

Juan R. González, David Alejandro Pelta, Carlos Cruz, Germán Terrazas,
and Natalio Krasnogor (Eds.)

Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)

Studies in Computational Intelligence,Volume 284

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 264. Olivier Sigaud and Jan Peters (Eds.)
From Motor Learning to Interaction
Learning in Robots, 2009
ISBN 978-3-642-05180-7

Vol. 265. Zbigniew W. Ras and Li-Shiang Tsay (Eds.)
Advances in Intelligent Information Systems, 2009
ISBN 978-3-642-05182-1

Vol. 266.Akitoshi Hanazawa, Tsutom Miki,
and Keiichi Horio (Eds.)
Brain-Inspired Information Technology, 2009
ISBN 978-3-642-04024-5

Vol. 267. Ivan Zelinka, Sergej Celikovský, Hendrik Richter,
and Guanrong Chen (Eds.)
Evolutionary Algorithms and Chaotic Systems, 2009
ISBN 978-3-642-10706-1

Vol. 268. Johann M.Ph. Schumann and Yan Liu (Eds.)
Applications of Neural Networks in High Assurance Systems,
2009
ISBN 978-3-642-10689-7

Vol. 269. Francisco Fernández de de Vega and
Erick Cantú-Paz (Eds.)
Parallel and Distributed Computational Intelligence, 2009
ISBN 978-3-642-10674-3

Vol. 270. Zong Woo Geem
Recent Advances In Harmony Search Algorithm, 2009
ISBN 978-3-642-04316-1

Vol. 271. Janusz Kacprzyk, Frederick E. Petry, and
Adnan Yazici (Eds.)
Uncertainty Approaches for Spatial Data Modeling and
Processing, 2009
ISBN 978-3-642-10662-0

Vol. 272. Carlos A. Coello Coello, Clarisse Dhaenens, and
Laetitia Jourdan (Eds.)
Advances in Multi-Objective Nature Inspired Computing,
2009
ISBN 978-3-642-11217-1

Vol. 273. Fatos Xhafa, Santi Caballé,Ajith Abraham,
Thanasis Daradoumis, and Angel Alejandro Juan Perez
(Eds.)
Computational Intelligence for Technology Enhanced
Learning, 2010
ISBN 978-3-642-11223-2

Vol. 274. Zbigniew W. Raś and Alicja Wieczorkowska (Eds.)
Advances in Music Information Retrieval, 2010
ISBN 978-3-642-11673-5

Vol. 275. Dilip Kumar Pratihar and Lakhmi C. Jain (Eds.)
Intelligent Autonomous Systems, 2010
ISBN 978-3-642-11675-9

Vol. 276. Jacek Mańdziuk
Knowledge-Free and Learning-Based Methods in Intelligent
Game Playing, 2010
ISBN 978-3-642-11677-3

Vol. 277. Filippo Spagnolo and Benedetto Di Paola (Eds.)
European and Chinese Cognitive Styles and their Impact on
Teaching Mathematics, 2010
ISBN 978-3-642-11679-7

Vol. 278. Radomir S. Stankovic and Jaakko Astola
From Boolean Logic to Switching Circuits and Automata, 2010
ISBN 978-3-642-11681-0

Vol. 279. Manolis Wallace, Ioannis E.Anagnostopoulos,
Phivos Mylonas, and Maria Bielikova (Eds.)
Semantics in Adaptive and Personalized Services, 2010
ISBN 978-3-642-11683-4

Vol. 280. Chang Wen Chen, Zhu Li, and Shiguo Lian (Eds.)
Intelligent Multimedia Communication: Techniques and
Applications, 2010
ISBN 978-3-642-11685-8

Vol. 281. Robert Babuska and Frans C.A. Groen (Eds.)
Interactive Collaborative Information Systems, 2010
ISBN 978-3-642-11687-2

Vol. 282. Husrev Taha Sencar, Sergio Velastin,
Nikolaos Nikolaidis, and Shiguo Lian (Eds.)
Intelligent Multimedia Analysis for Security
Applications, 2010
ISBN 978-3-642-11754-1

Vol. 283. Ngoc Thanh Nguyen, Radoslaw Katarzyniak, and
Shyi-Ming Chen (Eds.)
Advances in Intelligent Information and Database Systems,
2010
ISBN 978-3-642-12089-3

Vol. 284. Juan R. González, David Alejandro Pelta,
Carlos Cruz, Germán Terrazas, and Natalio Krasnogor (Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010), 2010
ISBN 978-3-642-12537-9

Juan R. González, David Alejandro Pelta, Carlos Cruz,
Germán Terrazas, and Natalio Krasnogor (Eds.)

Nature Inspired Cooperative
Strategies for Optimization
(NICSO 2010)

123

Mr. Juan R. González
Dept. of Computer Science and A.I.
E.T.S. Ingenieŕıa Informática y de
Telecomunicación
C/ Periodista Daniel Saucedo Aranda s/n
University of Granada
18071 Granada, Spain

E-mail: jrgonzalez@decsai.ugr.es

Mr. David Alejandro Pelta
Dept. of Computer Science and A.I.
E.T.S. Ingenieŕıa Informática y de
Telecomunicación, C/ Periodista Daniel
Saucedo Aranda s/n
University of Granada
18071 Granada, Spain

E-mail: dpelta@decsai.ugr.es

Mr. Carlos Cruz
Dept. of Computer Science and A.I.
E.T.S. Ingenieŕıa Informática y de
Telecomunicación
C/ Periodista Daniel Saucedo Aranda s/n
University of Granada, 18071 Granada, Spain

E-mail: carloscruz@decsai.ugr.es

Mr. Germán Terrazas
School of Computer Science
University of Nottingham
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB, UK

E-mail: gzt@cs.nott.ac.uk

Mr. Natalio Krasnogor
School of Computer Science
University of Nottingham
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB, UK

E-mail: nxk@cs.nott.ac.uk

ISBN 978-3-642-12537-9 e-ISBN 978-3-642-12538-6

DOI 10.1007/978-3-642-12538-6

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2010924760

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Nature has become a source of inspiration for many areas related with Com-
puter Science. For instance, Neural Networks were inspired on the brain cells
behaviour, natural evolution have served as inspiration of Genetic and Evo-
lutive Algorithms, the collective behaviour of insects or animals has inspired
Ant Colony algorithms, Swarm-based algorithms and so on. In general, many
aspects of Nature, Biology or even from Society have become part of the tech-
niques and algorithms used in computer science or they have been used to
enhance or hybridize several techniques through the inclusion of advanced
evolution, cooperation or biologically based additions.

The previous editions of the International Workshop on Nature Inspired
Cooperative Strategies for Optimization (NICSO) were held in Granada,
Spain, 2006, Acireale, Italy, 2007, and in Tenerife, Spain, 2008, respectively.
As in these three previous editions, the aim of NICSO 2010, held in Granada,
Spain, was to provide a forum were the latest ideas and state of the art re-
search related to nature inspired cooperative strategies for problem solving
were discussed. The contributions collected in this book were strictly peer
reviewed by at least two members of the international programme commit-
tee, to whom we are indebted for their support and assistance. The topics
covered by the contributions include nature-inspired techniques like Genetic
Algorithms, Evolutionary Algorithms, Ant and Bee Colonies, Particle Swarm
Optimization and other Swarm Intelligence approaches, Neural Networks,
several Cooperation Models, Structures and Strategies, Agents Models, So-
cial Interactions, as well as new algorithms based on the behaviour of fireflies
or bats.

NICSO 2010 had three plenary lectures given by Prof. Pier Luca Lanzi,
Learning to Play, Learning to Program, Learning to Learn (Experiences with
Computational Intelligence for Simulated Car Racing), Dr. Julian F. Miller,
Evolving the brain inside the brain, and Prof. Alan F.T. Winfield, Adaptive
Swarm Foraging: a case study in self-organised cooperation.

As Workshop Chairs we wish to thank the support given by several peo-
ple and institutions. We want to thank the Spanish Ministry of Science and

VI Preface

Innovation (projects TIN2008-01948, TIN2008-06872-C04-04 and TIN2009-
08341-E), the Andalusian Government (project P07-TIC-02970), and the EP-
SRC (Grant EP/D061571/1 Next Generation Decision Support: Automating
the Heuristic Design Process) for their financial support. We also wish to
thank the members of the Models of Decision and Optimization Research
Group for their help in the local organization tasks.

Our experience after four editions of NICSO demonstrates that there is
an emerging and thriving community of scholars doing research on Nature
Inspired Cooperative Strategies for Optimization. It is to these scholars, both
authors and reviewers, to whom the organisers are indebted for the success
of the NICSO series.

Spain, Juan R. González
Spain, David Alejandro Pelta
Spain, Carlos Cruz
UK, Germán Terrazas
UK, Natalio Krasnogor
May 2010

Organization

Steering Committee

David A. Pelta University of Granada
Natalio Krasnogor University of Nottingham

Programme Chair

Germán Terrazas University of Nottingham

Organizing Committee

Carlos Cruz University of Granada
Juan R. González University of Granada

Programme Committee

Belen Melian University of La Laguna, Spain
Carlos Coello Coello CINVESTAV-IPN, Mexico
Carlos Garcia Martinez University of Cordoba, Spain
Cecilio Angulo Technical University of Catalunya, Spain
Dario Landa-Silva University of Nottingham, UK
Davide Anguita University of Genova, Italy
Francisco Herrera University of Granada, Spain
Gabriela Ochoa University of Nottingham, UK
Gianluigi Folino Istituto di Calcolo e Reti ad Alte

Prestazioni, Italy
Giuseppe Scollo University of Catania, Italy
Graham Kendall University of Nottingham, UK
Ignacio G. del Amo University of Granada, Spain

VIII Organization

J. Marcos Moreno University of La Laguna, Spain
James Smaldon University of Nottingham, UK
Jaume Bacardit University of Nottingham, UK
Jean-Louis Giavitto Universite d’Evry, France
Jiawei Li University of Nottingham, UK
Jim Smith University of the West of England, UK
Jon Timmis University of York, UK
Jorge Casillas University of Granada, Spain
Jose A. Moreno University of La Laguna, Spain
Jose A. Castillo Instituto Nacional de Investigaciones

Nucleares, Mexico
Jose L. Verdegay University of Granada, Spain
Jose M. Cadenas University of Murcia, Spain
Juan J. Merelo University of Granada, Spain
Marco Dorigo Universit Libre de Bruxelles, Belgium
Marian Gheorghe University of Sheffield, UK
Mario Pavone University of Catania, Italy
Oliver Korb Cambridge Crystallographic Data Centre,

Cambridge, UK
Steven Gustafson General Electric Global Research

Center, US
Thomas Stibor Technical University Munich, Germany
Vincenzo Cutello University of Catania, Italy
Vincenzo Manca University of Verona, Italy
Vitorino Ramos Technical University of Lisbon, Portugal
Vittorio Maniezzo University of Bologna, Italy
Xiao-Zhi Gao Helsinki University of Technology, Finland

Plenary Lectures

Prof. Pier Luca Lanzi

Politecnico di Milano, Italy

Learning to Play, Learning to Program, Learning to Learn (Experiences with
Computational Intelligence for Simulated Car Racing)

Modern computer games are fun to watch and to play. Students love them!
They are also difficult to program which makes them an excellent way to
challenge students with difficult yet highly-rewarding problems. They pose
great challenges to most methods of computational intelligence which makes
them very good testbeds for research.

Car racing games are particularly attractive in that any car driver is a
domain expert! In this talk, I will provide an overview of the recent research
on the applications of computational intelligence to simulated car racing,
including, development of drivers and driving behaviors through evolution,
imitation and hand-coded design, evolution of tracks, and lessons learned
from the recent scientific competitions.

Dr. Julian F. Miller

Department of Electronics, University of York

Evolving the brain inside the brain

Most of evolutionary history is the history of single cells. One of these cells is
very special, it is called a neuron. Like other cells neurons are far from simple.
In fact, a neuron is a miniature brain in itself. Neurons are not only very
complex on the inside they also come in a vast range of complex morphologies.

Of course, natural evolution does not evolve brains directly. Instead it
evolves genes. These genes represent complex ’programs’ that cause the

X Plenary Lectures

development of the entire organism (including the brain). All learning in
the brain occurs during the development process.

So why do conventional Artificial Neural Networks (ANNs) represent neu-
rons as extremely simple computational units in static networks? Why do
they represent memory as synaptic weights?

Great advances in neuroscience have been made in recent decades and
We argue that the time has come to create new models of neural networks
in which the neuron is much more complex and dynamic. In such models,
neural structures will grow and change in response to internal dynamics and
environmental interactions. Like real brains, they should be able to learn
across multiple domains without unlearning.

We review previous models and discuss in detail a recent new model and
show that complex neural programs can be evolved that allow a developing
’brain’ to learn in a number of problem domains.

Prof. Alan F.T. Winfield

Faculty of Environment and Technology, University of the West of England,
Bristol

Adaptive Swarm Foraging: a case study in self-organised cooperation

Inspired by the division of labour observed in ants, collective foraging has
become a benchmark problem in swarm robotics. With careful design of the
individual robot behaviours we can observe adaptive foraging for energy in
which the swarm automatically changes the ratio of foraging to resting robots,
in response to a change in the density of forage available in the environment,
even though individual robots have no global knowledge of either the swarm
or the environment. Swarm robotics thus provides us with both an interesting
model of collective foraging, illuminating its processes and mechanisms, and
a possible engineering solution to a broad range of real world applications,
for example, in cleaning, harvesting, search and rescue, landmine clearance or
planetary astrobiology. This talk will introduce the field of swarm robotics,
using adaptive swarm foraging as a case study; the talk will address both the
engineering challenges of design, mathematical modelling and optimisation,
and the insights offered by this case study in self-organised cooperation.

Contents

A Metabolic Subsumption Architecture for Cooperative
Control of the e-Puck . 1
Verena Fischer, Simon Hickinbotham

Social Target Localization in a Population of Foragers 13
Héctor F. Satizábal M., Andres Upegui, Andres Perez-Uribe

Using Knowledge Discovery in Cooperative Strategies:
Two Case Studies . 25
A.D. Masegosa, E. Muñoz, D. Pelta, J.M. Cadenas

Hybrid Cooperation Models for the Tool Switching
Problem . 39
Jhon Edgar Amaya, Carlos Cotta, Antonio J. Fernández Leiva

Fault Diagnosis in Industrial Systems Using Bioinspired
Cooperative Strategies . 53
Ĺıdice Camps Echevarŕıa, Orestes Llanes-Santiago,
Antônio José da Silva Neto

A New Metaheuristic Bat-Inspired Algorithm 65
Xin-She Yang

Evaluation of a Catalytic Search Algorithm 75
Lidia Yamamoto

Discovering Beneficial Cooperative Structures for the
Automated Construction of Heuristics . 89
Germán Terrazas, Dario Landa-Silva, Natalio Krasnogor

Eagle Strategy Using Lévy Walk and Firefly Algorithms
for Stochastic Optimization . 101
Xin-She Yang, Suash Deb

CO2RBFN for Short and Medium Term Forecasting of the
Extra-Virgin Olive Oil Price . 113
M.D. Pérez-Godoy, P. Pérez-Recuerda, Maŕıa Pilar Fŕıas,
A.J. Rivera, C.J. Carmona, Manuel Parras

XII Contents

3D Cell Pattern Generation in Artificial Development 127
Arturo Chavoya, Irma R. Andalon-Garcia,
Cuauhtemoc Lopez-Martin, M.E. Meda-Campaña

Partial Imitation Rule in Iterated Prisoner Dilemma Game
on a Square Lattice . 141
Degang Wu, Mathis Antony, K.Y. Szeto

A Dynamical Game Model for Sustainable Development 151
D. Dumitrescu, Andrei Ŝırghi

Studying the Influence of the Objective Balancing
Parameter in the Performance of a Multi-Objective Ant
Colony Optimization Algorithm . 163
A.M. Mora, J.J. Merelo, P.A. Castillo, J.L.J. Laredo,
P. Garćıa-Sánchez, M.G. Arenas

HC12: Highly Scalable Optimisation Algorithm 177
Radomil Matousek

Adaptive Evolutionary Testing: An Adaptive Approach to
Search-Based Test Case Generation for Object-Oriented
Software . 185
José Carlos Bregieiro Ribeiro, Mário Alberto Zenha-Rela,
Francisco Fernández de Vega

Evolutionary Algorithms for Planar MEMS Design
Optimisation: A Comparative Study . 199
Elhadj Benkhelifa, Michael Farnsworth, Ashutosh Tiwari,
Meiling Zhu

A Distributed Service Oriented Framework for
Metaheuristics Using a Public Standard . 211
P. Garćıa-Sánchez, J. González, P.A. Castillo, J.J. Merelo,
A.M. Mora, J.L.J. Laredo, M.G. Arenas

Cellular Genetic Algorithm on Graphic Processing Units 223
Pablo Vidal, Enrique Alba

Evolutionary Approaches to Joint Nash – Pareto
Equilibria . 233
D. Dumitrescu, Rodica Ioana Lung, Tudor Dan Mihoc

Accelerated Genetic Algorithms with Markov Chains 245
Guan Wang, Chen Chen, K.Y. Szeto

Contents XIII

Adapting Heuristic Mastermind Strategies to Evolutionary
Algorithms . 255
Thomas Philip Runarsson, Juan J. Merelo-Guervós

Structural versus Evaluation Based Solutions Similarity in
Genetic Programming Based System Identification 269
Stephan M. Winkler

Artificial Bee Colony Optimization: A New Selection
Scheme and Its Performance . 283
Andrej Aderhold, Konrad Diwold, Alexander Scheidler,
Martin Middendorf

A Heuristic-Based Bee Colony Algorithm for the
Multiprocessor Scheduling Problem . 295
Pascal Rebreyend, Cedric Clugery, Emmanuel Hily

A Bumble Bees Mating Optimization Algorithm for Global
Unconstrained Optimization Problems . 305
Yannis Marinakis, Magdalene Marinaki, Nikolaos Matsatsinis

A Neural-Endocrine Architecture for Foraging in Swarm
Robotic Systems . 319
Jon Timmis, Lachlan Murray, Mark Neal

Using Entropy for Evaluating Swarm Intelligence
Algorithms . 331
Gianluigi Folino, Agostino Forestiero

Empirical Study of Performance of Particle Swarm
Optimization Algorithms Using Grid Computing 345
Miguel Cárdenas-Montes, Miguel A. Vega-Rodŕıguez,
Antonio Gómez-Iglesias, Enrique Morales-Ramos

Using PSO and RST to Predict the Resistant Capacity of
Connections in Composite Structures . 359
Yaima Filiberto, Rafael Bello, Yaile Caballero, Rafael Larrua

Improvement Strategies for Multi-swarm PSO in Dynamic
Environments . 371
Pavel Novoa-Hernández, David A. Pelta, Carlos Cruz Corona

Particle Swarm Optimization Based Tuning of Genetic
Programming Evolved Classifier Expressions 385
Hajira Jabeen, Abdul Rauf Baig

Author Index . 399

A Metabolic Subsumption Architecture for
Cooperative Control of the e-Puck

Verena Fischer and Simon Hickinbotham

Abstract. Subsumption architectures are a well-known model for behaviour-based
robotic control. The overall behaviour is achieved by defining a hierarchy of increas-
ingly sophisticated behaviours. We are interested in using evolutionary algorithms to
develop appropriate control architectures. We observe that the layered arrangement
of behaviours in subsumption architectures are a significant obstacle to automating
the development of control systems. We propose an alternative subsumption archi-
tecture inspired by the bacterial metabolism, that is more amenable to evolutionary
development, where communities of simple reactive agents combine in a stochastic
process to confer appropriate behaviour on the robot. We evaluate this approach by
developing a traditional and a metabolic solution to a simple control problem using
the e-puck educational robot.

1 Introduction

The behaviour-based approach to robotics and artificial intelligence [4] has given a
new spirit to a field that seemed lost in abstractions of the real world. While “tradi-
tional" robotics built complicated reasoning systems that created models of the real
world and successfully produced reasonable behaviour in simple and static environ-
ments, it seemingly failed to extend these systems to deal with dynamic real world
situations [11]. Behaviour-based robotics works on the assumption that internal rep-
resentations of the real world are unnecessary to produce reasonable behaviour in
dynamic environments and proves this to be true with many examples described in
several of Brooks’ papers [2, 3].

Verena Fischer
Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ
e-mail: vf37@sussex.ac.uk

Simon Hickinbotham
YCCSA, University of York, Heslington, York YO1 5DD, UK
e-mail: sjh@cs.york.ac.uk

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 1–12, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

vf37@sussex.ac.uk
sjh@cs.york.ac.uk

2 V. Fischer and S. Hickinbotham

Subsumption architectures are as highly engineered as their traditional counter-
parts. The approach identifies a hierarchy of autonomous behavioural layers with
simpler behaviours placed at the lower layers. Every layer produces some behaviour
in the robot and the higher layers can subsume the behaviour of lower layers, while
lower layers are not aware of the higher ones. During the design of the controller,
each layer is implemented as an autonomous system before ascending the hierarchy.
The upper layers can override instructions from the lower layers should the situation
demand it. Control modules are then assigned to appropriate layers, each of which
can connect sensors to actuators in different ways.

The problem of designing any form of layered control remains challenging. For
sophisticated environments, the number of layers can proliferate and it becomes
unclear where a control module should be placed and what the interconnectedness
should be. Attempts to automate the process have tended to simplify the problem by
evolving the system a layer at a time [9, 13]. However, it is difficult to ensure that
the entire system is optimised, since the overall control rarely depends on a single
layer.

We note that as the behaviours get richer, more and more internal modules are
connected only to other internal modules rather than being connected to sensors or
actuators. There is potential to make such modules and the connections between
them subject to adaptation via evolutionary algorithms since as long as the con-
nections to the outside world are preserved, the internal processing can change.
Evolving this sort of network is a difficult challenge however, particularly if the role
of modules and their connections is predefined (e.g. connections relating to “feel-
force", “heading" and “turn"). We propose a finer-grained solution, in which control
is shared amongst a community of very simple processing agents that behave like
molecular species in biological reaction networks [7], and whose connections are
set by simple reaction rules that can be changed arbitrarily. This metabolic repre-
sentation allows a high level of interconnectedness between control layers, which is
more akin to biological reaction networks than control engineering. The metabolism
can be thought of as a community of control agents, which through their interaction
rates, network topology and concentrations give rise to emergent behaviour.

This paper compares an implementation of a subsumption architecture controller
with a controller based on a model metabolism. We refer to the two systems as
“subsumption control" and “metabolic control" respectively. We favour the latter
approach because we believe it lends itself more readily to solutions which can
be found through artificial evolution [8]. The work we present here shows how an
engineered control system can be implemented in an evolvable community control
system, and compares the performance of the two.

2 The Robot Model

The platform for our robot experiments is the e-puck, which is a readily avail-
able open-source research platform [10]. In addition to the physical hardware being

A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck 3

available, a simulator model is available for the open-source player/stage platform
[1, 6]. We developed our control software using the simulator, but we used the phys-
ical characteristics of the real robot to constrain the design. The e-puck is equipped
with a variety of sensors and actuators. There are eight infrared sensors, as shown
in figure 1(a). We combine these into four channels to produce a sufficiently fine-
grained reaction to the environment: front (S_F); left-of-front (S_L), right-of-front
(S_R), and back (S_B). The e-puck is driven by two wheels, which are controlled
by actuator behaviours: Forward speed (A_F); Backward speed (A_B); Left turn
speed (A_L); Right turn speed (A_R). In the two control architectures we investigate
here, we define two functions called SensorHandler and a RobotUpdater for
the sensors and actuators respectively, to carry out any signal transduction between
the e-puck and the control system. The control challenge is thus to link the sensor
data to the actuator instructions, as illustrated in figure 1(b).

(a) (b)

Fig. 1 (a) coupling of sensors on the e-puck simulation. (b) the control task: incoming sensor
data must be coupled with actuator controllers to determine the speed and heading of the
robot

E-pucks have a range of control settings. The proximity sensor range is 0.1 me-
tres, which imposes constraints on the responsiveness of the control system if a col-
lision is to be avoided. The maximum speed of the real e-puck is 0.12m/s, therefore
the robot has 0.83s to respond appropriately to an obstacle detected by its sensors.
We are of course free to change this speed in the simulation.

As an experimental framework we used the open source platform Player/Stage.
Player is a network server that handles the actual low level robot control and pro-
vides a clean and simple interface to the robot’s sensors and actuators. Stage simu-
lates mobile robots, sensors and objects in a 2D environment and therefore provides
the hardware basis for the robot control handled by Player.

4 V. Fischer and S. Hickinbotham

3 Subsumption Architecture

A subsumption architecture is a layered control system. Our subsumption architec-
ture control system contains the following layers:

Layer 1: AVOID responds to obstacles flagged by the SensorHandler and changes
the speed of the robot accordingly. Each sensor produces a different hard coded be-
haviour, although the behaviour has a small noise component built into the design.
The avoid behaviour sets a new heading as soon as a sensor flags an obstacle. Details
are given in table 1

Layer 2: WANDER pseudo-randomly produces a new heading and speed for
the robot after a set number of time steps. The goal is to induce a behaviour which
allows the robot to explore its world. When wandering, headings are set every 15
time steps by selecting a turn value in the range +/−15 degrees, while the speed is
set to a pseudo-random value between 0.05 - 0.095 m/s.

Table 1 Reactions specified by the AVOID layer in the subsumption architecture

Sensor direction speed turn
S_F A_B: -0.15 m/s A_R: 90-180 degrees
S_L A_B: -0.1 m/s A_R: -60 degrees
S_R A_B: -0.1 m/s A_L: 60 degrees
S_B A_F: 0.15 m/s

4 Artificial Metabolomes

Our endeavours to create a mobile robot control system using an artificial
metabolism are built upon the particle metabolome developed within the Plazzmid
project [12]. The metabolic model is composed of four components. Firstly, there
exists a container, which specifies the volume and dimensionality of the space in
which the agents exist. We specify a simple 2D container of area vc = 40 units. Sec-
ondly, we have a set of metabolite agents, of area va = 9 units which are present
in varying quantities in the container, analogous to the various quantities of differ-
ent molecular species in a biological system. Thirdly we have a stochastic mixer,
which governs the movement and changes in adjacency of the elements within the
container. For a bimolecular reaction such as the bind B, our mixer utilises a simple
propensity function P(B), which estimates the probability of two agents being suf-
ficiently close enough for the reaction to occur. For any one agent in a bimolecular
reaction, the chance of the second agent in the reaction being close enough to react
is:

P(B|vc,va,n) = 1− (1− (va/vc))n (1)

where n is the number of instances of the second agent in the metabolism. Space
in the system is represented abstractly via the ratio of container area to agent area.
Apart from this consideration, the model is aspatial. Fourthly, agents react accord-
ing to a set of rules, which specify the reactions in the system. There are four types

A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck 5

of rules in the system as shown in table 2. Each rule has a rate, which governs how
often the reaction occurs when it is selected via a stochastic process. Influx is the
spontaneous generation of new agents in the system. In our case, objects detected
by sensors cause production of corresponding sensor agents to be generated in the
metabolism. Binding occurs when two reactants combine to create a single product.
Binding is the only bimolecular reaction permitted. Bimolecular reaction rates are
governed by the concentration of the two reactants in the system (via P()) and a fur-
ther reaction rate specified by the reaction rule. Behavioural switching is caused by a
sensor agent binding with a WANDER enzyme to produce an AVOID enzyme. Dis-
sociation is the splitting of a single agent into two agents. A dissociation rule which
has the same agent type on either side of the reaction (for example A→ A+X) can
be thought of as representing the production of new agents using materials that are
available at saturation in the metabolism, and whose concentrations are not mod-
elled for computational expediency. Decay is the spontaneous removal of an agent
from the system, and is important for sensor and actuator molecules, which must
decay quickly in order for the system to be responsive. Note that uni-molecular
changes from one molecular species to another are not permitted. The probability
of a bimolecular reaction is the product of the propensity and the reaction rate. Uni-
molecular reactions are governed by their reaction rate alone, since adjacency does
not need to be considered.

Table 2 The four types of reaction rule in the metabolic controller

Reaction Rule format network symbol
Influx: → A —

Binding: A+B → C �

Dissociation: A → B+C ›

Decay: A → “

These ingredients allow us to specify a metabolic control model for our e-pucks.
For a more detailed overview of this metabolic model see [7].

In our metabolic controller, there are three classes of agents which possess dif-
ferent qualities within this framework. Sensor agents are generated when a sensor
detects an obstacle. These are shown in white on the network diagrams below. Ac-
tuator agents are used to govern the speed and turning rate of the robot. These are
shown in grey. Both sensors and actuators decay quickly, in order to allow the robot
to be responsive. Enzyme agents form the connectivity between sensors and actua-
tors. They are shown in black. Enzymes do not decay, but can be changed into other
enzymes by reacting with other agents in the system. Reactions must be designed
such that the total number of enzymes in the system is conserved.

6 V. Fischer and S. Hickinbotham

5 Metabolic Subsumption

The metabolic network that we have designed for the robot control is based on the
control layers described in section 3. We describe here the reaction system that we
use to build behaviours that emulate these layers.

Fig. 2 Change in behaviour as a result of a sensor event. The metabolism switches from an
inert behaviour to an avoidance behaviour on the influx of S_F agents by producing A_B
agents

Figure 2 shows the network of an AVOID behaviour for a single sensor/actuator
pair, which illustrates the basic reaction system we use for metabolic robot control.
Symbols for reactions are described in table 2 and associated text. The system exists
in an inert state until sensor information is received. In this state, the only agent types
present in the system are the enzyme E_Inert and the deactivator enzyme A. When
the sensor is activated, sensor agents of type S_F are generated in the metabolism.
S_F binds with E_Inert to create EA_F. This enzyme uses a dissociation rule to
create a copy of itself and the actuator agent A_B, which instructs the robot to move
backwards. Once sensor agents have decayed out of the system, enzyme EA_F binds
with A to produce an intermediate B. B then dissociates back to E_Inert and A.

The network in figure 2 shows an AVOID behaviour for a single sensor and a
single actuator. We extend this model in figure 3 to show the metabolic network
for one sensor type that produces AVOID behaviour subsumed by a WANDER be-
haviour appropriate to the input. Since wandering involves moving in a particular
direction, actuators for turning are required. Information from the sensor is repre-
sented as quantities of S_F agents, which bind with the enzyme EW_F to create the
EA_F. The avoid enzyme produces the signalling agents A_B that instruct the robot
to reverse away from the obstacle. Note that EW_F and EA_F produce different
actuator enzymes, whereas EW_L and EA_L produce A_L at different rates, appro-
priate to the dominant behaviour. (We have not represented these different rates on

A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck 7

Fig. 3 A metabolic network for input coming from a front sensor

the diagram for clarity.) This metabolic approach to control emulates a subsump-
tion architecture since the AVOID behaviour is autonomous and there is a switching
mechanism from one behaviour to another as the situation demands it. As long as an
avoid reaction is needed the wander behaviour is inhibited, because the wander en-
zymes are turned into avoid enzymes. When it is not needed anymore, i.e. no sensor
agents are injected, the avoid enzymes are turned back into wander enzymes. For
every type of sensor agent, the binding strengths are different to produce a different
change of speed. For example, if there is an obstacle directly in front of the robot,
there needs to be a wider turn than would be needed if the obstacle were slightly to
the left or right.

The complete control network for the metabolic subsumption is shown in fig-
ure 4. Such a network becomes necessarily complex when information from four
sensors is combined using a simple reaction rule set. Although the control architec-
ture for each sensor follows the same basic pattern, there are subtle differences. The
most striking of these is the sub-network for the rear sensor S_B. This is for two
reasons. Firstly, the WANDER behaviour has no connection to the actuator enzyme
A_B since when wandering the e-puck always moves in the forward direction as
governed by A_F. Secondly, if S_B is present, the e-puck should move forward just
as in the WANDER behaviour, but remaining A_B agents from previous reactions
might have to be counteracted, so that more A_F have to be produced to ensure a
forward movement.

We use the graphviz program [5] to visualise the network that our reaction rules
represent. Although this is a useful tool, the high level of connectedness in the net-
work prevents the automatic creation of network visualisations that makes the two
control layers distinct. Although the concept of control layers is essential to the de-
sign of the subsumption architecture, the embodiment of the layers in the metabolic

8 V. Fischer and S. Hickinbotham

Fig. 4 The metabolic network for 4 input directions: front, front-left, front-right and back

network exhibits strong connectivity between the layers. This rich connectedness
means that small changes at the level of nodes and reactions between them have the
potential to cause larger changes at the emergent level.

When the metabolism is initialised, all that is present in the network are 10 of
each of the WANDER enzymes, and 1 of the return enzymes A, C, and E. Actu-
ator agents for the wander behaviour are created as the metabolism runs. When a
sensor detects an obstacle, 10 of the corresponding sensor enzymes are placed in
the metabolism. The reaction rates that were used in our experiments are shown in
table 3.

A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck 9

Table 3 Reaction rates of a metabolic control network for the e-puck

Reaction Rate Reaction Rate

Actuator signals for WANDER Actuator signals for AVOID
EW_F→ EW_F+A_F 0.8 EA_F→ EA_F+A_B 0.9
EW_L→ EW_L+A_L 0.16 EA_B→ EA_B+A_F 0.9
EW_R→ EW_R+A_R 0.16 EA_L→ EA_L+A_L 0.9

EA_R→ EA_R+A_R 0.9

Switch to AVOID behaviour Reversion to WANDER
EW_F+S_F→ EA_F 0.9 EA_F+A→ B 0.1
EW_L+S_F→ EA_L 0.9 EA_B+A→ B 0.1

B→ A+EW_F 0.1
EW_F+S_R→ EA_F 0.7
EW_R+S_R→ EA_R 0.7 EA_L+C→D 0.1

D→ C+EW_L 0.1
EW_F+S_L→ EA_F 0.7
EW_L+S_L→ EA_L 0.7 EA_R+E→ F 0.1

F→ E+EW_R 0.1
EW_F+S_B→ EA_B 0.1

Decay of actuators Decay of sensors
A_F→ 0.15 S_F→ 1
A_B→ 0.05 S_B→ 1
A_L→ 0.1 2 S_L→ 1
A_R→ 0.1 2 S_R→ 1

6 Experimental Evaluation

An appropriate WANDER behaviour should allow the robot to explore the arena
without giving it any particular strategy of exploration. The two control strategies
were manually tuned such that their average speeds were approximately equivalent.
We evaluated this via a visual inspection of the routes of the e-puck using the two
different controllers. Sample traces for both controllers during a 5 minute run (sim-
ulated time) are shown in figure 5. It is clear that both controllers induce behaviour
that can be interpreted as “wandering". However, it is difficult to obtain a quantita-
tive evaluation of the pattern of exploration that the two control strategies confer on
the e-puck.

Successful behaviours should prevent the e-puck from colliding with obstacles
and walls. To compare the performance of the control systems we looked at 50 wall
encounters for each set-up and counted the number of collisions. Since the metabolic
controller was more difficult to tune, we compared a single metabolic controller with
three subsumption architectures with different average and maximum speeds. Col-
lision events for both controllers are shown in table 4. It is clear that the subsump-
tion controller is more successful at responding to obstacles since the number of

10 V. Fischer and S. Hickinbotham

Fig. 5 A trace of the subsumption robot control running for a simulated time of 5 minutes

collisions is the same when it travels at nearly twice the speed of an e-puck that uses
the metabolic controller.

Both control systems were designed to reverse away from an obstacle recorded
on the sensors. While the subsumption architecture is able to change the speed and
heading immediately upon receipt of a signal from a sensor, the metabolic model
suffers from latency in its response. The wall encounters for the metabolic con-
troller shown on the right of figure 5 are different from those on the right for the
subsumption controller because of the latency in response between sensors and ac-
tuators. Latency is caused by the actuator agents that are present in the metabolism
as the sensor data comes in. When an obstacle is encountered, actuator agents must
be generated to counteract the actuator agents from the wander enzymes extant in
the metabolism. This is illustrated in figure 6, which shows the changes in enzyme
and actuator levels after an obstacle is encountered on sensor S_F. It is clear that
this configuration of the metabolic controller cannot respond immediately to an ob-
stacle since there are about 50 A_F agents in the system which instruct the robot to
move forward. This situation could be changed by tuning the disassociation rate of
A_F and making the enzyme EW_F produce A_F more quickly and so maintain a
similar number of A_F whilst the WANDER behaviour is dominant.

Table 4 Area (in pixels) covered by the control systems and collisions for 50 wall encounters

Subsumption metabolic
Max speed (preset) 0.3 0.15 0.15 0.15
Average speed (recorded) 0.15 0.15 0.075 0.075
Median area covered for 5 runs
of duration 5 minutes

6,264 6,491 3,460 3,574

collisions out of 50 wall en-
counters

11 4 0 4

A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck 11

Fig. 6 Change in levels of actuator agents (top) and enzyme agents (bottom) as a result
of a sensor event, indicated by the black arrow. The wander enzyme EW_F (thick line) is
converted to the avoid enzyme EW_F (thin line) by binding with sensor agent S_F. This
results in a change in the levels of two actuator agents in the metabolism: A_F (thick line)
diminishes in quantity as A_B (thin line) accumulates, resulting in a change of direction from
a forward to a backward motion

7 Conclusions

We have succeeded in our main objective to create a metabolic control system that
emulated a simple subsumption architecture. This was motivated by the concept that
a chemical reaction network would be more amenable to evolutionary adaptation.

A key difference between the two network types is that the metabolic architec-
ture has node multiplicity - each node is represented by a quantity of autonomous
agents. Each agent is capable of reacting with agents representing other nodes in the
network. The metabolic approach lends itself to evolutionary adaptation [12], since
agents for each node in the network can play a number of roles, allowing for du-
plication and divergence of function on evolutionary timescales. In this work, both
the subsumption architecture and the metabolic architecture had to be “engineered"
in the sense that the actual avoiding reaction and speeds needed to be optimised by
hand. This approach allowed us to establish that an appropriate metabolic control
could actually be produced within this framework.

Although the behaviour of both systems is qualitatively similar, the metabolic
system suffers from latency in its reaction to obstacles. While the subsumption ar-
chitecture basically reacts immediately to sensor inputs, the metabolic control needs
some time to perform the necessary reactions and produce a sufficient metabolic re-
sponse. This means that the metabolic control reacts inherently slower than the sub-

12 V. Fischer and S. Hickinbotham

sumption architecture. However, it should be noted that our metabolic controllers
are more difficult to engineer by hand, since they have been designed to be trained a
posteriori by an evolutionary system. Our goal was not to implement a system that
performs “better" than a traditional subsumption architecture. Instead we focussed
on creating a system that lends itself more readily to evolutionary adaptation than a
traditional subsumption architecture. Our future work with the e-puck will therefore
concentrate on implementing evolutionary adaptation in the metabolic controller.

Acknowledgements

The authors thank Susan Stepney, Peter Young, Tim Clarke, Edward Clark and Adam Nel-
lis for comments and suggestions during the preparation of this manuscript. Verena Fischer
is funded by the TRANSIT project, EPSRC grant EP/F032749/1. Simon Hickinbotham is
funded by the Plazzmid project, EPSRC grant EP/F031033/1.

References

[1] Anon: Player-driver for e-puck robots (2009),
http://code.google.com/p/epuck-player-driver/

[2] Brooks, R.A.: Elephants don’t play chess. Robotics and Autonomous Systems 6(1&2),
3–15 (1990)

[3] Brooks, R.A.: Intelligence Without Reason. In: IJCAI 1991, pp. 569–595 (1991)
[4] Brooks, R.A.: Cambrian intelligence. MIT Press, Cambridge (1999)
[5] Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz - open

source graph drawing tools. Graph Drawing, 483–484 (2001)
[6] Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-

robot and distributed sensor systems. In: ICAR 2003, pp. 317–323 (2003)
[7] Hickinbotham, S., Clark, E., Stepney, S., Clarke, T., Young, P.: Gene regulation in a

particle metabolome. In: CEC 2009, pp. 3024–3031. IEEE Press, Los Alamitos (2009)
[8] Hickinbotham, S., Clark, E., Stepney, S., Clarke, T., Nellis, A., Pay, M., Young, P.:

Molecular microprograms. In: ECAL 2009 (2009)
[9] Liu, H., Iba, H.: Multi-agent learning of heterogeneous robots by evolutionary sub-

sumption. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M.,
Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Pot-
ter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.)
GECCO 2003. LNCS, vol. 2724, pp. 1715–1718. Springer, Heidelberg (2003)

[10] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in
engineering. In: Robotica 2009, pp. 59–65 (2009)

[11] Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)
[12] Stepney, S., Clarke, T., Young, P.: Plazzmid: An evolutionary agent-based architecture

inspired by bacteria and bees. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey,
I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1151–1160. Springer,
Heidelberg (2007)

[13] Togelius, J.: Evolution of a subsumption architecture neurocontroller. Journal of Intel-
ligent and Fuzzy Systems 15(1), 15–20 (2004)

http://code.google.com/p/epuck-player-driver/

Social Target Localization in a Population of
Foragers

Héctor F. Satizábal M., Andres Upegui, and Andres Perez-Uribe

Abstract. Foraging has been identified as a benchmark for collective robotics. It
consists on exploring an area and gathering prespecified objects from the environ-
ment. In addition to efficiently exploring an area, foragers have to be able to find
special targets which are common to the whole population. This work proposes a
method to cooperatively perform this particular task. Instead of using local or global
localization strategies which can rely on the infrastructure installed in the environ-
ment, the proposed approach takes advantage of the knowledge gathered by the
population about the localization of the targets. Robots communicate in an instrin-
sic way the estimation about how near they are from a target, and these estimations
guide the navigation of the whole population when looking for these specific areas.
The results comprehend some tests assessing the performance, robustness, and scal-
ability of the approach. The proposed approach efficiently guides the robots towards
the prespecified targets while allowing the modulation of their speed.

1 Introduction

It has been estimated that one-third of the animal biomass of the Amazon rain forest
consists of ants and termites [17]. Their success might come from the fact that social
interactions can compensate for individual limitations, both in terms of physical and
cognitive capabilities. Indeed, herds and packs allow animals to attack larger prey
and increase their chances for survival and mating [10], while organizations and
teams facilitate information sharing and problem solving. The complexity of any
society results from the local interactions among its members. Synthesizing and

Héctor F. Satizábal M.
ISI, Université de Lausanne
e-mail: Hector.SatizabalMejia@unil.ch

Andres Upegui · Andres Perez-Uribe
REDS, University of Applied Sciences Western Switzerland
e-mail: andres.upegui@heig-vd.ch,andres.perez-uribe@heig-vd.ch

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 13–24, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Hector.SatizabalMejia@unil.ch
andres.upegui@heig-vd.ch, andres.perez-uribe@heig-vd.ch

14 H.F. Satizábal M., A. Upegui, and A. Perez-Uribe

analysing coherent collective behaviour from individual interactions is one of great
challenges in both ethology and artificial intelligence.

Accomplishing tasks with a system of multiple robots is appealing because of its
analogous relationship with populations of social insects. The hypothesis behind this
approach is that such a synergistic robot system -one whose capabilities exceed the
sum of its parts- can be created. Researchers argue that by organizing simple robots
into cooperating teams, useful tasks may be accomplished otherwise impossible
using a single robot[11].

Collective robotics has been used for a diversity of tasks like object manipulation,
obstacle overpassing, and stair climbing. In all cases, collective robotics targets the
execution of tasks that, when performed by a single robot, are impossible or inef-
ficient. The goal is thus to find a strategy that allows a set of robots to, somehow,
interact among them in order to find the solution in a more efficient manner than the
same set of robots performing the task simultaneously but independently. Including
such interaction implies additional costs in terms of robot set-up and computation,
like addition of communicating capabilities or attachment mechanisms. In spite of
this additional cost, the collective solution must still be more efficient than the indi-
vidual one.

There is a large amount of real world tasks where a group of robots performs
better or more efficiently than a single robot [2]. Collective robotics has gained the
interest of a large number of researchers in the last decades. This situation demands
the creation of new control strategies capable of taking advantage of the fact of hav-
ing more than one individual, i.e. the presence of neighbours which can cooperate
to ease the execution of the task.

Different approaches have been used in designing control strategies for groups
of robots. There is a classical approach where a central planning unit coordinates
the actions of robots. This unit sends commands according to the state of each unit
in order to make them cooperate. The distribution of labours can be hierarchical,
and each individual must be capable of replacing the planner unit if it fails due to
malfunction [4]. This approach, while being the more intuitive and understandable,
is often not scalable and difficult to implement due to the communication require-
ments of a central coordination, which in addition makes the system less robust. An
alternative to this approach consists on endowing the system with self-organization
properties, allowing individual units to cooperate without a central planner. Self-
organization is frequently achieved by taking inspiration from biology [9], and in
particular from the behaviour of social species. Stigmergy in ants [8] and trophal-
laxis in bees [7] are examples of strategies found in biology that have served as
inspiration to develop controllers for collective robotics. There is a large number of
different implementations of these concepts in robotics, each one requiring different
levels of complexity of the robots, and different types of communication between
the units.

This paper describes a novel approach for the localization of targets in a popula-
tion of foragers. The control of the population of robots is performed in a distributed
way. Our robots have two possible states which are “work” and “search”. In the
“work” state robots perform a certain foraging task and are distributed on the arena.

Social Target Localization in a Population of Foragers 15

In the case of the work presented in this paper, we have a dummy foraging task
consisting on navigating on the arena avoiding obstacles. The main interest is in the
“search” state, where a robot will try to arrive to a specific target region on the arena.
This target region can be a battery charging station, an area for garbage disposal, or
the output of a maze. Whatever the robot may search, the goal will be to exploit the
collective knowledge, given that there may be other robots that can estimate how
far they are from the target region, and will somehow help the searching robot to
achieve its goal. The proposed target localization avoids the use of global position-
ing systems, that might be difficult to deploy in unknown or hostile environments,
and avoids also the use of odometry, which is sensitive to cumulated errors after
large running periods. Our approach uses colour LEDs and omnidirectional cam-
eras in order to indicate to other robots the shortest path to a desired target, based
on a principle of disseminating the information gathered by the robots through the
population.

This paper is structured as follows. Section 2 introduces the use of topological
navigation and the use of landmarks, and describes the use of state comunication in
coordinating a population of robots. Section 3 describes the simulation framework
that was used in order to test the target localization strategy, and the robots and sen-
sors implemented. Section 4 shows the results of the performed tests, and section 5
gives some conclusions.

2 Localizing a Target

Foraging is a common collective robotics task. In such a task, robots have to nav-
igate in their environment while collecting items and depositing them at specific
locations [4, 19]. In order to perform this type of task, robots need to be able to
explore their environment in an efficient way, and at any moment, find target loca-
tions which are common to the whole population, such as storage places where the
collected objects have to be stacked, battery charging stations, or specific sites if a
fixed path has been stablished. Finding a target zone is thus a crucial behaviour for
a robot being part of a swarm of foragers. Several approaches have been used with
this purpose e.g. omniscient planners, sensing absolute position/orientation, follow-
ing global beacons, using landmarks, pheromones, beacon chains or contact chains,
etc. [18]. Global strategies like the use of centralized planners or GPS-like systems
are expensive and difficult to implement or unreliable when the number of robots in-
creases or when robots are placed in changing or hostile environments. Conversely,
local strategies like the use of local beacons or landmarks, or bio-inspired methods
like pheromones, are more easily scalable and allow the implementation of self-
organized systems which can adapt to unknown environments.

2.1 Landmarks and Beacons

The use of landmarks in robot navigation is a widely used approach which has
been called topological navigation [4]. Robots using this strategy do not use precise
measurements of position but have to infer their own location from the perception

16 H.F. Satizábal M., A. Upegui, and A. Perez-Uribe

of known marks in the environment such as doors or intersections in the case of
indoor navigation. Topological navigation is common for us since most of the infor-
mation we use to locate ourselves and target directions are relative to objects in our
landscape. Nevertheless, using landmarks is not exclusive to superior animals. Some
researchers have taken inspiration from small social animals like insects which em-
ploy similar strategies to find their way back to home after exploration journeys.
Some species of desert ants, for instance, use visual landmarks in order to return
to important places in their environment [14] when other methods like the use of
pheromones is not possible. Bees, can use the physical contact with other individuals
of the hive in order to regulate the behaviour of foragers [7]. This form of commu-
nication, where individuals employ other members of the population as landmarks
or beacons for locating a target has also been a source of inspiration for robotics
navigation [16, 18].

2.2 Social Localization

In this paper, we present a novel approach for finding a common target location
based on the knowledge gathered by a population of robots. It supposes the existence
of a population of robots performing a foraging task. A group of robots is thus
distributed in the environment while searching for some kind of resource, and at
any moment, any individual has to find a specific place which is common for the
whole population e.g. a charging station, or a depot where gathered object have to be
stacked. Robots are not provided with their positions when looking for the targets,
instead, each individual has to use imprecise nearness estimations of neighbours
which are transfered through state communication [3].

In state communication robots communicate through their behaviour. Hence,
robots have to be able to interprete the behaviour of other robots by using their sen-
sory capabilities. The communication can be explicit or implicit whether the sender
is aware of the receiver or not. State communication has been succesfully used for
coordinating tasks in collective robotics [12, 13, 16] and it has proven to be robust
and scalable.

State comunication can be used to transfer information about the location of a
specific place. Imagine you enter in a shopping mall where there are lots of stores
and lots of people buying in such stores. You want to buy something in a store called
RoboShop, but you do not know where the store is located. There are several possi-
bilities to find RoboShop; you can explore the place without having any information
of the location of the target, and perform a random search covering all stores in the
building. Or, you can ask at the information desk, and analogously to having a cen-
tral planner, you can ask for the location of RoboShop and go directly to the target.
The store RoboShop could also be located by using the indications shown on the
walls of the building as landmarks, and following them until arriving to the target.
All these strategies imply the presence of a certain infrastructure on the building
i.e. an information desk as a central source of information, or indications about the
location of the shops as landmarks to guide the costumers. Alternative strategies

Social Target Localization in a Population of Foragers 17

must be adopted if such information is not available. One simple method could be,
if RoboShop delivers its products within green plastic bags, all you have to do in
order to find the target, is to follow the opposite direction of people having green
plastic bags, and you will eventually find the RoboShop store. Here, a costumer
must only know that people having green bags are likely to come from RoboShop,
so that they can be used as dynamic beacons to guide the searching process. No
infrastucture on the building is needed. Instead, state communication is used, and it
is performed in an intrinsic manner because people carrying the green bags are not
aware of the information they are sending to others.

The solution we present here has been inspired from the aforementioned strategy.
Robots are distributed in an arena like people were distributed in the building, and
robots have to find target places analogously to people looking for the RoboShop
store in the example. Vision was chosen to perform state communication in the case
of robots. Every robot can display a colour, and that colour reflects an internal state
of the robot which is directly related to the certitude of being near the target. Each
robot has limited vision which allows it to detect other robots as well as obstacles.
Thus, as in the previous example, if a robot needs to go to a specific place, it has
to follow robots showing the colour that was assigned to this place. These coloured
robots act as moving beacons to guide other members of the population to the spe-
cific goals. Once arrived to the target, the robot must update its colour in order to
cooperate with the rest of the population serving as beacon for other robots while
linearly decreasing its colour.

However, one main modification was done to the initial setup inspiring the algo-
rithm. Robots were programmed to copy a proportion of the colour of other robots,
and as a consequence, an emerging colour gradient is formed in the population. The
addition of this behaviour improves the dissemination of information through the
robots, facilitating the task of looking for a target. Any robot in the population be-
haves as a mobile beacon, and cooperates with the execution of the task by guiding
other robots to the target, even if the exact position of the target is unknown. The
details of the implemmentation of the strategy are shown in section 3.2.

3 Experimental Setup

We used a simulator called Enki [15] to evaluate the performance of the robots in
the task of finding the targets distributed in the arena. Enki is a 2D robot simulator
written in C++. It is open source and provides collision and limited physics support
for robots evolving on a flat surface.

