
Evaluation of a Catalytic Search Algorithm

Lidia Yamamoto

Abstract. We investigate the search properties of pre-evolutionary random catalytic
reaction networks, where reactions might be reversible, and replication is not taken
for granted. Since it counts only on slow growth rates and weak selective pressure
to steer the search process, catalytic search is an inherently slow process. However
it presents interesting properties worth exploring, such as the potential to steer the
computation flow towards good solutions, and to prevent premature convergence.
We have designed a simple catalytic search algorithm, in order to assess its beamed
search ability. In this paper we report preliminary results that show that although
weak, the search strength achieved with catalytic search is sufficient to solve sim-
ple problems, and to find good approximations for more complex problems, while
keeping a diversity of solutions and their building blocks in the population.

1 Introduction

Artificial Chemistries have the ability not only to model evolutionary behavior but
also to create it, or to cause it to emerge spontaneously [3, 9–11]. However, the exact
conditions upon which such evolutionary behaviour could emerge are not entirely
clear, and are deeply linked to the conditions for the transition from inanimate to
living matter. Another aspect that remains still unclear so far is how to harness the
emergent computation [7, 12] properties of such chemistries for the construction of
beamed search schemes able to optimize solutions to user-defined problems.

A number of chemically-inspired approaches to optimization towards user-defined
goals have been proposed [5, 6, 14, 20, 22]. The reaction networks created by such
chemistries may exhibit complex dynamics, hence the general problem of searching
with a chemistry remains poorly understood.

Lidia Yamamoto
Computer Science Department, University of Basel,
Bernoullistrasse 16, CH-4056, Basel, Switzerland
e-mail: Lidia.Yamamoto@unibas.ch

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 75–87, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Lidia.Yamamoto@unibas.ch

76 L. Yamamoto

Some chemistries take evolution elements for granted, such as replication, there-
fore the problem of how to get evolutionary behavior is not an issue for them. In
contrast, in this paper we look at the particular case of chemistries that do not as-
sume replication, and that must comply to some physical laws such as mass and
energy conservation. The behavior of such chemical search can be classified as pre-
evolutionary [18]. Chemical reactions consume educts to produce new molecules,
in a mass-conserving way, and most reactions are reversible. Catalysts may be
present to enhance the rate of some reactions. The resulting mechanism is a Cat-
alytic Search, that relies only on slow growth rates and weak selective pressure to
steer the search process.

Catalytic search is an inherently slow process in general, but after some time
it could reach an autocatalytic stage where some elements of the network become
able to replicate directly or collectively via cooperative interactions. The question
that remains unanswered is whether such a slow process is sufficient to ignite a
faster, more efficient search process exhibiting full Darwinian evolutionary dynam-
ics within feasible runtimes, and if yes, how this could be achieved.

Although typically slow, catalytic search has a useful potential as a “soft search”
mechanism, which remains under-explored so far. As pointed out in [22], catalytic
search presents interesting properties worth exploring, such as the potential to undo
wrong computations through reversible reactions, to steer the flow of the system
towards the production of good products by shifting the equilibrium distribution
of molecules, a certain robustness to noisy fitness feedback, and the prevention of
premature convergence. Moreover catalytic search is inherently cooperative: since
molecules cannot self-replicate in principle, they need the help of other molecules
in order to grow. Hence they are forced to self-organize into a network of positive
interactions that construct and deconstruct solutions dynamically, according to the
objective function to be computed.

We have designed a simple catalytic search algorithm, in order to assess the abil-
ity of a catalytic artificial chemistry subject to pre-evolutionary dynamics to exhibit
a beamed search behavior. The chemical search scheme is built on top of a thermo-
dynamic model which steers the candidate solutions not only towards better fitness
but also towards lower computation costs. We compare Catalytic Search with a pure
random search (for the sake of sanity check only), and with a variation of a Steady-
State Genetic Algorithm (SSGA) [16] implemented with an artificial chemistry. As
expected, the performance of the catalytic search scheme lies between that of a pure
random search and that of plain evolutionary search represented by the genetic al-
gorithm. However catalytic search presents other interesting properties, such as the
preservation of diversity and of partial solution building blocks in the population.

