
Using Knowledge Discovery in Cooperative
Strategies: Two Case Studies

A.D. Masegosa, E. Muñoz, D. Pelta, and J.M. Cadenas

Abstract. In this work we discuss to what extent and in what contexts the use of
knowledge discovery techniques can improve the performance of cooperative strate-
gies for optimization. The study is approached over two different cases study that
differs in terms of the definition of the initial cooperative strategy, the problem cho-
sen as test bed (Uncapacitated Single Allocation p Hub Median and knapsack prob-
lems) and the number of instances available for applying data mining. The results
obtained show that this techniques can lead to an improvement of the cooperatives
strategies as long as the application context fulfils certain characteristics.

1 Introduction

Although some algorithms have a good performance in a specific problem, there is
hardly an algorithm which behaves better than others in a wide set of instances of
such problem. This fact corresponds with the No Free Lunch Theorem [21]. In this
way, it is very complicated to determine what the best method for a given instance is,
specially if there are big differences in performance from one algorithm to another.
Formally, this is known as the “Algorithm Selection problem” [20], and was defined
by Rice in 1976.

This problem has been treated in various areas. One of them is Machine Learning
[5, 11, 12]. These kind of techniques have been used to estimate the execution time
required by an algorithm to solve a determined type of instances, so that through this

A.D. Masegosa · D. Pelta
Dept. of Computer Science and Artificial Intelligence
University of Granada, Granada, Spain
e-mail: {admase,dpelta}@decsai.ugr.es

E. Muñoz · J.M. Cadenas
Dept. Ingeniería de la Información y las Comunicaciones
University of Murcia, Murcia, Spain
e-mail: enriquemuba@dif.um.es,jcadenas@um.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 25–38, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{admase,dpelta}@decsai.ugr.es
enriquemuba@dif.um.es, jcadenas@um.es


26 A.D. Masegosa et al.

information, we can choose the best expected method when we face a new instance.
Another technique is associated with the “Algorithm Portfolio” paradigm, where,
instead of selecting a single algorithm, a set of methods are executed in parallel
until the fastest one solves the problem. An example of this type of strategies can
be found in [17]. When the algorithms are allowed to exchange information among
them, then cooperative search strategies arise, and this collaboration leads to a dra-
matically improve in the robustness and the quality of the solutions obtained with
respect to the independent version of the strategy [2, 6]. This concept of coopera-
tion is successfully used, explicit or implicitly, in other types of metaheuristics as
multi-agent systems (ACO‘s [8], PSO‘s[14]), memetic algorithms [15] and hyper-
heuristics [3].

In this paper we are going to treat with both areas, cooperative strategies and Ma-
chine Learning. Concretely, we will discuss to what extent and in what contexts the
use of knowledge discovery techniques can improve the performance of cooperative
strategies. For this purpose, a centralised cooperative strategy based on simple ele-
ments of Soft Computing, previously presented in [4, 7, 19], will be consider as the
baseline case. From this starting point, we will analyse the improvement produced
by the use of new control rules and two alternatives for setting the initial parameters
of the methods composing the cooperative strategy. These features are obtained us-
ing data mining. The study will be conducted on two different scenarios that differ
in terms of the baseline implementation and test bed used (Uncapacitated Single
Allocation p-Hub Median Problem (USApHMP) and the Knapsack problem). We
have chosen these two problems for the following reasons: the USApHMP is a NP-
hard problem where only small datasets of solved instances can be found, and for
that reason we have little information in order to perform the training phase in the
knowledge discovery process. On the other hand, Knapsack Problem is one of the
“easiest” NP-hard problems, in which simple resolution algorithms obtain good re-
sults, and where we can find big datasets of solved instances for training the system.
These test beds are two extreme situations in which we want to check the improve-
ments obtained by the KD.