3.1 The Arena

The flat space where robots evolve is a square arena with 300 cm of side length, lim-
ited by dark gray1 walls of 15 cm height. There are two RFID tags located within

1 R=30%, G=30%, B=30%.

18 H.F. Satizábal M., A. Upegui, and A. Perez-Uribe

this area at positions (40, 260)cm and (260, 40)cm. Each tag can be detected at a
maximal distance of 21.5 cm. These areas are shown by the two light gray circles lo-
cated at the top-left corner for tag number 1, and bottom-right corner for tag number
2. This setup is shown in figure 1.

Fig. 1 Arena where the experiments evolve. The numbered cylinders are the mobile robots
and the two gray circles represent the zones from where RFID tags can be detected. Tag 1 is
placed in the top-left corner, and tag 2 is placed in the bottom-right corner

3.2 The Robots

The robots implemented on Enki simulate a real robot called marXbot [5] which is
endowed with two wheels for locomotion, RGB LED for displaying colours, omni-
directional camera, infrared bumpers, rotating distance sensor scanner, and a RFID
tag detector. Additionally, the behaviour of the omnidirectional camera was mod-
ified in a way that the detected colours are not only function of the colour of the
object, but also a function of the distance to the object. For doing so, we used the
information provided by the rotating distance sensor scanner modulating each one
of the components (R, G, B) of the colours as shown in figure 2.

Navigation was performed in a pure reactive manner as in Braintenberg vehicles
[6], and the integration of sensor information was based on a strategy called motor
schema-based navigation [1]. Hence, 24 infrared sensors were used as bumpers, and
a 180 pixels omnidirectional linear camera was used in order to detect mid-range
and distant obstacles and colours. The steer direction S was calculated by adding 4
components:

• Bumpers (b): The vector pointing in the direction where there are no obstacles
detected by the bumpers.

• Free Area (f): The vector pointing in the direction where there are no obstacles
detected by the camera.

Social Target Localization in a Population of Foragers 19

0 50 100 150 200 250 300

0.
0

0.
4

0.
8

Distance

A
tte

nu
at

io
n

Fig. 2 Attenuation of the colours detected by the omnidirectional camera with respect to the
distance to the object

• Attraction to Landmark (t): The vector pointing in the direction where there are
objects having the colour associated to the target.

• Repulsion (nt): The vector pointing in the direction where there are no objects
having a colour associated to a different target

Sx = bx + fx + tx + ntx (1)

Sy = by + fy + ty + nty (2)

Each one of the aforementioned components was calculated as the dot product of the
vector having the response of the sensor group, and the vector of positions of each
individual sensor. Taking the bumpers as an example, we have a vector bumper
with the signals of the 24 infrared sensors, and a vector A compiling the angle α
of each sensor. The vector bo summarizing the activation of the 24 bumpers, and
pointing in the direction where there is an obstacle2 is calculated as follows:

box = bumper · cosA (3)

boy = bumper · sinA (4)

In the case of the camera, some masks were applied to the image in order to elimi-
nate the influence of walls when calculating the t and nt components.

4 Testing Dynamic Landmarks and the Use of Population
Knowledge

Several experiments were conducted in order to evaluate the changes in performance
when using the robots as landmarks to perform target localization. In each case, we
measure the time a robot spent in going from one RFID tag to the other one.

2 If there are several obstacles this method returns the direction where there are more
detections.

20 H.F. Satizábal M., A. Upegui, and A. Perez-Uribe

4.1 From Random Search to Social Search

This section shows the results of a series of five experiments with increasing infor-
mation about the target position. A histogram of the distribution of the time a robot
spent in going from one tag to the other was generated for each case, (see figure 3).
The whole set of robots performed the task of sequentially finding the targets.

• Random search: The sequence of experiments starts with a searching strategy
where robots freely navigate, and find the targets by chance i.e. components t
and nt were set to 0. This strategy without any information about the location
of the targets give us a reference to compare with other strategies where more
information is provided. Figure 3a) shows an histogram of the time spent by the
robots in finding one tag after the other.

• Static landmarks: Coloured landmarks placed in the corners of the arena were
used as the next step to improve performance in target localization. Two green
panels were placed behind target 1, and two red panels behind target 2. In this
experiment the robots do not display any colour. Their only guide for finding the
tags are the static landmarks, that is, the panels placed in the corners of the arena.
Figure 3b) shows an histogram with the results of this experiment. It can be seen
that the average time spent by a robot in going from one tag to the other was
reduced to near 50% with respect to the random strategy.

• Static landmarks and robots as landmarks: In addition of having static land-
marks, robots were enabled to display a colour when reaching a target. A robot
reaching tag 1 sets its green component to 100%, and a robot reaching tag 2 sets
its red component to 100%. Hereafter, the robot starts to decrease its colour com-
ponents linearly. As a result, a robot reaching a tag serves as landmark for other
robots in its proximity for some time. Figure 3c) shows an histogram of the time
the robots spent in going from one tag to the other when using this strategy. In
this case, the average time for performing the task was reduced to near 70% of
the previous case.

• Robots as landmarks: In order to pursue the exploration on using population
knowledge in guiding target localization, the static targets were removed from
the arena, and the population performance was assesed when using only robots as
targets. As in the preceding test, robots reaching a tag become a landmark of this
tag for a certain time. Figure 3d) shows an histogram of the performance of the
robots when finding one tag after another by using this strategy. The performance
of the algorithm is not reduced even if there are no static landmarks in the corners.

• Using a gradient of colours - social localization: Finally, the feature of copying
colours was implemmented. Each robot behave as a landmark in the proximities
of a tag (as in the last two cases), and in addition, robots always compare each
one of their [R, G, B] colour components against the colours detected by the
omnidirectional camera. Then, if the component detected is greater than the own
one, the component is copied and displayed by the robot. This behaviour allows
the propagation of the information about the position of a tag through the popu-
lation. The resulting gradient of colours is shown in figure 1. A histogram with

Social Target Localization in a Population of Foragers 21

the time spent by the robots in going from one tag to the other when using this
strategy is shown in figure 3e). Again, a reduction of near 50% in the average
time is achieved with respect to the previous case.

Figure 3 summarizes the results of the tests performed so far. It can be seen that
using landmarks yields smaller times than navigating randomly, and that this im-
provement can be even larger if landmarks can move in the vicinities of the targets.
Moreover, It can be seen that the performance of using parts of the population as
landmarks can be increased when robots share information about the position of the
target, by allowing the robots’ knowledge to spread through the population in the
form of a gradient. Indeed, from the experiments performed so far, it can be seen
that the average time spent by the robots in performing the task is divided by two
for each incremental step of the test i.e. �600 for navigating randomly,�300 with
static landmarks,�150 with dynamic landmarks, and�75 when creating a gradient
of colours.

0 500 1000 1500 2000

0
15

0
30

0

a) Time for random search

F
re

qu
en

cy

Average= 599.7

0 500 1000 1500 2000

0
40

0
10

00

b) Time for search with static landmark

F
re

qu
en

cy

Average= 251.5

0 500 1000 1500 2000

0
20

0
50

0

c) Time for search with static landmark and robots as landmarks

F
re

qu
en

cy

Average= 170

0 500 1000 1500 2000

0
40

0
80

0

d) Time for search with robots as landmark

F
re

qu
en

cy

Average= 155.5

0 500 1000 1500 2000

0
20

0
50

0 e) Time for search when using colour gradient

Time[s]

F
re

qu
en

cy

Average= 73.2

Fig. 3 Histograms for the five tests performed beforehand

4.2 Varying Attraction between Robots

The influence of component t (attraction to landmark) can be modulated by a pa-
rameter of attraction we called k.

22 H.F. Satizábal M., A. Upegui, and A. Perez-Uribe

Sx = bx + fx + k ∗ tx + ntx (5)

Sy = by + fy + k ∗ ty + nty (6)

Varying k enables us to control the speed of the robots when approaching other
robots, and thus modifying the time a robot spends in finding a target. By changing
the speed of the robots, we can also modify the dynamics of the population, making
the navigation less or more fluid. We measured the time each robot spent in going
from one tag to the other, and after 1000 single trips we obtained the results shown
in figure 4. In this case we collect data while changing also the amount of robots
performing the task of searching the targets. The population size was always kept
constant.

The amount of potential collisions is also affected as a result of changing the at-
traction between robots. Low values of k yield a smoother navigation at the expense

4 5 6 7 8 9

30
40

50
60

70

Attraction (k)

A
ve

ra
ge

 ti
m

e
[s

]

1 Robot
5 Robots
10 Robots
15 Robots
20 Robots
25 Robots

Fig. 4 Average time spent by a robot with respect to the value of attraction in the case of using
the information gathered by the population about the location of the targets. The experiment
summarizes a set of 1000 single trips performed by the robots

0 1 5 10 15 20 25

0
1

2
3

4

k=4
k=5
k=6
k=7
k=8
k=9

Number of robots

T
im

e
fr

on
t b

um
pe

r
ac

tiv
at

io
n

(R
/4

)
[%

]

Fig. 5 Percent of time the frontal proximity sensor is activated in the case of using the infor-
mation gathered by the population about the location of the targets. The experiment summa-
rizes a set of 1000 single trips performed by the robots

Social Target Localization in a Population of Foragers 23

of longer travel times. As it can be seen on figure 4, shorter times are achieved by
increasing k until asymptotically reaching a minimum. Moreover, robots quickly
tend to agglomerate or even collide when k is increased. This fact can be seen on
figure 5 which shows the percent of time a robot frontally approaches an obstacle to
a distance less than 0.25 times its radius. Even if the total time in front of an obstacle
is not very large (4% in the worst case), a straight increment of this time is produced
when increasing k in every case.

5 Conclusions

Localizing a common target is an essential task in a population of foragers. Robots
exploring an area eventually need to find areas which are important for the opera-
tion of each one of the members of the population, or for solving the foraging task.
Since these key zones are the same for every robot, we propose to use the knowl-
edge disseminated in the population about the location of the targets, in order to
guide the navigation of each member of it. The proposed coordination scheme is
distributed and uses state comunication in a instrinsic way, i.e. robots transmit some
information about their internal state, but they are not aware of whether other robots
receive this information or not. This fact simplifies the communication and makes
the system more robust. This “social” approach is tested and compared incremen-
tally against different strategies and, as it has been shown in figure 3, it is proven that
the performance in finding a target is improved. Moreover, the proposed robot guid-
ance avoids the use of global positioning systems, that might be difficult to deploy
in unknown or hostile environments, and avoids also the use of odometry, which is
sensitive to cumulated errors after large running periods. Additionally, the fact of
being a distributed scheme makes it very robust and scalable.

Moreover, some tests concerning robustness and scalability were performed. A
parameter k was added in order to modulate the attraction between robots when
approaching a target. As it can be seen in figure 4, changing k changes the aver-
age time a robot spends in finding a target and therefore, the trajectories performed
by the robots become more or less smooth. Figure 5 shows the percent of time a
robot activates its frontal proximity bumper (which can be considered as collisions),
and it can be seen that there is a strong relationship between robot agglomeration
and parameter k. The amount of robots looking for targets was also changed during
simulations. Figure 4 shows that there is a weak relationship between robot per-
formance and the amount of robots performing the task; and that this relationship
is even weaker when parameter k is higher. Additionally, figure 5 shows that the
robots tend to agglomerate more, activating more often their frontal sensors, when
there are more robots looking for targets at the same time.

Besides the tests shown here, some future work concerning the performance of
the strategy has been already envisaged. The proposed approach will be tested in a
more complicated arena, including fixed obstacles. Moreover, we will test our social
target localization approach with moving targets, and with targets which change its
value, simulating limited resources.

24 H.F. Satizábal M., A. Upegui, and A. Perez-Uribe

References

[1] Arkin, R.C.: Cooperation without communication: Multiagent schema-based robot nav-
igation. Journal of Robotic Systems 9(3), 351–364 (1992)

[2] Arkin, R.C., Bekey, G.A. (eds.): Robot colonies. Kluwer Academic Publishers, Norwell
(1997)

[3] Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems. Auton
Robots 1(1), 27–52 (1994)

[4] Bekey, G.A.: Autonomous Robots: From Biological Inspiration to Implementation and
Control (Intelligent Robotics and Autonomous Agents). The MIT Press, Cambridge
(2005)

[5] Bonani, M., Baaboura, T., Retornaz, P., Vaussard, F., Magnenat, S., Burnier, D.,
Longchamp, V., Mondada, F.: The marxbot – a modular all-terrain experimentation
robot (2009), http://mobots.epfl.ch/marxbot.html

[6] Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. The MIT Press, Cam-
bridge (1984)

[7] Camazine, S., Crailsheim, K., Hrassnigg, N., Robinson, G.E., Leonhard, B., Kropiu-
nigg, H.: Protein trophallaxis and the regulation of pollen foraging by honey bees (apis
mellifera l.). Apidologie 29(1) (1998)

[8] Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.:
Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

[9] Deneubourg, J.L., Goss, S.: Collective patterns and decision making. Ethology, Ecology
& Evolution 1, 295–311 (1989)

[10] Gadagkar, R.: Survival strategies: cooperation and conflict in animal societies. Harvard
University Press, USA (1997)

[11] Ijspeert, A., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through
the Exploitation of Local Interactions in Autonomous Collective Robotics: The Stick
Pulling Experiment. Autonomous Robots 11(2), 149–171 (2001)

[12] Kuniyoshi, Y., Kita, N., Rougeaux, S., Sakane, S., Ishii, M., Kakikua, M.: Cooperation
by observation: the framework and basic task patterns. In: Proceedings of IEEE Inter-
national Conference on Robotics and Automation 1994, vol. 1, pp. 767–774 (1994)

[13] Kuniyoshi, Y., Rickki, J., Ishii, M., Rougeaux, S., Kita, N., Sakane, S., Kakikura,
M.: Vision-based behaviors for multi-robot cooperation. In: Proceedings of the
IEEE/RSJ/GI International Conference on Intelligent Robots and Systems 1994. Ad-
vanced Robotic Systems and the Real World, IROS 1994, vol. 2, pp. 925–932 (1994)

[14] Lambrinos, D., Roggendorf, T., Pfeifer, R.: Insect strategies of visual homing in mobile
robots. In: Biorobotics - Methods and Applications, pp. 37–66. AAAI Press, Menlo
Park (2001)

[15] Magnenat, S., Waibel, M., Beyeler, A.: Enki – an open source fast 2d robot simulator
(2009), http://home.gna.org/enki/

[16] Nouyan, S., Gross, R., Dorigo, M., Bonani, M., Mondada, F.: Group transport along a
robot chain in a self-organised robot colony. In: Proc. of the 9th Int. Conf. on Intelligent
Autonomous Systems, IOS, pp. 433–442. IOS Press, Amsterdam (2005)

[17] Smith, J.M., Szathmary, E.: The Origins of Life: From the Birth of Life to the Origin of
Language. Oxford University Press, USA (2000)

[18] Werger, B., Mataric, M.J.: Robotic“food" chains: Externalization of state and program
for minimal-agent foraging. In: Proc. 4th Int. Conf. Simulation of Adaptive Behavior:
From Animals to Animats, vol. 4, pp. 625–634. The MIT Press, Cambridge (1996)

[19] Winfield, A.: Towards an engineering science of robot foraging. Distributed Au-
tonomous Robotic Systems 8, 185–192 (2009)

http://mobots.epfl.ch/marxbot.html
http://home.gna.org/enki/

Using Knowledge Discovery in Cooperative
Strategies: Two Case Studies

A.D. Masegosa, E. Muñoz, D. Pelta, and J.M. Cadenas

Abstract. In this work we discuss to what extent and in what contexts the use of
knowledge discovery techniques can improve the performance of cooperative strate-
gies for optimization. The study is approached over two different cases study that
differs in terms of the definition of the initial cooperative strategy, the problem cho-
sen as test bed (Uncapacitated Single Allocation p Hub Median and knapsack prob-
lems) and the number of instances available for applying data mining. The results
obtained show that this techniques can lead to an improvement of the cooperatives
strategies as long as the application context fulfils certain characteristics.

1 Introduction

Although some algorithms have a good performance in a specific problem, there is
hardly an algorithm which behaves better than others in a wide set of instances of
such problem. This fact corresponds with the No Free Lunch Theorem [21]. In this
way, it is very complicated to determine what the best method for a given instance is,
specially if there are big differences in performance from one algorithm to another.
Formally, this is known as the “Algorithm Selection problem” [20], and was defined
by Rice in 1976.

This problem has been treated in various areas. One of them is Machine Learning
[5, 11, 12]. These kind of techniques have been used to estimate the execution time
required by an algorithm to solve a determined type of instances, so that through this

A.D. Masegosa · D. Pelta
Dept. of Computer Science and Artificial Intelligence
University of Granada, Granada, Spain
e-mail: {admase,dpelta}@decsai.ugr.es

E. Muñoz · J.M. Cadenas
Dept. Ingeniería de la Información y las Comunicaciones
University of Murcia, Murcia, Spain
e-mail: enriquemuba@dif.um.es,jcadenas@um.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 25–38, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{admase,dpelta}@decsai.ugr.es
enriquemuba@dif.um.es, jcadenas@um.es

26 A.D. Masegosa et al.

information, we can choose the best expected method when we face a new instance.
Another technique is associated with the “Algorithm Portfolio” paradigm, where,
instead of selecting a single algorithm, a set of methods are executed in parallel
until the fastest one solves the problem. An example of this type of strategies can
be found in [17]. When the algorithms are allowed to exchange information among
them, then cooperative search strategies arise, and this collaboration leads to a dra-
matically improve in the robustness and the quality of the solutions obtained with
respect to the independent version of the strategy [2, 6]. This concept of coopera-
tion is successfully used, explicit or implicitly, in other types of metaheuristics as
multi-agent systems (ACO‘s [8], PSO‘s[14]), memetic algorithms [15] and hyper-
heuristics [3].

In this paper we are going to treat with both areas, cooperative strategies and Ma-
chine Learning. Concretely, we will discuss to what extent and in what contexts the
use of knowledge discovery techniques can improve the performance of cooperative
strategies. For this purpose, a centralised cooperative strategy based on simple ele-
ments of Soft Computing, previously presented in [4, 7, 19], will be consider as the
baseline case. From this starting point, we will analyse the improvement produced
by the use of new control rules and two alternatives for setting the initial parameters
of the methods composing the cooperative strategy. These features are obtained us-
ing data mining. The study will be conducted on two different scenarios that differ
in terms of the baseline implementation and test bed used (Uncapacitated Single
Allocation p-Hub Median Problem (USApHMP) and the Knapsack problem). We
have chosen these two problems for the following reasons: the USApHMP is a NP-
hard problem where only small datasets of solved instances can be found, and for
that reason we have little information in order to perform the training phase in the
knowledge discovery process. On the other hand, Knapsack Problem is one of the
“easiest” NP-hard problems, in which simple resolution algorithms obtain good re-
sults, and where we can find big datasets of solved instances for training the system.
These test beds are two extreme situations in which we want to check the improve-
ments obtained by the KD.

This work is structured as follows. Firstly, we will describe the centralised co-
operative strategy used as base case. In Section 3, the new control rule and the two
types of initial parameter tune will be shown. Section 4 is devoted to state the two
case studies used to test the cooperative method. After that, we will relate the exper-
imentation done and the results obtained. To finish, in Section 6, the conclusions of
this work, will be discussed.

2 A Centralized Cooperative Search Strategy

The cooperative strategy described in [7, 19], consists on a set of solvers/threads,
each one implementing the same or a different resolution strategy for the problem
at hand. These threads are controlled by a coordinator which processes the informa-
tion received from them and, making use of a fuzzy rule base, produces subsequent

Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 27

adjustments of solver behaviours by sending “orders”. The information exchange
process is done through a blackboard architecture [9].

A important part of this strategy is the information flow, that is divided in the
three steps: 1) performance information (report) is sent to the coordinator from the
solvers, 2) this information is stored and processed by the coordinator and 3) coor-
dinator sends orders to the solvers.

Each report in the first step contains:

• Solver identification
• A time stamp t
• The current solution of the solver at that time st

• The best solution reached until that time by this solver sbest

The coordinator stores the last two reports from each solver, so in the information

processing step, the improvement rate is calculated as Δ f = f (st)− f (st′)
t−t′ , where t−

t ′ represents the elapsed time between two consecutive reports, st′ is the current
solution sent by the solver in the last report and f is the objective function. The
values Δ f and f (st) are then stored in two fixed length ordered “memories”, one for
improvements and another for costs.

Over those memories, a fuzzy control rule is constructed. This rule allows the
coordinator to determine if a solver is working fine or not. It was designed based on
expert knowledge following the principle: If a solver is working well, keep it; but
if a solver seems to be trapped, do something to alter its behaviour. From now on,
this rule is called EK and its definition is the next one:

IF the quality of the current solution reported by solveri is low AND the improve-
ment rate of solveri is low THEN send Cbest to solveri

The label low is defined as a fuzzy set whose membership function μ(x) is shown
in Figure 1 (a). The variable x will correspond with the relative position (resembling
the notion of percentile rank) of a value (an improvement rate or a cost) in the
samples stored in memory of improvements or memory of costs, respectively, and
the other parameters are fixed to a = 80 and b = 100 for the memory of costs, and
a = 0 and b = 20 for the memory of improvements. Cbest denotes the best solution
ever recorded by the coordinator. In short, what the rule says is that if the values
reported by a solver are among the worst in the memories, then such a solver should
be changed in some way.

By means of sending Cbest , it is expected that the solvers will concentrate around
the most promising regions of the search space, which will be sampled using differ-
ent schemes (the ones defined by the solver threads themselves). This increases the
chances of finding better and better solutions.

Depending on the nature of the solvers (trajectory-based or population-based),
the solution Cbest is sent in a different way. For trajectory based methods, a new
solution C′best is obtained from Cbest using a mutation operator. When the solver
receives C′best , then it will restart the search from that new point. Such modification
tries to avoid relocating all of the solvers in the same point of the search space.

28 A.D. Masegosa et al.

a) Definition of low b) Definition of enough, High,
THigh and TVeryHigh

Fig. 1 Definition of low, enough, High, THigh and TVeryHigh

However, for population based methods, a proportion of the worst individuals of the
receiver is substituted by a set of mutated solutions obtained from Cbest using the
same operator as before.

3 Knowledge Discovery for Rule Design and Parameters Setup

Any of the components defining the basic cooperative strategy could be changed. In
this work, we will consider new definitions for two relevant components: 1) a new
set of control rules and 2) a mechanism to setup the initial parameters of the threads.
Both features will be obtained using knowledge discovery techniques that are fully
described in [4]. The basic ideas of the process is briefly presented here.

The first step is the data generation process where we have:

• {m0, . . . ,mk}, a set k metaheuristics
• {ci,0, . . . ,ci,d}, a set of possible parameter combinations for mi

• {p0, . . . , pl} the set of training instances

Then, every mi is run over each pt with every possible combination of parameters
ci j in order to obtain a performance information database. The second step in the
knowledge discovery process is to extract several decision trees. Then, when the
cooperative system is presented with a new instance to solve, the trees are traversed
and certain weights for the control rules are returned (from the “Weights Tree”),
and a list of “good parameter configurations” is constructed (from the “Parameters
Tree”). From this list, the system will setup the parameters of the threads. See Figure
2 for a schematic description.

3.1 New Set of Control Rules

The new set of control rules has two parameterized rules: the first one allows to
change the position in the search space of a thread (because it may show a bad
performance) making it closer to the one of another metaheuristic with a better
behavior; the second rule allows to dynamically change the parameters governing
the behaviour of a thread.

Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 29

Fig. 2 Given a new instance to solve, new control rules weights and solvers’ initial parame-
ters are calculated

The parameterized rules (one for each thread or metaheuristic) are as follows:

• IF [solveri IS theWorst] AND [(wm1∗d1 OR . . . OR wmn∗dn) IS enough] THEN
change the current solution of solveri.

• IF [(wm1 ∗ d1 OR . . . OR wmn ∗ dn) IS High AND (time IS T High OR
TVeryHigh)] THEN changeParameterValues of solveri.

where:

– n is the number of solvers.
– solveri is the solver being evaluated by the rule.
– theWorst evaluates if the solver being studied now is having the worst perfor-

mance according to any previously defined measure.
– di = (per fi− per fMH)/maximum(per fi, per fMH), where per f is a measure

of performance previously defined.
– wmi ∈ [0,1] where ∑n

i=1 wmi = 1 and wmi represents the weight of solver i
(importance of metaheuristic i for solving the current instance). These weights
are calculated from the “Weights Tree” obtained from the data mining process.

– Enough, High, THigh and TVeryHigh are fuzzy sets with trapezoidal mem-
bership functions with support contained in [0,1] defined by a cuadruplet
(a,b,c,d). Its representation is shown in Figure 1b).

– ChangeParameterValues is a function that changes the values of the param-
eters of a solver. As stated before, a list of “good parameter configurations”
was obtained from the “Parameters Tree”. So, when the rule is triggered, the
next configuration from the list is selected.

3.2 Parameters Adjustment

The initial parameters of the solvers are calculated from the “Parameters Tree”.
In fact, there exist to different operational modes. In the first one, the parameters
are calculated as a function of the type of the instance, while in the second one,
the parameters are independent from the instance being solved. In this last case,
the best configuration of parameters is the one that allowed to obtain, on average,

30 A.D. Masegosa et al.

Table 1 Main features of the two case studies proposed

Case study 1 Case study 2
Communication mode asynchronous synchronous

Stop condition and communication frequency evaluation number Time
Implemented solvers VND, Tabu, SA Tabu, SA, GA

Test problem USApHMP knapsack
Number of instances 34 2000

Number of instances for training 34 500
Number of instances per size and type 1 25

Number of instances for test 34 20

the best results over the set of training instances. Both strategies are considered in
this work.

4 Case Studies Details

This section is devoted to describe the two case studies designed to assess to what
extent and in what contexts the use of knowledge discovery techniques can improve
the performance of cooperative strategies. The scenarios differ in the type of basic
cooperative strategy used, in the communication model, test problem and informa-
tion available for the data mining stage. The next two subsections fully describe the
two scenarios, while their main features are displayed in Table 1.

4.1 Case Study 1

When implementing multi-threaded cooperative strategies, one can resort to parallel
schemes if time is important, or one can simulate the parallelism in a one-processor
computer. This is the strategy taken here and the procedure is extremely simple. We
construct an array of solvers and we run them using a round-robin schema. This
implementation uses a synchronous communication mode that is simulated in this
way: solvers are executed during 100 ms each one and after this period of time,
information exchanges are performed. These steps are repeated until the stopping
condition, given in terms of running time, is fulfilled.

Regarding the fuzzy rule (EK rule), the size of the memory of costs and improve-
ments was set to be double the number of solvers. Three different heuristic searches
were chosen as solvers: Genetic Algorithm (GA), Tabu Search (TS) and Simulated
Annealing (SA). Their implementation follows the basic guidelines described in
[10] and no specific tailoring of operators to problem was done. The description of
these methods is omitted due to space constraints.

The test bed used in this case is the well known knapsack problem. The problem
is defined as follows: Given a set of items, each with a cost and a benefit, determine

Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 31

a subset such that the total cost is less than a given limit and the total benefit is as
large as possible.

From the point of view of the Knowledge Discovery process, and due to the
availability of an instance generator, the number of instances available for training
the system was 500, with 25 instances per size and type considered. We used four
different sizes: 500, 1000, 1500 and 2000 objects and five types of instances, given
by Dr D. Pisinger in[13], were taken into account:

• Spanner: These instances are constructed in such a way that all their items are
multiple of a small set of items called key. That key was generated using three
distributions:

– Uncorrelated,
– Weakly correlated,
– Strongly correlated.

• Profit ceiling: In these instances all the benefits are multiple of a given parame-
ter d.

• Circle: These instances are generated in such a way that the benefits are a function
of the weights, having its graph an elliptic representation.

To carry out the tests we solved a database of instances composed of 20 instances
(one per type and size). In order to asses the quality of the solutions returned by the
strategy, we consider an error as error = 100× obtained value−optimum

optimum .

4.2 Case Study 2 Description

In this case study, the implementation is broadly the same with some slight varia-
tions. Firstly, here the communication mode is asynchronous and is not determined
by CPU time but by objective function evaluations. Concretely, the solvers are run
during a random number of evaluations that varies from 100 to 150. The process is
repeated until a maximum number of objective function evaluations has been done.

Other important difference with respect to the former one are the heuristic imple-
mented by the solvers, since now all of them are trajectory based. The three different
heuristic searches chosen were: Tabu Search, Simulated Annealing (SA) and Vari-
able Neighborhood Descent search (VND). As before, their implementation follows
the basic guidelines described in [10] and no specific tailoring of operators to prob-
lem was done.

The test bed is a hub location problem. The aim on this type of problems is
composed of two steps: 1) Hub location: to determine which and how many nodes
should be the hubs, in order to distribute the flow across them, and 2) Non-hub to
hub allocation: to assign the rest of the nodes to the hubs. Generally, these tasks
are performed by minimizing an objective function that describes the exchange flow
and its cost. We will focus on a particular case: the Uncapacitated Single Allocation
p-Hub Median Problem (USApHMP), which is consider as a NP-hard problem. Its
quadratic integer formulation was given by O’Kelly in [18].

32 A.D. Masegosa et al.

The instances chosen for the experimentation were obtained from the resource
ORLIB [1]. Concretely, we used the AP (Australian Post) data set derived from a
study of a postal delivery system. The data set contains a first group of instances
with 10,20,25,40 and 50 nodes (having 2,3,4 hubs), and a second group where the
instances have 100 and 200 nodes with 2, 3, 4, 5,10,15 and 20 hubs. The optimum
for those instances with a number of nodes less than 50 was provided by the resource
ORLIB, and for the other instances we considered the best solution found for one
of the state-of-art algorithms for this problem, presented in [16]. The quality of the
solutions is measured as in the previous case study. To finish this section, we should
remark other significant distinction with respect to the case 1, since this one only
have available a total of 34 instances and there is just one instance per type and size.

5 Experiments and Results

The experimentation done in this paper has as target to analyse the benefits con-
tributed by the Knowledge Discovery process seen in Section 3. For this purpose,
the baseline for comparison is the strategy seen in Section 2, where there is just one
control rule (EK Rule) and the initial parameters for all the threads are those that
gave the best results when averaged over all the training instances. In other words,
they are independent from the instance being solved. The following combinations
will be tested:

• KD rule is used instead of the EK rule.
• The parameters are calculated as a function of the instance being solved.

In this way, from the base case we can obtain the next strategies:

basic strategy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

EK rule

{
parameters : instance independent(EK + IIP)
parameters : instance dependent(EK + IDP)

KD rule

{
parameters : instance independent(KD+ IIP)
parameters : instance dependent(KD+ IDP)

Each one of the four cooperative strategies obtained is run over a set of test instances
for every case study. We will first analyse the impact of the KD rule and then, that
of the parameter’s setting mode.

5.1 On the Impact of KD Rule versus EK Rule

Here, we compare the behaviour of the strategies EK+IIP vs. KD+IIP and EK+IDP
vs. KD+IDP on each case study.

We will start the analysis with the first case study. Figure 3 shows two scatter
plots where EK and KD rules are compared for both types of parameter’s adjustment
considered. In the scatter plots, each point represents a test instance and shows the
relative deviation from the optimum for the two strategies compared. This is defined
as d = q−q∗

q∗ . Each point is an average over the total of runs. In this type of plots,

Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 33

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

KD rule

E
K

 r
ul

e

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

KD rule

E
K

 r
ul

e

a) Instance Indep. parameters b) Instance Depend. parameters

Fig. 3 Case Study 1: Comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test(Wilcoxon’s unpaired
rank sum test))

when a point is below the diagonal line means that the strategy of the X axis has
a worse average value than the strategy of the Y axis, and viceversa. When a point
is represented by a triangle indicates that the difference is statistically significant
(confidence level 0.05 by a Mann-Whitney U-test (Wilcoxon’s unpaired rank sum
test)) whereas in the opposite case, the point is showed as a circle.

Figure 3 (a) shows an important improvement when the KD rule is used with
respect to EK. The cooperative strategy coupled with the KD rules always obtained
equal or better average values (except in one instance). Moreover, the differences
were statistically significant for 9 cases. When the parameters are set in terms of the
type of the instance being solved, Figure 3 (b), the results are very similar. There is
no point below the diagonal and the number of significant differences here is 5. In
short, we can conclude that for this case study, the basic cooperative strategy can be
enhanced with data mining techniques.

For the second case study, we are going to follow the same analysis structure.
Figure 4 a) shows the performance of the EK rule vs the KD rule when both strate-
gies use instance independent parameters. The differences in terms of results be-
tween the two rules are only statistically significant in 5 instances, three of which
are positives for KD and the other two for EK. In the rest of the cases, the results
are almost the same.

When the parameters are tuned accordingly with the type of instance, Figure 4b),
there seems to be a slight improvement when using KD rules with respect to EK.
Now, KD overcomes EK in most of the instances, being three cases statistically
significant whereas this condition is only fulfilled in one occasion when such differ-
ence has the opposite sign. However, this result should be carefully analysed as the
improve is not due to an enhancement of the KD rule, but a deterioration of EK, as
we will see in the next subsection.

34 A.D. Masegosa et al.

0.00 0.02 0.04 0.06

0.
00

0.
02

0.
04

0.
06

KD rule

E
K

 r
ul

e

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

KD rule

E
K

 r
ul

e

a) Instance Indep. parameters b) Instance Depend. parameters

Fig. 4 Case Study 2: comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test (Wilcoxon’s unpaired
rank sum test))

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

0.00 0.02 0.04 0.06 0.08

0.
00

0.
02

0.
04

0.
06

0.
08

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

a) EK rule b) KD rules

Fig. 5 Case Study 1:Comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test (Wilcoxon’s unpaired
rank sum test))

5.2 On the Impact of the Parameters Setup Method

This part of the result analysis is devoted to study to what extent the strategy improve
its performance when the parameters of the heuristic are tuned as a function of the
instance characteristics, so we will focus on EK+IIP vs. EK+IDP and KD+IIP vs.
KD+IDP for both case studies.

Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 35

0.00 0.02 0.04 0.06

0.
00

0.
02

0.
04

0.
06

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Instance Indep. parameters

In
st

an
ce

 D
ep

en
d.

 p
ar

am
et

er
s

a) EK rule b) KD rules

Fig. 6 Case Study 2:Comparison of the average relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Mann-Whitney U test(Wilcoxon’s unpaired
rank sum test))

In the first case study, the new parameter set up mechanism leads to a perfor-
mance improvement that is very notorious for the EK rule, as we can see in Figure
5 a). The improvement achieved by the instance dependent parameter setting is sig-
nificant in 7 instances and never drives the search to a deterioration. However, this
enhancement is less appreciable for the KD rule. Viewing Figure 5 b), we can check
that although the strategy always work better when the parameter are adjusted by
this method, now the difference with respect to the other alternatives only statisti-
cally significant in one case.

For the second case study, we will start with the EK rule. Viewing the results
shown by Figure 6a), we can observe the behaviour we pointed out before. The use
of EK+IDP produce a high performance degradation of the basic strategy leading to
worse results (the difference is statistically significant) in six instances.

When the control of the strategy is carried out by the KD rules, we can observe
in Figure 6b) that the performance of KD+IIP and KD+IDP are almost the same.

6 Discussions

In this work we have seen how and in what contexts, Knowledge Discovery can
be used to improve a centralised cooperative strategy. Concretely, the Knowledge
Discovery has been incorporated in two different ways:

• By means of new parameterized control rules, where the parameters are deter-
mined using Data Mining

• Defining alternatives for setting up the parameters governing the behaviour of
the metaheuristics: instance independent and instance dependent parameters that
are provided, for each metaheuristic, by a decision tree.

36 A.D. Masegosa et al.

Fig. 7 Average error over all the instances of the corresponding case study, for every strategy
evaluated

In order to analyse the suitability of the methodology, we proposed two case
studies that differs in terms of the definition of the basic cooperative strategy (im-
plemented heuristics, communication mode, ...), problem type, and amount of infor-
mation available for doing knowledge extraction.

In the first case study, we observed that these new components led to cooperative
strategies (EK+IDP, KD+IIP, KD+IDP) whose performance is better than the basic
strategy (EK+IIP). This is clearer if we look at Figure 7 (case study 1) where the
average error over all the test instances is shown for every strategy. This nice and
clear behaviour is not present in the second case study.

In our opinion, the difference is related with amount of available information to
“learn” in each case study. In other words, with the number of available instances
to generate the performance information that then, should be mined to extract the
weights and parameters that will govern the cooperative system. As we saw for-
merly, in the second case study we only had 34 instances for training with a unique
sample per size and type, very low values to achieve a robust learning, specially if
they are compare with such values in the first case study: 500 and 20 respectively.

Nevertheless, some conclusions can be obtained. First one is: if enough informa-
tion is available to apply Knowledge Discovery techniques, then better cooperative
strategies can be obtained. In second place, the benefit of using an instance depen-
dent parameter setting needs to be further analysed because it depends on how well
the instances in the training set could be characterized. If not enough information
is available, then it will be safer not to use it. In the contrary, the use of KD rules
when combined with an instance independent parameter setting leads to cooperative
strategies that, at least, are as good as those using an expert designed rule for both
case studies.

As future work, we plan to improve the learning process in order to reduce the
amount of information needed to obtain meaningful knowledge. Another line of re-
search consist on using online learning instead of the current offline data generation
and processing method. In this way, the overhead of the learning process will be
reduced and the future comparison against state of the art algorithms for specific
problems could be fairly done.

Using Knowledge Discovery in Cooperative Strategies: Two Case Studies 37

Acknowledgements. A.D. Masegosa is supported by the scholarship program FPI from the
Spanish Ministry of Science and Innovation. E. Muñoz is supported by “Fundación Séneca,
Agencia de Ciencia y Tecnología de la Región de Murcia”, under “Programa Séneca” action.
This work has been partially funded by the projects TIN2008-01948 and TIN2008-06872-
C04-03 from the Spanish Ministry of Science and Innovation and the “Fondo Europeo de
Desarrollo Regional” (FEDER). Support from Andalusian Government through project P07-
TIC-02970 is also acknowledged.

References

[1] Beasley, J.: Obtaining test problems via internet. Journal of Global Optimization 8(4),
429–433 (1996)

[2] Bouthillier, A.L., Crainic, T.G.: A cooperative parallel meta-heuristic for the vehicle
routing problem with time windows. Comput. Oper. Res. 32(7), 1685–1708 (2005)

[3] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics:
an emerging direction in modern search technology. In: Handbook of metaheuristics,
pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)

[4] Cadenas, J., Garrido, M., Hernández, L., Muñoz, E.: Towards a definition of a data min-
ing process based on fuzzy sets for cooperative metaheuristic systems. In: Proceedings
of IPMU 2006, pp. 2828–2835 (2006)

[5] Carchrae, T., Beck, J.C.: Applying machine learning to low-knowledge control of opti-
mization algorithms. Computational Intelligence 21(4), 372–387 (2005)

[6] Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel variable
neighborhood search for the p-median. Journal of Heuristics 10(3), 293–314 (2004)

[7] Cruz, C., Pelta, D.: Soft computing and cooperative strategies for optimization. Applied
Soft Computing Journal (2007) (In press) doi:10.1016/j.asoc.2007.12.007

[8] Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Book (2004)
[9] Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.

Addison-Wesley Longman Publishing Co., Inc, Boston (1999)
[10] Glover, F.W., Kochenberger, G.A. (eds.): Handbook of metaheuristics. Kluwer Aca-

demic Publishers, Dordrecht (2003)
[11] Guo, H., Hsu, W.H.: A machine learning approach to algorithm selection for np-hard

optimization problems: a case study on the mpe problem. Annals of Operations Re-
search 156(1), 61–82 (2007)

[12] Houstis, E., Catlin, A., Rice, J.R., Verykios, V., Ramakrishnan, N., Houstis, C.: Pythia-
ii: a knowledge/database system for managing performance data and recommending sci-
entific software. ACM Transactions on Mathematical Software 26(2), 227–253 (2000)

[13] Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (Oc-
tober 2004)

[14] Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann Publishers Inc.,
San Francisco (2001)

[15] Krasnogor, N., Pelta, D.A.: Fuzzy Memes in Multimeme Algorithms: a Fuzzy-
Evolutionary Hybrid. In: Fuzzy Sets based Heuristics for Optimization. Studies in
Fuzziness and Soft Computing, vol. 126, pp. 49–66. Springer, Heidelberg (2002)

[16] Kratica, J., Stanimirović, Z., Dušcan Tovšić, V.F.: Two genetic algorithms for solving
the uncapacitated single allocation p-hub median problem. European Journal of Opera-
tional Research 182(1), 15–28 (2007)

38 A.D. Masegosa et al.

[17] Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: Boosting
as a metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp.
899–903. Springer, Heidelberg (2003)

[18] O’Kelly, M., Morton, E.: A quadratic integer program for the location of interacting hub
facilities. European Journal of Operational Research 32(3), 393–404 (1987)

[19] Pelta, D., Sancho-Royo, A., Cruz, C., Verdegay, J.L.: Using memory and fuzzy rules
in a co-operative multi-thread strategy for optimization. Information Sciences 176(13),
1849–1868 (2006)

[20] Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)
[21] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans-

actions on Evolutionary Computation 1, 67–82 (1997)

Hybrid Cooperation Models for the Tool
Switching Problem

Jhon Edgar Amaya, Carlos Cotta, and Antonio J. Fernández Leiva

Abstract. The Tool Switching Problem (ToSP) is a hard combinatorial optimiza-
tion problem of relevance in the field of flexible manufacturing systems (FMS), that
has been tackled in the literature using both complete and heuristic methods, in-
cluding local-search metaheuristics, population-based methods and hybrids thereof
(e.g., memetic algorithms). This work approaches the ToSP using several hybrid co-
operative models where spatially-structured agents are endowed with specific local-
search/population-based strategies. Issues such as the intervening techniques and
the communication topology are analyzed via an extensive empirical evaluation. It is
shown that the cooperative models provide better results than their constituent parts.
Furthermore, they not only provide solutions of similar quality to those returned by
the memetic approach but raise interest prospects with respect to its scalability.

1 Introduction

The uniform tool switching problem (ToSP) is a hard combinatorial optimization
problem that appears in Flexible Manufacturing Systems (FMSs), an alternative to
rigid production systems that has the capability to be adjusted for generating dif-
ferent products and/or for changing the order of product generation. This problem
arises in a single machine that has several slots into which different tools can be
loaded. Each slot just admits one tool, and each job executed on that machine re-
quires a particular set of tools to be completed. Jobs are sequentially executed, and

Jhon Edgar Amaya
Universidad Nacional Experimental del Táchira (UNET),
Laboratorio de Computación de Alto Rendimiento (LCAR), San Cristóbal, Venezuela
e-mail: jedgar@unet.edu.ve

Carlos Cotta · Antonio J. Fernández Leiva
Dept. Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga,
Campus de Teatinos, 29071 - Málaga, Spain
e-mail: {ccottap,afdez}@lcc.uma.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 39–52, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

jedgar@unet.edu.ve
{ccottap,afdez}@lcc.uma.es

40 J.E. Amaya, C. Cotta, and A.J. Fernández Leiva

therefore each time a job is to be processed, the corresponding tools must be loaded
in the machine magazine. The ToSP consists of finding an appropriate job sequence
in which jobs will be executed, and an associated sequence of tool loading/unloading
operations that minimizes the number of tool switches in the magazine. In this con-
text, tool management is a challenging task that directly influences the efficiency of
flexible manufacturing systems. Different examples of the problem can be found in
diverse areas such as electronics manufacturing, metalworking industry, computer
memory management, and aeronautics, among others [3, 4, 30, 32].

Exact methods ranging from integer linear programming (ILP) techniques to
heuristic constructive algorithms have been already applied to the problem with
moderate success. The reason is clear: the ToSP has been proved to be NP-hard
when the magazine capacity is higher than two (which is the usual case) and thus
exact methods are inherently limited. In this context the use of alternative techniques
that might eventually overcome this limitation has been explored. In particular, the
use of metaheuristic techniques can be considered. In this line of work, [2] recently
proposed three methods to tackle the ToSP: a simple local search (LS) scheme based
on hill climbing, a genetic algorithm (which, as far as we know, constituted the first
population-based approach to solve the uniform ToSP1), and a memetic algorithm
[19, 26] (MA), based on the hybridization of the two latter methods. Related to this
latter approach, this work proceeds along the cooperative side of hybridization by
considering composite models in which different search techniques cooperate for
solving the ToSP. These models can be arranged in a plethora of ways, and as a
first step we have focused on the use of local-search metaheuristics as basic search
strategies, and more precisely on how they can synergistically interact and the effect
of the communication topology.

2 Background

Before proceeding, let us firstly describe more in depth the ToSP. Then, we will
review previous related work.

2.1 The Tool Switching Problem

In light of the informal description of the uniform ToSP given before, there are
two major elements in the problem: a machine M and a collection of jobs J =
{J1, · · · ,Jn} to be processed. Regarding the latter, the relevant information for the
optimization process is the tool requirements for each job. We assume that there is a
set of tools T = {τ1, · · · ,τm}, and that each job Ji requires a certain subset T (Ji) ⊆ T
of tools to be processed. As to the machine, we will just consider one piece of infor-
mation: the capacity C of the magazine (i.e., the number of available slots). Given
the previous elements, we can formalize the ToSP as follows: let a ToSP instance

1 Note that genetic algorithms (GAs) have been applied to other variants of the
problem –e.g., [17]– though.

Hybrid Cooperation Models for the Tool Switching Problem 41

be represented by a pair, I = 〈C,A〉 where C denotes the magazine capacity, and A
is a m×n binary matrix that defines the tool requirements to execute each job, i.e.,
Ai j = 1 if, and only if, tool τi is required to execute job Jj.

We assume that C < m; otherwise the problem is trivial. The solution to such
an instance is a sequence 〈Ji1 , · · · ,Jin〉 (where i1, . . . , in is a permutation of num-
bers 1, . . . ,n) determining the order in which the jobs are executed, and a sequence
T1, · · · ,Tn of tool configurations (Ti ⊂ T) determining which tools are loaded in the
magazine at a certain time. Note that for this sequence of tool configurations to be

feasible, it must hold that T (Ji j) ⊆ Tj.
Let N

+
h = {1, · · · ,h} henceforth. We will index jobs (resp. tools) with integers

from N
+
n (resp. N

+
m). An ILP formulation for the ToSP is shown below, using two

sets of zero-one decision variables – x jk (j ∈N
+
n , k ∈N

+
n), and yik (i ∈N

+
m , k ∈N

+
n)

– that respectively indicate whether a job j is executed at time k or not, or whether a
tool i is in the magazine at time k or not. Notice that since each job makes exclusive
use of the machine, time-step k can be assimilated to the time at which the kth job
is executed.

Processing each job requires a particular collection of tools loaded in the maga-
zine. It is assumed that no job requires a number of tools higher than the magazine
capacity, i.e., ∑m

i=1 Ai j � C for all j ∈N
+
n . Tool requirements are reflected in Eq. (5).

Following [3], we assume the initial condition yi0 = 1 for all i∈N
+
m . This initial con-

dition amounts to the fact that the initial loading of the magazine is not considered
as part of the cost of the solution (in fact, no actual switching is required for this
initial load). The objective function F(·) counts the number of switches that have to
be done for a particular job sequence:

min F(y) =
n

∑
k=1

m

∑
i=1

yik(1−yi,k−1) (1)

∀ j ∈N
+
n :

n

∑
k=1

x jk = 1 (2)

∀k ∈N
+
n :

n

∑
j=1

x jk = 1 (3)

∀k ∈N
+
n :

m

∑
i=1

yik � C (4)

∀ j,k ∈N
+
n ∀i ∈N

+
m : Ai jx jk � yik (5)

∀ j,k ∈N
+
n ∀i ∈ N

+
m : x jk,yi j ∈ {0,1} (6)

This general definition shown above corresponds to the uniform ToSP in which
each tool fits in just one slot. The ToSP can be divided into three subproblems [35]:
the first subproblem is machine loading and consists of determining the sequence of
jobs; the second subproblem is tool loading, consisting of determining which tool to
switch (if a switch is needed) before processing a job; finally, the third subproblem
is slot loading, and consists of deciding where (i.e., in which slot) to place each tool.
Since we are considering the uniform ToSP, the third subproblem does not apply (all
slots are identical, and the order of tools is irrelevant). Moreover, and without loss
of generality, the cost of switching a tool is considered constant (the same for all
tools) in the uniform ToSP. Under this assumption, the tool loading subproblem can

42 J.E. Amaya, C. Cotta, and A.J. Fernández Leiva

also be obviated because if the job sequence is fixed, the optimal tool switching
policy can be determined in polynomial time using a greedy procedure termed Keep
Tool Needed Soonest (KTNS) [3, 32]. The importance of this policy is that given a
job sequence KTNS obtains its optimal number of tool switches. Therefore, we can
concentrate on the machine loading subproblem, and use KTNS as a subordinate
procedure to solve the subsequent tool loading subproblem.

2.2 Related Work on the ToSP

This paper focuses on the uniform case of the ToSP, in which there is one magazine,
no job requires more tools than the magazine capacity, and the slot size is constant.
To the best of our knowledge, the first reference to the uniform ToSP can be found
in the literature as early as in the 1960’s [4]; since then, the uniform ToSP has been
tackled via many different techniques. The late 1980’s contributed specially to solve
the problem [3, 11, 18, 32]. This way, [32] proposed an ILP formulation of the prob-
lem, and [3] formulated the ToSP as a non-linear integer program with a dual-based
relaxation heuristic. More recently, [20] proposed two exact algorithms: a branch-
and-bound approach and a linear programming-based branch-and-cut algorithm.

Despite the moderate success of exact methods, it must be noted that they are
inherently limited, since [27] and [8] proved formally that the ToSP is NP-hard for
C > 2. This limitation was already highlighted by Laporte et al. [20] who reported
that their algorithm was capable of dealing with instances with 9 jobs, but provided
very low success ratios for instances with more than 10 jobs. Some ad hoc heuristics
have been devised in response to this complexity barrier (e.g., [10, 14, 30]).

The use of metaheuristics has been also considered recently. For instance, local
search methods such as tabu search (TS) have been proposed [1, 13]. Among these,
we find specifically interesting the approach presented by [1], due to the quality
of the obtained results; they defined three different versions of TS that arose from
the inclusion of different algorithmic mechanisms such as long-term memory and
oscillation strategies. We will return later to this approach and describe it in more
detail since it has been included in our experimental comparison. A different, and
very interesting, approach has been described by [36], who proposed a beam search
algorithm. Beam search (BS) is a derivate of branch-and-bound that uses a breadth-
first traversal of the search tree, and incorporates a heuristic choice to keep at each
level only the best (according to some quality measure) β nodes (the so-called beam
width). This sacrifices completeness, but provides a very effective heuristic search
approach. Actually, this method provided good results, e.g., better than those of
Bard’s heuristics, and will be also included in the experimental comparison.

2.3 Background on Cooperative Models

Different schemes have been proposed for cooperating metaheuristics. For exam-
ple, Toulouse et al. [33] considered using multiple instances of tabu search running
in parallel, eventually exchanging some of the attributes stored in tabu memory.

Hybrid Cooperation Models for the Tool Switching Problem 43

Later on, Toulouse et al. [34] proposed a a hierarchical cooperative model based
on problem decomposition. Crainic and Gendreau [6] presented a cooperative par-
allel tabu search method for capacitated network design problem that was shown to
outperform independent search strategies. Crainic et al. [7] also proposed a method
for asynchronous cooperative multi-search using variable neighborhood search with
application to the p-median problem. Pelta et al. [28] presented a cooperative multi-
thread search-based optimization strategy, in which several solvers were controlled
by a higher-level coordination algorithm which collected information on their search
performance and altered the behavior of the solvers accordingly (see also [9]).