The paper is organized as follows: Section 2 surveys the related literature on
search schemes based on chemistry. Section 3 describes our catalytic search algo-
rithm, and report some experimental results on the simple problem of finding a hid-
den sentence. Section 4 concludes with an outlook on the many interesting avenues
to explore.

Evaluation of a Catalytic Search Algorithm 77

2 Background

A survey of optimization schemes based on artificial chemistries can be found in
Section 4.3 of [10]. Here we summarize and update it.

Chemical approaches to optimization towards a user-defined goal have been pro-
posed in [5, 6, 14, 20, 22]. These approaches can be divided into two categories: In
the first category we find search algorithms inspired by chemistry, but for which the
actual solutions searched are not encoded as chemical computing programs but as
parameters to be optimized [5, 14], as partial solutions to the problem [22], or as
conventional program trees [20]. In the second category we find centralized evolu-
tionary algorithms used to evolve chemical reaction networks by manipulating their
graphs [8], or to evolve chemical computing programs by genetic programming [6].
The work reported in this paper falls into the first category. However our long term
goal is to combine both categories in one, obtaining a search process based on chem-
istry, for searching solutions encoded as chemical programs.

An optimization method inspired by chemistry is presented in [5]. Candidate
solutions are encoded as strings analogous to macromolecules in prebiotic evolu-
tion. These strings carry a quality signal (fitness value). Machines (analogous to
enzymes) operate on the strings to change and select them according to a fitness
function embedded within the machine’s knowledge.

The Chemical Casting Model (CCM) [14] is inspired by the process of entropy
reduction which is behind many self-organization phenomena in chemistry. Candi-
date solutions are encoded as molecules; reaction rules modify and select molecules,
driving the system towards a more ordered state (with lower entropy) in which
molecules encode better solutions. CCM has been successfully applied to many
different problems ranging from constraint satisfaction to graph coloring and the
traveling salesperson.

Chemical Genetic Programming [20] takes inspiration from gene expression and
chemistry in order to construct program trees in Genetic Programming.

ARMS (Abstract Rewriting Systems on Multisets [21]) is a chemical evolution
system based on Membrane Computing or P Systems [19]. Membrane Computing
allows hierarchies of multiset compartments to be constructed recursively. ARMS
makes use of this feature to evolve populations of artificial cells by a process of
cell growth and division. The resulting cells may exhibit a rich internal structure,
sometimes resembling protocells models such as the chemoton [13]. The ARMS
system has been applied to the evolution of artificial cells both for biological and
for computational purposes.

Our work builds upon the Artificial Catalysed Reaction Networks from [22].
That scheme takes inspiration from Kaufffman’s autocatalytic networks [4, 15].
Each molecule is a partial solution. The algorithm starts with a population of small
molecules and builds larger ones via polymerization reactions. Fitter products are
rewarded by catalyzing their own production. Each molecule is therefore an auto-
catalyst. Compared with [22], in our work we do not assume that molecules are
autocatalysts, and we use a crossover operator that includes polymerization as a
special case.

78 L. Yamamoto

3 Catalytic Search Algorithm

The Catalytic Search Algorithm works as follows: initially, a random soup of
molecules is generated. Each molecule is a candidate solution represented as a string
of symbols from an alphabet Σ . At every time step, two molecules are chosen for
collision. They react with a probability k f , which maps to the kinetic coefficient of
the reaction. If they react, a crossover of the two molecules is produced, and the two
resulting molecules are injected into the soup. The collision is elastic with probabil-
ity (1− k f), in which case the molecules are put back into the soup and no products
are generated.

A crossover reaction can be written as follows:

A + B
kf
�
kr

C + D (1)

Here is an example, for strings from an alphabet Σ = {a,b,c}:

abba + ccb
kf
�
kr

abbc + acb (2)

Crossover is a mass-conserving operation, i.e. it conserves the total number of sym-
bols before and after the reaction.

