
Discovering Beneficial Cooperative Structures
for the Automated Construction of Heuristics

Germán Terrazas, Dario Landa-Silva, and Natalio Krasnogor

Abstract. The current research trends on hyper-heuristics design have sprung up in
two different flavours: heuristics that choose heuristics and heuristics that generate
heuristics. In the latter, the goal is to develop a problem-domain independent strat-
egy to automatically generate a good performing heuristic for specific problems,
that is, the input to the algorithm are problems and the output are problem-tailored
heuristics. This can be done, for example, by automatically selecting and combin-
ing different low-level heuristics into a problem specific and effective strategy. Thus,
hyper-heuristics raise the level of generality on automated problem solving by at-
tempting to select and/or generate tailored heuristics for the problem in hand. Some
approaches like genetic programming have been proposed for this. In this paper,
we report on an alternative methodology that sheds light on simple methodologies
that efficiently cooperate by means of local interactions. These entities are seen as
building blocks, the combination of which is employed for the automated manu-
facture of good performing heuristic search strategies. We present proof-of-concept
results of applying this methodology to instances of the well-known symmetric TSP.
The goal here is to demonstrate feasibility rather than compete with state of the art
TSP solvers. This TSP is chosen only because it is an easy to state and well known
problem.

1 Introduction

A hyper-heuristic is a search methodology that selects and combines heuristics
to generate good solutions for a given problem. To investigate on the design of
hyper-heuristics is important because they provide a problem independent level of
abstraction for the automatic generation of good performing algorithms. Given a

Germán Terrazas · Dario Landa-Silva · Natalio Krasnogor
ASAP Group, School of Computer Science
University of Nottingham, UK
e-mail: {gzt,jds,nxk}@cs.nott.ac.uk

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 89–100, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{gzt,jds,nxk}@cs.nott.ac.uk


90 G. Terrazas, D. Landa-Silva, and N. Krasnogor

computational search problem and a set of simpler heuristics, hyper-heuristics con-
tribute with a methodology for the manufacture of heuristic capable of produc-
ing high quality solutions when applied to the problem in hand. We consider that
developing a systematic procedure in which beneficial entities are identified and
combined for the automated manufacture of good performing heuristics is a
suitable approach. The purpose of this paper is then to propose a method for the
automated construction of heuristic search strategies in terms of simpler heuristic
building blocks which cooperate efficiently. Our methodology has three main stages:
pattern-based heuristics generation, cross validation and template-based heuristics
distilling. In the following, Section 2 gives a brief introduction to hyper-heuristics
and the context of our investigation. Section 3 expands on the proposed approach
giving details of the model components and the methodology. After that, experi-
ments and results are presented and discussed in Section 4. Finally, conclusions and
further work are the subject of Section 5.

2 Heuristics Design

Hyper-heuristics are defined as search methodologies that select and combine low-
level heuristics to solve hard computational search problems [6, 16]. The general
aim of a hyper-heuristic is to manufacture unknown heuristics which are fast, well
performing and widely applicable to a range of problems. During the process of
fabrication, hyper-heuristics receive feedback from the problem domain which indi-
cates how good the chosen heuristics for solving the problem in hand, hence driving
the search process. Hyper-heuristics do not violate the no-free-lunch theory which
indicates that over all problems, no algorithm performs better than another. Study-
ing novel approaches for the development of hyper-heuristics is important since
they are domain-independent problem strategies that operate on a space of heuris-
tics, rather than on a space of solutions, and rise the level of generality on automated
problem solving. Hyper-heuristics have been employed for solving search and opti-
misation problems such as bin-packing [4, 17], timetabling [14], scheduling [8, 9]
and satisfiability [2] among others. For detailed reviews of hyper-heuristics and their
applications, please refer to [7, 13, 16].

