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Abstract. A realistic replacement of the general imitation rule in the Iterated Pris-
oner Dilemma (IPD) is investigated with simulation on square lattice, whereby the
player, with finite memory, can only imitate those behaviors of the opponents ob-
served in past games. In contrast to standard practice where all the possible behav-
iors of the opponents are accessible, the new partial imitation rule assumes that the
player can at most access those behaviors of his opponent observed in the past few
moves. This partial imitation of the behavior in IPD shows very different out-comes
in the long time behavior of the games, such as the ranking of various strategies. In
particular, the well known tit-for-tat (TFT) strategy loses its importance.

1 Introduction

Game theory [1] has attracted the attention of many scientists working in complex
systems as an experimental playground in computer simulation of multi-agent sys-
tems is now easily available [2]. Since the introduction of evolutionary game theory
by Maynard Smith and Price [3, 4], one of the important issues of this theory is
to understand the spontaneous cooperation towards a more efficient outcome with
agent interactions in the absence of a central planner [5, 6]. Among the many games,
the most studied example by political scientists and sociologists is the Prisoner’s
Dilemma, as it provides a simple example of the difficulties of cooperation [7].
Prisoner Dilemma (PD) is described by the following set of rules. When two play-
ers play a PD game, each of them can choose to cooperate (C) or defect (D). Each
player will gain a payoff depending jointly on his choice and the opponent’s choice.
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Cooperation yields a payoff R(S) if the opponent cooperates (defects) and defection
yields T (P) if the opponent cooperates (defects). R is the Reward for cooperation, S
is the Sucker’s payoff, T is the Temptation to defect and P is the Punishment. Typi-
cally, T > R > P > S and 2R > T +P. PD game is a non zero sum game because one
player’s loss does not equal the opponent’s gain. In order to reduce the amount of
parameters, one can follow Nowak et al. [8] and use the following simplified payoff
tableA,

A =
(

R S
T P

)

=
(

1 0
b 0

)

. (1)

In this setup, there remains a free parameter b(= T ) which should be in the range
(1,2). The tragedy behind this simple PD game is that the best strategy for a selfish
individual, who chooses to defect, will result in mutual defection. This entails the
worst collective effect for the society. In this game, the expectation of defection (D)
is greater than the expectation of cooperation (C), independent of the opponent’s
strategy, even though mutual cooperation yields a higher total payoff for the society.
The only state where no player can gain more by unilaterally changing its own strat-
egy, the state called the Nash Equilibrium, occurs when all players defect. Hence, if
the players use the simple imitation rule so that the players will adapt the strategy
of a more successful player, the dominant strategy is defection. In order to further
investigate the emergence of cooperation, a variant of the PD game is to consider a
set of players located on a lattice and play the so-called spatial PD game (SPDG). In
this case, cooperators can support each other in more than one dimension [9]. There
are other approaches which will favor the survival of cooperation, as can be found
in the recent work of Hebling et al [10] and Nowak [6].

The total income of player i in the spatial PD game can be described by a two-
state Potts model Hamiltonian [2, 11]:

Hi = ∑
j(i)

S
˜

T
i A
˜

S
˜

j withS
˜

T
i , S
˜

j ∈
{−→

C ,
−→
D
}

and
−→
C =

(
1
0

)

,
−→
D =

(
0
1

)

(2)

Here is the state vector for player j who is a neighbor of player i and the state vector
can be either one of the two unit vectors . The summation runs over all the neighbors
of the player i sitting at node i, while the neighborhood is defined by the topology
of the given network. We will also give the players the ability to remember a fixed
number of the most recent events and supply each player with a rule to decide what
move they should take to respond to a history. We call this rule a strategy. A com-
plete strategy covers all the possible situations but in a real game only a subset of the
strategy will be used. Players will adapt their strategies, imitating other more suc-
cessful players following a certain imitation rule. The usual imitation rule assumes
that the player will copy all the strategies of his idol, who is a more successful op-
ponent in his encounter. However, if only a subset of all the strategies of the idol
has been used, it is unrealistic for the player to copy all the strategies, including
those that have never been observed. A realistic modification on the imitation rule
is to copy only those strategies that have been observed. The modification of the
traditional imitation rule is necessitated by the fact that all players can only have



Partial Imitation Rule in Iterated Prisoner Dilemma Game on a Square Lattice 143

finite memory. This simple observation, together with the existence of a generally
large set of possible strategies, motivates us to consider a new imitation rule. We call
it a "partial imitation rule", as it permits the player to imitate at most those strate-
gies his idol has used. In real life, a player cannot even remember all the observed
moves of his idol. We will formulate our representation of the strategy and the nu-
merical methods used in setting up the spatial iterated PD game in Section 2. We
then present a detailed discussion on the various imitation rules in Section 3. The
results of our simulation are summarized and discussed in Section 4. We conclude
with some discussion on the implication of partial imitation rule and discuss future
works in the final section.