The initial population is always a soup of monomers (strings of length one). So-
lutions are then built by concatenating these monomers. This is a special case of a
crossover operation, where the crossover point on one of the strings is the end of the
string, and the crossover point on the other string is at the beginning. More complex
solutions can then be constructed out of these basic building blocks.

We choose the coefficients k f and kr to be a function of the fitness and the compu-
tation cost associated with the solution, in order to steer the search by differentiated
reaction rates. This mapping will be explained below.

Once the molecules have collided, the reaction only occurs if the molecules have
sufficient kinetic energy in order to overcome the activation energy barrier (Ea),
which corresponds to the minimum amount of kinetic energy that is needed for the
reaction to occur.

Figure 1 shows a typical plot of the potential energy changes during a chemical
reaction. The horizontal axis is called reaction coordinate, and shows the progres-
sion of the (forward) reaction from reactants X on the left side to products Y on
the right (symmetrically, the corresponding reverse reaction can be read from right
to left). The vertical axis shows the corresponding potential energy. The height of
the peaks with respect to the initial state corresponds to the activation energy of the
reaction. A catalyst is a substance that participates in a chemical reaction by accel-
erating it without being consumed in the process. Its effect is to lower the reaction’s
activation energy peak, thereby accelerating the reaction, while leaving the initial
and final states unchanged. The difference in potential energy before and after the
reaction is given by ΔG:

ΔG = Gp−Ge (3)

Evaluation of a Catalytic Search Algorithm 79

Fig. 1 Potential energy changes during catalysed and uncatalysed chemical reactions. Figure
adapted from [1]

If ΔG > 0 then the reaction is endergonic, i.e. it absorbs energy from its surround-
ings, while if ΔG < 0 it is exergonic, releasing energy. Endergonic reactions are
typically non-spontaneous, i.e. their equilibrium is shifted towards the educts, while
exergonic reactions occur typically spontaneously, resulting in larger quantities of
products.

In order to steer the system towards the production of fitter solutions, we map
the fitness of the solution to the potential energy of its molecule. A lower value of
the fitness function is often associated with a better fitness, for instance, a shorter
distance to the optimum. In this case, we can associate fitness with the the potential
energy of the molecule directly. The total potential energy of the educts Ge (resp.
products Gp) is the sum of potential energies of each educt (resp. product) involved
in the reaction, i.e. the sum of their fitness values. In this way, the production of fitter
solutions (i.e. with lower potential energy) is spontaneous, while the production of
poor solutions is non-spontaneous.

In order to provide the system with an incentive for efficient computations, we
further map the activation energy for a reaction to the estimated computation cost
of producing a solution. For instance, let us take a simple case in which the cost is
a linear function of the length of the candidate solutions. Since we only consider
mass-conserving (i.e. symbol-conserving) operations, the total number of atoms is
the same on both educt and product sides. An increase in activation energy ΔEa

is then added on top of the highest potential energy G. ΔEa corresponds to the
portion Ea(Y → X) in Figure 1. As a result, the side of the reaction with the lowest
potential energy (the X side to the left of Figure 1) will see an activation energy
of Ea = ΔEa + |ΔG|, while the other side (Y , on the right) will see Ea = ΔEa. The
portion ΔEa of the total activation energy is set to the average length of the educts
(or products):

ΔEa =
|A|+ |B|

2
=
|C|+ |D|

2
(4)

80 L. Yamamoto

The activation energies of the forward and reverse reactions, Ea f and Ear respec-
tively, are:

if ΔG≤ 0

{
Ea f = ΔEa

Ear = ΔEa−ΔG
(5)

if ΔG > 0

{
Ea f = ΔEa +ΔG

Ear = ΔEa
(6)

The coefficient k f (resp. kr) is determined as a function of the activation energy,
following the Arrhenius equation from chemistry [2]:

k = Ae−
Ea
RT (7)

where A is the so-called pre-exponential factor of the reaction, Ea is its activation
energy, and RT are constants. In our case, we set A = 1 and β = 1

RT is a configuration
parameter of our algorithm (currently set to β = 1).