The automated manufacture of heuristic search strategies by means of hyper-
heuristics has received increasing attention in the last ten years or so. Recent in-
vestigations have sprung up in two main different directions of hyper-heuristics: 1)
heuristics that choose heuristics and 2) heuristics that generate heuristics. In the first
case, a learning mechanism assists the selection of low-level heuristics according to
their historical performance during the search process, e.g. [8]. In the second case,
the focus is on searching components that once combined generate a new heuristic
suitable for the problem in hand. For example, approaches based on genetic algo-
rithms [9] and genetic programming have been proposed for the automated gener-
ation of heuristics [5, 11]. From an engineering point of view, the already existent
approaches are defined in terms of the architecture established by the underlying
meta-heuristic which sometimes brings unsuspected difficulties such as the correct



Discovering Beneficial Cooperative Structures 91

modelling of solutions or parameters tunning. Hence, the construction of well per-
forming heuristics in terms of low-level heuristics which efficiently cooperate by
means of local interactions is an interesting route for developing a new alternative
within the second flavour of hyper-heuristics. Our interest lays on the identification
of beneficial cooperative structures, the combination of which give rise to a specifi-
cation for the automated manufacture of good performing heuristic strategies for a
given combinatorial optimisation problem.

3 Proposed Approach

Given a set of instances of a combinatorial optimisation problem Π , we propose a
methodology composed of pattern-based heuristics generation, cross validation and
template-based heuristics distilling. Each stage is associated to a dataset generated
from the optimisation problem in hand whilst the output of the methodology is a
template to be employed for the manufacture of good performing heuristics. Fig. 1
depicts the methodology and its components.

Fig. 1 Schematic representation of the proposed methodology with its three stages, their
associated datasets and the achieved template for the problem in hand

In the pattern-based heuristics generation, an input dataset is employed to train
randomly generated sequences of low-level heuristics (high-level heuristics). This
training aims at generating proficient high-level heuristics, the common constituents
of which are expected to produce high quality solutions when applied to a given in-
stance of the problem in hand. The research question in this stage is:

Given a set of high-level heuristics, is it possible to generate common combina-
tions of low-level heuristics ? If yes, how do they look like and how reliable are these
combinations ?

In order to address the first question, a process that spots common combinations of
low-level heuristics (patterns) and constructs pattern-based heuristic is employed.
The goal of the cross validation is then to assess the performance of the constructed



92 G. Terrazas, D. Landa-Silva, and N. Krasnogor

pattern-based heuristic over a validation dataset comprising similar instances of the
combinatorial optimisation problem in hand. Thus, the question in this stage is:

What is the performance of a pattern-based heuristic when applied to a set of
different problem instances ?

The goal of the template-based heuristics distilling stage is to discover coopera-
tive and efficient low-level heuristics (building blocks) among several pattern-based
heuristics. These building blocks are expected to give rise to a template from where
better than average heuristics could be drawn. Here, an extra dataset is employed to
test the performance of the constructed heuristics. The question in this stage is:

Is it possible to distill a template in terms of building blocks of heuristics ? If yes,
how is the performance of the template-based heuristics when applied to a set of
different problem instances ?

The above methodology is expected to deliver a procedure for the automated con-
struction of effective and efficient heuristic search strategies.

4 Methods and Results

This section presents the findings obtained by the above methodology. The cho-
sen combinatorial optimisation problem is the widely known symmetric Traveling
Salesman Problem (TSP). The TSP instance considered here is kroA100 which com-
prises 100 cities distributed in the Euclidean space. The objective value correspond-
ing to the known optimum solution (shortest tour) for this instance is 21282 (see
TSPLIB1). For each stage of our methodology, we generated five sets in the follow-
ing systematic way. Each set is initialised with ten copies of the known optimum
solution for kroA100. Each of this initial solutions is then ‘disturbed’ with n con-
secutive city swaps. In this way, setting n to 5, 25, 50, 75 and 100, a total of ten
independently ‘disturbed’ tours per set are obtained.