2 Methods

2.1 Memory Encoding

A two-player PD game yields one of the four possible outcomes because each of
the two independent players has two possible moves, cooperate (C) or defect (D).
To an agent i, the "outcome" of playing a PD game with his opponent, agent j, can
be represented by an ordered pair of strategies sis j. Here si can be either C for "co-
operate" or D for "defect". Thus, there are four possible scenarios for any one game
between them: {sis j} takes on one of these four outcomes {CC, CD, DC, DD}. In
general, for n games, there will be a total of 4n possible scenarios. A particular pat-
tern of these n games will be one of these 4n scenarios, and can be described by an
ordered sequence of the form Si1S j1 ...SinS jn. This particular ordered sequence of
outcomes for these n games is called a history of games between these two players,
which consists of n pairs of outcome {SiS j}, with the leftmost one being the first
game played, while the rightmost one being the outcome of the last gamed played,
or the most recent outcome. For example, an ordered sequence of strategy pairs
DDDDDDCC represents that the two players cooperate right after the past three de-
fection {DD}, {DD}, {DD}. Note the convention for the outcome is that the in the
pair {sis j}, si is the move made by agent i, who is the player we address, while s j is
the move made by agent j, the opponent of our player.

We say that a player has a memory of fixed-length m, when this player can re-
member only m-pairs of outcomes. Obviously, a "Memory" is a sub-sequence of a
history. In a PD-game with a fixed memory-length m, the players can get access to
the outcomes of the past m games and decide the response to the specific outcomes
in the present game. For example, for an agent with two-game memory (m = 2),
given a history represented by DDDDDDCC, the memory of the player consists of
only the substring DDCC. Because a given memory can be represented by a unique
sequence of strategies, a memory can be conveniently designate by a unique num-
ber. In this paper, cooperation is represented by 1 and defection 0. Thus, the memory
DDCC can be represented by the binary number 0011 or the decimal number 3. The
number of all the possible memory, given that the agent can memorize the outcomes
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of the last m games, is 4m. Next, we must address the beginning of the game be-
tween our players.

Let’s consider a non-trivial example when m = 3. In this case there are 64 =
4m = 4 · 3 possible histories of the strategies used by the two players. Following a
method proposed by Bukhari and Haider[12], we reserve one bit for the first move
of our player: {D, C}, and use two more bits for the second move of our player
when confronted with the two possibilities of the first move of the opponent {D, C}.
(Our player can choose C or D when the opponent’s first move is D, and our player
also can choose C or D when the opponent’s first move is C. Thus we need two
more bits for our player). To account for the four possible scenarios of the last
two moves of the opponents: {DD, DC, CD, CC}, we need to reserve 4 more bits
to record the third move of our player. Thus, for a PD game played by prisoners
who can remember 3 games, a player will need 1 + 2 + 4 = 7 bits to record his
first three moves. After this initial stage, the strategy sequence for our player will
need to respond to the game history with a finite memory. Since there are a total
of 64 = 4m = 4 · 3 possible Memory, i.e., 64 possible outcomes of the last three
games, our player will need 64 more bits. In conclusion, the length of the strategy
sequence is 7+64 = 71 and there are a total of , possible strategies. Thus the space
of strategies for a m = 3 game is already very large. Let’s now denote the ensem-
ble of m-step memory as Mm, then the total number of bits required to encode the
possible strategy sequence is b(m) = 2m− 1 + 4m and the total number of possi-
ble strategy sequences is |Mm| = 2b(m). Table 1 summarizes the enumeration of
the encoding of the possible strategies for m = 1. The representation of the strat-
egy sequence in M1 is denoted as S0|S1S2S3S4. Here b(1) = 5 and there are a total
of 32 possible strategies, since each Si can have two possible choices (C or D) for
i = 0, ..., 4. For m = 2, we have b(2) = 19 and |M2|= 524288, allowing for an ex-
haustive enumeration of all possible strategies [13]. For m = 3, we see that the |M3|
is 271 = 2.4 ·1021, which is already very large.