The constants k f (resp. kr) determine the probability that the reaction is success-
ful once the reactants collide. According to the Arrhenius equation (Eq. 7), these
coefficients decrease exponentially with the activation energy barrier Ea seen by the
reactants. Since Ea increases with ΔEa, which is mapped to the computational cost
of the operation, the probability of the reaction to occur decreases with its cost, as
desired. Similarly, since the height of the Ea barrier observed is higher on the side
of the reaction with lower G, it is more difficult to “cross the barrier” from this
side, therefore it is more difficult to move from a lower (closer to the optimum) to
a higher (farther from the optimum) fitness value, which is also the behavior that
we are seeking. While lower, there is still some probability to move towards worse
solutions, since that may help creating new solutions which might be useful for the
search.

In this way, this scheme is able to steer the flow of production of candidate solu-
tions towards better ones. There is no explicit replication, and no memory of which
molecules produced good solutions. The search process is guided by the differences
in reaction rates to move from one pair of candidate solutions to another.

3.1 Catalysts

The above scheme is able to steer the search process, but in a weak way. In order
to improve steering and to make the search more beamed, enzymes that catalyse
the reactions can be included. Enzymes decrease the activation energy necessary for
the reaction, as depicted in Figure 1. They do so on both forward and reverse sides
of the reaction, therefore the equilibrium concentrations do not change. However,
as shown in [4], under some conditions, catalysts can focus the reaction network
into a few species, creating a selection pressure towards a metabolic core. One of
the conditions for obtaining such catalytic focusing is that the system is kept out of
equilibrium by an inflow of food material.

Evaluation of a Catalytic Search Algorithm 81

Algorithm 2. Catalytic Search Algorithm
1: T : maximum number of iterations
2: 0≤ t < T : current iteration
3: S: multiset of candidate solutions
4: C: pool of enzymes (catalysts) of maximum capacity Cmax

5: initialization:
6: t = 0
7: S = random soup of N monomers m ∈ Σ
8: C = /0
9: while t < T and solution not found do

10: expel two random molecules e1 and e2 out of S
11: (i1, i2) = random crossover points within e1 and e2
12: (p1, p2)← crossover(e1,e2, i1, i2)
13: Ge = fitness(e1)+ fitness(e2)
14: Gp = fitness(p1)+ fitness(p2)
15: ΔG = Gp−Ge

16: Ea = (|e1|+ |e2|)/2
17: if ΔG > 0 then
18: Ea← Ea +ΔG
19: else if ΔG < 0 then
20: c = “crossover(e1,e2, i1, i2)”: the enzyme that catalyses this reaction
21: nc = multiplicity of c in C
22: if nc > 0 then
23: Ea← Ea/nc

24: end if
25: pc = |ΔG|/|ΔGmax|
26: add another instance of c to C with probability pc

27: while |C|> Cmax do
28: destroy a random catalyst from C
29: end while
30: end if
31: k f = e−βEa

32: if dice(k f) then
33: inject new products p1 and p2 into S
34: else
35: inject educts e1 and e2 back to S
36: end if
37: t← t +1
38: end while

Here we introduce a simpler kind of catalyst which is not entirely faithful to
chemistry, as it will work to reduce the activation energy barrier, but only in the
direction of fitness improvement. We have temporarily adopted such annoying vio-
lation of the chemical laws because our first experiments have shown that maintain-
ing the system out of equilibrium for such an optimization purpose is not such an
easy task: in order to keep the system within a reasonable mass balance, an inflow

82 L. Yamamoto

of material (e.g. monomers) requires a corresponding outflow of other, potentially
more complex solution molecules. If we remove such molecules at random, we
might lose important partial solutions. Since the system is slow to replenish them,
the optimization process is hindered. If we remove worse fit molecules with a higher
probability, then the equilibrium is shifted towards the production of more of such
bad molecules. If we do the opposite, i.e. remove the fitter molecules, then the sys-
tem will tend to replenish them, but too slowly. Similar problems are reported in
[22]. A good method for keeping the system out of equilibrium without disrupting
the search process is still lacking. This topic deserves further investigation.

Our catalysts are strings of the form: “op(s1,s2, p1, p2)”, where op is an operator
(currently only the crossover operator is supported), s1 and s2 are the educt strings,
p1 and p2 are parameters indicating the crossover points in s1 and s2 respectively.

