate a method for 
the dynamic generation of SL utterances and their immediate animation in the context 
of DIVA based Virtual Signers. Also, several complex issues have to be taken into 
                                                           
2 Other designation techniques are available like: to enlighten a cell in a HTML table, to play an 

animated gif picture at Tx,y, to use an arrow pointing at Tx,y etc. 
3 LIMSI deictics demo page : http://www.limsi.fr/Individu/jps/online/diva/limsi/index.htm 
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account when dealing with SL utterances generation. SL functioning is completely 
different from the functioning of vocal languages. In the signing space, signs can have 
variable realizations, depending on the context [4]. Thus, SL utterance synthesis 
implies to design specific spatio-temporal grammar rules, different from the ones in 
use for vocal language generation. Studies on this topic have been conducted for 
English and German SL [22], American SL [23], and LSF [2]. Spatio-temporal rules, 
specific of SL, are considered in the three studies, including a representation of 
signing space more or less accurate, and a set of rules dealing with this representation. 
Approaches in [2] propose a rich representation including various kind of knowledge, 
including cognitive ones. Another issue concerns the coarticulation process that 
influences both manual and non-manual features when a sign is performed in an 
utterance. This phenomenon is a complex process [19] that has not yet been modeled 
accurately so far.  

In the context of the DIVA platform and its animation engine, we handle the 
generation of the SL-utterances as follows: 

- A SL utterance is built by a concatenation of atomic signs. 
- Each sign is displayed as a predefined animation, built using rotoscoping, 

allowing a good realistic rendering. 
- For all signs, the realization of which varies regarding to the context (e.g. 

pointing), we predefine several realizations (e.g. six for pointing; see Fig. 4 left); 
note that their combinatory is limited because we restrict to context-dependent 
utterances. 

- For the coarticulation sign animations, we use one or more intermediary postures 
(chosen dynamically, according to the context): typically, hands are in front of the 
chest for signs (see Fig. 4 middle). 

- Lastly, in order to build animations as realistic as possible, each utterance contains 
prologue and epilogue stances, allowing the virtual signer to begin and to end the 
utterance in a rest posture (Fig. 4 right), denoted ‘rest posture’, where the agent 
fidgets just a little to suggest life. 

                  

Fig. 4. a) Six pointing realizations; b) Two intermediary postures; c) The rest posture 



320 J.-P. Sansonnet, A. Braffort, and C. Verrecchia 

 

Fig. 5. Experiment page of the dynamic presentation of persons by Virtual Signer Elsi 

Fig. 5 presents the Web page supporting the experiment. This experiment is currently 
available online at the Gestural Agents home page [20]. On this page, users can 
interrogate agent Elsi (a male agent ‘Cyril’ is also available ― see Fig. 3-left) about a 
person displayed in the photography in two alternative ways: 1) by clicking on the 
person; or 2) by typing his/her name in the ‘chatbox’ at the bottom of the page. 

In reaction to one of these user’s events, agent Elsi dynamically builds a SL answer 
which requires four different kinds of signs: 

1) One constant sign [SIGNNAME] which means the sign-name4 of a person. 
2) One variable sign, the value of which depends on the user’s request. The SL 

variable [signnamei] contains the actual sign-name of the selected person. From 
left to right in Fig. 5, it can take four values related to the four persons. 

3) Two variable signs, the value of which depends on the spatial context: 
- The variable [pointingi] contains the deictic gesture to be performed in order to 

point to the person selected by the user. Depending on the relative physical 
position of the agent and on the selected person, it can take six different values 
(left/right × top/middle/bottom – see fig. 4.a). 

 

                                                           
4 People of the deaf community are given a sign-name which is a specific gesture denoting the 

person, often related to a salient physical feature or the official name of the person. 
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- The variable [possessivei] is associated with the sign denoting the possessive. 
This sign is quite like a pointing gesture in the direction of “the person who 
possesses something” but with a finger configuration in ‘V’ (the screen shot of 
Elsi in Fig. 5 was taken at the apex of the animation of this sign). Again, 
depending on the relative physical position of the agent and on the selected 
person, it can take several values. 

