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Abstract. A new nature inspired algorithm, that simulates the mating behavior of
the bumble bees, the Bumble Bees Mating Optimization (BBMO) algorithm, is pre-
sented in this paper for solving global unconstrained optimization problems. The
performance of the algorithm is compared with other popular metaheuristic and
nature inspired methods when applied to the most classic global unconstrained op-
timization problems. The methods used for comparisons are Genetic Algorithms,
Island Genetic Algorithms, Differential Evolution, Particle Swarm Optimization,
and the Honey Bees Mating Optimization algorithm. A high performance of the
proposed algorithm is achieved based on the results obtained.

1 Introduction

In the last years, several biological and natural processes have been influencing the
methodologies in science and technology in an increasing manner. Among the most
popular nature inspired approaches, when the task is optimization within complex
domains of data or information, are those methods representing successful animal
and micro-organism team behaviour, such as the Particle Swarm Optimization [14],
the artificial immune systems [6], the Ant Colony Optimization [7], etc. Also, a
number of swarm intelligence algorithms, based on the behaviour of the bees have
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been presented [4]. These algorithms are divided, mainly, in two categories accord-
ing to their behaviour in the nature, the foraging behaviour and the mating be-
haviour. The most important approaches that simulate the foraging behaviour of the
bees are the Artificial Bee Colony (ABC) Algorithm proposed by [13], the Virtual
Bee Algorithm proposed by [27], the Bee Colony Optimization Algorithm proposed
by [24], the BeeHive algorithm proposed by [26], the Bee Swarm Optimization Al-
gorithm proposed by [8] and the Bees Algorithm proposed by [22]. Contrary to the
fact that there are many algorithms that are based on the foraging behaviour of the
bees, the main algorithm proposed based on the marriage behaviour is the Honey
Bees Mating Optimization Algorithm (HBMO), that was presented in ([1, 2]) and
simulates the mating process of the queen of the hive. Since then, it has been used
on a number of different applications [3, 10, 11, 15–20, 23].

In this paper, a new algorithm that simulates the mating behavior of the Bumble
bees, the Bumble Bees Mating Optimization (BBMO) algorithm is presented, anal-
ysed and used for solving unconstrained optimization problems. This algorithm is a
population-based swarm intelligence algorithm that simulates the mating behavior
that a swarm of bumble bees perform. An hybridized initial version of the algorithm
was presented in [21] for clustering. The other methods used for the comparisons are
the Genetic Algorithms [12] and their variants, the Differential Evolution [25], the
Particle Swarm Optimization [14] and its variants and the Honey Bees Mating Op-
timization algorithm [1, 3]. The test functions used are the Rosenbrock, the Sphere,
the Rastrigin and the Griewank.

The rest of the chapter is organized as follows. In the next section an analytical
description of the proposed algorithm is given. In the third section, the test functions
used are given while in the fourth section computational results are presented and
analyzed. The last section gives the conclusions and future research.

2 The Proposed Bumble Bees Mating Optimization Algorithm

In this section, initially, the bumble bees behavior is presented, while in the fol-
lowing the proposed algorithm based on this behavior is presented and analyzed in
detail.

2.1 Bumble Bees Behavior

Bumble bees are social insects that form colonies consisting of the queen, many
workers (females) and the drones (males). Queens are the only members of the nest
to survive from one season to the next, as they spend the winter months hibernating
in a protected underground overwintering chamber. Upon emerging from hiberna-
tion, a queen collects pollen and nectar from flowers and searches for a suitable nest
site and when she finds such a place, she prepares wax pots to store food and wax
cells into which eggs are laid ([28–31]).

The bumble bee queen can lay fertilized or unfertilized eggs. The fertilized eggs
have chromosomes from the queen and a male or males she mated with the previous
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year and they develop into workers while the unfertilized eggs contain chromo-
somes from the queen alone and they develop into males. After the emergence of
the first workers, the queen no longer forages as the workers take over the respon-
sibilities of collecting food (foragers) and the queen remains in the nest laying eggs
and tending to her young. Some workers, also, remain in the nest and help raise the
brood (household workers). Males do not contribute in collecting food or helping
rear young as the sole purpose of the males are to mate with the queens. Bumble
bee workers are able to lay haploid eggs when the queen’s ability to suppress the
workers’ reproduction diminishes. These eggs are developed into viable male bum-
ble bees ([28–31]).

