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Abstract. Automatically mapping natural language semantics into pro-
gramming languages has always been a major and interesting challenge
in Computer Science. In this paper, we approach such problem by carry-
ing out mapping at syntactic level and then applying machine learning
algorithms to derive an automatic translator of natural language ques-
tions into their associated SQL queries. To build the required training
and test sets, we designed an algorithm, which, given an initial corpus
of questions and their answers, semi-automatically generates the set of
possible incorrect and correct pairs.

We encode such relational pairs in Support Vector Machines by means
of kernel functions applied to the syntactic trees of questions and queries.
The accurate results on automatic classification of the above pairs above,
suggest that our approach captures the shared semantics between the two
languages.

Keywords: Natural Language Processing; Kernel Methods; Support
Vector Machines.

1 Introduction

The design of models for automatically mapping natural language semantics
into programming languages has been always a major and interesting challenge
in Computer Science since it would have a direct impact on industrial and social
worlds. For example, accessing a database requires machine-readable instructions
that common users are not supposed to know. Ideally, they should only pose a
question in natural language without knowing either the underlying database
schema or any complex machine language. The development of natural language
interfaces to databases (NLIDBs) that translate the human intent into SQL
instructions is indeed a classic problem, which is becoming of greater importance
in today’s world.

This could be addressed by finding a mapping between natural language and
the database programming language. If we knew how to convert natural lan-
guage questions into their associated SQL queries, it would be straightforward
to obtain the answers by just executing a query. Unfortunately, previous work in
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Natural Language Understanding has shown the inadequacy of logic and rule-
based approaches to this problem; in contrast shallow and statistical methods
appear to be promising.

In this paper, we exploit mapping at syntactic level between the two languages
and apply machine learning models to derive the shared shallow semantics. Such
approach requires the design of a dataset of relational pairs containing syntactic
trees of questions and queries. For this purpose, we used syntactic parsers to obtain
natural language and SQL trees and we designed an effective algorithm, which,
given an initial corpus of correct question and query pairs, semi-automatically gen-
erates the labeled set of possible correct and incorrect instances.

We used the above dataset to train classifiers based on Support Vector Ma-
chines and kernel functions over pairs. Such functions are combinations of tree
kernels applied to syntactic trees and linear kernels applied to bag-of-words. The
cross-validation experiments on the task of selecting correct queries given a target
set of questions show that our best kernel improves the baseline model of about
32%. The latter is the typical approach based on a linear kernel applied to the
union of the bag-of-words from question and query texts. The most interesting
finding is that the product between the two kernels representing questions and
queries provides feature pairs, which can express the relational features between
the syntactic/semantic representation of the two languages.

In the remainder, Section 2 introduces the problem of mapping questions into
queries and illustrates the idea of our solution whereas Section 3 describes the
technology to implement it, i.e. kernel methods. Section 4 shows our proposed
algorithm to generate a training set of question and query pairs, Section 5 dis-
cusses our results and finally, Section 6 draws conclusions.

2 Automatic Mapping of Questions into SQL Queries

Studying the automatic mapping of questions into SQL queries is important
for two main reasons: (a) it allows to design interesting applications based on
databases and (b) it offers the possibility to understand the role of syntax in de-
riving a shared semantics between a natural language and an artificial language.

Given the complexity of theoretically modeling such relationship we use a sta-
tistical and shallow model. We consider a dataset of natural language questions
N and SQL queries S related to a specific domain/database1 and we automati-
cally learn such mapping from the set of pairs P = N × S. More in detail, (a) we
assume that pairs are annotated as correct when the SQL query answers to the
question and incorrect otherwise and (b) we train a classifier on the pairs above
for selecting the correct queries for a question. Then, to map new questions in
the set of the available queries, (c) we rank the latter by means of the question
classifier score and select the top one. In the following we provide the formal
definition of our learning approach.
1 We assume that for any database there is a core set S of queries, which are frequently

asked. S should at least represent the syntactic structures of the most part of the
frequent queries.
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Fig. 1. Question/Query Syntactic trees

2.1 Pair Ranking

The problem of assigning a query (with its result) to a question, can be formally
described as the following ranking problem: (i) given a question n ∈ N and a
set of possible useful queries S, we generate the set of possible pairs P (n) =
{〈n, s〉 : s ∈ S}; (ii) we classify them with an automatic categorizer; (iii) we use
the score/probability output by such model to rank P (n); (vi) we select the top
ranked pair.