Then the SL utterance synthesized for the answer has the following static structure, 
(its order corresponds to a usual order in LSF): 

[pointingi] – [SIGNNAME] – [possessivei] – [signnamei] 

To generate a SL utterance with a natural animation, each SL utterance begins by a 
rest posture which is shared by all Virtual Signers. During the animation of a SL 
utterance, signs are performed sequentially without interruption but they start and 
finish at an intermediary coarticulation posture. Consequently we use two additional 
constant coarticulation stances: 

@ = rest posture: both arms are down, along the body; 
o   = intermediary posture: both hands are up in front of the torso. 

To these two postures, we associate two specific animations, as shown Fig. 6: 

[PROLOG] = moves the arms of the character from the @ stance to the o stance; 
[EPILOG]   = moves back the arms of the character from o to @. 

Now the complete structure of a SL utterance U is composed of six animations 
containing three constant signs and three variables signs: 

U = [ @ [PROLOG] o  
              [pointingi]   o [SIGNNAME]  o  [possessivei]  o  [signnamei] 
           o [EPILOG]  o  @ ] 

 

Fig. 6. SL utterance generation, using Rest and Intermediate postures, Prolog and Epilog 
animations 
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When the user puts a request to the agent (clicks on a person or puts a textual request 
in the chatbox) the variables [pointingi], [possessivei] and [signnamei] are instantiated 
in context: computation of the selected person; computation of the relative positions 
person/agent (note that the position of the photography in Fig. 5 is static but the agent 
can be positioned anywhere on the screen); the structure of U is filled; then the 
animation is immediately performed. 

In this experiment, only one structure of SL utterance is taken into account. 
However this structure has been chosen to exhibit space-dependent sign realizations. 
It is a truly dynamic utterance that cannot be generated beforehand (e.g. with the 
video recording of human subjects) but has to be synthesized in real time. 

In a more general manner, this kind of experiment makes it possible to evaluate 
how the contextual variability of the signs can be handled and also to evaluate how 
the coarticulation between the signs is performed. In the near future, our objective is 
to study the issues introduced by @ and o stances (acceptability factor) and their 
impact on the understanding of the message (performance factor). At the moment, we 
are currently undertaking an experimental evaluation of the acceptability of the 
produced animations along with the deaf community (this is heavy work, entailing the 
implementation of an evaluation protocol, the participation of SL interpreters, the 
recording of video sessions etc.). Following this evaluation we will initiate further 
research work about 1) a more generic approach to the issue of the automatic 
computation of various intermediary stances and 2) more general SL structures. 

Although simple, this study is an illustration of the originality of our approach and 
of its technical feasibility (a crucial issue considered the constraints imposed by a 
Web-based environment). Moreover this study involves two major issues in SL 
utterances generation (sign variability and coarticulation). 

5   Discussion 

The current application scenario presented in this paper is very limited but our 
framework can support a larger class of SL utterances. For example, we have been 
able to develop another Web-based experiment (called SignTeacher [21] – available 
at DIVA Web page) where the pedagogical intention is to make the student familiar 
with some LSF grammatical rules such as the spatio-temporal structure of a sentence 
involving an indicating verb. In this experiment, the SL-utterances are more complex: 
they are composed of person names, location names, transport vehicle, transport 
verbs. The way to express an utterance such as “Annelies goes from France to Italy by 
car” requires three steps: 1) to ‘spatialize’ the two countries in the signing space, 2) to 
conjugate the verb in this space, by performing the movement from the departure 
location to the arrival location, 3) to sort the phrases in the utterance in the following 
way: building the spatial context (spatialization of [FRANCE] in the signing space, 
spatialization of [ITALY] in the signing space, person name, transport vehicle) and 
finally expressing the action (agreement of indicating verb). 

However, not all SL utterances can be easily supported by our approach. The first 
limitation relates to the vocabulary size, which is limited. The generation approach, 
which is based on pre-synthesized animation, requires the design of several instances 
for each sign if its realization depends on the context. Thus, only restricted domains 
with few vocabulary and few sentence structures can be deployed. The second 
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limitation is related to coarticulation aspects. As said before, coarticulation is a 
complex process on which we are conducting studies in order to formalize the 
phenomenon (forward and reverse influences across, assimilations, deletions…) [19]. 
It should be possible to add some automatic process in most cases, but this hypothesis 
has to be checked. Another issue is related to the synchronization of the various 
articulators into an utterance. Again, studies must be conducted to evaluate, for 
example, the temporal shift between gaze and spatialised signs, or the duration of 
facial expressions in an utterance. In this case, automatic processes should also be 
designed, still we will have to face the above mentioned vocabulary size limitation. 