More recently, Lu et al. [23] presented a hybrid cooperative version of quantum
particle swam optimization aimed to improving the diversity of the swarms. Another
approach for the implementation of cooperative mechanisms with metaheuristics is
multi-agent systems. Milano and Roli [25] developed a multi-agent system called
MAGMA (multiagent metaheuristic architecture) allowing the use of metaheuristics
at different levels (creating solutions, improving them, defining the search strategy,
and coordinating lower-level agents). Malek [24] introduced a multi-agent system
like MAGMA which considered particular metaheuristics implemented by individ-
ual agents and the exchange of solutions between these.

To the best of our knowledge, no cooperative scheme has been applied to tackle
the ToSP, perhaps with the exception of our memetic proposal described in [2] that
can be catalogued as an integrative cooperation according to the classification de-
scribed in [29] (note at any rate that none of the techniques involved in the MA is
a complete algorithm). In any case, no classical cooperation model in the sense of
“search algorithms working in parallel with a varying level of communication” [5]
has been tried. This paper presents the first cooperative models according to this
mentioned schema for solving the ToSP.

3 Hybrid Cooperative Models

We have considered four collaborative architectures. In three of them, agents are
attached to a certain spatial structure endowed with a LS mechanism. These archi-
tectures are defined on the basis of the particular LS methods used, and on their
interaction topology. Therefore, these two aspects are defined separately in Sec-
tions 3.1 and 3.2 respectively. A fourth architecture, also described in Section 3.2,
is defined on the basis of a model based in heterogeneous techniques for executing
search, diversification and intensification.

3.1 Local Searchers

LS metaheuristics are based on exploring the neighborhood of a certain “current”
solution. It is thus convenient to address firstly the representation of solutions and
the structure of this neighborhood, and subsequently of the underlying search space.
A permutational encoding arises as the natural way to represent solutions. Thus, a
candidate solution for a specific ToSP instance I = 〈C,A〉 is simply a permutation

44 J.E. Amaya, C. Cotta, and A.J. Fernández Leiva

π = 〈π1, · · · ,πn〉 ∈ Pn where πi ∈ N
+
n , and Pn is the set of all permutations of ele-

ments in N
+
n . The KTNS algorithm is used to obtain the actual tool configuration of

the machine for the corresponding job sequence.
Having defined the representation, we now turn our attention to the neighbor-

hood structure. In general, we have considered the well-known swap neighborhood
Nswap(·), in which two permutations are neighbors if they just differ in two positions
of the sequence, that is, for a permutation π ∈Pn, Nswap(π) = {π ′ ∈ Pn |H(π ,π ′) =
2} where H(π ,π ′) = n−∑n

i=1[πi = π ′i] is the Hamming distance between sequences
π and π ′ (the number of positions in which the sequences differ), and [·] is Iverson
bracket (i.e., [P] = 1 if P is true, and [P] = 0 otherwise). Given the permutational na-
ture of sequences, this implies that the contents of the two differing positions have
been swapped. For some specific applications (named when necessary), we have
also considered a specific neighborhood called block neighborhood Nblock(·). This
is a generalization of the swap neighborhood in which two non-overlapping blocks
(i.e., subsequences of adjacent positions) of a randomly chosen length bl ∈N

+
n/2 are

selected at random within a permutation, and swapped.
These neighborhoods are exploited within two different LS frameworks. The first

one is steepest-ascent Hill Climbing (HC), in which given a current solution π , its
neighborhood N (π) is explored, and the best solution found is taken as the new
current solution, provided it is better than the current one (ties are randomly bro-
ken). If no such neighboring solution exist, the search is considered stagnated, and
can be restarted from a different initial point. The second LS technique consid-
ered is a Tabu Search (TS) method along the lines of the proposal in [1]. This TS
method is based on a strategic oscillation mechanism which switches between the
two neighborhoods defined before. A deterministic criterion based on switching the
neighborhood structure after a fixed number of iterations was reported by [1] to per-
form better than a probabilistic criterion (i.e., choosing the neighborhood structure
in each step, according to a certain probability distribution). We implement a long
term memory scheme using a frequency based memory structure with a mechanism
based in swapping to select new candidate solutions [1]. No aspiration criterion is
used in this referred algorithm.

3.2 Interaction Topology

Let R be an architecture with n agents; each agent ai (0 � i � n− 1) in R consists
of one of the metaheuristics described in Sect. 3.1. These agents engage in peri-
ods of isolated exploration followed by synchronous communication. We denote
as cyclesmax the maximum number of such exploration/communication cycles in a
certain cooperative model. Also, let Si be the best solution found by agent ai, and
let TR ⊆ N

+
n ×N

+
n be the communication topology over R (i.e., if (i, j) ∈ TR then

ai can send information to agent a j). The general architecture of the model is then
described in Algorithm 1. Firstly all the agents are initialized with random initial
solution (lines 1-3). Then, the algorithm is executed for a maximum number of iter-
ations cycles (lines 5-15) where, in each cycle, a local improvement of the solution

Hybrid Cooperation Models for the Tool Switching Problem 45

Algorithm 1. COOPERATIVE-MODELn

for i ∈N
+
n do1

Si← GenerateInitialSolution();2

endfor3

cycles← 1;4

while cycles � cyclesmax do5

for i ∈N
+
n do6

Si← ai(Si);7

endfor8

for (i, j) ∈ TR do9

if KTNS(Si) < KT NS(S j) then10

S j← Si;11

endif12

endfor13

cycles← cycles+114

endw15

return max−1{KT NS(Si) | i ∈N
+
n };16

kept in each agent is done (lines 6-8), and solutions are fed from an agent to an-
other according to the topology considered (lines 9-13). Note that an agent only
accepts an incoming solution if it is better than its incumbent. Observe also that,
for a maximum number of evaluations Emax and for a specific number of cycles
cyclesmax, each cycle in our cooperative algorithms spends Ecycle = Emax/cyclesmax

evaluations, and the specific LS method of any agent takes Ecycle/n evaluations at
most.

Three strategies based on different interaction topologies are considered:

• RING: TR = {(i, i(n)+1) | i ∈ N
+
n and i(n) denotes i modulo n}. Thus, there ex-

ists a circular list of agents in which each node only sends (resp. receives) infor-
mation to its successor (resp. from its predecessor).

• BROADCAST: TR = N
+
n ×N

+
n , i.e., a go with the winners-like topology in which

the best overall solution at each synchronization point is transmitted to all agents.
This means all agents executes intensification over the same local region of the
search space at the beginning of each cycle.

• RANDOM: TR is composed by n pairs (i, j) that are randomly sampled from
N

+
n ×N

+
n . This sampling is done each time communication takes place, and hence

any two agents might eventually communicate in any step.

In addition to these strategies we have considered a so-called Ring SDI model,
based on an interesting proposal described in [31]. SDI stands for Search, Diversi-
fication and Intensification, and hence the SDI architecture consists of three agents
dedicated to distinct purposes: the first one to local search, the second one to diver-
sification and the third one to intensification. As described in next section, within
this SDI model the intervening techniques are not just local searchers, but other
techniques can be used for intensification/diversification purposes.

46 J.E. Amaya, C. Cotta, and A.J. Fernández Leiva

4 Computational Results

As far as we know, no standard data instance exists for this problem (at least publicly
available) so that we have selected a wide set of problem instances that were attacked
in [1, 3, 14, 36]; more specifically, 16 instances were chosen with values for the
number of jobs, number of tools, and machine capacity ranging in [10,50], [9,60]
and [4,25] respectively. Table 1 shows the different problem instances chosen for the
experimental evaluation where a specific instance with n jobs, m tools and machine
capacity C is labeled as Cζm

n .

Table 1 Problem Instances considered in the experimental evaluation. The minimum and
maximum of tools required for all the jobs is indicated in second and third rows respectively.
Fourth row shows the work from which the problem instance was obtained

4ζ 10
10 4ζ 9

10 6ζ 15
10 6ζ 12

15 6ζ 20
15 8ζ 15

20 8ζ 16
20 10ζ 20

20 24ζ 30
20 24ζ 36

20 30ζ 40
20 10ζ 25

30 15ζ 40
30 15ζ 30

40 20ζ 60
40 25ζ 40

50

Min. 2 2 3 3 3 3 3 4 9 9 11 4 6 6 7 9
Max. 4 4 6 6 6 8 8 10 24 24 30 10 15 15 20 20

Source [14] [3] [3] [3] [3] [3] [3]
[1] [36] [36] [36] [14] [1] [36] [36] [36] [36] [36] [1] [14] [1] [14] [1]

Five different datasets2 (i.e., incident matrixes or relations among tools and jobs)
were generated randomly per instance. Each dataset was generated with the restric-
tion, already imposed in previous works such as [14], that no job is covered by any
other job in the sense that ∀i, j ∈N

+
n , i
= j, T (Ji)
⊆ T (Jj). The reason to enforce this

constraint is to avoid the simplification of the problem by preprocessing techniques
as done for instance in [3] and [36].

The experiments have been performed using a wide set of different algorithms:
the beam search (BS) presented in [36], three LS methods, a GA, the memetic ap-
proach (denoted as MaHC) presented in [2], and the four cooperative algorithms
described in this paper. From these, a wide number of algorithms were devised and
tested. For instance, in the case of BS, five different values β ∈N

+
5 were considered

for the beam width. Regarding LS methods, we consider the TS proposed in [1], and
HC as described previously. Moreover, we have taken into account also LS versions
in which a partial exploration of the neighborhood is done by obtaining a fixed-size
random sample; in particular, the size of this sample has been chosen to be αn, i.e.,
proportional to the number of jobs (the value α = 4 has been used). The notation
HCP and HCF (resp. TSP and TSF) is used to indicate the HC variant (resp. TS
variant) in which the neighborhood is partially or fully explored respectively. Also,
in the case of HC, the search is restarted from a different initial point if stagnation
takes place before consuming the allotted number of evaluations. Regarding TS, the
tabu tenure is 5, and the number of iterations on each neighborhood for performing
strategic oscillation is 3. In both cases, this corresponds to the setting used by [1].

2 All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm

Hybrid Cooperation Models for the Tool Switching Problem 47

The GA is a steady-state genetic algorithm whose parameters are exactly as those
described in [2], that is to say, popsize = 30, pX = 1.0, and pM = 1/n where n is
the number of jobs, with binary tournament selection; alternating position crossover
(APX) is used [21], and mutation is done by applying the random block swap as op-
erator. The MaHC consists of a combination of this GA with HCP where HCP was
always applied to each offspring generated after the mutation step. The election of
the parameter values (including the value for α) was done after an extensive phase
of experimentation with many different values. The best combinations of the values
were finally selected.

Regarding the cooperative models, we have used cyclesmax ∈ {3,4,5}, and have
focused on models with 3 agents to make easier the comparison with the SDI model.
In this latter RINGSDI model we connect HCP for LS, GA for diversification, and
for intensification we plug in the KickOperator that was also used in [31]. In our
rendition of this operator it acts as a first-ascent HC on the swap neighborhood. As
to the basic RING, BROADCAST and RANDOM topologies, their three agents were
loaded with HCF, HCP and TSP techniques respectively.

All algorithms were run 10 times (per instance and dataset) and a maximum of
Emax = ϕn(m−C) evaluations3 per run (with ϕ > 0). Preliminary experiments on
the value of ϕ proved that ϕ = 100 is an appropriate value that allows to keep an
acceptable relation between solution quality and computational cost. Regarding the
BS algorithm, because of its deterministic nature, just one execution per dataset (and
per value of beam width) was run and the algorithm was allowed to be executed until
exhaustion (i.e., until completing the search).

Due to space limitations we will not present all the obtained results for each of
the instances and for all the algorithms involved in the comparison, and will use a
rank-based approach in order to analyze the significance of the results. To do so,
we have computed the rank ri

j of each algorithm j on each instance i (rank 1 for
the best, and rank k for the worst, where k = 23 is the number of algorithms; in
case of ties, an average rank is awarded). The distribution of these ranks is shown
in Fig. 1. Here one can extract important conclusions: the most important is that
in general, the cooperative models behaves better than its constituent parts. This is
an important fact as the cooperative models have not been optimized exhaustively
(due to the high number of possible metaheuristics combinations to be loaded in
the agents). Also, the fact that RINGSDI is better than RING might indicate the
need for a diversification algorithm to increase the area of exploration in the search
landscape.

Next, we have used two well-known non-parametric statistical tests [22] to com-
pare ranks, namely Friedman test [12] and Iman-Davenport test [16]. The results are
shown in Table 2. As seen in the first row, the statistic values obtained are clearly

3 Observe that the number of evaluations depends directly on the number of jobs although
it seems evident that the problem difficulty lies in the relation between number of tools
and magazine capacity. In this sense, the number of evaluations increases with the number
of tools (assumed to be directly related with problem difficulty) and decreases when the
magazine capacity increases (that, in some sense, it is also inversely related to the problem
difficulty).

48 J.E. Amaya, C. Cotta, and A.J. Fernández Leiva

0 5 10 15 20

MaHC

RingSDI(4)

RingSDI(3)

RingSDI(5)

TSP

Broadcast(5)

Random(5)

Broadcast(4)

Broadcast(3)

Random(4)

Random(3)

GA

Ring(4)

Ring(5)

Ring(3)

TSF

HCF

B=5

B=4

B=3

B=2

HCP

B=1

Values

Fig. 1 Rank distribution of each algorithm across all instances. As usual, each box comprises
the second and third quartiles of the distribution, the median is marked with a vertical line,
whiskers span 1.5 times the inter-quartile range, and outliers are indicated with a plus sign.
The numbers in parentheses indicate the number of cycles of execution (i.e., cyclesmax)

Table 2 Results of Friedman and Iman-Davenport tests

Friedman value critical χ2 value Iman-Davenport value critical FF value
all 269.80 33.92 49.23 1.57

top 5 19.04 9.49 6.35 2.53

higher than the critical values, and therefore the null hypothesis, namely that all al-
gorithms are equivalent, can be rejected. Since there are algorithms with markedly
poor performance, we have repeated the test with the top 5 algorithms (i.e., the
MaHC, all RINGSDI and TS), whose performance places them in a separate cluster
from the remaining algorithms. Again, it can be seen that the statistical test is passed,
thus indicating significant differences in their ranks at the standard α = 0.05 level.

Subsequently, we have focused in these top 5 algorithms, and performed Holm’s
test [15] in order to determine whether there exists significant differences with re-
spect to a control algorithm (in this case MaHC, the algorithm with the best mean
rank). The results are shown in Table 3. Notice that the test is passed for all al-
gorithms with respect to MaHC and that there is no statistical difference between
MaHC, RINGSDI(4) and RINGSDI(3).

Hybrid Cooperation Models for the Tool Switching Problem 49

Table 3 Results of Holm’s test using MaHC as control algorithm

i algorithm z-statistic p-value α/(k− i)
1 RingSDI(4) 1.286 0.09926 0.013
2 RingSDI(3) 1.957 0.02520 0.016
3 RingSDI(5) 2.012 0.02209 0.025
4 TSP 4.249 < 0.00001 0.050

Table 4 Computational results. Best results (in terms of the best solution average) are under-
lined and in boldface

4ζ10
10 6ζ15

10 4ζ9
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

TSP mean 8.8 13.68 8.08 16.46 23.02 23.62 27.92 30.72 25.04 45.9 42.12 67.72 101.72 101.9 213.74 153.58
σ 1.61 2.1 0.74 1.93 2.0 3.63 2.13 2.5 3.02 8.98 4.34 1.52 13.07 8.14 8.38 12.89

best 7 11 7 13 20 18 23 26 21 34 33 65 82 89 199 130
MaHC mean 8.68 13.7 7.86 15.5 22.38 22.36 26.66 29.92 24.9 46.54 41.04 64.92 100.86 97.96 211.88 153.36

σ 1.62 2.09 0.721 1.982 1.938 3.576 1.986 2.357 3.28 8.81 4.54 1.573 12.9 7.887 7.812 13.52
best 7 11 7 12 20 17 23 26 20 36 31 62 81 86 201 132

RingSDI (3) mean 8.72 13.74 7.9 16.14 23.0 23.34 27.6 30.72 24.76 45.26 41.3 66.98 102.66 99.52 210.68 148.14
σ 1.64 2.04 0.68 1.85 2.21 3.36 2.21 2.31 3.17 8.46 4.43 2.64 13.03 7.71 7.79 11.75

best 7 11 7 13 20 19 23 26 20 35 32 62 82 87 197 129
RingSDI (4) mean 8.72 13.66 7.9 16.16 22.96 23.06 27.44 30.72 24.46 45.84 41.8 67.32 102.28 99.16 211.08 146.34

σ 1.65 2.12 0.73 1.9 2.14 3.34 2.05 2.41 3.51 7.91 4.79 2.69 12.37 7.64 9.34 12.28
best 7 11 7 13 20 17 23 25 19 36 32 61 79 88 198 126

RingSDI (5) mean 8.7 13.74 7.92 16.1 23.1 23.2 27.28 30.74 24.46 45.64 41.58 68.1 102.2 100.24 210.44 146.98
σ 1.62 2.07 0.69 2.02 2.08 3.42 2.3 2.38 3.13 8.55 4.5 2.76 12.78 8.07 9.17 12.12

best 7 11 7 12 20 18 22 25 20 33 32 63 81 87 195 124

Also, Table 4 shows the obtained results, grouped by problem instances, for these
top 5 algorithms. One can observe that all RINGSDI algorithms perform better than
MaHC in several instances, particularly in the largest one (i.e., last column), in
which Wilcoxon’s ranksum test indicates that RingSDI4 significantly outperforms
(at the standard 0.05 level) the MA in all five datasets generated for this parameter
combination. This raises interest prospects for the scalability of these models, thus
hinting the need for experiments at a larger scale to confirm this.

5 Conclusions

Collaborative optimization models constitute a very appropriate framework for in-
tegrating different search techniques. Each of these techniques has a different view
of the search landscape, and by combining the corresponding different exploration
patterns, the search can benefit from an increased capability for escaping from lo-
cal optima. Of course, this capability is more useful whenever the problem tackled
poses a challenging optimization task to the individual search algorithms. Other-
wise, computational power is diversified in unproductive explorations.

We have tackled here the tool switching problem and have proposed four coop-
erative methods to attack it. An empirical evaluation was executed in order to prove
the validity and performance of the proposed techniques. One topology based on

4 All tables are available in http://www.unet.edu.ve/∼jedgar/ToSP/Wilcoxon.htm

50 J.E. Amaya, C. Cotta, and A.J. Fernández Leiva

heterogenous intervening techniques (RINGSDI) provides better computational re-
sults than well-known algorithms for solving the ToSP, i.e., beam search and tabu
search, and does not perform worse than a memetic algorithm. Indeed, some re-
sults with larger instances lead us to hypothesize that this model might have better
scalability properties than the MA. This issue will be analyzed in future work.

We believe that there is room for improvement. For instance, it would be interest-
ing to test other alternatives to LS. More precisely, the MA is a killer approach for
the ToSP, so it may be interesting to include this technique in the cooperative model.
In this case, it would be necessary to re-balance the intensification/exploration ratio,
since MAs perform a much more intensified search than other techniques, and thus
may require a more explorative counterweight. This line of research is in progress.

Acknowledgements

The authors wish to thank the anonymous reviewers for their constructive comments and sug-
gestions, which have improved the readability of the paper. The second and third authors were
partially supported by Spanish MICINN project under contract TIN2008-05941 (NEMESIS
project).

References

[1] Al-Fawzan, M., Al-Sultan, K.: A tabu search based algorithm for minimizing the num-
ber of tool switches on a flexible machine. Computers & Industrial Engineering 44(1),
35–47 (2003)

[2] Amaya, J., Cotta, C., Fernández, A.: A memetic algorithm for the tool switching prob-
lem. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sam-
pels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 190–202. Springer, Heidelberg (2008)

[3] Bard, J.F.: A heuristic for minimizing the number of tool switches on a flexible machine.
IIE Transactions 20(4), 382–391 (1988)

[4] Belady, L.: A study of replacement algorithms for virtual storage computers. IBM Sys-
tems Journal 5, 78–101 (1966)

[5] Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

[6] Crainic, T.G., Gendreau, M.: Cooperative parallel tabu search for capacitated network
design. Journal of Heuristics 8(6), 601–627 (2002)

[7] Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel variable
neighborhood search for the p-median. Journal of Heuristics 10(3), 293–314 (2004)

[8] Crama, Y., Kolen, A., Oerlemans, A., Spieksma, F.: Minimizing the number of tool
switches on a flexible machine. International Journal of Flexible Manufacturing Sys-
tems 6, 33–54 (1994)

[9] Cruz, C., Pelta, D.A.: Soft computing and cooperative strategies for optimization. Ap-
plied Soft Computing 9(1), 30–38 (2009)

[10] Djellab, H., Djellab, K., Gourgand, M.: A new heuristic based on a hypergraph rep-
resentation for the tool switching problem. International Journal of Production Eco-
nomics 64(1-3), 165–176 (2000)

Hybrid Cooperation Models for the Tool Switching Problem 51

[11] ElMaraghy, H.: Automated tool management in flexible manufacturing. Journal of Man-
ufacturing Systems 4(1), 1–14 (1985)

[12] Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association 32(200), 675–701
(1937)

[13] Hertz, A., Widmer, M.: An improved tabu search approach for solving the job shop
scheduling problem with tooling constraints. Discrete Applied Mathematics 65, 319–
345 (1993)

[14] Hertz, A., Laporte, G., Mittaz, M., Stecke, K.: Heuristics for minimizing tool switches
when scheduling part types on a flexible machine. IIE Transactions 30, 689–694 (1998)

[15] Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal
of Statistics 6, 65–70 (1979)

[16] Iman, R., Davenport, J.: Approximations of the critical region of the Friedman statistic.
Communications in Statistics 9, 571–595 (1980)

[17] Keung, K.W., Ip, W.H., Lee, T.C.: A genetic algorithm approach to the multiple machine
tool selection problem. Journal of Intelligent Manufacturing 12(4), 331–342 (2001)

[18] Kiran, A., Krason, R.: Automated tooling in a flexible manufacturing system. Industrial
Engineering 20, 52–57 (1988)

[19] Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxon-
omy, and design issues. IEEE Transactions on Evolutionary Computation 9(5), 474–488
(2005)

[20] Laporte, G., Salazar-González, J., Semet, F.: Exact algorithms for the job sequencing
and tool switching problem. IIE Transactions 36(1), 37–45 (2004)

[21] Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S.: Genetic algorithms for
the travelling salesman problem: A review of representations and operators. Articial
Intelligence Review 13, 129–170 (1999)

[22] Lehmann, E., D’Abrera, H.: Nonparametrics: statistical methods based on ranks.
Prentice-Hall, Englewood Cliffs (1998)

[23] Lu, S., Sun, C.: Coevolutionary quantum-behaved particle swarm optimization with
hybrid cooperative search. In: Proceedings of the Pacific-Asia Workshop on Computa-
tional Intelligence and Industrial Applications PACIIA 2008, vol. 1, pp. 109–113 (2008)

[24] Malek, R.: Collaboration of metaheuristic algorithms through a multi-agent system. In:
Mařík, V., Strasser, T., Zoitl, A. (eds.) Holonic and Multi-Agent Systems for Manufac-
turing. LNCS, vol. 5696, pp. 72–81. Springer, Heidelberg (2009)

[25] Milano, M., Roli, A.: Magma: a multiagent architecture for metaheuristics. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 34(2), 925–941 (2004)

[26] Moscato, P., Cotta, C.: Memetic algorithms. In: González, T. (ed.) Handbook of Ap-
proximation Algorithms and Metaheuristics, ch. 27. Chapman & Hall/CRC Press (2007)

[27] Oerlemans, A.: Production planning for flexible manufacturing systems. Ph.d. disserta-
tion, University of Limburg, Maastricht, Limburg, Netherlands (1992)

[28] Pelta, D., Cruz, C., Sancho-Royo, A., Verdegay, J.: Using memory and fuzzy rules in
a co-operative multi-thread strategy for optimization. Information Sciences 176, 1849–
1868 (2006)

[29] Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in com-
binatorial optimization: A survey and classification. In: Mira, J., Álvarez, J.R. (eds.)
IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)

[30] Shirazi, R., Frizelle, G.: Minimizing the number of tool switches on a flexible machine:
an empirical study. International Journal of Production Research 39(15), 3547–3560
(2001)

52 J.E. Amaya, C. Cotta, and A.J. Fernández Leiva

[31] Talbi, E.G., Bachelet, V.: Cosearch: A parallel cooperative metaheuristic. Journal of
Mathematical Modelling and Algorithms 5(1), 5–22 (2006)

[32] Tang, C., Denardo, E.: Models arising from a flexible manufacturing machine, part
I: minimization of the number of tool switches. Operations Research 36(5), 767–777
(1988)

[33] Toulouse, M., Crainic, T.G., Sanso, B., Thulasiraman, K.: Self-organization in cooper-
ative tabu search algorithms. In: Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, vol. 3, pp. 2379–2384 (1998)

[34] Toulouse, M., Thulasiraman, K., Glover, F.: Multi-level cooperative search: A new
paradigm for combinatorial optimization and an application to graph partitioning. In:
Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.)
Euro-Par 1999. LNCS, vol. 1685, pp. 533–542. Springer, Heidelberg (1999)

[35] Tzur, M., Altman, A.: Minimization of tool switches for a flexible manufacturing ma-
chine with slot assignment of different tool sizes. IIE Transactions 36(2), 95–110 (2004)

[36] Zhou, B.H., Xi, L.F., Cao, Y.S.: A beam-search-based algorithm for the tool switching
problem on a flexible machine. The International Journal of Advanced Manufacturing
Technology 25(9-10), 876–882 (2005)

Fault Diagnosis in Industrial Systems Using
Bioinspired Cooperative Strategies

Lídice Camps Echevarría, Orestes Llanes-Santiago, and Antônio José da Silva Neto

Abstract. This paper explores the application of bioinspired cooperative strate-
gies for optimization on Fault Diagnosis in industrial systems. As a first step, the
Differential Evolution and Ant Colony Optimization algorithms are considered.
Both algorithms have been applied to a benchmark problem, the two tanks system.
The experiments have considered noisy data in order to compare the robustness
of the diagnosis. The preliminary results indicate that the proposed approach, basi-
cally the combination of the two algorithms, characterizes a promising methodology
for the Fault Detection and Isolation problem.

1 Introduction

The increases on the complexity of the industrial systems implies that the proba-
bility of fault occurrence is more significant. The faults change the characteristic
properties of the system and produce its incapacity to fulfill the intended purpose,
[6]. Therefore, an automatic supervisor should be used to detect and isolate, (FDI),
the faults as early as possible. This is a reason for which in the last three decades a
wide variety of FDI methods have been developed.

Lídice Camps Echevarría
Departamento de Matemáticas, Facultad de Ingeniería Mecánica,
Instituto Superior Politécnico José Antonio Echeverría (ISPJAE), Ciudad de La Habana, Cuba
e-mail: lidice@mecanica.cujae.edu.cu

Orestes Llanes-Santiago
Departamento de Automática y Computación, Facultad de Ingeniería Eléctrica,
Instituto Superior Politécnico José Antonio Echeverría (ISPJAE), Ciudad de La Habana, Cuba
e-mail: orestes@electrica.cujae.edu.cu

Antônio José da Silva Neto
Department of Mechanical Engineering and Energy, Instituto Politécnico (IPRJ),
Universidade do Estado do Rio de Janeiro, UERJ, Nova Friburgo, RJ, Brazil
e-mail: ajsneto@iprj.uerj.br

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 53–63, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

lidice@mecanica.cujae.edu.cu
orestes@electrica.cujae.edu.cu
ajsneto@iprj.uerj.br

54 L.C. Echevarría, O. Llanes-Santiago, and A.J. da Silva Neto

The FDI methods are divided in two general groups, those which use a model
of the process and those which do not use it. Although many approaches have been
developed, [2, 6, 11], robust FDI is still considered as a problem open to further
research, [14], due to the the unavoidable process disturbances and the modeling
errors which make almost unfeasible the use of many FDI methods in practical
application.[11].

The FDI problem approach by the model-based methods has the following struc-
ture: based on some observations and the direct model, it is necessary to establish
the causes of this observed behavior. In some cases, the identification of model pa-
rameter with fault of the system allows the FDI via the parameters estimation.

Recently some articles have reported applications of meta heuristics to the FDI
problems via parameters estimation, [16–18]. In this sense, the FDI via parame-
ter estimation based on the approach of the meta heuristic algorithms seems to be
an adequate alternative. The simple structure of these algorithms and their robust-
ness reported in the solution of many parameters estimation inverse problems, [12],
[1, 8, 9, 13], indicate that they are a promising alternative for FDI methods which
need to be fast and simple (for online process) and robust to external perturbations.
Moreover, estimations based on heuristic algorithms are absolutely viable when a
nonlinear model is considered, making perfectly feasible the use of non linear mod-
els in order to prevent some modeling errors when linearizing the nonlinear process.

This work presents the application of two bioinspired algorithms, Differential
Evolution (DE), [15], and Ant Colony Optimization (ACO), [4], to the FDI problem
in order to study and compare the capabilities of both algorithms and their combina-
tion for the FDI problems . As a case of study it has been simulated the problem of
the two tanks system. This system is a simplified version of the three tanks system,
which was adopted as a benchmark problem for FDI and reconfigurable control [10].
In order to verify and compare the robustness of the diagnosis, several simulations
were made and different fault situations were considered. In all cases noisy data
were considered. The results are presented using comparative tables and figures.

The structure of the paper is the following: in the next section the basis of DE and
the ACO are described. The third section shows the benchmark problem of the two
tanks system. The section number 4 shows the simulations, the experimental results
and the analysis of these results. Finally, section 5 summarizes the contributions and
achievements of the paper.

2 Differential Evolution and Ant Colony Optimization

This section describes the basis of the two algorithms that are used during this paper.

2.1 Differential Evolution

The Differential Evolution (DE) was proposed around 1995, for optimization prob-
lems, [15]. DE is an improved version of the Goldberg’s Genetic Algorithm (GA),
[5], taking the basis of Simulated Annealing (SA), [7]. Some of the most

Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies 55

important advantages of DE are: simple structure, simple computational implemen-
tation, speed and robustness, [15].

Basically, DE generates new parameter vectors by adding the weighted differ-
ence between a pair population vectors to a certain vector (the number of pair can
be changed). This configuration is summarized by the notation DE/X/α/β where
X denotes the vector to disturb, α the number of pair of vectors for disturbing
X and β indicates the type of crossover to be used. In this case was considered
DE/Xbest

j /1/bin. The key parameters of control in DE are the population size, N,
the crossover constant, CR, and the weight applied to random differential or scaling
factor, Fs. In [15] some simple rules for choosing the parameters of DE for any ap-
plication are given: usually, N should be about 5 to 10 times the dimension of the
variable of the problem, D and Fs lie in the range 0.4 to 1.0. Initially, D = 0.5 can
be tried, and then can be increased if the population converges prematurely.

2.2 Ant Colony Optimization

ACO was initially proposed, [4], for integer programming problems but it has been
extended to continuous optimization problems. This algorithm is inspired on the
behavior of ants seeking a path between their colony and a source of food. This
behavior is due to the deposit and evaporation of pheromone.

For the continuous case the idea of the ACO is to mimic this behavior with simu-
lated ants which are identified with a feasible solution. The first step is to discretize
the feasible interval of each variable of the problem in n possible values. On each
iteration of the algorithm a family of N new ants are generated based on the infor-
mation obtained from the previous ants. This information is saved on the pheromone
probability matrix P f (dimensions m×n where m is the number of variables in the
problem) which is updated at each iteration based on a evaporation factor Cevap and
an incremental factor Cinc:

p fi j(t) =
∑ j

l=1 [fil(t)]
α

∑n
l=1 [fil(t)]

α (1)

where α = 1 and fi j is the element of the pheromone matrix which expresses the
pheromone level of the discrete value j− esimo of the variable i, and it is updated
on each iteration:

fi j(t + 1) = (1−Cevap) fi j(t)+ δi j,bestCinc fi j(t) (2)

3 The Two Tanks System

The two tank system considered for study is represented in Fig.1.
The system consists of two liquid tanks that can be filled with two similar and

independent pumps acting on the tank 1 and tank 2, which have the same cross
section S1 = S2. The pumps deliver the flow rates q1 in tank 1 and q2 in tank 2. The

56 L.C. Echevarría, O. Llanes-Santiago, and A.J. da Silva Neto

tanks are interconnected to each other through lower pipes. All the pipes have the
same cross section Sp. The liquid levels L1 and L2 in each tank are the controlled
variables and they are measured with continuous valued level sensors. The variables
q1 and q2 are chosen as manipulated variables to control the levels of tank 1 and
tank 2.

The system has two faults to be detected and isolated:

• Fault 1 : Leak at the tank 1, an outflow with magnitude q f1 .
• Fault 2 : Leak at the tank 2, an outflow with magnitude q f2 .

The differential equations that describe the system, under the presence of faults, is
derived from conservation of mass in the system of the two tanks:

L̇1 =
q1

S1
− q10

S1
− q12

S1
− q f1

S1
(3)

L̇2 =
q2

S2
− q20

S2
+

q12

S2
− q f2

S2
, (4)

and by the application of the Torricelli’s law:

qi0 = μiSp

√
2gLi (5)

qi j = μiSp

√

2g
∣
∣Li−Lj

∣
∣sign(Li−Lj) , (6)

where μi are flow coefficients and considering

Ci = μiSp

√
2g, (7)

Fig. 1 Two tanks system

Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies 57

Table 1 Values of the constants of the two tanks system

C1, C2 0.3028 m2

S1, S2 2.54 m2

Sp 0.1 m2

Acceleration due to gravity, g 9.8 m/s2

the following system of equations is obtained:

L̇1 =
q1

S1
− C1

S1

√
L1− C1

S1

√
|L1−L2|sign(L1−L2)− q f1

S1

L̇2 =
q2

S2
− C2

S2

√
L2 +

C1

S2

√
|L1−L2|sign(L1−L2)− q f2

S2
(8)

y1 = L1

y2 = L2

For more details see [3].
The goal here is to diagnosis the presence of the faults 1 or 2, even more, their

magnitude. As a first approach it has been supposed that the leak at both tanks do
not change in time and it is assumed that the magnitude of the leaks is less than
1000 ml/s. In other words, the following restrictions for the parameters q fi , i = 1,2
have been established:

q f1 ,q f2 ∈ℜ : 0≤ q f1 ,q f2 ≤ 1 ml/s

Estimation of the parameters q f1 and q f2 permit to diagnosis the system. In order to
estimate these parameters, the following problem is formulated:

min F (v) = min
N

∑
n=1

[
L̄exp

n − L̄cal
n (v)

]2
(9)

where v =
(
q f1 ,q f2

)t
, L̄exp

n = (Ln
1,L

n
2)

t are the observations of the liquid levels at

different instants of time, L̄cal
n =

(
Ln

cal(1),L
n
cal(2)

)t
are the liquid levels computed by

the model (9) using Runge Kuta 4.
The table 1 shows the values of the constants considered in the model of the two

tanks system.

4 Results and Discussion

The closed loop behavior of the process was simulated when no faults are present.
This behavior is shown in Fig. 2.

58 L.C. Echevarría, O. Llanes-Santiago, and A.J. da Silva Neto

Fig. 2 Closed loop behavior of the process when no faults are present, noise data 2-5 %

Fig. 3 Closed loop behavior of the process when leaks of 200 ml/s are present in both tanks,
noise data 2-5 %

The closed loop behavior of the process when a leak of magnitude 200 ml/s in
each tank (q f1 = q f2 = 0.2) is introduced at time t = 20 s is shown in Fig. 3.

The closed loop behavior of the process when a leak of magnitude 50 ml/s in tank
2 (q f1 = 0, q f2 = 0.05) is introduced at time t = 20 s is shown in Fig. 4. The effect
of this leak in tank 2 is graphically imperceptible.

In order to diagnosis the faults, the minimization of the objective function F (v)
was implemented, in the first case based on the DE algorithm. The population was
considered to be 10 and the mutation mechanism is (DE/xbest

j /1/bin). The second
case considered the minimization of the objective function by means of ACO, de-
scribed on 2.2, with 10 ants. Both algorithms stop when 100 iterations are achieved.

Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies 59

Fig. 4 Closed loop behavior of the process when leaks of 50 ml/s is present in tank 2, noise
data 2-5 %

Table 2 Diagnosis obtained in five runs of leaks of 200 ml/s in each tank: noisy data between
2 and 5 % error

alg fault q̄ f1 q̄ f2 iter t(s)
DE q f1 = q f2 = 0.2 0.1827 0.1901 93 56.5681
DE q f1 = q f2 = 0.2 0.1985 0.2034 67 29.5475
DE q f1 = q f2 = 0.2 0.1988 0.2062 65 28.3845
DE q f1 = q f2 = 0.2 0.2036 0.2044 60 25.5477
DE q f1 = q f2 = 0.2 0.1993 0.1969 56 23.8943

ACO q f1 = q f2 = 0.2 0.1738 0.2414 75 75.0830
ACO q f1 = q f2 = 0.2 0.1775 0.2287 57 48.0647
ACO q f1 = q f2 = 0.2 0.1832 0.2198 54 45.9054
ACO q f1 = q f2 = 0.2 0.2087 0.2401 44 34.9798
ACO q f1 = q f2 = 0.2 0.1860 0.1829 41 33.9888

The tables 2 and 3 shows the results of the diagnosis of different faulty situation
by both algorithms. All cases considered data with 2-5 % of noise. The abbrevia-
tions used in the tables are alg for algorithm and iter for number of iterations. The
notation introduced is t for the computing time, in seconds, of the algorithm. Both
algorithms detected the presence of faults but the DE algorithm is more accurate in
the determination of the leak magnitudes. Both algorithms are fast, which is good
for the online diagnosis, but DE is faster.

In Fig. 5 are shown the evolution of both algorithms for two situation described
in table 2. The figures suggest a way of combination of ACO and DE in order to

60 L.C. Echevarría, O. Llanes-Santiago, and A.J. da Silva Neto

Table 3 Diagnosis obtained in five runs of a leaks of 50 ml/s in tank 1: noisy data between 2
and 5 % error

alg fault q̄ f1 q̄ f2 iter t(s)
DE q f1 = 0.05 q f2 = 0 0.0498 0.0007 79 46.8123
DE q f1 = 0.05 q f2 = 0 0.0515 0.0000 64 35.9895
DE q f1 = 0.05 q f2 = 0 0.0508 0.0000 64 35.4267
DE q f1 = 0.05 q f2 = 0 0.0531 0.0000 43 28.7774
DE q f1 = 0.05 q f2 = 0 0.0489 0.0001 42 18.0390

ACO q f1 = 0.05 q f2 = 0 0.0622 0.0000 49 55.1990
ACO q f1 = 0.05 q f2 = 0 0.0595 0.0000 31 37.0283
ACO q f1 = 0.05 q f2 = 0 0.0624 0.0008 30 36.8984
ACO q f1 = 0.05 q f2 = 0 0.0683 0.0007 30 36.7891
ACO q f1 = 0.05 q f2 = 0 0.0814 0.0001 26 34.2564

Table 4 Comparison of the diagnosis obtained in runs of leaks of different magnitudes: noisy
data between 2 and 5 % error

alg fault mean q̄ f1 mean q̄ f2 mean iter mean t(s)
ACO-DE q f1 = 0.6 q f2 = 0 0.6081 0.0000 53 38.2838
DE q f1 = 0.6 q f2 = 0 0.5459 0.0000 76 44.9995
ACO q f1 = 0.6 q f2 = 0 0.5038 0.0009 51 57.3317
ACO-DE q f1 = 0.6 q f2 = 0.6 0.5901 0.6013 42 19.0167
DE q f1 = 0.6 q f2 = 0.6 0.6068 0.6109 50 20.0031
ACO q f1 = 0.6 q f2 = 0.6 0.6001 0.4683 51 45.1023

Fig. 5 Evolution of the DE and ACO for a case of the table 2

Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies 61

obtain better and faster diagnosis: start the minimization with ACO a few number of
iterations, (no more than 30 taking in count the experimental results), and then use
this solution as initial solution for DE. The table 4 shows the comparison between
the hybrid algorithm ACO-DE and the diagnosis when using pure algorithms for
two faults situations. Each algorithm was executed 30 times (each one starting from
a different initial solution) for each fault situation and the table 4 shows the mean
q̄ f1 , q̄ f2 obtained.

In order to analyze the robustness of the diagnosis to unavoidable process dis-
turbances, some numerical experiments were made with very noisy data (15- 20 %
of noise). The Fig. 6 shows a simulation of the process behavior under disturbances
which causes observations with noise between 15 and 20 %.

Fig. 6 Closed loop behavior of the process, noisy data 15-20 %

Table 5 Comparison of the diagnosis obtained in runs of leaks of different magnitude: noisy
data between 15 and 20 % error

alg q̄ f1 q̄ f2 iter t
ACO-DE(best) 0 0 14 13.9289
DE(best) 0 0 52 16.3422
ACO(best) 0.0600 0.0900 25 19.9327

ACO-DE(worst) 0 0 71 71.0147
DE(worst) 0.1191 0 100 67.5625
ACO(worst) 0.1900 0.0300 100 111.0318

62 L.C. Echevarría, O. Llanes-Santiago, and A.J. da Silva Neto

The table 5 shows the best and the worst diagnosis obtained for each algorithm
when no faults are present but the system is under disturbances that are represented
by noise on the measurable variables. The diagnosis based on the parameter estima-
tion via DE and ACO seems to be robust.

5 Conclusions

This preliminary study indicates that the application of bioinspired algorithms and
their cooperative use characterize a promising methodology for the fault diagnosis
problem based on a model which does not need to be linear.

There are some advantages observed in the application of the two algorithms to
the FDI problem: correct and fast diagnosis, easy structure, robustness to distur-
bances and less modeling errors due to the use of no linear model. For the detection
problem some iterations of the ACO are enough, but for a correct diagnosis the
DE algorithm showed better results. In general the cooperative algorithm ACO-DE
shows faster diagnosis than pure DE or pure ACO.

In this sense the study of a real cooperative strategies between this two nature
inspired algorithms will be done: considering the influence of the parameter α in
a more exploration version of the ACO algorithm and the parameter D of the DE
algorithm in order to obtain a more exploitation version of DE.

References

[1] Campos Knupp, D., Silva Neto, A.J., Figueiredo Sacco, W.: Estimation of radiactive
properties with the particle collision algorithm. In: Inverse Problems, Design and Opti-
mization Symposium, Miami, Florida, USA (2007)

[2] Chen, J., Patton, R.J.: Robust model-based fault diagnosis for dynamic systems. Kluwer
Academic Publishers, Dordrecht (1999)

[3] Dolanc, G., Juricic, D., Rakar, A., Petrovcic, J., Vrancic, D.: Three-tank benchmark
test. Tech. rep., Copernicus Project Report CT94-02337. J. Stefan Institute (1997)

[4] Dorigo, M.: Ottimizzazione, apprendimento automático, ed algoritmi basati su metafora
naturale. PhD thesis, Politécnico di Milano, Italia (1992)

[5] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, MA (1989)

[6] Isermann, R.: Process fault detection based on modelling and estimation methods– a
survey. Automatica 30(4), 387–404 (1984)

[7] Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

[8] Lobato, F.S., Steffen, V., Silva Neto, A.J.: Solution of inverse radiative transfer problems
in two-layer participating media with differential evolution. Inverse Problems in Science
and Engineering (15), 1–12 (2009)

[9] Lobato, F.S., Steffen, V., Silva Neto, A.J.: Solution of the coupled inverse conduction-
radiation problem using multi-objective optimization differential evolution. In: 8th
World Congress on Structural and Multidisciplinary Optimization, Lisboa, Portugal
(2009)

Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies 63

[10] Lunze, J.: Laboratory three tanks system -benchmark for the reconfiguration problem.
Tech. rep., Tech. Univ. of Hamburg-Harburg, Inst. of Control. Eng., Germany (1998)

[11] Patton, R.J., Frank, P.M., Clark, R.N.: Issues of fault diagnosis for dynamic systems.
Springer, London (2000)

[12] Sacco, W.F., Oliveira, C.R.E.: A new stochastic optimization algorithm based on par-
ticle collisions. In: 2005 ANS Annual Meeting, Transactions of the American Nuclear
Society (2005)

[13] Silva Neto, A.J., Moura Neto, F.D.: Problemas Inversos - Conceitos Fundamentais e
Aplicações. EdUERJ (2005)

[14] Simani, S., Patton, R.J.: Fault diagnosis of an industrial gas turbine prototype using a
system identification approach. Control Engineering Practice 16, 769–786 (2008)

[15] Storn, R., Price, K.: Differential evolution: A simple and efficient adaptive scheme for
global optimization over continuous spaces. International Computer Science Institute
(1995)

[16] Wang, L., Niu, Q., Fei, M.: A novel quantum ant colony optimization algorithm and its
application to fault diagnosis. Transactions of the Institute of Measurement and Con-
trol 30(3/4), 313–329 (2008)

[17] Witczak, M.: Advances in model based fault diagnosis with evolutionary algorithms
and neural networks. Int. J. Appl. Math. Comput. Sci. 16(1), 85–99 (2006)

[18] Yang, E., Xiang, H., Gu, D., Zhang, Z.: A comparative study of genetic algorithm pa-
rameters for the inverse problem-based fault diagnosis of liquid rocket propulsion sys-
tems. International Journal of Automation and Computing 04(3), 255–261 (2007)

A New Metaheuristic Bat-Inspired Algorithm

Xin-She Yang

Abstract. Metaheuristic algorithms such as particle swarm optimization, firefly
algorithm and harmony search are now becoming powerful methods for solving
many tough optimization problems. In this paper, we propose a new metaheuristic
method, the Bat Algorithm, based on the echolocation behaviour of bats. We also
intend to combine the advantages of existing algorithms into the new bat algorithm.
After a detailed formulation and explanation of its implementation, we will then
compare the proposed algorithm with other existing algorithms, including genetic
algorithms and particle swarm optimization. Simulations show that the proposed
algorithm seems much superior to other algorithms, and further studies are also
discussed.

1 Introduction

Metaheuristic algorithms such as particle swarm optimization and simulated anneal-
ing are now becoming powerful methods for solving many tough optimization prob-
lems [3-7,11]. The vast majority of heuristic and metaheuristic algorithms have been
derived from the behaviour of biological systems and/or physical systems in nature.
For example, particle swarm optimization was developed based on the swarm be-
haviour of birds and fish [6, 7], while simulated annealing was based on the anneal-
ing process of metals [8].

New algorithms are also emerging recently, including harmony search and the
firefly algorithm. The former was inspired by the improvising process of composing
a piece of music [4], while the latter was formulated based on the flashing behaviour
of fireflies [13]. Each of these algorithms has certain advantages and disadvantages.

Xin-She Yang
Department of Engineering, University of Cambridge,
Trumpington Street, Cambridge CB2 1PZ, UK
e-mail: xy227@cam.ac.uk

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 65–74, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

xy227@cam.ac.uk

66 X.-S. Yang

For example, simulating annealing can almost guarantee to find the optimal solution
if the cooling process is slow enough and the simulation is running long enough;
however, the fine adjustment in parameters does affect the convergence rate of the
optimization process. A natural question is whether it is possible to combine major
advantages of these algorithms and try to develop a potentially better algorithm?
This paper is such an attempt to address this issue.

In this paper, we intend to propose a new metaheuristic method, namely, the
Bat Algorithm (BA), based on the echolocation behaviour of bats. The capability
of echolocation of microbats is fascinating as these bats can find their prey and
discriminate different types of insects even in complete darkness. We will first for-
mulate the bat algorithm by idealizing the echolocation behaviour of bats. We then
describe how it works and make comparison with other existing algorithms. Finally,
we will discuss some implications for further studies.

2 Echolocation of Bats

2.1 Behaviour of Microbats

Bats are fascinating animals. They are the only mammals with wings and they also
have advanced capability of echolocation. It is estimated that there are about 996
different species which account for up to 20% of all mammal species [1, 2]. Their
size ranges from the tiny bumblebee bat (of about 1.5 to 2g) to the giant bats with
wingspan of about 2 m and weight up to about 1 kg. Microbats typically have fore-
arm length of about 2.2 to 11cm. Most bats uses echolocation to a certain degree;
among all the species, microbats are a famous example as microbats use echoloca-
tion extensively while megabats do not [11, 12].

Most microbats are insectivores. Microbats use a type of sonar, called, echoloca-
tion, to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
These bats emit a very loud sound pulse and listen for the echo that bounces back
from the surrounding objects. Their pulses vary in properties and can be corre-
lated with their hunting strategies, depending on the species. Most bats use short,
frequency-modulated signals to sweep through about an octave, while others more
often use constant-frequency signals for echolocation. Their signal bandwidth varies
depends on the species, and often increased by using more harmonics.

2.2 Acoustics of Echolocation

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10
ms), however, it has a constant frequency which is usually in the region of 25kHz
to 150 kHz. The typical range of frequencies for most bat species are in the region
between 25kHz and 100kHz, though some species can emit higher frequencies up
to 150 kHz. Each ultrasonic burst may last typically 5 to 20 ms, and microbats emit

A New Metaheuristic Bat-Inspired Algorithm 67

about 10 to 20 such sound bursts every second. When hunting for prey, the rate of
pulse emission can be sped up to about 200 pulses per second when they fly near
their prey. Such short sound bursts imply the fantastic ability of the signal processing
power of bats. In fact, studies shows the integration time of the bat ear is typically
about 300 to 400 μs.

As the speed of sound in air is typically v = 340 m/s, the wavelength λ of the
ultrasonic sound bursts with a constant frequency f is given by

λ =
v
f
, (1)

which is in the range of 2mm to 14mm for the typical frequency range from 25kHz
to 150 kHz. Such wavelengths are in the same order of their prey sizes.

Amazingly, the emitted pulse could be as loud as 110 dB, and, fortunately, they
are in the ultrasonic region. The loudness also varies from the loudest when search-
ing for prey and to a quieter base when homing towards the prey. The travelling
range of such short pulses are typically a few metres, depending on the actual fre-
quencies [11]. Microbats can manage to avoid obstacles as small as thin human
hairs.

Studies show that microbats use the time delay from the emission and detection
of the echo, the time difference between their two ears, and the loudness variations
of the echoes to build up three dimensional scenario of the surrounding. They can
detect the distance and orientation of the target, the type of prey, and even the mov-
ing speed of the prey such as small insects. Indeed, studies suggested that bats seem
to be able to discriminate targets by the variations of the Doppler effect induced by
the wing-flutter rates of the target insects [1].

Obviously, some bats have good eyesight, and most bats also have very sensitive
smell sense. In reality, they will use all the senses as a combination to maximize
the efficient detection of prey and smooth navigation. However, here we are only
interested in the echolocation and the associated behaviour.

Such echolocation behaviour of microbats can be formulated in such a way that
it can be associated with the objective function to be optimized, and this make it
possible to formulate new optimization algorithms. In the rest of this paper, we will
first outline the basic formulation of the Bat Algorithm (BA) and then discuss the
implementation and comparison in detail.

3 Bat Algorithm

If we idealize some of the echolocation characteristics of microbats, we can develop
various bat-inspired algorithms or bat algorithms. For simplicity, we now use the
following approximate or idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically

68 X.-S. Yang

adjust the wavelength (or frequency) of their emitted pulses and adjust the rate
of pulse emission r ∈ [0,1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum constant value Amin.

Another obvious simplification is that no ray tracing is used in estimating the time
delay and three dimensional topography. Though this might be a good feature for
the application in computational geometry, however, we will not use this as it is
more computationally extensive in multidimensional cases.

In addition to these simplified assumptions, we also use the following approxima-
tions, for simplicity. In general the frequency f in a range [fmin, fmax] corresponds
to a range of wavelengths [λmin,λmax]. For example a frequency range of [20kHz,
500kHz] corresponds to a range of wavelengths from 0.7mm to 17mm.

