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Abstract. Subsumption architectures are a well-known model for behaviour-based
robotic control. The overall behaviour is achieved by defining a hierarchy of increas-
ingly sophisticated behaviours. We are interested in using evolutionary algorithms to
develop appropriate control architectures. We observe that the layered arrangement
of behaviours in subsumption architectures are a significant obstacle to automating
the development of control systems. We propose an alternative subsumption archi-
tecture inspired by the bacterial metabolism, that is more amenable to evolutionary
development, where communities of simple reactive agents combine in a stochastic
process to confer appropriate behaviour on the robot. We evaluate this approach by
developing a traditional and a metabolic solution to a simple control problem using
the e-puck educational robot.

1 Introduction

The behaviour-based approach to robotics and artificial intelligence [4] has given a
new spirit to a field that seemed lost in abstractions of the real world. While “tradi-
tional" robotics built complicated reasoning systems that created models of the real
world and successfully produced reasonable behaviour in simple and static environ-
ments, it seemingly failed to extend these systems to deal with dynamic real world
situations [11]. Behaviour-based robotics works on the assumption that internal rep-
resentations of the real world are unnecessary to produce reasonable behaviour in
dynamic environments and proves this to be true with many examples described in
several of Brooks’ papers [2, 3].
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Subsumption architectures are as highly engineered as their traditional counter-
parts. The approach identifies a hierarchy of autonomous behavioural layers with
simpler behaviours placed at the lower layers. Every layer produces some behaviour
in the robot and the higher layers can subsume the behaviour of lower layers, while
lower layers are not aware of the higher ones. During the design of the controller,
each layer is implemented as an autonomous system before ascending the hierarchy.
The upper layers can override instructions from the lower layers should the situation
demand it. Control modules are then assigned to appropriate layers, each of which
can connect sensors to actuators in different ways.

The problem of designing any form of layered control remains challenging. For
sophisticated environments, the number of layers can proliferate and it becomes
unclear where a control module should be placed and what the interconnectedness
should be. Attempts to automate the process have tended to simplify the problem by
evolving the system a layer at a time [9, 13]. However, it is difficult to ensure that
the entire system is optimised, since the overall control rarely depends on a single
layer.

We note that as the behaviours get richer, more and more internal modules are
connected only to other internal modules rather than being connected to sensors or
actuators. There is potential to make such modules and the connections between
them subject to adaptation via evolutionary algorithms since as long as the con-
nections to the outside world are preserved, the internal processing can change.
Evolving this sort of network is a difficult challenge however, particularly if the role
of modules and their connections is predefined (e.g. connections relating to “feel-
force", “heading" and “turn" ). We propose a finer-grained solution, in which control
is shared amongst a community of very simple processing agents that behave like
molecular species in biological reaction networks [7], and whose connections are
set by simple reaction rules that can be changed arbitrarily. This metabolic repre-
sentation allows a high level of interconnectedness between control layers, which is
more akin to biological reaction networks than control engineering. The metabolism
can be thought of as a community of control agents, which through their interaction
rates, network topology and concentrations give rise to emergent behaviour.

This paper compares an implementation of a subsumption architecture controller
with a controller based on a model metabolism. We refer to the two systems as
“subsumption control" and “metabolic control" respectively. We favour the latter
approach because we believe it lends itself more readily to solutions which can
be found through artificial evolution [8]. The work we present here shows how an
engineered control system can be implemented in an evolvable community control
system, and compares the performance of the two.

2 The Robot Model

The platform for our robot experiments is the e-puck, which is a readily avail-
able open-source research platform [10]. In addition to the physical hardware being
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available, a simulator model is available for the open-source player/stage platform
[1, 6]. We developed our control software using the simulator, but we used the phys-
ical characteristics of the real robot to constrain the design. The e-puck is equipped
with a variety of sensors and actuators. There are eight infrared sensors, as shown
in figure 1(a). We combine these into four channels to produce a sufficiently fine-
grained reaction to the environment: front (S_F); left-of-front (S_L), right-of-front
(S_R), and back (S_B). The e-puck is driven by two wheels, which are controlled
by actuator behaviours: Forward speed (A_F); Backward speed (A_B); Left turn
speed (A_L); Right turn speed (A_R). In the two control architectures we investigate
here, we define two functions called SensorHandler and a RobotUpdater for
the sensors and actuators respectively, to carry out any signal transduction between
the e-puck and the control system. The control challenge is thus to link the sensor
data to the actuator instructions, as illustrated in figure 1(b).

