

Intentional Perspectives
on Information Systems Engineering

Selmin Nurcan · Camille Salinesi ·
Carine Souveyet · Jolita Ralyté
Editors

Intentional Perspectives
on Information Systems
Engineering

123

Editors
Selmin Nurcan
Université Paris 1 Panthéon – Sorbonne
IAE de Paris
21, rue Broca
75005 Paris
France
Selmin.Nurcan@univ-paris1.fr

Carine Souveyet
Université Paris 1 Panthéon – Sorbonne
Centre de Recherche en Informatique
90, rue de Tolbiac
75013 Paris
France
Carine.Souveyet@univ-paris1.fr

Camille Salinesi
Université Paris 1 Panthéon – Sorbonne
Centre de Recherche en Informatique
90, rue de Tolbiac
75013 Paris
France
Camille.Salinesi@univ-paris1.fr

Jolita Ralyté
University of Geneva
CUI, Battelle – bâtiment A
route de Drize 7
1227 Carouge
Switzerland
Jolita.Ralyte@unige.ch

ISBN 978-3-642-12543-0 e-ISBN 978-3-642-12544-7
DOI 10.1007/978-3-642-12544-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010926871

ACM Computing Classification (1998): D.2, H.1, I.6, J.1

© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Colette Rolland, in the words of Arne Solvberg, one of her oldest and clos-
est friends, “was introduced to the wider European research community during
the process of establishing a Technical Committee for Information Systems –
TC8 – of IFIP – The International Federation of Information Processing Societies.
Professor Børje Langefors from Sweden led the effort. He and his colleagues
brought with them upcoming younger researchers. Professor Langefors brought
Janis Bubenko Jr., Mads Lundeberg and Arne Sølvberg. Professor Le Moigne
brought Colette. Together with Janis and Arne, Colette was instrumental in estab-
lishing the IFIP TC8 working group WG8.1 on the Design and Evaluation of
Information Systems. She quickly established herself as a driving force in infor-
mation systems research with her REMORA project. She was deeply involved in
organizing the annual working conferences of the working group, which brought
together a growing number of researchers from Europe and overseas. The network
of young researchers that was formed in IFIP TC8 became the nucleus of the sci-
entific community behind the CAiSE conference series, where Colette had a central
role. She is today the undisputed ‘queen’ of information systems research, as well
as a good friend to everyone in the international research community of information
systems engineering.”

Amongst her numerous scientific qualities, Colette was able to abstract and
formalize new and difficult problems, invent original concepts to deal with them,
and develop methods, techniques and tools demonstrating how to use them in a very
practical way.

Colette’s original contributions to the information systems engineering discipline
have been abundant. Among others, she established the behavioral paradigm to
information system design in which she promoted the event-driven approach
with her REMORA methodology. She pioneered object orientation in information
systems analysis and design with her O∗ methodology. She developed an original
approach to system prototyping. Being at the cutting edge of meta-modeling, she
was one of the earliest to specify methodological processes and introduce guid-
ance features in CASE tools and to propose the concept of method chunks and
contextual models to engineering methods. She was one of the main actors in
promoting method engineering as a discipline. She created the NATURE decision-
driven process meta-model. She formalized the coupling of goals and scenarios in
the CREWS-L’Ecritoire requirements engineering method. She developed an inten-
tional basis for process modeling in the notion of a MAP expressing intentions. She

v

vi Preface

brought the fitness analysis issue to the forefront. She was a strong supporter of
dealing with services at the business level and explored service-based information
systems. She developed many information systems engineering methods, CASE and
CAME tools like REMORA, OICSI, RUBIS, MENTOR, and L’Ecritoire, to name
but a few.

One of the most striking of Colette’s numerous scientific contributions is that
“intention” should be considered as a first-class concept in information systems
engineering. Not only can it be handled in different ways and modeled with
different languages. It is also fundamental to a number of application domains
in performing various types of analysis and solving very different categories of
problem: process specification, requirements engineering, service—oriented archi-
tectures, enterprise modeling, business IT alignment, COTS customization, etc.
Indeed, as John Mylopoulos said, “Her plethora of contributions include novel con-
cepts, methods and tools for building information systems, as well as dozens of
young researchers who will carry the torch of her ideas for years to come. One of
those ideas that has had tremendous impact on the field is the notion that system
requirements are stakeholder goals—rather than system functions—and ought to be
elicited, modeled and analyzed accordingly.”

This book is a testimony of gratitude to Colette for her contribution to the concept
of intention. The book was created with the idea of drawing a big picture of the
different perspectives that exist today, in 2010, on this concept in the information
systems community.

The book is a collection of 20 contributions in information systems engineering
that were compiled on the occasion of Colette’s retirement and will be distributed at
the CAiSE conference in Tunisia. Even though Colette is General Chair of CAiSE
2010, we tried to hide this initiative from her, and she kindly pretended not to be
aware of it. The contributions were written by friends and colleagues of Colette from
around the world. In the difficult task of selecting who to invite, we decided to con-
centrate on those with whom she collaborated most closely, and some of those whom
she took as examples for her young researchers, and referenced in her own papers.
All those who were invited to be involved in this book were eager to participate,
and have written original contributions on one of the numerous topics of interest to
Colette. Some even wrote personal testimonies of friendship in their papers, which
we found very touching.

We thank all the authors and the Springer editors for their support in the publica-
tion of this book. We also thank CAiSE organizers for agreeing to its presentation
during the Conference. Last but not least, we thank the following for sponsoring
this book for distribution to all CAISE 2010 participants: the Sorbonne’s Graduate
Business School (IAE de Paris), IFIP (International Federation for Information
Processing) Working Group 8.1 on Design and Evaluation of Information Systems,
RIADI (ENSI – University Manouba, Tunisia) and the Centre de Recherche en
Informatique of University Paris 1 Panthéon – Sorbonne.

Paris, France Selmin Nurcan
Camille Salinesi
Carine Souveyet

Switzerland Jolita Ralyté

Short Biography of Colette Rolland

Colette Rolland was born on December 19th, 1943 in Dieupentale, Tarn-et-
Garonne, in the southwest of France. She received her PhD Degree in Sciences
(Applied Mathematics) in 1966 and her “Grand PhD” Degree in Sciences (Applied
Mathematics) in 1971. Both degrees were under the supervision of Professor Legras
at the University of Nancy.

In 1973, Dr. Rolland was appointed Professor in Computer Science at University
of Nancy.

Colette Rolland joined the Mathematics and Informatics Department of the
University of Paris 1 Panthéon – Sorbonne as a Professor in 1979. In 1992
she founded the CRI (Centre de Recherche en Informatique – http://crinfo.univ-
paris1.fr), at the University Paris 1 Panthéon – Sorbonne and has been the center’s
Director since its creation. Today, she supervises a team of 8 full time Associate
Professors and 25 research students.

Professor Colette Rolland heads the Master degree program in “Information &
Knowledge Systems”, at the Sorbonne Graduate Business School (IAE de Paris). A
program she created thirty years ago.

In 1988, she launched the MIAGE curriculum (Méthodes Informatiques
Appliquées à la Gestion des Entreprises, i.e. methods for informatics applied to
the management of enterprises) at the University Paris 1 Panthéon – Sorbonne. The

vii

viii Short Biography of Colette Rolland

program was designed to train young engineers in informatics. Several years prior
to the implementation in France, of the LMD Standards (Bachelor, Master, PhD or
3-5-8), she extended the MIAGE program to include an apprenticeship track leading
to a master degree in “Information & Knowledge Systems”.

Following on these successes, Colette Rolland created IKSEM (Information &
Knowledge Systems Engineering and Management), an English Master Degree
program at IAE de Paris in 2009.

Colette Rolland has led two Ph.D. programs in “Theory and Engineering of
Data Bases” and “Intelligence, Information, Interaction”. The University Paris 1
Panthéon – Sorbonne and the University Paris 11 Orsay jointly managed the two
programs.

Professor Colette Rolland has extensive experience in supervising research
work (see the Academic Tree); supervising more than 100 PhD, participating
in multiple European research projects and collaborating extensively with indus-
try. Her research work has been funded in France by CNRS (Centre National
de la Recherche Scientifique), INRIA (Institut National de la Recherche en
Informatique et Automatisme), MRT (Ministry of Research and Technology) and by
the Commission of the European Communities (ESPRIT, STI and the Basic research
program).

Colette Rolland is the inventor of the REMORA methodology for the analy-
sis, design and realization of information systems, a precursor of object-oriented
methodologies. She has co-authored 5 textbooks; edited 8 books and published over
300 referred papers in journals and conferences (see Bibliography). Colette Rolland
has delivered more than 50 keynote talks in international conferences.

Colette Rolland is a member of various academic and professional committees,
an IFIP officer since 1981, IEEE fellow, and the French representative to TC8 (IFIP
Technical Commitee on Information Systems). From 1988 to 1999, she served as
vice chairperson and then chairperson of WG8.1 (IFIP Working Group on Methods
and Tools for IS Development). She is also a member of the European Commission’s
expert groups. She has been a member of various research evaluation committees in
Sweden, Norway, Finland, Italy, Canada, Switzerland and Hong Kong, as well as a
member of committees for the appointment of professors in Canada, USA, Japan,
Malaysia, Venezuela, and Tunisia.

Colette Rolland has been honored by several awards including: the “Palmes
Académiques” (French Educational System award – 1981), the IFIP service award
(1988), the IFIP Silver Core (1992), the Francqui’s Foundation award (a Belgium
prize awarded annually to an outstanding scientist – 1991), and the European award
of ‘Information Systems’ (2002).

In 1995, Colette Rolland was nominated a member of the Class of Exceptional
Professors in France. She is Doctor Honoris Causa of the University of Geneva,
Switzerland (2007). She is also a visiting professor at the University of
Loughborough Business School (United Kingdom) where she cooperates with the
research group on enterprise modeling and IT alignment.

Short Biography of Colette Rolland ix

Colette Rolland serves on the board of 15 international journals published among
others by IEEE and Springer. She is a member of program committees of multi-
ple international conferences per year, has been chairperson of 25 conferences, and
editor of 25 conference proceedings.

A
ca

de
m

ic
T

re
e

xi

xii Academic Tree

Academic Tree xiii

xiv Academic Tree

Academic Tree xv

MIAGE Sorbonne – Information & Knowledge Systems master students, Graduation
Ceremony, February 13th, 2009 Amphitheater Richelieu at Sorbonne with 67 Master Students

Colette with Arne and Janis at CAISE’2007, Porto, Portugal

Contents

From Sustainable Information System with a Farandole
of Models to Services . 1
Michel Léonard and Jolita Ralyté

On Roles of Models in Information Systems 17
Arne Sølvberg

Contemporary Challenges in Requirements Discovery
and Validation: Two Case Studies in Complex Environments 39
Sean Hansen and Kalle Lyytinen

Semantic Requirements Engineering . 67
Motoshi Saeki

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary
Systems Engineering . 83
Matthias Jarke, Hans W. Nissen, Thomas Rose,
and Dominik Schmitz

Intentional Alignment and Interoperability
in Inter-Organization Information Systems 101
Naveen Prakash

Requirements Engineering for Enterprise Systems:
What We Know and What We Don’t Know? 115
Maya Daneva and Roel Wieringa

Requirements as Goals and Commitments Too 137
Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz,
Paolo Giorgini, and Munindar P. Singh

A Method for Capturing and Reconciling Stakeholder
Intentions Based on the Formal Concept Analysis 155
Mikio Aoyama

Fostering the Adoption of i∗ by Practitioners: Some Challenges
and Research Directions . 177
Xavier Franch

xvii

xviii Contents

Rights and Intentions in Value Modeling 195
Paul Johannesson and Maria Bergholtz

An Intentional Perspective on Enterprise Modeling 215
Janis Bubenko Jr., Anne Persson, and Janis Stirna

A Goal-Based Approach for Learning in Business Processes 239
Pnina Soffer, Johny Ghattas, and Mor Peleg

Linking Goal-Oriented Requirements and Model-Driven Development 257
Oscar Pastor and Giovanni Giachetti

Testing Conceptual Schema Satisfiability 277
Antoni Olivé and Albert Tort

A Systematic Approach to Define the Domain of Information
System Security Risk Management . 289
Éric Dubois, Patrick Heymans, Nicolas Mayer, and
Raimundas Matulevičius

Methodologies for Design of Service-Based Systems 307
Barbara Pernici

Quality Assurance in the Presence of Variability 319
Kim Lauenroth, Andreas Metzger, and Klaus Pohl

Method Engineering: A Service-Oriented Approach 335
Corine Cauvet

Collaborative Requirements Engineering: Bridging the Gulfs
Between Worlds . 355
Alistair Sutcliffe

Important Papers by Colette Rolland 377

Index . 381

Contributors

Mikio Aoyama Nanzan University, 27 Seirei, Seto 489-0863, Japan,
mikio.aoyama@nifty.com

Maria Bergholtz Department of Computer and Systems Sciences, Stockholm
University, Forum 100, SE 16440 Kista, Sweden, maria@dsv.su.se

Janis Bubenko Jr. Department of Computer and Systems Sciences, Royal
Institute of Technology, Forum 100, SE-164 40 Kista, Sweden, janis@dsv.su.se

Corine Cauvet Université Paul Cézanne Aix-Marseille 3, Laboratoire LSIS,
Campus Universitaire de Saint Jérôme, Avenue Escadrille Normandie Niemen,
13397 Marseille Cedex 20, France, corine.cauvet@lsis.org

Amit K. Chopra Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive 14, 38123 Povo, Trento, Italy,
chopra@disi.unitn.it

Fabiano Dalpiaz Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive 14, 38123 Povo, Trento, Italy,
dalpiaz@disi.unitn.it

Maya Daneva University of Twente, Drienerlolaan 5, P.O. Box 217, 7500 EA
Enschede, The Netherlands, m.daneva@utwente.nl

Éric Dubois Centre de Recherche Public Henri Tudor, 29, avenue John F.
Kennedy, L-1855 Luxembourg, eric.dubois@tudor.lu

Xavier Franch GESSI Research Group, Universitat Politècnica de Catalunya,
UPC – Campus Nord, Omega building, c/Jordi Girona 1-3, 08034 Barcelona,
Spain, franch@essi.upc.edu

Johny Ghattas University of Haifa, Carmel Mountain 31905 Haifa, Israel,
ghattasjohny@gmail.com

Giovanni Giachetti PROS Research Center, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022 Valencia, Spain, ggiachetti@pros.upv.es

xix

xx Contributors

Paolo Giorgini Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive 14, 38123 Povo, Trento, Italy,
pgiorgio@disi.unitn.it

Sean Hansen Peter B. Lewis Building, Weatherhead School of Management, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-7235
USA, hansen@case.edu

Patrick Heymans University of Namur (FUNDP), PReCISE Research Center,
Rue Grandgagnage 21, B-5000 Namur, Belgium, phe@info.fundp.ac.be

Matthias Jarke Information Systems, RWTH Aachen University, Ahornstraße 55,
D-52056 Aachen, Germany, jarke@dbis.rwth-aachen.de

Paul Johannesson Department of Computer and Systems Sciences, Stockholm
University, Forum 100, SE 16440 Kista, Sweden, pajo@dsv.su.se

Kim Lauenroth Software Systems Engineering, University of Duisburg-Essen,
Gerlingstraße 16, 45127 Essen, Germany, kim.lauenroth@sse.uni-due.de

Michel Léonard University of Geneve, CUI, Battelle – bâtiment A, route de
Drize, CH-1227 Carouge, Switzerland, Michel.Leonard@unige.ch

Kalle Lyytinen Peter B. Lewis Building, Weatherhead School of Management,
Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH,
44106-7235 USA, kalle@case.edu

Raimundas Matulevičius Institute of Computer Science, University of Tartu,
J. Liivi 2, 50409 Tartu, Estonia, rma@ut.ee

Nicolas Mayer Centre de Recherche Public Henri Tudor, 29, avenue John F.
Kennedy, L-1855 Luxembourg, nicolas.mayer@tudor.lu

Andreas Metzger Software Systems Engineering, University of Duisburg-Essen,
Gerlingstraβe 16, 45127 Essen, Germany, andreas.metzger@sse.uni-due.de

John Mylopoulos Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive 14, 38123 Povo, Trento, Italy,
jm@disi.unitn.it

Hans W. Nissen Institute of Communications Engineering, Cologne University
of Applied Science, Betzdorferstraße 2, D-50679 Köln, Germany,
hans.nissen@fh-koeln.de

Antoni Olivé Department Enginyeria de Serveis i Sistemes d’Informació,
Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain,
olive@essi.upc.edu

Oscar Pastor PROS Research Center, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022 Valencia, Spain, opastor@pros.upv.es

Contributors xxi

Mor Peleg University of Haifa, Carmel Mountain 31905 Haifa, Israel,
peleg.mor@gmail.com

Barbara Pernici Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133
Milano, Italy, barbara.pernici@polimi.it

Anne Persson Informatics Research Centre, University of Skövde, P.O. Box 408,
SE-541 28 Skövde, Sweden, anne.persson@his.se

Klaus Pohl Software Systems Engineering, University of Duisburg-Essen,
Schützenbahn 70, 45127 Essen, Germany, klaus.pohl@sse.uni-due.de

Naveen Prakash Department of Computer Science, MRCE, Sector 43, Delhi
Surajkund Road, Faridabad 121001, Haryana, India, praknav@hotmail.com

Jolita Ralyté University of Geneva, CUI, Battelle – bâtiment A, 7, route de Drize,
CH-1227 Carouge, Switzerland, jolita.ralyte@unige.ch

Thomas Rose Fraunhofer FIT, Schloss Birlinghoven, D-53754 Sankt Augustin,
Germany, thomas.rose@fit.fraunhofer.de

Motoshi Saeki Department of Computer Science, Tokyo Institute of Technology,
Ookayama 2-12-1-W8-83, Meguro, Tokyo 152-8552, Japan,
saeki@se.cs.titech.ac.jp

Dominik Schmitz Information Systems, RWTH Aachen University, Ahornstraße
55, D-52056 Aachen, Germany, schmitz@dbis.rwth-aachen.de

Munindar P. Singh Department of Computer Science, North Carolina State
University, 890 Oval Drive, Raleigh, NC 27695-8206, USA, singh@ncsu.edu

Pnina Soffer University of Haifa, Carmel Mountain 31905 Haifa, Israel,
spnina@is.haifa.ac.il

Arne Sølvberg Department of Computer and Information Science, NTNU – The
Norwegian University of Science and Technology Sem Sælands v 9, 7491
Trondheim, Norway, asolvber@idi.ntnu.no

Janis Stirna Department of Computer and Systems Sciences, Stockholm
University, Forum 100, SE 16440 Kista, Sweden, js@dsv.su.se

Alistair Sutcliffe Manchester Business School, University of Manchester, Booth
Street West, Manchester M15 6PB, UK, a.g.sutcliffe@man.ac.uk

Albert Tort Department Enginyeria de Serveis i Sistemes d’Informació,
Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain,
atort@essi.upc.edu

Roel Wieringa University of Twente, Drienerlolaan 5, P.O. Box 217, 7500 EA
Enschede, The Netherlands, roelw@cs.utwente.nl

From Sustainable Information System
with a Farandole of Models to Services

Michel Léonard and Jolita Ralyté

Abstract This chapter is an overview of the development of the information
systems domain since its infancy. This domain is recognized as very important for
the development of private companies and public organisations and therefore it more
and more needs solid concepts and sharp ways of thinking. This chapter relates
some breakthroughs and tries to place the IS domain in the centre of several worlds.
From a simple mediator between the activities world and the informatics world, IS
becomes a creator of values, in particular with the emergence of services. But, it
requires a shift with several dimensions in the usual way of thinking about activities
and informatics and this is the origin of the difficulty. IS complexity comes from
its trans-disciplinary nature, which requires several different models to describe it.
Besides, all these models must be articulated together to constitute a coherent IS –
that is a farandole of models. When a model changes, due to its environment, the
other models have to change too in order to keep the farandole coherent. The IS is
then sustainable.

1 Introduction

While the domain of Information Systems (IS) is now recognized as very important
for the development of enterprises and public institutions, the development of IS
still struggles with the lack of dedicated skills and clear understanding of the IS role
in organisations and Society.

Understanding challenges and opportunities in the domain of Information
Systems (IS) means first of all understanding how this domain evolved from its
beginnings to nowadays. This chapter aims to overview the growth of the IS domain

M. Léonard (B)
University of Geneve, CUI, Battelle – bâtiment A, route de Drize, CH-1227 Carouge,
Switzerland
e-mail: Michel.Leonard@unige.ch

1S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_1, C© Springer-Verlag Berlin Heidelberg 2010

2 M. Léonard and J. Ralyté

since its infancy throughout its advancement challenges until today’s concerns by
revealing its role in organisations and the difficulty to play this role.

Then, the chapter tries to position IS as a heart of several closely related and
overlapping but also so different worlds: enterprise activities, information and infor-
matics. The IS development has to deal with the overlap between these worlds. Such
a way of thinking is not common in the IS development but it is necessary in order
to attain IS sustainability. It requires a multi-dimensional shift in the usual way
of thinking about activities and informatics. Besides, the trans-disciplinary nature
of the IS increases the complexity and difficulty of its development and requires
several different models to describe it. Creating several models for an IS means
managing the risk of inconsistency between these models. All these models must
be articulated together to constitute a coherent IS. We can call that a farandole of
models [13]. When one model changes, due to different environmental factors, the
other models have to change as well in order to keep the farandole coherent and
therefore, to guarantee the sustainability of the IS.

Finally, the chapter concludes with a new perception of IS – IS as a creator of val-
ues. In particular this is possible with the emergence of the notion of service which
gains a new perspective in the domain of IS. In this chapter information service is
considered as a future of IS development.

2 IS Stakes

2.1 IS Origins

This section should be written by historians with their rigour of analysis of a terrain
and with their way of making synthesis. Unfortunately, we do not have these tal-
ents. Nevertheless, the past gave the directions to the development of the IS domain
around the world and these directions are important to be considered for planning
strategic directions for the next future.

Hence, here is a vision of the past, which tries to be consensual but which cannot
be objective.

Despite of the pioneering work of eminent researchers1 who created the scientific
IS domain, including its technological components, the IS domain had only to play
a cameo role at the strategic level as for instance, in the Universities, in the Research
funds, in the enterprises. The only domains considered as important were manage-
ment science and computer science! Nevertheless, the IS domain was considered as
sufficiently useful, and therefore, some curricula in the IS domain appeared. Indeed,
enterprises had to hire people for IS engineering, but they were able to employ only
specialists at the technical levels of engineering! IS domain was only an application

1Notably, the members of the CAISE advisory board: Professor Janis Bubenko Jr., Professor
Colette Rolland, Professor Arne Solvberg.

From Sustainable Information System with a Farandole of Models to Services 3

of computer science to management situations, which were called “problems” to be
solved thanks to informatics!

In the board of Management, Information Systems began to be the origin of new
problems that the classic Management theories did not seem to take into account
relevantly! How to teach persons IS? The MIS2 movement claimed that it is possible
to teach IS without any know-how in informatics. As a consequence, a lot of persons
with such background were promoted as managers of IS developments in various
countries. Obviously, they were not skilled to take into account not only informatics
but also the subtle, complex differences and shifts between human activities and
computerized tasks and processes.

The gap is great and no bridge can be built to cross it!

2.2 Shift

As soon as Information Systems became a main component of the enterprises, there
was a shift from informatics oriented towards materialized objects – often called
products like computers – to informatics oriented towards dematerialized objects –
information. This shift has four main dimensions.

1. The first dimension concerns the quality of the result: in one side of the shift,
the quality concerns the product, its performance, its feasibility, its reliability; in
the other side of the shift the quality concerns the information, its accessibility,
its accuracy, its consistency, its usability, its use, its security, its transformation.
In one side there are technical aspects and generic usages to take into account
when in the other side there are actors whose activities are strongly dependent
on the quality of information. This shift is similar with the economic shift from
the economy oriented towards goods to the economy oriented towards services.

This shift does not destroy the first side oriented towards product. But, it builds
a new conceptual space upon it and therefore, it constitutes a new complex where
the first side can no more be considered per se, but only as a component of the
complex, which has to be strongly related with the second one.

To face this shift, two popular attitudes appear:

– A passive attitude: the shift does not introduce any fundamental modifi-
cation, any new knowledge, any new methods; the usual ones are always
relevant – and so, IS stays only a domain of computer applications; specialists
on management and informatics can continue to work as usual!

– An ethereal attitude: a new domain emerges with new business models and
new fruitful perspectives, but with still the same fundamental concepts: from
management perspective the IS does not have to take into account informatics
and from informatics perspective the IS does not have to take into account
management!

2Management Information Systems.

4 M. Léonard and J. Ralyté

The CAiSE community rejected these two approaches, because they were not
relevant to explore and explain design situations, impacts, etc. It did not follow
a grey approach – to stay in the middle. It created another approach, out of these
lazy approaches.

2. In its second dimension, the shift has significant impact on informatics because
it introduces subtle differences, too often neglected, which induced deep trans-
formations in methods and knowledge. Before IS, software was recognized
as a real discipline after a long and painful process of emergence. Software
is a dematerialized object and the software industry becomes the industry,
which gathered the most fruitfully know-how, technical knowledge, meth-
ods, in the engineering field of dematerialized objects. But, software is not
IS engineering, even if the two domains share a lot of similar concepts and
ways of reasoning. Even Information Technology (IT) is not IS engineering.
Both, software and IT take into account only generic functions or uses. IS
has to take into account actors who will use IS in the accurate situations of
their responsibilities. Thus, IS must be flexible because situations of actors
are not unchanging. Due to the IS stakes, informatics has to be re-invented,
for instance to support effectively and efficiently the various situations of IS
evolution.

In the view to this second dimension, some approaches claim that the problem
is only to customize generic software with parameterisation for instance: Other
ones claim that there is no problem at all because users must only adapt their
behaviour to the new IT products or the new software. Such approaches at the
scientific level dodge the IS complexity.

The CAiSE community worked explicitly or tacitly towards the emergence of
IS knowledge related with software and IT but also different from them.

3. In its third dimension, the shift has significant impact on management. Indeed, if
informatics is only composed with products, managers can continue to work as
usually or eventually becoming users of some IS functions. But the shift induces
another completely different position of managers: actors, who are able to mix
their activities with artificial supports provided by the IS, and even authors, who
are able to co-create some relevant IS parts. In both cases, there are great stakes
at the personal level and the firm level: it is the question of creating new value
by means of IS or maintaining activities at a sufficient level of efficiency, given
the competition.

4. The fourth dimension of the shift considers the relations between human
activities and information systems. The question is not to translate activities
performed by actors into informatics – it is not a question to automate such
a translation process. The question is much more interesting than only to find
generic systems to solve the problem. In fact, there is no problem at this dimen-
sion. Actor is not a problem, but a person. The question is not to transform actors
into conductors of robots but to support efficiently their activities. The main
question is then how to assure entente between human capabilities and artificial
information systems at the level of an organisation.

From Sustainable Information System with a Farandole of Models to Services 5

To conclude, the shift with its four dimensions constitutes a real complexity.
The IS pioneers worked with no certainty, just with a creative intuition of their
future utility, to discover how to deal with such unknown complexity. They were
confident on the future relevance and usefulness of their research and developments.
In fact, many resemblances emerged between their situation and that of pioneers of
informatics. The IS pioneers discovered relevant models, combining management
and informatics. Their master concept of their exploration was information.

2.3 Governance of Information Systems

Information systems introduce the complexity of mixing human activities and infor-
matics, of designing this mix and of managing its evolutions. But the world of
human activities and the world of informatics do not have the same properties, the
same criteria of quality. Each one has its own autonomy in its transformations and
its movements, which are greatly independent one from the other. Thus, the IS gov-
ernance requires a much more sophisticated approach than alignment 3 of these two
worlds. In fact, their alignment is impossible. A promising approach to pierce the IS
complexity is to consider the interoperability of these two worlds and to discover the
conceptual overlap between them by exploring their common concepts. The major
concept is then concept information as it provides a hinge between the world of
human activities and the world of informatics. In fact this overlap is a true domain
by itself, often called the conceptual world (e.g. conceptual model)

Thus, the IS domain can be analysed as the combination of three worlds: the
world of human activities, the world of information, and the world of informat-
ics. In the following the chapter describes the interoperability between these three
worlds. It presents the IS governance as the way to assure the entente between these
worlds in a given period, but also to assure the entente when one of the worlds is
in movement – for instance, at one side, introduction of a new strategic plan, or, at
the other side, introduction of a new information technology. Finally, the chapter
introduces the services.

3 IS Worlds

The aim of this section is to observe some main breakthrough issues that IS
researchers have created and will continue to create. In this chapter, the IS domain
is decomposed into three worlds: activities or enterprise, conceptual or informa-
tion and informatics. But these worlds cannot be isolated from each other in the IS

3Align – to arrange in a line or so as to be parallel; to adjust (parts of a mechanism, for example)
to produce a proper relationship or orientation; to ally (oneself, for example) with one side of an
argument or cause; to adhere to a prescribed course of action; to move or be adjusted into proper
relationship or orientation (http://www.thefreedictionary.com/align).

6 M. Léonard and J. Ralyté

perspective, because the results obtained in each of them are interwoven in order to
constitute an information system. In the following the principles of conceptual inter-
operability, interwoven aspects of these worlds, must be described in the perspective
of conceptual overlaps between them.

These interwoven aspects are explained by following the principles of conceptual
interoperability: they must be described in the conceptual overlaps, which have to
be formalized. Therefore, this section is organised as follows: the conceptual world,
which plays the central role here, is presented first following by the definition of the
overlap between this world and the informatics world and the overlap between this
world and the activities world. Then, a paragraph introduces the ontology world for
the IS cohesion and finally, some aspects of IS governance and general principles of
sustainable IS are provided.

The master concept of this section is model. An IS contains a huge number of
aspects, which must be described by means of models in a formalized way: a meta-
model. Since there are so many aspects to take into account for IS design, there
are consequently several meta-models, each of them covering a particular IS aspect.
This section is only at the level of meta-model and it replaces systematically the
term meta-model by model.

3.1 The IS Conceptual World

There are many relevant papers and books [7, 12, 21, 23, 27] covering the IS con-
ceptual models. In [22] Antoni Olivé provides a relevant description of this crucial
domain. The master concept of this world is information. It comes in a variety
of concepts. Nevertheless, there are main atomic concepts such as class, method,
attribute, object, relation, integrity rule,4 role, event, and also complex concepts
defined upon atomic ones like hyperclass, hyperobject, process, set of integrity rules,
hyper-role, complex event, IS component.

All these concepts are interrelated: a class is defined with attributes and meth-
ods; a method and an attribute is defined on a class; a relation is defined between
two classes;5 an integrity rule is defined over one or several classes and expresses a
condition that objects must satisfy; a role determines a domain of activity in terms
of access rights to objects of classes and to methods of classes; an event is defined
by a condition expressed by means of the previous concepts. Hyperclass [34] is a
complex class defined on several classes: it is a generalization of the class concept
and so hyperobject is an object of a hyperclass. Process is defined over several meth-
ods and then of several classes, but also on several roles, on several events. A set

4Often called integrity constraint.
5For example existential dependency: a class A is existentially dependent on another class B if any
object of A is related with an object of B permanently; another kind of relation is specialization:
A is a specialization of B if A is existentially dependent on B and if an B object can be related to
only one A object.

From Sustainable Information System with a Farandole of Models to Services 7

of integrity rules defined on a same class is another integrity rule defined on this
class. Hyper-role is a combination of several roles, which can be assumed by a same
person at the same time. Hyper-event is a combination of several events, which can
occur at the same time.

Since all conceptual models have to be implemented, they must be written by
means of a conceptual meta-model, which is interoperable with the informatics
meta-model. In the IS infancy, the most appropriate informatics for IS was the
database management system, and therefore, most of the concepts of the concep-
tual world were extracted of concepts of informatics and stripped of their technical
aspects.

3.2 Overlap Between the IS Conceptual World
and the IS Informatics World

As mentioned before, the stakes of the conceptual world and the informatics world
are not the same: the first ones are centred on the concept of information when the
second ones are focused around performance, reliability, distribution, concurrency,
etc. Obviously, these worlds share concepts and, therefore, their interoperability can
be assured. But, they use them in different contexts [31]. For instance, a class is
used at the conceptual level to represent information when, at the informatics level,
it is used to store data with a homogeneous internal schema. Thus, a class at the
conceptual level can be decomposed into several classes at the informatics level in
order to improve performance, to assure security, to distribute its objects on several
internal layers.

The classic position is to consider that the conceptual meta-models must obey
the informatics meta-model. Even if this way of thinking has its part of relevance, it
becomes dogmatic if it argues that this is the only way of thinking. Another way of
thinking is to consider that the IS domain discovers new generic situations, which
have to be taken into account by systems. More generally, the creators of systems,
which are used to develop IS, must take care of the generic situations, which IS
developers face to, and these situations are described in the conceptual meta-model.

Let us consider some examples. At the time of the relational DBMS, the creators
of DBMS were interested only by the attributes of classes (named relations or tables
at this time). However, for some IS pioneers, it was obvious that the determina-
tion of methods obeys the same rules as the determination of attributes. And then
they discover that an important part of the IS dynamics can be described with these
methods and events (e.g. method Remora [8, 29]). After some years, the object-
oriented approach “discovered” this relevant property and developed object-oriented
systems. Another example concerns the concept of specialization. This concept is
well known in several sciences such as botany for example. In the IS domain, the
static specialization defined as in botany – an object takes a permanent place in a
specialization hierarchy – is a particular case of the utility of specialization in the IS
domain, because the object can move in the specialization hierarchy: a person can
become a student and, after, can be no more a student. The dynamic specialization

8 M. Léonard and J. Ralyté

is not difficult to implement in a DBMS [10, 11]. Unfortunately, the creators of
object-oriented systems preferred to implement the static specialization by means
of the inheritance mechanism. Nevertheless, the dynamic specialization is the most
interesting at the conceptual level for the IS domain, because the obtained models
are much more rigorous. The situation is then not complex but complicated due to
drawbacks of the chosen design by creators of systems.

The general rule is that it is impossible to automatically translate conceptual
models into informatics models due to the complexity of informatics. But it is pos-
sible to assist the transfer of a conceptual model into a system if we develop a deep
knowledge of the situations that the persons in charge of the activities have to over-
come. This is also fundamental for another reason: the reverse way, from a system
to a conceptual model, is also meaningful in the IS development. For instance, very
often developers can find lacks in the conceptual model: they will be able to explain
the lack if the reverse way is viable.

3.3 Overlap Between the IS Conceptual World
and the Activities World

The stakes of the activities world and the conceptual world are completely different
because in the first one the stakes concern strategies, organization, people, budget,
etc. and in the second one the stakes concern information which can be efficient
to support activities by means of information systems. The fourth dimension of
shift presented in the previous section claims that it is not a question of translating
activities into processes supported by an IS.

Nevertheless, these two worlds have a lot of common concepts: the major one
is information but it does not have the same meaning in the two worlds. In the
conceptual world information must be taken into account by the information system
when in the activities world information can come from the IS but also can have
many other origins. Another common concept is decision: one of the targets of the IS
world is to improve the informational environment of decisions, when in the world
of activities the main question is to take decision and to assume their consequences.
Activity, task, process are well known concepts of the domain of management, of
organization, of human resources, but they are also popular in the IS domain, where
they refer to IS dynamic part such as workflows. Even some research papers are
confusing, because they did not find necessary to precise the world they address.
However these two worlds, activities and conceptual, don’t obey the same criteria
of quality and of rigour because their stakes are not the same.

The traditional position was to consider that the activities world has to decide
what are the objectives of the IS development. So, the inputs of an IS development
would be given by the activities world and then the IS conceptual world has to find
a solution, which becomes a problem for the informatics world, which has to solve
it by means of systems.

But, IS pioneers discovered that this schema was not fruitful for the enterprise
itself and the overlap between the activities world and the IS conceptual world must

From Sustainable Information System with a Farandole of Models to Services 9

be extended, in particular in the reverse direction from the IS conceptual world to the
activities world. Therefore, they developed the domain of requirements engineering
[28] oriented towards IS and their results became very useful for software engineer-
ing and information technologies too. The following steps are to release IS from too
functional aspects and then to propose strategic approaches notably by introducing
intentional approaches [25, 26]. In fact, the IS domain with its knowledge and its
methods has a real and increasing influence on the activities world.

There are other exchanges and influences which go through the overlap between
the IS conceptual world and the activities world, for instance, by means of schemas
of business processes (e.g. [20]) and use cases [1] to study special situations of
actors. More and more, the IS conceptual world plays the role of the basis of a large
part of the activities world.

3.4 Ontology for IS

Implementing IS inside an enterprise transforms its organization and sometimes also
its activities. Behind these transformations there are elements that stay stable. It is
important to maintain cohesion between people, whose activities are involved by
the new IS developments, but also to design the IS itself. Ontology for IS contains
all these invariants, in particular knowledge but also some business rules, roles of
persons, which are independent of the IS development. For example, in the domain
of e-Government, the laws belong to this kind of ontology [18]. Ontology will play
the same role for IS as the keel for a boat.

In the future, these invariants can change and these changes are often independent
of the IS. But the IS must take into account them. For instance, laws can be modified
and therefore, the IS for e-government, built upon these lows, must also be modified.
Then, it is important to have the trace of these laws in the various IS parts to assure
IS evolution.

The important question is to choose the meta-model of ontology: it must be
interoperable with the conceptual meta-model and so the results of ontology can
be transformed into conceptual models following a precise procedure to keep the
trace of the elements coming from ontology. In the domain of ontology, the differ-
ences between static part and dynamic part become blurred. This fact has a possible
impact of the IS conceptual meta-model itself because it opens the way to a new kind
of meta-model, which fully integrates static and dynamic aspects of the considered
domain [14, 16].

3.5 IS Governance and Sustainable IS

With all these worlds composing the IS domain, and with all their meta-models, an
IS becomes a farandole of models. This farandole must be articulated around the
conceptual model and such a result can be achieved if the underlying meta-models
are interoperable at least with the conceptual meta-model. Therefore, one of the IS

10 M. Léonard and J. Ralyté

governance tasks consists to assure that these models are coherently articulated and
to manage the IS development to achieve this result.

Furthermore, the IS governance has to face multiple factors provoking transfor-
mations of one or several models of the farandole. This situation can be overcome
if the meta-models support the evolution of their models. A meta-model supports
evolution if it includes a complete set of mechanisms to manage the evolution of its
models. That means that a meta-model is described as a database schema with its
integrity rules to assure the coherence of the facts to be stored and which constitute
a model. The mechanism of evolution executes an atomic modification such as cre-
ating, deleting or updating of a stored fact and verifies all the involved integrity
rules of the meta-model. The set of mechanism is complete if all the primitive
actions on the database – creating, deleting, updating – are taken into account [2].
Consequently, the systems underlying IS must include a complete set of mechanisms
of evolution, like [3].

After or during the evolution process of a model, the IS evolution process requires
to analyse the consequences of its evolution on the other models, which are articu-
lated with it. Indeed the general question of the IS evolution concerns not only the
evolution of one model but also the evolution of the farandole of the models.

At the commencement of the IS domain, the pioneers tried to create a whole
methodology to develop an information system (e.g. Merise [33]). Their results still
provide a framework for IS development. Besides, some very substantial works
were finalised by developing computer assisted information system engineering
environments (e.g. Rubis [30]).

Nevertheless these methodologies became too imprecise to cover the whole life
cycle of an IS development. That is due to the huge variety of situations that design-
ers have to face to. A promising way is to use as a pivot the concept of situation
(e.g. [19, 36]) for the investigation of which type of method, or rather an assembly
of method components, is the most appropriate for a given IS development. Several
approaches (e.g. [24] introduce the notion of method component (also fragment or
chunk) and propose different ways to assemble them into a situation-specific method
for IS development. Besides, there are also attempts to implement an information
system to manage the activities around an IS [17].

3.6 Conclusions on IS Worlds

The IS world is in fact composed of several worlds: activities, conceptual, infor-
matics, ontology, governance. These worlds have their own properties and their
transformations are independent on each other. For a given IS, it is important to
assure the entente between all the models obtained in all these worlds. That is the
key role of the conceptual world to assure that all these models constitute an artic-
ulated and well-formed farandole. Moreover, this entente has to be dynamic: the
evolution of one model must be coherent with the other models, which perhaps,
also have to be modified in order to keep the articulated farandole consistent. The
IS is then sustainable.

From Sustainable Information System with a Farandole of Models to Services 11

Furthermore, this decomposition of the IS world also shows the impacts of
worlds on the IS conceptual world and reciprocally the impacts of the conceptual
world on them.

4 Services

Many observations reveal a great change in the domain of information systems in
firms and even in Society. Of course, information systems are widespread every-
where in the Society. In the enterprises, IS become larger and larger and its
management becomes more and more difficult and imprecise. The whole IS archi-
tecture became obscure, only IS parts or aspects can be well described. Furthermore,
we can observe for instance, that the domain of information technologies (IT) deliv-
ers more and more new systems, platforms, which are very interesting for IS, that IS
becomes a real challenge at the strategic level of firms, and that a great number of
persons are convinced that their professional future is in this direction even if they
do not have IS skills.

In this section we present our understanding of this deep emerging transforma-
tion. First, IS can be decomposed into IS components. Second, the power of IS
development will be distributed in terms of initiatives. Third, the conceptual world
will be the hinge of trans-disciplinary efforts. Fourth, value becomes the central
question, cost comes just after. Finally, the concept of service emerges from the IS
domain and it has the potential to be the kernel of a real Science.

4.1 IS Governance Through IS Components

An IS component is defined over classes, methods, integrity rules, processes, roles,
events, which constitute a semantic unit where several actors deal with the same
goals to achieve, the simple principles to observe [35]. It is important for this
concept to be a formal one. An IS component must verify integrity rules and conse-
quently some operations are defined over it or over several well-formed components.
The concept of hyperclass [34] is one option for such a formalisation.

The IS components have overlaps between them, because they are not isolated
and in particular, they share classes. In these overlaps the coordination between the
involved semantic units can be analysed [15].

As a consequence, another IS perspective is to consider IS as composed of IS
components. The IS governance must assure that the IS component obtained by a
development process or an evolution process is well-formed and consistent with the
other IS components.

To summarise, the IS governance has to manage IS development in terms of
development of IS components of the given IS, which is a deep transformation in IS
development.

12 M. Léonard and J. Ralyté

4.2 Initiatives, Value and Trans-Disciplinarity

Usually the power of IS developments in the enterprises is centralized, even if there
are always lots of unofficial developments by means, for instance, of spreadsheets.
But now the IS stakes are much closer to the professions and the analysis process
suffers from the lack of the analysts’ knowledge of the encountered situations, where
IS can be efficient (the 4th dimension of shift). More and more professionals have
pertinent ideas of what kind of efficient support they need. In this new perspective,
they will have the opportunity to take initiative of new IS development, which in
fact will concern an IS component rather that the whole IS. This situation offers
several challenges. The professionals do not have sufficient IS skills. A real ques-
tion of management of initiatives will emerge: an initiative could be a false good
idea, several initiatives could be combined, all the initiatives could not be developed
because of lack of means, etc.

One main criteria of a good initiative will be the value that the realization of the
initiative will bring to the firm. The substantial approach [9] provides elements to
face this question. This question of value must be added to the previous overlap
between the IS activities world and the IS conceptual world.

Generally, such initiatives to create value have to be trans-disciplinary: then, the
value comes from the communication between several partners, who are in charge of
various tasks and who have different skills. The question is not only interdisciplinary
but also based on various kinds of knowledge: addition of a new IS component can
partially transform the activities of each partner and provide a new professional
environment, unknown before. To do that, one possible way is to use the concep-
tual modelling approach as a cross-pollination space [37], where the interwoven
elements of various partners will be discussed precisely.

4.3 Service

Based on the previous reasoning, a new concept – service – can be introduced [4].
This concept is built upon the concept of IS component with all the usual worlds
of the IS domain, but also with value in a prominent place and with a completely
different way of development, which lays on initiatives, agile developments, trans-
disciplinary efforts around a cross-pollination space.

The concept of service exists in various disciplines like Economy, Marketing and
Public Administration. Besides, it is also used in informatics with the services ori-
ented architecture. Therefore, it is perhaps wiser to use the expression of information
service as once suggested by Prof. Janis Bubenko Jr.

Nevertheless, the cross-pollination space needs to host people with different
skills and in particular coming from informatics. The concept of service, built on
input-output schema, is useful because a lot of services can obey this schema. Their
autonomy can be defined easily. But, this kind of services is only a particular case
in the theory of services. In the more general IS situation, information services
will share classes, integrity rules, roles, events, processes. Their autonomy must be

From Sustainable Information System with a Farandole of Models to Services 13

defined in a different way. The way of thinking that some specialists of SOA would
like to impose, is dogmatic because it shuts the door to discovering new scientific
fields.

IS appears to be the provider of information, which are used by services, even if
services can also produce information. Two visions are possible (perhaps more): one
is to consider that services are upon IS; the second is to consider that in the future
IS will be composed only of services. But, one question will still emerge: how to
integrate a new service into an existing IS [5, 6]?

This is a rather short and incomplete presentation of the concept of service, com-
ing from the IS domain. Numerous disciplines will be interested by this concept,
which can be defined more broadly, for instance: “the application of competences
for the benefit of another, meaning that service is a kind of action, performance or
promise that is exchanged for value between provider and client” [32].

5 Conclusion

This chapter gives an overview of the emergence and the development of the
domain of information systems during these last decades. Nowadays, the IS domain
becomes a real strategic domain for the development of firms but also of the Society.
The aim of this chapter is to recognise all the efforts that the colleagues of the CAiSE
community and also the Inforsid French community did in the past and continue to
do in the domain of IS.

Colette Rolland played a major role in the emergence of this domain: in partic-
ular, she initiated very fruitful breakthroughs, as we mentioned along this chapter.
She received the grade of Doctor Honoris Causa of the University of Geneva (2007).

References

1. Alexander I, Maiden NAM (eds) (2004) Scenarios, stories and use cases. Wiley, New York
2. Al-Jadir L, Léonard M (1998) Multiobjects to ease schema evolution in an OODBMS. In:

Proceedings of international conference entity-relationship’98, LNCS vol 1507. Springer,
Berlin/Heidelberg, pp 316–333

3. Andany J, Léonard M, Palisser C (1991) Management of evolution in databases. In:
Proceedings of the international conference on very large data bases, VLDB, Barcelona, Spain

4. Arni-Bloch N, Ralyté J (2008) MISS: a metamodel of information system service. In:
Proceedings of the 17th international conference on information system development (ISD),
Springer US, pp 177–186

5. Arni-Bloch N, Ralyté J (2008) Service-oriented information systems engineering: a situation-
driven approach for service integration. In: Proceedings of CAiSE’08. LNCS, vol 5074.
Springer, Berlin/Heidelberg, pp 140–143

6. Arni-Bloch N, Ralyté J, Léonard M (2009) Service-driven information systems evolution:
handling integrity constraints consistency. In: Proceedings of the 2nd IFIP WG 8.1 working
conference, PoEM 2009. LNBIP, vol 39. Springer, Berlin/Heidelberg, pp 191–206

7. Boman M, Bubenko JA Jr, Johannesson P, Wangler B (eds) (1997) Conceptual modelling.
Prentice Hall, Englewood Cliffs, NJ

14 M. Léonard and J. Ralyté

8. Foucaut O, Rolland C (1978) Concepts for design of an information system conceptual
schema and its utilization in the Remora project. In: Proceedings of the 4th international
conference on very large data bases, pp 342–350

9. Gordijn J (2002) Value-based requirements engineering: exploring innovative e-commerce
ideas. PhD thesis, Vrije Universiteit Amsterdam

10. Junet M, Léonard M, Tschopp R (1981) ECRINS/81. In Proceedings of IFIP 8.1 workshop,
Sitgès

11. Junet M, Falquet G, Léonard M (1986) ECRINS/86: an extended entity-relationship data
base management system and its semantic query language. In: Proceedings of international
conference on very large data bases, VLDB 1986. Kyoto, Japan

12. Krogstie J, Opdahl AL, Brinkkemper S (eds) (2007) Conceptual modelling in information
systems engineering. Springer, Berlin/Heidelberg

13. Léonard M (2003) The farandole of fancied conceived and shaped objects. In: Bodart F (ed)
Utility, usability and complexity of emergent information system. Presse Universitaire de
Namur

14. Léonard M, Luong BT (1981) Information systems design approach integrating data and
transactions. In: Proceedings of 7th conference of very large data bases, VLDB Endowment,
pp 235–246

15. Léonard M, Parchet O (1999) Information overlap. In: Proceedings of the international
symposium on database applications in non-traditional environments – DANTE′99, IEEE
Computer Society

16. Léonard M, Pham Thi TT (1999) Information System integration with the static and dynamic
aspects. Swiss-Japanese seminar, Kyoto

17. Léonard M, Grasset A, Le Dinh T, Santos C (2001) Information Kernel: an evolutionary
approach to integrate enterprise information assets. In: Proceedings of the international work-
shop on open enterprise solutions: systems, experiences, and organizations, OES-SEO2001

18. Léonard M, Khadraoui A, Ralyté J (2006) Regulation in information systems at the level
of tunement. In: Proceedings of the CAISE’06 workshop on regulations modelling and their
validation and verification ReMo2V ′06, Luxembourg

19. Mirbel I, Ralyté J (2006) Situational method engineering: combining assembly-based and
roadmap-driven approaches. Reqs Eng 11:58–78

20. Nurcan S, Etien A, Kaabi R, Zoukar I, Rolland C (2005) A strategy driven business process
modelling approach. Special issue of the Business Process Management Journal on Goal-
oriented business process modeling, Emerald, 11:6

21. Olivé A (2000) An introduction to conceptual modeling of information systems. In: Piattini
M, Diaz O (eds) Advanced database technology and design. Artech House, pp 25–57

22. Olivé A (2005) Conceptual schema-centric development: a grand challenge for infor-
mation systems research. In: Proceedings of CAiSE 2005. LNCS vol 3520. Springer,
Berlin/Heidelberg, pp 1–15

23. Olivé A (2007) Conceptual modeling of information systems. Springer, Berlin/Heidelberg
24. Ralyté J, Rolland C (2001) An assembly process model for method engineering. In:

Proceedings of CAISE’01. LNCS, vol 2068. Springer, Berlin/Heidelberg, pp 267–283
25. Rolland C (2007) Capturing system intentionality with maps. In: Krogstie J et al (eds)

Conceptual modelling in information systems engineering. Springer, Heidelberg pp 141–158
26. Rolland C (2008) Intention driven conceptual modelling. In: Johannesson P, Söderström E

(eds) Information systems engineering: from data analysis to process networks. IGI Global,
Hershey, Pennsylvania, pp 16–42

27. Rolland C, Cauvet C (1992) Trends and perspectives in conceptual modelling. In:
Loucopoulus P, Zicari R (eds) Conceptual modeling, databases and CASE: an integrated view
of information systems development. Wiley, New York, pp 27–48

28. Rolland C, Prakash N (2001) From conceptual modelling to requirements engineering. Annals
of software engineering on comparative studies of engineering approaches for software
engineering (ASE)

From Sustainable Information System with a Farandole of Models to Services 15

29. Rolland C, Richard C (1982) The REMORA methodology for information systems design
and management. In: Olle TW, Sol HG, Verrijn-Stuart AA (eds) Information systems design
methodologies: a comparative review. North-Holland, pp 369–426

30. Rolland C, Cauvet C, Nobecourt P, Proix C, Coligon P, Lingat JY, et al. (1988) The Rubis
system. In: Olle TW, Verrijn-Stuart AA, Bhabuta L (eds) Computerized assistance during the
information systems life cycle. North-Holland

31. Snene M, Léonard M (2003) From the design to the distribution of e-business system: the
overlap knowledge pattern. In: Proceedings of IADIS 2003, Portugal

32. Spohrer J, Maglio Paul P, Bailey J, Gruhl D (2007) Steps towards a science of service systems.
IEEE Computer 1:71–77

33. Tardieu H, Rochfeld A, Colletti R (2000) La Méthode Merise: principes et outils. Editions
d’Organisation

34. Turki S, Léonard M (2002) Hyperclasses: towards a new kind of independence of the methods
from the schema. In: Proceedings of the 4th international conference on enterprise information
systems – ICEIS′2002, vol 2. Ciudad Real, Spain, pp 788–794

35. Turki S, Léonard M (2002) IS components with hyperclasses. In: Proceedings of the OOIS
2002 conference workshops. Advances in object-oriented information systems. LNCS, vol
2426. Springer, Berlin/Heidelberg, pp 301–307

36. van Slooten K, Hodes B (1996) Characterizing IS development projects. In: Brinkkemper
S, Lyytinen K, Welke R (eds) Proceedings of IFIP TC8 working conference on method
engineering: principles of method construction and tool support. Chapman & Hall, pp 29–44

37. Yurchyshyna A, Opprecht W (2010) Towards an ontology-based approach for creating
sustainable services. In: Proceedings of the international conference on exploring service
science – IESS 1.0, to be published in LNBIP vol 53, Springer, Berlin/Heidelberg

On Roles of Models in Information Systems

Arne Sølvberg

Abstract The increasing penetration of computers into all aspects of human activ-
ity makes it desirable that the interplay among software, data and the domains where
computers are applied is made more transparent. An approach to this end is to
explicitly relate the modeling concepts of the domains, e.g., natural science, tech-
nology and business, to the modeling concepts of software and data. This may make
it simpler to build comprehensible integrated models of the interactions between
computers and non-computers, e.g., interaction among computers, people, physical
processes, biological processes, and administrative processes. This chapter contains
an analysis of various facets of the modeling environment for information systems
engineering. The lack of satisfactory conceptual modeling tools seems to be cen-
tral to the unsatisfactory state-of-the-art in establishing information systems. The
chapter contains a proposal for defining a concept of information that is relevant to
information systems engineering.

1 Introduction

Information systems are built in order to support some other system by keeping track
of its state-of-affairs, by supporting the exchange of information between the other
system and its environment, and by providing information needed for changing the
behavior of the other system, either through direct intervention or through making
information available for other change agents [3]. When seen from the information
system point of view, “the other system” is known by many different names, e.g., the
user system, the user domain, the Universe of Discourse (UoD), the real world, the
business processes. In particular during the development of an information system

A. Sølvberg (B)
Department of Computer and Information Science, NTNU – The Norwegian University of Science
and Technology, Sem Sælands v 9, 7491, Trondheim, Norway
e-mail: asolvber@idi.ntnu.no

17S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_2, C© Springer-Verlag Berlin Heidelberg 2010

18 A. Sølvberg

“the other system” is often seen to belong to “the real world” as opposed to the
abstract plans and specifications of the so far intangible information system to be.

Information systems are closely intertwined with computer systems. Modern
information systems are unthinkable unless based on computers, computation and
communication technology. So we have to distinguish between the information sys-
tem and its computer system, where the computer system is seen as a part of the
information system which it serves. The computerized parts of information sys-
tems are often called application systems (or data systems) reflecting that they apply
computer technology (to store and process data) in order to meet their aims. In the
Nordic countries it is common to distinguish between infology (the discipline of
information systems) and datalogy (the discipline of data systems).

In spite of having built information systems for half-a-century there is still much
to be desired in improving the cost-effectiveness of building and maintaining infor-
mation systems. The IT profession has attracted a vast talent pool over many years.
In spite of this there is widespread concern that the methodological basis for building
sustainable computerized information systems is too weak.

The dissatisfaction comes both from within the IT-profession and from the user
side, both from those who engineer the systems and from those who pay the bill
for failed projects. The IT-profession is not satisfied with itself. The self-criticism
comes both from the information system side [19], and also from the data system
side, e.g., from software engineering [47]. Much of the dissatisfaction is due to the
profound technological changes of the last 10–20 years. Solutions to old problems
are no longer relevant in the new reality [32]. The academic community trans-
lates the dissatisfaction into research agendas aimed at defining new problems and
solutions [12, 19, 21, 23, 32].

The recent SEMAT initiative [47] calls for improving current software engineer-
ing method and theory. Of particular concern is the perceived lack of a sound, widely
accepted theoretical basis for building and maintaining computerized systems of
sufficient size. The SEMAT initiative calls for developing an approach to software
engineering that is based on solid theory, proven principles and best practices, and
that includes a kernel of widely-agreed elements, extensible for specific uses, which
addresses both technology and people issues.

It is unclear why we have not reached further, why the dissatisfaction is so deep.
Research has been going on for several decades aiming at developing a sound theo-
retical basis for information systems engineering, see [4] for an overview. Research
results have come out both from the academic world and the industrial world. Even
if much progress has been achieved over the years there is still some way to go
before we can declare “mission accomplished”.

Some elements in an explanation may be that

• domain issues are so different from computer issues that they demand different
treatment, so that it is difficult to arrive to a unified theory;

• domain issues are so different from each other that the relationships between the
computer sphere and the various domains are so different that there is not one
solution for all, but separate solutions have to be developed for each computer-
domain pair;

On Roles of Models in Information Systems 19

• technology develops so fast that as soon as a solution for a computer-domain pair
has been found, it is outdated by new technological innovations;

• the problem is simply too difficult to solve, at least for us.

In spite of the above we shall propose a modest analysis of the situation, and
hopefully come up with some recommendations for further work. Important require-
ments to a renewed approach to software engineering and information systems
engineering are:

• the theoretical framework must make it possible to build integrated models of
systems which consist of both digital and non-digital components;

• information models must represent the meaning of data, that is, data should be
explicitly related to the phenomena they represent;

• system models must be comprehensible on every level of systems detail;
• system models must permit specification in terms of solutions on every level of

detail, in order to provide for executable specifications;
• system models must support the need for validation of design proposals during

their development;
• system models must support different specification detail, both formal and

informal specifications;
• system models must encourage systematic evolution of specification detail from

low level of detail to high level of detail;
• system models should support proven engineering practice.

These many facets of information systems engineering will be discussed in the
sequel. Requirements to the information systems engineering approach will be sug-
gested. It seems that conceptual modeling is central to finding good solutions for
many of the unsolved problems.

2 Information Systems, Data Systems, Domain Systems
and How They Relate

Information systems consist of collections of data, and of information processes
that collect, store, transform and distribute data in forms that make sense to the
receivers of the data. That is, data is seen to be information when the data is pre-
sented in a form that is understood by the receiver. In advanced societies almost all
data are collected, stored, processed and distributed in digital form by computers.
Almost every system in every domain has a sizable information system component.
Communicating digital devices are everywhere. Software is everywhere. Digitized
information (data) is everywhere.

We shall distinguish between the information system and the domain system (“the
other system”) which is served by the information system. We shall also distinguish
between the information system and its data system (the computerized parts of the
information system). We shall use the term total system for the “whole” formed by
the information system and the domain system.

20 A. Sølvberg

2.1 Information Systems and Domain Systems

The distinction between the information system and the domain system may change
over time, and may differ among people who are involved in different parts of the
interplay between the information system and its domain. So parts of the informa-
tion system may sometimes by some be seen as being parts of its domain, and vice
versa. Also the borderline between the total system and its environment may at times
seem fuzzy. In practice it is sufficient that in the various situations it is made clear
whether a particular system component is part of the information system, its domain
or of the domain’s environment.

Modeling the domain is an essential part of requirements elicitation in informa-
tion systems engineering. Initially the large volume of computer applications were
in the support of information processing in organizations, e.g., banking, finance,
government, retail, industry. Those were the applications where the large volumes
of data were found, and where data base technology found the largest markets.
Conceptual modeling was initiated from these application types. Depending on the
nature of the particular application domain these modeling efforts are called by dif-
ferent names, e.g., enterprise modeling [9], business modeling [13], agent modeling
[7, 15], intention oriented information systems modeling [27–29].

The wide penetration of computers into most aspects of human activity has led to
a need for relating information systems engineering to every domain where comput-
ers are applied. Information systems engineering “in the domain” usually goes far
beyond the design of the information supporting role of the information system. The
ambition is usually to re-engineer the domain in order to take maximal advantage of
available technology, e.g., “business process re-engineering”.

In order to re-engineer in a particular domain it becomes necessary to relate
general IT-knowledge to the discipline knowledge of the relevant domain. So
the conceptual modeling theory of information systems engineering and software
engineering has to relate to all kinds of domain theories.

2.2 Information Systems and Data Systems

The distinction between digital and non-digital representation is not always used
as a criterion for decomposing information systems into structures of smaller parts.
Many information system components therefore is seen to consist both of com-
puterized parts and of parts where information is stored in non-digital forms, e.g.,
paper, and where the information processing is not done by computers but, e.g., by
people. In the computerized parts of an information system the information collec-
tions and messages must be encoded in some formal expression. The non-digitized
information may very well be informal, e.g., expressed in natural language. The
formalization of informally expressed information usually requires new details and
complexity to be added to the informal form. The interplay between formality and
informality often creates difficulties for the information exchange.

On Roles of Models in Information Systems 21

The first information systems appeared together with the databases during the
1970s. Information systems were specialized and self-contained. Software and
hardware was built to support one and only one information system. Over the
years we have learnt how to reuse software, and standard software packages are
increasingly replacing the specialized solutions. For large organizations the tran-
sition from specialized to packaged software was over at the end of the 1990s.
Almost all large companies by then used some form of packaged enterprise
system [9].

Operating systems as well as central application systems in e.g., finance and
auditing, evolved during the same period into software platforms for large appli-
cation domains, e.g., banking platforms, Enterprise Resource Planning (ERP)
platforms. Most of the software platforms are proprietary, in the sense that they are
owned and controlled by large industrial actors, e.g., Microsoft Windows. The plat-
forms provide a competitive edge for the companies that own them. The increasing
reliance on software platform can also be seen in service oriented computing [24]
and in workflow management [8].

A very interesting development is seen in the development of application plat-
forms for mobile phones. The major vendors of “smart” phones invite the general
public to develop applications (“apps”) for their proprietary operating system
platform. This represents a major “democratization” of application software devel-
opment, see [14]. Virtually everybody with relevant knowledge can develop their
own app and sell it via their smart phone producer.

The movement towards Open Source Software has made available large numbers
of packaged solutions for a myriad of application areas [35]. Information systems
engineering has moved towards becoming a “normal” engineering discipline were
it is possible to shop for available software solutions in a way similar to what is
done in “classical” engineering, where design is based on the effective assembling
of available system components.

3 Central Issues in Information Systems Engineering

Some of the most important issues in information systems engineering are con-
cerned with:

• managing information system projects,
• systems design approaches,
• modeling languages for information systems, domain systems and data systems,
• comprehension of specifications,
• modeling of the meaning of data,
• validation techniques,
• changes in the information systems domain and technological environment.

These will be discussed in the sequel.

22 A. Sølvberg

3.1 Engineering Practice

Engineering projects follow a well tested and successful approach, which is the same
for all kinds of engineering. Work is done in phases, each phase addressing different
issues at different levels of detail. Each phase must produce well defined and well
documented results, which are subjected to evaluation prior to being accepted as
basis for further work. The first project phases are concerned with setting the objec-
tives of the projects, e.g., what is the final outcome of the project, what is the budget
(time, money, competences). That is, the first phases are concerned with develop-
ing the requirements to be satisfied by the project. The next phases are concerned
with developing engineering designs that satisfy the stated requirements. Each new
phase adds new detail to the design proposals from previous phases. The end-of-
phase evaluations concern technical issues, as well as project economy and plans
for the remaining work in the project.

Information systems engineering differs from classical engineering in the cost
profile of the projects. In classical engineering, e.g., the building of roads and
bridges, the lion’s share of the costs are invoked during the last phase of the projects,
when the actual realization of the engineering design is done. During this last
phase many hands and machines are put to work, and components of consider-
able size and cost are assembled according to the plans developed in the previous
phases.

In information systems engineering the project is essentially over when the soft-
ware have been written and tested. There is no building phase which is comparable
to the building phase of classical engineering. The lion’s share of information sys-
tems engineering and software engineering is associated with the requirements
development, the design, the programming and testing. These phases in classical
engineering carry costs that are small compared to the total project expenditures.

The costs of making mistakes during the design are huge in most classical engi-
neering projects because of the large investment of time and money in the last phase
of the construction work, e.g., a bridge that falls down is a calamity. Therefore all
project phases are subjected to strict control and management practices. These prac-
tices have been taken over in information systems engineering projects where the
costs are large of making mistakes during requirement development and system
design.

The classical engineering approach has been much criticized in the software engi-
neering community and is seen by many as being both old-fashioned and traditional.
The classical engineering approach is known by different terms in the software engi-
neering community, the most common terms are top-down design and the waterfall
method when the classical approach is used for information systems engineering.
Several other approaches have been proposed. A common feature among many of
the competing proposals is the early development of software prototypes, and a
gradual expansion and continuous testing of a prototype, until the prototype has
been developed into a final product.

The two major approaches to information systems engineering are the top-down
“requirements-first” approach and the bottom-up “agile” approach.

On Roles of Models in Information Systems 23

• The “requirement first” approach recommends that solutions for the comput-
erized parts of an information system should satisfy validated requirements.
The approach also recommends that requirements and solutions should be kept
separated, so that modified solutions can be validated relative to modified
requirements, see [46].

• The “agile” approach recommends that specifications of the computerized parts
of an information system are stated in terms of computer solutions, that is, in
terms of executable specifications, see [37].

The “requirements first” approach is seen as an old-fashioned traditionalist
approach by the “agile” community. The “agile” approach is widely seen by the
“traditionalists” as a “program first – think later” approach which can only be used
for systems of limited size and limited life span.

The classical engineering approach has in particular been criticized for a linear,
heavy handed approach to project management. This is when the classical approach
is compared to competing approaches which are claimed to rely more on iteration
and gradual development of the systems. When subjected to analysis this claim
does not seem to hold [2]. Iteration is basic to engineering design, independent of
approach to project management.

3.2 Evolution of Detail

Most solutions to engineering problems are so complex that it is impossible for
anybody to understand every detail at the same time. Information systems of
this complexity are sometimes called unperceivable [16], but are more commonly
called unsurveyable [31]. A basic problem in engineering is to find an approach to
developing solutions to unsurveyable systems.

The most common solution strategy consists in breaking a problem into simpler
subproblems, then to find solutions to each subproblems so that they together form
a solution to the problem. Gabriel Krohn [40] developed this divide-and-conquer
strategy into an approach for solving electrical engineering problems [41]. He called
the approach The Method of Tearing, or Diakoptics (Greek: dia–through + kopto–
cut, tear). The essentials of diakoptics is the splitting of physical problems into
subproblems that can be formalized and solved independently of each other, then
recombining to give an overall formal solution by taking into account the relations
among the subproblems.

Krohn’s method was in the 1960s generalized and applied for information sys-
tems design by Langefors [42]. In the information systems field the approach is
known as The Fundamental Principle of Systems Design [16]. A system is seen as
a collection of subsystems with stated external properties, related through a sys-
tem structure which relates the external properties of the subsystems. In order to be
used to its full potential it takes that both the system structure and external proper-
ties of each subsystem can be formally stated, so that the external properties of the
resulting system can be formally calculated. This is possible for some categories of

24 A. Sølvberg

physical systems, e.g., electricity networks, but is not generally possible. For soft-
ware engineering problems the calculations are usually not decidable or even not
semi-decidable.

The decomposition of systems into subsystems stop when existing solutions are
found for the system, or the system is simple enough to be understood without fur-
ther decomposition. For physical systems there are large offers of commercially
available system components which are specified according to agreed standards.
The most detailed level of physical system design is the level of standardized com-
ponents. Solutions are developed as assemblies of available standard components.
Knowledge of the properties of available standard components influence designers
in formulating system requirements, so that there will be a preference for formu-
lating requirements that can be met, rather than being unrealistic and reach for the
moon.

The information systems field has traditionally been short of universal product
standards. There are many proprietary standards competing for market share, e.g.,
the standard for writing apps for recent mobile phones. Some of the company stan-
dards succeed in becoming universal, e.g., the standard for offering Java code to the
world. The lack of a standards regime which is comparable to engineering standards
for physical systems makes software solutions more often to come in the form of
complete solutions than in the form of components. There are large collections of
software solutions available as Open Source Software, see [35] for discussion and
overview.

3.3 Requirements and Solutions

Information systems have always been built in order to satisfy some purpose. The
first information systems were built from scratch. Computers were expensive and
the required software most often had to be built for one purpose alone. Faced with
limited budgets most of the effort in the information system projects were spent on
making programs, and too little was spent on clarifying the purpose which the sys-
tem should serve. This “program-first-think-later” approach resulted in information
systems of low quality that did not live up to expectations.

The user centric approach to information systems development which emerged
during the 1970s came as a reaction to the many failed software projects of the time.
The user-centric approach recommended that user requirements were thoroughly
analyzed prior to building software. Requirements analysis became a standard
part of every information system project. “Late binding” was often recommended,
meaning that programming was deferred to the later project phases: first get the
requirements right, then design and program the software and the databases. It
followed from this that requirements specification and software specification is
kept separate, and that software specifications should be derived from the require-
ments. This recommendation was at times overdone. Sometimes one became so
obsessed with developing requirements specifications that one did not come down
to programming. Many projects produced many requirements and few solutions.

On Roles of Models in Information Systems 25

There were two major approaches to information systems engineering and soft-
ware engineering, the deductive approach [20] and the process oriented approach,
e.g., data flow oriented techniques [6]. Basic to the deductive approach is the
assumption that problem formulation can be separated from the problem’s software
solution, much in the same way that the solution of mathematical problem is sep-
arate from the problem formulation. This line of thinking is consistent with the
recommendation of keeping requirements specification separate from the software
specification (the “think-first-program-later” approaches). Basic to the process ori-
ented approach is that problem formulation and problem solution are intertwined,
that the solution to a problem at one level of detail serves as the formulation of a
problem on the next level of detail.

During the 1980s and 1990s there were substantial efforts in the software engi-
neering community in developing specification languages at the algorithmic level
of detail, see [11]. Early successes in applying first order logic for problem formu-
lations encouraged the ambition of being able to verify the correctness of problem
specifications prior to programming. These “problem-oriented” approaches rest on
the principle that designing effective solutions requires a detailed understanding
of the problem. Only for problems of limited size is it possible to precisely and
completely define the problems up-front. The problem oriented approaches did not
sufficiently recognize the need for prescribing a gradual and continuous refinement
of a problem description in order to identify new or previously missed context
elements and requirements.

The problem specification languages that were proposed, e.g., Z and VDM, were
based on set theory. They were not executable, that is, software that satisfied the
specifications had to be expressed in appropriate programming languages. These
specification languages did not enjoy success. There may be several reasons for
their lack of success. One reason was that it was very time consuming to develop
in parallel problem specifications and solution specifications to the same level of
detail. The verification facilities of the problem specification languages were not
powerful enough to defend the extra resources needed to develop the problem spec-
ifications. The executable solution specification was seen as being enough for most
problem types. The only fields were verification approaches seem to have been
used to any extent, is for system critical software, that is for software where the
cost of breakdown is very large, e.g., for nuclear facilities, for airplane control sys-
tems. In the clear light of hindsight it may be said that these approaches were not
enough concerned with the elicitation and validation of problem statements, and the
transformation of problem statements into design solutions.

It is now widely recognized that for large and complex information systems
architectural solutions and requirements need to be co-developed [25]. Large and
complex information systems have to be stratified and described at levels of increas-
ing detail. Increasingly it is necessary to specify both what the systems is expected
to do as well as what it is expected not do [30]. Often the complexity demands that
different facets have to be treated separately [22, 25]. At each level it is common
to develop a system architecture that provides a solution to all of the required func-
tionality of all of the facets at that level. Central to this are co-design processes for

26 A. Sølvberg

taking the different facets into consideration when proposing architectural solutions
and associated requirements on the appropriate levels of specification detail [25].

The system architectures are usually expressed in terms of solutions to the stated
requirements. Each part of a system solution at one level of detail serves as a require-
ment to the system architecture at the next level of system detail. At the most
detailed level we should be able to formulate the system specifications in terms
of executable specifications, or in terms of pre-existing solutions. Process oriented
approaches seem to fit very well with this line of thinking.

3.4 Formal and Informal Specification

Data and data processes are usually associated with computer programming.
Information and information processes are associated with the use of data by peo-
ple. Information systems designers have to relate to both computers and people, to
data as well as meaning. People mostly communicate through natural language but
also through drawings and sketches of system structures. Computers communicate
through binary numbers. To make sense out of messages, be they uttered in language
or as numbers, the messages must be related to a model of what the messages are
about. This model of “the real world” must be shared among the communicating
parties if misunderstandings are to be avoided. Computer systems will break down
if the various digital components do not share a common model of “reality” and a
common model of data representation. People may be able to discover misunder-
standings prior to a system breakdown and to take corrective actions, computers
cannot.

During the initial phases of systems design the ideas about the system-to-be are
usually both imprecise and vague. Requirements to the system-to-be are usually not
well thought through. Desired system properties may be unrealistic. An important
aim of the initial project phases is to develop a consensus among the interested
parties about whether and how desired system properties can be achieved. The level
of ambition for desired properties must be balanced with the availability of resources
for building and operating the system-to-be.

The usual form of communication is through natural language, spoken and writ-
ten, through informal sketches of various system architecture proposals, and through
more or less formal descriptions of existing solutions to systems similar to the one
being discussed. Only when “the dust has settled” and agreement has been reached
on the major parameters of the system-to-be comes the time for adding formality to
the systems descriptions.

Formality of systems descriptions is needed in order to understand every detail
in the proposed solutions. When sufficient formality cannot be achieved for a rea-
sonable cost one has to rely on designers’ experience. When technology is not well
enough developed one has to rely on handcraft. Even if formality is achievable there
is a long way to go from the initial informal specifications to the formal expressions
that make up the specifications of the final system details.

A desirable property of a specification language would be that it lends itself both
to the informal and formal tasks. Unfortunately there is no such language. What

On Roles of Models in Information Systems 27

we would like to have is a modeling language which supports increased formality
of expression through systematic addition of specification detail, starting from an
informal basis. An example would be that an initial informal natural language speci-
fication is systematically enriched with more and more detail until the most detailed
specification can be transformed into a formal form, based on linguistic analysis.
Another example would be a graphical language for, e.g., information modeling,
which is as suitable for high level informal sketches of information objects as it is
for describing detailed data structures.

An approach to formalization of natural language specifications is found in an
extension to fuzzy set theory which is called computation with words [38]. The
basic idea is to quantify words and sentences so that they can be given mathemati-
cal treatment. Another approach is to relate model fragments (semantic frames) to
natural language sentences, see, e.g., [39] for a collection of semantic frames.

Graphical languages are usually used for sketching systems structures on the
exploratory road from informality to formality. These languages are widely used,
e.g., UML, ER-diagrams. Graphical languages for specifying every detail in a struc-
ture are far between [10]. A comprehensive analysis of graphical languages has
recently been published in [17].

3.5 Comprehension

With the penetration of computers into all realms of human affairs comes the need
for understanding what the computers do, to enable people to judge whether the
software produce correct data. Both data specifications and software specifications
must be comprehensible in the sense that they can be understood and validated by
people that are not computer specialists.

The need for comprehension of system specifications is complicated by the
necessity that somewhere in the development process system specifications are
stated in executable terms, that is, in the languages of data bases and computer
software, which are usually only understood by specialists.

A solution of the dilemma has been sought in model driven development (MDD),
also known as model driven architecture [43] and model driven engineering [44].
The main idea of using the term model driven is that, in order to increase comprehen-
sibility, software and data specifications are developed in a language that reflects the
particularities of the domain. These specifications should later on be automatically
translated into executable software.

The difficulty lies in the details. The current state of the art of expressing exe-
cutable specifications requires the specification of so many details of the data system
realm that the comprehensibility of the specifications suffers severely for those that
are not software specialists.

3.6 Validation

Systems are composed of subsystems which are related to each other. The
relations among the subsystems are called the system’s structure. A concrete

28 A. Sølvberg

proposal of subsystems and structure is called a system design. High level designs
are often called system architectures. Each design proposal is associated with a set
of expected system properties.

The purpose of design is to propose systems which have a set of desired prop-
erties. Validation is the process of comparing the desired properties of a system
to the expected properties of its design, and of determining whether the expected
properties of a proposed design of system satisfy the desired properties.

Of central importance is whether we are able to state the expected system prop-
erties when we know the parts and the structure of a system. For some system
types it is possible to formally calculate the expected properties of a design. A
minimal requirement for this to be possible is that relevant properties of each sys-
tem part can be formally expressed along with relevant properties of the system’s
structure. When formal calculation is not possible we have to resort to evalu-
ations based on informal reasoning and previous experience in building similar
systems.

Relevant system properties comprise many system features. Desired properties
are usually expressed as requirements specifications. They are usually written in nat-
ural language. Expected properties of a system are implied from a design proposal.
For some features this may be achieved through formal calculations and logical
deduction, if the design is formulated in a formal language. Prototyping is an often
used technique for system features where it is impossible or difficult to formally
deduce the expected system properties. “Agile” software development approaches
are often used in order to rapidly build software prototypes to support validation
processes.

The comparison between expected and desired properties is mostly based on
human evaluations of informally expressed statements of system properties. Some
of the most important features are associated with economy: from the current state-
of-affairs, are the available resources enough to develop a system with the desired
properties? To answer this question requires that there is a plan for finalizing the
system building project, and that there is a way of calculating the cost of developing
the remaining parts of the project.

4 Modeling of Data, Information and the Domain

We distinguish among data systems, information systems and domain systems.
Each of these has their own particularities. Concrete systems solutions are increas-
ingly composed from both digital components and non-digital components, which
are interacting among themselves as well as with people. We need to simultane-
ously model in the realms of data, domain and information. Current practices apply
different modeling languages for data systems, information systems and domain
systems.

Our aim is to find a way of modeling which makes it possible to interpret the
meaning of data with respect to our understanding of the UoD. The approach is
to view information as a relationship among data types and UoD concepts. The

On Roles of Models in Information Systems 29

ambition is to provide for semantic preserving transformations, so that when new
concepts of new world views are introduced and defined relative to previously
defined concepts, new information which is relevant to the new world view may
be produced from what is already present in the data bases.

The realization of the digital system components require that the appropriate
domain models are expressed in the modeling languages of computers, in the form
of data structures and computer programs. But the associated domain systems must
usually also be expressed in the relevant domain modeling languages so that the
system models can be understood in the domain culture. Data system languages are
keys to realization of the digital system components and cannot be avoided. So we
need to have parallel specifications, in three different modeling languages.

The mathematical basis and the modeling tradition of the various modeling cul-
tures differ. For example, most modeling cultures in technology and science require
mastering of differential equations, while the mathematical basis of data systems is
discrete mathematics and mathematical logic. Information systems apply additional
modeling approaches from linguistics and sociology, e.g., speech act theory, and rest
on the associated mathematical basis.

There is no automatic translation among the modeling languages. So it is very
labor intensive to maintain several specifications when the systems are changed.
And change is the normal state-of-affairs: laws and regulations change, products
have to be changed to meet competition in the marketplace, new system versions
are made to meet the needs in new markets. The usual situation is that only the
executable specification is maintained. That is, the details of a domain system
model are found only in the data system specification. The negative consequences
for comprehension and validation are obvious. Even for systems of medium size
comprehension and validation is impossible. This is acceptable only when system
failures are of little consequence.

The deep penetration of computers in all realms of society necessitates a change
in approach whereby domain problems being expressed in domain oriented lan-
guage can be made to co-exist with specifications of data systems and information
systems without everything having to be translated into data system oriented spec-
ifications. IT concepts, tools and theory consequently have to be better integrated
with the wide spectrum of domain specific modeling concepts and theories. In order
to reconcile the various approaches to modeling it seems to be necessary that the
different specification languages are based on similar ontology, and that there exist
an understandable relationship between data and what the data stand for.

In information systems engineering we have three groups of concepts: for con-
cept modeling in general, for behavior modeling, and for data modeling. The
concepts of state, event and process are used for behavior modeling. These are
separate concept classes and represent the evolution over time of properties of con-
crete systems. These concepts are used for behavior modeling in all three modeling
realms.

Over the years many approaches to concept modeling and behavior model-
ing have been proposed. Some influential modeling approaches were proposed by
Wand and Weber (the Bunge-Wand-Weber model) [34] and by Colette Rolland, first

30 A. Sølvberg

through her REMORA methodology [26] and later through her work on intentional
modeling [27]. Central in much of the research in information systems modeling
has been to achieve a cross-disciplinary approach to business process design. As the
years have gone by the work on information systems modeling has become more
and more central to information technology as a whole.

We shall, however, not discuss these concepts further. We restrict the rest of our
discussion to a model ontology that is relevant to data and information.

4.1 Meaning

Digital data is always associated with meaning. Each data element represents some
relevant property of the world. This is necessary in order for the data to be use-
ful to the world outside of the computer, as well as for ensuring that systems
provide for meaningful communication among their components. What meaning
data convey depends on how the human receiver of data perceives the phenom-
ena that the data refer to. More often than not there is no explicit model of the
world for the human interpreter to lean to. In data systems the world models are
usually implicit in the software, and are hidden to the human interpreters of the
data.

Relationships between digital data and what the data refer to are seldom
explicitly stated, but are usually informally indicated by the names given to the
data elements, e.g., a data element named NAME-OF-PERSON is understood to
represent information about the name of a person, and a data structure named
EMPLOYEE usually represents information about persons who work in a com-
pany. The structure of a data base reflects the world view of the data base designer,
and is expressed through the names of the data structures. This works well within
each individual information system, but leads to difficulties when integrating several
data bases representing different world views. The need for explicitly express-
ing the meaning of data was encountered in the data base field when trying to
find approaches to data integration. The first approaches to data integration were
concerned with structural integration. Recent research is concerned with semantic
integration, see [36] for an overview of the research area.

Data on the World Wide Web are mostly natural language text. The meaning of
a text is intuitive in the same way as every text is intuitively understood through
the reader’s association of terms and sentences to the reader’s understanding of the
world. Linguistic theory applies to most of the data on the web. The objective of
having a “semantic web” is unreachable unless there is an explicit relation between
the linguistic constructs and the appropriate world model, that is, between the data
and the conceptual models of what the data stand for. So we are faced with the
same problems for providing meaning to data independent of whether the data is
structured or unstructured.

Information modeling is an approach to provide meaning to data. Information
models relate conceptual models and data models. Conceptual models provide struc-
ture to the relevant world views and provide means to relate different world views

On Roles of Models in Information Systems 31

to each other. Data models provide structure to digital data inside of the computer.
Information models relate data models and conceptual models, thereby providing
meaning to digital data.

4.2 Concepts for Modeling the UoD

The knowledge, which is represented in an information system, is entirely con-
ceptual. The data, which are stored and processed by an information system, are
linguistic units, which denote concepts and referents in the Universe of Discourse
[18]. The linguistic units are represented by digital numbers. Concepts are grouped
differently depending on users’ needs. Linguistic concepts are different from facts
and ideas. Information systems are concerned with data that represent facts in a
Universe of Discourse. A fact is what is known -or assumed- to belong to reality. In
science and technology one usually distinguishes the following kinds of facts: state,
event, process, phenomenon, and concrete system e.g., a magnetic field [5]. Ideas
are formally expressed as concepts, formulas (e.g., statements) and theories, which
are systems of formulas. Conceptual models are the formal expressions of ideas.

Conceptual modeling in computer based information systems are most often
concerned with phenomena where it becomes important to distinguish among indi-
viduals, and to deal with classifications of individuals, e.g., the concept of PERSON
represents all persons, dead, living and unborn. Set theory is well suited to deal with
discrete phenomena. This makes set theory to be well suited to deal with digital
representations of facts. The relevant modeling ontology reflects the properties of
mathematical set theory and is thus of considerable generality.

Unfortunately set theory is less suited to deal with phenomena of continuous
nature. For example, take the concept of copper. Copper is part of bronze and it
is part of brass. It feels somewhat artificial to view copper as a class concept, its
extension being all things of copper [5].

4.2.1 Conceptual Modeling of Non-Discrete Phenomena

The deficiencies of set theory may be counteracted by introducing mereology –
the theory of parthood relations – as a mathematical foundation of similar impor-
tance as set theory, see [45]. This makes possible within a respectable mathematical
framework, the alternative, but still similar, classification of facts which is found in
the American National Standard’s guidelines for thesauri construction [1], which
recommends that distinction is made among the following kinds of concepts
(non-exhaustive list):

• things and their physical parts, e.g. bird, car, mountain;
• materials, e.g., water, steel, oxygen;
• activities or processes, e.g., painting, golf;
• events or occurrences, e.g., birthday, war, revolution;
• properties or states of persons, things, materials or actions, e.g., elasticity, speed;

32 A. Sølvberg

• disciplines or subject fields, e.g., theology, informatics;
• units of measurement, e.g., hertz, volt, meter.

The classification above is accompanied by recommendations for how to con-
struct the associated terminology, e.g., rules for when to use plural and singular
forms, and rules for relating terms to each other, which may depend on the kind of
concepts designated by the terms.

4.2.2 Conceptual Modeling of Discrete Phenomena

The most successful modeling approach for the UoD is found in science, where
distinctions are made among individual concepts, class concepts, relation concepts,
and magnitudes (quantitative concepts) [5]. These general concept types are tools
for distinguishing among items and for grouping them. Individual concepts help us
to discriminate among individuals. Class concepts are used to establish classifica-
tions. Ordering and comparison are made possible by relation concepts. Distinctions
are made between specific (definite) concepts and generic (indefinite) concepts, e.g.,
“Obama” is a specific concept, but “x” is a generic concept and denotes an arbitrary
referent.

The concept classification of science is independent of the concept classification
made for thesauri purposes, and may be used for concept modeling within each
group in the thesaurus classification as well as for building models to relate concepts
that belong to different groups in the thesaurus classification.

Quantitative concepts apply to properties that reflect magnitudes associated with
individuals and/or sets, e.g., the temperature of a body, the number of elements of
a set. No distinct object is associated with a quantitative concept. Functions are
the structure of quantitative concepts, e.g., weight, mass, heat, acceleration. For
example, weight is a function W that maps the set of bodies (each of which has
a weight) into the set of real numbers. Quantitative concepts are the conceptual core
of measurement [5].

Let “b” be a generic individual concept that represents some physical body (the
object variable) and let “w” be a generic individual concept that represents a numer-
ical value (the numerical variable). Then “W (b) = w” reflects the functional nature
of W, and is to be read “the weight of b equals w”. The numerical variable w occur-
ring in the weight function is equal to the number of weight units on a given scale,
e.g., kilogram or pound. If scale and unit system is not fixed by the context we need
to indicate it by a special symbol, say “s”. In short, “W(b,s) = w” is to be read “the
weight of b equals w measured in the scale s”.

Domain models are structures of individual concepts, class concepts, relation
concepts, and quantitative concepts. Class concepts apply to collections of individ-
uals, e.g., “PERSON” refers to all possible persons, and “NORWEGIAN” refers
to all Norwegians. That Norwegians are persons is stated in the domain model as
NORWEGIAN is a subset of PERSON.

Relation concepts and class concepts are closely related. For example,
“MARRIAGE” may be seen as a relation concept, where (it used to be that) each

On Roles of Models in Information Systems 33

instance involves one man and one woman, but there is also a corresponding class
concept of “MARRIAGE”, seen as a legal entity. In mathematics, the concept of
relation is not a primitive concept along with set and member, but is defined in
terms of notions already available in set theory for defining set and set-membership.
This is done in order to keep the number of irreducible concepts in set theory to a
minimum [33].

4.3 Data Concepts

From a conceptual point of view there is no difference, in principle, between binary
numbers and other referents. Binary numbers may be abstracted in class concepts
and related by relation concepts as may every other collection of referents mak-
ing up this Universe of Discourse. Computers deal directly with their referents (the
data), and it becomes important to distinguish between a concept and its extension.
Important concepts for data modeling are:

• data item: the specific individual linguistic concept, the term, the value;
• data record: a structured data item composed from other data items;
• variable: the generic individual linguistic concept;
• data type: a linguistic class concept, in programming languages usually called

“type”;
• data set: a set of data items, each data item being different from the others in the

set;
• data collection: a collection of data items which need not be different;
• data base: a collection of data collections.

The names given to data types may used to distinguish among quantitative con-
cepts and how they relate to other UoD concepts. Quantitative concepts are general
in the sense that they apply to large numbers of referents, e.g., every physical body
has a weight and a temperature. A generalization of the definition in the previ-
ous section provides us with the definition of a quantitative concept as a function
q:UoD×S→D, where UoD is the set of referents, S is the set of scales, D is the
set of linguistic units (the possible values), and consequently the set of quantitative
concepts is Q={q|q:UoD×S→D}.

Assume that we want to define three data sets, one to contain the weight values of
Norwegians, one for Americans and one for the British. Assume further that weight
is measured on the metric scale, but in units of kilograms with two decimals preci-
sion for Norwegians, in pounds with one decimals precision for Americans, and in
stones with three decimals precision for the British. The corresponding (informal)
definitions may look like

W: American x (scale lbs 1 decimal) → WAlbs1
W: British x (scale stone 3 decimals) → WBstone3
W: Norwegian x (scale kg 2 decimals) → WNkg2

34 A. Sølvberg

where WAlbs1, WBstone3, WNkg2 are data types of positive real numbers.
The data types may now serve as names of different combinations of class con-

cepts and the quantitative concept weight W, and may be used to define data sets,
e.g., a table with the name WEIGHT-A and attribute WAlbs2 will denote a data col-
lection with one record for every American, WEIGHT-B can be defined similarly
for the British, and so on.

Unfortunately the usual situation is that the weight definitions and their relations
to the data types are either not made as explicit formal statements, or they are soon
lost in heaps of documentation, which are usually not well maintained. The weight
definitions must be seen as part of the definitions of the data types. So the rele-
vant data sets appear as undefined entities without explicit reference to what they
carry information about. The “memory” of the definitions is imprinted only in the
software processes where the variables of these data types are used.

4.4 Information Modeling

While data collections may contain several equal data items, information collections
are sets, where all individual members are different. Information sets are defined by
relating UoD concepts and data concepts. Langefors [16] introduced the concept of
elementary message (e,v,t), where e is an entity in the UoD, v is a measurement
value and t is the time of the measurement. We view information to be a relation-
ship between a quantitative concept, a domain concept and a data type. A message
is a relationship between an individual domain concept and a (quantitative concept,
data type) pair, an information set is a relationship between a domain class concept
(and relation class concept) and a (quantitative concept, data type) pair. The orig-
inal definition of elementary message may need to be expanded to include spatial
information in addition to time. We will not discuss this aspect further here.

In order for a data item to carry meaning it must be related to the appropri-
ate quantitative function, to the appropriate referent in the UoD, to the scale of
measurement s in the set of scales, and to the time and location, and to the data rep-
resentation of the observed value. The precision of the unit system must be specified,
e.g., whether the weight is represented with an accuracy of hundreds or thousands
on the chosen scale, be it kilogram, ton or pound. When represented in a computer
program, precision is defined by the data type of the appropriate numerical variable,
e.g., integer, real, double precision, decimal number, or some other user defined data
type, as shown in the previous section on data modeling.

Information sets must be defined relative to the conceptual model of the world
that is represented by the data items. For example, an information set that contains
the numerical values of the weights of all persons could be specified as a data col-
lection containing one element for each member of the extension of the appropriate
world concept. In order to qualify for an information set, each of the elements in
the set must be a pair consisting of a unique label for each individual of the domain
class concept and a value for the corresponding weight.

We illustrate this by continuing the example of weights of persons and
Norwegians. For Norwegians the situation is straight forward. All Norwegians

On Roles of Models in Information Systems 35

are associated with a unique label defined by the 1:1 mapping PID-N from all
Norwegians to the data type PNO, which is called the person number, more formally
expressed as PID-N: Norwegian ↔ PNO. We may now define the information set
NOR-WEIGHTS = (PNO, WNkg2), and we may interpret the meaning of the cor-
responding data, as we have the complete semantic definition of every concept used.

This is admittedly a complicated way of defining the meaning of a data item.
On the other hand there is a certain economy involved in specification volume
because many of the concept definitions can be reused. Weight and age and person
number are reusable, as are scales and types. Essential is that domain models may
be modified without requiring a simultaneously modification of the corresponding
information models and data models.

New domain concepts can be defined relative to already existing domain con-
cepts. We don’t have to modify already defined information definitions and data
models. New information set definitions can be done as additions to already existing
ones. Modifications of information systems can be done by replacing old infor-
mation sets with new ones, both new and old information being properly defined.
We can transform information sets and data structures while preserving their
semantics.

The following is an indication of what a full specification of information about
weights of Norwegians, Americans and British may look like at an early stage of
information systems engineering. In order to be able to express information associ-
ated with individuals on the level of sets of these individuals, even if we don’t know
how to identify the individuals, we have to introduce a special quantitative concept
which maps 1:1 from a class concept to an unknown data type. This special map-
ping is called label and serves as a surrogate for a unique name for the members of
the class concept. Example: label(Person) stands for an unknown data type which
could serve as a unique identifier for all persons on the planet. But label is a quanti-
tative concept in its own right, and can be used to specify, e.g., PNO to be a unique
identifier for Norwegians.

Example: The objective is to specify information as a relation between data con-
cepts and UoD concepts. The data concepts are data types, and the UoD concepts
are class concepts and quantitative concepts. Scale concepts including measurement
units and precision come additionally.

First, the modeling in the domain:

C-concept Body, Person, American, British, Norwegian;
Q-concept weight: Body → positive real;
Body includes Person;
Person includes American, British, Norwegian;

Then, we have to introduce appropriate data types:

datatype real Aweight, real Bweight, real Nweight, integer PNO;
Q-concept label: Norwegian ↔ PNO;
Q-concept weight: American → wA(lbs.d)
Q-concept weight: British → wB(stone.ddd);
Q-concept weight: Norwegian → wN(kg.dd);

36 A. Sølvberg

We may now define appropriate information sets:

informationset A-weight, B-weight, N-weight;
A-weight: foreach American (label, weight);
B-weight: foreach British (label, weight);
N-weight: foreach Norwegian (PNO, weight);

There is no properly defined specification language defined yet. For example,
it should be possible to be somewhat vague in the specifications, e.g., in addi-
tion to being able to state forall also to state that formost American, forsome
Norwegian, forafew British, and so on. Such possibilities should make the language
more suitable for supporting increasing level of detail in the specification during the
information system engineering process.

5 Conclusion

Our thesis is that a comprehensive theory of information systems engineering must
comprise a clear definition of the concept of information. Such a definition should
come as an addition to the modeling concepts of data systems domain systems, not
as a replacement. To this end we propose a definition of information as a relationship
between domain model concepts and data model concepts. The ambition is that
the proposed definition of the information concept will permit semantic preserving
transformations of data structures, and thereby provide the basis for comparing data
collections on the web and in data bases with respect to the meaning that they carry.
Much detailed work remains.

References

1. ANSI/NISO Z39.19-1993 (1993) Guidelines for the construction, format, and management of
monolingual thesauri. ISBN 1-880124-04-1

2. Berente N, Lyytinen K (2007) What is being iterated? Reflections on iteration in information
system engineering process. In: Krogstie J, Opdahl AL, Brinkkemper S (eds) Conceptual
modelling in information systems engineering. Springer, Berlin, pp 261–278

3. Boman M, Bubenko JA Jr, Johannesson P, Wangler B (eds) (1997) Conceptual modelling.
Prentice Hall, Englewood Cliffs, NJ

4. Bubenko JA (2007) From information algebra to enterprise modelling and ontologies – a his-
torical perspective on modelling of information systems. In: Krogstie J et al (eds) Conceptual
modelling in information systems engineering. Springer, Berlin, pp 1–18

5. Bunge M (1998) The philosophy of science. Transaction Publishers, New Jersey
6. DeMarco T (1979) Structured analysis and system specification. Prentice-Hall, Englewood

Cliffs, NJ
7. Dietrich A, Lockemann PC, Raabe O (2007) Agent approach to online legal trade. In: Krogstie

J et al (eds) Conceptual modelling in information systems engineering. Springer, Berlin,
pp 177–194

8. Eder J, Lehmann M (2007) Uniform and flexible data management in workflow management
systems. In: Krogstie J et al (eds) Conceptual modelling in information systems engineering.
Springer, Berlin, pp 91–106

On Roles of Models in Information Systems 37

9. Gulla JA (2007) Using models in enterprise systems projects. In: Krogstie J et al (eds)
Conceptual modelling in information systems engineering. Springer, Berlin, pp 107–122

10. Halpin T (2007) Fact-oriented modeling: past, present and future. In: Krogstie J et al (eds)
Conceptual modelling in information systems engineering. Springer, Berlin, pp 19–38

11. Harry A (1996) Formal methods fact file VDM and Z. Wiley, New York, NY
12. Jeffery KG (2007) Systems development in a GRIDs environment. In: Krogstie J et al (eds)

Conceptual modelling in information systems engineering. Springer, Berlin, pp 279–294
13. Johannesson P (2007) The role of business models in enterprise modelling. In: Krogstie J et al

(eds) Conceptual modelling in information systems engineering. Springer, Berlin, pp 123–140
14. Krogstie J (2007) Modelling of the people, by the people, for the people. In: Krogstie J et al

(eds) Conceptual modelling in information systems engineering. Springer, Berlin, pp 305–318
15. Kung D, Kavi K (2007) Conceptual modeling and software design of multi-agent systems.

In: Krogstie J et al (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, pp 159–176

16. Langefors B (1066) Theoretical analysis of information systems. Studentlitteratur, Lund
17 Moody DL (2009) The “physics” of notations: towards a scientific basis for constructing

visual notations in software engineering. IEEE Trans Softw Eng 35(5):756–779
18. Ogden CK, Richards IA (eds) (1923) The meaning of meaning. Kegan Paul, Trench and

Trubner, London
19. Olivé A (2005) Conceptual schema-centric development: a grand challenge for information

systems research. In: Proceedings of CAiSE 2005. LNCS, vol 3520. Springer, pp 1–15
20. Olivé A (2006) Conceptual modeling of information systems. Springer, Berlin
21. Olivé A, Cabot J (2007) A research agenda for conceptual schema-centric development. In:

Krogstie J et al (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, pp 319–334

22. Opdahl AL, Sindre G (2007) Interoperable management of conceptual models. In: Krogstie
J et al (eds) Conceptual modelling in information systems engineering. Springer, Berlin,
pp 75–90

23. Pastor O, Gonzales A, Espana S (2007) Conceptual allignment of software production meth-
ods. In: Krogstie J et al (eds) Conceptual modelling in information systems engineering.
Springer, Berlin, pp 209–228

24. Pernici B (2007) Adaptive information systems. In: Krogstie J et al (eds) Conceptual
modelling in information systems engineering. Springer, Berlin, pp 295–305

25. Pohl K, Sikora E (2007) Co-development of system requirements and functional architecture.
In: Krogstie J et al (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, pp 229–246

26. Rolland C (1988) An information system methodology supported by an expert design tool.
Elsevier Science Publishers, University of Paris

27. Rolland C (2007) Capturing system intentionality with maps. In: Krogstie J et al (eds)
Conceptual modelling in information systems engineering. Springer, Berlin, pp 140–158

28. Rolland C (2008) Intention driven conceptual modelling. In: Johannesson P, Söderström E
(eds) Information systems engineering: from data analysis to process networks, IGI Global,
Hershey, Pennsylvania, pp 16–42

29. Rolland C (2009) Exploring the fitness relationship between system functionality and business
needs. In: Lyytinen K et al (eds) Design requirements engineering – a ten-year perspective.
MIT, Cambridge, MA

30. Sindre G, Opdahl AL (2007) Capturing dependability threats in conceptual modelling. In:
Krogstie J et al (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, pp 247–260

31. Sølvberg A, Kung D (1993) Information systems engineering. Springer, Berlin
32. Thalheim B (2007) Challenges to conceptual modeling. In: Krogstie J et al (eds) Conceptual

modelling in information systems engineering. Springer, Berlin, pp 58–74
33. Wall R (1972) Introduction to mathematical linguistics. Prentice-Hall, Englewood Cliffs, NJ

38 A. Sølvberg

34. Wand Y, Weber R (1995) On the deep structure of information systems. Info Systems J 5:
203–223

35. Wasserman A (2007) Methods and tools for developing interactive information systems. In:
Krogstie J et al (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, pp 195–208

36. Ziegler P, Dittrich KR (2007) Data integration – problems, approaches and perspectives. In:
Krogstie J et al (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, pp 39–58

37. http://agilemanifesto.org/. Accessed 15 Dec 2009
38. http://www-bisc.cs.berkeley.edu/ZadehCW2002.pdf. Accessed 15 Dec 2009
39. http://framenet.icsi.berkeley.edu/. Accessed 30 Nov 2009
40. http://en.wikipedia.org/wiki/Gabriel_Kron. Accessed 20 Oct 2009
41. http://www.answers.com/topic/diakoptics-mathematics. Accessed 20 Oct 2009
42. http://en.wikipedia.org/wiki/B%C3%B6rje_Langefors. Accessed 20 Jan 2010
43. http://en.wikipedia.org/wiki/Model-driven_architecture. Accessed 20 Sep 2009
44. http://en.wikipedia.org/wiki/Model-driven_engineering. Accessed 20 Sep 2009
45. http://plato.stanford.edu/entries/mereology/. Accessed 10 Sep 2009
46. http://en.wikipedia.org/wiki/Requirements_engineering#Requirements_engineering.

Accessed 15 Dec 2009
47. http://www.semat.org/bin/view. Accessed 07 Dec 2009

Contemporary Challenges in Requirements
Discovery and Validation: Two Case Studies
in Complex Environments

Sean Hansen and Kalle Lyytinen

Abstract Requirements have remained a key source of difficulty since the dawn of
computing. Complicating this fact, recent substantive changes in systems develop-
ment and associated requirements processes – as reflected in reliance on packaged
software components, off-shore development, and software-as-a-service – demand a
reappraisal of requirements challenges. Yet, there are few empirical studies focusing
on what current requirements challenges are, why they emerge and how they affect
requirements engineering (RE) efforts. In the present study, we assess the cogni-
tive, social, and complexity-based impediments to effective requirements discovery
through two exploratory case studies of large, multi-party development projects. We
develop a rich understanding of the requirements challenges facing these develop-
ment efforts, how these challenges interact and affect the requirements engineering
process and outcomes. The analyses reveal significant consistency in the primary
challenges of large RE efforts and the profoundly systemic nature of requirements-
related impediments. Several recommendations for research and practice of RE are
developed.

1 Introduction

In their early seminal work, Ross and Schoman [47] stated that inadequate atten-
tion to system functions leads to “skyrocketing costs, missed schedules, waste
and duplication, disgruntled users, and an endless series of patches and repairs
euphemistically called ‘system maintenance’” (p. 6). Since then researchers have
continued to observe that major sources of project distress are related to a project’s
design requirements [1, 9, 54] and despite three decades of intensive research, the
“requirements mess” persists [28]. Complicating this pursuit is the observation that

S. Hansen (B)
Peter B. Lewis Building, Weatherhead School of Management, Case Western Reserve University,
10900 Euclid Avenue, Cleveland, OH, 44106-7235 USA
e-mail: hansen@case.edu

39S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_3, C© Springer-Verlag Berlin Heidelberg 2010

40 S. Hansen and K. Lyytinen

the requirements research community has struggled to keep pace with develop-
ments in requirements practices [3, 25, 51]. With the rise of outsourcing, a shift
toward commercial off-the-shelf (COTS) applications [44], and the widespread use
of external consultants and third-party systems integrators, requirements processes
are increasingly distributed and present a stark contrast to the traditional views of
requirements engineering (RE) as orchestrated by a single team with respect to a
standalone artifact [23, 24].

Given the changing nature of RE practices, prevailing development initiatives
present a critical opportunity for re-assessing challenges associated with design
requirements. In recent research, we developed a model of requirements challenges
that integrates long-acknowledged impediments to effective RE with emergent chal-
lenges flowing from contemporary shifts in the systems development landscape
[21]. The model outlines categories of RE challenges based on cognitive limita-
tions, traction in social interactions, and the broader complexity of the development
environment [21]. In addition, we argue for the systemic nature of these challenges
in that they reflect dynamic interactions and feedback loops. In the present research,
we seek to validate the degree to which these requirements challenges help us
understand how RE issues emerge and evolve in situ. Specifically, we ask:

• What are the challenges that development professionals encounter in the elic-
itation and specification of requirements associated with large scale multi-
stakeholder systems?

• How are various requirements challenges related to one another?
• To what degree are RE challenges recognized by professionals and how do they

mitigate these challenges?

To address these questions, we conduct multi-site case studies involving multi-
party software development projects, focusing specifically on their RE efforts. The
remainder of the chapter is structured as follows: In Sect. 2, we provide an overview
of the literature on challenges in RE and introduce the systemic model of require-
ments challenges [21]. Section 3 outlines the research design for the case study.
In Sect. 4, we provide a detailed overview of the two projects studied. Section 5
provides primary findings related to RE challenges in the cases. In Sect. 6, we dis-
cuss the implications of findings for both information systems development (ISD)
professionals and the research community.

2 Towards a Systemic Model of RE Challenges

2.1 Earlier Typologies of Requirements Challenges

In his seminal article, Davis [10] noted three causes for incomplete requirements:
(1) cognitive limitations, (2) the variety and complexity of requirements, and (3) the
patterns of interaction between users and requirements engineers. Davis proceeded

Contemporary Challenges in Requirements Discovery and Validation 41

to focus primarily on the first category by emphasizing the limits on the human
short term memory and simplifications of information needs resulting from bounded
rationality. The idea of cognitive limitations was later taken up by Loucopoulos and
Karakostas [29], but now with an emphasis on users. They identify a host of imped-
iments relating to the users’ cognitive abilities: lack of a clear idea of what a new
system should do, difficulty in articulating domain knowledge, and resentment of
change (see also, Woolgar [56]). They consequently recognize a broad range of
problems resulting from these limitation including the indeterminacy of require-
ments, the dynamic nature of the RE process, and the difficulty of identifying and
integrating heterogeneous knowledge.

