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Abstract. Metaheuristic algorithms such as particle swarm optimization, firefly
algorithm and harmony search are now becoming powerful methods for solving
many tough optimization problems. In this paper, we propose a new metaheuristic
method, the Bat Algorithm, based on the echolocation behaviour of bats. We also
intend to combine the advantages of existing algorithms into the new bat algorithm.
After a detailed formulation and explanation of its implementation, we will then
compare the proposed algorithm with other existing algorithms, including genetic
algorithms and particle swarm optimization. Simulations show that the proposed
algorithm seems much superior to other algorithms, and further studies are also
discussed.

1 Introduction

Metaheuristic algorithms such as particle swarm optimization and simulated anneal-
ing are now becoming powerful methods for solving many tough optimization prob-
lems [3-7,11]. The vast majority of heuristic and metaheuristic algorithms have been
derived from the behaviour of biological systems and/or physical systems in nature.
For example, particle swarm optimization was developed based on the swarm be-
haviour of birds and fish [6, 7], while simulated annealing was based on the anneal-
ing process of metals [8].

New algorithms are also emerging recently, including harmony search and the
firefly algorithm. The former was inspired by the improvising process of composing
a piece of music [4], while the latter was formulated based on the flashing behaviour
of fireflies [13]. Each of these algorithms has certain advantages and disadvantages.
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For example, simulating annealing can almost guarantee to find the optimal solution
if the cooling process is slow enough and the simulation is running long enough;
however, the fine adjustment in parameters does affect the convergence rate of the
optimization process. A natural question is whether it is possible to combine major
advantages of these algorithms and try to develop a potentially better algorithm?
This paper is such an attempt to address this issue.

In this paper, we intend to propose a new metaheuristic method, namely, the
Bat Algorithm (BA), based on the echolocation behaviour of bats. The capability
of echolocation of microbats is fascinating as these bats can find their prey and
discriminate different types of insects even in complete darkness. We will first for-
mulate the bat algorithm by idealizing the echolocation behaviour of bats. We then
describe how it works and make comparison with other existing algorithms. Finally,
we will discuss some implications for further studies.

2 Echolocation of Bats

2.1 Behaviour of Microbats

Bats are fascinating animals. They are the only mammals with wings and they also
have advanced capability of echolocation. It is estimated that there are about 996
different species which account for up to 20% of all mammal species [1, 2]. Their
size ranges from the tiny bumblebee bat (of about 1.5 to 2g) to the giant bats with
wingspan of about 2 m and weight up to about 1 kg. Microbats typically have fore-
arm length of about 2.2 to 11cm. Most bats uses echolocation to a certain degree;
among all the species, microbats are a famous example as microbats use echoloca-
tion extensively while megabats do not [11, 12].

Most microbats are insectivores. Microbats use a type of sonar, called, echoloca-
tion, to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
These bats emit a very loud sound pulse and listen for the echo that bounces back
from the surrounding objects. Their pulses vary in properties and can be corre-
lated with their hunting strategies, depending on the species. Most bats use short,
frequency-modulated signals to sweep through about an octave, while others more
often use constant-frequency signals for echolocation. Their signal bandwidth varies
depends on the species, and often increased by using more harmonics.

2.2 Acoustics of Echolocation

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10
ms), however, it has a constant frequency which is usually in the region of 25kHz
to 150 kHz. The typical range of frequencies for most bat species are in the region
between 25kHz and 100kHz, though some species can emit higher frequencies up
to 150 kHz. Each ultrasonic burst may last typically 5 to 20 ms, and microbats emit
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about 10 to 20 such sound bursts every second. When hunting for prey, the rate of
pulse emission can be sped up to about 200 pulses per second when they fly near
their prey. Such short sound bursts imply the fantastic ability of the signal processing
power of bats. In fact, studies shows the integration time of the bat ear is typically
about 300 to 400 μs.

As the speed of sound in air is typically v = 340 m/s, the wavelength λ of the
ultrasonic sound bursts with a constant frequency f is given by

λ =
v
f
, (1)

which is in the range of 2mm to 14mm for the typical frequency range from 25kHz
to 150 kHz. Such wavelengths are in the same order of their prey sizes.

Amazingly, the emitted pulse could be as loud as 110 dB, and, fortunately, they
are in the ultrasonic region. The loudness also varies from the loudest when search-
ing for prey and to a quieter base when homing towards the prey. The travelling
range of such short pulses are typically a few metres, depending on the actual fre-
quencies [11]. Microbats can manage to avoid obstacles as small as thin human
hairs.