(a) (b)

Fig. 1 (a) coupling of sensors on the e-puck simulation. (b) the control task: incoming sensor
data must be coupled with actuator controllers to determine the speed and heading of the
robot

E-pucks have a range of control settings. The proximity sensor range is 0.1 me-
tres, which imposes constraints on the responsiveness of the control system if a col-
lision is to be avoided. The maximum speed of the real e-puck is 0.12m/s, therefore
the robot has 0.83s to respond appropriately to an obstacle detected by its sensors.
We are of course free to change this speed in the simulation.

As an experimental framework we used the open source platform Player/Stage.
Player is a network server that handles the actual low level robot control and pro-
vides a clean and simple interface to the robot’s sensors and actuators. Stage simu-
lates mobile robots, sensors and objects in a 2D environment and therefore provides
the hardware basis for the robot control handled by Player.
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3 Subsumption Architecture

A subsumption architecture is a layered control system. Our subsumption architec-
ture control system contains the following layers:

Layer 1: AVOID responds to obstacles flagged by the SensorHandler and changes
the speed of the robot accordingly. Each sensor produces a different hard coded be-
haviour, although the behaviour has a small noise component built into the design.
The avoid behaviour sets a new heading as soon as a sensor flags an obstacle. Details
are given in table 1

Layer 2: WANDER pseudo-randomly produces a new heading and speed for
the robot after a set number of time steps. The goal is to induce a behaviour which
allows the robot to explore its world. When wandering, headings are set every 15
time steps by selecting a turn value in the range +/−15 degrees, while the speed is
set to a pseudo-random value between 0.05 - 0.095 m/s.

Table 1 Reactions specified by the AVOID layer in the subsumption architecture

Sensor direction speed turn
S_F A_B: -0.15 m/s A_R: 90-180 degrees
S_L A_B: -0.1 m/s A_R: -60 degrees
S_R A_B: -0.1 m/s A_L: 60 degrees
S_B A_F: 0.15 m/s

4 Artificial Metabolomes

Our endeavours to create a mobile robot control system using an artificial
metabolism are built upon the particle metabolome developed within the Plazzmid
project [12]. The metabolic model is composed of four components. Firstly, there
exists a container, which specifies the volume and dimensionality of the space in
which the agents exist. We specify a simple 2D container of area vc = 40 units. Sec-
ondly, we have a set of metabolite agents, of area va = 9 units which are present
in varying quantities in the container, analogous to the various quantities of differ-
ent molecular species in a biological system. Thirdly we have a stochastic mixer,
which governs the movement and changes in adjacency of the elements within the
container. For a bimolecular reaction such as the bind B, our mixer utilises a simple
propensity function P(B), which estimates the probability of two agents being suf-
ficiently close enough for the reaction to occur. For any one agent in a bimolecular
reaction, the chance of the second agent in the reaction being close enough to react
is:

P(B|vc,va,n) = 1− (1− (va/vc))n (1)

where n is the number of instances of the second agent in the metabolism. Space
in the system is represented abstractly via the ratio of container area to agent area.
Apart from this consideration, the model is aspatial. Fourthly, agents react accord-
ing to a set of rules, which specify the reactions in the system. There are four types