Several scholars have pursued the idea that social interactions form another sig-
nificant source of requirement challenges. Impediments based on communication
breakdowns and intergroup conflict are a natural byproduct of the inherently social
nature of requirements activities (e.g., [13, 19]). While user participation has been
widely advocated as a central element in a successful requirements endeavor, it may
engender substantial challenges including: (1) animosity between analysts and users
[31, 50], (2) the lack of interest or access to knowledgeable users [13], and (3)
the increased diversity of user inputs creating conflicting requirements (e.g., [6, 18,
38, 53]). The social challenges of RE are acerbated further when information sys-
tem development efforts correspond with broader business process change within
an organization. The marriage of business process change and information sys-
tems development and the impediments that this pairing implies has been addressed
by several RE researchers, most notably in a series of studies by Rolland and her
colleagues [15, 40, 46].

2.2 A Systemic Model of Requirements Challenges

We recently conducted a field study to identify challenges IT managers experi-
ence in managing requirements associated with large development efforts [21].
Consequently, we proposed a framework for identifying and analyzing requirements
challenges (Fig. 1). We briefly summarize its key features and implications for RE
practice. The model identifies three broad categories of RE related impediments:
(1) cognitive challenges, (2) interpersonal challenges, and (3) complexity chal-
lenges.1 To some degree, these are consistent with those identified by Davis [10],
but at the same time they reflect a number of novel challenges emanating from the
changed landscape of contemporary RE. We also observed, unlike Davis [10] that
these challenges are highly interactive and create systemic effects on the RE process.
We will next briefly outline each challenge category and the specific impediments
that they incorporate.

1This classification structure was determined through grounded theory coding of the data, rather
than on an a priori schema.

42 S. Hansen and K. Lyytinen

Business-IT
Relationship

Communication
Skills

Expectations
Management

Conflict
Resolution

Social Challenges

Diversity of
Inputs

Prioritization

Defining
Interactions

Assessing
Outcomes

Complexity Challenges

Articulation
Reflectiveness/

Motivation

Perceptual
Limitations

Paradigm
Constraints

Cognitive Challenges

Fig. 1 A systematic model of requirements challenges (adapted from [20])

Cognitive Challenges. Overall, these challenges decrease stakeholder’s ability to
express needs explicitly, to overcome their conceptual “blind spots,” and to envision
a different future marked by new processes and IT capabilities. These challenges
were observed in all stakeholders: users and managers, systems analysts and design-
ers. Articulation challenges refer to the inability of individuals to articulate their
needs concisely and concretely. To some degree, this inability reflects the limitations
inherent in the distinction between tacit and explicit knowledge [32, 34]. Challenges
associated with reflectiveness and motivation center on the unwillingness of profes-
sionals to be reflective about their activities and needs. This lack can again be partly
traced back to the tacit-explicit dimension, in that design stakeholders often find it
difficult to explicitly describe their domain. The motivational element underscores,
however, the idea that stakeholders often simply forego a thorough analysis as it is
painful or they fail to perceive its value. Perceptual challenges refer to difficulty of
understanding the system landscape and functionality within the work environment.
This inability often reflects the rising complexity of the environment within which
designers and users interact. Finally, we refer to the vision generating limitations
among stakeholders as paradigmatic constraints, in that stakeholders are limited in
their imagination by the prevailing paradigms of their professional settings.

Social Challenges. Requirements activities represent an intense social under-
taking creating a set of social challenges [22, 48, 49], including communication
breakdowns or disruptions due to politics [2]. Not surprisingly, a range of interper-
sonal issues were identified as impediments to effective requirements determination.
Business-IT relationship issues refer to the presence of an adversarial relationship
between business units and IT personnel. This challenge is nowhere more relevant
than in the requirements phase where users and IT professionals communicate about
the needs of business. A second area is the lack of communication skills on the

Contemporary Challenges in Requirements Discovery and Validation 43

part of development personnel and users. Typically, however, respondents tended to
emphasize the poor communication skills of development professionals. Managing
expectations refers to the difficulties in fostering a realistic understanding of objec-
tives and outcomes. Finally, conflict resolution refers to the increased demand to
resolve discrepancies between distinct stakeholder groups.

Complexity-based Challenges. Recently, new interdependencies among compo-
nents and broadened sets of stakeholders have increased socio-technical complexity
[20]. From this perspective, complexity has shifted to higher levels of abstrac-
tion and span across highly heterogeneous elements complicating RE efforts. The
first complexity-based challenge relates to difficulties with prioritization. Currently,
designers struggle to develop heuristics to reduce requirements to a manageable
set [27, 30]. Diversity of inputs refers to the expansion of socio-technical inputs
into a design process including not only a larger number of stakeholders but also
other information systems (e.g., legacy systems and vendor platforms) and regula-
tory regimes (e.g., HIPAA). Defining interactions refers to challenges encountered
in articulating interactions between stakeholder groups, distinct business processes,
and system components. This has become increasingly acute due to nested plat-
forms and widespread customization of components, and it makes it more difficult
to analyze requirements using static modeling approaches. Finally, assessing out-
comes refers to the difficulty of assessing a system’s adherence to the evolving
requirements set (i.e., backward traceability).

Systemic Nature of RE Challenges. The challenges model calls attention to
the interrelated nature of RE challenges [21]. While several requirements chal-
lenges have been discussed separately, the model integrates these challenges into
a more dynamic framework to guide RE research. Importantly, interactions between
RE challenges occur both within each category and across categories, and the
model highlights ways in which the RE challenge categories build upon and con-
tribute to one another. For example, cognitive challenges both contribute to, and
are affected by, the socially-based challenges in how groups interact. At one
level, the cognitive limitations are carried over into social processes. For exam-
ple, the absence of communication skills is partially generated by the inability
of the individuals to articulate their needs. In addition, the inability of users to
effectively articulate their needs implies that conflicts between distinct groups
remain unidentified, increasing the challenges of conflict resolution. Similarly, we
can see that social issues are clearly embedded within complexity-based chal-
lenges in that social structures are one of the key sources of such complexity.
Finally, cognitive challenges are interconnected with the complexity of the sys-
tems landscape as well, because cognitive limitations influence the degree to
which IT and business professionals comprehend an increasingly heterogeneous IT
environment.

The observation of the systemic nature of RE challenges suggests that it is
fruitful to reconsider previously identified impediments in light of a contemporary
development context. For example, although requirements conflict and conflict
resolution have been addressed repeatedly in the RE literature (e.g., [5, 11, 37]),
it would be erroneous to conclude that our understanding of associated mitigation
strategies is complete. The increased prominence of challenges associated with

44 S. Hansen and K. Lyytinen

broader systems complexity has in many ways changed the nature of the more
fundamental impediments (i.e., cognitive and social) that the research community
has addressed in the past.

3 Research Design

We conducted a multi-site exploratory case study of requirements processes and
related challenges among two design teams involved in the design of large multi-
party information systems. We felt that a case study approach was warranted to
engage in a rich exploration of system designers’ practices for theory generation,
refinement, and validation related to RE challenges [12, 57]. In the past, similar
case studies have been carried out in attempts to generate rich and theory-yielding
insights about the broader issues within RE [17, 36, 42, 58].

In our data collection efforts, we employed a multiple-case study design. The unit
of analysis was an individual design project. We focused on requirements-related
activities in two project teams. The case inquiries were conducted in accordance
with all prevailing case study field procedures, including the development of a
case study protocol prior to data collection, triangulation using multiple sources
of evidence, and the maintenance of a chain of evidence [57]. The data collection
effort included interviews, direct observation of project meetings and the broader
development environments, and documentary review (e.g., specification documents,
customization requests, business process models, design mock-ups). Interview tran-
scripts and observational field notes were then coded using Atlas.ti, a qualitative
analysis tool. While the initial field study for formulating the framework followed a
grounded theory approach [21], this later stage involving two rich multi-case analy-
ses that drew upon the theoretical RE challenge framework as a preliminary coding
structure. Additional codes were developed as they were identified in the coding
process. Through this data analysis effort, we also sought to assess the generaliz-
ability and internal and external validity of the RE challenge model [21]. In the next
section, we discuss the two ISD projects that form the core of the present analysis.

4 Research Context: Two Multi-Party Systems

The two projects studied in the present research effort – the University SIS and
IPSI systems – experienced significant challenges related to the determination and
management of requirements. In this section, we provide an overview of the two
development processes and the issues encountered.

4.1 The University SIS Project

In 2006, a mid-sized Midwestern U.S. University initiated the acquisition, cus-
tomization, and implementation of the PeopleSoft Student Information System
(SIS) ERP. The SIS Project was intended to integrate all student information

Contemporary Challenges in Requirements Discovery and Validation 45

and student-facing administrative functions across the university’s nine distinct
schools. Key functions supported by the envisioned platform included admis-
sions, financial aid, course selection and enrollment, grading, degree tracking,
and transcript management. The initial roll-out of the system was completed in
Fall 2008, with additional functionality rolled out over the course of the sub-
sequent academic year. The installation of the PeopleSoft SIS platform was
generally considered a successful effort, including the management of platform
requirements.

Background. The studied university is a mid-size private university located in
the Midwestern United States. The university serves nearly 10,000 students (4,200
undergraduate, 2,147 graduate, and 3,490 professional students) across nine (9)
distinct schools. Traditionally, each school managed its own student records, with
some aggregation of basic student information in the university’s legacy information
system, ISIS. Different administrative functions were managed using a collection
of distinct software applications. The SIS Project was undertaken in an effort
to integrate various student-related data sources and functions across the entire
university.

The SIS was the third phase of a broader ERP installation program. The uni-
versity had selected Oracle’s PeopleSoft platform as the ERP package. In 2005
and 2006, the university had rolled out two installations of the platform, covering
the Financial and Human Capital Management components. The SIS was the final
major installation necessary for the achievement of a comprehensive enterprise-level
information system serving the university.

Project Structure. Several roles and responsibilities were identified at the initi-
ation of the SIS Project. An executive steering committee and executive sponsor
position were established to provide oversight. The university’s Vice Provost for
Undergraduate Education was given the status of executive sponsor. The executive
steering committee was made up of leading financial and administrative officers as
well as the lead members of the project team. Leadership of the internal project
team consisted of a Project Director, three project leads (i.e., covering Functional,
Technical, and Project Management domains), multiple functional leads, and a train-
ing team. Functional leads for the project reported to the Functional Project Lead.
The Functional Leads were responsible for coordinating the input of multiple func-
tional subject matter experts (SMEs). The project’s Technical Lead oversaw the
work of a team of technical experts, who were responsible for the requirements
elicitation and specification. In addition, technical experts were tasked with sup-
porting the data mapping, system testing, and data conversion. The Technical Lead
also managed a technical support team which was responsible for the development
and implementation of the system. Specifically, the technical support team was
assigned to provide database and network administration, application support, data
warehouse development, and portal support. Finally, the Training team was tasked
with the design, scheduling, and delivery of training programs to user groups. This
role included identifying training needs; the development and maintenance of train-
ing materials, job aids, and tutorials; the management of help-desk functions; and
the formulation of a communication strategy related to system implementation and
roll out.

46 S. Hansen and K. Lyytinen

In addition, the university engaged the services of a consulting firm that special-
izes in enterprise system implementations within the higher education marketplace.
The consulting team adopted a structure directly mirroring that of the internal
project team. A Project Manager was appointed to oversee all project management
functions in conjunction with the Project Director. Similarly, the company provided
consulting personnel to fill the roles of Functional and Technical Consultants, sup-
porting the efforts of their university counterparts. Finally, an Account Manager
worked directly with the executive steering committee and made regular recom-
mendations to the Project Director.

RE Processes. The determination of requirements on the SIS project reflected a
diversity of efforts engaged by different project members. These team members did
not adopt a single formal approach to the elicitation and specification of require-
ments. Rather, the team processes relating to requirements evolved over the course
of the project. Furthermore, the processes and artifacts employed were often the
product of collaborative development by multiple project team members.

Prior to the initiation of the project, several baseline functional and non-
functional requirements had been established. In large part, this was a reflection
of the vendor selection. Since the university had selected PeopleSoft for implemen-
tation and completed the installation of two of the three core modules, the vendor
platform was established in advance. Thus, a large number of the requirements were
embodied in the PeopleSoft system – both the SIS module itself and the existing
Financial and Human Capital Management components implemented. In addition,
several high-level requirements were determined during initial project planning
through interactions with the executive steering committee. To some degree, these
requirements reflected assumptions about the environments necessary to support an
effective implementation. In the Project Charter document developed at the initi-
ation of the project, these preliminary requirements are categorized as Technical,
Functional, Financial (i.e., budgetary), and Personnel.

The central effort at requirements elicitation in the early stages of the SIS project
was called the Interactive Design and Prototype (IDP) process. The IDP process
sought to inform key stakeholders about the functionality of PeopleSoft and to
elicit statements of needs for customization or modification. Thus, IDP was at its
core what a gap analysis. The IDP process consisted of JAD-style focus group dis-
cussions scheduled with every one of the over 100 functional offices on campus.2

Initiated by the Functional Leads (University and Consultant) and functional sub-
ject matter experts, the IDP sessions included the Technical Experts and focused on
the input of office personnel regarding the appropriateness of the PeopleSoft sys-
tem for their business functions. The result of each session was the articulation of
desired modifications. Initially scheduled for a six-month period, the IDP phase of

2We use the phrase “JAD-style sessions” to convey the idea of engagement between the design
team and user representatives around process design questions. However, the IDP sessions were
oriented toward the gap identification rather than a formal design effort.

Contemporary Challenges in Requirements Discovery and Validation 47

the project lasted for approximately nine months, forming the core of the initial
requirements effort.

Throughout the duration of the project additional requirements were identified
and explored. In general, this ongoing requirement identification was initiated by
the project’s Functional and Project Management Leads. Through communications
with the users, the need for a functional or technical change was identified. Based
on these conversations, the Functional or Project Management Leads would draw
up a preliminary specification. The format for the specification documents evolved
over the course of the project, but was generally text-intensive. Its main graphical
component was the use of screen shots which were manually altered to convey a
desired change without reference to the underlying data structure.

Consensus around specifications and change requests was achieved through
walkthroughs. The walkthrough process was introduced roughly halfway through
the project under the recommendation from one of the consultants. The walk-
throughs were attended by the leadership of the project team, including the Project
Director; Functional, Technical, and Project Management Leads; the consulting
Project Manager and lead functional and technical consultants; and training team
representatives. No users, functional SMEs, or technical experts were in attendance.
During the walkthroughs, the spec developer would guide the participants through
a detailed discussion of a requested change and process. Questions were raised and
debated by the entire project team. The walkthroughs generally resulted in three
outcomes: (1) the specification was accepted and the Technical Lead took respon-
sibility for scheduling modifications, (2) the discussion raised sufficient problems
with the current status of the specification so that a decision was made to revise the
document, or (3) the specification was tabled for later discussion.

As noted, the training team was responsible for the determination and resolution
of training requirements. Training requirements were determined through several
sources. First, many of training requirements were outlined in the PeopleSoft doc-
umentation. Second, the IDP process highlighted several of idiosyncratic training
requirements across the university. Finally, the training team identified a range of
additional requirements through the mapping of business processes across the nine
schools. Perhaps surprisingly, business process mapping was not undertaken at the
initiation of the project. Rather, it was first begun by one of the consultants working
with the internal training team. The business process maps were developed outside
of the development platform using Microsoft Visio. The process maps turned out to
be a critical asset, supporting not only the identification of training requirements but
also functional requirements that had not emerged in the initial IDP exchanges.

4.2 Integrated Public Safety Initiative (IPSI)

The Integrated Public Safety Initiative (IPSI) was a multi-party project aimed
at establishing effective information sharing across members of the law enforce-
ment community within a one of the largest counties on the east coast of the

48 S. Hansen and K. Lyytinen

United States.3 A regional software vendor, called Blue Systems, Inc. (BSI), was
selected to provide the information sharing platform that formed the core of the
initiative. In this capacity, BSI professionals acted as the primary managers of the
overall project effort. The project was envisioned as a multi-year effort, with the four
central law enforcement entities in the county adopting the system in 2008, while
additional public safety entities migrated onto the platform over the next three years.

Background. In the wake of the terrorist attacks of the September 11, 2001, many
federal, state, and local agencies began calling for more intensive information shar-
ing among law enforcement and other public safety organizations. Indeed, the U.S.
Department of Homeland Security had made information sharing one of the pri-
mary areas of focus for local and regional law enforcement agencies. In response to
this trend, the County initiated the Integrated Public Safety Initiative, or IPSI, in the
fall of 2007.

The County is one of the largest counties on the east coast of the United States.
Located within the metropolitan region of New York City, the county includes the
state’s largest city. The founding members of the IPSI project, called anchor part-
ners, were the four primary law enforcement agencies in the county, including the
County Prosecutor’s Office, the County Sheriff’s Office, the City Police Department,
and the County Corrections Department. These were the first four entities targeted
for integration on the IPSI platform.

In addition to the broader public safety sector call for enhanced information shar-
ing, the County anchor partners had significant operational justification for the IPSI
effort. Despite constant interaction between the entities, much of their data transfer
was still conducted through manual hand-off of paper. The foreseeable result was
significant operational inefficiency. Nearly all arrest and incident data was subject
to redundant data entry as it was passed from one partner’s platform to another,
greatly increasing data integrity concerns. In addition, the manual transfer process
created potential for error and waste. For example, criminal defendants could not be
transferred from one agency to another without the proper paperwork, and repeated
trips between locations were common. Finally, the Prosecutor’s Office was required
to make a “Prosecute-Don’t Prosecute” decision on all suspects within 72 hours of
an arrest, giving all parties a vested interest in timely processing and transfer of
information. Thus, the potential benefits of the IPSI effort were clear.

Blue Systems, Inc. After an extensive request for proposals (RFP) process, the
IPSI anchor partners selected a local software vendor to provide the information
sharing platform. BSI is a medium-sized software development and implementa-
tion firm headquartered in the state. Specializing in public safety software, the firm
had made its reputation as a developer of operations and analytical support sys-
tems for local police and fire agencies. BSI’s marquee brand was a computer aided
dispatch and records management system (CAD/RMS), called Shield. In 2004, the
firm began its foray into the information sharing domain with the development of

3Names and locations have been changed to comply with assurances of confidentiality.

Contemporary Challenges in Requirements Discovery and Validation 49

an information sharing platform called Enforce3 (pronounced “Enforce cubed”). It
was this platform that the County anchor partners engaged BSI to provide.

At a high level, the Enforce3 platform was designed to support the collection and
normalization of incident and arrest data from multiple public safety agencies and
to provide a uniform Web-based interface for browsing, search, analysis, and report-
ing by participating agencies. In addition, the platform created mechanisms for less
formal communication between information sharing partners, such as discussion
forums and chat. Other specific modules of the platform included GIS mapping of
data, systems alerts (i.e., watch lists and incident tickers), crime forecasting and
probability analysis, and free-form keyword search.

The BSI Project Team for IPSI was relatively small. The Project Manager held
the central role in coordinating the four partner entities as well as a handful of
other law enforcement agencies that were targeted for later adoption of the Enforce3

platform.4 Because of the relative importance of the IPSI project for the local and
regional reputation of the firm, the Project Manager was reinforced in his coordina-
tion and client support efforts by several of BSI’s senior officers, including the Chief
Operations Officer (COO), Senior Vice President (SVP), and Chief Technology
Officer (CTO). The development unit for the initiative was a team of three to
four developers led by a Senior Developer. Finally, there was an implementation
team consisting of approximately three FTEs, who were responsible for all data
conversion planning, installation scheduling, and platform training.

RE Processes. The IPSI project reflected a range of requirements processes,
including those pursued by the anchor partners and vendor separately, as well their
joint activity after the inception of the project. The majority of the requirements
for the project were articulated prior to BSI’s engagement in the partners’ RFP
document. Within the RFP, system requirements were laid out in an “Integration
Platform Requirements” section. This section included the detailed requirements
covering the areas of integration platform requirements, IPSI system overview
requirements, technical IPSI system requirements, system implementation and sup-
port requirements, specific mandatory tasks and associated deliverables, and IPSI
system documentation overview requirements. The requirements outlined in the
RFP were almost entirely text-based, rendered in natural language. The 150-page
RFP document contained only five graphical models, including business process or
data flow diagrams for each of the four anchor partners and a simplified architectural
diagram for the proposed system.

Interestingly, the requirements detailed in the RFP were in turn drawn from mul-
tiple sources. As a primary input to the RFP document, the anchor partners identified
an RFP released two years earlier by a consortium of law enforcement agencies is
another county. The IPSI RFP was largely modeled on this earlier RFP document.
In addition, each of the anchor partners was tasked with documenting their internal

4It was envisioned that information from all of the law enforcement agencies within the county
will eventually be integrated on the system.

50 S. Hansen and K. Lyytinen

business processes to establish integration and interface requirements. Finally, the
RFP incorporated federal-level requirements for information sharing among law
enforcement entities.

The anchor partners weren’t the only parties coming to the table with estab-
lished requirements. Since Enforce3 was an existing platform offered by BSI, the
system itself embodied a broad range of functional and technical requirements.
The Enforce3 system was initially designed as an add-on to the firm’s Shield plat-
form (i.e., CAD/RMS). Thus, the design of the system was largely driven by
informal statements of need from BSI’s existing clients. BSI clients discussed
the desire for greater exchange of information with other municipalities in their
local area, and Enforce3 evolved as the BSI developers “toyed around” with ways
to expand their platform to address these needs. It was only after the system
had been implemented as a pilot module with a number of their clients that the
senior management of BSI recognized the value proposition of the Enforce3 dis-
tinct from its integration with the Shield offering. As a fully developed, independent
module, Enforce3 met an array of technical requirements set by acquiring clients.
These included network specifications, data submission requirements, and training
expectations.

In addition to the operational objectives of the BSI clients, the Enforce3 system
drew significant functional requirements from standards developed at the federal
level. Specifically, Enforce3 was designed to be in compliance with the Global
Justice XML Data Model (GJXDM), a standard developed by the U.S. Department
of Justice to act as a de facto data reference model for information exchange within
the nation’s public safety communities.

Not all requirements were established prior to the initiation of the project. Several
requirements had to be identified and clarified through the interaction of the anchor
partners and the vendor. Specifically, these novel requirements centered on the areas
of service level agreements (incorporating a range of non-functional requirements),
forms definition requirements, and security policy requirements. The most intensive
of these collaborative requirements-setting tasks was the determination of unified
forms requirements. Because the four anchor partners were expected to employ
Enforce3 for uniform reporting and exchange, the project team had to design data
entry and reporting artifacts that satisfied the needs of all partners. Furthermore,
additional law enforcement agencies from across the county had been engaged for
this effort, because of their anticipated migration to the platform over the subse-
quent one to three years. To achieve the unified form designs, the BSI team pursued
a two-pronged strategy: (1) collecting arrest and incident report forms from all law
enforcement agencies within the county and completing a gap analysis to deter-
mine unique fields or classification differences, and (2) convening focus group
sessions with user representatives to clarify reporting needs (e.g., determination
actual usage of data fields and perceived criticality). In documenting the specifi-
cations for unified forms, the BSI team had foregone formal modeling techniques in
favor of comparative checklists and iterative prototyping of data entry and reporting
forms.

Contemporary Challenges in Requirements Discovery and Validation 51

5 Alignment with the Challenges Model

We will next review requirements-related challenges encountered by both project
teams and consider commonalities and differences. Overall, we note significant con-
sistency with the challenges articulated in Sect. 2 [21]. Specifically, eleven of the
twelve challenges outlined in the systemic requirements challenges model are also
reflected in the case study findings.

5.1 Articulation Challenges

Not surprisingly, the idea that the envisioned users of a system cannot easily state
their requirements for the software did surface in the cases. While there was no
explicit discussion of these challenges within the University SIS project, the IPSI
case included multiple references to the inability of users to state what they required.
The following statement provides an example:

So the intent now is we get the baseline [platform] in, we show them the capability, we start
getting feeds in. And we’ll see how they start working it and we’ll evolve to it because they
really can’t come out and say, ‘Here’s a requirement’ other than, ‘We want to see indictables
[offenses for which the Prosecutor’s Office can indict an individual].’ But they can’t define
‘indictables’ because they don’t want to see all indictables. It’s really strange. We’re going
to have to evolve to a requirement. – IPSI Project Manager

As the comment reveals, the perceived difficulty of articulation on the part of
users led the development team to place an emphasis on the evolution of the plat-
form. Rather than emphasizing the need for all requirements at the outset, the project
team simply acknowledged that requirements would emerge by involving the users
with the initial adoption of the system.

5.2 Reflectiveness/Motivation

Challenges related to reflectiveness and motivation were more pronounced in the
SIS project. In fact, the development team felt that several stakeholders lacked moti-
vation and reflectiveness regarding their engagement with the development effort.
As one project team member noted:

It would be an interesting meeting [i.e., student and faculty committee meeting] should they
show up. That’s another problem. I don’t think we’ve ever had a full attendance. The last
student one we had there was one student . . . even though we offer all kinds of pizza to get
them to attend. – SIS Communications Lead

Overall, engagement from various stakeholder groups varied widely. In addi-
tion to intermittent participation on student and faculty committees for the project,
different schools had widely divergent rates of participation, with some schools
providing several representatives and others providing only a single individual and

52 S. Hansen and K. Lyytinen

limited communication. Further, the project team remarked that many requests for
customization did not surface until users were actually using the system.

While the issues of reflectiveness and motivation were less salient in the IPSI
project, the challenge was still apparent. The development team felt that the law
enforcement stakeholders were highly motivated to participate because of the func-
tionality promised, but ensuring reflection and feedback remained an issue. As the
Project Manager observed:

So we went into the first meeting, distributed this to everyone and said, ‘This is the first
cut at a report standardization. Take a look at it, see if it’s different from what you have,
and be ready to make some comments.’ We went to a second meeting a couple of weeks
later. Some people had looked at it and some people hadn’t. This is not their main objective.
Sometimes it’s hard to get to cops [i.e., the law enforcement participants].

Overall, it was difficult to ensure that different users would reflect upon their
existing environment to discern additional requirements.

5.3 Perceptual Limitations

In contrast to the field study of development professionals, the cases analyzed did
not reflect a specific focus on the inability of stakeholders to apprehend their existing
IT landscapes and functionality. Indeed, in both cases, the primary concern of users
with respect to the proposed systems was maintenance of existing functionality and
associated work practices. This tendency toward replication of existing practices is
embodied in the theme of paradigmatic constraints.

5.4 Paradigmatic Constraints

The challenge imposed by stakeholders not being able to see beyond their prevail-
ing paradigms was clearly discernible in both of the cases analyzed. For example,
in the IPSI project, the development team struggled to foster openness to alternative
reporting processes and structures among the participating agencies. Each agency
felt that their existing reporting mechanisms were essential. However, given the
multi-party nature of the project, some changes to the reporting processes were nec-
essary. This need for alternative approaches created substantial challenges for the
development team:

They all have different reports. But at least twenty-five percent on each one is different . . .
All the reports follow a similar pattern just slightly different . . . We would have been in
much better shape had it not been for the Prosecutor’s insistence on the fact that the report
that’s filled out has to be identical. It has to be the exact report.

The University SIS project revealed that paradigmatic constraints are not exclu-
sive to end-users. In that project, the development team encountered significant
challenges because of their consultants’ insistence upon certain measures that had

Contemporary Challenges in Requirements Discovery and Validation 53

been encountered in earlier installations of the software at other universities. The
following quote provides a salient example:

I think the thing that worked against me the most in my goal to limit the changes was
the consultants. Unfortunately they had been on other projects that either were not very
disciplined about the changes they made or had bigger budgets or had larger IT teams behind
them or for whatever reason went ahead and made a lot of these changes. Basically we were
getting in situations where the consultants were saying, ‘You’ve got to do this. Other schools
do.’ Really ‘other schools do’ meant one or two that they had just recently been at. – SIS
Technical Lead

The experiences from both of the projects illustrate the fact that RE efforts are
frequently impeded by the assumptions that users and developers alike bring to a
design effort regardless of their applicability in the focal environment.

5.5 Business-IT Relationship

Despite the general perception of positive relationships between users and IT per-
sonnel in the cases the projects suffered from poor IT business relationships. In both
projects, mistrust between users and IT arose to challenge the successful determi-
nation of requirements. In the SIS project, team members perceived distrust among
some of the other stakeholders. As the Communications Lead observed:

Some schools [within the University] don’t want anything to do with it [i.e., the new plat-
form]. They just are being really difficult. I just don’t know. I still have not understood why.
PeopleSoft is here and it’s not going away.

On the IPSI project, although the IT team (i.e., the BSI personnel) was new to
most of the agencies, several of the users came to the project with expectations of
an adversarial relationship:

We were looking through it [an interface mock-up] and trying to calm them down because
they thought it was going to be one of these, ‘You’re going to do it and that’s the end of it’
situations . . . [So their reaction was,] ‘Don’t tell us this is what you want because it’s not
good enough. It doesn’t serve our purposes. You’re not making our life easy; you’re making
it hard.’ So we said, ‘This is just a draft. It was just a start. Don’t get excited . . . Let’s take
it easy and come to some kind of compromise.’ – Senior Developer

Thus, as with the paradigmatic constraints, challenges in the business-IT rela-
tionship reflect the importation of expectations of an adversarial relationship, even
when no breach of trust has actually occurred.

5.6 Communication Skills

The communication skills of IT professionals and users was not a primary emphasis
in either of the projects observed. However, some concerns over the effectiveness of
communications between IT and business-oriented stakeholders did surface. In the

54 S. Hansen and K. Lyytinen

SIS project, the Technical Lead expressed concerns about the ability of his staff to
engage with stakeholders:

The title here is Programmer-Analyst. In this environment they’re really more program-
mer than analyst. That’s because they’ve worked for the university supporting the legacy
systems . . . So they didn’t really have an opportunity to understand the whole business pro-
cess through and through . . . So they’re somewhere along their learning curve and they’re
able to be effective programmers if we can point them in the right direction and figure out
enough of the specs so that they can run with it.

Even within the development team, communication breakdowns occurred fre-
quently. In some cases, developers initiated changes to the systems, but never
communicated those to other members of the project team. As one participant noted:

We found out that one of the schools had submitted a change and the technical team did the
change, but no one ever told us about it. So we went out to do the training and they said,
‘Wait that’s supposed to have changed.’ Well, it had changed, but we never knew it. – SIS
Trainer

While communications issues were less prevalent on the IPSI project, some
challenges were discernible. In working with the partner agencies, the BSI team
encountered some differences in the interpretation of the project scope:

In the RFP it says, ‘The incident report and the arrest report.’ It specifically states, ‘Incident
Report, Arrest Report.’ However the sheriff’s office was one of these anchor tenants and in
one of the meetings came and said, ‘Oh, by Incident Report I meant the Incident Package.’
I was thinking, ‘What does that mean?’ It’s about fifteen reports. I looked at the project
manager. I said, “We’ll see what we can do. We’ll talk about it.” So right now we’ve added
a supplemental report. – BSI Development Manager

Overall, by comparing observations of this analysis with the previous field
study [21], it appears that challenges based in the communications skills of project
participants were less prevalent than anticipated.

5.7 Expectations Management

The necessity of managing expectations was repeatedly discussed in both projects.
In the SIS project, several observed that requests for customization would be essen-
tially limitless, if they were not tightly managed. Indeed, the project’s Technical
Lead noted that he perceived minimizing customization as his primary task.
Accomplishing this objective required an open exchange:

He [the SIS Technical Lead] is very low key. If someone wanted this major customization,
he would say, ‘Do you really need it? This could take a month of work. I’d have to take
the programmers off whatever to do this.’ So he didn’t just say ‘No,’ but he had to set
expectations. – SIS Development Consultant

A very similar pattern emerged on the IPSI project, with the BSI Project Manager
seeking to limit changes to the existing platform, while still acknowledging the
desires of other agencies. In one example, the Project Manager reflected upon his
approach to minimizing the concerns of one of the partner agencies by delaying the
discussion of an issue that was likely to arise:

Contemporary Challenges in Requirements Discovery and Validation 55

We didn’t say anything about ‘We’re going to transmit your current reports just like we do
in Springfield so we have two sets of arrest reports, incident reports.’ No. The timing was
not right to broach that subject in any of the executive meetings yet. I want to get them
happy. I want the Prosecutor to say, ‘This is great! I like the way it’s working. I need this,
this, and this.’ Then we can maybe approach the subject and say, ‘By the way one of the
downsides is you’re not going to get that report.’ Then we can say, ‘We’re working on this.
We’re getting close. Why do it for a couple of months?’

Interestingly, on the IPSI project, the need for adjustment of expectations did not
flow in only one direction. The development team was forced to revisit their vision
of Enforce3 platform as the expectations of the agencies became more apparent:

We had big plans initially. Later what turned out was that departments – police agencies
and the police departments and the owners of the data – were in fact a little bit reluctant
to share the data. And that brought our expectations of what we wanted our program to be
down a lot.

The management of expectations between all parties was a constant concern
for the development teams in both environments. Interestingly, the discussion of
expectations was frequently paired with a focus on the evolutionary nature of the
system – perceiving the software as an evolving solution enabled parties to estab-
lish expectations that are more realistic while maintaining the hope for additional
functionality.

5.8 Conflict Resolution

Not surprisingly, substantial conflicts over requirements were observed in both
project settings. In the University SIS project, most conflicts were identified dur-
ing project walkthroughs, which brought together all core project team members as
well as representatives from the schools and functional departments:

It [conducting walkthroughs] got people around a table. Some of them were pretty unpleas-
ant . . . Somebody would have an idea about how something should be done and Jack [the
Project Manager] would totally disagree and they’d go at it for some time. [Q: How was that
resolved?] Sometimes it didn’t get resolved and we’d just schedule another walkthrough
because time would run out. – SIS Communications Lead

When unresolved conflict persisted, it was generally addressed through an appeal
to authority (e.g., relying upon the discretion of the Project Manager, Technical
Lead, or University Registar’s Office).

The IPSI project followed a similar pattern. When conflicts arose, the BSI project
team adopted an expressly cooperative stance, seeking to generate a novel solution
to satisfy all parties. A clear perception of the political ramifications of decisions
guided the project team in determining whose positions required the most weight,
while ensuring that decisions appeared to reflect the needs of all stakeholder groups.
The following statement illustrates this sensibility:

If we don’t compromise with Springfield, it’s not ever going to happen. So you have to
play that game. But you have to be careful because it can’t look like it’s Springfield’s
project because then you have political problems with everybody else in the county. – BSI
Development Manager

56 S. Hansen and K. Lyytinen

However, when conflicts did not allow for a mutually satisfactory resolution, an
appeal to authority was invoked, specifically allowing the Prosecutor’s Office to
make the determination as to the path to be followed.

5.9 Prioritization

Indeed, the failure in prioritization was a significant source of tension within the
SIS project team. An illustrative comment came during one of the requirements
walkthroughs as one of the lead consultants remarked in exasperation, “As far as I
can tell, we’ve spent about six months pouring over minutiae because some of us
don’t have the ability to say ‘No!’.” The need for prioritization was underscored by
requests for customization that were essentially limitless:

I think the challenges are to not go crazy with modifications, because you can modify the
system so easily. We could do everything that everybody wanted but it would take us ten
years. Essentially, from the users, there would be an endless stream of requests if it were
allowed. – SIS Training Manager

Despite a clear recognition of the need for prioritization, the SIS project team had
no formal mechanism for prioritizing changes. Rather, the primary mechanism for
determining the necessity of various changes was the input of the Functional Leads
and the discretion of the Project Manager and Technical Lead.

Within the IPSI project, the need for prioritization was widely acknowledged,
but not perceived to be fundamentally problematic. As with the SIS project, the
IPSI team lacked formal mechanisms for prioritization, but they did obtain some
simple heuristics to guide the customization of the system. For example, return-
ing the issue of reporting standardization, the BSI Project Manager explained his
prioritizing approach:

What I’ve done is I’ve taken all of that information in [feedback on desired fields], as much
as I’ve gotten back, and I’ve come up with a matrix. We’ve got six or seven columns of
responses. If we have five or more checked, that’s going in a report guaranteed. It has to go
in. If it’s three to four, we’ll consider it. If it’s only one or two agencies, we’re not going to
do it. That’s just a starting point.

In contrast to the SIS project, the IPSI project team felt comfortable that pri-
oritization would emerge naturally. Again, this stance reflected the project’s overall
focus on requirements evolution rather than a priori clarity with respect to all agency
needs.

5.10 Diversity of Inputs

Given the nature of the two projects analyzed, the diversity of inputs was relatively
high in both settings. On the University SIS project, requirements were derived
from a wide range of sources, including the vendor platform (PeopleSoft), multiple
legacy systems, individual schools and functional departments, and the project con-
sultants. While the challenges of integrating the consultants’ requirements have been

Contemporary Challenges in Requirements Discovery and Validation 57

discussed above, the varied requirements of the individual schools and their
associated legacy systems presented an equally acute challenge.

All of the schools had different admission applications. They used Contact Manager, home-
grown Access databases, CCC, and other applications. So there were lots of different
processes and systems that we had to plan for. – SIS Trainer

The IPSI project encountered a similar diversity of voices to the customization
and implementation of the information sharing platform. In addition to the require-
ments embodied in BSI’s Enforce3 system, each of the anchor partners came to
the project with distinct processes and legacy platforms that needed to be accom-
modated on the new system. The participation of ancillary agencies targeted for
migration to the platform over the subsequent years expanded the range of consider-
ation dramatically. As the project progressed, several new sources of requirements
input were indentified, including the State Attorney General, the State Police, fed-
eral law enforcement entities (e.g., the U.S. Federal Bureau of Investigation), and
national public safety information platforms (e.g., the National Data Exchange
[N-DEx]). Balancing all of these inputs was a consistent challenge for the IPSI
effort.

5.11 Defining Interactions

As the diversity of inputs outlined above suggests, capturing interactions between
the vendor platform and other disparate systems was a recurring theme in both
the University SIS and IPSI project. In the University SIS case, the project team
encountered multiple issues because of inappropriate mapping to legacy applica-
tions. Even within the PeopleSoft suite (i.e., between SIS and the existing Financial
and Human Capital Management modules), the project team struggled to define
appropriate interfaces and maintenance processes:

Actually PeopleSoft delivers the software intending you to run in a combined, shared envi-
ronment of those systems. We decided to keep them separate here and then build the
interface program between them because one of the main costs of these PeopleSoft sys-
tems is the maintenance. It’s very difficult to get the two different business cycles on the
same schedule to do maintenance. Now might actually be a good time in Human Capital
management to be doing maintenance but it’s a terrible time in the Student system with
classes starting. The middle of the summer might be good for the Student system, but for
Human Capital Management, that is when they enter all the performance reviews for people,
so it’s a bad time for them. – SIS Technical Lead

On the IPSI effort, the project team anticipated significant difficulty in converting
the disparate CAD/RMS systems used by various partner agencies onto the infor-
mation sharing platform. As the proposed number of agencies to be supported by
the Enforce3 platform grew, so did the challenges in defining interactions between
the various legacy systems. As the Project Manager observed:

They’ll be some coding issues. In one agency for example, you may have hair color: black,
brown, red, yellow (1, 2, 3, 4). Well in my agency, we’ve got five colors. It’s yellow, black,
green, brown, blue or the numbers are different. You’re sending me numbers. You can’t
send me numbers. I have to know what the color is. How are we going to work this out?

58 S. Hansen and K. Lyytinen

So there’s this mapping that has to take place with every client, including our own clients
because every agency has slight differences when it comes to mapping because those are
content, not context. We’re going to have to do that. There’s enough work involved in doing
that.

Thus, the two project environments encountered significant difficulty flowing
from the complexity of the broader systems landscape with which their focal sys-
tems had to interact. In both cases, project leaders reflected the perception that
the appropriate solutions to these complexity-based challenges had not yet been
identified, but that it would emerge over time as the system matured.

5.12 Assessing Outcomes

As with most of the challenges discussed, the difficulty of assessing outcomes with
respect to meeting requirements of stakeholders was relevant in both cases. In the
University SIS project, the initial implementation of the platform surfaced a number
of necessary modifications that the project team had failed to identify and test for
during the customization of the PeopleSoft platform. The project team members felt
that their ability to predict the outcomes of the system would have been enhanced if
the business stakeholders had assisted them in identifying possible user behaviors:

I guess a lot of the challenge was the ownership in the process mostly from the business side.
We talked about making a commitment to get the spec in on time, for example, and under-
standing that it would affect them down the road as much as the technical team. Anticipating
how the system was going to work once it’s been developed. Testing and finding things
before we put the software into production and before it’s critical and before we have no
time to resolve the incidence. It was very difficult. – SIS Technical Consultant

In several cases, during the initial implementation of the platform, interfaces
between the SIS system and a range of legacy platforms in use by individual schools
failed to work as anticipated based on variation in data entry and reporting processes
by the end users.

On the IPSI project, the multi-party nature of the project created some imped-
iments to outcome assessment. Testing of the proposed system required receipt of
sufficient data from all anchor partners, but the flow of data was intermittent As the
BSI Senior Developer observed:

We can operate now and he [the Prosecutor] will have easily seventy-five percent of his
information coming in consistently exactly the way he wants it. That’s a tremendous benefit
to him. So we’re close to schedule. But we’re having some issues getting the database so
we can test. I can’t test anything yet because I don’t have the database.

Thus, the complexity of the project context placed significant limitations on
the ability of the project team to test the feasibility of various requirements that
emerged. Here again, the project team expressed the hope that consistency would
emerge as the platform evolved.

Contemporary Challenges in Requirements Discovery and Validation 59

Table 1 Mapping requirements challenges in two cases

Challenges Specific project issues

Individual cognitive challenges

Articulation IPSI: Acknowledgement that users are not able to state their
needs

Reflectiveness/Motivation SIS: Differing experiences in engaging students, faculty, and
administrators in the RE process

IPSI: Difficulty of eliciting feedback to preliminary design
proposals.

Perceptual Limitations No explicit discussion in the case projects
Paradigm Constraints SIS: “Importation” of inappropriate requirements on the part

of users and consultants.
IPSI: Fostering consideration of alternative processes among

all county law enforcement agencies

Interpersonal challenges

Business-IT
Relationship

SIS: Limited access to time and effort of envisioned users
IPSI: Assumptions of an adversarial relationship among

selected stakeholders
Communication Skills SIS: Communication breakdowns with users and between

team members; non-communication of substantive changes
in requirements

IPSI: Differing interpretations of project scope between
anchor partners and the development team

Expectations Management SIS: Need for minimizing customization to the platform and
communicating the effort necessitated by specific requests

IPSI: Difficulty managing the expectations of anchor partners
Conflict Resolution SIS: Conflict visions emerging in the project walkthroughs;

resolution through an appeal to authority
IPSI: Managing requirements conflicts between anchor

partners; resolving architectural conflicts

Complexity-based challenges

Prioritization SIS: Difficulty in prioritizing requirements of all users
IPSI: Focus on prioritization through simple heuristics and

platform evolution
Diversity of Inputs SIS: Discontinuity in the role of project consultants;

reconciling input from a wide range of stakeholder groups
IPSI: Aggregating and reconciling agency needs, vendor

requirements, and extra-project entities at the state and
federal levels

Defining Interactions SIS: Integration of a multiple legacy systems
IPSI: Mapping impacts on the reporting systems and

processes of individual law enforcement agencies
Assessing Outcomes SIS: Receiving test conditions from business stakeholders

during the identification of requirements
IPSI: Obtaining adequate data to test the platform in a

comprehensive manner

60 S. Hansen and K. Lyytinen

5.13 Summary of Challenges

Table 1 provides a summary of the challenges observed in the two cases. It is
interesting to observe that many of the pressing challenges in the projects relate
to the complexity that the design teams encountered, most notably in the diversity
of inputs, difficulties in prioritization, and defining interactions. This observation
underscores the perception of increased RE complexity [21]. This fundamental chal-
lenge is perhaps most concisely articulated by one of the respondents: “Our biggest
challenge probably is the complexity of any new thing we want to do – they tend to
get bigger and bigger.”

6 Discussion

The analysis offers a number of key insights regarding the impediments to current
RE processes. It also suggests that the systemic model helps effectively character-
ize many of the most pressing issues in systems development teams. Of the twelve
core challenges we outlined [21], eleven are represented in various forms in the
two project contexts studied. In addition, the cases underscore the fundamental
interactions between these challenges.

6.1 The Systemic Character of RE Challenges

In both projects, the within-class interactions of various challenges are readily
apparent. This is not surprising, as the classification reflects the conceptual affinity
(shared variance) of these challenges. Within the category of cognitive challenges,
the inability of users to articulate their needs contributes to, and is augmented by,
their lack of reflectiveness and motivation in discerning the informational demands
of their business environment and the difficulty they experience in envisioning alter-
native future states (i.e., paradigmatic constraints). While all of these cognitive
limitations are intertwined, a couple of relationships are particularly salient. First,
the articulation challenges originating from tacit knowledge clearly contribute to the
lack of reflectiveness/motivation of the business professionals. Because rendering
tacit knowledge in an explicit form is difficult, users avoid such an exercise unless
they can be certain that it is worth the effort. Secondly, the difficulty of making
one’s needs explicit (articulation challenges) necessarily limits the degree to which
those needs can be integrated into emerging paradigms of information management
(paradigmatic constraints). In the same way, the absence of a clear vision for how a
future state might be created contributes to the inability of users to describe clearly
their demands for functionality.

Likewise, in the realm of social challenges, each challenge contributes to the
others. For example, the assumption of an adversarial nature in the Business-IT

Contemporary Challenges in Requirements Discovery and Validation 61

relationship inhibits effective expectation management and conflict resolution,
because the business-side stakeholders adopt a skeptical stance with respect to the
requests of the technical project team. Focusing on the category of complexity chal-
lenges, the same systemic pattern of interaction emerges. For example, the difficulty
of defining interactions between socio-technical elements is impacted by, and in
turn impacts, the diversity of inputs that must be considered, the inability to effec-
tively prioritize requirements, and the impediments to assessing outcomes of the
requirements process.

While the within-class relationships between various RE challenges may be
largely intuitive, impacts across categorical boundaries were equally prevalent.
For example, the cognitive challenges contributed to, and were affected by, the
socially-based challenges. Specifically, the inability of users to effectively artic-
ulate their needs leads to multiple conflicts between the requirements of distinct
groups remaining unidentified, increasing the difficulty of conflict resolution when
such discrepancies finally surface. In the opposite direction, the social dynamics
between stakeholders affect the cognitive impediments of individuals. For exam-
ple, on the IPSI project, the expectation of an adversarial relationship between
business and IT stakeholders undermined reflectiveness/motivation of the anchor
partners, because they failed to perceive the value of reflection on their own
processes.

The relationship between socially- and complexity-based challenges is similar.
At one level, we can see that the social issues are embedded within the complexity
of the projects. This is illustrated by the fact that the diverse social project structures
(e.g., multiple schools, distinct agencies) are one of the key sources of complex-
ity in the form of a diversity of requirements inputs. In addition, the difficulties
experienced in managing expectations and resolving conflicts significantly under-
mined the ability of personnel to establish requirements priorities (prioritization).
Likewise, the diversity of inputs significantly impacted the capacity of designers
for conflict resolution, because the potential for discrepant requirements grew with
the increases in sources from which they were drawn. This dynamic affected the
nature of the business-IT relationship. Similarly, the difficulty that business person-
nel and developers alike had in defining interactions influenced developers’ ability
to manage expectations and resolve conflicts.

Overall, the picture that emerges is one of broad systemic interactions. Each of
the types of impediments affected, and were in turn affected by, each of the other
types. One insight that we can draw from this is that it is important to consider these
challenges from a systems based perspective. Focusing on any one challenge in iso-
lation provides some solutions and improvements, but it robs us of a comprehensive
view of systemic difficulties facing RE.

This point is particularly relevant in that not all challenges have received ade-
quate attention. Much of the extant research has focused on challenges within the
cognitive and social categories. Cognitive issues of articulation have been widely
acknowledged since the earliest RE research (e.g., [7, 10, 16]). Similarly, nearly all
of the challenges discussed at the social level have some precedents in the literature.

62 S. Hansen and K. Lyytinen

As such these reviews offer valuable insights into the impact and nature of each
challenge. The challenges dealing with broader systems complexity have received
less attention. Indeed, for those complexity challenges that have been addressed
(e.g., prioritization; [30, 55]), few associated management techniques have made
their way into community.

This observation suggests that it is fruitful to reconsider RE challenges in light of
contemporary development contexts. For example, the challenges of requirements
conflict have been addressed repeatedly in the RE literature (e.g., [5, 11, 37]), but
it would be erroneous to conclude that our understanding of the issues and asso-
ciated mitigation strategies is sufficient. The increased prominence of challenges
associated with systems complexity has changed the nature of the some fundamental
impediments (i.e., cognitive and social). Accordingly, there is significant opportu-
nity for research on (1) issues that have emerged with the increased complexity of
the environments and (2) the ways in which cognitive, social, and complexity-based
challenges interact.

6.2 Implications for Practice

In addition to the implications for the RE research community, this study suggests
a number of insights for practice. While the primary focus of our research was in
assessing the validity of the model, the findings highlight a number of issues that
need increased attention in practice.

Improving Ownership. A recurring theme in the cases is the question of individ-
ual responsibility and ownership of system and process elements. The perception of
the project team members was that the complexity they experience makes it difficult
to assign responsibility of requirements and design in a comprehensive way. The
challenge was particularly acute on the SIS project, with significant concerns about
a dearth of ownership. The following quote is illustrative:

What I see as a big challenge here is the specific ownership of the different modules [by the
business stakeholders]. I would say that Student Records is best represented . . . but other
areas that I worked in, like Academic Advisement, are kind of a gray area of who really
owns this. So when the functional consultants left, it’s kind of like it was just sitting out in
the middle of the floor. Who owns this thing? – SIS Technical Consultant

The resulting perception is that with the rise in overall systems complexity a
diffusion of responsibility occurs. The engagement of multiple parties leads indi-
vidual participants to conclude that ownership will reside with someone else. In the
end, the relevant module or process is orphaned, and when problems arise there
is no clear-cut owner to guide the resolution. As the complexity of the environ-
ment increases, novel strategies must be developed to determine responsibility in
a more holistic fashion. Hence, researchers and practitioners alike should focus on
the development of enhanced collaboration tools and process measures to support
improved ownership.

Focus on Platform Evolution. Another theme was the value of an evolutionary
perspective on the development. The emphasis on iteration in the development was

Contemporary Challenges in Requirements Discovery and Validation 63

central to the IPSI project team’s expectations. In contrast to the traditional RE pur-
suit of complete requirements at the outset of an ISD process [4] the developers
held a belief that a set of comprehensive requirements was effectively impossi-
ble to reach and they had to nurture tolerance for ambiguity. Indeed, as Hansen
et al. [20] observe, an emphasis on evolution has become a critical facet in effective
expectations management.

To a significant degree, the focus on evolution reflects lessons drawn from agile
methodologies, where a premium is placed on iteration, collaboration, and grad-
ual clarification [8, 26, 33]. In addition, several RE researchers have explored the
value of an evolutionary perspective in the monitoring of platform requirements
[14, 39, 45]. The clear implication from the present case analyses is that a better
understanding of software evolution is a clear necessity for effective RE practices.

Creating Opportunities for Open Exchange. While the projects we studied sur-
faced a wide range of RE impediments, they also revealed some mechanisms that
can be pursued to mitigate these challenges. Most prominently, in both cases we
observed benefit in creating arenas for broad exchanges across stakeholders.

In the University SIS project, the team adopted the practice of conducting walk-
through sessions for the project team’s members to collectively review all requests
for customization. Specifically, the walkthrough sessions routinely included the
Project Manager, Technical Lead, all Functional Leads, the Communications Lead,
members of the training team, several consultants, and one or members of the
technical development team (in addition to the Technical Lead). The specifica-
tions discussed in the walkthroughs were generally directly relevant to the work
tasks of only a few of those represented, with most discussions being driven by the
exchange of two or three individuals. Despite the apparent inefficiency of expecting
widespread representation at such sessions, the project team perceived the walk-
throughs to be the most important process innovation with respect to the earlier
PeopleSoft module implementations (i.e., walkthroughs had not been conducted
during the Finance and HCM projects). While acknowledging that the sessions
pulled several individuals away from their most pressing tasks, team members felt
that the walkthroughs created an engine of creative idea exchange and helped ensure
that key project stakeholders were “on the same page” regarding the overall project
direction. As the Technical Lead noted: “I like getting everything on the table ahead
of time before we spend time working on something and then find out it isn’t right.”

In the IPSI project, the BSI team enforced a similar structure for communica-
tions. While the sessions were not centered on walking through all customization
requests, the IPSI project had weekly meetings with participation from all agen-
cies, including the four anchor partners, representatives from the Phase 2 agencies
(i.e., those targeted for migration onto the platform in years 2 and 3), and occasion-
ally the State Police, or other ancillary stakeholders. Concerns about inefficiency
were balanced by perceptions of value from the shared exchange and level-setting
that the meetings enabled. Thus, both of the projects reveal the importance of
creating opportunities for open idea exchange among project stakeholders despite
the concerns over project efficiency and redundancy that these activities may
engender.

64 S. Hansen and K. Lyytinen

As a final point, a critical element of the collective exchange sessions in both
projects was the repeated generation of ad hoc scenarios which supported the explo-
ration of application-in-use for the relevant platforms. The scenarios served as an
effective mechanism for surfacing assumptions and creating productive conflict, in
which stakeholders had to work through their differences. For several years now,
the RE research community has recognized the importance of individual scenario
generation [35, 41, 43, 52]. However, scenario-based RE has tended to focus on
modeling approaches to scenario development, not their effective deployment. The
two cases suggest that formal scenario generation needs to advance to situations
where it can help direct requirements-oriented inquiries [35].

7 Conclusion

In this study, we have explored the cognitive, social, and complexity-based impedi-
ments to effective requirements discovery and validation through two exploratory
case studies. The research has a range of implications for RE researchers and
practitioners as we wrestle with increasingly complex and heterogeneous envi-
ronments. The case studies provide an initial evaluation of the applicability of
the systemic model of requirements challenges to the practical issues faced by
project teams. In this regard, we find that many of the core challenges perceived by
practitioners are readily observed in real-world development projects. In addition,
the case studies serve to underscore the fundamental interrelatedness of require-
ments challenges. This finding suggests the need for a more system-based, holistic
approach to the requirements challenges. Our case analyses also suggest a num-
ber of areas for process and tool innovation in support of multi-party ISD efforts.
These include improved mechanisms for establishing task and process ownership
in multi-party development, use of evolutionary approaches that allow for the iter-
ative integration of requirements as an artifact comes into existence, and creating
opportunities for comprehensive exchanges across organizational, functional, and
task-based boundaries.

References

1. Aurum A, Wohlin C (2005) Requirements engineering: setting the context. In: Aurum A,
Wohlin C (eds) Engineering and managing software requirements. Springer, Berlin, pp 1–15

2. Bergman M, King J, Lyytinen K (2002) Large-scale requirements analysis revisited: the need
for understanding the political ecology of requirements engineering. Reqs Eng 7(3):152–171

3. Berry DM, Lawrence B (1998) Requirements engineering. IEEE Softw 15(2):26–29
4. Boehm B (1984) Verifying and validating software requirements and design specifications.

IEEE Softw 1(1):75–88
5. Boehm B, Egyed A, Port D et al (1998) A stakeholder win–win approach to software

engineering education. Ann Soft Eng 6(1):295–321
6. Boehm B, Grünbacher P, Briggs R (2007) Developing groupware for requirements negotia-

tion: lessons learned. In: Selby RW (ed) Software engineering: Barry W. Boehm’s lifetime
contributions to software development, management, and research. Wiley, Hoboken, NJ,
pp 301–314

Contemporary Challenges in Requirements Discovery and Validation 65

7. Bubenko J Jr (1995) Challenges in requirements engineering. In: Proceedings of the Second
IEEE International Symposium on Requirements Engineering (ISRE’95). IEEE, pp 160–162

8. Cockburn A (2002) Agile software development. Addison-Wesley, Reading, MA
9. Crowston K, Kammerer E (1998) Coordination and collective mind in software requirements

development. IBM Syst J 37(2):227–246
10. Davis G (1982) Strategies for information requirements determination. IBM Syst J 21(1):4–30
11. Easterbrook S (1993) Domain modelling with hierarchies of alternative viewpoints. In:

Proceedings of international symposium on requirements engineering (ISRE’93). IEEE, San
Diego, CA, pp 65–72

12. Eisenhardt K (1989) Building theories from case study research. Acad Manage Rev
14(4):532–550

13. El Emam K, Madhavji N (1995) A field study of requirements engineering practices in infor-
mation systems development. In: Proceedings of second IEEE international symposium on
requirements engineering (ISRE’95). IEEE Computer Society, York, ENG, UK, pp 68–80

14. Ernst NA, Mylopoulos J, Wang Y (2009) Requirements evolution and what (research) to
do about it. In: Lyytinen KJ, Loucopoulos P, Mylopoulos J, Robinson W (eds) Design
requirements engineering: a ten-year perspective. Springer-Verlag, Heidelberg, pp 186–214

15. Etien A, Rolland C (2005) Measuring the fitness relationship. Reqs Eng 10(3):184–197
16. Goguen J, Linde C (1993) Techniques for requirements elicitation. Reqs Eng 93:152–164
17. Gotel O, Finkelstein A (1997) Extended requirements traceability: results of an industrial case

study. In: Proceedings of third IEEE international symposium on requirements engineering.
IEEE Press, Annapolis, MD, USA, pp 169–178

18. Grünbacher P, Seyff N (2005) Requirements negotiation. In: Aurum A, Wohlin C (eds)
Engineering and managing software requirements. Springer-Verlag, Berlin, pp 143–162

19. Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve software companies:
an empirical analysis. IEE Proc Softw 149(5):153–160

20. Hansen S, Berate N, Lyytinen KJ (2009) Requirements in the 21st century: current practice &
emerging trends. In: Lyytinen KJ, Loucopoulos P, Mylopoulos J, Robinson W (eds) Design
requirements engineering: a ten-year perspective. Springer, Heidelberg, pp 44–87

21. Hansen SW, Lyytinen KJ (2010) Challenges in contemporary requirements practice. In:
Proceedings of 43rd Hawaii international conference on system. Sciences (HICSS’10). Koloa,
HI, USA

22. Hirschheim RA, Klein H-K, Lyytinen K (1995) Information systems development and data
modeling: conceptual and philosophical foundations. Cambridge University Press, Cambridge

23. Jarke M, Bubenko J, Rolland C et al (1993) Theories underlying requirements engineering:
an overview of NATURE at Genesis. In: Proceedings of IEEE international symposium on
requirements engineering (ISRE’93), San Diego, CA, USA, pp 19–31

24. Jarke M, Pohl K (1994) Requirements engineering in 2001: (Virtually) managing a changing
reality. Softw Eng J 9(6):257–266

25. Kaindl H, Brinkkemper S, Bubenko JA Jr et al (2002) Requirements engineering and
technology transfer: obstacles, incentives and improvement agenda. Reqs Eng 7(3):113–123

26. Kovitz B (2003) Hidden skills that support phased and agile requirements engineering. Reqs
Eng 8(2):135–141

27. Lehtola L, Kauppinen M, Kujala S (2004) Requirements prioritization challenges in practice.
LNCS 3009, pp 497–508

28. Lindquist C (2005) Fixing the requirements mess. CIO Magazine, pp 52–60
29. Loucopoulos P, Karakostas V (1995) System requirements engineering. McGraw-Hill, New

York, NY
30. Lubars M, Potts C, Richter C (1993) A review of the state of the practice in requirements

modeling. In: Proceedings of IEEE international symposium on requirements engineering
(ISRE’93). IEEE Computer Society, San Diego, CA, USA

31. Lyytinen K (1987) Different perspectives on information systems: problems and solutions.
ACM Comp Surv 19(1):5–41

32. Nonaka I (1994) A dynamic theory of organizational knowledge creation. Org Sci 5(1):14–28

66 S. Hansen and K. Lyytinen

33. Orr K (2004) Agile requirements: opportunity or oxymoron? Softw IEEE 21(3):71–73
34. Polanyi M (1966) The tacit dimension. Doubleday, Garden City, NY
35. Potts C, Takahashi K, Anton A (1994) Inquiry-based requirements analysis. Softw IEEE

11(2):21–32
36. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE Trans

Softw Eng 27(1):58–93
37. Robinson W (1989) Integrating multiple specifications using domain goals. ACM SIGSOFT

Softw Eng Notes 14(3):219–226
38. Robinson WN, Fickas S (1994) Automated support for requirements negotiation. AAAI-94

workshop on models of conflict management in cooperative problem solving, Menlo Park,
CA, USA, pp 90–96

39. Robinson WN, Fickas S (2009) Designs can talk: a case of feedback for design evolution
in assistive technology. In: Lyytinen KJ, Loucopoulos P, Mylopoulos J, Robinson W (eds)
Design requirements engineering: a ten-year perspective. Springer, Heidelberg, pp 215–237

40. Rolland C, Nurcan S, Grosz G (1997) A way of working for change processes. In: interna-
tional research symposium ‘97 – effective organisations, Dorset, ENG, UK, pp 201–204

41. Rolland C, Souveyet C, Achour CB (1998) Guiding goal modeling using scenarios. IEEE
Trans Softw Eng 24(12):1055–1071

42. Rolland C, Achour CB (1998) Guiding the construction of textual use case specifications.
Data Knowl Eng 25(1–2):125–160

43. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling in require-
ments engineering. In: Proceedings of the IEEE international symposium on requirements
engineering (ISRE’99). IEEE Computer Society, Limerick, IRL

44. Rolland C (1999) Requirements engineering for COTS based systems. Inf Softw Tech
41(14):985–990

45. Rolland C, Salinesi C, Etien A (2004) Eliciting gaps in requirements change. Reqs Eng
9(1):1–15

46. Rolland C (2009) Exploring the fitness relationship between system functionality and business
needs. In: Lyytinen KJ, Loucopoulos P, Mylopoulos J, Robinson W (eds) Design requirements
engineering: a ten-year perspective. Springer, Heidelberg, pp. 305–326

47. Ross DT, Schoman KE Jr (1977) Structured analysis for requirements definition. IEEE Trans
Softw Eng 3(1):6–15

48. Sawyer S, Farber J, Spillers R (1996) Supporting the social processes of software develop-
ment. Inf Tech People 10(1):46–62

49. Sawyer S, Guinan PJ (1998) Software development: processes and performance. IBM Syst J
37(4):552–569

50. Senn JA (1978) A management view of systems analysts: failures and shortcomings. MIS Q
2(3):25–32

51. Siddiqi J, Shekaran MC (1996) Requirements engineering: the emerging wisdom. IEEE Softw
13(2):15–19

52. Sutcliffe AG, Maiden NAM, Minocha S et al (1998) Supporting scenario-based requirements
engineering. IEEE Trans Softw Eng 24(12):1072–1088

53. van Lamsweerde A, Darimont R, Letier E (1998) Managing conflicts in goal-driven require-
ments engineering. IEEE Trans Softw Eng 24(11):908–926

54. van Lamsweerde A (2000) Requirements engineering in the year 00: a research perspective.
In: Proceedings of the 22nd international conference on software engineering, Limerick, IRL
pp 5–19

55. Wiegers KE (1998) Read my lips: no new models! IEEE Softw 15(5):10–13
56. Woolgar S (1994) Rethinking requirements analysis: some implications of recent research

into producer-consumer relationships in IT development. In: Jirotka M, Goguen J (eds)
Requirements engineering: social and technical issues. Academic, London, pp 201–216

57. Yin RK (2003) Case study research: design and methods. Sage Publications Inc, Thousand
Oaks, CA

58. Zave P (1997) Classification of research efforts in requirements engineering. ACM Comp
Surv 29(4):315–321

Semantic Requirements Engineering

Motoshi Saeki

Abstract Requirements engineering (RE) techniques play a crucial role in infor-
mation systems development processes. There are many excellent techniques of RE
to assist requirements analysts and stakeholders in producing requirements specifi-
cation of higher quality, and some of them are put into practice in industry. However,
one of the issues of these RE techniques is that they do not handle semantic aspects
of requirements. If we can deal with the meaning of requirements by using auto-
mated techniques, we can get more effective RE techniques to produce requirements
specifications of higher quality. In this chapter, we consider an ontology as a seman-
tic domain so as to provide the meaning for requirements, and discuss the potentials
of the RE techniques using an ontology as a semantic basis. Especially, we illustrate
an extension of goal-oriented requirements analysis where this idea is embedded,
i.e. we provide the semantics for goal descriptions written in natural language using
a mapping from them to an ontology. The inference mechanisms of the ontology
allow us to decompose a goal into sub-goals and to find missing goals. Furthermore,
in this chapter we discuss the possibilities of the techniques to support the other
activities of RE processes using this ontological technique, e.g. measuring quality
metrics and controlling versions of requirements from a semantic view. Due to simi-
larity to Semantic Web techniques, we call a family of these engineering techniques
Semantic Requirements Engineering in this chapter.

1 Introduction

Requirements engineering (RE) techniques play a crucial role in information sys-
tems (IS) development processes. In usual IS development like waterfall style,
the requirements for an information system are elicited in the early step of its

M. Saeki (B)
Department of Computer Science, Tokyo Institute of Technology, Ookayama 2-12-1-W8-83,
Meguro, Tokyo 152-8552, Japan
e-mail: saeki@se.cs.titech.ac.jp

67S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_4, C© Springer-Verlag Berlin Heidelberg 2010

68 M. Saeki

development process. If a requirements specification of lower quality was con-
structed in this process, it would be propagated to the latter steps and as a result,
final products of lower quality, e.g. not satisfying customers or users, could be pro-
duced. In this worst case, developers should abandon all of the developed products
and re-do their process from the beginning, i.e. requirements elicitation. It wasted
much more money, human resources and development time.

Roughly speaking, a RE process can be divided into four activities; (1) require-
ments elicitation, (2) requirements specification, (3) requirements validation and
(4) requirements management. There are many excellent techniques of RE to assist
requirements analysts and stakeholders in producing requirements specifications of
higher quality during each of the above activities, and some of them are put into
practice in industry. However, one of the issues of these RE techniques is that many
of them do not handle semantic aspects of requirements. If we can deal with the
meaning of requirements by using automated techniques, we can get more effective
RE techniques to produce requirements specifications of higher quality. As an exam-
ple, consider a part of the model of a lift control system shown in Fig. 1. The model
consists of a sequence diagram specifying a scenario of lift behavior. Although it
is syntactically correct as a sequence diagram, it includes an incorrect part, i.e. a
lift does not stop itself before opening a door, and the lift object should have sent a
message “stop” to itself in the sequence diagram. We can find this missing message
sending, because we understand the meaning of words “Lift” (object), “up”, “open”
etc. which figure in the diagram and know that it is very danger for passengers to
open a door of a lift while it is moving. This point results not from the syntax of
sequence diagrams but from the semantics of the description. To detect this kind of
incorrectness, we should consider the semantics of a subject domain, i.e. domain
semantics in our technology.

Note that we can have a wide variety of subject domains. In this example, we
focus on the domain of lift control, where the information system to be developed
operates, and it is termed the problem domain. Consider the reason why “up” and
“open” are specified as messages in the sequence diagram of Fig. 1. We know that
the concept of messages in sequence diagrams represents actions and that the words
“up” and “open” also denote actions. As well as the meaning of these words, we

Lift DoorScheduler

1: request
2: up

3: arrived
4: open

Fig. 1 A sequence diagram
for a lift control system

Semantic Requirements Engineering 69

should know the meaning of elements such as Message and Object included in
sequence diagrams, in order to write the diagrams easy to understand. Thus, we
can consider the semantics of elements of sequence diagrams, i.e. the semantics of
a meta model of sequence diagrams, and this is the case where our subject domain
is meta models, not a problem domain of lift control.

In this chapter, we propose one of the techniques to provide semantics to require-
ments and RE techniques. We consider an ontology as a semantic domain so as
to provide the meaning for requirements and discuss the potentials of the RE
techniques using an ontology as a semantic basis. More concretely, we adopt the
technique of denotational semantics and consider mappings from artifacts (incl.
requirements) to the ontology. An ontology consists of a thesaurus and inference
rules on it, and the thesaurus includes the words and their relationships. Each word
in the thesaurus is frequently used in a certain subject domain and it denotes an
atomic semantic element that has a unique meaning in the domain. We can map
artifacts to the words in the thesaurus and the meaning is provided for the arti-
facts by the mapped words. As a result, we can reason about semantic properties of
the artifacts by using the inference rules on the words. This is a basic idea in this
chapter. As a result, we can have a light-weight semantic processing of artifacts for
assisting RE activities, e.g. semantic consistency checking of requirements, retriev-
ing the requirements that are semantically similar as reusable components, etc. Our
technique is inspired by the technique of Semantic Web [20], where HTML texts
are annotated with semantic tags derived from ontological components. In Semantic
Web, the meaning of information on the web is defined using the annotated semantic
tags so as to make it possible to analyze and process the web contents by computer.
The semantic tags represent the meaning of information where they are annotated.
In our technique, any kind of artifacts related to RE process, including specified
requirements with natural language sentences or UML diagrams, meta models, etc.,
are annotated with (mapped to) semantic tags (ontological components) so that the
existing RE techniques can semantically process them by computer. Thus we can
use the word Semantic Requirements Engineering by the similarity to the idea of
Semantic Web.

The rest of the chapter is organized as follows. The next section presents the
essential idea of our approach more concretely. As a concrete application, in Sect. 3
we show an extended version of goal-oriented requirements analysis (GORA) tech-
nique combined with ontologies. GORA techniques are for eliciting and specifying
requirements and one of the major RE techniques supporting the first and the second
in the four activities mentioned above. In Sects. 4 and 5, we illustrate the other appli-
cations of our technique in a different activity, requirements management. Section
4 presents metrics to measure the quality of requirements specifications consider-
ing their meaning, while we discuss the version control based on the meaning of
requirements, so called semantic version control. We would like to show how our
technique using ontologies can reinforce the existing RE techniques in each of the
four activities, throughout the whole of RE processes.

70 M. Saeki

2 Using Ontologies

Ontology technologies are frequently applied to many subject domains nowadays
[3, 21]. As mentioned in [9], we consider an ontology as a thesaurus of words and
inference rules on it, where the words in the thesaurus represent concepts and the
inference rules operate on the relationships on the words. Each concept of an ontol-
ogy can be considered as a semantic atomic element that has a unique meaning in a
subject domain [14]. That is to say, the thesaurus part of the ontology plays a role
of a semantic domain in denotational semantics as mentioned in Sect. 1, and the
inference rules help semantic processing by computer [6].

Below, let’s consider how a requirements analyst uses an ontology of a subject
domain for completing a sequence diagram. During drawing the sequence diagram,
the analyst should map its elements into atomic concepts of the ontology as shown
in Fig. 2. In the figure, the ontology of a subject domain is written in the form of
class diagrams. For example, the message “aaa” in the sequence diagram is mapped
into the concepts A and B. Formally, the analyst specifies a semantic mapping F
where F (aaa) = {A, B}. According to the notation of web contents, we can use
the semantic tags which have the same names as the mapped concepts and write
this semantic mapping like <A>aaa in the sequence diagram. The
sequence diagram may be incrementally improved, and logical inference on the
ontology suggests to the analyst which parts she or he should incrementally improve
or refine. In the figure, although the sequence diagram includes the concept A at the
item “aaa”, it does not have the concept C, which is caused by A. The inference
resulted from “C is caused by A” and “A is included” suggests to the analyst that a
diagram element having C, e.g. a message “ccc” should be added to the sequence
diagram. Note that a meta model of sequence diagrams can define their abstract syn-
tax and we can check any sequence diagram using the meta model. However, this
check is on syntactical aspects only.

Figure 3 illustrates a semantic mapping of the lift control system shown in Fig. 1.
Since we check the semantic aspect of the sequence diagram specifying a lift control
system, we use an ontology of lift-control domain as shown in the right part of the

C D

A

E

B

cause

Artifact

Ontology (thesaurus part only)

aaa

ccc
bbb

semantic mapping

C

Fig. 2 Basic idea: semantic
mapping

Semantic Requirements Engineering 71

Door
<<Object>>

Lift
<<Object>>

Doors
<<Class>>

Lifts
<<Class>>

Close
<<Event>>

Move
<<Event>>

Stop
<<Event>>

Open
<<Event>>

next

next

next

next

next

next

Lift DoorScheduler

1: request
2: up

3: arrived
4: open

Sequence Diagram Domain Ontologysemantic mapping

?

Inference of causality
Sequence Diagram: up causes arrived causes open
Ontology: Move next Stop next Open Stop missing!

causes

causes

Fig. 3 A sequence diagram and a domain ontology

Object

Message

sendreceive

AssociationClass
source

destination

Function Data
consume

produce

State

describe

Object

abstraction

describe

describe

Event

associate

change-from

change-to

participate

next

Data

carry

Meta Model of
Sequence Diagram

Meta Model Ontology
semantic mapping

?

Meta Model: Message carry Data, Message ? Message
Ontology: Event associate Data, Event next Event

Next missing

semantic mapping

semantic mapping manipulate

Fig. 4 Meta model and meta model ontology

figure. We will explain stereotypes attached in classes of the ontology in the next
example of a meta model ontology shown in Fig. 4.

The analyst maps the messages “up” and “open” in the sequence diagram into
Move and Open concepts of the ontology, when developing the diagram, as shown in
Fig. 3. Suppose that the execution order of message sending in a sequence diagram
is represented with the relationship “causes” between messages. This relationship

72 M. Saeki

would be included in the meta model of sequence diagrams. And she or he tries to
map “causes” relationship between the messages “up” and “open” into the associa-
tion of type “next” of the ontology. However, no events but Stop can be executed just
after Move is executed because the ontology of Fig. 3 specifies that Move has only
one outgoing “next” relationship to Stop. Thus the inference rule on the ontology
suggests that there are no “next” relationships between Move and Open and some
events should be added to keep semantic consistency of execution order “next” rela-
tionship. Obviously, in this case the analyst should add the message Stop between
“up” and “open”, which a Lift object sends to a Door object. The used inference
rule is “If there is a next relationship between the concepts A and B in the ontology,
then the elements mapped to A and B in the model, if any, should have the associ-
ation mapped to next among themselves”. Thus, we can solve the problems related
to semantic incorrectness, illustrated in Sect. 1, using an ontology as a semantic
domain.

We will show another example in a different subject domain below. In the above
example, we used the ontology of lift control domain, i.e. a problem domain where
the system to be developed operates. On the other hand, this second example needs
the ontology of meta models to provide semantics of meta models to help a method
engineer (engineer for developing meta models) in constructing a meta model of
semantically higher quality. A meta model defines an IS development method,
and the quality of the meta model is a significant factor to get a useful devel-
opment method [1, 12]. In usual cases, a method engineer usually selects pieces
of meta models called method chunks or method fragments, and assembles them
into a development method suitable for an IS development project [2, 10]. In this
process, the method engineer should avoid constructing meaningless methods or
semantically inconsistent ones.

Consider a simple example of a meta model of Sequence Diagram of UML. The
left part of Fig. 4 depicts the meta model of Sequence Diagram, and it consists
of several method concepts such as Data, Message and Object, and relationships
among them, e.g. send, receive and carry. Note that, for simplicity, we used Class
Diagram to represent this meta model. We will check the semantic consistency of
the meta model using the ontology as mentioned above. We design an ontology for
meta models, called meta model ontology, and the right part of Fig. 4 depicts a part
of a meta model ontology, which is a simplified version of [4]. The meta model
ontology can give the meaning of the elements of a meta model in the same way as
the technique mentioned above. Therefore, a subject domain of the ontology is the
domain of meta models. While developing a meta model, a method engineer maps
its elements into a part of the meta model ontology. In the example of the figure,
she or he maps Data and Message in the meta model into the ontological concepts
Data and Event respectively. The relationship “carry” between Data and Message
can be mapped into “associate”, because “associate” is a relationship between Data
and Event in the meta model ontology. The relation among these three elements
Data, Message and “carry” is consistent. However, there are no self-relationships on
Message, while the meta model ontology has a self-relationship “next” on Event,
which Message is mapped into. This can be semantically inconsistent and the

Semantic Requirements Engineering 73

method engineer is suggested to add a relationship on Message to keep semantic
consistency of the meta model.

By establishing a semantic mapping from meta model elements into the ontology,
we can avoid producing semantically inconsistent meta models [2]. The meta model
ontology has several inference rules to keep semantic consistency on meta models.
In this example, the used inference rule is “If concept A and B are mapped into MA
and MB in the meta model ontology and there is a relationship MRAB between MA
and MB, then the relationship that can be mapped into MRAB exists in the meta
model.”

Note that we should explain the stereotypes attached to the domain ontology
in Fig. 3. These stereotypes result from the names of concepts of a meta model
ontology to clarify the relation between the domain ontology and the meta model
ontology. For example, an ontological concept Stop has a stereotype Event in Fig. 3
and the type Event is the same as the concept Event of the meta model ontology
shown in Fig. 4.

3 Application to GORA

Goal-oriented requirements analysis (GORA) methods are one of the promising
approaches to elicit requirements [19, 23] and are being amplified so as to put them
into practice [14]. In this approach, customers’ and users’ needs are modeled as
goals to be achieved by a software-intensive system that will be developed, and the
goals are decomposed and refined into a set of more concrete sub-goals. After fin-
ishing a requirements elicitation process, the analyst obtains an acyclic (cycle-free)
directed graph called goal graph. Its nodes express goals to be achieved by the sys-
tem, and its edges represent logical dependency relationships between the connected
goals. We have two types of goal decomposition; one is AND decomposition and
another is OR. In AND decomposition, if all of the sub-goals are achieved, their
parent goal can be achieved or satisfied. On the other hand, in OR decomposition,
the achievement of at least one sub-goal leads to the achievement of its parent goal.
Root goals, having no parents in a graph, expresses the needs that the customers
would like to fulfill ultimately and the analyst tries to achieve them by combining
sub-goals. Figure 5 shows an example of a goal graph to elicit requirements of a seat
reservation system of trains, which is a part of a screenshot generated by our GORA
supporting tool [16]. In this figure, a root goal N1 “Seat reservation system required”
is decomposed into three sub-goals N2, N30 and N4 in AND-decomposition. The
arc crossing over edges shows AND decomposition.

In order to construct a goal graph of semantically higher quality, knowledge of
a problem domain where the system to be developed operates, so called domain
knowledge, is necessary. In Fig. 5, stakeholders and/or an analyst, who are con-
structing the goal graph, need the knowledge of a reservation business domain and
a train service domain, etc.

The example of using our ontological technique is the application of an ontol-
ogy as a source of domain knowledge for requirements elicitation in the GORA

74 M. Saeki

Fig. 5 A goal graph of a train seat reservation system

method. During constructing a goal, when a goal corresponding to an ontological
concept of the ontology appears, the supporting tool of GORA shows the other
ontological concepts relevant to it by using an inference mechanism, and helps the
discovery of new goals and their refinements to sub-goals [18]. Figure 6 depicts how
a domain ontology helps stakeholders and an analyst to decompose and refine goals.

Seat reservation
system required

Reservation by
users themselves

<<concept>>
Reserve

<<concept>>
Cancel

Cancellation
enabled

requires

Domain ontology of
Reservation Business

Fig. 6 Using an ontology in GORA

Semantic Requirements Engineering 75

Our supporting tool loads a domain ontology of reservation business, and suggests
missing goals as shown in the following steps. First, the tool makes each term in
a goal description correspond to concepts in the ontology. Second, it finds missing
concepts based on the corresponding concepts and relationships such as “requires”
among the ontology. In the figure, the tool extracts the word “Reservation” from the
goal “Reservation by users themselves” and establishes a map from the extracted
word to the ontological concept Reserve. The tool traces the relationship “requires”
between Reserve and Cancel in the ontology, and find that the goal which can be
made to correspond to Cancel is missing. And then by the suggestion of the tool,
the analyst can add a new goal “Cancellation enabled” as a sub-goal.

Fig. 7 A supporting tool for goal and ontology oriented requirements elicitation

76 M. Saeki

Figure 7 shows the process for the tool user to add a missing goal to a goal
graph. After loading the ontology of reservation business domain and then starting
inference, the tool detects the candidates of missing goals. The mark of “boxed +”
symbol that is attached to a goal shows that there may be missing goals related to
it, and the tool user can refer to the candidates of missing goals by clicking the
mark with a mouse. In Fig. 7, our tool tells the user that goal N30 “Reservation by
users themselves” may have missing goals because the mark of “boxed +” symbol
appears in its upper left area. Clicking the mark allows her or him to see a list of
the candidates of missing goals, and as a result three candidates are shown. The
ontology used in this example contains the concepts “reservation”, “cancel” and a
relationship “requires” between them, as shown in Fig. 6. This part of the ontology
denotes that “reservation” requires “cancel”. Since the current version of the graph
does not include a goal related to the “cancel” concept yet, the tool suggests the
addition of the goal having “cancel”. In addition, the other concepts “log in” and
“reservation information” are suggested as missing goals. The tool user accepts a
candidate of a missing goal “cancel”, and then she or he adds a new goal at the
suggestion of the dialog shown in Fig. 7. The dialog enables her or him to fill the
appropriate name of a new goal, and to connect the new goal to the existing goal(s).
In this case, the new goal N31 is named “Cancellation enabled”, and the goal is
connected to the goal N30 as a sub-goal. The technical details such as the structure
of domain ontologies and inference rules for deriving missing goals are discussed
in [18].

4 Semantic Quality Metrics

In IEEE 830 standard [5], there are eight characteristics such as correctness and
completeness to measure the quality of software requirements specification doc-
uments. Although this standard includes several methods to measure the quality
characteristics, most of them are related to syntactical aspects of a specification
document. For example, the IEEE 830 standard says that we should check whether
all figures, tables, and diagrams in the document are labeled and referred, in order
to measure its completeness. In the usual sense, completeness denotes no miss-
ing requirements in the document and it should include the semantic aspects of
the documents, i.e. there does not exist semantically lacking of requirements in the
document. In the example of Fig. 1 in Sect. 1, “stop” message sending is missing
in the diagram and it is semantically incomplete. By using the semantic mapping
of requirements to ontological elements, we can estimate the degree of seman-
tic incompleteness. More concretely, we can calculate the ratio of the ontological
elements required but not mapped from requirements. In Fig. 3, we have 5 ontolog-
ical elements mapped from the sequence diagram and one missing element “stop”.
Thus semantic incompleteness of this diagram can be estimated as 1/5 = 20%. We
can define the other quality characteristics based on semantic aspects using our
ontological approach, and readers can find their details in [6].

Semantic Requirements Engineering 77

5 Semantic Version Control

Requirements changes frequently occur after a requirements specification is com-
pleted and even during the requirements elicitation step, for various reasons such
as changing business goals and improving information technology. In this situation,
it is a crucial issue to manage requirements changes. More concretely, to record
change histories and rationales, to analyze impacts and change propagations for
keeping consistency etc., developers, including requirements analysts, should have
various versions of elicited and specified requirements and manage them in their
development project. The techniques for version control are significant to support
their tasks by using a computerized tool, and in fact, CVS and Subversion are widely
used as computerized version control tools for source codes. These tools store a cur-
rent version of an artifact and the differences (so called delta) between adjacent
versions in a repository, so that it can recover the older versions by applying the
stored deltas to the current one. However, it is difficult to use these practical version
control tools for managing requirements, because they deal with syntactical aspects
of text documents and adopt line based management, i.e. the delta is generated line
by line. Requirements are modeled and specified not only with natural language
texts but also with tables and diagrams, and they are informal descriptions. Handling
semantic differences between two versions of requirements is very useful to trace the
requirements changes and evolution. The differences in the ontologies mapped from
adjacent versions of the requirements represent the semantic differences between
these requirements.

Figure 8 illustrates the delta of artifacts (requirements) and ontology delta (dif-
ferences of the mapped ontological elements). In the figure, Vi (0 ≤ i ≤ n) and Oi
stand for the version Vi of the artifact and the ontological elements mapped from Vi

V0 V1 VnVn–1

d0 dn–1dn–2

Vn = Vn–1 + dn –1Vn = V0 + dn – 1 + dn – 2 + ... + d0

Artifacts

Artifact Delta

Ontology
O0 O1

On–1
On–2

Od0 Odn–1Odn–2
Ontology Delta

semantic mapping

On = O0 + Od0 + Od1 + ... + Odn–1 On = On–1 + Odn–1

On

Fig. 8 Difference deltas in a version control

78 M. Saeki

Customer

Withdraw

1. Insert a bank card into an ATM.
2. Input a PIN code.
3. Input an amount.
4. Touch a confirmation button.
5. Get the bank card and cash.

Customer

Withdraw

Deposit

1. Insert a bank card into an ATM.
2. Input a PIN code.
3. Input an amount.
4. Touch a confirmation button

or an exchange button.
5. Get the bank card and cash.

Ontology for Ver.1 =
{Customer, Withdraw, Bank card, ATM, PIN,
Amount, Confirmation, Cash}

Artifact Delta = {
1. Add the use case Deposit.
2. Add the association between Customer and Deposit.
3. Add "or an exchange button" at line 4 after the 4th word.}

Ontology for Ver.2 =
{Customer, Withdraw, Deposit, Bank card,
ATM, PIN, Amount, Confirmation, Cash,
Exchange}

Ver. 1

Ver.2

Ontology Delta = {1. Add Deposit. 2. Add Exchange.}

Fig. 9 An example of semantic version control

respectively. The artifact delta dj (0 ≤ j ≤ n–1) is produced as the difference between
Vj and Vj+1, while Odj is the difference of ontological elements between Odj and
Odj+1, i.e. ontology delta. These ontology deltas allow us to capture the changes of
artifacts semantically and reasoning about semantic aspects of their changes can be
automated.

Figure 9 shows the simple example. Suppose that we model a banking business
and specify it as a use case model. The left hand of the figure depicts a use case dia-
gram having only one use case Withdraw and its use case description with natural
language sentences. A requirements analyst adds the use case Deposit and the func-
tion of exchange during Withdraw in a newer version Ver.2. As a result, the ontology
delta consists of the addition of two ontological concepts Deposit and Exchange.
By tracing the ontology deltas, the analyst can find what functions had been
semantically added, deleted or modified in which versions of the use case models.

6 Conclusion

This chapter presents the idea of using ontologies as a semantic basis in require-
ments engineering (RE) so as to automate semantic processing in RE techniques.
As mentioned in each section, this idea is not new and it already appears in
specific applications such as the support of missing requirements sentences [7]
and of suggesting sub-goals in GORA [18], semantics of meta models [2, 4] and a

Semantic Requirements Engineering 79

dictionary having domain specific vocabularies called Language Extended Lexicon
[8] etc. However, we did not argue these pieces of individual usages of ontologies
but the possibilities of ontology usage as a semantic basis throughout RE processes
in this chapter. In fact, Sect. 3 presented the support for requirements elicitation
and specification activities, i.e. the first and second ones mentioned in Sect. 1. We
discussed the techniques for requirements management in Sect. 4, quality assur-
ance of requirements, and in Sect. 5, change management of requirements. As for
requirements validation, readers can understand that we also mentioned the tech-
nique to detect missing requirements, e.g. checking completeness of requirements
specifications, in Sects. 2, 3 and 4. Thus we have illustrated several techniques for
the four activities in RE processes, whose common basis is on providing lightweight
semantics for RE artifacts using ontologies. In [11] and Softwiki project, the authors
designed a Requirements Engineering Ontology called SWORE by collecting onto-
logical concepts such as Functional Requirement, Stakeholder, Scenario, Goal etc.,
which appeared in the existing RE techniques. The aim of this project seems to
be the construction of a common vocabulary of RE techniques for distributed col-
laborative development of requirements specifications, and is different from ours.
Although providing common meaning of terminology of RE techniques is one of
the significant benefits of using ontologies, deeper semantic analysis such as infer-
ences on ontologies allows us to develop and manage requirements of higher quality
as mentioned in this chapter. Future research agenda are developing more applica-
tions in RE processes and constructing a Semantic Repository of Requirements to
achieve our idea in practice.

As for the Semantic Repository, we have discussed reusability of semantically
annotated requirements in [15] and proposed the unified ontology with the other
types of ontologies for implementation structures such as architecture ontology,
framework ontology, etc. Furthermore, the technique to retrieve reusable parts of
requirements was discussed. We should elaborate these techniques to achieve a
practical semantic repository, as shown in Fig. 10.

In a current version of our idea, we use a word or a phrase as an ontological con-
cept. In the example of Fig. 3, we used the single word Stop to denote the concept
of a stop action. However, a word itself is less informative and includes too gen-
eral concepts. Although we can express that a stop action follows a move action,
we cannot specify that a stop action and a move action should occur on the same
lift in this action causality. We should focus not only on words but also on the
connections among the words to represent ontological concepts. The application of
Case Grammar is one of the promising approaches [13, 17]. In the case grammar
approach, ontological concepts can be defined as case frames as shown in Fig. 11,
and the relationships among ontological concepts are considered as the relationships
among case frames [22]. In the figure, the slots of case frames are represented with
variables, e.g. x, and filled with concrete words which appear in requirements. The
same variables in the case frames should denote the same objects. For example,
the same word “lift” should be assigned to two occurrences of variable x in the case
frames “move” and “stop”, and a self-loop of a “stop” message sending is suggested
to add in the sequence diagram. The usage of Case Grammar approach is also one
of the significant research directions.

80 M. Saeki

Requirements Specification

Fragments of
Requirements
Specifications

Reusable
implementation
structure, e.g.
Architecture,
Framework,
Package

Implementation
(source codes)

Unified ontology

Artifact Layer

Ontology Layer

Fig. 10 Semantic repository

Actor Verb

amap &

instantiate

Case Frame

Sentence Source

o t

Verb(a, o, t)

A lift goes up move(lift)

Requirements

Actor Verb

x

Case Frame

Requirements
(sequence diagram)

move

stop

Actor Verb

x

next

Lift DoorScheduler

1: request
2: up

3: arrived

5: open

4: stop

move(lift)

stop(lift)

the same lift

Object

Fig. 11 Using a case frame as an ontological concept

Semantic Requirements Engineering 81

References

1. Brinkkemper S (1996) Method engineering : engineering of information systems development
methods and tools. Info Softw Technol 38(4):275–280

2. Brinkkemper S, Saeki M, Harmsen F (1999) Meta-modelling based assembly techniques for
situational method engineering. Info Systems 24(3):209–228

3. Gruninger M, Lee J. (2002) Ontology: applications and design. Commun ACM, New York,
45(2):39–41

4. Harmsen F (1997) Situational method engineering. Moret Ernst & Young Management
Consultants

5. IEEE (1998) IEEE recommended practice for software requirements specifications. Technical
report, IEEE Std. 830–1998

6. Kaiya H, Saeki M (2005) Ontology based requirements analysis: lightweight semantic pro-
cessing approach. In: Proceedings of QSIC 2005, Melbourne, Australia, IEEE Computer
Society, Los Alamitos, CA, pp 223–230

7. Kaiya H, Saeki M (2006) Using domain ontology as domain knowledge for requirements
elicitation. In: Proceedings of 14th IEEE international requirements engineering conference
(RE’06), Minneapolis, USA, IEEE Computer Society, Los Alamitos, CA, pp 189–198

8. Leite JCSP, Rossi G, Balaguer F, Maiorana V, Kaplan G, Hadad G, Oliveros A (1997)
Enhancing a requirements baseline with scenarios. In: Proceedings of the 3rd IEEE inter-
national symposium on requirements engineering (RE97), Annapolis, USA, IEEE Computer
Society, Los Alamitos, CA, pp 44–53

9. Maedche A (2002) Ontology learning for the semantic web. Kluwer, Norwell, MA
10. Ralyte J, Rolland C (2001) An assembly process model for method engineering. In:

Proceedings of CAiSE 2001, Interlaken, Switzerland. LNCS, vol 2068. Springer, Heidelberg,
Berlin, pp 267–283

11. Riechert T, Lauenroth K, Lehmann J, Auer S (2007) Towards semantic based requirements
engineering. In: Proceedings of the 7th international conference on knowledge management
(I-KNOW’07), Toulouse, France

12. Rolland C (1997) A primer for method engineering. In: Proceedings of the INFORSID
conference, Toulouse, France

13. Rolland C, Proix C (1992) A natural language approach for requirements engineering. In:
Proceedings of CAiSE 1992, Paris, France. LNCS, vol 593. Springer, Heidelberg, Berlin,
pp 257–277

14. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modeling using scenarios. IEEE
Trans Softw Eng 24(12):1055–1071

15. Saeki M (2004) Ontology-based software development techniques. ERCIM News, 58.
http://www.ercim.org/publication/Ercim_News/enw58/saeki.html. Accessed 6 May 2010

16. Saeki M, Hayashi S, Kaiya H (2009) A tool for attributed goal-oriented requirements analysis.
In: Proceedings of 24th IEEE/ACM international conference on automated software engineer-
ing (ASE2009), Auckland, Newzealand, Conference Publishing Services, Los Alamitos, CA,
pp 670–672

17. Saeki M, Horai H, Enomoto H (1989) Software development process from natural lan-
guage specification. In: Proceedings of 11th international conference on software engineering,
Pittsburgh, USA, IEEE Computer Society Press, Los Alamitos, CA, pp 64–73

18. Shibaoka M, Kaiya H, Saeki M (2007) GOORE: goal-oriented and ontology driven require-
ments elicitation method. ER 2007 workshops, Auckland, Newzealand. LNCS, vol 4802.
Springer, Heidelberg, Berlin, pp 225–234

19. van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour. In:
Proceedings of 5th international symposium on requirements engineering (RE’01), Toronto,
Canada, IEEE Computer Society, Los Alamitos, CA, pp 249–263

20. W3C Semantic Web Activity. http://www.3.org/2001/sw/

82 M. Saeki

21. Wand Y (1996) Ontology as a foundation for meta-modelling and method engineering. Info
Softw Technol 38(4):281–288

22. Watahiki K, Saeki M (2001) Scenario patterns based on case grammar approach. In:
Proceedings of 5th IEEE international symposium on requirements engineering (RE01),
Toronto, Canada, IEEE Computer Society, Los Alamitos, CA, pp 300–301

23. Yu E (1997) Towards modeling and reasoning support for early-phase requirements engi-
neering. In: Proceedings of 3rd IEEE international symposium on requirements engineering
(RE’97), Annapolis, USA, IEEE Computer Society, Los Alamitos, CA, pp 226–235

Goal-Based Domain Modeling as a Basis
for Cross-Disciplinary Systems Engineering

Matthias Jarke, Hans W. Nissen, Thomas Rose, and Dominik Schmitz

Abstract Small and medium-sized enterprises (SMEs) are important drivers for
innovation. In particular, project-driven SMEs that closely cooperate with their
customers have specific needs in regard to information engineering of their devel-
opment process. They need a fast requirements capture since this is most often
included in the (unpaid) offer development phase. At the same time, they need to
maintain and reuse the knowledge and experiences they have gathered in previous
projects extensively as it is their core asset. The situation is complicated further if
the application field crosses disciplinary boundaries. To bridge the gaps and perspec-
tives, we focus on shared goals and dependencies captured in models at a conceptual
level. Such a model-based approach also offers a smarter connection to subsequent
development stages, including a high share of automated code generation. In the
approach presented here, the agent- and goal-oriented formalism i∗ is therefore
extended by domain models to facilitate information organization. This extension
permits a domain model-based similarity search, and a model-based transformation
towards subsequent development stages. Our approach also addresses the evolution
of domain models reflecting the experiences from completed projects. The approach
is illustrated with a case study on software-intensive control systems in an SME of
the automotive domain.

1 Introduction

The alignment or fit between business requirements and organizational information
systems has been a continuing concern in the business information systems field
for over twenty years [36]. The representations, processes, and domain contexts of
requirements engineering have been advertised as the bridge from business needs
to IS functionality [19]. However, the emphasis shifts from greenfield develop-
ment towards complex system evolution in a complex and quickly evolving context.

M. Jarke (B)
Information Systems, RWTH Aachen University, Ahornstraße 55, D-52056 Aachen, Germany
e-mail: jarke@dbis.rwth-aachen.de

83S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_5, C© Springer-Verlag Berlin Heidelberg 2010

84 M. Jarke et al.

Managing the fitness relationship between business needs and system functionality
is becoming a continuous task. Rolland [36] proposes an explicit management of
the fitness relationship as a formal model mapping between business models and
system models.

As we are moving into the era of embedded software-intensive systems, the map-
ping between business goals and software technologies needs to be augmented with
a cross-disciplinary mapping within the systems themselves, in particular relating
hardware systems (with aspects from mechanical and electrical engineering) with
the software systems that control and monitor them. Such tasks are by no means
limited to large companies e.g. in the utilities, automotive, or aeronautical fields. In
fact, much of the innovation comes from small and medium engineering enterprises
(SMEs) who either sell products directly to end customers or supply the big players
with innovative designs and components based on inter-disciplinary development
projects. The research question addressed in this chapter is therefore how we can
extend the idea of fitness to such project-driven cross-disciplinary SMEs.

Important success factors for project-driven SMEs are their flexibility, innova-
tiveness, and customer orientation [4, 11, 21]. For them, requirements engineering
activities are part of the offer development where timing and cost constraints are
very tight. Pre-planned product line engineering [33] unfortunately does not work
for these SMEs without abandoning much of their customer-orientation and flexibil-
ity, since they cannot commit to the necessary prerequisite of some domain stability
[21]. On the other hand the knowledge an SME has gained throughout previous
projects is its core asset and must be reused extensively during later projects [3].
Accordingly, they need means to keep track and internally make available their
extensive knowledge [24]. Eventually, this knowledge must be easily adaptable and
extensible in order to evolve with new innovations and gained experiences.

The situation is complicated further if the business of the SME is interdisci-
plinary. A typical example is control system development [1] in automotive design.
More and more car control functionality – such as engine management or driver
assistance systems – is realized in software on electronic control units [7]. Only this
way, quality goals such as comfort, safety, and energy efficiency can be tackled. But
the required interplay of theories, methods and tools from control engineering and
software engineering, and the resulting interworking of people with different world
views and concerns, demands more advanced modeling and management methods.

To address these issues, this chapter presents a goal- and dependency focused
domain model based approach to SME-oriented requirements management. The
approach takes agent goals and their interdependencies as a starting point, building
on the i∗ framework [45], but elaborates them to a fully model-based domain-
specific information management approach. It consists of:

• a simple, but suitably expressive common notation based on i∗ that allows to
capture the requirements of all disciplines,

• a domain model offering a collection of functional requirements patterns as well
as non-functional goals for a particular (sub-)domain and tailored to a particular
SME,

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 85

• a fast requirements capture process using the domain model as starting point but
permitting project-specific extensions,

• a domain model-based similarity search identifying similar finalized projects as
sources for reuse,

• a means to enable domain model evolution, i.e.

– a mechanism to synchronize existing requirement models with a changing
domain model (in order to keep similarity search results accurate) and

– a mechanism to detect candidates for domain model extensions and reductions
from the project history, and last not least

• a transformation to subsequent modeling formalisms as a means to quality
assurance and a seamless integration into the overall development process.

In summary, our approach adopts a goal and dependency oriented modeling for-
malism suited to tackle interdisciplinarity and makes specific domain knowledge
available as concrete models. This really puts the domain knowledge at the cen-
ter of support. The suitability and effectiveness of the approach is exemplified by
applying it to control systems in the automotive domain.

The chapter is organized as follows. In Sect. 2 the field of control system devel-
opment is introduced to instantiate the abstract challenges for interdisciplinary,
project-driven SMEs for the requirements engineering phase of a combined soft-
ware and control systems development approach. In Sect. 3 the details of the domain
model based requirements engineering approach are presented. The role of the
domain model is elaborated especially with regard to how it helps SMEs to address
their particular problems. Section 4 discusses related work. Section 5 summarizes
the approach and outlines the chances for applying the developed solution to other
similar fields.

2 Case Study: Automotive Control Systems Development

Control system functionality, for example in cars, increases the comfort and safety
of driving a car or reduces the fuel consumption and exhaust gas emissions [1].
The task of a controller is to continuously compare and adapt the current value(s) of
some system to some possibly changing desired value(s) [25]. Thereto the controller
interacts with the controlled system via sensors and actuators. Sensors measure
specific values of the controlled system and actuators change input variables of
it. Assume the controlled system to be a combustion engine. The controller has
to decide on the appropriate amount of fuel as well as the best point in time for
injection and ignition reflecting the user’s demands (via the accelerator). A typical
sensor in this context is the knock sensor to detect self-ignitions that can damage
engine components. In this case the controller reacts with adapting the time for
ignition. Experiences and knowledge in physics, mathematics, and control theory
are required to design a stable controller with good performance.

86 M. Jarke et al.

2.1 Developing Control Systems

For many years, the control systems for vehicle engines were designed by con-
trol engineers. However, in the last decade, it has been recognized that massive
reductions in pollution and gas consumption as well as advanced driver assistance
systems can only be realized if software-based controls are embedded in these sys-
tems. These kinds of software-intensive embedded control systems have become a
very complex market: a single major supplier sells over 1500 variants of gasoline
engine control systems per year [22].

Nonetheless in industrial practice, the development process is still mainly driven
by control system engineers. Typically, a controller is developed in five steps [25].
Control engineers have to understand the controlled system, for example the engine,
for which a controller has to be developed. Thus, in the first step of the process the
controlled system has to be modeled as precisely as possible. This is achieved by
building a block diagram of the interactions between the main components and then
detailing out these blocks mathematically via, for example, differential equations.
The combination of all components and equations therein captures the behavior of
the controlled system. This model helps identifying actuating and controlled pro-
cess variables, i.e. the controlled system’s properties, in the second step. In the third
phase, the controller’s functionality is designed. The fourth step concerns simulat-
ing the whole control cycle in crucial situations (model-in-the-loop simulations).
If it behaves as expected and demanded, the controller is finally implemented and
put into operation in the last step. This includes conclusive hardware-in-the-loop
simulations with the real hardware to assess the fulfillment of real-time constraints.

Since recently, the process is supported by rapid control prototyping (RCP)
environments [1]. Such a tool chain supports the engineer who can model and espe-
cially simulate the whole control cycle to validate the controller design at early
development stages without harming a potentially expensive real world device.
The Matlab/Simulink (http://www.mathworks.com) environment is most commonly
used in this context. Simulink is a graphical programming language on top of
the numerical math engine Matlab. It allows the signal oriented (thus, block dia-
gram based) visual capturing of complex systems and provides a large set of
libraries with pre-defined mathematical blocks. The environment provides also oper-
ational support to derive real-time code from models to run the above mentioned
hardware-in-the-loop simulations.

As Fig. 1 shows, software engineers are traditionally involved in the develop-
ment process only at the implementation phase. They are supposed to efficiently
implement the control algorithms on the platform and architecture that have been
chosen by the control system engineers. Not surprisingly, software engineers criti-
cize this approach which is purely driven by functional considerations. They argue
that a system’s structure should follow from the consideration of non-functional
goals and requirements. In their view, advanced software techniques have to be used
to implement safe, reusable, and efficient solutions.

Interestingly, both disciplines claim to pursue model-based approaches but they
have a quite different understanding of the main concept. For control system

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 87

Requirements
Analysis

Architecture
Design

Module/ Algo-
rithm Design

Implemen-
tation

Module
Test

Integration
Test

Acceptance
Test

Control
Engineers

Software
Engineers

Fig. 1 Development process from control system engineering point of view [22]

development, the model of the controlled system is at the center of interest, in
particular to enable simulations as described above. Furthermore at the level of
requirements, textual approaches still prevail [15]. In contrast, models within soft-
ware engineering focus the system to be developed and put these models at the
center of the whole development process as envisioned in the model-driven archi-
tecture (MDA) promoted by the OMG [29]. Domain-specific modeling languages
(e.g. [2, 12]) are intended to be easier to use for domain experts; recent empirical
evidence [8] demonstrates that this is indeed the case. Even the Matlab/Simulink
environment, most commonly used by control system engineers, can be consid-
ered a domain-specific language, but only for the design and implementation level.
Besides architectural models, model-based requirement specifications enable a bet-
ter structuring, traceability and a smarter transition from requirements to subsequent
development steps [44].

2.2 SMEs Developing Control Systems

In the control systems development sector, SMEs play an important role as inno-
vation drivers that perform engineering tasks for multiple customers. The process
is typically initiated by an engine manufacturer (building engines for cars, boats,
power saws, or the like) contacting a number of suppliers to provide an offer to
develop a control system for a new engine. By nature, the time frame for the sup-
plier to respond is very short. The manufacturer delivers a specification of the engine
and the list of required control functionality. To prepare the offer, the supplier first
specifies the requirements on the requested control system from a developer’s point
of view. In a second step, he prepares a system design in order to calculate the costs
for the development of the control system. To keep the development costs low and
to win the contract, he must on the one hand reuse as many software artifacts and
simulation models as possible from previously developed control systems. On the

88 M. Jarke et al.

other hand, if after winning the contract, it is discovered in later design phases that
the selected components are actually not reusable, their development from scratch
may result in a project loss that can challenge the SME’s economic viability. Thus,
a careful investigation has to take place quickly.

To summarize the SME and control system related challenges:

• Control system development is a customer- and project-oriented business.
Although all engines are somehow similar on an abstract level, they differ in
detail, mainly due to hardware issues [7]. This precludes long-term planning of
product families due to the individuality of the developed solutions.

• There is a high frequency of innovations. The knowledge changes and grows
quite fast. With each new development project, new engine components, sensors,
actuators, and construction styles may arise.

• The offer must be developed within a short time frame dictated by the customer.
The SME thus must fast and reliably identify reusable components from earlier
projects without being able to build on a full product line approach.

• Control systems are realized in software but base on physical features of
the controlled system. Its development therefore requires the interdisciplinary
investigation of combined software and control requirements and solutions.

• The benefits of model-based approaches during later development stages in both
disciplines especially in regard to quality assurance, reliability, and safety [37]
need to be taken advantage of.

3 Domain Model Based RE for Control Systems

In this section, our agent and goal-oriented approach to domain model based
requirements engineering is introduced in response to the challenges above. The
usage of the approach is exemplified for the domain of control systems.