We consider a high-level heuristic as a sequence made of low-level heuristics.
The low-level heuristics for the TSP used here can be divided in two types: stochas-
tic low-level heuristics and deterministic low-level heuristics. A low-level heuristic
is stochastic if different or the same output tours are returned when applied to the
same input tour. Contrary to this, a low-level heuristic is deterministic if the same
output tour is returned when applied to the same input tour. In our case, 1-city in-
sertion, 2-exchange, arbitrary insertion and inver-over are the stochastic low-level
heuristics, whilst 2-opt, 3-opt, OR-opt and node insertion are the deterministic ones.
These eight low-level heuristics were implemented as defined in [1, 3, 10, 15, 19]
and operating in a hill climber style [12].

1 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html



Discovering Beneficial Cooperative Structures 93

4.1 Pattern-Based Heuristics Generation

4.1.1 Training Datasets

In this stage, each of the perturbed tours, labeled as tkroA100n
i , i = 0 . . .9, n =

5,25,50,75,100, is independently considered for training. A sample of the training
data, grouped by set (n), is listed in Table 1 where the values indicate the percentage
distance to the optimum from each perturbed tours.

Table 1 Three sample perturbed tours for each of the five training sets

Tour n = 5 n = 25 n = 50 n = 75 n = 100

tkroA100n
0 1.42669 4.25805 6.39869 7.01362 6.80147

tkroA100n
1 1.27600 4.60262 6.46067 6.38215 6.59012

tkroA100n
2 1.79926 4.13631 5.76585 6.75190 6.93252

tkroA100n
i is the i-th disturbed tour after applying n random swaps to kroA100 optimal tour.

4.1.2 Method

For a given disturbed tour (tkroA100n
i ), a set containing 500 high-level heuristics

generated at random was created. Then, each of the 500 high-level heuristics was
independently applied to the associated perturbed tour. In this context, an applica-
tion is seen as a pipeline process in which the chain of processing elements is given
by the sequence of low-level heuristics and the information to be processed is the
disturbed tour. Thus, the low-level heuristics are applied one after another in the or-
der in which they appear in the sequence and producing better or equal solutions at
each step. To illustrate this process, Fig. 2 depicts how a high-level heuristic com-
prising 1-city insertion and 2-exchange is applied to a TSP instance.

Fig. 2 A high-level heuristic in which successive applications of 1-city insertion and 2-
exchange find the optimum solution for the Star of David tour

In order to identify common combinations of low-level heuristics, the 500 high-
level heuristics are then sorted according to the distance between the solution that



94 G. Terrazas, D. Landa-Silva, and N. Krasnogor

their applications produce and the known optimum solution. The top five high-level
heuristics are then selected and encoded as sequences of characters using ‘A’ to rep-
resent 1-city insertion, ‘C’ to represent 2-opt, ‘D’ to represent 3-opt, ‘E’ to represent
OR-opt, ‘T’ to represent 2-exchange, ‘F’ to represent node insertion, ‘G’ to repre-
sent arbitrary insertion and ‘H’ to represent inver-over. Hence, in order to identify
common combinations of low-level heuristics among the filtered sequence, we em-
ploy a multiple sequence alignment (MSA) method [18] over the encodings. For
instance, Fig. 3 highlights in gray the common combinations found among the best
five high-level heuristics generated for tkroA10075

2 .

Fig. 3 Multiple sequence alignment of the top five heuristics. Capitals highlighted in gray
indicate the common sequences of heuristics

The results obtained by the MSA method reveal that there are indeed occur-
rences of common combinations, i.e. patterns of low-level heuristics, among the
best ranked high-level heuristics. Thus, these findings give a positive answer to the
research question stated for the first part of our methodology in Section 3.