For a given problem, we can also use any wavelength for the ease of imple-
mentation. In the actual implementation, we can adjust the range by adjusting the
wavelengths (or frequencies), and the detectable range (or the largest wavelength)
should be chosen such that it is comparable to the size of the domain of interest, and
then toning down to smaller ranges. Furthermore, we do not necessarily have to use
the wavelengths themselves, instead, we can also vary the frequency while fixing
the wavelength λ . This is because λ and f are related due to the fact λ f is constant.
We will use this later approach in our implementation.

For simplicity, we can assume f ∈ [0, fmax]. We know that higher frequencies
have short wavelengths and travel a shorter distance. For bats, the typical ranges are
a few metres. The rate of pulse can simply be in the range of [0,1] where 0 means
no pulses at all, and 1 means the maximum rate of pulse emission.

Based on these approximations and idealization, the basic steps of the Bat Algo-
rithm (BA) can be summarized as the pseudo code shown in Fig. 1.

3.1 Movement of Virtual Bats

In simulations, we use virtual bats naturally. We have to define the rules how their
positions xi and velocities vi in a d-dimensional search space are updated. The new
solutions xt

i and velocities vt
i at time step t are given by

fi = fmin +(fmax− fmin)β , (2)

vt
i = vt−1

i +(xt
i−x∗) fi, (3)

xt
i = xt−1

i + vt
i, (4)

where β ∈ [0,1] is a random vector drawn from a uniform distribution. Here x∗ is
the current global best location (solution) which is located after comparing all the
solutions among all the n bats. As the product λi fi is the velocity increment, we can
use either fi (or λi) to adjust the velocity change while fixing the other factor λi (or

A New Metaheuristic Bat-Inspired Algorithm 69

Bat Algorithm

Objective function f (x), x = (x1, ...,xd)T

Initialize the bat population xi (i = 1,2, ...,n) and vi
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai

while (t <Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions [equations (2) to (4)]

if (rand > ri)
Select a solution among the best solutions
Generate a local solution around the selected best solution
end if
Generate a new solution by flying randomly
if (rand < Ai & f (xi) < f (x∗))
Accept the new solutions
Increase ri and reduce Ai
end if

Rank the bats and find the current best x∗
end while
Postprocess results and visualization

Fig. 1 Pseudo code of the bat algorithm (BA)

fi), depending on the type of the problem of interest. In our implementation, we will
use fmin = 0 and fmax = 100, depending the domain size of the problem of interest.
Initially, each bat is randomly assigned a frequency which is drawn uniformly from
[fmin, fmax].

For the local search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random walk

xnew = xold + εAt , (5)

where ε ∈ [−1,1] is a random number, while At =<At
i > is the average loudness of

all the bats at this time step.
The update of the velocities and positions of bats have some similarity to the pro-

cedure in the standard particle swarm optimization [6] as fi essentially controls the
pace and range of the movement of the swarming particles. To a degree, BA can be
considered as a balanced combination of the standard particle swarm optimization
and the intensive local search controlled by the loudness and pulse rate.

3.2 Loudness and Pulse Emission

Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated
accordingly as the iterations proceed. As the loudness usually decreases once a bat

70 X.-S. Yang

has found its prey, while the rate of pulse emission increases, the loudness can be
chosen as any value of convenience. For example, we can use A0 = 100 and Amin =
1. For simplicity, we can also use A0 = 1 and Amin = 0, assuming Amin = 0 means
that a bat has just found the prey and temporarily stop emitting any sound. Now we
have

At+1
i = αAt

i, rt+1
i = r0

i [1− exp(−γt)], (6)

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling
schedule in the simulated annealing [8]. For any 0 < α < 1 and γ > 0, we have

At
i → 0, rt

i → r0
i , as t → ∞. (7)

In the simplicity case, we can use α = γ , and we have used α = γ = 0.9 in our
simulations. The choice of parameters requires some experimenting. Initially, each
bat should have different values of loudness and pulse emission rate, and this can
be achieved by randomization. For example, the initial loudness A0

i can typically
be [1,2], while the initial emission rate r0

i can be around zero, or any value r0
i ∈

[0,1] if using (6). Their loudness and emission rates will be updated only if the new
solutions are improved, which means that these bats are moving towards the optimal
solution.

4 Validation and Comparison

From the pseudo code, it is relatively straightforward to implement the Bat Algo-
rithm in any programming language. For the ease of visualization, we have imple-
mented it using Matlab for various test functions.

4.1 Benchmark Functions

There are many standard test functions for validating new algorithms. In the current
benchmark validation, we have chosen the well-known Rosenbrock’s function

f (x) =
d−1

∑
i=1

(1− x2
i)

2 + 100(xi+1− x2
i)

2, −2.048≤ xi ≤ 2.048, (8)

and the eggcrate function

g(x,y) = x2 + y2 + 25(sin2 x + sin2 y), (x,y) ∈ [−2π ,2π]× [−2π ,2π]. (9)

We know that f (x) has a global minimum fmin = 0 at (1,1) in 2D, while g(x,y) has
a global minimum gmin = 0 at (0,0). De Jong’s standard sphere function

A New Metaheuristic Bat-Inspired Algorithm 71

h(x) =
d

∑
i=1

x2
i , −10≤ xi ≤ 10, (10)

has also been used. Its minimum is hmin = 0 at (0,0, ...,0) for any d ≥ 3.

−5 0 5
−5

0

5

Fig. 2 The paths of 25 virtual bats during 20 consecutive iterations. They converge into (1,1)

In addition, we have also used other standard test functions for numerical global
optimization [9] such as Ackley’s function

s(x) = 20 + e−20exp
[
−0.2

√
√
√
√1

d

d

∑
i=1

x2
i

]
− exp[

1
d

d

∑
i=1

cos(2πxi)], (11)

where −30≤ xi ≤ 30. It has the global minimum smin = 0 at (0,0, ...,0).
Michalewicz’s test function

f (x) =−
d

∑
i=1

sin(xi)
[

sin(
ix2

i

π
)
]2m

, (m = 10), (12)

has d! local optima in the the domain 0 ≤ xi ≤ π where i = 1,2, ...,d. The global
minimum is f∗ ≈ −1.801 for d = 2, while f∗ ≈ −4.6877 for d = 5.

In our implementation, we use n = 25 to 50 virtual bats, and α = 0.9. For Rosen-
brock’s 2-D banana function, the paths of 25 virtual bats during the consecutive
20 time steps are shown in Fig. 2 where we can see that the bats converge at the
global optimum (1,1). For the multimodal eggcrate function, a snapshot of the last
10 iterations is shown in Fig. 3. Again, all bats move towards the global best (0,0).

72 X.-S. Yang

−5

0

5

−5

0

5
0

20

40

60

80

100

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 3 The eggcrate function (left) and the locations of 40 bats in the last ten iterations (right)

4.2 Comparison with Other Algorithms

In order to compare the performance of the new algorithm, we have tested it against
other heuristic algorithms, including genetic algorithms (GA) [5, 10], and particle
swarm optimization (PSO) [6, 7]. There are many variants of PSO, and some vari-
ants such as the mean PSO could perform better than the standard PSO [3]; however,
the standard PSO is by far the most popularly used. Therefore, we will also use the
standard PSO in our comparison.

There are many ways to carry out the comparison of algorithm performance, and
two obvious approaches are: to compare the numbers of function evaluations for a
given tolerance or accuracy, or to compare their accuracies for a fixed number of
function evaluations. Here we will use the first approach. In our simulations, we use
a fixed tolerance ε ≤ 10−5, and we run each algorithm for 100 times so that we can
do meaningful statistical analysis.

For genetic algorithms, we have used the standard version with no elitism with
the mutation probability of pm = 0.05 and crossover probability of 0.95. For particle
swarm optimization, we have also used the standard version with learning parame-
ters α = β = 2 and the inertia function I = 1 [6, 7]. The simulations have been car-
ried out using Matlab on a standard 3GHz desktop computer. Each run with about
10,000 function evaluations typically takes less than 5 seconds. Furthermore, we
have tried to use different population sizes from n = 10 to 250, and we found that
for most problems, n = 15 to 50 is sufficient. Therefore, we use a fixed population
n = 40 for all simulations. Table 1 shows the number of function evaluations in the
form of mean ± the standard deviation (success rate of the algorithm in finding the
global optima).

From Table 1, we can see that PSO performs much better than genetic algorithms,
while the Bat Algorithm is much superior to other algorithms in terms of accuracy
and efficiency. This is no surprising as the aim of developing the new algorithm
was to try to use the advantages of existing algorithms and other interesting feature
inspired by the fantastic behaviour of echolocation of microbats.

A New Metaheuristic Bat-Inspired Algorithm 73

Table 1 Comparison of BA with GA, and PSO

Functions/Algorithms GA PSO BA
Multiple peaks 52124±3277(98%) 3719±205(97%) 1152±245(100%)

Michalewicz’s (d=16) 89325±7914(95%) 6922±537(98%) 4752±753(100%)
Rosenbrock’s (d=16) 55723±8901(90%) 32756±5325(98%) 7923±3293(100%)
De Jong’s (d=256) 25412±1237(100%) 17040±1123(100%) 5273±490(100%)
Schwefel’s (d=128) 227329±7572(95%) 14522±1275(97%) 8929±729(99%)
Ackley’s (d=128) 32720±3327(90%) 23407±4325(92%) 6933±2317(100%)

Rastrigin’s 110523±5199(77%) 79491±3715(90%) 12573±3372(100%)
Easom’s 19239±3307(92%) 17273±2929(90%) 7532±1702(99%)

Griewangk’s 70925±7652(90%) 55970±4223(92%) 9792±4732(100%)
Shubert’s (18 minima) 54077±4997(89%) 23992±3755(92%) 11925±4049(100%)

If we replace the variations of the frequency fi by a random parameter and setting
Ai = 0 and ri = 1, the bat algorithm essentially becomes the standard Particle Swarm
Optimization (PSO). Similarly, if we do not use the velocities, but we use fixed
loudness and rate: Ai and ri. For example, Ai = ri = 0.7, this algorithm is virtually
reduced to a simple Harmony Search (HS) as the frequency/wavelength change is
essentially the pitch adjustment, while the rate of pulse emission is similar to the
harmonic acceptance rate (here with a twist) in the harmony search algorithm [4,
14]. The current studies implies that the proposed new algorithm is potentially more
powerful and thus should be investigated further in many applications of engineering
and industrial optimization problems.

5 Discussions

In this paper, we have successfully formulated a new Bat Algorithm for continu-
ous constrained optimization problems. From the formulation of the Bat Algorithm
and its implementation and comparison, we can see that it is a very promising algo-
rithm. It is potentially more powerful than particle swarm optimization and genetic
algorithms as well as Harmony Search. The primary reason is that BA uses a good
combination of major advantages of these algorithms in some way. Moreover, PSO
and harmony search are the special cases of the Bat Algorithm under appropriate
simplifications.

In addition, the fine adjustment of the parameters α and γ can affect the conver-
gence rate of the bat algorithm. In fact, parameter α acts in a similar role as the
cooling schedule in the simulated annealing. Though the implementation is more
complicated than many other metaheuristic algorithms; however, it does show that it
utilizes a balanced combination of the advantages of existing successful algorithms
with innovative feature based on the echolocation behaviour of bats. New solutions
are generated by adjusting frequencies, loudness and pulse emission rates, while the
proposed solution is accepted or not depends on the quality of the solutions con-
trolled or characterized by loudness and pulse rate which are in turn related to the
closeness or the fitness of the locations/solution to the global optimal solution.

74 X.-S. Yang

The exciting results suggest that more studies will highly be needed to carry
out the sensitivity analysis, to analyze the rate of algorithm convergence, and to
improve the convergence rate even further. More extensive comparison studies with
a more wide range of existing algorithms using much tough test functions in higher
dimensions will pose more challenges to the algorithms, and thus such comparisons
will potentially reveal the virtues and weakness of all the algorithms of interest.

An interesting extension will be to use different schemes of wavelength or fre-
quency variations instead of the current linear implementation. In addition, the rates
of pulse emission and loudness can also be varied in a more sophisticated manner.
Another extension for discrete problems is to use the time delay between pulse emis-
sion and the echo bounced back. For example, in the travelling salesman problem,
the distance between two adjacent nodes/cities can easily be coded as time delay.
As microbats use time difference between their two ears to obtain three-dimensional
information, they can identify the type of prey and the velocity of a flying insect.
Therefore, a further natural extension to the current bat algorithm would be to use
the directional echolocation and Doppler effect, which may lead to even more inter-
esting variants and new algorithms.

References

[1] Altringham, J.D.: Bats: Biology and Behaviour. Oxford Univesity Press, Oxford (1996)
[2] Colin, T.: The Varienty of Life. Oxford University Press, Oxford (2000)
[3] Deep, K., Bansal, J.C.: Mean particle swarm optimisation for function optimisation. Int.

J. Comput. Intel. Studies 1, 72–92 (2009)
[4] Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm:

Harmony search. Simulation 76, 60–68 (2001)
[5] Holland, J.H.: Adapation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor (1975)
[6] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural

Networks, Perth, Australia, pp. 1942–1945 (1995)
[7] Kennedy, J., Eberhart, R.: Swarm Intelligence. Academic Press, London (2001)
[8] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-

ence 220, 671–680 (1983)
[9] Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical

global optimization. In: Proc. IEEE Int. Swarm Intel. Symp., pp. 68–75 (2005)
[10] Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)
[11] Richardson, P.: Bats. Natural History Museum, London (2008)
[12] Richardson, P.: The secrete life of bats, http://www.nhm.ac.uk
[13] Yang, X.-S.: Nature-inspired Metaheuristic Algorithms. Luniver Press (2008)
[14] Yang, X.-S.: Harmony search as a metaheuristic algorithm. In: Geem, Z.W. (ed.) Music-

Inspired Harmony Search Algorithm: Theory and Applications, pp. 1–14. Springer, Hei-
delberg (2009)

http://www.nhm.ac.uk

Evaluation of a Catalytic Search Algorithm

Lidia Yamamoto

Abstract. We investigate the search properties of pre-evolutionary random catalytic
reaction networks, where reactions might be reversible, and replication is not taken
for granted. Since it counts only on slow growth rates and weak selective pressure
to steer the search process, catalytic search is an inherently slow process. However
it presents interesting properties worth exploring, such as the potential to steer the
computation flow towards good solutions, and to prevent premature convergence.
We have designed a simple catalytic search algorithm, in order to assess its beamed
search ability. In this paper we report preliminary results that show that although
weak, the search strength achieved with catalytic search is sufficient to solve sim-
ple problems, and to find good approximations for more complex problems, while
keeping a diversity of solutions and their building blocks in the population.

1 Introduction

Artificial Chemistries have the ability not only to model evolutionary behavior but
also to create it, or to cause it to emerge spontaneously [3, 9–11]. However, the exact
conditions upon which such evolutionary behaviour could emerge are not entirely
clear, and are deeply linked to the conditions for the transition from inanimate to
living matter. Another aspect that remains still unclear so far is how to harness the
emergent computation [7, 12] properties of such chemistries for the construction of
beamed search schemes able to optimize solutions to user-defined problems.

A number of chemically-inspired approaches to optimization towards user-defined
goals have been proposed [5, 6, 14, 20, 22]. The reaction networks created by such
chemistries may exhibit complex dynamics, hence the general problem of searching
with a chemistry remains poorly understood.

Lidia Yamamoto
Computer Science Department, University of Basel,
Bernoullistrasse 16, CH-4056, Basel, Switzerland
e-mail: Lidia.Yamamoto@unibas.ch

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 75–87, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Lidia.Yamamoto@unibas.ch

76 L. Yamamoto

Some chemistries take evolution elements for granted, such as replication, there-
fore the problem of how to get evolutionary behavior is not an issue for them. In
contrast, in this paper we look at the particular case of chemistries that do not as-
sume replication, and that must comply to some physical laws such as mass and
energy conservation. The behavior of such chemical search can be classified as pre-
evolutionary [18]. Chemical reactions consume educts to produce new molecules,
in a mass-conserving way, and most reactions are reversible. Catalysts may be
present to enhance the rate of some reactions. The resulting mechanism is a Cat-
alytic Search, that relies only on slow growth rates and weak selective pressure to
steer the search process.

Catalytic search is an inherently slow process in general, but after some time
it could reach an autocatalytic stage where some elements of the network become
able to replicate directly or collectively via cooperative interactions. The question
that remains unanswered is whether such a slow process is sufficient to ignite a
faster, more efficient search process exhibiting full Darwinian evolutionary dynam-
ics within feasible runtimes, and if yes, how this could be achieved.

Although typically slow, catalytic search has a useful potential as a “soft search”
mechanism, which remains under-explored so far. As pointed out in [22], catalytic
search presents interesting properties worth exploring, such as the potential to undo
wrong computations through reversible reactions, to steer the flow of the system
towards the production of good products by shifting the equilibrium distribution
of molecules, a certain robustness to noisy fitness feedback, and the prevention of
premature convergence. Moreover catalytic search is inherently cooperative: since
molecules cannot self-replicate in principle, they need the help of other molecules
in order to grow. Hence they are forced to self-organize into a network of positive
interactions that construct and deconstruct solutions dynamically, according to the
objective function to be computed.

We have designed a simple catalytic search algorithm, in order to assess the abil-
ity of a catalytic artificial chemistry subject to pre-evolutionary dynamics to exhibit
a beamed search behavior. The chemical search scheme is built on top of a thermo-
dynamic model which steers the candidate solutions not only towards better fitness
but also towards lower computation costs. We compare Catalytic Search with a pure
random search (for the sake of sanity check only), and with a variation of a Steady-
State Genetic Algorithm (SSGA) [16] implemented with an artificial chemistry. As
expected, the performance of the catalytic search scheme lies between that of a pure
random search and that of plain evolutionary search represented by the genetic al-
gorithm. However catalytic search presents other interesting properties, such as the
preservation of diversity and of partial solution building blocks in the population.

The paper is organized as follows: Section 2 surveys the related literature on
search schemes based on chemistry. Section 3 describes our catalytic search algo-
rithm, and report some experimental results on the simple problem of finding a hid-
den sentence. Section 4 concludes with an outlook on the many interesting avenues
to explore.

Evaluation of a Catalytic Search Algorithm 77

2 Background

A survey of optimization schemes based on artificial chemistries can be found in
Section 4.3 of [10]. Here we summarize and update it.

Chemical approaches to optimization towards a user-defined goal have been pro-
posed in [5, 6, 14, 20, 22]. These approaches can be divided into two categories: In
the first category we find search algorithms inspired by chemistry, but for which the
actual solutions searched are not encoded as chemical computing programs but as
parameters to be optimized [5, 14], as partial solutions to the problem [22], or as
conventional program trees [20]. In the second category we find centralized evolu-
tionary algorithms used to evolve chemical reaction networks by manipulating their
graphs [8], or to evolve chemical computing programs by genetic programming [6].
The work reported in this paper falls into the first category. However our long term
goal is to combine both categories in one, obtaining a search process based on chem-
istry, for searching solutions encoded as chemical programs.

An optimization method inspired by chemistry is presented in [5]. Candidate
solutions are encoded as strings analogous to macromolecules in prebiotic evolu-
tion. These strings carry a quality signal (fitness value). Machines (analogous to
enzymes) operate on the strings to change and select them according to a fitness
function embedded within the machine’s knowledge.

The Chemical Casting Model (CCM) [14] is inspired by the process of entropy
reduction which is behind many self-organization phenomena in chemistry. Candi-
date solutions are encoded as molecules; reaction rules modify and select molecules,
driving the system towards a more ordered state (with lower entropy) in which
molecules encode better solutions. CCM has been successfully applied to many
different problems ranging from constraint satisfaction to graph coloring and the
traveling salesperson.

Chemical Genetic Programming [20] takes inspiration from gene expression and
chemistry in order to construct program trees in Genetic Programming.

ARMS (Abstract Rewriting Systems on Multisets [21]) is a chemical evolution
system based on Membrane Computing or P Systems [19]. Membrane Computing
allows hierarchies of multiset compartments to be constructed recursively. ARMS
makes use of this feature to evolve populations of artificial cells by a process of
cell growth and division. The resulting cells may exhibit a rich internal structure,
sometimes resembling protocells models such as the chemoton [13]. The ARMS
system has been applied to the evolution of artificial cells both for biological and
for computational purposes.

Our work builds upon the Artificial Catalysed Reaction Networks from [22].
That scheme takes inspiration from Kaufffman’s autocatalytic networks [4, 15].
Each molecule is a partial solution. The algorithm starts with a population of small
molecules and builds larger ones via polymerization reactions. Fitter products are
rewarded by catalyzing their own production. Each molecule is therefore an auto-
catalyst. Compared with [22], in our work we do not assume that molecules are
autocatalysts, and we use a crossover operator that includes polymerization as a
special case.

78 L. Yamamoto

3 Catalytic Search Algorithm

The Catalytic Search Algorithm works as follows: initially, a random soup of
molecules is generated. Each molecule is a candidate solution represented as a string
of symbols from an alphabet Σ . At every time step, two molecules are chosen for
collision. They react with a probability k f , which maps to the kinetic coefficient of
the reaction. If they react, a crossover of the two molecules is produced, and the two
resulting molecules are injected into the soup. The collision is elastic with probabil-
ity (1− k f), in which case the molecules are put back into the soup and no products
are generated.

A crossover reaction can be written as follows:

A + B
kf
�
kr

C + D (1)

Here is an example, for strings from an alphabet Σ = {a,b,c}:

abba + ccb
kf
�
kr

abbc + acb (2)

Crossover is a mass-conserving operation, i.e. it conserves the total number of sym-
bols before and after the reaction.

The initial population is always a soup of monomers (strings of length one). So-
lutions are then built by concatenating these monomers. This is a special case of a
crossover operation, where the crossover point on one of the strings is the end of the
string, and the crossover point on the other string is at the beginning. More complex
solutions can then be constructed out of these basic building blocks.

We choose the coefficients k f and kr to be a function of the fitness and the compu-
tation cost associated with the solution, in order to steer the search by differentiated
reaction rates. This mapping will be explained below.

Once the molecules have collided, the reaction only occurs if the molecules have
sufficient kinetic energy in order to overcome the activation energy barrier (Ea),
which corresponds to the minimum amount of kinetic energy that is needed for the
reaction to occur.

Figure 1 shows a typical plot of the potential energy changes during a chemical
reaction. The horizontal axis is called reaction coordinate, and shows the progres-
sion of the (forward) reaction from reactants X on the left side to products Y on
the right (symmetrically, the corresponding reverse reaction can be read from right
to left). The vertical axis shows the corresponding potential energy. The height of
the peaks with respect to the initial state corresponds to the activation energy of the
reaction. A catalyst is a substance that participates in a chemical reaction by accel-
erating it without being consumed in the process. Its effect is to lower the reaction’s
activation energy peak, thereby accelerating the reaction, while leaving the initial
and final states unchanged. The difference in potential energy before and after the
reaction is given by ΔG:

ΔG = Gp−Ge (3)

Evaluation of a Catalytic Search Algorithm 79

Fig. 1 Potential energy changes during catalysed and uncatalysed chemical reactions. Figure
adapted from [1]

If ΔG > 0 then the reaction is endergonic, i.e. it absorbs energy from its surround-
ings, while if ΔG < 0 it is exergonic, releasing energy. Endergonic reactions are
typically non-spontaneous, i.e. their equilibrium is shifted towards the educts, while
exergonic reactions occur typically spontaneously, resulting in larger quantities of
products.

In order to steer the system towards the production of fitter solutions, we map
the fitness of the solution to the potential energy of its molecule. A lower value of
the fitness function is often associated with a better fitness, for instance, a shorter
distance to the optimum. In this case, we can associate fitness with the the potential
energy of the molecule directly. The total potential energy of the educts Ge (resp.
products Gp) is the sum of potential energies of each educt (resp. product) involved
in the reaction, i.e. the sum of their fitness values. In this way, the production of fitter
solutions (i.e. with lower potential energy) is spontaneous, while the production of
poor solutions is non-spontaneous.

In order to provide the system with an incentive for efficient computations, we
further map the activation energy for a reaction to the estimated computation cost
of producing a solution. For instance, let us take a simple case in which the cost is
a linear function of the length of the candidate solutions. Since we only consider
mass-conserving (i.e. symbol-conserving) operations, the total number of atoms is
the same on both educt and product sides. An increase in activation energy ΔEa

is then added on top of the highest potential energy G. ΔEa corresponds to the
portion Ea(Y → X) in Figure 1. As a result, the side of the reaction with the lowest
potential energy (the X side to the left of Figure 1) will see an activation energy
of Ea = ΔEa + |ΔG|, while the other side (Y , on the right) will see Ea = ΔEa. The
portion ΔEa of the total activation energy is set to the average length of the educts
(or products):

ΔEa =
|A|+ |B|

2
=
|C|+ |D|

2
(4)

80 L. Yamamoto

The activation energies of the forward and reverse reactions, Ea f and Ear respec-
tively, are:

if ΔG≤ 0

{
Ea f = ΔEa

Ear = ΔEa−ΔG
(5)

if ΔG > 0

{
Ea f = ΔEa +ΔG

Ear = ΔEa
(6)

The coefficient k f (resp. kr) is determined as a function of the activation energy,
following the Arrhenius equation from chemistry [2]:

k = Ae−
Ea
RT (7)

where A is the so-called pre-exponential factor of the reaction, Ea is its activation
energy, and RT are constants. In our case, we set A = 1 and β = 1

RT is a configuration
parameter of our algorithm (currently set to β = 1).

The constants k f (resp. kr) determine the probability that the reaction is success-
ful once the reactants collide. According to the Arrhenius equation (Eq. 7), these
coefficients decrease exponentially with the activation energy barrier Ea seen by the
reactants. Since Ea increases with ΔEa, which is mapped to the computational cost
of the operation, the probability of the reaction to occur decreases with its cost, as
desired. Similarly, since the height of the Ea barrier observed is higher on the side
of the reaction with lower G, it is more difficult to “cross the barrier” from this
side, therefore it is more difficult to move from a lower (closer to the optimum) to
a higher (farther from the optimum) fitness value, which is also the behavior that
we are seeking. While lower, there is still some probability to move towards worse
solutions, since that may help creating new solutions which might be useful for the
search.

In this way, this scheme is able to steer the flow of production of candidate solu-
tions towards better ones. There is no explicit replication, and no memory of which
molecules produced good solutions. The search process is guided by the differences
in reaction rates to move from one pair of candidate solutions to another.

3.1 Catalysts

The above scheme is able to steer the search process, but in a weak way. In order
to improve steering and to make the search more beamed, enzymes that catalyse
the reactions can be included. Enzymes decrease the activation energy necessary for
the reaction, as depicted in Figure 1. They do so on both forward and reverse sides
of the reaction, therefore the equilibrium concentrations do not change. However,
as shown in [4], under some conditions, catalysts can focus the reaction network
into a few species, creating a selection pressure towards a metabolic core. One of
the conditions for obtaining such catalytic focusing is that the system is kept out of
equilibrium by an inflow of food material.

Evaluation of a Catalytic Search Algorithm 81

Algorithm 2. Catalytic Search Algorithm
1: T : maximum number of iterations
2: 0≤ t < T : current iteration
3: S: multiset of candidate solutions
4: C: pool of enzymes (catalysts) of maximum capacity Cmax

5: initialization:
6: t = 0
7: S = random soup of N monomers m ∈ Σ
8: C = /0
9: while t < T and solution not found do

10: expel two random molecules e1 and e2 out of S
11: (i1, i2) = random crossover points within e1 and e2
12: (p1, p2)← crossover(e1,e2, i1, i2)
13: Ge = fitness(e1)+ fitness(e2)
14: Gp = fitness(p1)+ fitness(p2)
15: ΔG = Gp−Ge

16: Ea = (|e1|+ |e2|)/2
17: if ΔG > 0 then
18: Ea← Ea +ΔG
19: else if ΔG < 0 then
20: c = “crossover(e1,e2, i1, i2)”: the enzyme that catalyses this reaction
21: nc = multiplicity of c in C
22: if nc > 0 then
23: Ea← Ea/nc

24: end if
25: pc = |ΔG|/|ΔGmax|
26: add another instance of c to C with probability pc

27: while |C|> Cmax do
28: destroy a random catalyst from C
29: end while
30: end if
31: k f = e−βEa

32: if dice(k f) then
33: inject new products p1 and p2 into S
34: else
35: inject educts e1 and e2 back to S
36: end if
37: t← t +1
38: end while

Here we introduce a simpler kind of catalyst which is not entirely faithful to
chemistry, as it will work to reduce the activation energy barrier, but only in the
direction of fitness improvement. We have temporarily adopted such annoying vio-
lation of the chemical laws because our first experiments have shown that maintain-
ing the system out of equilibrium for such an optimization purpose is not such an
easy task: in order to keep the system within a reasonable mass balance, an inflow

82 L. Yamamoto

of material (e.g. monomers) requires a corresponding outflow of other, potentially
more complex solution molecules. If we remove such molecules at random, we
might lose important partial solutions. Since the system is slow to replenish them,
the optimization process is hindered. If we remove worse fit molecules with a higher
probability, then the equilibrium is shifted towards the production of more of such
bad molecules. If we do the opposite, i.e. remove the fitter molecules, then the sys-
tem will tend to replenish them, but too slowly. Similar problems are reported in
[22]. A good method for keeping the system out of equilibrium without disrupting
the search process is still lacking. This topic deserves further investigation.

Our catalysts are strings of the form: “op(s1,s2, p1, p2)”, where op is an operator
(currently only the crossover operator is supported), s1 and s2 are the educt strings,
p1 and p2 are parameters indicating the crossover points in s1 and s2 respectively.

When two molecules collide, it is checked whether they have one or more match-
ing catalysts. If matching catalysts are found, they will be used to increase the reac-
tion probability, as explained below. Currently only exact match is supported. In the
future, enzymes could bind to their substrates with a certain affinity, proportional
to how well their strings match, for instance by using a distance metric such as the
Hamming distance or a string alignment algorithm such as the edit distance.

The complete algorithm is shown in Algorithm 2. Enzymes are kept in a separate
pool. When two molecules collide, if the reaction results in ΔG < 0, i.e. in better fit
products, then an enzyme might be created for this reaction, with a probability pc

proportional to the amount of improvement |ΔG|. The next time similar molecules
collide, the enzyme will facilitate their reaction, by lowering the correspondingΔEa,
which then becomes:

ΔE ′a =
ΔEa

nc
(8)

where ΔEa is calculated according to Equation (4), and nc is the concentration (mul-
tiplicity) of the corresponding catalyst in the catalyst pool.

3.2 Find the Hidden Sentence

We compare Catalytic Search with a pure random search (for the sake of sanity
check only), and a variation of a Steady-State Genetic Algorithm (SSGA) based
on a tournament selection mechanism implemented using an artificial chemistry.
SSGA [16] is a non-generational evolutionary algorithm in which at each time step,
individuals are selected for evaluation and reproduction, without a synchronized
generational loop.

The three algorithms have been applied to the simple problem of finding a hidden
string. In [22] Catalytic Search is applied to the OneMax problem, which consists in
maximizing the number of ones in a binary string. This is a special case of finding
a hidden string, i.e. a sentence Σ+ made of a sequence of letters from an alphabet
Σ . The length of the sentence can be variable, and the algorithm does not know
anything about the nature of the solution. It is guided only by the fitness, given as

Evaluation of a Catalytic Search Algorithm 83

the distance from the optimum. This problem has a smooth fitness landscape with a
unique peak, and is therefore easy to optimize.

The fitness function for this problem is simply:

f (i) = d(i, i∗) (9)

where d(i, i∗) is the distance between the candidate solution i and the target sentence
i∗. The function d(i, j) is taken as the edit distance between the two strings, i.e.
the minimum number of edit operations (add, delete, replace symbol) necessary to
convert one string into the other. The best fitness value is thus the smallest distance,
i.e. d(i, j) = 0.

3.3 Experimental Results

We have simulated the three algorithms on simple cases, and show a few preliminary
results in this section. For each of the three algorithms three test cases have been
performed, according to Table 1, where L is the length of the target solution i∗, and
s is the size of the search space for each case, for sentences of length up to L.

Table 1 Test cases

case n. alphabet Σ target solution i∗ length L = |i∗| search space s
0 ABCD AABBCCDD 6 87380
1 01 1111111111111111 16 131070
2 a-z thisisatest 11 3.81716e+15

For each algorithm, 100 runs were performed. The genetic algorithm was run
with a tournament of size r = 4, a mutation probability of pm = 0.1 and a crossover
probability of pc = 0.9. The population size was N = 100 molecules for all the
algorithms and cases, and the maximum number of iterations was T = 10000.

Table 2 shows the number of exact solutions found, per test case and per
algorithm.

Table 2 Number of exact solutions found, out of 100 runs per algorithm per test case

case n. random search catalytic search genetic algorithm
0 0 38 75
1 1 0 100
2 0 0 3

As expected, the genetic algorithm is able to find a higher number of exact
solutions due to its stronger replication and selective pressure. Also as expected,
random search performed very poorly. Catalytic search was only able to find a sig-
nificant amount of exact solutions on the first, easier case. The best solutions found

84 L. Yamamoto

in other cases were approaching the optimum but very slowly. We can see this in
Fig. 2 (left), which shows the average best fitness for case 2, per algorithm. In Fig.
2 (top left) we can see that random search not only does not make progress, but
diverges to worse solutions. The catalytic search (Fig. 2 (middle left)), although not
entirely optimal, displays a qualitative behavior that is similar to the genetic algo-
rithm, showing steady progress towards the optimum.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

B
es

t f
itn

es
s

Time (x 100 iterations)

Random Search, Case 2

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 20 40 60 80 100 120

B
es

t f
itn

es
s

Time (x 100 iterations)

Catalytic Search, Case 2

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120

B
es

t f
itn

es
s

Time (x 100 iterations)

Genetic Algorithm, Case 2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120

D
iv

er
si

ty

Time (x 100 iterations)

Catalytic Search, Case 2

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

A
ve

ra
ge

 le
ng

th

Time (x 100 iterations)

Catalytic Search, Case 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120

A
ve

ra
ge

 le
ng

th

Time (x 100 iterations)

Genetic Algorithm, Case 2

Fig. 2 Experimental results comparing different search schemes. Average values over 100
runs, with errorbars indicating the standard deviation. Left: Average best fitness for each al-
gorithm. Top right: diversity of the population for the catalytic search. Middle right: Average
length of the solutions in catalytic search. Bottom right: Average length for the GA

The diversity of the population has been measured using a multiset diversity met-
ric [17]. It measures the fraction of unique elements (molecules) over the total size

Evaluation of a Catalytic Search Algorithm 85

of the multiset (population size). Although it rises almost to the maximum for the
catalytic search scheme (Fig. 2 top right), the system does not get “lost”, and still
displays a well-behaved search towards the solution. In comparison, the diversity in
the genetic algorithm goes up at the beginning, and then drops to a middle level, as
the system approaches the optimum (not shown).

The solutions in catalytic search show modest elongation towards the optimum
length (L = 11 for case 2) (Fig. 2 middle right), while for the same case the genetic
algorithm quickly moves towards solutions that are longer than the optimum (Fig.
2 bottom right). Catalytic search conserves the number of atoms, while the genetic
algorithm produces an increasing number of atoms at the beginning, and this number
then slowly drops and then stabilizes as the optimum is approached.

Similar qualitative behaviors have been observed for the other test cases from
Table 1 (not shown).

4 Conclusions and Future Work

Catalytic search illustrates that optimization is possible even in the absence of ex-
plicit Darwinian selection. The selection force here is much weaker, progress is
slower, and the systems not always converges to the optimum. Such a search method
is inherently suboptimal, and not intended as a replacement for evolutionary al-
gorithms or other successfully established heuristic search methods. As shown in
models of pre-evolutionary dynamics [18], a prelife model with no established Dar-
winian evolution properties can be invaded as soon as self-replicants cross an effi-
ciency threshold. In the optimization domain, catalytic search relates to prelife as
genetic algorithms relate to Darwinian evolution. However, in the same way as pre-
life played a crucial role towards life, catalytic search can play a role as a “soft”
search method, in a more exploratory phase of the search. It might prove useful
in dynamic or noisy environments, to let a variety of solutions survive, to dampen
temporary fluctuations in input parameters, and to undo or revert to past states when
needed. We believe that there is a potential that remains to be explored in such soft
search schemes, although we are not able to show this entire potential here to its full
extent. We were able to show some properties such as an apparent ability to keep a
higher diversity of solutions in the population without any explicit diversity main-
tenance mechanism. Other properties described in [22] remain to be demonstrated.
We are particularly interested in the potential to undo wrong computations via re-
versible reactions, and to steer the flow of computation using an open system driven
out of equilibrium as in [4]. This is difficult to achieve in a search algorithm, due to
the risk of flushing out good solutions or their building blocks.

Many points remain to be improved in our current implementation: The catal-
ysis model should support affinity matching. Catalysts should be inserted in the
same pool together with the candidate solutions, and the reaction algorithm should
model collisions involving catalysts and substrates explicitly. Furthermore, the satu-
ration of enzymes must be considered, moving from mass action to enzyme kinetics.
A more accurate diversity metric should be considered, taking into account the

86 L. Yamamoto

distance between strings. An analysis of the topology of catalytic networks should
be undertaken, in order to detect potential autocatalytic sets, and search for emergent
feedback loops and collective replicators. The main unsolved issue so far is to find
a good way to keep the system out of equilibrium and yet in a focused optimizing
mode.

Acknowledgements. This work has been supported by the European Union through FET
Project BIONETS. The author would also like to thank Thomas Meyer, Wolfgang Banzhaf,
and the anonymous reviewers for their helpful comments and encouragement.

References

[1] Activation Energy, Wikipedia (2006),
http://en.wikipedia.org/wiki/Activation_energy

[2] Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford (2002)
[3] Bagley, R., Farmer, J., Fontana, W.: Evolution of a Metabolism. In: Artificial Life II,

pp. 141–158. Addison-Wesley, Reading (1991)
[4] Bagley, R.J., Farmer, J.: Spontaneous Emergence of a Metabolism. In: Artificial Life II,

pp. 93–140. Addison-Wesley, Reading (1991)
[5] Banzhaf, W.: The “Molecular” Traveling Salesman. Biological Cybernetics 64, 7–14

(1990)
[6] Banzhaf, W., Lasarczyk, C.: Genetic Programming of an Algorithmic Chemistry. In:

O’Reilly, et al. (eds.) Genetic Programming Theory and Practice II, vol. 8, ch.11. pp.
175–190. Kluwer/Springer (2004)

[7] Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent Computation by Catalytic Reactions.
Nanotechnology 7, 307–314 (1996)

[8] Deckard, A., Sauro, H.M.: Preliminary Studies on the In Silico Evolution of Biochemi-
cal Networks. ChemBioChem. 5(10), 1423–1431 (2004)

[9] Dittrich, P., Banzhaf, W.: Self-Evolution in a Constructive Binary String System. Arti-
ficial Life 4, 203–220 (1909)

[10] Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial
Life 7(3), 225–275 (2001)

[11] Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological
Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)

[12] Forrest, S.: Emergent Computation: Self-organizing, Collective, and Cooperative Phe-
nomena in Natural and Artificial Computing Networks. Physica D 42(1-3), 1–11 (1990)

[13] Gánti, T.: Chemoton Theory, Volume 1: Theoretical Foundations of Fluid Machineries.
Kluwer Academic, Dordrecht (2003)

[14] Kanada, Y.: Combinatorial Problem Solving Using Randomized Dynamic Composition
of Production Rules. In: IEEE International Conference on Evolutionary Computation,
pp. 467–472 (1995)

[15] Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, Oxford (1993)

[16] Lozano, M., Herrera, F., Cano, J.R.: Replacement Strategies to Preserve Useful Di-
versity in Steady-State Genetic Algorithms. Information Sciences 178(23), 4421–4433
(2008)

http://en.wikipedia.org/wiki/Activation_energy

Evaluation of a Catalytic Search Algorithm 87

[17] Mattiussi, C., Waibel, M., Floreano, D.: Measures of Diversity for Populations and Dis-
tances Between Individuals with Highly Reorganizable Genomes. Evolutionary Com-
putation 12(4), 495–515 (2004)

[18] Nowak, M.A., Ohtsuki, H.: Prevolutionary Dynamics and the Origin of Evolution.
PNAS 105(39) (2008)

[19] Paun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

[20] Piaseczny, W., Suzuki, H., Sawai, H.: Chemical Genetic Programming - Evolution of
Amino Acid Rewriting Rules Used for Genotype-Phenotype Translation. In: Congress
on Evolutionary Computation (CEC), vol. 2, pp. 1639–1646 (2004)

[21] Suzuki, Y., Fujiwara, Y., Takabayashi, J., Tanaka, H.: Artificial Life Applications of a
Class of P Systems: Abstract Rewriting Systems on Multisets. In: Workshop on Multiset
Processing (WMP), pp. 299–346. Springer, London (2001)

[22] Weeks, A., Stepney, S.: Artificial Catalysed Reaction Networks for Search. In: ECAL
Workshop on Artificial Chemistry (2005)

Discovering Beneficial Cooperative Structures
for the Automated Construction of Heuristics

Germán Terrazas, Dario Landa-Silva, and Natalio Krasnogor

Abstract. The current research trends on hyper-heuristics design have sprung up in
two different flavours: heuristics that choose heuristics and heuristics that generate
heuristics. In the latter, the goal is to develop a problem-domain independent strat-
egy to automatically generate a good performing heuristic for specific problems,
that is, the input to the algorithm are problems and the output are problem-tailored
heuristics. This can be done, for example, by automatically selecting and combin-
ing different low-level heuristics into a problem specific and effective strategy. Thus,
hyper-heuristics raise the level of generality on automated problem solving by at-
tempting to select and/or generate tailored heuristics for the problem in hand. Some
approaches like genetic programming have been proposed for this. In this paper,
we report on an alternative methodology that sheds light on simple methodologies
that efficiently cooperate by means of local interactions. These entities are seen as
building blocks, the combination of which is employed for the automated manu-
facture of good performing heuristic search strategies. We present proof-of-concept
results of applying this methodology to instances of the well-known symmetric TSP.
The goal here is to demonstrate feasibility rather than compete with state of the art
TSP solvers. This TSP is chosen only because it is an easy to state and well known
problem.

1 Introduction

A hyper-heuristic is a search methodology that selects and combines heuristics
to generate good solutions for a given problem. To investigate on the design of
hyper-heuristics is important because they provide a problem independent level of
abstraction for the automatic generation of good performing algorithms. Given a

Germán Terrazas · Dario Landa-Silva · Natalio Krasnogor
ASAP Group, School of Computer Science
University of Nottingham, UK
e-mail: {gzt,jds,nxk}@cs.nott.ac.uk

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 89–100, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{gzt,jds,nxk}@cs.nott.ac.uk

90 G. Terrazas, D. Landa-Silva, and N. Krasnogor

computational search problem and a set of simpler heuristics, hyper-heuristics con-
tribute with a methodology for the manufacture of heuristic capable of produc-
ing high quality solutions when applied to the problem in hand. We consider that
developing a systematic procedure in which beneficial entities are identified and
combined for the automated manufacture of good performing heuristics is a
suitable approach. The purpose of this paper is then to propose a method for the
automated construction of heuristic search strategies in terms of simpler heuristic
building blocks which cooperate efficiently. Our methodology has three main stages:
pattern-based heuristics generation, cross validation and template-based heuristics
distilling. In the following, Section 2 gives a brief introduction to hyper-heuristics
and the context of our investigation. Section 3 expands on the proposed approach
giving details of the model components and the methodology. After that, experi-
ments and results are presented and discussed in Section 4. Finally, conclusions and
further work are the subject of Section 5.

2 Heuristics Design

Hyper-heuristics are defined as search methodologies that select and combine low-
level heuristics to solve hard computational search problems [6, 16]. The general
aim of a hyper-heuristic is to manufacture unknown heuristics which are fast, well
performing and widely applicable to a range of problems. During the process of
fabrication, hyper-heuristics receive feedback from the problem domain which indi-
cates how good the chosen heuristics for solving the problem in hand, hence driving
the search process. Hyper-heuristics do not violate the no-free-lunch theory which
indicates that over all problems, no algorithm performs better than another. Study-
ing novel approaches for the development of hyper-heuristics is important since
they are domain-independent problem strategies that operate on a space of heuris-
tics, rather than on a space of solutions, and rise the level of generality on automated
problem solving. Hyper-heuristics have been employed for solving search and opti-
misation problems such as bin-packing [4, 17], timetabling [14], scheduling [8, 9]
and satisfiability [2] among others. For detailed reviews of hyper-heuristics and their
applications, please refer to [7, 13, 16].

The automated manufacture of heuristic search strategies by means of hyper-
heuristics has received increasing attention in the last ten years or so. Recent in-
vestigations have sprung up in two main different directions of hyper-heuristics: 1)
heuristics that choose heuristics and 2) heuristics that generate heuristics. In the first
case, a learning mechanism assists the selection of low-level heuristics according to
their historical performance during the search process, e.g. [8]. In the second case,
the focus is on searching components that once combined generate a new heuristic
suitable for the problem in hand. For example, approaches based on genetic algo-
rithms [9] and genetic programming have been proposed for the automated gener-
ation of heuristics [5, 11]. From an engineering point of view, the already existent
approaches are defined in terms of the architecture established by the underlying
meta-heuristic which sometimes brings unsuspected difficulties such as the correct

Discovering Beneficial Cooperative Structures 91

modelling of solutions or parameters tunning. Hence, the construction of well per-
forming heuristics in terms of low-level heuristics which efficiently cooperate by
means of local interactions is an interesting route for developing a new alternative
within the second flavour of hyper-heuristics. Our interest lays on the identification
of beneficial cooperative structures, the combination of which give rise to a specifi-
cation for the automated manufacture of good performing heuristic strategies for a
given combinatorial optimisation problem.

3 Proposed Approach

Given a set of instances of a combinatorial optimisation problem Π , we propose a
methodology composed of pattern-based heuristics generation, cross validation and
template-based heuristics distilling. Each stage is associated to a dataset generated
from the optimisation problem in hand whilst the output of the methodology is a
template to be employed for the manufacture of good performing heuristics. Fig. 1
depicts the methodology and its components.

Fig. 1 Schematic representation of the proposed methodology with its three stages, their
associated datasets and the achieved template for the problem in hand

In the pattern-based heuristics generation, an input dataset is employed to train
randomly generated sequences of low-level heuristics (high-level heuristics). This
training aims at generating proficient high-level heuristics, the common constituents
of which are expected to produce high quality solutions when applied to a given in-
stance of the problem in hand. The research question in this stage is:

Given a set of high-level heuristics, is it possible to generate common combina-
tions of low-level heuristics ? If yes, how do they look like and how reliable are these
combinations ?

In order to address the first question, a process that spots common combinations of
low-level heuristics (patterns) and constructs pattern-based heuristic is employed.
The goal of the cross validation is then to assess the performance of the constructed

92 G. Terrazas, D. Landa-Silva, and N. Krasnogor

pattern-based heuristic over a validation dataset comprising similar instances of the
combinatorial optimisation problem in hand. Thus, the question in this stage is:

What is the performance of a pattern-based heuristic when applied to a set of
different problem instances ?

The goal of the template-based heuristics distilling stage is to discover coopera-
tive and efficient low-level heuristics (building blocks) among several pattern-based
heuristics. These building blocks are expected to give rise to a template from where
better than average heuristics could be drawn. Here, an extra dataset is employed to
test the performance of the constructed heuristics. The question in this stage is:

Is it possible to distill a template in terms of building blocks of heuristics ? If yes,
how is the performance of the template-based heuristics when applied to a set of
different problem instances ?

The above methodology is expected to deliver a procedure for the automated con-
struction of effective and efficient heuristic search strategies.

4 Methods and Results

This section presents the findings obtained by the above methodology. The cho-
sen combinatorial optimisation problem is the widely known symmetric Traveling
Salesman Problem (TSP). The TSP instance considered here is kroA100 which com-
prises 100 cities distributed in the Euclidean space. The objective value correspond-
ing to the known optimum solution (shortest tour) for this instance is 21282 (see
TSPLIB1). For each stage of our methodology, we generated five sets in the follow-
ing systematic way. Each set is initialised with ten copies of the known optimum
solution for kroA100. Each of this initial solutions is then ‘disturbed’ with n con-
secutive city swaps. In this way, setting n to 5, 25, 50, 75 and 100, a total of ten
independently ‘disturbed’ tours per set are obtained.

We consider a high-level heuristic as a sequence made of low-level heuristics.
The low-level heuristics for the TSP used here can be divided in two types: stochas-
tic low-level heuristics and deterministic low-level heuristics. A low-level heuristic
is stochastic if different or the same output tours are returned when applied to the
same input tour. Contrary to this, a low-level heuristic is deterministic if the same
output tour is returned when applied to the same input tour. In our case, 1-city in-
sertion, 2-exchange, arbitrary insertion and inver-over are the stochastic low-level
heuristics, whilst 2-opt, 3-opt, OR-opt and node insertion are the deterministic ones.
These eight low-level heuristics were implemented as defined in [1, 3, 10, 15, 19]
and operating in a hill climber style [12].

1 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

Discovering Beneficial Cooperative Structures 93

4.1 Pattern-Based Heuristics Generation

4.1.1 Training Datasets

In this stage, each of the perturbed tours, labeled as tkroA100n
i , i = 0 . . .9, n =

5,25,50,75,100, is independently considered for training. A sample of the training
data, grouped by set (n), is listed in Table 1 where the values indicate the percentage
distance to the optimum from each perturbed tours.

Table 1 Three sample perturbed tours for each of the five training sets

Tour n = 5 n = 25 n = 50 n = 75 n = 100

tkroA100n
0 1.42669 4.25805 6.39869 7.01362 6.80147

tkroA100n
1 1.27600 4.60262 6.46067 6.38215 6.59012

tkroA100n
2 1.79926 4.13631 5.76585 6.75190 6.93252

tkroA100n
i is the i-th disturbed tour after applying n random swaps to kroA100 optimal tour.

4.1.2 Method

For a given disturbed tour (tkroA100n
i), a set containing 500 high-level heuristics

generated at random was created. Then, each of the 500 high-level heuristics was
independently applied to the associated perturbed tour. In this context, an applica-
tion is seen as a pipeline process in which the chain of processing elements is given
by the sequence of low-level heuristics and the information to be processed is the
disturbed tour. Thus, the low-level heuristics are applied one after another in the or-
der in which they appear in the sequence and producing better or equal solutions at
each step. To illustrate this process, Fig. 2 depicts how a high-level heuristic com-
prising 1-city insertion and 2-exchange is applied to a TSP instance.

Fig. 2 A high-level heuristic in which successive applications of 1-city insertion and 2-
exchange find the optimum solution for the Star of David tour

In order to identify common combinations of low-level heuristics, the 500 high-
level heuristics are then sorted according to the distance between the solution that

94 G. Terrazas, D. Landa-Silva, and N. Krasnogor

their applications produce and the known optimum solution. The top five high-level
heuristics are then selected and encoded as sequences of characters using ‘A’ to rep-
resent 1-city insertion, ‘C’ to represent 2-opt, ‘D’ to represent 3-opt, ‘E’ to represent
OR-opt, ‘T’ to represent 2-exchange, ‘F’ to represent node insertion, ‘G’ to repre-
sent arbitrary insertion and ‘H’ to represent inver-over. Hence, in order to identify
common combinations of low-level heuristics among the filtered sequence, we em-
ploy a multiple sequence alignment (MSA) method [18] over the encodings. For
instance, Fig. 3 highlights in gray the common combinations found among the best
five high-level heuristics generated for tkroA10075

2 .

Fig. 3 Multiple sequence alignment of the top five heuristics. Capitals highlighted in gray
indicate the common sequences of heuristics

The results obtained by the MSA method reveal that there are indeed occur-
rences of common combinations, i.e. patterns of low-level heuristics, among the
best ranked high-level heuristics. Thus, these findings give a positive answer to the
research question stated for the first part of our methodology in Section 3.