3.1 Agent- and Goal-Oriented Requirements Engineering

The foundation of our approach is a suitable common modeling notation that tack-
les the interdisciplinary issues. Goal-oriented approaches have proven to be suitable
here. “Goals have long been recognized to be the essential components involved in
the requirements engineering (RE) process” [43]. Accordingly, they are also suitable
as a common ground for different disciplines. A second suitable concept is that of an
“agent” [46]. Disregarding any major fundamental distinctions at the detailed level,
any stakeholder, environment, legacy, or system-to-be-developed component (irre-
spective whether physically, hardware, or software motivated) can be represented
by an agent and thus be related to other components. Again, this simple concept
is amenable for any discipline and suited to prepare a common understanding of a
problem.

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 89

i∗ [45] is a well-known formalism in the requirements engineering field that
combines the features of goal- and agent-orientation, and additionally has built-
in support for representing non-functional requirements. Furthermore, the formal
foundation in the knowledge representation language Telos [26] enables formally
sound, automated analysis and transformation support. In detail, i∗ supports the
notion of agent to represent all relevant stakeholders, dependency to indicate mutual
interactions, and goal to capture the internal rationales of stakeholders. The strategic
dependency (SD) diagram focuses the stakeholders and their dependencies while the
strategic rationale (SR) diagram targets the modeling of internal rationales. Figure 3
mixes the two modeling levels while presenting the requirements of a common rail
injection system (see Fig. 2) within a combustion engine.

The common rail is supposed to reliably provide the injectors with fuel; a rail
pressure controller must therefore ensure a nearly constant pressure within the rail.
The injectors are the disturbances since each injection causes a pressure loss. The
controller acts against that by suitably activating the pump.

i∗ puts much emphasis on its ability to capture the context of a system to be devel-
oped. In our case, the “controlled system” can be considered the most important part
of the environment of a “controller” to be designed. In Fig. 3 the “controlled system”
is refined into the “rail”, the “pump”, and the “injector”. Is-part-of and inheri-
tance relationships (is-a) can be used as known from object-oriented approaches.
Regarding dependencies, i∗ distinguishes four different kinds: task, goal, resource,
and softgoal dependency, the latter suited to capture non-functional requirements.
They vary according to the degree of freedom they leave to the dependee. While in a
task dependency the depender prescribes the concrete steps, for a goal dependency
only a desired situation is specified. Similarly for the resource dependency: it is up to
the dependee how to bring the situation (or resource, resp.) about. In control systems
development, all these kinds of dependencies apply as well. For example, actua-
tors and sensors can be captured via resource dependencies, see “actuator: pressure
valve” and “sensor: pressure” in Fig. 3.

At the strategic rationale level, the types of links on SD level (task, goal, resource,
and softgoal dependencies) become modeling elements. They are used to cap-
ture the individual goals and processes of stakeholders and systems as well as
their relation to external dependencies. Therefore, the SR diagram provides new
kinds of links to detail out a complex task (and- and or-decomposition), to model

pump

common rail

injectors

Fig. 2 Schematic
representation of a common
rail injection system

90 M. Jarke et al.

Fig. 3 Common rail requirements example modeled with i∗

alternatives to achieve goals (means-ends), and to specify qualitative contributions
towards softgoals (help, make, break, etc. contribution). Figure 3 shows that “low
costs”, “flexibility”, and “safety” have been recognized as the most important non-
functional requirements of the “rail pressure controller”. The use of “fail safe
sensors” at the “rail pressure controller (hardware)” component is intended to sup-
port “safety” whereas the “parameterization” realized by the “rail pressure controller
(software)” contributes to the required “flexibility”.

In contrast to previous practice in control systems development, this i∗ model
is able for the first time to capture not only the functional interdependencies of
controller and controlled system but also non-functional issues and various addi-
tional stakeholders within a combined, model-based view. Due to its origin, software
requirements can of course also be represented. Thus, the formalism is suitable as
an interdisciplinary approach to requirements engineering in the field of control
systems development [38].

3.2 Domain Model Based Requirements Engineering

While the application of the i∗ formalism addresses the basic challenges to inter-
disciplinarity, model-based development and the consideration of non-functional

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 91

goals, it does not yet address the particularities of the development process
employed by SMEs.

3.2.1 Fast Requirements Capture

To address the need for fast requirements capture, the SME is supposed to create one
or several specific domain i∗ models that reflect the field(s) the SME is specialized
in and that are suitable as an information management infrastructure as well as a
starting point for individual models.

As an example, Fig. 4 shows the partial view of the domain model for the com-
bustion engine sub domain [39]. The figure shows the “electronic control unit”
omitting all internal details at the center of the picture. The controlled system, i.e.
the combustion engine, is modeled in more detail.

The “combustion engine block” is detailed out by internal features regarding
for example, the different kinds of “fuel” (“diesel”, “gasoline”, “gas”, “biodiesel”),
various types of “cylinder positioning” (“box”, “V”, “row”), or the “number of
cylinders” (“2” to “8”). It is also possible to separate out important components as
it has happened with the “common rail” and the “camshaft regulation”. The lower
part of the figure concerns the details of the “air path” that is important for “exhaust
gas after treatment” and “turbo charger” capabilities. Various sensors and actua-
tors connect the engine components to the “electronic control unit” and thus circle
around this modeling element. At the upper right, a generic “customer” with some
hardgoals and softgoals is also present.

An SME is expected to tailor such a domain model to its particular needs. For
Fig. 4, it has been assumed that the SME has particular knowledge in the field of
“turbo charging”. Thus, the modeling of the “air path” is more extensive than other
SMEs would need it. It is easily conceivable that an SME prepares several models
of this kind for the various subdomains it is active in. For example, there could also
be a domain model for driver assistance systems, electrical engines as well as the
combination of combustion and electrical engines as hybrid systems.

The development process at an SME is affected by the existence of a domain
model in the following way. Instead of starting from scratch when a potential cus-
tomer has approached the SME, the engineer chooses a domain model and starts
with a copy of it. After eliminating the parts of the model that do not apply for the
current project, the engineer can add new elements that are specific to the project
at hand. Thus, a requirements model of the new control problem can be established
rapidly.

3.2.2 Search for Similar Projects

The next step for the SME is to provide a competitive and reliable cost calcula-
tion. To support this activity a domain model based similarity search is provided
to identify related earlier projects and reusable components [39]. A fully automated
identification of reusable software artifacts is not possible. Always a senior engineer
is needed to do the technical inspection and to decide if an existing software artifact

92 M. Jarke et al.

F
ig

.4
C

om
bu

st
io

n
en

gi
ne

do
m

ai
n

m
od

el
[3

9]

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 93

suits the new control system. But the similarity search automates the identification
of finalized projects containing potentially reusable artifacts and thus reduces sig-
nificantly the number of finalized projects the engineer has to inspect. This in turn
increases the chances that all reusable artifacts are actually found and provides the
senior engineer with more time to decide on the actual reusability. Additionally, even
if a component is not reusable the project documentation may allow the engineer to
better estimate the required efforts and thus also leads to a better cost calculation.

The domain model forms a necessary premise for the similarity search since it
ensures consistency of modeling across several projects. Two projects are called
similar, if indications exist that parts of the control system software of one project
could be reused for the other. An indication is given, if parts of the requirements
models of the projects match. Since the requirements models are (via i∗) formal-
ized in the knowledge representation language Telos [26], we can employ for this
comparison task the deductive object manager ConceptBase [18] that implements
Telos. The selection is based on pre-defined and ad-hoc comparison queries. The
pre-defined comparison queries focus on the particular domain model. For example,
a query can be formulated that computes the kind of fuel the combustion engine
in a particular project uses by identifying all task elements that are parented by
“combustion engine block” and are or-decomposed from the “fuel” task element
(for Telos details see [39]). This returns a subset of “diesel”, “gasoline”, “gas”,
and “biodiesel” (see Fig. 4 upper right, next to “customer”) plus potential project-
specific extensions. The returned set for the current project can then be compared
with the returned sets for earlier projects. Up to now, eleven of such domain model-
specific queries are pre-defined for the combustion engine domain model shown in
Fig. 4. Additionally, the user can extend this set by ad-hoc queries targeting project-
specific extensions. The aggregation of the weighted answers of all queries results
in an overall ranking for each project. The projects containing similarities within the
highly weighted areas of the new project’s requirements model are ranked higher.
Accordingly, these are the models the engineer should investigate first.

The requirements model for the concrete customer problem together with the
results of the similarity search enable the SME to outline a first solution idea that
especially indicates which components can be reused and which ones have to be
developed newly. On top of these findings, the SME can produce a reliable and
hopefully competitive cost calculation that is sent as an offer to the customer.

3.2.3 Integration with Further Development

Only when the customer accepts the offer of the SME, the development process
continues. As elaborated before and in contrast to normal software development,
after capturing the requirements, the control system engineers continue the devel-
opment by building mathematical models. A continuous model-based development
approach has to map the requirements to an initial Matlab/Simulink model that then
can be enriched with the mathematical equations suitable for the particular prob-
lem. By again building on the formalization in Telos, partially automated support
for this transformation is provided [40]. During a first manual transformation step,

94 M. Jarke et al.

design alternatives are resolved. Here the modeler can make use of all available
support for working with i∗ models such as label propagation algorithms for com-
puting overall satisfaction of softgoals [16]. The second, automated step generates
a Matlab/Simulink skeleton model from the i∗ model. Since the conceptual model
behind block diagrams and thus Simulink models is rather simple, the matching
of concepts is straight forward. Most importantly, various i∗ relationships such as
is-part-of, decomposition, and means-ends are mapped on the nesting of correspond-
ing blocks. Resource and task dependencies result in signals that are exchanged
between components. And goals and softgoals are mapped to model verification
or simple model information elements as suitable hints for the developer of the
mathematical model. This mapping is encoded in the generic feature of answer for-
mats [18] and thus can easily be adapted to accommodate any other formalism in a
different (interdisciplinary) setting. Eventually, an interactive step allows the engi-
neer to incorporate existing hardware and platform components into the skeleton by
replacing some of the generic empty blocks. For a concrete SME, there are poten-
tially libraries of sensor and actuator components that are usually combined with a
particular hardware platform (such as an RCP system).

Thus regarding the development process, the SME derives the decision for a
particular platform from the non-functional requirements on costs, environment
conditions, available installation space, safety and reliability constraints, scalability
etc. [31]. Accordingly, suitable controller solutions can be considered [10]. Since
due to the complexity of real-time constraints often only simulations can reveal the
best choice, the engineer might choose to create several different variants (in paral-
lel or iteratively) to be evaluated during the later development that from here on can
proceed as usual.

3.3 Experience-Based Domain Model Evolution

The previous section has described the intended process an SME has to follow for
a new customer request. In addition to this customer-driven activity, the SME must
strategically manage the knowledge and experiences it gains throughout many indi-
vidual customer projects. The domain model is a suitable means to structure this
knowledge and have it influence the development immediately. But the usefulness
of the domain model depends heavily on its adequacy for supporting the day-to-
day work of the engineers. Neither overly large nor too small domain models are
helpful. In the first case eliminating the unnecessary parts takes too much time
and in the second case known information needs to be added over and over again.
Instead, a domain model must be continuously tailored to the particular needs of
the SME. Concrete SMEs will specialize a domain model with regard to the par-
ticular methods, tools, and experiences available to them, e.g. particular sensors
and actuators. Other sources for changes to the domain knowledge are advances
in technology. But the most interesting changes are the ones that result from cus-
tomer projects over the years. These changes lead to an evolution of the artifacts

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 95

captured by the domain model. Like Rolland in [34] we established a classification
of the various kinds of evolution of the different types of knowledge within a
domain model [27].

All these kinds of changes to the domain model are supported in our approach.
Initial considerations or externally driven advances can simply be entered to the
domain model and are immediately available for use. For project-driven changes,
the support is more sophisticated. The indication for changes results here from a
number of earlier projects. If a similar project-specific extension has been added
several times or if parts of the domain model have always been deleted within
the recent past, these are obviously good candidates for extensions and reductions,
respectively. While reductions can be identified quite easily, the detection of similar
project-specific extensions is much more complicated. The operational support uses
a heuristics based approach to compute potential candidates but still relies on man-
ual intervention by an experienced engineer. First details on this are given in [28]
but otherwise the issue is subject to current research.

Uncontrolled changes to the domain model can harm the accuracy of the
similarity search. Therefore, counter measures have been established. First, the
domain model based queries are reformulated to be more robust against changes.
This includes favoring object identifiers over names and making more use of the
advanced feature of the underlying Telos formalisms (e.g. generic queries [18]).
Secondly, limited support for updating earlier projects according to domain model
changes is provided. A formerly project-specific extension might need to be slightly
reformulated to fit with the current version of the domain model where this exten-
sion has been included as a change. Only after such adaptations, the domain model
based queries of the similarity search are able to correctly identify the old project as
being related [27].

4 Discussion

Figure 5 summarizes the support that our domain model based requirements engi-
neering approach provides. An interdisciplinary methodology allows for capturing
control as well as software requirements. Non-functional requirements from both
disciplines can be considered. Possible solutions can be investigated irrespective
to what is realized in hard- or software. The approach seamlessly integrates with
and completes the now fully model-based development approach for control sys-
tems. With the support of domain models, the SME is able to capture consolidated
engineering knowledge originating in former customer projects. This immediately
improves the situation for any new customer. Furthermore together with the similar-
ity search this provides a means to support reuse and to cope with variability while
still remaining customer- and project-oriented at the core.

Dedicated work on requirements engineering in the context of automotive soft-
ware development has been carried out by Geisberger and Schätz [13] by developing
AutoRAID, a tool for capturing automotive software requirements. While they also

96 M. Jarke et al.

pressure
set point

rail pressure
controller

pressure
sensor

–

pressure
valve

actuator

–

consider non-functional requirements

flexibility

interdisciplinary methodology

continuously model-based

softwarehardware

equal treatment of

pressure
set point

rail pressure
controller

pressure
sensor

pressure drops via
injectors

–

pressure
valve

actuator

–

domain- & project-oriented reuse traceability, configuration management

comprehensively optimal solutions

*
new

model-based
comparison

realized
byfeature task

product

component

version

concerns

consists
of

responsible
developer

costs

process

realizes

* *

*

*

*

1

1

1

1 1

*

successor

*

customer

needs

buys

*

*

**

*

variant

sub

*
1

*

variant

sub

*
1

*

variant

sub

*
1

*

variant

sub

*
1

1

formalization, analysis support

Fig. 5 Contributions of the domain model based requirements engineering approach

put special emphasis on considering the domain by applying a domain-specific
language, their approach focuses mostly on functional aspects and does not target
small- and medium sized enterprises but larger OEMs. The REMsES project [32]
focusses on requirements and architecture artifact co-design but without a particular
tailoring to domain or SME specifics. In addition, they also address the embedding
of approaches to variability [23]. The latter contribution heavily builds on product
line approaches. The more general field of systems engineering explicitly addresses
interdisciplinarity, but the available tools are mainly text-based [14]. This critique
also applies to SysML [30] since the requirements element here is intended only as
a bridge to the text-based tools.

Requirements engineering at small and medium-sized enterprises has explicitly
been considered by Kamsties et al. [20]. While they highlight some of the character-
istics of software development at SMEs such as overwhelming day-to-day business,
large demand for know-how transfer, only one enterprise in their study performed
customer-oriented development – the key characteristic addressed by the domain
model based approach presented in this chapter. The ReqMan project also targets
SMEs [9]. But the emphasis is on how improvements of the development process
can be achieved gradually. Additionally, they explicitly want to remain domain inde-
pendent even though throughout the project they identified the need for considering
the domain context.

Jackson [17] discussed the need to investigate and deeply understand the applica-
tion domain as a major precondition for choosing “close-fitting [problem] frames”.
But his focus in regard to reuse was on abstract problem frames. Even earlier,
Sutcliffe and Maiden [42] argued for the use of generic domain knowledge since
in their view it is “doubtful whether tools with embedded domain knowledge could

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 97

ever keep pace with the development of new systems in changing domains”. But
generalized domain knowledge seems to rarely benefit the narrowly focused SMEs
and means to update the domain model according to experiences in concrete projects
have been presented here. Sure et al. [41] investigate the use of ontologies for knowl-
edge management in enterprises. Their approach can be considered heavy-weight in
that they expect an explicit ontology engineer to take care of the evolution of the
ontology. SMEs rarely have the manpower (or financial scope) for such a position.
Instead they need a more pragmatic approach that immediately and tightly integrates
with their development practice.

In our approach, design goals, functional requirements, and agents are used
mostly as an organizing principle for information management from the perspective
of design product reuse. Colette Rolland’s long-standing research on requirements
process modeling [35] offers an interesting complementary perspective that deserves
further attention in our future research. Her Map formalism interprets goals as inten-
tions that can be achieved within the process by alternative strategies where each
strategy can have steps from different disciplines; this Map information could be
used as an additional aid in the similarity search process presented above, even
though it has yet to be determined whether such a strategic process modeling
approach is really helpful in the SME context where usually only a few people,
who know each other’s way of working well, have to cooperate. However, in [36],
she additionally points out that the Map formalism can also be exploited as process
guidance in the model evolution step to maintain the alignment among the different
submodels.

5 Conclusion

In this chapter, a domain-model based approach to requirements engineering for
project-oriented small and medium-sized enterprises has been presented. This
approach tackles the identified challenges by building on a goal- and agent-oriented
model based approach. The few and simple concepts of i∗ have proven to be suit-
able to address interdisciplinarity. The project-oriented development is addressed
by a domain model that captures the extensive knowledge of an SME in a particular
field and thereby accelerates requirements capture. A similarity search supports the
identification of reusable solutions in earlier projects. The necessary evolution of
the domain model to maintain its usefulness is considered while still ensuring the
accuracy of similarity search results. Support for deriving subsequent development
artifacts via semi-automatic transformation finally completes the proposed tool set
and contributes towards quality assurance.

The application of the proposed approach has been exemplified for the field
of control systems. While the concrete domain model is of course domain spe-
cific, the basic ideas behind the approach are applicable to other application
fields with similar characteristics. For example, systems for access control and
burglary warnings for buildings offer similar characteristics as control systems
engineering. It is customer- and project-oriented since each security system is

98 M. Jarke et al.

specifically developed for a certain building. Similarly, the construction and set-
up of automated manufacturing systems can be considered related as well. Flexible
manufacturing systems (FMS) consisting of an arrangement of machines intercon-
nected by a transportation system allow customers to build products in small lot
sizes and high numbers of variants at the same time [5]. Again, each installa-
tion at a customer is unique. The characteristics of subdomains such as milling
and turning or sheet metal processing can exactly be captured by appropriate
domain models. Model-based approaches to the configuration of FMS control
software have been proposed [6] but up to now do not tie in with require-
ments engineering nor provide means to incorporate domain knowledge easily.
A domain-model based approach to requirements engineering as presented here
is thus claimed to be valuable for requirements engineering within customer-
and project-oriented, innovative engineering disciplines. This claim needs to
be confirmed via additional case studies, for example in the above mentioned
fields.

Acknowledgments This research was in part funded by the German Ministry of Education and
Research (BMBF) on the project ZAMOMO “Integrating model-based software and control sys-
tems engineering”, grant 01 IS E04. Thanks to our project partners Dirk Abel, Peter Drews, Frank
J. Heßeler, Stefan Kowalewski, Jacob Palczynski, Andreas Polzer, and Michael Reke.

References

1. Abel D, Bollig A (2006) Rapid control prototyping. Springer, Heidelberg
2. Bauer A, Broy M, Romberg J, Schätz B, Braun P, Freund U, Mata N, Sandner R, Mai P,

Ziegenbein D (2007) Das AutoMoDe-Projekt. Modellbasierte Entwicklung softwareinten-
siver Systeme im Automobil. Infor Forsch Entw 22(1):45–57

3. Bjørner D (2009) Domain engineering. Technology management, research and engineering.
JAIST, Nomi/Japan

4. BMBF (2007) IKT 2020. Forschung für Innovationen. http://www.bmbf.de/pub/ikt2020.pdf,
accessed 2010-05-03. Druckhaus Locher GmbH, Köln

5. Brecher C, Possel-Dölken F, Almeida C (2005) FMS control software with programmable
control agents. In: Proceedings of the 3rd CIRP international conference on reconfigurable
manufacturing systems, Ann Arbor/USA

6. Brecher C, Buchner T, Cheng Y, Jarke M, Schmitz D (2006) A model driven approach to
engineering of flexible manufacturing system control software. In: Rensink A, Warmer J
(eds) 2nd European conference on model-driven architecture – foundations and applications
(ECMDA-FA). LNCS, vol 4066. Springer, Heidelberg, pp 66–77

7. Broy M (2006) Challenges in automotive software engineering. Keynote. In: Osterweil LJ,
Rombach HD, Soffa ML (eds) Proceedings of the 28th international conference on software
engineering (ICSE 2006). ACM, pp 33–42

8. Cao L, Ramesh B, Rossi M (2009) Are domain-specific models easier to maintain than UML
models? IEEE Softw 26(4):19–21

9. Doerr J, Adam S, Eisenbarth M (2007) Bausteinartige Prozessverbesserung als Schlüssel für
erfolgreiches Anforderungsmanagement in KMUs – Erfahrungen aus dem ReqMan-Projekt.
Softwaretechnik-Trends 27(1):21–22

10. Drews P, Heßeler FJ, Hoffmann K, Abel D, Schmitz D, Polzer A, Kowalewski S (2008)
Entwicklung einer Luftpfadregelung am Dieselmotor unter Berücksichtigung nichtfunk-
tionaler Anforderungen. In: AUTOREG 2008 – Steuerung und Regelung von Fahrzeugen

Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering 99

und Motoren, 4. Fachtagung Baden-Baden, VDI-Berichte Nr. 2009, VDI-Verlag, Düsseldorf,
pp 91–102

11. Fiegenbaum A, Karnani A (1991) Output flexibility – a competitive advantage for small firms.
Strategic Manage J 12 (2):101–114

12. Fischer G (1994) Domain-oriented design environments. Automated Softw Eng 1:177–203
13. Geisberger E, Schätz B (2007) Modellbasierte Anforderungsanalyse mit AutoRAID. Infor

Forsch Entw 21(3–4):231–242
14. Gonzales R (2005) Developing the requirements discipline: software vs. systems. IEEE Softw

22(2):59–61
15. Graaf B, Lormans M, Toetenel H (2003) Embedded software engineering: the state of the

practice. IEEE Softw 20(6):61–69
16. Horkoff J, Yu ESK (2008) Qualitative, interactive, backward analysis of i∗ models. In:

Castro J, Franch X, Perini A, Yu E (eds) Proceedings of 3rd international iStar workshop.
Recife/Brazil, February 11-12, CEUR Workshop Proceedings 322, CEUR-WS.org pp 43–46

17. Jackson M (1995) Software requirements & specifications. A lexicon of practice, principles
and prejudices. Addison-Wesley/ACM, New York

18. Jarke M, Gallersdörfer R, Jeusfeld MA, Staudt M (1995) ConceptBase – a deductive object
base for meta data management. J Intelligent Info Systems 4(2):167–192

19. Jarke M, Rolland C, Sutcliffe A, Dömges R (eds) (1999) The NATURE of requirements
engineering. Shaker, Aachen

20. Kamsties E, Hörmann K, Schlich M (1998) Requirements engineering in small and medium
enterprises. Reqs Eng J 3:84–90

21. Knauber P, Muthig D, Schmid K, Widen T (2000) Applying product line concepts in small
and medium-sized companies. IEEE Softw 17(5):88–95

22. Kowalewski S (2006) On the relation between software development and control function
development in automotive embedded systems. Invited talk, ARTIST Workshop “Beyond
AUTOSAR”, Innsbruck/Austria, March

23. Lauenroth K, Pohl K (2008) Dynamic consistency checking of domain requirements in
product line engineering. In: Proceedings of 16th international requirements engineering
conference, IEEE, Los Alamitos, pp 193–202

24. Lee CC, Egbu C, Boyd D, Xiao H, Chinyo E (2005) Knowledge management for small
and medium enterprise: capturing and communicating learning and experiences. In: CIB
W99 working commission 4th triennial international conference rethinking and revitaliz-
ing construction safety, health, environment, and quality, Port Elizabeth/South Africa, May,
pp 808–820

25. Lunze J (2003) Automatisierungstechnik. Oldenbourg, Munich
26. Mylopoulos J, Borgida M, Jarke M, Koubarakis M (1990) Telos: a language for managing

knowledge about information systems. ACM Trans Info Systems 8(4):325–362
27. Nissen HW, Schmitz D, Jarke M, Rose T, Drews P, Hesseler FJ, Reke M (2009) Evolution

in domain model-based requirements engineering for control systems development. In:
Proceedings of 17th international requirements engineering conference, IEEE, Los Alamitos,
pp 323–328

28. Nissen HW, Schmitz D, Jarke M, Rose T (2009) How to keep domain requirements models
reasonably sized. In: Proceedings of 2nd international workshop on managing requirements
knowledge, MaRK @ RE, Atlanta/USA, September 1, IEEE/Los Alamitos, pp 50–59

29. OMG (2003) MDA guide version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf,
accessed 2010-05-03

30. OMG (2007) OMG systems modeling language (OMG SysML), V1.0.http://www.omg.org/
spec/SysML/1.0/PDF, accessed 2010-05-03

31. Papadacci E, Salinesi C, Rolland C (2004) Payoff analysis in goal-oriented requirements engi-
neering. In: Proceedings workshop on requirements engineering for foundations of software
quality, REFSQ, Riga/Latvia, June

100 M. Jarke et al.

32. Pohl K, Sikora E (2007) COSMOD-RE: supporting the co-design of requirements and archi-
tectural artifacts. In: Proceedings of 15th international requirements engineering conference,
IEEE, pp 258–261

33. Pohl K, Böckle G, van der Linden F (2005) Software product line engineering: foundations,
principles, and techniques. Springer, Heidelberg

34. Rolland C (1994) Modeling the evolution of artifacts. In: Proceedings of the first international
conference on requirements engineering, IEEE, Los Alamitos, pp 216–219

35. Rolland C (1999) A comprehensive view of process engineering. In: Proceedings of 10th
international conference on advanced information systems engineering (CAiSE 98). LNCS,
vol 1413. Springer, Heidelberg, pp 1–24

36. Rolland C (2009) Exploring the fitness relationship between system functionality and business
needs. In: Lyytinen K, Loucopoulos P, Mylopoulos J, Robinson B (eds) Design requirements
engineering: a ten-year perspective. Springer, Heidelberg

37. Schäuffele J, Zurawka T (2003) Automotive software engineering. Grundlagen, Prozesse,
Methoden und Werkzeuge. Vieweg, Wiesbaden

38. Schmitz D, Drews P, Hesseler FJ, Jarke M, Kowalewski S, Palcyznski J, Polzer A, Reke M,
Rose T (2008) Modellbasierte Anforderungserfassung für softwarebasierte Regelungen. In:
Herrmann K, Brügge B (eds) Software engineering 2008. Fachtagung des GI-Fachbereichs
Softwaretechnik. Munich/Germany, February LNI P-121. GI, Bonn, pp 257–271

39. Schmitz D, Nissen HW, Jarke M, Rose T, Drews P, Hesseler FJ, Reke M (2008) Requirements
engineering for control systems development in small and medium-sized enterprises. In:
Proceedings of 16th international requirements engineering conference, IEEE, Los Alamitos,
pp 229–234

40. Schmitz D, Zhang M, Rose T, Jarke M, Polzer A, Palczynski J, Kowalewski S, Reke M
(2009) Mapping requirement models to mathematical models in control system development.
In: Proceedings of 5th European conference on model driven architecture – foundations and
applications. LNCS, vol 5562. Springer, Heidelberg, pp 253–264

41. Sure Y, Staab S, Studer R (2002) Methodology for development and employment of ontology-
based knowledge management applications. SIGMOD Record 31(4):18–23

42. Sutcliffe AG, Maiden NAM (1993) Use of domain knowledge for requirements validation. In:
Proceedings of IFIP WG8.1 conference on information system development process, Elsevier,
Amsterdam, pp 99–115

43. van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour (invited
mini tutorial). In: Proceedings of the 5th international symposium on requirements engineer-
ing, IEEE, Los Alamitos, pp 249–262

44. van Lamsweerde A (2004) Goal-oriented requirements engineering: a roundtrip from research
to practice (Keynote). In: Proceedings of the 12th international conference on requirements
engineering, IEEE, Los Alamitos, pp 4–7

45. Yu E (1995) Modelling strategic relationships for process reengineering. PhD thesis,
University of Toronto

46. Yu E (2001) Agent orientation as a modelling paradigm. Wirtschaftsinformatik 43(2):123–132

Intentional Alignment and Interoperability
in Inter-Organization Information Systems

Naveen Prakash

Abstract With the emergence of mergers, acquisitions, and collaborative
enterprises, the issues of alignment and interoperability in inter-organization infor-
mation systems have become more complex than before. We propose a two level
development approach driven by the intentional level and going to the process model
level. Alignment and interoperability requirements are first decided at the intentional
level. That is, (a) the intention of the inter-organizational system To Be is properly
aligned with intentions of the individual systems that come together, and (b) the
intentions of the individual systems must interoperate. Thereafter, at the process
model level, process model of the system To Be needs to be properly aligned to its
intention and the process models of the participating organizational systems interop-
erate. We develop a Two-dimensional framework to represent this. This framework
drives a development method to support inter-organizational system development.
We illustrate this method in a supply chain system example.

1 Introduction

Professor Colette Rolland has worked rather extensively on applying the notion of
intention to information systems. This is reflected in her work on process mod-
eling where she proposed the notion of a map [28] as a graph having intentions
as nodes and strategies as edges. She also proposed an intentional basis [26] for
product lines and families. In requirements engineering, she proposed goal-scenario
coupling [27] and developed guidelines for requirements elicitation. In the tool,
L’Ecritoire, there was an explicit notion of intention in the natural language inter-
face. Seeing the widespread application of the notion of intention, we propose here
to look at alignment and interoperability from the intentional perspective.

N. Prakash (B)
Department of Computer Science, MRCE, Sector 43, Delhi Surajkund Road,
Faridabad 121001, Haryana, India
e-mail: praknav@hotmail.com

101S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_6, C© Springer-Verlag Berlin Heidelberg 2010

102 N. Prakash

Alignment and Interoperability are major problems that have both been recog-
nized for a number of years. The importance of aligning information systems (IS)
with business has been considered at two levels. At the top level is strategic business-
IT alignment that aims to apply IT in an appropriate and timely way to meet business
goals. Empirical studies [7, 15, 21], suggest that strategic IS alignment influences
business performance. At the second level we have technical business-IS alignment
that aims to ensure alignment of processes offered by information systems and those
of the real business. The issue of alignment has been considered from several per-
spectives, ERP [6, 20], COTS [16, 18, 22, 27], service orientation [5, 12, 14, 29],
and inter-organization information systems [1, 8, 11, 29, 30].

Interoperability [17] is “the ability for a system or a product to work with other
systems or products without special effort on the part of the customer.” The interop-
erability problem is well known and can be found in many domains, some examples
are: database schema integration [24], interoperability between modeling techniques
[10], in meta-modeling platforms [19], of ERP with other systems [3], between het-
erogeneous information systems [2, 4]. Further, there are a number of application
domains where interoperability problems have been faced, in health care systems
[9] and in e-governance [13].

Guijarro [13] stresses the fact that there is a need for guidance beyond technical
issues. Others [17, 30] suggest a multi-layered model consisting of a business layer,
a knowledge layer and an ICT systems layer. Ralyte [25] proposes that interoperabil-
ity must address business environment and business processes, the organizational
roles, skills and competencies of employees and knowledge assets on the knowledge
layer, and applications, data and communication components on the ICT layer.

In the last 10–15 years, enterprises have been merging and acquiring new ones,
entering into collaborations to offer enhanced customer value, optimizing opera-
tions by concentrating on core competencies and outsourcing peripheral services
etc. In other words, separate, individual enterprises are coming together to form
new enterprises. Such enterprise cooperation imposes its own demands on infor-
mation systems. Individually developed information systems must cooperate to
meet the requirements of the new system and come together to form a cohesive
inter-organizational information system.

As we see it, the issues of alignment and interoperability are rather more closely
entwined in inter-organizational systems than in traditional intra organization sys-
tems. Indeed, the alignment of individual systems to meet the global objective of
the inter-organizational system in which they participate requires interoperability
of the individual systems. This strong coupling of alignment and interoperability
is weaker in intra organizational systems. Accordingly, we attempt to make this
coupling stronger.

We propose that inter-organizational systems should be considered at two levels,
intentional and process. The former drives the latter. Consider the situation where
an inter-organizational system is to be built over systems of different organizations.
We believe that the intention of the new system should be a suitable combination
of the intentions of the individual systems. For this purpose, we examine the goal
hierarchies of the new system To Be with goal hierarchies of each of the older

Intentional Alignment and Interoperability in Inter-Organization Information Systems 103

systems, pair wise. The aim is to develop the goal hierarchy of the System To Be
from the different system perspectives. The collection of goal hierarchies represents
the alignment of the system To Be with the old systems. Since, the old systems
are assumed to be aligned then the new system is aligned if the collection of goal
hierarchies is aligned.

Now, we need to consider interoperability. Notice that each new goal hierarchy
To Be represents only one perspective. However, the system To Be is built when
these hierarchies provide and obtain services from one another. This means that
we have to identify such points in the goal hierarchies where the goal/sub goal of
one hierarchy needs to cooperate with those of the other. Thus, interoperability is
intentional in nature.

Once intentional alignment/interoperability is achieved then the process model
of the new system is to be developed. This process model must satisfy the goal
hierarchy. When this happens then the goals and processes of the system To Be
are well aligned. From the perspective of interoperability of processes, the process
model To Be is a collaboration between process models of the different collaborating
process models.

To sum up our approach, we start with a number of As Is goal hierarchies. We
develop the goal hierarchy of the system To Be and the As Is goal hierarchies are
extended to To Be goal hierarchies. These latter should align with the To Be goal
hierarchies. The To Be goal hierarchies are examined for interoperability and pos-
sible collaborations are identified. Once intentional alignment and interoperability
are done then we move to the process model level. We again have a number of As
Is process models which must align to the process model of the system To Be. For
process model interoperability, the points of interaction between the As Is process
models are identified to meet interoperability goals at the intentional level.

The layout of the chapter is as follows. In the next section, we argue that in the
context of inter-organizational systems, the issues of alignment and interoperabil-
ity are related to one another. We represent this relationship in a two-dimensional
framework of alignment and interoperability. In Sect. 3 we consider intentional
alignment and interoperability of the supply chain system. In Sect. 4 we present
alignment and interoperability of supply chain at the process level.

2 The Two-Dimensional Framework

The basic assumption underlying our two-dimensional framework is that alignment
and interoperability can be considered at two levels, the former driving the lat-
ter. This is shown in Fig. 1 by the arrow between the two levels, one elaborating
intentions and the other elaborating process models. That is, in developing an inter-
organizational system the goals of the system To Be must first be determined. Then
it must be ensured that the goals of the individual organizations come together to
satisfy these. This is the intentional alignment issue in inter-organizational sys-
tems. Further, the points of interaction between the participating systems must

104 N. Prakash

Intention To-Be

Individual intentions

Process model To-Be

Individual process models

Fig. 1 Interaction between
intentional and process levels

be identified. At the intentional level, this implies the identification of goals of
the individual organizations that support each other. Thus, we have the goals of
different organizations coming together to contribute to the goals of the system
To Be.

At the second level, the process level, we must again deal with the process model
To Be and the process models of individual organizations. For alignment, it is neces-
sary that the former is in accordance with the goals of the system To Be and the latter
modified to play their respective part in the process model. For inter-operability, the
goals that interoperate must be supported by interoperability of the process models
of the individual organizations.

Now, the two-dimensional framework views alignment and interoperability
together. This is shown in Fig. 2. The intention of the inter-organizational system
To Be is I, the vertex of the pyramid of Fig. 2. The intentions of the collaborating
systems, the As Is intentions are at the base of the pyramid and are denoted by I1,
I2, . . ., In respectively. The intention I must be satisfied by the intentions at the
base of the pyramid in order for the inter-organizational system to be well aligned.
Intentional interoperability is shown in the framework by the link between the base
intentions, I1, I2, . . ., In.

Interoperability

Alignment
I

I1

I2

In

Fig. 2 The two-dimensional
framework for intentions

Intentional Alignment and Interoperability in Inter-Organization Information Systems 105

We adopt a similar view for interoperability. Let us replace the intentions of Fig. 2
by process models, P for I and P1, P2, . . ., Pn for I1, I2, . . ., In respectively. Then by
the same argument as for intentions, process model alignment requires alignment
of P with the individual ones and interoperability requires interaction between the
latter.

In accordance with Fig. 1, the two-dimensional framework of the process level
is driven by the intentional two-dimensional framework. Thus, the process model
To Be aligns with the system intentions To Be and process model interoperability
aligns with intentional interoperability.

Let us now consider the method to be followed in the development of inter-
organizational systems. We assume that individual organizational systems are
already operational and the problem is to bring them together. Thus, we already have
available the goal hierarchies of individual systems as well as their process models.
We further assume that these are aligned to organizational needs. We propose the
following steps for developing the inter-organizational system:

(a) Build goal hierarchy of the inter-organization system To Be: This hierarchy is a
formulation of the intentional requirements of the new system.

(b) Dovetail goal hierarchies of individual systems with that of (a): The goal hierar-
chy of each individual organization becomes part of the hierarchy of the system
To Be. As a result, it is ensured that the intentions of the participating systems
and the new one are properly aligned.

(c) Determine cross-goal hierarchy linkages: Since the new system results from
interoperability, dovetailed goal hierarchies are examined to determine any
cross-hierarchy relationships. These may be in the form of one goal supporting
the other.

(d) Modify the process model of each individual organization to satisfy cross-goal
hierarchy linkages. In order to participate in the new process model, changes
in individual process models may be required to meet cross-goal hierarchy
relationships. These changes are to be identified and defined. In this step.

(e) Combine the process models of (d) to form the process model of the system To
Be. This is the step that makes the collaboration between systems possible.

In the rest of this chapter, we illustrate the foregoing in the case of a supply chain.

3 The Supply Chain System

Consider the problem of materials management. For an organization, the high level
goal of materials management is To provide material to consumption points when
needed. This goal consists of a number of sub goals (see Fig. 3) like Obtain material
at a good price, Ensure quality of material, Ensure timely delivery to consumption
point, Keep proper inventory record. As is well known, these goals are themselves
decomposed till operationalizable goals are reached. From the perspective of align-
ment, it is necessary to ensure that the design of the system reflects these goals truly

106 N. Prakash

Provide material
as needed

Obtain at good
price

Ensure quality
material

Ensure timely
delivery

Manage
Inventory

Fig. 3 Goal hierarchy:
the user organization

and faithfully. Assume that the system is to be developed from scratch and as such
there is no serious interoperability problem.

Now consider a supplier organization that supplies fully assembled systems like
computers. It keeps an inventory of system components and whenever it needs addi-
tional components, it places an order with component suppliers. The broad goal
of this supplier organization is to Maximize profits. To achieve this goal there are a
number of sub goals as shown in Fig. 4. The supplier organization strives to Capture
a large market share, Deliver quality systems, and Maintain profitability. Again,
the operationalizable goals shall be reached and the system developed. As before,
assume good alignment and no interoperability issue.

Finally consider the component supplier. This organization stocks a range of
components that are used as parts. It receives orders, mainly as a retail shop, and
supplies against these. The quality of parts ranges from the best to the inferior and
the price is commensurate with the quality. A given kind of part is available in many
specifications. This organization has its own goal of being an effective retailer. Its
sub goals (see Fig. 5) are to Stock parts in their different specifications as well as
Stock parts of different quality and Do delivery at customer site. As before let an
aligned system be built and let there be no interoperability issues.

Now, when these three organizations work independently then they face certain
difficulties. The first needs assured supplies of material and just in time inventory.
The second needs an assured market and price realizations, and assured supply of
components. The third being a retailer would like to have an assured market. In
short, all can come together to form a supply chain.

The supply chain has its own goals as shown in Fig. 6 which is produced fol-
lowing step (a) of the development method outlined earlier. Globally, the supply

Maximize
profits

Capture large
market share

Deliver quality
systems

Maintain
profitability

Obtain quality
partsFig. 4 Goal hierarchy:

the supplier organization

Intentional Alignment and Interoperability in Inter-Organization Information Systems 107

Do effective
retail

Stock parts of all
specifications

Stock parts of
different quality

Do delivery at
customer site

Fig. 5 Goal hierarchy:
the component supplier

Assure price and
service

Assure supplier Assure Market
Minimize

material types

Fig. 6 Goal hierarchy of the
supply chain system

chain seeks to provide an assured supply of material at a good price – Assure price
and service. This goal can be decomposed into its next level, the suppliers must be
assured, the market must be assured, and the different part types must be minimized.
These three sub goals are shown in the figure. In the formation of the supply chain
both alignment and interoperability arise. The former because the supply chain sys-
tem must align to the needs of the supply chain and interoperability because three
different systems are to be brought together. We consider both these issues here.

Now consider the step (b) of dovetailing goal hierarchies with that of Fig. 6. For
alignment, it is necessary to ensure that the goals of the collaborating organizations
are aligned to the goals of the supply chain. First, consider the user organization. The
root goal of Fig. 3 broadly conforms to the root goal of Fig. 6. Therefore, one sees a
possibility of alignment. Going deeper, the sub goals of Fig. 3, Obtain at good price,
Ensure quality material and Ensure timely delivery can be considered as members
of the decomposition of Assure price and service goal of Fig. 6. The exact position
of these in the goal decomposition hierarchy of Fig. 6 is now to be determined. It
can be seen that the sub goal Assure supplier of Fig. 6 can be decomposed to include
these. The intentional alignment of the user organization and supply chain goals is
shown in Fig. 7.

Further the last sub goal, Manage Inventory of Fig. 3 remains a private goal of
the user organization and does not directly participate in the supply chain. However,
it is affected by the Minimize material types sub goal of Fig. 6 in so far as there is
going to be a change in the material handled. Whereas, this may cause changes in the
operations of the organization, it does not present an alignment problem because the
supporting IS can gracefully handle a reduced number of material types. Evidently,
it is possible to align the goals of the user organization with those of the supply
chain.

108 N. Prakash

Assure price and
service

Assure supplier Assure Market
Minimize

material types

Obtain at good
price

Ensure quality
material

Ensure timely
delivery

Fig. 7 Intentional alignment of user organization with supply chain

Now consider the supplier organization as in Fig. 4. The root goal Maximize
profits prima facie does not seem to belong to the supply chain goal hierarchy.
However, when viewing its decomposition, we find that Capture large market share
and Deliver quality systems are both relevant to Assure Market of Fig. 6. This organi-
zation has to assure its own suppliers of parts. Therefore, the sub goal Obtain quality
parts is relevant to Assure supplier. Maintain profitability is an internal goal of the
supplier organization and does not really form part of the supply chain. Alignment
of goals of the supplier organization with supply chain goals is shown in Fig. 8.

Lastly, consider the component supplier. Alignment of its goals with those of
supply chain goals is shown in Fig. 9. The retailer is looking to assure its market
and the sub goals Stock parts of all specifications, Stock parts of different quality,
and Do delivery at customer site can all be treated as sub goals of Assure market.

Assure price and
service

Assure supplier Assure Market
Minimize

material types

Capture large
market share

Deliver quality
systems

Obtain quality
parts

Fig. 8 Intentional alignment of supplier organization with supply chain

Intentional Alignment and Interoperability in Inter-Organization Information Systems 109

Assure price and
service

Assure supplier Assure Market
Minimize

material types

Stock parts of all
specifications

Stock parts of
different quality

Do delivery at
customer site

Fig. 9 Intentional alignment
of component vendor with
supply chain

Thus, as shown in Fig. 8, goals of the component supplier are aligned to those of the
supply chain.

It can be seen that alignment is a vertical property; the goals of the collaborative
system are at a higher level than those of the collaborating systems and it is neces-
sary for the latter goals to become part of the goal decomposition hierarchy of the
former.

Now consider the next step. Intentional interoperability considers interaction of
collaborating systems at the level of intentional goal hierarchies. Consider the hier-
archies of Figs. 7 and 8. The sub goal Assure supplier of the former is related to
Assure market of Fig. 8 and constitutes a point of collaboration. The former is look-
ing for supplier partners and the latter for client markets. Similarly, in Figs. 8 and 9,
Assure supplier of the former is related to Assure market of the latter.

Now we can move to the process level and follow step (d).

4 The Process Level

In this section we consider alignment and interoperability at the process level by
following steps (d) and (e) of the development method. We shall assume that for
the user, supplier, and component supplier respectively, the process model is well
aligned to their respective goal hierarchies. The process models of each of these are
given in Figs. 10, 11, and 12 respectively.

The representation system used has been elaborated in [23]. The basic idea is to
represent the process model as a graph whose:

• Nodes are in the form <argument, action>. This corresponds to the notion of a
signature found in object orientation and identifies the arguments on which the
action occurs.

• Edges between nodes are directed and represent a successor-predecessor rela-
tionship between nodes. The properties of the edge are given by two properties,

110 N. Prakash

<Specs, Enquiry>

<Quotation, Evaluate>

<Purchase-order, Issue>

<Item, Receive>

<Payment, Authorize>
DM DM DM

Fig. 10 The user process model

<Software, Install>

<System-Detail, Check>

<Quotation, Generate>

<Additional-Info, Explore>

<Info, Verify>

<Missing-Parts, Order>

DM DC DM

<System, Assemble >

DC DM

DM

DC

DM

<Software, Test>

<System, Deliver>

DC

DM

Fig. 11 A system supplier

<Parts-Quotation, Quote>

<Parts, Deliver>

DC

Fig. 12 The supplier process

Necessity and Urgency. Necessity identifies whether enactment of a successor
node is mandatory after the current node has been enacted or it is optional.
Urgency associates a temporal property with the edge and specifies whether the
enactment of the successor node is immediately done after the current node is
enacted or whether it can be deferred. We have shown in [23] that the deferred
necessity is a high level abstraction of the notion of a long running process. It can
be used in subsequent development stages to specify a deadline before which the
node must be enacted. Combining the two properties, we get four possible prop-
erties of an edge as shown in Table 1. These four properties represent a variety of
process situations [23], sequence, choice, parallelism etc.

The process model of the user organization asks for quotation enquiries for items
meeting specifications, evaluates the received quotations, issues purchase orders to
selected vendors, takes delivery of items and finally, makes payment. Each successor
node in the figure is necessarily to be enacted but it does not need to be enacted

Table 1 The four edge
properties Abbreviation Urgency Necessity

IM Immediate Must
IC Immediate Can
DM Deferred Must
DC Deferred Can

Intentional Alignment and Interoperability in Inter-Organization Information Systems 111

immediately upon enactment of its predecessor. This explains the choice of the DM
property for the edges in the figure.

The supplier organization receives requests for system configurations, determines
that the configuration asked for is indeed realizable and responds with a quotation.
If any additional information/clarification is required then it obtains it and verifies
it once again. Since it may happen that it has to order system parts that are miss-
ing, such missing parts are ordered and the system is assembled together, software
installed, if required, and the system is delivered. This process is shown in Fig. 11.

Notice that after <quotation, generate> there are two possibilities, either addi-
tional information is to be handled or missing parts are to be ordered. Both these
actions can be done after a time delay. Thus, we get Deferred-Can, DC, as the
edge property. A similar situation exists after the system has been assembled, i.e. at
<system, assemble>. If no software is to be loaded and a bare system is to be
supplied then the property is DC as shown in Fig. 9(ii).

Finally, consider a simple supplier process that sends out a quotation and upon
receipt of an order delivers parts. The type of dependency is again DM. This is
shown in Fig. 12.

Now, the goal hierarchies of supply chain call for interoperability between these
process models. The Assure Supplier-Assure market interoperability is between the
process models of Figs. 10 and 11. The first point of variation is at <specs, enquiry>
of the user organization. Whereas earlier this was self contained in the User process,
now it is possible to invoke the supplier for the purchase of systems. In this case,
the DM edge in Fig. 10 to <quotation, evaluate>, which was originally DM, shall be
changed to DC. The edge from <spec, enquiry> to the Supplier process shall now
be introduced and shall also be DC. As a result, this allows a choice between the
two courses of action. This is shown in Fig. 13.

System
Supplier

<Specs, Enquiry>

<Quotation, Evaluate>

<Purchase-order,Issue>

<Item, Received>

<Payment, Authorize>DM DC DM DM

<System-Detail,Check>

<Quotation, Generate>

<Additional-Info, Explore>

<Info, Verify>

<Missing-Parts, Order>

DC DM

<System, Assemble >

DC DM

<Parts-Quotation, Quote>

<Parts, Deliver>

IM

User

Component
Supplier

IC DM
DC
DC

DC

IM

DM

DC

DM

<Software, Test>

<System, Deliver>

DM

DM

IC

DM

DM

<Software, Install>

DC

DM

Fig. 13 The supply chain process: interoperability requirements

112 N. Prakash

Similarly, requirements for interoperability are established between the supplier
and the process of the component supplier.

5 Conclusion

We have shown that alignment and interoperability of inter-organization information
systems are coupled together and a common framework needs to be built for them.
This is unlike intra-organization systems where alignment and interoperability are
treated as separate problems. Secondly, the requirements of a system are expressed
at the intentional and process levels. Intentional requirements identify whether sys-
tems can come together to meet the objectives of the collaborative system. Once this
is ensured then it is possible to look at what process parts must come together for
alignment. This determines the interoperability requirement.

The ideas presented here are being explored in our ongoing work on inter-
organizational information systems. We are developing a high level representation
system for process models of such systems and studying issues in integrating
systems together to meet requirements in the event of mergers, acquisitions,
development of virtual organizations and enterprise networks.

References

1. Alaranta M, Henningsson S (2007) Shaping the post-merger information systems integration
strategy. In: Proceedings of 40th HICSS, IEEE Computer Society Washington, DC, USA,
pp 237b http://www.computer.org/portal/web/csdl/doi/10.1109/HICSS.2007.480

2. Bermundez J, Goni A, Illaramendi A, Bagues MI (2007) Interoperation among agent-based
information systems through a communication acts ontology. Inf Syst 32(8):1121–1144

3. Botta-Genoulaz V, Millet P-A, Grabot B (2005) A survey on the recent research literature on
ERP systems. Comput Ind 56:510–522

4. Boulanger D, Dubois G (1998) An object approach for information system cooperation. Inf
Syst 23(6):383–399

5. Castro de V, Mesa JMV, Herrmann E, Marcos E (2008) A model driven approach for the align-
ment of business and information systems model. In: Proceedings of Mexican international
conference on computer science, IEEE Computer Society, Washington, DC, USA, pp 33–43

6. Chan JO (2005) Enterprise information systems strategy and planning. J Am Acad Business
2:148–153

7. Chan YE, Sabherwal R, Thatcher JB (2006) Antecedents and outcomes of strategic IS
alignment: an empirical investigation. IEEETEM 53(1):27–47

8. Daneva M, Wieringa R. (2006) A coordination complexity model to support require-
ments engineering for cross-organizational ERP. In: Proceedings of 14th IEEE international
requirements engineering conference. RE 2006, IEEE Computer Society, Washington, DC,
USA

9. Dogac A, Laleci GB, Kirbas S, Kabak Y, Sinir SS, Yildiz A, Gurcan Y (2006) Artemis:
deploying semantically enriched web services in the healthcare domain. Inf Syst 31:
321–339

10. Dominguez E, Zapata MA (2000) Mappings and interoperability: a meta-modelling approach.
In: Proceedings of ADVIS 2000. LNCS, vol 1909. Springer, Berlin Heidelberg, pp 352–362

Intentional Alignment and Interoperability in Inter-Organization Information Systems 113

11. Fang K, Wu ACH, Tung Yang C (2007) A study of information systems integration with
the structuration model of technology as foundation. In: Portland international centre for
management of engineering and technology, Portland, OR, USA, pp 1556–1563

12. Fox G, Lantner K (1997) A software development process for COTS based information system
infrastructure. In: Proceedings of 5th international symposium on assessment of software tools
and technologies, SAST’97, IEEE Computer Society, Washington, DC, USA pp 133–142

13. Guijarro L (2007) Interoperability frameworks and enterprise architectures in e-government
initiatives in Europe and the United States. Govt Inf Q 24:89–101

14. Henkel M, Zdravkovic J (2005) Supporting development and evolution of service-based pro-
cesses. In: Proceedings of the 2005 IEEE international conference on e-business engineering.
IEEE Computer Society, Washington, DC, USA, pp 647–656

15. Henningsson S, Svensson C, Vallén L (2007) Mastering the integration chaos following fre-
quent M&As: IS integration with SOA technology. In: Proceedings of 40th HICSS conference.
IEEE Computer Society, Washington, DC, USA, p 219b

16. Horowitz BM, Lambert JH (2006) Assembling off-the-shelf components: “learn as you go”
systems engineering. IEEE Trans Systems, Man, and Cybernetics – Part A Systems and
Humans 36(2):286–297

17. INTEROP (2007) Interop network of excellence IST—508011 presentation of the project.
/http://interop-noe.org/INTEROP/presentations. Accessed 30 May 2007

18. Keil M, Tiwana A (2005) Beyond costs: the drivers of COTS application value. IEEE Softw
22(3):64–69

19. Kühn H, Murzek M (2005) Interoperability Issues in Metamodelling Platforms. In:
Proceedings of conference INTEROP-ESA 2005: interoperability of enterprise software and
applications. Springer, London, pp 215–226

20. Lee J, Siau K, Hong S (2003) Enterprise integration with ERP and EAI. CACM 46(2):54–60
21. Malik K, Goyal DP (2003) IS alignment and IS effectiveness: experiences from Indian indus-

try. In: Proceedings of the Engineering Management Conference, 2003. IEMC ’03. Managing
Technologically Driven Organizations: The Human Side of Innovation and Change. IEEE
Computer Society, Washington, DC, USA, pp 96–100

22. Navarrete F, Botella P, Franch X (2007) Reconciling agility and discipline in COTS selection
processes. In: Proceedings of sixth international IEEE conference on commercial-off-the-
shelf (COTS)-based software systems. IEEE Computer Society, Washington, DC, USA,
pp 103–113

23. Prakash N, Chaturvedi AK (2010) Representing analysis models for alignment. In:
Proceedings of RCIS 2010 (to be presented)

24. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB
J 10:334–350

25. Ralyte J, Jeusfeld MA, Backlund P, Kuhn H, Arni-Block N (2008) A knowledge-based
approach to manage information systems interoperability. Info Systems. doi:10.1016/j.is

26. Rolland C (2005) Modelling multi-facetted purposes of artefacts. SoMeT 3–17
27. Rolland C (1998) Carine Souveyet, Camille Ben Achour: guiding goal modeling using

scenarios. IEEE Trans Softw Eng 24(12):1055–1071
28. Rolland C, Prakash N, Benjamen A (1999) A multi-model view of process modelling. Req

Eng 4(4):169–187
29. Sledge C (1998) Case study: evaluating COTS products for DoD information systems. SEI

Monographs on the Use of Commercial Software in Government Systems, SEI
30. van Wendel de Joode R, Tineke EM (2004) Handling variety: the tension between adaptability

and interoperability of open source software. Comput Standards Interfaces 28:109–121

Requirements Engineering for Enterprise
Systems: What We Know and What
We Don’t Know?

Maya Daneva and Roel Wieringa

Abstract This chapter presents research progress in Requirements Engineering
(RE) for enterprise systems (ES) with a view to formulating current challenges and
a promising research agenda for the future. In the field of ES, many RE approaches
have been launched and tried out in the past decade, however most of them are
over-expensive and their effectiveness is unpredictable. Our goal in this chapter is
to make an inventory of the approaches discussed in literature, to evaluate the qual-
ity of evidence available regarding whether these approaches actually worked, and
to identify promising directions for future RE research efforts. Our results indicate
(i) that while there are significant achievements, the primary goal of RE for ES is
only partly achieved and (ii) that the field is likely to remain very challenging due to
the increasingly more pronounced cross-organizational aspects of RE in ES projects
(e.g. cross-organizational coordination, trust). At the same time, the need for prac-
tical, efficient and effective RE approaches will grow as the importance of ES in
today’s extended enterprises is growing.

1 Introduction

For at least a decade, the elicitation, documentation and negotiation of the require-
ments for systems based on commercial off-the-shelf (COTS) components have
been regarded as an important sub-area of Requirements Engineering (RE). An
important example of a project dealing with COTS-based system is the imple-
mentation of an enterprise solution based on packaged software, or the so-called
Enterprise Systems (ES).1 Typically, ES are large and multi-component systems that

M. Daneva (B)
University of Twente, Drienerlolaan 5, P.O. Box 217, 7500, EA Enschede, The Netherlands
e-mail: m.daneva@utwente.nl
1We prefer to use this more general term over the more traditional “enterprise resource plan-
ning (ERP)” because today’s ES have an architecture and functionality of a greater variety than
traditional ERP systems.

115S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_7, C© Springer-Verlag Berlin Heidelberg 2010

116 M. Daneva and R. Wieringa

provide cross-functional services to a business. They often impact data semantics
and business processes across more than one functional area of a business and
today, they increasingly perform cross-organizational services. This sub-area of RE
is becoming even more important as ES bring the vital capabilities for modern
companies to network with others in forming extended enterprises [59].

The requirements for ES concern the business processes and the data flows that
the ES should support as well as the key information entities in the subject domain
of the system. These requirements reflect the needs of organizational units in one or
more companies for a system that helps solve coordination and collaboration prob-
lems related to processing, for example, a purchase order, a good receipt, a sales
order, or managing inventory levels. RE for ES is about composition and reconcili-
ation of conflicting demands [13]. The RE process usually starts with a general set
of business process and data requirements, then helps explore standard ES-package
functionality to see how closely it matches the ES adopting organization’s process
and data needs [13]. This typically happens in an iterative fashion and includes
(1) in today’s cross-organizational case, mapping each partner company’s organi-
zational structure into the ES-package’s predefined organization units; (2) defining
a scope for business process standardization using standard application modules;
(3) creating business process and data architectures specific to the extended enter-
prise based on predefined reusable package-specific process and data models;
(4) specifying data conversion, reporting, and interface requirements. Currently,
vendors of business software packages and their consulting partners provide stan-
dard RE processes for ES projects. In addition, a number of creative solutions were
proposed by researchers and practitioners to further reduce the cost of RE-for-
ES by avoiding scope creep, involving the right stakeholders, allocating sufficient
resources, adopting goal-directed project management practices, and enlisting the
vendors’ and consultants’ support to those problems [13, 28, 41]. Despite these
efforts, it is still very difficult to find a match between the flexibility often required
by the business and the rigidity usually imposed by the ES-package modules [14,
15]. In this chapter, we set out to identify the need for future research that addresses
this difficulty. Our goal is to make an inventory of the approaches discussed in the
RE literature, to evaluate the quality of evidence available regarding whether these
approaches actually worked, and to identify contemporary currents which shape the
future focus of RE research efforts.

The scope of this chapter is restricted to elicitation and modeling/documentation
techniques and the main unit of analysis is at the micro level, i.e. projects and orga-
nizations, rather a business sector or even a geographic zone (e.g. North America,
Europe, Asia). Some good studies that compare RE practices at macro level are
presented in [21, 30, 45]. This chapter will not address the matter of industrial take-
up of RE practices except in as much as this relates to parts of the RE for ES.
For a thorough example of analysis of RE practices, we refer interested readers to
[21, 30, 45].

The chapter is organized as follows: We start with a description of the results
of a literature review of published research and experience reports in both journals
and research-oriented conferences. This is followed by an evaluation of research

Requirements Engineering for Enterprise Systems 117

progress in (i) requirements elicitation, (ii) modeling, and (iii) the impact of a few
notable current trends on these two major RE sub-areas. We, then, lay out a set
of further research directions that we inferred from our reflection on good recent
progress, from examining past failures and from our knowledge about new business
developments in the ES marketplace.

2 Identifying Areas of RE Publication Activity

In the RE community, there is a consensus that the main problem in RE for ES is the
misfit between business requirements of ES adopters and ES functionality [14, 15,
20, 23]. Both RE researchers and practitioners agree that there is a gap between the
functionality required by an organization and functionality offered by the various
packages in the ERP marketplace. In the past decade, the RE community came up
with a significant number of ideas meant to solve a broad variety of RE issues related
to this gap. One reason for this growth in proposals is that an increasingly large num-
ber of companies have adopted packaged solutions and many of the adopters started
reflecting and reporting on their implementation experiences, including their RE
practices. Case studies and experience reports about ES implementations are now
being published by companies in virtually any industry sector. In addition, there is
much greater awareness of the importance of good RE practices and their adoption.

To illustrate the increase of RE publication on ES, we did a quick search of
literature sources in a few prominent bibliographic databases (IEEE Explore, ACM
Digital Library, Springerlink), which yielded Fig. 1.

5 8 11

25
36

49

78

96

110
123

143

169
175

201

0

50

100

150

200

250

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Fig. 1 Number of publications in three bibliographic databases in the last 15 years

118 M. Daneva and R. Wieringa

Figure 1 indicates the number of papers, that have been published in (RE-
related) journals and conferences and that include one of the strings “Requirements
Engineering”, “ERP”, “Enterprise System”, “Supply Chain Management System”,
“Business-to-Business Systems”, “COTS”, “Customer Relationship Management
System” either in their title, or in their abstract. As Fig. 1 indicates, we found that
the number of papers published between 1996 and 2010 grew up from 5 to 201.
For the purpose of this chapter, we applied the following process of reviewing the
content of these publications:

1. We merged the results of the search in the three databases and then eliminated
from the resulting list those papers which were only remotely connected to the
topics of eliciting and modeling requirements in ES projects.

2. The remaining papers were classified in two groups based on the two RE sub-
areas which we deal with in this chapter (namely, elicitation and modeling).

3. We took notes on the key ideas included in the approaches from the papers that
we classified in step (2) and on the practical application of the approaches.

We make the note that we did not go further to assess the actual evidence regard-
ing the value of the proposed approaches, because our goals in this chapter are to
take a snapshot view of the RE-for-ES field and to complement it with our cur-
rent knowledge of market changes and, then, shortlist an initial agenda for future
research.

Our merging of the search results in each database yielded a total of 110 papers,
out of which we considered 53 for inclusion in this chapter. The specific aspects
which we identified in these publications and which we selected for discussion in
this chapter are listed as follows:

• requirements elicitation (Sect. 3.1), which is concerned with finding, communi-
cation and validation of facts and rules about the business,

• requirements modeling (Sect. 3.2), which is concerned with the business pro-
cesses and data representation and analysis of the gap between the enterprise
requirements and the package functionality, and

• type of empirical evaluation of the requirements elicitation and modeling
approaches (Sect. 3.3), which is to understand (based on the RE publication
authors’ claims) those ideas that worked in real-life settings.

As the readers can expect, one can identify a number of overlapping aspects that
pertain to elicitation and modeling of requirements in ES projects. However, we
think that our classification of the RE approaches observable in the literature, is
good enough for the goals of this chapter as we search for indicative observations.
With this, we mean observations (i) that pertain to the state-of-the-art in RE research
or practice and (ii) that suggest themes worthwhile investing our research efforts in
the future.

Requirements Engineering for Enterprise Systems 119

3 Progress to Date

We checked the published approaches regarding their underlying ideas and assump-
tions, and the availability of empirical evidence about their effectiveness and the
known problems about their use in practice.

3.1 Elicitation Techniques

Our review found that more than 20 requirements elicitation approaches have been
proposed and tried out in real life project settings. In our observation, all these
approaches are based on domain knowledge, however they differ regarding how
they organize domain knowledge and how they create a domain dictionary (e.g.
what knowledge sources they use for this). We clustered the elicitation methods in
five groups:

1. Process-mining based methods, which employ a kind of process-mining tech-
nology in support of requirements elicitation activities. Examples of such
approaches are presented in [11, 57]. These researchers came up with special-
ized tools to capture the complete business environments in which the ES will be
put in operation. The result of using such a tool is then considered a first sketch
of the ES process requirements. The idea of process-mining first surfaced in the
1990s, when Intellicorp, an SAP Development Partner, launched the LiveModel
tool capable of identifying all transactions being in use in the current SAP envi-
ronment in a company. The process models generated through this tool have
been used by SAP implementation teams to draft the first version of process
requirements in SAP upgrade, consolidation, or migration projects.

2. Reference-model-based approaches, which rely on predefined process and data
models (termed reference models) and help clarify the questions of (1) what
tasks must be performed and what package-embedded business functionality
can support these tasks, (2) which organizational units should execute these
tasks, (3) what information is needed for executing the tasks in a more effi-
cient way, and (4) what information exchange must happen among tasks and
how the package and other applications would support this. We refer to the ref-
erence models as to reusable and general descriptions of the commonalities in
organizations, business sectors or systems that can be used as a base to derive
other models from. In the ES RE field, we distinguish between two types of
reference models: (i) software-independent reference models which represent
generic descriptions of business processes and data flows in a certain enterprise
area (e.g. accounting) or in a certain business sector (e.g. telecommunications),
and (ii) ES reference models which are “conceptual descriptions of customizable
software” (as defined by [43]). We must note that in RE-for-ES, there is a number
of reference-model-based elicitation approaches that proved their market value
in the past 20 years. Among the software-independent-reference-model-based

120 M. Daneva and R. Wieringa

elicitation techniques, the ARIS framework [48] is one of the most popular.
It provides RE professionals with a ready-to-use repository of industry-sector-
specific business process models, meant to help structuring requirements elicita-
tion interviews and making them more effective. The large consulting companies
(e.g. Accenture, Cap Gemini, IBM, and others) have also developed proprietary
reference-model-based elicitation approaches which rest on the very same idea
as ARIS does. Another example of a business-area-specific elicitation approach
is SCOR [31], which proposed an extended reference model of supply chain
processes, including the structuring of information exchanged between business
processes.

Furthermore, since 1992, the use of reference models has been encouraged by
all major ES package vendors (SAP, Baan, Oracle and PeopleSoft). They docu-
mented the functionality of their respective packages in the form of ES reference
models that also come for free to ES adopters as part of the ES itself. This made
it possible, for RE staff and clients engaged in elicitation, to inform themselves
quickly about the concerned ES functionality in business terms by navigating
from the ES process and data models to the relevant piece of online documen-
tation and to the smallest unit of software functionality, namely the transactions
[12].

3. Quality-model-based approaches, which focus on the joint elicitation of func-
tional and non-functional requirements by using standard underlying quality
models or quality frameworks. The proposals in [6, 17] help building quality
models for ES by deploying the ISO/IEC-9026 model, while [49] presents a
Fuzzy Quality Function Deployment approach that helps translating functional
requirements expressed with linguistic variables into non-functional require-
ments.

4. Feature-based approaches, which draw on the idea of top-down refinement
of both functional and non-functional requirements. Similarly to the package-
specific-reference-model-based approaches, the feature-based approaches help
elicit domain knowledge through the investigation of the specification of the ERP
package. These approaches term a function (or a quality attribute of the package)
“a feature” [22]. Examples of feature-based approaches are the PORE method
[28, 29, 33] and the PAORE approach [22]. When using these approaches, the
elicitation analyst first shortlists suitable packages that match the ERP-adopter’s
requirements, and then elicits and documents in detail the requirements by
presenting one concrete package’s specification to the clients and by adding
those client-specific requirements which are not included in the original package
specification.

5. Constructionist and organization-theory-based approaches, which consider (i)
ES requirements as a specific form of knowledge representation, (ii) the ES as
an organizational transformation system, e.g. a system that changes its users’
work patterns, and (iii) the ES project reality as socially constructed [2, 4,
24, 39]. These approaches rest on the position that our understanding of the
ES requirements can be complete only when we understand the organizational
transformation that the ES enables and the effect of the transformation on the

Requirements Engineering for Enterprise Systems 121

users. As Ramos and Berry explain, the transformation redefines the job of
the elicitation analysts in that he/she must be aware of how and when par-
ticular pieces of knowledge are created in the RE process in order “to know
when to be observing and what to be looking during the observation” [39]. The
constructionist approaches generally propose to complement the elicitation tech-
niques that focus on enterprise and system requirements with observation-based
techniques (e.g. ethnographic methods) to elicit stakeholders’ tacit knowledge
and emotional requirements (e.g. values, beliefs). Emotional requirements are
deemed [39] as important for the project as enterprise, functional and non-
functional requirements are. Based on extensive case study research [39], Ramos
and Berry convincingly justify why projects that include emotional requirements
are more effective than projects that merely use the elicitation techniques men-
tioned earlier in the other four classes in this section. Examples of constructionist
approaches are proposed in [2, 39]. In [39], the approach provides a list of symp-
toms and emotional responses which the elicitation analyst should watch for.
In [2], the authors provide characterizations of five “roles that an ES can play”
for its users. The job of the elicitation analyst is to first map the ES system in
the concrete ERP-adopting organization against these roles, and then to structure
his/her elicitation efforts based on the characteristics related to the particular role
at hand.

It is important to note that most of the authors of the surveyed papers on
elicitation techniques (discussed earlier in this section) carried out empirical eval-
uation research to demonstrate that their proposed techniques meet the goals that
have been set for them in the first place. This commitment of RE researchers
to the use of empirical research methods as well as the remarkable variety of
elicitation techniques motivated us to search for publications that compare the
techniques regarding, e.g. their effectiveness, the assumptions about the context
that the techniques need to satisfy so that they are useful, or the business goals
that can be best achieved by using these techniques. Our search yielded no pub-
lication that dealt explicitly with these questions. Instead, we found fragmentary
evaluative information in those papers only, which discussed how vendor-provided
ES-reference-model-based elicitation compares to process-mining-based elicitation.
In all these cases, researchers used the comparison to stress the key limitation
of vendor-provided approaches, namely that they are package-specific (and there-
fore they rarely could be used in projects that implement other packages). We
think, therefore, that the search for insights on and improved understanding of
when to use which technique, is the next big step in ES requirements elicitation
research.

The elicitation techniques also seem to assume that the ES-based solution
includes one vendor’s product and is implemented in one company. No technique
explicitly addresses today’s case of cross-organizational ES implementations, in
which the solution to be implemented includes more than one package, which
may not all be provided by the same vendor and which may not all be used by
all partner companies in an extended enterprise. The matter that the setting is

122 M. Daneva and R. Wieringa

cross-organizational poses new challenges, for example, how to elicit the require-
ments in the face of different partner companies using different ways to organize
domain knowledge and to create their domain dictionary. Would it be possible at
all for the partners in an extended enterprise to come up with one common way
of approaching the requirements elicitation tasks? What kind of coordination mod-
els make sense to use so that partner companies coordinate their elicitation efforts?
Future research in these areas is needed.

3.2 Modelling Techniques

In our literature review, we made a number of common observations referring to
all the surveyed approaches to requirements modeling and documentation in ES
projects. First, we found that all approaches are multi-perspective in nature (that is,
they use multiple viewpoints to document the ES requirements). This is unsurpris-
ing, given the highly complex context where requirements are to be documented,
which calls for using viewpoints as a tactics to cope with complexity.

Second, the RE publications agree on that in ES projects, requirements model-
ing addresses: (i) the selection of a package (and hence, the need to document the
domain), and (ii) the alignment of a selected package to the ERP adopter’s business
(and hence, the need to model the functionality embedded in the package).

Third, the RE researchers give evidence confirming the viability of both top-
down and bottom-up approaches to analyzing the gap between enterprise require-
ments models and system models. These two types of approaches differ regarding
the starting point of the requirements documentation process. While bottom-up
approaches imply to start from the review of the package specification and pro-
ceed with documentation of the domain requirements, the top-down approaches
mean to starts from the (solution-independent) domain requirements that are to
be further refined by using information about the concrete package functional-
ity. The top-down approaches are preferred in contexts in which (i) modeling
is a prerequisite for a package selection exercise, or (ii) it supports a business
reengineering effort in an organization. In both cases, the outcomes of the mod-
eling process are solution-independent requirements. The bottom-up approaches
suit best those contexts, when the decision on a package has been made and
modeling is a part of a business process/ES alignment effort. RE researchers
[53] argue that unlike the bottom-up approaches, which target the alignment of
a package, the top-down modeling approaches are capable of addressing both the
selection of a package and the alignment of a selected package. In our view, regard-
less the focus of the modeling approaches, they both aid in jointly carrying out
problem analysis and solution design activity (that is, joint RE and architecture
design).

Fourth, our review indicates one common theme which is inherent to the
research on requirements modeling, namely the exploration of the fitness relation-
ship between domain models and system functionality. It is worth noting that those

Requirements Engineering for Enterprise Systems 123

authors, who proposed requirements representation techniques, also investigated the
fitness relationship. Their research efforts yielded quantitative models [16, 25, 46,
54] that help understand the fitness relationship and plan actions to preserve it when
requirements change. The RE community is especially indebted to Colette Rolland
and her team for the number of fitness analysis studies (e.g. [16, 25, 46]) which they
carried out in this area.

Fifth, the RE community is united on that it is a good practice to represent both
the domain models and the system models by using the same modeling language,
because both types of models relate to business issues and in ES projects it is unnat-
ural to segregate them. This position is shared by both researchers [42, 44, 53, 54]
and practitioners [5, 12, 13, 36, 48]. Indeed, two of the market-leading packages,
SAP and BAAN, provide modeling processes, tools and repositories of (solution-
specific) models which describe the package functionality in business terms [12,
36]. SAP-adopting organizations may use the ARIS modeling languages [48], which
were used to document the SAP application suite, while BAAN-adopters may use
the Dynamic Enterprise Modelling approach [36] which is implied in the BAAN
package. Presently, new variants of these modeling techniques have been proposed,
e.g. the configurable reference-model approach [38, 44] to smooth even more the
gap analysis process and the identification of the best possible configuration options
within stated enterprise requirements.

However, the RE community also recognized that not all ERP packages have
ready-to-use solution models and, in turn, spent significant efforts to solve the
challenges related to this case. In the last decade, Colette Rolland [40] was the
first (1999) to develop and evaluate a map representation that is to be applied in
both domain requirements modeling and COTS systems modeling. Drawing on
her experience, Rolland and Prakash [41, 42] redefined the map representation to
cover the special case of ES as a major class of COTS-based projects. In 2000,
Illa et al. [19] built the SHERPA method for documenting ES requirements and
propose a formal language for modeling the application domain, translating user
needs into requirements over the ES products, and for reflecting how concrete ES
products adjust to these requirements. In 2002, the UML was customized to the
ES project context [26]. In 2003, Arinze et al. [1] proposed an object-oriented
framework to ease the gap analysis of enterprise and ES models, and Soffer et al.
[53] developed and empirically evaluated the Object Process ERP representation
that also is able to capture the so-called “ERP optionality” levels, that is, both the
full scope of ES-embedded process and data control options, and the interdepen-
dencies among them. Building on it, Soffer et al. developed in 2005 a bottom-up
reverse-engineering based modeling approach [54] to solve the problem of aligning
a selected package to enterprise requirements. In 2004–2007, Carvallo et al. [8, 17]
gave a new dimension to the discussion of requirements modeling approaches in
ES by contributing to engineering the COTS (or ES) non-functional requirements.
Based on case study research, these authors propose the RECSS method [8], a
goal-oriented approach which helps describing enterprise requirements as well as
functional and non-functional requirements of the system. By applying this method,

124 M. Daneva and R. Wieringa

requirements analysts can create a goal model of the system environment and also
include those external elements that interact with the system. Complementarily to
this, the RECSS method also uses a decomposition process through which one can
build quality models for the system modules based on the ISO/IEC software quality
standard.

Other RE researchers suggested the use of process modelling tiers to manage
the complexity of enterprise and ES process modeling [18], the technique of the
Requirement Integration Model [32] to account for interdependencies in business
workflows, and the Data Activity Model for Configuration approach [34] meant to
help align a package to the organization by the joint engineering of data and pro-
cess requirements. The authors of [3, 52], also proposed ontology-based approaches
to the representation and gap analysis of enterprise requirements and package-
embedded functionality. For example, Babkin et al. [3] developed a requirements
modeling approach that defines four sub-ontologies: ontology of requirements, of
main data objects, of business processes and of configuration objects. The first ontol-
ogy helps the elicitation process, while the other three ontologies are to support
business process modeling activities and the activities of data requirements configu-
ration requirements documentation, respectively. It is worth noting that the authors
of these approaches [54] posed the question of how their proposals compare with
the vendor-imposed modeling approaches (e.g. ARIS [12] and DEM [36]). They
found that when using a modeling technique that is not part of the package, there
are some extra costs involved in creating the models of the system functionality.
Because the modeling approaches are not common standards in the ES field, for RE
professionals to use them in a broader practical context, they first have to create a
system model of their selected package.

We also make the note that all the proposed modeling techniques have been eval-
uated as a minimum by their authors by means of empirical research methods. Some
techniques, e.g. the event-driven-process chain modeling method of ARIS [56, 58]
have been validated by researchers that worked independently from the authors who
originally proposed the technique.

Similarly to our survey in the sub-area of requirements elicitation, we also
checked whether there are publications that compare the surveyed modeling tech-
niques for their effectiveness. We found three studies [27, 37, 55] that compared
business process modeling approaches. In [55] the authors compared them against a
set of criteria which are reportedly critical to ES adopters. In [37], the authors com-
pared two variants of the event-driven-process chain modeling technique (which is
part of ARIS [12]) regarding perceived usefulness and easy of use from the per-
spective of modelers, by carrying out an experiment with postgraduate students.
In [27], the authors compared business process modeling languages against a five-
perspective-meta-model that helps judge the ability of a modeling language to
capture the essential elements of the business context and the subject domain. While
the authors in [55] indicate when to use which technique, the authors of the other two
studies [27, 37] attempted to answer the question which of the compared techniques
is better for a specific purpose/RE task.

Requirements Engineering for Enterprise Systems 125

While analyzing the existing modeling techniques, we also found that all model-
ing methods make tacit assumptions that might not be realistic in all situations. For
example, RE authors seem to still assume that modeling is manifestly more useful
than well written textual requirement documents. In our view, reality may question
the extent to which this assumption is realistic. RE publications say very little about
those contexts in which modeling would yield marginal benefits or be a financial
burden and a project “over-kill”.

Furthermore, ES requirements modeling approaches have the tacit expectation
that the resulting models are sufficiently understandable for those who are to review
them and make decisions based on them. Our survey found that understandabil-
ity of both enterprise and systems requirements models was addressed in very few
papers and whenever it was addressed, it was from the perspective of the require-
ments engineer (also called requirements analyst). This finding agrees with a finding
from a recent mapping study [10] that we did on empirical evaluation of the quality
attributes of requirement specifications. Therein, we found that understandability
was the most frequently researched quality aspect of requirements specifications,
yet we found no paper that evaluated understandability of ES specifications. This
finding is a surprise as it indicates a paradox: on one side, the authors of model-
ing techniques do acknowledge the importance of the social aspects in ES projects
and the purpose of the models as communication vehicles to help establish a
common understanding among stakeholders; on the other side, the RE research
community published very little on the extent to which the models, produced by
using the proposed modeling techniques, are understandable for the relevant project
stakeholders.

Next, the papers which are focused on modeling for the purpose of gap anal-
ysis rest on the tacit assumption that the better the fit (that is, the closer the
match achieved between business processes and ES solution), the more the value
achieved. In reality however, the “aligned” ES solution becomes available for clients
at earliest six months after the gap analysis took place and the value that clients
receive at that time is far below the expectations. Indeed, the practice shows that
only one out of five companies achieves more than half of anticipated benefits
[59]. This alone questions the fundamental assumptions behind most gap analy-
sis techniques and makes us think that we should re-evaluate our understanding
of “business/ES fit” from the perspective of ES project goals and business value.
Most of the ES projects have measurable goals and a gap analysis is rarely per-
formed without considering the business case for the ES project. Therefore, it
is worthwhile uncovering the relationship among the concepts of business/ES fit,
project goals, and business case. This forms a direction for future research. We
think that only when we understand sufficiently well this relationship, could we
better leverage the RE community’s collective knowledge of business/ES fit and
of gap analysis techniques so that it adds more value to RE practitioners and
ES-adopters.

Next, most of the papers on modeling techniques do not address the costs
involved in using these techniques. Those paper which do so, implicitly assume that

126 M. Daneva and R. Wieringa

the cost and effort needed are acceptable. This assumption might not be realistic
in all ES contexts. For example, Soffer et al. [54] indicate that it would cost extra
effort to run the OPM modeling process for aligning a package to enterprise require-
ments, as the analyst first have to create the model of the package functionality. In
our view, it’s also interesting to understand how much time (e.g. in person hours),
it would take to create a model of a specific package component, e.g. account-
ing, in a company of a specific size. It is also worthwhile knowing how much
time it would take to learn a modeling/gap analysis technique and its application
process. Answers to these questions are important to make a decision on how to
deploy the technique in a particular context. For example, the first author’s per-
sonal experience suggests that a two-day training on the ARIS modeling technique
was not enough for business owners to get comfortable in reading the SAP mod-
els without the help of external consultants. In that case, it turned out that hiring
a specialist in ARIS-modeling on a permanent basis was much more cost-effective
for the ERP-adopter than training all relevant stakeholders on how to use the ARIS
methodology.

Last, the published ES modeling techniques tacitly assume that it’s possible to
scale them up to large projects. Today, this type of projects is, more often than not,
cross-organizational, which increases the complexity of ES RE even more. If we are
to apply a process-mining or reverse-engineering based approach to such a setting,
this assumes that all partner companies in a extended enterprise are prepared to
disclose their process and application landscapes (so that the respective tools capture
completely their business environments). Assessing how realistic is to assume this
means including the concept of trust in the discussion on ES requirements. This
alone forms another line of research for the future.

3.3 Did These Techniques Work?

As indicated earlier, many papers on ES elicitation and modeling present empirical
evaluations. In our review, we consistently observed that when authors propose a
technique, they either provide a detailed account of its application in an industrial
setting, or they run a complete action case study research intervention in a com-
pany and reflect on their learning from it. Table 1 presents the type of empirical
research done in the papers which we cited in Sects. 3.1 and 3.2. In this table,
the first column refers to the paper that published a RE-for-ES approach. The
second column reports on whether this approach is for elicitation, or for model-
ing, or for both. The last column indicates the context where the empirical study
in the paper has been done. The table shows that RE-for-ES researchers have
been actively involved in action research with big companies. Some authors also
include empirical research in the IT department of their institution (e.g. studies
on ES implemented in a university). The brief indication of empirical studies in
the table shows that researchers prefer action case studies for their evaluation. This
increases the realism of the study but makes generalizability an important issue to
consider.

Requirements Engineering for Enterprise Systems 127

Table 1 Empirical studies in RE for ES

Sub-area

References Elicitation Modeling Context of empirical study

[1] + SAP environment
[2] + Case study in a BAAN project at six ABB companies
[3] + + Proof-of-concept in SAP CRM project
[8] + Proof-of-concept in COTS/Mail server system
[11] + Case study in SAP environment
[18] + Case study in SAP projects in the power generation sector
[19] + COTS projects in Spanish companies
[22] + Proof-of-concept in planning sales management project
[26] + Case study in SAP environment
[28] + + COTS projects in various UK-based companies
[31] + Case study in SAP environment
[32] + SAP implementation project at a university in Thailand
[36] + + Case study in Baan implementation projects
[37] + Case study in SAP environment
[39] + ERP case studies in Portuguese companies
[40] + Proof-of-concept in a COTS project
[41] + Case study in SAP environment
[44] + Case study in SAP environment
[48] + + Case study in SAP implementation projects
[49] + A case study in a large ES project in 5 business domains
[53] + + Case study in ES environment
[54] + + Case study in ES environment
[57] + Case study in SAP environment

4 Directions for Future Research

4.1 Directions from our Analysis of RE Research

In this section we derive clusters of activities for future research, while reflecting on
our findings in Sects. 3.1, 3.2 and 3.3.

Our review confirmed the presence of a multiplicity of RE approaches to ES
projects. This is unsurprising, as no one approach is demonstrated to be superior
to another. In addition, we observe that the variety of elicitation and model-
ing approaches brought a variety of empirical studies in which practitioners and
researchers have used these approaches and shared their lessons learnt. We consider
this use of empirical research methods beneficial to the RE community, especially
when the studies are done independently by different researchers and not by the
authors of the RE techniques themselves (e.g. [56, 58]), as this means a reduced
bias. Moreover, the industrial studies refer to various domains in which ES were
implemented and in a variety of business sectors. This is a positive development as
well, because it opens up opportunities for cross-case analysis of the lessons learnt.
Realizing these research opportunities is a worthwhile endeavor for the future.

128 M. Daneva and R. Wieringa

Furthermore, today’s ES packages no longer compete on business functionality
but on quality attributes, that is on how well they meet the quality requirements (or
non-functional requirements) of the ES adopters. Finding an ideal match between
system configuration options and business processes would not be worth, unless it
meets certain performance, availability, security, interoperability requirements (just
to name a few). In the literature, we observe a number of publications [8, 9, 49] that
acknowledge both the importance of quality requirements and the need to develop
systematic approaches to address them in ES projects. However, how to trade-off
these requirements, what represents the “right balance” among them, and when it is
realistic to achieve the right balance (in intra-company and in cross-organizational
settings) is largely unknown. Understanding the challenges this question poses
and proposing approaches to counter these challenges represents a viable line for
future research. Specifically, we mean understanding the contextual mechanisms
that impact the process of joint RE and architecture design in ES projects.

The following two directions are closely connected and motivated by the
increased use of ES as cross-organizational coordination support technology and
the increased needs of ES adopters to design and redesign ES-supported coordi-
nation and collaboration processes within extended enterprises. The first direction
refers to making the cross-organizational coordination requirements an explicit part
of the requirements elicitation and modeling in ES projects. More in detail, our
motivation of the importance of this topic for the future RE research is presented
in [14]. In this review we found that with very few exceptions, the elicitation and
modeling approaches subsume the coordination requirements into process and data
requirements. An overall observation is that all the publications on techniques pre-
sented in Table 1 offer very little and fragmentary discussion on coordination, and
when they add it, it refers to intra-organizational and not to cross-organizational
coordination. We think that while in intra-organizational settings, this might not
represent an acute RE problem, in cross-organizational context if we keep using
the existing elicitation and modeling techniques as they are, it is likely to be sub-
optimal because they are not geared to this context. We therefore think that these
techniques should be extended (or even completely re-stated) to explicitly handle
cross-organizational coordination requirements [14]. The second and related direc-
tion for future research is about getting actively involved in empirical evaluation
of the existing techniques in cross-organizational contexts. Based on our recent
research on cross-organizational ES, we identified seven characteristics of these
projects which have implications for ES RE:

1. The projects deliver a shared system which lets the business activities of one
company become an integral part of the business of its partners.

2. The projects create system capabilities far beyond the sum of the ES compo-
nents’ individual capabilities, which, allows the resulting system to qualitatively
acquire new properties as result of its configuration.

3. The solution-to-be may well include diverse configurations, each of which
matches the needs of a unique stakeholder group, which, in turn, implies the
presence of coordination mechanisms unique to each configuration.

Requirements Engineering for Enterprise Systems 129

4. The projects deliver a system which is far from complete once the ES project is
over, because a cross-organizational ES solution must mirror rapidly-changing
business requirements, and so be adjusted regularly to accommodate current
business needs.

5. The resulting solution does not have an identified owner at cross-organizational
system level, as the system is shared.

6. These projects may well have a low level of organizational awareness of what
RE activities (e.g. eliciting coordination requirements, identifying and analyzing
coordination capability gaps, investigation and mapping of coordination mecha-
nisms [14]) are to be used to elicit and model the requirements as completely as
possible.

7. The solutions are not “built” in the sense that a master architect envisions
the parts and their relationships; rather they evolve into existence and change
through their life cycles as new shared pieces of functionality are built, existing
intra-organizational systems connect to become shared, and shared parts of
the system are disintegrated as soon as needs of sharing processes and data
disappear.

We think that these characteristics pose elicitation and modeling challenges
which are well beyond those presently addressed in the RE-for-ES literature. For
example, these characteristics might make it overall difficult to use predefined
business-sector-specific solution-independent reference models, as such models
merely can not exist for all various collaborative arrangements that business part-
ners may creatively come up with. In contrast, these characteristics may rather
favor the use of constructionist elicitation methods in an extended enterprise set-
tings as they explicitly account for the organizational transformation inherent to
cross-organizational ES projects. The point we would like to make here is not that
cross-organizational ES are different; it is that the assumptions which we usually
make when we elicit and model the requirements in ES projects do not apply. We
think that a RE analyst needs to know both (i) the elicitation and modeling vehicles
at his disposal and (ii) whether or not the implicit and explicit assumptions about
the use of these vehicles match the project settings. We saw in Sects. 3.1 and 3.2
that most of the assumptions we typically make in elicitation and modeling do not
apply to a shared ES solution. Therefore, more research effort needs to be put into
evaluating our existing techniques and understanding their strengths and possible
weaknesses when deployed in a cross-organizational project context.

4.2 Directions from Examining Failures

One observation which we made consistently across the papers in our review is
that almost all projects that the papers’ authors described were reportedly kinds of
successes. This clearly indicates the researchers’ practice to learn from success; nev-
ertheless we should not underestimate the benefits of learning from failed projects

130 M. Daneva and R. Wieringa

[35]. Maybe, because of the prevailing culture to encourage researchers to publish
more about the lessons they learn from success than about their learning from fail-
ures, in the RE literature we found no study that gives failed examples of using
RE techniques in real projects. We must remind that in other disciplines, learn-
ing from failures has motivated innovation and we see no particular reason of why
learning-from-failed-projects can not be useful for the RE community as well. In the
experience of the first author, RE professionals do experience failure but the field
does not profit from these failure experiences. The prevailing “we-can-fix-it-later-
on” attitude, which is also compatible with the project management practice of com-
pressing deadlines, brings many ES projects teams in a working mode that under-
mines the role of requirements. If a system fails at the go-life stage, then teams rarely
get back to the RE process and look into RE malpractices, discern patterns of fail-
ure, and think of what they could do differently the next time. This situation is partly
attributable to the prevailing business practice that consultants are contracted for six-
month cycles and that, by the time RE mistakes are revealed in a project, they rush to
their next project, which may be in another business sector and they may not see an
immediate value of the reflection on what they could have done differently should
they go through the same project again. Moreover, most of the consulting companies
who employ the consultants are focused on securing their next contract engagement
in another organization and, therefore, may have little time to spend on accumulat-
ing RE knowledge through systematic post-mortems of past projects. We support the
position that to start learning from failures, we first need a few published examples
of RE malpractice in ES projects. However, these examples are not readily available
at the present time and it is a challenge to build up archives of bad examples and
failures. By this, we do not just mean a set of poorly specified requirements, e.g. dia-
grams, or suboptimal gap analyses, but sufficiently documented explanations of why
a RE method did not work as originally thought. We think that learning about the
mechanisms that are at place and that possibly condition the success and failure of
a RE practice will extend our repertoire of knowledge that can assist us in deciding
which practice to use in which context. For example, it is well known that business
owners in ES projects do not like reading technical descriptions (e.g. data mod-
els). However, there are RE teams in (assumingly) mature organizations who apply
alternative (more creative) techniques for getting the business data (and conversion)
requirements in a way that minimizes that chance of RE failure or even a project fail-
ure. What approaches do consultants deploy in getting the data requirements right?
We think, these skills could and should be explicated and shared with others.

4.3 Directions from Existing Market Trends

In the last decade, there are a number of changes in the market demands that have
implications for RE research for ES. For RE-for-ES to remain an industry-relevant
research field, it must be able to keep up with these changes. This section lists some
trends, which in our view restate and redefine the known RE-for-ES challenges, or

Requirements Engineering for Enterprise Systems 131

pose entirely new challenges to RE for ES. We make the note that our list below
may seem eclectic, reflecting our perception of particularly acute needs.

1. The increased penetration of free and open source ES (FOS-ES) solutions.
Recent market research reports that ES adopters have become more receptive
to FOS-ES [47]. A major reason for this trend is that FOS-ES means reducing
licensing costs. In a recession-hit economy, FOS-ES solutions have become a
feasible strategy for many small to midsize companies that want to automate
their cooperation and coordination process. The technology of service-oriented
architecture (SOA) made it possible for these cost-conscious ES-adopters to effi-
ciently embed a FOS-ES-based solution within their processes and application
landscapes, and also to customize or improve their systems on ongoing basis
[51]. A recent review of the most popular FOS-ERP products is presented in [50].

This trend introduces some changes that have RE implications [6, 7, 20]. For
example, the distance between the user and the developer gets smaller, because
the role of the ES adopter is changing from a consumer to a prosumer; this is
an active role in which the adopter assumes the process of adapting software,
reporting bugs, submitting feature requests, and posting messages to FOS-ES
community lists. Based on their willingness to share information, smart pro-
sumers will also provide bug fixes, new features and even entire modules. In this
setting, it is expected [20] that the smaller distance between the user and the
developer will alleviate the problem of misfit between the FOS-ES functionality
to the enterprise requirements. This, however, has not been investigated yet by
means of rigorous empirical research methods and we think it is a candidate line
of research for the future.

Moreover, becoming prosumers means to ES adopters a shift from a client
viewpoint to a developers’ viewpoint, which also means adopting a new mindset
and accepting low level of managerial control, as the FOS-ES development is
a community-centric activity. Hence, the adopter will have to follow a RE cycle
that is influenced by many members of the community, which may incur massive
coordination costs. How to create a cost-effective RE process for ES adopters and
what coordination-enhancing activities should it include is an open question and
warrants future research.

2. The trend to form vendor-supported community collaborations for ES implemen-
tation. In order to lower the ES implementation cost and shorten the ES project
duration for their clients, ES vendors built online communities [47, 60] where
ES-adopters can share their knowledge of aligning the respective vendor’s pack-
age to enterprise requirements For example, two of the major ERP vendors, SAP
and Oracle, have built, respectively, the SAP Developer Network and the Oracle
Technology Network. The sharing platforms typically are Web 2.0 knowledge
repository systems, which facilitate the members of the community to prac-
tice RE processes that actively involve case-based reasoning (e.g. exploring past
cases, short-listing similar cases and reusing the solutions from the past cases to
the particular context in question). Research [60] indicates that these repositories

132 M. Daneva and R. Wieringa

streamline the collaborative execution of the knowledge-intensive activities in
RE-for-ES within and beyond the ES-adopter’s organizational boundaries, which
can be invaluable in identifying the ways to improve the fit between enterprise
requirements and ES functionality. We make the note that despite the collabora-
tive nature of RE-for-ES, the forms of collaborations between the ES-adopters
and consultants as well as among ERP-adopters themselves, has received in
the RE literature only scant attention. Understanding the forms of collaborative
RE-for-ES and the case-based reasoning models that serve best in the alignment
of a package to enterprise requirements is a worthy line of research for the future.

3. The trend to use agile RE approaches. These have been gaining momentum
among RE methodologies and are now entering the realm of ES implementa-
tion. More often than before, prominent agile publication venues (e.g. AGILE
and XP), report on companies’ experiences of introducing agile approaches to
ES projects. (We searched the proceedings of these two conferences and found
more than 10 papers on agile approaches in ES implementations at large compa-
nies). While one might think that the agile philosophy is incompatible with the
ES project contexts, these companies experienced agile approaches as a viable
option. We do not think that this is surprising, because the agile philosophy’s
focus on delivering business value and on satisfying clients is appealing to both
ES-adopters and consultants who, especially in times of economic downturn,
are pressed to demonstrate some specific instances of value of the ES-solution
much earlier in the project. Second, at the heart of any agile approach is an
assumption that regardless what the requirements might be at the project start,
they will not be the same at the project end. It is intuitive to think, there-
fore, that the longer the project, the more realistic this assumption would be.
In most situations, this assumption is realistic in the ES project contexts, noto-
rious for their highly volatile requirements and prolonged duration. We think
that the presence of agile approaches has certain implications for ES RE pro-
fessionals and that it is a potential topic of future research to uncover what
these implications are and how we can make a better use of the agile philos-
ophy in RE for ES. In our view, the investigation of these implications is a
mandate of the RE community and we should not leave this to the manage-
ment science community or to the agile community and wait for them to come
up with ideas for improving the existing RE-for-ES practices by using agile
principles.

4. The trend to deploy on-demand ES solutions. The terms Software as a Service
(SaaS) or on-demand ES refers to ES functionality being delivered over the
Internet from a single application instance that is shared across all users.
SaaS ES-solutions are rapidly increasing their share in some ES markets,
notably CRM, and also penetrate into various business areas (e.g. financial
accounting, human resource management). In uncertain economic conditions,
particularly to cost-conscious small and mid-sized businesses, this type of ES
solutions yields a number of cost benefits, including no up-front costs, no
licensing fees and rapid, easy deployment. More and more companies are mov-
ing their mission-critical systems to the SaaS model to realize these benefits.

Requirements Engineering for Enterprise Systems 133

A SaaS-ES-solution is overall less flexible than on-premises ES in that the ES-
adopter can not completely customize or rewrite its code. Because of this, the
SaaS-ES-adopters must be prepared rather to change their business process to fit
the solution than to align it to enterprise requirements. Also such adopters often
face massive coordination effort because they have to integrate hosted software
from various vendors with their existing ES solutions and/or legacy applica-
tions. How to run an effective RE process for SaaS-ES projects is by and large
unknown. We, however, think that further research efforts in this direction are
warranted, because SaaS-ES solutions represent an important development in the
field.

5 Conclusion

This chapter surveyed the requirements elicitation and modeling approaches in the
sub-area of RE for ES. We reasoned about some tacit assumptions these approaches
make and why these assumptions might not be realistic in all ES contexts. Based on
this we derived directions for future research. We acknowledge that such a survey
can bring only a snapshot view on a fast-changing area. However, we think some
lessons can be derived from it.

First, RE-for-ES has a long future ahead. ES will stay, though the on-premise
ES solutions will have to live with new types of ES, namely FOS-ES and
SaaS. The context of these projects gets increasingly more cross-organizational
on both the ES adopters’ side and the ES vendors’ side. That the ES adopters
are cross-organizational businesses calls for developing cost-effective approaches
for handling requirements for business coordination. ES solutions include hosted
and on-premise ES modules provided by multiple vendors, and this calls for
cost-effective approaches to the complex problem of aligning the coordination
mechanisms embedded in multiple packages to the coordination requirements of
the ES-adopters. The elicitation and modeling approaches developed in the RE
community in the past decade might only partly serve the needs of the ES projects
embracing the current market trends.

Second, our analysis gives us enough evidence that ES implementations have
impacted RE research regarding sub-areas as requirements elicitation and model-
ing. This means that RE researchers (active in non-ES project contexts) who design
solutions to problems in those sub-areas should evaluate their proposed solutions
regarding how they work in the ES context. In general, if a solution proposal is
meant to be industry-relevant, then researchers have to evaluate and generalize its
usefulness in various contexts. We think that ES is one significant context, for which
such validation evaluations should take place.

Third, we witness that the majority of RE-for-ES techniques have been devel-
oped and evaluated by means of empirical research methods. This alone is an
achievement, given the inherent difficulties in carrying out this type of research
activity.

134 M. Daneva and R. Wieringa

References

1. Arinze B, Anandarajan M (2003) A framework for using OO mapping methods to rapidly
configure ERP systems. Commun ACM 46(2):61–65

2. Askenäs L, Westelius A (2000) Five roles of an information system: a social constructionist
approach to analyzing the use of ERP systems. In: Proceedings of 21st international con-
ference on information systems, Association of Information Systems, Brisbane, Australia,
pp 426–434

3. Babkin E, Potapova E (2009) Using ontology for implementing enterprise resource planning
systems. In: Proceedings of IEEE/ACS international conference on computer systems and
applications, IEEE Computer Science, Los Alamitos, pp 67–68

4. Bergman M, King JL, Lyytinen K (2002) Large-scale requirements analysis revisited: the need
for understanding the political ecology of requirements engineering. Reqs Eng 7(3):152–171

5. Brinkkemper S (1999) RE for ERP: requirements management for the development of
packaged software Baan company. In: Proceedings of 4th international symposium on
requirements engineering RE, IEEE CS, Los Alamitos, p 159

6. Carvalho RA (2006) Issues on evaluating free/open source ERP systems, research and
practical issues of enterprise information systems, Springer, pp 667–676

7. Carvalho RA, Monnerat RM (2008) Development support tools for enterprise resource
planning. IEEE IT Professional 10(5):39–45

8. Carvallo JP, Franch X, Quer C (2008) Requirements engineering for COTS-based software
systems. In: Proceedings of the 2008 ACM symposium on applied computing, ACM, New
York, pp 638–644

9. Colombo E, Francalanci C (2004) Selecting CRM packages based on architectural, func-
tional, and cost requirements: empirical validation of a hierarchical ranking model. Reqs Eng
9(3):186–203

10. Condori-Fernánsdez N, Daneva M, Sikkel K, Wieringa R, Dieste O, Pastor O (2009) A
systematic mapping study on empirical evaluation of software requirements specifications
techniques. In: Proceedings of the 3rd symposium on empirical software engineering and
measurement, IEEE Computer Science, Los Alamitos, pp 502–505

11. Chiplunkar C, Deshmukh SG, Chattopadhyay R (2003) Application of principles of event
related open systems to business process reengineering. Computers Industrial Eng 45(3):
347–374

12. Curran C, Keller G (1998) SAP R/3 business blueprint: understanding the business. Prentice
Hall, Upper Saddle River

13. Daneva M (2004) ERP requirements engineering: lessons learnt. IEEE Softw 21(2):26–33
14. Daneva M, Wieringa RJ (2006) A requirements engineering framework for cross-

organizational ERP systems. Reqs Eng 11(3):194–204
15. Daneva M, Wieringa R (2008) Cost estimation for cross-organizational ERP projects: research

perspectives. Softw Quality J 16(3):459–481
16. Etien A, Rolland C (2005) Measuring the fitness relationship. Reqs Eng 10(3):184–197
17. Franch X, Carvallo JP (2003) Using quality models in software package selection. IEEE Softw

20(1):34–41
18. Gulla JA, Brasethvik T (2000) On the challenges of business modeling in large scale

reengineering projects. In: Proceedings of the 4th international conference on requirements
engineering, IEEE Computer Science, Los Alamitos, pp 17–26

19. Illa X, Franch X, Pastor JA (2000) Formalising ERP selection criteria. In: Proceedings of
the 10th international workshop on software specification and design, ACM, New York,
pp 115–122

20. Johansson B, Carvalho RA (2009) Management of requirements in ERP development: a
comparison between proprietary and open source ERP. In: Proceedings of the ACM sym-
posium on applied computing (SAC), Enterprise information systems track, ACM, New York,
pp 1605–1609

Requirements Engineering for Enterprise Systems 135

21. Juristo N, Moreno AM, Silva A (2002) Is the European industry moving toward solving
requirements engineering problems? IEEE Softw 12:70–77

22. Kato J, Nagata M, Yamamoto S, Saeki M, Kaiya H, Horai H, Watahiki K (2003) PAORE:
package oriented requirements elicitation. In: Proceedings of the 10th Asia-Pacific soft-
ware engineering conference software engineering conference, IEEE Computer Society, Los
Alamitos, pp 17–26

23. Kohl RJ (2005) Requirements engineering changes for COTS-intensive systems. IEEE Softw
22(4):63–64

24. Krumbolz M, Maiden NAM (2001) The implementing of ERP packages in different organi-
zational and national cultures. Info Systems J 26(3):185–204

25. Le T, Rolland C (2001) Functional matching in COTS-based development context. Actes du
XIXème Congrès INFORSID, Martigny, Suisse, pp 87–110

26. Linvald J, Østerbye K (2002) UML tailored to an ERP framework. In: Tolvanen J-H, Gra
M. Rossi M (eds) Second workshop on domain specific visual languages. Companion of the
17th ACM SIGPLAN conference on object-oriented programming, systems, languages, and
applications, New York

27. List B, Korherr (2006) An evaluation of conceptual business process modelling lan-
guages. In: Proceedings of the ACM symposium on applied computing, ACM, New York,
pp 1532–1539

28. Maiden NAM, Ncube C (1998) Acquiring COTS software selection requirements. IEEE Softw
15(2):46–56

29. Maiden NAM, Ncube C, Moore A (1997) Lessons learned during requirements acquisition
for COTS systems. Commun. ACM 40(12):21–25

30. Morris P, Masena M, Willikens M (1998) Requirements engineering and industrial uptake.
Reqs Eng 3(2):79–83

31. Millet P-A, Schmitt P, Botta-Genoulaz V (2009) The SCOR model for the alignment of
business processes and information systems. Enterprise Info Systems 3(4):393–407

32. Mutchalintungkul A, Oonhawat J, Pholpipatanaphong K, Sutivong D, Prompoon N (2006)
Experience from applying RIM to educational ERP development. In: Proceedings of 28th
international conference on software engineering, ACM, New York, pp 620–624

33. Ncube C, Maiden NAM (1999) Guidance for parallel requirements acquisition and COTS
software selection. In: Proceedings of international conference on requirements engineering,
IEEE Computer Science, Los Alamitos, pp 133–143

34. Negi T, Bansal V (2009) Integrating process and data models to aid configuration of ERP
packages. In: Proceedings of 12th international conference on business information systems.
LNBIP, vol 21. Springer, Heidelberg, pp 228–239

35. Petroski H (1992) To engineer is human: the role of failure in successful design. Vintage
books, New York

36. Post HA, van Es RM (eds) (1996) Dynamic enterprise modelling: a paradigm shift in software
implementation. Kluwer, Dordrecht

37. Recker J, Rosemann M, van der Aalst W (2005) On the user perception of configurable
reference process models – initial insights. In: Campbell B, Underwood J, Bunker D (eds)
Proceedings 16th Australasian conference on information systems, Sydney, Australia

38. Recker JC, Mendling J, van der Aalst WM, Rosemann M (2006) Model-driven enterprise
systems configuration. In: Proceedings of Professional conference on advanced information
systems engineering. LNCS, vol 4001. Springer, Heidelberg, pp 369–383

39. Ramos I, Berry D, Carvalho J (2005) Requirements engineering for organizational transfor-
mation. Info Softw Technol 47:479–495

40. Rolland C (1999) Requirements engineering for COTS based systems. Info Softw Technol
41(14):985–990

41. Rolland C, Prakash N (2000) Bridging the gap between organisational needs and ERP
functionality. Reqs Eng 5(3):180–193

136 M. Daneva and R. Wieringa

42. Rolland C, Prakash N (2001) Matching ERP system functionality to customer requirements.
In: Proceedings of international symposium on requirements engineering, IEEE Computer
Science, Los Alamitos, pp 66–75

43. Roseman M (2001) Requirements engineering for enterprise systems. In: Proceedings of 7th
Americas conference on information systems, AIS, pp 1105–1110

44. Roseman M, van der Aalst W (2007) A configurable reference modelling language. Info
Systems 32(1):1–23

45. Sadraei E, Aurum A, Beydoun G, Paech B (2007) A field study of the requirements
engineering practice in Australian software industry. Reqs Eng 12:145–162

46. Salinesi C, Rolland C (2003) Fitting business models to system functionality exploring
the fitness relationship. In: Proceedings of conference on advanced information systems
engineering. LNCS, vol 2681. Springer, pp 647–664

47. Sang M, Lee MS, Olson DL, Lee S-H (2009) Open process and open-source enterprise
systems. J Enterprise Info Systems 3(2):201–209

48. Scheer A-W (1996) Business process engineering: reference models for industrial enterprises.
Springer, Berlin

49. Şen CG, Baraçl H (2010) Fuzzy quality function deployment based methodology for acquiring
enterprise software selection requirements. Expert Systems Appl 37(4):3415–3426

50. Serrano N, Sarriegi JM (2006) Open source software ERPs: a new alternative for an old
problem. IEEE Softw May/June:94–97

51. Smets-Solanes J-P, de Carvalho RA (2003) ERP5: a next-generation, open-source ERP
architecture. IEEE IT Professional, July/August:38–44

52. Soffer P, Golany B, Dori D, Wand Y (2001) Modelling off-the-shelf information systems
requirements: an ontological approach. Reqs Eng 41:183–199

53. Soffer P, Golany B, Dori D (2003) ERP modeling: a comprehensive approach. Info Systems
28(6):673–690

54. Soffer P, Golany B, Dori D (2005) Aligning an ERP system with enterprise requirements: an
object-process based approach. Computers Industry 56(6):639–662

55. Toshiki A, Sommer R (2007) Comparison and evaluation of business process modelling and
management tools. Int J Services Standards 3(2):249–261

56. Van de Aalst WMP (1999) Formalization and verification of event-driven process chains. Info
Softw Technol 41(10):639–650

57. Van der Aalst WMP, Weijters AJMM (2004) Process mining: a research agenda. Computers
Industry 53(3):231–244

58. Van Dongen BF, Jansen-Vullers MH (2005) Verification of SAP reference models. In:
Proceedings of international conference on business process management. LNCS, vol 3649.
Springer, pp 464–469

59. Ward J (2006) Benefits management. Wiley, Chichester
60. Wu H, Cao L (2009) Community collaboration for ERP implementation. IEEE Softw

26(6):48–55

Requirements as Goals and Commitments Too

Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini,
and Munindar P. Singh

Abstract In traditional software engineering research and practice, requirements
are classified either as functional or non-functional. Functional requirements consist
of all functions the system-to-be ought to support, and have been modeled in terms
of box-and-arrow diagrams in the spirit of SADT. Non-functional requirements
include desired software qualities for the system-to-be and have been described
either in natural language or in terms of metrics. This orthodoxy was challenged
in the mid-90s by a host of proposals that had a common theme: all requirements
are initially stakeholder goals and ought to be elicited, modeled and analyzed as
such. Through systematic processes, these goals can be refined into specifications
of functions the system-to-be needs to deliver, while actions assigned to external
actors need to be executed. This view is dominating Requirements Engineering
(RE) research and is beginning to have an impact on RE practice. We propose a
next step along this line of research, by adopting the concept of conditional com-
mitment as companion concept to that of goal. Goals are intentional entities that
capture the needs and wants of stakeholders. Commitments, on the other hand, are
social concepts that define the willingness and capability of an actor A to fulfill a
predicate ϕ for the benefit of actor B, provided B (in return) fulfills predicate ψ

for the benefit of actor A. In our conceptualization, goals are mapped to collections
of commitments rather than functions, qualities, or actor assignments. We motivate
the importance of the concept of commitment for RE through examples and discus-
sion. We also contrast our proposal with state-of-the-art requirements modeling and
analysis frameworks, such as KAOS, MAP, i∗ and Tropos.