Moreover, acceptance ratings by deaf users will provide an actual evaluation of the 
proposed approach. A first informal evaluation provided by deaf colleagues or 
acquaintances is positive. Recently, we have entered a full scale experimental phase 
with a group of deaf subjects. This phase is progressing slowly because we have first to 
set bilingual questionnaires (LSF/French), including a specific one related to the socio-
linguistic profile of the subjects, which is of high importance with this population (level 
of literacy, age of learning of sign language, etc.). The very first results computed from 
a group of four subjects are positives. Most criticisms are related to the pertinence of the 
experiment rather than the technology which is well-accepted. 

6   Conclusion and Perspectives  

In this paper, we have proposed a Web-based architecture for the support of Virtual 
Signers. In our architecture, Virtual Signers are intimately integrated into the DOM 
structure of Web-pages. Based on the technical constraints imposed by this framework, 
we have attempted a particular study about the issue of the generation of SL utterances. 
A solution has been proposed in order to manage 1) the contextual variability of signs 
by using a limited set of spatialized ‘sign instances’ and 2) the coarticulation between 
the signs of a SL utterance which involves intermediary postures. 

This is a first step to the implementation of a Web application dedicated to the 
actual evaluation of both acceptability and performance of understanding among the 
deaf community. If proved successful, we hope to extend this approach and to deploy 
it in the Internet with more complex applications. 
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Abstract. This article presents a study on coarticulation modeling in French 
Sign Language. Our aim is to use this model to provide information to deaf 
people, by the mean of a virtual signer. We propose a definition for 
“coarticulation”, based on an overview of the literature. We explain the 
methodology we have set up: from video corpus design to features correlations 
extractions, through corpus annotations and analysis. We expose first results 
and what are going to be the next steps of this study. 

Keywords: Sign Language, Coarticulation Modeling, Corpus Design, Corpus 
Annotation. 

1   Introduction 

Our team’s researches are focused on French Sign Language (LSF) processing, with 
an interdisciplinary point of view: linguistic and computer scientist. The goal of the 
study we present is to model the coarticulation phenomenon in LSF, to be used in a 
national project, which aim is to provide public information in LSF by 
“coarticulating” synthesized animations of LSF. Our work is in the field of natural 
language processing, and more specifically in the natural language synthesizing. Our 
goal is to address deaf people needs: we want to provide information in LSF that will 
be accepted, meaning understood, by the end users. Therefore we have to design good 
quality animations and coarticulate them as naturally as possible.   

In this article, we present the basis we rely on in order to set up a LSF 
coarticulation model. To be able to create a model based on the real language, we 
have to accurately analyze what occurs when LSF is performed. Thus, we first need a 
video corpus, made with specific rules and containing specific isolated signs and 
utterances. Then, we have to analyze this corpus with a coarticulation point of view, 
and run statistics to extract relevant pieces of information. Lastly, we will establish 
our model thanks to the statistical results, and perform evaluation and validation steps 
within a display information software. 

In section 2, we briefly present what sign language is, and what the constraints of 
this language for our study are. Then, in section 3, we expose a state of the art of the 
coarticulation phenomenon, and explain the definition we have chosen. In section 4, 
we detail our methodology: design of a video corpus, annotation, analysis, and present 
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how we first qualitatively draw conclusions. Lastly, we present our very first results 
and what we intend to do next. 

2   Sign Language 

LSF is a real natural language, as Vocal Languages (VL) are. We specify we deal 
with French SL because there are different Sign Languages (SL) in the world. SL 
differ mainly on lexicon whereas they share many grammar properties [1], [2]. A 
difference between SL and VL is the modality in use: while vocal languages rely on 
audio-phonatory modalities, SL rely on visual-gestural ones. Another difference is 
that SL have their own grammars, which are spatial and temporal [3]. These two 
specificities of SL, LSF included, are to be taken into account for our study because 
they have an impact on the coarticulation phenomenon. 