A few days after the males leave the nest, new queens will emerge. After new
queens and males have gone, the colony begins to deteriorate. The founder queen
stops laying eggs and grows weak from old age while the remaining workers con-
tinue to forage for food but only for themselves. Away from the colony, the new
queens and males live off nectar and pollen and spend the night on flowers or in
holes. The queens are eventually mated (often more than once), the sperm from the
mating is stored in spermatheca and she searches for a suitable location for diapause.
Three different mating behaviors exist in bumble bees. The first mating behavior is
where a male perches on a tall structure and waits for queens to fly by and he will
pursue them for mating once one queen is spotted. The second mating behavior is
when males create a scent trail, marking their flight path with pheromones and, thus,
queens of the same species will be attracted to the pheromones and follow the scent
trail. The third mating behavior is where males wait at the entrance of a bumble bee
nest for queens to leave ([28–31]).

2.2 BBMO for Global Unconstrained Optimization

In the BBMO algorithm, there are three kind of bumble bees in the colony, the
queen, the workers and the drones (males). Initially, a number of bees are selected
randomly. Each bee (a bee corresponds to an individual in the population) represents
a candidate solution of the problem. Let n be the total number of variables. The
bees are represented by vectors of dimension n. We use a real valued representation
where initially the values of each of the bees are random numbers between 0 and 1.
Afterwards, the fitness of each bee is calculated using each one of the test functions
depending of the problem (see section 3) and the best bee is selected as the queen.
All the other bees in the initialization phase of the algorithm are the drones.

The queen selects the drones that are used for mating by using the second mating
behavior where it is assumed in the algorithm that the fittest males let larger amount
of pheromone in their flight paths and, thus, the queen selects the most promis-
ing paths. This procedure is realized by sorting of all drones based on their fitness
function. Each time the queen successfully mates with a drone, the genotype of the
drone is stored in her spermatheca until the maximum number of matings has been
reached.
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After the mating, the queen finds a place to hibernate and in the next year (a year
corresponds to an iteration) finds a place to create the hive and to begin to lay eggs.
There are three kinds of bees that a queen lays: new queens, workers and drones.
The first two kinds of bees are created by crossover of the genotype of the queen
and the genotype of the drones using a specific crossover operator. In this crossover
operator, the points are selected randomly from the selected drones and from the
queen. Thus, initially a crossover operator number is selected (Cr1) that controls
the fraction of the parameters that are selected for the drones and the queen. The
Cr1 value is compared with the output of a random number generator, randi(0,1). If
the random number is less or equal to the Cr1 the corresponding value is inherited
from the queen, otherwise it is selected, randomly, from the solutions of one of the
drones’ genotypes that are stored in spermatheca. Thus, if the solution of the brood i
is denoted by bi j(t) (t is the iteration number and j is the dimension of the problem
( j = 1, · · · ,n)), the solution of the queen is denoted by q j(t) and the solution of the
drone k is denoted by dk j(t):

bi j(t) =
{

q j(t), if randi(0,1)≤Cr1

dk j(t), otherwise.
(1)

The fittest of the broods are selected as new queens while the rest are the workers.
The new queens are selected to be equal to the maximum number of the queens. Ini-
tially, the new queens are fed from the old queen (or queens) and, afterwards, from
the workers and the old queen (or queens). The reason that we use this procedure is
to improve the genotype (solution) of each new queen. This is achieved by using a
local search phase where each new queen selects which of the workers and the old
queen (or queens) are going to feed her by using the following equation:

nqi j = nqi j +(bmax− (bmax−bmin)∗ lsi
lsimax

)∗ (nqi j−q j)+

1
M
∗

M

∑
k=1

(bmin− (bmin−bmax)∗ lsi
lsimax

)∗ (nqi j−wk j) (2)

where nqi j is the solution of the new queen i, q j is the the solution of the old queen
(or queens), wk j is the solution of the worker, M is the number of the workers that
each queen selects for feeding her and it is different for each queen, bmax,bmin are
two parameters with values in the interval (0,1) that control if the new queen is
fed from the old queen (or queens), from the workers or from both of them, lsi is
the current local search iteration and lsimax is the maximum number of local search
iterations. Initially, the new queens are fed more from the old queen (or queens) and
as the local search iterations increase, then only the workers feed the new queen.
The appropriate choice of the values of bmax and bmin controls the feeding process,
i.e. in order to have the feeding process described previously, a large value for bmax

and a value almost equal to zero for bmin are necessary. Afterwards, the new queens
leave from the hive.
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The drones are produced by mutate the old queen’s (or old queens’) genotype or
by mutate the fittest workers’ genotype using a random mutation operator. In this
mutation operator, the changes in the genotype of the old queens or the workers are
performed randomly.

