
Structural versus Evaluation Based Solutions
Similarity in Genetic Programming Based
System Identification

Stephan M. Winkler

Abstract. Estimating the similarity of solution candidates represented as structure
trees is an important point in the context of many genetic programming (GP) ap-
plications. For example, when it comes to observing population diversity dynamics,
solutions have to be compared to each other. In the context of GP based system
identification, i.e., when mathematical expressions are evolved, solutions can be
compared to each other with respect to their structure as well as to their evaluation.
Obviously, structural similarity estimation of formula trees is not equivalent to eval-
uation based similarity estimation; we here want to see whether there is a significant
correlation between the results calculated using these two approaches. In order to
get an overview regarding this issue, we have analyzed a series of GP tests including
both similarity estimation strategies; in this paper we describe the similarity estima-
tion methods as well as the test data sets used in these tests, and we document the
results of these tests. We see that in most cases there is a significant positive linear
correlation for the results returned by the evaluation based and structural methods.
Especially in some cases showing very low structural similarity there can be signif-
icantly different results when using the evaluation based similarity methods.

1 Solutions Similarity Estimation in GP Based System
Identification

1.1 Related Work

Genetic diversity and population dynamics are very interesting aspects in the ana-
lysis of genetic programming (GP, [7, 8]) processes; several methods for measuring

Stephan M. Winkler
Department for Medical and Bioinformatics, Upper Austria University of Applied Sciences,
Heuristic and Evolutionary Algorithms Laboratory
e-mail: stephan.winkler@fh-hagenberg.at

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 269–282, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

stephan.winkler@fh-hagenberg.at


270 S.M. Winkler

the diversity of population using some kind of similarity measure can be found in
the literature.

The entropy of a population of trees can be measured for example by considering
the programs’ scores (as is explained for example in [13]); in [10] the traditional
fitness sharing concept from the work described in [4] is applied to test its feasibility
in GP.

Several other approaches consider the programs’ genotypes, i.e., their genetic
make-up instead of their fitness values, the most common type of diversity measure
being that of structural differences between programs. Koza [7] used the term variety
to indicate the number of different programs in populations by comparing programs
structurally and looking for exact matches. The Levenshtein distance [9] can be
used for calculating the distance between trees, but it is considered rather far from
ideal ([6], [12], [8]); in [5] an edit distance specific to genetic programming parse
trees was presented which considered the cost of substituting between different node
types.

A comprehensive overview of program tree similarity and diversity measures has
been given for instance in [3]. The standard tree structures representation in GP
makes it possible to use more fine grain structural measures that consider nodes,
subtrees, and other graph theoretic properties (rather than just entire trees). In [6],
for example, subtree variety is measured as the ratio of unique subtrees over total
subtrees and program variety as a ratio of the number of unique individuals over the
size of the population; [11] investigated diversity at the genetic level by assigning
numerical tags to each node in the population.

1.2 Solutions Similarity Estimation Measures Used in This Work

In this section we describe measures which we have used for estimating the genetic
diversity in GP populations as well as among populations of multi-population GP
applications. What we use as basic measures for this are the following two functions
that calculate the similarity of GP solution candidates or, a bit more specific, in our
case formulas represented as structure trees:

• Evaluation based similarity estimation compares the subtrees of two GP formu-
las with respect to their evaluation on the given training or validation data. The
more similar these evaluations are with respect to the squared errors or linear
correlation, the higher is the similarity for these two formulas.

• Structural similarity estimation compares the genetic material of two solution
candidates; we can so determine how similar the genetic make-up of formulas is
without considering their evaluation.

As documented for example in [15] and [2], these similarity estimation mea-
sures can be used for monitoring population diversity in GP populations. We have
analyzed the effects of the use of several different selection schemes as well as
multi-population approaches. Please note that in these applications we use similarity
estimation in the following way: The similarity measures used here are asymmetric,
so when comparing structure trees T1 and T2 there might be a difference between
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the similarities sim(T1,T2) and sim(T2,T1). This is why we mostly use a symmet-
ric variant of the measures described here: We calculate both similarity values and
calculate their average as simavg(T1,T2) = sim(T1,T2)+sim(T2,T1)

2 . This average similar-
ity function (simavg) is used for estimating the similarities of GP individuals and
monitoring the progress of genetic diversity in GP populations.

1.3 Evaluation Based Solutions Similarity Estimation

The main idea of our evaluation based similarity measures is that the building blocks
of GP formulas are subtrees that are exchanged by crossover and so form new for-
mulas. So, the evaluation of these branches of all individuals in a GP population can
be used for measuring the similarity of two models m1 and m2:

For all sub-trees in the structure-tree of model m, collected in t, we collect
the evaluation results by applying these sub-formulas to the given data collection
data as

∀(sti ∈ t)∀( j ∈ [1;N]) : ei[ j] = eval(sti,data[ j]) (1)

where N is the number of samples included in the data collection, no matter if train-
ing or validation data are considered.