From the resulting alignment, we construct a consensus sequence capturing and
representing regions of similarity. We define this consensus sequence as a pattern-
based heuristic (PBHn

i) associated to a perturbed tour (tkroA100n
i). The constructing

procedure consists in copying the matching characters between two or more encod-
ings into a new sequence from left to right and following the position in which they
appear. For instance, Fig. 3 shows that PBH75

3 is the resulting pattern-based heuris-
tic encoded as GDHGHHGDCDD, after combining the common patterns from the
high-level heuristics 1-HLH75

3 to 5-HLH75
3 . Given that this new heuristic is built

in terms of common combinations of low-level heuristics, its performance is then
expected to be as good as (or better than) any of the top ranked. Notice that the
length of the constructed heuristic varies according to the number of matches. Since
this is related to the way in which the construction procedure is defined, alterna-
tive methodologies to obtain the optimal common sequence are open to further
investigation.

In order to assess the reliability of the spotted patterns, we then proceed to evalu-
ate the performance of PBHn

i against a set of high-level heuristics (different than the
initial ones) with the hope that, on average, the best tour improvements are obtained
by the former. In order to do this, 300 copies of PBHn

i are obtained and for each of
them a new high-level heuristic equal in length is created. Each of these heuristics
is then independently applied to tkroA100n

i a total of 10 times and the average per-
centage distance between the lengths of the resulting tours and the known optimum

Discovering Beneficial Cooperative Structures 95

tkroA1000
75 tkroA1001

75 tkroA1002
75 tkroA1003

75 tkroA1004
75 tkroA1005

75 tkroA1006
75 tkroA1007

75 tkroA1008
75 tkroA1009

75

1
2

3
4

5
6

D
is

ta
nc

e
to

 O
P

T
 in

 %

Fig. 4 Assessment of ten pattern-based heuristics resulting from independent sequence align-
ments. Each pair of boxplots summarises a vis-a-vis comparison between the performance of
300 copies of PBH75

i and the performance of other 300 high-level heuristics when applied to
tkroA10075

i for i = 0 . . .9

is considered as the measure of their performance. As an example, Fig. 4 shows the
assessment of the 10 pattern-based heuristics obtained from the data set generated
with n = 75.

According to the results, it is clear that the performance of pattern-based heuris-
tics (white boxplots) is better in average than the performance of the non-pattern-
based high-level heuristics (gray boxplots). These findings constitute a positive
answer to the second research question stated in the first stage of the presented
methodology, i.e. the identified common-sequences of heuristics are indeed reliable.

4.2 Cross Validation

4.2.1 Validation Dataset

The cross validation data are given in sets of ten perturbed tours vkroA100n
i , i =

0 . . .9. A sample of the data, grouped by set (n), is listed in Table 2 where the values
indicate the percentage distance to the optimum from each perturbed tours.

Table 2 Three sample perturbed tours for each of the five validation sets

Tour n = 5 n = 25 n = 50 n = 75 n = 100

vkroA100n
0 1.86490 5.38403 6.85800 6.92453 7.58471

vkroA100n
1 1.72394 5.42246 6.13800 6.57452 6.69500

vkroA100n
2 1.41001 3.76134 6.66469 6.85969 6.90264

vkroA100n
i is the i-th disturbed tour after applying n random swaps to kroA100 optimal tour.

96 G. Terrazas, D. Landa-Silva, and N. Krasnogor

4.2.2 Method

The goal of this stage is to perform a cross validation analysis in order to assess
the performance of the pattern-based heuristics over a set of disturbed tours. Thus,
for each combination of PBHn

j and vkroA100n
i , i, j = 0 . . .9, a total of 300 copies of

PBHn
j were obtained and, for each of the copies, a new high-level heuristic equal

in length was created. Then, the heuristics are independently applied to the given
vkroA100n

i a total of 10 independent times and the average percentage distance be-
tween the lengths of the resulting tours and the known optimum is considered as the
measure of their performance. Fig. 5 shows the resulting assessment of a pattern-
based heuristic, encoded as GDHGHHGDCDD, over the 10 perturbed tours belong-
ing to the data set generated with n = 75.

vkroA1000
75 vkroA1001

75 vkroA1002
75 vkroA1003

75 vkroA1004
75 vkroA1005

75 vkroA1006
75 vkroA1007

75 vkroA1008
75 vkroA1009

75

1
2

3
4

5
6

D
is

ta
nc

e
to

 O
P

T
 in

 %

Fig. 5 Performance evaluation of a pattern-based heuristic across the perturbed tours belong-
ing to the data set generated with n = 75. Each pair of boxplots summarises a vis-a-vis com-
parison between the performance of 300 copies of GDHGHHGDCDD and the performance
of other 300 high-level heuristics when applied to vkroA10075

i

Clearly, the performances of pattern-based heuristics (white boxplots) are bet-
ter in average than the performance of the ones generated for assessment (gray
boxplots). These findings answer the research question estated in the second part
of Section 3, revealing that a pattern-based heuristic is in general well performing
when applied to a set of different problem instances. In addition, the similar level of
performance observed among the white boxplots gives an indication that common
low-level heuristics could be acting as building blocks among the PBHn

j , j = 1 . . .10.

4.3 Template-Based Heuristics Distilling

4.3.1 Test Dataset

The data used in this last stage comprise five sets, see Table 3 for a sample. Thus, for
a given experiment, each of the ten perturbed tours dkroA100n

i , i = 0 . . .9, belonging
to a given set is independently employed for testing.

Discovering Beneficial Cooperative Structures 97

Table 3 Three sample perturbed tours for each of the five test sets

Tour n = 5 n = 25 n = 50 n = 75 n = 100

dkroA100n
0 1.43750 4.00032 5.61831 6.34000 6.86100

dkroA100n
1 1.12729 4.70731 6.44469 6.28794 6.69199

dkroA100n
2 0.80584 4.01320 5.96786 6.57973 7.10008

dkroA100n
i is the i-th disturbed tour after applying n random swaps to kroA100 optimal tour.

4.3.2 Method

The purpose of this stage is to identify common building blocks of low-level heuris-
tics among the PBHn

j assessed in the second part of our methodology. These build-
ing blocks are employed to construct templates of heuristics, the instances of which
are expected to show similar or better performance when solving any dkroA100n

i .
Hence, for each data set, we applied the MSA method over the encodings of PBHn

j ,
i, j = 0 . . .9. For example, Fig. 6 highlights in gray building blocks among the ten
pattern-based heuristics found for the data set of perturbed tours generated with
n = 75.

Fig. 6 Multiple sequence alignment of the pattern-based heuristics found for the data set
generated with n = 75. Capitals highlighted in gray indicate the spotted common building
blocks

The resulting alignment reveals that there are common structures among the
pattern-based heuristics. A template (TBHn) is then constructed in terms of building
blocks. This procedure consists in copying the matching characters between three or
more encodings into a new sequence from left to right and following the position in
which they appear. In case no matchings are found or matchings occur only between
two encodings, a wildcard character is placed in that position of the sequence. For
instance, Fig. 6 shows TBH75 as the resulting template after combining the building
blocks from the input pattern-based heuristics PBE75

0 to PBE75
9 .

For each dkroA100n
i , a total of 300 different instances are drawn from the con-

structed template. During the instantiation process, building blocks are preserved
and each of the wildcard characters is either removed or replaced with one of the

98 G. Terrazas, D. Landa-Silva, and N. Krasnogor

dkroA1000
75 dkroA1001

75 dkroA1002
75 dkroA1003

75 dkroA1004
75 dkroA1005

75 dkroA1006
75 dkroA1007

75 dkroA1008
75 dkroA1009

75

0.
0

0.
5

1.
0

1.
5

D
is

ta
nc

e
to

 O
P

T
 in

 %

Fig. 7 Assessment of a template-based heuristic across a set of perturbed tours belonging to
the data set generated with n = 75. Each pair of boxplots summarises a vis-a-vis comparison
between the performance of 300 instances drawn from TBH75 and the performance of other
300 high-level heuristics when applied to dkroA10075

i for i = 0 . . .9

eight low-level heuristics chosen at random. In order to assess the reliability of the
building blocks, we compared the performance of the 300 instances against new
300 high-level heuristics expecting that, on average, the best tour improvements are
obtained by the former. In this way, each of the heuristics is applied to the same
perturbed tour a total of 10 independent times and the average distance between
the lengths of the resulting tours and the known optimum is considered as the mea-
sure of performance. A representative outcome of the assessment is shown in Fig. 7
where the resulting assessment of the instances drawn from TBH75 when applied to
the data set created with n = 75 is depicted.

The results of this stage demonstrate that it is certainly possible to define a
template of building blocks of heuristics in terms of common structures identified
among a set of pattern-based heuristics. This fact constitutes a positive answer for
the first question established in the third part of our methodology. In addition, it is
also shown that the performance of template-based heuristics (white boxplots) is on
average better than the performance of the randomly generated high-level heuris-
tics (gray boxplots), even though some of the high-level heuristics generated for
comparison have outperformed the ones drawn from the template (see Fig. 7). Nat-
urally, one of the reasons for this is that during the random generation, appropri-
ate combinations of low-level heuristics with more efficient local interactions could
be generated (by chance). However, the template-based specification still brings a
more robust and convenient way for the automated manufacture of good perform-
ing heuristic strategies to solve the problem in hand. All in all, the outcome of this
assessment answers the last question of the proposed methodology. That is, the in-
stances of such templates are always well performing when applied to any disturbed
tour of a given data set.

Discovering Beneficial Cooperative Structures 99

5 Conclusions

In this paper, we proposed a novel approach for the automated design of heuristics
following the rationale of hyper-heuristics which are heuristic methods to generate
tailored heuristics for the problem in hand.

The proposed methodology consists of pattern-based heuristics construction,
cross validation and template-based heuristics distilling. As a proof of concept, we
applied the methodology to instances of the symmetric TSP. On the one hand, our
initial findings confirm that there are indeed common patterns of low-level heuris-
tics among the top ranked high-level heuristics. These emergent recurrent structures
were subject to a cross validation, the results of which proved them to be local search
strategies beneficial to achieve good solutions when solving a symmetric TSP in-
stance. On the other hand, the outcome achieved in the last part of our approach has
resulted in a specification to automatically generate a family of heuristics capable
of producing high quality solutions when applied to perturbed tours. In particular,
these high performing heuristics are made of emergent building blocks extracted
from the patterns seen in the first stage.

From a functional point of view, the building blocks achieved in the last stage are
beneficial structures needed for the manufacturing of high quality solutions. When
these key elements appear in combination with randomly chosen low-level heuris-
tics, they seem to guide the search across the space of solutions. In other words,
the local interactions contributed by the building blocks can be seen as artifacts that
drive the optimisation process when applied to the combinatorial optimisation prob-
lem in hand. Likewise, the local interactions contributed by the randomly created
low-level heuristics placed in an instance can be seen as artifacts that contribute
with a variety of alternative paths for exploring the space of solutions during the
optimisation process. Hence, both types of contributions seem to be properly or-
chestrated into an instance of a template-based heuristic.

To continue with our methodology, future work involves the extension of our
approach to other instances of TSP as well as to different combinatorial optimisa-
tion problems. In addition, we also consider to explore alternative ways to generate
the family of good performing heuristics in order to get a faster and less human-
dependent way. This could be done for instance by means of grammatical infer-
ence where the encodings of the pattern-based heuristics would be the input to the
grammatical inference algorithm and the resulting grammar would be employed to
generate a family of words encoding sequences of low-level heuristics.

References

[1] Babin, G., Deneault, S., Laporte, G.: Improvements to the or-opt heuristic for the sym-
metric traveling salesman problem. Journal of the Operational Research Society (58),
402–407 (2007)

[2] Bader-El-Den, M., Poli, R.: A gp-based hyper-heuristic framework for evolving 3-sat
heuristics. In: Genetic and Evolutionary Computation Conference, p. 1749. ACM, New
York (2007)

100 G. Terrazas, D. Landa-Silva, and N. Krasnogor

[3] Brest, J., Zerovnik, J.: A heuristic for the asymmetric traveling salesman problem. In:
6th Metaheuristics International Conference, pp. 145–150 (2005)

[4] Burke, E., Hyde, M., Kendall, G.: Evolving bin packing heuristics with genetic. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao,
X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869. Springer, Heidelberg (2006)

[5] Burke, E., Hyde, M., Kendall, G., Woodward, J.: Automatic heuristic generation with
genetic programming: evolving a jack-of-all-trades or a master of one. In: Genetic and
Evolutionary Computation Conference, pp. 1559–1565. ACM, New York (2007)

[6] Burke, E.K., Hart, E., Kendall, G.N., Newall, J., Ross, P., Schulenburg, S.: Handbook of
Meta-Heuristics. In: chap Hyper-Heuristics: An Emerging Direction in Modern Search
Technology, pp. 457–474. Kluwer, Dordrecht (2003)

[7] Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. In: Adaptive and
Multilevel Metaheuristics, vol. 136, pp. 3–29. Springer, Heidelberg (2008)

[8] Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of low
level heuristics to schedule personnel. In: IEEE Congress on Evolutionary Computation,
pp. 1214–1221. IEEE Computer Society, Los Alamitos (2003)

[9] Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm
applied to a trainer scheduling problem. In: IEEE Congress on Evolutionary Computa-
tion, pp. 1185–1190. IEEE Computer Society, Los Alamitos (2002)

[10] Krasnogor, N., Smith, J.: Memetic algorithms: The polynomial local search complexity
theory perspective. Journal of Mathematical Modelling and Algorithms 7, 3–24 (2008)

[11] Oltean, M., Dumitrescu, D.: Evolving tsp heuristics using multi expression program-
ming. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004.
LNCS, vol. 3037, pp. 670–673. Springer, Heidelberg (2004)

[12] Özcan, E., Bilgin, B., Korkmaz, E.: Hill climbers and mutational heuristics in hyper-
heuristics. In: 9th International Conference on PPSN, pp. 202–211 (2006)

[13] Özcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics. In-
tell. Data Anal. 12(1), 3–23 (2008)

[14] Pillay, N., Banzhaf, W.: A study of heuristic combinations for hyper-heuristic systems
for the uncapacitated examination timetabling problem. European Journal of Opera-
tional Research 197(2), 482–491 (2009)

[15] Reinelt, G.: The traveling salesman: Computational solutions for TSP applications.
Springer, Heidelberg (1994)

[16] Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Opti-
mization and Decision Support, pp. 529–556. Springer, Heidelberg (2005)

[17] Ross, P., Schulenburg, S., Marín-Blázquez, J., Hart, E.: Hyper-heuristics: Learning to
combine simple heuristics in bin-packing problems. In: Genetic and Evolutionary Com-
putation Conference, pp. 942–948. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

[18] Setubal, J., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Pub-
lishing (1997)

[19] Tao, G., Michalewicz, Z.: Inver-over operator for the tsp. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812.
Springer, Heidelberg (1998)

Eagle Strategy Using Lévy Walk and Firefly
Algorithms for Stochastic Optimization

Xin-She Yang� and Suash Deb

Abstract. Most global optimization problems are nonlinear and thus difficult to
solve, and they become even more challenging when uncertainties are present in
objective functions and constraints. This paper provides a new two-stage hybrid
search method, called Eagle Strategy, for stochastic optimization. This strategy in-
tends to combine the random search using Lévy walk with the firefly algorithm in
an iterative manner. Numerical studies and results suggest that the proposed Eagle
Strategy is very efficient for stochastic optimization. Finally practical implications
and potential topics for further research will be discussed.

1 Introduction

To find the solutions to any optimization problems, we can use either conven-
tional optimization algorithms such as the Hill-climbing and simplex method, or
heuristic methods such as genetic algorithms, or their proper combinations. Mod-
ern metaheuristic algorithms are becoming powerful in solving global optimization
problems [4, 6, 7, 9, 13, 20, 21], especially for the NP-hard problems such as the
travelling salesman problem. For example, particle swarm optimization (PSO) was
developed by Kennedy and Eberhart in 1995 [8, 9], based on the swarm behaviour
such as fish and bird schooling in nature. It has now been applied to find solutions
for many optimization applications. Another example is the Firefly Algorithm de-
veloped by the first author [13, 20] which has demonstrated promising superiority

Xin-She Yang
Department of Engineering, University of Cambridge, Trumpinton Street,
Cambridge CB2 1PZ, UK
e-mail: xy227@cam.ac.uk

Suash Deb
Department of Computer Science & Engineering, C.V. Raman College of Engineering,
Bidyanagar, Mahura, Janla, Bhubaneswar 752054, India
e-mail: suashdeb@gmail.com
� Corresponding author.

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 101–111, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

xy227@cam.ac.uk
suashdeb@gmail.com

102 X.-S. Yang and S. Deb

over many other algorithms. The search strategies in these multi-agent algorithms
are controlled randomization and exploitation of the best solutions. However, such
randomization typically uses a uniform distribution or Gaussian distribution. In fact,
since the development of PSO, quite a few algorithms have been developed and they
can outperform PSO in different ways [20, 22].

On the other hand, there is always some uncertainty and noise associated with
all real-world optimization problems. Subsequently, objective functions may have
noise and constraints may also have random noise. In this case, a standard opti-
mization problem becomes a stochastic optimization problem. Methods that work
well for standard optimization problems cannot directly be applied to stochastic op-
timization; otherwise, the obtained results are incorrect or even meaningless. Either
the optimization problems have to be reformulated properly or the optimization al-
gorithms should be modified accordingly, though in most cases we have to do both
[3, 10, 19].

In this paper, we intend to formulate a new metaheuristic search method, called
Eagle Stategy (ES), which combines the Lévy walk search with the Firefly Algo-
rithm (FA). We will provide the comparison study of the ES with PSO and other
relevant algorithms. We will first outline the basic ideas of the Eagle Strategy, then
outline the essence of the firefly algorithm, and finally carry out the comparison
about the performance of these algorithms.

2 Stochastic Multiobjective Optimization

An ordinary optimization problem, without noise or uncertainty, can be written as

min
x∈ℜd

fi(x), (i = 1,2, ...,N) (1)

subject to φ j(x) = 0, (j = 1,2, ...,J),

ψk(x)≤ 0, (k = 1,2, ...,K), (2)

where x = (x1,x2, ...,xd)T is the vector of design variables.
For stochastic optimization problems, the effect of uncertainty or noise on the

design variable xi can be described by a random variable ξi with a distribution Qi

[10, 19]. That is
xi �→ ξi(xi), (3)

and
ξi ∼ Qi. (4)

The most widely used distribution is the Gaussian or normal distribution N(xi,σi)
with a mean xi and a known standard deviation σi. Consequently, the objective func-
tions fi become random variables fi(x,ξ).

Now we have to reformulate the optimization problem as the minimization of the
mean of the objective function fi(x) or μ fi

ES Using Lévy Walk and Firefly Algorithms for Stochastic Optimization 103

min
x∈ℜd
{μ f1 , ...,μ fN}. (5)

Here μ fi = E(fi) is the mean or expectation of fi(ξ (x)) where i = 1,2, ...,N. More
generally, we can also include their uncertainties, which leads to the minimization
of

min
x∈ℜd
{μ f1 +λσ1, ...,μ fN +λσN}, (6)

where λ ≥ 0 is a constant. In addition, the constraints with uncertainty should be
modified accordingly.

In order to estimate μ fi , we have to use some sampling techniques such as the
Monte Carlo method. Once we have randomly drawn the samples, we have

μ fi ≈
1
Ni

Ni

∑
p=1

fi(x,ξ (p)), (7)

where Ni is the number of samples.

3 Eagle Strategy

The foraging behaviour of eagles such as golden eagles or Aquila Chrysaetos is in-
spiring. An eagle forages in its own territory by flying freely in a random manner
much like the Lévy flights. Once the prey is sighted, the eagle will change its search
strategy to an intensive chasing tactics so as to catch the prey as efficiently as pos-
sible. There are two important components to an eagle’s hunting strategy: random
search by Lévy flight (or walk) and intensive chase by locking its aim on the target.

Furthermore, various studies have shown that flight behaviour of many animals
and insects has demonstrated the typical characteristics of Lévy flights [5, 12–
14]. A recent study by Reynolds and Frye shows that fruit flies or Drosophila
melanogaster, explore their landscape using a series of straight flight paths punc-
tuated by a sudden 900 turn, leading to a Lévy-flight-style intermittent scale-free
search pattern. Studies on human behaviour such as the Ju/’hoansi hunter-gatherer
foraging patterns also show the typical feature of Lévy flights. Even light can be
related to Lévy flights [2]. Subsequently, such behaviour has been applied to opti-
mization and optimal search, and preliminary results show its promising capability
[12, 14, 16, 17].

3.1 Eagle Strategy

Now let us idealize the two-stage strategy of an eagle’s foraging behaviour. Firstly,
we assume that an eagle will perform the Lévy walk in the whole domain. Once
it finds a prey it changes to a chase strategy. Secondly, the chase strategy can be
considered as an intensive local search using any optimization technique such as the
steepest descent method, or the downhill simplex or Nelder-Mead method [11]. Ob-
viously, we can also use any efficient metaheuristic algorithms such as the particle

104 X.-S. Yang and S. Deb

swarm optimization (PSO) and the Firefly Algorithm (FA) to do concentrated local
search. The pseudo code of the proposed eagle strategy is outlined in Fig. 1.

The size of the hypersphere depends on the landscape of the objective functions.
If the objective functions are unimodal, then the size of the hypersphere can be about
the same size of the domain. The global optimum can in principle be found from
any initial guess. If the objective are multimodal, then the size of the hypersphere
should be the typical size of the local modes. In reality, we do not know much about
the landscape of the objective functions before we do the optimization, and we can
either start from a larger domain and shrink it down or use a smaller size and then
gradually expand it.

On the surface, the eagle strategy has some similarity with the random-restart hill
climbing method, but there are two important differences. Firstly, ES is a two-stage
strategy rather than a simple iterative method, and thus ES intends to combine a
good randomization (diversification) technique of global search with an intensive
and efficient local search method. Secondly, ES uses Lévy walk rather than simple
randomization, which means that the global search space can be explored more
efficiently. In fact, studies show that Lévy walk is far more efficient than simple
random-walk exploration.

Eagle Strategy

Objective functions f1(x), ..., fN(x)
Initial guess xt=0

while (||xt+1−xt ||> tolerance)
Random search by performing Lévy walk
Evaluate the objective functions
Intensive local search with a hypersphere

via Nelder-Mead or the Firefly Algorithm
if (a better solution is found)

Update the current best
end if
Update t = t +1
Calculate means and standard deviations

end while
Postprocess results and visualization

Fig. 1 Pseudo code of the Eagle Strategy (ES)

The Lévy walk has a random step length being drawn from a Lévy distribution

Lévy∼ u = t−λ , (1 < λ ≤ 3), (8)

which has an infinite variance with an infinite mean. Here the steps of the eagle mo-
tion is essentially a random walk process with a power-law step-length distribution
with a heavy tail. The special case λ = 3 corresponds to Brownian motion, while

ES Using Lévy Walk and Firefly Algorithms for Stochastic Optimization 105

λ = 1 has a characteristics of stochastic tunneling, which may be more efficient in
avoiding being trapped in local optima.

For the local search, we can use any efficient optimization algorithm such as the
downhill simplex (Nelder-Mead) or metaheuristic algorithms such as PSO and the
firefly algorithm. In this paper, we used the firefly algorithm to do the local search,
since the firefly algorithm was designed to solve multimodal global optimization
problems [20].

3.2 Firefly Algorithm

We now briefly outline the main components of the Firefly Algorithm developed
by the first author [13], inspired by the flash pattern and characteristics of fireflies.
For simplicity in describing the algorithm, we now use the following three idealized
rules: 1) all fireflies are unisex so that one firefly will be attracted to other fireflies
regardless of their sex; 2) Attractiveness is proportional to their brightness, thus for
any two flashing fireflies, the less brighter one will move towards the brighter one.
The attractiveness is proportional to the brightness and they both decrease as their
distance increases. If there is no brighter one than a particular firefly, it will move
randomly; 3) The brightness of a firefly is affected or determined by the landscape
of the objective function. For a maximization problem, the brightness can simply be
proportional to the value of the objective functions.

Firefly Algorithm

Objective function fp(x), x = (x1, ...,xd)T

Initial population of fireflies xi (i = 1, ...,n)
Light intensity Ii at xi is determined by fp(xi)
Define light absorption coefficient γ
while (t <MaxGeneration)

for i = 1 : n all n fireflies
for j = 1 : i all n fireflies
if (I j > Ii)

Move firefly i towards j (d-dimension)
end if
Vary β via exp[−γr]
Evaluate new solutions and update
end for j

end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

Fig. 2 Pseudo code of the firefly algorithm (FA)

In the firefly algorithm, there are two important issues: the variation of light in-
tensity and formulation of the attractiveness. For simplicity, we can always assume

106 X.-S. Yang and S. Deb

that the attractiveness of a firefly is determined by its brightness which in turn is
associated with the encoded objective function.

In the simplest case for maximum optimization problems, the brightness I of a
firefly at a particular location x can be chosen as I(x) ∝ f (x). However, the attrac-
tiveness β is relative, it should be seen in the eyes of the beholder or judged by the
other fireflies. Thus, it will vary with the distance ri j between firefly i and firefly j.
In addition, light intensity decreases with the distance from its source, and light is
also absorbed in the media, so we should allow the attractiveness to vary with the
degree of absorption. In the simplest form, the light intensity I(r) varies according
to the inverse square law I(r) = Is

r2 where Is is the intensity at the source. For a given
medium with a fixed light absorption coefficient γ , the light intensity I varies with
the distance r. That is

I = I0e−γr, (9)

where I0 is the original light intensity.
As a firefly’s attractiveness is proportional to the light intensity seen by adjacent

fireflies, we can now define the attractiveness β of a firefly by

β = β0e−γr2
, (10)

where β0 is the attractiveness at r = 0.
The distance between any two fireflies i and j at xi and x j, respectively, is the

Cartesian distance

ri j = ||xi−x j||=
√
√
√
√

d

∑
k=1

(xi,k− x j,k)2, (11)

where xi,k is the kth component of the spatial coordinate xi of ith firefly. In the 2-D
case, we have

ri j =
√

(xi− x j)2 +(yi− y j)2. (12)

The movement of a firefly i is attracted to another more attractive (brighter) firefly j
is determined by

xi = xi +β0e−γr2
i j(x j−xi)+α (rand− 1

2
), (13)

where the second term is due to the attraction. The third term is randomization
with a control parameter α , which makes the exploration of the search space more
efficient.

We have tried to use different values of the parameters α,β0,γ [13, 20], after
some simulations, we concluded that we can use β0 = 1, α ∈ [0,1], γ = 1, and
λ = 1 for most applications. In addition, if the scales vary significantly in differ-
ent dimensions such as −105 to 105 in one dimension while, say, −0.001 to 0.01
along the other, it is a good idea to replace α by αSk where the scaling parameters

ES Using Lévy Walk and Firefly Algorithms for Stochastic Optimization 107

Sk(k = 1, ...,d) in the d dimensions should be determined by the actual scales of the
problem of interest.

There are two important limiting cases when γ → 0 and γ → ∞. For γ → 0, the
attractiveness is constant β = β0 and the length scale Γ = 1/

√γ→ ∞, this is equiv-
alent to say that the light intensity does not decrease in an idealized sky. Thus, a
flashing firefly can be seen anywhere in the domain. Thus, a single (usually global)
optimum can easily be reached. This corresponds to a special case of particle swarm
optimization (PSO) discussed earlier. Subsequently, the efficiency of this special
case could be about the same as that of PSO.

On the other hand, the limiting case γ→ ∞ leads to Γ → 0 and β (r)→ δ (r) (the
Dirac delta function), which means that the attractiveness is almost zero in the sight
of other fireflies or the fireflies are short-sighted. This is equivalent to the case where
the fireflies roam in a very foggy region randomly. No other fireflies can be seen, and
each firefly roams in a completely random way. Therefore, this corresponds to the
completely random search method. As the firefly algorithm is usually in somewhere
between these two extremes, it is possible to adjust the parameter γ and α so that it
can outperform both the random search and PSO.

4 Simulations and Comparison

4.1 Validation

In order to validate the proposed algorithm, we have implemented it in Matlab. In
our simulations, the values of the parameters are α = 0.2, γ = 1, λ = 1, and β0 = 1.
As an example, we now use the ES to find the global optimum of the Ackley function

−2

−1

0

1

2 −2
−1

0
1

2

0

2

4

6

8

 y

 x

 f
(x

,y
)

Fig. 3 Ackley’s function for two independent variables with a global minimum f∗ = 0 at
(0,0)

108 X.-S. Yang and S. Deb

f (x) =−20exp[−1
5

√
√
√
√1

d

d

∑
i=1

x2
i]− exp[

1
d

d

∑
i=1

cos(2πxi)]+ 20 + e, (14)

where (d = 1,2, ...) [1]. The global minimum f∗ = 0 occurs at (0,0, ...,0) in the
domain of −32.768 ≤ xi ≤ 32.768 where i = 1,2, ...,d. The landscape of the 2D
Ackley function is shown in Fig. 3, while the landscape of this function with 2.5%
noise is shown in Fig. 4

−2

−1

0

1

2 −2
−1

0
1

2

0

2

4

6

8

 y
 x

 f
(x

,y
)

Fig. 4 Ackley’s 2D function with Gaussian noise

The global minimum in 2D for a given noise level of 2.5% can be found after
about 300 function evaluations (for 20 fireflies after 15 iterations, see Fig. 5).

4.2 Comparison of ES with PSO

Various studies show that PSO algorithms can outperform genetic algorithms (GA)
[7] and other conventional algorithms for solving many optimization problems. This
is partially due to that fact that the broadcasting ability of the current best estimates
gives better and quicker convergence towards the optimality. A general framework
for evaluating statistical performance of evolutionary algorithms has been discussed
in detail by Shilane et al. [15].

Now we will compare the Eagle Strategy with PSO for various standard test
functions. After implementing these algorithms using Matlab, we have carried out
extensive simulations and each algorithm has been run at least 100 times so as to
carry out meaningful statistical analysis. The algorithms stop when the variations
of function values are less than a given tolerance ε ≤ 10−5. The results are sum-
marized in the following table (see Table 1) where the global optima are reached.
The numbers are in the format: average number of evaluations (success rate), so

ES Using Lévy Walk and Firefly Algorithms for Stochastic Optimization 109

12.7±1.15(100) means that the average number (mean) of function evaluations is
12.7× 103 = 12700 with a standard deviation of 1.15× 103 = 1150. The success
rate of finding the global optima for this algorithm is 100%. Here we have used
the following abbreviations: MWZ for Michalewicz’s function with d = 16, RBK
for Rosenbrock with d = 16, De Jong for De Jong’s sphere function with d = 256,
Schwefel for Schwefel with d = 128, Ackley for Ackley’s function with d = 128,
and Shubert for Shubert’s function with 18 minima. In addition, all these test func-
tions have a 2.5% of Gaussian noise, or σ = 0.025. In addition, we have used the
population size n = 20 in all our simulations.

 x

 y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 x

 y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 5 The initial locations of the 20 fireflies (left) and their locations after 15 iterations
(right). We have used γ = 1

Table 1 Comparison of algorithm performance

PSO (×103) ES (×103)
Easom 185.9±3.1(97) 12.7±1.15(100)
MWZ 346.1±8.0(98) 36.1±3.5(100)

Rosenbrock 1637±79(98) 75±6.4(100)
De Jong 852±16(100) 70.7±7.3(100)
Schwefel 726.1±25(97) 99±6.7(100)
Ackley 1170±19(92) 54±5.2(100)

Rastrigin 3973±64(90) 151±14(100)
Easom 863.7±55(90) 76±11(100)

Griewank 2798±63(92) 134±9.1(100)
Shubert 1197±56(92) 32±2.5(100)

We can see that the ES is noticeably more efficient in finding the global optima
with the success rates of 100%. Each function evaluation is virtually instantaneous
on a modern personal computer. For example, the computing time for 10,000 eval-
uations on a 3GHz desktop is about 5 seconds. Even with graphics for displaying

110 X.-S. Yang and S. Deb

the locations of the particles and fireflies, it usually takes less than a few minutes.
Furthermore, we have used various values of the population size n or the number
of fireflies. We found that for most problems n = 15 to 50 would be sufficient. For
tougher problems, larger n such as n = 100 or 250 can be used, though excessively
large n should not be used unless there is no better alternative, as it is more compu-
tationally extensive.

5 Conclusions

By combining Lévy walk with the firefly algorithm, we have successfully formu-
lated a hybrid optimization algorithm, called Eagle Strategy, for stochastic optimiza-
tion. After briefly outlining the basic procedure and its similarities and differences
with particle swarm optimization, we then implemented and compared these algo-
rithms. Our simulation results for finding the global optima of various test functions
suggest that ES can significantly outperform the PSO in terms of both efficiency and
success rate. This implies that ES is potentially more powerful in solving NP-hard
problems.

However, we have not carried out sensitivity studies of the algorithm-dependent
parameters such as the exponent λ in Lévy distribution and the light absorption
coefficient γ , which may be fine-tuned to a specific problem. This can form an
important research topic for further research. Furthermore, other local search al-
gorithms such as the Newton-Raphson method, sequential quadratic programming
and Nelder-Mead algorithms can be used to replace the firefly algorithm, and a com-
parison study should be carried out to evaluate their performance. It may also show
interesting results if the level of uncertainty varies and it can be expected that the
higher level of noise will make it more difficult to reach optimal solutions.

As other important further studies, we can also focus on the applications of this
hybrid algorithm on the NP-hard traveling salesman problem. In addition, many en-
gineering design problems typically have to deal with intrinsic inhomogeneous ma-
terials properties and such uncertainty may often affect the design choice in practice.
The application of the proposed hybrid algorithm in engineering design optimiza-
tion may prove fruitful.

References

[1] Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic Pub-
lishers, Dordrecht (1987)

[2] Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453, 495–
498 (2008)

[3] Bental, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University
Press, Princeton (2009)

[4] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artifi-
cial Systems. Oxford University Press, Oxford (1999)

[5] Brown, C., Liebovitch, L.S., Glendon, R.: Lévy flights in Dobe Ju/’hoansi foraging
patterns. Human Ecol. 35, 129–138 (2007)

ES Using Lévy Walk and Firefly Algorithms for Stochastic Optimization 111

[6] Deb, K.: Optimisation for Engineering Design. Prentice-Hall, New Delhi (1995)
[7] Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning.

Addison Wesley, Reading (1989)
[8] Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE Interna-

tional Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
[9] Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Academic Press, London (2001)

[10] Marti, K.: Stochastic Optimization Methods. Springer, Heidelberg (2005)
[11] Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Jour-

nal 7, 308–313 (1965)
[12] Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computa-

tional Physics 226, 1830–1844 (2007)
[13] Pavlyukevich, I.: Cooling down Lévy flights. J. Phys. A:Math. Theor. 40, 12299–12313

(2007)
[14] Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with

an optimal intermittent scale-free search. PLoS One 2, e354 (2007)
[15] Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.J.: A general framework for sta-

tistical performance comparison of evolutionary computation algorithms. Information
Sciences: an Int. Journal 178, 2870–2879 (2008)

[16] Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.): Lévy Flights and Related Topics
in Phyics. Springer, Heidelberg (1995)

[17] Shlesinger, M.F.: Search research. Nature 443, 281–282 (2006)
[18] Urfalioglu, O., Cetin, A.E., Kuruoglu, E.E.: Levy walk evolution for global optimiza-

tion. In: Proc. of 10th Genetic and Evolutionary Computation Conference, pp. 537–538
(2008)

[19] Wallace, S.W., Ziemba, W.T.: Applications of Stochastic Programming. SIAM Mathe-
matical Series on Optimization (2005)

[20] Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeug-
mann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg
(2009)

[21] Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress
on Nature & Biologically Inspired Computing (NaBic 2009), pp. 210–214. IEEE Puli-
cations, India (2009)

[22] Yang, Z.Y., Tang, K., Yao, X.: Large Scale Evolutionary Optimization Using Coopera-
tive Coevolution. Information Sciences 178, 2985–2999 (2008)

CO2RBFN for Short and Medium Term
Forecasting of the Extra-Virgin Olive Oil Price

M.D. Pérez-Godoy, P. Pérez-Recuerda, María Pilar Frías, A.J. Rivera,
C.J. Carmona, and Manuel Parras

Abstract. In this paper an adaptation of CO2RBFN, evolutionary COoperative-
COmpetitive algorithm for Radial Basis Function Networks design, applied to the
prediction of the extra-virgin olive oil price is presented. In this algorithm each in-
dividual represents a neuron or Radial Basis Function and the population, the whole
network. Individuals compite for survival but must cooperate to built the definite
solution. The forecasting of the extra-virgin olive oil price is addressed as a time
series forecasting problem. In the experimentation medium-term predictions are ob-
tained for first time with these data. Also short-term predictions with new data are
calculated. The results of CO2RBFN have been compared with the traditional statis-
tic forecasting Auto-Regressive Integrated Moving Average method and other data
mining methods such as other neural networks models, a support vector machine
method or a fuzzy system.

1 Introduction

Radial Basis Function Networks (RBFNs) are an important artificial neural network
paradigm [5] with interesting characteristics such as a simple topological structure
or universal approximation ability [23]. The overall efficiency of RBFNs has been
proved in many areas such as pattern classification [6], function approximation [23]
or time series prediction [31].

M.D. Pérez-Godoy · P. Pérez-Recuerda · A.J. Rivera · C.J. Carmona
Department of Informatics, University of Jaén
e-mail: {lperez,pperez,arivera,ccarmona}@ujaen.es

María Pilar Frías
Department of Statistics and Operation Research, University of Jaén
e-mail: mpfrias@ujaen.es

Manuel Parras
Department of Marketing, University of Jaén
e-mail: mparras@ujaen.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 113–125, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{lperez,pperez,arivera,ccarmona}@ujaen.es
mpfrias@ujaen.es
mparras@ujaen.es

114 M.D. Pérez-Godoy et al.

An important paradigm for RBFN design is the Evolutionary Computation [3], a
general stochastic optimization framework inspired by natural evolution. Typically,
in this paradigm each individual represents a whole network (Pittsburgh scheme)
that is evolved in order to increase its accuracy.

CO2RBFN [25] is a evolutionary cooperative-competitive method for the design
of RBFNs. In this algorithm each individual of the population represents an RBF and
the entire population is responsible for the final solution. The individuals cooperate
towards a definitive solution, but they must also compete for survival.

In this paper CO2RBFN is adapted to solving time series forecasting problems.
Concretely a short and medium term forecasting of the extra virgin olive oil price is
addressed.

The results obtained using CO2RBFN are also compared with ARIMA methodol-
ogy and other hybrid intelligent systems methods such as a Fuzzy System developed
with a GA-P algorithm (FuzzyGAP)[28], a MultiLayer Perceptron Network trained
using a Conjugate Gradient learning algorithm (MLPConjGrad)[22], a support vec-
tor machine (NU-SVR)[9], and a classical design method for Radial Basis Function
Network learning (RBFNLMS)[32].

This paper is organized as follows: section 2 discusses generalities about the
extra-virgin olive oil price and its prediction, describes the classical ARIMA method
and reviews the RBFN design for forecasting problems. In section 3 the extension
of CO2RBFN to time series forecasting is presented. The study and results obtained
for the forecast methods are detailed in Section 4. In Section 5, conclusions and
future works are outlined.

2 Background

Olive oil has become an important business sector in a continuously expanding mar-
ket. In 2009, World produced 2,888,000 of tons of olive oil1, Spain is the first olive
oil producing and exporting country and Jaén is the most productive province of
Spain, it made 430,000 of tons, the 15% of the total production in the planet.

Agents involved in this sector are interested in the use of forecasting methods for
the olive price. This is especially important in the official Market for the negotiation
of futures contracts for olive oil (MFAO): a society whose objective is to negotiate
an appropriate price for the olive oil at the moment it is to be sold at a fixed time in
the future. An accurate prediction of this price in the future could increase the global
benefits. In this context, the data provided for the design of the prediction system are
the weekly extra-virgin olive oil prices obtained from Poolred2, an initiative of the
Foundation for the Promotion and Development of the Olive and Olive Oil located
in Jaén, Spain.

The data are a set of regular time-ordered observations of a quantitative charac-
teristic of an individual phenomenon taken at successive periods or points of time,
called time series. The problems in which the data are not independent but also have

1 http://www.mfao.es
2 http://www.oliva.net/poolred/

CO2RBFN for Short and Medium Term Forecasting 115

a temporal relationship are called time series forecasting problems. Time series fore-
casting is an active research area and typical paradigm for evaluating it are statistic
models [13], such as ARIMA, and data mining methods.

ARIMA [4] stand for Auto-Regressive Integrated Moving Average, a group of
techniques for the analysis of time series which generate statistical forecasting mod-
els under the assumption of linearity among variables. Data mining is a research area
concerned with extracting non-trivial information contained in a database, and has
also been applied to time series forecasting. Among data mining techniques, mainly
neural networks [8][15][26][30] and fuzzy rule based systems [2][17][18][19][33]
have been applied to this kind of problem. In these papers, the presented forecasting
problems are mainly addressed as regression problems (see section 4).

Examples of evolutive RBFN design algorithms applied to time series forecasting
can be found in [7][12][21][27][29]. However, there are very few algorithms based
on cooperative competitive strategies.

The authors have developed a hybrid cooperative-competitive evolutionary pro-
posal for RBFN design, CO2RBFN, applied to the classification problem [25] and
have addressed the short-term forecasting of the extra virgin olive oil price [24]. This
paper analyzes new data (until December 2008) of this oil price and deals with not
only a short-term but also with a new medium-term forecasting of the extra virgin
olive oil price, of these new data.

3 CO2RBFN for Time Series Forecasting

CO2RBFN [25], is an hybrid evolutionary cooperative-competitive algorithm for the
design of RBFNs. As mentioned, in this algorithm each individual of the population
represents, with a real representation, an RBF and the entire population is responsi-
ble for the final solution. The individuals cooperate towards a definitive solution, but
they must also compete for survival. In this environment, in which the solution de-
pends on the behavior of many components, the fitness of each individual is known
as credit assignment. In order to measure the credit assignment of an individual,
three factors have been proposed: the RBF contribution to the network output, the
error in the basis function radius, and the degree of overlapping among RBFs.

The application of the operators is determined by a Fuzzy Rule-Based System.
The inputs of this system are the three parameters used for credit assignment and
the outputs are the operators’ application probability.

The main steps of CO2RBFN, explained in the following subsections, are shown
in the pseudocode in Figure 1.

RBFN initialization. To define the initial network a specified number m of neurons
(i.e. the size of population) is randomly allocated among the different patterns of the
training set. To do so, each RBF centre, ci , is randomly established to a pattern of
the training set. The RBF widths, di, will be set to half the average distance between
the centres. Finally, the RBF weights, wi j, are set to zero.

116 M.D. Pérez-Godoy et al.

1. Initialize RBFN
2. Train RBFN
3. Evaluate RBFs
4. Apply operators to RBFs
5. Substitute the eliminated RBFs
6. Select the best RBFs
7. If the stop condition is not

verified go to step 2

Fig. 1 Main steps of CO2RBFN

RBFN training. The Least Mean Square algorithm [32] has been used to calculate
the RBF weights. This technique exploits the local information that can be obtained
from the behaviour of the RBFs.

RBF evaluation.A credit assignment mechanism is required in order to evaluate the
role of each RBF φi in the cooperative-competitive environment. For an RBF, three
parameters, ai ,ei ,oi are defined:

• The contribution, ai, of the RBF φi, i = 1 . . .m, is determined by considering the
weight, wi, and the number of patterns of the training set inside its width, pii.
An RBF with a low weight and few patterns inside its width will have a low
contribution:

ai =
{ |wi| i f pii > q
|wi| ∗ (pii/q) otherwise

(1)

where q is the average of the pii values minus the standard deviation of the pii
values.

• The error measure, ei, for each RBF φi, is obtained by calculating the Mean
Absolute Percentage Error (MAPE) inside its width:

ei =
∑∀pi

∣
∣
∣

f (pi)−y(pi)
f (pi)

∣
∣
∣

npii
(2)

where f (pi) is the output of the model for the point pi, inside the width of RBF
φi, y(pi) is the real output at the same point, and npii is the number of points
inside the width of RBF φi.

• The overlapping of the RBF φi and the other RBFs is quantified by using the pa-
rameter oi. This parameter is computed by taking into account the fitness sharing
methodology [11], whose aim is to maintain the diversity in the population. This
factor is expressed as:

oi =
m

∑
j=1

oi j (3)

where oi j measures the overlapping of the RBF φi y φ j j = 1 . . .m.

Applying operators to RBFs. In CO2RBFN four operators have been defined in
order to be applied to the RBFs:

CO2RBFN for Short and Medium Term Forecasting 117

• Operator Remove: eliminates an RBF.
• Operator Random Mutation: modifies the centre and width of an RBF in a per-

centage below 50% of the old width.
• Operator Biased Mutation: modifies the width and all coordinates of the centre

using local information of the RBF environment. The technique used follows the
recommendations [10] that are similar to those used by the algorithm LMS algo-
rithm. The error for the patterns within the radius of the RBF, φi, are calculated.
For each coordinate of the center and the radius a value Δci j and Δdi respectively
are calculated. The new coordinates and the new radius are obtained by changing
(increasing or decreasing) its old values to a random number (between 5% and
50% of its old width), depending on the sign of the value calculated.

Δdi =∑
k

e(−→pk) ·wi (4)

where e(−→pk) is the error for the pattern −→pk .

Δci j = sign(ci j− pk j) · e(−→pk) ·wi (5)

• Operator Null: in this case all the parameters of the RBF are maintained.

The operators are applied to the whole population of RBFs. The probability for
choosing an operator is determined by means of a Mandani-type fuzzy rule based
system [20] which represents expert knowledge about the operator application in
order to obtain a simple and accurate RBFN. The inputs of this system are parame-
ters ai, ei and oi used for defining the credit assignment of the RBF φi. These inputs
are considered as linguistic variables vai, vei and voi. The outputs, premove, prm, pbm

and pnull , represent the probability of applying Remove, Random Mutation, Biased
Mutation and Null operators, respectively.

Table 1 shows the rule base used to relate the described antecedents and conse-
quents. In the table each row represents one rule. For example, the interpretation of
the first rule is: If the contribution of an RBF is Low Then the probability of apply-
ing the operator Remove is Medium-High, the probability of applying the operator

Table 1 Fuzzy rule base representing expert knowledge in the design of RBFNs

Antecedents Consequents Antecedents Consequents
va ve vo premove prm pbm pnull va ve vo premove prm pbm pnull

R1 L M-H M-H L L R6 H M-H M-H L L
R2 M M-L M-H M-L M-L R7 L L M-H M-H M-H
R3 H L M-H M-H M-H R8 M M-L M-H M-L M-L
R4 L L M-H M-H M-H R9 H M-H M-H L L
R5 M M-L M-H M-L M-L

118 M.D. Pérez-Godoy et al.

Random Mutation is Medium-High, the probability of applying the operator Biased
Mutation is Low and the probability of applying the operator null is Low.

Introduction of new RBFs. In this step, the eliminated RBFs are substituted by
new RBFs. The new RBF is located in the centre of the area with maximum error or
in a randomly chosen pattern with a probability of 0.5 respectively.

The width of the new RBF will be set to the average of the RBFs in the population
plus half of the minimum distance to the nearest RBF. Its weights are set to zero.

Replacement strategy. The replacement scheme determines which new RBFs (ob-
tained before the mutation) will be included in the new population. To do so, the
role of the mutated RBF in the net is compared with the original one to determine
the RBF with the best behaviour in order to include it in the population.

4 Experimentation and Results

The dataset used in this work have been obtained from Poolred3, an initiative of the
Foundation for the Promotion and Development of the Olive and Olive Oil located
in Jaén, Spain. The time series dataset contains the weekly extra-virgin olive oil
price per kilogram.

Fig. 2 Weekly extra-virgin olive oil prices in Tons / Euro

3 http://www.oliva.net/poolred/

CO2RBFN for Short and Medium Term Forecasting 119

The task addressed in this work is that of performing two forecast next week and
four weeks later of the extra-virgin olive oil price. In this study, the data used are
from the 1st week of the year 2007 to the 53nd week of the year 2008 in Spain. The
cases in the data set were divided into two subsets: one for training and the other for
testing. The data from the 1st week of 2007 to the 33th week of 2008 were used for
training. The performance of the different forecastings and methods were tested by
estimating the data from the 34nd week to the 53nd week of 2008. Figure 2 shows
the time series data and training and test datasets.

As mentioned, experiments carry out predictions with horizons of one week and
four weeks. In this way the patterns are heuristically composed of: (n−3,n−2,n−
1,n,n+1), when the price to forecast is n+1 and must be determined from the past
prices n−3 to n; (n−3,n−2,n−1,n,n+4), when the price to forecast is n+4 and
must be determined from the past prices n−3 to n.

To estimate prediction capacity, the error considered is the Mean Absolute Per-
centage Error (MAPE):

MAPE =
n

∑
i
(| (fi− yi)/ fi |) (6)

where fi is the predicted output of the model and yi is the desired output.
Other methods used in the experimentation are:

• ARIMA models, also called Box-Jenkins models [4], predict variable’s present
values from its past values. The development of an ARIMA methodology con-
sists of the search for an ARIMA(p,d,q) model, which is able to generate the
time series object of the study. Here p is the value for the auto-regressive pa-
rameter, d is the order of differentiation and q is the moving average parameter.
ARIMA modeling involves the follow stages: (1) Identification of the model or
the initial p, d, and q parameters; (2) Estimation of the p and q parameters; (3)
Diagnosis of the residuals in order to investigate model adequacy.

• FuzzyGAP method [28]. A GA-P method [16] uses an evolutionary computa-
tion method, a hybrid between genetic algorithms and genetic programming, and
optimized to perform symbolic regressions. Each element comprises a chain of
parameters and a tree which describes a function, depending on these parame-
ters. The two operators by means of which new members of the population are
generated are crossover and mutation. In the GA-P algorithm both operations are
performed independently over the tree and the parameter chain.

• MLPConjGrad [22]. MLPConjGrad uses the conjugate-gradient algorithm to ad-
just weight values of a multilayer perceptron [14]. Compared to gradient descent,
the conjugate gradient algorithm takes a more direct path to the optimal set of
weight values. Usually, the conjugate gradient is significantly faster and more
robust than the gradient descent. The Conjugate gradient also does not require
the user to specify learning rate and momentum parameters.

• RBFN-LMS. Builds an RBFN with a pre-specified number of RBFs. By means
of the K-Means clustering algorithm it chooses an equal number of points from
the training set to be the centres of the neurons. Finally, it establishes a single

120 M.D. Pérez-Godoy et al.

radius for all the neurons as half the average distance between the set of centres.
Once the centres and radio of the network have been fixed, the set of weights is
analytically computed using the LMS algorithm [32].

• NU-SVR, the SVM (Support Vector Machine) model uses the sequential minimal
optimization training algorithm and treats a given problem in terms of solving a
quadratic optimization problem. The NU-SVR, called also v-SVM, for regres-
sion problems is an extension of the traditional SVM and it aims to build a loss
function [9].

Table 2 ARIMA Model Summary

Parameter Estimate Stnd.Error P-Value
AR(1) 0,906789 0,0461258 0,000000
Mean 2,52871 0,0612143 0,000000

For the ARIMA model has been estimated an ARIMA (1,0,0). In table 1, the Max-
imum Likelihood Estimation, Standard Errors and P-Values are shown for the pa-
rameters of the most appropriate ARIMA model which is fitted to the price time
series. When considering the 85 observations the difference equation for the AR(1)
model is written as

(1−0.906789B)(Xt−2.52871) = εt , (7)

with εt , t = 1, . . . ,n the white noise term. The third column in table 1 summarizes
the statistical significance of the terms in the forecasting model. Terms with P-Value
less than 0.05 are statistically significantly different from zero at 95% confidence
level. The P-Value for AR(1) term is less than 0.05, so it is significantly different
from 0. In the case of the constant term the P-Value has a similar behavior.

The implementations of the rest data mining methods have been obtained from
KEEL [1]. The parameters used in these data mining methods are the values recom-
mended in the literature. For CO2RBFN the number of executions is 200 and the
number of RBFs or individuals in the population is set to 10.