The drones, then, leave from the hive and they are looking for new queens for
mating. As the drones leave from the hive they are moving in a swarm in order
to find the best places to wait for the new queens to find them by their marked
flight paths. The movement of the drones away from the hive is calculated from the
following equation:

di j = di j +α ∗ (dk j−dl j) (3)

where di j,dk j and dl j are the solutions of the drones i,k, l respectively and α is
a parameter that determines the percentage that the drone i is affected by the two
other drones k and l. The new queen select the drones that are used for mating
by the procedure described previously. In the next generation, the best fertilized
queens survive and all the other members of the population die. A pseudocode of
the proposed algorithm is presented in Table 1.

It should be noted that the proposed Bumble Bees Mating Optimization (BBMO)
algorithm that is inspired from the mating behavior of the bumble bees, it has a num-
ber of differences compared to another nature inspired algorithm that is based on the
mating behavior of honey bees, the Honey Bees Mating Optimization (HBMO) al-
gorithm [1, 15, 20]. The Honey Bees Mating Optimization algorithm simulates the
mating process of the queen of the hive, where there are three kinds of bees, the
queen, the drones and the workers. The mating process of the queen begins when
the queen flights away from the nest performing the mating flight during which the
drones follow the queen and mate with her in the air. The main differences of the
two algorithms are:

• In the BBMO the workers are different solutions while in the HBMO they are lo-
cal search phases. This helps the exploration abilities of the population by search-
ing in different places in the solution space.

• In the BBMO after the mating of the queen three kinds of bumble bees are
produced, the new queens and the workers (by using a crossover operator) and
the drones (by using a mutation operator). On the other hand, in the HBMO after
the mating of the queen two kinds of honey bees are produced, the queen and the
drones (both of them by using a crossover operator). By using in the proposed
algorithm a mutation operator to produce new solutions we have the possibility
to obtain completely different solutions.

• In the BBMO the fittest of the broods produced by the crossover operator are the
new queens and all the others are the workers while in the HBMO the fittest of
the broods is the new queen and all the others are the drones.

• In the BBMO the drones are produced by mutation of the queen or by mutation
of the fittest workers. In the HBMO the drones are all the bees produced by
the crossover operator except of the queen. By using in the proposed algorithm
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Table 1 Bumble Bees Mating Optimization Algorithm

Algorithm Bumble Bees Mating Optimization Algorithm
Definition of parameters for the main phase of the algorithm

Definition of the maximum number of iterations
Definition of the maximum number of matings
Definition of the maximum number of queens

Initialization Phase
Generate the initial population of the bumble bees
Calculation of the fitness function of each bumble bee
Selection of the bee with the best fitness function as the queen
Selection of the rest bees as the drones
Sorting the drones according to their fitness’ functions
Selection of the drones for mating by the queen
Storing the drones’ genotype to queen’s spermatheca

Main Phase
do while the maximum number of iterations has not been reached

Creation of the broods by using a crossover operator
Calculation of the fitness function of each brood
Sorting the broods according to their fitness’ functions
Selection of the best broods as the new queens
Selection of the rest broods as the workers
Feeding of the new queens by the old queens and the workers
Creation of a percentage of the drones by mutating of the old queens’ genotypes
Creation of the rest of the drones by mutating of the workers’ genotypes
Calculation of the fitness function of each drone
Calculation of the moving direction of the drones away from the hive
Sorting the drones according to their fitness’ functions
do while the maximum number of matings for each new queen has not been reached

Selection of the drones for mating by each new queen
Storing the drones’ genotypes to each new queen’s spermatheca

enddo
Survival of the new queens for the next iteration
Dying of all the other members (workers and drones) of the population

enddo
return The best queen (best solution found)

a mutation operator to produce new solutions we have the possibility to obtain
completely different solutions.

• In the BBMO the drones are moving away of the hive and this affects their
solutions.