The evaluation based similarity of models m1 and m2, es(m1,m2), is calculated
by iterating over all subtrees of m1 (collected in t1) and, for each branch, picking that
subtree of t2 (containing all sub-trees of m2) whose evaluation is most “similar" to
the evaluation of that respective branch. So, for each branch ba in t1 we compare its
evaluation ea with the evaluation eb of all branches bb in t2, and the “similarity" can
be calculated using the sum of squared errors or the linear correlation coefficient:

• When using the sum of squared errors (sse) function, the sample-wise differences
of the evaluations of the two given branches are calculated and their sum of
squared differences is divided by the total sum of squares tss of the first branch’s
evaluation. This results in the similarity measure s for the given branches.

ea =
1
N

N

∑
j=1

ea[ j]; eb =
1
N

N

∑
j=1

eb[ j] (2)

sse =
N

∑
j=1

(ea[ j]− eb[ j])2; tss =
N

∑
j=1

(ea[ j]− ea)2; ssse(ba,bb) = 1− sse
tss

(3)

• Alternatively the linear correlation coefficient can be used:

slc(ba,bb) = |
1

n−1 ∑
N
j=1(ea[ j]− ea)(eb[ j]− eb)

√
1

n−1 ∑
N
j=1(ea[ j]− ea)2

√
1

n−1 ∑
N
j=1(eb[ j]− eb)2

| (4)

No matter which approach is chosen, the calculated similarity measure for the
branches ba and bb, s(ba,bb), will always be in the interval [0;1]; the higher this
value becomes, the smaller is the difference between the evaluation results.
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As we can now quantify the similarity of evaluations of two given subtrees, for
each branch ba in ta we can elicit that branch bx in tb with the highest similarity to
ba; the similarity values s are collected for all branches in ta and their mean value
finally gives us a measure for the evaluation based similarity of the models ma and
mb, es(ma,mb).

Optionally we can force the algorithm to select each branch in tb not more than
once as best match for a branch in ta for preventing multiple contributions of certain
parts of the models.

Finally, this similarity function can be parameterized by giving minimum and
maximum bounds for the height and / or the level of the branches investigated. This
is important since we can so control which branches are to be compared, be it the
rather small ones, rather big ones or all of them.

Further details about this similarity measure can be found in [15].

1.4 Structural Solutions Similarity Estimation

Structural similarity estimation is, unlike the evaluation based method described be-
fore, independent of data; it is calculated on the basis of the genetic make-up of
the models which are to be compared. When analyzing the structure of models we
have to be aware of the fact that often structurally different models can be equiva-
lent. This is why we have designed and implemented a method that systematically
collects all pairs of ancestor and descendant nodes and information about the prop-
erties of these nodes. Additionally, for each pair we also document the distance
(with respect to the level in the model tree) and the index of the ancestor’s child tree
containing the descendant node. The similarity of two models is then, in analogy to
the method described in the previous section, calculated by comparing all pairs of
ancestors and descendants in one model to all pairs of the other model and averaging
the similarity of the respective best matches.

Figure 1 shows a simple formula and all pairs of ancestors and descendants in-
cluded in the structure tree representing it; the input indices as well as the level
differences (“level delta”) are also given. Please note: The pairs given on the right
side of Figure 1 are shown intentionally as they symbolize the pairs of nodes with
level difference 0, i.e., nodes combined with themselves.
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Fig. 1 Simple formula structure and all included pairs of ancestors and descendants (genetic
information items)
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We define a genetic item as a 6-tuple storing the following information about the
ancestor node a and descendant node d: typea (the type of the ancestor a), typed (the
type of the descendant d), δ l (the level delta), index (the index of the child branch of
a that includes d), npa (the node parameters characterizing a), and npd (the node pa-
rameters characterizing d); the parameters characterizing nodes are represented by
tuples containing the following information: var (the variant (of functions)), coe f f
(the coefficient (of terminals)), to (the time offset (of terminals)), and vi (the variable
index (of terminals)).

Now we can define the similarity of two genetic items gi1 and gi2, s(gi1,gi2), as
follows: Most important are the types of the definitions referenced by the nodes;
if these are not equal, then the similarity is 0 regardless of all other parameters. If
the types of the nodes correspond correctly, then the similarity of gi1 and gi2 is cal-
culated using the similarity contributors s1 . . . s10 of the parameters of gi1 and gi2
weighted with coefficients c1 . . .c10. The similarity contributors s1 . . . s10, all rang-
ing from 0.0 to 1.0, are calculated with respect to input indices, variants, variable
indices, level differences, coefficients, and time offsets; details can be found in [15]
and [2].

Finally, there are two possibilities how to calculate the structural similarity of gi1
and gi2, sim(gi1,gi2): On the one hand this can be done in an additive way, on the
other hand in a multiplicative way.