Table 1 Representation of Strategy Sequence in M1

Memorized History First Move DD DC CD CC
Players’ Strategy S0 S1 S2 S3 S4

2.2 Monte Carlo Simulation

In this paper, agents will be placed on a square lattice of size LxL, with periodic
boundary condition. Each agent only interacts with its four nearest neighbors. For
one confrontation we randomly choose an agent i and a neighbor j of i and let
them play F games with each other. We can compute the payoff U(i) and U( j) of
agent i and j over these games in this confrontation. The payoff parameters used
are T = 5.0, R = 3.0, P = 1.0, S = 0.0, which are widely used and allow mean-
ingful comparison with the existing results. Agent i will then imitate agent j with
probability
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P(i imitates j) =
1

1 + exp
(

Ui−Uj
K

) (3)

K is similar to the temperature and represents the thermal noise level. The larger
corresponds to smaller noise. We use K = 100. The reason that we decide that in
one confrontation between agent i and j, they have to play F(> 1) games is that
memory effect will not be evident unless there is some repeated encounter between
the two players to let them learn about the selected strategies used. However, a fixed
number for F is rather artificial. Different pairs of players may play different num-
ber of games. Furthermore, we find that fixing F does affect the results in a complex
manner. In order to test the strategies for different F , we introduce a probability pa-
rameter p for a player to stop playing games with his chosen opponent. We further
define one generation of the PD game on the square lattice when all LxL confronta-
tions are completed. With this stopping probability p, one effectively control the
average number of games played between pair of players, thereby determining F .
The choice of F and the rest of the procedure in one independent simulation can be
described by the pseudo code in algorithm 3 for a given p.

Algorithm 3. Iterated SPDG algorithm.
P := 0.05
F := 1
for i = 0 to 100 do

while rand() > p % where rand() generates a random number in [0,1) drawn from a
uniform distribution do

F := F +1
end while

end for
for j = 0 to L ∗L do

randomly pick one site A
A plays with its neighbors, each confrontation lasts for F games
randomly pick one site B from A’s neighborhood
B plays with its neighbors, each confrontation lasts for F games

if rand() <
{

1.0+exp
(

A.payo f f−B.payo f f
K

)}−1
then

A imitates B using different imitation rules
end if

end for

3 Imitation Rule

The standard imitation rule for the spatial PD game without memory is that the focal
agent i will adopt the pure strategy of a chosen neighbor depending on payoff. The
generalized imitation rule for PD game with memory is adopting the entire set of
strategy sequences. We call such imitation rule the traditional imitation rule (tIR).
In this way, tIR impose that condition that every agent has complete information
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about the entire set of the strategy sequence of all its neighbors. Such assumption
of complete information is unrealistic since the focal agent only plays a few games
with its neighbors while the space of strategies used by the neighbor is generally
astronomically larger than F . A more realistic situation is that the focal agent i
only has partial information about the strategies of his neighbors. In this paper, ev-
ery agent only knows a subset of the strategy sequence used by a chosen neighbor.
For a pair of players (i, j), playing approximately F games, the focal player i will
only observed a set (S j(i, j)) of strategy sequences actually used by agent j. This
set S j(i, j) is much smaller than the entire set of strategies available to agent j.
With this partial knowledge of the strategies of the neighbors, the new imitation
rule for agent i is called the partial imitation rule. We will give an example to il-
lustrate the difference between partial imitation rule and the traditional one. Let’s
consider an agent i with C|DDDD strategy confronts another agent j with the Tit-
for-Tat strategy (S0|S1S2S3S4 = C|DCDC) and agent i decides to imitate the agent
j’s strategy. In tIR, we assume that agent i somehow knows all the five bits of Tit-
for-Tat though in the confrontation with agent j only four bits of Tit-for-Tat have
been used. On the other hand, with partial imitation rule (pIR), when a C|DDDD
agent confronts a Tit-for-Tat agent, the C|DDDD will know only four bits of Tit-
for-Tat (S0|S1S2S3S4 = C|DCDC), i.e., S0 = C, S1 = D, S2 = C, S)3 = D ( c.f. table
1 ). Thus, when agent i imitates agent j using pIR, agent i will become (C|DDDC),
which corresponds to a Grim Trigger instead of Tit-for-Tat (C|DCDC). We call this
new imitation rule the type 1 partial imitation rule, denoted by pIR1. In a more
relaxed scenario, we can slightly loosen the restriction on the access of our focal
agent i to the information of neighbors’ strategy sequences. If we denote the sub-
set of agent j’s strategy sequence used during the confrontation between agent i
and agent j as S j(i, j), then we can assume that agent i knows the larger subset of
strategy sequences of agent j described by

G j(i, j) =
⋃

k∈Ω( j)

S j(k, j) (4)

where Ω( j) denotes the nearest neighbors of agent j. Note that this set of strategy
sequences of agent j is substantially larger than S j(i, j), but still should generally be
much smaller than the entire set of strategies of player j. In pIR1, we provide agent
i information on agent j defined by the set S j(i, j). We now introduce a second type
of partial imitation rule, denoted by pIR2, if we replace S j(i, j) by the much larger
set G j(i, j).