Studies show that microbats use the time delay from the emission and detection
of the echo, the time difference between their two ears, and the loudness variations
of the echoes to build up three dimensional scenario of the surrounding. They can
detect the distance and orientation of the target, the type of prey, and even the mov-
ing speed of the prey such as small insects. Indeed, studies suggested that bats seem
to be able to discriminate targets by the variations of the Doppler effect induced by
the wing-flutter rates of the target insects [1].

Obviously, some bats have good eyesight, and most bats also have very sensitive
smell sense. In reality, they will use all the senses as a combination to maximize
the efficient detection of prey and smooth navigation. However, here we are only
interested in the echolocation and the associated behaviour.

Such echolocation behaviour of microbats can be formulated in such a way that
it can be associated with the objective function to be optimized, and this make it
possible to formulate new optimization algorithms. In the rest of this paper, we will
first outline the basic formulation of the Bat Algorithm (BA) and then discuss the
implementation and comparison in detail.

3 Bat Algorithm

If we idealize some of the echolocation characteristics of microbats, we can develop
various bat-inspired algorithms or bat algorithms. For simplicity, we now use the
following approximate or idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically
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adjust the wavelength (or frequency) of their emitted pulses and adjust the rate
of pulse emission r ∈ [0,1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum constant value Amin.

Another obvious simplification is that no ray tracing is used in estimating the time
delay and three dimensional topography. Though this might be a good feature for
the application in computational geometry, however, we will not use this as it is
more computationally extensive in multidimensional cases.

In addition to these simplified assumptions, we also use the following approxima-
tions, for simplicity. In general the frequency f in a range [ fmin, fmax] corresponds
to a range of wavelengths [λmin,λmax]. For example a frequency range of [20kHz,
500kHz] corresponds to a range of wavelengths from 0.7mm to 17mm.

For a given problem, we can also use any wavelength for the ease of imple-
mentation. In the actual implementation, we can adjust the range by adjusting the
wavelengths (or frequencies), and the detectable range (or the largest wavelength)
should be chosen such that it is comparable to the size of the domain of interest, and
then toning down to smaller ranges. Furthermore, we do not necessarily have to use
the wavelengths themselves, instead, we can also vary the frequency while fixing
the wavelength λ . This is because λ and f are related due to the fact λ f is constant.
We will use this later approach in our implementation.

For simplicity, we can assume f ∈ [0, fmax]. We know that higher frequencies
have short wavelengths and travel a shorter distance. For bats, the typical ranges are
a few metres. The rate of pulse can simply be in the range of [0,1] where 0 means
no pulses at all, and 1 means the maximum rate of pulse emission.

Based on these approximations and idealization, the basic steps of the Bat Algo-
rithm (BA) can be summarized as the pseudo code shown in Fig. 1.

3.1 Movement of Virtual Bats

In simulations, we use virtual bats naturally. We have to define the rules how their
positions xi and velocities vi in a d-dimensional search space are updated. The new
solutions xt

i and velocities vt
i at time step t are given by

fi = fmin +( fmax− fmin)β , (2)

vt
i = vt−1

i +(xt
i−x∗) fi, (3)

xt
i = xt−1

i + vt
i, (4)

where β ∈ [0,1] is a random vector drawn from a uniform distribution. Here x∗ is
the current global best location (solution) which is located after comparing all the
solutions among all the n bats. As the product λi fi is the velocity increment, we can
use either fi (or λi ) to adjust the velocity change while fixing the other factor λi (or
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Bat Algorithm

Objective function f (x), x = (x1, ...,xd)T

Initialize the bat population xi (i = 1,2, ...,n) and vi
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai

while (t <Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions [equations (2) to (4)]

if (rand > ri)
Select a solution among the best solutions
Generate a local solution around the selected best solution
end if
Generate a new solution by flying randomly
if (rand < Ai & f (xi) < f (x∗))
Accept the new solutions
Increase ri and reduce Ai
end if

Rank the bats and find the current best x∗
end while
Postprocess results and visualization

Fig. 1 Pseudo code of the bat algorithm (BA)

fi), depending on the type of the problem of interest. In our implementation, we will
use fmin = 0 and fmax = 100, depending the domain size of the problem of interest.
Initially, each bat is randomly assigned a frequency which is drawn uniformly from
[ fmin, fmax].

For the local search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random walk

xnew = xold + εAt , (5)

where ε ∈ [−1,1] is a random number, while At =<At
i > is the average loudness of

all the bats at this time step.
The update of the velocities and positions of bats have some similarity to the pro-

cedure in the standard particle swarm optimization [6] as fi essentially controls the
pace and range of the movement of the swarming particles. To a degree, BA can be
considered as a balanced combination of the standard particle swarm optimization
and the intensive local search controlled by the loudness and pulse rate.