• When using the additive calculation, which is the obviously more simple way,
sim(gi1,gi2) is calculated as the sum of these similarity contributions s1...10

weighted using the factors c1...10 and, for the sake of normalization of results,
divided by the sum of the weighting factors:

simadd(gi1,gi2) = ∑10
i=1 si · ci

∑10
i=1 ci

. (5)

• Otherwise, when using the multiplicative calculation method, we first calculate a
punishment factor pi for each si (again using weighting factors ci, 0≤ ci ≤ for all
i∈ [1;10]) as ∀(i∈ [1;10]) : pi = (1−si) ·ci and then get the temporary similarity
result as simtmp(gi1,gi2) = ∏10

i=1(1− pi).
In the worst case scenario we get si = 0 for all i ∈ [1;10] and therefore the

worst possible simtmp is simworst = ∏10
i=1(1− ((1− si) · ci)) = ∏10

i=1(1− ci). As
simworst is surely greater than 0 we linearly scale the results to the interval [0;1]:

simmult(gi1,gi2) =
simtmp(gi1,gi2)− simworst

1− simworst
. (6)

In fact, we prefer this multiplicative similarity calculation method since it allows
more specific analysis: By setting a weighting coefficient c j to a rather high value
(i.e., near or even equal to 1.0) the total similarity will become very small for
pairs of genetic items that do not correspond with respect to this specific aspect
j, even if all other aspects would lead to a high similarity result.
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Based on this similarity measure it is easy to formulate a similarity function that
measures the structural similarity of two model structures. In analogy to the ap-
proach presented in the previous section, for comparing models m1 and m2 we col-
lect all pairs of ancestors and descendants (up to a given maximum level difference)
in m1 and m2 and look for the best matches in the respective opposite model’s pool
of genetic items, i.e., pairs of ancestor and descendant nodes. As we are able to
quantify the similarity of genetic items, for each genetic item gi1 in the structure
tree of m1 we can elicit exactly that genetic item gix in the model structure m2 with
the highest similarity to gi1; the similarity values s are collected for all genetic items
contained in m1 and their mean value finally gives us a measure for the structure-
based similarity of the models m1 and m2, sim(m1,m2).

2 Test Setup

For comparing structural and evaluation based similarity values we executed GP
based system identification experiments using the following two data sets:

• The NOx data set contains the measurements taken from a 2 liter 4 cylinder BMW
diesel engine at a dynamical test bench (simulated vehicle: BMW 320d Sedan).
Several emissions (including NOx, CO and CO2) as well as several other engine
parameters were recorded; for identifying formulas for the NOx emissions we
have only used parameters which are directly measured from the engine’s control
unit and not in any sense connected to emissions. We cordially thank members
of the Institute for Design and Control of Mechatronical Systems at JKU, Linz1

who provided and helped us with these data.
• The Thyroid data set is a widely used machine learning benchmark data set con-

taining 21 attributes and 7200 samples representing the results of medical mea-
surements which were recorded while investigating patients potentially suffering
from hypotiroidism2. In short, the task is to determine whether a patient is hy-
pothyroid or not; three classes are formed: normal (not hypothyroid), hyperfunc-
tion and subnormal functioning.

Detailed information about these two data collections can also be found in [15] as
well as in [2].

For the target variables of both data collections we trained nonlinear models us-
ing a functional basis containing standard functions (such as for example addition,
subtraction, multiplication, trigonometrics, conditionals, and others) as described in
[16]; the maximum formula tree height was set to 6, the maximum number of nodes
was set to 50. We have used the GP implementation for HeuristicLab [14] and ap-
plied two different training methods for training models for both data sets: Stan-
dard GP as well as GP using strict offspring selection (OS, [1]). In both cases the

1 The homepage of the Institute for Design and Control of Mechatronical Systems at the
Johannes Kepler University, Linz can be found at http://desreg.jku.at/

2 Further information about the data set used can be found on the UCI homepage
http://www.ics.uci.edu/~{}mlearn/

http://desreg.jku.at/
http://www.ics.uci.edu/~{}mlearn/
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population size was set to 1000, we used single point crossover and 15% structural
as well as parametric mutation as described in [15], e.g; in standard GP we applied
tournament selection (k = 3), in GP with OS we applied gender specific parents
selection combining random and proportional selection. For standard GP processes
the number of iterations was set to 2000, GP runs with offspring selection were
terminated as soon as the selection pressure reached 100.

All test cases were executed three times independently; the maximum tree height
was set to 6, the maximum tree size to 50 (for NOx as well as Thyroid tests). The
similarity values among individuals were calculated in the context of population
diversity estimation analysis executed after every 100th generation in standard GP
runs and after each 5th generation in GP runs with offspring selection. We have
thus collected the results of all similarity calculations; as this is done for 1,000
models we get 1,000,000 for each similarity function each time the population is
analyzed. For each standard GP test we therefore eventually get 21 million similarity
values for each function (because we also analyze after initializing the population),
and for each GP test with OS we get a comparable amount of similarity values3.
We will in the following not care whether standard or extended GP produced pairs
of solutions are compared; in total we will use data of approximately 120 million
solution comparisons for each function and each data set.