From the resulting alignment, we construct a consensus sequence capturing and
representing regions of similarity. We define this consensus sequence as a pattern-
based heuristic (PBHn

i ) associated to a perturbed tour (tkroA100n
i ). The constructing

procedure consists in copying the matching characters between two or more encod-
ings into a new sequence from left to right and following the position in which they
appear. For instance, Fig. 3 shows that PBH75

3 is the resulting pattern-based heuris-
tic encoded as GDHGHHGDCDD, after combining the common patterns from the
high-level heuristics 1-HLH75

3 to 5-HLH75
3 . Given that this new heuristic is built

in terms of common combinations of low-level heuristics, its performance is then
expected to be as good as (or better than) any of the top ranked. Notice that the
length of the constructed heuristic varies according to the number of matches. Since
this is related to the way in which the construction procedure is defined, alterna-
tive methodologies to obtain the optimal common sequence are open to further
investigation.

In order to assess the reliability of the spotted patterns, we then proceed to evalu-
ate the performance of PBHn

i against a set of high-level heuristics (different than the
initial ones) with the hope that, on average, the best tour improvements are obtained
by the former. In order to do this, 300 copies of PBHn

i are obtained and for each of
them a new high-level heuristic equal in length is created. Each of these heuristics
is then independently applied to tkroA100n

i a total of 10 times and the average per-
centage distance between the lengths of the resulting tours and the known optimum



Discovering Beneficial Cooperative Structures 95

tkroA1000
75 tkroA1001

75 tkroA1002
75 tkroA1003

75 tkroA1004
75 tkroA1005

75 tkroA1006
75 tkroA1007

75 tkroA1008
75 tkroA1009

75

1
2

3
4

5
6

D
is

ta
nc

e 
to

 O
P

T
 in

 %

Fig. 4 Assessment of ten pattern-based heuristics resulting from independent sequence align-
ments. Each pair of boxplots summarises a vis-a-vis comparison between the performance of
300 copies of PBH75

i and the performance of other 300 high-level heuristics when applied to
tkroA10075

i for i = 0 . . .9

is considered as the measure of their performance. As an example, Fig. 4 shows the
assessment of the 10 pattern-based heuristics obtained from the data set generated
with n = 75.

According to the results, it is clear that the performance of pattern-based heuris-
tics (white boxplots) is better in average than the performance of the non-pattern-
based high-level heuristics (gray boxplots). These findings constitute a positive
answer to the second research question stated in the first stage of the presented
methodology, i.e. the identified common-sequences of heuristics are indeed reliable.

4.2 Cross Validation

4.2.1 Validation Dataset

The cross validation data are given in sets of ten perturbed tours vkroA100n
i , i =

0 . . .9. A sample of the data, grouped by set (n), is listed in Table 2 where the values
indicate the percentage distance to the optimum from each perturbed tours.

Table 2 Three sample perturbed tours for each of the five validation sets

Tour n = 5 n = 25 n = 50 n = 75 n = 100

vkroA100n
0 1.86490 5.38403 6.85800 6.92453 7.58471

vkroA100n
1 1.72394 5.42246 6.13800 6.57452 6.69500

vkroA100n
2 1.41001 3.76134 6.66469 6.85969 6.90264

vkroA100n
i is the i-th disturbed tour after applying n random swaps to kroA100 optimal tour.



96 G. Terrazas, D. Landa-Silva, and N. Krasnogor

4.2.2 Method

The goal of this stage is to perform a cross validation analysis in order to assess
the performance of the pattern-based heuristics over a set of disturbed tours. Thus,
for each combination of PBHn

j and vkroA100n
i , i, j = 0 . . .9, a total of 300 copies of

PBHn
j were obtained and, for each of the copies, a new high-level heuristic equal

in length was created. Then, the heuristics are independently applied to the given
vkroA100n

i a total of 10 independent times and the average percentage distance be-
tween the lengths of the resulting tours and the known optimum is considered as the
measure of their performance. Fig. 5 shows the resulting assessment of a pattern-
based heuristic, encoded as GDHGHHGDCDD, over the 10 perturbed tours belong-
ing to the data set generated with n = 75.

