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Abstract. A new type of equilibrium incorporating different rationality types for
finite non cooperative games with perfect information is introduced. The concept of
strategic game is generalized in order to admit players with different rationalities.
Generative relations are used to characterize several types of equilibria with respect
to players rationality. An evolutionary technique for detecting it is considered. Nu-
merical experiments show the potential of the method.

1 Introduction

Equilibrium concepts are the most common solutions proposed in game theory. In
a particular game it is usually considered that players interact according to a unique
equilibrium concept, i.e. only players guided by the same kind of equilibrium are
allowed to interact. This restriction induces unrealistic predictions. For example, the
concept of Nash equilibrium sometimes can lead to deceptive results [5].

In real life players (agents) can be more or less cooperative, more or less com-
petitive and more or less rational. In order to cope with more complex situations
a concept of generalized game is presented. Players are allowed to have different
behaviors/rationality types considering an adequate meta-strategy concept.

According to [3] game equilibria can be characterized using appropriate gener-
ative relations. Thus Nash equilibrium is characterized by the ascendancy relation
[8] and Pareto equilibrium by the Pareto domination. Combining the two relations
may lead to different types of joint Nash–Pareto equilibria.

An evolutionary technique for detecting the joint Nash–Pareto equilibrium for
the generalized game is used.
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2 Generalized Games

In order to cope with different rationality types the concept of generalized game is
defined [3].

Definition 2.1. A finite strategic generalized game is defined as a system by G =
(N,M,U) where:

• N = {1, ...,n}, represents the set of players, n is the number of players;
• for each player i ∈ N, Si represents the set of actions available to him, Si =
{si1 ,si2 , ...,simi

}; S = S1×S2× ...×SN is the set of all possible situations of the
game;

• for each player i ∈ N, Mi represents the set of available meta-strategies, a meta-
strategy is a system (si|ri) where si ∈ Si and ri is the ith player rationality type;

• M = M1×M2× ...×MN is the set of all possible situations of the generalized
game and (s1|r1,s2|r2, ...,sn|rn) ∈M is a meta-strategy profile.

• for each player i ∈ N , ui : S→ R represents the payoff function.

U = {u1, ...,un}.

Remark 2.1. In a generalized game the set of all possible meta-strategies represents
the meta-strategy search space.

3 Generative Relations for Generalized Games

Three generative relations are considered in this section. Two of them correspond
to Pareto and Nash equilibria. The third induces a new type of joint Nash–Pareto
equilibrium.

3.1 nP–Strict Pareto Domination

We introduce the nP–strict Pareto domination in order to be able to combine the
concepts of Nash and Pareto domination.

In a finite strategic generalized game consider the set of players Pareto biased

IP = { j ∈ {1, ...,n}|r j = Pareto}

and nP = card IP, where card A denotes the number of elements in the set A.
Let us consider two meta strategy profiles x and y from M.

Definition 3.1. The meta strategy profile x nP–strict Pareto dominates the meta strat-
egy profile y if the payoff of each Pareto biased player from IP using meta strategy
x is strictly greater than the payoff associated to the meta strategy y, i.e.

ui(x) > ui(y), ∀i ∈ IP.
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Remark 3.1. The set of non dominated meta strategies with respect to the nP–strict
Pareto domination relation when nP = n is a subset of the Pareto front.

3.2 Nash – Ascendancy

Similar to Pareto equilibrium a particular relation between strategy profiles can be
used in order to describe Nash rationality. This relation is called Nash-ascendancy
(NA).

A strategy is called Nash equilibrium [7] if each player has no incentive to uni-
laterally deviate i.e. it can not improve the payoff by modifying its strategy while
the others do not modify theirs.

We denote by (si j ,s
∗−i) the strategy profile obtained from s∗ by replacing the

strategy of player i with si j i.e.

(si j ,s
∗
−i) = (s∗1,s

∗
2, ...,s

∗
i−1,si j ,s

∗
i+1, ...,s

∗
1).

Definition 3.2. The strategy profile x Nash-ascends the strategy profile y, and we
write x <NA y if there are less players i that can increase their payoffs by switching
their strategy from xi to yi then vice versa.

In [8] is introduced an operator

k : S×S→ N,

k(y,x) = card{i ∈ {1, ...,n}|ui(xi,y−i)≥ ui(y),xi = yi}.
k(y,x) denotes the number of players which benefit by switching from y to x.

Proposition 3.1. The strategy x Nash-ascends y (x is NA-preferred to y), and we
write x <NA y, if the inequality

k(x,y) < k(y,x),

holds.

According to [8] the set of all strategies from S non-dominated by respect of Nash
ascendancy relation equals the set of Nash equilibria.

This result proves that the Nash ascendancy is the generative relation for the Nash
equilibrium.

3.3 Joint Nash–Pareto Domination

Let us consider two meta-strategies

x = (x1|r1,x2|r2, ...,xn|rn) and y = (y1|r1,y2|r2, ...,yn|rn).