The following similarity estimation functions are used:

• Evaluation based similarity estimation: As described in Section 1.3, all subtrees
are evaluated on training and validation data, and we can analyze the similarity
of the values calculated by evaluating the subtrees of the formula trees which are
to be compared. We here use validation data for this similarity estimation and the
squared differences based approach.

• Additive structural similarity estimation: Structural components of structure trees
are analyzed as described in Section 1.4 using the additive approach; we here
weight all possible contributing aspects equally, i.e. the contributions’ weighting
factors c1...10 are all set to 1.0, only the level difference is weighted stronger with
factor 4.0.

• Multiplicative structural similarity estimation: Again, structural components of
structure trees are analyzed as described in Section 1.4 using the multiplicative
approach; again, we set all weighting factors equally, namely to 0.2, only the
level difference is weighted stronger with factor 0.8.

3 Test Results

The NOx test series are hereafter referred to as series (n), the Thyroid runs as (t).
The similarity values calculated for the (n) series using evaluation based, additive
structural and multiplicative structural comparison are hereafter denoted as ne, ns1
and ns2, respectively; in analogy to this, the similarity values for the (t) series are
denoted as te, ts1 and ts2, respectively.

3 This number is not constant for extended GP with OS due to the fact that the selection
pressure reaches its limit not at the same time in each test case execution.
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Please note that for each index i the values ne(i), ns1(i) and ns2(i) belong to the
same pair of models (structure trees) that have been compared; in analogy to this,
for each index i also the corresponding comparison results te(i), ts1(i) and ts2(i) are
associated to the same pair of formulas.

All test runs were executed on Pentium© 4 computers with 3.00 GHz CPU speed
and 2 GB RAM.

First, several statistics are calculated for the similarity values collected in ne, ns1,
ns2, te, ts1 and ts2; Nn stands for the number of values in ne, ns1 and ns2, Nt for
the number of values in te, ts1 and ts2. The results are summarized in Table 1; std

here stands for standard deviation (std(x) =
√

1
N ∑i∈[1;N](xi− x̄)2, x̄ = 1

N ∑i∈[1;N] x,

N = |x|), and corr again for the linear correlation (please see for example Section 1.3
for details about this function).

Table 1 Comparing similarity estimation results: Basic statistics

mean(ne) = 1
Nn ∑i∈[1;Nn] (ne(i)) 0.3444 std(ne−ns1 ) 0.1625

mean(ns1 ) = 1
Nn ∑i∈[1;Nn](ns1(i)) 0.6467 std(ne−ns2 ) 0.1500

mean(ns2 ) = 1
Nn ∑i∈[1;Nn](ns2(i)) 0.6061 std(ns1 −ns2) 0.0268

mean(te) = 1
Nn ∑i∈[1;Nt ] (te(i)) 0.4224 std(te− ts1) 0.2159

mean(ts1) = 1
Nn ∑i∈[1;Nt ] (ts1(i)) 0.6595 std(te− ts2) 0.1992

mean(ts2) = 1
Nn ∑i∈[1;Nt ] (ts2(i)) 0.6327 std(ts1 − ts2) 0.0305

mse(ne ,ns1) = 1
Nn ∑i∈[1;Nn] (ne(i)−ns1(i))2 0.1178 corr(ne ,ns1) 0.8179

mse(ne ,ns2) = 1
Nn ∑i∈[1;Nn] (ne(i)−ns2(i))2 0.0910 corr(ne ,ns2) 0.8455

mse(ns1 ,ns2) = 1
Nn ∑i∈[1;Nn] (ns1(i)−ns2(i))2 0.0024 corr(ns1 ,ns2) 0.9954

mse(te , ts1) = 1
Nn ∑i∈[1;Nt ] (te(i)− ts1(i))2 0.1028 corr(te , ts1) 0.7634

mse(te , ts2) = 1
Nn ∑i∈[1;Nn] (te(i)− ts2(i))2 0.0839 corr(te , ts2) 0.7998

mse(ts1 , ts2) = 1
Nn ∑i∈[1;Nn] (ts1(i)− ts2(i))2 0.0016 corr(ts1 , ts2) 0.9947

Runtime consumption per generation (evaluation based similarity) 2h08’30”
Runtime consumption per generation (structural similarity, per method) 38’02”

Obviously, the structural similarity values tend to be a lot higher than the eval-
uation based ones – which is not really surprising as even small changes in the
formula’s structure can affect its evaluation significantly. The mean squared differ-
ence between structural and evaluation based similarity values ranges from ∼0.08
to ∼0.12; the respective standard deviations of the similarity differences range from
0.15 to ∼0.216. The much more informative statistic feature is the linear correla-
tion coefficient: Analyzing NOx tests we see that the correlation between structural
and evaluation based similarities is between ∼0.82 (for the additive structural cal-
culation) and∼0.8455 (for multiplicative structural approach); for the Thyroid tests,
these are not quite as high, namely ∼0.76 and ∼0.8, respectively.