1 Introduction

Colette Rolland is an eminent researcher, mentor and leader in the Information
Systems community thanks to a distinguished career that spans more than three

A.K. Chopra (B)
Department of Information Engineering and Computer Science, University of Trento,
Via Sommarive 14, 38123 Povo, Trento, Italy
e-mail: chopra@disi.unitn.it

137S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_8, C© Springer-Verlag Berlin Heidelberg 2010

138 A.K. Chopra et al.

decades. Her plethora of contributions include novel concepts, methods and tools
for building information systems, as well as dozens of young researchers who will
carry the torch of her ideas for years to come. One of those ideas that has had
tremendous impact on the field is the notion that system requirements are stake-
holder goals—rather than system functions—and ought to be elicited, modeled and
analyzed accordingly [21, 27, 28]. In this chapter, we take this idea one small step
farther.

In traditional software engineering research and practice, requirements are clas-
sified either as functional or nonfunctional. Functional requirements consist of all
functions the system-to-be ought to support, and have been modeled and analyzed
in terms of box-and-arrow diagrams in the spirit of SADT [32]. Nonfunctional
requirements include desired software qualities for the system-to-be and have
been described either in natural language or in terms of metrics. This ortho-
doxy was challenged in the mid-90s by a host of proposals that had a common
theme: all requirements—functional and non-functional—are initially stakeholder
goals, rather than functions. Through systematic processes, these goals can be
refined into specifications of functions the system-to-be needs to deliver, whereas
actions assigned to external actors need to be executed. This view is dominating
Requirements Engineering (RE) research and is beginning to have an impact on RE
practice.

The main objective of this chapter is to propose a next step along this line of
research, by adding the concept of conditional commitment as companion concept
to that of goal. Goals are intentional entities that capture the needs and wants of
stakeholders. Commitments, on the other hand, are social concepts that define the
willingness and capability of actors to contribute to the fulfillment of requirements.
Specifically, a conditional commitment involves two actors A and B, where A has
committed to fulfill a predicate ϕ for the benefit of actor B, provided B (in return)
fulfillsψ for the benefit A. In our conceptualization, goals are mapped to collections
of commitments rather than functions, qualities, and actor assignments.

Our work is motivated by RE frameworks such as i∗ [43] which are founded on
the notion of actor and social dependencies between pairs of actors; also on Agent-
Oriented Software Engineering (AOSE) frameworks such as Tropos [4], where
design begins with stakeholder goals and proceeds through a refinement process
to identify and characterize alternative designs (plans) that can fulfill these goals.
The Tropos framework has been formalized for goals and their refinements [18],
but not for goal fulfillment in a multiagent setting where commitments form the pri-
mary vehicle for goal fulfillment. We have striven to keep our proposal generic so
that it applies not only to Tropos but also other frameworks where there is a need to
reason with a collection of agents along with their goals and commitments.

We motivate the importance of the concept of commitment for RE through exam-
ples and discussion. We also contrast our proposal with state-of-the-art requirements
modeling and analysis frameworks, such as KAOS [10], MAP [29], i∗ and Tropos.

Our proposal is intended primarily for the development of socio-technical sys-
tems. Unlike their traditional computer-based cousins, such systems include in their
architecture and operation organizational and human actors along with software

Requirements as Goals and Commitments Too 139

ones, and are regulated and constrained by internal organizational rules, business
processes, external laws and regulations [15, 31]. Among the challenging prob-
lems related to the analysis and design of a socio-technical system is the problem
of understanding the requirements of its software components, the ways technol-
ogy can support human and organizational activities, and the way in which the
structure of these activities is influenced by introducing technology. In particular,
in a socio-technical system, human, organizational and software actors rely heav-
ily on each other in order to fulfill their respective objectives. Not surprisingly, an
important element in the design of a socio-technical system is the identification of
a set of dependencies among actors which, if respected by all parties, will fulfill all
stakeholder goals, the requirements of the socio-technical system.

This chapter is structured as follows. Section 2 provides a comprehensive
overview on commitments, specifically on their usage in multiagent systems.
Section 3 illustrates how commitments can be used with goals to specify require-
ments, and introduces some reasoning principles. Section 4 exemplifies how the
reasoning may be applied in a travel agency setting. Section 5 compares our model
to related work. Finally, Sect. 6 concludes with a summary of our approach.

2 Commitments in Multiagent Systems

The concept of commitment spans many disciplines, from Philosophy of Mind, to
Psychology, Sociology and Economics. A review of the literature suggests that the
concept has only been studied in the later half of the last century (it is true: Aristotle
did not discover everything!).

Commitments as a computational abstraction have a long history in Computer
Science. Bratman [3] and Cohen and Levesque [9] formulated the notion of an
agent’s commitment to his intentions. Singh [33] labeled commitments of this nature
as psychological commitments, and instead stressed the notion of social commit-
ment, that is, commitments among agents. In particular, Singh showed that social
commitments are key to modeling communication among agents [34], and conse-
quently to the development of large systems consisting of autonomous, interacting
entities—in other words, multiagent systems. In the following, the term commitment
is used solely in the sense of a social commitment.

Singh [35] also elucidated the key ontological aspects of commitments. Since
then, commitments have been applied as a basis for flexible interaction among
agents [41, 42]; towards the formulation of agent communication languages [17],
as an abstraction for business process design [11, 14]; towards a type theory for
protocols [6, 24]; towards understanding interoperability among agents [6, 7]; and
towards formulating a service-oriented architecture [38]. Aspects related to reason-
ing about commitments have been addressed in [7, 13, 16, 36]. Commitments have
also been recently applied in requirements engineering [39], and for monitoring in
conjunction with goals [26].

Below, we characterize multiagent systems especially emphasizing the value of
commitments.

140 A.K. Chopra et al.

2.1 Multiagent Systems

Multiagent Systems (MAS) are open systems: autonomous and heterogeneous enti-
ties known as agents participate in multiagent systems. An agent’s autonomy means
that no agent has control over it. An agent’s heterogeneity means that an agent’s
internal construction is inaccessible to other agents. An agent may be a human,
organization, or some stakeholder projected into the system as software. It is
worth emphasizing that socio-technical systems are, first and foremost, multiagent
systems.

The purpose of the system, specifically, is to provide a basis for coherent interac-
tions among agents in spite of their autonomy. Indeed, the system may be specified
independently of the agents [37]. The system itself serves as the specification, from
a global perspective, of the legitimate expectations that agents adopting roles in the
system would have of each other. In other words, the system is the protocol (MAS
terminology), or specification (RE terminology).

We specify expectations in terms of commitments. An agent that does not ful-
fill its commitments to others is noncompliant. Compliance balances autonomy.
An agent may do as it pleases, but from the system’s perspective it may be
noncompliant. Example 1 illustrates these concepts.

Example 1. A housing contract is a system that specifies the commitments that gov-
ern interaction between a tenant and the landlord, both agents. For example, the
contract may say that the tenant may not accommodate other persons on the property
unless he seeks permission from the landlord. However, the tenant, in noncompli-
ance with the clause, may on occasion host visiting family members. It does not
matter whether the landlord knows of the violation; what matters is that from the
system perspective, there is a violation.

The question of the basis of compliance goes to the heart of multiagent sys-
tems research. The answer lies in how systems (protocols) are specified. Systems
specified in terms of control and data flow impose strong ordering and synchroniza-
tion constraints on interaction; compliance for such specifications amounts to not
violating such constraints, as Example 2 shows.

Example 2. Consider a scenario where Alice wants to buy a book from the bookseller
EBook. The protocol (the system) they employ specifies that the delivery of the
book must precede payment. If Alice pays first, she would be noncompliant with
the protocol.

Systems specified in terms of intentional abstractions such as goals and beliefs
are brittle because they lead to strong assumptions about an agent’s construction
[34].

By contrast, system specification approaches based on commitments hit the right
balance between over-abstraction (exemplified by goal-oriented approaches) and
under-abstraction (exemplified by process-oriented ones). Goal-oriented approaches
model desired states of the world without saying who is responsible for doing

Requirements as Goals and Commitments Too 141

what in achieving them. Process-oriented approaches, on the other hand, specify
specific courses of action that are often violated by the actual actions undertaken
by relevant agents. Commitments specify interaction at a high level of abstraction.
They signify social relationships between agents and can be inferred solely from
the observable communication between agents. Moreover, compliance for an agent
simply means satisfying the commitments he has toward others [34]. We elaborate
on commitments in the following.

2.2 The Concept of Commitment

A commitment is of the form C(debtor, creditor, antecedent, consequent),
where debtor and creditor are agents, and antecedent and consequent are propo-
sitions. A commitment C(x, y, r, u) means that x is committed to y that if r holds, then
it will bring about u. If r holds, then C(x, y, r, u) is detached, and the commitment
C(x, y, T, u) holds (T being the constant for truth). If u holds, then the commit-
ment is discharged and doesn’t hold any longer. All commitments are conditional;
an unconditional commitment is merely a special case where the antecedent equals
T. Examples 3–5 illustrate these concepts. In the examples, EBook is a bookseller,
and Alice is a customer; let BNW and $12 refer to the propositions Brave New World
has been delivered and payment of $12 has been made, respectively.

Example 3. (Commitment) C(EBook, Alice, $12, BNW) means that EBook com-
mits to Alice that if she pays $12, then EBook will send her the book Brave New
World.

Example 4. (Detach) If Alice makes the payment, that is, if $12 holds, then
C(EBook, Alice, $12, BNW) is detached. In other words, C(EBook, Alice, $12,
BNW) ∧ $12 ⇒ C(EBook, Alice, T, BNW).

Example 5. (Discharge) If EBook sends the book (if BNW holds), then both
C(EBook, Alice, $12, BNW) and C(EBook, Alice, T, BNW) are discharged. That
is to say, BNW ⇒ ¬ C(EBook, Alice, T, BNW) ∧ ¬ C(EBook, Alice, $12, BNW).

Importantly, an agent can manipulate commitments by performing certain oper-
ations (technically, speech acts). The commitment operations are reproduced below
(from [35]). Create, Cancel, and Release are two-party operations, whereas
Delegate and Assign are three-party operations.

• Create(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to hold.
• Cancel(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to not hold.
• Release(x, y, r, u) is performed by y, and it causes C(x, y, r, u) to not hold.
• Delegate(x, y, z, r, u) is performed by x, and it causes C(z, y, r, u) to hold.
• Assign(x, y, z, r, u) is performed by y, and it causes C(x, z, r, u) to hold.

We introduce Declare(x, y, r) as an operation performed by x to inform y that r
holds. This is not a commitment operation, but may indirectly affect commitments

142 A.K. Chopra et al.

by causing detaches and discharges. In relation to Example 4, when Alice informs
EBook of the payment by performing Declare(Alice, EBook, $12), then the
proposition $12 holds, and causes a detach of C(EBook, Alice, $12, BNW).

A deductive strength relation can be defined between commitments [7]: C(x, y,
r, u) is stronger than C(x, y, s, v) if and only if s entails r and u entails v. So, for
instance, a detached commitment C(x, y, T, u) is stronger than the commitment
before detachment C(x, y, r, u).

A commitment arises in a social or legal context. The context defines the rules of
encounter among the interacting parties, and often serves as an arbiter in disputes
and imposes penalties on parties that violate their commitments. For example, eBay
is the context of all auctions that take place through their service; if a bidder does
not honor a payment obligation for an auction that it has won, eBay may suspend
the bidder’s account.

2.3 System Specification: Protocols

Traditional approaches describe a protocol in terms of the occurrence and relative
order of specific messages.

The protocol of Fig. 1 begins with EBook sending Alice an offer. Alice may
either accept or reject the offer. If she rejects it, the protocol ends; if she accepts it,
EBook sends her the book. Next, Alice sends EBook the payment. Because an FSM
ignores the meanings of the messages, it defines compliance based on low-level
considerations, such as the order in which commitments are fulfilled. Moreover,
this type of specification is often inflexible. As illustrated in Example 2, Alice fails
to comply if she sends the payment before she receives the book. Note that this
drawback applies to all process-oriented specification languages used for specifying
rich social concepts such as business processes (e.g. BPMN [2] and BPEL [1]).

In contrast, we build on commitment protocols [42], which describe mes-
sages along with their business meanings. Commitment operations are realized
in distributed systems by the corresponding messages. Commitment protocols are
therefore defined in terms of the operations introduced above: Create, Cancel,
Release, Delegate, Assign, and Declare. We introduce an abbreviation. Let c =
C(x, y, r, u). Then, we Create(c) abbreviates Create(x, y, r, u).

Fig. 1 A purchase protocol
as a finite state machine,
taken from [7]. Each message
is tagged with its sender and
receiver (here and below, E is
EBook; A is Alice)

Requirements as Goals and Commitments Too 143

Table 1 A purchase protocol expressed in terms of commitments

Domain-specific message Commitment-oriented message

Offer(E,A, $12, BNW) Create(E, A, $12, BNW)
Accept(A,E,BNW, $12) Create(A, E, BNW, $12)
Reject(E,A, $12,BNW) Release(E, A, $12, BNW)
Deliver(E,A,BNW) Declare(E, A, BNW)
Pay(A,E, $12) Declare(A, E, $12)

Table 1 shows an alternative purchase protocol specified in terms of com-
mitments. The semantics of domain-specific messages are explained in terms of
commitment operations. For example, an Offer message is interpreted as a Create
operation, whereas a Reject message releases the debtor from the commitment.

Table 2 introduces the commitments used in Figs. 2 and 3.
Let us walk through the interaction of Fig. 2, which shows a possible enactment

of the protocol described in Table 1. Upon sending Create(cB), EBook infers cB;
upon receiving the message Alice infers cB. Upon sending Declare($12), Alice
infers that $12 holds. Consequently, she infers that cB is detached, yielding cUB.
When EBook receives Declare ($12), it infers cUB. EBook finally sends Declare
(BNW), thus concluding that its commitment is discharged. When Alice receives
Declare(BNW), she draws the same inference.

Notice that Table 1 does not specify any ordering constraints on messages. In
effect, each party can send messages in any order. Figure 3 shows some additional
enactments of the purchase protocol of Table 1. Neither the enactments of Fig. 3(b)
and (c) nor the one in Fig. 2 are legal according to the FSM in Fig. 1.

So when is an agent compliant with a protocol? The answer is simple: an agent
complies if its commitments are discharged, no matter if delegated or otherwise

Table 2 Commitments used
as running examples in this
chapter

Name Commitment

cA C(Alice, EBook, BNW, $12)
cB C(EBook, Alice, $12, BNW)
cUA C(Alice, EBook, T, $12)
cUB C(EBook, Alice, T, BNW)

Fig. 2 An enactment of the
protocol of Table 1 in terms
of (a) domain-specific
messages and (b)
commitments. We show only
the strongest commitments at
each point. For example,
because cUB is stronger than
cB, cUB is sufficient

144 A.K. Chopra et al.

Fig. 3 Three possible enactments of the protocol of Table 1

manipulated. Traditional approaches force a tradeoff: checking compliance is sim-
ple with rigid automaton-based representations and difficult with flexible reasoning.
Protocols specified using commitments find the golden mean, promoting flexibility
by constraining interactions at the business level, yet providing a rigorous notion of
compliance.

2.4 Architecture, Interoperability, and Middleware

In the discussion above, we used examples where the commitments are defined over
specific agents (for example, Alice and EBook). General protocols can be defined
by stating the commitments among roles instead of agents. For example, we can
replace Alice with Customer and EBook with Vendor and use the commitments
of the previous sections to specify a general protocol for commercial transactions.
These generic protocols can then be used in a specific context by binding a specific
agent to each role of the protocol.

Protocols are architectural specifications: they specify the interconnections
between agents (via roles). Commitment protocols abstract away from consider-
ations of control and data flow, instead focusing on the contractual relationships
among agents. This affords agents flexibility in protocol enactment. However, flex-
ibility poses challenges for interoperability: if an agent may send any message at
any time, how do we ensure that they will come to the same conclusion about their
commitments towards each other? Example 6 illustrates a case of misalignment.

Example 6. Assume both Alice and EBook infer cB. Subsequently, Alice’s payment
for the book and EBook’s cancellation of the offer cB cross in transit (we are dealing
with distributed systems). When Alice receives EBook’s cancellation, she considers
it as having arrived too late; EBook considers Alice’s payment late. Thus, Alice
concludes cUB, whereas EBook does not—they are misaligned.

Interoperability concerns are addressed in [6, 7] via the notion of commitment
alignment. Alignment expresses the intuition that whenever a creditor computes
(that is, infers) a commitment, the presumed debtor also computes the same
commitment. If agents get misaligned, their interaction will potentially break down.

Requirements as Goals and Commitments Too 145

Traditionally, interoperability among services has been captured in terms of whether
agents can send and receive messages in a compatible manner—for example, in
terms of (the absence of) deadlocks. Such formalizations of interoperability are
useful, but work at a lower level than commitments. Two agents may be aligned
commitment-wise, but deadlocked because they are both waiting for the other to
act. Conversely, agents may be live, but misaligned.

Alignment motivates a middleware that maintains and monitors commitments,
and transparently takes necessary actions to maintain alignment [8]. For example,
the middleware would transparently notify the debtors when an event occurs that
detaches a commitment; otherwise, in a distributed system where different agents
have likely observed different events, agents could get easily misaligned. Compare
this to what traditional middleware, for example, reliable message queues, do. They
send acknowledgments, store messages until they are consumed, maintain message
order, and so on, in other words, do the bookkeeping to maintain interoperabil-
ity. A commitment-oriented middleware would do the bookkeeping at a high level,
relegating messages queues to a lower level.

The middleware would ideally be able to monitor goals and commitments, rea-
son about compliance and interoperability, and support adaptations. In essence, the
middleware would encode a business semantics and form a common substrate for
all kinds of business applications. The middleware would offer a new programming
model: it will support writing services directly in terms of goals and commitments,
and will alleviate greatly the burden of writing agents.

3 From Goals to Commitments

Let us begin by summarizing the above discussion about commitments.

• Commitments abstract over data and control flow.
• Commitments are a social abstraction—being grounded in interaction, they

encode publicly verifiable relationships among agents.
• Commitments support a notion of compliance that enables an agent to act flexibly.
• Protocols, and thus systems, may be specified as the commitments that may arise

among the agents participating in the system.
• Commitments may be supported in middleware: this includes monitoring and

reasoning for the purposes of compliance and interoperability.

The parallel with the notion of goals as studied in RE may already be obvious.

• Goals abstract over data and control flow specifications.
• Goals represent the particular states of the world an agent wants to achieve.
• Goals are also used in reasoning about flexibility and adaptability, especially in

terms of the variants supported by a goal model.

146 A.K. Chopra et al.

• Agents may be specified in terms of abstractions such as goals, capabilities, and
so on.

• Goals may also be supported in middleware: an agent can monitor its goals and
act in order to achieve them.

Goals and commitments are complementary. An agent has certain goals that it
wants to satisfy, and in doing so it typically must make (to others) or get (from oth-
ers) commitments about certain goals. Alternatively, an agent has commitments to
others (and a goal to comply), and it then adopts specific goals in order to discharge
its commitments.

Thus, there are two things that an agent designer or the agent itself, by
introspection at runtime, may do.

First, an agent may induce a protocol—the set of commitments—that are nec-
essary to supports the goals it wants to achieve. The agent would additionally
publish the protocol along with the role it has adopted in the protocol, and possibly
invite others to adopt the other roles in the protocol or just wait to be discovered.
Example 7 illustrates this method.

Example 7. Alice has the goal BNW. Alice figures that to get the book, it
must interact with a bookseller and pay the bookseller for the book. So Alice
induces a protocol with two roles, customer and merchant, with the commitment
C(customer, merchant, BNW, payment). She adopts customer, and publishes the
protocol as her interface. Eventually, a seller may sell BNW to Alice by playing role
merchant.

Second, an agent may select a protocol from a repository. This recognizes the
fact that protocols are reusable specifications of interaction [14]. Indeed, this is the
case with many standardized protocols such as for financial transactions [12]. An
agent would naturally want to verify if a protocol selected from some repository
were suitable for the achievement of the agent’s goals. The agent would also want
to verify that if he makes a certain commitment, then his goals support fulfillment
of the commitment.

The notion of compliance with a protocol helps decouple one agent’s specifi-
cation from another agent’s. For example, a merchant would only care (perhaps
modulo other properties deriving from interaction such as trust and reputation) that
Alice is committed to payment for the book, irrespective of whether Alice actually
intends to pay. In other words, if an agent commits to another for something, from
the perspective of the latter, it does not matter much what the former’s goals are or
how the former will act to bring about the goal he committed to.

We now sketch some elements of the reasoning one can perform with goals
and commitments. Given some role in a protocol and some goal that the agent
wants to achieve, goal support verifies whether an agent can potentially achieve
his goal by playing that role. Commitment support checks if an agent playing a
role is potentially able to honor the commitments he may make as part of playing
the role.

Requirements as Goals and Commitments Too 147

Note the usage of the words support and potentially. Goal (commitment) support
is a weaker notion than fulfillment; support gives no guarantee about fulfillment at
runtime. And yet, it is a more pragmatic notion for open systems, where it is not
possible to make such guarantees anyway. For instance, a commitment that an agent
depends upon to fulfill his goal may be violated.

Goal support We illustrate the basic intuitions with examples.
An agent’s goal is supported if the agent has a capability for it (Example 8).

Example 8. Consider Alice’s goal payment. Alice supports the goal if she has a
capability for it.

An agent’s goal is supported if it can get an appropriate commitment from some
other agent about the state of affairs that the goal represents (Example 9).

Example 9. Consider Alice’s goal BNW. The commitment C(merchant, Alice,
payment, BNW) from some merchant supports the goal, but only if Alice sup-
ports payment. The intuition is that Alice won’t be able to exploit the merchant’s
commitment unless she pays.

An agent’s goal is supported if it can make a commitment to some other agent
for some state of affairs (presumably one that the latter would be interested in) if the
latter brings about the state of affairs that the goal represents (Example 10).

Example 10. Consider EBook’s goal payment. He can support this goal by making
an offer to some customer, that is, by creating C(EBook, customer, payment,
BNW).

The intuitions may be applied recursively for decomposition in goal trees. Thus
for example, if an agent wants to support g, and g is and-composed into g0 and g1,
then the agent would want to verify support for both g0 and g1, and so on.

Commitment support It makes sense to check whether an agent will be able to
support the commitments it undertakes towards others.

Commitment support reduces to goal support for the commitment consequent
(Example 11).

Example 11. Consider that C(EBook, customer, payment, BNW) holds. EBook
supports his goal payment by the commitment; however, if he does not support
BNW, then if the customer pays, he risks being noncompliant.

We consider goal and commitment support as separate notions. A reckless or
malicious agent may only care that his goals are supported regardless of whether his
commitments are supported; a prudent agent on the other hand would ensure that
the commitments are also supported.

Reasoning for support as described above offers interesting possibilities. Some
examples: (i) [Chaining] x can reason that C(x, y, g0, g1) is supported by C(z, x, g2,
g1) if x supports g2; (ii) [Division of labor] x can support a conjunctive goal g0 ∧ g1

by getting commitments for g0 and g1 from two different agents; (iii) [Redundancy]
to support g, x may get commitments for g from two different agents; and so on.

148 A.K. Chopra et al.

4 Applying Goals and Commitments

We show how the conceptual model and the reasoning techniques can be used to rep-
resent and analyze a setting concerning flight tickets purchase via a travel agency.
Four main roles participate in this protocol: travel agency, customer, airline,
and shipper. Customers are interested in purchasing flight tickets for some rea-
son (e.g. holidays or business trips), travel agencies provide a tickets-selling service
to customers by booking flight tickets from airlines, shippers offer a ticket delivery
service.

Figure 4 describes the protocol in the travel agency scenario. The protocol is
defined as a set of roles (circles) connected via commitments; the commitments are
labeled (Ci). Table 3 explains the commitments.

Figure 5 shows the situation where agent Fly has adopted the role travel agency
in the protocol of Fig. 4; the other roles are not bound to agents. Fly has one top-level
goal: selling tickets (ticketsSold). In order to support it, three sub-goals should be
supported: tickets should be obtained, tickets should be delivered to the customer,
and the service should be paid. Tickets can be obtained if the tickets are reserved

Fig. 4 Role model for the travel agency scenario. Commitments are rectangles that connect (via
directed arrow) a debtor to a creditor

Table 3 Commitments in the travel agency protocol

Label Description

C1 Shipper to travel agency: if the shipping cost have been paid,
the flight tickets will be shipped

C2 Travel agency to customer: if the booking service has been
paid, the electronic tickets will be e-mailed

C3 Travel agency to customer: if the booking service and the
shipping cost have been paid, flight tickets will be shipped

C4 Airline to travel agency: if flight tickets have been paid,
tickets will be reserved

C5 Airline to customer: if tickets have been shown, flight
boarding will be allowed

Requirements as Goals and Commitments Too 149

Fig. 5 Visual representation of Fly’s travel agency-bound specification

and they have been paid. Fly is capable of goal ticketsPaid. There are two ways to
deliver tickets: either electronic tickets are e-mailed or tickets are posted. In order
to send tickets via mail, Fly has to ship the tickets and pay for the shipping. Fly is
capable of eticketsEmailed. E-mailing tickets contributes positively (++S) [18] to
softgoal costsKeptLow, whereas sending via shipping contributes negatively (–S)
to such softgoal.

We present now some queries concerning goal and commitment support that can
be run against the specification of Fig. 5.

Query 1. Can Fly support goal ticketsSold?
The answer to this query is yes. Fly can support ticketsObtained by using its

capability for ticketsPaid and getting C4 from some airline. Fly supports tickets-
Delivered via its capability for eticketsEmailed. Fly can support servicePaid by
making C2 to some customer.

An alternative solution involves sending tickets via shipping. Fly could support
ticketsShipped and shippingPaid if it makes C3 to a customer (which sup-
ports servicePaid and shippingPaid) and get C1 from some shipper (to support
ticketsShipped).

Another solution includes supporting both eticketsEmailed and ticketsSent:
both C2 and C3 are made to the customer.

Query 2. Can Fly support goals ticketsSold and costsKeptLow?
This query adds an additional constraint to Query 1: supporting softgoal

costsKeptLow. The only solution is when tickets are e-mailed: eticketsEmailed
contributes positively to costsKeptLow and the softgoal gets no negative con-
tribution. Posting tickets does not work: ticketsSent contributes negatively to
costsKeptLow.

150 A.K. Chopra et al.

Query 3. Can Fly support commitment C3 to customer?
As observed before, commitment support reduces to goal support. Thus, let’s

check whether Fly can support ticketsShipped if the antecedent of C3 (service-
Paid and shippingPaid) holds. Given the goal tree hierarchy of Fig. 5, the three
goals that relate to C3 are children of the top-level goal ticketsSold. The second
solution of Query 1 tells us that Fly can support C3 as it contains all such goals.

5 Discussion

Goal-oriented requirements engineering methodologies have been conceived with
a traditional view of software in mind. They are adequate to design systems where
stakeholders cooperate in a fully specified environment, but they are not thought for
open systems composed of autonomous and heterogeneous participants.

The MAP approach [29] is describes processes in terms of intentions and strate-
gies: a map is a directed graph where nodes are intentions and directed arrows
represent strategies. A strategy explains how to achieve one intention starting from
another intention. Maps have been recently used to define the concept of Intentional
Services Oriented Architecture (ISOA) [30], where the authors conceive services in
terms of intentional abstractions such as goals. In our approach, we model agents
as goal-driven entities. However, we place emphasis on the modeling of the system
itself via the social abstraction of commitments.

The i∗ framework [43] starts from the identification of the stakeholders in
the analyzed organizational setting and model these stakeholders—actors—in
terms of their own goals and the dependencies between them. However, as con-
cerns open settings such as socio-technical systems, i∗ suffers from two primary
drawbacks.

One, dependencies do not capture business relationships as commitments do.
Guizzardi et al. [20] and Telang and Singh [39] highlight the advantages of com-
mitments over dependencies for capturing relationships between roles. Both Telang
and Singh and Gordijn et al. [19] especially note that dependencies do not capture
the reciprocal nature of a business transaction.

Two, the strategic rationale model violates the heterogeneity principle by making
assumptions about the goals of others actors. Commitments, by contrast, obviate
looking inside an actor; as mentioned above, they completely decouple agents.

i∗ has been recently used to describe services [23]; this approach violates
agents heterogeneity by making assumptions about other participants’ internals.
Commitment protocols are more reusable than the goal models of actors [14].

Tropos [4] builds on top of i∗ and adds models and concepts to be used in the
development phases that follow requirements engineering. Being a derivative of i∗,
Tropos suffers of the same problem concerning dependencies. Tropos provides an
architectural model for the agents to develop, but exploits a weak notion of agency.
Agents are designed and implemented under the assumption that they will cooperate

Requirements as Goals and Commitments Too 151

with others. Our proposal differs in that cooperation is guaranteed by mutual interest
in a commitment: the agents playing debtor and creditor have their own reasons to
interact via commitments, but they don’t (and can’t) know the other party’s motiva-
tions. Penserini et al. [25] have extended Tropos to design web services that support
the stakeholders’ goals. The main limitation of this approach is that it assumes that
requirements engineers have a global view on all the actors.

KAOS [10] exploits a system-oriented perspective to specify requirements.
Stakeholders are essential to gather system goals, but they are not explicitly rep-
resented in KAOS models. Leaf level goals are assigned to agents on the basis of
a responsibility principle; van Lamsweerde has also discussed how KAOS require-
ments models can be mapped to software architecture [40]. KAOS is effective for
the development of traditional software systems, but lacks of the proper abstractions
to design autonomous and heterogeneous agents in open systems.

Gordijn et al. [19] combine i∗ goal modeling with profitability modeling for
the various stakeholders to design e-services. In such a way, the authors consider
not only the intentions of the agents, but also the economic value of a service.
Their approach is less generic than ours: economic value exchanges are a very
important criteria but not the only one; moreover, they assume a monolithic
system-development point of view which does not suit well in open systems.

Liu et al. [22] propose an i∗ extension intended for the design of open systems,
and propose some reasoning techniques that can be executed against these models.
The authors formalize commitments in a weaker sense—as a relation between an
actor and a service, not between actors, as is done in our approach.

Bryl et al. [5] use a planning-based approach to design socio-technical systems.
The main intuition behind this work is to explore the space of possible alternatives
for satisfying some goal. However, unlike us, they follow goal dependencies inside
the dependee actors, thus violating heterogeneity.

6 Conclusion

The power of any technique for eliciting, modeling and analyzing requirements rests
on the primitive concepts used to conceptualize them. The advent of goal-orientation
in RE twenty years ago brought about a shift from a functional to an intentional view
of software systems. The implications of this shift are still being worked out.

This chapter advocates a further shift from an intentional to a social view of
requirements for socio-technical systems. The proposal continues along a path orig-
inally defined by i∗ in Eric Yu’s PhD thesis. Our new proposal is founded on the
concept of commitment and related social concepts; it calls for a new form of sys-
tem specification that prescribes a system’s course of action more concretely than
goal-oriented techniques, but more abstractly than process-oriented ones. We see
this proposal as yet another step towards an agent-oriented view of socio-technical
systems, their conceptualization, design, and evolution.

152 A.K. Chopra et al.

References

1. Web Services Business Process Execution Language Version 2.0 (April 2007)
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. Accessed 6 May 2010

2. BPMN: Business process modeling notation, v1.1 (January 2008) http://www.bpmn.org/.
Accessed 6 May 2010

3. Bratman ME (1987) Intention, plans, and practical reason. Harvard University, Cambridge,
MA

4. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: an agent-
oriented software development methodology. Autonomous Agents Multi-Agent Systems
8(3):203–236

5. Bryl V, Giorgini P, Mylopoulos J (2009) Designing socio-technical systems: from stakeholder
goals to social networks. Reqs Eng 14(1):47–70

6. Chopra AK, Singh MP (2008) Constitutive interoperability. In: Proceedings of the seventh
international conference on autonomous agents and multiagent systems, pp 797–804, Estoril,
Portugal

7. Chopra AK, Singh MP (2009) Multiagent commitment alignment. In: Proceedings of the
eighth international conference on autonomous agents and multiagent systems, Budapest
Hungary, pp 937–944

8. Chopra AK, Singh MP (2009) An architecture for multiagent systems: an approach based on
commitments. In: Proceedings of the 7th international workshop on programming multi-agent
systems, Budapest Hungary

9. Cohen PR, Levesque HJ (1990) Intention is choice with commitment. Artificial Intelligence
42:213–261

10. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition.
Science Computer Programming 20(1–2):3–50

11. Desai N, Mallya AU, Chopra AK, Singh MP (2005) Interaction protocols as design abstrac-
tions for business processes. IEEE Trans Softw Eng 31(12):1015–1027

12. Desai N, Chopra AK, Arrott M, Specht B, Singh MP (2007) Engineering foreign exchange
processes via commitment protocols. In: Proceedings of the 4th IEEE international conference
on services computing, IEEE Computer Society, Los Alamitos, pp 514–521

13. Desai N, Chopra AK, Singh MP (2007) Representing and reasoning about commitments
in business processes. In: Proceedings of the 22nd conference on artificial intelligence,
Vancouver, pp 1328–1333

14. Desai N, Chopra AK, Singh MP (2010) Amoeba: a methodology for modeling and evolution
of cross-organizational business processes. ACM Trans Softw Eng Methodol 19(2):6:1–6:45

15. Emery FE (1959) Characteristics of sociotechnical systems. Travistock Institute of Human
Relations, London

16. Fornara N, Colombetti M (2002) Operational specification of a commitment-based agent com-
munication language. In: Proceedings of the 1st international joint conference on autonomous
agents and multiagent systems (AAMAS), ACM, Bologna, Italy, pp 535–542

17. Fornara N, Colombetti M (2004) A commitment-based approach to agent communication.
Applied Artificial Intelligence 18(9–10):853–866

18. Giorgini P, Mylopoulos J, Nicchiarelli E, Sebastiani R (2003) Reasoning with goal models. In:
Conceptual modeling—ER 2002. LNCS, vol 2503. Springer, Heidelberg, Berlin, pp 167–181

19. Gordijn J, Yu E, van der Raadt B (2006) E-service design using i∗ and e3value modeling.
IEEE Softw 23(3):26–33

20. Guizzardi RSS, Guizzardi G, Perini A, Mylopoulos J (2007) Towards an ontological account
of agent-oriented goals. In: Software engineering for multi-agent systems V. LNCS, vol 4408.
Springer, Heidelberg, Berlin, pp 148–164

21. Kaabi RS, Souveyet C, Rolland C (2004) Eliciting service composition in a goal driven
manner. In: Proceedings of the 2nd international conference on service oriented computing,
New York, pp 308–315

Requirements as Goals and Commitments Too 153

22. Liu L, Liu Q, Chi CH, Jin Z, Yu E (2008) Towards a service requirements modelling ontology
based on agent knowledge and intentions. Int J Agent-Oriented Softw Eng 2(3):324–349

23. Lo A, Yu E (2007) From business models to service-oriented design: a reference catalog
approach. In: Proceedings of the 26th international conference on conceptual modeling (ER
2007), Auckland, pp 87–101

24. Mallya AU, Singh MP (2007) An algebra for commitment protocols. J Autonomous Agents
Multi-Agent Systems 14(2):143–163

25. Penserini L, Perini A, Susi A, Mylopoulos J (2006) From stakeholder needs to service
requirements. In: Workshop on service-oriented computing: consequences for engineering
requirements (SOCCER’06) Minneapolis

26. Robinson WN, Purao S (2009) Specifying and monitoring interactions and commitments in
open business processes. IEEE Softw 26(2):72–79

27. Rolland C, Souveyet C, Achour CB (1998) Guiding goal modeling using scenarios. IEEE
Transac Softw Eng 24(12):1055–1071

28. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling in require-
ments engineering. In: Proceedings of the IEEE international symposium on requirements
engineering, Limerick, Ireland

29. Rolland C, Prakash N, Benjamen A (1999) A multi-model view of process modelling. Reqs
Eng 4(4):169–187

30. Rolland C, Kaabi RS, Kraïem N (2007) On ISOA: intentional services oriented architecture.
In: Proceedings of CAiSE 2007.LNCS, vol 4495. Springer, Heidelberg, Berlin, pp 158–172

31. Ropohl G (1999) Philosophy of socio-technical systems. Society Philosophy Technol 4(3):
55–71

32. Ross DT (1977) Structured analysis (SA): a language for communicating ideas. IEEE Trans
Softw Eng 3(1):16–34

33. Singh MP (1991) Social and psychological commitments in multiagent systems. In: AAAI
fall symposium on knowledge and action at social and organizational levels, Pacific Grove,
California, pp 104–106

34. Singh MP (1998) Agent communication languages: rethinking the principles. IEEE Computer
31(12):40–47

35. Singh MP (1999) An ontology for commitments in multiagent systems: toward a unification
of normative concepts. Artificial Intelligence Law 7:97–113

36. Singh MP (2008) Semantical considerations on dialectical and practical commitments. In:
Proceedings of the 23rd conference on artificial intelligence, Chicago, pp 176–181

37. Singh MP, Chopra AK (2009) Programming multiagent systems without programming agents.
In: Proceedings of the 7th international workshop on programming multiagent systems
(ProMAS 2009), invited paper, Budapest

38. Singh MP, Chopra AK, Desai N (2009) Commitment-based service-oriented architecture.
IEEE Computer 42(11):72–79

39. Telang PR, Singh MP (2009) Enhancing Tropos with commitments: a business metamodel
and methodology. In: Borgida A, Chaudhri V, Giorgini P, Yu E (eds) Conceptual modeling:
foundations and applications. LNCS, vol 5600. Springer, Heidelberg, Berlin, pp 417–435

40. van Lamsweerde A (2003) From system goals to software architecture. In: Formal methods
for software architectures. LNCS, vol 2804. Springer, Heidelberg, Berlin, pp 25–43

41. Winikoff M, Liu W, Harland J (2005) Enhancing commitment machines. In: Proceedings
of the 2nd international workshop on declarative agent languages and technologies (DALT).
LNAI, vol 3476. Springer, Heidelberg, Berlin, pp 198–220

42. Yolum P, Singh MP (2002) Flexible protocol specification and execution: Applying event cal-
culus planning using commitments. In: Proceedings of the 1st international joint conference
on autonomous agents and multiagent systems, ACM, Bologna, Italy, pp 527–534

43. Yu ES (1997) Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the third IEEE international symposium on requirements
engineering, Annapolis, pp 226–235

A Method for Capturing and Reconciling
Stakeholder Intentions Based on the Formal
Concept Analysis

Mikio Aoyama

Abstract Information systems are ubiquitous in our daily life. Thus, information
systems need to work appropriately anywhere at any time for everybody.
Conventional information systems engineering tends to engineer systems from the
viewpoint of systems functionality. However, the diversity of the usage context
requires fundamental change compared to our current thinking on information sys-
tems; from the functionality the systems provide to the goals the systems should
achieve. The intentional approach embraces the goals and related aspects of the
information systems. This chapter presents a method for capturing, structuring and
reconciling diverse goals of multiple stakeholders. The heart of the method lies in
the hierarchical structuring of goals by goal lattice based on the formal concept
analysis, a semantic extension of the lattice theory. We illustrate the effective-
ness of the presented method through application to the self-checkout systems for
large-scale supermarkets.

1 Introduction

Ever-intensifying the dependencies of our society to the information technologies
is increasing the diversity of stakeholders of the information systems and the com-
plexity of their intentions towards the information systems [14]. In requirements
elicitation, it is essential to elicit the intentions of diverse stakeholders and reconcile
them.

Conventionally, the intentions have been addressed by either stakeholder analysis
or goal-orientation.

In stakeholder analysis, a stakeholder matrix is a common technique to identify
the dependencies between stakeholders and requirements [5, 7]. The matrix can help
clustering the requirements. However, it does not enable to order the priority of the

M. Aoyama (B)
Nanzan University, 27 Seirei, Seto 489-0863, Japan
e-mail: mikio.aoyama@nifty.com

155S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_9, C© Springer-Verlag Berlin Heidelberg 2010

156 M. Aoyama

requirements due to the lack of the concept of order in the model. Another approach
is to apply multiple viewpoints in order to identify the different perspectives to a
system [6, 10]. However, available techniques mainly focus on the identification of
aspects, and are rather limited in the resolution of complex goals.

On the other hand, goal-oriented techniques have been extensively developed in
requirements engineering [1, 9, 11, 12, 19]. Goal formalisms and associated tech-
niques and tools to formulate goals are developed. However, those formalisms are
based on the single structure of hierarchy. Thus, it is rather difficult to structure the
goals of diverse stakeholders due to the lack of a formal model to order a set of goals
claimed by different stakeholders.

This chapter proposes a method of structuring and reconciling the goals of
diverse stakeholders based on the goal lattice, a semantic extension of FCA (Formal
Concept Analysis) backed by the lattice theory [8, 17].

Major contributions of this chapter include:

1. Goal lattice, a hierarchical model of goals based on the lattice theory; a
formal model of structuring the goals/sub-goals of multiple stakeholders by
semantically extending the FCA,

2. A structuring and reconciliation method of goals with the goal lattice by
examining the dependencies of goals/sub-goals and stakeholders, and

3. A proof of the model and method proposed by applying them to the self-checkout
systems in large-scale supermarkets.

The structure of this chapter is as follows; Sect. 2 explains the problem of struc-
turing and reconciling stakeholder intentions. Section 3 briefly reviews the related
works. Section 4 summarizes the FCA (Formal Concept Analysis) and defines the
Goal Lattice based on the FCA. Section 5 explains the process and methodology of
structuring and reconciling goals with Goal Lattice. Section 6 illustrates the appli-
cation of the proposed methodology to the self-checkout systems for large-scale
supermarket, followed by the evaluation of the approach in Sect. 6. Discussion and
conclusion respectively follow in Sects. 7 and 8.

2 Problem of the Structuring and Reconciliation
of Stakeholder Goals

Stakeholders and goals play a pivotal role in eliciting requirements. However,
requirements tend to be diverse due to the diversity of the stakeholders. Thus, it
is necessary to identify the stakeholders of the system, and their intentions towards
the system. Intentions of the stakeholders can be first identified as goals for system
to be. However, each stakeholder could claim diverse goals. Those diverse goals
could depend on one another. Thus, it is highly complicated to identify the goals
which are of high importance and influence to the system while ensuring fairness
regarding the interests of the stakeholders of the system.

A Method for Capturing and Reconciling Stakeholder Intentions 157

Conventional stakeholder analysis and goal analysis deal with a set of goals or
a tree structure of goals. However, it is difficult to structure a set of diverse goals
claimed by a set of diverse stakeholders. There is a need to provide a methodology
to structure the diverse goals and answer the following questions.

1. Is goal X more important than goal Y?
2. Is goal X dependent on goal Y, that is, if goal Y is met, are all or a subset of

sub-goals of goal X met?

It is becoming more important to ensure the fairness of the goals of stakeholders
affected by the system, and to comply with the regulations, while those requirements
are becoming more complicated. Therefore, it is necessary to provide a methodology
to systematically dissolve the interwoven goals and structure the goals with order.

3 Related Works

There are three major disciplines related this work:
Stakeholder Analysis [2, 5, 7]. Stakeholder analysis is a set of techniques to

identify the stakeholders, assess the importance and influence of stakeholders,
and evaluate the impact and priority of requirements based on the stakeholders.
Conventional techniques help to identify the dependencies between stakeholders
and requirements with a stakeholder matrix. However, those techniques mostly
use heuristic approaches. It is a challenge to systematically identify the depen-
dencies between stakeholders and requirements, and structure the requirements of
stakeholders.

Multiple Viewpoints [6, 10, 16]. “Viewpoint” is a subtle model to capture
multiple concerns of stakeholders of the system in the requirements acquisition pro-
cess. There is a large amount of literature on multiple viewpoints in requirements
engineering. Most of the literature share the common issues in requirements elici-
tation; dealing with diverse stakeholders. For example, VOSE (Viewpoint-Oriented
Systems Engineering) [6] proposes viewpoint as a composition of actor, knowl-
edge source, and role. In PREView, a viewpoint can be associated with a set of
stakeholders [16].

Goal-Orientation [1, 9, 11–13, 19]. Goal-oriented techniques have been exten-
sively studied in the requirements engineering community. Major techniques
include KAOS [9], Goal/Strategy Map [13], and i∗ [19]. Those techniques model
goals and their relationship with a graph with some semantic extensions on the
edge, and analyze the goals in a top down manner. However, it is difficult for prac-
titioners to deal with the abstract concept of a goal and to find the right goal [13].
Furthermore, we need to deal with multiple stakeholders. Unlike the conventional
goal model of a single tree, goals of multiple stakeholders are not clearly related in
a single tree. In this chapter, we address the challenge of bottom-up structuring of
seemingly un-related goals of multiple stakeholders.

158 M. Aoyama

4 The Goal Lattice Model

4.1 FCA (Formal Concept Analysis)

FCA (Formal Concept Analysis) is a formal model based on the complete lattice
of formal concepts [8, 14, 17]. Here, a concept refers a pair of a set of objects of
common attributes and a set of related attributes.

In FCA, the concept lattice plays a key role to model the concepts. A con-
cept lattice is a complete lattice with the following order relation defined by the
subconcept-subconcept relation:

Definition 1: Order Relation

C1(A1, B1) ≤ C2 (A2, B2)) iff A1 ⊆ A2 (iff B1 ⊇ B2) (1)

Definition 2: Complete Lattice
A complete lattice is a lattice with the infimum and supremum under an order

relation defined by (1).
By the definition, the concept lattice is a structured subset of objects and

attributes under the order relation. Thus, the concept lattice can model a structural of
a system of objects in terms of a set of specific relations on attributes of the objects.
Thus, it may represent cognitive structure of real-world [15, 17].

The concept lattice can be generated from a context table exemplified by Fig. 1(a)
and is represented with Hasse diagram, a lattice diagram used in FCA, illustrated in
Fig. 1(b).

A context table in Fig. 1(a) represents the relationship between objects, stake-
holders, in row and attributes, concerns of the stakeholders, in column as the
intersection, X, in the table. The context table can help to understand the rela-
tionships among stakeholders and their concerns. However, it is not possible to
hierarchically structure the relationships among stakeholders and concerns, which
is the major drawback of the table form, i.e. matrix formalism.

The concept lattice of Fig. 1(b) is generated from the context table of Fig. 1(a)
by tracing the relationships in the following manner.

1. Put the top concept, C11, including all objects at the top, ({Manger, IT Dep., End
User, Developer}, ϕ), and the bottom concept, C51, including all the attributes at
the bottom, (ϕ, {Productivity, Cost, Technology, Usability}).

2. Identify the second concept, C21 and C22, by adding one element of attribute
which is maximally shared by the elements of object, Productivity or Cost.

3. By repeating the step 2 along with the lattice of objects and attributes, then the
procedure terminates by reaching to the bottom concept.

A Method for Capturing and Reconciling Stakeholder Intentions 159

Attributes (M)

Object (G) Productivity Cost Technology Usability

Manager X X
IT Dep. X X X
End User X X
Developer X X

(a) Concept Table

({Manager, IT Dep.}
{Productivity, Cost})

({Manager, IT Dep.,
Developer}, Cost)

({Manager, IT Dep.,
End User, Developer}, f)

(IT Dep., {Productivity,
Cost, Technology})

(f, { Productivity, Cost,
Technology, Usability})

({IT Dep., Developer}
{Cost, Technology})

({Manager, IT Dep.,
End User}, Productivity)C21

C11

C22

C31 C32

C41

C51

(b) Concept Lattice in Hasse Diagram

Fig. 1 Context table and context lattice

With the abovementioned procedure, the elements of attributes are incrementally
added from top to bottom, while the elements of objects are added from bottom to
top. Note that the commonality of attributes among the object, that is a subconcept-
subconcept relation defined by (1), defines the order of object. As a result, the
concept lattice can structure the objects into a lattice. Although the edge of the
concept lattice is not associated with an arrow in general, the edge is directed with
the order relation by the definition of lattice.

4.2 Goal Lattice

We define the goal lattice by semantically extending the FCA. Tables 1 and 2 define
the goal lattice and the mapping between the FCA and goal lattice.

Definition 3: Goal Lattice
A goal lattice by a complete lattice of Context K with the order relation; L = ß

(K) = ß(G, (S, H), I), where ß (K): = (ß (K), ≤) with the infimum and supremum.
To structure the relationship among goals, sub-goals and stakeholders, we assign

both sub-goals and stakeholders to attributes. As a special case, a goal may have
only one sub-goal. In this chapter, we call such a sub-goal as an inner goal.

160 M. Aoyama

Table 1 Goal lattice based on FCA

FCA Goal lattice Definition of goal lattice

Object: G Goal: G A set of entity appearing in phenomena
Attribute: M Attribute: M = (S, H) A set of attributes of the Object, consisting

a set of Sub-Goal (S) and a set of
Stakeholders (H)

Context:
K: = (G, M, I)

Goal Context: K: = (G, M, I): A structure with binary relation I between
G and M; I ⊆ G ×M

Sub-Goal Context: Ks: = (G, M, Is)

Stakeholder Context: KH: = (G, M, IH)

Extent: A ⊆ G Extent: A ⊆ G Subset of Objects sharing the common
Attributes

Intent: B ⊆ M Intent: B ⊆ M = (S, H) Subset of Attributes shared by Extents
Concept: C = (A, B) Goal Concept: C = (A, B) A pair of Intent and Extent
Concept Lattice: L Goal Lattice: L A complete lattice of K with the order

relation L.

Table 2 Mapping between FCA and goal lattice

Concept FCA Goal lattice Definition

Object Goal Goal is an Object

Attribute Stakeholders,
Sub-Goals

Sub-Goals of the Goal and associated
Stakeholders

Object and
Attribute

Inner Goal The Goal has a single sub-goal (i.e. the sub-goal
meets the goal).

5 A Method for Structuring and Reconciliation
of Stakeholder Goals

5.1 Process of Structuring and Reconciliation
of Stakeholder Goals

Figure 2 illustrates the proposed goal structuring and reconciliation process consist-
ing of the following steps. The details are explained in the subsequent sections.

Identify Stakeholders. We identify stakeholders with conventional techniques.
Here, we identify a number of people in each category of stakeholders, including
end-user, developer, IT department, and corporate manager.

Elicit Goals/Sub-Goals. We elicit goals and sub-goals from a group of people in
each stakeholder with conventional techniques including written questionnaire and

A Method for Capturing and Reconciling Stakeholder Intentions 161

(d) Stakeholder Goal Lattice

(1) Identify Stakeholder
(a) Stakeholder

(b) A Set of Goals/Sub-Goals of Stakeholder

(e) System Goal Lattice

(2) Elicit Goals/Sub-Goals from Stakeholder

(5) Reconcile Goals/Sub-Goals over Stakeholder
Goal Lattice and Generate System Goal Lattice

(3) Extraction of Stakeholder Goals/Sub-Goals

(6) Analyze Goals/Sub-Goals on System Goal Lattice

(c) Goal Matrix

(4) Hierarchical Structure Goals/Sub-Goals

Fig. 2 Process for structuring and reconciliation of goals

interviewing. We expect to get a list of goals and sub-goals which are not structured
yet. However, we need to ask an individual of each stakeholder group to set the
priority of importance, i.e. preference of goals for the subsequent analysis.

Extract Goals Preferred. We found that the raw goals elicited include diverse
opinions, some of which might be very exceptional and not preferred by most of
the people in the stakeholder group, or preferred by only person in most of cases.
From a statistical analysis point of view, such un-preferred goals are considered as
exceptions which cause unnecessary complexity in the following structuring and
reconciliation process. Therefore, we eliminate a set of exceptional goals from the
raw goals.

Hierarchical Structuring of Goals/Sub-Goals. A stakeholder goal lattice is a goal
lattice for each stakeholder group. We generate stakeholder a goal lattice from the
goals and sub-goals elicited by structuring them with the order relation.

Reconcile Stakeholder Goal Lattices and Generate System Goal Lattice. We
generate a system goal lattice by synthesizing stakeholder goal lattices, and rec-
oncile dependencies among the goals and sub-goals while preserving the order
relation.

Analyze Goals/Sub-Goals. We propose a set of measures to analyze the impor-
tance and dependencies of the goals and sub-goals and the effectiveness of
reconciliation of stakeholder goal lattices for the system goal lattice.

In the following section, we explain our key techniques in the goal structuring
and reconciliation method along with its steps in Fig. 2.

5.2 Elicitation of the Goals and Sub-Goals from Stakeholders

We assume that we elicit the goals from a group of people in each stakeholder group.
For example, we ask people to mark the preferred goals with the order of preference
out of a set of goals we listed.

162 M. Aoyama

5.3 Extraction of the Goals and Sub-Goals Elicited

5.3.1 Extraction of Goals

Goal extraction is to eliminate the exceptional goals elicited from stakeholders and
extract the goals of certain level of importance. The goal extraction method consists
of the following procedures with goal preference table exemplified in Table 3. Here,
we assume a set of goals, A, B, C, . . ., elicited from 10 people in a stakeholder group.

Evaluate Goal Preference. We assume that the members of each stakeholder
group grade their preference to the goals; 3 for the most preferred, 2 for second,
and 1 for third, and 0 for no-preference in the previous goal elicitation process.

For each goal, calculate Goal Preference Ratio (Pg), the preference order of
goals within a stakeholder group.

Table 3 Goal preference table

Number of preferring stakeholder

Goal Most (3) 2nd (2) 3rd (1) Total score Pg (%)

A 6 2 2 24 80(=24/30)
B 0 1 0 2 7(= 2/30)
C 2 5 1 17 57(=17/30)
D 1 0 2 5 17(= 5/30)

Definition 4: Pg: Goal Preference Ratio of Goal X

Pg =
∑

i
(
Preference Score of a Goal X ∗ Number of Member of Stakeholder Group i

)

(Max. Score of Preference ∗ Total Number of Member in the Stakeholder Group i)
(2)

As indicated in Table 3, we count the number of members within the stakeholder
group scoring 3 (most), 2 (second), and third (1) to each goal. By summing up the
score multiplied with number of people who graded the score, we calculate a total
score; 24 for goal A. Dividing by the max. score of preference 30 (=3 ∗ 10), we can
calculate the Pg; 80% for goal A.

Extract the Significant Goals Based on Pg. To extract the goal, we need to set
the level of significance as the threshold of Pg. From our experience, we set 10% as
the threshold of Pg in this chapter. In Table 3, we can eliminate goal B and extract
goal A, C and D. The results indicate that 10% of threshold is low enough to extract
enough goals, but high enough to eliminate exceptional goals.

5.3.2 Extraction of Sub-Goals

The next step is to extract sub-goals with the sub-goal preference table exemplified
in Table 4 through the following process.

Identify the Dependency from Sub-Goals to Goals. With the subconcept-
subconcept order relation of FCA, we can identify the dependency from a sub-goal

A Method for Capturing and Reconciling Stakeholder Intentions 163

Table 4 Sub-goal preference (Ps)

Sub-Goals

Goal Preference 1 2 3 4

A Number of stakeholders 9 5 1 7

Preference Ratio (%) 90 50 10 70

C Number of stakeholders 2 1 6 0

Preference Ratio (%) 25 13 75 0

D Number of stakeholders 2 0 1 0

Preference ratio (%) 67 0 34 0

to a goal in terms of the preference of stakeholders. Looking at Table 4, the upper
row in each stakeholder indicates the number of people who prefer the goal, say A,
and sub-goal 1, 2, 3, For example, 9 people prefer sub-goal 1 while they also
prefer goal A.

Evaluate the Dependency from Sub-Goal to Goal. We can calculate the prefer-
ence ratio of a sub-goal Y to goal X by the following definition.

Definition 5: Ps: Sub-Goal Preference Ratio

Ps = (Number of Stakeholders Selecting the Sub-Goal Y of Goal X)

(Number of Stakeholders Selecting Goal X)
(3)

Looking at goal A in Table 4, the preference to goal A is 90% from sub-goal 1,
and 50% from sub-goal 2. On the other hand, it is 10% from sub-goal 3.

Extract Significant Sub-Goals. Similar to the goal extraction, low preference
means that the sub-goal is little related to the goal in order to avoid unnecessary
complexity among goals and sub-goals. Again, we set 10% as the threshold of Ps in
this chapter. In Table 4, the preference of sub-goal 1 to goal A, sub-goal 2 to goal
D, and sub-goal 4 to goal D are eliminated.

5.4 Structuring Goals and Sub-Goals by Goal Lattice

Structuring goals and sub-goals is to find the ordered relationships among goals
and sub-goals to the set of stakeholders. First, we can find unordered relationships
among goals and sub-goals by goal matrix. Then, we employ goal lattice to order
the relationships among goals, sub-goals and stakeholders.

Definition 6: Goal Matrix
A goal matrix is a matrix with a set of goals in the row, and a set of sub-goals

and a set of stakeholders in the column.

164 M. Aoyama

Table 5 An example of goal matrix

Thus, structuring goals goes through the following two steps.
Synthesis of Goal Matrix. By combining the stakeholder matrix and sub-goal

matrix, we synthesize a goal matrix. The goal matrix is synthesized by combining
the matrices in Tables 3 and 4, and setting X to the element when the element is
non-zero otherwise empty. Table 5 shows a goal matrix synthesized in the case study
of self-checkout systems explained in the next section. In Column A, rows A to J
represent goals. Columns B to N represent sub-goals (1) to (13) while columns O to
Q represent three stakeholders.

Generation of Goal Lattice from the Goal Matrix. Now, a goal lattice is generated
from the goal matrix. This process can be automated by FCA tool. Figure 3 illus-
trates a goal lattice generated from the goal matrix of Table 5 with Concept Explorer
[18].

Fig. 3 Goal lattice generated for shopper stakeholder

A Method for Capturing and Reconciling Stakeholder Intentions 165

5.5 Reconciliation of the Structure of Goals and Sub-Goals

To see the whole picture of the relationships among goals and sub-goals against
stakeholders as a single structure, we reconcile stakeholder goal lattice and generate
system goal lattice as follows.

Definition 7: System Goal Lattice
System goal lattice is a goal lattice of whole system, defining the relationships

among goals, sub-goals and all the stakeholders.

Definition 8: Goal Reconciliation
Reconciling goals is to synthesize the goal lattice of each stakeholder while

preserving the order relation, and generate System Goal Lattice.
Note that by the reconciliation, duplication of the dependencies between the

goals and sub-goals, and goals and stakeholders are eliminated, and the system goal
lattice can be simplified.

The Goal Matrix in Table 6 represents the context of sub-goal and stakehold-
ers around the goals. We can reconcile three stakeholder goal lattices over three
stakeholders in Table 5 and generate the system goal lattice illustrated in Fig. 4.

Table 6 Stakeholders involved in the field study

Stakeholder Number of participants Profile of people

Shopper 20 Male/female, age from 20s to 50s
Staff 14 Full-time/part-time employee
Manager 4 Store director, floor manager

Fig. 4 System goal
lattice generated

166 M. Aoyama

5.6 Analysis of the Structure of System Goal Lattice

System goal lattice represents the dependencies among goals, sub-goals and stake-
holders, and help to understand the structural properties of the systems. Thus, the
system goal lattice can be used for the following structural analyses:

1. Analyze the goals and sub-goals from a viewpoint of a specific stakeholder.
We can identify a set of goals preferred by a specific stakeholder and the

sub-goals fulfilling the goals, and high-lighten them on the system goal lattice.
2. Analyze the stakeholders from the viewpoint of a specific goal.

We can identify the stakeholders who prefer a specified goal or sub-goal, and
high-lighten them on the system goal lattice.

3. Analyze the commonality and variability of goals among stakeholders.
We can identify the commonality and variability of goals among stakeholders.

4. Analyze the fulfillment dependencies of goals among stakeholders.
We can identify a set of goals of a set of stakeholders and sub-goals fulfilling

the goals, and highlight them on the system goal lattice.

5.7 Method for Evaluating the Reconciliation of Goal Lattice

We defined the following two measures for evaluating the effectiveness of goal
reconciliation.

Rd: Goal Diversity Ratio

Definition 9: Rd: Goal Diversity Ratio
Goal Diversity Ratio, Rd, is a size measure of the span of goal lattice, which is

defined by (4).

Rd = (Number of entities in the Goal Lattice for a Stakeholder)

(Number of entities in the Goal Lattice for the Reference Stakeholder)
(4)

We can evaluate Rd for each stakeholder, that is, the diversity of the goals of
the stakeholder. The larger Rd is, the more diverse the goals of the stakeholder are.
Reference stakeholder can be any stakeholder who provides a reference view to
the system. In our case study discussed later, we select ourselves, developer, as the
reference stakeholder so that we measure the diversity of goals of each stakeholder
in comparison with our view to the system.

Rr: Goal Reduction Ratio

Definition 10: Rr: Goal Reduction Ratio
Goal Reduction Ratio, Rr, is a measure of the effectiveness of the reconciliation

of goals, which is defined by (5).

Rr = (Number of entities in the goal lattice after reconciliation)

(Number of entities in the goal lattice before reconciliation)
(5)

A Method for Capturing and Reconciling Stakeholder Intentions 167

6 Application to Self-Checkout Systems

In 2008, we conducted a field study for the self-checkout system at large-scale super-
markets. Among many industry sectors introducing self-checkout systems, we have
chosen the retail industry because of the high complexity of requirements and heavy
involvement of shoppers in the checkout systems [3].

6.1 Strategy of Field Study

We set the following two subjects as the goals for our field study:

1. To prove the model and method to structure the goals of diverse stakeholders and
relationships among them.

2. To evaluate the effectiveness of the goal reconciliation method in real systems.

6.2 Self-Checkout Systems

Self-checkout systems have been introduced into various industry sectors including
banks, hotels, and transportation. However, self-checkout systems in retail are more
complicated than in other industry sectors because the systems require heavy shop-
per involvement including scanning the goods in shopping carts, calculation of the
total price, and payment [3, 4]. Therefore, the requirements on self-checkout sys-
tems for retail are much more complicated than for other self-checkout systems.
Furthermore, the stakeholders concerned by self-checkout systems in the retails
industry are diverse.

Successful deployment of self-checkout systems in the retail industry began in
the late 1990s. Since then, the introduction of self-checkout systems is spreading
across the world.

However, eliciting the requirements for self-checkout systems in the retail indus-
try needs to accommodate concerns of the diverse stakeholders of the systems
including, managers’ concerns on the cost and return of introduction of self-
checkout systems, the staffs’ concerns on the change of the relationship between
staff and shoppers, and, shoppers’ concerns on the waiting-time at check-out,
usability of the system, and shopping privacy.

6.3 Identification of Stakeholders

We had the opportunity to observe the activities in a supermarket and to discuss
with stakeholders including store managers and staff. From our observations, we
identified the following three stakeholders:

168 M. Aoyama

1. Shoppers: Expected end-user of self-checkout systems.
2. Staffs working at the checkout system in supermarkets who know the check-out

system well.
3. Managers of the store.

Table 6 shows the number of people in each stakeholder group involved in the
field study.

6.4 Elicitation and Extraction of Goals and Sub-Goals

We elicited the goals and sub-goals by written questionnaires to the stakeholders.
We identified a set of candidate goals and sub-goals listed in Table 7, and asked
people to mark them with preference score of 1–3.

Table 7 Goals and sub-goals

Goals Sub-goals

A. Better quality of services
B. Shorter waiting-time at the check-out

counter
C. Protecting shopper privacy
D. Better shopper satisfaction
E. Business productivity
F. Sales increase
G. Better utilization of check-out systems
H. Shorter checkout time
I. Less shopper claims
J. Cost cutting

(1) Avoid long waiting queue at checkout
(2) Increase the checkout systems available
(3) Flexible job assignment to the staffs
(4) Shoppers participation to the checkout

procedure
(5) High utility of checkout systems
(6) Protecting the shopping privacy
(7) Avoiding the contact of shoppers to staffs
(8) Cut labor cost
(9) No-hurry at the checkout

system
(10) Enabling to handle multiple checkout

systems
(11) Attracting new customer by advanced

technology
(12) Reduce unscheduled cashier re-allocation
(13) Avoid the claims on handling goods

6.5 Structuring and Reconciliation of Goal/Sub-Goals

Table 8 shows the relation between goals and sub-goals. X represents the depen-
dency between a goal and a sub-goal in the sense that at least one person who
selected the goal in the row also selects the sub-goal. For example, the goal A,
“Better Service Quality”, is associated to three sub-goals; (7) “Avoiding the Contact
to Staffs”, (9) “No-Hurry at the Self-Checkout System”, and (13) “Avoid the Claims
on Handling Goods”.

A Method for Capturing and Reconciling Stakeholder Intentions 169

Table 8 Sub-goal matrix of shoppers

Sub-goals selected by stakeholders who selected the goalGoals and
number of
stakeholders (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

A 1 X X X
B 15 X X X X X X X
C 11 X X X
D 2 X X X
E 9 X X X X X X
F 1 X
G 3 X X X
H 5 X X X X X
I 3 X X X
J 10 X X X X X X X

Fig. 5 Shopper goal lattice before/after extraction

Figure 5(a) illustrates the stakeholder goal lattice from the shoppers’ viewpoint
which is generated from the goal matrix in Table 8 without any reconciliation.

Then, we went through the process (3) and (4) in the goal structuring and rec-
onciliation process illustrated in Fig. 2 and extracted the significant goals and
dependent sub-goals. Through the goal extraction, we eliminated goals A, D, F,
G and I. By the sub-goal extraction, we eliminated seven dependencies out of 28;
B-(3), B-(4), B-(7), C-(9), J-(5), J-(7), and J-(13). As a result, the shopper goal
lattice is reduced from Fig. 5(a) to (b).

By merging the three goal lattices of shopper, staff, and manager after extraction
and reconciliation, we can generate the system goal lattice illustrated in Fig. 6.

170 M. Aoyama

Fig. 6 System goal lattice after reconciliation

6.6 Analysis of Stakeholder Intentions

With the analysis methods we developed, we analyzed the structural properties of
the system goal lattice of self-checkout systems and evaluate the effectiveness of the
reconciliation of the goals as follows.

Analysis of Goals from Stakeholders’ Viewpoint. Figure 7 illustrates the system
goal lattice with the highlight of the goals originating from managers; F, B, D, E
and J. If we assume that mangers are the most influential stakeholder group, we
assume that the goals highlighted in Fig. 7 need to be satisfied first.

Analysis of Commonality and Variability of Goals. By comparing three goal lat-
tices from the three stakeholders of manager, staff, and shopper, we can identify the
common goals and variability as illustrated in a Venn diagram (Fig. 8).

While goals B, E, and J are commonly in the interest of three stakeholders, goal
I, “Less Shopper Claim”, and H, “Shorter Checkout Time” are expressed only by
staff and shopper. The variability reflects the intentions of stakeholders well. The
contribution of our method is the ability to systematically identify the commonality
and variability, i.e. difference in intentions.

Structural Properties of Goals by the Order Relation. By comparing the goals
originating from the managers’ viewpoint in Fig. 7 with those from the shopper’s
viewpoint in Fig. 9, the following structural properties can be found.

a) Direct Order Inclusive Relation of Goals: Out of 5 goals from the shoppers’
viewpoint, goals B, E, and J are automatically met if the managers’ goals are

A Method for Capturing and Reconciling Stakeholder Intentions 171

met. This can be also understood from the commonality of goals illustrated in
Fig. 8. In order to meet all shoppers’ goals, it is necessary to meet goals C and H.

b) Indirect Order Inclusive Relation: Looking at the sub-goals of managers’ goals
in Table 9, we can identify which sub-goals are met.

Fig. 7 Span of goals from manager’s viewpoint

Staff Shopper

B, E,
J

C

D, F
Manager

HI

Fig. 8 Commonality and variability of goals

Comparing the sub-goals of goals C and H, which are not met by managers’
goals directly, we can find that all the sub-goals of goal H, that is (1), (2), (5), (9),
and (10), are included in the union of sub-goals of the goals B and E, which are met
by manager. Since all the sub-goals of goal H is met by the sub-goals of goals B and
E, goal H is substantially met by the goals of managers. As a conclusion, only goal
C remains as the additional goal to be met.

Analysis of the Dependency of Goals. Figure 9 illustrates the same system
goal lattice with the highlighting of goals originating from the goal E “Business
Productivity”. The highlight indicates that meeting the goal E requires meeting goals

172 M. Aoyama

Fig. 9 Goal associated
with productivity

Table 9 Manager’s goals included and excluded

Goals of
manager

Sub-goals included in the goal

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

B X X X X X X
D X X
E X X X X X X X X
F X X
J X X X X X X X

Goals
excluded

Sub-goals included in the goal

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

C X X X
H X X X X X

A Method for Capturing and Reconciling Stakeholder Intentions 173

B, F and H since at least one of the sub-goals of goal B, F, and H is also sub-goal(s)
of goal E. Therefore, the dependency among goals is clearly identified.

7 Evaluation of the Goal Reconciliation

Evaluation of Goal Diversity Ratio. Figure 10(a) shows the Goal Diversity Ratio,
Rd, with respect to the number of goals, number of nodes, and number of edges
of three stakeholder goal lattices of self-checkout systems. The figure indicates that
the shopper’s goal lattice presents the widest variety of goals, followed by staff,
and manager. Manager’s Rd is less than 1.0, which indicates that the manager’s
intentions are very narrow, i.e. sharp, than any other stakeholders even narrower
than reference stakeholder of developer. On the other hand, shopper’s Rd is the
largest, which indicates their intentions are diverse.

Evaluation of Goal Reduction Ratio. Figure 10(b) shows the Goal Reduction
Ratio, Rr, with respect to the number of goals, number of nodes, and number of
edges of stakeholder goal lattices. Figure 10(b) indicates that reconciliation is most
effective to the shoppers followed by staff, and manager. This result is a dual to the
Rd, since the goals of shopper vary most and include the largest space to be reduced
in the goal lattice.

0.6

2 2

0.8

2

2.5

0.8

2.4

3.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Manager Staff Shopper

Goal
Diversity

Ratio

of Goals

of Nodes

of Edgges

(a) Goal Diversity Ratio

17%

50% 50%

0%

50%

64%

0%

59%

77%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Manager Staff Shopper

Goal
Reduction

Ratio

of Goals

of Nodes
of Edgges

(b) Goal Reduction Ratio

Fig. 10 Evaluation of goal reconciliation effect

8 Discussion

First, we discuss the feasibility of the proposed method from the following
viewpoints.

Approach. There are several approaches to stakeholder analysis. However, they
are suffering from two major drawbacks:

• Techniques are based on heuristics and lack of mathematical foundation
• Techniques are oriented to developers even though they are targeted to users, i.e.

stakeholders.

174 M. Aoyama

The proposed technique aims at solving those problems by the following
approach:

– The proposed method is based on the mathematical foundation of lattice theory,
which is especially appropriate to structure the relationships among entities of
goals, sub-goals and stakeholders.

– The proposed method is bottom-up and only requires the information from
stakeholders.

As a whole, we can conclude that the proposed method significantly improve the
conventional techniques.

Modeling Capability. The proposed method introduced a rather simple semantics
in the order relations, i.e. inclusion of attributes, in order to ensure the order relation.
This is a two-sided problem. If we introduce more semantics into the model, like
many goal-oriented techniques, the model could increase modeling capability, but
can be complicated and decidability of order relation may suffer.

Analysis Capability. We developed measures to analyze the structural properties
of the goal lattices. Among them, we found that the commonality and variabil-
ity properties and direct/indirect order relation are especially useful to analyze the
structure of goals and prioritize the goals from certain stakeholders’ point of view.

Secondly, we discuss the proposed method in comparison with conventional
techniques including stakeholder analysis and goal-oriented.

Conventional stakeholder analysis mainly uses the stakeholder matrix which is
useful to group the intentions together. However, it lacks the capability to hierar-
chically structure the intentions. Thus, the proposed method is useful to find the
structure among goals and sub-goals from the viewpoints of stakeholders.

Goal-oriented approaches have been well developed and provide rich techniques
in structuring goals by developers. However, it is necessary to structure the goals
from stakeholders’ intentions in a bottom-up manner. Conventional techniques are
mostly intended to decompose goals in top-down manner. The presented method
relies on the intentions of stakeholders, and generates the structure of stakeholder
intentions in a bottom-up manner, which is a major advantage over conventional
techniques.

9 Conclusion

We presented a method to structure the intentions of stakeholders in terms of the
relation among the goals, sub-goals and stakeholders, to generate the system goal
lattice, and to analyze the structural properties of the system goal lattice.

The advantage of the presented method is its mathematical foundation of FCA
(Formal Concept Analysis) based on the lattice theory. The presented method
enables to elaborate the hierarchical structure among the goals, sub-goals and
stakeholders from the intentions of stakeholders in a bottom-up manner.

A Method for Capturing and Reconciling Stakeholder Intentions 175

We demonstrated the feasibility and effectiveness of the presented method by
applying the method to self-checkout systems for large-scale supermarkets.

As the conclusion, the presented method enables to systematically elicit stake-
holders’ intentions in the development of complex large-scale information systems.
Unlike conventional techniques, the proposed method employs information from a
number of people in a set of stakeholder groups. It is particularly useful to the infor-
mation systems for public services and consumer products, to which stakeholders
are diverse.

Acknowledgments The author thanks to Kayo Suzuki, Tamami Murase, and Nobotu Nakamichi
for their collaboration in conducting the case study.

References

1. Anton A (1996) Goal-based requirements analysis. In: Proceedings of ICRE’96, IEEE CS,
Los Alamitos, CA, pp 136–144

2. Aoyama M (2007) Persona-scenario-goal methodology for user-centered requirements engi-
neering. In: Proceedings of RE 2007, IEEE CS, Los Alamitos, CA, pp 185–194

3. Avery P (2008) Self-service at supermarkets and grocery stores. White paper. NetWorld
alliance. http://www.selfserviceworld.com/white_paper.php?id=72. Accessed 31 Jan 2010

4. Dabholkar PA, Bobbitt LM, Lee E-J (2003) Understanding consumer motivation and behavior
related to self-scanning in retailing. Int J Service Industry Manag 14(1):59–95

5. Darke P, Shanks, G (1996) Stakeholder viewpoints in requirements definition: a framework
for understanding viewpoint development approach. Reqs Eng J 1(2):88–105

6. Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints: a frame-
work for integrating multiple perspectives in system development. Int J Softw Eng Knowl Eng
2(1):31–58

7. Glinz M, Wieringa RJ (2007) Stakeholders in requirements engineering. IEEE Softw
24(2):18–20

8. Hesse W, Tilley T (2005) Formal concept analysis used for software analysis and
modeling. In: Formal concept analysis. LNCS, vol 3626. Springer, Berlin, Heidelberg,
pp 288–303

9. van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour. In:
Proceedings of RE’01, IEEE CS, Los Alamitos, CA, pp 249–262

10. Nuseibeh B, Kramer J, Finkelstein A (1994) A framework for expressing the relation-
ships between multiple views in requirements specification. IEEE Trans Softw Eng 20(10):
760–773

11. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modeling using scenarios. IEEE
Trans Softw Eng 24(12):1055–1071

12. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling in requirements
engineering. In: Proceedings of RE’99, IEEE CS, Los Alamitos, CA, pp 74–81

13. Rolland C, Salinesi C (2005) Modeling goals and reasoning with them. In: Aurum, A, Wohlin
C (eds) Engineering and managing software requirements. Springer, Berlin, Heidelberg,
pp 189–217

14. Rolland C (2008) Intention driven conceptual modelling. In: Johannesson P, Söderström E
(eds) Information systems engineering: from data analysis to process networks, IGI Global,
Hershey, pp 16–42

15. Snelting G (2005) Concept lattices in software analysis. In: Formal concept analysis. LNCS,
vol 3626. Springer, Berlin, Heidelberg, pp 272–282

16. Sommerville I, Sawyer P, Viller S (1998) Viewpoints for requirements elicitation: a practical
approach. In: Proceedings of RE 1998, IEEE CS, Los Alamitos, CA, pp 74–81

176 M. Aoyama

17. Wille R (2005) Formal concept analysis as mathematical theory of concepts and concept
hierarchies. In: Formal concept analysis. LNCS, vol 3626. Springer, Berlin, Heidelberg,
pp 1–33

18. Yevtushenko S, Kaiser T. Tane J, Objedkov S. Hereth-Correia J. Reppe H (2006) Concept
explorer: the user guide. http://conexp.sourceforge.net/. Accessed 31 Jan 2010

19. Yu E (1993) Modelling organizations for information systems requirements engineering. In:
Proceedings of RE 1993, IEEE CS, Los Alamitos, CA, pp 34–41

Fostering the Adoption of i∗ by Practitioners:
Some Challenges and Research Directions

Xavier Franch

Abstract The i∗ framework is a widespread formalism in the software engineering
discipline that allows expressing intentionality of system actors. From the time it
was issued, in the mid-90s, a growing research community has adopted it either in
its standard form or formulating variations in order to adapt it to some particular
purpose. New methods, techniques and tools have made evolve the framework in a
way that it may be currently considered quite mature from the scientific perspec-
tive. However, the i∗ framework has not been transferred to practitioners at the same
extent yet: industrial experiences using i∗ are not many and have been mainly con-
ducted by i∗ experts that are part of that very research community. Therefore, it may
be argued that some steps are needed for boosting the adoption of i∗ by practition-
ers. In this chapter, we identify some scientific challenges whose overcoming could
represent a step towards this goal. For each challenge, we present the problem that
is addressed, its current state of the art and some envisaged lines of research.

1 Introduction

Goal-oriented modelling is a widespread technique in the software engineering
community. It is used in broad disciplines like requirements engineering [68] and
organizational modelling [39], and in more specific scopes as service modelling [55]
and adaptive system modelling [15]. The intentional perspective on systems engi-
neering proposed by C. Rolland [53, 54] had a great impact in the field and largely
contributed to this dissemination.

Among these several existing goal-oriented frameworks, methods and languages
(e.g., KAOS [13], MAP [53]), the i∗ framework [71] is currently one of the most
widespread modelling and reasoning approaches. It supports the construction of
models that represent an organization and its processes as an intentional network

X. Franch (B)
GESSI Research Group, Universitat Politècnica de Catalunya, UPC – Campus Nord,
Omega building, c/Jordi Girona 1-3, 08034 Barcelona, Spain
e-mail: franch@essi.upc.edu

177S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_10, C© Springer-Verlag Berlin Heidelberg 2010

178 X. Franch

of actors and dependencies, which may be decomposed into simpler elements.
Reasoning techniques allow checking properties and performing some kind of
qualitative [29, 35] and quantitative [19] analysis.

The intentional nature of i∗ is very clearly explained by Yu: “In i∗ modelling, we
focus on intentional properties and relationships rather than actual behaviour. By not
describing behaviour directly, an intentional description offers a way to characterize
actors that respects the autonomy premise. Conventional system modelling which
offers only static and dynamic ontologies leads to an impoverished and mechanistic
view of the world. Intentional modelling provides a richer expressiveness that is
appropriate for a social conception of the world” [72].

Arguably, it may be said that the i∗ framework has reached a high maturity
level from the scientific point of view, as a result of the intensive work undertook
by many research groups, leading to an increasing body of knowledge available
through scientific papers and experience reports presented in world-leading jour-
nals and conferences. A growing community has been established too, with two
clearly visible meeting points: a periodical event, the i∗ workshop; and a working
space, the i∗ wiki [36]. Basic knowledge on i∗ is offered through tutorials in scien-
tific conferences and a textbook in which the community research groups provide
a comprehensive revision of the state of the art [73]. Last, it may be mentioned the
recognition of an i∗-based language like URN as a telecommunication standard [37].

Taking all of this research into consideration, it could be expected that the adop-
tion of i∗ by practitioners should had grown the same. Unfortunately, it is clearly not
the case. A recent survey of practice [14] does not even mention i∗ among current
requirements engineering adopted formalisms. Just a few, though valuable, experi-
ences have been reported on the use of the framework and associated tools. We may
mention:

• The air traffic control experiences by Maiden et al., see [41, 44] as summary.
• Experiences in Ericsson Marconi Spa about knowledge transfer and process

alignment [4, 5].
• The application of i∗ for articulating activities around Off-The-Shelf-based and

hybrid systems in the Etapatelecom Ecuadorian company [11, 12].

These experiences were basically successful, although they highlighted several
obstacles on the adoption of i∗ in medium- and large-scale projects. Also, it should
be remarked that those experiences have been mainly conducted or at least super-
vised by expert i∗ modellers, being thus uncertain to what extent novice i∗ modellers
(e.g., the typical profile of a requirement elicitation facilitator) are able to conduct
their processes in an effective and efficient way.

Therefore, we strongly argue that the i∗ community should dedicate the necessary
effort on exploring effective ways to transfer the framework to practitioners, mak-
ing it more usable in industrial experiences. Efforts are twofold. On the one hand,
exploration of scientific issues having to be with the framework that may enhance its
usability, improving thus chances of adoption by practitioners. On the other hand,
planning and executing strategic community actions not directly related to scientific

Fostering the Adoption of i∗ by Practitioners 179

findings (industry-oriented seminars and tutorials, etc.). Due to the nature of this
book, we will focus on the first topic.

This chapter provides an overview of some of the most relevant scientific chal-
lenges that shall be overcome in order to attain (at least partially) this knowledge
transfer goal. Because of length limitations, we will concentrate on challenges
related to the framework’s modelling language more than to analysis techniques
defined around. For each challenge, after reviewing its context, the problem to be
solved and the state of the art, research directions are proposed and justified. As a
result, we expect to stimulate research in the community along these directions and
thus to effectively help bridging the gap among researchers and practitioners in the
use of the i∗ framework.

2 Challenge 1: Agreeing on the i∗ Metamodel

Context. Since it was first released in 1995, the i∗ framework has been adapted to
the needs of specific research groups that wanted to represent concepts specific of
their application domain, like security [28], temporal precedence relationships [23]
or architectural concepts [31]. Furthermore, even the original framework had several
variations (GRL for standardization purposes [67], the Tropos methodology on top
of i∗ [7]) and experienced a natural evolution on time that has led to a slightly
modified version available in the i∗ wiki [36]. As a result, we may conclude that
there is a plethora of variations available in the community, used by several authors
with different purposes (see [9] for a summary and more detailed analysis).

Problem. This diversity, although not necessarily pernicious, hampers the
progress of the i∗ community. When reading a work around the i∗ framework, it
is necessary first to understand what concrete version of i∗ is being used. If the con-
tribution is based on the original framework, sometimes the authors declare which
version are they using (lately, it is happening to be the wiki version), but sometimes
there is no explicit mention, which usually makes the reader a bit hesitant about
details of the proposal being presented. Also it has to be said that the wiki ver-
sion is currently described as an informal tutorial (a users’ guide) without providing
such a metamodel. On the other hand, if the work is proposing some new variation,
enrichment or customization of i∗, the semantics is sometimes given informally or
by using a formalism which is not easy to align with the available descriptions of
i∗. Therefore, as some authors explicitly claim [8, 46], a unifying metamodel seems
a must.

Challenge. The i∗ framework shall include one and only one metamodel; well-
established customization strategies for designing variants of this metamodel shall
be used.

State of the art. We may find in the literature several approaches of i∗ meta-
models. Ayala et al. proposed a metamodel [6] that evolved into a more elaborated
one by Cares et al. [9], see Fig. 1. It was designed by considering the features of
the original Yu’s version [71] (which included its own metamodel written in Telos

180 X. Franch

Fig. 1 The i∗ metamodel as proposed in [9] (integrity constraints not included)

[45]) and its two most widespread variations, GRL [67] and Tropos [7], propos-
ing a unifying model. It is intended to be reusable too, and several superclasses
appear to support this objective. Variations are proposed to be modelled by refac-
toring although no exploration on the semantic consequences of this process is
included. Other approaches with different aim are that of Susi et al. [62] and Roy
et al. [57], presenting metamodels not general-purpose as the previous one, but tai-
lored to the specific capabilities of the Tropos associated i∗ variation and GRL,
respectively.

Research directions. Concerning the metamodel, the community should agree
on the final form of the i∗ metamodel (probably by upgrading into metamodel the
current wiki informal description), and consider it as part of the framework core.
Let’s call this metamodel “the i∗ metamodel”. The i∗ metamodel should be recog-
nized as standard by all the community, providing then a common vocabulary for the
community. We think that the most recent Cares’ et al. proposal [9] is an adequate

Fostering the Adoption of i∗ by Practitioners 181

starting point since it is able to express virtually all of the concepts included in
the wiki version. Also, it is not oriented to any particular metamodeling technol-
ogy like EMOF, we think that technology-independence is a good property for this
general-purpose metamodel.

As for the customization, we propose that each proposal which needs a particular
variant of the i∗ metamodel as reference, should formally specify the relationship
with the i∗ metamodel. To do so, more than a simple refactoring exercise as proposed
in [9], a semantically rich definition has to be provided. We may take for instance
the formal framework proposed by Wachsmuth [69] and then use the several rela-
tionships defined therein (equivalence, enrichment, extension, etc.) to classify the
proposed metamodel with respect to the i∗ metamodel, providing also the concrete
mapping functions that express the differences in a rigorous manner.

One possible immediate application of this notion is to obtain technology-
oriented versions of the i∗ metamodel. For instance, in [26] it is proposed to use
i∗ as initial model in a model-driven development process, and a particular ver-
sion of the metamodel using EMOF defines the form that this departing model
may have. In the context proposed here, this EMOF version could be elaborated
as a semantics-preserving variation of the i∗ metamodel. The mapping from this
EMOF-based version to the i∗ metamodel would then be completely accurate.

Another technology-oriented version is the iStarML interchange format [10].
This format translates the metamodel proposed in [9] into XML. It is currently used
as import/export format in the HiME tool [34] and planned for adoption in a next
release of TAOM4E [63]. A natural consequence of agreeing on the i∗ metamodel
would be to evolve iStarML into a version compliant to this metamodel.

3 Challenge 2: Providing Methodologies for i∗ Modelling

Context. In general, modelling is an activity that requires prescriptive methods
in order to be repeatable, reproducible and in general, predictable. One could
reasonably expect that when facing the same problem, two different (teams of)
experts in both the domain being modelled and the modelling framework, working
independently, should produce very similar, in some sense “equivalent” models.

Problem. Modelling becomes harder when the level of abstraction of the knowl-
edge to be modelled increases. Therefore, creating a model for the requirements of
a system is harder than creating a model of a software architecture. When consider-
ing the i∗ framework, the modelling activity is harder than ever due to its intentional
nature. As Yu states, “The i∗ framework is aimed at modelling strategic relationships
and reasoning. Such knowledge is not expected to be complete” [71]. In addition, the
i∗ language itself allows a degree of freedom that creates some uncertainty not only
to the novice, but also to the expert, modeller. A summary of recurrent questions
include:

• Being i∗ models of strategic nature, which elements have strategic relevance
enough as to be included in the models, and which don’t, and why.

182 X. Franch

• As a particular case of this situation, which are the conditions that indicate that a
model is completely refined.

• In some particular situation, what i∗ modelling element is the most adequate.
A typical example is: when a task produces a resource, which element must be
included: just the task, just the resource, none, or both.

Given an answer as accurate as possible to these and similar questions is the only
way to overcome the modelling uncertainty problem.

Challenge. The i∗ community shall have available a range of well-defined
modelling methods as predictable as possible.

State of the art. The construction of goal-oriented models in general has been
subject of interest by the requirements engineering community, for instance Rolland
et al. used explored the use of scenarios to drive the discovery of goals [56]. The
need of modelling methods for the i∗ framework became obvious soon and a major
response was the formulation of the Tropos method [7]. Tropos spans four phases of
software development, namely early requirements, late requirements, architectural
design and detailed design, previous to implementation (in some papers considered a
fifth phase) using some agent-oriented infrastructure. The method is not prescriptive
inside these four phases and then the modeller still has a great freedom in completing
the model. In [27], the authors propose the use of social patterns as a way to elicit
the general structure of models. However, still the patterns just provide a general
layout of the models.

Other authors propose more detailed methods. In [22] the RiSD methodology is
proposed for the modelling of Strategic Dependency (SD) i∗ diagrams. It is orga-
nized into several steps, and intents to be a highly prescriptive procedure. As part
of the steps, we may mention: (a) The formulation of two alternative decision trees
(under dependum’s nature and under responsibility assignment strategy) for deter-
mining the most appropriate type of intentional element in a given situation (see
Fig. 2), where the transition of one node to a child is based on a question (e.g., in

I

II III

VIII

IV

VII

V

VI

OR
State Entity

Criteria

OR

1

2 3

4 5 6

OR

7 8 9 10

11

OR

OR

Task Resource

Goal

Soft Goal

Soft Goal Soft GoalSoft Goal

Soft GoalResource GoalTask

Soft Goal Soft GoalSoft Goal

IX

Soft Goal

12

Soft Goal

Fig. 2 Decision trees for determining the type of intentional element as defined in [22]

Fostering the Adoption of i∗ by Practitioners 183

node 1 at the tree at the left: “does the depender depend on the dependee to achieve
an entity, or to attain a certain state? If entity, go to 3; if state, go to 2”). (b) The
definition of a grammar for fixing the syntax of intentional elements in order to
obtain uniform models from the point of view of naming (e.g., a Task’s name is of
the form: “Verb + (Object) + (Complement)”, as in “Answer doubts by e-mail”).
(c) The agreement on standard vocabularies for using as lexicon in the intentional
models, e.g. the ISO/IEC 9126-1 standard [64] for quality concepts. On the other
hand, Oliveira et al. [48] propose i∗ Diagnoses, a method that uses questions as a
way to elicit the intentional elements that compose the i∗ models, e.g. “Why does
<<dependee>> collaborate with <<depender>> to have <<goal>>?” and “What if
<<goal>> is shared with another actor?”. Both proposals claim that the methods
produce more predictable models, although no validation supports these claims.

Grau et al. [32] propose the PRiM method framed in the business process reengi-
neering problem. Detailed Interaction Scripts describe the current behaviour of the
system in a scenario-like style. A set of prescriptive rules transform these scripts
into i∗ models that act as the basis for an activity of generation of alternatives to be
evaluated as part of the reengineering process.

A comprehensive comparative analysis using 12 criteria and including Tropos,
RiSD, PRiM and three other methods (GBM, ATM and BPD) may be found at [30].

Research directions. Given Yu’s statement above, it is clear that aiming at design-
ing fully deterministic i∗ modelling methods should not be an ultimate goal. But
based on the work described above, we may indicate some factors supporting the
formulation of more prescriptive methods:

• Steps. The method shall consist of a series of well-defined steps and substeps.
Remarkably, the model elements that may appear as input and output of each
step and their relationships shall be defined in terms of the i∗ metamodel.

• Refinement rationale. The method shall provide a clear rationale about:
(1) whether is it still necessary to refine a given intentional element; (2) which
kind of decomposition is needed; (3) which type do the decomposing intentional
elements have. The use of questions as proposed in [22, 48] is probably the most
comfortable way to proceed for the modeller.

• Correctness checks. The method shall provide verifiable means to check that the
model being generated fulfils some identified conditions about their structure.
The use of metrics [20] could help here.

• Patterns. The method shall contemplate the possibility of using knowledge pat-
terns as a way to drive reusability. Patterns could be organized into different
catalogues depending on the step where they apply (e.g., social patterns like in
[27], but also requirement patterns as mentioned in [61, 70], design patterns, etc.).

• Vocabulary. The method shall promote the use of ontologies as a way to improve
the accuracy of the models, as well as they consistence of different models over
the same domain or system facet. Ontologies of interest may include domain
ontologies like the REA enterprise ontology [66], or facet ontologies like the
ISO/IEC 9126 quality standard [64] for non-functional characteristics used in

184 X. Franch

soft goals. General knowledge of ontologies in the agent-oriented field [33] and
proposals of representation of ontological concepts into the i∗ framework [24] are
worth to explore. On the other hand, the methods shall use a consistent grammar
to name the intentional elements that compose the i∗ models.

4 Challenge 3: Providing Structuring Mechanisms in i∗

Context. Modelling is a stepwise process. Some key elements are identified to
build the starting model, and then a series of refinement steps gradually trans-
forms this model into more concrete ones. In the i∗ framework, the initial key
elements usually are some designated actors (possibly with the main goal that they
fulfil) and the most important dependencies among them. Refinement steps may
yield to new actors and dependencies, and also to the gradual construction of the
Strategic Rationale (SR) i∗ diagram of each actor by decomposing their main goal
using means-end and task-decomposition links, and establishing the contributions to
softgoals.

Problem. This refinement process has not a clear counterpart in the i∗ framework.
The only structuring mechanism that i∗ presents is the concept of actor boundary,
that allows separating the declaration of existence of an actor from the rationale that
it encloses. But the other refinement steps mentioned above are not supported by the
language. Therefore, the final i∗ model suffers from several problems:

• Difficult to reuse. If a model with some similarities has to be build in the future,
reusability is basically copy and paste the designated elements, which is difficult
and semantically poor. For instance, if a subpart of an SR diagram is a candidate
to be reused, what happens to those dependencies that stem from its intentional
elements?

• Difficult to trace. Since the model does not keep the stepwise refinement his-
tory, the reader is not able to know which elements were introduced in which
stages and why. For an intentional framework like i∗ is, this is even a more severe
drawback because it hides some rationale.

• Difficult to understand. Since the model is a monolithic unit except for actor
boundaries, the reader has more difficulties than ever to comprehend the full
meaning of the system modelled.

Challenge. The i∗ language shall include structuring mechanisms for represent-
ing the most usual stepwise refinement operations when developing i∗ models.

State of the art. There are some lines of research addressing the structurability
issue. The two most ambitious contributions at this respect are the incorporation of
aspects and services into i∗.

Alencar et al. [3] propose the use of aspects for modelling cross-cutting con-
cerns (see Fig. 3, left). Separation of concerns provides structure to the i∗ models,
but it does not align with the stepwise refinement process as presented above:

Fostering the Adoption of i∗ by Practitioners 185

Choose
Non-Available

Item

Choose
Available

Item

Item
Selection

Item
Selector

|Task 5

(TD;|when;|whom);

Item
Selector

Car Rental
Company

Walk-in
Rental Rent a Car

Walk-in
Customer

Fig. 3 Structuring i∗ models using new constructs: aspects [3] (left) and services [16] (right)

identification of aspects and modularization of the model is made after the model
has been written, therefore the development process is still not recorded. Also, the
addition of aspects into i∗ results in a framework with more modelling constructs
and may eventually require a steeper learning curve.

Estrada incorporates the concept of service into the i∗ framework [16] (see Fig. 3,
right). This type of modularity unit is closer to the concepts managed in the domain
(i.e., business services) and from this point of view fits better than aspects to the
natural stepwise refinement process. However it is true that this particular proposal
introduces a lot of complexity to the framework, with the fundamental concepts
of “service” and “process”, and also with the configuration of services inside SR
boundaries using a variability-like model with mandatory and optional features
combined in several ways. As in the approach above, validation is needed to assess
usability of the proposal.

If we consider proposals aligning with stepwise refinement, we still find several
proposals. First, we mention the work by Leite et al. [40] that proposes a third kind
of i∗ diagram to complement the SD and SR diagrams, namely the SA (Strategic
Actor) diagram that represents all kind of model actors (roles, positions and agents)
with their relationships (plays, occupies, covers, instance, is-a, is-part-of), see Fig. 4,
left, for an example. Also, Alencar et al. [1] introduce the concept of alternative for
grouping means to achieve an end. This concept is generalized by Franch [21] into
the general notion of module that is specialized into different types of SD- and
SR-modules (see Fig. 4, right, for example). Remarkably, these three approaches
define the introduced constructs in terms of metamodels.

Last, Lucena et al. [43] present a modularization approach that is built on
the existing framework without any extension. This means using actors as only
encapsulation mechanism. They provide a transformational framework in which
transformation rules convert logically connected subgraphs of existing SR diagrams
into SR diagrams for new actors.

186 X. Franch

Software
Engineer

QA
Engineer

Review
Team Professio-

Software

nal

Judy

is-part-of occupies

is-a ins
Pay by

Credit Card

Validate
Payment

Order
Payment

Pay Good

Authorise
Credit Card

Payment
Security

Pay by
Cash

Some–

Some+
Payment
Security

Fig. 4 Examples of structuring mechanisms: SA diagram [40] (left) and SR-module [21] (right)

Research directions. Basically we foresee two types of structuring mechanisms:
domain-independent and domain-dependent.

• Domain-independent. The last three proposals fall into this first category and
show a way to go. To sum up, the basic need is: (1) grouping dependencies
that are related; (2) grouping related intentional elements inside an SR diagram;
(3) defining submodels. Another related work could be analyzing if the aspect-
oriented approach could be integrated with them, since both types of modularity
constructs seem complementary. However, careful validation about usability of
the resulting proposal should be conducted.

• Domain-dependent. The service concept as mentioned by Estrada is one example
of concept that may be introduced. If we try to abstract from the service-oriented
context to a general, open scope, we could think of introducing a generic struc-
turing mechanism able to be instantiated by any kind of concept, in a way that
this instantiation establishes: (1) the kind of i∗ model elements that may take part
of the module; (2) the relationships that need to be fulfilled.

In both cases, the following issues must be considered:

• Structuring mechanisms exist in virtually all modelling languages; therefore a
systematic literature review is needed to learn how they do it, and to try to align
to their principles. In particular, the analysis of the UML notion of package seems
a must.

• The structuring mechanisms need to be introduced into the i∗ metamodel in a
non-intrusive way. Then structuring mechanisms become first-class citizens in
the framework, whilst not interfering with the semantics of the intentional part.

• There is a need of defining the semantics of: (1) the modules themselves; (2) the
module-combination operations (e.g., creation of a new module by the combina-
tion of existing ones); (3) the module application operation (i.e., the model that
results from applying the stepwise refinement step implied by a module, over
an element of the departing model). As essential part of this issue, the classical
model merging problem needs to be tackled [58].

Fostering the Adoption of i∗ by Practitioners 187

• Tool-support is essential. Fundamental capabilities for applying the operations
above, for managing a catalogue of modules and for providing views of the model
based in the modules are needed.

• Visual representation. Being i∗ a notation with a strong emphasis on the visual
dimension, an informed decision about the visual representation of modules
needs to be made. Work by Moody et al. [46] provides an excellent rationale
for making this decision.

5 Challenge 4: Use i∗ Models in Later Development Phases

Context. As an intentional modelling vehicle, the i∗ framework is used in early
stages of the system development. Some of the concepts that appear in i∗ models
will pervade in later stages, e.g. some i∗ actors will act as such in use cases, some
resources will appear also in conceptual data models, some tasks will become activ-
ities in a behaviour diagram, etc. This suggests for the need of having systematic
ways to transform i∗ models into other formalisms.

Problem. The transformation of goal models into more elaborate artefacts that
appear later in the life-cycle has been tackled in several works (e.g., using the MAP
approach to derive data-flow diagrams from goal models [51]). When trying to trans-
form an i∗ model into some other kind of model some difficulties arise. Typically
the target of this transformation is a UML conceptual model [65], composed at least
of a use case specification, a data conceptual model in the form of a class diagram,
and perhaps some behavioural model. Sometimes just one of these artefacts is the
target.

• Use cases are textual artefacts that reflect communication between actors in a
sequential form. The problems that arise are: (1) identifying the appropriate use
cases from the i∗ model and also the relevant scenarios; (2) identifying the actors
that take a part in each use case; (3) inferring the interactions between these actors
and write them in the correct order; (4) generating the text itself.

• Data conceptual models are diagrams that include accurate and complete
information about classes or entities, their relationships and their attributes.
Discovering all of these elements from the i∗ model is also a problem since the
information that it encloses is not as complete as in data conceptual models (due
to its intentional nature).

• Behavioural models like activity diagrams or sequence diagrams include interac-
tions among actors, or activities to be performed, with a flow of control that is
not expressed in i∗ models.

Solving these problems can be considered a major challenge.
Challenge. There shall be techniques available to make easier (and automate up

to a given extent) the transition from i∗ models into other types of models.

188 X. Franch

State of the art. As mentioned above, the main research line related to this
challenge corresponds to the transformation of i∗ models into UML-like artefacts
[50], generally in the context of model-driven development (MDD) [60]. Within the
OO-Method MDD methodology [49], Alencar at al. have shown that it is possi-
ble to partially infer data conceptual models from i∗ models [2]. Actors and their
relationships, and resources (both dependencies and internal SR elements), play a
fundamental role in this translation. Following the MDD foundations, transforma-
tion rules are defined to obtain an initial class diagram that is completed manually
(e.g., adding information about multiplicity, not present at i∗ models) for obtain-
ing a complete OO-Method class model which can be used in the rest of the MDD
process.

Concerning use case generation, Estrada et al. [17] propose a method that cov-
ers identification of use cases and actors, and writing of scenarios. Use cases are
determined from both the task and resource dependencies that involve the actor that
represents the system. The actors at the other end of such dependencies are rep-
resented as use case actors. Finally, SR diagrams are used to fill some predefined
templates in order to generate the text of scenarios. A similar approach is followed
by Santander and Castro [59].

Apart from these kind of models above, i∗ has been used in other contexts.
Remarkably, Ncube et al. [47] report an extension to the RESCUE process [38]
in which a collection of 30 patterns were applied over an i∗ model to generate tex-
tual candidate requirement statements using the VOLERE template, generating up
to almost 600 requirements. As a result of this work, the authors argued that require-
ments generated from i∗ models resulted in a more complete overall requirements
specification.

Lucena et al. [42] have gone one step beyond in the development process and
they address the generation of architectural models. They combine two levels of
refinement, first by modularizing the departing model using the rules described in
[43] and then transforming the resulting i∗ model into a software architecture model
described with the ACME architectural description language [25].