This work is structured as follows. Firstly, we will describe the centralised co-
operative strategy used as base case. In Section 3, the new control rule and the two
types of initial parameter tune will be shown. Section 4 is devoted to state the two
case studies used to test the cooperative method. After that, we will relate the exper-
imentation done and the results obtained. To finish, in Section 6, the conclusions of
this work, will be discussed.

2 A Centralized Cooperative Search Strategy

The cooperative strategy described in [7, 19], consists on a set of solvers/threads,
each one implementing the same or a different resolution strategy for the problem
at hand. These threads are controlled by a coordinator which processes the informa-
tion received from them and, making use of a fuzzy rule base, produces subsequent



Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 27

adjustments of solver behaviours by sending “orders”. The information exchange
process is done through a blackboard architecture [9].

A important part of this strategy is the information flow, that is divided in the
three steps: 1) performance information (report) is sent to the coordinator from the
solvers, 2) this information is stored and processed by the coordinator and 3) coor-
dinator sends orders to the solvers.

Each report in the first step contains:

• Solver identification
• A time stamp t
• The current solution of the solver at that time st

• The best solution reached until that time by this solver sbest

The coordinator stores the last two reports from each solver, so in the information

processing step, the improvement rate is calculated as Δ f = f (st)− f (st′ )
t−t′ , where t−

t ′ represents the elapsed time between two consecutive reports, st′ is the current
solution sent by the solver in the last report and f is the objective function. The
values Δ f and f (st ) are then stored in two fixed length ordered “memories”, one for
improvements and another for costs.

Over those memories, a fuzzy control rule is constructed. This rule allows the
coordinator to determine if a solver is working fine or not. It was designed based on
expert knowledge following the principle: If a solver is working well, keep it; but
if a solver seems to be trapped, do something to alter its behaviour. From now on,
this rule is called EK and its definition is the next one:

IF the quality of the current solution reported by solveri is low AND the improve-
ment rate of solveri is low THEN send Cbest to solveri

The label low is defined as a fuzzy set whose membership function μ(x) is shown
in Figure 1 (a). The variable x will correspond with the relative position (resembling
the notion of percentile rank) of a value (an improvement rate or a cost) in the
samples stored in memory of improvements or memory of costs, respectively, and
the other parameters are fixed to a = 80 and b = 100 for the memory of costs, and
a = 0 and b = 20 for the memory of improvements. Cbest denotes the best solution
ever recorded by the coordinator. In short, what the rule says is that if the values
reported by a solver are among the worst in the memories, then such a solver should
be changed in some way.

By means of sending Cbest , it is expected that the solvers will concentrate around
the most promising regions of the search space, which will be sampled using differ-
ent schemes (the ones defined by the solver threads themselves). This increases the
chances of finding better and better solutions.

Depending on the nature of the solvers (trajectory-based or population-based),
the solution Cbest is sent in a different way. For trajectory based methods, a new
solution C′best is obtained from Cbest using a mutation operator. When the solver
receives C′best , then it will restart the search from that new point. Such modification
tries to avoid relocating all of the solvers in the same point of the search space.



28 A.D. Masegosa et al.

a) Definition of low b) Definition of enough, High,
THigh and TVeryHigh

Fig. 1 Definition of low, enough, High, THigh and TVeryHigh

However, for population based methods, a proportion of the worst individuals of the
receiver is substituted by a set of mutated solutions obtained from Cbest using the
same operator as before.

3 Knowledge Discovery for Rule Design and Parameters Setup

Any of the components defining the basic cooperative strategy could be changed. In
this work, we will consider new definitions for two relevant components: 1) a new
set of control rules and 2) a mechanism to setup the initial parameters of the threads.
Both features will be obtained using knowledge discovery techniques that are fully
described in [4]. The basic ideas of the process is briefly presented here.