As we had expected, the correlation between the results calculated using the ad-
ditive structural model comparison method and the multiplicative one is very high,
namely approximately 0.995 for NOx as well as Thyroid tests.

The runtime consumption of the evaluation based similarity estimation method
is, of course, a lot higher than the runtime consumption caused by structural pop-
ulation diversity analysis: Although only 400 validation samples are evaluated for
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evaluation based similarity estimation, structural similarity calculation consumes
only approximately a fourth as much runtime.

Even more detailed results discussion becomes possible by partitioning all pairs
of corresponding similarity values into five groups with equal range. This means that
we collect all structural similarity results in the intervals [0.0 . . . 0.2], [0.2 . . . 0.4],
. . . , [0.8 . . . 1.0]; of course, we also collect all evaluation based similarity values in
the same intervals. Thus, what we get is a number of partitions of data sets which
are defined and summarized in Table 2.

Table 2 Partitions formed for detailed comparison of similarity estimation results

Partition Index Index and Data Set Definitions

a0 Ia0 = {i : (0.0≤ ne(i)≤ 0.2)}; na0
e = ne(Ia0), na0

s1 = ns1(Ia0), na0
s2 = ns2(Ia0)

a1 Ia1 = {i : (0.2 < ne(i)≤ 0.4)}; na1
e = ne(Ia1), na1

s1 = ns1(Ia1), na1
s2 = ns2(Ia1)

a2 Ia1 = {i : (0.4 < ne(i)≤ 0.6)}; na2
e = ne(Ia2), na2

s1 = ns1(Ia2), na2
s2 = ns2(Ia2)

a3 Ia1 = {i : (0.6 < ne(i)≤ 0.8)}; na3
e = ne(Ia3), na3

s1 = ns1(Ia3), na3
s2 = ns2(Ia3)

a4 Ia1 = {i : (0.8 < ne(i)≤ 1.0)}; na4
e = ne(Ia4), na4

s1 = ns1(Ia4), na4
s2 = ns2(Ia4)

b0 Ib0 = {i : (0.0≤ ns1(i)≤ 0.2)}; nb0
e = ne(Ib0), nb0

s1 = ns1(Ib0), nb0
s2 = ns2(Ib0)

b1 Ib1 = {i : (0.2 < ns1(i)≤ 0.4)}; nb1
e = ne(Ib1), nb1

s1 = ns1(Ib1), nb1
s2 = ns2(Ib1)

b2 Ib2 = {i : (0.4 < ns1(i)≤ 0.6)}; nb2
e = ne(Ib2), nb2

s1 = ns1(Ib2), nb2
s2 = ns2(Ib2)

b3 Ib3 = {i : (0.6 < ns1(i)≤ 0.8)}; nb3
e = ne(Ib3), nb3

s1 = ns1(Ib3), nb3
s2 = ns2(Ib3)

b4 Ib4 = {i : (0.8 < ns1(i)≤ 1.0)}; nb4
e = ne(Ib4), nb4

s1 = ns1(Ib4), nb4
s2 = ns2(Ib4)

c0 Ic0 = {i : (0.0≤ ns2(i)≤ 0.2)}; nc0
e = ne(Ic0), nc0

s1 = ns1(Ic0), nc0
s2 = ns2 (Ic0)

c1 Ic1 = {i : (0.2 < ns2(i)≤ 0.4)}; nc1
e = ne(Ic1), nc1

s1 = ns1(Ic1), nc1
s2 = ns2 (Ic1)

c2 Ic2 = {i : (0.4 < ns2(i)≤ 0.6)}; nc2
e = ne(Ic2), nc2

s1 = ns1(Ic2), nc2
s2 = ns2 (Ic2)

c3 Ic3 = {i : (0.6 < ns2(i)≤ 0.8)}; nc3
e = ne(Ic3), nc3

s1 = ns1(Ic3), nc3
s2 = ns2 (Ic3)

c4 Ic4 = {i : (0.8 < ns2(i)≤ 1.0)}; nc4
e = ne(Ic4), nc4

s1 = ns1(Ic4), nc4
s2 = ns2 (Ic4)

d0 Id0 = {i : (0.0≤ te(i)≤ 0.2)}; td0
e = te(Id0), td0

s1 = ts1(Id0), td0
s2 = ts2(Id0)

d1 Id1 = {i : (0.2 < te(i)≤ 0.4)}; td1
e = te(Id1), td1

s1 = ts1(Id1), td1
s2 = ts2(Id1)

d2 Id1 = {i : (0.4 < te(i)≤ 0.6)}; td2
e = te(Id2), td2

s1 = ts1(Id2), td2
s2 = ts2(Id2)

d3 Id1 = {i : (0.6 < te(i)≤ 0.8)}; td3
e = te(Id3), td3

s1 = ts1(Id3), td3
s2 = ts2(Id3)

d4 Id1 = {i : (0.8 < te(i)≤ 1.0)}; td4
e = te(Id4), td4

s1 = ts1(Id4), td4
s2 = ts2(Id4)