In SL, a signer uses manual and non-manual features at the same time. Manual 
features are hand’s features: configuration, orientation, movement, etc. Non-manual 
features are facial expression, gaze direction, torso movement, etc. All of these 
features are not always used synchronously, even if they are performed at the same 
time. Therefore our study on coarticulation must take into account that sometimes 
both manual and non-manual features could be modified at the same time but not 
necessarily in the same way, and other times that modifications could be done 
asynchronously [4]. 

3   Coarticulation: A State-of-the-Art 

Generally speaking, coarticulation in SL is what links a sign to another when used in 
an utterance. There are several studies in SL synthesis research field that do not take 
into account the coarticulation in all its complexity: they just concatenate one isolated 
sign or utterance to another one [5], [6], [7]. As for VL, the resulting complete 
utterance is not easy to understand, and sometimes it could not be understand at all. 
Moreover, because SL deals with the use of many features simultaneously, there 
could be misunderstandings if you don’t consider a minima the coarticulation 
phenomenon. There are several reasons that could explain why this phenomenon 
hasn’t been much studied in SL. One reason is that it is a very recent research field, 
even more for the synthesis subfield. Comparing with studies in VL, we could say 
that there is a gap of fifty years in research. A second reason is that the linguistic 
point of view on SL determines if you take into account all the complexity of 
phenomenon of coarticulation or not: if you consider that SL is only performed by the 
hands or if you consider the whole upper body, the complexity of the phenomenon is 
multiplied.  

The coarticulation phenomenon has been studied for many years for VL [9], but it 
is a very new field of research for SL [10]. We have presented how the coarticulation 
phenomenon is defined in spoken and signed languages both in recognition and in 
synthesis / generation in [8]. Our choice for a definition of what we consider as 
“coarticulation” has been made after studying several research fields of knowledge. 
Signs are most of the time different when they are performed within an utterance as 
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when they are performed isolated. Modifications could be addition, alteration, or 
deletion, and may occur on one or more manual or non-manual feature. They could 
take place at the beginning, but also at the end, and inside the sign. All these aspects 
constitute our definition of what “coarticulation” in SL is. 

In literature, both for speech or gesture, there are two main concepts that describe a 
modification of one given “item” when performed within an utterance compared to its 
performance isolated: coarticulation and movement epenthesis. 

In speech recognition and synthesis research fields, numerous articles about 
coarticulation effects are available. One relevant piece of information about 
coarticulation in speech is that, according to [11], there can be up to 6 phonemes 
before and after one phoneme P that can be influenced and modified because of P. 
Coarticulation has been defined as an “adjustment of all phoneme instantiations to 
their current neighbors” in [9]. More recently, coarticulation has been defined as a 
superficial variation of phonemes when speaking several following phonemes in 
opposition to isolated phonemes, and includes epenthesis, which was considered as 
the addition of one or more sounds to a word [12]. Thus, coarticulation implies 
modification of phonemes, and epenthesis implies addition of phonemes. 

In SL recognition, coarticulation is defined in [13] as when a gesture influences 
another one, in [14] as the changing of signs when they overlap, and more accurately 
in [15] as when the ending of one sign and the beginning of the following are 
modified. Epenthesis is defined in [15] as the addition of a movement between two 
signs. [16] considers that it is a phenomenon that has no semantic meaning, whereas 
[10] declares that it is a movement that modifies signs and that have to be modeled.  

In SL synthesis research field, as far as we know, there is no definition of what 
coarticulation is, and there are no studies on modeling it. 

There are two major phenomena, coarticulation and movement epenthesis, which 
definitions are quite widespread and accepted in vocal research field; but when 
applied to SL we can notice that researchers don’t agree on the same definition for 
coarticulation. We intend to study the coarticulation phenomenon in the largest 
possible point of view, thus we have chosen to keep the most generic definition. 
Therefore, we name “coarticulation” the modifications that occur between two signs 
and inside a sign, either it is addition, modification or deletion of features, when these 
signs are performed in utterances in comparison as when they are performed isolated. 

Now we have specified our definition of coarticulation in SL, in the next section 
we explain the methodology we have set up to study it. 