The first step is the data generation process where we have:

• {m0, . . . ,mk}, a set k metaheuristics
• {ci,0, . . . ,ci,d}, a set of possible parameter combinations for mi

• {p0, . . . , pl} the set of training instances

Then, every mi is run over each pt with every possible combination of parameters
ci j in order to obtain a performance information database. The second step in the
knowledge discovery process is to extract several decision trees. Then, when the
cooperative system is presented with a new instance to solve, the trees are traversed
and certain weights for the control rules are returned (from the “Weights Tree”),
and a list of “good parameter configurations” is constructed (from the “Parameters
Tree”). From this list, the system will setup the parameters of the threads. See Figure
2 for a schematic description.

3.1 New Set of Control Rules

The new set of control rules has two parameterized rules: the first one allows to
change the position in the search space of a thread (because it may show a bad
performance) making it closer to the one of another metaheuristic with a better
behavior; the second rule allows to dynamically change the parameters governing
the behaviour of a thread.



Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 29

Fig. 2 Given a new instance to solve, new control rules weights and solvers’ initial parame-
ters are calculated

The parameterized rules (one for each thread or metaheuristic) are as follows:

• IF [solveri IS theWorst] AND [(wm1∗d1 OR . . . OR wmn∗dn) IS enough] THEN
change the current solution of solveri.

• IF [(wm1 ∗ d1 OR . . . OR wmn ∗ dn) IS High AND (time IS T High OR
TVeryHigh)] THEN changeParameterValues of solveri.

where:

– n is the number of solvers.
– solveri is the solver being evaluated by the rule.
– theWorst evaluates if the solver being studied now is having the worst perfor-

mance according to any previously defined measure.
– di = (per fi− per fMH)/maximum(per fi, per fMH), where per f is a measure

of performance previously defined.
– wmi ∈ [0,1] where ∑n

i=1 wmi = 1 and wmi represents the weight of solver i
(importance of metaheuristic i for solving the current instance). These weights
are calculated from the “Weights Tree” obtained from the data mining process.

– Enough, High, THigh and TVeryHigh are fuzzy sets with trapezoidal mem-
bership functions with support contained in [0,1] defined by a cuadruplet
(a,b,c,d). Its representation is shown in Figure 1b).

– ChangeParameterValues is a function that changes the values of the param-
eters of a solver. As stated before, a list of “good parameter configurations”
was obtained from the “Parameters Tree”. So, when the rule is triggered, the
next configuration from the list is selected.

3.2 Parameters Adjustment

The initial parameters of the solvers are calculated from the “Parameters Tree”.
In fact, there exist to different operational modes. In the first one, the parameters
are calculated as a function of the type of the instance, while in the second one,
the parameters are independent from the instance being solved. In this last case,
the best configuration of parameters is the one that allowed to obtain, on average,



30 A.D. Masegosa et al.

Table 1 Main features of the two case studies proposed

Case study 1 Case study 2
Communication mode asynchronous synchronous

Stop condition and communication frequency evaluation number Time
Implemented solvers VND, Tabu, SA Tabu, SA, GA

Test problem USApHMP knapsack
Number of instances 34 2000

Number of instances for training 34 500
Number of instances per size and type 1 25

Number of instances for test 34 20

the best results over the set of training instances. Both strategies are considered in
this work.

4 Case Studies Details

This section is devoted to describe the two case studies designed to assess to what
extent and in what contexts the use of knowledge discovery techniques can improve
the performance of cooperative strategies. The scenarios differ in the type of basic
cooperative strategy used, in the communication model, test problem and informa-
tion available for the data mining stage. The next two subsections fully describe the
two scenarios, while their main features are displayed in Table 1.

4.1 Case Study 1

When implementing multi-threaded cooperative strategies, one can resort to parallel
schemes if time is important, or one can simulate the parallelism in a one-processor
computer. This is the strategy taken here and the procedure is extremely simple. We
construct an array of solvers and we run them using a round-robin schema. This
implementation uses a synchronous communication mode that is simulated in this
way: solvers are executed during 100 ms each one and after this period of time,
information exchanges are performed. These steps are repeated until the stopping
condition, given in terms of running time, is fulfilled.