The series have been differentiated to avoid problems related with the stationarity.
The predictions have been performed using the differenced data, but errors have
been calculated after reconstruct the original series.

The traditional work mode of ARIMA (without updating) is predicting the first
value, and then calculate the following values using their own predictions. So it
can accumulate a error if the number of test dataset is greater than six or eight
samples. That’s why for ARIMA work in circumstances similar to the methods of
data mining, we will "update" data from test simulating the data mining models. For
four weeks forecasting, ARIMA only can use its own predictions with updating.

To obtain the results, algorithms have been executed 10 times and in Table 3
shows the average error MAPE mission and its standard deviation. The figures 3
and 4 show the best prediction achieved by the methods for the test set.

CO2RBFN for Short and Medium Term Forecasting 121

Table 3 Results obtained by different methods forecasting the price of olive oil

Method MAPE for 1 week forecasting MAPE for 4 weeks forecasting

Fuzzy-GAP 0,02170 ± 0,00226 0,03536 ± 0,00461
MLP ConjGrad 0,02052 ± 0,00041 0,02970 ± 0,00196
NU-SVR 0,01936 ± 0 0,03003 ± 0
RBFN-LMS 0,02111 ± 0,00234 0,04706 ± 0,00901
ARIMA (without updating) 0,13036 ± 0 -
ARIMA updating 0,02823 ± 0 0,06827 ± 0
CO2RBFN 0,01914 ± 0,00057 0,03230 ± 0,00160

If we analyze the results we can draw the following conclusions:

• The data mining methods have better performance that ARIMA models, which
were traditionally used in econometrics to predicting this kind of problem.

• This superiority of data mining methods over ARIMA is even clearer when using
ARIMA with traditional methodology (without updating).

• The method proposed by the authors, CO2RBFN, is the best method when the
horizon of prediction is one week and is close to the top spot in the forecasting
to four weeks.

• CO2RBFN has practically the lowest standard deviation of all non-deterministic
methods, which demonstrates the robustness of the method.

Finally, it must be highlighted that the accuracy of the results obtained has been of
interest to olive-oil sector experts.

Fig. 3 Forecasting of the best repetition reached by different methods for one week

122 M.D. Pérez-Godoy et al.

Fig. 4 Forecasting of the best repetition reached by different methods for four weeks

5 Concluding Remarks

This paper presents an application of an evolutionary cooperative-competitive al-
gorithm (CO2RBFN) to the forecasting of the extra-virgin olive oil price. As im-
portant key point of our proposal it is must be highlighted the identification of the
role (credit assignment) of each basis function in the whole network. It is defined
by three factors are defined and used: the RBF contribution to the network’s output,
ai; the error in the basis function radius, ei; and the degree of overlapping among
RBFs, oi. Another important key is that the application of the evolutive operators
is determined by a fuzzy rule-based system which represents expert knowledge of
the RBFN design. The inputs of this system are the three parameters used for credit
assignment.

A new medium horizon, four weeks, along with a short horizon, one week, have
been defined for the forecasting of the extra-virgin olive oil weekly price. The re-
sults of CO2RBFN have been compared with the ones obtained by the well-known
classical statistical ARIMA method and a set of reliable data mining methods. The
data mining methods applied for the comparison are: MLPConjGrad, a multilayer
perceptron network which trains which a conjugate gradient algorithm; FuzzyGAP,
a fuzzy system developed with a GA-P algorithm; NU-SVR, a support vector ma-
chine method, and RBFNLMS, a radial basis function network trained with the LMS
algorithm.

From the results it can be concluded that datamining methods outperforms
ARIMA methodology and that CO2RBFN is the best method in the prediction to

CO2RBFN for Short and Medium Term Forecasting 123

one week and is close to the top spot in the forecasting to four weeks. Also lowest
standard deviation of CO2RBFN demonstrates the robustness of the method.

As future lines, pre-processing for feature selection and exogenous features like
meteorology or econometric data can be taken into account in order to increase the
performance of the forecast.

Acknowledgments. Supported by the Spanish Ministry of Science and Technology under the
Projects TIN2008-06681-C06-02, the Andalusian Research Plan TIC-3928 and the Project of
the University of Jaén UJA-08-16-30.

References

[1] Alcalá-Fdez, J., Sánchez, L., García, S., Del Jesus, M.J., Ventura, S., Garrell, J.M.,
Otero, J., Romero, C., Bacardit, J., Rivas, V., Fernández, J.C., Herrera, F.: KEEL: A
Software Tool to Assess Evolutionary Algorithms for Data Mining Problems. Soft Com-
puting 13(3), 307–318 (2009)

[2] Azadeh, A., Saberi, M., Ghaderi, S.F., Gitiforouz, A., Ebrahimipour, V.: Im-
proved estimation of electricity demand function by integration of fuzzy sys-
tem and data mining approach. Energy Conversion and Management (2008)
doi:10.1016/j.enconman.2008.02.021

[3] Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the his-
tory and current state. IEEE Transaction Evolutive Compututation 1(1), 3–17 (1997)

[4] Box, G., Jenkins, G.: Time series analysis: forecasting and control, revised edn. Holden
Day, San Francisco (1976)

[5] Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive net-
works. Complex System 2, 321–355 (1998)

[6] Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function
classifiers for data miningapplications. IEEE Transactions on Systems, Man and Cyber-
netics Part B 35(5), 928–947 (2005)

[7] Chen, C., Wu, Y., Luk, B.L.: Combined genetic algorithm optimization and regularized
orthogonal least squares learning for radial basis function networks. IEEE Transaction
Neural Networks 10(5), 1239–1243 (1999)

[8] Co, H.C., Boosarawongse, R.: Forecasting Thailand’s rice export: Statistical techniques
vs. artificial neural networks. Computers and Industrial Engineering 53(4), 610–627
(2007)

[9] Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using the second order informa-
tion for training SVM. Journal of Machine Learning Research 6, 1889–1918 (2005)

[10] Ghost, J., Deuser, L., Beck, S.: A neural network based hybrid system for detection,
characterization and classification of short-duration oceanic signals. IEEE Jl. Of Ocean
Enginering 17(4), 351–363 (1992)

[11] Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function
optimization. In: Grefenstette (ed.) Proc. Second International Conference on Genetic
Algorithms, pp. 41–49. Lawrence Erlbaum Associates, Mahwah (1987)

124 M.D. Pérez-Godoy et al.

[12] Du, H., Zhang, N.: Time series prediction using evolving radial basis function networks
with new encoding scheme. Neurocomputing 71(7-9), 1388–1400 (2008)

[13] Franses, P.H., van Dijk, D.: Non-linear time series models in empirical finance. Cam-
bridge University Press, Cambridge (2000)

[14] Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall,
Englewood Cliffs (1998)

[15] Hobbs, B.F., Helman, U., Jitprapaikulsarn, S., Konda, S., Maratukulam, D.: Artificial
neural networks for short-term energy forecasting: Accuracy and economic value. Neu-
rocomputing 23(1-3), 71–84 (1998)

[16] Howard, L., D’Angelo, D.: The GA-P: A Genetic Algorithm and Genetic Programming
Hybrid. IEEE Expert, 11–15 (1995)

[17] Jang, J.R.: ANFIS: Adaptative-Network-based Fuzzy Inference System. IEEE Trans.
Systems, Man and Cybernetics 23(3), 665–685 (1993)

[18] Khashei, M., Reza Hejazi, S., Bijari, M.: A new hybrid artificial neural networks and
fuzzy regression model for time series forecasting. Fuzzy Sets and Systems 159(7),
769–786 (2008)

[19] Liu, J., McKenna, T.M., Gribok, A., Beidleman, B.A., Tharion, W.J., Reifman, J.: A
fuzzy logic algorithm to assign confidence levels to heart and respiratory rate time se-
ries. Physiological Measurement 29(1), 81–94 (2008)

[20] Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic con-
troller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

[21] Meng, K., Dong, Z.Y., Wong, K.P.: Self-adaptive radial basis function neural network
for short-term electricity price forecasting. IET Generation, Transmission and Distribu-
tion 3(4), 325–335

[22] Moller, F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks 6, 525–533 (1990)

[23] Park, J., Sandberg, I.: Universal approximation using radial-basis function networks.
Neural Comput. 3, 246–257 (1991)

[24] Pérez, P., Frías, M.P., Pérez-Godoy, M.D., Rivera, A.J., del Jesus, M.J., Parras, M., Tor-
res, F.J.: An study on data mining methods for short-term forecasting of the extra virgin
olive oil price in the Spanish market. In: Proceeding of the International Conference On
Hybrid Intelligetn Systems, pp. 943–946 (2008)

[25] Pérez-Godoy, M.D., Rivera, A.J., Berlanga, F.J., Jesús, M.J.: CO2RBFN: an evolution-
ary cooperative-competitive RBFN design algorithm for classification problems. Soft
Computing (in press) (2009) doi: 10.1007/s00500-009-0488-z

[26] Pino, R., Parreno, J., Gomez, A., Priore, P.: Forecasting next-day price of electricity in
the Spanish energy market using artificial neural networks. Engineering Applications of
Artificial Intelligence 21(1), 53–62 (2008)

[27] Rivas, V., Merelo, J.J., Castillo, P., Arenas, M.G., Castellano, J.G.: Evolving RBF neural
networks for time-series forecasting with EvRBF. Information Science 165, 207–220
(2004)

[28] Sánchez, L., Couso, I.: Fuzzy Random Variables-Based Modeling with GA-P Algo-
rithms. In: Bouchon, B., Yager, R.R., Zadeh, L. (eds.) Information, Uncertainty and
Fusion, pp. 245–256 (2000)

[29] Sheta, A.F., De Jong, K.: Time-series forecasting using GA-tuned radial basis functions.
Information Sciencie 133, 221–228 (2001)

[30] Ture, M., Kurt, I.: Comparison of four different time series methods to forecast hepatitis
A virus infection. Expert Systems with Applications 31(1), 41–46 (2006)

CO2RBFN for Short and Medium Term Forecasting 125

[31] Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis
Function centers and widths for time series prediction. IEEE Trans. on Neural Net-
works 7(4), 869–880 (1996)

[32] Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline
and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)

[33] Yu, T., Wilkinson, D.: A co-evolutionary fuzzy system for reservoir well logs interpre-
tation. Evolutionary computation in practice, 199–218 (2008)

3D Cell Pattern Generation in Artificial
Development

Arturo Chavoya, Irma R. Andalon-Garcia, Cuauhtemoc Lopez-Martin,
and M.E. Meda-Campaña

Abstract. Cell pattern formation has an important role in both artificial and natural
development. This paper presents an artificial development model for 3D cell pattern
generation based on the cellular automata paradigm. Cell replication is controlled
by a genome consisting of an artificial regulatory network and a series of structural
genes. The genome was evolved by a genetic algorithm in order to generate 3D
cell patterns through the selective activation and inhibition of genes. Morphogenetic
gradients were used to provide cells with positional information that constrained
cellular replication in space. The model was applied to the problem of growing a
solid French flag pattern in a 3D virtual space.

1 Introduction

In biological systems, development is a fascinating and very complex process that
involves following a sequence of genetically programmed events that ultimately
produce the developed organism. One of the crucial stages in the development of
an organism is that of pattern formation, where the fundamental body plans of the
individual are outlined. Recent evidence has shown that gene regulatory networks
play a central role in the development and metabolism of living organisms [13].
Researchers in biological sciences have confirmed that the diverse cell patterns cre-
ated during the developmental stages are mainly due to the selective activation and
inhibition of very specific regulatory genes.

On the other hand, artificial models of cellular development have been pro-
posed over the years with the objective of understanding how complex structures
and patterns can emerge from one or a small group of initial undifferentiated cells

Arturo Chavoya · Irma R. Andalon-Garcia · Cuauhtemoc Lopez-Martin ·
M.E. Meda-Campaña
Universidad de Guadalajara, Periférico Norte 799 - L308
Zapopan, Jal., Mexico CP 45000
e-mail: {achavoya,agi10073,cuauhtemoc,emeda}@cucea.udg.mx

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 127–139, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{achavoya,agi10073,cuauhtemoc,emeda}@cucea.udg.mx

128 A. Chavoya et al.

[7, 21, 22, 24]. In this paper we propose an artificial cellular growth model that
generates 3D patterns by means of the selective activation and inhibition of devel-
opment genes under the constraints of morphogenetic gradients. Cellular growth is
achieved through the expression of structural genes, which are in turn controlled
by an Artificial Regulatory Network (ARN) evolved by a Genetic Algorithm (GA).
The ARN determines at which time steps cells are allowed to grow and which gene
to use for reproduction, whereas morphogenetic gradients constrain the position at
which cells can replicate. Both the ARN and the structural genes make up the arti-
ficial cell’s genome. In order to test the functionality of the development program
found by the GA, the evolved genomes were applied to a cellular growth testbed
based on the Cellular Automata (CA) paradigm that has been successfully used in
the past to develop simple 2D and 3D geometrical shapes [8]. The model presented
in this work was applied to a 3D version of what is known as the French flag prob-
lem. The 2D version of this problem has traditionally been used in biology —and
more recently in computer science— to model the determination of cell patterns in
tissues, usually through the use of morphogenetic gradients to help determine cell
position.

The paper starts with a section describing the French flag problem with a brief
description of models that have used it as a test case. The next section describes
the cellular growth testbed used to evaluate the evolved genomes in their ability
to form the desired patterns, followed by a section presenting the morphogenetic
gradients that constrain cell replication. The artificial cell’s genome is presented
next, followed by a section describing the GA and how it was applied to evolve the
genomes. Results are presented next, followed by a section of conclusions.

2 The French Flag Problem

The problem of generating a French flag pattern was first introduced by Wolpert in
the late 1960s when trying to formulate the problem of cell pattern development and
regulation in living organisms [30]. This formulation has been used since then by
some authors to study the problem of artificial pattern development. More specifi-
cally, the problem deals with the creation of a pattern with three sharp bands of cells
with the colors and order of the French flag stripes.

Lindenmayer and Rozenberg used the French flag problem to illustrate how a
grammar-based L-System could be used to solve the generation of this particular
pattern when enunciated as the production of a string of the type anbncn over the
alphabet {a,b,c} and with n > 0 [23]. On the other hand, Herman and Liu [18]
developed an extension of a simulator called CELIA [1] and applied it to generate
a French flag pattern in order to study synchronization and symmetry breaking in
cellular development.

Miller and Banzhaf used what they called Cartesian genetic programming to
evolve a cell program that would construct a French flag pattern [25]. They tested the
robustness of their programs by manually removing parts of the developing pattern.
They found that several of their evolved programs could repair to some extent the

3D Cell Pattern Generation in Artificial Development 129

damaged patterns. Bowers also used this problem to study the phenotypic robust-
ness of his embryogeny model, which was based on cellular growth with diffusing
chemicals as signaling molecules [4].

Gordon and Bentley proposed a development model based on a set of rules
evolved by a GA that described how development should proceed to generate a
French flag pattern [16]. The morphogenic model based on a multiagent system de-
veloped by Beurier et al. also used an evolved set of agent rules to grow French
and Japanese flag patterns [3]. On the other hand, Dever et al. proposed a neural
network model for multicellular development that grew French flag patterns [14] .
Even models for developing evolvable hardware have benefited from the French flag
problem as a test case [17, 28].

More recently, Knabe et al. [20] developed a model based on the CompuCell3D
package [12] combined with a genetic regulatory network that controlled cell pa-
rameters such as size, shape, adhesion, morphogen secretion and orientation. They
were able to obtain final 2D patterns with matches of over 75% with respect to a
60×40 pixel target French flag pattern.

3 Cellular Growth Testbed

Cellular automata were chosen as models of cellular growth, as they provide a sim-
ple mathematical model that can be used to study self-organizing features of com-
plex systems [29]. CA are characterized by a regular lattice of N identical cells, an
interaction neighborhood template η , a finite set of cell states Σ , and a space- and
time-independent transition rule φ which is applied to every cell in the lattice at
each time step.

In the cellular growth testbed used in this work, a 13×13×13 regular lattice with
non-periodic boundaries was used. The set of cell states was defined as Σ = {0,1},
where 0 can be interpreted as an empty cell and 1 as an occupied or active cell. The
interaction neighborhoodη considered was a 3D Margolus template (Fig. 1), which
has previously been used with success to model 3D shapes [31]. In this template
there is an alternation of the block of cells considered at each step of the CA al-
gorithm. At odd steps, the seven cells shown to the left and the back in the figure
constitute the interaction neighborhood, whereas at even steps the neighborhood is
formed by the mirror cells of the previous block.

The CA rule φ was defined as a lookup table that determined, for each local
neighborhood, the state (empty or occupied) of the objective cell at the next time
step. For a binary-state CA, these update states are termed the rule table’s “output
bits". The lookup table input was defined by the binary state value of cells in the
local interaction neighborhood, where 0 meant an empty cell and 1 meant an occu-
pied cell and the parity bit p determined which of the two blocks of cells was being
considered for evaluation [8]. The output bit values shown in Fig. 1 are only for
illustration purposes; the actual values for a predefined shape, such as a cube, are
found by a GA.

130 A. Chavoya et al.

Fig. 1 Cellular automaton’s 3D Margolus neighborhood template and the associated lookup
table. The parity bit p in the lookup table determines which block of the neighborhood tem-
plate is being considered for evaluation. The objective cell is depicted as a darker cube in the
middle of the template

4 Morphogenetic Gradients

Ever since Turing’s seminal article on the theoretical influence of diffusing chemical
substances on an organism’s pattern development [27], the role of these molecules
has been confirmed in a number of biological systems. These organizing substances
were termed morphogens, given their involvement in driving morphogenetic pro-
cesses. In the present model, morphogenetic gradients were generated similar to
those found in the eggs of the fruit fly Drosophila, where orthogonal gradients offer
a sort of Cartesian coordinate system [5]. These gradients provide reproducing cells
with positional information in order to facilitate the spatial generation of patterns.
The artificial morphogenetic gradients were set up as suggested in [24], where mor-
phogens diffuse from a source towards a sink, with uniform morphogen degradation
throughout the gradient.

Before cells were allowed to reproduce in the cellular growth testbed, morpho-
genetic gradients were generated by diffusing the morphogens from one of the CA
boundaries for 1000 time steps. Initial morphogen concentration level was set at 255
arbitrary units, and the source was replenished to the same level at the beginning of
each cycle. The diffusion factor was 0.20, i.e. at each time step every grid position
diffused 20% of its morphogen content and all neighboring positions received an
equal amount of this percentage. This factor was introduced to avoid rapid mor-
phogen depletion at cell positions and its value was experimentally determined to
render a smooth descending gradient. The sink was set up at the opposite boundary
of the lattice, where the morphogen level was always set to zero. At the end of each
time step, morphogens were degraded at a rate of 0.005 throughout the CA lattice.
Three orthogonal gradients were defined in the CA lattice, one for each of the main
Cartesian axes (Fig. 2). In the figures presented in this work the following conven-
tions are used: in the 3D insets the positive x axis extends to right, the positive y axis
is towards the back of the page, the positive z axis points to the top, and the axes are
rotated 45 degrees to the left to show a better perspective.

3D Cell Pattern Generation in Artificial Development 131

Fig. 2 Morphogenetic gradients. Positions with highest morphogen concentration are de-
picted in white; darker tones mean lower concentrations. (a) Left to right (x axis); (b) back to
front (y axis); (c) top to bottom (z axis)

5 Genome

Genomes are the repository of genetic information in living organisms. They are en-
coded as one or more chains of DNA, and they regularly interact with other macro-
molecules, such as RNA and proteins. Artificial genomes are typically coded as
strings of discrete data types. The genome used in this model was defined as a bi-
nary string starting with a series of ten regulatory genes, followed by a number of
structural genes (Fig. 3).

5.1 Regulatory Genes

The series of regulatory genes at the beginning of the genome constitutes an Artifi-
cial Regulatory Network. ARNs are computer models whose objective is to emulate
the gene regulatory networks found in nature. ARNs have previously been used to
study differential gene expression either as a computational paradigm or to solve
particular problems [2, 7, 15, 19, 26]. The gene regulatory network implemented in
this work is an extension of the ARN presented in [9], which in turn is based on the
model proposed by Banzhaf [2].

In the present model, each regulatory gene consists of a series of eight in-
hibitor/enhancer sites, a series of five regulatory protein coding regions, and three
morphogen threshold activation sites that determine the allowed positions for cell
reproduction (Fig. 3). Inhibitor/enhancer sites are composed of a 12-bit function
defining region and a regulatory site. Regulatory sites can behave either as an en-
hancer or an inhibitor, depending on the configuration of the function defining bits
associated with them. If there are more 1’s than 0’s in the defining bits region, then
the regulatory site functions as an enhancer, but if there are more 0’s than 1’s, then

132 A. Chavoya et al.

Fig. 3 Genome structure and regulatory gene detail. Regulatory genes make up an artificial
regulatory network, whereas structural genes contain the lookup tables that control cell repro-
duction. The number of structural genes m depends on the pattern to be generated and whether
or not structural genes are duplicated, as explained in Sect. 7. For the final simulations, m = 6

the site behaves as an inhibitor. Finally, if there is an equal number of 1’s and 0’s,
then the regulatory site is turned off [10].

Regulatory protein coding regions “translate” a protein using the majority rule,
i.e. for each bit position in these regions, the number of 1’s and 0’s is counted and
the bit that is in majority is translated into the regulatory protein. The regulatory
sites and the individual protein coding regions all have the same size of 32 bits.
Thus the protein translated from the coding regions can be compared on a bit by
bit basis with the regulatory site of the inhibitor and enhancer sites, and the degree
of matching can be measured. As in [2], the comparison was implemented by an
XOR operation, which results in a “1” if the corresponding bits are complementary.
Each translated protein is compared with the inhibitor and enhancer sites of all the
regulatory genes in order to determine the degree of interaction in the regulatory
network. The influence of a protein on an enhancer or inhibitor site is exponential
with the number of matching bits. The strength of enhancement en or inhibition in
for gene i with i = 1, ...,n is defined as

eni =
1
v

v

∑
j=1

c je
β
(

u+
i j−u+

max

)

and (1)

ini =
1
w

w

∑
j=1

c je
β
(

u−i j−u−max

)

, (2)

where n is the total number of regulatory genes, v and w are the total number of
active enhancer and inhibitor sites, respectively, c j is the concentration of protein j,
β is a constant that fine-tunes the strength of matching, u+

i j and u−i j are the number

3D Cell Pattern Generation in Artificial Development 133

of matches between protein j and the enhancer and inhibitor sites of gene i, respec-
tively, and u+

max and u−max are the maximum matches achievable (32 bits) between a
protein and an enhancer or inhibitor site, respectively [2].

Once the en and in values are obtained for all regulatory genes, the corresponding
change in concentration c for protein i in one time step is calculated using

dci

dt
= δ (eni− ini)ci , (3)

where δ is a constant that regulates the degree of protein concentration change.
Protein concentrations are updated and if a new protein concentration results in

a negative value, the protein concentration is set to zero. Protein concentrations are
then normalized so that total protein concentration is always the unity. Parameters
β and δ were set to 1.0 and 1.0×106, respectively, as previously reported [11].

The morphogen threshold activation sites provide reproducing cells with posi-
tional information as to where they are allowed to grow in the CA lattice. There
is one site for each of the three orthogonal morphogenetic gradients described in
Sect. 4. These sites are 9 bits in length, where the first bit defines the allowed direc-
tion (above or below the threshold) of cellular growth, and the next 8 bits code for
the morphogen threshold activation level, which ranges from 0 to 28− 1 = 255. If
the site’s high order bit is 0, then cells are allowed to replicate below the morphogen
threshold level coded in the lower order eight bits; if the value is 1, then cells are al-
lowed to reproduce above the threshold level. Since in a regulatory gene there is one
site for each of the orthogonal morphogenetic gradients, for each set of three mor-
phogen threshold activation levels, the three high order bits define in which of the
eight relative octants cells expressing the associated structural gene can reproduce.

5.2 Structural Genes

Structural genes code for the particular shape grown by the reproducing cells and
were obtained using the methodology presented in [8]. Briefly, the CA rule table’s
output bits from the cellular growth model described in Sect. 3 were evolved by a GA
in order to produce predefined 3D shapes. A structural gene is interpreted as a CA
rule table by reading its bits as output bits of the CA rule. As mentioned in Sect. 3,
at each time step of the CA run, an empty objective cell position can be occupied
by an active cell (output bit = 1) depending on the configuration of the cells in the
Margolus neighborhood block (η0, ...,η6) and on the value of the parity bit p.

A structural gene is always associated with a corresponding regulatory gene, i.e.
structural gene number 1 is associated with regulatory gene number 1 and its related
translated protein, and so on. However, in a particular genome there can be less
structural genes than regulatory genes; as a result, some regulatory genes are not
associated with a structural gene and their role is only to participate in the activation
or inhibition of other regulatory genes without directly activating a structural gene.

A structural gene was defined as being active if and only if the regulatory pro-
tein translated by the associated regulatory gene was above a certain concentration

134 A. Chavoya et al.

threshold. The value chosen for the threshold was 0.5, since the sum of all protein
concentrations is always 1.0, and there can only be a protein at a time with a con-
centration above 0.5. As a result, at most one structural gene can be expressed at
a particular time step in a cell. If a structural gene is active, then the CA lookup
table coded in it is used to control cell reproduction. Structural gene expression is
visualized in the cellular growth model as a distinct external color for the cell.

6 Genetic Algorithm

Genetic algorithms are search and optimization methods based on ideas borrowed
from natural genetics and evolution. A GA starts with a population of chromosomes
representing vectors in search space. Each chromosome is evaluated according to a
fitness function and the best individuals are selected. A new generation of chromo-
somes is then created by applying genetic operators on selected individuals from the
previous generation. The process is repeated until the desired number of generations
is reached or until the desired individual is found.

For the present work, chromosomes represent either the output bits from a CA
rule table to be evolved to generate a simple form such a cube, or an ARN whose ob-
jective is to activate structural genes in a particular order to produce a multicolored
shape such as a French flag pattern.

The GA in this paper uses tournament selection with single-point crossover and
mutation as genetic operators. As in a previous report, we used the following pa-
rameter values [11]. The initial population consisted of 1000 binary chromosomes
whose bit values were chosen at random. Tournaments were run with sets of 3 indi-
viduals randomly selected from the population. Crossover and mutation rates were
0.60 and 0.15, respectively. Finally, the number of generations was set at 50, as there
was no significant improvement after this number of generations.

The fitness function used by the GA was defined as

Fitness =
1
k

k

∑
i=1

insi− 1
2 outsi

desi
, (4)

where k is the number of different colored shapes, each corresponding to an ex-
pressed structural gene, insi is the number of active cells inside the desired shape i
with the correct color, outsi is the number of active cells outside the desired shape
i, but with the correct color, and desi is the total number of cells inside the desired
shape i. The range of values for this function is [0,1] with a fitness value of 1 repre-
senting a perfect match.

7 Results

The GA described in Sect. 6 was used in all cases to obtain the CA’s rule tables that
made up the structural genes for specific simple patterns and to evolve the ARNs for
the desired multicolored pattern. After an evolved genome was obtained, an initial

3D Cell Pattern Generation in Artificial Development 135

active cell containing it was placed in the center of the CA lattice and was allowed
to reproduce for 60 time steps in the cellular growth testbed described in Sect. 3,
controlled by the gene activation sequence found by the GA. In order to grow the
desired structure with a predefined color and position for each cell, the regulatory
genes in the ARN had to evolve to be activated in a precise sequence and for a
specific number of iterations. Not all GA experiments produced a genome capable
of generating the desired pattern.

In order to grow a solid 3D French flag pattern, three different structural genes
were used. Expression of the first gene creates the white central cube, while the
other two genes drive cells to extend the lateral walls to the left and to the right
simultaneously, expressing the blue and the red color, respectively. These two last
genes do not necessarily code for a cube, since they only extend a wall of cells
to the left and to the right for as many time steps as they are activated and when
unconstrained, they produce a symmetrical pattern along the x axis. The independent
expression of these three genes is shown in Fig. 4. The two genes that extended the
lateral walls were activated after a central white cube was first produced. In order
to generate the desired French flag pattern, cells expressing one of these two genes
should only be allowed to reproduce on each side of the white central cube (left for
the blue cube and right for the red cube). This behavior was to be achieved through
the use of genomes where the morphogen threshold activation sites evolved to allow
growth only in the desired portions of the 3D CA lattice.

Fig. 4 Expression of the three genes used to create a 3D French flag pattern. (a) Create central
white cube; (b) extend blue lateral walls; (c) extend red lateral walls. The last two genes were
activated after the creation of a white central cube

However, when trying to evolve a genome to produce the 3D French flag pattern,
it was found that the GA could not easily evolve an activation sequence that pro-
duced the desired pattern. Using the same approach as in [6], in order to increase
the likelihood for the GA to find an appropriate genome, instead of using one series
of three structural genes, a tandem of two identical series of three structural genes
was used, for a total of six structural genes. In that manner, for creating the central

136 A. Chavoya et al.

white cube, the genome could express either structural gene number 1 or gene num-
ber 4, and for the left blue and right red cubes, it could use genes 2 or 5, or genes 3
or 6, respectively. Thus, the probability of finding an ARN that could express a 3D
French flag pattern was significantly increased.

Figure 5 shows a 9×3×3 solid French flag pattern grown from the expression of
the three different structural genes mentioned above. The graph of the corresponding
ARN protein concentration change is shown in Fig. 5(e). Starting with an initial
white cell (a), a white central cube is formed from the expression of gene number
4 (b), the left blue cube is then grown (c), followed by the right red cube (d). The
evolved morphogenetic fields where cells are allowed to grow are depicted in the
figure as a translucent volume for each of the three structural genes.

Fig. 5 Growth of a 3D French flag pattern. (a) Initial cell; (b) central white cube with
morphogenetic field for gene 4 (cube); (c) central white cube and left blue cube with mor-
phogenetic field for gene 2 (extend blue lateral walls); (d) finished flag pattern with morpho-
genetic field for gene 6 (extend red lateral walls); (e) graph of protein concentration change
from the genome expressing the French flag pattern; the unlabeled lines correspond to pro-
teins from regulatory genes that are not associated with structural genes

It is clear from the figure that for the genes that extend the wall of cells to the
sides, the corresponding morphogenetic fields limited growth to the desired direc-
tion (left for blue cells and right for red cells). It should also be noted that the left
blue cube is formed from the activation of the second gene from the first series of
structural genes, while the other two genes are expressed from the second series of
the tandem.

8 Conclusions

The results presented in this paper show that a GA can give reproducible results
in evolving an ARN to grow predefined simple 3D cellular patterns starting with a

3D Cell Pattern Generation in Artificial Development 137

single cell. In particular, simulations showed that the combination of a GA and CA
with a 3D Margolus interaction neighborhood was a feasible choice for modeling
3D pattern generation.

In general, the framework developed proved to be suitable for generating simple
patterns, but more work is needed to explore generation of more complex structures.
It is also desirable to study cellular structure formation allowing cell death and cell
displacement, as in actual cellular growth. Furthermore, in order to build a more ac-
curate model of the growth process, the use of a more realistic physical environment
may be necessary. The long-term goal of this work is to study the emergent prop-
erties of the artificial development process. It is conceivable that highly complex
structures will one day be built from the interaction of myriads of simpler entities
controlled by a development program.

References

[1] Baker, R.W., Herman, G.T.: Celia - a cellular linear iterative array simulator. In: Pro-
ceedings of the fourth annual conference on Applications of simulation. Winter Simu-
lation Conference, pp. 64–73 (1970)

[2] Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R.L.,
Worzel, B. (eds.) Genetic Programming Theory and Practice, ch. 4, pp. 43–62. Kluwer,
Dordrecht (2003)

[3] Beurier, G., Michel, F., Ferber, J.: A morphogenesis model for multiagent embryogeny.
In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani,
A. (eds.) Proceedings of the Tenth International Conference on the Simulation and Syn-
thesis of Living Systems (ALife X), pp. 84–90 (2006)

[4] Bowers, C.: Simulating evolution with a computational model of embryogeny: Obtain-
ing robustness from evolved individuals. In: Capcarrère, M.S., Freitas, A.A., Bentley,
P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 149–
158. Springer, Heidelberg (2005)

[5] Carroll, S.B., Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Ge-
netics and the Evolution of Animal Design, 2nd edn. Blackwell Science, Malden (2004)

[6] Chavoya, A.: Cell pattern generation in artificial development. In: Rossi, C. (ed.) Brain,
Vision and AI, In-Teh, Croatia, ch. 4, pp. 73–94 (2008)

[7] Chavoya, A.: Artificial development. In: Foundations of Computational Intelligence.
Volume 1: Learning and Approximation (Studies in Computational Intelligence), vol. 8,
pp. 185–215. Springer, Heidelberg (2009)

[8] Chavoya, A., Duthen, Y.: Using a genetic algorithm to evolve cellular automata for
2D/3D computational development. In: GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pp. 231–232. ACM Press, New
York (2006)

[9] Chavoya, A., Duthen, Y.: An artificial development model for cell pattern generation.
In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828,
pp. 61–71. Springer, Heidelberg (2007)

[10] Chavoya, A., Duthen, Y.: Use of a genetic algorithm to evolve an extended artificial
regulatory network for cell pattern generation. In: GECCO 2007: Proceedings of the
9th annual conference on Genetic and evolutionary computation, p. 1062. ACM Press,
New York (2007)

138 A. Chavoya et al.

[11] Chavoya, A., Duthen, Y.: A cell pattern generation model based on an extended artificial
regulatory network. BioSystems 94(1), 95–101 (2008)

[12] Cickovski, T., Aras, K., Swat, M., Merks, R.M.H., Glimm, T., Hentschel, H.G.E., Alber,
M.S., Glazier, J.A., Newman, S.A., Izaguirre, J.A.: From genes to organisms via the cell:
A problem-solving environment for multicellular development. Computing in Science
and Eng. 9(4), 50–60 (2007)

[13] Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks in Development
And Evolution, 1st edn. Academic Press, London (2006)

[14] Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental design.
In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolution-
ary computation, pp. 982–989. ACM, New York (2007)

[15] Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differen-
tial gene expression. In: Harvey, I., Husbands, P. (eds.) Proceedings of the 4th European
Conference on Artificial Life, pp. 205–213. Springer, Heidelberg (1997)

[16] Gordon, T.G.W., Bentley, P.J.: Bias and scalability in evolutionary development. In:
GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary com-
putation, pp. 83–90. ACM, New York (2005)

[17] Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming.
In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolution-
ary computation, pp. 1021–1028. ACM, New York (2007)

[18] Herman, G.T., Liu, W.H.: The daughter of Celia, the French flag and the firing squad.
In: WSC 1973: Proceedings of the 6th conference on Winter simulation, p. 870. ACM,
New York (1973)

[19] Joachimczak, M., Wróbel, B.: Evo-devo in silico: a model of a gene network regulating
multicellular development in 3D space with artificial physics. In: Bullock, S., Noble, J.,
Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh Inter-
national Conference on the Simulation and Synthesis of Living Systems, pp. 297–304.
MIT Press, Cambridge (2008)

[20] Knabe, J.F., Nehaniv, C.L., Schilstra, M.J.: Evolution and morphogenesis of differenti-
ated multicellular organisms: autonomously generated diffusion gradients for positional
information. In: Artificial Life XI: Proceedings of the Eleventh International Confer-
ence on the Simulation and Synthesis of Living Systems, pp. 321–328. MIT Press,
Cambridge (2008)

[21] Kumar, S., Bentley, P.J.: On Growth, Form and Computers. Academic Press, London
(2003)

[22] Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I
and II. Journal of Theoretical Biology 18, 280–315 (1968)

[23] Lindenmayer, A., Rozenberg, G.: Developmental systems and languages. In: STOC
1972: Proceedings of the fourth annual ACM symposium on Theory of computing,
pp. 214–221. ACM, New York (1972)

[24] Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London
(1982)

[25] Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from French flags to Boolean
circuits. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, pp. 278–
301. Academic Press, London (2003)

[26] Reil, T.: Dynamics of gene expression in an artificial genome - implications for biolog-
ical and artificial ontogeny. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS,
vol. 1674, pp. 457–466. Springer, Heidelberg (1999)

3D Cell Pattern Generation in Artificial Development 139

[27] Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)

[28] Tyrrell, A.M., Greensted, A.J.: Evolving dependability. J. Emerg. Technol. Comput.
Syst. 3(2), 7 (2007)

[29] Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55,
601–644 (1983)

[30] Wolpert, L.: The French flag problem: a contribution to the discussion on pattern de-
velopment and regulation. In: Waddington, C. (ed.) Towards a Theoretical Biology, pp.
125–133. Edinburgh University Press, New York (1968)

[31] Wu, P., Wu, X., Wainer, G.A.: Applying cell-devs in 3D free-form shape modeling. In:
Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp.
81–90. Springer, Heidelberg (2004)

Partial Imitation Rule in Iterated Prisoner
Dilemma Game on a Square Lattice

Degang Wu, Mathis Antony, and K.Y. Szeto�

Abstract. A realistic replacement of the general imitation rule in the Iterated Pris-
oner Dilemma (IPD) is investigated with simulation on square lattice, whereby the
player, with finite memory, can only imitate those behaviors of the opponents ob-
served in past games. In contrast to standard practice where all the possible behav-
iors of the opponents are accessible, the new partial imitation rule assumes that the
player can at most access those behaviors of his opponent observed in the past few
moves. This partial imitation of the behavior in IPD shows very different out-comes
in the long time behavior of the games, such as the ranking of various strategies. In
particular, the well known tit-for-tat (TFT) strategy loses its importance.

1 Introduction

Game theory [1] has attracted the attention of many scientists working in complex
systems as an experimental playground in computer simulation of multi-agent sys-
tems is now easily available [2]. Since the introduction of evolutionary game theory
by Maynard Smith and Price [3, 4], one of the important issues of this theory is
to understand the spontaneous cooperation towards a more efficient outcome with
agent interactions in the absence of a central planner [5, 6]. Among the many games,
the most studied example by political scientists and sociologists is the Prisoner’s
Dilemma, as it provides a simple example of the difficulties of cooperation [7].
Prisoner Dilemma (PD) is described by the following set of rules. When two play-
ers play a PD game, each of them can choose to cooperate (C) or defect (D). Each
player will gain a payoff depending jointly on his choice and the opponent’s choice.

Degang Wu ·Mathis Antony · K.Y. Szeto
Department of Physics,
Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, HKSAR
e-mail: phszeto@ust.hk
� Corresponding author.

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 141–150, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

phszeto@ust.hk

142 D. Wu, M. Antony, and K.Y. Szeto

Cooperation yields a payoff R(S) if the opponent cooperates (defects) and defection
yields T (P) if the opponent cooperates (defects). R is the Reward for cooperation, S
is the Sucker’s payoff, T is the Temptation to defect and P is the Punishment. Typi-
cally, T > R > P > S and 2R > T +P. PD game is a non zero sum game because one
player’s loss does not equal the opponent’s gain. In order to reduce the amount of
parameters, one can follow Nowak et al. [8] and use the following simplified payoff
tableA,

A =
(

R S
T P

)

=
(

1 0
b 0

)

. (1)

In this setup, there remains a free parameter b(= T) which should be in the range
(1,2). The tragedy behind this simple PD game is that the best strategy for a selfish
individual, who chooses to defect, will result in mutual defection. This entails the
worst collective effect for the society. In this game, the expectation of defection (D)
is greater than the expectation of cooperation (C), independent of the opponent’s
strategy, even though mutual cooperation yields a higher total payoff for the society.
The only state where no player can gain more by unilaterally changing its own strat-
egy, the state called the Nash Equilibrium, occurs when all players defect. Hence, if
the players use the simple imitation rule so that the players will adapt the strategy
of a more successful player, the dominant strategy is defection. In order to further
investigate the emergence of cooperation, a variant of the PD game is to consider a
set of players located on a lattice and play the so-called spatial PD game (SPDG). In
this case, cooperators can support each other in more than one dimension [9]. There
are other approaches which will favor the survival of cooperation, as can be found
in the recent work of Hebling et al [10] and Nowak [6].

The total income of player i in the spatial PD game can be described by a two-
state Potts model Hamiltonian [2, 11]:

Hi = ∑
j(i)

S
˜

T
i A
˜

S
˜

j withS
˜

T
i , S
˜

j ∈
{−→

C ,
−→
D
}

and
−→
C =

(
1
0

)

,
−→
D =

(
0
1

)

(2)

Here is the state vector for player j who is a neighbor of player i and the state vector
can be either one of the two unit vectors . The summation runs over all the neighbors
of the player i sitting at node i, while the neighborhood is defined by the topology
of the given network. We will also give the players the ability to remember a fixed
number of the most recent events and supply each player with a rule to decide what
move they should take to respond to a history. We call this rule a strategy. A com-
plete strategy covers all the possible situations but in a real game only a subset of the
strategy will be used. Players will adapt their strategies, imitating other more suc-
cessful players following a certain imitation rule. The usual imitation rule assumes
that the player will copy all the strategies of his idol, who is a more successful op-
ponent in his encounter. However, if only a subset of all the strategies of the idol
has been used, it is unrealistic for the player to copy all the strategies, including
those that have never been observed. A realistic modification on the imitation rule
is to copy only those strategies that have been observed. The modification of the
traditional imitation rule is necessitated by the fact that all players can only have

Partial Imitation Rule in Iterated Prisoner Dilemma Game on a Square Lattice 143

finite memory. This simple observation, together with the existence of a generally
large set of possible strategies, motivates us to consider a new imitation rule. We call
it a "partial imitation rule", as it permits the player to imitate at most those strate-
gies his idol has used. In real life, a player cannot even remember all the observed
moves of his idol. We will formulate our representation of the strategy and the nu-
merical methods used in setting up the spatial iterated PD game in Section 2. We
then present a detailed discussion on the various imitation rules in Section 3. The
results of our simulation are summarized and discussed in Section 4. We conclude
with some discussion on the implication of partial imitation rule and discuss future
works in the final section.

2 Methods

2.1 Memory Encoding

A two-player PD game yields one of the four possible outcomes because each of
the two independent players has two possible moves, cooperate (C) or defect (D).
To an agent i, the "outcome" of playing a PD game with his opponent, agent j, can
be represented by an ordered pair of strategies sis j. Here si can be either C for "co-
operate" or D for "defect". Thus, there are four possible scenarios for any one game
between them: {sis j} takes on one of these four outcomes {CC, CD, DC, DD}. In
general, for n games, there will be a total of 4n possible scenarios. A particular pat-
tern of these n games will be one of these 4n scenarios, and can be described by an
ordered sequence of the form Si1S j1 ...SinS jn. This particular ordered sequence of
outcomes for these n games is called a history of games between these two players,
which consists of n pairs of outcome {SiS j}, with the leftmost one being the first
game played, while the rightmost one being the outcome of the last gamed played,
or the most recent outcome. For example, an ordered sequence of strategy pairs
DDDDDDCC represents that the two players cooperate right after the past three de-
fection {DD}, {DD}, {DD}. Note the convention for the outcome is that the in the
pair {sis j}, si is the move made by agent i, who is the player we address, while s j is
the move made by agent j, the opponent of our player.

We say that a player has a memory of fixed-length m, when this player can re-
member only m-pairs of outcomes. Obviously, a "Memory" is a sub-sequence of a
history. In a PD-game with a fixed memory-length m, the players can get access to
the outcomes of the past m games and decide the response to the specific outcomes
in the present game. For example, for an agent with two-game memory (m = 2),
given a history represented by DDDDDDCC, the memory of the player consists of
only the substring DDCC. Because a given memory can be represented by a unique
sequence of strategies, a memory can be conveniently designate by a unique num-
ber. In this paper, cooperation is represented by 1 and defection 0. Thus, the memory
DDCC can be represented by the binary number 0011 or the decimal number 3. The
number of all the possible memory, given that the agent can memorize the outcomes

144 D. Wu, M. Antony, and K.Y. Szeto

of the last m games, is 4m. Next, we must address the beginning of the game be-
tween our players.

Let’s consider a non-trivial example when m = 3. In this case there are 64 =
4m = 4 · 3 possible histories of the strategies used by the two players. Following a
method proposed by Bukhari and Haider[12], we reserve one bit for the first move
of our player: {D, C}, and use two more bits for the second move of our player
when confronted with the two possibilities of the first move of the opponent {D, C}.
(Our player can choose C or D when the opponent’s first move is D, and our player
also can choose C or D when the opponent’s first move is C. Thus we need two
more bits for our player). To account for the four possible scenarios of the last
two moves of the opponents: {DD, DC, CD, CC}, we need to reserve 4 more bits
to record the third move of our player. Thus, for a PD game played by prisoners
who can remember 3 games, a player will need 1 + 2 + 4 = 7 bits to record his
first three moves. After this initial stage, the strategy sequence for our player will
need to respond to the game history with a finite memory. Since there are a total
of 64 = 4m = 4 · 3 possible Memory, i.e., 64 possible outcomes of the last three
games, our player will need 64 more bits. In conclusion, the length of the strategy
sequence is 7+64 = 71 and there are a total of , possible strategies. Thus the space
of strategies for a m = 3 game is already very large. Let’s now denote the ensem-
ble of m-step memory as Mm, then the total number of bits required to encode the
possible strategy sequence is b(m) = 2m− 1 + 4m and the total number of possi-
ble strategy sequences is |Mm| = 2b(m). Table 1 summarizes the enumeration of
the encoding of the possible strategies for m = 1. The representation of the strat-
egy sequence in M1 is denoted as S0|S1S2S3S4. Here b(1) = 5 and there are a total
of 32 possible strategies, since each Si can have two possible choices (C or D) for
i = 0, ..., 4. For m = 2, we have b(2) = 19 and |M2|= 524288, allowing for an ex-
haustive enumeration of all possible strategies [13]. For m = 3, we see that the |M3|
is 271 = 2.4 ·1021, which is already very large.

Table 1 Representation of Strategy Sequence in M1

Memorized History First Move DD DC CD CC
Players’ Strategy S0 S1 S2 S3 S4

2.2 Monte Carlo Simulation

In this paper, agents will be placed on a square lattice of size LxL, with periodic
boundary condition. Each agent only interacts with its four nearest neighbors. For
one confrontation we randomly choose an agent i and a neighbor j of i and let
them play F games with each other. We can compute the payoff U(i) and U(j) of
agent i and j over these games in this confrontation. The payoff parameters used
are T = 5.0, R = 3.0, P = 1.0, S = 0.0, which are widely used and allow mean-
ingful comparison with the existing results. Agent i will then imitate agent j with
probability

Partial Imitation Rule in Iterated Prisoner Dilemma Game on a Square Lattice 145

P(i imitates j) =
1

1 + exp
(

Ui−Uj
K

) (3)

K is similar to the temperature and represents the thermal noise level. The larger
corresponds to smaller noise. We use K = 100. The reason that we decide that in
one confrontation between agent i and j, they have to play F(> 1) games is that
memory effect will not be evident unless there is some repeated encounter between
the two players to let them learn about the selected strategies used. However, a fixed
number for F is rather artificial. Different pairs of players may play different num-
ber of games. Furthermore, we find that fixing F does affect the results in a complex
manner. In order to test the strategies for different F , we introduce a probability pa-
rameter p for a player to stop playing games with his chosen opponent. We further
define one generation of the PD game on the square lattice when all LxL confronta-
tions are completed. With this stopping probability p, one effectively control the
average number of games played between pair of players, thereby determining F .
The choice of F and the rest of the procedure in one independent simulation can be
described by the pseudo code in algorithm 3 for a given p.

Algorithm 3. Iterated SPDG algorithm.
P := 0.05
F := 1
for i = 0 to 100 do

while rand() > p % where rand() generates a random number in [0,1) drawn from a
uniform distribution do

F := F +1
end while

end for
for j = 0 to L ∗L do

randomly pick one site A
A plays with its neighbors, each confrontation lasts for F games
randomly pick one site B from A’s neighborhood
B plays with its neighbors, each confrontation lasts for F games

if rand() <
{

1.0+exp
(

A.payo f f−B.payo f f
K

)}−1
then

A imitates B using different imitation rules
end if

end for

3 Imitation Rule

The standard imitation rule for the spatial PD game without memory is that the focal
agent i will adopt the pure strategy of a chosen neighbor depending on payoff. The
generalized imitation rule for PD game with memory is adopting the entire set of
strategy sequences. We call such imitation rule the traditional imitation rule (tIR).
In this way, tIR impose that condition that every agent has complete information

146 D. Wu, M. Antony, and K.Y. Szeto

about the entire set of the strategy sequence of all its neighbors. Such assumption
of complete information is unrealistic since the focal agent only plays a few games
with its neighbors while the space of strategies used by the neighbor is generally
astronomically larger than F . A more realistic situation is that the focal agent i
only has partial information about the strategies of his neighbors. In this paper, ev-
ery agent only knows a subset of the strategy sequence used by a chosen neighbor.
For a pair of players (i, j), playing approximately F games, the focal player i will
only observed a set (S j(i, j)) of strategy sequences actually used by agent j. This
set S j(i, j) is much smaller than the entire set of strategies available to agent j.
With this partial knowledge of the strategies of the neighbors, the new imitation
rule for agent i is called the partial imitation rule. We will give an example to il-
lustrate the difference between partial imitation rule and the traditional one. Let’s
consider an agent i with C|DDDD strategy confronts another agent j with the Tit-
for-Tat strategy (S0|S1S2S3S4 = C|DCDC) and agent i decides to imitate the agent
j’s strategy. In tIR, we assume that agent i somehow knows all the five bits of Tit-
for-Tat though in the confrontation with agent j only four bits of Tit-for-Tat have
been used. On the other hand, with partial imitation rule (pIR), when a C|DDDD
agent confronts a Tit-for-Tat agent, the C|DDDD will know only four bits of Tit-
for-Tat (S0|S1S2S3S4 = C|DCDC), i.e., S0 = C, S1 = D, S2 = C, S)3 = D (c.f. table
1). Thus, when agent i imitates agent j using pIR, agent i will become (C|DDDC),
which corresponds to a Grim Trigger instead of Tit-for-Tat (C|DCDC). We call this
new imitation rule the type 1 partial imitation rule, denoted by pIR1. In a more
relaxed scenario, we can slightly loosen the restriction on the access of our focal
agent i to the information of neighbors’ strategy sequences. If we denote the sub-
set of agent j’s strategy sequence used during the confrontation between agent i
and agent j as S j(i, j), then we can assume that agent i knows the larger subset of
strategy sequences of agent j described by

G j(i, j) =
⋃

k∈Ω(j)

S j(k, j) (4)

where Ω(j) denotes the nearest neighbors of agent j. Note that this set of strategy
sequences of agent j is substantially larger than S j(i, j), but still should generally be
much smaller than the entire set of strategies of player j. In pIR1, we provide agent
i information on agent j defined by the set S j(i, j). We now introduce a second type
of partial imitation rule, denoted by pIR2, if we replace S j(i, j) by the much larger
set G j(i, j).

We now illustrate pIR2 with an example using the notation of table 1. Consider an
always-cooperating agent i (C|CCCC) confronting a Grim Trigger (C|DDDC) agent
j, who has four neighbors. One of them of course is the always cooperating agent
i. Let’s assume that the remaining three neighbors of agent j are always-defecting
(D|DDDD). Let’s call these three neighbors agent a, b, and c. In the confrontation
between agent i (who is C|CCCC) and agent j (Grim Trigger), S0 and S4 of Grim
Trigger are used. However, in the confrontation between agent j (Grim Trigger) and
its three neighbors (agent a, b and c), who are D|DDDD, agent j will use S0, S1

Partial Imitation Rule in Iterated Prisoner Dilemma Game on a Square Lattice 147

and S3 of Grim Trigger. With pIR1, agent i imitates agent j, but the result will be
unchanged as they will use C for S0 and S4 of Grim Trigger based on the set S j(i, j).
However, for pIR2, agent i imitates agent j and changes from C|CCCC to the Grim
Trigger agent, which results in a change of its S0, S1, S3 and S4 to the corresponding
bits of Grim Trigger, giving the new strategy of agent i as C|DCDC. This is not a
Grim Trigger. Finally, if we use tIR, the traditional imitation rule, we of course will
replace agent i with Grim Trigger (C|DDDC). We see from this example, the result
of tIR, pIR1 and pIR2 are all different.

