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Abstract. The availability of low cost powerful parallel graphic cards has estimu-
lated a trend to implement diverse algorithms on Graphic Processing Units (GPUs).
In this paper we describe the design of a parallel Cellular Genetic Algorithm (cGA)
on a GPU and then evaluate its performance. Beyond the existing works on master-
slave for fitness evaluation, we here implement a cGA exploiting data and instruc-
tions parallelism at the population level. Using the CUDA language on a GTX-285
GPU hardware, we show how a cGA can profit from it to create an algorithm of im-
proved physical efficiency and numerical efficacy with respect to a CPU implemen-
tation. Our approach stores individuals and their fitness values in the global memory
of the GPU. Both, fitness evaluation and genetic operators are implemented en-
tirely on GPU (i.e. no CPU is used). The presented approach allows us benefit from
the numerical advantages of cGAs and the efficiency of a low-cost but powerful
platform.
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1 Introduction

Cellular Genetic Algorithms (cGAs) are effective optimization techniques solving
many practical problems in science and engineering [1/]. The basic algorithm (cGA)
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is selected here because of its high performance and because of its swarm intelli-
gence structure (i.e. emergent behavior and decentralized control flow). By evolv-
ing this kind of algorithm is able of keeping a high diversity in the population until
reaching the region containing the global optimum. This kind of algorithms may
benefit from parallelism as a way of speeding up its operations [2] when the in-
stance of the problem is complex.

Graphic Processing Units (GPUs) are well-known hardware cards with a fixed
function, being traditionally used for visualization purposes. However, the new gen-
erations of GPUs have also unleashed a promising potential for scientific comput-
ing, seen as a new hardware allowing the use of high arithmetic capacity and high
performance.

Thus, researchers and developers have begun to harness GPUs for general pur-
pose computation [4] [7]. In addition to their low cost and ubiquitous availability,
GPUs have a superior processing architecture when compared to modern CPUs, and
thus present a tremendous opportunity for developing lines of research in optimiza-
tion algorithms especially targeted for GPUs, this its shown in present works such
as [3] [9].

Therefore, we work here with a parallel cGA running entirely on GPU (i.e. no
CPU is needed only to start and stop the algorithm), and demonstrate that the pro-
posed optimization technique (called cGA GPU) is quite amenable for massive par-
allelism to obtain larger performances with reduction of times and improvements of
the speedup. This approach offers the possibility to solve larges problem instances
with the improved computing capacity of a GPU. All this will be shown on a bench-
mark of discrete and continuous problem to claim not only for time reductions but
also for numerical advantages of this swarm intelligence algorithm.

The paper is structured as follows, The next section contains some background
about the parallelism, we explain the Cellular Genetic Algorithm and its imple-
mentation in GPU. Section 3 describes the experimental setup, while Section 4 ex-
plains the test problems used, details of the cGA parameters, and the statistical tests
performed.

Finally, Section 5 provides the obtained results and Section 6 offers our conclu-
sions, as well as some comments on the future work.

Fig. 1 Toroidal structure of a cGA population
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2 Description of a Cellular Genetic Algorithm

Cellular GAs (cGAs) are a subclass of Genetic Algorithm (GAs) in which the popu-
lation is structured in a specified topology defined as a connected graph, 2D toroidal
grid, in which each vertex is an individual that communicates with its nearest neigh-
bours (e.g, North, South, East, West) and use these individuals for crossover and
mutation. Algorithm 1 (and Figure 1) presents the structure of a cGA.

Each individual interacts only with their neighbours. The resulting overlapped
small neighbourhoods help in exploring the search space because the induced slow
diffusion of solutions through the population provides a kind of exploration, while
exploitation takes place inside each neighbourhood by genetic operations. The
reader can find a deeper estudy on cGAs in [[1].

Algorithm 4. Pseudocode of Canonical Cellular GA
1: pop « initializePopulation(pop)
2: pop «— evaluatePopulation(pop)
3: while not stop criterion do do
4 for each individual do do
5 neighbours < calculateNeigbourhood(individual)
6: parents «— selection (neighbours)
7 offspring < Recombination(parents,prob_Recombination);
8: offspring < Mutation(offspring,prob_Mutation);
9: pop’ < evaluate(offspring);

10: replacement(pop’,individual,offspring);
11:  end for

12: end while

2.1 The Proposal

The basic idea behind most parallel programs is to divide a task into subtasks and
solve the subtasks simultaneously using multiple processors. This divide and con-
quer approach can be applied to GAs in many different ways, and the literature
contains many examples of successful parallel implementations [2]. Some paral-
lelization methods use a single population, while others divide the population into
several relatively isolated subpopulations. Some methods exploit massively parallel
computer architectures, while others are better suited to multicomputers with fewer
and more powerful processing elements.