Regarding the fuzzy rule (EK rule), the size of the memory of costs and improve-
ments was set to be double the number of solvers. Three different heuristic searches
were chosen as solvers: Genetic Algorithm (GA), Tabu Search (TS) and Simulated
Annealing (SA). Their implementation follows the basic guidelines described in
[10] and no specific tailoring of operators to problem was done. The description of
these methods is omitted due to space constraints.

The test bed used in this case is the well known knapsack problem. The problem
is defined as follows: Given a set of items, each with a cost and a benefit, determine



Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 31

a subset such that the total cost is less than a given limit and the total benefit is as
large as possible.

From the point of view of the Knowledge Discovery process, and due to the
availability of an instance generator, the number of instances available for training
the system was 500, with 25 instances per size and type considered. We used four
different sizes: 500, 1000, 1500 and 2000 objects and five types of instances, given
by Dr D. Pisinger in[13], were taken into account:

• Spanner: These instances are constructed in such a way that all their items are
multiple of a small set of items called key. That key was generated using three
distributions:

– Uncorrelated,
– Weakly correlated,
– Strongly correlated.

• Profit ceiling: In these instances all the benefits are multiple of a given parame-
ter d.

• Circle: These instances are generated in such a way that the benefits are a function
of the weights, having its graph an elliptic representation.

To carry out the tests we solved a database of instances composed of 20 instances
(one per type and size). In order to asses the quality of the solutions returned by the
strategy, we consider an error as error = 100× obtained value−optimum

optimum .

4.2 Case Study 2 Description

In this case study, the implementation is broadly the same with some slight varia-
tions. Firstly, here the communication mode is asynchronous and is not determined
by CPU time but by objective function evaluations. Concretely, the solvers are run
during a random number of evaluations that varies from 100 to 150. The process is
repeated until a maximum number of objective function evaluations has been done.

Other important difference with respect to the former one are the heuristic imple-
mented by the solvers, since now all of them are trajectory based. The three different
heuristic searches chosen were: Tabu Search, Simulated Annealing (SA) and Vari-
able Neighborhood Descent search (VND). As before, their implementation follows
the basic guidelines described in [10] and no specific tailoring of operators to prob-
lem was done.

The test bed is a hub location problem. The aim on this type of problems is
composed of two steps: 1) Hub location: to determine which and how many nodes
should be the hubs, in order to distribute the flow across them, and 2) Non-hub to
hub allocation: to assign the rest of the nodes to the hubs. Generally, these tasks
are performed by minimizing an objective function that describes the exchange flow
and its cost. We will focus on a particular case: the Uncapacitated Single Allocation
p-Hub Median Problem (USApHMP), which is consider as a NP-hard problem. Its
quadratic integer formulation was given by O’Kelly in [18].



32 A.D. Masegosa et al.

The instances chosen for the experimentation were obtained from the resource
ORLIB [1]. Concretely, we used the AP (Australian Post) data set derived from a
study of a postal delivery system. The data set contains a first group of instances
with 10,20,25,40 and 50 nodes (having 2,3,4 hubs), and a second group where the
instances have 100 and 200 nodes with 2, 3, 4, 5,10,15 and 20 hubs. The optimum
for those instances with a number of nodes less than 50 was provided by the resource
ORLIB, and for the other instances we considered the best solution found for one
of the state-of-art algorithms for this problem, presented in [16]. The quality of the
solutions is measured as in the previous case study. To finish this section, we should
remark other significant distinction with respect to the case 1, since this one only
have available a total of 34 instances and there is just one instance per type and size.

5 Experiments and Results

The experimentation done in this paper has as target to analyse the benefits con-
tributed by the Knowledge Discovery process seen in Section 3. For this purpose,
the baseline for comparison is the strategy seen in Section 2, where there is just one
control rule (EK Rule) and the initial parameters for all the threads are those that
gave the best results when averaged over all the training instances. In other words,
they are independent from the instance being solved. The following combinations
will be tested:

• KD rule is used instead of the EK rule.
• The parameters are calculated as a function of the instance being solved.