Research directions. As shown above, the transformation of i∗ models into other
models has been subject of much investigation. However, being a very complex
topic, it requires still much work to do. When considering i∗ models as the starting
point of an MDD process, research is needed with respect to several topics [8]:

• Automating as much as possible the model transformation. It seems clear from
previous work that full automation is not feasible since the underlying ontologies
cannot be completely aligned. However, the work undertook so far (see above)
looks promising and it may be expected that more results will be achieved soon.
An important result of these approaches should be the clear statement of the lim-
itations of the proposed methods regarding to automation. Also the possibility
of enriching the i∗ framework with information that in fact belongs to the target
ontology (e.g., order of task in task decompositions [23]) is a point to explore.

• Validating the adequacy of the i∗ model before applying the transformations.
Since the i∗ model is not originally conceived for later transformation, it is

Fostering the Adoption of i∗ by Practitioners 189

necessary to assess its adequacy, e.g. how well-suited it is for generating classes
and attributes in a class model. The definition and application of metrics using
the iMDFM method [20] is a possible path to follow.

• Traceability among models. Traceability is a classical problem in MDD methods
[52] and as such it needs to be properly managed.

6 Conclusion

In this chapter, we have defended the position of shifting the focus of the i∗ com-
munity from pure research to a more practical view that may help in transferring
the framework to practitioners. For the sake of brevity, we have focused on four
challenges that have been described in detail, but several others are out there. These
challenges solve some of the drawbacks that the empirical study by Estrada et al.
has pointed out [18]. We have focused on scientific challenges, but there are also
some other community-oriented issues worth to be considered, among them we may
mention:

• Lessons learned. For putting i∗ into practice, it is needed to have feedback about
its use by practitioners. We think that the facts observed in the experiences
mentioned at the introduction of this chapter should be consolidated by all the
participants in these and others collaborative experiences, packaged into lessons
learned, and the consequences fed back into the community as a main driver for
identifying lines of future research.

• Tool support. In our opinion, taking into account the size of the core i∗ research
community, there is an excess of tools. Given that developing and maintaining
such tools has a considerable cost for the research groups, a possible strate-
gic action could be to join efforts for producing a common subsystem at least
for the more basic capabilities (e.g., i∗ editor) configurable enough to adapt to
each group’s specificities, importing/exporting models in e.g. iStarML format
and with a well-defined API, with a plug-in based infrastructure for enriching its
functionality.

• Population for experiments. A great deal of current proposals of modelling vari-
ations, analysis techniques, development methods, etc., undergo through a weak
validation (if any). The main reason for this probably is the difficulty on get-
ting population enough to run these experiments. A community-oriented view is
probably needed in order that the research groups allocate some of their effort
in participating in such validations. The i∗ wiki may help on implementing this
idea.

We hope to see in the next years an increasing effort in these and other topics that
make the use of the i∗ framework in industrial cases not an exception but a usual
practice.

Acknowledgments This work has been partially supported by the Spanish project TIN2007-
64753

190 X. Franch

References

1. Alencar F, Silva C, Lucena M, Castro J, Santos E, Ramos R (2008) Improving the under-
standibility of i∗ models. In: Proceedings of the 10th international conference on enterprise
information systems, vol. ISAS-1. INSTICC, Setūbal, pp 129–136

2. Alencar F, Marín B, Giachetti G, Pastor O, Castro J, Pimentel JH (2009) From i∗ require-
ments models to conceptual models of a model driven development process. In: Proceedings
of PoEM 2009. LNBIP, vol 39. Springer, Berlin, Heidelberg, pp 99–114

3. Alencar F, Castro J, Lucena M, Santos E, Silva C, Araújo J, Moreira A (2010) Towards
modular i∗ models. In: Proceedings of 25th symposium of applied computing international
conference – RE track. ACM Press, New York, pp 292–297

4. Annosi A, de Pascale A, Gross D, Yu E (2008) Analyzing knowledge transfer in software
maintenance organizations using an agent- and goal-oriented analysis technique – an experi-
ence report. In: Proceedings of 3rd international i∗ workshop. CEUR-WS, vol 322. Aachen,
pp 5–8

5. Annosi A, de Pascale A, Gross D, Yu E (2008) Analyzing software process alignment with
organizational business strategies using an agent- and goal-oriented analysis technique – an
experience report. In: Proceedings of 3rd international i∗ workshop. CEUR-WS, vol 322.
Aachen, pp 9–12

6. Ayala C, Cares C, Carvallo JP, Grau G, Haya M, Salazar G, Franch X, Mayol E, Quer C (2005)
A comparative analysis of i∗-based agent-oriented modelling languages. In: Proceedings of
17th international conference on software engineering and knowledge engineering confer-
ence. Knowledge Systems Institute, Skokie, pp 43–50

7. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: an agent-
oriented software development methodology. J Autonomous Agents Multi-Agent Systems
8(3):203–236

8. Cabot J, Yu E (2008) Improving requirements specifications in model-driven development
process. In: Proceedings of international workshop on challenges in model-driven software
engineering. http://ssel.vub.ac.be/ChaMDE08/wsorganisation, pp 36–40

9. Cares C, Franch X, Mayol E, Quer C (2010) A reference model for i∗. In: Social modelling
for requirements engineering. The MIT (in press)

10. Cares C, Franch X, Perini A, Susi A (2010) Towards interoperability of i∗ models using
iStarML. Computer Standards & Interfaces, doi 10.1016/j.csi.2010.03.005

11. Carvallo JP, Franch X (2009) On the use of i∗ for architecting hybrid systems: a method
and an evaluation report. In: Proceedings of PoEM 2009. LNBIP, vol 39. Springer, Berlin,
Heidelberg, pp 38–53

12. Carvallo JP, Franch X, Quer C (2008) Requirements engineering for COTS-based software
systems. In: Proceedings of 23th ACM symposium on applied computing, ACM, New York,
pp 638–644

13. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition. Sci
Computer Programming 20(1–2):3–50

14. Davies I, Green P, Rosemann M, Indulska M, Gallo S (2006) How do practitioners use
conceptual modelling in practice? Data Knowl Eng 58:358–380

15. DeLoach SA, Miller M (2010) A goal model for adaptive complex systems. Int J Comput
Intelligence: Theory Practice 5(2) (in press)

16. Estrada H (2008) A service-oriented approach for the i∗ framework. PhD Dissertation,
Universidad Politécnica de Valencia

17. Estrada H, Martínez A, Pastor O (2003) Goal-based business modelling oriented towards
late requirements generation. In: Proceedings of ER 2003. LNCS, vol 2813. Springer, Berlin,
Heidelberg, pp 277–290

18. Estrada H, Martínez A, Pastor O, Mylopoulos J (2006) An empirical evaluation of the i∗
framework in a model-based software engineering environment. In: Proceedings of CAiSE
2006. LNCS, vol 4001. Springer, Berlin, Heidelberg, pp 513–527

Fostering the Adoption of i∗ by Practitioners 191

19. Franch X (2006) On the quantitative analysis of agent-oriented models. In: Proceedings of
CAiSE 2006. LNCS, vol 4001. Springer, Berlin, Heidelberg, pp 495–509

20. Franch X (2009) A method for the definition of metrics over i∗ models. In: Proceedings of
CAiSE 2009. LNCS, vol 5565. Springer, Berlin, Heidelberg, pp 201–215

21. Franch X (2010) Incorporating modules into the i∗ framework. In: Proceedings of CAiSE
2010. LNCS, vol 6051. Springer, Berlin, Heidelberg, pp 454–469

22. Franch X, Grau G, Mayol E, Quer C, Ayala P, Cares C, Haya M, Navarrete F, Botella P (2007)
Systematic construction of i∗ strategic dependency models for socio-technical systems. Int J
Softw Eng Knowl Eng 17(1):79–106

23. Fuxman A, Kazhamiakin R, Pistore M, Roveri M (2003) Formal tropos: language and
semantics. Technical report. University of Trento. http://dit.unitn.it/∼ft/papers/ftsem03.pdf.
Accessed May 2010

24. Gailly F, España S, Poels G, Pastor O (2008) Integrating business domain ontologies with
early requirements modelling. In: Proceedings of RIGiM 2008. LNCS, vol 5232. Springer,
Berlin, Heidelberg, pp 282–291

25. Garlan D, Monroe R, Wile D (1997) ACME: an architecture description interchange language.
In: Proceedings of conference of the centre for advanced studies on collaborative research
(CASCON), IBM, New York, p 7

26. Giachetti G, Alencar F, Franch X, Pastor O (2010) Applying i∗ metrics for the integration of
goal-oriented modelling into MDD processes. Technical Report ESSI-TR-10-2. Universitat
Politècnica de Catalunya

27. Giorgini P, Kolp M, Mylopoulos J, Pistore M (2004) The tropos methodology: an overview.
In: Methodologies and software engineering for agent systems. Kluwer Academic Publishers,
Berlin, Heidelberg

28. Giorgini P, Massacci F, Mylopoulos J, Zannone N (2005) Modelling security requirements
through ownership, permission and delegation. In: Proceedings of 13th IEEE international
requirements engineering conference, IEEE CS Press, Los Alamitos, pp 167–176

29. Giorgini P, Mylopoulos J, Nicciarelli E, Sebastiani R (2002) Formal reasoning techniques for
goal models. In: LNCS, vol 2503. Springer, Berlin, Heidelberg, pp 167–181

30. Grau G, Cares C, Franch X, Navarrete F (2006) A comparative analysis of i∗ agent-
oriented modelling techniques. In: Proceedings of 17th international conference on software
engineering and knowledge engineering conference, Knowledge Systems Institute, Skokie,
pp 657–663

31. Grau G, Franch X (2007) On the adequacy of i∗ models for representing and analyzing
software architectures. In: Proceedings of RIGiM 2007. LNCS, vol 4802. Springer, Berlin,
Heidelberg, pp 296–305

32. Grau G, Franch X, Maiden NAM (2008) PRiM: an i∗-based process reengineering method for
information systems specification. Info Softw Technol 50(1–2):76–100

33. Guizzardi R, Guizzardi G, Perini A, Mylopoulos J (2006) Towards an ontological account of
agent-oriented goals. In: Proceedings of SELMAS 2006. LNCS, vol 4408. Springer, Berlin,
Heidelberg, pp 148–164

34. HiME website. http://www.lsi.upc.edu/∼llopez/hime/. Accessed May 2010
35. Horkoff J, Yu E (2002) Evaluating goal achievement in enterprise modelling – an interactive

procedure and experiences. In: Proceedings of PoEM 2009. LNBIP, vol 39. Springer, Berlin,
Heidelberg, pp 145–160

36. i∗ wiki. http://istar.rwth-aachen.de. Accessed May 2010
37. ITU-T (International Telecommunication Union, Telecommunication Standardization Sector)

(2008) Recommendation Z.151: user requirements notation (URN) – language definition.
http://www.itu.int/rec/T-REC-Z.151/e. Accessed May 2010

38. Jones SV, Maiden NAM (2005) RESCUE: an integrated method for specifying requirements
for complex socio-technical systems. In: Mate JL, Silva A (eds) Requirements engineering
for socio-technical systems. Idea Group, Hershey, pp 245–265

39. Kavakli E (2004) Modelling organizational goals: analysis of current methods. In:
Proceedings of 19th ACM symposium on applied computing, ACM, New York, pp 1339–1343

192 X. Franch

40. Leite J, Werneck V, de Pádua Albuquerque Oliveira A, Cappelli C, Cerqueira AL, de Souza
Cunha H, González-Baixauli B (2007) Understanding the strategic actor diagram: an exercise
of meta modelling. In: Proceedings of 10th workshop em engenharia de requisitos, Toronto,
pp 2–12

41. Lockerbie J, Maiden NAM (2008) REDEPEND: tool support for i∗ modelling in large-
scale industrial projects. In: Proceedings of CAiSE forum. CEUR-WS, vol 344. Aachen,
pp 69–72

42. Lucena M, Castro J, Silva C, Alencar F, Santos E, Pimentel J (2009) A model transfor-
mation approach to derive architectural models from goal-oriented requirements models.
In: Proceedings of OTM 2009 workshops. LNCS, vol 5872. Springer, Berlin, Heidelberg,
pp 370–380

43. Lucena M, Silva C, Santos E, Alencar F, Castro J (2009) Modularizando modelos i∗: uma
Abordagem baseada em transformação de modelos. In: Proceedings of 12th workshop em
engenharia de requisitos, Valparaiso, pp 33–44

44. Maiden NAM, Jones S, Ncube C, Lockerbie J (2010) Using i∗ in requirements projects some
experiences and lessons learned. In: Yu E, Giorgini P, Maiden NAM, Mylopoulos J (eds)
Social modelling for requirements engineering. The MIT Press (in press)

45. Mylopoulos J, Borgida M, Jarke M, Koubarakis M (1990) Telos: a language for managing
knowledge about information systems. ACM Trans Info Systems 8(4):327–362

46. Moody DL, Heymans P, Matulevicius R (2009) Improving the effectiveness of visual rep-
resentations in requirements engineering: an evaluation of i∗ visual syntax. In: Proceedings
of 17th international requirements engineering conference. IEEE CS Press, Los Alamitos,
pp 171–180

47. Ncube C, Lockerbie J, Maiden NAM (2007) Automatically generating requirements from i∗
models: a case study with a complex airport operations system. In: Proceedings of REFSQ
2007. LNCS, vol 4542. Springer, Berlin, Heidelberg, pp 33–47

48. Oliveira A, Leite J, Cysneiros L, Lucena C (2008) i∗ diagnoses: a quality process for building
i∗ models. In: Proceedings of CAiSE Forum. CEUR-WS, vol 344. Aachen, pp 9–12

49. Pastor O, Gómez J, Insfrán E, Pelechano V (2001) The OO-method approach for information
systems modelling: from object-oriented conceptual modelling to automated programming.
Info System 26(7):507–534

50. Perini A, Susi A (2005) Automating model transformations in agent-oriented mod-
elling. In: Proceedings of AOSE 2005. LNCS, vol 3950. Springer, Berlin, Heidelberg,
pp 168–178

51. Prakash N, Rolland C (2006) System design for requirements expressed as a map. In:
Khosrow-Pour M (ed) Emerging trends and challenges in information technology. Idea Group,
Washington, USA, pp 501–503

52. Ramesh B, Jarke M (2001) Toward reference models of requirements traceability. IEEE Trans
Softw Eng 27(1):58–93

53. Rolland C (2007) Capturing system intentionality with maps. In: Krogstie J, Opdahl AL,
Brinkkemper S (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, Heidelberg, pp 141–158

54. Rolland C, Prakash N, Benjamen A (1999) A multi-model view of process modelling. Reqs
Eng 4(4):169–187

55. Rolland C, Samia Kaabi R, Kraiem N (2007) On ISOA: intentional services oriented archi-
tecture. In: Proceedings of CAiSE 2007. LNCS, vol 4495. Springer, Berlin, Heidelberg,
pp 158–172

56. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modeling using scenarios. IEEE
Trans Softw Eng 24(12):1055–1071

57. Roy JF, Kealey J, Amyot D (2007) Towards integrated tool support for the user require-
ments notation. In: Proceedings of SAM 2006. LNCS, vol 4320. Springer, Berlin, Heidelberg,
pp 198–215

58. Sabetzadeh M, Easterbrook S (2006) View merging in the presence of incompleteness and
inconsistency. Reqs Eng J 11(3):174–193

Fostering the Adoption of i∗ by Practitioners 193

59. Santander V, Castro J (2002) Deriving use cases from organizational modelling. In:
Proceedings of 10th international requirements engineering conference, IEEE CS Press, Los
Alamitos, pp 32–39

60. Selic B (2003) The pragmatics of model-driven development. IEEE Softw 20(5):19–25
61. Strohmaier M et al (2008) Can patterns improve i∗ modelling? Two exploratory studies. In:

Proceedings of REFSQ 2008. LNCS, vol 5025. Springer, Berlin, Heidelberg, pp 153–167
62. Susi A, Perini A, Mylopoulos J, Giorgini P (2005) The tropos metamodel and its use.

Informatica 29(4):401–408
63. TAOM4E website. http://sra.itc.it/tools/taom4e/. Accessed May 2010
64. The ISO Organization (2001) ISO/IEC standard 9126 software engineering – product quality.

ISO Standards
65. The OMG. http://www.uml.org/. Accessed May 2010
66. The REA Ontology. https://www.msu.edu/user/mccarth4/rea-ontology/. Accessed May 2010
67. University of Toronto. http://www.cs.toronto.edu/km/GRL/. Accessed May 2010
68. van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour. In:

Proceedings of 5th IEEE international symposium on requirements engineering, IEEE CS,
Los Alamitos, p 249

69. Wachsmuth G (2007) Metamodel adaptation and model co-adaptation. In: Proceedings of
ECOOP 2007. LNCS, vol 4609. Springer, Berlin, Heidelberg, pp 600–624

70. Yang J, Liu L (2008) Modelling requirements patterns with a goal and PF integrated anal-
ysis approach. In: Proceedings of 32nd annual IEEE international computer software and
applications conference, IEEE CS, Los Alamitos, pp 239–246

71. Yu E (1995) Modelling strategic relationships for process reengineering. PhD Dissertation,
University of Toronto

72. Yu E (2009) Social modelling in i∗. In: Conceptual modelling: foundations and applications.
LNCS, vol 5600. Springer, Berlin, Heidelberg, pp 99–121

73. Yu E, Giorgini P, Maiden NAM, Mylopoulos J (eds) (2010) Social modelling for requirements
engineering. The MIT Press (in press)

Rights and Intentions in Value Modeling

Paul Johannesson and Maria Bergholtz

Abstract In order to manage increasingly complex business and IT environments,
organizations need effective instruments for representing and understanding this
complexity. Essential among these instruments are enterprise models, i.e. com-
putational representations of the structure, processes, information, resources, and
intentions of organizations. One important class of enterprise models are value
models, which focus on the business motivations and intentions behind business
processes and describe them in terms of high level notions like actors, resources,
and value exchanges. The essence of these value exchanges is often taken to be an
ownership transfer. However, some value exchanges cannot be analyzed in this way,
e.g. the use of a service does not influence ownership. The goal of this chapter is to
offer an analysis of the notion of value exchanges, based on Hohfeld’s classification
of rights, and to propose notation and practical modeling guidelines that make use
of this analysis.

1 Introduction

In order to manage increasingly complex business and IT environments, organi-
zations need effective instruments for understanding their internal operations and
strategies as well as their external interactions. Essential among these instruments
are enterprise models, i.e. computational representations of the structure, processes,
information, resources, and intentions of organizations. Enterprise models may be
created on varying levels of abstraction depending on their purpose. A high level
of abstraction can be achieved in different ways, e.g. by focusing on essential
communicative acts [2] rather than specific message exchanges, by investigating
commitments and obligations [11] rather than the way these are fulfilled, or by

P. Johannesson (B)
Department of Computer and Systems Sciences, Stockholm University, Forum 100,
SE 16440 Kista, Sweden
e-mail: pajo@dsv.su.se

195S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_11, C© Springer-Verlag Berlin Heidelberg 2010

196 P. Johannesson and M. Bergholtz

focusing on the business motivation behind processes. Models on this high level
of abstraction are known as business models or value models [13].

Value models have a special characteristic in that they are formulated declara-
tively without taking into account the order of activities or other forms of activity
dependencies. A value model focuses on high level and business oriented objects
like resources, actors, and value exchanges. It describes business interaction in
terms of intentions and goals, which is a perspective that has been used also in
other areas of the information systems field [14, 16]. In contrast, a process model
typically includes procedural and technical details including messages and activi-
ties as well as control and data flow. The high abstraction level of value models
makes them appropriate for representing business cases in a compact and easily
understandable way.

A basic notion in value models is that of value exchange, meaning that something
of value is transferred between two actors. The essence of this exchange is often
taken to be an ownership transfer, i.e. ownership rights on a resource are transferred
from one actor to another. However, some value exchanges cannot be analyzed in
this way, e.g. the use of a service does not influence ownership. Furthermore, many
value exchanges are accompanied by changes of physical states, such as location,
which are unrelated to ownership relationships. Thus, addressing only ownership
transfers in value modeling will result in impoverished models that exclude impor-
tant aspects of value exchange and creation. Therefore, there is a need for a detailed
analysis of the meaning of value exchanges that will help in the design of rich
value models that include not only ownership transfers but also other forms of value
exchange and creation. The goal of this chapter is to offer an analysis of the notion
of value exchanges but also to propose a notation that makes use of this analysis as
well as guidelines supporting the design of value models.

The chapter is structured as follows. Section 2 gives an overview of related
research, in particular value modeling and Hohfeld’s classification of rights. Section
3 analyses the notion of value exchanges by describing their context and construc-
tion in the form of a conceptual model. Based on this analysis, Sect. 4 proposes
an extension of the e3value modeling notation and guidelines for designing value
models. Section 5 concludes the chapter with a summary of its contributions and
suggestions for further work.

2 Related Work

This section introduces two of the main ontologies for value modeling, REA and
e3value, as well as Hohfeld’s classification of rights, which is used for analyzing
basic notions in value modeling.

2.1 The REA Ontology

The REA (Resource-Event-Actor) ontology was formulated originally in [11] and
developed further in a series of papers, e.g. [5]. Its conceptual origins can be seen

Rights and Intentions in Value Modeling 197

as a reaction to traditional business accounting where the needs are to manage busi-
nesses through a technique called double-entry bookkeeping. This technique records
every business transaction as a double entry (a credit and a debit) in a balanced
ledger.

The core concepts in the REA ontology are resources, events, and actors. The
intuition behind the ontology is that every business transaction can be described
as events where two actors exchange resources. To get a resource an agent has
to give up some other resource. For example, in a purchase a buying agent has
to give up money to receive some goods. The amount of money available to
the agent is decreased, while the amount of goods is increased. There are two
events taking place here: one where the amount of money is decreased and another
where the amount of goods is increased. This correspondence of events is called
a duality. A corresponding change of availability of resources takes place at the
seller’s side. Here the amount of money is increased while the amount of goods is
decreased.

2.2 The e3value Ontology

The e3value ontology [6, 7] aims at describing exchanges of value objects between
business actors. It also supports profitability analysis of the business model created.
The basic concepts in e3value are actors, value objects, value ports, value interfaces,
value activities and value exchanges, see Fig. 1. An actor is an economically inde-
pendent entity. An actor is often, but not necessarily, a legal entity, e.g., enterprises
and end-consumers. A value object is something that is of economic value for at
least one actor, for example a car, Internet access, or a stream of music. (We will
sometimes use “resource” as a synonym for “value object”.) A value port is used by
an actor to provide or receive value objects to or from other actors. A value port has
a direction, in (e.g., receive goods) or out (e.g., make a payment) indicating whether
a value object flows into or out of the actor. A value interface consists of in and out
ports that belong to the same actor. Value interfaces are used to model economic
reciprocity. A value exchange is a pair of value ports of opposite directions belong-
ing to different actors. It represents one or more potential trades of value objects
between these value ports. A value activity is an operation that could be carried out
in an economically profitable way for at least one actor.

Fig. 1 Basic e3value concepts

198 P. Johannesson and M. Bergholtz

2.3 Hohfeld’s Classification of Rights

A central component in any value exchange is the transfer and creation of rights.
The rights being created can be of different kinds, and it is easy to confuse what
rights can mean and how they can be distinguished. In order to clarify the role of
rights in value exchanges we will make use of the work of W. N. Hohfeld [8, 9],
who proposed a classification identifying four broad categories of rights: claims,
privileges, powers, and immunities.

• One actor has a claim on another actor if the other actor is required to act in a
certain way for the benefit of the first actor, typically by carrying out some action.
Conversely, the second actor is said to have a duty to the first actor. An example is
a person who has a claim on another person to pay an amount of money, implying
that the other person has a duty to pay the amount. Claims always exist within a
social structure that is able to monitor and enforce them.

• An actor has a privilege on an action if she is free to carry out that action without
any interference from a social structure. Some examples of privileges are free
speech, free movement, and free choice of marriage partner, which mean that
a person is able to talk, move, and choose a marriage partner without interfer-
ence from the state. Another example is that a person owning some goods has
privileges to use the goods in various ways.

• A power is the ability of an actor to create or modify a relationship. An example
is that a person owning a piece of land has the power to sell it to someone else,
thereby creating a new ownership relationship for that piece of land.

• Immunity is about restricting the power of an actor in creating formal relation-
ships for other actors. For example, a native people can have an immunity for state
legislation concerning their property rights, meaning that the state does not have
the power to legislate laws that modify the existing property rights of members
of the native people.

Most relationships consist of a combination of several of these rights. For exam-
ple, if you own a car it means that you have privileges on using it and you also
have the power to lend the car or sell it, i.e. creating new ownerships involving other
actors.

3 Value Context Model

In this section, we introduce a conceptual model that provides a context for the
basic notions of value models. This value context model will include actors car-
rying out value exchanges and the social structures that form the background of
the exchanges. Furthermore, the model will represent how actions carried out by
actors can be combined into joint actions that communicate intentions and may
result in creating and modifying social relationships. These relationships will be

Rights and Intentions in Value Modeling 199

defined in terms of the rights they include. Based on these notions, value exchanges
will be modeled as a combination of actions that modify social relationships as
well as physical states. The starting point of the model is the OASIS [12] Reference
Foundation Architecture for Service Oriented Architecture, which aims at providing
a common language for understanding SOA as well as addressing issues involved
in constructing, using and owning an SOA-based system. We have chosen this
architecture as a basis, since it provides an established foundation for many of the
concepts needed to analyze the meaning of value models.

3.1 Actors and Social Structures

3.1.1 Actor

An actor is an entity, human, non-human or organization of entities, that is capable
of action (taken from [12], Sect. 3.1.1).

The main characteristic of an actor is its ability to take action, which means that
an actor can be a human, an organization or even a computational agent. It is not
required that an actor be responsible for its actions, as this only pertains to legal
entities. Actors, as almost all concepts in the value context model, may exist on
a knowledge level as well as on an operational level. According to [4] the opera-
tional level models concrete, tangible individuals in a domain, while the knowledge
level models information structures that characterize categories of individuals on
the operational level. The value context model hence distinguishes between actor
types (categories of actors like lawyer, barrister, and teacher) and actors (specific
and often tangible concepts like a concrete person).

Actors may be associated to each other through relationships. A relationship may
occur spontaneously between two or more humans, as in a friendship. However,
many relationships can only occur and exist within the context of some pre-existing
social structure. For example, a marriage can only exist within some legal system of
a state, and a job position is only meaningful in the context of some organization. In
this way, social structures provide a frame or context within which relationships can
exist and be meaningful. A relationship typically has different meanings in different
social structures, for example a marriage may impose different rights and obliga-
tions on the involved actors depending on the social structure in which it exists.
Examples of social structures are a company, an association, an NGO, a country,
and an international organization.

3.1.2 Social Structure

A social structure is a relationship created by a set of actors with the purpose of gov-
erning some of their existing and future relationships. A social structure embodies
some of the cultural aspects that characterize the relationships and actions among a
group of actors (partially based on [12], Sect. 3.2).

200 P. Johannesson and M. Bergholtz

Social structures are set up by humans in order to fulfill some purpose, typically
to provide value for their environments. For example, the purpose of a school is
to educate people, and the purpose of a car manufacturer is to provide actors with
cars. A special feature that distinguishes social structures from other kinds of rela-
tionships is that they can be actors themselves. The actors who are members of the
social structure can be said to have constructed a higher level actor, which is capable
of performing its own actions.

3.1.3 Purpose

The purpose of a social structure is the value it is intended to provide to its
environment (partially based on [12], Sect. 3.2).

Figure 2 summarizes the relationships between actors, social structures, and
purposes; it also shows some examples of social structures.

Fig. 2 Actors and social
structures

3.2 Actions

3.2.1 Action

An action is intentionally carried out by one actor and gives rise to a state change
(partially based on [12], Sect. 3.1.2.1).

A distinguishing feature of an action is that it is always carried out with an inten-
tion to achieve some effect. Events are similar to actions as they also result in effects,
but they happen accidentally or as a result of natural causes, e.g. medical side effects
and earthquakes.

In order to achieve a desired effect, it is often required that several actors together
carry out a number of actions. One example could be a number of workers that
together assemble a vehicle. Another example is a person speaking to another person
who listens to what is said. Only when both the speaker has made his statement and
the listener has heard and understood it, there will be an effect.

3.2.2 Joint Action

A joint action is a coordinated set of actions involving the efforts of two or more
actors (taken from [12], Sect. 3.1.2.2).

Rights and Intentions in Value Modeling 201

3.2.3 Communicative Action

A communicative action is a joint action in which an actor communicates with one
or more other actors (taken from [12], Sect. 3.1.3).

A communicative action is a joint action where information is conveyed from
the speaker to the listener. It consists of one speaking action, where the speaker
states some content, and a listening action, where the listener acquires and under-
stands the content. While some communicative actions are carried out only with the
purpose of transferring information from the speaker to the hearer, many commu-
nicative actions also have additional purposes, as analyzed in speech act theory, [15].
Some communicative actions are meant as requests for the listener to carry out some
action, while others are meant as promises by the speaker to carry out something. In
fact, some communicative acts may on the surface appear as pure assertions by the
speaker, while they actually carry another purpose such as a request. For example, if
someone states “it is cold in this room”, it may look like a straight-forward assertion
but is actually a request for the listener to close the open window in the room.

Some communicative actions may ultimately give rise to changes within a social
structure through modifying the relationships between actors in that structure or
their perceptions of the world. An example could be an employee placing a purchase
request to the purchasing department in a company. This request is a communicative
action but it will also result in an obligation for the purchasing department to fulfill
the request of the employee (given that certain conditions are fulfilled). Thus, the
employee’s request changes the relationships in the enterprise. In order to clarify the
effects of communicative actions we introduce the notion of social action.

3.2.4 Social Action

A social action is a joint action that gives rise to social relationships (partially based
on [12], Sect. 3.3).

In the next section we will discuss social relationships in more detail, but
intuitively they consist of a number of components, including rights, obligations,
prohibitions, permissions, and expectations of behavior patterns. In this chapter,
we will focus on the formal aspects of social relationships, in particular rights.
Communicative actions and social actions are related as a communicative action
may count as a social action under certain circumstances. This means that when
two actors carry out a communicative action, they thereby also carry out a social
action. For example, when an employee places a purchase request to a purchasing
department, the two actors carry out a communicative action where the employee
informs the purchasing department about her need and asks the department to fulfill
it. Under certain circumstances (the employee is correctly authorized, the cost of the
request is within budget, etc.) this communicative act will also count as a social act
that gives rise to an obligation for the purchasing department to fulfill the request (a
social relationship). In this way, an action in one system can count as an action in
another system – changing the states of communicating actors can count as changes
within a social structure.

202 P. Johannesson and M. Bergholtz

3.2.5 Counts As

Counts as is a relationship between two logical systems in which an action, event
or concept in one system can be understood as another action, event or concept in
another system (taken from [12], Sect. 3.1.4).

Figure 3 summarizes the relationships between actors, actions, joint actions,
communicative actions, social actions, and social relationships. In Sect. 3.3 the con-
cept “Counts as” is further modeled and analyzed in the context of how relationships
come into being and get their meaning within social structures.

Fig. 3 Actions and social relationships

3.3 Social Relationships

3.3.1 Social Relationship

A social relationship is an association between two or more actors, each of whom
plays a role in the relationship, that is defined in terms of the rights the actors have
in relation to each other.

A social relationship can only exist within the context of a social structure, as
it gets it meaning from that structure. For example, a purchase order (a social
relationship) is only meaningful within an organization and its surrounding legal
environment – if the organization ceases to exist, the purchase order does not have
any meaning. Our definition of social relationship can be seen as a specialization of
the notion of social fact in [12].

A social relationship involves a number of actors that play different roles in the
relationship, for example there are husband and wife roles in a marriage, and buyer
and seller roles in a purchase order. A marriage (a social relationship) in one social
structure may include two roles: a husband role (male) and a wife role (female)
imposing different rights (or equal rights) on the two actors connected through
the marriage. In another social structure, a marriage may hold between two part-
ners independently of whether the partners are of different gender or not. Thus, the
meaning of a role is dependent on the social structure in which it exists.

3.3.2 Role

A role in a social relationship type is a set of rights that an actor playing that role
in a relationship has towards the other roles in the relationship (partially based on
[12], Sect. 3.2.1).

Rights and Intentions in Value Modeling 203

3.3.3 Right

A right is either a claim, a privilege, a power, or an immunity as defined by Hohfeld,
see Sect. 2. A privilege or a claim may concern some resource or action, while
a power and immunity concern a relationship i.e. power is the right to modify or
create a social relationship, while immunity is the right (for an actor) to be excluded
from certain social relationships.

An example of these notions is a purchase order (a social relationship) in which
the buyer (a role) has a claim (a right) on the supplier (a role) to deliver some product
(an action) and the supplier has a claim (a right) on the supplier to pay for the
product (an action). Two important types of social relationships are commitments
and ownerships.

3.3.4 Commitment

A commitment is a relationship between two actors where the rights involved in the
relationship primarily consist of a claim, where one actor is obliged to carry out
some action for another actor. In other words, one actor is committed to carry out
some action for the benefit of another actor.

3.3.5 Ownership

An ownership is a social relationship between an actor and a social structure where
the rights pertain to some resource. The rights involved in an ownership are primar-
ily privileges (the actor is allowed to carry out certain actions on a resource without
any interference from the social structure) and powers (an actor is entitled to cre-
ate or modify a social relationship). An example is that a person owning a book
has the right to read the book and even destroy it but also the right to transfer the
ownership to someone else by giving the book away, thereby terminating one social
relationship and creating another.

3.3.6 Authority

Authority is the right to act as agent on behalf of an organization or another person
(taken from [12], Sect. 3.2.1).

If an actor has the correct authority, some of its actions will count as actions of
the organization for which it acts. For example, if an employee at a company writes
out a check, it will count as a payment by the company if the employee is correctly
authorized.

3.3.7 Resource

A resource is any entity of some perceived value that has identity (taken from [12],
Sect. 3.3.3). A resource type describes categories of resources.

204 P. Johannesson and M. Bergholtz

A similar definition of the term “resource” may be found in REA, see Sect. 2.1 or
in the e3value concept of value object, see Sect. 2.2. Examples of resource types are
goods, land/real estate, and intellectual property. In some cases relationships can be
resources, for instance an invoice (a commitment-relationship between two actors
where one actor has to reimburse the other actor) may constitute a resource.

As the meaning and creation of relationships may vary between social structures,
we need rules for defining them. In other words, rules model what rights hold for
roles and relationships within a given social structure and how these roles and social
relationships come into existence in the same social structure. There are three types
of rules: meaning rules, derivation rules, and counts as rules.

3.3.8 Meaning Rule

A meaning rule defines what rights hold for a certain role in a social relationship
relative a social structure.

To be a king (a role) in Sweden (a social structure) entails certain privileges,
claims and powers. A privilege may be to use certain castles (but not to give them
away so being king of Sweden does not entail an ownership of the castles). Claims
include a yearly allowance from the social structure (Sweden), and the powers
encompass the right to appoint and dismiss members of court. To be the king of
Great Britain entails considerably more privileges and powers compared to Sweden.

3.3.9 Derivation Rule

A derivation rule defines how social relationships and roles come into existence. A
derivation rule tells which social relationships a social action gives rise to within a
certain social structure.

From a modeling point of view, a derivation rule can be seen as a reification
of the “results in” association in Fig. 3, which makes the association relative to a
social structure. Similarly, the “counts as” association in Fig. 3 can be reified as in
the following definition.

3.3.10 Counts As Rule

A counts as rule defines what communicative actions count as social actions relative
to a social structure.

Figure 4 summarizes the relationships between social structures, social relation-
ships, the various rights that define a social relationship within a social structure,
and the rules that define the creation of social relationships.

3.4 Value Exchanges

The notion of value exchange in value models means that something of value is
transferred from one actor to another. This exchange often includes a change of
ownership, but as the analysis above shows there are also other kinds of right

Rights and Intentions in Value Modeling 205

Fig. 4 Social relationships – meaning and creation

combinations that may be created. Furthermore, a value exchange may include
actions that are not about creating social relationships, such as the physical
transportation of goods.

We suggest that a value exchange is to include three components: social rela-
tionship creation, custody provision, and evidence provision. The first component
is about the rights an actor gets on some resource. If an actor gets a privilege on
a resource, it means that the actor is entitled to use that resource in some way. If
she gets a power on the resource, it means that she can create social relationships
concerning the resource. For example, in a value exchange where a person borrows
a car, she will get some privileges on it, meaning that she can drive it, park it, etc. If
she buys the car, she will get the same privileges but also powers on the car, allowing
her to lend it to other people or sell it.

The second component of a value exchange is about the custody of the resource
[1, 10]. An actor has the custody of a resource if she has immediate charge and
control of it, which typically implies physical access. If an actor has the custody
of a resource, this does not mean she has rights on it. For example, a distributor
may have the custody of some goods, but he is not allowed to use the goods. In a
value transfer, there is typically a provisioning of custody to the recipient through
which she gets access to the resource. An example is transporting some goods to the
recipient.

206 P. Johannesson and M. Bergholtz

Fig. 5 Value exchanges

The third component of a value exchange is the evidence document [1]. A trans-
fer may include some evidence document that certifies that the buyer has certain
rights on a resource. Typical examples of evidence documents are movie tickets that
certify that their owner has the right to watch a movie or hotel vouchers that make
the owner of the voucher eligible for accommodation at the hotel that issued the
voucher. In some cases it is sufficient to be the bearer of an evidence document to
use the rights it refers to, but in other cases these rights only hold for a specific
person stated in the document.

Summarizing, see Fig. 5 (which is drawn on the operational level), a value
exchange can be seen as combining three components:

• The rights the buyer obtains on the resource, e.g., the ownership of a book;
• The custody of the resource, e.g., the delivery of a book to the buyer;
• The evidence document, e.g., a receipt that can be used to prove ownership of a

book.

While the first component, the rights, is always considered, the last two compo-
nents are optional. For example, when buying a piece of land, the buyer is typically
not given the custody of that resource. Clearly, evidence documents are not always
provided and, furthermore, the provision of custody and evidence documents may
be so trivial that it is not of interest to make them explicit. In some complex cases,
however, a more detailed analysis is called for since modeling only the transfer of
ownership in a value exchange is not sufficient to address important aspects of how
value is created and exchanged.

4 Designing Rich Value Models

Most languages for value modeling, including e3value, give meaning to value
exchanges by focusing on the transfer of ownership. However, as shown in the pre-
vious section, there are also other kinds of rights relevant for value exchanges as

Rights and Intentions in Value Modeling 207

well as aspects not related to right transfer and creation. Furthermore, the concept
of custody, i.e. what actor has access to a value object, and evidence documents
involved in a value exchange, will also be incorporated in the analysis of how value
is created in an exchange. In this section, we will discuss how these additional rights
and aspects can be taken into account by extending the notation of the e3value lan-
guage, thereby enabling it to represent richer value models. We will also introduce a
number of guidelines assisting a designer in systematically enriching an initial value
model that only represents transfers of ownership.

4.1 Notation and Guidelines

In order to represent the meaning of value exchanges, the following notation will be
used:

• A value exchange representing the transfer of ownership will be labeled with
“O”;

• A value exchange representing the granting of a claim will be labeled with “C”;
• A value exchange representing the granting of a privilege will be labeled with

“Pr”;
• A value exchange representing the bestowing of power will be labeled with “Po”;
• A value exchange representing the pleading of a claim will be labeled with “PC”;
• A custody provision from one actor to another will be shown as a dotted arrow;
• An evidence provision from one actor to another will be shown as a dashed arrow.

In order to support a designer in enriching a value model and making it more
precise, we suggest a number of guidelines. These aim at clarifying the kinds of
rights involved in value exchanges, the consequences of claims, and the provision
of custody and evidence documents.

Guideline 1: Label existing value exchanges according to the rights involved;
possibly split value exchanges in order to get a unique labeling.

A trivial example of applying this guideline is shown in Fig. 6, which shows
a customer buying books from a bookstore. In this case, ownership of books and
money are transferred to the customer and bookstore, respectively.

Another example is shown in Fig. 7, where a customer buys insurance from an
insurance company. In this case, the customer does not get any privileges to carry
out certain actions; instead, she gets a (conditional) claim on the insurance company

Fig. 6 Bookshop example

208 P. Johannesson and M. Bergholtz

Fig. 7 Insurance example

stating that it is obliged to pay compensation in case of accidents. Thus, the value
exchange will be labeled with “C”, not “O”. Furthermore, the diagram shows a
value exchange from a financial supervisory authority to the insurance company.
The meaning of this exchange is that the authority gives the company a license, a
right, to operate in the insurance market, i.e. a power to establish insurance contracts
with customers. Thus, the value exchange will be labeled with “Po”, not “O”.

Guideline 2: For each value exchange representing the granting of a claim, intro-
duce a pair of value interfaces including a value exchange representing the pleading
of the claim.

A value exchange representing a claim means that one actor has a duty to carry
out some action for the benefit of another actor. However, this action is usually
not included in the value interfaces containing the claim granting value exchange.
Therefore, the meaning of the claim is not represented in the value model. Another
pair of value interfaces has to be introduced in order to make its meaning explicit.
These interfaces will include one exchange representing the pleading of the claim,
i.e. one actor requesting the other actor to fulfill the claim, and another exchange
representing the fulfillment of the claim, which thereby specifies the meaning of the
claim. It can be noted that pleading a claim is not about transferring or creating rights
but about making use of rights that an actor already possesses, and in this respect
it is different from other value exchanges. An example of applying guideline 2 is

Rights and Intentions in Value Modeling 209

Fig. 8 Bookshop example
with custody

given in Fig. 7, which shows that a customer can file an insurance claim (plead a
claim) and receive a reimbursement (ownership of money).

Guideline 3: For each value exchange of goods, introduce optionally an arrow
representing custody provision.

A simple example of applying this guideline is shown in Fig. 8, which extends
Fig. 6, showing that a book is physically transported to the customer, thereby giving
her custody of it.

Guideline 4: For each value exchange, introduce optionally an arrow representing
evidence provision.

An evidence document should typically be introduced in a value exchange if the
rights that it certifies cannot be proven without showing the document. In some cases
it is enough to be the bearer of an evidence document to be eligible to access the
rights the document refers to, but in some cases these rights are personal and only
hold for the person specified in the document. Only in the former case should the
evidence document be included in the value model. In the next section an example
where evidence documents are used in the model is introduced.

4.2 The Pawnshop Example

The following example illustrates how to analyze and model a business case using
the notation and guidelines proposed above. The business case chosen is that of a
pawnshop, which lends money to borrowers on a short-term basis accepting goods
as collateral. A pawnshop and a borrower can make business according to a number
of value exchanges, in Fig. 9 shown in two different pairs of value interfaces. The
first one is when the borrower gets a time limited right to use the money and pays an
interest; this is the case where the borrower returns the money and gets the collateral
back. The second pair of value interfaces models when the borrower gets ownership
of the money and the pawnshop gets ownership of goods, i.e. the collateral; this is
the case where the borrower does not return the money and the pawnshop takes the
collateral. The diagram also shows that the pawnshop may sell goods to buyers.

The value model of Fig. 9 represents the business case of a pawnshop only par-
tially as it focuses on transfers of ownership, e.g. the role of collaterals is not made
explicit. In order to arrive at a richer value model showing a more complete picture

210 P. Johannesson and M. Bergholtz

Fig. 9 Pawnshop example I

of the business case, we will analyze the value exchanges and extend the model
according to the guidelines proposed.

The first step in the analysis, according to guideline 1, is to identify the kinds of
rights involved in the value exchanges. The value exchange monetary loan means
that the borrower gets privileges and power rights on the money but also that there is
a duty for the borrower to return the money with an interest fee. In other words, the
pawnshop gets a claim on the borrower to pay back the loan, which is made explicit
in Fig. 10. According to guideline 3, we are also to introduce optional custody
provisions. In this case, the borrower gives custody of some goods to the pawnshop
as collateral. There is also a duty for the pawnshop to return the goods to the bor-
rower upon request, i.e. the borrower has a claim on the pawnshop, which is also
shown in Fig. 10. Thus, the figure shows a partial value model consisting of value
exchanges in which the borrower gets a loan, she leaves a good for collateral, the
pawnshop gets a claim on the borrower to pay back the loan, and the borrower gets

Fig. 10 Pawnshop example II

Rights and Intentions in Value Modeling 211

Fig. 11 Pawnshop
example III

a claim on the pawnshop to return the good. As proof of having left the good as
collateral the borrower furthermore gets a receipt (an evidence document) from the
pawnshop, see the dashed arrow of Fig. 10. Notice that in this value model the cus-
tomer gives up custody of the good and the pawnshop receives the custody, however,
it does not get the right to use the good. The pawnshop has in fact an obligation to
keep the good safe in case the borrower claims it back. (The part of the diagram in
Fig. 9 that also shows that the pawnshop may (re-)sell goods to buyers is omitted in
the further analysis in Figs. 10 and 11).

The value model in Fig. 10 needs to be extended according to guideline 2 in
order to make explicit the meaning of the claims in the model. The claim of the
borrower gives rise to the middle pair of value interfaces in Fig. 11, where the
borrower requests her good back (pleading a claim), receives it from the pawn-
shop (custody transfer) and pays back the loan with an interest (ownership transfer).
Similarly, the claim of the pawnshop gives rise to the bottom pair of value interfaces
in Fig. 11, where the pawnshop requests its loan to be repaid (pleading a claim) but
does not get any money from the borrower and instead takes the ownership of the
collateral (ownership transfer). These three value interfaces represent the main logic
of the pawnshop business case.

5 Conclusion

Value modeling is an approach for capturing business goals and intentions in the
form of value exchanges. Value modeling has many applications and a recent trend
is to use value models for defining business services at the enterprise level. In this
chapter, we have investigated how to create rich value models that represent the

212 P. Johannesson and M. Bergholtz

contents and meanings of value exchanges. The contributions of the chapter are the-
oretical as well as practical. The main theoretical contribution is an analysis of the
notion of value exchange using Hohfeld’s classification of rights. Value exchanges
are not only about transferring ownerships but can also include the transfer and cre-
ation of various other rights such as claims to carry out actions and powers to create
new social relationships. Furthermore, value exchanges are typically associated with
certain kinds of actions not related to rights, in particular the physical transportation
of goods and the provision of evidence documents used to identify the rights holder.
The main practical contributions of the chapter are notations and guidelines, based
on the theoretical analysis, for designing rich value models that are able to provide
detailed and precise representations of the values and relationships in a business
case. These representations will help to bridge the gap between informal descrip-
tions of business cases and the specification of the business processes needed to
realize them. The rich value models will still be on a declarative level and abstract
from process issues like control flow and message formats, but they will be more
detailed than value models only addressing ownership transfers. This added detail
will be a basis for identifying required business processes and their outcomes though
not for designing their procedural form.

A topic for future work is to investigate how the rights created in value exchanges
will be affected by the type of resource being exchanged. In particular, the exchange
of services needs to be analyzed, as services may be viewed as claims themselves
[3]. A related issue is how to identify services based on a value model as discussed
in [17]. The analysis and proposed guidelines can also be used as building blocks in
a more comprehensive methodology for designing value models.

References

1. Andersson B, Bergholtz M, Edirisuriya A, Ilayperuma T, Johannesson P, Gordijn J, Gregoire
B, Schmitt M, Dubois E, Abels S, Hahn A, Wangler B, Weigand H (2006) Towards a refer-
ence ontology for business models. In: Proceedings of ER 2006. LNCS, vol 4215. Springer,
Heidelberg, Berlin, pp 482–496

2. Dietz JLG (2005) Enterprise ontology – theory and methodology. Springer, Heidelberg
3. Ferrario R, Guarino N (2008) Towards an ontological foundation for services science. In:

Domingue J et al (eds) Proceedings of future internet – FIS 2008, Springer, Heidelberg, Berlin
4. Fowler M (1996) Analysis patterns – reusable object models. Addison-Wesley, Reading, MA
5. Geerts G, McCarthy WE (1999) An accounting object infrastructure for knowledge-based

enterprise models. IEEE Int Systems Appl, Los Alamitos, CA 14(4):89–94
6. Gordijn J, Akkermans JM, van Vliet JC (2000) Business modeling is not process modeling.

In: Proceedings of the international conference on conceptual modeling workshops. LNCS,
vol 1921. Springer, Heidelberg, Berlin, pp 40–51

7. Gordijn J, Akkermans JM (2003) Value-based requirements engineering: exploring innovative
e-commerce ideas. Reqs Eng 8(2):114–134

8. Hohfeld WN, Cook WW (eds) (1919) Fundamental legal conceptions as applied in
judicial reasoning and other legal essays. Yale University Press, at Archive.org. http://
www.archive.org/details/fundamentallegal00hohfuoft

9. Hohfeld WN, Corbin A (ed) (1978) Fundamental legal conceptions. Greenwood, Westport,
CT

Rights and Intentions in Value Modeling 213

10. Hruby P (2006) Model-driven design of software applications with business patterns.
Springer, ISBN: 3540301542

11. McCarthy WE (1982) The REA accounting model: a generalized framework for accounting
systems in a shared data environment. The Accounting Review

12. OASIS Reference Architecture Foundation for Service Oriented Architecture Version 1.0.
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf. Accessed 10 Jan 2010

13. Osterwalder A, Pigneur Y (2010) An e-business model ontology for modeling e-business.
In: Proceedings of the 15th bled electronic commerce conference. http://129.3.20.41/eps/
io/papers/0202/0202004.pdf. Accessed 20 Jan 2010

14. Rolland C (2007) Capturing system intentionality with maps. In: Krogstie J et al (eds)
Conceptual modelling in information systems engineering, Springer, Heidelberg, Berlin

15. Searle J (1969) Speech acts: an essay in the philosophy of language. Cambridge University,
New York

16. Soffer P, Rolland C (2005) Combining intention-oriented and state-based process modeling.
In: Proceedings of international conference on conceptual modeling – ER 2005. LNCS, vol
3716. Springer, Heidelberg, Berlin, pp 47–62

17. Weigand H, Johannesson P, Andersson B, Bergholtz M (2009) Value-based service model-
ing and design: toward a unified view of services. In: Proceedings of the 21st conference
of advanced information systems engineering (CAiSE’09). LNCS, vol 5565. Springer,
Heidelberg, Berlin, pp 410–424

An Intentional Perspective on Enterprise
Modeling

Janis Bubenko Jr., Anne Persson, and Janis Stirna

Abstract Enterprise Modeling (EM) has two main purposes: (1) Developing the
business, which entails developing business vision, strategies, redesigning the way
the business operates, developing the supporting information systems, etc., and
(2) ensuring the quality of the business where the focus is on sharing the knowledge
about the business, its vision and the way it operates, and ensuring the acceptance
of business decisions through committing the stakeholders to the decisions made.
In addition, EM has also shown to be useful as a general tool for articulating, dis-
cussing, and solving organizational problems. Based on a number of case studies,
interviews and observations this chapter defines what is required from EM when
adopted for these purposes and intentions respectively. More precisely, it addresses
the following types of requirements: documents and models required as input, mod-
els that should be developed, requirements on the modeling language, requirements
on the modeling process, tool requirements and model quality requirements. The
defined requirements are then discussed taking a specific EM method, Enterprise
Knowledge Development (EKD) as example.

1 Introduction

Enterprise Modeling (EM), or Business Modeling, has for many years been a central
theme in information systems (IS) engineering research and a number of different
methods have been proposed. Examples of EM methods can be found in [1–3, 7–10,
13, 16, 35]. Examples of application domains for EM can be found in [5, 6, 12, 17,
29, 31–33].

The application of EM is heavily influenced by a large number of situational fac-
tors, one of which is the intention behind its use [20].We argue that knowledge about
these intentions is essential when making decisions about which method, way of

J. Bubenko Jr. (B)
Department of Computer and Systems Sciences, Royal Institute of Technology,
Forum 100, SE-164 40 Kista, Sweden
e-mail: Janis@dsv.su.se

215S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_12, C© Springer-Verlag Berlin Heidelberg 2010

216 J. Bubenko Jr. et al.

working, tool support etc. is appropriate in order for those intentions to be fulfilled.
It is important to bear in mind that organizations do not use EM methods only for
the sake of using methods. They want to solve a particular business problem and
EM is only one of several instruments in that problem solving process.

In this chapter we present a set of requirements on EM methods that are related
to intentions that organizations may have when applying EM.

The remainder of the chapter is organized as follows. Section 2 describes orga-
nizational intentions of using EM. An example method, Enterprise Knowledge
Development (EKD) is used to illustrate some of the requirements. This method is
briefly described in Sect. 3. The research approach that resulted in the contribution
of the chapter is presented in Sect. 4. Section 5 presents and discusses require-
ments on EM methods in light of organizational intentions. The chapter concludes in
Sect. 6 with a discussion of the results.

2 Enterprise Modeling Intentions

The goal hierarchy in Fig. 1 resulted from interview studies in [22, 27]. It shows
common purposes for organizations to use EM. Its initial version contained two
main goal hierarchies.

Resolve differences in
perceptions about the

business between
stakeholders

Convince stakeholders to
commit to

decisions/results

Stimulate
communication and

collaboration between
stakeholders

Encourage
active

participation
from involved
stakeholders

Maintain and share
knowledge about the

business

Design/ redesign
business processes

Develop
visions and
strategies

Design/Redesign
business

Develop the
business

Develop
information

systems

Elicit business
requirements

Business goals

Ensure the quality of
business operations

Create, document, maintain a
“complete” and multi-faceted

view (Enterprise Model) of the
business

Ensure acceptance
for business

decisions

Acquire knowledge about
the business from different

stakeholders

supports

AND/OR

AND

Legend:

Solve a specific
business
problem

Fig. 1 The intentions of EM, adapted from [20]

An Intentional Perspective on Enterprise Modeling 217

One deals with developing the business, e.g. developing business vision, strate-
gies, redesigning business operations, developing the supporting information sys-
tems, etc. The other deals with ensuring the quality of the business, primarily
focusing on two issues: (1) sharing the knowledge about the business, its vision, and
the way it operates, and (2) ensuring the acceptance of business decisions through
committing the stakeholders to the decisions made. We later added a third sub-goal
on the top level – using EM as a problem solving tool, where EM is only used for
supporting the discussion among a group of stakeholders trying to analyze a specific
problem at hand. In the following three sections these sub-goals will be discussed
in more detail.

2.1 Business Development

Business development is one of the most common purposes of EM. It frequently
involves change management – determining how to achieve visions and objec-
tives from the current state in organizations. EM is often used in this process with
great success. Some more specific issues can be found in the following interview
quotation:1

. . . questions like strategies, what type of market to participate in, how is the market struc-
tured, which are our clients, who are the other interested parties in the organization, how
should we structure our work sequencing, how do we structure our products comparing
with the clients, and do we sell everything to everyone. EM also aims to describe the reason
for the organization, the goals – to relate them to the strategies, to the business idea. EM
continues all the way from the strategies through the processes, through the concepts – in
order to arrive at a complete picture, or a picture that fits together. (i1 in [27])

Business process orientation is a specific case of business development – the
organization wants to restructure/redesign its business operations.

One of the main reasons for doing Business Modeling is business process orientation of the
organization. In this case you need to describe in some graphical form what business do we
have and what business we would like to have. That to my experience is one of the main
reasons to hire consultants or to invest in methods and tools and various other things. (i2 in
[27])

Also, EM is commonly used in the early stages of system development. See
e.g. [4]. A common view among business consultants is that EM is effective for
gathering the business needs and high-level requirements.

In my experience, the most common modeling I have been doing, has been connected in
some way to IT development. There has always been a superior decision of doing something
in the IT sphere, which has led to the need to understand the business better and describe
it much better, otherwise we can’t build the right system. That is very often the situation.
On the other hand I have not been very much involved in the rest of the IT development.
I have just delivered the results – this is the business, this is how it’s working, this is the

1 Note that the quotations from this point onward are excerpts from the interviews. Full transcripts
of the interviews are available from the authors on request.

218 J. Bubenko Jr. et al.

information that needs to be handled. . . . That’s one situation. . . .Another one is business
process definition, where the idea as such has been to describe the business in terms of
processes. Then other projects have sort of emerged. For example people see that some part
of the business should be improved, or this part of the business is not supported by the IT at
all. (i2 in [27])

2.2 Quality Assurance

A motivation to adopt EM is to ensure the quality of operations. Two important
success factors for ensuring quality, mentioned by interviewees, are that stake-
holders understand the business and that they accept/are committed to business
decisions. Recently, organizations have taken an increased interest in Knowledge
Management (KM), which concerns creating, maintaining and disseminating orga-
nizational knowledge between stakeholders. EM has a role to play here as it aims
to create a multifaceted “map” of the business as a common platform for communi-
cating between stakeholders. One KM perspective is keeping employees informed
with regard to how the business is carried out.

. . .in those days . . . when the company was expanding enormously, they increased by about
100% personnel each year, and it grew very rapidly over the globe. . . . So how should
we introduce [new people] to the [company E] world and teach [them] how to handle all
the things in the [company E] community, etc. It’s simply not possible, especially since
we don’t have good documentation of how we really operate, because everything went
on so quickly, that [company E] had to change routines almost every year because of the
expansion, etc. So their main motive actually for describing their processes was not to get
a lot more efficient, because, maybe rightly, they thought that they were rather efficient, but
as a tool to communicate to newly hired personnel, and to show people – this is how we
think we are operating, do you have any ideas. (i2 in [27])

Sharing business knowledge becomes instrumental when organizations merge or
collaborate in carrying out a business process. One aspect of this is terminology.

I’m thinking about [organization X and organization Y] where they realized that they could
use the same data. To be able to do that, they must use the same terms so that they could
buy from and sell to each other . . . and then it was quite clear that they needed modeling of
their business concepts. (i4 in [27])

Most modern organizations consider that the commitment of stakeholders to
carry out business decisions is a critical success factor for achieving high qual-
ity business operations. Differences in opinion about the business must hence be
resolved, requiring that communication between stakeholders be stimulated. The
interviews showed that EM, particularly using a participative approach, is effective
to obtain such commitment.

. . . if you want people actively involved and if you want them to go along with what
is decided, then they have to be allowed to be involved from the beginning and not get
decisions forced on them from management. (i5 in [22])

Active participation leads to commitment. So by creating active participation you make
it impossible for people to escape commitment. (i5 in [22])

An Intentional Perspective on Enterprise Modeling 219

2.3 Using EM as a Problem Solving Tool

In some cases making an EM activity can be helpful when capturing, delimiting,
and analyzing the initial problem situation and in order to decide on a course of
action. In such cases EM is mostly used as a problem solving and communication
tool. The enterprise model created during this type of modeling is mostly used for
documenting the discussion and the decisions made.

[in some cases] you can throw [the models] away – they might just have been a sort of
drawing for planning your work and afterwards the value of them is already consumed (i1
in [27])

The main characteristics of this objective are that the company does not intend
to use the models for further development work and that the modeling activity has
been planned to be only a single iteration. In some cases this situation changes into
one of the other EM objectives discussed in Sects. 2.1 and 2.2. This often happens
because the organization sees EM as beneficial or the problem turns out to be more
complex than initially thought and more effort is need for its solution.

3 EKD – An Example Method

We will use an example method to discuss the requirements on an EM when
applied with a certain intention. The chosen method is the Enterprise Knowledge
Development (EKD) method, which the authors have been involved in develop-
ing, refining and applying since the beginning of the 1990s. This section briefly
introduces its modeling language and main principles.

EKD is a result of a strand of research started in the 1980s by Plandata,
Sweden [34], and later continued by the Swedish Institute for System Development
(SISU). A significant innovation in this strand of EM was the notion of business
goals as part of an Enterprise Model, which allowed analyzing the motivational
perspective of traditional model component types such as entities and business
processes. It was also realized that, considering the multifaceted nature of knowl-
edge that goes into an Enterprise Model, the most efficient way of building such
a model is in close cooperation with domain experts and stakeholders. The SISU
framework was further developed in the ESPRIT projects F3 – “From Fuzzy to
Formal” and ELEKTRA – “Electrical Enterprise Knowledge for Transforming
Applications”. The resulting version of EKD [3, 16] can be considered to be
more or less stable because its modeling language and the overall modeling pro-
cess has not been significantly changed. Since the 2001, its authors have mainly
investigated and developed aspects supporting EKD application in practice, e.g.
conducting the modeling process, support for knowledge reuse, and improving
model quality. In the next two sections we will briefly present the modeling lan-
guage and the modeling process as a set of guidelines for a participatory way of
working.

220 J. Bubenko Jr. et al.

3.1 The EKD Modeling Language

The EKD modeling language consists of six sub-models: Goals Model (GM),
Business Rules Model (BRM), Concepts Model (CM), Business Process Model
(BPM), Actors and Resources Model (ARM), as well as Technical Components
and Requirements Model (TCRM). Each sub-model focuses on a specific aspect of
an organization (see Table 1).

The GM focuses on describing the goals of the enterprise – what the enterprise
and its employees want to achieve, or to avoid, and why. The GM usually clar-
ifies questions, such as: where should the organization be moving; what are the
goals of the organization; what are the importance, criticality, and priorities of these
goals; how are goals related to each other; which problems hinder the achievement
of goals?

Figure 2 depicts a fragment of an EKD enterprise model with its sub-models.
Inter-model relationships are depicted by an arrow and a verb that is meant to
facilitate the understanding of the relationship between the components.

The BRM is used to define and maintain explicitly formulated business rules,
consistent with the GM. Business Rules may be seen as operationalization or lim-
its of goals. The BRM usually clarifies questions, such as: which rules affect the
organization’s goals; are there any policies stated; how is a business rule related to
a goal; how can goals be supported by rules?

The CM is used to strictly define the “things” and “phenomena” that are
addressed in the other models. The CM usually clarifies questions, such as: what
concepts are recognized in the enterprise; which are their relationships to goals,
activities, processes, and actors; how are they defined; what business rules and
constraints monitor these objects and concepts?

The BPM is used to define enterprise processes, the way they interact and the
way they handle information as well as material. A business process is assumed
to consume input in terms of information and/or material and produce output of
information and/or material. In general, the BPM is similar to what is used in tra-
ditional data-flow diagram models. The BPM usually clarifies questions, such as:
which business activities and processes are present in the organization, or should
be there to manage the organization in agreement with its goals? How should the
business processes, tasks, etc. be performed? Which are their information needs?

The ARM is used to describe how different actors and resources are related
to each other and how they are related to components of the GM and BPM. For
instance, an actor may be responsible for a particular process in the BPM or an
actor may pursue a particular goal in the GM. The ARM usually clarifies questions,
such as: who is/should carry out which processes and sub-processes; how is the
reporting and responsibility structure between actors defined?

The TCRM becomes relevant when the purpose of EKD is to aid in defining
requirements for the development of an IS. This sub-model focuses on the technical
aspects of the IS, such as high level requirements and sub-systems, that are needed to
support enterprise’s goals, processes, and actors. The TCRM usually clarifies ques-
tions, such as: what are the requirements for the information system to be developed;

An Intentional Perspective on Enterprise Modeling 221

Ta
bl

e
1

O
ve

rv
ie

w
of

th
e

su
b-

m
od

el
s

of
th

e
E

K
D

m
et

ho
d

[3
0]

G
oa

ls
m

od
el

(G
M

)
B

us
in

es
s

ru
le

s
m

od
el

(B
R

M
)

C
on

ce
pt

s
m

od
el

(C
M

)
B

us
in

es
s

pr
oc

es
s

m
od

el
(B

PM
)

A
ct

or
s

an
d

re
so

ur
ce

s
m

od
el

(A
R

M
)

Te
ch

ni
ca

l
co

m
po

ne
nt

an
d

re
qu

ir
em

en
ts

m
od

el
(T

C
R

M
)

Fo
cu

s
V

is
io

n
an

d
st

ra
te

gy
Po

lic
ie

s
an

d
ru

le
s

B
us

in
es

s
on

to
lo

gy
B

us
in

es
s

op
er

at
io

ns
O

rg
an

iz
at

io
na

l
st

ru
ct

ur
e

In
fo

rm
at

io
n

sy
st

em
ne

ed
s

Is
su

es
W

ha
td

oe
s

th
e

or
ga

ni
za

tio
n

w
an

t
to

ac
hi

ev
e

or
to

av
oi

d
an

d
w

hy
?

W
ha

ta
re

th
e

bu
si

ne
ss

ru
le

s,
ho

w
do

th
ey

su
pp

or
tt

he
or

ga
ni

za
tio

n’
s

go
al

s?

W
ha

ta
re

th
e

th
in

gs
an

d
“p

he
no

m
en

a”
ad

dr
es

se
d

in
ot

he
r

su
b-

m
od

el
s?

W
ha

ta
re

th
e

bu
si

ne
ss

pr
oc

es
se

s?
H

ow
do

th
ey

ha
nd

le
in

fo
rm

at
io

n
an

d
m

at
er

ia
l?

W
ho

ar
e

re
sp

on
si

bl
e

fo
r

go
al

s
an

d
pr

oc
es

s?
H

ow
ar

e
th

e
ac

to
rs

in
te

rr
el

at
ed

?

W
ha

ta
re

th
e

bu
si

ne
ss

re
qu

ir
em

en
ts

to
th

e
IS

?
H

ow
ar

e
th

ey
re

la
te

d
to

ot
he

r
m

od
el

s?
C

om
po

ne
nt

s
G

oa
l,

pr
ob

le
m

,
ex

te
rn

al
co

ns
tr

ai
nt

,
op

po
rt

un
ity

B
us

in
es

s
ru

le
C

on
ce

pt
,a

ttr
ib

ut
e

Pr
oc

es
s,

ex
te

rn
al

pr
oc

.,
in

fo
rm

at
io

n
se

t,
m

at
er

ia
ls

et

A
ct

or
,r

ol
e,

or
ga

ni
za

tio
na

l
un

it,
in

di
vi

du
al

IS
go

al
,I

S
pr

ob
le

m
,

IS
re

qu
ir

em
en

t,
IS

co
m

po
ne

nt

222 J. Bubenko Jr. et al.

To be seen as the best and the
most professional management

consulting company

Goal 1

To improve quality
of projects delivered

Goal 3
To improve

efficiency of the
sales process

Goal 4
To be an attractive

employer

Goal 2

To have a
commonly used tool
for project delivery

Goal 6

Project
planning

Process 12

Information set 9
Description of the

assignement

Approval of
project plan

Process 17

Information set 16
Project plan

(draft)

Information set 11
Information about
customer's past

projects

Sales
process

Process 10

Information set 18
Approved project

plan

Information set 8
Additional customer

requirements

Project owner at
the customer site

Role 26

Project
steering group

Role 27
part of

Project
manager

Role 24

leads

Sales team
leader

Role 25

performs

part of

Project
Concept 14

Customer
Concept 13

orders

Project plan
Concept 15

has

refers to

refers to

refers to

is responsible for

is responsible for

participates in

To involve project
owner in the project

planing

Goal 5

supports

Customer’s past
experiences with similar
project should be use in

project planning

Rule 34

supports

supports

requires

The information
should be available

via web browser

IS FReq 33

To maintain all kinds of
information and knowledge
needed for project delivery

IS Goal 31

The information about past
projects of a customer

should be available

IS FReq 32

supports supports

is responsible for

supports

supports

Fragment
of GM

Fragment of TCRM

Fragment
of CM

Fragment of BRM

Fragment of BPM

Fragment
of ARM

Fig. 2 Fragment of an enterprise model with inter-model links

which requirements are generated by the business processes; which potential has
emerging information and communication technology for process improvement?

The modeling components of the sub-models are related within a sub-model
(intra-model relationships), as well as with components of other sub-models
(inter-model relationships).

EM practitioners and EKD method developers have advocated a participatory
way of working using facilitated group modeling (see e.g. [3, 9, 19, 22]). In facil-
itated group modeling, participation is consensus-driven in the sense that it is the
domain stakeholders who “own” the model and “govern” its contents, while the

An Intentional Perspective on Enterprise Modeling 223

facilitator facilitates the process. In contrast, consultative participation means that
the process is analyst driven. Analysts create models and domain stakeholders
are then consulted in order to validate the models. In order for the participatory
approach to be applicable the existence of a consensus oriented organizational
culture is essential [22] If not, a more consultative approach to participation is
advisable.

3.2 The EKD Modeling Process

In order to achieve results of high quality, the modeling process is equally important
as the modeling language used. There are two aspects of the process, namely the
approach to participation and the process to develop the model.

When it comes to gathering domain knowledge to be included in Enterprise
Models, there are different approaches. Some of the more common ones are inter-
views with domain experts, analysis of existing documentation, observation of
existing work practices, and facilitated group modeling. More about the process
of modeling can be found in [3, 22, 30].

One aspect that should not be neglected when selecting a participatory approach
to EM is the competency of the facilitator. The ability to model is only one, although
crucial, part of this competency. The facilitator also needs to be able to effectively
facilitate modeling sessions and in large projects also be able to co-ordinate a range
of modeling activities. It is also essential that the facilitator is skilled in construc-
tively mediating between different, often conflicting views among the stakeholders.
More about EM competency can be found in [23].

4 Research Approach

The research contribution of this chapter is based on a number of research efforts
carried out since beginning of the 1990s:

• Development of the EKD EM method;
• Field work applying versions of EKD to a variety of problems;
• Interview studies with Grounded Theory data analysis involving experienced EM

consultants and method developers.

The most influential application cases were, for the most part, carried out within
international research projects financed by the European Commission. The appli-
cations that contributed to this chapter took place in the years 1993–2008. Their
processes and their outcome were observed and analyzed.

The synthesis of these analyses is reported in this chapter together with results
from interview studies focusing on the intentional and situational factors that

224 J. Bubenko Jr. et al.

Table 2 Overview of application cases

Organization Domain Period in time Problems addressed

British Aerospace, UK Aircraft development
and production

1992–1994 Requirements Engineering

Telia AB, Sweden Telecommunications
industry

1996 Requirements validation
Project definition

Volvo Cars AB, Sweden Car manufacturing 1994–1997 Requirements engineering
Vattenfall AB, Sweden Electrical power

industry
1996–1999 Change management

Process development
Competence
management

Riga City Council,
Latvia

Public administration 2001–2003 Development of vision and
supporting processes for
knowledge management

Verbundplan GmbH,
Austria

Electrical power
industry

2001–2003 Development of vision and
supporting processes for
knowledge management

Skaraborg Hospital,
Sweden

Health care 2004–2007 Capturing knowledge assets
and development of a
knowledge map of a
knowledge repository.

SYSteam Management
AB, Sweden

Management consulting 2008 Development of a vision for
an employee knowledge
management portal

influence participatory EM and EM tool usage [20, 22, 27]. An overview of the
cases is given in Table 2.

Data from method development, field work and interviews have been analyzed
using the EM intentions depicted in Fig. 1 in order to identify requirements on EM
application that are related to those intentions.

Apart from these projects, EKD and its earlier versions have also been used in
a number of smaller problem solving and organizational design cases at organi-
zations such as e.g. Strömma AB (Sweden), Ericsson (Sweden), Livani District
(Latvia), Riga Technical University (Latvia), University of Skövde (Sweden) and
RRC College (Latvia).

5 Intentions as the Basis for Defining Requirements on EM

In this section requirements on EM related to the purpose of modeling are described
and discussed. Requirements are based on a synthesis of observation data from sev-
eral research activities (see Sect. 4). The section is organized according to type of
requirement: input models and documentation, models to be developed, EM lan-
guage requirements, EM process requirements, EM tool requirements, and model
quality requirements. A summary of requirements is provided in Table 3.

An Intentional Perspective on Enterprise Modeling 225

Ta
bl

e
3

R
eq

ui
re

m
en

ts
on

E
M

Pu
rp

os
e

of
E

M
In

pu
tm

od
el

s
an

d
do

cu
m

en
ta

tio
n

M
od

el
s

to
be

de
ve

lo
pe

d
E

M
la

ng
ua

ge
re

qu
ir

em
en

ts
E

M
pr

oc
es

s
re

qu
ir

em
en

ts
E

M
to

ol
re

qu
ir

em
en

ts
M

od
el

qu
al

ity
re

qu
ir

em
en

ts

D
ev

el
op

th
e

bu
si

ne
ss

D
ev

el
op

vi
si

on
s

an
d

st
ra

te
gy

E
xi

st
in

g
m

od
el

s
an

d
ot

he
r

bu
si

ne
ss

“b
lu

ep
ri

nt
s”

G
M

,C
M

,B
PM

an
d

A
R

M
as

w
el

la
s

in
te

r-
m

od
el

lin
ks

N
ot

at
io

n
th

at
do

m
ai

n
st

ak
eh

ol
de

rs
un

de
rs

ta
nd

Pa
rt

ic
ip

at
or

y
Pl

as
tic

w
al

l,
si

m
pl

e
do

cu
m

en
tin

g
to

ol
s

U
nd

er
st

an
da

bi
lit

y,
co

rr
ec

tn
es

s,
si

m
pl

ic
ity

,
fle

xi
bi

lit
y

D
es

ig
n/

R
ed

es
ig

n
th

e
bu

si
ne

ss

V
is

io
n

an
d

st
ra

te
gy

m
od

el
s

an
d

ot
he

r
ki

nd
s

of
bu

si
ne

ss
“b

lu
ep

ri
nt

s”

B
us

in
es

s
or

ie
nt

ed
m

od
el

s
(G

M
,C

M
,

B
PM

,A
R

M
,

B
R

M
)

as
w

el
la

s
in

te
r-

m
od

el
lin

ks

N
ot

at
io

n
th

at
do

m
ai

n
st

ak
eh

ol
de

rs
un

de
rs

ta
nd

,
es

ta
bl

is
he

d
no

ta
tio

n

Pa
rt

ic
ip

at
or

y
in

vo
lv

in
g

m
ul

tip
le

st
ak

eh
ol

de
r

gr
ou

ps

Pl
as

tic
w

al
l,

E
M

to
ol

s
th

at
m

ak
es

it
po

ss
ib

le
to

se
am

le
ss

ly
m

ov
e

to
re

qu
ir

em
en

ts
an

al
ys

is
an

d
IS

de
si

gn

C
om

pl
et

en
es

s,
co

rr
ec

tn
es

s,
fle

xi
bi

lit
y,

in
te

gr
at

io
n,

un
de

rs
ta

nd
ab

ili
ty

,
us

ab
ili

ty

D
ev

el
op

IS
B

us
in

es
s

or
ie

nt
ed

m
od

el
s

IS
or

ie
nt

ed
m

od
el

s
(T

C
R

M
)

as
w

el
l

as
lin

ks
w

ith
bu

si
ne

ss
or

ie
nt

ed
m

od
el

s

E
no

ug
h

fo
rm

al
ity

an
d

pr
ec

is
io

n
to

al
lo

w
m

od
el

in
g

of
co

m
pl

ex
fa

ct
s

Pa
rt

ly
pa

rt
ic

ip
at

or
y

an
d

pa
rt

ly
an

al
ys

t
dr

iv
en

Pl
as

tic
w

al
l,

E
M

to
ol

s
or

C
A

SE
to

ol
s

de
pe

nd
in

g
on

th
e

de
ve

lo
pm

en
t

ap
pr

oa
ch

C
om

pl
et

en
es

s,
co

rr
ec

tn
es

s,
fle

xi
bi

lit
y,

in
te

gr
at

io
n,

us
ab

ili
ty

226 J. Bubenko Jr. et al.

Ta
bl

e
3

(c
on

tin
ue

d)

Pu
rp

os
e

of
E

M
In

pu
tm

od
el

s
an

d
do

cu
m

en
ta

tio
n

M
od

el
s

to
be

de
ve

lo
pe

d
E

M
la

ng
ua

ge
re

qu
ir

em
en

ts
E

M
pr

oc
es

s
re

qu
ir

em
en

ts
E

M
to

ol
re

qu
ir

em
en

ts
M

od
el

qu
al

ity
re

qu
ir

em
en

ts

E
ns

ur
e

th
e

qu
al

it
y

of
bu

si
ne

ss
op

er
at

io
ns

E
ns

ur
e

ac
ce

pt
an

ce
fo

r
bu

si
ne

ss
de

ci
si

on
s

V
ar

io
us

ty
pe

s
of

bu
si

ne
ss

“b
lu

ep
ri

nt
s”

(e
.g

.B
al

an
ce

d
Sc

or
ec

ar
d)

B
us

in
es

s
or

ie
nt

ed
m

od
el

s
(G

M
,C

M
,

B
PM

,A
R

M
,

B
R

M
)

as
w

el
la

s
in

te
r-

m
od

el
lin

ks

N
ot

at
io

n
th

at
do

m
ai

n
st

ak
eh

ol
de

rs
un

de
rs

ta
nd

Pa
rt

ic
ip

at
or

y
in

vo
lv

in
g

kn
ow

le
dg

e
be

ar
er

s
an

d
us

er
s

Pl
as

tic
w

al
l,

si
m

pl
e

to
ol

s,
to

ol
s

fo
r

pr
es

en
ta

tio
n

of
m

od
el

s
to

a
w

id
er

au
di

en
ce

(e
.g

.
w

eb
-b

as
ed

to
ol

s)

C
om

pl
et

en
es

s,
co

rr
ec

tn
es

s,
in

te
gr

at
io

n,
si

m
pl

ic
ity

,
un

de
rs

ta
nd

ab
ili

ty
,

us
ab

ili
ty

M
ai

nt
ai

n
an

d
sh

ar
e

kn
ow

le
dg

e
ab

ou
tt

he
bu

si
ne

ss

B
us

in
es

s
m

od
el

s
(G

M
,

C
M

,B
PM

,A
R

M
,

B
R

M
),

in
te

r-
m

od
el

lin
ks

“C
le

an
ed

”
m

od
el

s
th

at
m

ak
e

se
ns

e
to

a
w

id
er

au
di

en
ce

Si
m

pl
e

an
d

in
tu

iti
ve

m
od

el
in

g
la

ng
ua

ge

Pa
rt

ly
pa

rt
ic

ip
at

or
y,

pa
rt

ly
an

al
ys

t
dr

iv
en

E
M

to
ol

s
w

ith
w

eb
in

te
rf

ac
e

C
or

re
ct

ne
ss

,
in

te
gr

at
io

n,
un

de
rs

ta
nd

ab
ili

ty
,

us
ab

ili
ty

U
se

E
M

as
a

pr
ob

le
m

so
lv

in
g

to
ol

U
se

E
M

to
an

al
yz

e
an

d
so

lv
e

a
sp

ec
ifi

c
bu

si
ne

ss
pr

ob
le

m

In
iti

al
pr

ob
le

m
st

at
em

en
ta

nd
ot

he
r

re
le

va
nt

do
cu

m
en

ta
tio

n

B
us

in
es

s
or

ie
nt

ed
m

od
el

s
(G

M
,C

M
,

B
PM

,A
R

M
,

B
R

M
)

&
in

te
r-

m
od

el
lin

ks

N
ot

at
io

n
th

at
do

m
ai

n
st

ak
eh

ol
de

rs
un

de
rs

ta
nd

Pa
rt

ic
ip

at
or

y
in

vo
lv

in
g

m
ul

tip
le

st
ak

eh
ol

de
r

gr
ou

ps

Pl
as

tic
w

al
l,

si
m

pl
e

do
cu

m
en

tin
g

to
ol

s
C

or
re

ct
ne

ss
,

fle
xi

bi
lit

y,
un

de
rs

ta
nd

ab
ili

ty

An Intentional Perspective on Enterprise Modeling 227

5.1 Input Models and Documentation

In most cases there are some pre-existing documents and even models of different
kinds that should be taken into account when planning for an EM effort. It is advis-
able to show the stakeholders that these are taken into account because this can
support the modeling effort by decreasing the stakeholders’ need to be overly pro-
tective of their respective pet issues. For the modelers these documents and models
can shorten the time necessary to get acquainted with the organization and its needs
and to help preparing for modeling. Also, the documents and models can shorten
the time needed to achieve the desired results since the work does not have to start
from scratch. However, the modelers should verify that the documents and models
used are up to date and that their use has been approved by the appropriate decision
makers.

Develop vision and strategies. In the process of developing vision and strategies
all kinds of pre-existing documentation is valuable as input. It is the responsibil-
ity of the modelers to carefully select which documentation that can support the
modeling process. Sometimes this documentation exists within the organization but
sometimes input to the creative process of defining visions and strategies can come
from other organizations as well.

Design/re-design the business. One important input to support this goal is exist-
ing models and documents that define visions and strategies. If no such input exists,
steps should be taken to define visions and strategies before attempting to design
the future. In the EKD method parallel development of business processes and their
related goals can be carried out.

Develop IS. In order to effectively develop an information system that supports
business processes and strategies it is of utmost importance that development is
based on models that specify which business processes that are to be supported
as well as why and how Enterprise Models can be used to ensure that explicit
requirements on an IS are well argued [22] and to review requirements specifica-
tions [21].

Ensure acceptance for business decisions. Enterprise Models can, and are, used
when describing the arguments for and the effects of business decisions after they
have been done. Also, in the process of making decisions enterprise models serve
the purpose of documenting decisions and their arguments in a graphical form. This
is more effective than taking traditional textual notes, since the notes are visible,
throughout the decision-making process, to all stakeholders involved. Experience
has shown that this way of working fosters a constructive discussion climate.

Maintain and share knowledge about the business. All kinds of models that have
been reviewed and approved have the potential to serve as carriers of knowledge
about how the business works and how it is intended to work in the future and why.
This is why they can be made accessible to the organization after they have been
properly “pruned” to fit their intended audiences. Sometimes the models themselves
are too complicated. In this case the models can serve as the basis on which simpler
descriptions are created. It is important, however, to always make sure in this case
that changes to the original models are correctly reflected in the simple descriptions.

228 J. Bubenko Jr. et al.

Use EM as a problem solving tool. When EM is used for this purpose the most
important input is the initial problem statement. In the preparation of modeling the
modelers should also try to identify other relevant documentation that relate to the
problem statement and that can support the problem solving process. Also here,
models and documents from other organizations and contexts that can inspire the
problem solving process are useful.

5.2 Models to be Developed

In this section we use the EKD EM method to exemplify the kinds of models that
are to be developed in order to fulfill the different purposes defined. We can hereby
illustrate which type of knowledge that is developed in the process of modeling.

Develop vision and strategies. The development of Goal Models is the central
output. However, these models often need to be complemented by other types of
models in order to ensure the quality of the Goal Models. Examples of such models
are:

• BPMs that are developed to drive the definition of goals based on the activities in
the process;

• CMs that define or clarify the concepts used in the Goal Models;
• ARMs that describe the responsibilities for the fulfillment of goals and resources

to be used in their fulfillment.

In the EKD modeling method the inter-model links between these types of
models further support the task of ensuring the quality of the Goals models
developed.

Design/re-design the business. This purpose requires that various types of busi-
ness related models should be developed, e.g. GM, CM, BPM, ARM and BRM. In
order to ensure the overall quality of the model set, inter-model links are essential.

Develop IS. Business oriented models should be complemented with IS ori-
ented models, e.g. TCRM. In this context it is important to maintain traceability
to business oriented models. In EKD this is achieved through inter-model links.

Ensure acceptance for business decisions. Business oriented models should be
developed and linked with inter-model links. The main focus should be on capturing
the decisions made by the modeling team explicitly which depending on the nature
of the decision can be represented by any of the models, but most commonly this is
done using goals model or business process model. It is equally important to specify
who is responsible for implementing each decision, which can be visualized by links
to ARM components.

Maintain and share knowledge about the business. Here all kinds of models,
which convey important messages about how the organization works and why, can
be used as input and after cleaning and pruning be made available to the organi-
zation. In order for these models to be useful they may be packaged together with

An Intentional Perspective on Enterprise Modeling 229

information about e.g. how they should be used, in which context they are useful
and what are the consequence of applying them. One approach to packaging mod-
els is to use organizational patterns and to organize such patterns into a pattern
language to support a comprehensive view and to facilitate search and retrieval of
models [24].

Use EM as a problem solving tool. Depending on the problem at hand vari-
ous types of business oriented models are developed here. However, the models
themselves are not the essential output. Sometimes the resulting models are quite
incomplete and unrefined, but the decisions made based on the modeling process
are valuable [22].

5.3 EM Language Requirements

In most cases the modeling project and the problem to be addressed can be mod-
eled by several EM approaches and notations. Even within the meta-model of one
modeling language the modelers often define “dialects” and sub-notations, i.e. they
add elements of secondary notation such as comments, groupings of modeling com-
ponents, as well as include modeling components from other languages. During the
planning phase of an EM project the main choices the method provider has to make
are amongst the following issues:

• The compromise between understandability and formality. Johannesson et al.
[11] suggest that the modeling languages that are more understandable by non-
experts are less formal and hence the facts are expressed more ambiguously and
with less precision.

• The appropriateness of the modeling language for modeling the problem at hand.
In some cases what will be done with the models after the modeling project (e.g.
integrated with UML models) also influences this choice.

• The acceptance of this language by the stakeholders and the target audience of
models, which can be influenced by factors such as education and training, in-
house standards for methods and tool usage as well as personal preferences.

Develop visions and strategy. If the modeling project intends to limit with just
developing the strategies, then the modeling language should be chosen such that it
ensures understandability and involvement of all stakeholders. Most likely the enter-
prise model will not use all features of the modeling language chosen. For example
in initial version of the goal model the sub-goals be arranged in groups rather than
linked together with AND/OR operationalization relationships. The BPM might be
developed at high level of detail and initially may omit information sets and concen-
trate on the structural aspects of the process flow. Since the modeling languages and
the notation are not closely followed in these projects, the method providers should
watch out that it does not deteriorate to a level of informality where the modeling
result is not a model anymore but just a drawing. This can happen if the facilitator
is inexperienced or gives excessive freedom to the participants.

230 J. Bubenko Jr. et al.

Design/re-design the business. This objective requires a modeling language
and notation that all stakeholders understand, is formal enough to represent the
knowledge clearly and unambiguously, as well as is established and known within
the organization.

Develop IS. This objective requires using a modeling language that supports clear
and unambiguous expression of facts. Furthermore the language chosen should have
a meta-model that allows integration with other model types used in IS engineering,
such as, for instance, use cases. For modeling business concepts the project might
chose to use class diagrams and gradually refine the concepts model into a domain
model which can be used in the later stages of the IS development.

Ensure acceptance for business decisions. Similarly to developing the company
vision and strategy in this case the modeling language should be understandable by
all stakeholders. Since in this case the key focus is on the business decisions, these
should be made clearly identifiable in the models. For this purpose the modelers
might use additional modeling components such as, for instance, actions. The main
purpose of them is to serve as visible reminders about the joint decisions and who
should do what in order to implement them.

Maintain and share knowledge about the business. The modeling language cho-
sen should be relatively commonly used, widely accepted by the intended target
audience, and since company-wide training in modeling languages is difficult to
achieve, intuitive. For instance, in this case models should be expressed by com-
monly seen languages and notations supported by textual descriptions. Potential
misunderstandings of the graphical symbols should also be assessed, e.g. people
might easily perceive ellipses as UML use cases or arrows with large arrowheads as
UML generalizations.

Use EM as a problem solving tool. The modeling language should fit the nature
of the problem – e.g. if the problem concerns an overall identification and analysis
of a problem the main requirements for the modeling language are understandability
and possibility to use it without extensive training. On the other hand, in some cases
the nature of the problem may require a formal modeling language that is able to
represent knowledge more strictly.

5.4 EM Process Requirements

It is equally important to select and prepare the right process of modeling to
suit different modeling purposes that it is to select the right modeling language.
This perspective on modeling has largely been overshadowed by the language
perspective, even if the outcome of modeling can never be better than the pro-
cess that was applied to develop the models. In this chapter we focus on the
participation aspect of the process because our research clearly shows that not
only the culture of the organization determines whether or not a participatory
approach is appropriate. We have also found that different purposes of modeling
also influence the choice of approach to participation. More about this is available
in [20, 22, 30].

An Intentional Perspective on Enterprise Modeling 231

Develop vision and strategies. The development of visions and strategies is a
design process where the views of several organizational stakeholders should be
taken into account. This ensures that the strategy is possible to implement and that
the different goals of the strategy do not contradict each other. One important aspect
of this is to make the arguments for the strategy clear to the stakeholders, which
in turn enhances acceptance. For this to be achieved a participatory approach is to
be preferred, since it enables the stakeholders to listen to arguments and to pro-
vide input based on their knowledge about the abilities and shortcomings of the
organization.

Design/re-design the business. Depending on the size of the project, this may
involve a few or many stakeholder groups. An important quality aspect of an EM
that depicts a new design is dependent upon whether or not the design makes sense
as a whole and hence is possible to implement [21]. This requires that the different
types of stakeholders are actively involved and are given the possibility to learn
about other parts of the organization. The individual stakeholder’s understanding for
her/his role in relationship to the whole organization is essential for the stakeholder’s
ability to effectively contribute to the overall design. To adopt an analyst driven
approach jeopardizes the overall design because it is too dependent on the analyst’s
ability to understand all complex relationships in the organization.

Develop IS. In the transition between the organizational parts of an IS develop-
ment process and it’s more technical parts it can be effective to adopt a participatory
approach. An example situation is when organizational goals are “translated” into
overall goals for an IS that needs the acceptance of the organization. When these
goals are then further developed into more and more detailed software requirements
a more analyst driven approach is appropriate, particularly since the more formal
models that are used here can be difficult for the organizational stakeholders to
comprehend and validate. Furthermore, an analyst driven approach may drive the
formulation of requirements for technology to more realistic ones.

Ensure acceptance for business decisions. To develop visions and strategies
and to design/re-design the business are examples of processes that in essence are
decision-making processes. In order to ensure the acceptance for business decisions
it is most favorable to adopt a participatory approach.

Maintain and share knowledge about the business. In many ways this is similar
to EM for designing or redesigning the business – different stakeholder types are
to be involved. The specifics of this case require the knowledge sharing purpose of
models should be taken in to account, i.e. both knowledge bearers and users should
be involved in the EM process. Ideally, representatives of both of these stakeholder
types should participate in the process of knowledge capture and packaging.

Use EM as a problem solving tool. Problem solving are in most cases a col-
laborative process which requires that the creative spirit of the stakeholders and
stakeholder groups is supported and that negotiation between stakeholder views
is also facilitated. We therefore argue that a participatory approach is superior to
achieve these goals. First of all it is more or less impossible to support a creative
process by the analyst interviewing a number of stakeholders. Secondly, negotiation
processes tend to be more difficult when arguments are relayed through the analyst
instead of stakeholders arguing and listening in an interactive setting.

232 J. Bubenko Jr. et al.

5.5 EM Tool Requirements

Even very simple and short EM projects require some tool support for represent-
ing the modeling results during the modeling session. More advanced projects also
need tools for analysis, making the project documentation, communication among
project participants, and, in some cases, for presenting the modeling result to the
target audience. Additional tool requirements can be envisioned for support of col-
laborative work and for voting on alternatives. An extensive process for choosing
and acquiring EM tools in organizations depending on intentional and situational
factors in proposed in [27]. In this section we discuss the main choices that the
method provider has to make with respect to the tools used in an EM project. More
specifically the following issues are to be typically addressed:

• The choice between the “plastic wall” and computerized tool to support the mod-
eling workshop, which is to a large extent by the nature of the modeling activity.
If modeling is mainly focusing on creating and capturing new knowledge and
communicating among the stakeholders the “plastic wall” is more efficient. If, on
the other hand, the main purpose of modeling is to improve and refine an existing
model, an EM tool should be used.

• Simple drawing tools (e.g. Visio) vs. more advanced tools with repository sup-
port. The factors motivating the usage of more advanced tools are intention to
maintain and/or reuse the models for a long time, availability of the tool usage
competence, the need to integrate enterprise models with other model types, as
well as the need to comply with standards.

Develop vision and strategies. Since the main focus is on supporting efficient
knowledge capture of knowledge and communication during the modeling work-
shop the “plastic wall” should be preferred. After the workshop the models can be
documented in a simple drawing tool.

Design/re-design the business. The “plastic wall” should be used for those tasks
that require knowledge capture and a more advanced EM tool for analysis and
refinement of models. In many cases the enterprise models serve as input to sub-
sequent organizational development, governance, and implementation activities. In
these cases the EM tools should be integrated with the IS supporting the business.
For instance the MAPPER project proposed an approach a tool for configuring
collaborative work support system with Active Knowledge Models (AKM) [15]
supported by the Metis tool. More about this is available in [26]. An alternative
that allows avoiding the integration is documenting the enterprise model with the
tools that will be used for the implementation of the models, even if this requires
compromising on the model representation.

Develop IS. The more advanced tools should also be used if the goal is to develop
an IS and the team wants to reuse the enterprise models in later development stages
for tasks such as requirements management and IS architecture design.

Ensure acceptance for business decisions. The “plastic wall” is suitable for cap-
turing the initial model and making the joint decisions. Once this is done, the models

An Intentional Perspective on Enterprise Modeling 233

have to be documented possibly with simple tools and presented to the intended
target audience, e.g. on the corporate intranet.

Maintain and share knowledge about the business. The tools supporting this
intention should be have web-interface and should preferably offer the possibilities
to annotating the models with text including collecting user feedback and comments.

Use EM as a problem solving tool. Since after the modeling session the models
the models will only serve as meeting minutes, the “plastic wall” should be used for
modeling and simple tools for producing the meeting minutes.

5.6 Model Quality Requirements

Quality of enterprise models produced in different projects differs depending on the
project objectives and the purpose of models. According to [21] the main criteria
for successful application of EKD are that (1) the quality of the produced models
is high, (2) the result is useful and actually used after the modeling activity is com-
pleted, and (3) the involved stakeholders are satisfied with the process and the result.
[14] suggest that the following quality criteria adopted from [18] are applicable to
enterprise models:

• Completeness – the degree to which all relevant facts are included in the
enterprise model.

• Correctness – refers to how well the enterprise model conforms to the rules of
the modeling technique.

• Flexibility – is defined as the ease with which the enterprise model can cope with
changes in the modeling domain.

• Integration – refers to the degree of consistency between the different sub-models
that constitute the enterprise model.

• Simplicity – refers to the degree of minimal use of modeling constructs for
presenting knowledge in the enterprise model.

• Understandability – is defined as the ease with which the concepts and structures
in the enterprise model can be understood by the stakeholders.

• Usability – is defined as the ease with which the enterprise model can be used for
its intended purpose.

Develop vision and strategies. The main quality requirements are understand-
ability, correctness, simplicity, and flexibility, which are the key factors supporting
efficient communication among stakeholders.

Design/re-design the business. The enterprise model presents an organiza-
tional design and hence broad range of the quality requirements – completeness,
correctness, flexibility, integration, understandability, and usability.

Develop IS. The main quality requirements are completeness, correctness, flex-
ibility, integration, and usability. Referring the choice of the modeling language in
this case the understandability for a broad range of stakeholders might be reduced

234 J. Bubenko Jr. et al.

by the need to use a language that allows reaching higher completeness, correctness
and integration.

Ensure acceptance for business decisions. The main quality requirements are
completeness, correctness, integration, simplicity, understandability, and usability.

Maintain and share knowledge about the business. The main quality require-
ments are correctness, integration, understandability, and usability. As special
emphasis should be put on ensuring that the models are understandable for the target
audience without extensive training in a particular modeling approach and language.

Use EM as a problem solving tool. The main quality requirements are correct-
ness, flexibility, and understandability.

6 Conclusion

In this chapter we have defined three main intentions of performing EM:

• Developing the business;
• Ensuring the quality of business operations;
• Using EM as a problem solving tool.

For each of these purposes we suggest a number of requirements regarding differ-
ent aspects of EM such as input models and documentation, models to be developed,
EM language requirements, EM process requirements, EM tool requirements, and
model quality requirements. The requirements are based on our experience in devel-
oping EM methods, using EM in practice and observing EM practice during more
than 17 years. They are not geared towards a specific EM approach and should give
guidance in performing the EM process, in selecting an EM language, in selecting
tool support, and in ensuring the quality of EM work.

When discussing the application of Enterprise Modeling there is normally not
only one question to answer, one problem to solve, or one issue to address. Instead
EM must be seen as a multitude of interrelated approaches that are useful in many
situational contexts and that potentially can be combined to achieve a high quality
result. Determining what kind of situation and context the person responsible for
a modeling activity has placed himself/herself into is of utmost importance before
starting the, often participative, modeling process and before determining the kind
of particular modeling activities to start. This is why interviews with potential stake-
holders are so important to conduct before the start of the EM process [22]. Analysis
of these interviews will determine which cells of the matrix in Table 3 need to be
addressed.

As indicated in the beginning of the chapter, more in-depth research into the
practice of EM is needed. Some suggested lines of research to continue what has
been reported in this chapter are the following:

Develop more comprehensive guidance for setting up and preparing for EM. The
structure depicted in Table 3 is one way of guiding this preparation. A pattern-based
way of preparing for EM, particularly focusing on assessing the appropriateness of

An Intentional Perspective on Enterprise Modeling 235

adopting a participatory approach can be found in [22]. In order to systematize such
guidance using the intentions of EM as a basis could be to use the map concept
developed by [25].

Develop more easily accessible guidance to support EM users in adopting a par-
ticipatory approach. Currently the best way to become a decent modeling facilitator
is through the learning by doing approach. In the best case a more experienced
facilitator can function as a mentor. In any case, it takes a long time. One of the
challenges in developing this type of guidance lies in the fact that participatory
modeling is heavily influenced by a large amount of situational factors. This means
that there are numerous choices to be made in different modeling situations. One
potential way of addressing this is to start with the essential advice on what should
not be done in different situations [28].

Investigate how different modeling domains influence the purposes of EM dis-
cussed in the chapter. Different sectors may pose specific requirements on EM. For
example, in the telecommunications sector the models are more complex, in the
automotive industry the problem domain frequently spans beyond company borders,
in the public sector there are multiple stakeholder types with unclear intentions, and
so on. The different applications of EM should be supported by reusing the existing
knowledge in the area, which emphasizes the need to capture and package it in a
reusable form, such as e.g. patterns.

References

1. Bajec M, Krisper M (2005) A methodology and tool support for managing business rules in
organisations. Info Systems 30(6):423–443

2. Bubenko JA Jr (1993) Extending the scope of information modelling. In: Proceedings of 4th
international workshop on the deductive approach to information systems and databases,
Lloret, Costa Brava (Catalonia), Department de Llenguatges i Sistemes Informatics,
Universitat Politecnica de Catalunya, Report de Recerca LSI/93-25, Barcelona

3. Bubenko JA Jr, Persson A, Stirna J (2001) User guide of the knowledge management approach
using enterprise knowledge patterns, deliverable D3, IST Programme project Hypermedia and
Pattern Based Knowledge Management for Smart Organisations, project no. IST-2000-28401,
Royal Institute of Technology, Sweden

4. Bubenko JA Jr, Kirikova M (1999) Improving the quality of re-quirements specifications by
enterprise modelling. In: Nilsson AG, Tolis C, Nellborn C (eds) Perspectives on business
modelling. Springer, Berlin

5. Carvallo JP, Franch X (2009) On the use of i∗ for architecting hybrid systems: a method and
an evaluation report. In: Proceedings of PoEM 2009. LNBIP, vol 39. Springer, Heidelberg,
pp 38–53

6. Carstensen A, Holmberg L Sandkuhl K (2008) Supporting collaboration in an extended enter-
prise with the connector view on enterprise models. In: Proceedings of PoEM 2008. LNBIP,
vol 15. Springer, Berlin, Heidelberg, New York, pp 11–126

7. Castro J, Kolp M, Mylopoulos J, Tropos A (2001) A requirements-driven software
development methodology. In: Proceedings of CAiSE 2001. LNCS, vol 2068. Springer,
Berlin, Heidelberg, New York, pp 108–123

8. Dobson J, Blyth J, Strens R (1994) Organisational requirements definition for information
technology. In: Proceedings of the international conference on requirements engineering 1994.
Denver, CO

236 J. Bubenko Jr. et al.

9. F3-Consortium (1994) F3 reference manual, ESPRIT III Project 6612, SISU, Stockholm
10. Fox MS, Chionglo JF, Fadel FG (1993) A common-sense model of the enterprise. In:

Proceedings of the 2nd industrial engineering research conference, Institute for Industrial
Engineers, Norcross, GA

11. Johannesson P, Boman M, Bubenko J, Wangler B (1997) Conceptual modelling. Hoare CAR
(series ed), Prentice Hall International Series in Computer Science, Prentice Hall

12. Kardasis P, Loucopoulos P, Scott B, Filippidou D, Clarke R, Wangler B, Xini G (1998) The
use of business knowledge modelling for knowledge discovery in the banking sector, IMACS-
CSC’98, Athens, Greece

13. Krogstie J, Lillehagen F, Karlsen D, Ohren O, Strømseng K, Thue Lie F (2000) Extended
enterprise methodology. Deliverable 2 in the EXTERNAL project. Det Norske Veritas AS,
Norway

14. Larsson L, Segerberg R (2004) An approach for quality assurance in enterprise modelling.
MSc Thesis, Department of Computer and Systems Sciences, Stockholm University, no. 04-22

15. Lillehagen F, Krogstie J (2002) Active knowledge models and enterprise knowledge man-
agement. In: Proceedings of the IFIP TC5/WG5.12 international conference on enterprise
integration and modeling technique: enterprise inter- and intra-organizational integration:
building international consensus. IFIP Conference Proceedings, vol. 236. Kluwer, New York

16. Loucopoulos P, Kavakli V, Prekas N, Rolland C, Grosz G, Nurcan S (1997) Using the EKD
approach: the modelling component. UMIST, Manchester, UK

17. Lundqvist M, Homquist E, Sandkuhl K, Seigerroth U, Strandesjö J (2009) Information
demand context modeling for improved information flow: experiences and practices. In:
Proceedings of PoEM 2009. LNBIP, vol 39. Springer, Berlin, Heidelberg, New York, pp 8–22

18. Moody DL, Shanks G (2003) Improving the quality of data models: empirical validation of a
quality management framework. Info Systems 28(6):619–650

19. Nilsson AG, Tolis C, Nellborn C (eds) (1999) Perspectives on business modelling: under-
standing and changing organizations. Springer, Berlin

20. Persson A, Stirna J (2001) Why enterprise modelling? – an explorative study into current
practice. In: Proceedings of CAiSE 2001. LNCS, vol 2068. Springer, Berlin, Heidelberg,
New York, pp 465–468

21. Persson A (1997) Using the F3 enterprise model for specification of requirements – an ini-
tial experience report. In: Proceedings of international workshop on evaluation of modeling
methods in systems analysis and design (EMMSAD), June 16–17, Barcelona, Spain

22. Persson A (2001) Enterprise modelling in practice: situational factors and their influence on
adopting a participative approach. Doctoral Thesis, Department of Computer and Systems
Sciences, Stockholm University, ISSN 1101-8526

23. Persson A (2008) The practice of participatory enterprise modelling – a competency perspec-
tive. In: Johannesson P, Söderström E (eds) Information systems engineering – from data
analysis to process networks. Idea Group, Hershey, PA, pp 129–157

24. Rolland C, Stirna J, Prekas N, Loucopoulos P, Persson A, Grosz G (2000) Evaluating a pattern
approach as an aid for the development of organizational knowledge: an empirical study. In:
Proceedings of the 12th conference on advanced information systems engineering (CAiSE).
LNCS, vol 1789. Springer, Berlin, Heidelberg, New York, pp 176–191

25. Rolland C (2007) Capturing system intentionality with maps. In: Krogstie J et al (eds)
Conceptual modelling in information systems engineering. Springer, Berlin, pp 141–158

26. Sandkuhl K, Stirna J (2008) Evaluation of task pattern use in web-based collaborative engi-
neering. In: Proceedings of the 34th EUROMICRO conference on software engineering and
advanced applications (SEAA), EUROMICRO, IEEE, Los Alamitos, CA

27. Stirna J (2001) The influence of intentional and situational factors on EM tool acquisition in
organisations. Ph.D. Thesis, Department of Computer and Systems Sciences, Royal Institute
of Technology and Stockholm University, Stockholm, Sweden

28. Stirna J, Persson A (2009) Anti-patterns as a means of focusing on critical quality aspects
in enterprise modeling. In: Halpin T et al (eds) Enterprise, business process and information

An Intentional Perspective on Enterprise Modeling 237

systems modeling, proceedings of the 14th international conference EMMSAD 2009. LNBIP,
vol 29. Springer, Berlin, pp 407–418

29. Stirna J, Persson A, Aggestam L (2006) Building knowledge repositories with enterprise mod-
elling and patterns – from theory to practice. In: Proceedings of the 14th European conference
on information systems (ECIS). Gothenburg, Sweden

30. Stirna J, Persson A, Sandkuhl K (2007) Participative enterprise modelling: experiences
and recommendations. In: Proceedings of CAiSE 2007. LNCS, vol 4495, Springer, Berlin,
Heidelberg, New York, pp 546–560

31. Wangler B, Persson A (2002) Capturing collective intentionality in software development. In:
Fujita H, Johannesson P (eds) New trends in software methodologies, tools and techniques.
IOS, Amsterdam, Netherlands, pp 262–270

32. Wangler B, Persson A, Söderström E (2001) Enterprise modeling for B2B integration. In:
Proceedings of international conference on advances in infrastructure for electronic business,
science, and education on the internet, L’Aquila, Italy (CD-ROM proceedings)

33. Wangler B, Persson A, Johannesson P, Ekenberg L (2003) Bridging high-level enterprise
models to implementation-oriented models. In: Fujita H, Johannesson P (eds) New trends
in software methodologies, tools and techniques. IOS, Amsterdam, Netherlands

34. Willars H (1988) Handbok i ABC-metoden. Plandata Strategi. Stockholm, Sweden
35. Yu E, Mylopoulos J (1994) From E-R to “A-R” – modelling strategic actor relationships for

business process reengineering. In: Proceedings of the 13th international conference on the
entity-relationship approach, Manchester, England

A Goal-Based Approach for Learning
in Business Processes

Pnina Soffer, Johny Ghattas, and Mor Peleg

Abstract Organizations constantly strive to improve their business performance;
hence they make business process redesign efforts. So far, redesign has mainly been
a human task, which relies on human reasoning and creativity, although various
analysis tools can support it by identifying improvement opportunities. This chap-
ter proposes an automated approach for learning from accumulated experience and
improving business processes over time. The approach ties together three aspects
of business processes: goals, context, and actual paths. It proposes a learning cycle,
including a learning phase, where the relevant context is identified and used for
making improvements in the process model, and a runtime application phase, where
the improved process model is applied at runtime and actual results are stored for
the next learning cycle. According to our approach, a goal-oriented process model
is essential for learning to improve process outcomes.

