
A Distributed Service Oriented Framework for
Metaheuristics Using a Public Standard

P. García-Sánchez, J. González, P.A. Castillo, J.J. Merelo, A.M. Mora,
J.L.J. Laredo, and M.G. Arenas

Abstract. This work presents a Java-based environment that facilitates the develop-
ment of distributed algorithms using the OSGi standard. OSGi is a plug-in oriented
development platform that enables the installation, support and deployment of com-
ponents that expose and use services dynamically. Using OSGi in a large research
area, like the Heuristic Algorithms, facilitate the creation or modification of algo-
rithms, operators or problems using its features: event administration, easy service
implementation, transparent service distribution and lifecycle management. In this
work, a framework based in OSGi is presented, and as an example two heuristics
have been developed: a Tabu Search and a Distributed Genetic Algorithm.

1 Introduction

Nowadays the Metaheuristics Research Area has a wide number of algorithms and
problems. There are many implementations of them, using several programming
languages, frameworks and architectures, but without using a well-defined plug-in
specification.

When building quality software systems it is necessary to design them with a
high level of modularity. Besides the benefits that classic modularization paradigms
can offer (like object-oriented modelling) and the improvements in test, reusability,
availability and maintainability, it is necessary to explore another modelling tech-
niques, like the plug-in based development [21]. This kind of development simpli-
fies aspects such as the complexity, personalization, configuration, development and
cost of the software systems. In the optimization heuristics software area, the bene-
fits the usage of this kind of development can offer are concreted in the development

P. García-Sánchez · J. González · P.A. Castillo · J.J. Merelo · A.M. Mora ·
J.L.J. Laredo ·M.G. Arenas
Dept. of Computer Architecture and Computer Technology
e-mail: pgarcia@atc.ugr.es, jesus@atc.ugr.es, pedro@atc.ugr.es,
jmerelo@geneura.ugr.es, amorag@geneura.ugr.es,
juanlu@geneura.ugr.es, maribel@atc.ugr.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 211–222, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010



212 P. García-Sánchez et al.

of algorithms, experimental evaluation, and combination of different optimization
paradigms [21].

On the other hand, other patterns for integration, like SOA, have emerged. SOA
(Service Oriented Architecture) [18] is a paradigm for organizing and utilizing dis-
tributed capabilities, called services. A service is an interaction depicted in Figure 1.

Fig. 1 Service interaction schema. The service provider publish a service description that is
used by the requester to find and use services

The service provider publishes service descriptions (or interfaces) in the ser-
vice registry, so the service requesters can discover services and bind to the service
providers.

Distributed computing offers the possibility of taking advantage of parallel pro-
cessing in order to obtain a higher computing power than other multiprocessor ar-
chitectures. Two clear examples are the research lines centred in clusters [5] and
GRID [9] for parallel processing. SOA it is also used in this area, using platforms
based in Web Services [18], and new standards for this paradigm have emerged, like
OSGi.

OSGi (Open Service Gateway Initiative) [2] was proposed by a consortium of
more than eighty companies in order to develop an infrastructure for the deployment
of service in heterogeneous network of devices, mainly oriented to domotic [15].
Nowadays it defines a specification for a Service Oriented Architecture for virtual
machines (VMs). It provides very desiderable features, like packet abstraction, life-
cycle management, packaging or versioning, allowing significant reduction of the
building, support and deployment complexity of the applications.

OSGi technology allows the components to be dynamically discovered among
them to increase the collaboration to minimize and manage the coupling among
modules. Moreover, the OSGi Alliance has developed several standard component
interfaces for common usage patterns, like HTTP servers, configuration, logs, se-
curity, management or XML management among others, whose implementations
can be obtained by third-parties. Nowadays there are some challenges in the OSGi
development [12], but they only affect to the creation of very complex applications.



A Distributed Service Oriented Framework for Metaheuristics 213

Therefore, the objective of the proposed environment is to facilitate the devel-
opment of distributed computing applications by using the OSGi standard, taking
advantage of the plug-in software development and SOA that can compete with ex-
isting distributed applications in easy of use, compatibility and development.