In this way, from the base case we can obtain the next strategies:

basic strategy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

EK rule

{
parameters : instance independent(EK + IIP)
parameters : instance dependent(EK + IDP)

KD rule

{
parameters : instance independent(KD+ IIP)
parameters : instance dependent(KD+ IDP)

Each one of the four cooperative strategies obtained is run over a set of test instances
for every case study. We will first analyse the impact of the KD rule and then, that
of the parameter’s setting mode.

5.1 On the Impact of KD Rule versus EK Rule

Here, we compare the behaviour of the strategies EK+IIP vs. KD+IIP and EK+IDP
vs. KD+IDP on each case study.

We will start the analysis with the first case study. Figure 3 shows two scatter
plots where EK and KD rules are compared for both types of parameter’s adjustment
considered. In the scatter plots, each point represents a test instance and shows the
relative deviation from the optimum for the two strategies compared. This is defined
as d = q−q∗

q∗ . Each point is an average over the total of runs. In this type of plots,



Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 33

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

KD rule

E
K

 r
ul

e

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

KD rule

E
K

 r
ul

e

a) Instance Indep. parameters b) Instance Depend. parameters

Fig. 3 Case Study 1: Comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test(Wilcoxon’s unpaired
rank sum test))

when a point is below the diagonal line means that the strategy of the X axis has
a worse average value than the strategy of the Y axis, and viceversa. When a point
is represented by a triangle indicates that the difference is statistically significant
(confidence level 0.05 by a Mann-Whitney U-test (Wilcoxon’s unpaired rank sum
test)) whereas in the opposite case, the point is showed as a circle.

Figure 3 (a) shows an important improvement when the KD rule is used with
respect to EK. The cooperative strategy coupled with the KD rules always obtained
equal or better average values (except in one instance). Moreover, the differences
were statistically significant for 9 cases. When the parameters are set in terms of the
type of the instance being solved, Figure 3 (b), the results are very similar. There is
no point below the diagonal and the number of significant differences here is 5. In
short, we can conclude that for this case study, the basic cooperative strategy can be
enhanced with data mining techniques.

For the second case study, we are going to follow the same analysis structure.
Figure 4 a) shows the performance of the EK rule vs the KD rule when both strate-
gies use instance independent parameters. The differences in terms of results be-
tween the two rules are only statistically significant in 5 instances, three of which
are positives for KD and the other two for EK. In the rest of the cases, the results
are almost the same.

When the parameters are tuned accordingly with the type of instance, Figure 4b),
there seems to be a slight improvement when using KD rules with respect to EK.
Now, KD overcomes EK in most of the instances, being three cases statistically
significant whereas this condition is only fulfilled in one occasion when such differ-
ence has the opposite sign. However, this result should be carefully analysed as the
improve is not due to an enhancement of the KD rule, but a deterioration of EK, as
we will see in the next subsection.



34 A.D. Masegosa et al.

0.00 0.02 0.04 0.06

0.
00

0.
02

0.
04

0.
06

KD rule

E
K

 r
ul

e

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

KD rule

E
K

 r
ul

e

a) Instance Indep. parameters b) Instance Depend. parameters

Fig. 4 Case Study 2: comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test (Wilcoxon’s unpaired
rank sum test))

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

0.00 0.02 0.04 0.06 0.08

0.
00

0.
02

0.
04

0.
06

0.
08

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

a) EK rule b) KD rules

Fig. 5 Case Study 1:Comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test (Wilcoxon’s unpaired
rank sum test))

5.2 On the Impact of the Parameters Setup Method

This part of the result analysis is devoted to study to what extent the strategy improve
its performance when the parameters of the heuristic are tuned as a function of the
instance characteristics, so we will focus on EK+IIP vs. EK+IDP and KD+IIP vs.
KD+IDP for both case studies.



Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 35

0.00 0.02 0.04 0.06

0.
00

0.
02

0.
04

0.
06

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

a) EK rule b) KD rules

Fig. 6 Case Study 2:Comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test(Wilcoxon’s unpaired
rank sum test))

In the first case study, the new parameter set up mechanism leads to a perfor-
mance improvement that is very notorious for the EK rule, as we can see in Figure
5 a). The improvement achieved by the instance dependent parameter setting is sig-
nificant in 7 instances and never drives the search to a deterioration. However, this
enhancement is less appreciable for the KD rule. Viewing Figure 5 b), we can check
that although the strategy always work better when the parameter are adjusted by
this method, now the difference with respect to the other alternatives only statisti-
cally significant in one case.

For the second case study, we will start with the EK rule. Viewing the results
shown by Figure 6a), we can observe the behaviour we pointed out before. The use
of EK+IDP produce a high performance degradation of the basic strategy leading to
worse results (the difference is statistically significant) in six instances.

When the control of the strategy is carried out by the KD rules, we can observe
in Figure 6b) that the performance of KD+IIP and KD+IDP are almost the same.

6 Discussions

In this work we have seen how and in what contexts, Knowledge Discovery can
be used to improve a centralised cooperative strategy. Concretely, the Knowledge
Discovery has been incorporated in two different ways:

• By means of new parameterized control rules, where the parameters are deter-
mined using Data Mining

• Defining alternatives for setting up the parameters governing the behaviour of
the metaheuristics: instance independent and instance dependent parameters that
are provided, for each metaheuristic, by a decision tree.



36 A.D. Masegosa et al.

Fig. 7 Average error over all the instances of the corresponding case study, for every strategy
evaluated

In order to analyse the suitability of the methodology, we proposed two case
studies that differs in terms of the definition of the basic cooperative strategy (im-
plemented heuristics, communication mode, ...), problem type, and amount of infor-
mation available for doing knowledge extraction.

In the first case study, we observed that these new components led to cooperative
strategies (EK+IDP, KD+IIP, KD+IDP) whose performance is better than the basic
strategy (EK+IIP). This is clearer if we look at Figure 7 (case study 1) where the
average error over all the test instances is shown for every strategy. This nice and
clear behaviour is not present in the second case study.

In our opinion, the difference is related with amount of available information to
“learn” in each case study. In other words, with the number of available instances
to generate the performance information that then, should be mined to extract the
weights and parameters that will govern the cooperative system. As we saw for-
merly, in the second case study we only had 34 instances for training with a unique
sample per size and type, very low values to achieve a robust learning, specially if
they are compare with such values in the first case study: 500 and 20 respectively.

Nevertheless, some conclusions can be obtained. First one is: if enough informa-
tion is available to apply Knowledge Discovery techniques, then better cooperative
strategies can be obtained. In second place, the benefit of using an instance depen-
dent parameter setting needs to be further analysed because it depends on how well
the instances in the training set could be characterized. If not enough information
is available, then it will be safer not to use it. In the contrary, the use of KD rules
when combined with an instance independent parameter setting leads to cooperative
strategies that, at least, are as good as those using an expert designed rule for both
case studies.

As future work, we plan to improve the learning process in order to reduce the
amount of information needed to obtain meaningful knowledge. Another line of re-
search consist on using online learning instead of the current offline data generation
and processing method. In this way, the overhead of the learning process will be
reduced and the future comparison against state of the art algorithms for specific
problems could be fairly done.



Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 37

Acknowledgements. A.D. Masegosa is supported by the scholarship program FPI from the
Spanish Ministry of Science and Innovation. E. Muñoz is supported by “Fundación Séneca,
Agencia de Ciencia y Tecnología de la Región de Murcia”, under “Programa Séneca” action.
This work has been partially funded by the projects TIN2008-01948 and TIN2008-06872-
C04-03 from the Spanish Ministry of Science and Innovation and the “Fondo Europeo de
Desarrollo Regional” (FEDER). Support from Andalusian Government through project P07-
TIC-02970 is also acknowledged.