• The feeding procedure in the BBMO is as described previously using the Equa-
tion (2) while in the HBMO the feeding procedure is local search phases that are
applied independently in each brood.
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3 Test Functions

In this paper, four functions are used in order to show the effectiveness of the pro-
posed BBMO algorithm when used for global unconstrained optimization prob-
lems. The test functions used are the Rosenbrock, the Sphere, the Rastrigin and
the Griewank. The Rosenbrock function is given by:

f (x) =
n−1

∑
i=1

(100(xi+1− x2
i )

2 +(xi−1)2) (4)

The Sphere function is given by:

f (x) =
n

∑
i=1

x2
i (5)

The Rastrigin function is given by:

f (x) =
n

∑
i=1

(x2
i −10cos(2πxi)+ 10) (6)

The Griewank function is given by:

f (x) =
n

∑
i=1

(xi−100)2

4000
−

n

∏
i=1

cos(
xi−100
√

(i)
)+ 1 (7)

In functions Sphere, Rastrigin and Griewank the global minima is f (x∗) = 0 with
x∗ = (0, · · · ,0), and in Rosenbrock the global minima is f (x∗) = 0 with x∗ =
(1, · · · ,1).

4 Results

The algorithm was implemented in Fortran 90 and was compiled using the La-
hey f95 compiler on a Centrino Mobile Intel Pentium M750 at 1.86GHz, running
Suse Linux 9.1. The parameter settings for the Bumble Bees Mating Optimization
algorithm were selected after thorough empirical testing. A number of different al-
ternative values were tested and the ones selected are those that gave the best com-
putational results. Thus, the selected parameters are: The number of the total bees
(workers - males - queens) is set equal to 100, the number of generations is set equal
to 10000. Usually the total number of bees is divided in 5 queens, 45 workers and
50 males but as it is presented in Table 2 the algorithm is tested and for different
number of queens. The lsimax is set equal to 100, the bmax is set equal to 0.99, the
bmin is set equal to 0.001 and the α is set equal to 0.8. All the algorithms used in the
comparisons are population based algorithms and, thus, in order to have fair com-
parisons we test the algorithms using the same number of individuals (or particles
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for the PSO or bees for the Honey Bees Mating Optimization) and generations (or
iterations). Thus, we have the same function evaluations.

In Table 2, the performance of the proposed Bumble Bees Mating Optimization
algorithm in Rosenbrock function is presented. In this Table, the final cost of the
Rosenbrock for six different variables (n = 2,4,8,10,20,50) is presented. The ef-
fectiveness of the proposed algorithm is given using different number of queens,
namely, q = 1,2,5,10,20. As it can be observed in all cases the proposed algorithm
finds the optimum when the number of variables is less or equal to 10. When the
number of variables becomes equal to 20, the optimum is found with the use of 5
or 10 queens. The algorithm did not find a solution near to the optimum only in
the case when we use 50 variables. The combination of parameters that gave the
best results is when 5 queens are used and, thus, in all other Tables that are pre-
sented in this section, the algorithm uses 5 queens. After the selection of the final
parameters, 50 different runs with the selected parameters were performed for each
of the problems. The results presented in Tables are the best results found for each
problem.

Table 2 Results of Bumble Bees Mating Optimization algorithm for the Rosenbrock

n
Queens 2 4 8 10 20 50

1 0.00 0.00 0.00 0.00 1.28E-09 31.69
2 0.00 0.00 0.00 0.00 1.93E-09 75.85
5 0.00 0.00 0.00 0.00 0.00 24.37

10 0.00 0.00 0.00 0.00 0.00 76.63
20 0.00 0.00 0.00 0.00 2.31E-09 77.94

We, also, tested the algorithm using 100000 iterations. In Table 3, the results
of all the functions used are presented. As it can be observed for all test functions
when the number of variables is less or equal to 20, the proposed algorithm finds the
optimum. When the number of variables is equal to 50 the proposed algorithm finds
the optimum in Sphere and Griewank test functions. For the Rastrigin function if
the number of iterations is equal to 10000 the solution is close to the optimum and
is equal to 1.59E-08, while when the number of iterations becomes equal to 100000
the optimum is found. Only in the case of the Rosenbrock function for n = 50 the
optimum was not found but the increase of iterations to 100000 leads the algorithm
to find a better solution near to the optimum.