4 Results

We first test our algorithm of SPDG with the published results [13]. We initialize
our strategy sequence with each element assigned cooperation or defection at equal
probability and reproduce results similar to figure 3a in [13] in figure 1 using the
traditional imitation rule. Here, Tit-For-Tat (TFT) and Grim- Trigger (GT) domi-
nate at long time. These two strategies together with Pavlov and C|CCDC are the
only four surviving strategies in the long run. In figure 2(a) we use partial imitation
rule 1 (pIR1) and in 2(b), we use pIR2. In both cases, only GT dominates and the
concentration of TFT is reduced greatly to the level of Pavlov and C|CCDC. Results
are independent of the lattice size, provided that it is sufficiently large so that every
strategy in M1 can be visited several times. We next discuss the importance of game

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (Generation)

C
on

ce
nt

ra
tio

n

D|DDDD
GT C|DDDC
TFT C|DCDC
Pavlov C|CDDC
C|CCDC

10
1

10
2

0

0.01

0.02

0.03

Fig. 1 Concentration of important strategies in SPDG on 100x100 square lattice with M1.
Result is averaged over 1000 independent simulations, with K = 0.01, using traditional Imi-
tation Rule (tIR)

148 D. Wu, M. Antony, and K.Y. Szeto

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Generation)

C
on

ce
nt

ra
tio

n

D|DDDD
GT C|DDDC
TFT C|DCDC
Pavlov C|CDDC
C|CCDC

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

(a)

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Generation)

C
on

ce
nt

ra
tio

n

D|DDDD
GT C|DDDC
TFT C|DCDC
Pavlov C|CDDC
C|CCDC

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

(b)

Fig. 2 Concentration of important strategies in SPDG on 100x100 square lattice with M1.
Result is averaged over 1000 independent simulations, with K = 0.01, using partial Imitation
Rule 1 (pIR1) in figure 2(a) and partial Imitation Rule 2 (pIR2) in figure 2(b)

Partial Imitation Rule in Iterated Prisoner Dilemma Game on a Square Lattice 149

sampling in terms of the value of p, i.e. the probability to end one confrontation at
time t. Our numerical experiments show that p affects the concentrations of all the
strategies regardless of the imitation rule used. When p = 1, agents will always co-
operate or defect without making use of the memory mechanism. When p is smaller
than 1, agents can use their memory to access the benefits of different strategies.
Recall that we have in general 32 strategies for M1. For sufficiently small p, our
numerical results indicate that the concentrations of these 32 strategies reach a con-
stant value at long time. In this paper, we choose p to be 0.05, but in fact when p is
smaller than 0.2, the results will not differ much.

5 Conclusion

Our introduction of memory effects on the players in spatial PD game indicates
the importance of the imitation rule used in the learning process of the players. We
started our spatial PD game with traditional imitation rule, which makes the unreal-
istic assumption that the players have a complete access of his opponent’s strategies.
When this assumption is relaxed and implemented with the partial imitation rules
that assume the players only have the information on a selected subset of his op-
ponent’s strategies, the long time behavior of the concentration of various strategies
are very different. Indeed, for the traditional imitation rule, where TFT and GT dom-
inate at long time, only GT remains dominant when partial imitation rule is used.
With the traditional imitation rule, TFT and GT dominate at the long run, while
with either partial imitation rule 1 or 2, only GT dominate the population and the
concentration of TFT is remarkably smaller than that with the traditional imitation
rule. This work shows that with memory, more realistic imitation rules may have an
impact on the concentration of the surviving strategies such as TFT and GT. In the
scenario we set up in the paper, GT is favored by the partial imitation rules. This re-
sult has important implication of previous studies on PD game as partial knowledge
of the opponents’ strategies should be the norm rather than the exception in real life.
In future work, we will investigate more on the generalization of our observation to
longer memory cases.

Acknowledgements. K.Y. Szeto acknowledges the support of CERG grant 602506 and
602507.

References

[1] von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Prince-
ton University Press, Princeton (1944)

[2] Szabo, G., Fath, G.: Evolutionary games on graphs. Physics Reports 446(4-6), 97–216
(2007)

[3] Smith, J.M., Price, G.M.: The logic of animal conflict. Nature 246, 15–18 (1973)
[4] Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, Cam-

bridge (1982)

150 D. Wu, M. Antony, and K.Y. Szeto

[5] Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution
of cooperation on graphs and social networks. Nature 441, 502–505 (2006)

[6] Nowak, M.A.: Five Rules for the Evolution of Cooperation. Science 314(5805), 1560–
1563 (December 8, 2006)

[7] Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
[8] Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. of Bifurcation and

Chaos 3(1), 35–78 (1993)
[9] Szabo, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s

dilemma game on two-dimensional lattices. Phys. Rev. E 72(4), 047107 (2005)
[10] Helbing, D., Lozano, S.: Routes to cooperation and herding effects in the prisoner’s

dilemma game (May 2009)
[11] Ariosa, D., Fort, H.: Extended estimator approach for 2x2 games and its mapping to the

Ising Hamiltonian. Phys. Rev. E 71, 016132 (2005)
[12] Bukhari, S., Adnan, H.A.S.: Using genetic algorithms to develop strategies for the pris-

oners dilemma. Asian Journal of Information Technology 8(5), 866–871 (2006)
[13] Baek, S.K., Kim, B.J.: Intelligent tit-for-tat in the iterated prisoner’s dilemma game.

Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 78(1), 011125
(2008)

A Dynamical Game Model for Sustainable
Development

D. Dumitrescu and Andrei Sîrghi

Abstract. The paper addresses the possibility to combine nature inspired optimiza-
tion techniques, Dynamical Systems and Game Theory in order to solve a com-
plex real-world problem. A computational model for Sustainable Development (SD)
problem, called Dynamical Game for Sustainable Development (DGSD) is pro-
posed. This model combines ideas from Dynamical Systems and Game Theory in
a new paradigm for adaptive behavior of systems. The actors of SD: Economy, En-
vironment and Society, are viewed as evolvable systems. The main aim is to ensure
a balanced coevolution of SD actors. A chain of control points are used to guide
the evolution toward system equilibrium (sustainability). Each control point is rep-
resented as a three player game. In order to guide system to sustainability, the local
equilibrium at each control point is used to determine further development strate-
gies for SD actors. The local equilibrium is conceived as a game equilibrium. Sev-
eral kinds of equilibria are possible. For detecting these equilibria an evolutionary
approach may be used.

Introduction

The concept and methodology of sustainable development [3] appeared over the
past few decades as result to a set of interdependent issues like: climate change,
pollution control, preservation of biodiversity, etc. Crises, degradation and risks af-
fecting human health, social and economic stability have fostered public suspicions
on the evolution of technology and economic growth. These suspicions gave rise
to this new concept, and further, a new branch of science. SD concept lead us to
principles of organizing and controlling the development and complex interactions

D. Dumitrescu · Andrei Sîrghi
Center for the Complexity Studies, Babeş-Bolyai University,
Department of Computer Science, Babeş-Bolyai University,
Cluj-Napoca, Romania
e-mail: ddumitr@cs.ubbcluj.ro,andreisirghi@yahoo.com

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 151–162, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

ddumitr@cs.ubbcluj.ro, andreisirghi@yahoo.com

152 D. Dumitrescu and A. Sîrghi

between society, production activities and natural resources in such a way that re-
sults in a constructive coexistence between these three big areas.

The paper proposes a new mathematical model for SD problem. This model,
called Dynamical Game for Sustainable Development (DGSD), combines ideas
from Game Theory and Dynamical Systems in a new paradigm for self-organizing
coevolutive systems. We use Dynamical Systems to describe the evolution of each
area included in SD. Game Theory is used to model the decision process of our
model in each control point. Each control point represents a three player game, cor-
responding to SD actors. DGSD model is intended to show how much, the decisions
taken in one area influence the other areas of the region.

The conflict of interests between players and limited amount of resources in the
region, enforce players to be very “careful” in the process of decision making. If a
player does not consider this principle of “carefulness”, and as result, exploits re-
sources from the other areas, his further decisions are constrained by big limits in
resource usage imposed by the other players. Therefore, the area represented by this
player collapses.

The principle of carefulness represents an important factor of self-organization
which ensures a balanced systems coevolution for achieving SD goals.

The DGSD model has an adaptive behavior. This behavior is ensured by the
game, which finds compromise solutions between the actors in any situation of
region development described by a control point. The goal of these compromise
solutions is to converge region development to SD. Each compromise represents the
game equilibrium in a specific point of region development. To obtain game equi-
librium, we consider an evolutionary approach based on generative relations [5].

1 Sustainable Development Problem

At the base of SD concept stays the principle that objectives of Society, Economy
and Environment should be complementary and interdependent in the development
process of a region.

The problem related to SD which we propose to solve in this paper can be de-
fined as:

Create a mathematical model having the next characteristics:

1. Represents the real development process of a region from the three aspects cor-
responding to the major areas: Economy, Environment and Society;

2. Suitable for the robust prediction of the future state and behavior of the real
process;

3. Valuable in the real decision making process;
4. Every area has a particular set of objectives and decision functions;
5. Proposes strategies and control elements that leads region to Sustainable Devel-

opment.

Our aim is to develop such a model by considering a specific region and supposing
to have complete information about economy, environment and society.

A Dynamical Game Model for Sustainable Development 153

2 Related Work

SD problem received high attention from its first apparition, but until now does not
exist a powerful mathematical model that can be used to represent this problem.
The result of researches of almost all communities that analyze this problem is a set
of indicators which can be used to measure the quality of sustainable development
process for specific regions.

There are two widely accepted methods to measure the sustainable development
of a country:

1. Sustainable Development Gauging Matrix (SDGM) [11]. The measure tech-
nique of SDGM consists in the aggregation of three dimension indices: economic
(Iec), ecological (Ie) and social (Is) in the index of sustainable development (Isd).
Further, each of these indices is calculated by using other six global indices widely
used in Statistics communities.

2. IPAT equation [1]. Expresses the relationship between technological innova-
tion and environmental impact. IPAT states that human impact (I) on the environ-
ment equals the product of population (P), affluence (A - consumption per capita)
and technology (T - environmental impact per unit of consumption).

3 Dynamical Systems of Areas Evolution

To describe the evolution of SD areas we use a system of dynamical models. Each
area included in SD has an own model of evolution, which contains one or more dy-
namical functions, and interacts with the models of the other areas. Every particular
model has two types of parameters:

• internal parameters - that are indices of the area represented by the model and
which describe the evolution of the area, and

• external parameters - that are important in decision making process and indicates
the dependences between the current area and the other areas. These parameters
represent a key element in the process of SD self-organization because they are
used by individual areas to influence the other areas.

The DGSD model is extensive, and it can be used with different evolution models
of the areas, depending on different circumstances. In this paper we work with an
abstract model which reflects the basic relations between SD areas and their struc-
tures. This model can be simple replaced by a more descriptive one in specific cases.

The abstract model is built as a system of individual functions of evolution for
sustainable development areas: Economy, Environment and Society. The correla-
tions between particular functions are very important for our approach. They repre-
sent the base criteria to analyze and control the sustainability of region development.
Further we describe the functions of areas evolution and their correlations.

Economy plans the optimal amount of products outcome by choosing correspond-
ing quantities of capital (K(t)), nonrenewable natural resources (h(t)), renewable
natural resources (r(t)) and social capital or labor (l(t)). The function of economic

154 D. Dumitrescu and A. Sîrghi

development (denoted EC) may be represented as a dynamical system given by a
particular production function [9] ec:

EC(t + 1) = ec(K(t),h(t),r(t), l(t)). (1)

where t stands for time period (t = [t0,T]).
The production function ec in the Cobb-Douglas [7] form is:

{
ec(K,h,r, l) = AK(t)αh(t)β r(t)γ l(t)δ

α +β + γ+ δ = 1|α,β ,γ,δ ∈ (0,1]
, (2)

where A represents total factor productivity, and the exponents α ,β , γ , and δ repre-
sent the elasticities of production related to capital, nonrenewable resources, renew-
able resources and labor respectively.

Accumulated capital stock evolution depends on rate of capital deprecation (σ),
and economic products consumption (c(t)):

K(t + 1) = (1−σ)K(t)+ ec(K(t),h(t),r(t), l(t))− c(t). (3)

The goal of the Economy is to maximize production in condition of sustainability
which implies an activity constrained by actual and future benefits of all areas. The
optimization problem of this area may be represented as:

{
ec(K,h,r, l)→ max

subject to sustainability (SD) constraints.
(4)

Environment tries to achieve a sustainable trajectory in the development of nonre-
newable (Rn) and renewable (Rr) resources stocks by restricting as much as possible
the natural resources consumption. Environment development may be represented
as a dynamical system which represents the evolution of natural resources stocks:

{
Rn(t + 1) = Rn(t)−h(t)
Rr(t + 1) = Rr(t)− r(t)+ g(Rr(t)− r(t))

, (5)

where g represents Environment’s regenerative capacity and can have multiple forms
[2].

The goal of Environment is to maximize stock of renewable resources and to
preserve actual stock of nonrenewable resources by imposing limits in resources
consumption:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rn ∼ const

h(t)→ hn(t)
Rr→max

r(t)→ rn(t)

, (6)

A Dynamical Game Model for Sustainable Development 155

where hn(t) is the limit of nonrenewable resources consumption imposed by the
Environment to Economy, and rn(t) is the limit of renewable resources consumption.

The Environment and the Economy influence the living conditions in the region,
which can be suitable or not for people life. Analyzing these conditions, the Society
has to choose, to stay in this system or not.

Society’s goal is to achieve normal values for indicators of social development
such as: birthrate, mortality rate, migration rate and unemployment rate. Society
development may be represented as the dynamical system:

S(t + 1) = S(t)+ s(Rn(t),Rr(t),ωm(t),ωb(t), l(t),c(t)), (7)

where S(t) represents society size in period t, and s represents society growth. Soci-
ety growth depends on natural resources availability, mortality rate (ωm(t)), birthrate
(ωb(t)), used labor and economic products consumption. A simple form of society
growth function can be represented as:

s = ωb(t)S(t)−ωm(t)S(t)−m(ur(t),Rn(t),Rr(t),c(t))S(t), (8)

where m(ur(t),Rn(t),Rr(t),c(t)) represents migration rate, and is influenced by un-
employment rate (ur), per capita consumption (c(t)/S(t)), and per capita natural
resources availability(Rn(t)/S(t) and Rr(t)/S(t)).

The goal of the Society is to maximize the living conditions in the region. This
goal may be expressed as the system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωm→ ωnm

ωb→ ωnb

m→ nm

ur→ unr

, (9)

where ωnm is the normal rate of mortality, ωnb is the normal birthrate, nm is the
normal migration rate and unr is the normal unemployment rate.

The areas goals are mutually contradictory. Thus a sustainable strategy must co-
ordinate and manage the development process of these areas in a balanced manner,
which must result in the long-term viability of the system. In following Section we
analyze how these goals can be balanced using Game Theory.

4 Sustainable Development Game

At the beginning of each development iteration t, the SD actors should propose a
development strategy for their specific areas. Within DGSD model, Game Theory is
used to represent the decision process of SD actors in each control point of region
evolution. The SD game involves three players, or agents: Economy (EC), Envi-
ronment (EV) and Society (S). Using this game, each agent chooses best available
development strategy by combining the information about the state of their area with
their “belief” about the behavior of the other agents.

156 D. Dumitrescu and A. Sîrghi

4.1 Extended Form of the SD Game

SD decision process may be represented as an extended form game by using a tree
which levels corresponds to the player information sets (see Fig. 1).

Player EC has two pure strategies:

1. to choose a quantity of natural resources that follow environmental standards.
Let us denote this pure strategy E;

2. to exploit environment resources - strategy denoted NE.

EC is represented by the root of the game tree, as depicted in Fig. 1.

The second information set in the game tree is denoted by EV and represents the
Environment. EV has two nodes:

1. n1, which represents the behavior, or potential actions of Environment when
Economy plays E, and

2. n2, that represent the behavior of EV when Economy plays NE.

EV assigns the probability x to the node n1 and the probability (1− x) to the node
n2. This means that EV "believes" that EC will choose a good environmental policy
with probability x.

Environment has two pure strategies:

1. to be suitable for human life and for economy (to restrict as much as possible
natural resource consumption). Let us call this strategy ST;

2. to be not suitable - strategy NST.

The third player in the game is the Society. This player has two information sets:

1. l1, which corresponds to the choice E of economic agent, and
2. l2, which corresponds to the choice NE.

Each set has two nodes: l11 and l12 for l1, and l21 and l22 for l2. l11 and l21 follow the
decision ST of the Environment agent. The nodes l12 and l22 follow the pure strategy
NST of the Environment.

Society has two pure strategies:

1. to stay in this region, to live and to work here - strategy denoted by L;
2. to escape from the region - strategy denoted by NL.

In SD game, Economy plans the optimal production quantity for the next period
of region development, by choosing either an economic strategy that follows envi-
ronmental standards (E), or one strategy that destroys the environment (NE). Then
Environment must move. Environment move can be suitable for people life and for
economy (strategy ST) or not (strategy NST). But Environment is not informed about
EC choice, it has just a belief about behavior of EC. Selecting an appropriate strat-
egy, the Environment imposes the admissible values of resource usage for EC. Even-
tually, the Society must choose to live in this system (strategy L), or not (strategy
NL), without any information about the other players moves, excluding its belief.

A Dynamical Game Model for Sustainable Development 157

Fig. 1 SD Game Tree: tree representation of the sustainable development game

By choosing a strategy, each agent controls the development of their area, and
influences the development of the other areas through external parameters of dy-
namical models presented in Section 3. Economy plans the development strategy by
choosing corresponding quantities of natural resources, labor and capital, thus influ-
encing Environment (through natural resources consumption) and Society (through
used labor). Environment controls the quantities of natural resources that can be
used by Economy, and can impose a penalty for natural resources overconsumption
to Economy. Therefore, Environment influences the Economy through the limits
in natural resources usage, and the Society through the availability of natural re-
sources per capita. Finally, Society can influence the Economy and Environment
through migration.

4.2 Payoffs in the SD Game

Vector (a,e,s) from SD Game Tree (see Fig. 1) represents player payoffs, where real
numbers ai

hk, i∈ {E,NE}, h,k∈ {1,2} represents the payoff of EC corresponding to
different strategy profiles, analogously, ei

hk, si
hk represents the payoffs corresponding

to the Environment (EV) and Society (S) respectively. Environment assigns proba-
bility x to play the game given by strategy E of Economy and (1− x) to play the
game given by strategy NE. Similarly Society assigns its belief parameters (q,1−q),

158 D. Dumitrescu and A. Sîrghi

0 ≤ q ≤ 1 for information set l1 and (q′,1− q′), 0 ≤ q′ ≤ 1 for information set l2.
The probabilities q and q′, represents the belief of Society that region will be suitable
for people life, when Economy plays E, or NE respectively. The belief of economic
agent is represented by probabilities Px(ST) and Px(NST). Px(ST) is the belief of
Economy that the region will be suitable for economic activity. Px(NST) represents
Economy’s belief that region will not be suitable for economic activity in next pe-
riod, and is computed as: Px(NST) = 1−Px(ST).

Expected values for different strategies of each agent may now be computed. The
expected value that Environment assign to the strategy ST is:

EEV (ST) = x[qeE
11 +(1−q)eE

21]+ (1− x)[q′eNE
11 +(1−q′)eNE

21]. (10)

Expected value of the Environment for the strategy NST is:

EEV (NST) = x[qeE
12 +(1−q)eE

22]+ (1− x)[q′eNE
12 +(1−q′)eNE

22]. (11)

The actual and future benefit of the Economy depends on the states of the Environ-
ment and Society. Analyzing these states and short term and long term goals, the
economic agent chooses the most profitable strategy. The expected value that EC
assigns to the strategy E is:

EEC(E) = Px(ST)[qaE
11 +(1−q)aE

21]+ Px(NST)[qaE
12 +(1−q)aE

22]. (12)

Expected value for the strategy NE is:

EEC(NE) =Px(ST)[q′aNE
11 +(1−q′)aNE

21]

+Px(NST)[q′aNE
12 +(1−q′)aNE

22]− p(h(t),r(t)), (13)

where p(h(t),r(t)) represents the penalty paid by Economy if the consumption of
natural resources is larger than admissible quantity of resource consumption im-
posed by the Environment.

The expected value assigned by Society to the strategy L is:

ES(L) = q(sE
11 + sE

12)+ q′(sNE
11 + sNE

12). (14)

Expected value that Society assigns to the strategy NL is:

ES(NL) = (1−q)(sE
21 + sE

22)+ (1−q′)(sNE
21 + sNE

22). (15)

In order to simplify the representation of SD decision process, we considered each
player has to choose a pure strategy. In real life each player usually prefer to play
a mixed strategy game [10]. Using mixed strategies, players control the intensity
of their SD policy which is situated between two limits: sustainable development
policy, and unsustainable development policy. An important remark about DGSD
model is that the concept of game strategy is abstract. In presented game, each
player has two strategies, but the intensity of their strategies can be very different,
and each strategy can be instantiated from a large set of values.

A Dynamical Game Model for Sustainable Development 159

5 Sustainable Development Game Equilibrium

The development strategies of SD areas are given by the game which is played in
each control point. In SD game, we assume that each player chooses the best avail-
able strategy. A strategy containing the best choice of each player represents the
Game Equilibrium (or Nash Equilibrium). Game equilibrium depends, in general,
on the potential choices of the other players. Each player has to form a hypothe-
sis about the behavior of the concurrent players. For each game, Nash Equilibrium
always exists for mixed strategies. Therefore SD game always has an equilibrium,
which means, the players always find a compromise solution according to sustain-
able development criteria.

For each development iteration, every player in SD game chooses a combination
between the two available pure strategies. In other words, each player plays the first
pure strategy with a probability p and the other strategy with the probability (1-p).

Hence Economy plays E with the probability pEC, and NE with the probabil-
ity (1− pEC). Environment plays ST with the probability pEV , and NST with the
probability(1− pEV). Finally, Society chooses L with probability pS, and NL with
the probability (1− pS).

To compute game equilibrium, an evolutionary technique is considered [4] [5]
[6]. The main advantage of this technique is the possibility to model the game hav-
ing different types of rationality. Depending on these rationalities, multiple types of
equilibrium exist: Nash, Pareto, Mixed. Therefore the most representative type of
equilibrium may be chosen. To keep the model simple, we consider only the Nash
Equilibrium.

Applying this evolutionary technique the Nash equilibrium of the SD game is
detected. Detected equilibrium is represented by the set {pEC,pEV ,pS}. At each iter-
ation, or control point, this set actually redirects the development of the region to a
direction formed by the combination of the new goals of players. This combination
represents a compromise solution between the players goals. The equilibrium cor-
responding to the control points actually enforces the players to follow sustainable
criteria of development.

6 System Equilibrium

An important concept to study DGSD model is balanced system evolution based on
SD criteria. In essence, DGSD system evolution is balanced if weak perturbations
cause just small variations in the trajectories with respect to desired SD trajectory .
The most commonly SD trajectory is that of equilibrium.

Basically, equilibrium of a dynamical system corresponds to a situation where the
evolution is stopped or, as in our case, has a stable behavior in the sense that the sys-
tem states become steady. In this situation we can say that the SD system acquired a
sustainable development behavior. The direction of development for DGSD system
is guided by its decision process for each iteration. The only way for the system
to achieve equilibrium is to take optimal and viable decisions at each development
iteration.

160 D. Dumitrescu and A. Sîrghi

Mathematically, this steady state can be described through a system which in-
cludes the goals of areas included in SD. This system is described by equations: 4,
6 and 9.

7 Numerical Experiments

We analyze the behavior of our model in two situations:

Situation 1 is described by: Environment possesses sufficient stocks of renewable
and nonrenewable resources for over 50 iterations, Economy has a capital stock for
about 10 iterations, Society is described by normal values for almost all indicators.

Situation 2 is characterized by: the stock of nonrenewable resources is sufficient
for about 30 iterations, the initial stock of renewable resources is sufficient for 2
iterations, and capital stock will be consumed in 2 iterations.

Each situation represents a start state which describes a region in terms of DGSD
model. Applying DGSD model on each situation we obtain the evolution of region
which is guided by DGSD model toward sustainable development. The evolution of
the region for this two situations is presented in Fig. 2 and Fig. 3.

Four indices are used to represent the general sustainability of the region, and
the sustainabilities of individual areas: Economy, Environment and Society. Each
sustainability index of individual areas shows the state of the area for a develop-
ment period, relative to the best possible state and the worst possible state. General
sustainability of the region represents the arithmetic average of the indices for indi-
vidual areas. Each sustainability index takes values from the interval [0, 1].

Fig. 2 The evolution of the region in Situation 1. Economy starts with an increase in evo-
lution which causes society development and general sustainability to grow. But Economy
increase collapses Environment evolution. Hence, the amount of natural resources which can
be consumed by Economy is restricted. Further the region development tends to have a stable
behavior with small variations

A Dynamical Game Model for Sustainable Development 161

Fig. 3 The evolution of the region in Situation 2. In this case, the initial variations in areas
evolution are weaker, but region achieves stability in a longer interval. After iteration 28 the
development indicators of Economy and Society decrease significantly, because of nonrenew-
able resources deficiency. In this case, model cannot propose viable solutions to continue
region evolution in a sustainable manner

The evolution diagrams show how Environment, Society and Economy contribute
to the general sustainability of region. Here is easy to observe control principles
which were described in SD game and dynamical systems:

• when Economy tend to have an explosive evolution, the Environment restricts the
natural resources consumption;

• an increase in economic or environment sustainability results in a smaller in-
crease in society sustainability;

• all areas involved in SD model participate with the same rate in general sustain-
ability of analyzed region.

8 Conclusion and Further Work

A new model for Sustainable Development problem is proposed. This model, called
Dynamical Game for Sustainable Development (DGSD), combines nature inspired
optimization techniques, ideas from Dynamical Systems and Game Theory. Dynam-
ical Systems were used to describe the evolution of each area included in SD. Using
Game Theory we modeled the control points of DGSD model, as a game between
these areas. Game equilibrium is computed using an evolutionary technique based
on generative relations. Game equilibrium controls the evolution of each area in
conformance with region sustainability principles.

162 D. Dumitrescu and A. Sîrghi

Game Theory captures very well strategic situations of each player involved in
the game and the conflicts existing between the areas. We proved that using game
equilibrium, each area involved in region development is enforced to implement just
“sustainable” decisions, otherwise they are constrained by the other areas.

However, game equilibrium alone, does not guarantee to drive the region to max-
imum sustainability in all the cases. It finds just the local optimum, and as it is, does
not use the idea or concept of long term optimum. Nash equilibrium imposes play-
ers to be selfish, but in our case the players must put the interest of the whole region
development over their individual interest. In other words, the player must consider
an altruistic behavior related to the development of the region where they act.

To avoid the drawback of local optimum we intend to combine our model with
approaches that guarantees the convergence of the model to the global optimum,
which in our case is maximum sustainability. Further, we intend to integrate DGSD
model with different decision making approaches. We may consider an alternative
approach for decision process which is based on Public Good Games(PGG) [8].
PGGs describe social behavior through public goods, and models players diversity
depending on their percentage of collaboration.

We hope that DGSD model is a good start point to study Sustainable Develop-
ment. Even if with present form, this model does not provide best strategies to drive
any region to SD development, there are a lot of possibilities to extend and to im-
prove it, preserving its fundamental ideas.

References

[1] Chertow, M.R.: The IPAT Equation and Its Variants. Journal of Industrial Technol-
ogy 4.4, 13–29 (2001)

[2] De Lara, M., Doyen, L.: Sustainable Management of Natural Resources. Mathematical
Models and Methods. Springer, Berlin (2008)

[3] Dalal-Clayton, B., Bass, S.: Sustainable Development Strategies. Earthscan Publica-
tions Ltd., London (2002)

[4] Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Evolutionary Equilibria Detection in Non-
cooperative Games. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt,
A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoCOMNET.
LNCS, vol. 5484, pp. 253–262. Springer, Heidelberg (2009)

[5] Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Generative Relations for Evolutionary Equi-
libria Detection. In: GECCO 2009, pp. 1507–1512 (2009)

[6] Dumitrescu, D., Lung, R.I.: ESCA: A new Evolutionary-Swarm Cooperative Algo-
rithm. In: NICSO 2007, pp. 105–114 (2007)

[7] Gujarati, D.: Basic Econometrics. McGraw-Hill, Columbus (2003)
[8] Janssen, M.A., Ahn, T.: Adaptation vs. Anticipation in Public-Good Games (2003),

http://www.allacademic.com/meta/p64827_index.html
[9] Mishra, S.K.: A Brief History of Production Functions. Social Science Research Net-

work (2007)
[10] Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
[11] Zgurovsky, M.Z.: Sustainable Development Global Simulation: Opportunities and

Treats to the Planet, Kyiv (2007)

http://www.allacademic.com/meta/p64827_index.html

Studying the Influence of the Objective
Balancing Parameter in the Performance of a
Multi-Objective Ant Colony Optimization
Algorithm

A.M. Mora, J.J. Merelo, P.A. Castillo, J.L.J. Laredo,
P. García-Sánchez, and M.G. Arenas

Abstract. Several multi-objective ant colony optimization (MOACO) algorithms
use a parameter λ to balance the importance of each one of the objectives in the
search. In this paper we have studied two different schemes of application for that
parameter: keeping it constant, or changing its value during the algorithm running,
in order to decide the configuration which yields the best set of solutions. We have
done it considering our MOACO algorithm, named hCHAC, and two other algo-
rithms from the literature, which have been adapted to solve the same problem. The
experiments show that the use of a variable value for λ yields a wider Pareto set, but
keeping a constant value for this parameter let to find better results for any objective.

1 Introduction

The military unit path-finding problem consists in getting the best path for a military
unit, from an origin to a destination point in a battlefield, keeping a balance between
route speed and safety, considering the presence of enemies (which can fire against
the unit) and taking into account some properties and restrictions which make the
problem more realistic. Being speed (important if the unit mission requires arriving
as soon as possible to the target) and safety (important when the enemy forces are
not known or when the unit effectives are very valuable), the two main criteria that
the commander of a unit takes into account inside a battlefield in order to accomplish
the mission with success.

To solve this problem we designed an Ant Colony Optimization algorithm [4]
adapted to deal with two objectives (see [3] for a survey on multi-objective opti-
mization), named hCHAC [10] so it is a Multi-Objective Ant Colony Optimization
Algorithm (MOACO [5]).

A.M. Mora · J.J. Merelo · P.A. Castillo · J.L.J. Laredo · P. García-Sánchez ·M.G. Arenas
Dpto. Arquitectura y Tecnología de Computadores. University of Granada, Spain
e-mail:{amorag,jmerelo,pedro,juanlu,

pgarcia,mgarenas}@geneura.ugr.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 163–176, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

164 A.M. Mora et al.

As most of the metaheuristics, it considers a set of parameters which determines
the behaviour in the search, usually having an effect in the exploration and exploita-
tion balance. But in hCHAC case, there is also an additional (and key) parameter,
named λ . It was introduced in the algorithm rule of decision, to set the relative im-
portance of each one of the objectives in the search. But actually, it sets the area
in the space of solutions, that each of the ants explores, yielding somewhat of ’spe-
cialised’ ants in each one of the objectives (or both of them).

Some of the parameters of hCHAC and their influence in the search, were anal-
ysed in a previous work [8] using statistical methods, reaching some conclusions in
addition to the best set of values for them.

In the present work the λ parameter has been studied, but statistics have not
been applied in the analysis, because λ just weights the relative importance of one
objective with respect to the other (there are just two objectives in this problem) and
does not take concrete (and sometimes hard-coded) values as the rest of parameters.
Moreover, two different parameter schemes can be applied in the algorithm, and the
aim of the analysis is to study their influence in the search and decide which one is
the best scheme.

The rest of the paper is structured as follows. Firstly, the problem to solve and
its modelling in a simulator environment is briefly described in Section 2. Then
the hCHAC and the literature algorithms (adapted to solve the problem) are intro-
duced respectively in Sections 3 and 4. The parameter to study (λ)) is commented
in Section 5. Section 6 shows the performed analysis, by presenting some problem
instances and the results of the experiments. Finally, in Section 7 the conclusions
and the future work in this line are exposed.

2 The Military Unit Bi-criteria Pathfinding Problem

The MUPFP-2C is modelled considering that the unit has got a level of energy
(health) and a level of resources, which are consumed when it moves along the
path, so the problem objectives are adapted to minimize the resources and energy
consumption. The problem is located inside a battlefield which is modelled as a
grid of hexagonal cells with a cost in resources, which represents the difficulty of
going through it, and a cost in energy/health, which means the unit depletes its hu-
man resources or vehicles suffer damage when crossing over the cell (no combat
casualties). Both costs depend on the cell type. Besides, moving between cells with
different heights also costs resources (more if it goes up), and falling in a weapons
impact zone depletes energy. All these features are represented using different colors
in the maps.

Figure 1 shows an example of real world battlefield and the information layer
associated to it, which has been created using a custom-made application [1].

We consider fast paths (if speed is constant) when the total cost in resources is
low (it is not very difficult to travel through the cells, so it takes little time). On the
other hand safe paths, have associated a low cost in energy/health.

See [10] for further details about the problem definition and modelling.

Studying the Influence of the Objective Balancing Parameter 165

Fig. 1 Example Map (45x45 cells). The image on the left-hand side is a real world picture
showing a lake surrounded by some hills and lots of vegetation. On the right-hand side it is
shown its associated information layer. The different shades in the same color models height
(light color) and depth (dark color). There are two enemies with red border, an origin point
(in the top-left corner of the images) with black border and a destination point (in the bottom-
right) with yellow border

3 hCHAC Algorithms

There were designed some algorithms to solve the commented problem, all of them
were included in the so-called hCHAC1 family. In this work two of them will be
considered.

The main approach, also known as hCHAC [9] is an Ant Colony System (ACS)
[4] adapted to deal with two objectives (MOACO) [3, 5]. Since it is an ant algorithm,
the problem is transformed into a graph where each node corresponds to a cell in the
map, and each edge between two nodes is the connection between neighbor cells in
the map. Every edge has associated two weights, which are the costs in resources
and health that going through that edge causes to the unit.

In every iteration, the ants separately build a complete path (solution), be-
tween the origin and destination points (if possible), by travelling through the
graph. To guide this movement they use a State Transition Rule (STR) which com-
bines two kinds of information: pheromone trails (learnt information) and heuristic
knowledge.

The MUPFP-2C has two independent objectives to minimize. These objectives
are named f , minimization of the resources consumed in the path (fast path) and s,
minimization of the energy/health consumed in the path (safe path).

hCHAC uses two pheromone matrices (τ f , τs) and two heuristic functions (η f ,
ηs) (one per objective), a single colony, and two STRs: (Combined State Transition

1 Which means Compañía de Hormigas ACorazadas (Armored Ant Company) with the
prefix ’hexa’ due to the grid topology where it works.

166 A.M. Mora et al.

Rule, CSTR), similar to the one proposed in [6] and (Dominance State Transition
Rule, DSTR), which ranks neighbouring cells according to how many (of the neigh-
bours) they dominate.

The local and global pheromone updating formulae are based in the MACS-
VRPTW algorithm proposed in [2], with some changes due to the use of two
pheromone matrices. Finally, there are two evaluation functions (used to assign a
global cost value to every solution found) named Ff (minimization of resources
consumption) and Fs (minimization of energy consumption).

The definition and formulae of all these features can be found in [9].
The CSTR uses the λ parameter, so it is the rule which we are going to consider

in the present study. It is defined as:

If (q ≤ q0)

j = argmax
j∈Ni

{
τ f (i, j)α ·λ · τs(i, j)α ·(1−λ) ·η f (i, j)β ·λ ·ηs(i, j)β ·(1−λ)

}
(1)

Else

P(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ f (i, j)α ·λ · τs(i, j)α ·(1−λ) ·η f (i, j)β ·λ ·ηs(i, j)β ·(1−λ)

∑
u∈Ni

τ f (i,u)α ·λ · τs(i,u)α ·(1−λ) ·η f (i,u)β ·λ ·ηs(i,u)β ·(1−λ) i f j ∈ Ni

0 otherwise

(2)

In that rule, q0 ∈ [0,1] is the standard ACS parameter and q is an uniformly random
selected value in [0,1]. τ f , τs and η f , ηs are the previously commented matrices
and functions. α and β are the usual (in ACO algorithms) weighting parameters
for pheromone and heuristic information respectively, and Ni is the current feasible
neighbourhood for the node i. As can be seen, the λ parameter is used to weight the
terms (pheromone and heuristic values) related to each one of the objectives, using
its value ’λ ’ for the first term and the complementary ’(1 - λ)’ for the second.

This state transition rule works as follows: when an ant is building a solution
path and is placed at one node i, a random number q in [0,1] is generated, if q ≤ q0

the best neighbor j is selected as the next node in the path (Equation 1). Otherwise,
the algorithm decides which node is the next by using a roulette wheel considering
P(i,j) as probability for every feasible neighbour j (Equation 2).

The DSTR has not been taken into account in this work, because it does not use
the λ parameter, since the objectives are considered as completely independent in
the rule, and they are not weighted and combined (it is not an aggregative function).

The other proposed algorithm which has been studied in this work is hCHAC-4
[7], a redefinition of the bi-criteria hCHAC focused to deal with four objectives,
since each one of the main considered criteria can be subdivided into two sub-
objectives, this way: speed can be defined as distance to target point minimization

Studying the Influence of the Objective Balancing Parameter 167

(straight paths) and cost in resources minimization; while safety can be understood
as visibility2 to enemies and cost in energy/health minimizations.

So, the four objectives to minimize, have been considered separately: resources
consumption (r), distance to target point (d), energy consumption (e) and visibility
to enemies (v); the two first are related to speed, and the others to safety.

hCHAC-4 is also a MOACO algorithm that works in a graph (which models the
battlefield), but considering four weights in each edge. It is again an ACS, so it uses
the q0 parameter in the STR. All the elements of the algorithm have been adapted
to deal with four objectives, so there are four heuristic functions, four pheromone
matrices, and four evaluation functions. In addition, and as in hCHAC, there are two
different state transition rules, which work considering four objectives this time.

The CSTR-4 is similar to the CSTR of hCHAC, but involving four terms (one
per objective). Each one of these terms is defined as follows:

Tx(i, j) = τx(i, j)α ·ηx(i, j)β (3)

τ is the correspondent pheromone trails matrix, η is the heuristic function, and
x = r,d,e,v. α and β are the usual (in ACO algorithms) weighting parameters for
pheromone and heuristic information respectively. So, the STR for four objectives
(CSTR-4) is:

If (q ≤ q0)

j = argmax
j∈Ni

{
Tr(i, j)λ ·Td(i, j)λ ·Te(i, j)(1−λ) ·Tv(i, j)(1−λ)

}
(4)

Else

P(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tr(i, j)λ ·Td(i, j)λ ·Te(i, j)(1−λ) ·Tv(i, j)(1−λ)

∑
u∈Ni

Tr(i,u)λ ·Td(i,u)λ ·Te(i,u)(1−λ) ·Tv(i,u)(1−λ) i f j ∈ Ni

0 otherwise

(5)

Where all the parameters and terms are the same as in the CSTR of hCHAC. As can
be seen, the λ parameter is also used in this equation. It sets the importance of all
objectives at the same time, since they are related with speed (resources consump-
tion and distance to target point) or with safety (energy consumption or visibility to
enemies). The rule works as the previously commented STR.

Again, the DSTR (for four objectives this time) will not be considered in this
study since it does not use the λ parameter.

2 It is considered a cost in visibility with regard to the enemies, which is minimum if the unit
is hidden (at a point) to all the enemies, and it increases exponentially when it is visible to
any (or some) of them. With no enemy present, it is computed taking into account whether
it is visible to the surrounding cells in a radius, calculating a score, so the higher number
of cells can see the unit, the higher the score is.

168 A.M. Mora et al.

4 Algorithms to Compare

In previous works we considered two MOACO algorithms to make results compar-
isons which those yielded by hCHAC family methods. They had been presented by
other authors in literature and were adapted to solve the MUPFP-2C. Both of them
use the λ parameter in the STR to weight the objectives and to address the search
performed by the ants. We will consider them in this study in order to get more
general conclusions.

The first one is MOACS (Multi-Objective Ant Colony System), which was pro-
posed by Baran et al. [2], to solve the Vehicle Routing Problem with Time Windows
(VRPTW). It uses a single pheromone matrix for both objectives (instead of one per
objective).

It has been adapted to solve the MUPFP-2C [9], so it considers the same heuris-
tic and evaluation functions (see them in [10]), but different STR and pheromone
updating formulae. The STR is similar to the CSTR in hCHAC, but using only one
pheromone matrix (as we previously said). It is defined as follows:

If (q ≤ q0)

j = argmax
j∈Ni

{
τ(i, j) ·η f (i, j)β ·λ ·ηs(i, j)β ·(1−λ)

}
(6)

Else

P(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ(i, j) ·η f (i, j)β ·λ ·ηs(i, j)β ·(1−λ)

∑
u∈Ni

τ(i,u) ·η f (i,u)β ·λ ·ηs(i,u)β ·(1−λ) i f j ∈ Ni

0 otherwise

(7)

Where all the terms and parameters are the same as in Equation 2. This rule also
uses λ to balance the importance of the objectives in the search. The rule works as
we previously explain for hCHAC and hCHAC-4.

Since MOACS is an ACS, there are two levels of pheromone updating, local and
global. There has been defined new equations (in respect to the author’s original
algorithm definition) for both tasks, in addition to a new reinitialization mechanism,
which can be also consulted in [9].

The evaluation functions for each objective Ff and Fs, are the same as in the
previous approaches.

The second algorithm is BiAnt (BiCriterion Ant), which was proposed by Iredi
et al. [6] as a solution for a multi-objective problem with two criteria (the Single
Machine Total Tardiness Problem, SMTTP). It is an Ant System (AS) which uses
just one colony, and two pheromone matrices and heuristic functions (one per ob-
jective). So, the STR is similar to the CSTR of hCHAC, but without consider the q0
parameter, it is:

Studying the Influence of the Objective Balancing Parameter 169

P(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ f (i, j)α ·λ · τs(i, j)α ·(1−λ) ·η f (i, j)β ·λ ·ηs(i, j)β ·(1−λ)

∑
u∈Ni

τ f (i,u)α ·λ · τs(i,u)α ·(1−λ) ·η f (i,u)β ·λ ·ηs(i,u)β ·(1−λ) i f j ∈ Ni

0 otherwise

(8)

Where all the terms and parameters are again the same as in Equation 2. In addition,
the rule uses the λ parameter to weight the objectives in the search. The rule works
in the same way that hCHAC CSTR but without consider the random number q,
just directly calculating the probability for the feasible nodes using this formula and
using a roulette wheel to choose the next node in the path.

The definition of the heuristic and evaluation functions are the same as in
hCHAC. But, the pheromone updating scheme is different since BiAnt is an AS.
So it is just performed a global pheromone updating, including evaporation in all
nodes and contribution just in the edges of the best paths to the moment (those
included in the Pareto Set (PS)).

5 The λ Parameter

As shown in the equations applied in the algorithms, there are some parameters
considered in their expressions. Most of them were previously analysed [8] in order
to determine their influence on the behaviour of the main algorithm (hCHAC) and
the best set of values that they should take to yield the best solutions.

However, there is a very important parameter which has not been studied yet.
It is present in all the STRs (of the commented algorithms) and, since these rules
are the most important factor in every ACO algorithm, this parameter is key in the
algorithm performance. It is λ , the parameter which determines the importance of
each one of the objectives in the STR.

λ ∈ [0,1], has been to the moment user-defined3, determining which objective
has higher priority and how much. If the user decides to search for a fast path, λ
will take a value close to 1, on the other hand, if he wants a safe path, close to 0.

This value has been considered as constant during the algorithm for all ants, so
the algorithms always search in the same zone of the space of solutions (the zone
related to the chosen value for λ). That is, all the ants search in the same area of
the Pareto Front (PF) [3], yielding solutions (in average) with similar costs in both
objectives. These cost would maintain the relationship determined by the weight set
through the λ value.

This was the initial idea applied in hCHAC and in hCHAC-4 [7, 10], and this
scheme has been also implemented in the adapted (to the MUPFP-2C) versions of
MOACS and BiAnt, commented in previous section.

These algorithms were initially defined [2, 6] with a different policy for λ , which
consists in assign a different value for the parameter to each ant h, following the
expression:

3 This algorithms have been applied inside a simulator where an user can be determine in
advance the importance of each objective in the search.

170 A.M. Mora et al.

λh =
h−1
m−1

∀h ∈ [1,m] (9)

Considering that there are m ants, the parameter takes an increasing value that goes
from 0 for the first ant to 1 for the last one. This way, the algorithms search in all
the possible areas of the space of solutions (each ant is devoted to a zone of the PF).

This is the recommended scheme for solving classical MO problems, in which
the biggest (and fittest) Pareto Set (PS) is wanted to be obtained, but the MUPFP-2C
is addressed to get a set of solutions according to the user decision, that is, a set of
solutions with the desired relationship of importance between the objectives.

So, the idea could be to use this search scheme and to restrict the yielded solutions
using λ once the final PS has been obtained.

This way, the aim of the study is to decide the best scheme for applicating λ : the
constant scheme, where the value for the parameter is set at the beginning of the
algorithm for all the ants; and the variable scheme, where every ant considers its
own value for the parameter during the search and the user-criteria is applied at the
end of the run for restrict the solutions in the PS.

6 Experiments and Results

In order to study the different configurations for λ , some problems have been solved
using each one of the commented algorithms, considering in addition each one of
the schemes: constant and variable λ application.

So, the experiments have been performed in three different (and realistic) maps,
modelled from some screens of the PC Game Panzer General™. These maps
are PG-Forest Map (Figure 2), PG-River Map (Figure 3) and PG-Mountain Map
(Figure 4).

All the algorithms have been run in these maps using the same parameter values:
α=1, β=2, ρ=0.1 and q0=0.4 (tending to an exploitative search more as usual in
ACO algorithms). The λ parameter has taken values 0.9 and 0.1 in the constant
scheme to consider one objective with higher priority than the other.

All these MOACOs yield a set of non-dominated solutions, but less than usual in
this kind of algorithms, since it only searches in the region of the ideal Pareto front
determined by the λ parameter. In addition, we usually only consider one (which
is chosen by the military staff following their own criteria and the features of each
problem).

The considered evaluation functions are: Ff (minimization of the resources con-
sumed in the path, or fast path), and Fs (minimization of the energy consumed in
the path, or safe path). As a reminder, even in the hCHAC-4 algorithm, the final
solutions are evaluated using these functions to compare with the yielded results by
the other algorithms. 30 independent runs (1500 iterations and 30 ants) have been
performed with each one of the algorithms, using both schemes for λ , and search-
ing for the fastest and safest paths (in two different runs) in the case of the constant
scheme, and searching for both types of paths in the variable scheme.

Studying the Influence of the Objective Balancing Parameter 171

Fig. 2 PG-Forest Map. 45x45 cells map where some patches of forest are shown, there are
also some small villages and hills. The unit is located at the north (black border cell), the
target at the south (with yellow border), and there is one enemy placed in the centre (red
border cell). On the right figure it is shown the underlying information layer which models
the map on the left figure

Fig. 3 PG-River Map. 45x45 cells map where it is modelled an scenery with some villages
and cities, there are also some rivers and bridges, a patch of forest and some hills. The unit is
placed at the south (black border cell) and the target point at the north (with yellow border).
There are two enemies (cells with red border), one of them firing at the zone surrounding him
and also at some bridges (cells in red color), and the other one watching over on the top of a
hill. On the right figure it is shown the underlying information layer which models the map
on the left

At the end of every run, and depending on the scheme, some of the solutions
in the PS have been chosen, so in the constant approach the best solution in the
correspondent PS (fast paths PS or safe paths PS), looking at the cost related to

172 A.M. Mora et al.

Fig. 4 PG-Mountain Map. 45x45 cells map modelling a mountainous zone, with many moun-
tains, hills, hollows and valleys. The problem unit is placed at the south-west (with black
border) and the target point at the north (with yellow border). There is no known enemy. The
right figure shows the underlying information layer which models the map on the left

the preferred objective is selected: the one with the smallest Ff cost in the case of
fast paths (speed objective with higher priority), and the one with the smallest Fs

cost in the case of safe paths (safety objective with higher priority). In the variable
approach, the best solutions depending on each one of these costs are selected, but
just in a single PS (containing fast and safe paths). Once the best solutions in all the
runs have been chosen, the mean and standard deviation of all of them have been
calculated and presented in the Tables 1, 2 and 3.

Table 1 λ study results for the four algorithms in PG-Forest Map. 1500 iterations, 50 ants

Fastest (λ=0.9) Safest (λ=0.1)
Ff Fs Ff Fs

Constant λ

hCHAC
Best 68.50 295.40 80.50 7.30
Mean 77.88 ±7.84 166.20 ±131.08 84.67 ±3.64 8.02 ±0.55

hCHAC-4
Best 70.00 305.50 89.00 8.30
Mean 79.52 ±6.67 322.28 ±37.59 110.33 ±14.18 73.94 ±86.66

MOACS
Best 74.00 286.00 89.50 8.20
Mean 83.03 ±5.08 227.03 ±111.94 101.95 ±6.71 9.29 ±0.53

BiAnt
Best 84.50 297.00 146.50 13.90
Mean 123.82 ±32.86 320.49 ±75.44 158.75 ±32.25 284.47 ±152.01

Variable λ

hCHAC
Best 68.50 295.40 80.50 7.30
Mean 80.60 ±6.36 85.84 ±118.90 84.98 ±3.34 8.11 ±0.51

hCHAC-4
Best 74.50 285.90 96.00 9.30
Mean 93.62 ±10.27 290.07 ±101.75 110.98 ±15.78 195.59 ±89.03

MOACS
Best 77.50 286.20 92.50 8.20
Mean 86.53 ±5.51 214.02 ±110.22 97.28 ±5.66 9.16 ±0.68

BiAnt
Best 101.00 238.80 129.00 12.30
Mean 138.37 ±32.13 314.30 ±111.90 145.47 ±29.88 288.32 ±111.31

Studying the Influence of the Objective Balancing Parameter 173

Table 2 λ study results for the four algorithms in PG-River Map. 1500 iterations, 50 ants

Fastest (λ=0.9) Safest (λ=0.1)
Ff Fs Ff Fs

Constant λ

hCHAC
Best 61.00 244.90 74.00 27.30
Mean 66.42 ±3.29 225.19 ±90.26 84.68 ±4.89 28.36 ±0.48

hCHAC-4
Best 66.00 285.20 81.00 28.00
Mean 71.70 ±3.70 316.66 ±58.73 98.13 ±15.99 108.46 ±63.79

MOACS
Best 64.00 304.90 77.00 27.60
Mean 70.77 ±2.43 294.66 ±79.44 93.60 ±6.92 29.23 ±0.67

BiAnt
Best 74.00 256.00 116.50 41.20
Mean 100.27 ±16.71 279.70 ±153.73 135.90 ±31.96 287.33 ±135.75

Variable λ

hCHAC
Best 64.50 235.30 72.00 27.10
Mean 68.23 ±3.41 178.12 ±47.92 82.37 ±5.48 28.14 ±0.54

hCHAC-4
Best 68.50 295.40 111.00 50.90
Mean 81.40 ±10.01 302.24 ±46.05 101.22 ±19.55 212.00 ±56.22

MOACS
Best 64.50 295.00 76.00 27.50
Mean 71.67 ±2.90 244.90 ±61.14 91.00 ±6.67 28.97 ±0.66

BiAnt
Best 75.50 316.00 139.50 43.50
Mean 119.63 ±33.12 325.58 ±143.87 128.55 ±33.90 272.38 ±150.70

Table 3 λ study results for the four algorithms in PG-Mountains Map. 1500 iterations, 50
ants

Fastest (λ=0.9) Safest (λ=0.1)
Ff Fs Ff Fs

Constant λ

hCHAC
Best 74.36 352.66 80.53 336.18
Mean 76.43 ±0.99 352.39 ±8.98 81.66 ±2.49 354.61 ±11.86

hCHAC-4
Best 75.99 365.25 82.75 360.59
Mean 84.33 ±5.81 398.48 ±32.09 88.88 ±6.45 395.40 ±29.07

MOACS
Best 79.15 378.63 85.31 351.86
Mean 84.45 ±2.73 388.24 ±15.40 87.09 ±2.27 382.93 ±17.44

BiAnt
Best 87.57 397.36 96.47 415.56
Mean 116.65 ±20.98 528.56 ±96.95 138.06 ±26.57 620.65 ±117.80

Variable λ

hCHAC
Best 75.84 362.32 86.12 308.06
Mean 78.45 ±1.53 340.12 ±15.50 83.43 ±2.12 322.75 ±14.60

hCHAC-4
Best 82.93 404.62 87.66 359.07
Mean 89.57 ±4.37 415.88 ±28.63 91.52 ±5.93 408.38 ±26.80

MOACS
Best 80.23 370.26 89.42 354.34
Mean 83.99 ±2.18 386.22 ±16.12 85.80 ±3.68 376.42 ±13.45

BiAnt
Best 86.58 417.52 86.58 417.52
Mean 124.29 ±28.31 570.14 ±135.73 124.39 ±28.36 570.13 ±135.73

In these tables, data is grouped mainly into two big columns, depending on the
criteria with the higher priority (fastest or safest), so the cost function corresponding
to this criteria is the most interesting (Ff in the fastest case, and Fs in the safest case)
and the other one takes always worse values, since it corresponds to the secondary
objective in the search.