e0 Ie0 = {i : (0.0≤ ts1(i)≤ 0.2)}; te0
e = te(Ie0), te0

s1 = ts1(Ie0), te0
s2 = ts2(Ie0)

e1 Ie1 = {i : (0.2 < ts1(i)≤ 0.4)}; te1
e = te(Ie1), te1

s1 = ts1(Ie1), te1
s2 = ts2(Ie1)

e2 Ie2 = {i : (0.4 < ts1(i)≤ 0.6)}; te2
e = te(Ie2), te2

s1 = ts1(Ie2), te2
s2 = ts2(Ie2)

e3 Ie3 = {i : (0.6 < ts1(i)≤ 0.8)}; te3
e = te(Ie3), te3

s1 = ts1(Ie3), te3
s2 = ts2(Ie3)

e4 Ie4 = {i : (0.8 < ts1(i)≤ 1.0)}; te4
e = te(Ie4), te4

s1 = ts1(Ie4), te4
s2 = ts2(Ie4)

f 0 I f 0 = {i : (0.0≤ ts2(i)≤ 0.2)}; tf0e = te(I f 0), tf0s1 = ts1(I f 0), tf0s2 = ts2(I f 0)

f 1 I f 1 = {i : (0.2 < ts2(i)≤ 0.4)}; tf1e = te(I f 1), tf1s1 = ts1(I f 1), tf1s2 = ts2(I f 1)

f 2 I f 2 = {i : (0.4 < ts2(i)≤ 0.6)}; tf2e = te(I f 2), tf2s1 = ts1(I f 2), tf2s2 = ts2(I f 2)

f 3 I f 3 = {i : (0.6 < ts2(i)≤ 0.8)}; tf3e = te(I f 3), tf3s1 = ts1(I f 3), tf3s2 = ts2(I f 3)

f 4 I f 4 = {i : (0.8 < ts2(i)≤ 1.0)}; tf4e = te(I f 4), tf4s1 = ts1(I f 4), tf4s2 = ts2(I f 4)

Now we can analyze these partitions separately: For each partition we have calcu-
lated the linear correlation between evaluation based, additive structural and multi-
plicative structural similarities as well as the mean squared difference between these
respective values; Table 3 summarizes these partition-wise statistics. Additionally,
the frequency of each partition is also given: The frequency of a partition is hereby
given by the number of pairs of values included divided by the number of all pairs
of values available, f requ(Iki) = |Iki |

∑ j∈[0;4] Ik j
for k ∈ {a,b,c,d,e, f} and i ∈ [0;4].
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Table 3 Comparing similarity estimation results: Detailed partition-wise statistics