vkroA1000
75 vkroA1001

75 vkroA1002
75 vkroA1003

75 vkroA1004
75 vkroA1005

75 vkroA1006
75 vkroA1007

75 vkroA1008
75 vkroA1009

75

1
2

3
4

5
6

D
is

ta
nc

e 
to

 O
P

T
 in

 %

Fig. 5 Performance evaluation of a pattern-based heuristic across the perturbed tours belong-
ing to the data set generated with n = 75. Each pair of boxplots summarises a vis-a-vis com-
parison between the performance of 300 copies of GDHGHHGDCDD and the performance
of other 300 high-level heuristics when applied to vkroA10075

i

Clearly, the performances of pattern-based heuristics (white boxplots) are bet-
ter in average than the performance of the ones generated for assessment (gray
boxplots). These findings answer the research question estated in the second part
of Section 3, revealing that a pattern-based heuristic is in general well performing
when applied to a set of different problem instances. In addition, the similar level of
performance observed among the white boxplots gives an indication that common
low-level heuristics could be acting as building blocks among the PBHn

j , j = 1 . . .10.

4.3 Template-Based Heuristics Distilling

4.3.1 Test Dataset

The data used in this last stage comprise five sets, see Table 3 for a sample. Thus, for
a given experiment, each of the ten perturbed tours dkroA100n

i , i = 0 . . .9, belonging
to a given set is independently employed for testing.



Discovering Beneficial Cooperative Structures 97

Table 3 Three sample perturbed tours for each of the five test sets

Tour n = 5 n = 25 n = 50 n = 75 n = 100

dkroA100n
0 1.43750 4.00032 5.61831 6.34000 6.86100

dkroA100n
1 1.12729 4.70731 6.44469 6.28794 6.69199

dkroA100n
2 0.80584 4.01320 5.96786 6.57973 7.10008

dkroA100n
i is the i-th disturbed tour after applying n random swaps to kroA100 optimal tour.

4.3.2 Method

The purpose of this stage is to identify common building blocks of low-level heuris-
tics among the PBHn

j assessed in the second part of our methodology. These build-
ing blocks are employed to construct templates of heuristics, the instances of which
are expected to show similar or better performance when solving any dkroA100n

i .
Hence, for each data set, we applied the MSA method over the encodings of PBHn

j ,
i, j = 0 . . .9. For example, Fig. 6 highlights in gray building blocks among the ten
pattern-based heuristics found for the data set of perturbed tours generated with
n = 75.

Fig. 6 Multiple sequence alignment of the pattern-based heuristics found for the data set
generated with n = 75. Capitals highlighted in gray indicate the spotted common building
blocks

The resulting alignment reveals that there are common structures among the
pattern-based heuristics. A template (TBHn) is then constructed in terms of building
blocks. This procedure consists in copying the matching characters between three or
more encodings into a new sequence from left to right and following the position in
which they appear. In case no matchings are found or matchings occur only between
two encodings, a wildcard character is placed in that position of the sequence. For
instance, Fig. 6 shows TBH75 as the resulting template after combining the building
blocks from the input pattern-based heuristics PBE75

0 to PBE75
9 .

For each dkroA100n
i , a total of 300 different instances are drawn from the con-

structed template. During the instantiation process, building blocks are preserved
and each of the wildcard characters is either removed or replaced with one of the