4   Methodology 

The methodology we use has been described in detail in [8]. We want our model to be 
based on real SL, used by deaf people. We do not want to rely on a so-called “signed 
language” that would be based on syntax from spoken language, resulting in a mix of 
languages which leads to misunderstandings and false information [17]. Therefore, 
we rely on filmed sign language utterances and isolated signs from deaf people and 
analyze these videos in order to design our coarticulation model. We describe below 
each step we go through: firstly we design and create a video corpus, secondly we 
annotate it, thirdly we analyze these annotations, and fourthly we set up rules that will 
be the basis of our model. 



328 J. Segouat and A. Braffort 

4.1   Preliminaries 

There are three important points regarding our study and how we present it. First 
point is here we use written English to detail samples of our corpus, whereas in other 
studies glosses are used. In both cases (using written English or glosses) it implies 
that the chunks (pieces of utterance) we present do not fit exactly what is performed 
in LSF. For example, the chunk “your attention please” is performed in LSF as “pay 
attention”, and sometimes “pay attention, take care”). Second point is that addition or 
deletion of signs in a complete utterance, if compared to the same utterance created by 
linking isolated signs or chunks, could happen. This is because signs are very context-
dependant. For example, the utterance “stay away from the edge of the platform” 
could not be split in “stay away” and “the edge of the platform” (for example, signs 
meaning “stay away” would be totally different in the utterance “stay away from the 
station”). Moreover there are some parts that, regarding our overall aim to provide 
LSF in railway station, would not be chunked. For example, the utterance “wait for 
the train to stop before getting in” does not contain any part that is going to be reused 
in another utterance, thus we won’t split it. Nevertheless, the whole utterance is going 
to be used in several different complete utterances (for example: “train is under 
cleaning”, “train is moving”, etc.). The last point is that we do not intend to provide a 
coarticulation model for SL that could be use with the whole language in every 
situation. We focus on one signer, and one language domain (train transportation), 
because the very first aim of our model is to be used in a specific application, which 
requires a unique model of a signer for a unique language domain.  

4.2   Corpus Creation 

We have created a video corpus of LSF according to our final goal: providing 
information to deaf people, using coarticulated signs and chunks. This implies two 
major constraints: to be sure to provide the same information the hearing people have, 
and to provide this information in real SL. For the first constraint, we have had the 
help of a group of deaf persons who works on LSF linguistics in relation with a 
linguistic research group. These deaf persons are our LSF linguistic experts: they have 
decided, using strict criteria, what will be in the corpus, based on the vocal version of 
the information. For the second constraints, thanks to these experts, we are ensured 
that our corpus contains grammatically correct SL utterances, and correct SL lexicon. 
We still need to coarticulate these signs so that deaf people will understand them.  

The purpose of our corpus is twofold. First we want to display information by the 
mean of a virtual signer. The technique of rotoscoping is used to make the 3D 
animations based on videos. That has been explained in [18], and we won’t address 
this point in this article. Second, we intend to use our corpus in order to study how 
coarticulation occurs. This means that we have to record both isolated and in-context 
signs, to find out how a sign could be modified depending on the context it is 
performed in. Once the LSF expert group has decided what signs were going to be 
performed, we have cut out the utterances regarding what could change (named 
“variable parts”, that are isolated signs, and chunks of utterances). 

We want to provide information in railway stations that could be, for instance, 
about the departure of a train: “Your attention please, platform 10, due to a technical 
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problem, TGV trains number 1234 and 4567, coming from Strasbourg and Reims, 
will arrive at 1.30 pm” (here translated in English, but in French in our corpus). There 
are obvious variable parts in this sentence: platform number “10”, train numbers 
“1234” and “4567”, names of the stations where they come from “Strasbourg” and 
“Reims”, and arrival time “1.30 pm”. There also are some parts that undergo changes 
depending of the context they are performed in. For example, the parts “platform 10”, 
“your attention please”, “TGV” (which is a type of train), “coming from Strasbourg 
and Reims”, and “will arrive at 1.30 pm”, could be used in other sentences: these 
other sentences could announce the delay of a train, or warn the people to stay away 
from the edge of the platform, etc. For instance, in the complete utterances “Your 
attention please. Platform 10, due to a technical problem, TGV trains number 1234 
and 4567, coming from Strasbourg and Reims, will arrive at 1.30 pm.”, and “Platform 
10, TGV train number 4567 going to Reims is leaving. Beware of the closing doors”, 
we can notice the reuse of the chunks “Platform 10”, “4567”, and “Reims”. Thus, 
there are two kind of variable parts: ones due to information (schedule, name of the 
platform, etc. that followed the variable parts of the vocal information system), and 
others due to the specific linguistic structure of SL (chunks of coarticulated utterances 
are not the same as in the vocal information system). 