1 Introduction

Organizations constantly strive to improve their business performance. This has
been reflected in efforts made in the area of business process redesign since the
early 1990s [5]. Typically, business process redesign initiatives can be characterized
on a continuum from radical reengineering [10] to incremental continuous improve-
ments. Various analysis methods can be used in order to identify weaknesses and
improvement opportunities in existing business processes. However, the actual task
of process redesign still relies exclusively on human reasoning and creativity.

Improving business performance over time is also associated with the concept of
organizational learning, defined as the capacity within an organization to improve
its performance based on experience [12]. One of the main ideas of organizational
learning is that while individuals can learn from past experience, this knowledge
has to become shared and applied across the organization to facilitate constant

P. Soffer (B)
University of Haifa, Carmel Mountain, 31905 Haifa, Israel
e-mail: spnina@is.haifa.ac.il

239S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_13, C© Springer-Verlag Berlin Heidelberg 2010

240 P. Soffer et al.

improvement. The knowledge an individual has can be manifested in decision cri-
teria used for selecting a process path at a specific situation or in deviations from
a predefined process model in order to solve specific problems. This knowledge is
gained through mistakes as well as successful process executions. The knowledge
can become shared by others to support organizational learning by embedding it in
a process model which evolves over time.

Organizational learning and business process redesign initiatives require in-depth
understanding of the current practices. In particular, it should be possible to identify
which actions have a positive or a negative effect on business measures in given
situations. Relying only on a static predefined process model in order to identify
opportunities for improving a process may be limiting or even impossible, since
the actual way processes are performed (including ad hoc decisions) is usually not
reflected in such models. The actual way in which a business process is performed
can be studied using process mining techniques [24]. Process mining analyzes an
event log of the information system that supports the process, and produces a model
of the process as it is actually performed. Process mining serves various purposes,
such as getting a clear and reliable model of the as-is process [24], performing delta
analysis, in which the actual process is compared to the predefined process model
[2], and analyzing the process with respect to specific performance measures, such
as execution time [1]. Process mining can provide an understanding of the as-is
process, including specific paths that reflect ad-hoc decisions made in exceptional
situations. However, the main emphasis of existing process mining approaches has
been capturing the control-flow of the process, namely, the sequence in which activ-
ities are executed. Hence, while process mining reflects the common as well as the
rarely taken process paths, the situations in which path selection decisions have been
made and the extent to which the corresponding executions were successful are not
systematically addressed.

This chapter proposes an approach for learning and gradually improving business
processes. The approach ties together three elements that comprise the experience
gained through ongoing process executions: what actions have been performed, in
what situations, and what has been achieved by the process in business terms. The
actions that have been performed are the actual process paths taken; the situations in
which they were performed are the context of the process; what has been achieved
can be assessed with respect to defined process goals.

2 How Goals and Context Facilitate Learning

2.1 The Role of Process Goals

Learning from experience means understanding what mistakes were made (lead-
ing to failure) to avoid repeating them, and what was done in successful process
executions. Success (or failure) can only be assessed when goals are known and
specified.

A Goal-Based Approach for Learning in Business Processes 241

In this chapter we adopt the notions of business process goals as defined in the
Generic Process Model (GPM) framework [19]. GPM is a state-based and goal-
oriented view of a process, which relates to two types of process goals: hard goals
(or simply goals) and soft goals. Below we discuss these two types of goals and their
possible use for process learning.

The hard goal of a process is defined by GPM as a set of stable states at which the
process terminates. The goal set is specified by a predicate over values of the state
variables of the domain in which the process operates. Since a process is executed in
order to bring about some state of affairs in the domain, the predicate expresses the
conditions under which this state of affairs is achieved so the process can terminate.
The goal is a set of states (rather than a single state), since there might be different
specific states that meet the termination condition. For example, a sales process
reaches its goal once the order is fulfilled and paid for. This may include different
states (e.g., the goods were shipped to the customer, the customer has taken the
goods himself, payment was made in advance or upon delivery, etc.).

Considering learning, a process instance (namely, a specific execution of the pro-
cess) may end up in a state which is in the goal set or in a stable state which is not
in the goal set (an exception). In the sales process example, it might be that the cus-
tomer received the goods, paid with an invalid credit card, and lost contact, so he
cannot be located any more. In this case, the state of the process domain is stable,
namely, it cannot be changed by actions of the organization, but it is not in the goal
set since payment was not received. Learning seeks to avoid exceptional situations
or to minimize their occurrence over time.

As explained, the (hard) goal of a process is a set of states, all satisfying the con-
dition under which the process can terminate having achieved what it was intended
to achieve. These states might be different from each other in business terms. For
example, in the above mentioned sales process it might be considered more desirable
to supply goods in two days than in two weeks (although both lead to goal states).
Soft goals represent business objectives which differentiate states in the goal set
according to how desirable they are. In other words, soft goals define a desirability
order relation among states in the goal set [19].

The term “soft goals” is borrowed from requirements engineering, where it
relates to desired properties whose satisfaction is not on a binary scale. Similarly,
considering business processes, soft goals correspond to performance indicators
whose increased values are sought, but they can only be considered successful in
comparison to others rather than absolutely. It is possible to define thresholds to
performance indicator values, so values above the threshold are considered “good”
(e.g., delivery time shorter than one week) as opposed to values below the thresh-
old. Yet, different values of soft goal related performance indicators denote different
levels of success even if all values are above the threshold.

Learning in a business process should seek to achieve higher levels of soft goal
related indicators over time.

It should be noted that specific soft goals (e.g., minimizing execution time) and
their relationships to actual paths have been addressed to some extent by process
mining approaches [1, 6]. Here we address soft goals at a generic level, without

242 P. Soffer et al.

limiting ourselves to specific ones. This raises two main challenges. First, different
soft goals may exist and may even conflict with each other (e.g., quality and cost).
Process changes may positively affect one soft goal while negatively affecting the
other. Second, soft goals may be affected by more than one process. For example, the
quality of a product may be affected by the production process and by the purchasing
of raw materials. It follows that considerable attention should be devoted to the
precise specification of soft goals with respect to a specific process for learning to
be effective.

As explained, learning should assess the level of success of each process execu-
tion (process instance) with respect to the defined goals of the process (both hard
and soft goals). We refer to the combination of hard and soft goal achievement by a
process instance as the outcomes of the instance.

2.2 The Role of Context

The success of a process instance can be affected not only by the actual path per-
formed, but also by environmental conditions, not controlled by the process, which
we term the process context. Specifically, the context of a process includes the initial
state at which the process is triggered (which may hold specific case characteristics,
such as customer properties in a sales process) and events in the environment that
may occur during its execution. The initial state is specified by values of state vari-
ables known when the process is initiated; events in the environment are external to
the process domain but affect its state.

Process instances of different contexts may need to be addressed differently (i.e.,
take different paths) in order to achieve desired outcomes. Alternatively, we may
say that if exactly the same path is applied to process instances of different contexts,
it might lead to different outcomes. Considering a sales process, a regular cus-
tomer may place an order and pay once the goods are supplied, while an unknown
customer would be required to pay in advance to reduce the risk.

Furthermore, threshold levels of soft goals for determining whether an outcome
is “desired” or not may also depend on context. For example, a desired outcome of
a broken leg treatment process for an old person would be to be able to walk freely
again, while for a young person it would only be considered successful if he never
suffers pain again.

It follows that to learn effectively, process instances should be classified accord-
ing to their context, so that learning could take context into account. However, initial
information and external events may relate to a variety of factors, and it is not nec-
essary that all factors indeed affect the outcome of the process. Hence, the challenge
faced is to identify the relevant factors that should be taken into account by learning.
While some factors may be well known to domain experts and even incorporated
into the process model as decision criteria (e.g., regular vs. first-time customer),
others may be guessed intuitively by some workers, and some even unknown in
advance.

A Goal-Based Approach for Learning in Business Processes 243

Our learning approach seeks to identify the relevant contextual factors and group
process instances into context groups, such that for process instances of a specific
context group, similar process paths would imply similar outcomes.

3 Introducing the Running Example

As a running example, demonstrating the concepts introduced in the chapter, we
address a production process in a plastic bottle manufacturing firm, illustrated in
the BPMN model depicted in Fig. 1. The (hard) goal of the process is to reach a
state where customers’ acceptance of delivery is achieved. Other states in which the
process might terminate (exception termination states) are states where delivery is
cancelled due to quality problems and states where the customer rejects delivery
(also due to quality problems).

Soft goals defined by the organization include increasing the percentage of deliv-
eries that meet their due dates, increasing machine utilization, reducing waste of
raw materials, increasing the quality of the manufactured products, and reducing the
overall production costs. These different soft goals could be prioritized and weighted
to form one composite soft goal. An alternative approach would be to analyze the
dependencies among soft goals and identify a dominant soft goal to be addressed
first. Table 1 presents the main causes for poor achievements of the defined soft
goals.

As seen in Table 1, the leading reasons for poor business results are quality
problems, machine failure and poor technical condition, and the set up operations.
Machine maintenance is not in the scope of this process (rather, it is part of its
context), and the set up operation is part of the process path. Based on this analy-
sis, we decided to focus on the soft goal of increasing the product quality, which
will affect all the other soft goals (including the costs, through reducing material
waste).

The contextual variables of the process include the initial case properties and
external (uncontrolled) events during the process. Initial case properties include
properties of the manufactured product and the customer, intended market of the
product (food, medical supplies, chemicals, cosmetics), the main raw material
(polyethylene at different density levels, polypropylene), the supplier of the raw
material (three possible ones), and the supplier of the pigments (two possible ones),
time since last maintenance operation of the machine, and weather (hot or dusty
days may affect the machines). There might also be specific requirements made by
the customer, such as requirements for the bottle to be resistant to high temperature
(in case the customer uses it for storing hot liquids) or to strong chemical solu-
tions. Events that occur during the process are mainly machine failures and quality
problems and it is often impossible to tell one from the other.

It should also be noted that contextual variables may affect soft goal thresholds,
e.g., higher quality is required if the intended market of the product is the medical
supplies.

244 P. Soffer et al.

Fig. 1 Plastic bottle manufacturing process

A Goal-Based Approach for Learning in Business Processes 245

Table 1 Soft goals – reasons for poor achievement

Soft goal Main reasons for poor achievement

Meeting delivery due dates Quality problems, machine failure, unskilled workers
Increasing machine utilization Set up times, quality problems, machine failure
Reducing waste of raw materials Quality problems, inappropriate machine setup
Increasing product quality Inappropriate machine setup, poor quality of raw material,

poor machine condition, inappropriate quality inspection
Reducing production costs Raw material cost, raw material waste, labor cost

4 The Learning Approach

The proposed learning approach includes a learning life-cycle, described in Fig. 2.
The learning cycle can be initiated when a process has already been performed for a
period of time, so some experience has already been accumulated. This experience
is stored in an experience base, including data of past process instances: their actual
path, their achieved outcome, and their context information. Note that context infor-
mation includes all the environmental variables, as we cannot tell in advance which
ones are relevant.

The life cycle includes two main phases: a learning phase and the application of
its results in runtime, which, in turn, produces more experience to be stored in the
experience base for the next cycle.

The learning phase includes a step of initial context identification, which yields
a definition of context groups. These groups serve as a basis for the generation of

Fig. 2 The proposed learning cycle

246 P. Soffer et al.

improvement recommendations to the process model. Note that these improvements
are not automatically deployed. Rather, the analysis yields improvement recommen-
dations which should first be reviewed by humans and only then used for updating
the process model.

The runtime phase is an ongoing phase of process execution. Every new pro-
cess instance is classified into a context group and follows the path recommended
accordingly. Its context, path, and outcome data are then stored in the experience
base. There might be instances which cannot be classified into an existing context
group; they are executed and their data is also stored in the experience base. In
some cases, specifically when facing unexpected external events, the process oper-
ators may decide to deviate from the process model and take a path which has not
been taken before. These are also stored in the experience base. Periodically, when
a considerable number of new experiences have been added to the experience base,
learning can be applied again, triggering a new cycle. In what follows we provide
details about the phases of the learning cycle.

4.1 Context Identification

As explained above, the challenge in identifying context is the huge amount of
contextual information that may be available. We seek for classification criteria of
process instances that would be effective in determining the best process path at a
given situation. This classification should also be meaningful in business terms, so
each group of instances can be characterized based on its contextual properties.

Recall, the data of the process instances stored in the experience base includes
their actual path, their outcome (or termination state), and their contextual informa-
tion. The path and the termination state of a process instance constitute its behavior.
In a perfect world, process instances that have similar contexts would follow similar
paths to lead to a given termination state. However, our knowledge of the process
(relevant) context is partial. Under partial knowledge, we may not be aware of con-
textual variables whose different values may differently affect the process behavior,
and can be considered “different contexts”. Lacking such knowledge, we may group
process instances that partially share the same context but exhibit different behav-
iors. This would not be an effective strategy for learning the best paths that for a
given context would achieve desirable outcomes. Hence, with the knowledge that
exists at this phase, process instances can be grouped considering two types of
similarities:

(1) Behavioral similarity.
(2) Contextual property-based similarity.

Clearly, these two groupings are expected to be different, since not all contex-
tual properties necessarily affect process behavior, and some properties may have
a similar effect. Our interest is to identify a third type of grouping, context groups

A Goal-Based Approach for Learning in Business Processes 247

definition, namely, groups of instances whose contextual property-based similarity
can predict some behavioral similarity.

Behavioral similarity of process instances can be assessed using some path and
state similarity measures. Consequently, process instances can be grouped into clus-
ters of behaviorally-similar process instances, sharing similar paths and similar
termination states (outcomes). Each process instance in the experience base would
belong to one behavioral similarity cluster.

Contextual property-based similarity of process instances is possible when at
least one contextual property of these instances has similar values. The possible
number of contextual property-based similarity groupings is combinatorial in the
number of contextual properties. Not all these groupings are meaningful in terms of
behavior (e.g., grouping process instances based on the color of the customer’s eyes
would probably be ineffective for predicting behavior of process instances).

Based on these two types of similarity, we define a context group as a group of
process instances, which are contextual property-based similar, and for which taking
similar paths implies achieving similar outcomes.

Note that this definition relates to a situation where the behavior of process
instances is fully consistent with respect to their context, namely, there are no unpre-
dicted behaviors or noisy data. Clearly, this is not the situation in real life, where
there might be “hidden” variables which cannot be tracked (e.g., distractions of
the machine operator) that affect the outcomes of the process. Hence, we cannot
assume full predictability of the outcomes given a context group and a process path.
However, we may assume that contextual properties have a certain effect and can
explain at least part of the variance in the outcomes achieved. Hence, for practical
purposes we can formulate the following postulate:

Postulate 1: Consider two groups of process instances, PI1 and PI2, so each
group includes contextual property-based similar process instances. Now consider
C1 ⊂ PI1 and C2 ⊂ PI2, so the paths taken by instances in C1 and C2 are all similar.
If statistical tests show that the termination states of C1 and C2 are not of the same
population, then PI1 and PI2 are in different context groups.

Postulate 1 gives us a criterion for excluding two sets of instances from being in
the same context group. It can be applied to groups of instances that follow similar
paths. However, we may have groups that follow different paths. In that case, we
assume the choice of path reflects some implicit domain knowledge used by the
process operators. This is reflected in the following postulate.

Postulate 2: Groups of contextually similar process instances form one con-
text group if the distribution of their behavioral similarity categories is similar (not
significantly different).

The two postulates can be helpful when some grouping based on contextual
properties is available. However, as discussed above, the number of such group-
ings is combinatorial in the number of known contextual properties. To overcome
this difficulty, we employ a learning algorithm, which grows a decision tree whose
independent variable is the contextual properties while the dependent variable is
the behavioral similarity category of process instances. The algorithm is applied
through the following procedure [8].

248 P. Soffer et al.

Step 1: Use existing domain knowledge for an initial classification of process
instances based on contextual properties that are known to affect process
behavior.

For each partition, separately apply the following three steps.
Step 2: Establish the behavioral similarity of the process instances.

(a) Path similarity categories are formed using a clustering algorithm over
path data of the instances. The number of path similar clusters generated is
selected according to goodness of fit criteria, such as Akaike Information
Criteria (AIC). The clustering algorithm can be applied several times,
achieving a series of clustering results with an increasing number of clus-
ters for each clustering set. Finally, the best cluster set is selected as the
one that attains the first minima of the ratio of AIC changes.

(b) Categorize termination states to a small number of categories based
on a set of predefined rules. The aim is to achieve a coarse grained
categorization with a clear distinction between categories.

(c) Combine path similarity categories with termination state categories into
behavioral similarity categories.

Step 3: Establish the contextual properties that affect behavior. This is accom-
plished by training a decision tree algorithm, using the context data as
inputs and the behavioral categories as dependent variable (their label). The
objective of using the decision tree is to discover the contextual semantics
behind each behavioral category. We use a modified Chi-squared Automatic
Interaction Detection (CHAID) growing decision tree algorithm to construct
the decision tree that represents the context groups and their relationships.
CHAID tries to split the context data of the process instances into nodes that
contain instances whose dependent variable values (namely, behavioral simi-
larity category) are the same. Each path from the source node to a leaf node in
the decision tree represents a different combination of contextual properties.
Each leaf node contains a certain distribution of instances among behavioral
categories, allowing the identification of the most probable category for that
leaf.

Step 4: Form the context groups. Based on Postulates 1 and 2, join tree paths
into context groups if the following two conditions are satisfied:

(a) The hypothesis that the process instances in their leaves are of the same
population (considering their behavioral similarity categories) cannot be
rejected.

(b) If their leaves include behavioral categories that stand for similar paths
but different termination states, the hypothesis that termination states for
similar paths in both leaves are of the same population cannot be rejected.

A Goal-Based Approach for Learning in Business Processes 249

Considering our bottle manufacturing running example, one of the difficulties
faced is the large number of possible process paths (considering each one of the
14 machines and 40 employees who operate the machines as different paths).
Furthermore, the selection of a machine and a worker at runtime is mainly done
based on availability, and to a lesser extent on the context, so this choice is not
expected to reflect the relevant contextual properties we are looking for. Still, this
choice might affect the outcomes. To overcome this, we decided to identify a sub-
set of very reliable employees and use only process instances they participate in
for context identification. We also decided not to differentiate paths where different
machines were used, but to include the time since the last maintenance operation of
the machine as a contextual property.

The identification procedure is applied as follows:

Step 1: An initial classification of the process instances related to whether or
not the process faced an event of problem identification. Clearly, this is a
contextual variable that affects the process behavior. Hence, we separately
performed the following steps to instances where problems were identified
and to instances where production was performed without interrupts. We
demonstrate the next steps with respect to the group where no problems
occurred.

Step 2: Paths were clustered (disregarding machines and workers, as discussed
above). The termination states were divided into two groups: (1) instances
where the customer accepted the delivery without a need for a 100% inspec-
tion, (2) instances where the customer accepted the delivery after a 100%
inspection, or where the customer rejected the delivery or where the delivery
was cancelled. The combination of path similarity groups and termination
state groups included 12 behavioral categories.

Step 3: Applying the decision tree growing algorithm resulted in the tree
depicted in Fig. 3.

Each path in the tree (from the root to a leaf) represents a combination
of contextual properties relevant for the behavior of process instances. Each
node in the tree holds a set of process instances that can be characterized
by a distribution over behavioral similarity categories. For example, node 13
stands for process instances related to products in the food and cosmetics
market whose size is large and where the customer required resistance of the
bottle to high temperatures. Node 12 represents process instances in the med-
ical supplies market with special covers (children proof) where the machine
used was not within a short period after its periodic maintenance (hence its
maintenance state is not considered as best).

Step 4: Applying postulates 1 and 2. Due to space limitation, we only demon-
strate Step 4 with respect to parts of the tree, leaf nodes 8, 9, and 13.
The behavioral categories of the instances in all three nodes fall into three
path similarity categories (paths 1–3) and two termination state categories,
distributed as shown in Table 2.

250 P. Soffer et al.

Fig. 3 Context identification decision tree

Table 2 Behavioral category distribution for leaf nodes 8, 9, and 13 (in %)

Leaf node

Category Path Termination 13 9 8

1
2
3
4
5
6

1
2
3
1
2
3

Success
Success
Success
Quality problems
Quality problems
Quality problems

13
40
40
3
2
2

10
40
42

3
2
3

7
38
43
4
5
3

Based on Table 2, the hypothesis that the instances in all the three leaf nodes are
of the same population cannot be rejected, hence condition (a) is satisfied. To check
condition (b), Table 3 shows the distribution of termination states for every path in
the leaf nodes.

Based on Table 3, paths 1 and 2 lead to significantly different termination states
in leaf node 8 as compared to leaf nodes 13 and 9. Hence, it cannot be considered
in the same context group.

In summary, while the two conditions hold for leaf nodes 9 and 13, they do not
hold for the combination including leaf node 8. Hence, leaf nodes 13 and 9 can
be joined to one context group (instances with big products and resistance to high

A Goal-Based Approach for Learning in Business Processes 251

Table 3 Termination states
for paths in the leaf nodes
(in %)

Leaf node

Path Termination 13 9 8

1 Success 82 77 64
Quality problems 18 23 36

2 Success 95 95 88
Quality problems 5 5 12

3 Success 95 93 93
Quality problems 5 7 7

temperature for the food and cosmetics market OR with products for the chemicals
market with high chemical resistance requirement), while leaf node 8 is a differ-
ent group (instances with small or medium products for the food and cosmetics
market).

Note that not all the existing and known contextual variables are identified as
influencing the behavior (e.g., the supplier of the raw material was found irrelevant).

4.2 Suggesting Improvements to the Process Model

Phase 1 provides a grouping of process instances according to context groups. In
addition, these are divided into sub-groups with similar behaviors. However, for
improvement purposes a different level of granularity might be needed, both for
the paths and for the termination states. The termination state classification for the
purpose of context identification aims at creating a clear distinction of different
outcomes. Hence, it is at a coarse granularity level, relating mainly to the hard goals
of the process and possibly to a threshold over soft goal achievement levels. When
attempting to suggest improvements that would affect the business results of the
process, a finer granularity level is required, relating to different levels of soft goal
achievement. Considering the paths, some distinctions that were disregarded for the
context identification (e.g., different machines) must be taken into account, as they
might affect the outcomes for a given context.

Process improvement may include three types of action:

1. Providing criteria for path selection in a given situation. These would rely
on the paths, context groups, and outcomes achieved by process instances in
the repository. Considering the granularity level defined as relevant for process
improvement, process instances in each context group should again be clustered
based on path similarity. These clusters are then ranked based on their average
achievement of goals, so the best performing paths for each context groups can
be identified and recommended.

To illustrate path selection recommendations, below are some possible cases
concerning our running example.

252 P. Soffer et al.

One situation would be a context group for which a path that uses new
material and quality inspection level 3 would yield zero cases of unaccept-
able quality level (no customer rejects, cancellations, or 100% inspections
performed). However, when a certain worker operates the machine, an aver-
age 5% defects (which is still acceptable by the customer) is obtained at the
sample inspection, while other workers normally have 2% defects. As a result,
the specific worker can be trained, or not be assigned to orders of that context
group.

As a second example, the current process model includes a decision point
where a 100% inspection can be performed (or skipped) after a problem has been
identified and solved during production. It could be identified that avoiding 100%
inspection at this point significantly increases the probability that the customer
would reject the delivered goods. Hence, the process model would be changed
so performing such inspection becomes mandatory.

A third example might identify that for a certain group of machines, when
the product is for the medical market, the frequency of problems identified dur-
ing production increases about four months after maintenance activities, while
for other machines and other context groups it happens only after six months.
This could indicate the need to perform maintenance more frequently for these
machines, or to avoid using them for medical products if four months have passed
since their maintenance.

2. Addressing specific questions that might be asked. Management may have
“hunches” about possible causes of poor performance. These can be specifically
addressed by analyzing path and performance for all the context groups. For
example, in the bottle manufacturing process there are cases of very urgent orders
for which the machine set up is done in an accelerated manner. Management
wishes to check whether this accelerated set up results in decreased product
quality in general or for specific context groups. Specific analysis will try to
correlate the time spent for the set up activity with the outcome for different
context groups.

3. Identifying successful deviations from the existing process model as a basis for
managerial decision making. The process instances in the repository may include
instances where specific ad hoc decisions were made to deviate from the “nor-
mal” process at runtime. For example, there might be cases where special quality
inspection instructions were given, not compliant with the existing three levels.
Since this has not been repeated enough times to get statistical significance for
its results, we can only indicate that such deviations were made and the extent
of their success in achieving the process goals. Such indications may be used
by management, which may decide to repeat this course of action so more data
becomes available for future learning cycles.

It should be stressed that we do not suggest any change to be made automatically
to the process model. All the improvement recommendations should be reviewed by
humans (managers, domain experts), and the performance of the improved process
should be monitored.

A Goal-Based Approach for Learning in Business Processes 253

4.3 Online Application

Learning can be performed periodically in an off-line manner. At runtime, new pro-
cess instances are created and executed. The learning results should be applied to
these new instances. Each new process instance should be classified to an existing
context group so path selection decisions can be made according to the recom-
mended path for the context group according to the improved process model. Some
decisions (e.g., assigning a worker or a machine) are usually made based on different
criteria (e.g., machine availability). However, the context group may set preferences
among possible paths (e.g., prefer a certain machine out of several available for a
given context group).

If a process instance cannot be classified to an existing context group (e.g., a new
product for a new market or some unfamiliar external event), decisions would be
made based on human (managerial) judgment. In all cases, the data of the process
instance, namely, context information, specific path, and outcome, will be stored in
the experience base repository and serve for future learning cycles.

5 Related Work

This chapter combines three issues that have so far been addressed separately with
respect to business processes, namely, goal orientation, context awareness, and
actual process paths. We claim that this combination is important in order to achieve
learning and improvement over time.

The business process research area has mostly focused over the years on control-
flow issues, while goals as the driving force of business processes have not been
extensively used. The conceptual basis for the work presented here is the Generic
Process model (GPM) framework [21, 22], which relates to goals as a fundamen-
tal part of process specification. Relying on Requirements Engineering approaches,
GPM distinguishes hard goals of a process from its soft goals [19]. Incorporating
goals into process specification enables assessing the ability of a process to achieve
its (hard) goal, which is termed the validity of its design [20]. Understanding and
explicitly specifying process goals has also been shown to be a key issue for process
flexibility [18]. A similar perspective of goal orientation has been suggested by [4],
but their approach deals with hard goals only.

Another approach that addresses goal oriented business process modeling is pre-
sented in [13], proposing the map representation [16] as an intentional process
specification. Map representation has been assigned GPM-based semantics in [19],
which highlighted the synergy gained by combining these two.

Context awareness of business processes has recently gained the attention of the
scientific community. The main efforts have been devoted to identifying the relevant
context of a process, to its representation in a model, and to articulating how it can
affect the process execution at runtime. Context identification has mainly been done
in a qualitative manner (e.g., using an onion model [17]), while the algorithmic

254 P. Soffer et al.

approach used here was first reported in [7, 8]. Context representation in process
model has been addressed by [11]. Some representation proposals have been made,
but no agreed upon standard has emerged yet. The runtime effect of context is dis-
cussed with respect to process flexibility and variability of execution [11, 14]. In
addition, context-aware exception handling in workflow systems has been proposed,
where the context relates both to the process and to the specific exception [3]. To the
best of our knowledge, the effect of context on the outcome achieved by a process
and its utilization for learning purposes has not been developed so far.

Actual path discovery has been addressed in the process mining area. Several
attempts have been made to use process mining for identifying improvement oppor-
tunities in processes. These typically relate to specific performance measures (or
soft goals). Examples include [1], who address performance indicators related to
time (waiting time, synchronization time) as measured in different nodes of the pro-
cess model. These measures are local, but can contribute to time-related soft goals if
such are defined for the process. Another work [6] relates to an extended set of per-
formance indicators, mostly related to time spent at parts of the process, and to some
extent to resource consumption. The focus of these works is on mining technology
capabilities rather than on analysis of business goals. As well, context information
is not considered; hence learning is only partly supported.

Another related direction deals with adaptable workflow management systems
like ADEPT [15]. Such systems allow making ad hoc changes and deviations from
a predefined process model at runtime. Research efforts regarding adaptable sys-
tems include mining the changes that were made [9] and supporting future changes
by employing a case-based reasoning mechanism which retrieves past changes that
were made to the process [23]. However, in the absence of goal specification, there
is no real assessment of the level of success achieved by past changes in business
terms. In addition, the similarity of the situation cannot be fully established without
taking context into account. Hence, here too learning is not fully supported.

In summary, while some attempts towards supporting process improvement and
establishing a learning process have been made, our work is the first to explicitly
incorporate goals and context as a basis for learning.

6 Conclusion

Constantly improving business processes has long been aspired by organizations.
From a business perspective, it is clear that improvement can only be established
with respect to defined goals. However, organizational goals are usually discussed
using high level business terms, while business process modeling and management
are addressed at a technical level, and are often not goal oriented. The result of this
gap is that attempts made in the business process management discipline to achieve
learning are not comprehensive, and can only relate to specific issues one at a time.

The approach presented in this chapter overcomes this gap by employing a
goal oriented business process model, which brings the business level goals to the

A Goal-Based Approach for Learning in Business Processes 255

technical level of process specification. Context, which is the third element taken
into account, is addressed at the same technical level. Tying these three elements
together, this work presents a systematic process for learning and achieving con-
stant improvement. Addressing both hard and soft goals, our approach is expected
to reduce the frequency of exceptional terminations of the process and to improve
business performance over time.

The learning process we propose draws conclusions from experience gained over
time while executing a business process. Comparing this kind of learning to human
learning, a major difference is that humans are capable of learning from mistakes
they make, by acknowledging a certain decision as a wrong decision that should
not be repeated. Humans can avoid repeating a mistake that has only been made
once. In contrast, our learning process is statistical in nature; hence it can only draw
conclusions after a substantial number of repetitions have been made. To improve
the ability of the approach to learn from episodic failures (or successes), other kinds
of reasoning mechanisms (e.g., Case-based reasoning) can be used in combination
with the one proposed here. Future research will develop a set of learning mech-
anisms that can be used in combination, so each is applied in different situations.
Future research will also experiment with the learning application and validate it in
real life processes.

References

1. van der Aalst WMP, van Dongen BF (2002) Discovering workflow performance models
from timed logs. In: Han Y et al (eds) Proceedings of the international conference on engi-
neering and deployment of cooperative information systems. LNCS, vol 2480. Springer,
Berlin/Heidelberg

2. van der Aalst WMP (2005) Business alignment: using process mining as a tool for delta
analysis and conformance testing. Reqs Eng 10(3):198–211

3. Adams M, ter Hofstede AHM, van der Aalst WMP, Edmond D (2007) Dynamic, extensible
and context-aware exception handling for workflows. In: Proceedings of OTM 2007 Part 1.
LNCS, vol 4803. Springer, Berlin/Heidelberg

4. Andersson B, Bider I, Johannesson P, Perjons E (2005) Towards a formal definition of goal-
oriented business process patterns. Business Process Manage J 11(6):650–662

5. Davenport TH (1993) Process innovation, reengineering work through information technol-
ogy. Harvard Business School Press, Boston, MA

6. van Dongen BF, Adriansyah A (2009) Process mining: fuzzy clustering and performance visu-
alization. In: Proceedings of the 5th international workshop on business process intelligence
(BPI 2009), Ulm, Germany

7. Ghattas J, Peleg M, Soffer P, Denekamp Y (2009) Learning the context of a clinical process.
In: Proceedings of the workshop on health-care processes (PROHealth 2009), Ulm, Germany

8. Ghattas J, Soffer P, Peleg M (2009) A formal model for process context learning. In:
Proceedings of the 5th international workshop on business process intelligence (BPI 2009),
Ulm, Germany

9. Guenther C Rinderle-Ma S, Reichert M, van der Aalst WMP, Recker J (2008) Using pro-
cess mining to learn from process changes in evolutionary systems. Int J Business Process
Integration Manage 3(1):61–78

10. Hammer M, Champy J (1994) Reengineering the corporation – a manifesto for business
revolution. Nicholas Brealey Publishing, London

256 P. Soffer et al.

11. Modafferi S, Benatallah B, Casati F, Pernici B (2006) A methodology for designing and man-
aging context-aware workflows. In: Mobile information systems II; IFIP international working
conference on mobile information systems. MOBIS, vol 191/2005 of IFIP. Springer, Boston

12. Nevis EC, DiBella AJ, Gould JM (1995) Understanding organizations as learning systems.
Sloan Manage Rev Winter:73–85

13. Nurcan S, Ettien A, Kaabi R, Zoukar I, Rolland C (2005) A strategy driven business process
modelling approach. Business Process Manage J 11(6):628–649

14. Ploesser K, Recker J, Rosemann M (2008) Towards a classification and lifecycle of business
process change. In: Proceedings of BPMDS 08. Montpellier, France

15. Reichert M, Rinderle S, Dadam P (2003) ADEPT workflow management system: flexible sup-
port for enterprise-wide business processes. In: Proceedings of the international conference on
business process management (BPM), Springer, Berlin/Heidelberg

16. Rolland C (2008) Intention driven conceptual modelling. In: Johannesson P, Söderström E
(eds) Information systems engineering: from data analysis to process networks. IGI Global
Hershey, Pennsylvania

17. Rosemann M, Recker J, Flender C (2008) Contextualization of business processes. Int J
Business Process Integration Manage 3(1):47–60

18. Soffer P (2005) On the notion of flexibility in business processes: In: Proceedings of CAiSE
2005 workshops: workshop on business process modeling, design and support (BPMDS’05)

19. Soffer P, Rolland C (2005) Combining intention-oriented and state-based process modeling.
In: Proceedings of international conference on conceptual modeling (ER 2005). LNCS, vol
3716. Springer, Berlin/Heidelberg

20. Soffer P, Wand Y (2004) Goal-driven analysis of process model validity. In: Proceedings of
CAiSE 2004. LNCS, vol 3084. Springer, Berlin/Heidelberg

21. Soffer P, Wand Y (2005) Goal-driven multi-process analysis. J AIS 8(3):175–203
22. Soffer P, Wand Y (2005) On the notion of soft goals in business process modeling. Business

Process Manage J 11(6):663–679
23. Weber B, Rinderle S, Wild W, Reichert M (2005) CCBR-driven business process evolution.

In: Proceedings of the international conference on case-based reasoning (ICCBR’05), Chicago
24. Weijters AJMM, van der Aalst WMP (2001) Process mining: discovering workflow models

from event-based data. In: Kröse B et al (eds) Proceedings of the 13th Belgium–Netherlands
conference on artificial intelligence (BNAIC’01)

Linking Goal-Oriented Requirements
and Model-Driven Development

Oscar Pastor and Giovanni Giachetti

Abstract In the context of Goal-Oriented Requirement Engineering (GORE) there
are interesting modeling approaches for the analysis of complex scenarios that are
oriented to obtain and represent the relevant requirements for the development
of software products. However, the way to use these GORE models in an auto-
mated Model-Driven Development (MDD) process is not clear, and, in general
terms, the translation of these models into the final software products is still manu-
ally performed. Therefore, in this chapter, we show an approach to automatically
link GORE models and MDD processes, which has been elaborated by consid-
ering the experience obtained from linking the i∗ framework with an industrially
applied MDD approach. The linking approach proposed is formulated by means of
a generic process that is based on current modeling standards and technologies in
order to facilitate its application for different MDD and GORE approaches. Special
attention is paid to how this process generates appropriate model transformation
mechanisms to automatically obtain MDD conceptual models from GORE models,
and how it can be used to specify validation mechanisms to assure the correct model
transformations.

1 Introduction

Nowadays, the requirements engineering (RE) field offers different modeling
approaches that analyze complex scenarios and elicit their relevant requirements
[20, 29, 43]. Of these approaches, the Goal-Oriented Requirement Engineering
(GORE) plays a significant role [19, 21]. However, the way in which GORE models
should be used in an automated Model-Driven Development (MDD) process [41] is

O. Pastor (B)
PROS Research Center, Universidad Politécnica de Valencia, Camino de Vera s/n,
46022, Valencia, Spain
e-mail: opastor@pros.upv.es

257S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_14, C© Springer-Verlag Berlin Heidelberg 2010

258 O. Pastor and G. Giachetti

very often too vague. An important issue that is still pending is how to properly link
the GORE models with the models of specific MDD approaches.

In general terms, for the application of GORE models to software production
processes, the specified models must be manually analyzed to obtain the correspond-
ing software representations. As it is reported in [37], the impossibility of applying
requirement models directly into a MDD software production process is due to their
nature since these models are centered on problem analysis and not on software
representation. Unlike requirement models, the models involved in MDD processes
are formulated to provide a precise and complete conceptual representation of the
intended software systems in order to achieve automatic software generation by
means of model compilations.

Thus, we can conclude that for the appropriate application of GORE modeling to
MDD processes, an appropriate input for the model compilation processes must be
obtained from the defined requirement models (i.e. to generate an MDD conceptual
model from a GORE model).

This chapter presents an approach for automatic linking of GORE modeling
and MDD processes. It has been elaborated by taking as reference the experience
obtained from the integration of the i∗ framework and an MDD approach called
OO-Method, which has been successfully applied to the industrial software develop-
ment [34]. From this scenario, we show how the GORE models can be transformed
into the corresponding MDD-oriented conceptual models by detailing the following:
the customization mechanisms for GORE modeling languages (that are defined to
automate the model transformations); the specification of validation mechanisms to
assure the appropriate model transformations; and the generation of required trans-
formation rules. All of this is done by a generic process that is based on current
modeling standards and technologies to facilitate its application in different MDD
and requirement approaches. Finally, we advocate the use of existent open-source
tools to support the proposed approach.

The rest of this chapter is organized as follows: Section 2 presents the back-
ground related to the i∗ framework and the OO-Method MDD approach. Section 3
introduces the process proposed to link GORE modeling and MDD processes.
Section 4 presents the related work and a discussion about the proposal. Finally,
Sect. 5 presents our conclusions and further work.

2 Background

This section presents an overview of Goal-Oriented Requirement Engineering
(GORE) modeling, in particular, the i∗ framework, which is used as reference for
the presented proposal. The OO-Method approach is also briefly presented, since
the experience obtained from the industrial application of this MDD approach
has provided the basis for obtaining our linking approach. The OO-Method
approach is also used for explanation and exemplification purposes throughout this
chapter.

Linking Goal-Oriented Requirements and Model-Driven Development 259

2.1 The i∗ Goal-Oriented Requirements Framework Overview

Appropriate requirement capturing and elicitation is one of the most important
activities in software development, thus the relevance of requirements engineer-
ing (RE) to obtain a sound software engineering process. RE clarifies what users
want, how they are going to interact with the system, and how the system impacts
the business. If these ideas are projected onto the model-driven philosophy, it
can be stated that requirement modeling is fundamental in obtaining a sound
Model-Driven Engineering (MDE) [18] process for software development. The
paper presented in [38] clearly shows the relevance of integrating different mod-
eling approaches to obtain a sound modeling process. This is precisely what we
want to achieve with the linking of goal-oriented modeling and MDD-oriented
modeling.

In the RE domain, the goal-oriented perspective has provided interesting results
at both the industrial [20] and research levels [43]. The Goal-Oriented Requirement
Engineering is concerned with the use of goals for eliciting, elaborating, structur-
ing, specifying, analyzing, negotiating, documenting, and modifying requirements
[19]. In general terms, it focuses on obtaining the ‘what’ of the intended systems
through the analysis of organizational scenarios. The work presented in [39] shows
the relevance of using scenarios for goal modeling, what provides the background
for the RE modeling approach considered in this paper.

Among existing GORE approaches, the i∗ framework [45] is currently one of
the most widespread modeling and reasoning frameworks [20, 29, 43] and is also
well documented [25]. It emphasizes the analysis of strategic relationships among
organizational actors capturing the intentional requirements. The term actor is used
to generically refer to any unit for which intentional dependencies can be ascribed.
Actors are intentional in the sense that they do not simply carry out activities and
produce entities, but they also have desires and needs.

The i∗ framework offers two types of models: the Strategic Dependency (SD)
model and the Strategic Rationale (SR) model. The SD model is focused on external
relationships among actors. It includes a set of nodes and connecting links, where
nodes represent actors (depender and dependee) and each link indicates a depen-
dency (dependum) between two actors. There are four possible dependum elements:
goal, resource, task, and softgoal. A goal in the i∗ context is a condition or state of
concerns that the actor would like to obtain. A resource is a physical or informa-
tional entity that must be available for an actor. A task specifies a particular way of
doing something, which can be decomposed in small sub-tasks. Finally, a softgoal
is associated to non-functional requirements.

The SR model is a detailed view of the SD that shows the internal actor rela-
tionships. In addition to the dependencies that are present in the SD model, the SR
model incorporates three new types of relationships: (i) task-decomposition links,
which describe what should be done to perform a certain task; (ii) means-end links,
which suggest that a task is a means to achieve a goal; (iii) contribution links, which
suggest how a model element can contribute to satisfying a softgoal.

260 O. Pastor and G. Giachetti

2.2 The OO-Method MDD Approach Overview

OO-Method is an MDD approach that separates the application and business logic
from the platform technology, allowing the automatic code generation from the con-
ceptual representation of the software systems [34]. The OO-Method production
process (Fig. 1) is comprised of three models: the Conceptual Model, the Execution
Model, and the Implementation Model. The OO-Method Conceptual Model cap-
tures the static and dynamic properties of the system in a Class Model, a Dynamic
Model, and a Functional Model. The conceptual model also allows the specification
of the user interfaces in an abstract way through the Presentation Model. These four
models represent the different views of the whole conceptual model, which has all
the details needed for the generation of the corresponding software application. The
complete definition of the OO-Method Conceptual Model is presented in [35].

The class model is the core of the OO-Method conceptual model; the rest of
the models involved are defined starting from elements of the class model. For this
reason, the OO-Method class model has been chosen to explain the linking approach
presented in this chapter.

Functional
Model

Dynamic
Model

Class
Model Persistence Tier (SQL Server, ORACLE, DB2, MySQL)

Business Logic Tier (EJB, COM, .NET)

Graphical User Interface Tier (JSP, ASP .NET, VB, .NET)

Model to Code
Transformation

Model- to-Model
Transformation

Presentation
Model

Conceptual Model

Execution
Model

Model Compiler Implementation Model

Fig. 1 The OO-method software production process

3 Linking Goal-Oriented and MDD Approaches

Our proposal for linking GORE modeling and MDD starts from the idea that
there are two kinds of models that must be coordinated to represent specific
parts of the development process: GORE models, and MDD models, which rep-
resent the intended systems at the conceptual level. These models are represented
by using modeling languages whose abstract syntax is specified by means of
metamodels.

For the coordination of these two models, we assume that it is possible to partially
infer an initial MDD model from both the information that is represented in the
GORE model and from extra information that is added when necessary. This MDD
model generation is possible if constructs of the MDD modeling language can be
inferred from constructs of the GORE modeling language. The constructs involved
are represented by the metaclasses of the corresponding metamodels.

It is important to note that we are referring to an initial MDD model and not a
complete MDD model because there are aspects related to specific system function-
ality that cannot be obtained from requirement models. Therefore, these functional

Linking Goal-Oriented Requirements and Model-Driven Development 261

GORE Language Metamodel MDD Language Metamodel

GORE Model Initial MDD Model

Extra Information
+ Generate

Instance Of Instance Of

Involved Constructs

Used To

Fig. 2 Basic goal-oriented requirements and MDD linking schema

aspects must be specified later in the refinement of the initial MDD model that is
obtained. Thus, the basic linking schema presented in Fig. 2 is the starting point of
our proposal. From this initial linking schema, we can state that it is possible to auto-
mate the generation of the MDD model by means of well-defined model-to-model
transformations, which are based on the metamodels of the modeling languages
involved. This automatic generation is possible by using model transformation tech-
nologies such as ATL [17] or QVT [31]. However the question of what happens to
the required extra information arises. If this extra information is not precisely repre-
sented, then the transformation rules cannot be automatically performed. This issue
is observed in proposals such as [1, 28]. In these proposals, guidelines to trans-
form goal-oriented models into software conceptual models are defined, but they
must be manually applied because of the lack of a proper mechanism to specify the
additional information required.

To solve this problem and to provide a well-defined input for the automatic
generation of a MDD model, we use metamodel extensions to represent the extra
information that is required. For the specification of these metamodel extensions,
we use a process that generates them automatically. This process is focused on pro-
viding standardized support for the integration of modeling languages, which is the
core of our linking proposal.

3.1 Automatic Generation of Metamodel Extensions

The process used for the generation of metamodel extensions (see Fig. 3) is based
on an approach that was originally defined in [10] to integrate UML and Domain-
Specific Modeling Languages (DSML) [24, 36]. This process proposes that the
abstract syntax of a source modeling language can be integrated into a target mod-
eling language through the automatic generation of specific metamodel extensions.
The automatic generation of these extensions also provides the information that
is essential for performing the interchange of the involved models by means of
model-to-model transformations.

The required metamodel extensions are defined by means of a UML profile,
which can be used to customize any metamodel that is defined according to the
MOF standard [30], and not just the UML metamodel. The articles [4, 9] are good
references that explain the different metamodel extension mechanisms and UML
profiles, respectively.

262 O. Pastor and G. Giachetti

Modeling Languages Integration Process

Integration Metamodel

Step 2:
Definition of Integration Metamodel

Step 3:
Automatic UML Profile Generation

Step 4:
Generation of Model Transformation Rules

Integration Metamodel + Interchange Information

Step 1:
Definition of Modeling Language Metamodels

Metamodel Comparison

Integration Metamodel Transformation

Source
Modeling

Language
X

Target
Modeling
Language

Y

instanceOf InstanceOf

Model YModel X

instanceOf

Models
X

Models
Y

InstanceOf
UML Profile

Fig. 3 Integration process application schema

Even though the UML profiles can be applied over any MOF metamodel, we
only use the essential subset of the constructs that are defined in MOF for the speci-
fication of the metamodels of the modeling languages to be integrated. This subset,
which is known as EMOF (Essential MOF), is defined inside of the MOF specifica-
tion. The decision to use EMOF (instead of complete MOF) is due to the closeness
that exists between EMOF metamodeling capabilities and UML profile extension
capabilities. This facilitates the generation of UML profile extensions to integrate
the particular metamodeling information of a source EMOF metamodel into a target
EMOF metamodel [14].

The integration process is comprised by the following steps:

Step 1. Definition of Modeling Languages Metamodels. This step corresponds
to the specification of the EMOF-based metamodels [30] that are related to
the modeling languages to be integrated. The references [11, 42] provide a
good set of guidelines for the definition of these metamodels.

Step 2. Definition of the Integration Metamodel. The Integration Metamodel
is the solution defined in [14] to automatically generate metamodel exten-
sions for the integration of two modeling languages. This is an EMOF-based
metamodel that is generated from the metamodel of the source modeling
language, and its definition includes the mapping information to identify
the equivalences between the source and target modeling languages. The
Integration Metamodel specification and the systematic approach proposed
for its definition are presented in [14].

Step 3. Automatic UML Profile Generation. This corresponds to the mechanism
implemented for the automatic generation of modeling languages extensions,
which has been presented in [12]. This is a two-step process that not only
automatically generates a UML profile from an Integration Metamodel, but
also generates mapping information for the interchange of models defined
with the integrated modeling languages [10]. The two steps of the UML
profile generation are:

Linking Goal-Oriented Requirements and Model-Driven Development 263

• Metamodel Comparison: It identifies the metamodel extensions that must
be implemented in the UML profile.

• Integration Metamodel Transformation: A set of transformation rules that
automatically transform the Integration Metamodel into the UML profile
that implements the identified metamodel extensions.

Step 4. Generation of Model Transformation Rules. This last step provides the
interchange mechanisms to translate models across the different integrated
modeling languages. The interchange is based on a set of transformation
rules that are generated by using the mapping information obtained in the
UML profile generation [13]. These transformation rules can be implemented
with model-to-model transformation technologies such as ATL [17] or QVT
[31].

3.2 A Generic Process to Link Goal-Oriented Requirement
Modeling and MDD Approaches

In this section, we explain the different steps of the proposed linking process. In
order to facilitate the understanding, we present the process using a brief linking
example that is based on the i∗ and OO-Method approaches, which correspond to the
GORE and MDD counterparts, respectively. Figure 4 shows the i∗ diagram related
to this example.

The proposed example represents the reception of work requests (work appli-
cations) from potential employees, which is part of a complete case study of a
photography agency administration system that was developed in the context of
the OO-Method industrial approach (presented in [26]). In order to simplify the
example, only a subset of all the i∗ and OO-method constructs were used.

Step 1: Definition of the Transformation Guidelines. The first step is to identify
those constructs of the GORE modeling approach that are relevant for the generation
of constructs of the MDD modeling approach. The identification of the relevant con-
structs is performed over the metamodels of the modeling languages involved. These
metamodels must be EMOF compliant [30] (according to the integration process
presented in Sect. 3.1). Then, the set of transformation guidelines that are needed

Legend

Actor
Boundary

Employer

Work
Opportunity

To Present
Work Request

Work
Request

A Work
Request to

be Processed

To Process
Work Request

Goal Task Means End

Candidate
Employee

Actor
B

Actor
A

dependee depender

Resource

Dependency Link

Internal Elements and Relationships

Fig. 4 i∗ example model

264 O. Pastor and G. Giachetti

to obtain the corresponding MDD constructs must be defined from the identified
GORE constructs.

For the specification of the involved metamodels, we propose using the Eclipse
UML2 tool [6] since it provides automatic generation of EMF metamodels from the
defined UML2 metamodels. EMF is the Eclipse Modeling Framework that is based
on the EMOF specification. Also, the generated EMF metamodels are tagged with
additional information to automatically obtain model editors that have interpreters
for the defined OCL rules and that support UML profile extensions.

In the i∗ context, there is not a standardized i∗ metamodel, and, in general terms,
the existent metamodel proposals (such as the one presented in the i∗ wiki [16] or
in the articles [3, 23]) are not EMOF compliant. However, for the linking example
presented here, we can use these proposals as reference for the definition of an
appropriate EMOF-based i∗ metamodel.

Figure 5 shows the i∗ metamodel defined for the example. In this metamodel,
the i∗ constructs considered are: actors (class Actor); dependency resources (class
DResource); internal goals and tasks (classes IGoal and ITask, respectively); and
dependency links (class Dependency). It is important to note that this metamodel is
only a subset of a complete i∗ metamodel. Some of the differences are that tasks,
goals, and soft goals can also participate in a dependency link. Therefore, in a com-
plete i∗ metamodel, these constructs must be represented as specializations of the
class Dependency (the same as DResource). The resources, goals, and soft goals
must also be represented as internal elements (specializations of Internal Element)
in a complete i∗ metamodel.

The OO-Method metamodel used for the proposed example (see Fig. 6) is also a
subset of the complete OO-Method metamodel.

Fig. 5 The i∗ metamodel for the example model

Linking Goal-Oriented Requirements and Model-Driven Development 265

Fig. 6 The OO-method metamodel for the linking example

The presented OO-Method metamodel only includes the essential metaclasses
for the definition of classes, attributes, services, associations, and a special
relationship that is called agent link. This last construct is related to the specifi-
cation of permissions that a class (of the modeled system) has to execute services
of another class. Another particular modeling aspect of the OO-Method class model
is the possibility of indicating the services that are capable of create or destroy
instances of the class that owns them. This information is indicated by means of the
property kind, which is defined in the metaclass Service.

Once the EMOF metamodels are properly specified, the relevant i∗ construct
must be identified, and the guidelines to transform these constructs into the cor-
responding OO-Method class model constructs must also be defined. Table 1
shows the transformation guidelines involved in the example (the complete list of
transformation guidelines for i∗ and OO-method is presented in [1]).

Table 1 also shows the additional information that is required by the transfor-
mation guidelines, which may not be present in the i∗ metamodel. For instance,
an i∗ resource is transformed into a class or an attribute depending on whether the
resource corresponds to a physical or an informational entity.

Step 2: Definition of MDD Requirement Metamodel. The second step of the
linking process corresponds to properly specifying the modeling information that
is required by the transformation guidelines in a format that can be processed by
model-to-model transformation technologies [5]. To do this, we define a new EMOF
metamodel with the information of the identified i∗ elements and the additional
information that is required. As a result, a specific requirement metamodel for the
involved MDD approach is obtained. Figure 7 shows the OO-Method requirement

266 O. Pastor and G. Giachetti

Table 1 Guidelines for transformation of i∗ models into OO-method class models

i∗ construct Additional info Transformation guideline

Actor Class + Agent Link to the
Services generated from the
actor’s internal tasks

Resource Physical entity Class
Informational entity related to a

resource or an actor
A Data Valued Attribute that

represents information of the
Class generated from an
actor or a resource

Informational entity in a
resource dependency

A Data Valued Attribute of the
Class generated from the
dependee actor

Task Involved in a resource
dependency

A Service of the Class
generated from the resource

If it generates a resource A Creation Service of the Class
generated from the resource

Dependency
link

Where the dependum resource
and the depender and
dependee actors are
transformed into classes

Associations are automatically
defined among the generated
Classes

metamodel obtained for the example, which is defined by considering the informa-
tion presented in Table 1. In this metamodel, the i∗ constructs taken into account
are: actors, tasks, and resources.

The defined OO-Method requirement metamodel is considerably simpler than
the original i∗ metamodel, which facilitates the implementation of model-to-
model transformations for generating the OO-Method class model. The additional
information introduced in this metamodel is the following:

• Specification of resource kind (attribute kind of the metaclass Resource).
• Identification of tasks that generate resources (link producedBy).
• Identification of tasks that participate in a resource dependency (links requiredBy

and providedBy).

Fig. 7 The OO-method
requirement metamodel for
the example

Linking Goal-Oriented Requirements and Model-Driven Development 267

To name the links involved in a resource dependency, we consider that the task
related to the depender actor requires the resource for its execution, while the task
related to the dependee actor is responsible for providing the resource.

Thus, at the end of the second step, we obtain two metamodels: the original
i∗ metamodel (the original GORE metamodel) and the OO-Method requirement
metamodel for the generation of the OO-Method class model (the MDD requirement
metamodel).

Step 3: Definition of Validation Rules. In this step, syntactical validation mech-
anisms are specified in order to perform a correct generation of the corresponding
MDD models. These validation mechanisms must be defined in the MDD require-
ment metamodel (generated in step 2), since this metamodel has all the information
to perform the model transformations. For instance, in the linking example, an
i∗ resource is transformed into an attribute or a class, depending on whether the
resource is specified as an informational entity or a physical entity (see Table 1).
From this transformation guideline, a possible validation is to assure the appropri-
ate specification of the kind of resource. This validation can not be specified in the
i∗ metamodel since the information related to kind of resource is not present.

For the specification of these syntactical validations, we propose the use of OCL
rules since OCL is also part of the OMG standards for the specification of meta-
models; hence, it is defined to work in conjunction with MOF. In addition, the OCL
rules can be automatically processed by tools such as [6]. Thus, for the previous
validation example, we can define the following OCL rule in the class Resource of
the OO-Method requirement metamodel:

Context: Resource::ValEntityKind ()

Body: self.kind = Physical or self.kind = Informational

It is important to note that the modeling information that is not present in the
original GORE metamodel is the critical point to be validated for the correct gener-
ation of the MDD model for two reasons: (1) the modeling information that exists
in the GORE metamodel has probably already been validated; and (2) the new mod-
eling information is essential for performing the model transformations, and hence,
an incorrect specification of this information will produce an incorrect generation
of the MDD model.

Step 4: Application of the Integration Approach. The fourth step of the linking
approach is to go from the models that are based on the original GORE meta-
model to the specific requirement models for the MDD approach that are based
on the MDD requirement metamodel. This is because the intention of the linking
proposal is to use the original GORE modeling approach for requirement model-
ing. In the example, this corresponds to going from i∗ models that are based on the
original i∗ metamodel (Fig. 5) to requirement models that are based on the generated
OO-method requirement metamodel (Fig. 7).

However, this step is not trivial since the additional modeling information and
validation rules that are present in the defined MDD requirement metamodel are
not present in the original GORE metamodel. Thus, in this step, the integra-
tion approach presented in Sect. 3.1 is put into practice to obtain the required

268 O. Pastor and G. Giachetti

Step 1
Transformation

Guidelines Definition

Step 2
MDD Requirement

Metamodel Definition

Step 3
Validation Rules

Definition

output

MDD
Metamodel

Requirement
Metamodel

input

MDD Req.

Metamodel
Transformation

Rules

output

OCL Rules

Step 4
Integration Approach

Application

input

Transformation
Guidelines

output input input

input input

Integration
Metamodel

Mapping
Information

UML Profile

outputoutput output

E1

E2

E3

E4 E5 E6

E7 E8 E9

Fig. 8 General schema of the proposed linking process

metamodel extensions for the GORE metamodel and the needed model interchange
information. Figure 8 shows the resultant linking schema with the different input
and output elements that are related to each step (numbered from E1 to E9).

Figure 8 shows that Step 4 of the process generates the corresponding Integration
Metamodel and UML Profile, as well as, mapping information (among the meta-
models involved) for the automatic interchange of models.

Figure 9 shows how each one of the input and output elements considered in
the linking process are used to link the i∗ framework and the OO-Method MDD
approach. This figure also shows the generation of traceability information [15, 44],
which is necessary to maintain the relationships between the software specifica-
tion (described in the MDD model) and the requirement specification (described in
the MDD requirement model). The generation of this traceability information must
be implemented together with the transformation rules for the MDD requirement
model.

Figure 10 shows the Integration Metamodel obtained for the example. This
metamodel is generated from the OO-method requirement metamodel by applying
the systematic approach presented in [10, 14]. This systematic approach is based
on taking the OO-Method requirement metamodel (the source metamodel) and per-
forming a set of redefinitions over it to align this source metamodel to the structure
of the i∗ metamodel (target metamodel). This redefinition allows the automatic
identification of the extensions that are required to introduce the modeling needs of

OOm Req.
Metamodel

i*
Metamodel

I*
Extended

Model

instanceOf

OOm Req.
Model

instanceOf

Models
Interchange

i*
Model

OOm Req.
Model

OOm Class
Model

instanceOf

Transformation
Traceability

generatesinput

E2
 OOm Class
Metamodel

E1 OOm Req. Model -
OOm Class Model
Transformation Rules

E4E5i* - OOm
mapping

Information

E8

input

i* - OOm
Transformation

Guidelines

E3

implementationOf

i* - OOm
UML Profile

E9

Validation
OCL Rules

E6

i*-OOmReq
Integration
Metamodel

E7

integrates

uses

Fig. 9 Linking proposal elements applied to i∗ and OO-method

Linking Goal-Oriented Requirements and Model-Driven Development 269

Fig. 10 Integration metamodel for the integration example

the source metamodel into the target metamodel, that is, to extend the i∗ framework
to represent the information of the OO-Method requirement model.

The resultant Integration Metamodel shows the classes AffectsLink and
RequiresLink, which are not present in the OO-Method requirements metamodel.
These classes are defined to perform the correct mapping from the associations
task.requires and task.provides (which are derived from dependency links) to the
i∗ constructs DependeeLink and DependerLink. This is done since the mapping
can only be performed among elements of the same kind (classes with classes,
associations with association, and so on) [14].

There are four conditions that an Integration Metamodel must hold for the
automatic generation of the metamodel extensions. These are the following:

• All the classes from the Integration Metamodel are mapped to the target GORE
metamodel. This assures that the constructs from the MDD requirement meta-
model can be represented from the constructs of the GORE metamodel. Table 2
shows the mapping obtained for the linking example.

• The mapping is defined between elements of the same type (classes with classes,
attributes with attributes, and so on).

• An element from the Integration Metamodel is only mapped to one element of
the GORE Metamodel.

• If the properties (attributes and associations) of a class A from the Integration
Metamodel are mapped to properties of a class B of the GORE metamodel, then
the class A is mapped to the class B or a specialization of it.

By applying the automatic UML profile generation to the Integration Metamodel
(see Sect. 3.1), the corresponding UML profile that implements the required i∗
extensions is obtained (see Fig. 11).

In the generated UML profile, the properties that have no equivalence in the
target i∗ metamodel are defined as new properties (tagged values) in the stereo-
types that extend the metaclasses. In the Integration Metamodel definition and the
UML profile generation, specific mappings among the participant metamodels are

270 O. Pastor and G. Giachetti

Table 2 Integration metamodel and the i∗ metamodel mapping

I.M. element
Extended
I∗ element I.M. element Extended I∗ element

Node Node Resource DResource
.model .model .kind (No equivalence)
.name .name .providedBy .relatedDependee

(inherited from
Dependency)

.boundary .boundary .requiredBy .relatedDepender
(inherited from
Dependency)

OOmReqModel IStarModel .producedBy (No equivalence)
.name .name Task ITask
.ownedNode .ownedNode .provides .relatedDependee

(inherited from
DependableNode)

Actor Actor .requires .relatedDepender
(inherited from
DependableNode)

.element .ownedElement RequiresLink DependerLink
ProvidesLink DependeeLink .task .node
.task .node .resource .dependency
.resource .dependency EntityKind (No equivalence)

generated, which are used to perform the automatic transformation of GORE models
into MDD requirements models. These mappings are the following:

1. The mapping between the Integration Metamodel and the extended GORE meta-
model. In the example, this corresponds to an extended version of the mapping
presented in Table 2, where the elements of the Integration Metamodel that
have no equivalence in the i∗ metamodel are mapped to the corresponding UML
profile elements.

Fig. 11 UML profile generated from the integration metamodel of the example

Linking Goal-Oriented Requirements and Model-Driven Development 271

Table 3 OO-method requirements metamodel and integration metamodel mappings

OO-method req.
element I.M. element

OO-method req.
element I.M. element

Node Node Resource Resource
.model .model .kind .kind
.name .name .providedBy .providedBy.task
.boundary .boundary .requiredBy .requiredBy.task
OOmReqModel OOmReqModel .producedBy .producedBy
.name .name Task Task
.ownedNode .ownedNode .provides .provides.resource
Actor Actor .requires .requires.resource
.element .element

2. The mapping between the MDD requirement metamodel and the Integration
Metamodel. Table 3 shows the mapping obtained for the linking example.

Finally, the OO-Method class model presented in Fig. 12 is obtained from the
example i∗ model that is extended with the generated UML profile. In the extended
i∗ model (see Fig. 12), we considered the resource Work Request as a physical entity
produced by the task To Present Work Request.

The generation of the OO-Method class model is performed by means of model-
to-model transformation rules that are defined according to the interchange proposal
presented in [13], which is driven by the metamodel mappings presented in Tables 2
and 3, and from the transformation guidelines presented in Table 1.

Figure 12 shows that the i∗ actors are transformed into classes. The same
occurs for the resource Work Request since it is a physical entity. The agent
relationships are also represented to indicate the permissions that the classes
CandidateEmployee and Employer (generated from the corresponding i∗ actors)

CandidateEmployee EmployerWorkRequest

<new> createInstance() <new> toPresentWorkRequest()
toProcessWorkRequest()

<new> createInstance()

<agent>
<agent>

Employer

Work
Opportunity

To Present
Work Request

Work
Request

A Work
Request to

be Processed

To Process
Work Request

Candidate
Employee

<<Actor>>
<<Actor>>

<<Task>> <<Task>><<Resource>><<ProvidesLink>> <<RequiresLink>>

Extended Example i* Model

Generated OO-Method Class Model

kind = physical
producedBy = To Present Work Request

Fig. 12 Extended example i∗ model and the OO-method class model generated

272 O. Pastor and G. Giachetti

have over the services of the class WorkRequest, which were generated from the
defined i∗ tasks. The task to Present Work Request is transformed into a creation ser-
vice of the class WorkRequest since this service generates this resource. The creation
services are identified by the tag <new> (inferred from the property kind of the
metaclass Service of the OO-Method metamodel). In addition, during the
generation of the class model, a creation service is automatically generated for the
classes CandidateEmployee and Employer since, in OO-Method, all classes must
have at least one creation service.

Figure 12 also shows that the generated class model has no attribute definition
or arguments for the services since this modeling information cannot be derived
from the example i∗ model. The same happens with the functional specification of
the generated services. Therefore, this information must be specified at the design
stage in order to generate a complete class model from the initial class model
generated. Thus, from the complete model, the final executable application can be
automatically obtained through the OO-Method model compiler [35].

Figure 13 shows a graphical example of how the transformation of the i∗ model
is performed. This example shows the transformation of the resource Work Request
and the task To Present Work Request to the corresponding constructs of the
OO-Method class model. It is important to note that this transformation is auto-
matically performed by means of the transformation rules; hence, the generation of
the intermediate models is transparent. These intermediate models are the instances
of the Integration Metamodel and the MDD requirement metamodel.

Work
Request

<<Resource>>

WorkRequest

providedBy = ProvidesLink1
kind = physical
producedBy = To Present Work Request

To Present Work Request

provides = ProvidesLink1

To Present
Work Request

<<Task>>

<<ProvidesLink>>

kind = physical
producedBy = To Present
Work Request

ProvidesLink1

task = To Present Work Request
resource = Work Request

WorkRequest

providedBy = To Present Work Request
kind = physical
producedBy = To Present Work Request

To Present Work Request

provides = WorkRequest
WorkRequest

<new> toPresentWorkRequest()

i* – Integration Metamodel Mapping Int. Metamodel – Oom. Req. Metamodel Mapping i* – OO-Method Transformation Guidelines

Fig. 13 Transformations to obtain an OO-Method class model from an i∗ model

4 Related Work and Discussion

In the literature, there are papers that are oriented to generating conceptual models
from GORE models. However, most of these papers are based on standard UML
models (such as [21]), and, in general terms, UML does not offer all the modeling
information necessary to participate in an effective MDD process [8]. Furthermore,
most of the works that are oriented to go from GORE models to more specific design
models, such as [2, 22, 28, 40], are not based on standards or well-defined processes,

Linking Goal-Oriented Requirements and Model-Driven Development 273

nor do they introduce automation possibilities. Therefore, the application of these
proposals must be manually performed [27]. This is not a suitable option because
the manual translation of models is a time consuming and error prone task [25].
Hence, automatic linking of GORE models and MDD approaches takes on special
relevance for the adoption of new development paradigms and the improvement of
development processes.

One important aspect that must be discussed about our proposal is how to identify
the subset of GORE modeling constructs that must be considered for the generation
of MDD models, since it is very probable that not all the elements of the defined
i∗ model have to be considered for the development of a software product. In the
proposal, even though the constructs that participate in the MDD model generation
are identified, this is not enough to assure that only the elements that are related
to the software specification participate in the transformation. For instance, in the
example, the i∗ Actor is considered in the class model generation, but in a real i∗
model some actors may not be relevant for the intended system, and, therefore, they
must not be transformed into classes of the class model. UML profiles provide a
suitable solution for this issue since it is possible to indicate that only those stereo-
typed (extended) elements must be considered in the transformation process. This is
an important reason for using UML profiles instead of other metamodel extension
mechanisms [4]. Other reasons are that the UML profile has a standard specification
[32] and a standardized interchange format (XMI [33]).

Another interesting discussion point of this proposal is the need for defining
an Integration Metamodel instead of a direct mapping between the original GORE
metamodel and the MDD requirement metamodel. The definition of an Integration
Metamodel is performed because a direct mapping does not always provide
enough information to automatically identify the required metamodel extensions
[10, 12]. Also, a direct transformation is dependent on the extension mechanism
selected. In contrast, the Integration Metamodel allows the required extensions to
be automatically identified independently of their final implementation.

Some additional benefits of the Integration Metamodel are the following: it auto-
mates the generation of the required transformation rules; the required extensions
can be validated before its implementation; it allows the automatic generation of
the mapping for the interchange of models; and it provides a common interface
between the GORE metamodel and the MDD requirement metamodel. This last
benefit prevents a change in the original GORE metamodel from affecting the
transformation rules that are defined in the MDD requirement metamodel. These
benefits are better perceived in real GORE models that are more complex than the
presented example.

The Integration Metamodel is also useful for MDD approaches that already have
a requirement modeling approach. In this case, the MDD requirement metamodel is
the metamodel of the existent requirement approach. The next steps of the process
are normally applied over this metamodel, and the differences that may exist with
the target GORE metamodel (for instance, the i∗ metamodel) are managed by the
Integration Metamodel and the metamodel extensions.

274 O. Pastor and G. Giachetti

5 Conclusion

In this chapter, a proposal for linking GORE models and MDD approaches has
been presented. This linking is performed by means of a process that is oriented
to obtaining the mechanisms for automatic generation of MDD-oriented conceptual
models from GORE models. For the formulation of this process, existent standards
and technologies have been used, which facilitates the application of our proposal
to different MDD approaches. In addition, existent open-source tools, such as [5–7],
can be used to implement the required metamodels and model transformations.

Nevertheless, it is very difficult to find requirement editors that support the stan-
dards that are considered in this proposal. For instance, we have not found an i∗
editor that is compatible with the MOF specification or that supports modeling
extensions, in spite of this chapter shows the relevance of requirement technolo-
gies that provide extension facilities to obtain an appropriate linking with MDD
approaches. Hence, we believe that appropriate requirement modeling tools that are
aligned with the capabilities provided by the current standards and technologies for
the specification of modeling languages should be implemented.

We are currently working on the implementation of tools that provide patterns
and assistants to facilitate the application of the linking proposal. As future work,
we plan to offer a complete i∗ metamodel, which can be used as reference for the
elaboration of open-source tools that are compatible with the MOF standard.

References

1. Alencar F, Marín B, Giachetti G, Pastor O, Castro J, Pimentel JH (2009) From i∗ requirements
models to conceptual models of a model driven development process. In: Proceedings of 2nd
working conference on the practice of enterprise modeling (PoEM). LNBIP, vol 39. Springer,
Heidelberg, Germany, pp 99–114

2. Alencar FMR, Pedroza FP, Castro J, Amorim RCO (2003) New mechanisms for the inte-
gration of organizational requirements and object oriented modeling. In: Proceedings of 6th
workshop on requirements engineering (WER’03), Piracicaba - SP, Brasil, pp 109–123

3. Ayala C, Cares C, Carvallo JP, Grau G, Haya M, Salazar G, Franch X, Mayol E,
Quer, C (2005) A comparative analysis of i∗-based goal-oriented modelling languages. In:
Proceedings of international workshop on agent-oriented software development methodolo-
gies (AOSDM’05), at the SEKE conference, Taipei, Taiwan, pp 657–663

4. Bruck J, Hussey K (2008) Customizing UML: which technique is right for you? IBM,
USA. http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_
Technique_is_Right_For_You/article.html. Accessed Feb 2010

5. Eclipse: ATL Project. http://www.eclipse.org/m2m/atl/. Accessed Feb 2010
6. Eclipse: Model Development Tools Project. http://www.eclipse.org/modeling/mdt/. Accessed

Feb 2010
7. Eclipse: UML2 Project. http://www.eclipse.org/uml2/. Accessed Feb 2010
8. France RB, Ghosh S, Dinh-Trong T, Solberg A (2006) Model-driven development using uml

2.0: promises and pitfalls. IEEE Computer 39(2):59–66
9. Fuentes-Fernández L, Vallecillo A (2004) An introduction to UML profiles. In: Eur J

Informatics Professional (UPGRADE) 5(2):5–13
10. Giachetti G, Marin B, Pastor O (2009) Integration of domain-specific modeling languages and

UML through UML profile extension mechanism. Int J Computer Sci Appl 6(5):145–174

Linking Goal-Oriented Requirements and Model-Driven Development 275

11. Giachetti G, Marín B, Pastor O (2008) Perfiles UML y Desarrollo Dirigido por Modelos:
Desafíos y Soluciones para Utilizar UML como Lenguaje de Modelado Específico de
Dominio. In: V Taller sobre Desarrollo de Software Dirigido por Modelos (DSDM), Gijón,
Spain

12. Giachetti G, Marín B, Pastor O (2009) Using UML as a domain-specific modeling language:
a proposal for automatic generation of UML profiles. In: Proceedings of CAiSE 2009. LNCS,
vol 5565. Springer, Heidelberg, Germany, pp 110–124

13. Giachetti G, Marín B, Pastor O (2009) Using UML profiles to interchange DSML and
UML models. In: Proceedings of third international conference on research challenges in
information science (RCIS), IEEE Computer Society, Los Alamitos, CA, pp 385–394

14. Giachetti G, Valverde F, Pastor O (2008) Improving automatic UML2 profile generation
for MDA industrial development. In: 4th international workshop on foundations and prac-
tices of UML (FP-UML) – ER workshop. LNCS, vol 5232. Springer, Heidelberg, Germany,
pp 113–122

15. Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem.
In: Proceedings of 1st international conference on requirements engineering (ICRE’94),
Colorado, USA, pp 94–101

16. i∗: Wiki Web Page. http://istar.rwth-aachen.de/. Last Accessed Oct 2009
17. Jouault F, Kurtev I (2006) Transforming models with ATL. In: Satellite events at the MoDELS

2005 conference. LNCS, vol 3844. Springer, Heidelberg, Germany, pp 128–138
18. Kent S (2002) Model driven engineering. In: Integrated formal methods (IFM). Springer,

pp 286–298
19. van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour. In:

Proceedings of 5th IEEE international symposium on requirements engineering (RE’01),
Washington, USA

20. van Lamsweerde A (2004) Goal-oriented requirements engineering: a roundtrip from research
to practice. In: Proceedings of 12th IEEE joint international requirements engineering
conference, IEEE Computer Science, Washington, USA pp 4–8

21. van Lamsweerde A (2008) Systematic requirements engineering – from system goals to UML
models to software specifications. Wiley, West Sussex, UK

22. Liu L, Yu E (2004) Designing information systems in social context: a goal and scenario
modeling approach. Info Systems Oxford, UK, 29(2):187–203

23. Lucena M, Santos E, Silva MJ, Silva C, Alencar F, Castro JFB (2008) Towards a unified meta-
model for i∗. In: Proceedings of 2nd IEEE international conference on research challenges in
information science (RCIS 2008), IEEE, Los Alamitos, CA, pp 237–246

24. Luoma J, Kelly S, Tolvanen J-P (2004) Defining domain-specific modeling languages: col-
lected experiences. In: Proceedings of 4th OOPSLA workshop on domain-specific modeling
(DSM’04) Nashville, USA

25. Maiden NAM, Jones SV, Manning S, Greenwood J, Renou L (2004) Model-driven require-
ments engineering: synchronising models in an air traffic management case study. In:
Proceedings of CAiSE 2004. LNCS, vol 3084. Springer, Heidelberg, Germany, pp 368–383

26. Marín B, Giachetti G, Pastor O (2008) The photography agency: a case study of the
OO-method approach. Technical Report DSIC-II/13/08, Universidad Politécnica de Valencia,
Valencia, España

27. Martínez A (2008) Conceptual schemas generation from organizational models in an auto-
matic software production process. Phd Thesis. Universidad Politécnica de Valencia, Valencia,
Spain

28. Martínez A, Castro J, Pastor O, Estrada H (2003) Closing the gap between organizational
modeling and information system modeling. In: Proceedings of 6th workshop on requirements
engineering (WER’03), Piracicaba - SP, Brasil, pp 93–108

29. Nuseibeh B, Easterbrook SM (2000) Requirements engineering: a roadmap. In: The future of
software engineering. IEEE Computer Society, New York, USA

30. OMG: MOF 2.0 Core Specification (2006). Doc. number: formal/2006-05-01. URL:
http://www.omg.org/spec/OCL/2.0/PDF

276 O. Pastor and G. Giachetti

31. OMG: QVT 1.0 Specification (2008). Doc. number: formal/08-04-03. URL: http://www.omg.
org/spec/QVT/1.0/PDF/

32. OMG: UML 2.2 Infrastructure Specification (2009). Doc. number: formal/2009-02-04. URL:
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF

33. OMG: XMI 2.1.1 Specification (2007). Doc. Number: formal/2007-12-01. URL: http://www.
omg.org/spec/XMI/2.1.1/PDF

34. Pastor O, Gómez J, Insfrán E, Pelechano V (2001) The OO-method approach for information
systems modelling: from object-oriented conceptual modeling to automated programming.
Info Systems 26(7):507–534

35. Pastor O, Molina JC (2007) Model-driven architecture in practice: a software production
environment based on conceptual modeling, 1st edn. Springer, New York

36. Pohjonen R, Kelly S (2002) Domain-specific modeling. Dr. Dobb’s Journal http://www.
drdobbs.com/architecture-and-design/184405121. Accessed Feb 2010

37. Rolland C, Prakash N (2000) From conceptual modelling to requirements engineering. Annals
Soft Eng 10(1–4):151–176

38. Rolland C, Prakash N, Benjamen A (1999) A multi-model view of process modeling. Reqs
Eng 4(4):169–187

39. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modelling using scenarios. IEEE
Trans Softw Eng (IEEE TSE), Special Issue on Scenario Manage 24(2):1055–1071

40. Santander V, Castro J (2002) Deriving use cases from organizational modeling. In:
Proceedings of 10th anniversary IEEE joint international conference on requirements engi-
neering (RE 2002), pp 32–42

41. Selic B (2003) The pragmatics of model-driven development. IEEE Softw 20(5):19–25
42. Selic B (2007) A systematic approach to domain-specific language design using UML. In:

Proceedings of 10th IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC), pp 2–9

43. Shuichiro Y, Haruhiko K, Karl C, Steven B (2006) Goal oriented requirements engineering:
trends and issues. IEICE – Trans Inf Syst E89-D(11):2701–2711

44. Spanoudakis G, Zisman A (2005) Software traceability: a roadmap. Handbook of software
engineering and knowledge engineering, vol III. Recent Advancements, World Scientific
Publishing, pp 395–428

45. Yu E (1995) Modelling strategic relationships for process reengineering. PhD Thesis.
University of Toronto, Toronto, ON, Canada

Testing Conceptual Schema Satisfiability

Antoni Olivé and Albert Tort

Abstract Satisfiability is one of the properties that all conceptual schemas must
have. Satisfiability applies to both the structural and the behavioral parts of a concep-
tual schema. Structurally, a conceptual schema is satisfiable if each base or derived
entity and relationship type of the schema may have a non-empty population at
certain time. Behaviorally, a conceptual schema is satisfiable if for each event type
there is at least one consistent state of the information base and one event of that
type with a set of characteristics such that the event constraints are satisfied, and
the effects of the event leave the information base in a state that is consistent and
satisfies the event postconditions. There has been a lot of work on automated rea-
soning procedures for checking satisfiability but it is well known that the problem of
reasoning with integrity constraints and derivation rules in its full generality is unde-
cidable. In this chapter, we explore an alternative approach to satisfiability checking,
which can be used when conceptual schemas are developed in the context of an envi-
ronment that allows their testing. The main contribution of this chapter is to show
that when conceptual schemas can be tested then their satisfiability can be proved
by testing.

1 Introduction

A conceptual schema of an information system is correct if the knowledge that it
defines is true for the domain and relevant to the functions that the system must
perform [11]. The correctness of a conceptual schema must be checked during the
requirements validation phase [16, 20–23, 27].

Satisfiability is one of the properties that all correct conceptual schemas must
have. Satisfiability applies to both the structural and the behavioral parts of a concep-
tual schema. Structurally, a conceptual schema is satisfiable if each base or derived

A. Olivé (B)
Department Enginyeria de Serveis i Sistemes d’Informació, Universitat Politècnica de Catalunya,
Jordi Girona 1-3, 08034 Barcelona, Spain
e-mail: olive@essi.upc.edu

277S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_15, C© Springer-Verlag Berlin Heidelberg 2010

278 A. Olivé and A. Tort

entity and relationship type of the schema may have a non-empty population at
certain time. An entity or relationship type is unsatisfiable when the set of con-
straints defined in the schema can only be satisfied if the population of that type is
empty. Behaviorally, a conceptual schema is satisfiable if each event type is satisfi-
able, that is, there is at least one consistent state of the Information Base (IB) and
one event of that type with a set of characteristics such that the event constraints
are satisfied, and the effects of the event leave the IB in a state that is consistent
and satisfies the event postconditions. A state of the IB is consistent if it satisfies all
integrity constraints.

There has been a lot of work on automated reasoning procedures for check-
ing satisfiability, mainly for the structural part of a schema (a representative set
of recent papers is [1, 3, 5, 7, 8, 10, 18, 19]). However, it is well known that
the problem of reasoning in conceptual schemas including general integrity con-
straints, derivation rules and event pre and postconditions is undecidable. Therefore,
the available automated reasoning procedures are restricted to certain kinds of con-
straints, derivation rules, pre/postconditions or domains, or they may not terminate
in some circumstances.

In this chapter, we explore an alternative approach to satisfiability checking,
which can be used when conceptual schemas are developed in the context of a
development environment that allows their testing. Essentially, this means that there
is a testing language, in which the conceptual modeler writes programs that test a
conceptual schema, and a test processor, which is a program able to execute test
programs and report on their result.

The main contribution of this chapter is to show that when conceptual schemas
can be tested then their satisfiability can be proved by testing. The idea is that the
conceptual modeler sets up a test case such that if its verdict is Pass then by defini-
tion the entity or relationship or event type under test is satisfiable. If the conceptual
modeler is unable to set up such test case, then this is not formal proof of unsatisfia-
bility. We show that the unsatisfiability results obtained by testing are not as strong
as those obtained by automated reasoning procedures when they are applicable, but
in many practical cases testing provides a clue that helps to uncover a faulty schema.

The idea that satisfiability can be proved by testing is similar to that of validating
a conceptual schema by prototyping, as was already proposed in the work of the
TODOS project [16]. In both cases the main intention is similar: ensuring the cor-
rectness of the conceptual schema. The means are only slightly different: in testing
we assume that the conceptual schema is directly executable, while in prototyp-
ing it is assumed that the prototype is automatically generated from the conceptual
schema.

The structure of the chapter is as follows. In the next section, we briefly review
the main concepts and the notation used to define conceptual schemas. We also
review the main characteristics of test kinds, test cases and test programs needed in
this chapter. In Sect. 3 we describe how to test the satisfiability of entity, relationship
and domain event types, with examples taken from a fragment of the conceptual
schema of the osCommerce system [24], a popular industrial e-commerce sys-
tem. All of the examples in this chapter are taken from this case study. The full

Testing Conceptual Schema Satisfiability 279

details of the case study can be found in the report [25]. Section 4 summarizes the
conclusions.

2 Basic Concepts and Notation

In this section, we briefly review the main concepts and notation of the conceptual
schemas under test, and of the testing language.

2.1 Conceptual Schema Under Test

A conceptual schema consists of a structural (sub)schema and a behavioral
(sub)schema. The structural schema consists of a taxonomy of entity types (a set of
entity types with their generalization/specialization relationships and the taxonomic
constraints), a set of relationship types (attributes and associations), the cardinality
constraints of the relationship types and a set of other constraints formally defined in
OCL [13]. We adopt UML/OCL as the conceptual modeling language, but the ideas
presented here can also be applied to schemas in other languages [9, 15]. We are
also able to deal with temporal constraints, but for presentation purposes we omit
them here. Figure 1 shows a structural schema fragment that will be used throughout
the chapter.

ShoppingCartItem

quantity : PositiveInteger
/unitPrice : Real
/price : Real

link : URL

DownloadableProductSpecial

specialNetPrice : Real

Product

name : String
netPrice : Real
quantityOnHand : Integer
/quantityOrdered : Natural
/finalNetPrice : Real

ShoppingCart

OrderLine

/name : String
/unitPrice : Real
/price : Real
quantity : PositiveInteger

Order

id : PositiveInteger
/name : String
/eMail : String
/total : Real

Customer

name : String
eMailAddress : EMail
password : String

Session

id : Natural

{overlapping,incomplete}
{ordered}

{ordered}

0..10..1

0..1
0..1

1..*

1

1*

1

*

*

1

0..1

0..1

1..*

1

context Order::total:Real
derive: self.orderLine.price->sum()

context Product inv nameIsUnique:
 Product.allInstances()->isUnique(name)

context Session
inv CustomerCartWhenLoggedIn:
self.customer->notEmpty()and
self.shoppingCart->notEmpty()
implies
self.customer.shoppingCart=
self.shoppingCart

Fig. 1 Fragment of the osCommerce structural schema

280 A. Olivé and A. Tort

Entity and relationship types may be base or derived. The population of the
base entity and relationship types is explicitly represented in the Information Base
(IB). If they are derived, there is a formal derivation rule in OCL that defines their
population in terms of the population of other types.

Figure 1 includes as an example the specification of two OCL integrity con-
straints (Product::nameIsUnique and Session::CustomerCartWhenLoggedIn) and
also of the derivation rule of the attribute Order::total. See [25] for the whole set of
constraints and derivation rules.

The behavioral schema consists of a set of event types. We take the view that an
event can be modeled as a special kind of entity, which we call event entity [12]. An
event entity is an instance of an event type.

Event types have characteristics, constraints and effects. The characteristics of
an event are the set of relationships (attributes or associations) in which it partici-
pates. The constraints are the conditions that events must satisfy in order to occur.
An event constraint involves the characteristics and the state of the IB before the
event occurrence. An event may occur in the state S of the IB if S satisfies all con-
straints and the event satisfies its event constraints. Each event type has an operation
called effect() that gives the effect of an event occurrence. The effect is declaratively
defined by the postcondition of the operation. We define both the event constraints
and the postcondition in OCL.

For domain event types, the postcondition defines the state of the IB after the
event occurrence. It is assumed that the state of the IB after the event occurrence
also satisfies all constraints defined over the IB. We deal with executable concep-
tual schemas, and therefore we need a procedural specification of the method of the
effect() operation. A method is correctly specified if the IB state after its execution
satisfies the postcondition and the IB constraints. UML does not include any par-
ticular language for writing methods [2]. In the work reported here, we write those
methods using a subset of the testing language.

The example used throughout this chapter uses the minimal subset of
domain events necessary to place an order in the osCommerce system:
NewCustomer, NewSession, NewProduct, NewSpecial, NewDownloadableProduct,
NewDownloadableSpecial, AddProductToShoppingCart, LogIn and Order
Confirmation.

Their detailed specification can be found in [25]. AddProductToShoppingCart
adds a quantity of a product in the shopping cart of a session (the shopping cart
is created if it does not exist yet in the context of the session). Given a shop-
ping cart, OrderConfirmation creates the corresponding Order. Figure 2 shows the
complete specification of the domain event NewProduct including its constraint
(productDoesNotExist), its postcondition and the method of its effect() operation.

2.2 The Testing Language

Without loss of generality, in this chapter we will use the testing language called
CSTL (Conceptual Schema Testing Language) [26]. A test set of a conceptual
schema is a set of one or more CSTL programs. A CSTL program consists of a

Testing Conceptual Schema Satisfiability 281

Fig. 2 Domain event specification example

fixture and a set of one or more test cases. A test case is a set of statements that
builds a state of the IB, and executes one or more test assertions. Figure 3 shows a
test program that consists of a fixture and two test cases (confirmOrder and produc-
tKindsInCatalog). CSTL also includes other constructs to make easier the task of
writing tests.

It is assumed that the execution of each test case of a CSTL program starts with
an empty IB state. With this assumption, the test cases of a program are independent
each other, and therefore the order of their execution is irrelevant. The fixture is a set
of statements that create an IB state and define the values of the common program
variables. It is assumed that each execution of a test case starts with the execution
of the fixture.

The basic construct of CSTL is the concrete test case. Each concrete test case has
a name and consists of a set of statements:

test testName {

...

assert ...

}

The last statement of a concrete test case is an assertion, but in general there may
be several assertions in the same test case. The verdict of a concrete test case is Pass
if the verdict of all of its assertions is Pass. The objective of the conceptual modeler
is to write test cases whose final verdict is Pass.

In CSTL there are five kinds of assertions, but in this chapter only two are used:
asserting the occurrence of domain events and asserting the contents of an IB state,
which we briefly describe in the following.

In CSTL, the instances of a domain event type EventType1 can be created with
the statement:

eventId:= new EventType1(att1:= value1,..., attn:= valuen,

r1:= participants1,..., rm:= participantsm);

282 A. Olivé and A. Tort

testprogram PlaceOrder{

nc := new NewCustomer
 (name:='John', eMailAddress:='john@john.com', password:='pwd');
assert occurrence nc;
john := nc.createdCustomer;

ns := new NewSession;
assert occurrence ns;
s := ns.createdSession;

np1 := new NewProduct(name:='shirt', netPrice:=20, quantityOnHand:=5);
assert occurrence np1;
shirt := np1.createdProduct;
np2 := new NewSpecial (name:='trousers', netPrice:=80,
 quantityOnHand:=25,specialNetPrice:=65);
assert occurrence np2;
trousers := np2.createdProduct;

test confirmOrder{
 apsc1 := new AddProductToShoppingCart(quantity:=2,
 session:=s, product:=shirt);

assert occurrence apsc1;
 apsc2 := new AddProductToShoppingCart(quantity:=1,
 session:=s, product:=trousers);

assert occurrence apsc2;
 assert equals s.shoppingCart.shoppingCartItem->at(1).price 40;
assert equals s.shoppingCart.shoppingCartItem->at(2).price 65;

 li := new LogIn(customer:=john, session:=s);
assert occurrence li;

 oc := new OrderConfirmation(shoppingCart:= s.customer.shoppingCart);
assert occurrence oc;
assert equals oc.createdOrder.total 105;
assert equals shirt.quantityOrdered 2;
assert equals oc.createdOrder.eMail 'john@john.com';
assert equals oc.createdOrder.name 'John';
assert equals oc.createdOrder.orderLine->at(1).name 'shirt';
assert equals oc.createdOrder.orderLine->at(2).name 'trousers';

}
test productKindsInCatalog{
 ndp := new NewDownloadableProduct
 (name:='fashionDesigner', netPrice:=43, quantityOnHand:=85,
 link:='http://fashionshop.com/fashionDesigner.zip');

assert occurrence ndp;
 nds := new NewDownloadableSpecial
 (name:='FashionTipsMagazine', netPrice:=3, quantityOnHand:=15,

 specialNetPrice := 2,
 link:='http://fashionshop.com/tips.pdf');

 assert occurrence nds;
}
}

Fig. 3 CSTL program for testing order placement

The statement creates the instance eventId of EventType1, and assigns a value
to its characteristics (attributes att1,...,attn and binary links with roles r1,...,rm). In
Fig. 3 there are ten examples of statements that create an instance of a domain event
type.

Once the concrete event eventId has been created in a test case, in order to assert
that it may occur in the current state of the IB the conceptual modeler writes the
following sentence:

assert occurrence eventId;

The verdict of this assertion is determined as follows:

• Check that the current IB state is consistent. The verdict is Error if that check
fails (events may not occur in inconsistent IB states). In general, a state of the

Testing Conceptual Schema Satisfiability 283

IB can be built by means of explicit insertions, deletions and updates and/or by
means of the occurrence of domain events. For the purposes of the analysis of the
test coverage criteria of complete conceptual schemas we impose that the state of
the IB has been achieved by means of the occurrence of domain events, starting
from an empty IB. The example of Fig. 3 satisfies this condition.

• Check that the constraints of the event are satisfied. The verdict is Fail if any of
the event constraints is not satisfied.

• Execute the method of the corresponding effect() operation.
• Check that the new IB state is consistent. The verdict is Fail if any of the

constraints is not satisfied.
• Check that the event postconditions are satisfied. The verdict is Fail if any of

the postconditions is not satisfied; otherwise the verdict of the whole assertion is
Pass.

It is often useful to include in a test case an assertion on the current state of
the IB. The purpose may be to check that one or more derivation rules derive the
expected results, or that a navigational expression yields the expected results or that
the effect of one or more domain events implies an expected result in the IB. In
CSTL, to assert that the current state of the IB satisfies a boolean condition defined
in OCL, the conceptual modeler writes the following statement:

assert true booleanExpression;

where booleanExpression is an OCL expression over the types of the IB and the
variables of the test case. The verdict of the assertion is Error if the current state is
inconsistent. The verdict is Pass if booleanExpression is true and Fail otherwise.

The test program of Fig. 3 contains several examples of assertions about the
state of the IB. For example, the statement “assert equals oc.createdOrder.total
105” asserts that the total price of the created order in the current state of the IB
is 105. The verdict is Pass if the valid occurrence of the event OrderConfirmation
correctly creates the order and the derivation rules of the schema derive its total as
expected.

Additionally, CSTL includes the following similar assertions:

assert false booleanExpression;

assert equals valueExpression1 valueExpression2;

assert not equals valueExpression1 valueExpression2;

3 Testing Satisfiability

In this section, we show how we can check the satisfiability of schema elements by
means of testing. We analyze first the satisfiability of base entity and relationship
types, then that of derived base and relationships types, and finally that of domain
event types.

284 A. Olivé and A. Tort

3.1 Base Type Satisfiability

Satisfiability (or liveliness) is a well known property of base entity and relationship
types. A base type is satisfiable (or lively) if it may have a non empty finite popu-
lation at certain time. In a conceptual schema, a base type is unsatisfiable when the
set of constraints defined in that schema can only be satisfied if the population of
that type is empty or infinite [17]. In conceptual modeling, it is usually required that
all base types be satisfiable [4, 6, 14].

Let Ti be a base type (entity types, attributes and associations) defined in a con-
ceptual schema. The satisfiability of Ti can be checked by means of testing. The idea
is to set up a test case TCj such that it:

• builds a state of the IB having at least one instance of Ti, and
• makes an assertion TAk that can only Pass if the above IB state is consistent (that

is, it satisfies all constraints).

If the execution of TAk gives the verdict Pass, then it is experimentally proved
that Ti is satisfiable. Note that in a single test case we can instantiate several types
and that a single assertion can experimentally prove that all of them are satisfiable.

In the test program of Fig. 3, the fixture creates the customer john and the
session s. It also initializes the online catalog with the product shirt and the special
product trousers. The execution of any of the test cases of the test program exam-
ple implies the execution of this fixture and ensures that the entity types Customer,
Session, Product and Special (and also their attributes) are satisfiable.

Moreover, the test case confirmOrder adds a shopping cart item with two
units of shirt and another item with a pair of trousers. The shopping cart is
created when adding the first item. By this way, the entity types ShoppingCart
and ShoppingCartItem (and also their relationship types, including attributes)
are proved satisfiable. The relationship types ShoppingCart-Session, Session-
Customer and Customer-ShoppingCart are also satisfiable when the LogIn event
occurs (the session is assigned to a customer and the anonymous shopping cart
becomes the shopping cart of the customer of the session). The entity types
Order and OrderLine (and their relationship types) become satisfiable when the
event OrderConfirmation occurs (the order and its order lines are created from
the shopping cart). Finally, the occurrence of the instance ndp of the domain
event type NewDownloadableProduct proves the satisfiability of the entity type
DownloadableProduct.

If a conceptual schema includes a base type Ti that is unsatisfiable, then the
conceptual modeler will be unable to set up a test case that builds a state of the IB
with at least one instance of Ti, and an assertion that can only Pass if that state is
consistent. This is not formal proof that Ti is unsatisfiable, but in many practical
cases it provides a clue that helps to uncover a faulty constraint.

For example, consider the schema example shown in Fig. 4 (adapted from [4]).
The association Manages is satisfiable if we do not take into account that Manager

Testing Conceptual Schema Satisfiability 285

Manager

Employee

Manages

1

boss
2..*

Fig. 4 Schema fragment
with types that cannot be
satisfied

IsA Employee. However, if we take this inclusion constraint into account then it
cannot be satisfied. If the conceptual modeler writes a test case such as

test EmployeeWithTwoBosses{

emily := new Employee;

john := new Manager (employee:=Emily);
natalie := new Manager(employee:=Emily);
assert consistency;

}

the assertion will Fail because john and natalie do not have (at least) two bosses.
Any change of the instances of the three types will produce the same result, and
the conceptual modeler will find out soon that the defined cardinality constraints are
wrong.

3.2 Derived Type Satisfiability

Entity and relationship types may be derived. For each derived type, the conceptual
schema includes a derivation rule that defines the population of that type in terms
of the population of other types. In UML, the derivation rules are written in OCL.
Derived types must be satisfiable too [6]. Satisfiability of a derived type means that
its derivation rule may derive at least one instance of it at certain time.

The satisfiability of a derived type can be checked by means of testing. The idea
is to write a test case that makes an assertion TAk whose evaluation requires the
derivation of at least one instance of that type.

In the example of Fig. 1 there are ten derived attributes. The assertions “assert
equals s.shoppingCart.shoppingCartItem->at(1).price 40” and “assert equals
s.shoppingCart.shoppingCartItem->at(2).price 65” (specified in the test case
confirmOrder shown in Fig. 3) imply that the attribute ShoppingCartItem::price
is satisfiable and also the attributes ShoppingCartItem::unitPrice and
Product::finalNetPrice. The reason is that the derivation of the price of a
shopping cart item implies the derivation of its unitPrice (its derivation rule expres-
sion is unitPrice∗quantity), and the unitPrice of a shopping cart item corresponds
to the finalNetPrice of its associated product. Similarly, the assertion “assert equals
oc.createdOrder.total 105” implies the satisfiability of the attributes Order::total
(its derivation rule is shown in Fig. 1), OrderLine::price and OrderLine::unitPrice.
Finally, the assertions “assert equals shirt.quantityOrdered 2”, “assert equals

286 A. Olivé and A. Tort

oc.createdOrder.eMail ‘john@john.com’ ”, “assert equals oc.createdOrder.name
‘John’ ”, “assert equals oc.createdOrder.orderLine->at(1).name ‘shirt’ ” and
“assert equals oc.createdOrder.orderLine->at(2).name ‘trousers’ ” make the
attributes Product::quantityOrdered, Order::name, Order::eMail and OrderLine::
name satisfiable.

3.3 Domain Event Type Satisfiability

Domain event types must be satisfiable too. Domain event type satisfiability
comprises the properties of applicability and executability defined in [6, 19]:
A domain event type Devi is applicable if there is a consistent IB state and
one instance d of Devi with a set of characteristics such that the event con-
straints are satisfied, and Devi is executable if Devi is applicable and the
effects of d leave the IB in a state that is consistent and satisfies the event
postconditions.

The satisfiability of a domain event type Devi can be checked by means of testing.
The idea is to set up a test case TCj such that it:

• builds a state of the IB, and
• creates an instance d of Devi, and
• asserts the occurrence of d.

If the test set includes such test case TCj, and its execution gives the verdict
Pass, then it is experimentally proved that Devi is satisfiable: applicable (because
the initial IB state has been found consistent and the event constraints have been
satisfied) and executable (because the new IB state has been found consistent and
the event postconditions have been satisfied).

The test program of Fig. 3 exercises the valid execution of all the domain events
considered in the example (see Sect. 2.1) and this ensures that these domain events
are satisfiable.

If a conceptual schema includes a domain event type Devi that is unsatisfiable,
then the conceptual modeler will be unable to set ups a test case that builds a state
of the IB, creates an instance of Devi and asserts its occurrence. Again, this is not
formal proof that Devi is unsatisfiable, but in many practical cases it provides a clue
that helps to uncover a faulty constraint.

For example, related to the schema of Fig. 2, assume that there is a domain
event type RemoveOrder, whose intended effect is to remove the order to which
it is associated. If one of the constraints of the event is:

context RemoveOrder::thereAreNoOrderLines ():Boolean

body: self.order.orderLine->isEmpty()

then RemoveOrder is not applicable, because an instance of Order is always asso-
ciated with at least one instance of OrderLine. Any assertion of the occurrence of

Testing Conceptual Schema Satisfiability 287

an instance of RemoveOrder will Fail, and the conceptual modeler will find out that
either the above event constraint or the cardinality constraint of Fig. 2 is incorrect.

4 Conclusion

We have shown that when conceptual schemas can be tested then their satisfiability
can be proved by testing. The idea is that for each entity or relationship or event
type in the schema the conceptual modeler sets up a test case such that if its verdict
is Pass then by definition the type under test is satisfiable. A single test case may
prove the satisfiability of several types. If a type is unsatisfiable then the conceptual
modeler is unable to set up such a test case, but in many practical cases testing
provides a clue that helps to uncover the faulty schema elements.

References

1. Berardi D, Calvanese D, De Giacomo G (2005) Reasoning on UML class diagrams. Artificial
Intelligence 168(1–2):70–118

2. Booch G, Rumbaugh J, Jacobson I (2005) The unified modeling language reference manual,
2nd edn. Addison-Wesley, Reading, MA

3. Brambilla M, Tziviskou C (2009) An online platform for semantic validation of UML models.
In: Proceedings of ICWE 2009. LNCS, vol 5648. Springer, Heidelberg, pp 477–480

4. Calvanese D, Lenzerini M (1994) On the interaction between ISA and cardinality constraints.
In: Proceedings of ICDE 1994, IEEE Computer Society, Washington, DC, pp 204–213

5. Clavel M, Egea M, de Dios MAG (2009) Checking unsatisfiability for OCL constraints.
In: Proceedings of OCL workshop MODELS 2009. http://modeling-languages.com/events/
OCLWorkshop2009/papers/3.pdf. Accessed 20 Feb 2010

6. Costal D, Teniente E, Urpí T, Farré C (1996) Handling conceptual model validation by
planning. In: Proceedings of CAiSE 1996. LNCS, vol 1080. Springer, Heidelberg, pp 255–271

7. Formica A (2003) Satisfiability of object-oriented database constraints with set and bag
attributes. Info Systems 28(3):213–224

8. Gogolla M, Kuhlmann M, Hamann L (2009) Consistency, independence and consequences in
UML and OCL models. In: Proceedings of TAP 2009. LNCS, vol 5668. Springer, Heidelberg,
pp 90–104

9. Halpin TA (2001) Information modeling and relational databases. Morgan Kaufmann,
New York

10. Jarrar M (2007) Towards automated reasoning on ORM schemes. In: Proceedings of ER 2007.
LNCS, vol 4801. Springer, Heidelberg, pp 181–197

11. Olivé A (2007) Conceptual modeling of information systems. Springer, Berlin
12. Olivé A, Raventós R (2006) Modeling events as entities in object-oriented conceptual

modeling languages. Data Knowl Eng 58(3):243–262
13. OMG (2006) Object constraint language. Version 2.0, formal/2006-05-01. http://www.omg.

org/spec/OCL/2.0/. Accessed 20 Feb 2010
14. Parsons J, Wand Y (1997) Choosing classes in conceptual modeling. Commun ACM

40(6):63–69
15. Pastor O, Molina JC (2007) Model-driven architecture in practice. Springer, Heidelberg
16. Pernici B, Barbic F, Maiocchi R, Fugini MG, Rames JR, Rolland C (1989) C-TODOS: an

automatic tool for office system conceptual design. ACM Trans Inf Syst 7(4):378–419
17. Queralt A, Teniente E (2006) Reasoning on UML class diagrams with OCL constraints. In:

Proceedings of ER 2006. LNCS, vol 4215. Springer, Heidelberg, pp 497–512

288 A. Olivé and A. Tort

18. Queralt A, Teniente E (2008) Decidable reasoning in UML schemas with constraints. In:
Proceedings of CAiSE 2008. LNCS, vol 5074. Springer, Heidelberg, pp 281–295

19. Queralt A, Teniente E (2009) Reasoning on UML conceptual schemas with operations. In:
Proceedings of CAiSE 2009. LNCS, vol 5565. Springer, Heidelberg, pp 47–62

20. Rolland C, Richard C (1982) The REMORA methodology for information systems design
and management. In: Olle TW, Sol HG, Verrijn-Stuart AA (eds) Information systems design
methodologies: a comparative review. North-Holland, Amsterdam, pp 369–426

21. Rolland C, Cauvet C (1992) Trends and perspectives in conceptual modelling. In:
Loucopoulus P, Zicari R (eds) Conceptual modeling, databases and CASE: an integrated view
of information systems development, Wiley, pp 27–48

22. Rolland C, Cauvet C, Nobecourt P, Proix C, Coligon P, Lingat JY, et al (1988) The Rubis
system. In: Olle TW, Verrijn-Stuart AA, Bhabuta L (eds) Computerized assistance during the
information systems life cycle, North-Holland

23. Souveyet C, Rolland C (1990) Correction of conceptual schemas. In: Proceedings of CAiSE
1990. LNCS, vol 436. Springer, Heidelberg, pp 152–174

24. Tort A (2007) The osCommerce conceptual schema. http://guifre.lsi.upc.edu/OSCommerce.
pdf. Accessed 20 Feb 2010

25. Tort A (2009) A basic set of test cases for a fragment of the osCommerce conceptual schema.
Research report LSI-09-34-R, UPC. http://www.lsi.upc.edu/∼techreps/files/R09-34.zip

26. Tort A, Olivé A (2010) An approach to testing conceptual schemas. Data Knowl Eng.
doi:10.1016/j.datak.2010.02.002. Accessed 20 Feb 2010

27. Van Lamsweerde A (2009) Requirements engineering: from system goals to UML models to
software specifications. Wiley, New York

A Systematic Approach to Define the Domain
of Information System Security Risk
Management

Éric Dubois, Patrick Heymans, Nicolas Mayer, and Raimundas Matulevičius

Abstract Today, security concerns are at the heart of information systems, both
at technological and organizational levels. With over 200 practitioner-oriented risk
management methods and several academic security modelling frameworks avail-
able, a major challenge is to select the most suitable approach. Choice is made even
more difficult by the absence of a real understanding of the security risk manage-
ment domain and its ontology of related concepts. This chapter contributes to the
emergence of such an ontology. It proposes and applies a rigorous approach to build
an ontology, or domain model, of information system security risk management. The
proposed domain model can then be used to compare, select or otherwise improve
security risk management methods.