The rest of this work is structured as follows: first the state of the art in similar
applications is described (section 2). Section 3 introduces the technologies used
in the development of this work. Then, we present (section 4) the design of the
proposed architecture (called OSGiLiath) and the development of two computing
applications using a Distributed Genetic Algorithm and a Tabu Search. Experiments
and yielded results are shown in section 6. Finally the conclusions and future work
are presented.

2 State of the Art

Nowadays there are many works about heuristic frameworks. Most of them have the
lack of low generality, because they are focused in an specific field, like EasyLo-
cal++ [10] (focused in Local Search) or SIGMA [11] (in the field of optimization-
based decision support systems). Another common problem is that they are just
libraries (like ECJ [14], Evolutionary Computation in Java), they have no GUIs, or
they are complicated to install and require many programming skills. Another issue
could be the lack of comfort, for example, C++ has a more complicate sintaxis than
other languages.

Among this great number of frameworks we want to focus in the most widely ac-
cepted distributed algorithms frameworks. MALLBA [1] is based in software skel-
letons with a common and public interface. Every skeleton implements a resolution
technique for optimization in the fields of exact, heuristic or hybrid optimization. It
provides LAN and WAN capacity distribution with MPI . However, it is not based in
the plug-in development, so it can not take advantage of features like the life-cycle
management, versioning, or dynamic service binding, as OSGi proposes.

Another important platform is DREAM [3], which is an open source framework
for Evolutionary Algorithms based on Java that defines an island model and uses the
Gossip protocol and TCP/IP sockets for communication. It can be deployed in P2P
platforms and it is divided in five modules. Every module provides an user inter-
face and different interaction and abstraction level, but adding new functionalities is
not so easy, due to the system must be stopped before adding new modules and the
implementation of interfaces must be defined in the source code, so a new compila-
tion is needed. OSGi lets the addition of new functionalities only compiling the new
features, not the existing ones.

ParadiseEO [6] allows the design of Evolutionary Algorithms and Local Search
with hybridization, providing a variety of operators and evaluation functions. It also
implement the most common parallel and distributed models, and it is based in
standard libraries like MPI, PVM and Pthreads. But it has the same problems that the
previous frameworks, not lifecycle managment or service oriented programming.
GAlib [23] is very similar and share the same characteristics and problems.



214 P. García-Sánchez et al.

In the field of the plug-in based frameworks, HeuristicLab [20] is the most impor-
tant example. It also allows the distributed programming using Web Services and a
centralized database, instead using their own plug-in design for this distributed com-
munication. Moreover, the used plug-in system does not uses a public specification
like OSGi. And also it is a proprietary software, like their execution environment,
the .NET platform [7].

Finally, METCO framework [13] also have the same problems, it not uses a stan-
dard plug-in system or SOA, but let the implementation of existing interfaces, and
lets the user configure its existing functionalities.

In summary, the previous works present a number of shortcomings when design-
ing and adding new features: they need to modify source code or be stopped in order
to add new features and they are not based in a public plug-in specification. Also
they not have an event administration mechanism and they are not service-oriented,
so they not take advantage of this paradigm.

3 Used Technologies

OSGi features can be useful in the development of distributed algorithms, so this
section describes the tools and communication protocols employed within the pre-
sented framework.

3.1 OSGi

OSGi implements a dynamic component model, unlike normal Java environments.
Applications or components (also called bundles) can be remotely installed, started,
stopped, updated or uninstalled on the fly; moreover, the classes and packaging man-
agement is specified in detail. The framework provides APIs for the management of
services that are exposed or used by the bundles.

A bundle is a file that contains compiled and packaged classes and a configura-
tion file. This file indicates which classes imports or exports the bundle.

The most important concept in OSGi is the service. The services allow to connect
bundles in a dynamic way, offering a publication-search-connection model. That
is, a bundle exposes a service by a Java interface, and another bundle (or itself)
implements that interface. A third bundle can access this service using the exposed
interface without having any knowledge of how it is implemented, using the Service
Registry. The Figure 2 shows an example of the OSGi architecture.