For example, let us consider question n1:“Which states border Texas?” and
the queries s1: SELECT state name FROM border info WHERE border=’texas’ and
s2: SELECT COUNT(state name) FROM border info WHERE border=’texas’. Since s1

is a correct and s2 is an incorrect interpretation of the question, the classifier
should assign a higher score to the former, thus our ranker will output the 〈n1, s1〉
pair. Note that both s1 and s2 share three terms, state, border and texas, with n1

but 〈n1, s2〉 is not correct. This suggests that we cannot only rely on the common
terms but we should also take into account the syntax of both languages.

2.2 Pair Representation

The aim of our research is to derive the shared shallow semantics within pairs by
means of syntax. Thus we represent questions and queries using their syntactic
trees2, as shown in Figure 1: for the question (a) we use the output of the
Charniak’s syntactic parser [2], whereas for the query (b) we use a modification
of the SQL derivation tree.

To build the SQL tree we implemented an ad-hoc parser that follows the
syntactic derivation of a query according to our grammar. Since our database
system embeds a MySQL server, we use the production rules of MySQL, shown
at the top of Figure 2, slightly modified to manage punctuation, i.e. rules 5*, 6*
and 20* related to comma and dot, as shown at the bottom.

More in detail, we change the non-terminals Item and SelectItem with the
symbol • to have an uniform representation of the relationship between a table
and its column in both the SELECT and WHERE clauses. This allows for matching
between the subtrees containing table, column or both also when they appear in
different clause types of two queries.
2 Early work on the use of syntax for text categorization were based on part-of-speech

tags, e.g. [1]. The efficiency of modern syntactic parsers allows us to use the complete
parse tree.
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Fig. 2. Modified MySQL Grammar

It is worth noting that rule 20* still allows to parse nested queries and that the
overall grammar, in general, is very expressive and powerful enough to express
complex SQL queries involving nesting, aggregation, conjunctions and disjunc-
tions in the WHERE clause.

Note that, although we eliminated comma and dot from the original SQL
grammar, it is still possible to obtain the original SQL query by just performing
a preorder traversal of the tree.

To represent the above structures in a learning algorithm we use tree kernels
described in the following section.

3 Tree Kernels

Kernel Methods refer to a large class of learning algorithms based on inner prod-
uct vector spaces, among which Support Vector Machines (SVMs) are one of the
most well-known approaches. The main idea is that the parameter model vector
w generated by SVMs (or by other kernel-based machines) can be rewritten as

∑

i=1..l

yiαixi, (1)

where yi is equal to 1 for positive and -1 for negative examples, αi ∈ � with
αi ≥ 0, ∀i ∈ {1, .., l} xi are the training instances.

Therefore we can express the classification function as

Sgn(
∑

i=1..l

yiαixi · x + b) = Sgn(
∑

i=1..l

yiαiφ(oi) · φ(o) + b), (2)

where x is a classifying object, b is a threshold and the product K(oi, o) =
〈φ(oi) · φ(o)〉 is the kernel function associated with the mapping φ.
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Note that it is not necessary to apply the mapping φ, we can use K(oi, o)
directly. This allows, under the Mercer’s conditions [3], for defining abstract
functions, which generate implicit feature spaces. The latter allow for an easier
feature extraction and the use of huge feature spaces (possibly infinite), where
the scalar product (i.e. K(·, ·)) is implicitly evaluated.

In the remainder of this section, we illustrate some kernels for structured
data: the Syntactic Tree Kernel (STK) [4], which computes the number of syn-
tactic tree fragments and the Extended Syntactic Tree Kernel (STKe) [5], which
includes leaves in STK. In the last subsection, we show how to engineer new
kernels from them.