1 Introduction

During the last two decades, the impact of security concerns on the development
and exploitation of Information Systems (IS) never ceased to grow, be it in public
or private sectors. In this context, security Risk Management (RM) has become
paramount because it helps companies identify and implement security require-
ments in a cost-effective manner. Indeed, security threats are so numerous that it
is outright impossible to act on all of them, because (1) every technological security
solution has a cost, and (2) companies have limited resources. Hence, companies
need assurance that they adopt only solutions that will provide significant Return on
Investment (ROI). This is done by comparing the cost of a solution with the risk of
not using it, e.g., the cost of a business disruption due to a successful security attack.
In this sense, security RM plays an important role in the alignment of a company’s
business strategy with its Information Technology (IT) strategy.

É. Dubois (B)
Centre de Recherche Public Henri Tudor, 29, avenue John F. Kennedy,
L-1855 Luxembourg-Kirchberg, Luxembourg
e-mail: eric.dubois@tudor.lu

289S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_16, C© Springer-Verlag Berlin Heidelberg 2010

290 É. Dubois et al.

Today there exist literally hundreds of IS Security RM (ISSRM) methods and
standards targeted to professionals (see Sect. 3.2 for an overview). They mainly
consist of process guidelines that help identify vulnerable assets, determine security
objectives, and assess risks as well as define and implement security requirements
to treat the risks. By using these methods one reduces the losses that might result
from security problems. However, these methods generally offer very little mod-
elling support. Instead, they usually resort to informal documentation in natural
language and ad hoc diagrams. This means that powerful abstraction mechanisms,
visualisations and automations offered by conceptual modelling techniques are
underexploited.

On the contrary, the Requirements Engineering (RE) literature features a
number of modelling languages specifically dedicated to security-sensitive con-
texts.Examples of such languages are Misuse Cases [51] and Abuse Cases [42],
which extend Use Cases [7]; Abuse Frames [31–33] derive from Problem Frames
[27]; Secure-Tropos [17, 46, 47] originates from Tropos [4] and i∗ [57]; KAOS
[30] was also extended [29] to deal with security aspects. The main benefit of
these languages is to address security concerns in the early phases of IS devel-
opment. This allows enforcing security by construction, which is more effective
than doing it after the fact [48]. However, it turns out that these languages lack
constructs to properly represent risk, e.g., vulnerable assets, their associated secu-
rity risks and risk treatments (with the notable exception of [2] which supports a
more general notion of risk). Hence, although these languages are useful in eliciting
and modelling threats and countermeasures, they are still largely unable to address
cost-effectiveness concerns in a satisfactory manner.

These observations could be used as arguments in favour of defining a new, more
suitable modelling language. However, defining a completely new notation does not
appear to us as a viable option for at least two reasons. Firstly, this would only
further populate the already overcrowded jungle of modelling languages. Secondly,
we aim at a smooth rather than radical transition from current practice. Existing
languages address different complementary views (e.g., scenario-oriented view,
goal-oriented view. . .), all potentially useful for RE. ISSRM actually crosscuts those
views and should therefore be related to them. So, as long as this does not make the
languages too complex, we rather plead in favour of improving existing languages
with a better coverage of the ISSRM domain.

In this chapter, we do not go as far as proposing an extension to an existing lan-
guage. Instead, we describe an intermediate step which is concerned with answering
the following research question: What are the concepts that should be present in a
modelling language supporting ISSRM during the early stages of IS development?
In this, we follow a similar approach as those pioneers who designed IS modelling
languages back in the eighties [49, 50]: first identify the key concepts of the subject
domain, then design (or adapt) a language to support it.

The remainder of this chapter is structured as follows. Section 2 presents the
research method that we have followed for answering this question. In Section 3 we
introduce the basic definitions associated with security and risk management and
present our survey of the literature. Section 4 proposes a synthesis of the surveyed

Information System Security Risk Management 291

literature by means of a concept alignment table. The latter is further consolidated
into a domain model for ISSRM presented in Sect. 5. Section 6 finishes our work
with conclusions.

2 Research Method

Our overall research method (see Fig. 1) consists of four steps:
Step 1 – Concept alignment. We start by investigating the state of the art in

ISSRM. Our goal is to identify the core concepts of the domain and harmonise
the terminology. The main outcomes are:

• A concept alignment table that highlights the core concepts of the surveyed
approaches and indicates synonymy or other semantic relationships when
approaches use different terms;

• A glossary of the terms as found in the sources.

An excerpt of the table is shown in Table 1 (the complete table can be found
in [38]). To obtain a comprehensive view of ISSRM approaches, we consider four

Fig. 1 Research method

292 É. Dubois et al.

Table 1 Alignment of five concepts

References (1) (2) (3) (4) (5)

ISO/IEC Guide 73 Risk Event Consequence / /
AS/NZS 4360 Risk Event Consequence

Impact
/ /

ISO/IEC 27001 Risk / Impact Threat Vulnerability
ISO/IEC 13335 Risk / Harm Threat Vulnerability
Common Criteria Risk Threat Consequence / Vulnerability
NIST 800-27
NIST 800-30

Risk / Impact Threat Vulnerability

EBIOS Risk Cause Impact / Vulnerability
MEHARI Risk

Risk scenario
/ Consequence / /

OCTAVE Risk / Impact
Consequence

Threat Vulnerability

CRAMM Risk / Loss Threat Vulnerability
CORAS Risk / Unwanted

incident
Threat

scenario
Vulnerability

Haley et al. Moffet
and Nuseibeh

Risk / Impact Threat Vulnerability

Firesmith Risk / Harm Hazard
Threat

Vulnerability

main categories of sources: (i) RM standards, (ii) security-related standards, (iii)
security RM methods, and (iv) security-oriented RE frameworks.

Step 2 – Construction of the ISSRM domain model. Based on the outcomes of
step 1, we define a conceptual model of the ISSRM domain as a UML class diagram,
complemented with a glossary obtained by reusing and, when needed, improving the
most relevant definitions we found.

Step 3 – Comparison between ISSRM domain model and security-oriented lan-
guages. Prominent security-oriented RE languages (KAOS extended to security
[29], Abuse Frames [31], Misuse Cases [51], Abuse Case [42] and Secure-Tropos
[47]) are confronted with the ISSRM domain model. We investigate the meta-
models and definitions of those languages, trying to find out which concepts of the
ISSRM domain model are fully supported, partially supported or missing. The main
expected results of this step are:

• The validation of the claim that those RE languages overlook RM;
• The assessment of the coverage of each modelling language with respect to

ISSRM;
• The identification of the improvements (extensions or revisions) required to make

the languages suitable for ISSRM.

Step 4 – Definition of ISSRM language support. As mentioned in the intro-
duction, our final goal is to provide ISSRM-compliant versions of common RE
languages. Our aim is to do so by meeting the highest standards in conceptual

Information System Security Risk Management 293

language definition [20, 45]. Steps 1–3 are intended to guarantee sound and agreed
conceptual foundations. But these are not the only criteria. Hence, step 4 will also
address the formal definition of syntax and semantics, which facilitates unambigu-
ous interpretation and automated reasoning. We will also take into account “softer”,
but equally important properties, such as appropriateness of the graphical symbols
and structuring mechanisms.

Further motivations for this research method can be found in [11, 40, 41]. The
reader should also note that although this process looks rather sequential, steps 1–4
are meant to be conducted in an iterative and incremental way. In this chapter we
focus on the first two steps. In the conclusion, we report on the progress made with
steps 3 and 4.

3 Survey of the Literature

The survey of the literature is divided into three parts. The first part (Sect. 3.1) delim-
its the scope of our survey and provides some basic definitions. The second part
(Sect. 3.2) is concerned with ISSRM standards, methods and studies. These sources
are used as foundations for the ISSRM domain model (which will be described
in Sect. 5). The third part (Sect. 3.3) surveys the security-oriented modelling lan-
guages. Those are candidate for comparison and extension according to the ISSRM
domain model. However, such comparisons and extensions are out of the scope of
the present chapter.

3.1 Scope of the Survey and Basic Definitions

The most generally agreed upon definition of risk is the one found in ISO/IEC Guide
73. There, a risk is defined as a “combination of the probability of an event and its
consequence” [22]. Following this definition, RM is defined as “coordinated activi-
ties to direct and control an organisation with regard to risk” [22]. Depending on the
context, RM can address various kinds of issues [24, 54]. For example, risks can be
related to the organisation’s management (e.g., illness of a key person in regards to
the business), finance (e.g., related to investment), environment (e.g., pollution), or
security.

In our research, we focus only on security RM. Other kinds of risks, such as
financial or project risk, are deemed out of scope. The common denominator of the
ISSRM approaches is the fact that there are security objectives to reach (or security
properties to respect) to ensure reasonable protection of the organisation’s assets.
Assets are generally defined as anything that has value to the organisation, and thus
needs to be protected. However, we will always look at assets related to an organisa-
tion’s IS, that is, “[a] system, whether automated or manual, that comprises people,
machines, and/or methods organized to collect, process, transmit, and disseminate
data that represent user information” [56]. Thus, in a given IS context, assets may

294 É. Dubois et al.

include hardware, software and network as well as people and facilities playing a
role in the IS and therefore in its security, e.g., people encoding data, and arguably
such things as air conditioning of a server room. All of these are subject to risks
and those risks have to be evaluated with respect to the IS properties that could
be damaged. Those properties include confidentiality, integrity and availability of
information and/or processes in an organisation [23]:

• Confidentiality is the property that information is not made available or disclosed
to unauthorised individuals, entities, or processes.

• Integrity is the property of safeguarding the accuracy and completeness of assets.
• Availability is the property of being accessible and usable upon demand by an

authorised entity.

Some other criteria like authenticity, non-repudiation or accountability [23]
might be added when the context requires, but they are usually deemed secondary.
Summing up, the objective of ISSRM is to protect essential constituents of an IS,
from all harm to their security (confidentiality, integrity, availability).

3.2 Risk Management Standards, Methods and Studies

The first family of sources that we review are RM standards. Those documents
typically contain general considerations about RM and form the basis upon which
domain-specific RM approaches are built.

• ISO/IEC Guide 73 [22]: This guide defines the RM vocabulary and guidelines for
use in ISO standards. It mainly focuses on terminology, which is of great interest
with respect to our research method.

• AS/NZS 4360 [3]: This joint Australian/New-Zealand standard provides a
generic guide for RM. The document proposes an overview of the RM termi-
nology and process.

The second family of sources consists of (IS and IT) security standards. The selected
documents often contain a section on security-specific terminology. Sometimes,
some RM concepts are mentioned.

• ISO/IEC 27001 [25]: The purpose of this standard is to act as a reference for
establishing, implementing, operating, monitoring, reviewing, maintaining and
improving an Information Security Management System (ISMS), that is the part
of an organisation that is concerned with information security. The principles and
terminology related to IS Management System are provided.

• ISO/IEC 13335-1 [23]: This standard is the first of the ISO/IEC 13335 guide-
lines series that deals with the planning, management and implementation of
IT security. It describes concepts and principles of IT security that may be
applicable to different organisations.

Information System Security Risk Management 295

• Common Criteria [8]: “Common Criteria” (standardised in version 2.3 by
ISO/IEC 15408) provides a common set of requirements on the security functions
of IT products and systems, and on assurance measures applied to them during
a security evaluation. The first part, entitled “Introduction and general model”, is
the most relevant with respect to our research scope.

• NIST 800-27 Rev A [53]/NIST 800-30 [52]: Among the series of publications
proposed by NIST, the 800-series is about computer security. In this series,
NIST 800-27 and NIST 800-30 are in our scope. Terminology and concepts are
provided by these standards, which are consistent with each other.

Risk management methods are the third family of sources. In 2004, a CLUSIF1 study
inventoried over 200 security RM methods. We select a representative subset of RM
methods based on some recent studies, like the report “Inventory of risk assess-
ment and risk management methods” [13] from ENISA. Most of these methods are
supported by software tools, but we will concentrate on their methodological part.

• EBIOS [9] The EBIOS method is developed and maintained by the ANSSI in
France.

• MEHARI [6] MEHARI is a RM method developed by the CLUSIF and built
on the top of two other RM methods: MARION [5] and MELISA [10], not
maintained anymore.

• OCTAVE [1]: OCTAVE is an approach to information security risk evaluation
developed by the SEI.

• CRAMM [21]: CRAMM is a RM method from the UK, originally developed by
CCTA in 1985 and currently maintained by Insight Consulting.

• CORAS [55]: CORAS is the result of a European project that developed a tool-
supported framework for risk assessment of security-critical systems.

Finally, the last family consists of security frameworks proposed in the scientific
literature. Whereas the previous sources were practitioner-oriented, these are more
research-oriented. They originate essentially from the RE literature.

• Haley et al. [18, 19] and Moffett and Nuseibeh [44] propose a framework for
dealing with security requirements.

• Firesmith [15, 16] presents a set of related information models that provides the
theoretical foundation underlying safety and security engineering. A process to
effectively deal with both safety and security engineering is also proposed.

A final remark is about SQUARE [43], a stepwise methodology for eliciting, cat-
egorising, and prioritising security requirements for IT systems and applications.
Although SQUARE is focussed on security RE and suggests using an ISSRM
approach to elicit security requirements, it was not retained in this survey because
the first step of SQUARE consists in defining the terminology to be used in

1http://www.clusif.asso.fr/en/clusif/present/.

296 É. Dubois et al.

the project. Therefore SQUARE does not rely on a pre-defined terminology that
we could use.

3.3 State of the Art of Security-Oriented Modelling Languages

Many security modelling languages, or most often security extensions to exist-
ing languages, were developed. Existing approaches based on UML have been
enriched with security modelling capabilities. In Misuse Cases [51] and Abuse
Cases [42], which are extensions of “Use Case” diagrams, the focus is on elici-
tation of new threats and vulnerabilities that could be exploited by malicious actors.
SecureUML [35] extends several UML diagrams. The approach focuses on authori-
sation constraints and its goal is to automatically generate complete access control
infrastructures. UMLsec [28] is a UML profile that allows adding security-related
information to UML diagrams. Both SecureUML and UMLsec address security at
the design level. They, thus, do not focus on business assets and high-level security
requirements.

The KAOS goal-oriented framework addresses security concerns by treating
attacks as anti-goals [29]. Anti-goals are the attacker’s goals and generate obstacles
to security goals. Extensions of the i∗ goal-oriented framework [57] also address
security problems. For instance, Liu et al. [34] represent attacks as tasks with neg-
ative contributions to security softgoals. A formalisation of i∗ to deal with security
issues is proposed in Secure-Tropos [17, 47]. It suggests, first, to extend the concepts
and the processes of i∗/Tropos and, then, to integrate techniques such as security
reference diagrams and security attack scenarios. Recently, additional work [12]
has been done on representing the notion of vulnerability in i∗. Asnar et al. intro-
duced the Tropos Goal-Risk Framework [2] that addresses RM at three different
levels, combining together asset, risk, and risk treatment views. However, the Tropos
Goal-Risk framework does not focus on IS security, but supports the concept of
risk in general, including project management risk and financial risk, for instance.
Finally, Problem Frames extensions were also proposed to handle security issues.
Anti-requirements were introduced by Abuse Frames [33]. Abuse Frames are used
to delimit the scope of a security problem and thereby are meant to facilitate the
analysis of threats and vulnerabilities as well as the elicitation of security require-
ments. In future work, we plan to confront the concepts of these languages with the
concepts of the ISSRM domain.

4 ISSRM Concept Alignment

4.1 Concepts to Consider

The first task of the concept alignment phase is to define the range of concepts
to study. In [14], a comparison between the concepts used in various security RE

Information System Security Risk Management 297

methods was proposed. Our work has a different scope, that is, ISSRM. Here, the
core concept to consider is risk. Yet, risk is not an isolated concept. A risk (i)
depends on the security needs placed on the IS assets and (ii) is the subject of risk
treatments. These are the concepts that we include in our first iteration on step 1,
but our scope is likely to expand along the way. Conversely, specific usages of our
concept alignment table could consider only subsets of it if not all concepts are
needed.

4.2 Overview of the Alignment Table

In this section, we analyse the concept of risk starting from the definitions found in
the sources listed in Sects. 3.1 and 3.2. We focussed on RM standards and security
standards; RM methods and RE security frameworks are addressed in [38]. Content-
wise, we focus on the notion of risk and its associated components. Risk-related
metrics [9, 15, 52] like, for example, its value or its likelihood, are currently not
considered.

4.2.1 Risk Management Standards

ISO Guide 73 gives the following definition of a risk:

Risk: combination of the probability of an event and its consequence.

AS/NZS 4360 proposes a similar definition in its glossary:

Risk: the chance of something happening that will have an impact on objectives
NOTE 1: A risk is often specified in terms of an event or circumstance and the consequences
that may flow from it.

Both sources indicate that a risk is composed of two related elements: a cause, called
event or “something happening”; and a consequence, also called impact. This con-
sideration is valid in all risk-related domains. To refine our analysis, we compare
the above definitions with the ones from the security domain.

4.2.2 Security Related Standards

In ISO/IEC 27001 [25], the concept of risk is not present in the glossary, but in an
excerpt of the standard presenting the risk identification step, we find:

Identify the risks.

1) Identify the assets within the scope of the ISMS, and the owners of these assets.
2) Identify the threats to those assets.
3) Identify the vulnerabilities that might be exploited by the threats.
4) Identify the impacts that losses of confidentiality, integrity and availability may have on

the assets.

298 É. Dubois et al.

In ISO/IEC 13335 [23], a risk is defined in the glossary in terms of three related
concepts:

Risk: the potential that a given threat will exploit vulnerabilities of an asset or group of
assets and thereby cause harm to the organization.

The analysis of both sources [23, 25], and mainly the definition from [23] which
is more explicit than the succession of steps presented in [25], shows that these
definitions of a risk are compliant with RM standards, because a risk is always com-
posed of a cause and a consequence. However, the definitions introduce some new
concepts: the cause of the risk is presented as the combination of threat and vul-
nerability, and the consequence is considered as the impact or harm (see Table 1).
The concept of asset, which is not analysed in depth in this section, is also intro-
duced as related to the notion of risk. It is defined as anything that has value to the
organisation [23]. Common Criteria (CC) [8] defines risk with a finer granularity:

Threats are categorised as the potential for abuse of protected assets. The CC characterises
a threat in terms of a threat agent, a presumed attack method, any vulnerabilities that are
the foundation for the attack, and identification of the asset under attack. An assessment of
risks to security would qualify each threat with an assessment of the likelihood of such a
threat developing into an actual attack, the likelihood of such an attack proving successful,
and the consequences of any damage that may result. A threat shall be described in terms
of an identified threat agent, the attack, and the asset that is the subject of the attack. Threat
agents should be described by addressing aspects such as expertise, available resources, and
motivation. Attacks should be described by addressing aspects such as attack methods, any
vulnerabilities exploited, and opportunity.

Here the cause of the risk is called threat and it encompasses vulnerability, unlike
[25] and [23] that define them as related, but separate concepts at the same level. The
threat in [8] has multiple sub-components like threat agent, attack method, attack,
etc. Details of those sub-components can be found in [40]. Threat in ISO/IEC 27001
or ISO/IEC 13335 has thus not the same sense as threat in CC, which is equivalent
to the global cause of the risk, encompassing threat and vulnerability. Threat from
[23, 25] and threat from [8] are thus not aligned in Table 1. NIST standards also
propose a different definition for a risk [52, 53]:

Risk: The net mission/business impact considering (1) the likelihood that a particular threat
source will exploit, or trigger, a particular information system vulnerability and (2) the
resulting impact if this should occur.

Here, risk is once again defined with the help of three components: threat source,
vulnerability and impact. The concept of threat is defined as the combination of a
threat source, its motivation (for human threat) and threat actions, like hacking,
social engineering, or system intrusion [52].

The use of the term risk in security related standards is more precise than in
RM standards, but remains compliant with the latter. It is thus a mere specialisa-
tion of the term. The concept of risk is therefore aligned between the sources in
Table 1. However the precision of the components of a risk increases. The conse-
quence of the risk differs only in how it is named (consequence, impact or harm)

Information System Security Risk Management 299

but the semantics remains largely the same. However, the cause of the risk is pre-
sented as a composition of elements, which are different depending on the sources.
Differences and equivalences are shown in Table 1.

The concept of asset is often mentioned in the definition of risk found in secu-
rity related standards. It is sometimes associated with threat [25], sometimes with
vulnerability [23] and sometimes with attack [8]. In any case, the concept of asset
plays a role in the definition of risk and should be linked to it. However, due to page
limits, we cannot go into such details here. More details can be found in [38].

5 ISSRM Domain Model

The first step of the method has resulted in an alignment of the ISSRM concepts,
found in the literature. The second step of the method includes the construction
of the ISSRM domain model, presented in Fig. 2. For each concept of the align-
ment table, a name is chosen. Then, concepts are linked based on the relationships
identified in [39]. A glossary is provided together with the domain model, giving a
definition for each of its concepts. In this section we introduce the main concepts
and their definitions. They are illustrated by examples related to an architecture
engineering company [38]. The ISSRM domain model features three principal
groups of concepts: (i) asset-related concepts, (ii) risk-related concepts, and (iii)
risk treatment-related concepts.

Asset-related concepts describe what are the important assets to protect, and what
are the criteria to guarantee asset security. The concepts are:

Asset – anything that has value to the organisation and is necessary for achieving
its objectives. Examples: technical plan; structure calculation process; architectural
competence; operating system; Ethernet network; people encoding data; system
administrator; air conditioning of server room.

Note: This concept is the generalisation of the business asset and IS asset
concepts.

Business asset – information, process, skill inherent to the business of the
organisation that has value to the organisation in terms of its business model
and is necessary for achieving its objectives. Examples: technical plan; structure
calculation process; architectural competence.

Note: Business assets are immaterial.
IS asset – a component or part of the IS that has value to the organisation and

is necessary for achieving its objectives and supporting business assets. An IS asset
can be a component of the IT system, like hardware, software or network, but also
people or facilities playing a role in the IS and therefore in its security. Examples:
operating system; Ethernet network; people encoding data; system administrator;
air conditioning of server room.

Note 1: IS assets are (with the exception of software) material.
Note 2: Sometimes, for conducting a macroscopic analysis, it is necessary to

define a system composed of various IS assets as an IS asset.

300 É. Dubois et al.

F
ig

.2
IS

SR
M

do
m

ai
n

m
od

el

Information System Security Risk Management 301

Security criterion (also called security property) – property or constraint on
business assets that characterises their security needs. Security criteria act as indi-
cators to assess the significance of a risk. Examples: confidentiality; integrity;
availability; non-repudiation; accountability.

Note: The security objectives of an IS are defined using security criteria on busi-
ness assets (e.g., confidentiality of the technical plans; integrity of the structure
calculation process).

Our second group of concepts are risk-related concepts. They present how the
risk itself and its immediate components are defined.

Risk – the combination of a threat with one or more vulnerabilities leading to
a negative impact harming one or more of the assets. Threat and vulnerabilities
are part of the risk event and impact is the consequence of the risk. Examples: a
hacker using social engineering on a member of the company, because of weak
awareness of the staff, leading to unauthorised access to personal computers and
loss of integrity of the structure calculation process; a thief entering a company
building thanks to deficient physical access control, stealing documents contain-
ing sensitive information and thereby provoking loss of confidentiality of technical
plans.

Impact – the potential negative consequence of a risk that may harm assets of a
system or an organisation, when a threat (or an event) is accomplished. The impact
can be described at the level of IS assets (data destruction, failure of a component,
etc.) or at the level of business assets, where it negates security criteria, like, for
example, loss of confidentiality of an information, loss of integrity of a process, etc.
Examples: password discovery (IS level); loss of confidentiality of technical plans
(business level).

Note: An impact can provoke a chain reaction of impacts (or indirect impacts),
like for example a loss of confidentiality on sensitive information leads to a loss of
customer confidence.

Event – the combination of a threat and one or more vulnerabilities. Examples:
a hacker using social engineering on a member of the company, exploiting weak
awareness of the staff; a thief entering a company building thanks to deficient
physical access control.

Note: Event is a generic term, used pervasively in RM and defined as the “occur-
rence of a particular set of circumstances” [22]. The definition provided in this
glossary is specific to IS security.

Vulnerability – the characteristic of an IS asset or group of IS assets that can
constitute a weakness or a flaw in terms of IS security. Examples: weak awareness
of the staff; deficient physical access control; lack of fire detection.

Threat – potential attack, carried out by an agent that targets one or more IS
assets and that may lead to harm to assets. A threat is constituted of a threat agent
and an attack method. Examples: a hacker using social engineering on a member of
the company; a thief entering a company building and stealing media or documents.

Threat agent – an agent that can potentially cause harm to assets of the IS.
A threat agent triggers a threat and is thus the source of a risk. Examples: staff
members with little technical skills and time but possibly a strong motivation to

302 É. Dubois et al.

carry out an attack; hacker with considerable technical skills, well equipped and
strongly motivated by the money he could make.

Note: A threat agent can be characterised by expertise, available resources and
motivation.

Attack method – standard means by which a threat agent carries out a threat.
Examples: system intrusion; theft of media or documents.

Risk treatment-related concepts describe what decisions, requirements and con-
trols should be defined and implemented in order to mitigate possible risks. The
different risk treatment-related concepts are different levels of design decisions on
the IS.

Risk treatment – the decision of how to treat the identified risks. A treatment
satisfies a security need, expressed in generic and functional terms, and can lead to
security requirements. Categories of risk treatment decisions include:

• Avoiding the risk (risk avoidance decision) – decision not to become involved in,
or to withdraw from, a risk. Functionalities of the IS are modified or discarded
for avoiding the risk;

• Reducing the risk (risk reduction decision) – action to lessen the probability, neg-
ative consequences, or both, associated with a risk. Security requirements are
selected for reducing the risk;

• Transferring the risk (risk transfer decision) – sharing with another party the
burden of loss from a risk. A third party is thus related to the (or part of the) IS,
ensuing sometimes some additional security requirements about third parties;

• Retaining the risk (risk retention decision) – accepting the burden of loss from a
risk. No design decision is necessary in this case.

Examples: not connecting the IS to the Internet (risk avoidance); taking measures
to avoid network intrusions (risk reduction); taking an insurance for covering a loss
of service (risk transfer); accepting that the service could be unavailable for 1 hour
(risk retention).

Note: Risk treatment is basically a shortcut for risk treatment decision, according
to the state of the art.

Security requirement – a condition over the phenomena of the environment that
we wish to make true by installing the IS, in order to mitigate risks. This definition
is inspired from [26]. Examples: appropriate authentication methods shall be used
to control access by remote users; system documentation shall be protected against
unauthorised access.

Note 1: Risk reduction decisions lead to security requirements. Sometimes, risk
transfer decisions need some security requirements about third parties. Avoiding
risk and retaining risk do not need any security requirement.

Note 2: Each security requirement contributes to cover one or more risk
treatments for the target IS.

Control (also called countermeasure or safeguard) – a designed means to
improve security, specified by a security requirement, and implemented to com-
ply with it. Security controls can be processes, policies, devices, practices or other

Information System Security Risk Management 303

actions or components of the IS and its organisation that act to reduce risks.
Examples: firewall; backup procedure; building guard.

6 Conclusion

Today, support for security risk management cannot be overlooked anymore, espe-
cially during the early phases of IS development. A review of the state of the art
indicates that practitioner-oriented standards under-exploit modelling techniques.
On the other hand, RE modelling techniques tend to neglect RM, and thereby the
cost-effectiveness concerns that are important to practitioners. To improve on this
situation, we aim at extending RE languages with ISSRM concepts. In this chap-
ter, we reported on an important step towards this goal: the elaboration of a domain
model for ISSRM. This approach is in line with the practices advocated since long
time by pioneers of the IS modelling discipline [50].

The proposed domain model extends an earlier version [40]. It consists of a
conceptual model (UML class diagram) that highlights the main ISSRM concepts
and their relationships, together with their corresponding definitions. Preliminary
validation [19] of this domain model has already been performed by practition-
ers, researchers and standardization experts. We also obtained feedback on usage
of the domain model as a teaching artefact for an ISO/IEC 27001 certification.
Additionally, encouraging results were also obtained with students involved in a
professional Information System Security Management Master programme.

Our on-going work includes enriching the domain model with various metrics
commonly used for risk estimation and evaluation [38]. Finally, our current work is
progressing according to the steps 3–4 of the research method presented in Sect. 2.
With respect to step 3, we started evaluating existing security-oriented RE languages
with the intent to later extend them for better supporting ISSRM. At this time, we
have analysed KAOS [38], Misuse cases [36] and Secure Tropos [37]. Regarding
step 4, en extension of Secure Tropos is under way.

Acknowledgments Thanks to Germain Saval for his help in editing this chapter. And finally, we
would like to express our immense gratitude to Colette Rolland for showing us the way.

References

1. Alberts CJ, Dorofee AJ (2001) OCTAVE method implementation guide version 2.0. Carnegie
Mellon University, Software Engineering Institute, Pittsburgh, PA

2. Asnar Y, Giorgini P (2006) Modelling risk and identifying countermeasure in organizations.
In: Proceedings of the 1st interational workshop on critical information intrastructures security
(CRITIS’06), Springer, Berlin, pp 55–66

3. AS/NZS 4360 (2004) Risk management. SAI Global
4. Bresciani P, Giorgini P, Giunchiglia F, Mylopoulos J, Perin, A (2004) TROPOS: an agent-

oriented software development methodology. Autonomous Agents Multi-Agent Systems
8:203–236

304 É. Dubois et al.

5. CLUSIF (1998) MARION (Méthodologie d’Analyse des Risques Informatique et d’Opti-
mation par Niveau) available at http://www.clusif.asso.fr

6. CLUSIF (2007) MEHARI 2007: concepts and mechanisms. http://www.clusif.asso.fr/fr/
production/ouvrages/pdf/CLUSIF-risk-management.pdf. Last Accessed 21 Feb 2010

7. Cockburn A (2001) Writing effective use cases. Addison-Wesley Longman Publishing Co.,
Boston, MA, USA

8. Common Criteria version 2.3 (2005) Common criteria for information technology secu-
rity evaluation, CCMB-2005-08-002. http://www.tse.org.tr/turkish/belgelendirme/ortakkriter/
ccpart2v2.3.pdf. Last Accessed 21 Feb 2010

9. DCSSI (2004) EBIOS – expression of needs and identification of security objectives.
http://www.ssi.gouv.fr/archive/en/confidence/ebiospresentation.html. Last Accessed 21 Feb
2010

10. Direction des Constructions Navales (1989) MELISA (Méthode d’Evaluation de la
Vulnérabilité Résiduelle des Systèmes d’Information). Paris, France

11. Dubois E, Mayer N, Rifaut A, Rosener V (2006) Contributions méthologiques pour
l’amélioration de l’analyse des risques. In: Enjeux de la sécurité multimédia (Traité IC2, série
Informatique et systèmes d’information). Hermes Science Publications, Paris, pp 79–131

12. Elahi G, Yu E, Zannone N (2010) A vulnerability-centric requirements engineering frame-
work: analyzing security attacks, countermeasures, and requirements based on vulnerabilities.
Reqs Eng Journal 15(1):41–62

13. ENISA (European Network and Information Security Agency) (2006) Inventory of
risk assessment and risk management methods. http://www.enisa.europa.eu/act/rm/files/
deliverables/inventory-of-risk-assessment-and-risk-management-methods. Last Accessed 21
Feb 2010

14. Fabian B, Gürses S, Heisel M, Santen T, Schmidt H (2010) A comparison of security
requirements engineering methods. Reqs Eng Journal 15(1):7–40

15. Firesmith DG (2003) Common concepts underlying safety, security, and survivability
engineering. CMU/SEI-2003-TN-033 Carnegie Mellon University, Software Engineering
Institute, Pittsburgh, PA

16. Firesmith DG (2007) Engineering safety and security related requirements for software inten-
sive systems. In: Companion to the proceedings of the 29th international conference on
software engineering (COMPANION’07). IEEE Computer Society, p 169

17. Giorgini P, Massacci F, Zannone N (2005) Security and trust requirements engineering. In:
Foundations of security analysis and design III. LNCS, vol 3655. Springer, pp 237–272

18. Haley CB, Laney RC, Moffett JD, Nuseibeh B (2008) Security requirements engineering: a
framework for representation and analysis. IEEE Trans Softw Eng 34:133–153

19. Haley CB, Moffett JD, Laney RC, Nuseibeh B (2006) A framework for security requirements
engineering. In: Proceedings of the 2nd international workshop on software engineering for
secure systems (SESS’06), ACM, pp 35–42

20. Harel D, Rumpe B (2004) Meaningful modeling: what’s the semantics of “semantics”?
Computer 37:64–72

21. Insight Consulting (2003) CRAMM (CCTA Risk Analysis and Management Method) User
Guide version 5.0. SIEMENS

22. ISO/IEC Guide 73 (2002) Risk management – vocabulary – guidelines for use in standards.
International Organization for Standardization, Geneva

23. ISO/IEC 13335-1 (2004) Information technology – security techniques – management of
information and communications technology security – part 1: concepts and models for infor-
mation and communications technology security management. International Organization for
Standardization, Geneva

24. ISO 14001 (2004) Environmental management systems – requirements with guidance for use.
International Organization for Standardization, Geneva

25. ISO/IEC 27001 (2005) Information technology – security techniques – information security
management systems – requirements. International Organization for Standardization, Geneva

Information System Security Risk Management 305

26. Jackson M (1995) Software requirements & specifications: a lexicon of practice, principles
and prejudices. ACM/Addison-Wesley, New York

27. Jackson M (2001) Problem frames: analyzing and structuring software development problems.
Addison-Wesley, New York

28. Jürjens J (2002) UMLsec: extending uml for secure systems development. In: Proceedings
of the 5th international conference on the unified modeling language (UML’02). LNCS, vol
2460. Springer, pp 412–425

29. van Lamsweerde A (2004) Elaborating security requirements by construction of intentional
anti-models. In: Proceedings of the 26th international conference on software engineering
(ICSE’04), IEEE Computer Society, pp 148–157

30. van Lamsweerde A, Letier E (2000) Handling obstacles in goal-oriented requirements
engineering. IEEE Trans Softw Eng 26:978–1005

31. Lin L, Nuseibeh B, Ince D, Jackson M (2004) Using abuse frames to bound the scope of
security problems. In: Proceedings of the 12th IEEE international conference on requirements
engineering (RE’04), IEEE Computer Society, pp 354–355

32. Lin L, Nuseibeh B, Ince D, Jackson M, Moffett JD (2003) Analysing security threats and
vulnerabilities using abuse frames. Technical report No: 2003/10, Open University

33. Lin L, Nuseibeh B, Ince D, Jackson M, Moffett JD (2003) Introducing abuse frames for
analysing security requirements. In: Proceedings of the 11th IEEE international conference
on requirements engineering (RE’03), IEEE Computer Society, pp 371–372

34. Liu L, Yu E, Mylopoulos J (2003) Security and privacy requirements analysis within a
social setting. In: Proceedings of the 11th IEEE international conference on requirements
engineering (RE’03), IEEE Computer Society, p 151

35. Lodderstedt T, Basin D, Doser J (2002) SecureUML: a UML-based modeling language for
model-driven security. In: Proceedings of the 5th international conference on the unified
modeling language (UML’02), Springer, pp 426–441

36. Matulevičius R, Mayer N, Heymans P (2008) Alignment of misuse cases with security risk
management. In: Proceedings of the 3rd international conference on availability, reliability
and security (ARES’08), IEEE Computer Society, pp 1397–1404

37. Matulevičius R, Mayer N, Mouratidis H, Dubois E, Heymans P, Genon N (2008) Adapting
secure tropos for security risk management during early phases of the information systems
development. In: Proceedings of the 20th international conference on advanced information
systems engineering (CAiSE’08). LNCS, vol 5074. Springer, pp 541–555

38. Mayer N (2009) Model-based management of information system security risk. PhD thesis,
University of Namur

39. Mayer N, Genon N (2006) Design of a modelling language for information system secu-
rity risk management –elicitation of relationships between concepts and meta-model of each
source. Technical report. University of Namur

40. Mayer N, Heymans P, Matulevičius R (2007) Design of a modelling language for informa-
tion system security risk management. In: Proceedings of the 1st international conference
on research challenges in information science (RCIS’07), IEEE Xplore Digital Library, pp
121–132

41. Mayer N, Rifaut, A, Dubois E (2005) Towards a risk-based security requirements engineering
framework. In: Proceedings of the 11th international workshop on requirements engineering:
foundation for software quality (REFSQ’05), Springer, pp 83–97

42. McDermott J, Fox C (1999) Using abuse case models for security requirements analysis. In:
Proceedings of the 15th annual computer security applications conference (ACSAC’99), IEEE
Computer Society, pp 55–65

43. Mead NR, Hough ED, Stehney TR (2005) Security quality requirements engineer-
ing (SQUARE) methodology. Technical report CMU/SEI-2005-TR-009, ESC-TR-2005-
009Carnegie Mellon University – Software Engineering Institute, Pittsburgh, PA

44. Moffett JD, Nuseibeh B (2003) A framework for security requirements engineering. Report
YCS 368 Department of Computer Science, University of York, UK

306 É. Dubois et al.

45. Moody DL (2009) Evidence-based notation design: towards a scientific basis for constructing
visual notations in software engineering. IEEE Trans Softw Eng 35(6):756–779

46. Mouratidis H, Giorgini P (2010) Extending i∗ and tropos to model security. In: Yu E,
Giorgini P, Maiden N, Mylopoulos J (eds) Social modeling for requirements engineering.
MIT (in press), Cambridge, Massachusetts (USA)

47. Mouratidis H, Giorgini P, Manson GA, Philp I (2002) A natural extension of tropos method-
ology for modelling security. In: Proceedings of the agent oriented methodologies workshop
(OOPSLA’02)

48. Oladimeji EA, Supakkul S, Chung L (2006) Security threat modeling and analysis: a
goal-oriented approach. In: Proceedings of the 10th international conference on software
engineering and applications (SEA’06), pp 178–185

49. Olle TW, Hagelstein J, Macdonald IG., Rolland C, Sol HG, Van Assche FJM, Verrijn-Stuart
AA (1992) Information systems methodology: a framework for understanding, 2nd edn.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA

50. Rolland C (1998) An information system methodology supported by an expert design tool.
Elsevier Science, University of Paris

51. Sindre G, Opdahl AL (2004) Eliciting security requirements with misuse cases. Reqs Eng J
10(1):34–44

52. Stoneburner G, Goguen A, Feringa A (2002) NIST special publication 800-30: risk man-
agement guide for information technology systems. National Institute of Standards and
Technology, Gaithersburg

53. Stoneburner G, Hayden C, Feringa A (2004) NIST special publication 800-27 rev. A: engi-
neering principles for information technology security (a baseline for achieving security).
National Institute of Standards and Technology, Gaithersburg

54. The Project Management Institute (2001) Project management body of knowledge
www.pmi.org/

55. Vraalsen F, Mahler T, Lund MS, Hogganvik I, den Braber F, Stølen K (2007) Assessing
enterprise risk level: the CORAS approach. In: Khadraoui D, Herrmann F (eds) Advances
in enterprise information technology security. Idea Group, IGI Global, Hershey, Pennsylvania
pp 311–333

56. Wikipedia (2008) Information system definition. http://en.wikipedia.org/wiki/Information_
system

57. Yu E (1996) Modelling strategic relationships for process reengineering. PhD Thesis,
University of Toronto, Toronto, ON, Canada

Methodologies for Design of Service-Based
Systems

Barbara Pernici

Abstract The methodological approaches to service design have started from
extensions of conventional design methodologies and are moving towards more
specific methods, which consider the complete service life cycle and the flexibility
and adaptivity which are inherent in the use of services. In this chapter we dis-
cuss how an intentional perspective in service design can be helpful to increase the
link between requirements and service construction and to make the development
process more systematic.

1 Introduction

The service-oriented approach provides a basis to (re)design business processes for
improving business competiveness [1]. In fact, the service-based approach allows
developing flexible applications, in which services are composed dynamically to
satisfy business goals, taking into account the variability of the context in which
services are executed.

Adaptation in the service-oriented paradigm is one of the keywords for real-
izing flexible services. Adaptation support has been proposed in service-oriented
platforms, as a way to support an easier integration of business processes and of
existing systems and to provide more flexible and value-added services. Adaptation
in services allows varying service execution or service compositions in a process
depending on the state of the component services, of the service composition, and
of the external context, which might include variable user requirements and variable
infrastructural conditions.

B. Pernici (B)
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
e-mail: barbara.pernici@polimi.it

307S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_17, C© Springer-Verlag Berlin Heidelberg 2010

308 B. Pernici

Adaptivity at the software service level is being studied within the S-Cube1

(Software Services and Systems) European network of excellence, with the goal
of developing advanced design tools and run-time modules which support adaptiv-
ity. Service-oriented design has to take into account the fact that software services
are strictly related to real world services provided to customers, and that in the con-
sumer perception it is often difficult to separate the software part of a service from
the global service provided.

Therefore, coming to service design methodologies, it is more and more impor-
tant to support the complete service life cycle and to provide methodological
guidelines and tools that start from a global consideration of the requirements for
the services being designed and developed.

While the initial service-based design methodologies have been derived from
consolidated software design methodologies, the need for specific approaches to
service design is being developing over time [3, 8].

Yet, even considering the specific characteristics of services during design, most
of the proposed methods do not provide specific approaches for the requirements
engineering phase.

One emerging approach which proposes linking the requirements engineer-
ing phase to the subsequent design phases has been proposed in [6] and further
developed in [10], based on the notion of intentions to specify the goals of the busi-
ness processes in the requirements phases and to design services based on these
requirements.

The goal of this chapter is to discuss the specific characteristics of services and
service life cycle that motivate different methodological approaches and to illustrate
and compare approaches in the first service design phases, focusing on requirements
engineering and service design, and on service compositions.

In the following, in Sect. 2 we illustrate the important aspects in designing ser-
vices and service life cycles, focusing in particular on service compositions. In Sect.
3, we discuss requirements engineering in different service design methodologies,
while in Sect. 4 we compare approaches to designing service compositions. Finally,
in Sect. 5 future work and possible research directions are presented.

2 Designing Adaptive Services

Service design has been studied from different perspectives and in different research
areas. As mentioned in the introduction, the first service design methodologies have
been proposed extending the traditional approaches to software development in the
literature. In the life cycle illustrated in Fig. 1, which emerged from discussion in
the Dagstuhl seminar on Service Oriented Computing [9], some of the characteriz-
ing aspects of service development are included. First of all, a provisioning phase
is explicitly inserted, thus emphasizing that service provisioning is different from

1S-Cube project web site: http://www.s-cube-network.eu/.

Methodologies for Design of Service-Based Systems 309

Provisioning

Construction
&

Testing

Deployment

Execution
&

Monitoring

Planning
Analysis

&
Design

Evolution for
change,

maintenance Physical design

Conformance
validation

Fig. 1 Service development
life-cycle [9]

service deployment and needs to be included in the design phases to guarantee that
services are provided according to the requirements also in variable contexts of exe-
cution and number of requests. In addition, already in the initial design phases there
is a focus on specifying and guaranteeing both functionalities and also the quality
of services, and therefore the analysis and logical design phase are followed by a
conformance validation phase. Monitoring is essential to guarantee the promised
services quality characteristics, but also for evaluating, in the evolution for change
phase, whether a service must evolve iterating the design cycle to better guaran-
tee its quality of service, published in service registries and agreed with service
consumers [4].

In this chapter, we focus on designing services as service compositions. A ser-
vice composition is a set of services which are executed according to a number of
constraints associated to them. Flexibility during the execution is one of the main
characteristics of service compositions.

Most methodological approaches focus on defining an order of execution for
services in the service composition, thus creating executable business processes.
Service orientation however presents some peculiar characteristics that are funda-
mental parts of its innovative approach: on one hand, the service composition is not
necessarily following a fixed predefined process schema, on the other hand some
process characteristics related to the global quality of the service provided by the
composed process become important. The quality of service of the process becomes
one of its characteristics and the goal of the service provider is to guarantee that the
service composition satisfies the promised quality constraints. The service-oriented
approach, in order to reach this goal, takes into consideration another important
aspect, which distinguishes service compositions from traditional workflow-based
processes: the actual services composing the process may vary in different pro-
cess executions, and also during each of the single executions of the process.
In fact, in the literature, there is a distinction between abstract services, which

310 B. Pernici

compose the process schema, and concrete services, which are invoked during pro-
cess instance executions. Concrete services for a process may be selected before
process invocation, but also during process execution, changing dynamically the
service composition in terms of component concrete services. Dynamic service
selection may be necessary to guarantee global quality constraints, in particular
when the execution context is variable, but also to ensure process completion when
some of the invoked services are no more available. Concerning adaptivity in pro-
cess execution, self-management approaches have been proposed for services, in
order to guarantee process execution under specified general policies controlling
them.

As a result, the objective of service design is first to build process schemas
for services compositions, second to enable the dynamic aspects related to service
selection and more in general service management.

In the literature, two main trends have emerged in methodologies for process
design.

On the hand, the main goal is to design service-based applications starting from
consolidated software application design approaches. In [5], the literature is exam-
ined comparing approaches that start from a requirements engineering perspective
with the ones starting from a business process modelling perspective. In both cases,
the goal is to build through a systematic design approach an executable service-
based process. While in requirements engineering approaches, process models are
derived from the analysis of use cases and scenarios, business process modelling
focuses on process modelling notations and on techniques to refine high level busi-
ness processes into executable processes. Resulting process descriptions may be
annotated with quality of service requirements.

However, in these approaches aspects related to the dynamic aspects of service
compositions and service management are only marginally considered.

On the other hand, another issue which is considered, e.g. in the methodology
developed in [8], is that while a process is considered to be a service composi-
tion, the component services and their properties have to be identified and in some
case there is a need for developing services to realize the composition. One of the
issues studied in this methodological approach concerns the definition of services
themselves. In fact, service design is about the identification of the right services,
and in their organization in a manageable service hierarchy. Services and their
lifecycle have to be managed, including their identification, design, development,
deployment, discovery, application, evolution, and management. The proposed
methodology therefore focuses on defining an iterative and incremental process
for service design and development, based on the phases of planning, analysis and
design, construction and testing, provisioning, deployment, execution and moni-
toring. Such phases are related to traditional software development phases, but
service identification and construction need to follow specific principles to guaran-
tee that the services are self-contained and easily composable. The main principles
are based on minimizing service coupling between business processes, on creating
highly cohesive business processes, on providing services at an appropriate level of
granularity. These principles are applied throughout the development phases and in
particular during the analysis and design phases. The methodology provides general

Methodologies for Design of Service-Based Systems 311

guidelines for service design, while later approaches such as the P2S methodology
[2] provide a systematic and algorithmic approach to measure service cohesion and
coupling and to derive appropriate granularity levels based on process modelling
techniques and the analysis of service interactions to identify candidate services.

However, these approaches, while they focus on specific aspects of service com-
position, they still lack an analysis at the design time of the dynamic properties
which are characteristics of the service approach.

While the first attempts to provide dynamic service composition at run time have
been based on managing service invocations to guarantee quality constraints or to
heal failures, a more systematic approach to designing service-based application
based on an adaptivity paradigm at run time has been proposed within the European
S-Cube network on Software Services and Systems. S-Cube is focusing not only
on service composition at design time, but also on the adaptive characteristics of
service-based approaches at rune time. One of the results of the project is to dis-
tinguish clearly among adaptation needs, strategies, and enactment, and to include
their consideration during design. In this way the service life-cycle can be extended
separating the traditional design phases and the run time service management and
adaptation, creating the links between them (see Fig. 2).

In particular, during requirements engineering and design and service construc-
tion, the adaptation contexts and strategies need to be defined in conjunction with
the service design as described in previous approaches, to enable systematic service
adaptation at run time [3]. At run time, to be able to enact adaptation, first adaptation
needs are identified, then adaptation strategies are applied.

In the following of the chapter, we focus mainly on the phases which go from the
early requirements engineering to service design, considering in particular how the
adaptation aspects can be considered at design time to enable run-time adaptation.

Identify
adaptation

need

Identify
adaptation

strategy

Enact
adaptation

Early Requirements
Engineering

Requirements
Engineering

& Design

Construction

Deployment &
provisioning

Operation &
management

Fig. 2 S-Cube life-cycle
of adaptable service-based
applications [3]

3 Requirements

In most of the proposed service-oriented design approaches, requirements engineer-
ing is the first phase in service design and development. However, in the literature,
most authors refer to traditional approaches for this phase.

312 B. Pernici

In the life cycle proposed by Papazoglou [8], the initial phase is the plan-
ning phase, in which the business needs are analyzed, the technological landscape
reviewed, new requirements are conceptualized and related to existing applications.
The planning phase in this proposed approach is very similar to that of traditional
software development methodologies.

Also in [5] the adoption of existing approaches in the initial design phase is
advocated. Use cases and scenarios are proposed for the initial phases, where initial
scenarios are designed and merged and integrated using consolidated techniques.
Business process modelling techniques are also considered, but the difficulty of
integrating process models in initial phases is analyzed, and process models are
described as more adequate for later design stages. However, the use of fragments
of process models in conjunction with scenarios might have the advantage of link-
ing scenarios to executable components. Process models can also be annotated with
quality of service and information derived from run-time execution which might
be useful for composing services at run time. However, while some consideration
is given to run-time aspects, there is not a direct link to the run-time adaptation
aspects.

An innovative approach for linking business goals and services has been pro-
posed by Colette Rolland and her group, first in [6], then refining this work in [10]
to a full fledged service-oriented design approach. The main proposal is to start
describing services already in business terms, which makes it easier to transform
requirements into executable applications considering the specific characteristics of
services and their adaptivity. One of the problems of considering services already
in the first design phases is that services are often described in terms of their func-
tionalities, thus focusing on their provided interfaces and operations. The original
proposal in [6] is to move from function-driven service oriented computing (SOC)
to intention-driven SOC. The intention-driven approach has the advantage of focus-
ing on the purpose, the intention, behind a service, rather than on its functional
view.

The advantage of intentional service description is that it allows considering
variability, i.e. allowing the representation of alternative variations of a service or
alternative service compositions to achieve the same intention.

The classical SOA architecture is therefore transformed in [10] into an ISOA
(intentional SOA) architecture, in which service discovery is goal oriented and
binding becomes connected to adaptation. In addition, the intention-based ser-
vice description can be presented at different abstraction levels, thus allowing
the description of services at different granularities, which are used then in the
subsequent design and construction phases.

In this way, specific characteristics of services illustrated in the previous sec-
tion can be already considered in the initial design phases, and the derivation of
executable processes based on service composition made easier.

Maps are proposed in [10] for modelling intention-driven compositions of ser-
vices. A central point in this approach is that a service permits the fulfilment of
an intention, given an initial situation and terminating in a final situation, when the
intention is viewed as a goal for the service (Fig. 3).

Methodologies for Design of Service-Based Systems 313

b

a

c

Alt.
1

Alt.
2 3

1

1

Fig. 3 Business map [10]

A business map allows representing different ways of achieving an intention. An
intention can be achieved with several paths in a map from source intentions to
targets, and some sections can be mutually exclusive. A hierarchy of maps can be
defined to refine business intentions. In this way processes are modelled focusing
on intentions and there is no need to focus on “how” a goal is achieved until later
stages. Maps are associated with a method to derive intentional services from maps,
thus providing an approach which is tailored to the specific characteristics of the
service-oriented approach.

4 Designing Service Compositions

The next phase is to derive service compositions that allow the satisfaction of the
specified requirements. One of the main goals in this phase is to examine existing
services and legacy applications in order to be able to design or redesign processes
as compositions of existing services.

In the methodological guidelines of [8], in the analysis phase the objective
is to identify aggregations of services in processes and to identify subprocesses
to prevent business processes to become unmanageable. Abstract processes are
considered in this phase, and a gap analysis is performed to determine which
services have to be developed, reused, or repurposed. Only in the design phase
granularity and reusability issues are taken into account, as principles for service
development. Design is strictly related to service specification, i.e. the ability of
representing functional and behavioural aspects of services, as well as policies
associated to them. Service compositions are represented with process structures,
with abstract process schemas specification, such as in abstract BPEL. Graphical
notations can be used in the design phase, such as BPMN. Policies associ-
ated to processes and services are mainly in terms of Service Level Agreements
(SLA) to specify non-functional concerns, expressed in terms of quality of service
constraints.

In synthesis, guidelines are provided to construct abstract process schemas from
requirements, taking into consideration the availability of a number of services,
possibly derived from a service registry, and annotating the processes with SLAs.

314 B. Pernici

In such an approach the methodological approach to service design prevails, but
there is little focus on the potential offered by service-orientation is terms of adap-
tivity at run time. Some adaptivity is implied by using abstract service descriptions
and abstract processes with SLA annotations, however there is a need to better focus
on adaptation aspects.

As discussed in the previous section, adaptation can be considered both in the
design and in the run-time phases. In the design phase, there is a need to iden-
tify adaptive service behaviours and to specify the adaptation strategies that can be
applied at run time.

An initial attempt to go in the direction of the life cycle described in [3], is pro-
posed in the PAWS (Processes with Adaptive Web Services) framework proposed in
[1]. In PAWS, processes are designed to be adaptive, where adaptation is prepared
at design time (Fig. 4).

A process is designed as an abstract process, as proposed in previously illustrated
methods, but the choice of the suitable services to be invoked is performed at design
time. In fact, for each task a selection of potential services is provided at design
time, and interface adaptation and quality of service negotiation for the services

Flexible process Concrete
candidate
services

Global constraints

Local task
constraints

T1

T2 T3

T4

Local task
constraints

Process design

Advanced service
selection

Service preparation
(SLA negotiation, interface mediation)

Service
registry

Process
execution

Self-healing

QoS optimizationcontext

Fig. 4 PAWS, processes with
adaptive web services [1]

Methodologies for Design of Service-Based Systems 315

to be potentially invoked in a process at run time are part of the process design
phase.

The process description is annotated with local and global quality of service con-
straints for the process. In this way, at run time, concrete services can be selected and
invoked using QoS optimization techniques, and process self-healing mechanisms
can be activated in case of failure.

In this framework, the adaptation may depend also on the context of execu-
tion. The context may determine the way in which component services are selected,
changing the quality needs for a business process. For instance, the importance of
different quality of service dimensions can vary according to the service consumer
profile, or also to the context in which the process consumer is operating.

Another direction for designing adaptive processes in the PAWS framework is
to extend the process description with variants, thus allowing to model different
process fragments which are alternatively selected according to the process and its
context of execution. An example is given in Fig. 5, where two different process
fragments are defined for different QoS levels.

While service design in PAWS is focused on providing adaptivity mechanisms,
it does not provide a way to define different strategies to achieve the process goals
through adaptation and to select among strategies at run time, as envisioned in [3].

As seen above, all these approaches have the problem that there is a weak and
informal link between requirements expressed in the initial design phase and the
following process construction and service specification phases.

The intentional process presented in [10] has instead the advantage of linking
goals to processes and then to service design and construction. From the intention
maps, compositions of executable services are derived, as shown in Fig. 6.

On the right part of Fig. 6, at the bottom level executable services are represented.
The top level represents an agent with controls the achievement of the process goal,
while in intermediate levels agents are created to control compositions of services.

As mentioned above, the Maps of [10] do not represent fixed process schemas
defined in all details, but allow describing alternative paths and variants. This flexi-
bility can be exploited in operationalizing intentional services into software services.

Low
QoS

High
QoS

Show
video

Interactive
map

Show text

static
map

Conf1: High QoS Conf2: Low QoS

Fig. 5 Context-aware processes [7]

316 B. Pernici

P

ac1 ab1 ab2 ab3 bc1

b

a

c

Alt.
1

Alt.
2 3

1

1

Executor level

Fig. 6 From intentional maps to enacted services [10]

The intentional services can be mapped to different compositions of services and
offer the choice of variants at run time.

As shown in Fig. 6, such variants can be represented in multiple levels, depending
on the available alternatives derived from the maps. During execution, a con-
trol agent controls the selection and execution of a given composition, which
corresponds to a path in a map.

In this way, alternatives available for dynamic service selection at run time
are specified, and these alternatives correspond to business goals expressed in the
requirements phase.

5 Conclusion

In the present chapter, we discussed some approaches which have been proposed as
methodological frameworks for service design.

We illustrated first how traditional software design life-cycles are evolving for
service-based applications and how one characteristic aspect of service design is to
take into consideration the flexibility of adaptation mechanisms provided by service
orientation.

We also discussed how most approaches adopt for service design, in the ini-
tial phases of requirements engineering, the same approaches which are applied in
traditional software development.

The approach proposed in [10] represents an interesting original research
approach which has the goal of preserving the flexibility aspects of services while
linking their construction directly to specified requirements, supporting the service
construction with a rigorous and formal approach.

Methodologies for Design of Service-Based Systems 317

Future work should consider this research direction which has the advantage of
preserving in service design a general concept of service, linked to business goals,
rather than focusing on service-oriented technology already in the initial phases.

Other aspects which have been discussed with respect to adaptivity in this chapter
should also be linked to the intentional-based approach.

The quality of service aspects are one of the basis for service selection in related
work, and there is a need to relate also business requirements related to quality to
service descriptions at the design level, as well as defining the strategies to select
the appropriate actions at run time to be able to maintain the quality of service levels
specified at design time. The approach of [10], which leaves open the selection of
services at run time, could provide a sound basis for adding also QoS considerations
at design time in view of run-time adaptation.

Other aspects which should be considered during service design concern the
context of use of services. Also in this case the variability elements which can
be specified in an intention-based approach can be the basis for defining process
variants based on context definition.

Other aspects which need more consideration in IT service-based approach are
related to the concept of service in general. In fact, IT services are often used
within real world services, and it is sometimes difficult to distinguish between
the technological and non-technological aspects of service provisioning and ser-
vice consuming. A holistic approach to service design should also consider general
parameters, which, linking requirements to enactment, consider both characteristics
of IT services and those of related real world services. Among the elements to be
evaluated is the total cost of ownership of services, including all relevant aspects
of service in the complete life-cycle, from design to flexible and adaptive service
provisioning.

Acknowledgments The research leading to these results has received funding from the European
Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

References

1. Ardagna D, Comuzzi M, Mussi E, Pernici B, Plebani P (2007) PAWS: a framework for
executing adaptive web-service processes. IEEE Softw 24(6):39–46

2. Bianchini D, Cappiello C, De Antonellis V, Pernici B (2009) P2S: a methodology to enable
inter-organizational process design through web services. In: Proceedings of CAiSE 2009.
LNCS, vol 5565. Springer, Heidelberg, pp 334–348

3. Bucchiarone A, Cappiello C, Di Nitto E, Kazhamiakin R, Mazza V, Pistore M (2009) Design
for adaptation of service-based applications: main issues and requirements. In: Proceedings
of fifth international workshop on engineering service-oriented applications: supporting soft-
ware service development lifecycles (WESOA). Springer LNCS Services Science Subline,
Heidelberg

4. Cappiello C, Pernici B (2009) Design of repairable processes. In: Cardoso J, van der Aalst W
(eds) Handbook of research on business process. IGI Global, 2009

5. Gehlert A, Danylevych O, Karastoyanova D (2009) From requirements to executable pro-
cesses – a literature study. In: Proceedings of the 5th international workshop on business
process design (BPD 2009), Ulm, Germany. Springer LNBIP, Heidelberg

318 B. Pernici

6. Kaabi RS, Souveyet C, Rolland C (2004) Eliciting service composition in a goal driven man-
ner. In: Proceedings of international conference on service oriented computing (ICSOC).
ACM, pp 308–315

7. Modafferi S, Benatallah B, Casati F, Pernici B (2005) A methodology for designing and man-
aging context-aware workflows. In: Proceedings of IFIP international conference on mobile
information systems, Oslo. Springer IFIP Series

8. Papazoglou MP, Van Den Heuvel W-J (2006) Service-oriented design and development
methodology. Int J Web Eng Technol 2(4):412–442

9. Pernici B (2005) 05462 Summary report on “service design and development”. Dagstuhl
seminar on Service Oriented Computing

10. Colette Rolland, Manuele Kirsch-Pinheiro, Carine Souveyet, An Intentional Approach to
Service Engineering, IEEE Transaction of Services Computing, April 2010 (in press), DOI
Bookmark: http://doi.ieeecomputersociety.org/10.1109/TSC.2010.26

Quality Assurance in the Presence of Variability

Kim Lauenroth, Andreas Metzger, and Klaus Pohl

Abstract Software Product Line Engineering (SPLE) is a reuse-driven develop-
ment paradigm that has been applied successfully in information system engineering
and other domains. Quality assurance of the reusable artifacts of the product line
(e.g. requirements, design, and code artifacts) is essential for successful product line
engineering. As those artifacts are reused in several products, a defect in a reusable
artifact can affect several products of the product line. A central challenge for qual-
ity assurance in product line engineering is how to consider product line variability.
Since the reusable artifacts contain variability, quality assurance techniques from
single-system engineering cannot directly be applied to those artifacts. Therefore,
different strategies and techniques have been developed for quality assurance in
the presence of variability. In this chapter, we describe those strategies and discuss
in more detail one of those strategies, the so called comprehensive strategy. The
comprehensive strategy aims at checking the quality of all possible products of the
product line and thus offers the highest benefits, since it is able to uncover defects in
all possible products of the product line. However, the central challenge for applying
the comprehensive strategy is the complexity that results from the product line vari-
ability and the large number of potential products of a product line. In this chapter,
we present one concrete technique that we have developed to implement the com-
prehensive strategy that addresses this challenge. The technique is based on model
checking technology and allows for a comprehensive verification of domain artifacts
against temporal logic properties.

1 Introduction

Colette Rolland is a world-known leader in the information systems community
well known for her significant contributions, among others, in the areas of method
engineering [20–22] and goal-oriented requirements engineering [23, 26, 27]. Her

K. Lauenroth (B)
Software Systems Engineering, University of Duisburg-Essen, Gerlingstraße 16,
45127 Essen, Germany
e-mail: kim.lauenroth@sse.uni-due.de

319S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_18, C© Springer-Verlag Berlin Heidelberg 2010

320 K. Lauenroth et al.

current research interests include software product lines, respectively variability in
process lines. Her interest and her valuable contributions to this relatively new field
of research [24, 25] is yet another indication that Colette Rolland is a very active,
inspiring and trendsetting researcher – even after having reached the retirement.

Software Product Line Engineering (SPLE) is a reuse-driven development
paradigm that has been applied successfully in information system engineering [25],
business process modeling [24] and other domains [19]. SPLE explicitly addresses
reuse by differentiating between two kinds of development processes [19]:

• Domain engineering: During this process, the commonality and the variabil-
ity of the product line is defined. Furthermore, the reusable artifacts, called
domain artifacts, are realized which implement the commonalities and provide
the variability required to derive the set of intended products. The domain arti-
facts include, among others, requirements models (e.g., use case diagrams),
architectural models (e.g., component or class diagrams) and test models.

• Application engineering: This process is responsible for deriving products from
the domain artifacts. Application engineering exploits the variability of the
domain artifacts by binding (or resolving) variability according to customer
and/or market-specific needs.

The central concept for addressing reuse in product line engineering is the defi-
nition of product line commonality and variability. Product line commonality refers
to parts or aspects of the product line that are part of all products of the product line.
Product line variability describes the possible variation between the products that
belong to a software product line in terms of properties and qualities [17, 19].

Early quality assurance is an important issue in every development project. The
quality assurance of variability models has received great attention in product line
research [28], whereas the comprehensive quality assurance of other artifacts (e.g.
requirements, design, or implementation artifacts) is still an open issue. The prod-
uct line variability constitutes a central challenge for quality assurance of domain
artifacts. Quality assurance techniques from single-system engineering cannot be
directly applied to domain artifacts, since the domain artifacts contain variability.

In this chapter, we first illustrate the effects of variability on the quality assurance
of domain artifacts (Sect. 2). We will then present different strategies that have been
developed for the quality assurance of domain artifacts in the presence of variability
(Sect. 3). For each strategy, we will discuss the benefits and the involved challenges.

We will then focus on a particular strategy, the so called comprehensive strat-
egy which aims at checking the quality of all possible products of the product line.
This strategy offers the highest benefits, since it uncovers the defects in all possi-
ble products. However, the central challenge for the comprehensive strategy is the
complexity that results from the product line variability and the large number of
potential products of a product line.

Since techniques from single system engineering are not applicable, the devel-
opment of new or adapted techniques is necessary. As an example for possible
adaptation, we will present a quality assurance approach for the comprehensive

Quality Assurance in the Presence of Variability 321

strategy based on model checking technology in Sects. 4 and 5. A conclusion is
provided in Sect. 6.

2 Quality Assurance in the Presence of Variability

This section provides a brief introduction to variability modeling which is a prereq-
uisite for understanding the challenges and solutions for quality assurance in product
line engineering.

2.1 Introduction to Variability Modeling

The central concepts for defining and documenting the variability of a software
product line are variation point and variant. A variation point describes what varies
between the products of a software product line. A variant describes a concrete
instance of a variation point. In case of an online shop product line, for example,
the products can vary in terms of the supported interfaces. A product of the product
line (i.e. a concrete online shop) could then offer an interface for traditional web
browsers while another product offers an interface for mobile phone web browsers.

For the documentation of variability in this chapter, we use the Orthogonal
Variability Model (OVM) that has been developed in our group and which offers
benefits over other variability modeling techniques. In the following, we give a
brief introduction into the OVM together with a small example shown in Fig. 1.
For a more detailed introduction into the OVM, we refer to [19].

<<Name>>

VP

Mandatory

<<Name>>

VP

Optional

<<Name>>

VP

Alternative
Choice

V

<<Name>>

V

<<Name>>

V

<<Name>>

V

<<Name>> V

<<Name>>

[min…max]

Fig. 1 Graphical notation of the orthogonal variability model

In the OVM, variation points are modeled as triangles and variants as rectan-
gles. We furthermore distinguish three types variability dependencies to document
in which way variants of a product line must or can be selected:

• A mandatory variability dependency between a variation point and a variant
describes that this variant must always be selected when the variation point is
considered for the product at hand. A mandatory variability dependency is drawn
as a continuous line.

322 K. Lauenroth et al.

• An optional variability dependency between a variation point and a variant
describes that this variant can be selected but does not need to be selected. An
optional variability dependency is drawn as a dashed line.

• An alternative choice is a specialization of optional variability dependencies. An
alternative choice group comprises at least two variants which are related to a
variation point by optional variability dependencies as shown in Fig. 1. The min,
max bounds define how many variants of the alternative choice group must be
selected at least (min) and how many variants can be selected at most (max).

In addition to variability dependencies, the OVM allows defining constraint
dependencies to document additional dependencies between variation points and
variants, e.g. to enforce that two variants of different variation points cannot be
selected together.

Variability in the domain artifacts is modeled by using so called artifact depen-
dencies between the elements of the OVM and the domain artifacts. Variants in
the OVM are related to variable elements in the reusable artifacts via those arti-
fact dependencies. A simple example of an artifact dependency is shown in Fig. 2
in Sect. 4. Whenever a variant in the OVM is selected for a concrete product, the
related elements in the reusable artifacts will be included in the derived artifacts of
the product. Elements of the domain artifacts that are not related to a variant in the
OVM are considered as a common artifact and are therefore part of every product
that is derived.

orthogonal variability model

V1: flashing
yellow on closing

V2: yellow
on closing

variation point

variants

alternative
variability
dependency

close

gate open!close gate!

gate closed! open gate!

traffic light gate

yellow
flash

gate closed?

close gate?

yellow

close gate?

gate closed?

green

red

gate open?

open gate?

properties

closing opening
yellow

red

If gate is closing, light is flashing yellow / AG(closing yellow flash).

If gate is closing, light is yellow / AG(closing yellow).

VP

V V

[1..1]

Behaviour on
Closing

sendable messages are followed by ‘!‘, receivable messages are followed by ‘?‘

open

Fig. 2 Simplified example of domain artifacts

Quality Assurance in the Presence of Variability 323

2.2 Challenges of Quality Assurance in Product Line Engineering

The overall quality of the product line and its derived products strongly depends on
the quality of the domain artifacts. Similar to the development of single software
products, defects should be uncovered as early as possible in the SPLE process, as
uncovering a fault late in the process can lead to very high correction costs [12].
In product line engineering, this means that defects should be uncovered in domain
engineering.

In contrast to the development artifacts that are created in single systems software
engineering, the domain artifacts that are created in product line engineering are
reused in several products derived from the product line. For instance, a variant can
be reused in many different products, or a commonality is reused in all products of
the product line. Thus, a high quality of the domain artifacts is desirable. A defect in
a domain artifact can affect many products of the product line and thus can become
costly to remove, as all those products might have to be corrected [11, 30].

Quality assurance techniques from the development of single software products
cannot be applied directly to domain artifacts because these artifacts contain vari-
ability. Assume that a domain requirements specification of a product line contains
the variable requirement R which is related to the variant v1 and it contains the vari-
able requirement ¬R which is related to the variant v2. Using a quality assurance
technique from single system development and performing a consistency check of
this domain requirements specification would result in the identification of a con-
tradiction, since the requirements R and ¬R cannot be fulfilled together. This means
that without the consideration of the variability model, it is not possible to decide
whether the detected inconsistency can actually affect any derived product of the
product line or not. If the variability model does not allow the combined selection
of the variants v1 and v2, then the contradicting requirements can never become part
of the same specification and therefore will never cause an inconsistency. This sim-
ple example already shows that quality assurance techniques for SPLE have to take
the product line variability into account.

3 Quality Assurance Strategies in the Presence of Variability

Above, we have shown using a simple example that quality assurance techniques
have to take the variability of the product line into account. In order to handle the
variability in domain artifacts, quality assurance techniques in domain engineering
generally follow three different strategies [15, 18]:

• Commonality strategy: Only the common parts shared by all products of the
product line are covered by the quality assurance technique.

• Sample strategy: The quality assurance technique is applied to sample products
that are derived from the product line.

• Comprehensive strategy: The quality assurance technique is applied to all
possible products of the product line.

324 K. Lauenroth et al.

In the following, we will discuss these strategies in more detail and present the
benefits and challenges for each strategy.

3.1 Commonality Strategy

Quality assurance techniques that follow the commonality strategy aim at check-
ing only the common parts of a software product line. When focusing only on
common parts, the variants are typically either (1) ignored during the checking of
the reusable artifacts or (2) they are replaced by placeholders that abstract from
the variants or simulate them. As an example for the first case, an inspection of
a reusable requirements specification for a software product line could focus on
common requirements only. As an example for the second case, code fragments
of a variant could be replaced by a code fragment that implements some basic
behavior or at least guarantees that the code is structurally correct such that it will
compile.

The benefits of the commonality strategy are that early testing in domain engi-
neering is enabled and that quality assurance activities can be performed even if no
variants have been realized so far.

Techniques that follow the commonality strategy must address the following two
challenges:

1. The effort for creating placeholders has to be kept at a minimum, since the place-
holders are only used for the quality assurance purpose. Creating placeholders
usually requires development effort. Thus, the number of placeholders should be
kept as small as possible.

2. An adequate coverage of the domain artifacts has to be guaranteed. Quality
assurance activities should be planned that complement this strategy, since the
variants are not covered when following the commonality strategy.

3.2 Sample Strategy

Quality assurance techniques that follow the sample strategy aim at checking a set
of sample products of the product line. The basic steps of this strategy are typically
as follows:

1. Determine one or more sample products (defined in terms of variants that are
selected).

2. For each of the sample products:

(a) Derive product-specific artifacts by binding the variability in the domain
artifacts.

(b) Apply quality assurance techniques from the single-system development to
the derived artifacts.

Quality Assurance in the Presence of Variability 325

The benefit of this approach is that existing techniques from single-system devel-
opment can be used as they are. In order to implement the sample strategy, the
following challenges have to be faced:

1. Selection of representative sample products is necessary. The sample products
should be chosen in such a way that checking those sample products will allow
drawing conclusions about the overall quality of the software product line.

2. Keeping the number of selected sample products manageable. The number of
sample products should be kept as small as possible while guaranteeing a rep-
resentative coverage of the software product line. Otherwise, the effort for
checking the sample products will be infeasible and several redundant checks
(e.g. due to commonalities) have to be performed.

3.3 Comprehensive Strategy

The comprehensive strategy aims at ensuring the quality of all potential products
of the software product line. A “brute-force” realization [19] of the comprehensive
strategy could be as follows:

1. Bind the variability in the reusable artifacts for each of the potential products of
the software product line.

2. Apply techniques from the development of single systems to the derived artifacts
of each of these products.

The comprehensive strategy is the strategy that leads to the best coverage of the
domain artifacts. Although the sample strategy (see the previous sub-section) allows
checking all variants of the software product line by determining representative sam-
ple products, those variants are not checked in all potential reuse contexts, i.e. they
are not checked for all products of the software product line. As an example, it may
be the case that v1 and v2 have been checked in one sample product and v2 and
v3 in another sample product and have not exposed any failures, while a product
which contains v1 and v3 might fail, for instance, due to some undesired feature
interactions [16].

Obviously, the number of potential products in a software product line of
industry-relevant size prevents any “brute-force” approach from being used for
realizing the comprehensive strategy in practice. We illustrate this with a simple
example. Assume a set of reusable artifacts that contains 10 variation points each
with 2 optional variants. Approximately 1 million possible software products can be
derived from these artifacts if there are no further constraints for combining the vari-
ants (20 independent variants lead to 220 possible combinations). Industry reports on
software product lines with up to tens of thousands of variation points and variants
(see [4, 14]) which leads to a much larger set of possible products.

Thus, a significant challenge for realizing the comprehensive strategy is the ques-
tion how to deal with the complexity that is involved in checking all potential

326 K. Lauenroth et al.

products. One possible approach is to avoid a separate derivation and checking of
each product, since checking each product would lead to a large number of redun-
dant checks. Instead, a comprehensive approach should directly check the domain
artifacts by taking the variability of the domain artifacts into account. However, the
challenge of this approach is to show that every possible product is checked.

In the following section, we present such a comprehensive quality assurance
approach that is based on model checking techniques and allows for a comprehen-
sive verification of domain artifacts against temporal logic properties.

4 Towards a Comprehensive Quality Assurance
in the Presence of Variability

Automated verification approaches are a common way to address quality assur-
ance in product line engineering [29]. Model checking [2] is a technique for
comprehensive quality assurance that facilitates the verification of properties
(typically specified in temporal logic, e.g. CTL) of a system (typically specified in
a state transition model). In software engineering for single-systems, model check-
ing is an established technique for verifying development artifacts in requirements
engineering, design, realization, and test [6] in different domains.

Since product line engineering addresses a set of similar products instead of a
single product, model checking of domain artifacts in product line engineering has
to be defined as follows:

Model checking of domain artifacts means to verify that every possible product that can be
derived from a domain artifact fulfills the specified properties [10].

In contrast to model checking in single-system development, where a single product
is verified against expected properties, model checking in product line engineering
has to verify that a whole set of products fulfills the properties specified for each
product.

Numerous model checking approaches have been proposed for the verification
of single-system specifications [1, 2, 5]. However, model checking approaches from
single-system engineering cannot directly be used for the verification of domain
artifacts, since they do not consider the variability defined for the product line [9].
We will illustrate this using a simple example.

Figure 2 depicts a simplified example for defining domain artifacts, properties,
and the variability of a product line [10]. The example depicts a simplified orthogo-
nal variability model, two I/O-automata and two properties (see [10] for a detailed
introduction into the modeling language). The example specifies a simple product
line for rail crossing gates which consists of a traffic light and a gate. The traffic
light exhibits alternative variable behavior: The traffic light can either show a flash-
ing yellow light or a steady yellow light when the gate is closing. The behavior can
be verified with respect to the two variable properties that specify invariants of the

Quality Assurance in the Presence of Variability 327

product line (the operator AG “always globally” means that these properties must
always be fulfilled). The variability is described by the variants of the variability
model and by the relationships between the variants and the specification elements.

If one ignores the variability model and applies a model checking approach from
single system engineering to the example presented in Fig. 2, the model checking
approach would state that both defined properties are not fulfilled by the specified
system, since it is possible to reach the states (yellow flash, closing) and (yellow,
closing) which are counterexamples for the validity of each property.

However, this verification result would be incorrect. The variability model does
not allow to derive a product from the domain artifacts for which the property
AG(closing ⇒ yellow) is specified and which is able to reach the state (yellow
flash, closing), or vice versa for which the property AG(closing ⇒ yellow flash)
is specified and which is able to reach the state (yellow, closing).

One way to apply model checking approaches from single-system engineering in
product line engineering would be to derive every possible product from the domain
artifacts and then verify each derived product individually. However, as it has been
discussed in Sect. 3.3, such a “brute force” approach is not feasible for product lines
of industrial size.

5 Model Checking in the Presence of Variability

In this section, we illustrate the adaptation of a model checking algorithm in order
to enable the comprehensive quality assurance of a domain artifact. The verification
of the AG operator is shown in [9]. In this chapter, we focus for illustration purpose
on the next-time-operator (EX f1) which can be verified easily for single system and
only requires minor adaptation for the verification of domain artifacts. The next-
time-operator, EX f1 evaluates to true, if there is one path starting at the initial state
on which f1 holds on the next state.

The presented approach is based on the model checking approach from Clarke
et al. [2] which is considered as one of the fundamental approaches for model check-
ing. The main idea of the approach is to include the variability information specified
in the variability model (as Boolean variables) in the model checking algorithms.
During the exploration of the state space, the algorithms consider the variabil-
ity model to ensure that the current path explored in the state space is valid with
respect to the variability model. Algorithms for the verification of other properties
are presented in [10].

5.1 Formal Foundations

In this section, we give a brief introduction into the formal foundations of our
approach. To reason about the variability model of a product line, the variability
model is formalized as follows:

328 K. Lauenroth et al.

• Each variant of the variability model is represented as a Boolean variable vi,
which evaluates to true if the corresponding variant is included in the derived
product under consideration.

• The set of all such Boolean variables of an OVM is called V.
• The constraints of the variability model are formalized by a Boolean expres-

sion OVM(v) over the variables in V. OVM(v) evaluates to true for each valid
product of the software product line, i.e., OVM(v) only evaluates to true, if the
variants included in the derived product under consideration satisfy all variability
dependencies and all constraint dependencies.

For more details on the formal specification of the orthogonal variability model, we
refer to [17].

For the specification of the behavior of the products of the product line, we
use I/O-automata which are an established language for modeling concurrent and
distributed discrete event systems [13] and are also used for specifying domain arti-
facts [7]. The specification of a system typically consists of a set of I/O-automata
C = {C1, . . . , Cn}. An I/O-automaton Ci is defined as 5-tuple (Zi, z0,i, Sendi,
Receivei, Ti) where

• Zi is the set of states,
• z0,i ∈ Zi is the initial state,
• Sendi is the set of sendable messages,
• Receivei is the set of receivable messages (Sendi ∩ Receivei = Ø),
• Ti ⊆ Zi × M × Zi; (M = Sendi ∪ Receivei) is the transition relation.

For documenting variability in I/O-automata, we define a variability relationship
between the transitions Ti of the I/O-automaton and the variants V of the variability
model as follows: VRelIO ⊆ V × P(Ti):1

• t ∈ Ti is variable, if t is related to a variant: ∃(v,T ′) ∈VRelIO: t ∈ T ′,
• t ∈ Ti is common, if t is not related to a variant: ∀(v,T ′) ∈VRelIO: t /∈ T ′.

Without loss of generality, we assume that a transition cannot be related to more
than one variant, i.e. ∀ (v1, T ′

1), (v2, T ′
2) ∈ VRelIO: (T ′

1 ∩ T ′
2 = Ø) ∨ (v1 = v2), since

every orthogonal variability model with multiple artifact dependencies between
variants and artifacts can be transformed into an orthogonal variability model with
a unique artifact dependency. A proof of this claim can be found in [8].

In order to perform the verification of a set of automata, the set of automata
is integrated into one automaton by a product construction [14]. Existing single
system algorithms for the product construction do not incorporate the variability of
the product line. We refer to [10] for a description of an algorithm that incorporates

1P(Ti) denotes the power set of Ti.

Quality Assurance in the Presence of Variability 329

the variability. The result of this algorithm is an extended transition relation that
captures the combined behavior of the integrated automata. The extended transition
(named as T ∗) combines a transition with the variant selection information (V ′) that
is necessary to select a particular transition for a product and is defined as follows:
T ∗ ⊆ Z × (Send ∪ Receive) × Z × V ′.

5.2 Adaptation of Model Checking for EX f

5.2.1 Adaption of State Labeling

The model checking approach from Clarke et al. [2] labels each state with the prop-
erties that are fulfilled in this state. In variable I/O-automata, the fulfillment of a
property may rely on variable transitions. Therefore, the state labeling may include
the variant selection which is necessary to fulfill the property. To incorporate the
variability, we extend the labeling procedures introduced by Clarke et al. [2] as fol-
lows: Let f be a CTL expression, let z ∈ Z be a state of an I/O-automaton, and let V ′
be a (possibly empty) selection of variants. The state z is labeled with (f, V ′) (i.e.
(f, V ′) ∈ label(z)), if f1 is fulfilled in state z for the selection V ′ of variants.

5.2.2 Adaption of the Verification Algorithm

For the property EX f1, every state should be labeled with EX f1 which has some suc-
cessor state that is labeled with f1. Since the transitions in a variable I/O-automaton
and the property f1 can be variable, it is necessary to check whether the variants
related to f1, to the considered transition, and to EX f1 can be selected together.
Algorithm 1 shows the calculation of the expression EX f1 for a variable I/O-
automaton. The algorithm has two parameters: first, the property f1 which should
be checked and, second, the variant vEX which is related to EX f1. The variant vEX is
empty, if f1 is a common property.

For each outgoing transition of each state of a variable I/O-automaton, the
algorithm checks the following. If the reached state z2 is labeled with f1 and the
combined selection of variants of the property (i.e. vEX), the selection variants of
the current transition (i.e. V ′), and the selection of variants associated with f1 in the
next state (i.e. VP) can be fulfilled,2 then the state z1 is labeled with (EX f1, (vEX ∧
V ′ ∧ VP)) (line (5) and (6)). This label documents that EX f1 is fulfilled if the vari-
ants documented by (vEX ∧ V ′ ∧ VP) are selected. If the start state z0 is labeled, a
witness for EX f1 has been identified.

2The function SAT-VM(OVM, V ′) checks whether there is a selection of variants that fulfils the
variability OVM and the selection of variants V ′.

330 K. Lauenroth et al.

Algorithm 1: Checking EX f1
(1)check EX(f1, vEX){
(2) for each t = z1nz2 V ′ ∈ T*{
(3) for each (f1, VP) ∈ label(z2)
(4) if(SAT-VM(OVM, vEX ∧ V ′ ∧ VP))

(5) label(z1) = label(z1) ∪ (EX f1 ; (vEX ∧ V ′ ∧ VP))

(6)}}}

The correctness of the presented adaption follows from the following observa-
tion. The algorithm checks each outgoing transition of each state and all possible
labels. Therefore, every possible witness for EX f1 will be identified.

The worst case runtime of the presented algorithm is linear in the number of tran-
sitions and labels, since every transition is considered only once by the algorithm.
For each transition, the algorithm considers each label of the destination state of the
considered transition.

5.2.3 Checking the Completeness of Witnesses

The existing single system algorithms for model checking rely on witnesses to show
that a property is fulfilled (or not fulfilled) for a given system [3]. This approach is
not sufficient for product lines, since a domain artifact represents a set of systems
and thus a witness must exist for every possible system. We address this challenge
by checking the completeness of witnesses for all possible systems. Algorithm 2
presents the completeness check for witnesses. The algorithm has three parameters:
the property f and the state z for which the completeness check has to be performed,
and the variant v which is related to the property f. The variant v is empty, if f is a
common property.

Algorithm 2: Checking Completeness of Witnesses

(1)checkCompletness(f, z, vp){
(2)if(SAT-VM(OVM, vp ∧ (∧(f, V ′) ∈ Label(z) ¬V ′) = false)

(3) output "There is a witness for each product";
(4)else
(5) output "There is at least one product without a witness";
(6)}

The algorithm works as follows. It checks in line (2) if the orthogonal variability
model can fulfill a variant selection in which vp is selected and all possible variant
selections related to the witnesses for f are not selected (i.e. (∧(f, V′) ∈ Label(z) ¬V ′)).
If this is not possible, it is not possible to derive a product which has no witness for
the property f in state z. If such a variant selection exists, this variant selection is an
example for a derived product that has no witness for the property f.

Quality Assurance in the Presence of Variability 331

z1 z2 z3

a! b! c!

vp1

v1 v2 v3

VP

V V V

f1

f1

(EX f1, v1)
(EX f1, v1)

Z0

Z1

Z2

Z3

LabelState

z0
¬f1

Fig. 3 Example of checking the completeness of witnesses

Figure 3 shows an example of the result of model checking EX f1 where we
assume that EX f1 is a common property, i.e. it has to be fulfilled by every possible
product. The initial state z0 is labeled with two labels for EX f1, one for the variant
v1 and one for the variant v2, i.e. there are witnesses for EX f1. However, this set of
witnesses is not complete. The orthogonal variability model on the left hand side in
Fig. 3 defines the three variants v1 to v3 as alternative, i.e. exactly one of the three
variants has to be selected. Therefore, it is possible to derive a product which only
contains the variant v3 and for this product, there is no witness for EX f1 since it is
impossible to reach a state from z0 that is labeled with f1.

6 Conclusion

In this chapter, we outlined different strategies for assuring the quality of domain
artifacts in software product line engineering. It has been observed that a central
challenge for the quality assurance of domain artifacts is the variability of these
artifacts. The variability prevents the direct application of quality assurance tech-
niques from single-system engineering, since these approaches do not consider the
variability of the product line. A common strategy for dealing with the variability
is the derivation and quality assurance of sample products with single system tech-
niques. However, the success of this sample strategy mainly depends on the quality
of the selected sample products; e.g. they must be representative for all the products.
A complete coverage of the product line is thus hard to guarantee in general.

As an alternative, we presented a quality assurance approach that allows a com-
prehensive verification of domain artifacts and guarantees that all products of the
product line provide the specified properties. The approach is based on model
checking techniques and considers the variability of the domain artifacts during the
verification process, thereby eliminating the need to costly check each product of
the product line individually.

332 K. Lauenroth et al.

In our future work, we plan to examine the extension of further verification
techniques (e.g. symbolic model checking) for the verification of domain artifacts
in product line engineering. We further plan to include our verification approach
in a modeling environment and to perform detailed case studies showing the
applicability of our approach.

Acknowledgments This work has been partially funded by the DFG under grant PO 607/2-1 IST-
SPL. We would like to thank Ernst Sikora and Nelufar Ulfat-Bunyadi for fruitful discussions on
earlier drafts of this chapter.

References

1. Atlee J, Gannon J (1993) State-based model checking of event-driven system requirements.
IEEE Trans Softw Eng 19(1):24–40

2. Clarke E, Emerson A, Sistla P (1986) Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM TOPLAS 8(2):244–263

3. Clarke E, Grumberg O, Peled D (1999) Model checking. MIT, Cambridge
4. Deelstra S, Sinnema M, Bosch J (2005) Product derivation in software product families: a

case study. J Systems Softw 74(2):173–194
5. Emerson E, Kahlon V (2004) Parameterized model checking of ring-based message passing

systems. In: Computer science logic. LNCS, vol 3210. Springer, pp 325–339
6. Grumberg O, Veith H (2008) 25 years of model checking. LNCS, vol 5000, Springer
7. Larsen K, Nyman U, Wąsowski A (2007) Modal I/O automata for interface and product line

theories. In: Proceedings of 16th European symposium on programming. LNCS, vol 4421.
Springer, pp 64–79

8. Lauenroth K (2009) Konsistenzprüfung von Domänenanforderungsspezifikationen. Phd
Thesis (in German). Logos, Berlin

9. Lauenroth K, Pohl K (2008) Dynamic consistency checking of domain requirements in
product line engineering. In: Proceedings of IEEE international requirements engineering
conference, IEEE, Los Alamitos, pp 193–202

10. Lauenroth K, Pohl K (2009) Model checking of domain artifacts in product line engi-
neering. In: Proceedings of the ACM/IEEE international conference on automated software
engineering, Los Alamitos, pp 269–280

11. Lauenroth K, Pohl K (2007) Towards automated consistency checks of product line
requirements specifications. In: Proceedings of the ACM/IEEE international conference on
automated software engineering, Atlanta, pp 373–376

12. Liu J, Dehlinger R, Lutz R (2007) Safety analysis of software product lines using state-based
modelling. J Systems Softw 80:1879–1892

13. Lynch M, Tuttle M (1989) An introduction to input/output automata. CWI Quater 2(3):
219–246

14. Maccari A, Heie A (2005) Managing infinite variability in mobile terminal software. Softw
Pract Exper 35(6):513–537

15. Metzger A (2007) Quality issues in software product lines: feature interactions and beyond
(invited talk). In: 9th international conference on feature interactions in software and
communication systems (ICFI 2007), Grenoble, pp 3–15

16. Metzger A, Bühne S, Lauenroth K, Pohl K (2005) Considering feature interactions in product
lines: towards the automatic derivation of dependencies between product variants. In: Feature
interactions in telecommunications and software systems VIII. Proceedings ICFI, pp 198–216

17. Metzger A, Heymans P, Pohl K, Schobbens P-Y, Saval G (2007) Disambiguating the docu-
mentation of variability in software product lines. In: Proceedings of RE’07, Los Alamitos,
pp 243–253

Quality Assurance in the Presence of Variability 333

18. Pohl K, Metzger A (2006) Software product line testing. Commun ACM 49(12):78–81
19. Pohl K, Böckle G, van der Linden F (2005) Software product line engineering – foundations,

principles, and techniques. Springer, Heidelberg
20. Ralyte J, Rolland C, Deneckère R (2004) Towards a meta-tool for change-centric method

engineering: a typology of generic operators. In: Proceedings of CAiSE. LNCS, vol 3084,
pp 202–218

21. Ralyté J, Rolland C, Ben Ayed M (2005) An approach for evolution-driven method engineer-
ing. In: Krogstie J, Halpin T, Siau K (eds) Information modeling methods and methodologies.
IDEA Group, USA, pp 80–100

22. Rolland C (2009) Method engineering: towards methods as services. Software Process:
Improvement and Practice (SPIP), Special issue on Software Processes 14(3):143–164

23. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling in requirements
engineering. In: Proceedings of IEEE international requirements engineering conference,
Los Alamitos, pp 74–81

24. Rolland C, Nurcan S (2010) Business process lines to deal with the variability. In: Proceedings
of the Hawaii international conference on system sciences (HICSS), Hawaii, USA

25. Rolland C, Prakash N, Kaabi R (2007) Variability in business process families. Information
Resources Management Association (IRMA)

26. Rolland C, Salinesi C (2009) Supporting requirements elicitation through goal/scenario cou-
pling. In: Conceptual modeling: foundations and applications. LNCS, vol 5600. Springer,
pp 398–416

27. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modelling using scenarios. IEEE
Trans Softw Eng, Special Issue on Scenario Manage 24(12):1055–1071

28. Salinesi C, Rolland C, Mazo R (2009) An ontology of verification criteria in the product line
domain. Centre de Recherche en Informatique (CRI), Université Panthéon Sorbonn, Paris,
France

29. Salinesi C, Rolland C, Mazo R (2009) VMWare: tool support for automatic verification of
structural and semantic correctness in product line models. In: Proceedings of VaMoS 2009,
Sevilla, Spain, Essen, pp 173–176

30. Savolainen J, Kuusela J (2001) Consistency management of product line requirements.
In: Proceedings of IEEE international requirements engineering conference, Los Alamitos,
pp 40–47

Method Engineering: A Service-Oriented
Approach

Corine Cauvet

Abstract In the past, a large variety of methods have been published rang-
ing from very generic frameworks to methods for specific information systems.
Method Engineering has emerged as a research discipline for designing, con-
structing and adapting methods for Information Systems development. Several
approaches have been proposed as paradigms in method engineering. The meta
modeling approach provides means for building methods by instantiation, the
component-based approach aims at supporting the development of methods by using
modularization constructs such as method fragments, method chunks and method
components. This chapter presents an approach (SO2M) for method engineering
based on the service paradigm. We consider services as autonomous computa-
tional entities that are self-describing, self-configuring and self-adapting. They can
be described, published, discovered and dynamically composed for processing a
consumer’s demand (a developer’s requirement). The method service concept is
proposed to capture a development process fragment for achieving a goal. Goal
orientation in service specification and the principle of service dynamic composi-
tion support method construction and method adaptation to different development
contexts.

Remerciements: La recherche présentée dans ce chapitre n’aurait pu être menée
si je n’avais pas eu l’immense chance de rencontrer Colette. Je la remercie très
sincèrement pour m’avoir acceptée au sein de son équipe de recherche et aidée tout
au long de ma carrière d’enseignant-chercheur. Elle est dans toute la communauté
française des chercheurs en systèmes d’information la référence pour la qualité
scientifique de ses travaux, pour le rayonnement international de sa recherche et
pour sa vision et ses idées novatrices sur notre domaine.

C. Cauvet (B)
Université Paul Cézanne Aix-Marseille 3, Laboratoire LSIS,
Campus Universitaire de Saint Jérôme, Avenue Escadrille Normandie Niemen,
13397 Marseille Cedex 20, France
e-mail: corine.cauvet@lsis.org

335S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_19, C© Springer-Verlag Berlin Heidelberg 2010

336 C. Cauvet

1 Introduction

In the field of Information Systems (IS) engineering, the years 80–90 have seen
the emergence of many IS development methods [11, 16, 18, 33, 35, 36]. Many of
these methods have allowed a better control of the complexity, cost and timing of
development of IS. They have also provided more rigorous way of working in the
development process by introducing particular models, representation formalisms
and levels of abstraction. These methods have been widely used in industry and they
have contributed to a better understanding of design tasks. Although these methods
have now reached a certain maturity, it is clear they are still inappropriate in many
contexts, the products they construct are not always satisfactory and they do not
support new engineering paradigms such as component-based software engineering
or model driven engineering.

In this context, method engineering [1, 13, 27, 38] has emerged as a new research
discipline. Method engineering is concerned with the process of designing and
constructing methods that fits a project situation. The research field on method
engineering is dominated by various approaches that attempt to contribute to an
understanding of method development. The instantiation approach [5, 10, 28] aims
to construct a new method from meta-method, the configuration approach [14, 15]
is based on the existence of a base method that we can adapt to a particular situa-
tion, and finally the composition approach [2, 26, 37] uses assembly techniques on
method components.

Colette Rolland took an important role in the emergence of method engineering
as a specific discipline. The approach presented in this chapter benefit of several
results that Colette has produced in this discipline, particularly, the goal modeling
approach [31], the component [30, 34] and the service-based [9, 29, 32] engineering
perspectives.

This chapter contributes to the method engineering discipline by presenting
an approach to method construction that explicitly addresses method components
as services (so-called method services) and method construction is considered
as a service dynamic composition process. This approach makes use of some
engineering principles from component-based software engineering (CBSE) and
service-oriented engineering (SOE). Method services specification are centered on
usage concerns (consumer’s point of view) and they support adaptation mecha-
nisms to fit project context. In fact, method services are considered as available
web resources and accessible by a wide range of developers who need methods to
solve development problems in particular contexts.

SO2M is a method engineering approach [6, 7], in which a method is constructed
“on the fly” by discovering, adapting and dynamically composing existing method
services. The discovery, adaptation and composition of services are driven by a pro-
cess of goal satisfaction. This approach differs from the usual definition in which a
method is considered as an a-priori fixed set of languages, processes, product mod-
els.... Rather the approach supports flexibility in method construction by composing
method services in different ways according the context.

Method Engineering: A Service-Oriented Approach 337

The chapter is structured as follows: Section 2 introduces the service paradigm
and it relates it to the component one, the service paradigm is also discussed in
the context of method engineering. Section 3 is an overview of the conceptual ele-
ments of SO2M. Section 4 presents the ontology of method, Sect. 5 describes the
specification model for method services and Sect. 6 introduces the composition pro-
cess. Section 7 concludes and discusses new challenges for service-oriented method
engineering.

2 The Service Paradigm

This section introduces the concept of service, we identify the principles that
characterize this concept and compare to the concept of component.

For the majority of computer scientists, both in academics and in industry, the
term service is associated with those of Web service and service-oriented architec-
ture [22]. However the concept of service can be considered in many ways. The
special issue of the Communications of the ACM Journal [4] illustrates the scope
and challenges of this area: “The challenges are both the multidisciplinary nature of
service innovation, which combines business, technology, social-organizational, and
demand innovation as well as the lack of formal representation of service systems”.

In this chapter, we consider services as existing method components that can be
assembled to deliver a method fragment that satisfy a developer’s need. This vision
leads naturally to consider services as a particular kind of component. In the next
section, we show the essential differences between these two concepts.

2.1 From Components to Services

Recently, several paradigms have influenced IS engineering (ISE) methods, tech-
niques and tools. Component-based software engineering (CBSE) and service-
oriented engineering (SOE) can be considered as such paradigms. Some confusion
exists between those approaches due to the idea that both utilize some kind of com-
ponents as fundamental constructs to support the development of IS. Furthermore,
both reorganize a portfolio of existing artifacts into self-describing elements,
accessible through standard interfaces and that can be assembled together.

Early component-based software engineering has emerged as a new paradigm for
supporting software reuse [8, 12]. The basic concept of systematic software reuse
is simple [17]: develop systems of components of a reasonable size and reuse them
then, extend the idea of “component systems” beyond code to requirements analysis,
design models and tests artifacts and also to development process.

Service-oriented engineering involves services as the constructs to bear the devel-
opment of distributed applications with rapid and easy composition of services.
Key to this concept is the service-oriented architecture (SOA) which is a logical

338 C. Cauvet

Table 1 Moving from components to services

Criteria CBSE SOE

Finality Software reuse by components
integration

Software interoperability by services
invocation

Interface orientation Product-oriented interface Client-oriented interface
Lifecycle Deployment/Research Publication/Discovery
Organization Assembly and organization

with static links
Static and dynamic composition

way of designing software systems to provide services to either end-user applica-
tions or to other services distributed over a network, via published and discoverable
interfaces [19, 20]. Table 1 provides a summary of major differences between the
component-oriented view and the service-oriented one.

CBSE and SOE introduce different points of view about software engineering:
CBSE focuses on software reuse and components integration while SOE focuses on
software interoperability and services invocation. SOE emphasizes aspects such as
autonomy, communication, etc.

Both approaches introduce the notion of interface. However, CBSE and SOE
don’t consider this notion in the same way: usually, in software components, inter-
face is a set of inputs and outputs while, in services, interface usually is a functional
description of what the service can do. Components’ interface is a specification
of components’ behavior that consists of names of semantically-related operations,
their parameters and valid parameter types. So interface specification focuses on the
product that the component delivers. Components’ modeling emphasizes engineer-
ing information about components, i.e. information required for implementation,
configuration and deployment. For instance, information about communication and
data exchange among components is rather relevant for supporting implementation
of components. Components access is available when components are deployed,
i.e. installed and configured, in a component infrastructure. The interface of ser-
vices specifies the need a consumer may request from the service. Additionally, an
interface may include constraints on the usage of the service that must be consid-
ered by both the service and its consumer. Models of services emphasize usage
concern, which is what the service is intended to do for a particular consumer.
Service providers publish services and make them available (often on the web).
Nevertheless, let’s note that some advanced components models introduce high-
level description of the components [25, 39] while some models of services only
consider low-level data [40].

Components and services lifecycles can’t be considered in the same way: once
produced, components must be deployed by their customers who then have the
ability to research in their own components library the one or ones they need; on
the contrary, once produced, services are published by their providers. Then, con-
sumers have the ability to discover (dynamically) available services relevant to their
requirements. So, usage of components and services is very different; we make use

Method Engineering: A Service-Oriented Approach 339

of services via service requests, service discovery and service invocation. In con-
trast, components are application integrated artifacts. In the first case, an application
results from services request while, in the second case, the application consists of
components integration.

CBSE and SOE also differ about organizational aspect. Usually, components are
statically organized with links predefined at design-time. On the contrary, ser-vices
can dynamically be organized with “computed” links. Services possess the ability
of engaging other services in order to complete complex transactions. So, service
delivery often makes use of composition mechanisms to coordinate several ser-
vices that together fulfill a consumer’s request. Resulting composite services may
be used as basic services in further compositions of services. Static and dynamic
compositions are one of the major challenges for adoption of the service-oriented
approach. Indeed, development of electronic distributed and flexible business appli-
cations requires automated composition and integration of services in the current
dynamic context of the web infrastructure.

2.2 Principles of a Service-Oriented Paradigm

In this section, we define fundamental principles for a service paradigm defini-
tion. Each principle is introduced and argued. Impact of each principle on service
modeling is presented.

Principle No 1: Goal-oriented specification. We adopt an approach based on
usage. In service modeling, we consider that a service exists for delivering a
solution to achieve a goal. For instance, in the pedagogic domain, a service can
satisfy a learner’s goal while in a business domain a service can satisfy a client’s
problem.

Whatever the domain, we consider that a service is intended to meet consumers’
needs, that is what the consumers intend. Then, interface of services should empha-
size what a service can do for its consumers. We propose to model services with a
goal-oriented specification [3, 24, 31]. This presents two main advantages:

• Goal modeling emphasizes problem-related knowledge rather than solution one.
It then induces a separation problem/solution.

• Goal orientation supports service usage specification at a high level of descrip-
tion. Goal orientation emphasizes the “why to use” a service, so goal orientation
allows reducing the semantic distance between available services and consumer’s
requests.

Moreover, goal orientation supports alignment of a service with the domain
strategy and processes.

From the provider perspective, each service must have an interface which
ex-presses a goal. From the consumer perspective, discovering and invoking a
service means expressing a goal.

340 C. Cauvet

Principle No 2: Variability and contextual knowledge. Two ways are available
to deal with goal satisfaction:

1. Propose one generic solution which can be applied in any case but which is not
the most efficient one in all the situations.

2. Propose several solutions, each one being relevant in a specific case.

We choose to adopt the second way: it will allow services to propose the
most relevant solution in each case. Then, a given goal can be achieved in dif-
ferent ways. Each way is more or less suitable according to consumers’ context.
Contextual knowledge is very useful for discriminating the different manners to sat-
isfy the goal. We call “variability” the ability to propose several solutions for one
goal.

From the provider point of view, service modeling requires variability specifi-
cation mechanisms and contextual knowledge capture. From the consumer point of
view, a goal expression must be completed with contextual constraints which impact
the choice of the solution satisfying the goal.

Principle No 3: Semantic description of services. One of the difficulties for
services’ consumers when discovering and invoking services is to express their
requirements with a specific unnatural language. This induces a gap between
consumers’ knowledge and services specifications. In order to reduce this gap,
we propose to specify services with semantic data and to use “shared” ontolo-
gies. Service specification requires knowledge on goals, processes, actors and
objects.

From the provider perspective, ontologies should be used for specification of
semantic data that describe services. From the consumer perspective, ontologies
should be used to express requirements when discovering or invoking services.

Principle No 4: Dynamic adaptation. We consider that a large variety of
consumers can access and use a service, so service delivery should support per-
sonalization. Thus, services should take into account data about consumers that use
them. Usually, those data are expressed in users’ profiles. By nature, users’ profiles
evolve through time and, then, must be considered dynamically.

For the provider point of view, specification of services should weave know-ledge
about skills required to correctly use them. For the consumer point of view, a profile
should be updated through time for a relevant dynamic personalization.

Principle No 5: Dynamic composition. Some goals being complex, solutions
provided by a service may require satisfaction of sub-goals. In this case, a service
can delegate satisfaction of these sub-goals to other services.

From the provider perspective, specification of some solutions provided by ser-
vices must refer to goals which are satisfied by other services. From the consumer
perspective, this aspect should be as “transparent” as possible.

Due to goal orientation, variability and contextualization, the dynamic composi-
tion can be automatically computed by a service without consumers’ contributions.

Method Engineering: A Service-Oriented Approach 341

2.3 Benefits of the Service Paradigm in Method Engineering

We consider that the service paradigm defined according the five principles pre-
sented in Sect. 2.2 has several advantages with regards to method engineering.

Key to the service concept is the service-oriented architecture (SOA) that sup-
ports a logical way of designing systems by providing services to end-users requests
or to other services via published and discoverable interfaces. For our concern, this
idea suggests to provide and capitalize method fragments constructed by individu-
als and distributed outside of any one particular organization and then to share and
reuse method fragments. By considering methods and method fragments as avail-
able services, they are (web) resources accessible by a wide range of developers
who need methods to solve development problems in particular contexts.

The service paradigm suggests a goal-oriented modeling of method fragments,
thus methods as services emphasize the intention of a developer and consequently
they reduce the semantic distance between available methods in a methods base
and developer’s requests. Against components, services emphasize usage concerns
rather engineering aspects. So, a method (or a fragment of method) viewed as a
service is selected for the problem it solves rather than the solution it delivers.
Furthermore, goal orientation is very suitable to variability specification. In method
engineering, variability is related to method flexibility. A service is able to deliver
several methods fragments to achieve one goal, each one being relevant in a spe-
cific project context. By supporting variability, services allow to achieve method
adaptation to particular project situation.

Web-based context leads to relate service description to ontologies. By using
the service paradigm in method engineering, we have to address the construction
of an ontology for the IS engineering methods domain. Such an ontology is useful
for annotating method fragments with semantic on actors, processes and products
involved in methods. An ontology of method seems promising for methodological
knowledge sharing and management.

Lastly, service orientation leads to a new approach in method constructing: start-
ing from a developer’s intention, the problem is to discover, select and compose
services to satisfy the intention. The web-based context supports at any time, adding
and deleting services. Because the composition of services is realized at execu-
tion time, the satisfaction of an intention can benefit all the services available at
this time and the selection of the more suitable services can take into account the
current context of the intention. The dynamic composition principle issued from
service-oriented computing seems to be very powerful to achieve in an automatic
way method construction from a methods base.

3 SO2M: An Overview

This section introduces the main elements of SO2M (Service Oriented Meta-
Method) (see Fig. 1). SO2M is used to build development methods. Ideally, given a
developer’s request and a set of method services, the composition process would find

342 C. Cauvet

developer

Ontologies

Composition process

Request Method
services base

Tailored developement method

Fig. 1 SO2M overview

a collection of services that achieves the request. Both method services descriptions
and requests share a common vocabulary specified in ontologies.