It would be useful if this connection could be done out of the source code, so the
OSGi also provides components. A component is a class inside a bundle together
with an XML description. This description is interpreted in execution time to create
and remove services depending the availability of other services, other components
or configuration data. The main difference between a component and a normal class
inside a bundle is that in the second the association between interface and imple-
mentation of the service must be defined in the source code, and also the depen-
dency management and the service state detection, being this a tedious work for the



A Distributed Service Oriented Framework for Metaheuristics 215

Fig. 2 In OSGi a service can be implemented by several bundles. Other bundles may chose
among this implementations using the Service Registry

programmer. To facilitate this task in OSGi the Declarative Services specification
[17] arises. It lets that, for example, we could create a class that is not activated until
an specific and required service is detected. When this service is active, the class
can use it with a bind method. It is important to note that implementation will be
injected in execution time, not in compilation time.

OSGi also provides event handling with an implementation of the event broker
pattern, the Event Admin. It is an interbundle communication mechanism based
on a publish-and-subscribe model. Some bundles publish events and some other
bundles can read this events, being this task transparent for the programmer: the
sender does not need to know who are listening their events, and the listener can
filter among the events.

3.2 R-OSGi

One of the problems of OSGi today is its inability to invoke remote services and
its lack of a distributed module management, so other protocols adapters have been
created, like JINI [22] and UPnP [16]. Nevertheless these approximations can be
considered invasive, due to their requirement of re-structuring the application. This
is the reason that R-OSGi arises [19]. R-OSGi is a middleware layer inside OSGi
that lets a more transparent distribution of the application parts simply distribut-
ing its software modules. Inside the OSGi framework the remote and local services
are indistinguishable, so the existent OSGi applications can be distributed without
modification using R-OSGi. Moreover, this middleware does not imposes client-
server assignation because the modules relationship is symmetric. The authors have



216 P. García-Sánchez et al.

demonstrated that the R-OSGi is similar to the highly optimized Java 5 RMI imple-
mentation and two times faster than UPnP.

R-OSGi creates client proxies. For the client of a service, this proxies behave as
local services and they also are provided by locally instantiated bundles. However
a proxy bundle redirects all received calls to the original service that resides in the
remote machine, and propagates the result of the call back to the client. An example
of this architecture is shown in Figure 3. The events used in the previously explained
Event Admin are also transmitted in a transparent manner: the senders and the re-
ceivers of the events do not need to add anything to the program code in order to
receive the events among distributed nodes, because they do not need to know where
the nodes are.

Fig. 3 Architectural overview of R-OSGi. The node B uses Service Proxy as a normal service

4 OSGiLiath Platform

This section dives in the functionality and design of the proposed environment,
called OSGiLiath (OSGi Laboratory for Implementation and Testing of Heuristics).
This environment is a framework for the development of heuristic optimization ap-
plications, not centred on a concrete paradigm, and whose main objective is to pro-
mote the OSGi usage and offer to programmers the next features:

• Easy interfaces
• Asynchronous data sending/receiving
• Component Oriented Programming
• Client/Server or Distributed Model
• Paradigm independent
• Declarative Services
• Remote event handling

The source code is available in http://atc.ugr.es/~pgarcia, under a GPL
license. The environment presented in this work lets defining implementations for
specific problems using the OSGi benefits. Its architecture is composed by three
levels or layers: Interface, Heuristic and Problem (see Figure 4).

http://atc.ugr.es/~pgarcia


A Distributed Service Oriented Framework for Metaheuristics 217

Fig. 4 Defined layers in OSGiLiath

The Interface layer provides a hierarchy of interfaces defined to develop dis-
tributed heuristics. Some examples are Algorithm, Distributed Algorithm, Solution,
Problem, Input Data or Parameters. It also provides interfaces and objects for dis-
tributed programming, like Server, Node or Task. This class hierarchy, exported as a
bundle is well-defined, because it will be the basis to construct the full application.
As every bundle, it can export these interfaces to be used by another bundles. These
interfaces must be implemented in the next framework level, the Heuristic layer.
Using the OSGi Declarative Services Specification [17], the instances of these im-
plementations will be activated when they are necessary and accessed among them.
Finally, (Problem) layer defines what problems will be executed in the framework.