Let us denote by IN the set of Nash biased players (N-players) and by IP the set of
Pareto biased players (P-players). Therefore we have
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IN = {i ∈ {1, ...,n}|ri = Nash}.
We consider the operators kP and kN defined as:

kP(x,y) = card{ j ∈ IP|u j(x) > u j(y),x = y}
and respectively

kN(x,y) = card{i ∈ IN |ui(yi,x−i)≥ ui(x),xi = yi}.

Remark 3.2. kP(x,y) measures the relative efficiency of the meta strategies x and y
with respect to Pareto rationality and kN(x,y) measures the relative efficiency of the
meta strategies x and y with respect to Nash rationality.

Definition 3.3. The meta strategy x N–P dominates the meta strategy y if and only
if the following statements hold

1. kP(x,y) = nP

2. kN(x,y) < kN(y,x)

In what follows we consider that efficiency relation induces a new type of equilib-
rium called joint Nash-Pareto equilibrium.

Remark 3.3. Joint Nash-Pareto equilibrium defined in this section is a concept com-
pletely different from the existing concept of Pareto-Nash equilibria [10].

4 Detecting Joint N–P Equilibria in Generalized Games

Consider a three player non-cooperative game. Let ri be the rationality type of
player i.

If r1 = r2 = r3 = Nash then all players are Nash biased and the corresponding
solution concept is the Nash equilibrium.

If r1 = r2 = r3 = Pareto then all players are Pareto biased and the corresponding
equilibria are described by the set of strictly non dominated strategies (Pareto front).

We also intend to explore the joint cases where one of the players is Nash biased
and others are Pareto and the one where one is Pareto and the others are Nash biased.

In order to detect the joint Nash–Pareto equilibria of the generalized game an
evolutionary approach is used.

Let us consider an initial population P(0) of p meta strategies for the generalized
three player game. Each member of the population has the form

x = (s1|r1,s2|r2,s3|r3).

Pairs of meta-strategies are randomly chosen from the current population P(t). For
each pair a binary tournament is considered. The meta strategies are compared by
means of the domination relation. An arbitrary tie breaking is used if the two meta
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strategies have the same efficiency. The winers of two binary tournaments are re-
combined using the simulated binary crossover (SBX) operator [11] resulting two
offspring. Offspring population is mutated using real polynomial mutation [2], re-
sulting an intermediate population P′. Population P(t) and P′ are merged.

The resulting set of meta strategies is sorted with respect to the efficiency relation
using a fast non dominant sorting approach [2]. For each meta strategy M′ the num-
ber expressing how many meta strategies in the merged population are less efficient
then M′ is computed. On this basis the first p meta strategies are selected from the
merged population. Selected meta strategies represent the new population P(t + 1).

Let us remark that in the proposed technique selection for recombination and sur-
vival is driven by the efficiency relation. Therefore the population of meta-strategies
is expected to converge toward the joint Nash–Pareto front. According to the pro-
posed approach the members of this front represent the joint N–P equilibria of the
generalized game.

5 Numerical Experiments

In order to illustrate the proposed concepts the oligopoly Cournot model is conside-
red (see for instance [6]).

Let q1, q2 and q3 denote the quantities of a product. This unique product is pro-
duced by three companies. The market price denoted by P(Q) is given by

P(Q) =
{

a−Q, for Q < a,
0, for Q≥ a.

where
Q = q1 + q2 + q3,

is the aggregate quantity on the market and a > 0 is a constant characterizing the
market.

The cost for the company i of producing qi units is Ci(qi)

Ci (qi) = ciqi,

where ci < a. Suppose that the companies choose their quantities simultaneously.
The payoff for the company i is its profit, which can be expressed as:

πi(q1,q2,q3) = qiP(Q)−Ci(qi)
= qi [a− (q1 + q2 + q3)− ci] , i = 1,2,3.

A game strategy is a triple
s = (q1,q2,q3).

Several experiments have been performed for this game by using RED tech-
nique [3].
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5.1 Symmetric Games

The symmetric Cournot model with parameters a = 24 and c1 = c2 = c3 = 9 is
considered.The payoff corresponding to Nash equilibrium is (14.00, 14.00, 14.00).

Table 1 Average payoff and standard deviation (St, Dev.) of the final populations in 30 runs
with 100 meta-strategies after 30 generations for the symmetric Cournot model where all
three players are Nash biased

N-N-N Average payoff St. dev. Maximum payoff Minimum payoff

player p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Average 14,05 14,06 14,05 0,03 0,04 0,04 14,85 15,57 15,00 12,25 12,49 12,45

St. Dev. 0,02 0,02 0,02 0,08 0,09 0,08 1,39 2,80 1,83 3,25 3,00 3,05

According to the data from the Table 1 in less than 30 generations the algorithm
converges to the Nash equilibrium point.