3.2 Loudness and Pulse Emission

Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated
accordingly as the iterations proceed. As the loudness usually decreases once a bat
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has found its prey, while the rate of pulse emission increases, the loudness can be
chosen as any value of convenience. For example, we can use A0 = 100 and Amin =
1. For simplicity, we can also use A0 = 1 and Amin = 0, assuming Amin = 0 means
that a bat has just found the prey and temporarily stop emitting any sound. Now we
have

At+1
i = αAt

i, rt+1
i = r0

i [1− exp(−γt)], (6)

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling
schedule in the simulated annealing [8]. For any 0 < α < 1 and γ > 0, we have

At
i → 0, rt

i → r0
i , as t → ∞. (7)

In the simplicity case, we can use α = γ , and we have used α = γ = 0.9 in our
simulations. The choice of parameters requires some experimenting. Initially, each
bat should have different values of loudness and pulse emission rate, and this can
be achieved by randomization. For example, the initial loudness A0

i can typically
be [1,2], while the initial emission rate r0

i can be around zero, or any value r0
i ∈

[0,1] if using (6). Their loudness and emission rates will be updated only if the new
solutions are improved, which means that these bats are moving towards the optimal
solution.

4 Validation and Comparison

From the pseudo code, it is relatively straightforward to implement the Bat Algo-
rithm in any programming language. For the ease of visualization, we have imple-
mented it using Matlab for various test functions.

4.1 Benchmark Functions

There are many standard test functions for validating new algorithms. In the current
benchmark validation, we have chosen the well-known Rosenbrock’s function

f (x) =
d−1

∑
i=1

(1− x2
i )

2 + 100(xi+1− x2
i )

2, −2.048≤ xi ≤ 2.048, (8)

and the eggcrate function

g(x,y) = x2 + y2 + 25(sin2 x + sin2 y), (x,y) ∈ [−2π ,2π ]× [−2π ,2π]. (9)

We know that f (x) has a global minimum fmin = 0 at (1,1) in 2D, while g(x,y) has
a global minimum gmin = 0 at (0,0). De Jong’s standard sphere function
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h(x) =
d

∑
i=1

x2
i , −10≤ xi ≤ 10, (10)

has also been used. Its minimum is hmin = 0 at (0,0, ...,0) for any d ≥ 3.

−5 0 5
−5

0

5

Fig. 2 The paths of 25 virtual bats during 20 consecutive iterations. They converge into (1,1)

In addition, we have also used other standard test functions for numerical global
optimization [9] such as Ackley’s function

s(x) = 20 + e−20exp
[
−0.2

√
√
√
√1

d

d

∑
i=1

x2
i

]
− exp[

1
d

d

∑
i=1

cos(2πxi)], (11)

where −30≤ xi ≤ 30. It has the global minimum smin = 0 at (0,0, ...,0).
Michalewicz’s test function

f (x) =−
d

∑
i=1

sin(xi)
[

sin(
ix2

i

π
)
]2m

, (m = 10), (12)

has d! local optima in the the domain 0 ≤ xi ≤ π where i = 1,2, ...,d. The global
minimum is f∗ ≈ −1.801 for d = 2, while f∗ ≈ −4.6877 for d = 5.

In our implementation, we use n = 25 to 50 virtual bats, and α = 0.9. For Rosen-
brock’s 2-D banana function, the paths of 25 virtual bats during the consecutive
20 time steps are shown in Fig. 2 where we can see that the bats converge at the
global optimum (1,1). For the multimodal eggcrate function, a snapshot of the last
10 iterations is shown in Fig. 3. Again, all bats move towards the global best (0,0).
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Fig. 3 The eggcrate function (left) and the locations of 40 bats in the last ten iterations (right)

4.2 Comparison with Other Algorithms

In order to compare the performance of the new algorithm, we have tested it against
other heuristic algorithms, including genetic algorithms (GA) [5, 10], and particle
swarm optimization (PSO) [6, 7]. There are many variants of PSO, and some vari-
ants such as the mean PSO could perform better than the standard PSO [3]; however,
the standard PSO is by far the most popularly used. Therefore, we will also use the
standard PSO in our comparison.

There are many ways to carry out the comparison of algorithm performance, and
two obvious approaches are: to compare the numbers of function evaluations for a
given tolerance or accuracy, or to compare their accuracies for a fixed number of
function evaluations. Here we will use the first approach. In our simulations, we use
a fixed tolerance ε ≤ 10−5, and we run each algorithm for 100 times so that we can
do meaningful statistical analysis.