3.1 Syntactic Tree Kernel (STK) and Its Extension (STKe)

The main underlying idea of tree kernels is to compute the number of common
substructures between two trees T1 and T2 without explicitly considering the
whole fragment space. Let F = {f1, f2, . . . , f|F|} be the set of tree fragments
and χi(n) an indicator function equal to 1 if the target fi is rooted at node n
and equal to 0 otherwise. A tree kernel function over T1 and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

Δ(n1, n2), (3)

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively, and
Δ(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

The Δ function is equal to the number of common fragments rooted in nodes
n1 and n2, and thus, depends on the fragment type. We report its algorithm for
the evaluation of the number of syntactic tree fragments (STFs) [4].

A syntactic tree fragment (STF) is a set of nodes and edges from the original
tree, which is still a tree and with the constraint that any node must have all
or none of its children. This is equivalent to state that the production rules
contained in the STF cannot be partial.

To compute the number of common STFs rooted in n1 and n2, the STK uses
the following Δ function [4]:

1. if the productions at n1 and n2 are different then Δ(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf

children (i.e. they are pre-terminal symbols) then Δ(n1, n2) = λ;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-

terminals then Δ(n1, n2) = λ
∏l(n1)

j=1 (1 + Δ(cn1(j), cn2(j))), where l(n1) is
the number of children of n1, cn(j) is the j-th child of node n and λ is a
decay factor penalizing larger structures.

Figure 3.a shows some STFs of the left tree in Figure 1. STFs satisfy the con-
straint that grammatical rules cannot be broken.

STK does not include individual nodes as features. As shown in [5] we can
include at least the leaves, (which in constituency trees correspond to words) by
simply inserting the following step 0 in the algorithm above:
0. if n1 and n2 are leaf nodes and their labels are identical then Δ(n1, n2) = λ;
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Fig. 3. Feature spaces for the tree pair in Figure 1 a) joint space STK+STK b)
Cartesian product STK×STK

3.2 Kernel Engineering

Kernel engineering [6,7,8] can be carried out by combining basic kernels with
additive or multiplicative operators or by designing specific data objects, e.g.
the tree representation for the SQL syntax, to which standard kernels are ap-
plied. Since our data is a set of pairs, we need to represent the members of
a pair and their interdependencies. For this purpose, given two kernel func-
tions, k1(., .) and k2(., .), and two pairs, p1 = 〈n1,s1〉 and p2 = 〈n2,s2〉, a first
approximation is given by summing the kernels applied to the components:
K(p1, p2) = k1(n1, n2) + k2(s1, s2). This kernel will produce the union of the
feature spaces of questions and queries (e.g. see [9,10]). For example, the explicit
vector representation of the STK + STK space of the pair in Figure 1 is shown
in Figure 3.a. The Syntactic Tree Fragments of the question will be in the same
space of the Syntactic Tree Fragments of the query.

In theory a more effective kernel is the product k(n1, n2) × k(s1, s2) since it
generates pairs of fragments as features, where the overall space is the Cartesian
product of the used kernel spaces. For example Figure 3.b shows pairs of STF
fragments, which are essential to capture the relational semantics between the
syntactic tree subparts of the two languages (see [11]). In particular, the first
fragment pair of the figure may suggest that a noun phrase composed by state
expresses similar semantics of the syntactic construct SELECT state name.

As additional feature and kernel engineering, we also exploit the ability of the
polynomial kernel to add feature conjunctions. By simply applying the function
(1 + K(p1, p2))d, we can generate conjunction up to d features. Thus, we can
obtain tree fragment conjunctions and conjunctions of pairs of tree fragments.

4 Dataset Generation

In the previous sections we have defined models to automatically learn the map-
ping between questions and queries. To apply such models we need training
data, i.e. correct and incorrect pairs of questions and queries. Since acquiring
such kind of data is the most costly aspect of our design, we should generate
the learning set in a smart way. In this perspective, we assume that, in real
world domains, we may find examples of questions and the associated queries
answering to their information need. Such pairs may have been collected when
users and operators of the database worked together for the accomplishment of
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some tasks. In contrast, we cannot assume to have available pairs of incorrect
examples, since (a) the operator tends to just provide the correct query and (b)
both users and operators do not really understand the use of negative examples
and the need to have unbiased distribution of them.