Furthermore, using the R-OSGi functionality we can add the feature of dis-
tributed applications in an undetermined number of nodes. In this case, we have
to implement several Tasks, whose implementation can be in different nodes. Given
the platform architecture the Heuristic or Problem layers could be in remote nodes,
so the user could define new problems or heuristics and automatically bind with the
necessary elements to execute.

5 Development Example Using OSGiLiath

As an example of usage of the presented framework, a tabu search and a distributed
genetic algorithm have been developed to solve the Vehicle Routing Problem (VRP)
and the capabilities of the framework have been tested. Due to space restriction we
refer the reader to [8], which explains the implemented Tabu Search and a more
formal problem approach. The Tabu Search is a sequential algorithm, while the
Genetic Algorithm uses a distributed island model: every node executes a separate
algorithm and swaps individuals with the other nodes.



218 P. García-Sánchez et al.

5.1 Specifying an Application

The first step to develop in OSGiLiath is to implement the interfaces defined in
previous sections to build specific implementations. For example, TabuSearch and
DistributedGeneticAlgorithm are implementations of Algorithm and DistributedAl-
gorithm. The implementation of each algorithm must be as general as possible, due
to the implementation of the problem to solve its developed in the next level. So, in
this layer more interfaces are defined, like StopCriterion, TabuList, Mutation, Fit-
ness or IndividualInitialization. This level uses the feature of Declarative Services
in order to obtain automatically the implementation of that interfaces.

5.2 Specifying the Problem

Finally in this level the problem to solve is specified in more detail. For example we
have implemented the interfaces Problem, Individual, Crossover or TabuList with
the ProblemVRP, IndividualVRP, CrossoverVRP and TabuListVRP classes. Due to
they have been exposed as declarative services, when they are activated, the services
defined in the previous level also will be activated.

All work developed in this level can be added to the base platform, since all com-
ponent are clearly differentiated, and other developers could implement their own
problems to apply the Genetic Algorithm or Tabu Search, or add new algorithms to
solve the VRP problem.

5.3 Adding Distributed Capacity

Using declarative services implementation of Task interfaces are created. In the Tabu
Search example, remote nodes could search the best neighbourhood of the current
solution, receiving a movement list and the Tabu List, but due to the canonical Tabu
Search is difficult to parallelize because of the latency we only have tested the se-
quential algorithm.

In the case of the Genetic Algorithm, every certain number of iterations each
node receives one of the best individuals of the other nodes, randomly selected.
Thanks to the OSGi features, every service can be distributed in a transparent way
(operators, algorithms, initers, schedulers). The programmer does not need how the
communication is performed or where the implementation is, he only needs to know
the interface of the service.

All the nodes have knowledge of what the other are doing, thanks to the OSGi
event handling mechanism. Whenever an iteration or algorithm over, events are pub-
lished and read by the others, so the algorithms can synchronize or inform to others
about their results.

Along with the challenges of OSGi [12], there exists the issue of the loss of
abstraction in the development of the interfaces of our framework, so a study to find
balance between cohesive and loose coupled hierarchy will be performed in future.
In problem-specific algorithms, where exist a tightly coupled association, the usage



A Distributed Service Oriented Framework for Metaheuristics 219

Fig. 5 OSGiLiath architecture. The user can implement heuristics and problems interfaces

of events and automatic communication mechanisms will be helpful if they are used
properly.