When two molecules collide, it is checked whether they have one or more match-
ing catalysts. If matching catalysts are found, they will be used to increase the reac-
tion probability, as explained below. Currently only exact match is supported. In the
future, enzymes could bind to their substrates with a certain affinity, proportional
to how well their strings match, for instance by using a distance metric such as the
Hamming distance or a string alignment algorithm such as the edit distance.

The complete algorithm is shown in Algorithm 2. Enzymes are kept in a separate
pool. When two molecules collide, if the reaction results in ΔG < 0, i.e. in better fit
products, then an enzyme might be created for this reaction, with a probability pc

proportional to the amount of improvement |ΔG|. The next time similar molecules
collide, the enzyme will facilitate their reaction, by lowering the correspondingΔEa,
which then becomes:

ΔE ′a =
ΔEa

nc
(8)

where ΔEa is calculated according to Equation (4), and nc is the concentration (mul-
tiplicity) of the corresponding catalyst in the catalyst pool.

3.2 Find the Hidden Sentence

We compare Catalytic Search with a pure random search (for the sake of sanity
check only), and a variation of a Steady-State Genetic Algorithm (SSGA) based
on a tournament selection mechanism implemented using an artificial chemistry.
SSGA [16] is a non-generational evolutionary algorithm in which at each time step,
individuals are selected for evaluation and reproduction, without a synchronized
generational loop.

The three algorithms have been applied to the simple problem of finding a hidden
string. In [22] Catalytic Search is applied to the OneMax problem, which consists in
maximizing the number of ones in a binary string. This is a special case of finding
a hidden string, i.e. a sentence Σ+ made of a sequence of letters from an alphabet
Σ . The length of the sentence can be variable, and the algorithm does not know
anything about the nature of the solution. It is guided only by the fitness, given as

Evaluation of a Catalytic Search Algorithm 83

the distance from the optimum. This problem has a smooth fitness landscape with a
unique peak, and is therefore easy to optimize.

The fitness function for this problem is simply:

f (i) = d(i, i∗) (9)

where d(i, i∗) is the distance between the candidate solution i and the target sentence
i∗. The function d(i, j) is taken as the edit distance between the two strings, i.e.
the minimum number of edit operations (add, delete, replace symbol) necessary to
convert one string into the other. The best fitness value is thus the smallest distance,
i.e. d(i, j) = 0.

3.3 Experimental Results

We have simulated the three algorithms on simple cases, and show a few preliminary
results in this section. For each of the three algorithms three test cases have been
performed, according to Table 1, where L is the length of the target solution i∗, and
s is the size of the search space for each case, for sentences of length up to L.

Table 1 Test cases

case n. alphabet Σ target solution i∗ length L = |i∗| search space s
0 ABCD AABBCCDD 6 87380
1 01 1111111111111111 16 131070
2 a-z thisisatest 11 3.81716e+15

For each algorithm, 100 runs were performed. The genetic algorithm was run
with a tournament of size r = 4, a mutation probability of pm = 0.1 and a crossover
probability of pc = 0.9. The population size was N = 100 molecules for all the
algorithms and cases, and the maximum number of iterations was T = 10000.

Table 2 shows the number of exact solutions found, per test case and per
algorithm.

Table 2 Number of exact solutions found, out of 100 runs per algorithm per test case

case n. random search catalytic search genetic algorithm
0 0 38 75
1 1 0 100
2 0 0 3

As expected, the genetic algorithm is able to find a higher number of exact
solutions due to its stronger replication and selective pressure. Also as expected,
random search performed very poorly. Catalytic search was only able to find a sig-
nificant amount of exact solutions on the first, easier case. The best solutions found

84 L. Yamamoto

in other cases were approaching the optimum but very slowly. We can see this in
Fig. 2 (left), which shows the average best fitness for case 2, per algorithm. In Fig.
2 (top left) we can see that random search not only does not make progress, but
diverges to worse solutions. The catalytic search (Fig. 2 (middle left)), although not
entirely optimal, displays a qualitative behavior that is similar to the genetic algo-
rithm, showing steady progress towards the optimum.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