We now illustrate pIR2 with an example using the notation of table 1. Consider an
always-cooperating agent i (C|CCCC) confronting a Grim Trigger (C|DDDC) agent
j, who has four neighbors. One of them of course is the always cooperating agent
i. Let’s assume that the remaining three neighbors of agent j are always-defecting
(D|DDDD). Let’s call these three neighbors agent a, b, and c. In the confrontation
between agent i (who is C|CCCC) and agent j (Grim Trigger), S0 and S4 of Grim
Trigger are used. However, in the confrontation between agent j (Grim Trigger) and
its three neighbors (agent a, b and c), who are D|DDDD, agent j will use S0, S1
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and S3 of Grim Trigger. With pIR1, agent i imitates agent j, but the result will be
unchanged as they will use C for S0 and S4 of Grim Trigger based on the set S j(i, j).
However, for pIR2, agent i imitates agent j and changes from C|CCCC to the Grim
Trigger agent, which results in a change of its S0, S1, S3 and S4 to the corresponding
bits of Grim Trigger, giving the new strategy of agent i as C|DCDC. This is not a
Grim Trigger. Finally, if we use tIR, the traditional imitation rule, we of course will
replace agent i with Grim Trigger (C|DDDC). We see from this example, the result
of tIR, pIR1 and pIR2 are all different.

4 Results

We first test our algorithm of SPDG with the published results [13]. We initialize
our strategy sequence with each element assigned cooperation or defection at equal
probability and reproduce results similar to figure 3a in [13] in figure 1 using the
traditional imitation rule. Here, Tit-For-Tat (TFT) and Grim- Trigger (GT) domi-
nate at long time. These two strategies together with Pavlov and C|CCDC are the
only four surviving strategies in the long run. In figure 2(a) we use partial imitation
rule 1 (pIR1) and in 2(b), we use pIR2. In both cases, only GT dominates and the
concentration of TFT is reduced greatly to the level of Pavlov and C|CCDC. Results
are independent of the lattice size, provided that it is sufficiently large so that every
strategy in M1 can be visited several times. We next discuss the importance of game
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Fig. 1 Concentration of important strategies in SPDG on 100x100 square lattice with M1.
Result is averaged over 1000 independent simulations, with K = 0.01, using traditional Imi-
tation Rule (tIR)
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Fig. 2 Concentration of important strategies in SPDG on 100x100 square lattice with M1.
Result is averaged over 1000 independent simulations, with K = 0.01, using partial Imitation
Rule 1 (pIR1) in figure 2(a) and partial Imitation Rule 2 (pIR2) in figure 2(b)
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sampling in terms of the value of p, i.e. the probability to end one confrontation at
time t. Our numerical experiments show that p affects the concentrations of all the
strategies regardless of the imitation rule used. When p = 1, agents will always co-
operate or defect without making use of the memory mechanism. When p is smaller
than 1, agents can use their memory to access the benefits of different strategies.
Recall that we have in general 32 strategies for M1. For sufficiently small p, our
numerical results indicate that the concentrations of these 32 strategies reach a con-
stant value at long time. In this paper, we choose p to be 0.05, but in fact when p is
smaller than 0.2, the results will not differ much.

5 Conclusion

Our introduction of memory effects on the players in spatial PD game indicates
the importance of the imitation rule used in the learning process of the players. We
started our spatial PD game with traditional imitation rule, which makes the unreal-
istic assumption that the players have a complete access of his opponent’s strategies.
When this assumption is relaxed and implemented with the partial imitation rules
that assume the players only have the information on a selected subset of his op-
ponent’s strategies, the long time behavior of the concentration of various strategies
are very different. Indeed, for the traditional imitation rule, where TFT and GT dom-
inate at long time, only GT remains dominant when partial imitation rule is used.
With the traditional imitation rule, TFT and GT dominate at the long run, while
with either partial imitation rule 1 or 2, only GT dominate the population and the
concentration of TFT is remarkably smaller than that with the traditional imitation
rule. This work shows that with memory, more realistic imitation rules may have an
impact on the concentration of the surviving strategies such as TFT and GT. In the
scenario we set up in the paper, GT is favored by the partial imitation rules. This re-
sult has important implication of previous studies on PD game as partial knowledge
of the opponents’ strategies should be the norm rather than the exception in real life.
In future work, we will investigate more on the generalization of our observation to
longer memory cases.
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