A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck 5

of rules in the system as shown in table 2. Each rule has a rate, which governs how
often the reaction occurs when it is selected via a stochastic process. Influx is the
spontaneous generation of new agents in the system. In our case, objects detected
by sensors cause production of corresponding sensor agents to be generated in the
metabolism. Binding occurs when two reactants combine to create a single product.
Binding is the only bimolecular reaction permitted. Bimolecular reaction rates are
governed by the concentration of the two reactants in the system (via P()) and a fur-
ther reaction rate specified by the reaction rule. Behavioural switching is caused by a
sensor agent binding with a WANDER enzyme to produce an AVOID enzyme. Dis-
sociation is the splitting of a single agent into two agents. A dissociation rule which
has the same agent type on either side of the reaction (for example A→ A+X) can
be thought of as representing the production of new agents using materials that are
available at saturation in the metabolism, and whose concentrations are not mod-
elled for computational expediency. Decay is the spontaneous removal of an agent
from the system, and is important for sensor and actuator molecules, which must
decay quickly in order for the system to be responsive. Note that uni-molecular
changes from one molecular species to another are not permitted. The probability
of a bimolecular reaction is the product of the propensity and the reaction rate. Uni-
molecular reactions are governed by their reaction rate alone, since adjacency does
not need to be considered.

Table 2 The four types of reaction rule in the metabolic controller

Reaction Rule format network symbol
Influx: → A —

Binding: A+B → C �

Dissociation: A → B+C ›

Decay: A → “

These ingredients allow us to specify a metabolic control model for our e-pucks.
For a more detailed overview of this metabolic model see [7].

In our metabolic controller, there are three classes of agents which possess dif-
ferent qualities within this framework. Sensor agents are generated when a sensor
detects an obstacle. These are shown in white on the network diagrams below. Ac-
tuator agents are used to govern the speed and turning rate of the robot. These are
shown in grey. Both sensors and actuators decay quickly, in order to allow the robot
to be responsive. Enzyme agents form the connectivity between sensors and actua-
tors. They are shown in black. Enzymes do not decay, but can be changed into other
enzymes by reacting with other agents in the system. Reactions must be designed
such that the total number of enzymes in the system is conserved.
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5 Metabolic Subsumption

The metabolic network that we have designed for the robot control is based on the
control layers described in section 3. We describe here the reaction system that we
use to build behaviours that emulate these layers.

Fig. 2 Change in behaviour as a result of a sensor event. The metabolism switches from an
inert behaviour to an avoidance behaviour on the influx of S_F agents by producing A_B
agents

Figure 2 shows the network of an AVOID behaviour for a single sensor/actuator
pair, which illustrates the basic reaction system we use for metabolic robot control.
Symbols for reactions are described in table 2 and associated text. The system exists
in an inert state until sensor information is received. In this state, the only agent types
present in the system are the enzyme E_Inert and the deactivator enzyme A. When
the sensor is activated, sensor agents of type S_F are generated in the metabolism.
S_F binds with E_Inert to create EA_F. This enzyme uses a dissociation rule to
create a copy of itself and the actuator agent A_B, which instructs the robot to move
backwards. Once sensor agents have decayed out of the system, enzyme EA_F binds
with A to produce an intermediate B. B then dissociates back to E_Inert and A.

The network in figure 2 shows an AVOID behaviour for a single sensor and a
single actuator. We extend this model in figure 3 to show the metabolic network
for one sensor type that produces AVOID behaviour subsumed by a WANDER be-
haviour appropriate to the input. Since wandering involves moving in a particular
direction, actuators for turning are required. Information from the sensor is repre-
sented as quantities of S_F agents, which bind with the enzyme EW_F to create the
EA_F. The avoid enzyme produces the signalling agents A_B that instruct the robot
to reverse away from the obstacle. Note that EW_F and EA_F produce different
actuator enzymes, whereas EW_L and EA_L produce A_L at different rates, appro-
priate to the dominant behaviour. (We have not represented these different rates on
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Fig. 3 A metabolic network for input coming from a front sensor

the diagram for clarity.) This metabolic approach to control emulates a subsump-
tion architecture since the AVOID behaviour is autonomous and there is a switching
mechanism from one behaviour to another as the situation demands it. As long as an
avoid reaction is needed the wander behaviour is inhibited, because the wander en-
zymes are turned into avoid enzymes. When it is not needed anymore, i.e. no sensor
agents are injected, the avoid enzymes are turned back into wander enzymes. For
every type of sensor agent, the binding strengths are different to produce a different
change of speed. For example, if there is an obstacle directly in front of the robot,
there needs to be a wider turn than would be needed if the obstacle were slightly to
the left or right.