B
es

t f
itn

es
s

Time (x 100 iterations)

Random Search, Case 2

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 20 40 60 80 100 120

B
es

t f
itn

es
s

Time (x 100 iterations)

Catalytic Search, Case 2

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120

B
es

t f
itn

es
s

Time (x 100 iterations)

Genetic Algorithm, Case 2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120

D
iv

er
si

ty

Time (x 100 iterations)

Catalytic Search, Case 2

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

A
ve

ra
ge

 le
ng

th

Time (x 100 iterations)

Catalytic Search, Case 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120

A
ve

ra
ge

 le
ng

th

Time (x 100 iterations)

Genetic Algorithm, Case 2

Fig. 2 Experimental results comparing different search schemes. Average values over 100
runs, with errorbars indicating the standard deviation. Left: Average best fitness for each al-
gorithm. Top right: diversity of the population for the catalytic search. Middle right: Average
length of the solutions in catalytic search. Bottom right: Average length for the GA

The diversity of the population has been measured using a multiset diversity met-
ric [17]. It measures the fraction of unique elements (molecules) over the total size

Evaluation of a Catalytic Search Algorithm 85

of the multiset (population size). Although it rises almost to the maximum for the
catalytic search scheme (Fig. 2 top right), the system does not get “lost”, and still
displays a well-behaved search towards the solution. In comparison, the diversity in
the genetic algorithm goes up at the beginning, and then drops to a middle level, as
the system approaches the optimum (not shown).

The solutions in catalytic search show modest elongation towards the optimum
length (L = 11 for case 2) (Fig. 2 middle right), while for the same case the genetic
algorithm quickly moves towards solutions that are longer than the optimum (Fig.
2 bottom right). Catalytic search conserves the number of atoms, while the genetic
algorithm produces an increasing number of atoms at the beginning, and this number
then slowly drops and then stabilizes as the optimum is approached.

Similar qualitative behaviors have been observed for the other test cases from
Table 1 (not shown).

4 Conclusions and Future Work

Catalytic search illustrates that optimization is possible even in the absence of ex-
plicit Darwinian selection. The selection force here is much weaker, progress is
slower, and the systems not always converges to the optimum. Such a search method
is inherently suboptimal, and not intended as a replacement for evolutionary al-
gorithms or other successfully established heuristic search methods. As shown in
models of pre-evolutionary dynamics [18], a prelife model with no established Dar-
winian evolution properties can be invaded as soon as self-replicants cross an effi-
ciency threshold. In the optimization domain, catalytic search relates to prelife as
genetic algorithms relate to Darwinian evolution. However, in the same way as pre-
life played a crucial role towards life, catalytic search can play a role as a “soft”
search method, in a more exploratory phase of the search. It might prove useful
in dynamic or noisy environments, to let a variety of solutions survive, to dampen
temporary fluctuations in input parameters, and to undo or revert to past states when
needed. We believe that there is a potential that remains to be explored in such soft
search schemes, although we are not able to show this entire potential here to its full
extent. We were able to show some properties such as an apparent ability to keep a
higher diversity of solutions in the population without any explicit diversity main-
tenance mechanism. Other properties described in [22] remain to be demonstrated.
We are particularly interested in the potential to undo wrong computations via re-
versible reactions, and to steer the flow of computation using an open system driven
out of equilibrium as in [4]. This is difficult to achieve in a search algorithm, due to
the risk of flushing out good solutions or their building blocks.

Many points remain to be improved in our current implementation: The catal-
ysis model should support affinity matching. Catalysts should be inserted in the
same pool together with the candidate solutions, and the reaction algorithm should
model collisions involving catalysts and substrates explicitly. Furthermore, the satu-
ration of enzymes must be considered, moving from mass action to enzyme kinetics.
A more accurate diversity metric should be considered, taking into account the

86 L. Yamamoto

distance between strings. An analysis of the topology of catalytic networks should
be undertaken, in order to detect potential autocatalytic sets, and search for emergent
feedback loops and collective replicators. The main unsolved issue so far is to find
a good way to keep the system out of equilibrium and yet in a focused optimizing
mode.