The method services base contains a set of services called method services. A
method service is a reusable unit that contains one or several method fragments to
solve an IS development problem. For example, a method service could specify a
method fragment to construct a class diagram. The method services are described
with a semantic service model. The goal orientation emphasizes service usage and
customer satisfaction. In our approach, method services serve IS developers in
carrying out development tasks.

SO2M uses also task ontologies which provide a common vocabulary for spec-
ifying both method services and developer’s requests. There is a need for ontology
when applying search and semantic matching for method services. Ontologies in
SO2M concern the domain of IS engineering. They enable to define a set of terms
relating to four dimensions of IS engineering: the goal ontology Lgoal, the actor
ontology Lact, the process ontology Lproc and the product ontology Lprod. These
ontologies are inter-dependent; for instance actors from the actor ontology are
related to activities defined in the process ontology.

SO2M is based on a composition process that supports the research, the selection
and the assembly of services to build dynamically development methods tailored
to developer’s requirements. The composition process begins with a developer’s
request. The request allows the developer to specify a goal to achieve. The compo-
sition process delivers a composition of services that supports goal realization. For
example, the request “Specify requirements” needs a way of specifying informa-
tion systems requirements. The result may be a method based on an UML use case
model or a functional approach. As method services, requests are specified with the
goal ontology.

4 Ontology of Method

This section presents the ontology of method for describing various aspects related
to method services. The ontology of method is composed of four sub-ontologies,
each one is related to a type of knowledge introduced through principle No 3.

Method Engineering: A Service-Oriented Approach 343

The four ontologies are task ontologies [3] for the domain of IS engineering.
These ontologies specify knowledge on IS engineering problems and solutions.
They provide a vocabulary to describe engineering activities domain-independently.
This independence is essential to describe the services at a method level. The second
motivation to use task ontologies is in the possibility to consider developer’s needs
as problems to solve. Finally, these ontologies play an important role in matching
requests and available services.

• The goal ontology (Lgoal) defines a vocabulary on the IS engineering prob-
lems. These problems correspond to tasks appearing in the development process.
For instance, “Construct a class diagram” is a classical development task in IS
development. IS problems are represented as goals to achieve. Lgoal provides a
hierarchy of goal classes. Instances of this ontology are used to define both the
goals of method services and developers’ requests. Goals are structured with a
verb and an object. Figure 2 shows a fragment of the goal ontology Lgoal.

• The actor ontology (Lact) defines roles for the actors involved in IS process
development. These roles correspond to functions played by actors within the
development. Instances of this ontology are used in service specification to
indicate the actors who are concerned by the service.

• The process ontology (Lproc) defines a common terminology for the descrip-
tion of the engineering activities (and their organization). This ontology is, in
particular, used in service specification to describe the control constructs of
processes.

• The product ontology (Lprod) defines a common vocabulary for characterizing all
the artifacts used and produced during IS engineering. Artifacts correspond to
objects necessary during process execution. This ontology is used, in particular,
to specify inputs and outputs of the processes.

Goal

Verb Object

Knowledge
acquisition

Documentation

Creation

Information

Configuration

Optimization

Refinement

Estimation

Reuse

Decision

define

research

identify

describe
customize

improve construct

choose

detail

test

modify

consult

instanciation
aggregation or
specialization
 relationship

Legend :

create

validate

Fig. 2 Fragment of the goal ontology

344 C. Cauvet

In method engineering, using an ontology of method presents four main advan-
tages:

• It supports semantic description of method services. This ontology provides
primitives in terms of which a service provider can describe method services.

• It supports request formulation. This ontology defines a vocabulary in terms of
which service consumers can ask service needs.

• It supports the research and composition of method services with a high degree
of automation.

• It reduces the gap between service description available in the service base and
consumer’s requirements on the service base. In SO2M, the ontology of method
provides a common vocabulary which can be used both by the “providers” and
the “requesters” of services.

5 The Model of Method Service

This section briefly defines major concepts used in method service specification.
The description of a method service contains three parts (see Fig. 3): an identifica-
tion part, a process part and a resource part. A service delivers a process to achieve a
certain goal by using resources. The three parts express service knowledge at differ-
ent abstraction levels: the identification part emphasizes the development problem
that the service solves, the process part characterizes a manner to solve the problem
and the resource part provides a reusable process fragment. Identification and pro-
cess parts aim at describing method services in order to enable the automation of
method services discovery and composition.

Process part
(process structure)

Resource part
(reusable process)

Method service

Identification part
(goal)

Method serviceFig. 3 Method service
specification

5.1 The Identification Part

This part defines the purpose of the service. Our approach for designing services
is based on a “customer” point of view. So the identification part contains the con-
textual knowledge of the customer and why the customer (i.e. the developer) takes
advantages in using services. Identification part (see Fig. 4) is largely used dur-
ing discovery and selection of method services. The identification part contains two
kinds of knowledge: finality and argument.

Method Engineering: A Service-Oriented Approach 345

Identification part

Manner

1

Context

1

Argument

Pro Con

1

0..* 0..*

(Lgoal)
Goal

1

0..1

1

1

1

Finality

1

(Lact)
Actor

0..*
(Lproc)

Process unit
1

Project

1..*

1

0..*1

1

(Lprod)
Product element

0..*

Nature Domain

Legend : Elements annoted with
(Lgoal), (Lact), (Lproc), (Lprod) refer
respectively to the goal ontology,
the actor ontology, the process
ontology and the product ontology

11

1

1

Nature Domain

1

1

1

Nature Domain

Fig. 4 Identification part of a
method service

The finality defines the problem that the method service solves. The finality is
structured with a goal (defined in the goal ontology), a manner and a context. Each
goal is defined by a verb and an object. For example, the goal “Construct a class
diagram” is defined with the verb “Construct” and the object “a class diagram”. The
manner defines a way of achieving the goal and the context describes the situation in
development project for which the method service is suitable. The context is detailed
with the project nature, the involved actors, a process phase and some product ele-
ments. All these elements refer to ontologies. Finally, the arguments express the
advantages (i.e. the “pro” arguments) and the drawbacks (i.e. the “con” arguments)
of using the method service. So, arguments support service(s) selection within the
goal realization process.

For instance, the identification part of the method service “Construct a class dia-
gram manually” is presented in Fig. 5. This service helps the developer to construct

-Finality
-Goal : Construct a class diagram
-Manner : manually
-Context :

- Project :
- Nature : Development
- Domain : -

- Actor : Designer, method engineer
- Process unit : Requirement elicitation, design
- Product element : class diagram

-Argument :
-pro : - the suggested process guides class diagram construction
-con : - requires UML skills

Fig. 5 Identification part of the method service “construct a class diagram manually”

346 C. Cauvet

a class diagram. Let us note that the domain is not indicated, so the service is
domain-independent.

5.2 The Process Part

This part describes a process for achieving the service goal. The process part con-
tains three elements (see Fig. 6): an initial situation, a final situation, and a process
structure.

The initial situation indicates pre-conditions and artifacts necessary to process
realization. The final situation specifies the results and the post-conditions of the
process. The initial and final situations are described with process ontology terms.

A process structure can be atomic, composite, simple or decisional. Atomic pro-
cesses realize elementary goals; these goals are not decomposable into sub goals. An
atomic process is considered as an operational process. Composite processes corre-
spond to complex goals; they contain constituent processes organized with control
constructs. Control constructs indicate the manner in which constituent processes
are executed. In SO2M, constituent processes execution may be in sequence (i.e. in
a specific order) or in parallel (i.e. without a particular order). Constituent processes
within a composite process may be atomic or simple.

Decisional processes are a specific case of composite processes. Decisional pro-
cesses propose several alternative decompositions of a goal. Each de-composition

Atomic Composite

realize

Simple

1

(Lgoal)
Goal

1

1
1..*

1

1

1..*

1

1

1..*

1..*

1..*

Process

Decisional

1..*

1..*

Process part

1

Legend : Elements annoted with
 (Lgoal), (Lact), (Lproc), (Lprod) refer

respectively to the goal ontology,
the actor ontology, the process

ontology and the product ontology(Lgoal)
Goal

Process

Decisional

(Lproc)
control

construct

(Lproc)
Final

situation

(Lproc)
Initial

situation

(Lgoal)
Goal

Constituent
process

"choice"
control

construct

Process

Decisional

Fig. 6 Process part of a method service

Method Engineering: A Service-Oriented Approach 347

-Process :

Simple
« Identify

conceptual classes »

Composite
Sequence « Construct a

class diagram manually »

Atomic
« Identify

relationships between classes »
Atomic

« Complete the description
of classes by attributes»

Atomic
« Complete the description

of classes by methods »

-Initial situation : class diagram not constructed
-Final situation : class diagram constructed

Fig. 7 Process part of the method service “construct a class diagram manually”

is characterized by quality attributes that assist developer in making his choice.
Decisional processes offer different manners to satisfy the same goal. Decisional
processes are suitable for variability. At composition time, the developer has to
choose one or several constituent processes to achieve his objective.

Simple processes allow differing process realization in other services. Only at
composition time, the simple process is associated to a service supporting its realiza-
tion. They are a powerful mechanism to achieve flexibility in process specification.
They also provide the ability to adapt a process to different contexts. Indeed, at
composition time, the simple process will be substitute with the more suitable
service.

We illustrate the process part in Fig. 7 with the composite process “Construct a
class diagram manually”. It has four constituent processes organized in sequence.
One constituent process is simple, the other ones are atomic.

5.3 The Resource Part

This part defines the solution offered by the service. The solution is an executable
process described in terms of activities and objects. The resource part corresponds
to a process fragment, executable by the developer, to achieve his objective within a
particular project. This part is composed of resource descriptions and an execution
graph (see Fig. 8). Resources correspond to elements which are used or delivered by
the process. Resources can be external domain ontologies or development artifacts.
The execution graph is a kind of activity diagram including variation points and
decision points that represent respectively simple processes and decisional processes
defined in the process part.

348 C. Cauvet

Resource part

1

0..*
Execution

graph

0..1

EdgeNode

(Lproc)
Elementary unit

(Lproc)
Control

construct

0..1

(Lprod)
Artefact

could
correspond
to

0..*

<< aid >>

..1..1
Domain
ontology

0..*

Resource

1..*

Service
Variation

point

Output
0..*

1..*

(Lprod)
Product
element

process

Elementof
processpart

1 1Is realized by

Decision
point

realize
(Lgoal)
Goal

11

Legend :
Elements annoted with (Lgoal), (Lact), (Lproc), (Lprod) refer
respectively to the goal ontology, the actor ontology, the process
ontology and the product ontology

EdgeNode

(Lprod)
Artefact *..*..

Domain
ontology

Resource

1..*

(Lprod)
Product
element

process

Elementof
processpart

(Lgoal)
Goal

EdgeNode

(Lprod)
Artefact

Domain
ontology

Resource

1..*

(Lprod)
Product
element

process

Element of
process part

(Lgoal)
Goal

1..*

Input
0..*

Fig. 8 Resource part of a method service

In the execution graph given in Fig. 9, the variation point corresponds to the sim-
ple process “Identify conceptual classes” defined in the process part (cf. Fig. 7).
At composition time, this variation point will be substitute with the execution
graph of the service chosen by the developer. This mechanism enables to generate
development methods tailored to developers’ requirements.

-Artefact : UML language
-Domain ontology : -
-Execution graph :

« activity »
Identify relationships

between classes

« variation point »
Identify

conceptual classes

«activity»
Complete the description of

classes by attributes

« activity»
Complete the description of

classes by methods

« output »:
Class diagram

[

«output »:
Class diagram

[

partial]

finished]

Fig. 9 Resource part of the method service “construct a class diagram manually”

Method Engineering: A Service-Oriented Approach 349

6 The Composition Process

This section describes the method service composition process. Method services
are considered as process fragments, so they can be composed to build complex
processes. The objective of service composition is to create new processes by com-
bining processes of existing services. Service composition is generated on the fly
based on a developer’s request. This approach is in contrast to the solutions provided
by classical workflow approaches where activities in a process are pre-planned and
pre-specified [21, 23].

In SO2M, service composition is seen as an iterative process (cf. Fig. 10). The
entry of this process is a request formulated by a developer. The treatment of the
request consists in searching, selecting and organizing all the services necessary for
satisfying the request. We call “composition graph” (Gc), the graph that specifies
all the services and their relationships participating to request satisfaction [6]. The
composition process result is a whole development method (or a fragment) defined
from the execution graphs of the services appearing in the composition graph. The
result is represented by a process graph (Gp). The process graph can be executed in
a certain context to elaborate a particular IS [6].

Every iteration in the composition process contains three activities: discovery,
composition and refinement. These activities are repeated until the initial request
is satisfied with a set of services. The number of iterations varies according to the
granularity of the goal in the request. Indeed, the more abstract will be the goal,
the more important will be the number of services in the composition graph and the
number of iterations in the composition process. It is important to note that simple
processes, as constituent of decisional processes or composite processes, initiate
new iterations in the composition process. Simple processes lead, at composition
time, to explore the service base to find the service the more suitable to realize the
process. In this way, at any time, composition takes into account the current state of
the services base.

At each iteration the composition graph (Gc) is extended and the process graph
(Gp) is refined. Each iteration is driven by a goal. During the first iteration, the goal
is the request one. In the following iterations, the goal results from one (or some)
simple process(es) defined in a composite or decisional process of a method service.

Goal

Gc and Gp
Graphs

Discovery
Composition

Refinement

Fig. 10 An iteration in the
composition process

350 C. Cauvet

Recall that a simple process is an abstract process that can be realized in several
manners. The principle of dynamic composition consists in comparing the simple
process with potentially matching services. Alternative services may be generated,
one or more services can be chosen by the developer according the criteria defined
in the method service contexts. This type of composition is specified on the fly and
requires dynamically structuring and choosing services.

6.1 Discovery

This activity consists of goal definition and service matching. During the first iter-
ation, the goal ontology guides the developer in request formulation. Moreover, the
goal ontology allows checking that the formulated request respects the structure of
a goal (i.e. a verb followed by of an object). In the following iteration, goals directly
result from simple processes.

Service discovery consists in comparing the desired goal with the goal of the
method services available in the services base. If the original goal does not corre-
spond to any method service, it is analyzed using the goal ontology and the product
ontology. On the one hand, the goal ontology makes it possible to search services
which have a similar verb with the goal one. On the other hand, the product ontology
enables to analyze the object of the goal. Discovery of services matching the goal
may result in service alternative solutions.

6.2 Composition

The composition activity consists in service selection and service composition.
Discovery of services matching the current goal may result in alternative solutions.
For each solution, service identification description (manner, context and argu-
ments) is available to guide developer’s choices. At this stage of the composition
process, the chosen services contribute to the initial request satisfaction. These ser-
vices can be atomic, composite or decisional (i.e. the process part of these services
may be an atomic process, a composite or a decisional process). At this stage, these
services can be composed in order to achieve the current goal of the iteration. The
composition graph is extended with selected services.

6.3 Refinement

Extension of the composition graph leads to process graph refinement. Indeed,
refinement consists in substituting the variation points (or decision points) by the
corresponding execution graphs of the constituent services. For each process within
the services selected in the current iteration, new iterations are initialized according
to different situations:

Method Engineering: A Service-Oriented Approach 351

• If the process is decisional, the developer must select one or more simple con-
stituent processes. Quality attributes, defined on each constituent process of the
decisional process, guide developer’s choices. For all simple processes selected
by the developer, a new iteration is initialized with goals corresponding to simple
processes. It is important to note that the execution graph of the current decisional
service (and consequently of the process graph) comprises a decision point. This
new iteration will enable to substitute the decision point of the process graph with
the execution graph of the found services.

• If the process is composite, it has one or more simple constituent processes.
Similarly to decisional processes, a new iteration is initialized with goals cor-
responding to simple processes. In this new iteration, the process will search the
services which are appropriated to replace the simple processes. It is important to
note that the execution graph of the current service (and consequently the process
graph) comprises a variation point for each simple process. The following itera-
tion will make it possible to substitute the variation points of the process graph
with the execution graphs of the selected services.

• If the process is atomic, either the composition process is finished or it remains
variation points or decision points in the process graph and new iterations are
necessary.

At the end of the composition process, the process graph does not comprise any
more variation point or decision point. The process graph obtained could be carried
out to produce particular artifacts in a precise context.

7 Conclusion

In this chapter, we have presented a service oriented approach for building IS devel-
opment methods tailored to developers’ requirements. Development problems are
considered as goals to realize and method services are self-contained units that pro-
vide process fragments to achieve these goals. An ontology of method supports the
research and composition of method services with a high degree of automation.
Furthermore, this ontology provides a common vocabulary which can be used both
by the “providers” and the “requesters” of services. Service composition is carried
out by an iterative composition process which links dynamically services to generate
tailored system development methods.

Even if the service orientation seems promising to answer method engineer-
ing requirements, of course, more in-depth research into the practice of service
orientation in method engineering is needed.

Based on the work presented in this chapter, we consider that service orientation
in method engineering raises new interesting challenges:

The need to develop a community of practice for the domain of IS engineering
methods. Such a community should increase service creation and exchanges among
people and store and preserve services through a collective distributed and dynamic

352 C. Cauvet

process. In this context, the ontology of method would get rich dynamically. During
service design and request formulation, new terms could be added to the ontology in
order to extend knowledge on methods through the community. In this way, knowl-
edge on methods can be shared by “consumers” and “providers” of services through
the use of internet based communication technologies.

The need to develop service request languages suitable for IS developers require-
ments. A service request language and its appropriate run-time support environment
is required to allow IS developers to express their needs on the basis of the charac-
teristics and functionality of standard methods whose services are found in service
registries. A service request language must provide a formal means of describ-
ing desired method attributes and functionality, including both method preferences
and practice of the consumer (IS developer) and context and constraints of the
project.

The need to address service composition at the semantic level. One of the most
challenging areas in method engineering is the process of combining and aggre-
gating several method fragments in order to construct new method fragments. In
service-oriented computing, efforts have been made aiming at developing syntactic
techniques to automatically compose different services. We argue that goal orienta-
tion as a fundamental principle in service specification must be considered as a key
concept to address service composition at the semantic level. In method engineering,
this kind of composition would help to design new methods more systematically.

References

1. Brinkkemper S (1996) Method engineering: engineering of information systems development
methods and tools. J Info Softw Technol 38(4):275–280

2. Brinkkemper S, Saeki M, Harmsen F (1998) Assembly techniques for method engineer-
ing. In: Proceedings of the 10th international conference on advanced information systems
engineering (CAISE’98). LNCS, vol 1413. Springer, pp 381–400

3. Chandrasekaran B, Josephson JR, Benjamins R (1998) The ontology of tasks and methods.
In: Proceedings of the 11th international workshop on knowledge acquisition modeling and
management, KAW’98, Banff, Canada

4. Chesbrough H, Spohrer J (2006) A research manifesto for services science. Commun ACM
49(7):35–40

5. Gonzalez-Perez C, Henderson-Sellers B (2006) A powertype-based metamodelling frame-
work. Softw Systems Modeling 5(1):72–90

6. Guzélian G (2007) Conception de systèmes d’information: une approche orientée service.
Thèse de l’Université Paul Cézanne, Aix-Marseille 3, Juillet

7. Guzélian G, Cauvet C (2007) SO2M: Towards a service-oriented approach for method
engineering. In: Proceedings of international conference on information and knowledge
engineering, IKE’07, Las Vegas, Nevada, USA

8. Heineman GT, Councill WT (2001) Component-based software engineering, putting the
pieces together. Addison-Wesley Professional, Reading MA

9. Iacovelli, A, Souveyet, C, Rolland, C (2008) Method as a service (MaaS). In: Proceedings of
international conference on research and challenges of information systems, RCIS’08, IEEE

10. International Organization for Standardization/International Electrotechnical Commission:
Software engineering – metamodel for development methodologies ISO/IEC 24744.

Method Engineering: A Service-Oriented Approach 353

http://webstore.iec.ch/preview/info_isoiec24744%7Bed1.0%7Den.pdf (2007). Cited 5 May
2010

11. Jacobson I, Christerson M, Jonsson P, Oevergaard G (1992) Object-oriented software
engineering. Addison-Wesley, Reading MA

12. Jacobson I, Griss M, Jonsson P (1997) Software reuse: architecture, process and organization
for business success. Addison-Wesley, Reading, MA

13. Kumar K, Welke RJ (1992) Methodology engineering – a proposal for situation-specific
methodology construction. In: Cotterman W, Senn JA (eds) Challenges and strategies for
research in systems development. Wiley, New York, pp 257–269

14. Karlsson F (2005) Method configuration – a systems development project revisited. In:
Nilsson AG et al (eds) Proceedings of the 14th international conference on information
systems development. Springer

15. Karlsson F, Agerfalk PJ (2004) Method configuration – adapting to situational characteristics
while creating reusable assets. Info Softw Technol 46(9):619–633

16. Martin J, Odell JJ (1994) Object-oriented methods. Prentice Hall PTR, Upper Saddle
River, NJ

17. McIlory M (1976) Mass-produced software components. Software engineering concepts
and techniques. In: Buxton JM et al (eds) Proceedings of Nato conference on software
engineering, Garmisch, Germany

18. Nanci D, Espinasse B, Cohen B, Asselborn JC, Heckenroth H (2001) Ingénierie des systèmes
d’information: merise deuxième génération. Vuibert, Paris

19. Natis YV, Schulte W (2003) Introduction to service-oriented architecture. Technologies,
Gartner, Inc.

20. OASIS (2008) Reference architecture for service oriented architecture version 1.0, public
review draft 1, 23 Apr 2008. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.html

21. O’Riordan D (2002) Business process standards for web services. Tect, Chicago, USA
22. Papazoglou MP, Georgakopoulos D (2003) Service-oriented computing. Commun ACM

46(10):24–28
23. Peltz C (2003) Web services orchestration: review of emerging technologies, tools and

standards. Technical report, Hewlett-Packard Company
24. Prat N (1997) Goal Formalization and classification for requirements engineering. In:

Proceedings of the 3rd international workshop on requirements engineering: foundations of
software quality REFSG’97, Barcelona, pp 145–156

25. Ramadour P, Cauvet C (2002) Approach and model for business components specification.
In: Proceedings of the 13th international conference on database and expert systems, France

26. Ralyté J, Rolland C (2001) An assembly process model for method engineering. In:
Proceedings of CAISE’01. LNCS, vol 2068. Springer, pp 267–283

27. Ralyté J, Brinkkemper S, Henderson-Sellers B (eds) (2007) Situational method engineering:
fundamentals and experiences. In: Proceedings of the IFIP WG 8.1 working conference. IFIP
Springer Series, vol 244. Springer, Boston, MA

28. Rolland C (2009) Endorsement of the book metamodeling for method engineering. In:
Jeusfeld MA, Jarke M, Mylopoulos J (eds) Metamodeling for method engineering. MIT

29. Rolland C (2009) Method engineering: towards methods as services. Softw Process
Improvement Practice 14:143–164

30. Rolland C, Prakash N (1996) A proposal for context-specific method engineering. In: IFIP
WG 8.1 conference on method engineering, Atlanta, Georgie, pp 191–208

31. Rolland C, Salinesi C (2005) Modeling goals and reasoning with them. In: Aurum A, Wohlin
C (eds) Engineering and managing software requirements (EMSR), Springer

32. Rolland C, Souveyet C (2009) Service oriented computing: an intentional approach. Trans
Service Computing (IEEE-TSC), special issue on REFS (Requirements Engineering for
Services), IEEE

33. Rolland C, Foucaut O, Benci G (1988) Conception de systèmes d’information: La méthode
REMORA. Eyrolles, Paris

354 C. Cauvet

34. Rolland C, Plihon V, Ralyte J (1998) Specifying the reuse context of scenario method
chunks. In: Pernici B, Thanos C (eds) Proceedings of CAISE’98. LNCS, vol 1413. Springer,
pp 191–218

35. Rumbaugh J, Blaha M (1996) OMT tome1 – modélisation et conception orientées objet,
Masson

36. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorenson W (1991) Object-oriented modeling
and design. Prentice Hall, Englewood Cliffs, NJ

37. Song X (1997) Systematic integration of design method. IEEE Software, vol 14, Issue 2, IEEE
Computer Society Press, Los, pp 107–117 Alamitos, CA

38. Van Slooten K, Hodes B (1996) Characterizing IS development projects. In: Brinkkemper S,
Lytinnen K, Welke RJ (eds) Method engineering – principles of method construction and tool
support. Chapman & Hall, pp 29–44

39. Weinreich RJ, Sametinger J (2001) Component models and component services: concepts
and principles. Component-based software engineering, putting the pieces together. Addison-
Wesley, Reading MA

40. WSDL Version 2.0 (2007) Part 1: core language. http://www.w3.org/TR/2007/REC-wsdl20-
20070626. Accessed 5 May 2010

Collaborative Requirements Engineering:
Bridging the Gulfs Between Worlds

Alistair Sutcliffe

Abstract A method engineering approach is described for managing communi-
cation in RE processes based on Clark’s theory of common ground. The common
ground framework is used to evaluate the affordances of different RE representations
such as scenarios, storyboards and models. The contribution that representations
make to RE activities is reviewed to suggest heuristics for selecting appropriate
representations to develop mutual understanding of RE issues between different
stakeholders. A meta-model for RE activities is proposed that describes the pro-
cess of communication and developing mutual understanding driven from abstract
and concrete views of the problem domain. The meta-model is applied to manage-
ment of RE sessions from a method engineering perspective. Application of the
framework is illustrated with a case study of health informatics application.

1 Introduction

Design of methods and processes with the accompanying models, representations
and tools has been an important influence on RE resulting from Rolland’s research
over a number of years [22, 25]. In general, Rolland’s perspective was one of com-
posing processes which could be executed by individuals or teams; although design
of collaborative processes per se was not explicitly addressed in her work. This
chapter follows a method engineering approach to RE with a focus on the nature of
collaboration and communication in teams and between stakeholders.

Collaboration in the form of viewpoints, negotiations between stakeholders,
and management of the RE process has been researched by many authors and is
inherent in modelling languages such as i∗ and RE methods [21]. More recently
collaboration among RE teams has received attention [8] to investigate how

A. Sutcliffe (B)
Manchester Business School, University of Manchester, Booth Street West,
Manchester, M15 6PB, UK
e-mail: a.g.sutcliffe@man.ac.uk

355S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7_20, C© Springer-Verlag Berlin Heidelberg 2010

356 A. Sutcliffe

communications are structured within teams and to recommend how CSCW (com-
puter supported collaborative work) technologies might be adapted to improve
teamworking. Although RE is recognised to be a multidisciplinary process which
draws upon psychology, sociology, anthropology and linguistics, the role of linguis-
tics has been limited to parsing and understanding requirements in natural language
statements [23, 24] and formalising requirements statements [4]. More socially ori-
ented discourse theories of language have received less attention. In this chapter a
discourse theory of language, common ground [5], is used to motivate a method
engineering design for collaborative RE as well as to evaluate the contributions that
different representations might make to enhancing mutual understanding with RE
teams.

2 Common Ground

The common ground theory or Clark’s linguistic theory of discourse [5] describes
the process by which mutual understanding is achieved though the process structure
of human-human discourse. Briefly, Clark’s theory of discourse explains how mean-
ing is constructed by conversation and action which progresses towards a mutually
agreed goal, the action ladder and project in Clark’s terms. The main tenets of the
theory that concern RE are summarised in Fig. 1.

CG is generated
from

Conversations
have tracks

prior
knowledge

and layers
of meaning

surface intent

side topic

main topic

metaphors,
irony, fiction,

deep meaning

meta-dialogue
manages
conversation

Conversation
exchanges

build mutual
understanding

-common ground

progress towards
an agreed goal

Arena: place
and time

Setting: culture
and norms

A BA BA B

prior
knowledge

Fig. 1 Summary of common ground concepts

Collaborative Requirements Engineering 357

Common ground or mutual understanding is generated from three knowledge
sources: (a) knowledge held by the participants about each other and the topic of the
conversation; (b) knowledge about the environment in which the conversation takes
place, including artefacts in the environment; and (c) shared knowledge about social
conventions held by the participants. Conversations have tracks or topics which may
be interleaved, for example major and minor topics, and meta-discourse or conver-
sations which control the primary topic-related discourse. Meaning in conversations
has different layers; the surface layer is explicit expression, but there may also
be layers of tacit meaning which rely on deeper understanding of metaphors and
interpretation of puns, irony, jokes and fiction.

Clark’s theory explains the establishment of mutual understanding via a process
of verbal and non-verbal communication integrated with action in the world, which
progresses through stages of increasing understanding (common ground) that move
towards a shared goal (the joint project). Shared understanding is helped by the
participants’ knowledge of each other, past conversations, and the context, referred
to as the arena and setting. Brennan and Clark [3] give a set of criteria for effective
conversation which has been applied to assessing the effectiveness of computer-
mediated conversation (CMC) [15]:

• Co-presence: all participants share the same space and time.
• Visibility: conversers can see each other; inherent in co-presence.
• Audibility: audio communication is supported, e.g. phone conversations.
• Contemporality: messages can be generated and received in the same time

interval, i.e. synchronous communication.
• Simultaneity: communication is possible in both directions at the same time, i.e.

complete synchronous communication.
• Sequentiality: the order of message generation and receipt is preserved (asyn-

chronous, ordered).
• Reviewability: messages can be re-read, i.e. possible for text but not for audio

unless it is transcribed.
• Revisability: messages can be edited, afforded by text but not speech.

These criteria are supplemented with concepts from Media Richness Theory [7]
that describe the communication channel/modality and the connectivity in com-
munication (i.e. person-to-person vs. narrowcast vs. broadcast). Representation
of participants’ identity draws on concepts from Social Presence Theory [29]:
explicit visible identities, tokens for identities, assumed covert identities, no
identity, etc.

3 RE Representations and Communication Modalities

In this section the affordances of collaborative technologies for supporting RE
are assessed using the common ground modalities framework to investigate the
types of information and knowledge that can be represented by models, scenarios,

358 A. Sutcliffe

Table 1 Comparison of three scenarios of technology support for collaborative RE

e-Mail + doc
exchange

Video conf + doc
exchange

Video conf +
interactive docs

Co-presence x
√ √√

Visibility x
√ √√

Audibility
√ √ √

Contemporality x
√ √√

Simultaneity x
√ √√

Sequentiality
√ √ √

Reviewability
√

x
√

Revisability
√

x
√

prototypes, etc., and how such representations can mediate communication between
different stakeholders. Table 1 summarises how communication is supported in
three different scenarios of collaborative technology. First, e-mail communica-
tion combined with exchange of specifications and other documents is a common
mode of collaboration between groups separated by distance. Since communica-
tion is asynchronous it enables collaboration across time zones, for example in
offshore development. However, asynchronous media such as e-mail do not pro-
vide co-presence, and visibility is limited to the documents. Communication is
sequential so it does not facilitate formation of common ground through interac-
tive dialogues, although it does have the advantage of allowing time to review
and revise documents. Video conferencing, in contrast, provides a richer com-
munication medium for partial co-presence of team members, with synchronous
audio and visual communication, although even advanced video conference sys-
tems are a considerable degradation from face-to-face communication [17]. The
penalty of video conferencing with document exchange is that while it builds com-
mon ground between team members, it does not integrate easily with understanding
generated from documentation. It is difficult to view and attend to documents dur-
ing a video conference so reviewability and revisability (of documents and the
video conversation) are impaired. In the third scenario, video conferencing tech-
nology is enhanced with interactive tools so team members can view and edit
documents while conversing. This ideally joins the thread of understanding gen-
erated by working on documents with video-mediated conversations; however,
maintaining the focus of attention between conversation and working on documents
requires careful management; also, review and revision time can be compromised
by the time the team spends in synchronous collaborative work. Hence a combi-
nation of approaches may be advised. Asynchronous working provides a time to
think and reflect which builds understanding of the problem using documentation,
while synchronous dialogue builds mutual understanding among team members via
conversations.

This leads to investigation of the role of different documents in RE. Since RE
representations can experience multiple interpretations [11, 24], it is necessary to
briefly describe the representations which will be reviewed:

Collaborative Requirements Engineering 359

• Scenarios are considered to be text-based descriptions of systems, expressed in
natural language, similar to stories or narrative examples described in Agile meth-
ods [2]. Scenarios contain realistic detail about systems, their environment, users,
interactions and activities.

• Storyboards and informal sketches are drawings of system designs and the system
environment showing realistic layout of objects, artefacts and their context.

• Informal models and notations are models of the system and its environment
expressed in a semi-formal diagram language, such as data flow diagrams, object
relationships or activity sequence diagrams.

• Formal models and system specifications are expressed in a rigorous mathemati-
cally based language, e.g. Z, SCR, KAOS [38].

• Prototypes are software artefacts which present partial implementations of the
design system.

The cognitive affordances of these representations are illustrated in Table 2.
Clark’s communication modalities have been revised with criteria drawn from
the cognitive dimensions framework [9] which is more closely oriented toward
representations:

• Interaction: how easy it is to point to and manipulate representations during team
meetings.

• Comprehensibility: how easily understood a representation is by ordinary users
without specific training.

• Testability: how easy it is to challenge and evaluate assumptions and facts
expressed in a representation.

Scenarios are reviewable and revisable since text can be scanned and edited,
although the ease of revision is enhanced by word processors. Scenarios are eas-
ily comprehended, but interaction is limited to indicating particular sections of a
narrative. Scenarios, since they express specific instances and examples, are not
testable by themselves, although a collection of scenarios can form test cases for
specifications [18]. Storyboards and sketches are easy to review but less easy to
revise even with software drawing tools, and interaction is limited to pointing to

Table 2 Assessment of RE representations to illustrate affordances for collaboration

Reviewability Revisability Interaction Comprehensibility Testability

Scenarios
√√ √√

–
√√√

x
Storyboards

and sketches

√√√ √√ √ √√√
x

Informal mod-
els/notations

√ √√ √ √ √

Formal models – – – xx
√√

Prototypes
√√

–
√√ √√ √

360 A. Sutcliffe

and highlighting parts of the sketch. Sketches are possibly easier to comprehend
than language-based scenarios, although images can be susceptible to ambiguous
interpretation. Storyboards and sketches are not testable in themselves but, as with
scenarios, they can provide test cases to validate early requirements with users.
Informal models are less reviewable and comprehensible than sketches since even
informal notations require some learning, but they have the advantage of easier
revision since the format of diagram components enables software tools to facili-
tate editing. Informal models also facilitate testing since their components have an
agreed denotation and dependencies, so associations, links and pathways can be
checked for consistency, although not as rigorously as with formal models. Formal
notations enable comprehensive testing with model checkers and formal reasoning
tools, albeit at the penalty of poor comprehensibility and reviewability for most
stakeholders. Finally, prototypes are comprehensible as the behaviour and appear-
ance is visible; furthermore, user interaction facilitates testing and validation of
requirements. The penalty lies in poor revisability since this necessitates changing
code, although with advanced prototyping languages this cost can be reduced.

Common ground is generated by conversations between stakeholders, augmented
by mutual understanding of information expressed in RE representations. Clearly
the more generally accessible a representation is, the better it supports the formation
of common ground; therefore, not surprisingly, scenarios, storyboards and sketches
are effective means of promoting mutual understanding. However, these representa-
tions are prone to ambiguous interpretation so understanding between stakeholders
may conflict. Informal models can reduce ambiguity by affording easier testing,
while formal models can eliminate ambiguity by automated reasoning, although
with the disadvantage of more difficult comprehension and limited access across
stakeholder groups. An important tenet of Clark’s theory is that common ground is
generated not only through conversations but also by interaction with artefacts in
the world. Hence prototypes promote common ground since mutual understanding
is generated by interaction and the consequences of incorrect system actions are
visible to all stakeholders, thereby stimulating validation discussions. Finally it is
worth noting that informal notations in the design rationale family support common
ground by summarising argument and the content of design conversations.

No one representation will suffice to support the development of common
ground; rather, a combination is required to support different activities and phases in
the requirements process when emphasis might change from discovering informa-
tion, to negotiation and establishing common views, then testing and checking that
specifications conform to goals and known facts describing the world. This leads to
the next section, where common ground and RE activities are considered.

4 RE Activities, Representations and Common Ground

The process of collaboration in RE and how this fits within project management
more generally are reviewed using the common ground framework. Lessons from
CSCW for collaboration, such as shared awareness, activity awareness and role

Collaborative Requirements Engineering 361

allocation, are applied to RE tasks and processes to suggest how RE might be
improved. Activities in the RE road map [16] are reviewed from a common ground
perspective while investigating the role for appropriate representations.

4.1 Elicit and Summarise

Elicitation commences with little common ground between the users, domain
experts and requirements engineer. This task involves not only capturing informa-
tion but also making sure that there is a shared understanding about domain facts
and user goals. Representations play an important part in summarising information
so it can be discussed and checked by all parties. Without representations transient
speech in interviews can allow ambiguities and mismatches in understanding to
go unchecked. Information representations: sketches, drawings, photographs and
video, all help to supplement text and enable elicited facts to be inspected and their
meanings evaluated. Scenarios provide records of specific episodes; furthermore,
their realism encourages the development of common ground since specific stories
and descriptions of the real world are anchored in the users’ experience. Similarly
sketches, drawings and photographs record reality. However, common ground in
RE presents a paradox. The conversation has to progress towards a mutually agreed
project: realisation of the users’ goals. But this dialogue, as has been increasingly
acknowledged in RE, involves exploration of the solution space that might satisfy
the users’ goals. Specifications inevitably have to be generalised and abstract. While
an abstract view of specifications is closer to the personal common ground of soft-
ware engineers, abstractions tend to be alien to most users. Hence common ground
has to be established between abstract and concrete views, which causes a tension
that runs through all RE activities. At the elicitation stage, representations will be
biased towards the users’ common ground and hence tend to focus on specific details
in scenarios, sketches, etc., although goal trees may start development over a more
abstract view of intentions.

4.2 Analyse and Reflect

The tension between abstractions and specific representations is central to mod-
elling. Generalisations are derived from specific examples, so models arise from
scenarios. Unfortunately scenarios impose a constraint on developing abstract com-
mon ground, since each scenario focuses on a specific slice of reality. This raises
the coverage question: how many scenarios are necessary to capture not only the
generalities but also the exceptions in a domain? Increasing the number of scenar-
ios suffers from a law of diminishing returns since the additional detail imposes an
information overload on stakeholders. Furthermore, adding more scenarios runs the
risk of focusing attention on superfluous detail. There is no ideal solution to the cov-
erage problem, although systems sampling and generative tools can help to increase
confidence that models have captured the more important variations [35].

362 A. Sutcliffe

Think &Think &
CritiqueCritique

scenarios
storyboards
prototypes
models

model
formal
languages

Check &
Verify

Analyse &
Reflect

Generate
Solutions

Common
Ground
S1 S2

RE2RE1

Common
Ground

RE2RE1

Negotiate
& Agree

Validate
Communicate

Elicit &
Summarise

Think &Think &
CritiqueCritique

ConverseConverseConverseConverse
& Discuss& Discuss& Discuss& Discuss

Analyse &
Reflect

Analyse &
Reflect

Generate
Solutions
Generate
Solutions

Common
Ground
S1 S2

RE2RE1

Common
Ground

S1S1 S2S2

RE2RE2RE1RE1

Common
Ground

RE2RE1

Common
Ground

RE2RE2RE1RE1

Negotiate
& Agree

Validate
Communicate

Elicit &
Summarise

Fig. 2 Combination of
representations for common
ground in the perspective of
RE activities. Two areas of
common ground are
illustrated, one shared by
requirements engineers (RE1,
RE2) and user stakeholders
(S1, S2), and the other only
shared among requirements
engineers

Informal models enable abstract viewpoints to be debated; but models may hide
ambiguities and, worse still, assertions may go unchallenged. Models, even informal
use cases and data flow diagrams, belong to the realm of the requirements engineer,
rather than being part of users’ normal discourse. Hence there is a tendency for
disjunction to appear between specific and abstract common ground, with require-
ments engineers focusing on abstractions and users tending to favour the specific.
The solution to this dilemma is to juxtapose concrete and abstract representations,
for example using scenarios to challenge models and vice versa. This intuition has
emerged in some RE methods such as ScenIC [18] where a range of scenarios
provide challenges to input process specified in models and then the acceptabil-
ity of output from system models is evaluated in the light of scenarios of use. This
combination of representations helps to bridge the concrete and abstract division in
common ground, as summarised in Fig. 2.

4.3 Negotiate and Agree

Negotiating, prioritising and achieving mutually agreed requirements all focus on
the process of establishing common ground between stakeholders. Representations
have a special role to play in this activity since common ground in conversation is
limited by working memory to about five topics or ideas [1, 32]. Working memory is
the human equivalent of cache memory; unfortunately its contents are limited, and
become lost as they are overwritten by new input. This means we can only process a
limited quantity of information at once. However, decisions and negotiations require
consideration of many facts and options. Representations overcome the limitations

Collaborative Requirements Engineering 363

Filters Reliability

Improve
Social Skills

Carer
vets Cost

Review
before
send

Privacy

-- FRsFRs CriteriaCriteria -- NFRsNFRs

Learning
Operation
Other stakeholder

+ benefit influence

Goal Alternatives-- FRsFRs CriteriaCriteria -- NFRsNFRs

Cost –ve influence

Fig. 3 Design rationale diagram (QOC notation [13], example from [34]) which illustrates the
decision space of design solutions to address the user’s personal goal to improve his/her social
skills in e-mail communication

of working memory since large quantities of information can be inspected at will,
so we can read information rather than having to remember it. The representation
becomes an external extension to our memory. Representations support negotiation;
for example, design rationale [6] (see Fig. 3) presents a set of alternatives (solu-
tions) for a requirements problem (the issue in gIBIS) and criteria through which
alternatives can be debated. Design rationale summarises the decision space as the
common ground for negotiation.

Other representations, ranging from decision trees to decision tables and ranked
lists, all help to summarise the decision space so dialogues can progress towards
an agreed common ground. In many cases software tools facilitate the process by
comparing many attributes of requirements and proposed solutions, for example
House of Quality decision matrixes [10], or goal trees in Analytic Hierarchy Process
[12].

4.4 Validate and Communicate

These activities have very different implications for common ground. Validation is
the process of establishing that the requirements specification and proposed system
design satisfy users’ requirements. In this case the external behaviour of the sys-
tem is the necessary common ground which has to be tested and agreed between
developers and users. Hence, in Fig. 2, validation occupies both areas of common
ground, discussing the results of walkthroughs, demonstrations and simulations,
while reviewing and critiquing the specifications when discrepancies between sys-
tem behaviour and user requirements have been discovered. Verification, in contrast,
addresses checking and proving the correct internal behaviour of the specified

364 A. Sutcliffe

system. In this case common ground concerns only the software specialists so for-
mal models and specifications, which are not accessible to users, are appropriate.
However, for validation, representations need to support both concrete and abstract
views of requirements. Contrasting and integrating representations is part of the
answer, but Clark’s action ladder points to further lessons.

Common ground is established not only through conversation but also by act-
ing in the world. This is manifest in prototypes where the consequence of action
and interaction are immediately apparent. Although interacting with prototypes is a
powerful means of analysis, it needs to be combined with specifications and models
for causal diagnosis of problems observed during testing prototypes. The causes of
incorrect or inappropriate actions need to be traced back to errors in specifications
or inadequate requirements. Models can be ‘walked-through’, and early designs can
be mocked-up as storyboards presented as interactive sequences, or designs can be
simulated as Wizard of Oz techniques. User hands-on testing, i.e. interaction with
RE artefacts and prototypes, plays a vital role in developing common ground since
perceiving the consequences of action is a powerful means of promoting understand-
ing. Facts described in a conversation may be accepted uncritically at face value, but
it is difficult to ignore the consequences of actions.

4.5 Communicating Requirements

The lessons so far for common ground may be summarised as the following set of
principles:

• Iterative cycles or requirements analysis and design exploration build mutual
understanding about users’ requirements and the space of possible solutions for
those requirements.

• Common ground in RE involves integrating the abstract and concrete sub-spaces.
Juxtaposing abstract (models) and concrete presentations (scenarios, sketches,
storyboards) helps to bridge the gap.

• Interaction with representations and especially prototypes helps to build mutual
understanding.

• Negotiation and agreeing common ground requires special representations and
tools which support decision making, by depicting the choice space, and facili-
tating comparisons.

Concurrent use of several representations enables comparisons; for instance, sce-
narios, drawings, storyboards for specific information, with models, diagrams and
text specifications for abstract information, while the decision space is structured
using matrices and design rationale. Adding prototypes and simulations for the mer-
its of understanding interaction may seem to be the optimal solution. However, the
threads and tracks component of Clark’s theory points towards a problem with mul-
tiple representations. There is no escape from the limitations of working memory

Collaborative Requirements Engineering 365

and selective attention. Although multiple representations augment our ability to
develop shared understanding, within any one conversation we can only concen-
trate on a limited quantity of information. The focus of attention within stakeholder
groups has to be managed during requirements conversations; furthermore, conver-
sation is only part of the process of generating mutual understanding. This leads to
the application of discourse theory and Clark’s common ground to management of
requirements conversations.

5 Managing RE Conversations

The first principle for establishing common ground is to see the world from the
viewpoint of other stakeholders. The ability to imagine the thoughts and intentions
of others is probably a unique human attribute, and is known as the theory of mind
[14]. Briefly, the theory of mind in social psychology describes our ability to con-
struct models of other people and their intentions. Knowledge of others is first-order
theory of mind; this can be extended into a second order as a projection about beliefs
other individuals hold about their friends, and so on. Application of the metaphor
is simple: project one’s imagination into the viewpoint of other stakeholders. The
metaphor can be extended to consider the viewpoint of the software machine by
treating it as another agent. This can provide a useful perspective for modelling
by inquiring what knowledge the software system will need to execute a particu-
lar process for achieving a user’s goal. A meta-model for managing RE dialogues
is illustrated in Fig. 4. This abstracts the basic cycle of conversation and reflection
which can be mapped to more specific RE processes illustrated in Fig. 2.

User-stakeholder goals are the starting point for analysis following the accepted
GORE-style approaches. Modelling user agents, goals, soft goals and tasks with

Develop
personal
common
ground

Generate
ideas and
solutions

individual
mental
models shared

common
ground

document
representations

artefacts

Develop
personal
common
ground

Develop
mutual
under-

standing

Record
common
ground

Generate
ideas and
solutions

individual
mental
models shared

common
ground

Fig. 4 Meta-model of
common ground development

366 A. Sutcliffe

notations such as i∗ [39] also helps understanding user viewpoints. Clarks’s the-
ory draws attention to the fact that mutual understanding is generated during a
dialogue set within an arena and setting of mutually understood norms and cul-
ture. This background knowledge may be referred to as attitudes, opinions, beliefs
and values, a set of linguistically based but ambiguous concepts which shape our
intentions, decisions and actions. Attention in RE tends to be driven by modelling
and analysis; for example, tracing event flows, decomposing goals or analysing
dependencies between agents, tasks and goals. However, there is little guidance
about the use of contextual information or the people-oriented issues that are nec-
essary for interpreting models. In spite of the recognition that issues of culture,
politics and value clashes often de-rail many system developments, values have
not received much attention in RE. I argue that a key component in managing
RE conversations is awareness and active analysis of stakeholder values to arrive
at a mutually understood and agreed view about what motivates stakeholder goals
and why.

5.1 Value-Based Requirements Engineering

The taxonomy of values and their consequences for process guidance are illustrated
in Table 3.

Nine upper-level value categories are proposed based on Rescher’s theory [20]
and investigations from the card-sort experiments and interviews with expert RE
practitioners. Six categories accord with generally recognised concepts, some of
which have more stable interpretations: trust, morals, aesthetics and security; while
sociability and creativity/innovation hide many sub-categories. Some of these are
given in the related terms column. Personal characteristics are diverse; personality
theory dimensions are used (introvert/extrovert, sensing/intuition, thinking/feeling,
judging/perceiving), with some additions. Personality characteristics are closely
related to motivations and both have implications for team management in the RE
process and customisable applications. Motivations are a placeholder for a more
detailed taxonomy, while beliefs and attitudes are a diverse category which includes
socio-political, cultural and religious beliefs. These change more rapidly than other
value clusters which are more closely related to personal attributes; consequently
we have not elaborated this part of the taxonomy.

The elicitation guides in column 3 suggest some potential conversation topics
which might expose particular values. The process implications in column 4 vary
from organising the team composition in response to aesthetic needs (i.e. include
aesthetically aware designers) to more general heuristics for project team manage-
ment, such as the need for fewer controls when trust is high, or the converse when
mistrust is discovered. Sensitivity to moral values indicates the need for honesty,
openness and fairness in all parts of the development process. In many cases, espe-
cially with motivations, beliefs and attitudes, value analysis may alert the analyst
to potential stakeholder conflicts, in which case negotiation will be necessary to

Collaborative Requirements Engineering 367

Table 3 Values: elicitation hints and implications for RE process management

Value concept Related terms Potential sources Process implications

Trust Openness, integrity,
loyalty,
responsibility,
reliability

Relationships with
other individuals/
departments,
privacy policies

Less control,
milestone checks,
improved team
confidence

Collaboration Cooperation,
friendship,
sympathy,
altruism

Relationships with
others, awareness
of others (office
politics)

Improved team
cooperation,
shared awareness

Morals/ethics Justice, fairness,
equality, tolerance

Behaviour towards
others, opinions of
others’ behaviours

Openness and
honesty in team

Creativity,
innovation

Originality,
adventure, novelty

Work processes,
problem solving

Creativity,
workshops,
facilitators

Aesthetics Beauty, nature, art Self appearance,
reaction to
images, shapes,
art and design

Team members,
designers,
storyboards

Security Safety, privacy, risk Data management
policies, attitudes
towards change

Hazard/threat
analysis

Personal
characteristics

Serious/playful,
introvert/
extrovert,
systematic/
opportunistic

Self image, personae
scenarios,
psychological
questionnaires

Customisation
analysis for
personal RE, team
conflict
management

Motivation Ambition,
achievement

Ambitions, goals,
career plans

Stakeholder
analysis, rewards,
incentives for
members

Beliefs and
attitudes

Cultural, political,
religious topics

Leisure interests,
user background,
reaction to news
events

Stakeholder analysis,
team composition,
incentives

arrive at a common set of values; alternatively, system configuration/customisation
may need to be considered (e.g. different levels of security controls mapped to
stakeholders who regard security as very or not important). Values and motivations
are used to direct attention during interviews and requirements meetings, and sup-
plement the agenda that would be suggested by goal-oriented RE. They also provide
contextual information for interpreting users’ goals and assumptions. For example,
focusing on motivations before users’ goals provides more contextual information
on longer-term drivers for users’ interests which can then be used to explore more
specific goals. Motivations also focus attention on developing a common ground of
understanding with individual users which will be important for personalisation (see
Table 4).

368 A. Sutcliffe

Table 4 Motivations and their implications

Motivation Description Implications

Power Need to control others, authority,
command

Work organisation,
responsibility, control
hierarchy

Possession Desire for material goods, wealth Resource control, monetary
incentives, marketing

Achievement Need to design, construct, organise Goal oriented, to project aims
Self-esteem Need to feel satisfied with oneself Link personal and project

goals, praise personal
achievement

Peer-esteem Need to feel valued by others Team composition, social
feedback and rewards, praise

Self-efficacy Confidence in own capabilities Confidence building, training,
skill matching

Curiosity, learning Desire to discover, understand
world

Extensible systems, self
tutoring

Sociability Desire to be part of a group Collaboration in work
organisation

Altruism Desire to help others Cooperation in work
organisation

Values direct attention to user beliefs that may either suggest non-functional
requirements or perspectives within which to interpret users’ motivations and
goals. Finally, emotions give useful feedback on users’ views which may not
be expressed in conversation, so they afford another means of developing com-
mon ground by observation of facial expressions, body language and voice tone
to detect frustration, anger, pleasure, etc. Agenda-setting heuristics and manage-
ment of attention to issues within requirements conversations are summarised in
Fig. 5.

The heuristics advise on use of the checklists of values and motivations in
Tables 3 and 4 as agendas within interviews and other RE activities organised in
an iterative cycle of developing mutual understanding.

• Elicit users’ and organisation’s motivations and values in initial requirements
sessions when high-level goals are discussed.

• Analyse motivations in more detail if requirements for personalisation are
indicated or to reflect individual needs.

• Goals should be interpreted in the light of user values and motivations; which
provide useful consistency checks.

• Motivations and values which have not been cross-referenced to goals during
analysis may suggest missing requirements.

• Emotions provide useful feedback on the acceptability of requirements and pro-
totype designs, especially where users are not confident in providing verbal
feedback.

Collaborative Requirements Engineering 369

Plan
message/
exchang

e

Send mess-
age, Speak,

Communicate

Receive
message/

listen

Understand
message
content

Interpret
In context

Take
decision,

Act

recognition
error

common ground
error

partial/poor plan,
ambiguous goals

poor composition

inadequate delivery,
message inaudible,
not visible noise,

environmental
interference

attention failure:
not listening,
interruptions,
diverted attention

ambiguous, ungrammatical
message

poor domain knowledge, linguistic

wrong language

unaware of context,
poor knowledge of role,
conversational history, domain

viewpoint, conflicting
mental models

e

SenderSenderSenderSender

ReceiverReceiverReceiverReceiver

comprehension
error

Fig. 5 Discourse sequence model for common ground and attention agenda control

• Analysis of emotional reaction to user values can indicate strong beliefs and
hidden social and political agendas.

• Comparing stakeholder values and motivations can help discovering hidden
conflicts.

Finally, Clark’s theory provides a useful perspective on the difficulties of
analysing user values and other such soft issues in RE. Conversations have lay-
ers of meaning (see Fig. 1), so stakeholders may not be explicit in verbalising
their intentions and beliefs. Value analysis and sensitivity to emotional responses
can uncover deeper meanings in tacit expressions; however, such analysis may
uncover difficult issues which need sensitive handling. Some issues may be
better left unresolved and ambiguous in the early stages of analysis. Further

370 A. Sutcliffe

guidance on handling requirements discourse and value analysis is beyond the scope
of this chapter, but more detailed advice can be found in Sutcliffe [31] and Thew
and Sutcliffe [36].

6 ADVISES Case Study

In this section, use of the common ground framework is illustrated in a case study
describing requirements analysis experience in an e-science application to sup-
port epidemiological research. The case study reviews requirements analysis for
ADVISES, a decision-support system for analysis of epidemiology problems that
served two stakeholder groups: academic researchers and public health analysts. For
researchers, understanding the causes of childhood obesity by statistical analysis of
health records was a high-level goal. In contrast, the goal of public health analysts
(PCT: Primary Care Trust) was local health management; for example, identify-
ing where local concentrations of obese children were located and then targeting
interventions, e.g. promotion of local sports facilities, healthy eating campaigns,
etc. The analysis was carried out in a series of requirements elicitation interviews,
observations of stakeholder meetings, observations of research work, and scenario-
based discussions of storyboard designs and prototypes. Recordings of the various
meetings and interviews were transcribed and analysed using the taxonomy and key
issues.

6.1 Value Analysis

Analysis began by constructing a shortlist of hunches based on values directly
expressed by the users:

• Being methodical, precise, systematic (personal characteristics).
• Creativity.
• Public profile, collaborations, National Health Service (sociability).
• Users don’t collaborate or work together (sociability? trust?).

We used the value and motivation tables to focus attention on these ideas, to
unpack the meaning of terms such as ‘methodical’ for our users, and explore the
common ground for understanding shared values, goals and possible design solu-
tions. The users’ public profile collaboration appeared to clash with their stated
internal approach to work, so we focused attention on this issue.

Following several iterations of analysis making use of both observation and inter-
view data, we developed a deeper understanding of the potential common ground
and new ideas about our users’ values and emotions:

Collaborative Requirements Engineering 371

• Innovation and creativity were important for the researchers, with a strong tech-
nical focus and willingness to adopt new software; however, this clashed with the
PCT analysts’ conservatism and concerns about control.

• Collaboration with outside groups/people is fundamental to our users’ way of
working. As well as developing new research and tools, academic researchers
were motivated by profile-raising for their organisation (achievement and altru-
ism to help collaborators, rather than power). However, they rarely share details
of analytical work and display trust and confidence in each others’ abilities, which
reveals a continuing tension between trust and data security.

The apparent contradiction between internal and external collaboration was
explained in terms of differences between working styles (personal characteristics).
Security and privacy of data emerged as an important value which was added to
the key issues. A common ground value map for the two stakeholder groups is
illustrated in Fig. 6.

The PCT users were motivated by service to the community and responsibilities
to improve health in the local area, and this implied creative solutions and oppor-
tunistic responses to problems. In contrast, academic researchers were motivated by
the achievement in scientific research and this necessitated valuing a systematic and
methodical approach. Sensitivity to our users’ emotional responses has guided the
RE process.

Values analysis was influential in shaping our view of user requirements. One
illustration is the divergence between the two stakeholder groups. The researchers’
values were oriented towards security in data management policies with trust in
data analysis processes. They were concerned with accurate, well documented and
repeatable scientific processes, indicating non-functional requirements (NFRs) such
as reliability, consistency and accuracy in processes, as well as privacy and secu-
rity for data and results from statistical analysis. Health analysts in contrast were
more concerned with creative problem solving, and being responsive to local needs.
Privacy and accuracy were not important values, so their NFRs were flexibility, ease
of use and rapid response times. The conflicting NFRs were resolved by producing
a configurable system, offering the researchers workflows controlling system func-
tions in a consistent and repeatable manner, while the health analysts had access

ResearchersResearchers Public HealthPublic Health
AnalystsAnalysts

Privacy
Security

Systematic
Achievements

Creative
Opportunistic

Service
Altruism

Responsibility

ResearchersResearchers Public Health
Analysts

Public Health
Analysts

Co-op
eration?

TrustFig. 6 Value map for
negotiating the common
ground between the
ADVISES stakeholders

372 A. Sutcliffe

to simpler functionality that supported more ad hoc analysis. The concerns over
privacy and security were agreed as shared NFRs during the requirements process,
which developed common ground by using a combination of representations.

6.2 Reflections on Representations and Process

Throughout the requirements process RE techniques and representations were
adapted to both project goals and the circumstances at that time. Table 5 summarises
the appropriateness of each technique used for identifying the necessary knowledge
to drive the requirements process forward.

Early in the project, a combination of interviews, with observation of meetings
and working practices, provided rich domain knowledge, and generated ideas which
started to shape the project. However, whilst interviews and observation taught us
about the more concrete and observable aspects of work, these methods were not
effective ways to access tacit expertise about epidemiological workflows and deci-
sion making. Instead, the use of scenarios and the domain knowledge workshops
were particularly helpful in addressing this gap and understanding how our users
considered evidence and made decisions about their data. Once we began the early
design work, a combination of scenarios and storyboards worked well, with scenar-
ios proving a particularly effective way to feed users’ requirements to the project
team, while storyboards and prototypes were useful for exploring designs with
users.

Open-ended interviews were effective for initiating the requirements process,
since the concept of an interview is widely understood. Interviews elicited both
concrete and abstract information, recorded in scenarios of use and lists of goals
and domain facts respectively. The stakeholders were comfortable with the pres-
ence of an observer/analyst in meetings and this also proved an effective way to get

Table 5 The effectiveness of representations in supporting development of different aspects of
common ground

Developing common
ground for Interviews

Observation
of work

Domain
knowledge
workshops Scenarios

Story-
boards Prototypes

Concrete domain
knowledge

++ ++ ++ +++ + +

Values and
stakeholder CG

++ – ++ ++ – –

User goals ++ – + ++ ++ +
Abstract concepts + – +++ – – –
Agreed solu-

tions/validated
requirements

– – – ++ +++ +++

Requirements
specification

++ – – ++ ++ ++

Collaborative Requirements Engineering 373

background knowledge. However, observations of working practice did not capture
much concrete detail and often turned into a dialogue between the requirements ana-
lyst and the users, since epidemiology is cognitive-intensive work which involves
abstract concepts rather than specific details.

When we first introduced the use of scenarios the epidemiologists found the
approach somewhat abstract and felt it was hard to contrive situations that were
not grounded in current work. However, as they became more familiar with the
method, they were able to think of specific examples of working practices, cur-
rent problems and how they would like the system to support their investigations.
Domain knowledge workshops were intended to capture abstract knowledge about
the concepts, terminology and semantics within the users’ domain. The workshops
placed the epidemiologists in an unusual situation, asking them to discuss aspects
of their world that they take for granted. In order to make this task easier, elicita-
tion started with more concrete concepts, e.g. the different types of epidemiological
study, and then moved to more abstract questions. This approach worked well,
and the epidemiologists commented that they found the workshops interesting and
engaging.

Two representations are notable omissions from the case study analysis: infor-
mal and formal models. The absence of formal models is not surprising in an
iterative user-centred RE process that was closely related to agile development
approaches. However, the role of informal models is diverse and needs more expla-
nation. Use cases, data flow diagrams and class diagrams were used but only among
the developers. The reasons why these representations were not shared with the
users, in contravention of the common ground framework, were twofold. First, the
requirements analyst was a bioinformatician and domain expert rather than a com-
puter science-trained requirements engineer; hence her common ground with the
stakeholders was not directly supported by models. Secondly, even though the intro-
duction of use cases was encouraged, scenarios and other concrete representations
provided sufficient common ground to support development of mutual understand-
ing even for abstract viewpoints on process and data structures. This did incur
some penalties in misunderstandings that might have been discovered earlier in the
process; for example, the expert researcher workflows were not articulated clearly
and use of process dependency diagrams could have focused attention on resolving
ambiguities. In data specification, the division of continuous distributions into dis-
crete categories was important for all statistical analyses, yet this remained unshared
tacit knowledge for some time. More explicit data modelling may have identified
this issue.

In spite of these limitations the use of value-based RE to focus attention on topics
which required mutual understanding, coupled with use of multiple representations,
served the project well. Storyboards were useful in developing a common ground
of design ideas, since alternatives and variations could be deployed quickly within
requirements sessions, either by drawing, swapping illustrations or adding post-
it notes. Prototypes supported validation by eliciting detailed feedback on design
features; however, this was combined with discussion of more abstract concepts,
such as workflows for both stakeholder groups and how the system design might be

374 A. Sutcliffe

improved to fit different ways of working. Even though the storyboards, prototypes
and scenarios were used in separate analysis sessions with academic researchers
and the PCT analysts, they formed a common ground understanding of alternative
views which evolved into specification of core common functionality of the sys-
tem, with customised versions for each stakeholder group to meet their needs and
values.

7 Conclusion

The contributions of this chapter have been to develop Rolland’s vision of
method engineering from the perspective of discourse theory and natural language.
Application of Clark’s common ground as a framework for critiquing represen-
tations and techniques throws light on their relative contributions to one of the
fundamental problems in RE: how to reconcile abstract and concrete views in sys-
tem development, so that a mutual understanding of requirements, the software
design and domain constraints emerges. Combination of representations has also
been researched in Rolland’s method engineering [26, 27] to suggest how scenarios
and models in particular can improve understanding of requirements. Other exam-
ples of using scenarios and concrete representations to challenge models and goals
can be found in obstacles analysis for KAOS modelling [37] and scenario-based
validation in ScenIC [18].

Use of scenarios, prototypes, and design rationale formed the kernel of the
SCRAM method [30]; however, experience demonstrated that too many represen-
tations can overload users, resulting in poor focus on key issues [33], in spite
of the use of design rationale and scenario walkthrough to structure sessions. So
while juxtaposing representations is advantageous, optimal use still poses several
research problems. This raises a fundamental question in the method engineering
debate: whether it is best to provide users and requirements engineers with a tool-
kit of representations and techniques and let them take the decisions on how to use
them during the process; or the alternative of trying to provide prescriptive cook-
book guidance for different situations. Rolland tended towards the flexible tool-kit
approach [19, 26, 28], with which I agree. However, I argue that a theoretical frame-
work, such as the common ground described in this chapter, can give researchers and
practitioners useful criteria to compose the RE process and choose representations
to suit their particular circumstances.

References

1. Baddeley AD (1986) Working memory. Oxford University, Oxford
2. Beck K (1999) Extreme programming explained: embracing change. Addison-Wesley,

New York
3. Brennan SE, Clark HH (1996) Conceptual pacts and lexical choice of conversation. J Exp

Psychol: Learning, Memory Cognition 22(6):1482–1493

Collaborative Requirements Engineering 375

4. Chantree F, Nuseibeh B, De Roeck A, Willis A (2006) Identifying nocuous ambiguities
in natural language requirements. In: Proceedings of 14th IEEE international requirements
engineering conference (RE’06), IEEE Computer Society, Los Alamitos, CA

5. Clark HH (1996) Using language. Cambridge University, Cambridge
6. Conklin J, Begeman ML (1988) gIBIS: a hypertext tool for exploratory policy discussion.

ACM Trans Office Info Systems 64:303–331
7. Daft RL, Lengel RH, Trevino LK (1987) Message equivocality, media selection, and manager

performance: implications for information systems. MIS Quarter 11(3):355–366
8. Damian D, Marczak S, Kwan I (2007) Collaboration patterns and the impact of distance on

awareness in requirements-centred social networks. In: Proceedings of 15th IEEE internation-
alrequirements engineering conference RE’07, IEEE Computer Society, Los Alamitos, CA

9. Green TRG, Petre M (1996) Usability analysis of visual programming environments: a
cognitive dimensions framework. J Visual Languages Computing 7:131–174

10. Hauser J, Clausing D (1988) The house of quality. Harvard Business Rev 5:63–73
11. Jarke M, Pohl K, Jacobs S, Bubenko J, Assenova P, Holm P, Wangler B, Rolland C, Plihon

V, Schmitt JR, Sutcliffe AG, Jones S, Maiden NAM, Till D, Vassiliou Y, Constantopoulos
P, Spanoudakis G (1993) Requirements engineering: an integrated view of representation,
process, and domain. In: Proceedings of the 4th European software engineering conference.
LNCS, vol 717. Springer, Berlin

12. Karlsson J, Ryan K (1997) A cost value approach for prioritizing requirements. IEEE Softw
14(5):67–74

13. MacLean A, Young RM, Bellotti V, Moran TP (1991) Questions, options and criteria:
elements of design space analysis. Human-Computer Interaction 6(3/4):201–250

14. Mitchell P (1997) Introduction to theory of mind: children, autism and apes. Arnold, London
15. Monk AF, Watts LA (2000) Peripheral participation in video mediated communication. Int J

Human-Computer Studies 52:933–958
16. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings of

international conference on software engineering (ICSE-2000), ACM, New York
17. Olson GM, Olson JS (2000) Distance matters. Human-Computer Interaction 15(2):139–178
18. Potts C (1999) ScenIC: a strategy for inquiry-driven requirements determination. In:

Proceedings of 4th IEEE international symposium on requirements engineering. IEEE
Computer Society, Los Alamitos, CA

19. Ralyte J, Deneckère R, Rolland C (2003) Towards a generic model for situational method
engineering. In: Proceedings of 15th international conference on advanced information
systems engineering (CAISE’03). LNCS, vol 2681. Springer, Berlin

20. Rescher N (1969) Introduction to value theory. Prentice-Hall, Englewood Cliffs, NJ
21. Robertson S, Robertson J (1999) Mastering the requirements process. Addison Wesley,

Harlow
22. Rolland C (1998) A comprehensive view of process engineering. In: Proceedings of interna-

tional conference on advanced information systems engineering (CAISE). LNCS, vol 1413.
Springer, Berlin

23. Rolland C, Ben Achour C (1998) Guiding the construction of textual use case specifications.
Data Knowl Eng J 25(1–2):125–160

24. Rolland C, Proix C (1992) A natural language approach for requirements engineering. In:
Proceedings of the 4th international conference (CAiSE ‘92). LNCS, vol 593. Springer, Berlin

25. Rolland C, Prakash N, Benjamen A (1999) A multi-model view of process modelling. Reqs
Eng 4(4):169–187

26. Rolland C, Salinesi C, Etien A (2004) Eliciting gaps in requirements change. Reqs Eng
9(1):1–15

27. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modeling using scenarios. IEEE
Trans Softw Eng 24(12):1055–1071

376 A. Sutcliffe

28. Rolland C, Ben Achour C, Cauvet C, Ralyte J, Sutcliffe AG, Maiden NAM, Jarke M, Haumer
P, Pohl K, Dubois E, Heymans P (1998) A proposal for a scenario classification framework.
Reqs Eng 3(1):23–47

29. Short J, Williams E, Christie B (1976) The social psychology of telecommunications. Wiley,
Chichester

30. Sutcliffe AG (1995) Requirements rationales: integrating approaches to requirements analysis.
In: Designing interactive systems: DIS 95 conference proceedings, ACM Press, New York

31. Sutcliffe AG (2002) User-centred requirements engineering. Springer, London
32. Sutcliffe AG (2003) Scenario-based requirements engineering. In Proceedings of IEEE

joint international conference on requirements engineering, IEEE Computer Society, Los
Alamitos, CA

33. Sutcliffe AG, Ryan M (1997) Assessing the usability and efficiency of design rationale. In:
Proceedings of human computer interaction INTERACT-97. IFIP/Chapman and Hall, London

34. Sutcliffe AG, Fickas S, Sohlberg M (2005) Personal and contextual requirements engineering.
In: Proceedings of 13th IEEE international conference on requirements engineering, IEEE
Computer Society, Los Alamitos, CA

35. Sutcliffe AG, Maiden NAM, Minocha S, Manuel D (1998) Supporting scenario-based
requirements engineering. IEEE Trans Softw Eng 24(12):1072–1088

36. Thew S, Sutcliffe AG (2008) Value-based requirements engineering. In: Proceedings of
16th IEEE requirements engineering conference, RE’08, IEEE Computer Society, Los
Alamitos, CA

37. Van Lamsweerde A (2000) Requirements engineering in the year 00: a research perspective.
In: Proceedings of 22nd international conference on software engineering, ACM, New York

38. Van Lamsweerde A, Letier E (2000) Handling obstacles in goal-oriented requirements
engineering. IEEE Trans Softw Eng 26(10):978–1005

39. Yu E (1997) Towards modelling and reasoning support for early-phase requirements engineer-
ing. In: Proceedings of Third IEEE international symposium on requirements engineering,
IEEE Computer Society, Los Alamitos CA

Important Papers by Colette Rolland

1. Ben Achour C, Rolland C, Souveyet C, Maiden NAM (1999) Guiding use case author-
ing: results of an empirical study. In: Proceedings of the 4th IEEE international symposium
on requirements engineering RE 1999, IEEE Computer Society, Washington, DC, USA,
pp 36–43

2 Bubenko J, Rolland C, Loucopoulos P, DeAntonellis V (1994) Facilitating ‘fuzzy to for-
mal’ requirements modelling. In: Proceedings of international conference on requirement
engineering ICRE 1994, Colorado Springs, Colorado, pp 154–157

3. Cauvet C, Proix C, Rolland C (1991) Alecsi: an expert system for requirements engineering.
In: Proceedings of CAiSE 1991. LNCS, vol 498. Springer, Berlin Heidelberg, pp 31–49

4. Deneckère R, Kornyshova E, Rolland C (2009) Enhancing the guidance of the intentional
model MAP: graph theory application. In: Proceedings of the international conference on
research challenges in information science (RCIS 2009), Fès, Morocco

5. Etien A, Rolland C (2005) Measuring the fitness relationship. Reqs Eng J 10:184–197
6. Etien A, Rolland C, Salinesi C (2006) A meta-modelling approach to express change

requirements. In: Proceedings of international conference on software engineering and data
technologies – ICSOFT‘2009. Special session on Meta-modelling, Setubal, Portugal

7. Falkenberg FD, Hesse W, Lindgreen P, Nilsson BE, Oei JLH, Rolland C, Stamper RK, Van
Assche FJM, Verrijn-Stuart AA, Voss K (1996) FRISCO: a framework of information system
concepts. The IFIP WG 8.1 Task Group FRISCO Technical report http://cs-exhibitions.uni-
klu.ac.at/index.php?id=445

8. Iacovelli A, Souveyet C, Rolland C (2008) Method as a Service (MaaS). In: Proceedings
of international conference on research challenges in information science – RCIS 2008,
Marrakech, Morocco, pp 371–380

9. Jarke M, Bubenko J, Rolland C, Sutcliffe A, Vassiliou Y (1993) Theories underlying require-
ments engineering – an overview of NATURE at genesis. In: Proceedings of IEEE symposium
on requirements engineering – RE 1993, San Diego, CA

10. Jarke M, Pohl K, Jacobs S, Bubenko J, Assenova P, Holm P, Wangler B, Rolland C, Plihon
V, Schmitt JR, Sutcliffe S, Jones S, Maiden N, Till D, Vassiliou Y, Constantopoulos P,
Spanoudakis G (1993) Requirements engineering: an integrated view of representation, pro-
cess, and domain. In: Proceedings of the 4th European software engineering conference.
LNCS, vol 717. Springer, Berlin Heidelberg, pp 100–114

11. Jarke M, Pohl K, Rolland C, Schmitt JR (1994) Experience-based method evaluation
and improvement: a process modeling approach. In: Proceedings of IFIP WG 8.1 CRIS
conference, Maastrich, The Netherlands, pp 1–27

12. Jarke M, Rolland C, Sutcliffe A, Domges R (eds) (1999) The NATURE of requirements
engineering. Shaker, Aachen, Germany

13. Kaabi RS, Souveyet C, Rolland C (2004) Eliciting service composition in a goal driven man-
ner. In: Proceedings of international conference on service oriented computing – ICSOC. New
York, NY, USA, pp 308–315

377S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems Engineering,
DOI 10.1007/978-3-642-12544-7, C© Springer-Verlag Berlin Heidelberg 2010

378 Important Papers by Colette Rolland

14. Lingat Y, Nobecourt P, Rolland C (1987) Behaviour management in database applications.
In. Proceedings of 13th international conference on very large databases – VLDB 1987, UK.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 185–196

15. Nurcan S, Etien A, Kaabi RS, Zoukar I, Rolland C (2005) A strategy driven business process
modelling approach. business process management journal. Special Issue on Goal-oriented
Business Process Management Journal 11(6):628–649, Emerald

16. Nurcan S, Rolland C (2003) A multi-method for defining the organizational change. J Info
Softw Technol 45(2):61–82

17. Papadacci E, Stephanopoli, Salinesi C, Rolland C (2006) NENO process: information sys-
tems arbitration process in enterprise architecture project. Information and communication
technologies: from theory to applications (ICTTA), Damascus, Syria, IEEE, pp 105–106

18. Plihon V, Rolland C (1995) Modelling ways-of-working. In: Proceedings of CAISE 1995.
LNCS, vol 932. Springer, Berlin Heidelberg, pp 126–139

19. Prakash N, Rolland C (2006) System design for requirements expressed as a Map. Information
Resources Management Association – IRMA, Software Engineering Track, Washington, USA

20. Ralyte J, Deneckère R, Rolland C (2003) Towards a generic model for situational method
engineering. In: Proceedings of CAISE 2003. LNCS, vol 2681. Springer, Berlin Heidelberg,
pp 95–110

21. Ralyte J, Rolland C (2001) An approach for method reengineering. In: Proceedings of the
20th international conference on conceptual modeling – ER2001. LNCS, vol 2224. Springer,
Berlin Heidelberg, pp 471–484

22. Ralyte J, Rolland C (2001) An assembly process model for method engineering. In:
Proceedings of CAISE 2001. LNCS, vol 2068. Springer, Berlin Heidelberg, pp 267–283

23. Ralyte J, Rolland C, Plihon V (1999) Method enhancement by scenario based techniques. In:
Proceedings of CAISE 1999. LNCS, vol 1626. Springer, Berlin Heidelberg, pp 103–118

24. Rolland C (1984) Database dynamics. ACM SIGMIS Database, 14(3): 32–43, ACM New
York, NY, USA

25. Rolland C (1992) Trends and perspectives in conceptual modelling. In: Proceedings of Indo-
French workshop on object-oriented systems, Goa, India

26. Rolland C (1994) Modelling the evolution of artifacts. In: Proceedings of the first international
conference on requirements engineering – RE 1994. Colorado, pp. 216–219

27. Rolland C (1997) A primer for method engineering. In: Proceedings of Informatique des
Organisations et Systèmes d’Information et de Décision – INFORSID 1997, Toulouse, France

28. Rolland C (1998) A comprehensive view of process engineering. In: Proceedings of CAISE
1998. LNCS, vol 1413. Springer, Berlin Heidelberg, pp 1–24

29. Rolland C (1999) Requirements engineering for COTS based systems. J Info Softw Technol
41:985–990

30. Rolland C (2002) L’E-Lyee: coupling L’Ecritoire and LyeeALL. Info Softw Technol 44:
185–194

31. Rolland C (2006) Aligning business and system functionality through model matching. In:
Systèmes d’Information et Management (SIM): 10(3)

32. Rolland C (2007) Capturing system intentionality with maps. In: Krogstie J, Opdahl AL,
Brinkkemper S (eds) Conceptual modelling in information systems engineering. Springer,
Berlin, pp 140–158

33. Rolland C (2008) Intention driven conceptual modelling. In: Johannesson P, Söderström E
(eds) Information systems engineering: from data analysis to process networks. IGI Global,
pp 16–42

34. Rolland C (2009) Endorsement of the book “metamodeling for method engineering”. In:
Jeusfeld MA, Jarke M, Mylopoulos J (eds) Metamodeling for method engineering, MIT,
Cambridge, MA

35. Rolland C (2009) Exploring the fitness relationship between system functionality and business
needs. In: Lyytinen K, Loucopoulos P, Mylopoulos J, Robinson W (eds) Design requirements
engineering – a ten-year perspective. LNBIP, vol 14. Springer, Berlin Heidelberg, pp 305–326

Important Papers by Colette Rolland 379

36. Rolland C (2009) Method engineering: towards methods as services. Software Process:
Improvement and Practice (SPIP). Special issue on Software Processes 14(3):143–164, Wiley,
New York, NY

37. Rolland C, Ben Achour C (1998) Guiding the construction of textual use case specification.
Data Knowl Eng J 25(1):125–160

38. Rolland C, Ben Achour C, Cauvet C, Ralyte J, Sutcliffe A, Maiden N. Jarke M, Haumer P,
Pohl K, Dubois E, Heymans P (1998) A proposal for a scenario classification framework.
Reqs Eng J 3(1):23–47

39. Rolland C, Foucaut O (1978) Concepts for designing an information system and its utilisation
in the REMORA project. In: Proceedings of the 4th international conference on very large
databases – VLDB 1978. West Berlin, Germany, pp 342–350

40. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling in requirements
engineering. In: Proceedings of the 4th IEEE international symposium on requirements
engineering, IEEE Computer Society, Limerick, Ireland, pp 74–83

41. Rolland C, Kaabi (2007) An intentional perspective to service modeling and discovery.
In: Proceedings of international computer software and applications conference COMPSAC
2007, Beijing, China, pp 455–460

42. Rolland C, Kaabi, RS, Kraeim N (2007) On ISOA: intentional services oriented architecture.
In: Proceedings of CAISE 2007. LNCS, vol 4495. Springer, Berlin Heidelberg, pp 158–172

43. Rolland C, Leifert S, Richard C (1979) Tools for information dynamics management. In:
Proceedings of 5th international conference on very large databases – VLDB 1979, Brasil.
Rio de Janeiro, Brazil, pp 251–261

44. Rolland C, Nurcan S (2010) Business process lines to deal with the variability. In: Proceedings
of Hawaii international conference on system sciences (HICSS), Hawaii, USA

45. Rolland C, Nurcan S, Grosz G (1997) Guiding the participative design process. In:
Proceedings of the Americas conference on information systems, association for information
systems, Indianapolis, IN, pp 922–924

46. Rolland C, Nurcan S, Grosz G (1998) A Unified framework for modelling co-operative design
processes and co-operative business processes. In: Proceedings of international conference on
system sciences – HICSS 1998, Big Island, Hawaii, USA

47. Rolland C, Nurcan S, Grosz G (1999) Enterprise knowledge development: the process view.
Info Manage J 36(3):165–184

48. Rolland C, Plihon V, Ralyte J (1998) Specifying the reuse context of scenario method
chunks. In: Proceedings of CAISE 1998. LNCS, vol 1413. Springer, Berlin Heidelberg,
pp 191–218

49. Rolland C, Prakash N (1996) A proposal for context-specific method engineering. In:
Proceedings of IFIP WG 8.1 conference on method engineering, Atlanta, GA, pp 191–208

50. Rolland C, Prakash N (2000) Bridging the gap between organisational needs and ERP
functionality. Reqs Eng J (REJ) 5(3):180–193

51. Rolland C, Prakash N (2001) From conceptual modelling to requirements engineering. Ann
Softw Eng 10(1–4):15–176

52. Rolland C, Prakash N, Benjamen A (1999) A multi-model view of process modelling. Reqs
Eng J 4(4):169–187

53. Rolland C, Prakash N, Kaabi RS (2007) Variability in business process families. In:
Proceedings of information resources management association – IRMA. Vancouver, Canada

54. Rolland C, Proix C (1986) An intelligent tool for information systems design. In: Proceedings
of 19th HICSS international conference, Hawaii, ACM/IEEE

55. Rolland C, Proix C (1992) A natural language approach for requirements engineering. In:
Proceedings of CAiSE 1992. LNCS, vol 593. Springer, Berlin Heidelberg, pp 257–277

56. Rolland C, Salinesi C (2005) Modeling goals and reasoning with them. In: Aurum A, Wohlin
C (eds) Engineering and managing requirements. Springer, Berlin Heidelberg, pp 189–217

57. Rolland C, Salinesi C, Etien A (2004) Eliciting gaps in requirements change. Reqs Eng J
9(1):1–15

380 Important Papers by Colette Rolland

58. Rolland C, Kirsch-Pinheiro M, Souveyet C (2010), An Intentional Approach to
Service Engineering, IEEE Transactions of Services Computing, Special issue on REFS
(Requirements Engineering for Services) Workshop, April 2010 (in press), DOI Bookmark:
http://doi.ieeecomputersociety.org/10.1109/TSC.2010.26

59. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modelling using scenarios. IEEE
Trans Softw Eng, Special Issue on Scenario Management 24(12):1055–1071

60. Rolland C, Souveyet C, Kraeim N (2008) An intentional view of service-oriented com-
puting. Revue Ingénierie des Systèmes d’Information (ISI), RSTI (Revue des Sciences et
Technologies de l’Information) – ISI 13(1):107–137, Hermès, France

61. Rolland C, Souveyet C, Moreno M (1995) An Approach for defining ways-of-working. Info
Systems J 4:337–359

62. Rolland C, Stirna J, Prekas N, Loucopoulos P, Grosz G (2000) Evaluating a pattern approach
as an aid for the development of organisational knowledge: an empirical study. In: Proceedings
of CAISE 2000. LNCS, vol 1789. Springer, Berlin Heidelberg, pp 176–191

63. Rolland, Foucaut O, Benci G (1988) Conception des systèmes d’information: la méthode
REMORA. Eyrolles, Paris, France

64. Salinesi C, Rolland C (2003) Fitting business models to software functionality: exploring
the fitness relationship. In: Proceedings of CAISE 2003. LNCS, vol 2681. Springer, Berlin
Heidelberg, pp 647–664

65. Si-Said S, Rolland C, Grosz G (1996) MENTOR: a computer aided requirements engineering
environment. In: Proceedings of CAISE 1996. LNCS, vol 1080. Springer, Berlin Heidelberg,
pp 22–43

66. Wieringa R, Maiden NAM, Mead N, Rolland C (2006) Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Reqs Eng J 11(1):102–107

Index

A
Adaptable service, 311
Adaptivity, 308, 310–311
Agent, 88–90
Agent-Oriented Software Engineering

(AOSE), 138
Agile RE, 132
Alignment, 101–112, 144–145, 291–292,

296–299, 339
Application engineering, 320
Articulating, 41, 43, 178, 253
Assertion, 201, 281–286, 362

B
Behavioral schema, 280
Business development, 117, 217–218
Business-IT relationship, 42, 53, 61
Business map, 313
Business model, 3, 20, 84, 196–197, 217, 299
Business process, 239–255
Business process model (BPM), 44, 120, 124,

220, 228–229, 253–254, 310, 312, 320
Business process reengineering, 183
Business rules model (BRM), 220

C
Case Grammar, 79
Cognitive challenges, 41–43, 60–61
Commitment, 137–151

support, 146–150
Commonality strategy, 323–324
Common ground, 356–357, 360–365
Complexity challenges, 41–42, 61–62
Component-based software engineering,

336–337
Comprehensive strategy, 320, 323, 325–326
Concept alignment, 291, 296–299
Concepts model (CM), 220, 230

Conceptual model, 5–9, 12, 19–20, 30–34, 94,
148, 187–188, 196, 198, 258, 260–261,
272, 278–279, 281–287, 290, 292, 303

Conceptual schema, 277–287
Conflict resolution, 42–43, 55–56, 61
Context, 44–50, 179, 181, 184, 187, 198–206,

240–243, 246–251
Context-aware, 254, 315
Control system, 85–95
Conversation, 47, 356–358, 360–362, 364–366,

368–369
Correctness, 25, 68, 72, 76, 183, 233–234,

277–278, 330
Cross-disciplinary, 83–98
Cross-organizational coordination

requirements, 128
Customer orientation, 84
Customers, 68, 73, 84, 87, 98, 148, 209, 243,

308, 338

D
Data concept, 33–35, 187–188
Data model, 29–31, 33–36, 50, 116, 119–120,

130, 187, 373
Data systems, 18–21, 28–30, 36, 49
Design life-cycle, 316
Domain engineering, 320, 323–324
Domain

model, 83–98
ontology, 73–75
system, 19–21, 28–29, 36

E
Elicitation, 119–122, 161, 168, 361
Empirical studies, 102, 126–127
EM tools, 232–233
Enterprise Knowledge Development (EKD),

215, 219–224, 227–228, 233
Enterprise model/modeling, 195, 215–235

381

382 Index

Enterprise modeling intentions, 216–219
Enterprise systems (ES), 115–133
e3value, 196–197, 204, 207
Evolution, 4, 9–11, 19, 23–24, 29, 51, 56,

62–63, 83–85, 94–95, 179, 309–310
Expectations managements, 54–55, 63
Extended enterprise, 116, 121–122, 126,

128–129

F
Farandole of models, 1–13
Formal concept analysis, 155–175

G
Generic Process Model, 241, 253
Goal

diversity ratio, 166, 173
hierarchy, 103, 105–108, 216
lattice, 156, 158–161, 163–166, 169–171,

173–174
matrix, 163–165, 169
models/modeling, 124, 145, 150–151, 157,

187, 228–229, 259, 336, 339
ontology, 342–343, 345–346, 350
-orientation, 151, 155, 157
-oriented approaches, 88, 123,

140–141, 174
-oriented modeling/modelling, 177,

259, 341
-oriented requirements analysis, 69, 73–76,

78–79
reconciliation, 165–167, 173
reduction ratio, 166, 173
support, 105, 146–147, 150

Goal graph, 73–74, 76
Goal-Oriented Requirement Engineering

(GORE), 257–261, 263–264, 267–270,
272–274, 365

Governance of information systems, 5
GRL, 179–180

H
Hohfeld’s classification of rights, 196, 198,

212
Hyperclass, 6, 11
Hyper-event, 7
Hyperobject, 6
Hyper-role, 6–7

I
i∗, 177–189
i∗ diagram, 182, 184–185, 263
i∗ framework, 84, 150, 177–179, 181–182,

184–185, 187–189, 258–259, 268–269

i∗ metamodel, 179–181, 183, 186,
264–270, 274

Information, 7–9
modeling, 27, 30–31, 34–36
service, 2, 12–13
system, 1–13, 17–36, 101–112, 289–303
systems engineering, 21–28

Initiatives, 11–12, 40, 239–240
Intention, 101–104, 150, 200, 215, 219,

232–233, 267, 278, 312–313, 315,
317, 341

Intentional alignment, 101–112
Intentional maps, 316
Intentional perspective, 215–235
Interdisciplinarity, 85, 90, 96–97
Interdisciplinary, 12, 84–85, 88, 90, 94–95
Interoperability, 101–112
Inter-organizational system, 102–105
Interpersonal challenges, 41, 59
IS component, 6, 11–12
IS governance, 5–6, 9–11
ISO/IEC 9126-1 standard, 183
IS security, 290, 296, 301
IS, see Information, system

L
Learning, 239–255
Linking process, 263, 265, 268

M
Management, 2–5, 11–12, 21–23, 44–48,

54–55, 105, 130, 132, 217–218, 252,
254, 355, 358, 360, 365–368, 370–371

See also Expectations managements; Risk
management

Map, 69–73, 75–77, 269–273, 313, 315–316
Matlab/Simulink, 86–87, 93–94
Mereology, 31
Metamodel, 9–10

extensions, 261–263, 268–269, 273
ontology, 71–73

Method
components, 10, 336–337
engineering, 335–352

Metrics, 69, 76, 138, 183, 189, 297, 303
Model based requirements, 85, 88, 90–91, 95
Model checking of domain artifacts, 326
Model compilations, 258
Model-driven development (MDD), 27,

188–189, 257–274
Modeling, 83–98, 195–212, 215–235
Modeling process, 126, 219, 223, 227, 229,

234, 259

Index 383

Modelling languages, 179, 186, 290, 292–293,
296, 355

Model merging, 186
Model transformation, 188, 258, 260–263,

266–268, 271, 274
Multiagent systems, 139–145
Multi-case study, 44
Multiple viewpoints, 122, 156–157
Mutual understanding, 356–358, 360, 364–366,

368, 373–374

N
Negotiation, 115, 231, 314–315, 355, 360,

362–364, 366–367
Non-functional requirements (NFRs), 50, 89,

94–96, 120, 123, 128, 259, 363, 368,
371–372

O
Ontologies, 70–73, 196–197
Ontology for IS, 9
Ontology of method, 342–344
Open source ES, 131
Open systems, 140, 147, 150–151
Orthogonal variability model (OVM),

321–322, 326, 328, 330–331
Overlap, 2, 5–9, 11–12, 118, 279

P
Platform evolution, 62–63
Prioritization, 43, 56, 61–62
Problem specification, 25
Process

context, 242
learning, 241
model/modelling, 103–105, 109–110, 124,

196, 220, 228, 240–242, 246, 251–252,
310, 312

ontology, 342–343, 345–346, 348
Product line variability, 320, 323
Protocol, 44, 139–140, 142–146, 148, 150

Q
Quality assurance, 319–332
Quality assurance strategies in the presence of

variability, 323–326
Quality of enterprise models, 233
Quantitative concept, 32–35

R
RE, see Requirements engineering
REA (resource-event actor), 183–184,

196–197, 204
Reference models, 119–120, 129

Remora, 7, 30
Requirement(s), 39–64, 67–80, 115–133,

137–151, 257–274, 355–374
analysis, 24, 69, 73, 124, 364, 370
challenges, 40–43, 51, 59, 64
elicitation, 20, 45–46, 68, 73, 75, 77, 79,

117–122, 124, 128, 133, 157, 370
model/modeling, 85, 118, 122–125, 138,

258–260, 263–272
specification, 24–25, 28, 68–69, 76–77,

79–80, 125, 188, 227, 323–324, 363
Requirements engineering, 67–80, 115–133,

355–374
for ES, 116–119, 126–127, 129–130,

132–133
methods, 355, 362
representations, 357–360
teams, 130, 353–354
techniques, 67–69, 78–79, 127, 130, 370

Return on Investment (ROI), 289
Reusability, 79, 93, 183–184, 313
Rights, 195–212
Risk management, 289–303

methods, 295
RM standards, 292, 294, 297–298

S
Sample strategy, 323–325, 331
Satisfiability, 277–287

checking, 278
Scenarios, 64, 182, 187–188, 259, 296, 310,

312, 357–362, 364, 372–374
Security

frameworks, 295, 297
standards, 294, 297

Self-checkout, 156, 164, 167–173
Service, 307–317, 335–352

compositions, 308–312, 349–351
design, 307–317
-oriented engineering, 336–338
paradigm, 337, 339, 341

Similarity search, 85, 91, 93, 95–97
SMEs (small and medium sized enterprises),

45, 47, 84–85, 87, 91, 94, 96–97
Social commitment, 139
Social relationships, 141, 198–199,

201–206, 212
Soft goal, 184, 241–243, 245, 251, 253–255,

264, 365
Software

architecture, 151, 181, 188
platform, 21

Software product line engineering (SPLE),
320, 323, 331

384 Index

Software as a service (SaaS), 132–133
Specification, 26–27, 142–144, 266–268, 339

language, 25–26, 29, 36, 142
Speech act theory, 29, 201
Stakeholders, 155–175

analysis, 155, 157, 173–174
intentions, 170–173

Statements, 25, 28, 31, 34, 46, 50–51, 55, 183,
188, 200, 228, 281–283, 356

Stepwise refinement, 184–186
Storyboards, 359–360, 362, 364, 370, 372–374
Strategic dependency (SD), 89, 182, 185, 259
Strategic rationale (SR), 89, 150, 184–186,

188, 259
Strategy, 150, 167, 229–231, 320–321,

323–326
Structural schema, 279
Sustainable IS, 6, 9–10
Systematic literature review, 186
System goal lattice, 161, 165–166,

169–171, 174
Systemic character, 60–62

T
Test case, 278, 281–287, 359–360
Testing, 277–287

language, 278–283
Trans-disciplinarity, 12

Trans-disciplinary, 2, 11–12
Transformation, 3–5, 9–11, 25, 29, 36, 85, 89,

93, 97, 120–121, 129, 185, 187–188,
258, 260–263, 265–274

Tropos, 137–138, 150–151, 179–180, 182–183,
290, 292, 296, 303

U
UML, 27, 69, 72, 123, 186–188, 229–230,

261–264, 268–273, 279–280, 292, 296,
303, 342, 345, 348

Universe of Discourse, 17, 31, 33
UoD, 17, 28, 31–35
Use cases, 9, 187–188, 230, 290, 292, 296,

310, 312, 362, 373

V
Validation, 27–28, 39–64, 267–268
Value, 2, 4, 12, 34, 42, 50, 61–63

analysis, 366–367, 370–372
-based requirements engineering, 366–370
exchange, 151, 204–212
model, 195–212

Variability modeling, 321–322
Verdict, 278, 281–284, 286–287

X
XML, 50, 181

	Preface
	Short Biography of Colette Rolland
	Academic Tree
	Contents
	Contributors
	From Sustainable Information System with a Farandole of Models to Services
	1 Introduction
	2 IS Stakes
	2.1 IS Origins
	2.2 Shift
	2.3 Governance of Information Systems

	3 IS Worlds
	3.1 The IS Conceptual World
	3.2 Overlap Between the IS Conceptual World and the IS Informatics World
	3.3 Overlap Between the IS Conceptual World and the Activities World
	3.4 Ontology for IS
	3.5 IS Governance and Sustainable IS
	3.6 Conclusions on IS Worlds

	4 Services
	4.1 IS Governance Through IS Components
	4.2 Initiatives, Value and Trans-Disciplinarity
	4.3 Service

	5 Conclusion
	References

	On Roles of Models in Information Systems
	1 Introduction
	2 Information Systems, Data Systems, Domain Systems and How They Relate
	2.1 Information Systems and Domain Systems
	2.2 Information Systems and Data Systems

	3 Central Issues in Information Systems Engineering
	3.1 Engineering Practice
	3.2 Evolution of Detail
	3.3 Requirements and Solutions
	3.4 Formal and Informal Specification
	3.5 Comprehension
	3.6 Validation

	4 Modeling of Data, Information and the Domain
	4.1 Meaning
	4.2 Concepts for Modeling the UoD
	4.2.1 Conceptual Modeling of Non-Discrete Phenomena
	4.2.2 Conceptual Modeling of Discrete Phenomena

	4.3 Data Concepts
	4.4 Information Modeling

	5 Conclusion
	References

	Contemporary Challenges in Requirements Discoveryand Validation: Two Case Studies in Complex Environments
	1 Introduction
	2 Towards a Systemic Model of RE Challenges
	2.1 Earlier Typologies of Requirements Challenges
	2.2 A Systemic Model of Requirements Challenges

	3 Research Design
	4 Research Context: Two Multi-Party Systems
	4.1 The University SIS Project
	4.2 Integrated Public Safety Initiative (IPSI)

	5 Alignment with the Challenges Model
	5.1 Articulation Challenges
	5.2 Reflectiveness/Motivation
	5.3 Perceptual Limitations
	5.4 Paradigmatic Constraints
	5.5 Business-IT Relationship
	5.6 Communication Skills
	5.7 Expectations Management
	5.8 Conflict Resolution
	5.9 Prioritization
	5.10 Diversity of Inputs
	5.11 Defining Interactions
	5.12 Assessing Outcomes
	5.13 Summary of Challenges

	6 Discussion
	6.1 The Systemic Character of RE Challenges
	6.2 Implications for Practice

	7 Conclusion
	References

	Semantic Requirements Engineering
	1 Introduction
	2 Using Ontologies
	3 Application to GORA
	4 Semantic Quality Metrics
	5 Semantic Version Control
	6 Conclusion
	References

	Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering
	1 Introduction
	2 Case Study: Automotive Control Systems Development
	2.1 Developing Control Systems
	2.2 SMEs Developing Control Systems

	3 Domain Model Based RE for Control Systems
	3.1 Agent- and Goal-Oriented Requirements Engineering
	3.2 Domain Model Based Requirements Engineering
	3.2.1 Fast Requirements Capture
	3.2.2 Search for Similar Projects
	3.2.3 Integration with Further Development

	3.3 Experience-Based Domain Model Evolution

	4 Discussion
	5 Conclusion
	References

	Intentional Alignment and Interoperabilityin Inter-Organization Information Systems
	1 Introduction
	2 The Two-Dimensional Framework
	3 The Supply Chain System
	4 The Process Level
	5 Conclusion
	References

	Requirements Engineering for Enterprise Systems:What We Know and What We Don't Know?
	1 Introduction
	2 Identifying Areas of RE Publication Activity
	3 Progress to Date
	3.1 Elicitation Techniques
	3.2 Modelling Techniques
	3.3 Did These Techniques Work?

	4 Directions for Future Research
	4.1 Directions from our Analysis of RE Research
	4.2 Directions from Examining Failures
	4.3 Directions from Existing Market Trends

	5 Conclusion
	References

	Requirements as Goals and Commitments Too
	1 Introduction
	2 Commitments in Multiagent Systems
	2.1 Multiagent Systems
	2.2 The Concept of Commitment
	2.3 System Specification: Protocols
	2.4 Architecture, Interoperability, and Middleware

	3 From Goals to Commitments
	4 Applying Goals and Commitments
	5 Discussion
	6 Conclusion
	References

	A Method for Capturing and Reconciling Stakeholder Intentions Based on the Formal Concept Analysis
	1 Introduction
	2 Problem of the Structuring and Reconciliation of Stakeholder Goals
	3 Related Works
	4 The Goal Lattice Model
	4.1 FCA (Formal Concept Analysis)
	4.2 Goal Lattice

	5 A Method for Structuring and Reconciliation of Stakeholder Goals
	5.1 Process of Structuring and Reconciliation of Stakeholder Goals
	5.2 Elicitation of the Goals and Sub-Goals from Stakeholders
	5.3 Extraction of the Goals and Sub-Goals Elicited
	5.3.1 Extraction of Goals
	5.3.2 Extraction of Sub-Goals

	5.4 Structuring Goals and Sub-Goals by Goal Lattice
	5.5 Reconciliation of the Structure of Goals and Sub-Goals
	5.6 Analysis of the Structure of System Goal Lattice
	5.7 Method for Evaluating the Reconciliation of Goal Lattice

	6 Application to Self-Checkout Systems
	6.1 Strategy of Field Study
	6.2 Self-Checkout Systems
	6.3 Identification of Stakeholders
	6.4 Elicitation and Extraction of Goals and Sub-Goals
	6.5 Structuring and Reconciliation of Goal/Sub-Goals
	6.6 Analysis of Stakeholder Intentions

	7 Evaluation of the Goal Reconciliation
	8 Discussion
	9 Conclusion
	References

	Fostering the Adoption of i* by Practitioners: Some Challenges and Research Directions
	1 Introduction
	2 Challenge 1: Agreeing on the i* Metamodel
	3 Challenge 2: Providing Methodologies for i* Modelling
	4 Challenge 3: Providing Structuring Mechanisms in i*
	5 Challenge 4: Use i* Models in Later Development Phases
	6 Conclusion
	References

	Rights and Intentions in Value Modeling
	1 Introduction
	2 Related Work
	2.1 The REA Ontology
	2.2 The e3value Ontology
	2.3 Hohfeld's Classification of Rights

	3 Value Context Model
	3.1 Actors and Social Structures
	3.1.1 Actor
	3.1.2 Social Structure
	3.1.3 Purpose

	3.2 Actions
	3.2.1 Action
	3.2.2 Joint Action
	3.2.3 Communicative Action
	3.2.4 Social Action
	3.2.5 Counts As

	3.3 Social Relationships
	3.3.1 Social Relationship
	3.3.2 Role
	3.3.3 Right
	3.3.4 Commitment
	3.3.5 Ownership
	3.3.6 Authority
	3.3.7 Resource
	3.3.8 Meaning Rule
	3.3.9 Derivation Rule
	3.3.10 Counts As Rule

	3.4 Value Exchanges

	4 Designing Rich Value Models
	4.1 Notation and Guidelines
	4.2 The Pawnshop Example

	5 Conclusion
	References

	An Intentional Perspective on Enterprise Modeling
	1 Introduction
	2 Enterprise Modeling Intentions
	2.1 Business Development
	2.2 Quality Assurance
	2.3 Using EM as a Problem Solving Tool

	3 EKD An Example Method
	3.1 The EKD Modeling Language
	3.2 The EKD Modeling Process

	4 Research Approach
	5 Intentions as the Basis for Defining Requirements on EM
	5.1 Input Models and Documentation
	5.2 Models to be Developed
	5.3 EM Language Requirements
	5.4 EM Process Requirements
	5.5 EM Tool Requirements
	5.6 Model Quality Requirements

	6 Conclusion
	References

	A Goal-Based Approach for Learning in Business Processes
	1 Introduction
	2 How Goals and Context Facilitate Learning
	2.1 The Role of Process Goals
	2.2 The Role of Context

	3 Introducing the Running Example
	4 The Learning Approach
	4.1 Context Identification
	4.2 Suggesting Improvements to the Process Model
	4.3 Online Application

	5 Related Work
	6 Conclusion
	References

	Linking Goal-Oriented Requirements and Model-Driven Development
	1 Introduction
	2 Background
	2.1 The i* Goal-Oriented Requirements Framework Overview
	2.2 The OO-Method MDD Approach Overview

	3 Linking Goal-Oriented and MDD Approaches
	3.1 Automatic Generation of Metamodel Extensions
	3.2 A Generic Process to Link Goal-Oriented Requirement Modeling and MDD Approaches

	4 Related Work and Discussion
	5 Conclusion
	References

	Testing Conceptual Schema Satisfiability
	1 Introduction
	2 Basic Concepts and Notation
	2.1 Conceptual Schema Under Test
	2.2 The Testing Language

	3 Testing Satisfiability
	3.1 Base Type Satisfiability
	3.2 Derived Type Satisfiability
	3.3 Domain Event Type Satisfiability

	4 Conclusion
	References

	A Systematic Approach to Define the Domain of Information System Security Risk Management
	1 Introduction
	2 Research Method
	3 Survey of the Literature
	3.1 Scope of the Survey and Basic Definitions
	3.2 Risk Management Standards, Methods and Studies
	3.3 State of the Art of Security-Oriented Modelling Languages

	4 ISSRM Concept Alignment
	4.1 Concepts to Consider
	4.2 Overview of the Alignment Table
	4.2.1 Risk Management Standards
	4.2.2 Security Related Standards

	5 ISSRM Domain Model
	6 Conclusion
	References

	Methodologies for Design of Service-Based Systems
	1 Introduction
	2 Designing Adaptive Services
	3 Requirements
	4 Designing Service Compositions
	5 Conclusion
	References

	Quality Assurance in the Presence of Variability
	1 Introduction
	2 Quality Assurance in the Presence of Variability
	2.1 Introduction to Variability Modeling
	2.2 Challenges of Quality Assurance in Product Line Engineering

	3 Quality Assurance Strategies in the Presence of Variability
	3.1 Commonality Strategy
	3.2 Sample Strategy
	3.3 Comprehensive Strategy

	4 Towards a Comprehensive Quality Assurance in the Presence of Variability
	5 Model Checking in the Presence of Variability
	5.1 Formal Foundations
	5.2 Adaptation of Model Checking for EX f
	5.2.1 Adaption of State Labeling
	5.2.2 Adaption of the Verification Algorithm
	5.2.3 Checking the Completeness of Witnesses

	6 Conclusion
	References

	Method Engineering: A Service-Oriented Approach
	1 Introduction
	2 The Service Paradigm
	2.1 From Components to Services
	2.2 Principles of a Service-Oriented Paradigm
	2.3 Benefits of the Service Paradigm service paradigm in Method Engineering method engineering

	3 SO2M: An Overview
	4 Ontology of Method
	5 The Model of Method Service
	5.1 The Identification Part
	5.2 The Process Part
	5.3 The Resource Part

	6 The Composition Process
	6.1 Discovery
	6.2 Composition
	6.3 Refinement

	7 Conclusion
	References

	Collaborative Requirements Engineering: Bridging the Gulfs Between Worlds
	1 Introduction
	2 Common Ground
	3 RE Representations and Communication Modalities
	4 RE Activities, Representations and Common Ground
	4.1 Elicit and Summarise
	4.2 Analyse and Reflect
	4.3 Negotiate and Agree
	4.4 Validate and Communicate
	4.5 Communicating Requirements

	5 Managing RE Conversations
	5.1 Value-Based Requirements Engineering

	6 ADVISES Case Study
	6.1 Value Analysis
	6.2 Reflections on Representations and Process

	7 Conclusion
	References

	Important Papers by Colette Rolland
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