The complete control network for the metabolic subsumption is shown in fig-
ure 4. Such a network becomes necessarily complex when information from four
sensors is combined using a simple reaction rule set. Although the control architec-
ture for each sensor follows the same basic pattern, there are subtle differences. The
most striking of these is the sub-network for the rear sensor S_B. This is for two
reasons. Firstly, the WANDER behaviour has no connection to the actuator enzyme
A_B since when wandering the e-puck always moves in the forward direction as
governed by A_F. Secondly, if S_B is present, the e-puck should move forward just
as in the WANDER behaviour, but remaining A_B agents from previous reactions
might have to be counteracted, so that more A_F have to be produced to ensure a
forward movement.

We use the graphviz program [5] to visualise the network that our reaction rules
represent. Although this is a useful tool, the high level of connectedness in the net-
work prevents the automatic creation of network visualisations that makes the two
control layers distinct. Although the concept of control layers is essential to the de-
sign of the subsumption architecture, the embodiment of the layers in the metabolic
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Fig. 4 The metabolic network for 4 input directions: front, front-left, front-right and back

network exhibits strong connectivity between the layers. This rich connectedness
means that small changes at the level of nodes and reactions between them have the
potential to cause larger changes at the emergent level.

When the metabolism is initialised, all that is present in the network are 10 of
each of the WANDER enzymes, and 1 of the return enzymes A, C, and E. Actu-
ator agents for the wander behaviour are created as the metabolism runs. When a
sensor detects an obstacle, 10 of the corresponding sensor enzymes are placed in
the metabolism. The reaction rates that were used in our experiments are shown in
table 3.
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Table 3 Reaction rates of a metabolic control network for the e-puck

Reaction Rate Reaction Rate

Actuator signals for WANDER Actuator signals for AVOID
EW_F→ EW_F+A_F 0.8 EA_F→ EA_F+A_B 0.9
EW_L→ EW_L+A_L 0.16 EA_B→ EA_B+A_F 0.9
EW_R→ EW_R+A_R 0.16 EA_L→ EA_L+A_L 0.9

EA_R→ EA_R+A_R 0.9

Switch to AVOID behaviour Reversion to WANDER
EW_F+S_F→ EA_F 0.9 EA_F+A→ B 0.1
EW_L+S_F→ EA_L 0.9 EA_B+A→ B 0.1

B→ A+EW_F 0.1
EW_F+S_R→ EA_F 0.7
EW_R+S_R→ EA_R 0.7 EA_L+C→D 0.1

D→ C+EW_L 0.1
EW_F+S_L→ EA_F 0.7
EW_L+S_L→ EA_L 0.7 EA_R+E→ F 0.1

F→ E+EW_R 0.1
EW_F+S_B→ EA_B 0.1

Decay of actuators Decay of sensors
A_F→ 0.15 S_F→ 1
A_B→ 0.05 S_B→ 1
A_L→ 0.1 2 S_L→ 1
A_R→ 0.1 2 S_R→ 1

6 Experimental Evaluation

An appropriate WANDER behaviour should allow the robot to explore the arena
without giving it any particular strategy of exploration. The two control strategies
were manually tuned such that their average speeds were approximately equivalent.
We evaluated this via a visual inspection of the routes of the e-puck using the two
different controllers. Sample traces for both controllers during a 5 minute run (sim-
ulated time) are shown in figure 5. It is clear that both controllers induce behaviour
that can be interpreted as “wandering". However, it is difficult to obtain a quantita-
tive evaluation of the pattern of exploration that the two control strategies confer on
the e-puck.