After having established what we will constitute our video corpus, we have 
recorded a first one. It does not contain all the parts that will be used in the display 
information system: we want to build a first model, and evaluate it, so that we could 
eventually modify our corpus design methodology before filming the whole corpus. 
We have chosen a deaf translator (from written text to SL and vice and versa) who 
works in WebSourd1 Company to be filmed. This person is used to perform SL in 
front of a camera (her work is to translate written news in LSF, to be displayed on a 
Web site), thus we are ensured that the quality of the signing for the purpose of our 
corpus is of high quality. Technically, we have used two cameras, one in front, and 
another on the side of the signer. This allows us to have optimal points of view on the 
manual and non-manual features, and avoids hand overlapping and face hiding behind 
the hands. We have recorded both isolated signs (Figure 1, left), chunks, and, 
complete and varying utterances including these signs (Figure 1, right). 

    

Fig. 1. Video corpus: sign [10]LSF performed isolated on left side, in an utterance on right side 

Our corpus is made up of: 

• complete utterances: warnings about different things (train is still moving, is 
entering, etc.), the departure (time, platform number, etc.) of a train, the 
arrival (time, platform number, etc.) of a train, the delay of a train; 

                                                           
1 http://www.websourd.org/ 
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• chunks: platform plus number or letter of the platform, reasons for a problem 
(delay, cancellation, etc.), and parts of utterances; 

• signs: digits, letters, city names, hours. 

The signs and the chunks are used in different complete utterances: for example, 
digits could be used for schedule, platform or train number, letters could be used for 
platform indication or city that has no sign name (this is called “fingerspelling”: 
expressing a word using a letter by letter spelling, made only by the hand), the reason 
of a delay could be followed by a train cancellation or a platform modification, etc.  

4.3   Corpus Annotation 

Once the corpus has been recorded, we have annotated it thanks to Anvil annotation 
software [19]. This software allows displaying the video (Figure 2, (1)), and an 
“annotation board” (Figure 2, (2)) containing the annotations. 

 

Fig. 2. ANVIL annotation software, with two main frames: the video (1) we are annotating, and 
the annotation board (2) displaying labeled temporal segmentations of what phenomenon we 
describe 

We have annotated both isolated signs, chunks, and complete utterances. The 
annotation consists of temporally labeling segments of manual and non-manual 
features. These segmentations are made following a set of criteria, which allow 
analyzing how an isolated sign or a chunk is modified, in comparison as when they 
are performed in a complete utterance. At the time we are writing this paper, we have 
annotated seventeen complete utterances and sixty-nine isolated signs and isolated 
chunks. The annotations were firstly made on the gaze and eye aperture (Figure 3, 
(1)), and hand configurations (Figure 3, (3a) for right hand, (3b) for left hand). We 
have first decided to focus only on these features, in order to obtain a wide point of 
view of what occurs. In a next step we will annotate more features. 

The hand configuration annotations are made on the basis of [3] (who has 
described 49 different hand configurations). We have chosen this annotation system 
because it allows us a visual view of what hand configurations are. If we do not found 
the configuration in the basic list, we annotate the configuration with what we think is 
 



 Toward Modeling Sign Language Coarticulation 331 

 

Fig. 3. Annotation sample: eye aperture (1), sign (2), right (3a) and left (3b) hand configuration 

the closest hand configuration described in [3], with the addition of comments to 
precise what exactly the hand configuration looks like in our corpus. In a first time we 
have tried to make our comment as free as possible, and now we have a set of 
comments that we use each time we need: this set of comments correspond to a set of 
hand configurations that is missing in [3]. 

We have noticed that, for the gaze, only few locations in the signing space were 
used, and now we have labeled them with letters. For eye aperture, we have used 
three values: “open”, “close”, and “half”; the “close” value is used when the eyes are 
totally closed, and the “open” value is used when the eyes are wide open, while the 
“half” value is used for the remaining time of the annotation. We here have to be 
more accurate, and take into account the eyebrows rising: it is hard to say if eyes are 
wide open or half open while the eyebrows are raised.  