f req(Ia0) = 0.3172 corr(na0
e ,na0

s1 ) = 0.6294 corr(na0
e ,na0

s2 ) = 0.6772 f req(Ia1 ) = 0.2609 corr(na1
e ,na1

s1 ) = 0.8407 corr(na1
e ,na1

s2 ) = 0.8574

mse(na0
e ,na0

s1 ) = 0.1061 mse(na0
e ,na0

s2 ) = 0.0751 mse(na1
e ,na1

s1 ) = 0.1083 mse(na1
e ,na1

s2 ) = 0.0818

f req(Ia2 ) = 0.2595 corr(na2
e ,na2

s1 ) = 0.7886 corr(na2
e ,na2

s2 ) = 0.8047 f req(Ia3 ) = 0.1272 corr(na3
e ,na3

s1 ) = 0.6963 corr(na3
e ,na3

s2 ) = 0.7376

mse(na2
e ,na2

s1 ) = 0.1364 mse(na2
e ,na2

s2 ) = 0.1106 mse(na3
e ,na3

s1 ) = 0.1279 mse(na3
e ,na3

s2 ) = 0.1077

f req(Ia4 ) = 0.0352 corr(na4
e ,na4

s1 ) = 0.7174 corr(na4
e ,na4

s2 ) = 0.7559

mse(na4
e ,na4

s1 ) = 0.1184 mse(na4
e ,na4

s2 ) = 0.0983

f req(Ib0 ) = 0.0974 corr(nb0
s1 ,nb0

e ) = 0.3815 corr(nb0
s1 ,nb0

s2 ) = 0.9890 f req(Ib1 ) = 0.1222 corr(nb1
s1 ,nb1

e ) = 0.6744 corr(nb1
s1 ,nb1

s2 ) = 0.9931

mse(nb0
s1 ,nb0

e ) = 0.1407 mse(nb0
s1 ,nb0

s2 ) = 0.0057 mse(nb1
s1 ,nb1

e ) = 0.0884 mse(nb1
s1 ,nb0

s2 ) = 0.0028

f req(Ib2 ) = 0.1363 corr(nb2
s1 ,nb2

e ) = 0.7591 corr(nb2
s1 ,nb2

s2 ) = 0.9962 f req(Ib3 ) = 0.2451 corr(nb3
s1 ,nb3

e ) = 0.8350 corr(nb3
s1 ,nb3

s2 ) = 0.9963

mse(nb2
s1 ,nb2

e ) = 0.0985 mse(nb2
s1 ,nb0

s2 ) = 0.0026 mse(nb3
s1 ,nb3

e ) = 0.1080 mse(nb3
s1 ,nb0

s2 ) = 0.0024

f req(Ib4 ) = 0.3990 corr(nb4
s1 ,nb4

e ) = 0.7677 corr(nb4
s1 ,nb4

s2 ) = 0.9975

mse(nb4
s1 ,nb4

e ) = 0.1337 mse(nb4
s1 ,nb0

s2 ) = 0.0013

f req(Ic0 ) = 0.1160 corr(nc0
s2 ,nc0

e ) = 0.4119 corr(nc0
s2 ,nc0

s1 ) = 0.9888 f req(Ic1 ) = 0.1335 corr(nc1
s2 ,nc1

e ) = 0.7667 corr(nc1
s2 ,nc1

s1 ) = 0.9961

mse(nc0
s2 ,nc0

e ) = 0.0997 mse(nc0
s2 ,nc0

s1 ) = 0.0059 mse(nc1
s2 ,nc1

e ) = 0.0580 mse(nc1
s2 ,nc0

s1 ) = 0.0023

f req(Ic2 ) = 0.1584 corr(nc2
s2 ,nc2

e ) = 0.8229 corr(nc2
s2 ,nc2

s1 ) = 0.9963 f req(Ic3 ) = 0.2728 corr(nc3
s2 ,nc3

e ) = 0.8764 corr(nc3
s2 ,nc3

s1 ) = 0.9967

mse(nc2
s2 ,nc2

e ) = 0.0730 mse(nc2
s2 ,nc0

s1 ) = 0.0027 mse(nc3
s2 ,nc3

e ) = 0.0794 mse(nc3
s2 ,nc0

s1 ) = 0.0021

f req(Ic4 ) = 0.3193 corr(nc4
s2 ,nc4

e ) = 0.7528 corr(nc4
s2 ,nc4

s1 ) = 0.9969

mse(nc4
s2 ,nc4

e ) = 0.1205 mse(nc4
s2 ,nc0

s1 ) = 0.0011

f req(Id0 ) = 0.3241 corr(td0
e , td0

s1 ) = 0.4233 corr(td0
e , td0

s2 ) = 0.4777 f req(Id1 ) = 0.1239 corr(td1
e , td1

s1 ) = 0.8323 corr(td1
e , td1

s2 ) = 0.8409

mse(td0
e , td0

s1 ) = 0.1964 mse(td0
e , td0

s2 ) = 0.1572 mse(td1
e , td1

s1 ) = 0.0336 mse(td1
e , td1

s2 ) = 0.0295

f req(Id2 ) = 0.2216 corr(td2
e , td2

s1 ) = 0.8455 corr(td2
e , td2

s2 ) = 0.8606 f req(Id3 ) = 0.1919 corr(td3
e , td3

s1 ) = 0.8471 corr(td3
e , td3

s2 ) = 0.8607

mse(td2
e , td2

s1 ) = 0.0703 mse(td2
e , td2

s2 ) = 0.0587 mse(td3
e , td3

s1 ) = 0.0688 mse(td3
e , td3

s2 ) = 0.0566

f req(Id4 ) = 0.1385 corr(td4
e , td4

s1 ) = 0.7956 corr(td4
e , td4

s2 ) = 0.8109

mse(td4
e , td4

s1 ) = 0.0433 mse(td4
e , td4

s2 ) = 0.0375

f req(Ie0 ) = 0.1079 corr(te0
s1 , te0

e ) = 0.2693 corr(te0
s1 , te0

s2 ) = 0.9853 f req(Ie1 ) = 0.1043 corr(te1
s1 , te1

e ) = 0.3053 corr(te1
s1 , te1

s2 ) = 0.9854

mse(te0
s1 , te0

e ) = 0.1435 mse(te0
s1 , te0

s2 ) = 0.0077 mse(te1
s1 , te1

e ) = 0.2216 mse(te1
s1 , te0

s2 ) = 0.0024

f req(Ie2 ) = 0.1193 corr(te2
s1 , te2

e ) = 0.4652 corr(te2
s1 , te2

s2 ) = 0.9954 f req(Ie3 ) = 0.2412 corr(te3
s1 , te3

e ) = 0.8559 corr(te3
s1 , te3

s2 ) = 0.9986

mse(te2
s1 , te2

e ) = 0.2120 mse(te2
s1 , te0

s2 ) = 0.0015 mse(te3
s1 , te3

e ) = 0.0479 mse(te3
s1 , te0

s2 ) = 0.0006

f req(Ie4 ) = 0.4274 corr(te4
s1 , te4

e ) = 0.8376 corr(te4
s1 , te4

s2 ) = 0.9985

mse(te4
s1 , te4

e ) = 0.0641 mse(te4
s1 , te0

s2 ) = 0.0006

f req(Ie0 ) = 0.1305 corr(te0
s2 , te0

e ) = 0.3430 corr(te0
s2 , te0

s1 ) = 0.9860 f req(Ie1 ) = 0.0978 corr(te1
s2 , te1

e ) = 0.3380 corr(te1
s2 , te1

s1 ) = 0.9964

mse(te0
s2 , te0

e ) = 0.0837 mse(te0
s2 , te0

s1 ) = 0.0069 mse(te1
s2 , te1

e ) = 0.2230 mse(te1
s2 , te0

s1 ) = 0.0021

f req(Ie2 ) = 0.1456 corr(te2
s2 , te2

e ) = 0.6722 corr(te2
s2 , te2

s1 ) = 0.9960 f req(Ie3 ) = 0.2435 corr(te3
s2 , te3

e ) = 0.8513 corr(te3
s2 , te3

s1 ) = 0.9986

mse(te2
s2 , te2

e ) = 0.1307 mse(te2
s2 , te0

s1 ) = 0.0012 mse(te3
s2 , te3

e ) = 0.0505 mse(te3
s2 , te0

s1 ) = 0.0007

f req(Ie4 ) = 0.3826 corr(te4
s2 , te4

e ) = 0.8501 corr(te4
s2 , te4

s1 ) = 0.9985

mse(te4
s2 , te4

e ) = 0.0518 mse(te4
s2 , te0

s1 ) = 0.0005

Fig. 2 Distribution of similarity values calculated using structural and evaluation based sim-
ilarity functions

Figure 2 shows the distributions of structural and evaluation based similarity es-
timation for the NOx and Thyroid tests separately. As we see in both charts the