Table 2 Average payoff and standard deviation (St. Dev.) of the final populations in 30 runs
with 100 meta-strategies after 30 generations for the symmetric Cournot model where two
player are Nash biased and one is Pareto

N-N-P Average payoff St. dev. Maximum payoff Minimum payoff

player p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Average 10,99 11,01 29,80 52,81 53,02 182,28 25,92 25,71 56,24 0,00 0,00 0,49

St. Dev. 0,36 0,33 0,78 1,75 2,33 17,62 0,92 0,88 0,00 0,00 0,00 1,67

The resulting front in the Nash-Nash-Pareto case spreads from the standard Nash
equilibrium corresponding to the two player–Cournot game (25.00, 25.00) to the
Nash equilibrium corresponding to the three player–Cournot game, and from there
to the edges of Pareto front. The equilibrium set is depicted in Figure 1 and Figure 2
from two angles, for a better view. The numerical results are presented in Table 2.

As we can see in the Figure 3 in the Nash-Pareto-Pareto case the result is similar
to the Pareto front, an result that is determined by the strength of the Pareto compo-
nent in the generative relation for the joint Nash–Pareto equilibrium. As we can see
in Table 3 the minimum values for all three players are 0.00 and the maximum are
56.24, the same like the ones for the Pareto front.

5.2 Asymmetric Games

First, let us consider the two player asymmetric Cournot game with parameters a =
24, c1 = 9 and c2 = 12.
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Fig. 1 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
symmetric Cournot game

Fig. 2 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
symmetric Cournot game

Fig. 3 The payoffs for the Nash-Pareto-Pareto front detected in less than 30 iterations for the
symmetric Cournot game



240 D. Dumitrescu, R.I. Lung, and T. Dan Mihoc

Table 3 Average payoff and standard deviation (St. Dev.) of the final populations in 30 runs
with 100 meta-strategies after 30 generations for the symmetric Cournot model where one
player is Nash biased and the other two Pareto

N-P-P Average payoff St. dev. Maximum payoff Minimum payoff

player p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Average 17,74 18,52 18,44 242,42 247,83 247,97 56,23 56,24 56,24 0,00 0,00 0,00

St. Dev. 0,40 0,36 0,42 7,36 6,98 6,82 0,04 0,00 0,00 0,00 0,00 0,00

Fig. 4 The payoffs for the Nash-Pareto, Pareto-Nash and Nash-Nash equilibria approxima-
tions detected after 30 iterations for Cournot’s model with a = 24, c1 = 9, and c2 = 12

Table 4 Numerical results for the two asymmetric games with a Nash-Nash-Pareto rational-
ity in final population in 30 runs, for 100 meta strategies and after 30 iterations

N-N-P First game Second game

c1 = 9 c2 = 12 c3 = 9 c1 = 9 c2 = 12 c3 = 5

Player p1 p2 p3 p1 p2 p3

Average payoff 17,19 2,72 46,86 16,12 3,93 29,19

St. Dev. 10,59 2,49 25,90 11,29 2,67 15,45

Minimum payoff 0,00 0,00 0,18 0,00 0,00 0,11

Maximum payoff 36,72 9,24 90,25 36,61 9,43 56,25

In Figure 4 are depicted the payoff functions for two players. The results are in
concordance with those obtained in [3]. The difference between c1 and c2 deter-
mines an asymmetry for the represented detected equilibria.

The asymmetric three player Cournot games with parameters a = 24, c1 = 9,
c2 = 12, c3 = 5 and respectively a = 24, c1 = 9, c2 = 12, c3 = 9 are considered. The
asymmetries allow us to better understand the players behavior in the joint Nash–
Pareto equilibrium.
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Fig. 5 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
asymmetric Cournot game with parameters a = 24, c1 = 9, c2 = 12, c3 = 5

Fig. 6 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
symmetric Cournot game with parameters a = 24, c1 = 9, c2 = 12, c3 = 9

Comparing Figure 5 and Figure 6 one can observe the influence of the Pareto
component in to the final front. If parameter c3 is close to parameters c1 and c2 the
Pareto influence determines the set so spread out in a plane similar to the pure Pareto
front. The distribution between the Nash equilibrium for two players (as the third
gains nothing) and three players Nash equilibrium remains also for the asymmetric
game.

Analyzing the results one can observe that for these particular cases of joint
Nash–Pareto rationalities, symmetric or not, there is no minimum guaranteed payoff
for any rationality.

As regarding the maximum payoffs an interesting feature appears if we construct
a new game based on the maximum payoffs. The players strategies will be their
rationality (Nash or Pareto) and their payoffs the maximum gains in the joint Nash-
Pareto equilibria. Solving this game in GAMBIT the pure strategies Nash equilib-
rium is the Pareto-Pareto-Pareto rationality.
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6 Conclusions and Future Work

A concept of generalized game is used in order to capture the behavior of players
with several types of rationalities. A new generative relation between meta strate-
gies induces a new solution concept called joint Nash–Pareto equilibrium. Proposed
method allows the combination of different types of equilibria in a game.

An evolutionary technique for detecting an approximation of the generalized
equilibria is used. The idea are exemplified for Cournot games with three players
and two types of rationality.

Results indicate the potential of the proposed technique. Different analyses prove
that for the presented games there is no minimal payoff but the possibility of a
maximum gain is obtained for the Pareto rationality. These experimental results
offer an inside view of the problems arising when two different type of equilibria
are considered in the same game.

Future work will address generalized games having other rationality types then
Nash and Pareto and other methods of combining them.
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