We have annotated signs with a gloss (Figure 3, (2)). It allows us to have an idea 
whether a sign is shortened (or extended) when it is performed isolated or in a 
complete utterance. We have identified the beginning, and the ending of the sign, 
depending on several features (both manual and non manual features). We consider 
that the preparation and the retractation phase are not part of the sign. This 
segmentation is done upon the basis of our expertise of LSF and the context of the 
study: our criteria are going to be formalized in a near future. 

4.4   Annotations Analysis Method 

When the annotation of isolated signs and chunks, and complete utterances is done, 
we display them all in ANVIL. 

This display of all annotations (Figure 4, (2)) simultaneously with a composition of 
the corresponding videos (Figure 4, (1)) allows us to easily see differences between 
features of one complete utterance, and features of signs and chunks that constitute it. 

In the example above (Figure 4), we have displayed all the annotations we have 
made, both on the complete utterance “Your attention please, platform 10, due to a 
technical problem, TGV trains number 1234 and 4567, coming from Strasbourg and 
Reims, will arrive at 1.30 pm” (Figure 4, (A)), and on the chunks “your attention 
please” (Figure 4, (B)), “platform 10” (Figure 4, (C)), “due to a technical problem” 
(Figure 4, (D)), “1234”, “4567”, “Strasbourg”, “Reims”, and “1.30 pm”. It means that 
at the same time the utterance is played, we the video of the first chunk B is displayed 
at the top right side, and then the chunk C is displayed at the bottom right side  
(Figure 4, (1) shows second and third chunks C and D, respectively at the bottom and 
at the top right side). They are not displayed at the same location because chunks have 
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Fig. 4. Simultaneous display in Anvil: complete utterance (A), and corresponding chunks 
(B)(C)(D); both in video (1) and in annotations (2) 

a different duration than in the complete utterance, and we want to see exactly what 
modifications occur within and at the border of the chunk. Thus we provide an 
alternative display of each chunk at the top and the bottom right side.  

In our example, we can notice that there is a difference in the facial expression, and 
the location of the hands: in the chunk (C), facial expression is less stressed, and hand 
location is a little bit on the right of the face, while in the utterance (A), facial 
expression tends to be more concentrated, and hand location is in front of the face. 

4.5   Process for Extracting Results 

Thanks to the display we have decided, we can qualitatively analyze what happens 
when isolated signs and chunks are coarticulated in a complete utterance. We have 
used some facilities of the ANVIL tool, like colored and graphical annotations. This 
help us to gather visual information about modifications occurring both in a complete 
utterance as opposed to simple linked isolated ones, and between complete utterances. 
We had a look of each hand configuration, gaze direction and eye blinking. 

We have firstly looked in the complete utterance what were happening at the 
beginning and the end of the corresponding isolated signs and chunks. Then we had a 
look at what was occurring in each isolated signs and chunks in comparison of what 
was in the corresponding part of the complete utterance. Lastly we went deeper into 
details by examining what took place between each signs of both isolated and 
corresponding chunk of one complete utterance. More concretely, if the complete 
utterance was the one listed above (“Your attention please, platform 10, due to a 
technical problem, TGV trains number 1234 and 4567, coming from Strasbourg and 
Reims, will arrive at 1.30 pm”), we first had a look at the beginning and the end of 
each part “Your attention please”, “platform 10”, “due to a technical problem”, 
“1234”, “4567”, “Strasbourg”, “Reims”, “1.30 pm”. Then we had a focus inside each 
isolated signs and chunks, and compare it to what occur in the corresponding part of 
the complete utterance. Lastly, we get deeper into details by looking at “your 
attention”, “platform”, “10”, “1000”, “200”, “34”, etc. 

We now have qualitative (visual) results. Statistical analyses are going to be 
performed in a further step, allowing accurate comparison between isolated signs and 
chunks, and signs and chunks in complete utterances. We will then be able to 
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determine very accurately what the modifications are and how they occur depending 
on the context. 

There is one particular issue regarding our statistics. The annotation process is 
always evolving: when a long utterance is annotated, the annotations criteria slightly 
change from the beginning to the end of the process. Furthermore, annotations are 
made by a human person, which means the result cannot be objective. Thus, we have 
to balance the future statistical results regarding how the data were obtained. 