Therefore, we need techniques to generate negative examples from an initial
set of correct pairs. Unfortunately, this is not a trivial task since when mixing
a question and a query belonging to different pairs we cannot assume to only
generate incorrect pairs, e.g. when swapping x with y in the two pairs 〈Which
states border Texas?, x〉 and 〈What are the states bordering Texas?, y〉, we obtain
other two correct pairs.

To generate a gold standard dataset we would need to manually check this
aspect thus we design an algorithm to limit the human supervision. It consists
of the following steps:

– Generalizing question and query instances: substitute the involved concepts
in questions and their related field values in the SQL queries by means of
variables (expressing the category of such values).

– Clustering the generalized pairs: intuitively each cluster represents the infor-
mation need about a target semantic concept, e.g. “bordering state”, com-
mon to questions and queries. This requires a limited manual intervention.

– Pairing questions and queries of distinct clusters, i.e. the Cartesian product
between the set of questions and the set of queries belonging to the pairs
of a target cluster. This allows to find new positive examples that were not
present in the initial corpus.

– Final dataset annotation: consider all possible pairs, i.e. Cartesian product
between all the questions and queries of the dataset, and annotate them as
negatives if they have not been annotated as positives in the previous step.

We use the GeoQueries2503 corpus translated by Popescu et al. [12] as our
initial dataset. It consists of 250 pairs of NL questions and SQL queries over a
small database about United States geography. In the following we describe in
detail all the steps through which the final dataset is generated.

4.1 Pair Generalization

Our approach to automatically annotate pairs relies on automatically detecting if
swapping the members of different pairs produces correct or incorrect examples.
For this purpose, we detect similar syntactic structures of questions and queries
by generalizing concept instances with variables.

In a database concepts are represented as tables’ fields. These are used in SQL
to select data satisfying some conditions, i.e. concept constrained to a value.

Typically these values are natural language terms so we substitute them with
variables if they appear in both questions and queries. For example, consider
s1 in Figure 1. The condition is WHERE state name = ’Texas’ and ’Texas’ is

3 http://www.cs.utexas.edu/users/ml/nldata.html
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Fig. 4. Example of the initial corpus (A, on the left) and the generalized version (B,
on the right). The latter is divided in two clusters (identified by the two brackets).

the value of the concept state name. Since ’Texas’ is also present in the related
question we can substitute it with a variable VARstate (one variable for each dif-
ferent concept). Our assumption is that questions whose answer can be retrieved
in a database tend to use the same terms stored in the database.

An example of the generalization phase is shown in Figure 4. On the left
there is a set of four pairs containing four distinct questions and three related
queries (connected by the lines) whereas on the right four generalized pairs are
shown. We note that, after substituting instances with variables, both n1 and n3

are generalized into n′
1, which is thus paired with two distinct SQL queries, i.e.

s′1 and s′2. This is not surprising since there can be multiple SQL queries that
correctly retrieve an answer to a NL question. In this case we define them to
be semantically equivalent, i.e. s′1 ≡ s′2. At the same time it is possible to write
many NL questions that map to the same query.

It is worth noting that with the generalization process, we introduce redun-
dancy that we eliminate by removing duplicated questions and queries. Thus,
the output dataset is usually smaller than the initial one. However the num-
ber of training examples will be larger, not only because of the introduction of
negatives but also due to the automatic discovering of new positives.

4.2 Pair Clustering and Final Dataset Annotation

Once the pairs have been generalized, we cluster them according to their seman-
tic equivalence so that we can automatically derive new positive examples by
swapping their members. We define semantically equivalent pairs those correct
pairs with (a) equivalent NL questions or (b) equivalent SQL queries. Given
that two equivalent queries should retrieve the same result set, we can automat-
ically test their equivalence by simply executing them. Unfortunately, this is just
a necessary condition (e.g. ’Texas’ can be the answer of two different queries)
therefore we manually evaluate new pairings satisfying this condition.