Successful behaviours should prevent the e-puck from colliding with obstacles
and walls. To compare the performance of the control systems we looked at 50 wall
encounters for each set-up and counted the number of collisions. Since the metabolic
controller was more difficult to tune, we compared a single metabolic controller with
three subsumption architectures with different average and maximum speeds. Col-
lision events for both controllers are shown in table 4. It is clear that the subsump-
tion controller is more successful at responding to obstacles since the number of
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Fig. 5 A trace of the subsumption robot control running for a simulated time of 5 minutes

collisions is the same when it travels at nearly twice the speed of an e-puck that uses
the metabolic controller.

Both control systems were designed to reverse away from an obstacle recorded
on the sensors. While the subsumption architecture is able to change the speed and
heading immediately upon receipt of a signal from a sensor, the metabolic model
suffers from latency in its response. The wall encounters for the metabolic con-
troller shown on the right of figure 5 are different from those on the right for the
subsumption controller because of the latency in response between sensors and ac-
tuators. Latency is caused by the actuator agents that are present in the metabolism
as the sensor data comes in. When an obstacle is encountered, actuator agents must
be generated to counteract the actuator agents from the wander enzymes extant in
the metabolism. This is illustrated in figure 6, which shows the changes in enzyme
and actuator levels after an obstacle is encountered on sensor S_F. It is clear that
this configuration of the metabolic controller cannot respond immediately to an ob-
stacle since there are about 50 A_F agents in the system which instruct the robot to
move forward. This situation could be changed by tuning the disassociation rate of
A_F and making the enzyme EW_F produce A_F more quickly and so maintain a
similar number of A_F whilst the WANDER behaviour is dominant.

Table 4 Area (in pixels) covered by the control systems and collisions for 50 wall encounters

Subsumption metabolic
Max speed (preset) 0.3 0.15 0.15 0.15
Average speed (recorded) 0.15 0.15 0.075 0.075
Median area covered for 5 runs
of duration 5 minutes

6,264 6,491 3,460 3,574

collisions out of 50 wall en-
counters

11 4 0 4
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Fig. 6 Change in levels of actuator agents (top) and enzyme agents (bottom) as a result
of a sensor event, indicated by the black arrow. The wander enzyme EW_F (thick line) is
converted to the avoid enzyme EW_F (thin line) by binding with sensor agent S_F. This
results in a change in the levels of two actuator agents in the metabolism: A_F (thick line)
diminishes in quantity as A_B (thin line) accumulates, resulting in a change of direction from
a forward to a backward motion

7 Conclusions

We have succeeded in our main objective to create a metabolic control system that
emulated a simple subsumption architecture. This was motivated by the concept that
a chemical reaction network would be more amenable to evolutionary adaptation.

A key difference between the two network types is that the metabolic architec-
ture has node multiplicity - each node is represented by a quantity of autonomous
agents. Each agent is capable of reacting with agents representing other nodes in the
network. The metabolic approach lends itself to evolutionary adaptation [12], since
agents for each node in the network can play a number of roles, allowing for du-
plication and divergence of function on evolutionary timescales. In this work, both
the subsumption architecture and the metabolic architecture had to be “engineered"
in the sense that the actual avoiding reaction and speeds needed to be optimised by
hand. This approach allowed us to establish that an appropriate metabolic control
could actually be produced within this framework.

Although the behaviour of both systems is qualitatively similar, the metabolic
system suffers from latency in its reaction to obstacles. While the subsumption ar-
chitecture basically reacts immediately to sensor inputs, the metabolic control needs
some time to perform the necessary reactions and produce a sufficient metabolic re-
sponse. This means that the metabolic control reacts inherently slower than the sub-
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sumption architecture. However, it should be noted that our metabolic controllers
are more difficult to engineer by hand, since they have been designed to be trained a
posteriori by an evolutionary system. Our goal was not to implement a system that
performs “better" than a traditional subsumption architecture. Instead we focussed
on creating a system that lends itself more readily to evolutionary adaptation than a
traditional subsumption architecture. Our future work with the e-puck will therefore
concentrate on implementing evolutionary adaptation in the metabolic controller.
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