5   Results and Prospects 

5.1   Very First Results 

We here present qualitative results from our annotations, thus we currently cannot 
provide numerical data about what we found (results of our statistics are going to be 
revealed in the near future). We explain what the phenomena we have observed are, 
about hand configurations, and eyes direction and blink. 

Both for the dominant (the right hand for right-handed person) and the non-
dominant hand, the duration of the configuration is shorter in the complete utterance. 
As the sign is sometimes done quite faster in the complete utterance, it seems that 
what takes place is a global acceleration of the chunk. Moreover, there are complete 
utterances where the duration of the hand configuration is shortened at the beginning 
and at the end of the equivalent chunk. For example, in the utterance “Platform 27, 
stay away from the edge of the platform. Beware of a passing train. Platform 27, stay 
away from the edge of the platform”, the hand configuration duration for the 
beginning and the end of “stay away from the edge of the platform” are shortened 
when they are performed in the complete utterance. 

Furthermore, depending on the meaning of the sentence, modifications of same 
chunks or isolated signs are not the same. On one hand, an utterance informing that a 
train is arriving from one city, at one platform, at one hour, seems to be performed 
with shortened hand configuration, whereas time length between each hand 
configuration is extended. On another hand, in an utterance informing of a delay, or a 
problem, hand configurations and time length between each hand configuration are 
shortened. One interpretation could be that in the second type of utterance, there is a 
hurry to provide the information. 

Another important thing to be noticed is that some hand configurations are in the 
chunks but no longer performed in the complete utterance. 

We have noticed that the gaze direction performs a pointing before the hand move 
to a location that is going to be used by the end: this is due to context-dependence of 
this feature. For example, in the chunk “Platform A” the signer’s gaze still point 
straight forward, while in the complete utterance “Platform A, the train TGV coming 
from …”, the signer points his gaze to the location the hand are going to do the sign 
for “platform” and then get back straight forward to sign the letter of the platform. 

Regarding eye’s blinking, there are some complete utterances in which, if we just 
cut into separate pieces the utterance depending on the eyes’ blink, we get the same 
chunks that we have decided to record in our corpus. This phenomenon is to be linked 
to the theory [20], which establishes that meaning units in sign language are (often) 
separated by a blink of the eyes. 
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Moreover, in several complete utterances, eyes blink after some corresponding 
chunks and after finger spelling or numbers performance. 

5.2   To Come 

Next step of our study is to annotate other features (hand location and orientation, 
torso movements, facial expressions), and on another hand to go deeper into 
annotations details by using Johnson & Liddell description model (for hand 
configurations, placements, movements, and orientations) [21]. Then we are going to 
confirm the very first results we have obtained: we are going to look at the 
phenomenon we have outlined, in a bigger corpus (up to eighty utterances with a total 
of at minimum hundred and two isolated signs and more than hundred chunks). An 
evaluation will be conducted, both in laboratory and in the display information 
system. 

6   Conclusion 

In this article we have presented our study on coarticulation in LSF, and some first 
results. This study is currently based on one signer in a restricted language domain, 
because of our short term aim, which is providing information in railway station. Our 
model will be a first step in a longer time research that will lead us to set up a more 
generic coarticulation model, but here we do not address this issue. We have chosen a 
generic definition for coarticulation in sign language, explained that this is an 
important research problem because we want to provide understandable information 
in LSF, and how we intend to study it. We have presented a several steps 
methodology: creation of a video corpus of LSF, annotation of this corpus with a 
specific software, and analysis of these annotations. This analysis has provided us 
with first results that are the basis for the design of a first coarticulation model. We 
have noticed hand configurations and eye direction and blinking modifications at the 
beginning, the end, and inside signs and chunks when performed in complete 
utterances. 

We yet need to get deeper into details of our annotations, in order to set up rules 
that will constitute the coarticulation model. This model will be validated and 
improved by analyzing a bigger corpus (involving more signers), and by being 
implemented in a software application: the display information system in LSF. We 
intend to conduct an evaluation of our first model in one application that will simulate 
a display information system. We will implement our rules in this application, and 
provide an interface to adjust these rules to what the users will consider as 
understandable information in real LSF.  
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Stößel, Christian 269
Sypniewski, Anthony 73

ten Holt, Gineke A. 301
Theune, Mariët 195
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