Note that automatically detecting semantic equivalence of natural language
questions with perfect accuracy is a hard task, so we consider as semantically
equivalent either identical questions or those associated with semantic equivalent
queries. We also apply transitivity closure to both members of pairs to extend
the set of equivalent pairs.
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Fig. 5. Clustering Algorithm

For example, in Figure 4.b s′1 and s′2 retrieve the same result set so we verify
that they are semantically equivalent queries and we assign them to the same
cluster (CL1), i.e. information need about the large cities of a state (with a
population larger than 150,000 people). Alternatively, we can also consider that
n′

1 and n′
2 are both paired with s′2 to derive that they are equivalent, avoiding

the human intervention. Concerning s′3, it retrieves a result set different form
the previous one so we can automatically assign it to a different cluster (CL2),
i.e. involving questions about any city of a state. Note that, once n′

2 is shown
to be semantically equivalent to n′

1 we can pair them with s′1 to create the new
pair highlighted with the dashed relation 〈n′

2,s
′
1〉. Thus the negative instance set

is 〈n′
3, s

′
1〉, 〈n′

3, s
′
2〉, 〈n′

1, s
′
3〉, 〈n′

2, s
′
3〉.

The above steps are formally described by the algorithm in Figure 5. It takes as
input the generalized dataset as a list of correct pairs I ⊂ {〈n, s〉 : n ∈ N , s ∈ S}
and returns a matrix M storing all positive and negative pairs P = N × S. M
is obtained by (a) dividing I in k clusters of semantically related pairs and (b)
applying the transitive closure to the semantic relationship between member
pairs. More in detail, we first initialize its entries with a negative value, i.e.
M [n, s] = −1∀n ∈ N , s ∈ S.

Second, we group together each 〈n, s〉 and 〈n′, s′〉 ∈ I, if at least two of their
members are identical. If not we test if the two query members, s and s′ retrieve
the same result set. Since this may be time consuming we run this test only if
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the selected columns in their SELECT clause are the same and if the two result
sets share the same minimum.

Third, since the condition above is only necessary for semantic equivalence,
in case we find the same result sets, we manually check if the natural language
question members are semantically equivalent. This is faster and easier than
checking the SQL queries.

Finally, once the initial clusters have been created, we apply the transitive
closure to the cluster ck to include all possible pairing between questions and
queries belonging to ck, i.e. ck = {〈n, s〉 : n, s ∈ ck}. We store in M the id of
the clusters in the related pairs, i.e. M [n][s] = k for each ck. As a side effect all
entries of M still containing −1 will be negative examples.

5 The Experiments

In these experiments, we study the effectiveness of our algorithm for automati-
cally mapping questions into queries by testing the accuracy of selecting for each
question of the test set its correct query. For this purpose, we learn a classifier
of correct and incorrect pairs and we use it as a ranker for the possible queries
as described in Section 2.

5.1 Setup

The query ranker4 consists in an SVM using advanced kernels for representing
question and query pairs. We used SVM-Light-TK5, which extends the SVM-
Light optimizer [14] with tree kernels. i.e. Syntactic Tree Kernel (STK) and its
extension (STKe) as described in Section 3.1. We model many different combi-
nation described in the next section. We used the default parameters, i.e. the
cost and trade-off parameters = 1 (for normalized kernels) and λ = 0.4 (see
Section 3.1).

As test set, we use our dataset obtained from GeoQueries250 by applying
our algorithm described in Section 4. After the generalization process the initial
250 pairs of questions/queries are reduced to 155 pairs containing 154 different
NL question and 80 different SQL queries. We found 76 clusters, from which
we generated 165 positive and 12,001 negative examples for a total of 154 ×
80 pairs. Since the number of negatives is much larger than the positives, we
eliminate some of them to make the learning more efficient. For this purpose we
only keep the pairs whose members share at least two stems. Our assumption
is that a positive pair should share at least one variable and one concept (e.g.
VARstate cities). We applied such heuristics to both training and test data by
considering the false negatives in the final computation of the system accuracy6.
4 We simply used the score of the SVM-based classifiers. More effective approaches

have been proposed [4,13].
5 http://disi.unitn.it/~moschitt/Tree-Kernel.htm
6 However, our results show that the above pre-processing in our data does not lead

to any errors.