98 G. Terrazas, D. Landa-Silva, and N. Krasnogor

dkroA1000
75 dkroA1001

75 dkroA1002
75 dkroA1003

75 dkroA1004
75 dkroA1005

75 dkroA1006
75 dkroA1007

75 dkroA1008
75 dkroA1009

75

0.
0

0.
5

1.
0

1.
5

D
is

ta
nc

e 
to

 O
P

T
 in

 %

Fig. 7 Assessment of a template-based heuristic across a set of perturbed tours belonging to
the data set generated with n = 75. Each pair of boxplots summarises a vis-a-vis comparison
between the performance of 300 instances drawn from TBH75 and the performance of other
300 high-level heuristics when applied to dkroA10075

i for i = 0 . . .9

eight low-level heuristics chosen at random. In order to assess the reliability of the
building blocks, we compared the performance of the 300 instances against new
300 high-level heuristics expecting that, on average, the best tour improvements are
obtained by the former. In this way, each of the heuristics is applied to the same
perturbed tour a total of 10 independent times and the average distance between
the lengths of the resulting tours and the known optimum is considered as the mea-
sure of performance. A representative outcome of the assessment is shown in Fig. 7
where the resulting assessment of the instances drawn from TBH75 when applied to
the data set created with n = 75 is depicted.

The results of this stage demonstrate that it is certainly possible to define a
template of building blocks of heuristics in terms of common structures identified
among a set of pattern-based heuristics. This fact constitutes a positive answer for
the first question established in the third part of our methodology. In addition, it is
also shown that the performance of template-based heuristics (white boxplots) is on
average better than the performance of the randomly generated high-level heuris-
tics (gray boxplots), even though some of the high-level heuristics generated for
comparison have outperformed the ones drawn from the template (see Fig. 7). Nat-
urally, one of the reasons for this is that during the random generation, appropri-
ate combinations of low-level heuristics with more efficient local interactions could
be generated (by chance). However, the template-based specification still brings a
more robust and convenient way for the automated manufacture of good perform-
ing heuristic strategies to solve the problem in hand. All in all, the outcome of this
assessment answers the last question of the proposed methodology. That is, the in-
stances of such templates are always well performing when applied to any disturbed
tour of a given data set.



Discovering Beneficial Cooperative Structures 99

5 Conclusions

In this paper, we proposed a novel approach for the automated design of heuristics
following the rationale of hyper-heuristics which are heuristic methods to generate
tailored heuristics for the problem in hand.

The proposed methodology consists of pattern-based heuristics construction,
cross validation and template-based heuristics distilling. As a proof of concept, we
applied the methodology to instances of the symmetric TSP. On the one hand, our
initial findings confirm that there are indeed common patterns of low-level heuris-
tics among the top ranked high-level heuristics. These emergent recurrent structures
were subject to a cross validation, the results of which proved them to be local search
strategies beneficial to achieve good solutions when solving a symmetric TSP in-
stance. On the other hand, the outcome achieved in the last part of our approach has
resulted in a specification to automatically generate a family of heuristics capable
of producing high quality solutions when applied to perturbed tours. In particular,
these high performing heuristics are made of emergent building blocks extracted
from the patterns seen in the first stage.

From a functional point of view, the building blocks achieved in the last stage are
beneficial structures needed for the manufacturing of high quality solutions. When
these key elements appear in combination with randomly chosen low-level heuris-
tics, they seem to guide the search across the space of solutions. In other words,
the local interactions contributed by the building blocks can be seen as artifacts that
drive the optimisation process when applied to the combinatorial optimisation prob-
lem in hand. Likewise, the local interactions contributed by the randomly created
low-level heuristics placed in an instance can be seen as artifacts that contribute
with a variety of alternative paths for exploring the space of solutions during the
optimisation process. Hence, both types of contributions seem to be properly or-
chestrated into an instance of a template-based heuristic.

To continue with our methodology, future work involves the extension of our
approach to other instances of TSP as well as to different combinatorial optimisa-
tion problems. In addition, we also consider to explore alternative ways to generate
the family of good performing heuristics in order to get a faster and less human-
dependent way. This could be done for instance by means of grammatical infer-
ence where the encodings of the pattern-based heuristics would be the input to the
grammatical inference algorithm and the resulting grammar would be employed to
generate a family of words encoding sequences of low-level heuristics.