In the case of NVIDIA GPUs have (currently) up to 30 Streaming Multiproces-
sors (SM); each SM has eight parallel thread processors called Streaming Processors
(SP). The SPs run synchronously, meaning all eight SPs run a copy of the same pro-
gram, and actually execute the same instruction at the same time by each thread
created (see Figure 2). Different SMs run asynchronously, much like commodity
multicore processors. For achieving this, the notion of kernel is defined. A kernel is
a function callable from the host and executed on the specified GPU simultaneously
by several SPs in parallel.
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Algorithm 5. Pseudocode of Cellular GA on a GPU
1: initialize_cGA(Input_param)
2: generate_random_numbers(seeds)
3: allocate problems, seeds for random numbers and data inputs on GPU device memory
4: for each individual in parallel do do
5:  individual « initializeOnGPU(individual)
6:  individual < evaluateOnGPU(individual)
7: end for
8: while not Stop Criterion do do
9:  neighbours < calculateNeigbourhoodOnGPU(individual)
10:  parents < selectionOnGPU (neighbours)
11:  offspring <+ RecombinationOnGPU(parents,prob_Recombination);
12:  offspring < MutationOnGPU(offspring,prob_Mutation);
13:  evaluateOnGPU(offspring);
14:  replacementOnGPU(individual,offspring);
15: end while

- e

SP | SP | SP | SP

SP  SP | SP  SP SP

7 16 GBJs 7 16, GBJs Shared Memory SP

South Bridge

. shar
1 *, , Shared Memory

L

Fig. 2 Description of the architecture between CPU and GPU

In our present work the proposed algorithm exploits the inherent parallelism of
a GPU using a direct mapping between the population structure and the threads
of the GPU. First of all, at initialization stage, the memory allocations on GPU
have to made. Input parameters for the algorithm (the population generated in the
CPU and the configuration parameters for the algorithm), are stored in the global
memory of the GPU. The population generated is transfered from the CPU to the
device memory, this is a synchronous operation. Since we are not having a Pseudo
Random Number Generator (PRNG) for GPUs, we used a PRNG that is provided
by the SDK of CUDA named Merseinne Twister; the only condition for its use is to
initially copy from CPU to GPU a group of seeds neccesary for execute the PRNG.
Once the copies are done, we execute a series of subtasks implemented only in the
GPU called through a kernel function (that allows to invoke functions implemented
in the GPU) and these are executed for every thread. As a second step, for each
individual, we need to identify its neighrbourhood. Third, we proceed to apply the
GA operators on the solution neighbourhood in each thread. Now, we synchronize
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all threads for taking the fourth step: replacement of the individual with the offspring
(if a condition is satisfied). Finally, this process is repeated until a stop condition is
satisfied. This algorithm is synchronous, as the individuals of the population of the
next generation are formally created all at the same time. We can see a general
model of the proposal algorithm for GPU in the Figure 3.

The implementation for this algorithm was done with CUDA (6] for GPU .
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Fig. 3 Description of the architecture between CPU and GPU

3 Experimental Setup

This section is devoted to describing the methodology that we have used in the
experiments carried out in this work. First, we present the benchmark problems used
to compare the cGA GPU. In order to show the performance on a wide spectrum of
problems we encompass tests both in discrete and continuous domains. Also, we
try to use standard benchmarks as the ones reported in CEC 2005 [E] and 2008 [@]
standards.

4 Methodology and Configurations Used

We have selected for our tests the following problems: Colville Minimization, ECC,
MMDP (discrete optimization) and Shifted GriewankAfs function, Shifted Rast-
riginAfs function and Shifted RosenbrockAfs function (continuous optimization).
These problems were selected because they are generally popular in GAs and/or
used in previous works on GPUs ] [@].

Our GPU-based implementation is compared against previous software imple-
mentations on a CPU implemented in JCell ].
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Now, we explain the statistical test that we have applied to ensure the confidence
of the obtained results. Since we are dealing with stochastic algorithms and we want
to provide the results with confidence, we have made 30 independent runs of each
experiment, and the following statistical analysis has been performed throughout
this work. Firstly, a Kolmogorov Sminorv test was performed in order to check
whether the values of the result follow a normal (Gaussian) distribution or not.
If the distribution is normal, we will apply Levene test for the homogeneity of
the variances. If samples have equals variance (positive Levene test), an ANOVA
test is performed, otherwise a Welch test is performed. For non Gaussian distribu-
tions, the non-parametric Kruskal-Wallis test is used to compare the medians of the
algorithms.