structural similarity values are significantly higher than the evaluation based ones.
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Partition-wise correlations of similarity values: Results for Thyroid  test series
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Fig. 3 Partition-wise correlations of similarity values for NOx and Thyroid test series
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(b) Thyroid test series

Fig. 4 Similarity values comparison: Structural (additive calculation) vs. structural (multi-
plicative calculation)

Regarding results correlations, the figures documented in Table 3 can be summa-
rized in the following way: The correlations between structural and evaluation based
similarity are approximately in the range between 0.3 and 0.85. Especially low cor-
relation coefficients are calculated for the comparison of structural and evaluation
based similarities, especially when the structural similarity is considered very low
(<0.4). This impression becomes even more clear when we analyze Figures 3(a)
and 3(b) which give the partition wise correlations of similarity values. In each of
the 6 series shown in each of these figures we show the correlations of similarity
values calculated by each possible pair of methods; in each case those partitions of
value pairs are selected that correspond to the values calculated by the first method
mentioned in the respective label. So, for example, in the first series we see the
partition-wise correlations of similarity values calculated by the evaluation based
and the additive structural method; the values are classified in partitions with re-
spect to the evaluation specific similarities.
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(b) Thyroid test series

Fig. 5 Similarity values comparison: Evaluation based vs. structural (additive calculation)
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(b) Thyroid test series

Fig. 6 Similarity values comparison: Evaluation based vs. structural (multiplicative calcula-
tion)

The Figures 3(a) and 3(b) show clearly that the structural similarity estimation
methods calculate very similar values (with high correlations for trees that are very
different as well as for those which are considered rather similar). Furthermore, the
correlation of structural and evaluation based similarity values is rather low in the
case of low structural similarities (<0.4).

Finally, for graphically illustrating the direct comparison of similarity values cal-
culated by the three estimation methods chosen we have randomly chosen 100,000
structure tree comparison cases both from the NOx and the Thyroid tests. The
respectively correspondent similarity values are drawn against each other in the
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Figures 4 – 6. On the one hand there is no high correlation which can be seen when
comparing structural and evaluation based similarity values, but on the other hand
the high correlation between the similarities calculated by the structural similarity
estimation methods becomes obvious.

4 Conclusion

In this paper we have summarized a series of GP test runs incorporating evaluation
based as well as structural similarity estimation for measuring the genetic diversity
in GP populations.

In general, evaluation based similarity calculation consumes a lot more runtime
than structural comparison, and on average it also tends to produce lower similarity
values. The results show that in most cases there is a linear correlation of approx-
imately 0.4 – 0.9 for the results returned by the evaluation based and structural
methods; not very surprisingly, this correlation is positive, but not very high. Espe-
cially in some cases showing very low structural similarity there can be significantly
different results when using the evaluation based similarity methods.

Furthermore, we have also compared additive and multiplicative structural simi-
larity estimation. These two variants tend to produce rather similar results with high
correlations for pairs of structure trees with low as well as rather high similarities;
the results retrieved by the multiplicative structural method show a higher correla-
tion with those calculated using the evaluation based similarity function.

Thus, analyzing these correlations, we see that structural and evaluation based
similarity measures give non-redundant information about the similarity of structure
trees used in GP; both types of similarity measures should therefore be used for
analyzing GP populations and algorithms.
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