A comparison with other population based metaheuristic approaches for the solu-
tion of the same test functions is presented in Tables 4 and 5. In these Tables, besides
the proposed algorithm, five other algorithms are used for the solution of the four
test functions. The algorithms are a Honey Bees Mating Optimization algorithm,
a Genetic Algorithm, an Island Genetic Algorithm [9], a Differential Evolution al-
gorithm and a Particle Swarm Optimization algorithm. In all algorithms, we used
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Table 3 Results of Bumble Bees Mating Optimization algorithm for the four functions

n
Function Iterations 2 4 8 10 20 50

Rosenbrock 10000 0.00 0.00 0.00 0.00 0.00 24.37
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 1.59E-08
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

Rosenbrock 100000 0.00 0.00 0.00 0.00 0.00 1.62E-02
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 0.00
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

the same parameters as in the previous comparisons, the same number of individ-
uals (or particles for the PSO or bees for the HBMO) and two different number of
generations (or iterations in PSO), namely 10000 (Table 4) and 100000 (Table 5).
As all these algorithms have a number of different variants we use in the compar-
isons the variant that worked better for global unconstrained optimization problems.
Thus, the selected variants for the final comparisons are, for the Differential Evolu-
tion the rand/1/bin, where "rand" corresponds to the target vector (a random target
vector), "1" corresponds to the number of different vectors and "bin" corresponds to
the crossover operator (for more details for the notation in differential evolution al-
gorithms please see [25]), for the PSO the Constriction PSO [5], for the Genetic Al-
gorithms the combination with Linear Crossover and Roulette Wheel Selection and
for the Island Genetic Algorithms, the combination with Linear Crossover, Tourna-
ment selection, ten different islands and migration of the best individuals after 100
generations.

As it can be observed the proposed BBMO algorithm performs better compared
to the other population based metaheuristic algorithms used in the comparisons. The
BBMO algorithm performed better than the HBMO as the performance of HBMO
algorithm was, in general, very good but HBMO found the optimum in less cases
than the BBMO. For n=2, independently of the number of iterations, the HBMO
algorithm found the optimum, for n=4, 8, 10, the optimum was not found in all
cases but values near to the optimum were found (these values were even closer
to the optimum or became equal to the optimum when the number of iterations
was equal to 100000), for n=20, 50 the results of HBMO were less efficient than
the cases where a smaller number of variables was used for all test functions but
also in these cases an increase in the performance of HBMO was observed when
100000 iterations were used. It should be noted that for the case of n=50, the results
of the BBMO are much better than the ones of the HBMO. The BBMO algorithm
performed better than the GA as the GA found the optimum in less cases than the
BBMO. In the cases where the optimum was not found by the GA, values near
to the optimum were found and these values were improved when the number of
iterations was equal to 100000. When the number of variables was equal to 50,
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Table 4 Comparisons of the BBMO algorithm with other metaheuristics for the four func-
tions (10000 iterations)

n
Function Iterations 2 4 8 10 20 50

BBMO Rosenbrock 10000 0.00 0.00 0.00 0.00 0.00 24.37
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 1.59E-08
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

HBMO Rosenbrock 0.00 1.32E-05 8.35E-03 5.90E-02 6.38 46.07
Sphere 0.00 0.00 0.00 0.00 1.39E-07 0.67

Rastrigin 0.00 0.00 0.00 1.58E-09 3.93E-05 4.03
Griewank 0.00 0.00 0.00 0.00 0.00 1.44E-02

GA Rosenbrock 0.00 0.00 1.30 0.90 5.28 26.85
Sphere 0.00 0.00 6.75E-08 7.31E-08 1.10E-06 9.83E-06

Rastrigin 0.00 2.32E-07 1.33E-05 2.05E-05 2.31E-04 2.53E-03
Griewank 0.00 0.00 0.00 0.00 4.77E-07 5.90E-06

IGA Rosenbrock 3.21E-08 8.67E-02 4.52 16.87 74.79 461.52
Sphere 0.00 1.02E-03 0.12 0.29 0.81 7.51

Rastrigin 1.50E-08 0.26 7.43 14.19 58.76 287.68
Griewank 0.00 5.13E-04 6.06E-02 0.13 0.36 0.98

DE Rosenbrock 0.00 0.00 0.00 0.00 0.00 0.00
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 1.99 18.22
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