For genetic algorithms, we have used the standard version with no elitism with
the mutation probability of pm = 0.05 and crossover probability of 0.95. For particle
swarm optimization, we have also used the standard version with learning parame-
ters α = β = 2 and the inertia function I = 1 [6, 7]. The simulations have been car-
ried out using Matlab on a standard 3GHz desktop computer. Each run with about
10,000 function evaluations typically takes less than 5 seconds. Furthermore, we
have tried to use different population sizes from n = 10 to 250, and we found that
for most problems, n = 15 to 50 is sufficient. Therefore, we use a fixed population
n = 40 for all simulations. Table 1 shows the number of function evaluations in the
form of mean ± the standard deviation (success rate of the algorithm in finding the
global optima).

From Table 1, we can see that PSO performs much better than genetic algorithms,
while the Bat Algorithm is much superior to other algorithms in terms of accuracy
and efficiency. This is no surprising as the aim of developing the new algorithm
was to try to use the advantages of existing algorithms and other interesting feature
inspired by the fantastic behaviour of echolocation of microbats.
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Table 1 Comparison of BA with GA, and PSO

Functions/Algorithms GA PSO BA
Multiple peaks 52124±3277(98%) 3719±205(97%) 1152±245(100%)

Michalewicz’s (d=16) 89325±7914(95%) 6922±537(98%) 4752±753(100%)
Rosenbrock’s (d=16) 55723±8901(90%) 32756±5325(98%) 7923±3293(100%)
De Jong’s (d=256) 25412±1237(100%) 17040±1123(100%) 5273±490(100%)
Schwefel’s (d=128) 227329±7572(95%) 14522±1275(97%) 8929±729(99%)
Ackley’s (d=128) 32720±3327(90%) 23407±4325(92%) 6933±2317(100%)

Rastrigin’s 110523±5199(77%) 79491±3715(90%) 12573±3372(100%)
Easom’s 19239±3307(92%) 17273±2929(90%) 7532±1702(99%)

Griewangk’s 70925±7652(90%) 55970±4223(92%) 9792±4732(100%)
Shubert’s (18 minima) 54077±4997(89%) 23992±3755(92%) 11925±4049(100%)

If we replace the variations of the frequency fi by a random parameter and setting
Ai = 0 and ri = 1, the bat algorithm essentially becomes the standard Particle Swarm
Optimization (PSO). Similarly, if we do not use the velocities, but we use fixed
loudness and rate: Ai and ri. For example, Ai = ri = 0.7, this algorithm is virtually
reduced to a simple Harmony Search (HS) as the frequency/wavelength change is
essentially the pitch adjustment, while the rate of pulse emission is similar to the
harmonic acceptance rate (here with a twist) in the harmony search algorithm [4,
14]. The current studies implies that the proposed new algorithm is potentially more
powerful and thus should be investigated further in many applications of engineering
and industrial optimization problems.

5 Discussions

In this paper, we have successfully formulated a new Bat Algorithm for continu-
ous constrained optimization problems. From the formulation of the Bat Algorithm
and its implementation and comparison, we can see that it is a very promising algo-
rithm. It is potentially more powerful than particle swarm optimization and genetic
algorithms as well as Harmony Search. The primary reason is that BA uses a good
combination of major advantages of these algorithms in some way. Moreover, PSO
and harmony search are the special cases of the Bat Algorithm under appropriate
simplifications.

In addition, the fine adjustment of the parameters α and γ can affect the conver-
gence rate of the bat algorithm. In fact, parameter α acts in a similar role as the
cooling schedule in the simulated annealing. Though the implementation is more
complicated than many other metaheuristic algorithms; however, it does show that it
utilizes a balanced combination of the advantages of existing successful algorithms
with innovative feature based on the echolocation behaviour of bats. New solutions
are generated by adjusting frequencies, loudness and pulse emission rates, while the
proposed solution is accepted or not depends on the quality of the solutions con-
trolled or characterized by loudness and pulse rate which are in turn related to the
closeness or the fitness of the locations/solution to the global optimal solution.
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The exciting results suggest that more studies will highly be needed to carry
out the sensitivity analysis, to analyze the rate of algorithm convergence, and to
improve the convergence rate even further. More extensive comparison studies with
a more wide range of existing algorithms using much tough test functions in higher
dimensions will pose more challenges to the algorithms, and thus such comparisons
will potentially reveal the virtues and weakness of all the algorithms of interest.

An interesting extension will be to use different schemes of wavelength or fre-
quency variations instead of the current linear implementation. In addition, the rates
of pulse emission and loudness can also be varied in a more sophisticated manner.
Another extension for discrete problems is to use the time delay between pulse emis-
sion and the echo bounced back. For example, in the travelling salesman problem,
the distance between two adjacent nodes/cities can easily be coded as time delay.
As microbats use time difference between their two ears to obtain three-dimensional
information, they can identify the type of prey and the velocity of a flying insect.
Therefore, a further natural extension to the current bat algorithm would be to use
the directional echolocation and Doppler effect, which may lead to even more inter-
esting variants and new algorithms.
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