http://disi.unitn.it/~moschitt/Tree-Kernel.htm
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Table 1. Kernel combination
accuracy

K1 K2 K1×K2 K1+K2

LIN LIN 70.7±12.0 57.3±10.4

POLY POLY 71.9±11.5 55.1±8.4

STK STK 70.3±9.3 54.9±10.1

STKe STKe 70.1±10.9 56.7±12.0

LIN STKe 75.6±13.1 56.6±12.4

Table 2. Kernel engineering
results

Advanced Kernels Accuracy

STK2
e+POLY2 73.2±11.4

(1+LIN2)2 73.6±9.4

(1+POLY2)2 73.2±10.9

(1+STK2
e)

2 70.0±12.2

(1+LIN2)2+STK2
e 75.0±10.8

We excluded 10.685 negative examples from our initial set, reducing it to 1.316
elements.

We evaluated our automatic mapping by applying a standard 10-fold cross
validation and measuring the average accuracy and the Std. Dev. in selecting
the correct query for each question of the test sets.

5.2 Results

We tested several models for ranking based on different kernel combinations
whose results are reported in tables Table 1 and Table 2. The first two columns
of Table 1 show the kernels used for the question and the query, respectively.
More specifically, our basic kernels are: (1) linear kernel (LIN) built on the bag-
of-words (BOW) of the questions or of the query, e.g. SELECT is considered a
feature for the query; (2) a polynomial kernel of degree 3 on the above BOW
(POLY); (3) the Syntactic Tree Kernel (STK) on the parse tree of the question
or the query and (4) STK extended with leaf features (STKe).

Columns 3 and 4 show the average accuracy (over 10 folds) ± Std. Dev. of
two main kernel combinations by means of product and sum. Note that we can
also sum or multiply different kernels, e.g. LIN×STKe.

An examination of the reported tables suggests that: first, the basic traditional
model based on linear kernel and BOW, i.e. LIN + LIN, provides an accuracy of
only 57.3%, which is greatly improved by LIN×LIN=LIN2, i.e. by 13.5 points.
The explanation is that the kernel sum cannot express the relational feature pairs
coming from questions and queries, thus LIN does not capture the underlying
shared semantics between them. It should be noted that only kernel methods
allow for an efficient and easy design of LIN2, since the traditional approach
would have required to build the Cartesian product of the question BOW by
query BOW. This can be very large, e.g. 10K features for both spaces leads to
a pair space of 100M features.

Second, the K1+K2 column confirms that the feature pair space is essential
since the accuracy of all kernels implementing individual spaces (e.g. kernels
which are sums of kernels) is much lower than the baseline model for feature
pairs, i.e. LIN2.

Third, if we include conjunctions in the BOW representation by using POLY,
we improve the LIN model, when we use the feature pair space, i.e. 71.9% vs 70.7%.



218 A. Giordani and A. Moschitti

Fig. 6. Learning curves for GeoQueries250 corpora

Also, POLY2 is better than STK2 since it includes individual terms/words, which
are not included by STK.

Next, the above point suggests that syntactic models can improve BOW al-
though too many syntactic features (generated by STK) make the model unsta-
ble as suggested by the lower accuracy (70.1%) provided by STKe×STKe=STK2

e.
This consideration leads us to experiment with the model LIN × STKe, which
combines stems of the questions with syntactic constructs of SQL queries. This
produces the highest result, i.e. 75.6%, suggesting that the syntactic parse tree
of the SQL query is very reliable (it is obtained with 100% of accuracy) while the
natural language parse tree, although accurate, introduces noise that degrades
the overall feature representation. As a consequence it is more effective to use
words only in the representation of the first member of the pairs.