We always consider in this work a confidence level of 95% (i.e., significance level
of 5% or p-value under 0.05) in the statistical tests, which means that the differences
are unlikely to have occurred by chance with a probability of 95%. Successful tests
are marked with "+" symbols in the last column in the first table; conversely, "*"
means that no statistical confidence was found (p-value 0:05).

In order to make a meaningful comparison among the algorithms, we have used
a common parameterization. The details are described in Table 1, where we include
the maximum number of generations as the stop condition for all the algorithms in
each execution (500). The toroidal grid has different sizes for evaluate the behavior
of the algorithms and compare that exist some advantage or not to use different pop-
ulation sizes for each problem. So, we define four population sizes: 32 x 32, 64 x 64,
256 x 256 and 512 x 512 individuals. The neighbourhood used is composed of five
individuals: the considered individual plus those located at its North, East,West and
South (see Fig. 1). One selection method have been used in this work: on parent
is always the cosidered individual itself, while the other one is obtained by using
Roulette Wheel (RW) selection in its 4-neighbourhood. For the recombination op-
erator, we obtain just one offspring from two parents: the one having the largest
portion of the best parent. The DPX recombination is applied always (probability
pe = 1.0), this operator is a crossover of two points, keeping the largest part of the
best parent. The bit mutation probability is set to p,, = 0.05. We will replace the
considered individual on each generation only if its offspring has a better fitness
value, called Replace if Better [11]. All these parameters are selected after previous
works [1] and an own initial setting study.

Table 1 SpeedUp in seconds obtained with different population size

Parameters Value

Max. Number of Generations 500

Population Size {32%,64%,256%,512%}
Neighborhood N-E-W-S

Selection of Parents itself + Roulette Wheel (RW)
Recombination DPX=1.0

Mutation 0.05

Replacement Replace if the new individual is better
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Experiments were run on a machine equiped with a Intel R . CoreTM Quad pro-
cessor running at 2.67GHz , under Windows XP operating system, and having 4
GB of memory. The GPU used is a nVIDIA GeForce GTX 285 equipped with 1GB
of RAM. The environment used is Microsoft Visual C++ 2008 Express Edition to-
gether with the Toolkit SDK for CUDA v2.1 with the nVIDIA driver v180.49.

5 Results

In this section we present the results obtained when solving the problems selected
with the proposed cGA GPU algorithm. We here describe the numeric and time
performance of the cGA on GPU. In order to compare the time performance we use
a sequential version of a cGA implemented in JCell [1] that is executed in the CPU.

The results of speedup are summarized in Table 2: for each problem, the average
speedup of the 30 executions is shown. This value is the result of the average of the
time for the algorithm in CPU divided by the average time of the algorithm on GPU.
Thus, a value over 1.0 means a more efficient performance of the GPU versus the
CPU.

The results of our tests show that the speedup ranges from 5 to 24. In general, as
the population size increase we see that the GPU can achieve a better performance.

For a population space as 32 x 32, the CPU implementation still remains faster
than those in a GPU; the reason is probably because the population are very small
and the existency the some overhead between the CPU and GPU to call the kernel
functions affects the time performance. We would like to point out that the efficiency
showed for the GPU is equivalent to 24 proccessors, an a insteresting benefit drawn
from a commodity computer.

Another interesting observation is that there is not significant difference between
the speedup of the discrete and continuous domains. This indicates that the GPU is
effective to evaluate problem instances of both domains.