6 Experiments

Once the algorithms development have been explained we present the obtained re-
sults. We have to say that the presented work is a proof-of-concept, so these results
are shown as example. We have used a 4 nodes cluster, each one of them with a 1.6
GHz, 4 GB RAM and Java version 1.5. The common parameters for the algorithms
are a stop criterion of 60 iterations without improve the best solution and random
initial solutions. In Tabu Search the Tabu List have 30 moves. The Genetic Algo-
rithm parameters are: 200 individual population with elitism, migration of one of
the 10 best individuals, randomly selected every 10 iterations; mutation probabil-
ity is 0.5 and a tournament selection for crossover of the 50 best individuals. The
instances of the two problems have been extracted from [4].

The obtained results are shown in Table 1. As can be seen, the Genetic Algo-
rithm results outperforms the Tabu Search, due to the used crossover swaps com-
plete routes, unlike the Tabu Movements, that moves an unique shop in the routes.
The time taken in the sequential Genetic Algorithm also is lower than the sequential
Tabu Search.

However, the purpose of this work is not perform an analysis of the presented
algorithms, but show the ease of using this framework in the distributed algorithm
development.



220 P. García-Sánchez et al.

Table 1 Result table for the experiments (average ± standard deviation)

Nodes Cost Iterations Time (s)

Tabu Search
1 2330.18 ± 86.41 312.13 ± 20.26 224.70 ± 11.61

Genetic Algorithm
1 2318.83 ± 72.89 4222.60 ± 435.04 100.43 ± 10.51
2 2268.11 ± 74.53 4759.52 ± 798.54 113.33 ± 87.80
3 2223.18 ± 54.13 4903.66 ± 338.40 128.94 ± 65.67
4 2212.24 ± 29.85 4740.20 ± 278.45 124.85 ± 98.20

Every experiment was executed 10 times.

7 Conclusions and Future Work

This work presents an environment for the development of distributed algorithms
extensible via plug-ins and based in a wide-accepted software specification (OSGi).
OSGi features (declarative services, dynamic life-cycle management, or package
abstraction) are used to easily create algorithms in a layered way. Moreover, it uses
R-OSGi to develop distributed services. We have shown the Tabu Search and the
Genetic Algorithm implementation as an example.

As future work an automatic generated GUI will be developed to dynamically
control which problems, algorithms or parameters to use. A study about scalability
using other algorithms (like GRASP, Scatter Search, Ant Colony Optimization and
others) will be performed. Also, we are going to increase the usage of the OSGi
capabilities, like the Event Administration or automatic service management in a
deeper way. Additionally we intend to create a web portal to centralize all new im-
plementations of problems and algorithms to let the distribution within the base plat-
form, so the users just have to write the level 3 classes to solve particular problems.
An study of porting existing software to our framework (especially those works
that are written in Java, like DREAM or ECJ) will be performed. Moreover, due to
the ease of implementations binding with their interfaces it is planned to develop
the functionality of chosing one implementation or another depending on several
parameters or, for example, using Genetic Programming to evolve and hybridize
algorithms.

Acknowledgements. Supported by projects AmIVital (CENIT2007-1010) and EvOrq
(TIC-3903).

References

[1] Alba, E., Almeida, F., Blesa, M., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León, C.,
Luque, G., Petit, J., Rodríguez, C., Rojas, A., Xhafa, F.: Efficient parallel LAN/WAN
algorithms for optimization, the MALLBA project. Parallel Computing 32(5-6), 415–
440 (2006)



A Distributed Service Oriented Framework for Metaheuristics 221

[2] Alliance, O.: OSGi alliance (2004), http://www.osgi.org/
[3] Arenas, M., Collet, P., Eiben, A., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M.,

Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós,
J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.)
PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)

[4] BranchAndCutorg. Vehicle routing data sets (2003),
http://branchandcut.org/VRP/data/

[5] Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice-
Hall, Englewood Cliffs (1999)

[6] Cahon, S., Melab, N., Talbi, E.: ParadisEO: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

[7] Escoffier, C., Donsez, D., Hall, R.S.: Developing an OSGi-like Service Platform for
.NET. In: 3rd IEEE Consumer Communications and Networking Conference, vol. 1-3,
pp. 213–217 (2006)