Moreover, we experimented with very advanced kernels built on top of feature
pair spaces as shown in Table 2. For example, we sum different pair spaces, STK2

e

and POLY2, and we apply the polynomial kernel on top of pair spaces by creating
conjunctions, over feature pairs. This operation tends to increase too much the
cardinality of the space and makes it ineffective. However, using the simplest
initial space, i.e. LIN, to build pair conjunctions, i.e. (1+LIN2)2, we obtain a
very interesting and high result, i.e. 73.6%7. This suggests that kernel methods
have the potentiality to describe relational problems using simple building blocks
although new theory describing the degradation of kernels when the space is too
complex is required.

Finally, to study the stability of our complex kernels, we compared the learning
curve of the baseline model, i.e. LIN+LIN, with the those of best models, i.e.
LIN×STKe and STK2+(1+LIN2)2. Figure 6 shows that complex kernels are

7 Although the Std. Dev. associated with the model accuracy is high, the one associ-
ated with the distribution of difference between the model accuracy is much lower.
Considering that we used 10 folds, it is easy to verify that (1+LIN2)2 is better than
LIN2 at a 90% confidence limit.



Semantic Mapping between Natural Language Questions and SQL Queries 219

not only more accurate but also more stable, i.e. their accuracy grows smoothly
according to the increase of training data.

5.3 Related Work

As the literature suggest, NLIDBs can be classified according to the approach
employed in deriving an SQL query that retrieves the answer of a given NL
question against a database. In this section we review three systems based on
different approaches and that were also tested on the GeoQueries250. For a
complete review of many NLIDB refer to Chandra and Mihalcea [15].

Systems based on authoring interface rely on semantic grammar specified
by an expert user to interpret question over the database. CatchPhrase [16] is
an authoring tool where the author is asked to name database elements, tailor
entries and define additional concepts. This tool achieves 80% Recall and 86%
Precision.

Another approach is based on enriching the information contained in the pairs.
An example is given by Precise system [12]. Reducing the problem of finding a
semantic interpretation of ambiguous phrases to a graph matching problem,
Precise achieves 100% Precision on a subset of semantically tractable questions
(77,5% Recall).

The machine learning approach, that induces semantic grammar from a corpus
of correct pairs of questions and queries, has been used in Krisp [17]. Krisp
performs semantic parsing mapping sentences into their computer-executable
meaning representations. For each production in the meaning representation
language it trains an SVM classifier based on string subsequence kernels. Then
it uses these classifiers to compositionally represent a natural language sentence
in their meaning representations. Krisp achieves approximatively 94% Precision
and 78% Recall. Our system, also based on the machine learning approach, does
not decline to answer any questions and shows an accuracy of 76% when the
SQL query of the pair with the highest rank is executed to retrieve the answer
of the paired question.

Finally, another approach for mapping natural language sentences to artificial
language using lambda calculus has been proposed in [18]. Such method showed
96.3% in Precision and 79.3% in Recall on the extended corpus GeoQueries880.

Regarding the use of tree kernels for natural language tasks several models
have been proposed and experimented [4,19,20,21,22,23,24,25,26,27].

6 Conclusions

In this paper, we approach the problem of mapping natural language seman-
tics into programming languages by automatically learning a model based on
lexical and syntactic description of the training examples. In our study, these
are pairs of NL questions and SQL queries, which we annotated by means of
our semi-automatic algorithm based on the initial annotation available in the
GeoQueries250 corpus.
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To represent syntactic/semantic relationships expressed by the pairs above,
we largely adopted kernel methods along with SVMs. We designed innovative
combinations between different kernels for structured data applied to pairs of
objects. To our knowledge, the functions that we propose for relational semantics
description are novel. The experiments of the automatic question translation
system show a satisfactory accuracy, i.e. 76%, although large improvement are
still possible.

The main contributions of our study are: (i) we show that our automatic
mapping between question and SQL queries is viable, (ii) in at least one task
we have proved that kernel products are effective, (iii) syntax is important to
map natural language into programming languages and (iv) we have generated
a corpus for future studies, which we are going to make publically available.

In the future we would like to extend this research by focusing on advanced
shallow semantic approaches such as predicate argument structures [28,29].
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