Acknowledgements. This work has been supported by the European Union through FET
Project BIONETS. The author would also like to thank Thomas Meyer, Wolfgang Banzhaf,
and the anonymous reviewers for their helpful comments and encouragement.

References

[1] Activation Energy, Wikipedia (2006),
http://en.wikipedia.org/wiki/Activation_energy

[2] Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford (2002)
[3] Bagley, R., Farmer, J., Fontana, W.: Evolution of a Metabolism. In: Artificial Life II,

pp. 141–158. Addison-Wesley, Reading (1991)
[4] Bagley, R.J., Farmer, J.: Spontaneous Emergence of a Metabolism. In: Artificial Life II,

pp. 93–140. Addison-Wesley, Reading (1991)
[5] Banzhaf, W.: The “Molecular” Traveling Salesman. Biological Cybernetics 64, 7–14

(1990)
[6] Banzhaf, W., Lasarczyk, C.: Genetic Programming of an Algorithmic Chemistry. In:

O’Reilly, et al. (eds.) Genetic Programming Theory and Practice II, vol. 8, ch.11. pp.
175–190. Kluwer/Springer (2004)

[7] Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent Computation by Catalytic Reactions.
Nanotechnology 7, 307–314 (1996)

[8] Deckard, A., Sauro, H.M.: Preliminary Studies on the In Silico Evolution of Biochemi-
cal Networks. ChemBioChem. 5(10), 1423–1431 (2004)

[9] Dittrich, P., Banzhaf, W.: Self-Evolution in a Constructive Binary String System. Arti-
ficial Life 4, 203–220 (1909)

[10] Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial
Life 7(3), 225–275 (2001)

[11] Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological
Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)

[12] Forrest, S.: Emergent Computation: Self-organizing, Collective, and Cooperative Phe-
nomena in Natural and Artificial Computing Networks. Physica D 42(1-3), 1–11 (1990)

[13] Gánti, T.: Chemoton Theory, Volume 1: Theoretical Foundations of Fluid Machineries.
Kluwer Academic, Dordrecht (2003)

[14] Kanada, Y.: Combinatorial Problem Solving Using Randomized Dynamic Composition
of Production Rules. In: IEEE International Conference on Evolutionary Computation,
pp. 467–472 (1995)

[15] Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, Oxford (1993)

[16] Lozano, M., Herrera, F., Cano, J.R.: Replacement Strategies to Preserve Useful Di-
versity in Steady-State Genetic Algorithms. Information Sciences 178(23), 4421–4433
(2008)

http://en.wikipedia.org/wiki/Activation_energy

Evaluation of a Catalytic Search Algorithm 87

[17] Mattiussi, C., Waibel, M., Floreano, D.: Measures of Diversity for Populations and Dis-
tances Between Individuals with Highly Reorganizable Genomes. Evolutionary Com-
putation 12(4), 495–515 (2004)

[18] Nowak, M.A., Ohtsuki, H.: Prevolutionary Dynamics and the Origin of Evolution.
PNAS 105(39) (2008)

[19] Paun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

[20] Piaseczny, W., Suzuki, H., Sawai, H.: Chemical Genetic Programming - Evolution of
Amino Acid Rewriting Rules Used for Genotype-Phenotype Translation. In: Congress
on Evolutionary Computation (CEC), vol. 2, pp. 1639–1646 (2004)

[21] Suzuki, Y., Fujiwara, Y., Takabayashi, J., Tanaka, H.: Artificial Life Applications of a
Class of P Systems: Abstract Rewriting Systems on Multisets. In: Workshop on Multiset
Processing (WMP), pp. 299–346. Springer, London (2001)

[22] Weeks, A., Stepney, S.: Artificial Catalysed Reaction Networks for Search. In: ECAL
Workshop on Artificial Chemistry (2005)

	Evaluation of a Catalytic Search Algorithm
	Introduction
	Background
	Catalytic Search Algorithm
	Catalysts
	Find the Hidden Sentence
	Experimental Results

	Conclusions and Future Work
	References