PSO Rosenbrock 0.00 0.00 4.97E-06 3.92E-09 5.62E-08 71.31
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 1.99 1.99 6.97 34.85
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

the GA’s results were inferior than the ones obtained by the GA for all the other
cases. The improvement achieved to these results when the number of iterations
was increased was not so significant as the one performed by the BBMO for the
corresponding case. The BBMO algorithm performed better than the IGA as the
IGA found the optimum in less cases than the BBMO. The IGA did not find the
optimum for all test functions even when the number of variables was equal to 2. The
values found by IGA were in some cases far from the optimum. However, a small
improvement in the results of IGA was performed when the number of iterations
was equal to 100000 but still in some cases the values found were far from the
optimum. The BBMO algorithm performed slightly better than the DE. The DE
gave the optimum in most of the cases, only for Rastrigin test function and for n=20
and n=50 the optimum was not found. However, when the number of iterations was
increased, these values were not improved, contrary to BBMO algorithm where an
increase to the number of iterations always led to an improvement of the solution.
The BBMO algorithm performed better than the PSO algorithm. The PSO algorithm
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Table 5 Comparisons of the BBMO algorithm with other metaheuristics for the four func-
tions (100000 iterations)

n
Function Iterations 2 4 8 10 20 50

BBMO Rosenbrock 100000 0.00 0.00 0.00 0.00 0.00 1.62E-02
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 0.00
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

HBMO Rosenbrock 0.00 5.34E-07 7.56E-03 4.80E-02 6.38 41.00
Sphere 0.00 0.00 0.00 0.00 0.00 5.59E-02

Rastrigin 0.00 0.00 0.00 0.00 2.02E-06 3.00
Griewank 0.00 0.00 0.00 0.00 0.00 4.66E-03

GA Rosenbrock 0.00 0.00 6.69E-02 8.50E-02 0.24 18.35
Sphere 0.00 0.00 0.00 0.00 4.14E-09 7.98E-08

Rastrigin 0.00 6.87E-09 4.47E-08 4.11E-08 7.76E-07 1.65E-05
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

IGA Rosenbrock 0.00 1.47E-02 3.27 9.12 70.95 418.67
Sphere 0.00 2.61E-04 5.53E-02 0.16 0.81 7.07

Rastrigin 0.00 7.20E-02 3.38 9.04 49.70 260.71
Griewank 0.00 1.06E-04 2.74E-02 8.01E-02 0.34 0.97

DE Rosenbrock 0.00 0.00 0.00 0.00 0.00 0.00
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 1.99 18.22
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

PSO Rosenbrock 0.00 0.00 0.00 0.00 0.00 0.11
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 1.99 1.99 6.97 34.85
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

performed efficiently but in some cases did not find the optimum and the increase in
the number of iterations did not manage to improve the results of PSO in all cases,
as for example for the Rastrigin test function for n=8, 10, 20, 50 the results were not
improved at all.

A statistical analysis based on the Mann-Whitney U-test is presented in Table 6.
In this Table, a value equal to 1 indicates a rejection of the null hypothesis at the
5% significance level, which means that the proposed method is statistically sig-
nificant different from the other methods. On the other hand, a value equal to 0
indicates a failure to reject the null hypothesis at the 5% significance level, mean-
ing that no statistical significant difference exists between the two methods. As it
can be seen from this Table, the proposed method is statistically significant different
from HBMO, GA, IGA and PSO in 10000 iterations, while in 100000 iterations the
proposed method is statistically significant different from HBMO, GA and IGA.
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Table 6 Results of Mann - Whitney test

10000 iterations
BBMO HBMO GA IGA DE PSO

BBMO - 1 1 1 0 1
HBMO 1 - 0 1 1 0

GA 1 0 - 1 1 0
IGA 1 1 1 - 1 1
DE 0 1 1 1 - 1

PSO 1 0 0 1 1 -
100000 iterations

BBMO HBMO GA IGA DE PSO
BBMO - 1 1 1 0 0
HBMO 1 - 0 1 1 0

GA 1 0 - 1 1 0
IGA 1 1 1 - 1 1
DE 0 1 1 1 - 0

PSO 0 0 0 1 0 -

5 Conclusions

In this paper, an algorithm based on the mating behavior of the bumble bees, the
Bumble Bees Mating Optimization algorithm, was proposed for the solution of
global unconstrained optimization problems. This algorithm was analytically pre-
sented and tested using four test functions, the Rosenbrock, the Sphere, the Rastrigin
and the Griewank. The results of the algorithm were compared with the results of
other popular metaheuristic and nature inspired methods, like Genetic Algorithms,
Island Genetic Algorithms, Differential Evolution, Particle Swarm Optimization and
the Honey Bees Mating Optimization algorithm. The results obtained showed the ef-
ficiency of the proposed algorithm and its high performance compared to the other
metaheuristic algorithms.
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