The result of the statistical tests are in column Test of the Table 2, where the sym-
bol "+" means that statiscally significant differences exist. In most of the instances
of the problems, the existing statistically significant differences favor the cGA im-
plemented in the GPU versus the CPU. As well, Table 3 gives for each problem
the time (in seconds) of the algorithm executed in CPU and in GPU respectively
(each column shows the time of CPU and the GPU time separated by a "—"). As
expected, the time of the GPU is very small (between 0.14 and 0.35 seconds) while
for the CPU the execution time range between 0.11 and 7.89 seconds. In most of the
cases, the time of the GPU is shorter than the one on CPU (an exception occured
just for the population of 32 x 32). Table 5 gives results about of the average of
fitness solutions obtained for each problem. This table shows the average value and
the standard deviation of the averaged best final fitness value for each problem and
algorithm configuration. The values obtained show that the algorithm gets very fre-
quently a near optimal value for every problem. Also, those values are competitive
against other algorithms in the literature [10]. Table 4 show the results of the aver-
age of fitness solutions obtained in CPU. This table show that the values obtained
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Table 2 SpeedUp in seconds obtained with different population sizes

SpeedUp Discrete Problems SpeedUp Continuos Problems

Population
yooille ECC MMDP Rastrigin Rosenbrock Griengwak Test
32x32 0.561 0.660 0.784  0.494 0.539 0.826
64 x 64 5.441 5.450 5.645 5417 5.688 5783 +
256 x 256 16.433 16.830 14.485  15.463 17.830 16.964 +
512 x 512 23.593 22.419 22789  20.810 20.982 20.421 +

Table 3 Average of time performance in seconds with different population sizes

SpeedUp Discrete Problems SpeedUp Continuos Problems

yoobille ECC MMDP Rastrigin Rosenbrock Griengwak
32x32 0.10-0.18 0.11-0.17  0.11-0.14  0.12-0.22 0.11-0.19 0.12-0.15
64 x64 1.19-0.21 1.25-0.23 1.21-0.21 1.17-0.21 1.20-0.21 0.21-0.20

256 x 256 4.16-0.25 4.63-.0.27 4.09-0.28  4.31-0.27 4.66-0.26 4.53-0.26

512x512 7.46-0.32 7.89-035  7.66-0.33  7.21-0.34 7.12-0.33 7.35-0.35

Population

Table 4 Average of solutions fitness obtained with different population sizes for CPU

Population Average Solutions Average Solutions Continuos Problem

Colville ECC MMDP Rastrigin Rosenbrock  Griengwak
Minimization
32 X 32 0.133:&5.17605 0.066:&].U55C73 39‘896:&8.709(:—6 4.6376—5:5,512(}5 2.6006—5:&3.07505 3.7336—5i3.7500—3
64 x 64 0.11143688e6 0.066+0633¢3 39.900+9.1456 2.978e-5+1.136e6 1.645€-6+51700-6 2.687€-5+3.410e3
256 x 256 0.100+1033¢6 0.06720361e6 39.91 1113656 1.218€-5:7872¢6 1.639€-51281606 2.350€-5:53 590¢-6
512 %512 0.010x0310e-6 0.0670003¢6 39.99942713¢5 1.749€-6+4350e-6 3.311€-514997¢6 1.356€-6+1450e-6

Table 5 Average of solutions fitness obtained with different population sizes for GPU

Population Average Solutions Average Solutions Continuos Problem

Colville ECC MMDP Rastrigin Rosenbrock  Griengwak
Minimization
32 %32 0.33019660e2 0.06520565¢3 39.590+1070 4.850e-5+2970e5 2.600e-5+9330e-5 3.733€-5+3750e3
64 x 64 0.33043.122e2 0.06620633¢3  39.72020080 4.560e-5+6510e5 1.645¢-5+7360e-5 2.687€-5+3.41003
256 x 256 0.130+1.030e3 0.066+0361e5  39.860+00s0  4.540€-5+6330e-5 1.639€-5+3870e5 2.391€-5+1.53003
512 x 512 0.100+1.000e3 0.067+0003e-5 39.940+8.00003 4.210€-5+1.000e-5 1.500€-5+3600e-5 2.375€-5+1.050¢-3

for the CPU and GPU are very similar with a approximation very similar. As a con-
clusion, the algorithm implemented in GPU presents a robust numerical behavior
because the values are very near or they reached the optimal. So, we can conclude
that in general the cGA GPU is better than the sequential cGA, bothnumerically and
in time.



Cellular Genetic Algorithm on Graphic Processing Units 231

6 Conclusions

In this work we have presented a novel implementation of a cGA running on a GPU.
All operators have been implemented directly in the GPU. We test the performance
of the algorithm with 6 different problems in continuous and discrete domain, and
we compare against a standard cGA. We showed that the inherent parallelism of the
GPU can be exploited to accelerate a cGA.

In the future, we will apply the presented approach to other complex real-world
problems. Especially those that remains open because at their large dimensions,
as well as to applications in industry. Another future work will be to implement
other families of evolutionary algorithms and evaluate its performance in multiGPU
architectures.
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