[8] Esparcia-Alcázar, A.I., Cardós, M., Merelo, J.J., Martínez-García, A., García-Sánchez,
P., Alfaro-Cid, E., Sharman, K.: EVITA: An integral evolutionary methodology for the
inventory and transportation problem. Studies in Computational Intelligence 161, 151–
172 (2009)

[9] Foster, I.: The Grid: A new infrastructure for 21st Century Science. Phisics Today 55,
42–47 (2002)

[10] Gaspero, L., Schaerf, A.: Easylocal++: an object-oriented framework for the flexible
desgin of local search algorithms and metaheuristics. In: Proceedings of 4th Metaheuris-
tics International Conference (MIC 2001), pp. 287–292 (2001)

[11] González, J.R., Pelta, D.A., Masegosa, A.D.: A framework for developing optimization-
based decision support systems. Expert Systems with Applications 36(3, Part 1), 4581–
4588 (2009)

[12] Kriens, P.: Research challenges for OSGi (2008),
http://www.osgi.org/blog/2008/02/
research-challenges-for-osgi.html

[13] León, C., Miranda, G., Segura, C.: Metco: A parallel plugin-based framework for multi-
objective optimization. International Journal on Artificial Intelligence Tools 18(4), 569–
588 (2009)

[14] Luke, S., et al.: ECJ: A Java-based Evolutionary Computation and Genetic Program-
ming Research System (2009),
http://www.cs.umd.edu/projects/plus/ec/ecj

[15] Marples, D., Kriens, P.: The Open Services Gateway Initiative: An introductory
overview. IEEE Communications Magazine 39(12), 110–114 (2001)

[16] Miller, B.A., Nixon, T., Tai, C., Wood, M.D.: Home networking with universal plug and
play. IEEE Communications Magazine 39(12), 104–109 (2001)

[17] OSGi Alliance. Declarative services specification, pp. 281–314 (2007),
http://www.osgi.org/download/
r4-v4.2-cmpn-draft-20090310.pdf

[18] Papazoglou, M.P., Van Den Heuvel, W.: Service oriented architectures: Approaches,
technologies and research issues. VLDB Journal 16(3), 389–415 (2007)

[19] Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-osgi: Distributed applications through soft-
ware modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS,
vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

http://www.osgi.org/
http://branchandcut.org/VRP/data/
http://www.osgi.org/blog/2008/02/research-challenges-for-osgi.html
http://www.osgi.org/blog/2008/02/research-challenges-for-osgi.html
http://www.cs.umd.edu/projects/plus/ec/ecj
http://www.osgi.org/download/r4-v4.2-cmpn-draft-20090310.pdf
http://www.osgi.org/download/r4-v4.2-cmpn-draft-20090310.pdf


222 P. García-Sánchez et al.

[20] Wagner, S., Affenzeller, M.: Heuristiclab grid - a flexible and extensible environment
for parallel heuristic optimization. In: Proceedings of the International Conference on
Systems Science, vol. 1, pp. 289–296 (2004)

[21] Wagner, S., Winkler, S., Pitzer, E., Kronberger, G., Beham, A., Braune, R., Affenzeller,
M.: Benefits of plugin-based heuristic optimization software systems. In: Moreno Díaz,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp.
747–754. Springer, Heidelberg (2007)

[22] Waldo, J.: The Jini architecture for network-centric computing. Communications of the
ACM 42(7), 76–82 (1999)

[23] Wall, B.: A genetic algorithm for resource-constrained scheduling, Ph.D. thesis. MIT,
Cambridge (1996), http://lancet.mit.edu/ga

http://lancet.mit.edu/ga

	A Distributed Service Oriented Framework for Metaheuristics Using a Public Standard
	Introduction
	State of the Art
	Used Technologies
	OSGi
	R-OSGi

	OSGiLiath Platform
	Development Example Using OSGiLiath
	Specifying an Application
	Specifying the Problem
	Adding Distributed Capacity

	Experiments
	Conclusions and Future Work
	References