References

[1] Babin, G., Deneault, S., Laporte, G.: Improvements to the or-opt heuristic for the sym-
metric traveling salesman problem. Journal of the Operational Research Society (58),
402–407 (2007)

[2] Bader-El-Den, M., Poli, R.: A gp-based hyper-heuristic framework for evolving 3-sat
heuristics. In: Genetic and Evolutionary Computation Conference, p. 1749. ACM, New
York (2007)



100 G. Terrazas, D. Landa-Silva, and N. Krasnogor

[3] Brest, J., Zerovnik, J.: A heuristic for the asymmetric traveling salesman problem. In:
6th Metaheuristics International Conference, pp. 145–150 (2005)

[4] Burke, E., Hyde, M., Kendall, G.: Evolving bin packing heuristics with genetic. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao,
X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869. Springer, Heidelberg (2006)

[5] Burke, E., Hyde, M., Kendall, G., Woodward, J.: Automatic heuristic generation with
genetic programming: evolving a jack-of-all-trades or a master of one. In: Genetic and
Evolutionary Computation Conference, pp. 1559–1565. ACM, New York (2007)

[6] Burke, E.K., Hart, E., Kendall, G.N., Newall, J., Ross, P., Schulenburg, S.: Handbook of
Meta-Heuristics. In: chap Hyper-Heuristics: An Emerging Direction in Modern Search
Technology, pp. 457–474. Kluwer, Dordrecht (2003)

[7] Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. In: Adaptive and
Multilevel Metaheuristics, vol. 136, pp. 3–29. Springer, Heidelberg (2008)

[8] Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of low
level heuristics to schedule personnel. In: IEEE Congress on Evolutionary Computation,
pp. 1214–1221. IEEE Computer Society, Los Alamitos (2003)

[9] Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm
applied to a trainer scheduling problem. In: IEEE Congress on Evolutionary Computa-
tion, pp. 1185–1190. IEEE Computer Society, Los Alamitos (2002)

[10] Krasnogor, N., Smith, J.: Memetic algorithms: The polynomial local search complexity
theory perspective. Journal of Mathematical Modelling and Algorithms 7, 3–24 (2008)

[11] Oltean, M., Dumitrescu, D.: Evolving tsp heuristics using multi expression program-
ming. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004.
LNCS, vol. 3037, pp. 670–673. Springer, Heidelberg (2004)

[12] Özcan, E., Bilgin, B., Korkmaz, E.: Hill climbers and mutational heuristics in hyper-
heuristics. In: 9th International Conference on PPSN, pp. 202–211 (2006)

[13] Özcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics. In-
tell. Data Anal. 12(1), 3–23 (2008)

[14] Pillay, N., Banzhaf, W.: A study of heuristic combinations for hyper-heuristic systems
for the uncapacitated examination timetabling problem. European Journal of Opera-
tional Research 197(2), 482–491 (2009)

[15] Reinelt, G.: The traveling salesman: Computational solutions for TSP applications.
Springer, Heidelberg (1994)

[16] Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Opti-
mization and Decision Support, pp. 529–556. Springer, Heidelberg (2005)

[17] Ross, P., Schulenburg, S., Marín-Blázquez, J., Hart, E.: Hyper-heuristics: Learning to
combine simple heuristics in bin-packing problems. In: Genetic and Evolutionary Com-
putation Conference, pp. 942–948. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

[18] Setubal, J., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Pub-
lishing (1997)

[19] Tao, G., Michalewicz, Z.: Inver-over operator for the tsp. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812.
Springer, Heidelberg (1998)


	Discovering Beneficial Cooperative Structures for the Automated Construction of Heuristics
	Introduction
	Heuristics Design
	Proposed Approach
	Methods and Results
	Pattern-Based Heuristics Generation
	Training Datasets
	Method

	Cross Validation
	Validation Dataset
	Method

	Template-Based Heuristics Distilling
	Test Dataset
	Method


	References