References

[1] Beasley, J.: Obtaining test problems via internet. Journal of Global Optimization 8(4),
429–433 (1996)

[2] Bouthillier, A.L., Crainic, T.G.: A cooperative parallel meta-heuristic for the vehicle
routing problem with time windows. Comput. Oper. Res. 32(7), 1685–1708 (2005)

[3] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics:
an emerging direction in modern search technology. In: Handbook of metaheuristics,
pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)

[4] Cadenas, J., Garrido, M., Hernández, L., Muñoz, E.: Towards a definition of a data min-
ing process based on fuzzy sets for cooperative metaheuristic systems. In: Proceedings
of IPMU 2006, pp. 2828–2835 (2006)

[5] Carchrae, T., Beck, J.C.: Applying machine learning to low-knowledge control of opti-
mization algorithms. Computational Intelligence 21(4), 372–387 (2005)

[6] Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel variable
neighborhood search for the p-median. Journal of Heuristics 10(3), 293–314 (2004)

[7] Cruz, C., Pelta, D.: Soft computing and cooperative strategies for optimization. Applied
Soft Computing Journal (2007) (In press) doi:10.1016/j.asoc.2007.12.007

[8] Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Book (2004)
[9] Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.

Addison-Wesley Longman Publishing Co., Inc, Boston (1999)
[10] Glover, F.W., Kochenberger, G.A. (eds.): Handbook of metaheuristics. Kluwer Aca-

demic Publishers, Dordrecht (2003)
[11] Guo, H., Hsu, W.H.: A machine learning approach to algorithm selection for np-hard

optimization problems: a case study on the mpe problem. Annals of Operations Re-
search 156(1), 61–82 (2007)

[12] Houstis, E., Catlin, A., Rice, J.R., Verykios, V., Ramakrishnan, N., Houstis, C.: Pythia-
ii: a knowledge/database system for managing performance data and recommending sci-
entific software. ACM Transactions on Mathematical Software 26(2), 227–253 (2000)

[13] Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (Oc-
tober 2004)

[14] Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann Publishers Inc.,
San Francisco (2001)

[15] Krasnogor, N., Pelta, D.A.: Fuzzy Memes in Multimeme Algorithms: a Fuzzy-
Evolutionary Hybrid. In: Fuzzy Sets based Heuristics for Optimization. Studies in
Fuzziness and Soft Computing, vol. 126, pp. 49–66. Springer, Heidelberg (2002)

[16] Kratica, J., Stanimirović, Z., Dušcan Tovšić, V.F.: Two genetic algorithms for solving
the uncapacitated single allocation p-hub median problem. European Journal of Opera-
tional Research 182(1), 15–28 (2007)



38 A.D. Masegosa et al.

[17] Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: Boosting
as a metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp.
899–903. Springer, Heidelberg (2003)

[18] O’Kelly, M., Morton, E.: A quadratic integer program for the location of interacting hub
facilities. European Journal of Operational Research 32(3), 393–404 (1987)

[19] Pelta, D., Sancho-Royo, A., Cruz, C., Verdegay, J.L.: Using memory and fuzzy rules
in a co-operative multi-thread strategy for optimization. Information Sciences 176(13),
1849–1868 (2006)

[20] Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)
[21] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans-

actions on Evolutionary Computation 1, 67–82 (1997)


	Using Knowledge Discovery in Cooperative Strategies: Two Case Studies
	Introduction
	A Centralized Cooperative Search Strategy
	Knowledge Discovery for Rule Design and Parameters Setup
	New Set of Control Rules
	Parameters Adjustment

	Case Studies Details
	Case Study 1
	Case Study 2 Description

	Experiments and Results
	On the Impact of KD Rule versus EK Rule
	On the Impact of the Parameters Setup Method

	Discussions
	References