Table 1 shows that results corresponding to the constant scheme are better in
general; the best cost only slightly, but clearly on average. In general, the costs
associated to the preferred objective are better in the constant scheme, sometimes
the best solutions are the same (as in Table 1 for hCHAC), but the mean and standard
deviation demonstrate that they are worse.

There is a fact to point out, the mean results in the variable scheme for the objec-
tive which is not being minimised (the less important), are better than in the constant

174 A.M. Mora et al.

case. It is reasonable since in this case, the ants search in the whole space of solu-
tions, yielding good solutions not only in one of the objectives, but in both of them.
This should be interesting in most MO problems, where the aim is finding a good
solution in all the objectives, or yielding as much solutions in the PF as possible,
but in the MUPFP-2C, the user just want one solution in each case (or a set of so-
lutions) which minimises the most important objective. So the best option would be
the constant scheme.

In the hCHAC-4 case, the differences are more remarkable looking at the best
solutions and much more remarkable looking at the means. The reason is that con-
sidering four objectives to minimise, makes the search space bigger, so it is quite
difficult to get a good set of solutions in the same time. In fact, it is more compli-
cated to yield good solutions considering just one objective (the preferred one), if
the algorithm explores the whole space of solutions (variable scheme), than if the al-
gorithm search just in a concrete area (constant scheme). But again, better solutions
for the secondary objective are obtained.

Relating to MOACS, there are small differences between the results of both
schemes, being a bit better the constant approach, except in one case in which the
mean for the variable configuration is better, but the standard deviation is worse, so
in an averaged sense, results favours again to the constant scheme.

BiAnt shows stronger differences favouring to the constant configuration too, due
to the higher exploration factor associated to the algorithm (since it is an AS), as can
be seen in the high standard deviation of its results. So this approach takes advantage
of the extra exploitation factor that adds the constant λ scheme.

Looking at the Table 2 results, they are quite similar to those commented (on the
previous table), being better in general for the constant configuration. But this time
there are some exceptions in which the variable scheme yields better solutions, even
considering the mean and standard deviation (MOACS case). This happens always
in the Fs cost for the searching of the safest paths, since there are just a few number
of safe paths, all of them moving in a concrete area of the map, since both enemies
are watching over the greater part of the scenery. So just the left-side zone, which
is far from them, and behind some forest patches and hills is a safe zone. This way,
the most of the safest solutions move through that area (they are quite similar), and
the variable scheme explores some more possibilities inside the good ones.

The third map (which results are showed in Table 3) is an special case, since
there are no known enemies on it. So both, the fastest and the safest paths, are quite
straight from the origin to the target point (moving through the most hidden cells, to
their environment, in the safest case). This means that in the constant scheme just a
small area in the search space is explored (the one surrounding the most straight so-
lution), but in the variable approach, there is a higher exploration around this straight
zone, which yields better solutions on average when the algorithms search for safe
solutions. This map has been included in the study to show that the application of
a variable scheme could be better in maps with a ’very restricted’ set of solutions,
where there are a small zone of the space of solutions to explore due to the problem
definition.

Studying the Influence of the Objective Balancing Parameter 175

7 Conclusions and Future Work

In this paper, two different schemes of application for the parameter which sets
the relevance of two objectives, in four MOACOs designed to solve the military
unit path-finding problem, considering speed and safety, have been analysed. This
parameter is known as λ , and it is applied in the State Transition Rule of the
algorithms.

The variable scheme consists in assign a different value to each of the ants in the
algorithm in order to search in the whole space of solutions (every ant searches in an
area). The other configuration, named constant scheme, determines in advance one
value which is used by all the ants, so they search in the same area of the space of
solutions. Some experiments have been performed over three realistic maps and the
general conclusion reached is the constant approach yields better solutions most of
times, following the user (of the application which applies the algorithms) criteria.

In general the use of the constant λ scheme implies a higher exploitation of solu-
tions (since all the ants search in a concrete area). On the other hand, the variable λ
scheme adds an exploration factor to the algorithms, since each ant searches in a dif-
ferent area of the space of solutions, yielding different solutions (better sometimes)
and a bigger Pareto Set (in the ideal case). The second approach would be better for
most of the multi-objective algorithms, to solve ordinary or common multi-objective
problems, since the aim is to find as much solutions as possible (the biggest PS). But
in the problem addressed in this work, the aim is to get the best solution considering
a set priority for both objectives, so the constant scheme has demonstrated to be
better. This way, the two algorithms taken from the literature and adapted to solve
this problem (MOACS and BiAnt), show that the constant configuration yields bet-
ter results in this case, but they were defined considering a variable approach, since
their aim were to solve general MO problems.

There are some ideas as future work in this line. The first one is to test both
schemes in some other problems, considering the best set of values for the other
parameters in each one of the algorithms, since some of them should show some
differences between the results yielded by both schemes when they have a correct
exploitation factor, as BiAnt case. Another approach consists in the implementation
of the proposed algorithms to solve common MO problems. In this case, we will
perform a new experimental set to determine the best λ application scheme.

Finally, we would like to implement the auto-evaluation of the scenario to fix the
best set of values before the running of the algorithm. Also including the decision
of the most appropriate scheme for applicating λ .

Acknowledgements

This paper has been funded in part by the Spanish MICYT projects NoHNES (Spanish Min-
isterio de Educación y Ciencia - TIN2007-68083) and TIN2008-06491-C04-01 and the Junta
de Andalucía P06-TIC-02025 and P07-TIC-03044.

176 A.M. Mora et al.

References

[1] Mini-Simulator hCHAC (2008),
http://forja.rediris.es/frs/download.php/1355/mss_chac.zip

[2] Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing problem
with time windows. In: IASTED International Multi-Conference on Applied Informat-
ics. IASTED IMCAI, vol. 21, pp. 97–102 (2003)

[3] Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solv-
ing Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

[4] Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms, appli-
cations, and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuris-
tics, pp. 251–285. Kluwer, Dordrecht (2002)

[5] García-Martínez, C., Cordón, O., Herrera, F.: An empirical analysis of multiple objec-
tive ant colony optimization algorithms for the bi-criteria TSP. In: Dorigo, M., Birattari,
M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS,
vol. 3172, pp. 61–72. Springer, Heidelberg (2004)

[6] Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony ant
algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.)
EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)

[7] Mora, A., Merelo, J., Laredo, J., Castillo, P., Sánchez, P., Sevilla, J., Millán, C., Torrecil-
las, J.: hCHAC-4, an ACO algorithm for solving the four-criteria military path-finding
problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Proceedings of the
International Workshop on Nature Inspired Cooperative Strategies for Optimization.
NICSO 2007, pp. 73–84 (2007)

[8] Mora, A., Merelo, J., Castillo, P., Laredo, J., Cotta, C.: Influence of parameters on the
performance of a moaco algorithm for solving the bi-criteria military path-finding prob-
lem. In: WCCI 2008 Proceedings, pp. 3506–3512. IEEE Press, Los Alamitos (2008)

[9] Mora, A.M., Merelo, J.J., Millán, C., Torrecillas, J., Laredo, J.L.J., Castillo, P.A.:
Comparing aco algorithms for solving the bi-criteria military pathfinding problem. In:
Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL
2007. LNCS (LNAI), vol. 4648, pp. 665–674. Springer, Heidelberg (2007)

[10] Mora, A.M., Merelo, J.J., Millán, C., Torrecillas, J., Laredo, J.L.J., Castillo, P.A.: En-
hancing a MOACO for solving the bi-criteria pathfinding problem for a military unit
in a realistic battlefield. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 712–721. Springer, Heidelberg (2007)

http://forja.rediris.es/frs/download.php/1355/mss_chac.zip

HC12: Highly Scalable
Optimisation Algorithm

Radomil Matousek

Abstract. In engineering as well as in non-engineering areas, numerous optimi-
sation problems have to be solved using a wide range of optimisation methods.
Soft-computing optimisation procedures are often applied to problems for which
the classic mathematical optimisation approaches do not yield satisfactory results.
In this paper we present a relatively new optimisation algorithm denoted as HC12
and demonstrate its possible parallel implementation. The paper aims to show that
HC12 is highly scalable and can be implemented in a cluster of computers. As a
practical consequence, the high scalability substantially reduces the computing time
of optimisation problems.

1 Introduction

This paper describes the possibility of parallelizing the HC12 optimisation algo-
rithm. Designed in 1995 [3], HC12 algorithm was well described e.g. in [4, 5]. This
original algorithm uses a hill-climbing approach [6], more precisely: for a given op-
timisation problem, in each iteration step i, a solution (Akernel,i) exists to which a
neighbourhood of further possible solutions is generated using a fixed pattern. From
this neighbourhood, a best solution is chosen for iteration step i + 1, which will
again be used to generate a new solution (Akernel,i+1). The algorithm stops if no best
solution can be found, that is, if (for a minimisation problem)

min(f (Akernel,i))≤min(f (Akernel,i+1)) , (1)

where i is the iteration number and f is the objective function. As Chapter 2 and
Chapter 4 shows, the HC12 algorithm is, among others, designed to lend itself to

Radomil Matousek
Brno University of Technology, Faculty of Mechanical Engineering,
Department of Applied Computer Science,
Technická 2, Brno 616 69, Czech Republic
e-mail: matousek@fme.vutbr.cz

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 177–183, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

matousek@fme.vutbr.cz

178 R. Matousek

good parallelization. Thus the paper aims to verify this property by implementing
the algorithm in a cluster of computers. The test has been designed to verify and
demonstrate a computation-time reduction in problems for which "this is already
significant" in terms of time. As a testing problem, the F6 optimisation problem has
been chosen for which, given a complexity and the parameters of the SW and HW
environment, an average single-processor computing time of 45 minutes has been
achieved.

2 HC12 Algorithm

A mathematical description of the algorithm can be found in [5]. Here the basic
ideas are summarized:

• The solution of a given optimisation problem is represented by a binary vector A.
• This binary vector A codes k real parameters of the optimisation problem, that

is, the real input parameters xi (where i ∈ {1...k}) of the objective function. This
provides a basis for discretizing the Domain of Definition (DoD) of the problem
parameters to be found. The degree of discretization depends on the size of the
binary string being proportional to 2s where s is the number of bits per parameter.

• The procedure used to decode the binary string is given by the way the optimi-
sation problem is formulated. For F6, the binary vector A is decoded using the
Gray coding on a vector of integer parameters (int1, ..., intk) where k = 50 in our
case. Next, using the DoD, this vector is further transformed into a vector of real
parameters xi.

• In the first iteration, a binary vector Akernel,1 and a neighbourhood to fit a fixed
pattern are randomly generated. With HC12, this is a neighbourhood with dis-
tances 1 and 2 from vector Akernel in the sense of the Hamming metric. In each
iteration, the best solution is chosen as the new basis. The procedure is repeated
until condition (1) is satisfied.

The Hamming distance ρH between two binary vectors of equal length is the number
of positions for which the corresponding symbols are different. Let a,b are binary
vectors of length N and a,b its elements, then the Hamming distance can be calcu-
lated as follows:

ρH(a,b) =
N

∑
i=1

|ai−bi| (2)

The principle of decoding a binary string to a vector of real parameters is shown in
Fig. 1, the generating of a neighbourhood using a four-bit vector Akernel , is shown
in Fig. 2. It follows from the principle that the cardinality (size) of the neighbour-
hood for a Hamming distance of 1 corresponds to the length N of the binary vector
thus growing linearly with the length of the binary vector. On the other hand, the
cardinality (size) of a neighbourhood for a Hamming distance of 2 corresponds to
the combination number (N,2). It is exactly this type of neighbourhood that causes
an unwelcome combinatorial expansion of the neighbourhood generated whose size
grows exponentially with the length of the binary vector.

HC12: Highly Scalable Optimisation Algorithm 179

Fig. 1 Parameters’ encoding scheme (binary and Gray code, integer and real parameters)

Fig. 2 An example of 4-bits neighbourhood generating for ρH = 1 and ρH = 2

3 The F6 Test Function

To demonstrate the performance of the HC12 algorithm and to verify its scalability
in a cluster of computers, a multimodal function has been used which is usually
used to test the power of both standard and soft-computing optimisation algorithms
referred to as the Rastrigino F6 function.

F6(x) = 10n +
n

∑
i=1

(
x2

i −10cos(2πxi)
)

−5.12 � xi �−5.12, minF6(x) = F6 (0, ...,0) = 0

(3)

As follows from definition (3), this function is continuous and smooth, but has a
large number of maxima and minima. This number grows as a power given by the di-
mension of the function. In the present example, the optimisation problem is solved
for 50 variables with an identical domain of [-5.12, 5.12]. The discretization chosen
yields a calculation precision of eps = 0.01 for each parameter xi.

It should be stressed that, for a minimisation problem, the F6 function represents
1.1739e+052 possible extremes on a given domain. Moreover, each of the variables
to be found is encoded using 10 bits, which, given the number of parameters, results
in a 500-bit binary string. If a rude-force algorithm were used to find an optimum
solution, such a length would require 3.2734e+150 possible variants! This clearly
demonstrates the enormous time needed to solve such an optimisation problem. As
the first iteration of the HC12 algorithm is of stochastic nature, all the tests have been

180 R. Matousek

made for 100 algorithm runs with the average taken as a result since the median and
average are very close.

To be able to analyse the scalability, for each configuration (the number of
computers clustered), we used the same "random" vector configurations of the first
iteration Akernel,1 The below table shows an example of the results of a given opti-
misation problem.

Table 1 Record of the optimisation process of looking for a minimum of the F6 function

Iteration Objective Function Value

1 884.3852097349522
2 805.3840740133274
3 730.8040415793919
... ...
30 121.2632026930635
... ...
60 21.1934433716936
... ...

100 0.6542459906284
... ...

122 0.0000000000000

Fig. 3 Visualization of Rastrigin’s function F6 in the range (DoD) from -5 to 5. The global
optimum is positioned at point [0, 0]

HC12: Highly Scalable Optimisation Algorithm 181

4 Parallel Implementation

The optimization method was implemented as parallel application in Java and de-
ployed on a cluster of computers.

The computers had AMD Opteron CPUs running at 2.6GHz and Linux operating
system, the Java platform used was SUN 64-bit JDK version 1.6.0_14 with the
Server VM.

The application used a master-slave architecture, where slaves registered with
the master and the master then assigned them chunks of work. The master and slave
parts communicated using the RMI (Remote Method Invocation) mechanism pro-
vided by the Java platform.

The master part coordinated repeated iterations, where each iteration involved:

• taking the so far best known N-bit vector as a starting vector;
• finding all N-bit vectors with Hamming distance of 1 from the starting vector -

there are just N of them, so parallelisation is not needed;
• converting all of them into vectors of floating point numbers with double pre-

cision, computing the value of the objective function and finding the minimum
value, eventually replacing the starting vector with the new minimum;

• dividing the N(N − 1)/2 N-bit vectors with Hamming distance of 2 from the
starting vector into chunks of equal size and assigning them to slaves to compute
the value of the objective function for each of them, returning the best one found;

• collecting the best found bit vectors from slaves and selecting the best of them;
• if the best found bit vector is better than the starting point, it uses it as a starting

point for the next iteration, otherwise it ends by equation (1).

This list shows that the master part makes synchronization points at the end of each
iteration, so the Amdahl’s law predicts that the speedup cannot be fully linear with
growing number of CPUs. But for growing number of bits in vectors, the number of
vectors processed by the parallel part of the algorithm is growing faster compared
to the number of vectors processed by the serial part, and the maximum possible
speedup is improving.

5 Results and Conclusions

The results of a parallel implementation of the optimization process for 500 bits,
50 dimensions by 10 bits each, and objective function F6 are presented by Table 2
and Fig. 3. An average count of iterations to reach the best HC12 solution was 122
(an example of iteration run is in the Table 1). A code was found to scale nearly
linearly on a cluster of computing machines if each machine runs just one instance
of the slave part. However, when more than one slave was located on the same
machine, the scalability was much worse. For example, a machine with 8 dual-core
AMD Opteron CPUs was tried with 1, 2, 4, 8, and 16 instances of the slave part.
When using 8 slaves, the computation was only about 4 times faster than when using
1 slave. When using 16 slaves (the machine had 16 CPU cores so that improvement
was possible) the computation was even slower than when using only 8 slaves. This

182 R. Matousek

Table 2 Scalability vs. computing time

CPUa time speed up

1 2722 [s] 1.00 x
2 1400 [s] 1.94 x
3 948 [s] 2.87 x
4 697 [s] 3.91 x
5 571 [s] 4.77 x
6 479 [s] 5.69 x
7 437 [s] 6.23 x
8 382 [s] 7.13 x
9 336 [s] 8.10 x

a The number of CPUs in cluster (AMD Opteron, two cores).

Fig. 4 Computing time depending on the number of CPUs in the cluster of computers

result is likely to be caused by scalability issues of multiprocessor machines, and
does not provide any information about the scalability of the optimization method
itself.

The testing of a parallel implementation if the HC12 algorithm has proved un-
equivocally that the algorithm is highly scalable within a cluster of computers. For a
given optimisation problem, the difference between the computing time on a single
computer (about 45 minutes) and 9 computers (about 5 minutes) is about 40 minutes
as given by the measurements (see Table 2). This acceleration may be considered
significant. As the favourable properties of the HC12 optimisation algorithm or its
implementations within other soft-computing methods (such as GAHC algorithm
[5]) have already been demonstrated several times for a single CPU, the authors
will further focus on the research and applications of its parallel implementations.
In this light, this paper demonstrating a high scalability of the HC12 algorithm may
be thought of as one of the pilot papers concerning parallel implementations of the
HC12 algorithm.

HC12: Highly Scalable Optimisation Algorithm 183

Acknowledgements. The access to the MetaCentrum supercomputing facilities provided
under the research intent MSM6383917201 is highly appreciated. This work was supported
by the Czech Ministry of Education in the frame of MSM 0021630529 “Intelligent Systems
in Automation” and by the Grant Agency of the Czech Republic No.: 102/091668 “Control
Algorithm Design by means of Evolutionary Approach”.

References

[1] Amdahl, G.: Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capabilities. In: AFIPS Conference Proceedings, vol. (30), pp. 483–485 (1967)

[2] Battiti, R., Tecchiolli, G.: Local search with memory: Benchmarking RTS. journal of
Operations Research Spectrum 17(2/3), 67–86 (1995)

[3] Matousek, R.: GA (GA with HC mutation) – implementation and application, Master
thesis (in Czech), Brno University of Technology, Brno, Czech Republic (1995)

[4] Matousek, R.: GAHC: A Hybrid Genetic Algorithm. In: Proceedings of the 10th Fuzzy
Colloquium in Zittau, Zittau, pp. 239–244 (2002) ISBN: 3-9808089-2-0

[5] Matousek, R.: GAHC: Improved Genetic Algorithm. In: Krasnogor, et al. (eds.) Nature
Inspired Cooperative Strategies for Optimization (NICSO 2007). Springer book series,
vol. 129, XIV, p. 114 (12p). Springer, Berlin (2008)

[6] Mitchell, M., Holland, J.H.: When Will a Genetic Algorithm Outperform Hill Climb-
ing? In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information
Processing Systems, vol. 6. Morgan Kaufmann, San Mateo (1994)

[7] Zhou, R., Hansen, E.A.: Breadth-First Heuristic Search. In: 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004), Whister, British Columbia,
Canada (2004)

Adaptive Evolutionary Testing:
An Adaptive Approach to Search-Based Test
Case Generation for Object-Oriented Software

José Carlos Bregieiro Ribeiro, Mário Alberto Zenha-Rela,
and Francisco Fernández de Vega

Abstract. Adaptive Evolutionary Algorithms are distinguished by their dynamic
manipulation of selected parameters during the course of evolving a problem so-
lution; they have an advantage over their static counterparts in that they are more
reactive to the unanticipated particulars of the problem. This paper proposes an
adaptive strategy for enhancing Genetic Programming-based approaches to auto-
matic test case generation. The main contribution of this study is that of proposing
an Adaptive Evolutionary Testing methodology for promoting the introduction of
relevant instructions into the generated test cases by means of mutation; the instruc-
tions from which the algorithm can choose are ranked, with their rankings being
updated every generation in accordance to the feedback obtained from the individu-
als evaluated in the preceding generation. The experimental studies developed show
that the adaptive strategy proposed improves the test case generation algorithm’s
efficiency considerably, while introducing a negligible computational overhead.

1 Introduction

The application of Evolutionary Algorithms (EAs) to test data generation is often
referred to as Evolutionary Testing (ET) [15] or Search-Based Testing (SBT) [10].
ET is an emerging methodology for automatically generating high quality test data;
it is, however, a difficult subject – especially if the aim is to implement an automated

José Carlos Bregieiro Ribeiro
Polytechnic Institute of Leiria – Leiria, Portugal
e-mail: jose.ribeiro@estg.ipleiria.pt

Mário Alberto Zenha-Rela
University of Coimbra – Coimbra, Portugal
e-mail: mzrela@dei.uc.pt

Francisco Fernández de Vega
University of Extremadura – Mérida, Spain
e-mail: fcofdez@unex.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 185–197, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

jose.ribeiro@estg.ipleiria.pt
mzrela@dei.uc.pt
fcofdez@unex.es

186 J.C.B. Ribeiro, M.A. Zenha-Rela, and F.F. de Vega

solution, viable with a reasonable amount of computational effort, which is adapt-
able to a wide range of test objects. This paper proposes an adaptive methodology
for the ET of Object-Oriented (OO) software.

EAs are powerful, yet general, methods for search and optimization. Their gener-
ality comes from the unbiased nature of the standard operators used, which perform
well for problems where little or no domain knowledge is available [1]. However, if
knowledge about a problem is available, a bias can be introduced directly into the
problem so as to remove (or penalize) undesirable candidate solutions and improve
the efficiency of the search. Unfortunately, a priori knowledge about the intricacies
of the problem is frequently unavailable. Having little information about a problem
does not, however, necessarily prevent introducing an appropriate specific bias into
an evolutionary problem; for many tasks, it is possible to dynamically adapt aspects
to anticipate the regularities of the environment and improve solution optimization
or acquisition speed. Adaptive EAs are distinguished by their dynamic manipulation
of selected parameters or operators during the course of evolving a problem solution
[5]. They have an advantage over their standard counterparts in that they are more
reactive to the unanticipated particulars of the problem and, in some formulations,
can dynamically acquire information about regularities in the problem and exploit
them.

Typically, EAs maintain a population of candidate solutions rather than just one
current solution; in consequence, the search is afforded many starting points, and the
chance to sample more of the search space than local searches. Mutation is the main
process through which new genetic material is introduced during an evolutionary
run with the intent of diversifying the search and escaping local maxima. The main
contribution of this study is that of proposing an adaptive strategy for promoting
the introduction of relevant instructions into the existing test cases by means of
mutation; the set of instructions from which the algorithm can choose is ranked,
with their rankings being updated every generation in accordance to the feedback
obtained from the individuals evaluated in the preceding generation.

This article is organized as follows. The next Section starts by providing back-
ground on ET and Adaptive EAs. Section 3 details the Adaptive ET strategy pro-
posed. The experiments conducted in order to validate and observe the impact of the
Adaptive ET technique are discussed in Section 4. The concluding Section presents
some final considerations and summarizes the most relevant contributions.

2 Background and Terminology

Software Testing is the process of exercising an application to detect errors and to
verify that it satisfies the specified requirements. When performing unit-testing, the
goal is to warrant the robustness of the smallest units – the test objects – by testing
them in an isolated environment. Unit-testing is performed by executing the test ob-
jects in different scenarios using relevant test cases. Classes and objects are typically
considered to be the smallest units that can be tested in isolation in OO programs
[17]. An object stores its state in fields and exposes its behaviour through methods.

Adaptive Evolutionary Testing 187

A unit-test case for OO software consists of a Method Call Sequence (MCS), which
defines the test scenario. During test case execution, all participating objects are
created and put into particular states through a series of method calls. Each test
case focuses on the execution of one particular public method – the Method Under
Test (MUT). In most situations, an OO class is not standalone; testing a single class
involves other classes – i.e., classes that appear as parameter types in the method
signatures of the Class Under Test (CUT). The set of classes which are relevant for
testing a particular class is called the Test Cluster [16]. The Test Cluster for a given
class can be obtained by performing a transitive static analysis of the signatures of
the public methods of this class; each data type (class, interface, or primitive type)
encountered during this analysis is added to the Test Cluster. After all methods of
the CUT have been included in the Test Cluster, the analysis continues by evaluating
all the public methods of the Test Cluster types which have not yet been considered;
once all method signatures have been analysed in this manner, the Test Cluster con-
tains all relevant types.

Genetic Programming (GP) is usually associated with the evolution of tree struc-
tures; it focuses on automatically creating computer programs by means of evolution
[7], and is thus especially suited for representing and evolving Test Programs. GP
algorithms maintain a population of candidate solutions, which is iteratively recom-
bined and mutated in order to evolve successive generations of individuals. An in-
dividual’s probability of being selected for reproduction is associated to its fitness,
which quantifies the optimality of a solution; the idea is to favour the fitter indi-
viduals in the hope of breeding better offspring. Within the tree genomes, the leaf
nodes are called terminals (and can be inputs to the program, constants or functions
with no arguments), whereas the non-leaf nodes are called non-terminals (functions
taking at least one argument). The Function Set is the set of functions from which
the GP system can choose when constructing trees. Non-typed GP approaches are,
however, unsuitable for representing test programs for OO software, because any
element can be a child node in a parse tree for any other element without having
conflicting data types; in contrast, Strongly-Typed Genetic Programming (STGP)
[11] allows the definition of types in the Function Set, which causes the initial-
ization process and the various genetic operations to only construct syntactically
correct trees, which can be translated to compilable programs.

Still, syntactically correct and compilable MCSs may still abort prematurely, if
a runtime exception is thrown during execution [17]. Test cases can thus be sepa-
rated in two classes: feasible test cases are effectively executed, and terminate with
a call to the MUT; unfeasible test cases terminate prematurely because a runtime
exception is thrown by an instruction of the MCS.

Several methodologies to the ET of OO software have been proposed, focusing
on the usage of distinct EAs – e.g., Genetic Algorithms [4, 6, 15], GP [14], STGP
[12, 13, 17, 18]. However, to the best of our knowledge, there are no studies on the
possibility of applying Adaptive EAs to ET problems.

The action of determining the variables and parameters of an EA to suit the prob-
lem has been termed adapting the algorithm to the problem; in EAs this can be
performed dynamically, while the algorithm is searching for a solution. Adaptive

188 J.C.B. Ribeiro, M.A. Zenha-Rela, and F.F. de Vega

EAs provide the opportunity to customize the EA to the problem and to modify the
configuration and the strategy parameters used while the problem solution is sought.
This enables incorporating domain information into the EA more easily, and allows
the algorithm itself to select those parametrization which yield better results. Also,
these values can be modified during the run of the Adaptive EA to suit the situation
during that part of the run. Adaptive EAs have already been applied to solve sev-
eral problems; interesting review articles include [1, 5]. In [5], the authors proposed
a classification based on the adaptation type and adaptation level of the Adaptive
EA. The type of adaptation consists of two main categories: static and dynamic.
Static adaptation is where the strategy parameters have a constant value throughout
the run of the EA; consequently, an external agent or mechanism (e.g., the user)
is needed to tune the desired strategy parameters and choose the most appropriate
values. Dynamic adaptation happens if there is some mechanism which modifies a
strategy parameter without external control (e.g., by means of some deterministic
rule or some form of feedback from the EA).

3 Adaptive Evolutionary Testing

With STGP approaches, MCSs are encoded (and evolved) as STGP trees; each tree
subscribes to a Function Set, which must be specified beforehand and defines the
STGP nodes and establishes the constraints involved in the trees’ construction. In
other words, the Function Set contains the set of instructions from which the algo-
rithm can choose when building the MCSs that compose test cases.

The Function Set can be defined completely automatically based solely on the
Test Cluster information [16]. The definition of the Test Cluster is, therefore, of
paramount importance to the algorithm’s performance and accuracy. If the Test
Cluster consists of many classes (or if it is composed of few classes which possess
a high number of public methods), the Function Set can be extremely large. With
an increasing size of the Function Set (and hence an increasing size of the search
space) the probability that the “right” methods appear in a candidate test sequence
decreases – and so does the efficiency of the evolutionary search. Conversely, if
a more conservative strategy is employed, the Test Cluster may not include all the
classes needed to attain full coverage, thus compromising effectiveness. As such, the
selection of the classes and methods to be included in the Test Cluster – and, con-
sequently, in the Function Set – must be carefully pondered, and adequate strategies
must be employed for defining the Test Cluster and sampling the search domain.

Still, there are good reasons to suppose that there is no one strategy, however
clever, recursive, or self-organizing that will be optimal for all problem domains.
The Test Cluster parametrization process is heavily problem-specific and, as such, it
usually falls on the users’ hands. Leaving this task to the user has, however, several
drawbacks. Namely: the users’ mistakes in setting the parameters could be sources
of errors and/or suboptimal performance; parameter tuning costs a lot of time; and
the optimal parameter value may vary during the evolution [5].

Adaptive Evolutionary Testing 189

What’s more, the users’ choices are inevitably biased, and performance is (ar-
guably) often compromised for the sake of accuracy; in the particular case of ET
problems, not doing so could result in the impossibility of obtaining suitable test
sets, in conformity to the criteria defined. In [16], Wappler suggested strategies for
addressing the problem of large Function Sets, that result from large Test Clusters
with classes that possess many methods:

• Performing a static analysis so as to eliminate all the functions in the Function Set
that correspond to methods which are neither object-creating nor state-changing.
An Input Domain Reduction strategy, based on the concept of Purity Analysis,
that meets this suggestion has already been proposed in [13].

• Defining a distance-based heuristic, that prevents the methods from those Test
Cluster classes that are associated to the CUT via several other classes from being
transformed to functions of the Function Set. Such an heuristic would have to be
heavily problem-specific, and decisions would have to be made statically and a
priori – potentially compromising the success of the search. It seems difficult to
implement an automated solution for this idea without compromising generality.

• Naming classes whose methods shall not be transformed to functions of the Func-
tion Set. This idea exploits the user’s knowledge of the CUT, and suffers from
the drawbacks mentioned above.

We propose a different strategy, based on the concept of dynamically adapting
the Function Set’s constraints selection probabilities. During an evolutionary run,
it is possible to perceive that the introduction of certain instructions should be
favoured. By allowing the constraints’ selection probabilities to fluctuate throughout
the search, with basis on the feedback obtained by the behaviour of the individuals
produced and evaluated previously, the introduction of interesting genetic material
will be promoted. This strategy allows mitigating the negative effects of including
a large number of entries into the Test Cluster; also, it allows a higher degree of
freedom when defining the Test Cluster, by minimizing the impact of redundant,
irrelevant or erroneous choices.

Mutation plays a central role on the diversification of the search and on the ex-
ploration of the search space; it basically consists of selecting a mutation point in a
tree, and substituting the sub-tree rooted at the point selected with a newly gener-
ated sub-tree [7]. Previous studies indicate that better results can be attained if the
mutation operator is assigned a relatively high probability of selection [13].

Mutation is, in fact, the main process by which new genetic material is introduced
during the evolutionary search. In the particular case of ET of OO software prob-
lems, it allows the introduction of new sequences of method calls into the generated
test cases, so as to allow trying out different objects and states in the search for full
structural coverage. Also, it is clear that during an evolutionary run, it is possible
to perceive that some method calls are more relevant than others, e.g. because they
had been less prone to throw runtime exceptions and their introduction will likely
contribute to test case feasibility, or simply because they have been used less fre-
quently and their introduction will promote diversity (precisely the main task of the
Mutation operator).

190 J.C.B. Ribeiro, M.A. Zenha-Rela, and F.F. de Vega

Table 1 Example Function Set and Type Set

Function Name Return Type Child Types

void print(Object) TREE OBJECT
String intToStr(Integer) STRING (rank:0.2) INT
“Foo” STRING (rank:0.8)
“Bar” STRING (rank:0.2)
Integer add(Integer,Integer) INT (rank:0.8) INT, INT
0 INT (rank:0.4)
1 INT (rank:0.6)

Set Types: OBJECT = [STRING, INT]

Whenever mutation occurs, a new (sub-)tree must be created; usually, one of the
standard tree builders (e.g., Grow, Full, Half-Builder or Uniform) is used to generate
these trees [8]. We propose employing Luke’s Strongly-Typed Probabilistic Tree
Creation 2 (PTC2) algorithm [9] to perform this task, so as to take advantage of
the built-in feature that allows assigning probabilities to the selection of constraints.
What’s more, we have modified this algorithm in order to be able to dynamically
update the constraints’ probabilities during the evolutionary run.

The Strongly-Typed Probabilistic Tree Creation 2 algorithm works as follows: it
picks a random position in the horizon of the tree (i.e., unfilled child node positions),
fills it with a non-terminal (thus extending the horizon), and repeats this process
until the number of nodes (non-terminals) in the tree, plus the number of unfilled
node positions, is greater or equal to the requested tree size. Finally, the remaining
horizon is filled with terminals. The tree size is provided by the user.

PTC2 provides uniform distribution of functions and has very low computa-
tional complexity [8]. Also – and most interestingly – PTC2 has provisions for
picking non-terminals with a certain probability over other non-terminals of the
same return type, and terminals over other terminals likewise. In order to il-
lustrate the methodology followed by this algorithm, let us consider a simple
problem which includes a Function Set (Table 1) composed of seven entries (or con-
straints), defining three non-terminal nodes – void print(String), String
intToStr(Integer), Integer add (Integer, Integer) – and four
terminal nodes – "Foo", "Bar", 0 and 1. Also, it defines three atomic types –
TREE, STRING and INT – and one set type – OBJECT, which includes both INT
and STRING. The TREE type is used as return type of the STGP tree.

The constraint selection rankings are also defined. "Foo" is given a rank of 0.8,
and "Bar" a rank of 0.2, for example; this means that, if the PTC2 algorithm is
required to select a terminal node with a STRING return type, it will select con-
straint "Foo" with a probability of 80% and "Bar" with a probability of 20%. If,
however, it is required to select a terminal node with an OBJECT return type, PTC2
uniformly distributes the rankings of the STRING and INT atomic types, with the
constraints probabilities being defined as follows: "Foo"–40%; "Bar"–10%; 0–
20%; 1–30%. Continuing with this example, if required to grow a tree of size 3,

Adaptive Evolutionary Testing 191

Fig. 1 Example STGP tree (left) and corresponding Method Call Sequence (right)

the PTC2 algorithm would build the tree depicted in Figure 1 with a 19.2% chance:
100% probability of selecting the root node, times 80% probability of selecting the
non-terminal constraint Integer add(Integer, Integer) as an OBJECT
type provider for the root node, times 40% chance of choosing 0 as the first terminal
of type INT, times 60% chance of selecting 1 as the second terminal.

The dynamic adaptive strategy described in the following Subsection aims at dy-
namically tuning the Function Set’s constraints selection rankings, so as to promote
the creation of sub-trees, for insertion in the population via mutation, that favour
both feasibility and diversity.

3.1 Dynamic Adaptation Strategy

Let the constraint selection ranking of constraint c in generation g be identified as
ρg

c . Also, let λ be the runtime exceptions caused factor, σ be the runtime exceptions
caused by ancestors factor, and γ be the constraint diversity factor. Then, ρg

c is up-
dated, at the beginning of each generation, in accordance to the following Equation.

ρg
c = ρg−1

c −λ g−1
c −σg−1

c − γg−1
c (1)

That is, the constraint selection ranking ρg
c of a given constraint c in generation g

is calculated as being the constraint selection ranking ρ of the previous generation,
minus the λ factor of the previous generation (with λ ∈ [0,1]), minus the σ fac-
tor of the previous generation (with σ ∈ [0,1]), minus the γ factor of the previous
generation (with γ ∈ [−1,1]).

In order to calculate the normalized constraint selection ranking ρ ′gc , if the mini-
mum ρg

c in generation g is negative, the data is firstly shifted by adding all numbers
with the absolute of the minimum ρg

c ; then, ρ ′gc is normalized into the range of [0,1]
as follows.

n′gc =
ng

c

ng
MAX −ng

MIN
(2)

The following subsections detail the procedure used for calculating the λ , σ , and γ
factors.

Runtime Exceptions Caused Factor. Let Eg
c be the set of runtime exceptions

caused by constraint c in generation g, and T g be the set of trees produced in genera-
tion g, with

∣
∣Eg

c
∣
∣ and |T g| being their cardinalities. Then, λ is calculated as follows.

192 J.C.B. Ribeiro, M.A. Zenha-Rela, and F.F. de Vega

λ g
c =

∣
∣Eg

c
∣
∣

|T g| (3)

That is, the λ factor is equal to the number of runtime exceptions thrown by in-
structions corresponding to constraint c, dividing by the total number of trees. It
should be noted that only a single runtime exception may be thrown by MCS (i.e.,
by tree). This factor’s main purpose is that of penalizing the ranking of constraints
corresponding to instructions that have caused runtime exceptions to be thrown in
the preceding generation. This factor is normalized into the range of [0,1] using
Equation 2.

Runtime Exceptions Caused by Ancestors Factor. Let Xg
c be the set of runtime

exceptions thrown by ancestors of constraint c in generation g, and xg
ca ∈ Xg

c be
a runtime exception thrown by an ancestor of level a, with a ∈ {2 = parent,3 =
grand parent, . . .} being the ancestry level of the constraint that threw the exception.
Also, let Ag

c be the multiset containing the ancestry levels of xg
ca ∈ Xg

c . Then, σ is
calculated as follows.

σg
c = ∑

a∈Ag
c

a−1 (4)

That is, the σ factor is equal to the sum of the inverses of the ancestry levels of the
ancestors of constraint c that threw runtime exceptions. This factor’s main purpose
is that of penalizing the ranking of constraints corresponding to instructions which
have participated in the composition of sub-trees (i.e., sub-MCSs) that have caused
runtime exceptions to be thrown in the preceding generation; the higher the ancestry
level, the lower the penalty. This factor is normalized into the range of [0,1] using
Equation 2.

Constraint Diversity Factor. Let Cg be a multiset containing the number of times
each constraint appeared in generation g, and cg be the number of times constraint
c appeared in generation g. Also, let mCg be the mean of the values contained in
multiset Cg, and dg

c = cg−mCg be the deviation of constraint c in generation g, and
rg

d = dg
MAX −dg

MIN be the range of deviation for generation g. Then, γg
c is calculated

as follows.

γg
c =

dg
c

rg
d

(5)

The γ factor’s main purposes are those of allowing constraints to recover their rank-
ing if they have been being used infrequently, and penalizing the ranking of con-
straints which have been selected too often.

4 Experimental Studies

The adaptive strategy described in the preceeding Section was embedded into
eCrash [13], an automated ET tool, with the objective of observing the impact of

Adaptive Evolutionary Testing 193

this technique on both the efficiency and effectiveness of the test case generation
process.

eCrash’s approach to ET involves representing and evolving test cases for OO
software using the STGP paradigm. The methodology for evaluating the quality of
test cases includes instrumenting the MUT, and executing it using the generated
test cases – with the intention of collecting trace information with which to derive
coverage metrics. The MUTs are represented internally by weighted Control-Flow
Graphs (CFGs); the strategy for favouring test cases that exercise problematic struc-
tures involves re-evaluating the weight of CFGs’ nodes every generation. The aim is
that of efficiently guiding the search process towards achieving full structural cov-
erage – i.e., generating a set of test cases that traverse all CFG nodes of the MUT.
A thorough description of eCrash can be found in [13].

The Java Vector and BitSet classes (JDK 1.4.2) were used as test objects.
The rationale for employing these classes is related with the fact that they represent
“real-world” problems and, being container classes, possess the interesting property
of containing explicit state, which is only controlled through a series of method calls
[2]. Additionally, they have been used in several other case studies described in liter-
ature (e.g., [2, 15, 18]), providing an adequate test object set in the lack of common
benchmark cluster that can be used to test and compare different techniques [3].

4.1 Setup

The experiments were executed using an Intel Core2 Quad 2.60GHz processor with
4.0 GB RAM desktop, with four test case generation processes running in parallel.
20 runs were executed for each of the 67 MUTs – in a total of 820 runs for the
Vector class and 520 runs for the BitSetClass. Half of these runs were executed
employing the adaptive strategy proposed, and half using a “static” approach for
comparison purposes. The only difference between the adaptive and the static runs
was that, in the latter, the constraints’ rankings remained unaltered throughout the
evolutionary search. Since the same seeds were used in both the adaptive and non-
adaptive runs, and because eCrash is deterministic, the discrepancies in the results
will solely mirror the impact of the adaptive technique employed.

A single population of 10 individuals was used; the rationale for selecting a rela-
tively small population size had to do with the adaptive algorithm’s need of obtain-
ing frequent feedback. The search stopped if an ideal individual was found or after
200 generations. For the generation of individuals, 3 child sources were defined:
strongly-typed versions of Mutation (selection probability: 40%) and Crossover (se-
lection probability: 30%), and a simple Reproduction operator (selection probabil-
ity: 30%). The selection method was Tournament Selection with size 2. The tree
builder algorithm was PTC2 (for the reasons explained in Section 3), with the max-
imum and minimum tree depths being defined as 1 and 4. The constraints’ ranking
were initialized with the value 1.0, and were updated at the beginning of every gen-
eration (before individuals were produced), in accordance to Equation 1.

194 J.C.B. Ribeiro, M.A. Zenha-Rela, and F.F. de Vega

Fig. 2 Average percentage of CFG nodes left to be covered per generation, for Vector and
BitSet classes, with and without adaptation

4.2 Results

Table 2 depicts the percentage of successful runs (i.e., runs in which a test set attain-
ing full structural coverage was found) for the MUTs of the Vector and BitSet
classes, with and without adaptation. The graphs shown in Figure 2 contain the per-
centage of CFG nodes remaining per generation using the adaptive and the static
techniques for the classes tested; their inclusion enables the analysis of the strat-
egy’s impact during the course of the search.

The results depicted in Table 2 clearly indicate that the tests case generation pro-
cess’s performance is improved by the inclusion of the Adaptive ET methodology
proposed. The adaptive strategy outperformed the static approach for 28.4% of the
MUTs tested, whereas the latter only surpassed the former in 5.9% of the situa-
tions. In terms of the average success rate, the adaptive strategy enhances results
by 3% for the Vector class; the improvement is even more significant for the
BitSet class, with the results meliorating 11%. What’s more, the adaptive strat-
egy allowed attaining full structural coverage in some situation in which the success
rate had been of 0% using the non-adaptive strategy – namely, for the Object
remove(int) and List subList(int,int) MUTs of the Vector class,
and for the int length() and boolean intersects(BitSet) MUTs of
the BitSet class; these observations indicate that this strategy is specially suited
for overcoming some difficult state problems.

The graph shown in Figure 2 also provides clear indication that the evolution-
ary search benefits from the inclusion of the adaptive approach described. For the
Vector’s MUTs, the average number of nodes remaining when the Adaptive ET
approach is used decreases as much as 6% during the initial generations; for the
BitSet class, the contrast is the results is less perceptible, but the adaptive ap-
proach still manages to attain a 3% improvement at certain stages.

Adaptive Evolutionary Testing 195

Table 2 Percentage of runs to attain full structural coverage, for the MUTs of the Vector
and BitSet classes, with and without adaptation

Vector
MUT adaptive static

void add(int,Object) 80% 90%
boolean add(Object) 100% 100%

Object get(int) 100% 100%
int hashCode() 100% 100%
Object clone() 0% 0%

int indexOf(Object) 100% 100%
int indexOf(Object,int) 20% 10%

void clear() 100% 100%
boolean equals(Object) 100% 100%

String toString() 100% 100%
boolean contains(Object) 50% 40%

boolean isEmpty() 100% 100%
int lastIndexOf(Object,int) 0% 0%

int lastIndexOf(Object) 100% 100%
boolean addAll(Collection) 90% 70%

boolean addAll(int,Collection) 30% 20%
int size() 100% 100%

Object[] toArray() 100% 100%
Object[] toArray(Object[]) 40% 40%

void addElement(Object) 100% 100%
Object elementAt(int) 100% 100%

Object remove(int) 20% 0%
boolean remove(Object) 100% 100%
Enumeration elements() 100% 100%

Object set(int,Object) 100% 80%
int capacity() 100% 100%

boolean containsAll(Collection) 100% 100%
void copyInto(Object[]) 100% 100%

void ensureCapacity(int) 100% 100%
Object firstElement() 100% 100%

void insertElementAt(Object,int) 80% 90%
Object lastElement() 100% 100%

boolean removeAll(Collection) 100% 100%
void removeAllElements() 100% 100%

boolean removeElement(Object) 30% 40%
void removeElementAt(int) 20% 10%

boolean retainAll(Collection) 100% 100%
void setElementAt(Object,int) 100% 70%

void setSize(int) 100% 100%
List subList(int,int) 30% 0%

void trimToSize() 100% 100%

BitSet
MUT adaptive static

boolean get(int) 90% 60%
BitSet get(int,int) 0% 0%

int hashCode() 100% 100%
Object clone() 0% 0%

void clear(int, int) 0% 0%
void clear() 100% 100%

void clear(int) 90% 80%
boolean equals(Object) 0% 0%

String toString() 100% 100%
boolean isEmpty() 100% 100%

int length() 30% 0%
int size() 100% 100%

void set(int) 100% 70%
void set(int, boolean) 100% 100%

void set(int, int) 70% 40%
void set(int, int, boolean) 40% 70%

void flip(int, int) 60% 20%
void flip(int) 90% 50%

void and(BitSet) 0% 0%
void andNot(BitSet) 60% 30%

int cardinality() 100% 100%
boolean intersects(BitSet) 20% 0%

int nextClearBit(int) 0% 0%
int nextSetBit(int) 10% 10%

void or(BitSet) 0% 0%
void xor(BitSet) 90% 30%

196 J.C.B. Ribeiro, M.A. Zenha-Rela, and F.F. de Vega

In terms of speed, the overhead introduced by embedding the adaptive strategy
into the evolutionary algorithm was negligible; each generation took, on average,
23.25 seconds using the adaptive methodology, and 23.21 seconds using the static
approach. The time overhead introduced by the adaptation procedure was a mere
0.19%.

5 Conclusions

Recent research on Evolutionary Testing has relied heavily on Genetic Program-
ming for representing and evolving test data for Object-Oriented software. The main
contribution of this work is that of proposing a dynamic adaptation strategy for pro-
moting the introduction of relevant Method Call Sequences into the generated test
cases by means of Mutation.

The Adaptive Evolutionary Testing strategy proposed obtains feedback from the
individuals produced and evaluated in the preceding generation, and dynamically
updates the selection probability of the constraints defined in the Function Set so as
to encourage the selection of interesting genetic material and promote diversity and
test case feasibility. The experimental studies implemented indicate a considerable
improvement in the algorithm’s efficiency when compared to its static counterpart,
while introducing a negligible overhead.

References

[1] Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Computa-
tional Intelligence: A Dynamic Systems Perspective, pp. 152–163. IEEE Press, Los
Alamitos (1995)

[2] Arcuri, A., Yao, X.: A memetic algorithm for test data generation of object-oriented
software. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation
(CEC), pp. 2048–2055. IEEE, Los Alamitos (2007)

[3] Arcuri, A., Yao, X.: On test data generation of object-oriented software. In: TAICPART-
MUTATION 2007: Proceedings of the Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION, pp. 72–76. IEEE Computer Society,
Washington (2007)

[4] Ferrer, J., Chicano, F., Alba, E.: Dealing with inheritance in oo evolutionary testing. In:
GECCO 2009: Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pp. 1665–1672. ACM, New York (2009)

[5] Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary computation:
A survey. In: Proceedings of the Fourth International Conference on Evolutionary Com-
putation (ICEC 1997), pp. 65–69. IEEE Press, Los Alamitos (1997)

[6] Inkumsah, K., Xie, T.: Evacon: A framework for integrating evolutionary and concolic
testing for object-oriented programs. In: Proc. 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2007), pp. 425–428 (2007)

[7] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection (Complex Adaptive Systems). The MIT Press, Cambridge (1992)

Adaptive Evolutionary Testing 197

[8] Luke, S.: Issues in scaling genetic programming: Breeding strategies, tree generation,
and code bloat. PhD thesis, Department of Computer Science, University of Maryland,
A. V. Williams Building, University of Maryland, College Park, MD 20742 USA (2000)

[9] Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Transac-
tions on Evolutionary Computation 4(3), 274–283 (2000)

[10] McMinn, P.: Search-based software test data generation: A survey. Software Testing,
Verification and Reliability 14(2), 105–156 (2004)

[11] Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2),
199–230 (1995)

[12] Ribeiro, J.C.B., Zenha-Rela, M., de Vega, F.F.: An evolutionary approach for perform-
ing structural unit-testing on third-party object-oriented java software. In: Krasnogor,
N., Nicosia, G., Pavone, M., Pelta, D.A. (eds.) NICSO. Studies in Computational Intel-
ligence, vol. 129, pp. 379–388. Springer, Heidelberg (2007)

[13] Ribeiro, J.C.B., Zenha-Rela, M., de Vega, F.F.: Test case evaluation and input domain
reduction strategies for the evolutionary testing of object-oriented software. Information
& Software Technology 51(11), 1534–1548 (2009)

[14] Seesing, A., Gross, H.G.: A genetic programming approach to automated test generation
for object-oriented software. ITSSA 1(2), 127–134 (2006)

[15] Tonella, P.: Evolutionary testing of classes. In: ISSTA 2004: Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis, pp. 119–
128. ACM Press, New York (2004)

[16] Wappler, S.: Automatic generation of object-oriented unit tests using genetic program-
ming. PhD thesis, Technischen Universitat Berlin (2007)

[17] Wappler, S., Wegener, J.: Evolutionary Unit Testing Of Object-Oriented Software Us-
ing A Hybrid Evolutionary Algorithm. In: CEC 2006: Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, pp. 851–858. IEEE, Los Alamitos (2006)

[18] Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software using
strongly-typed genetic programming. In: GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pp. 1925–1932. ACM Press, New
York (2006)

Evolutionary Algorithms for Planar MEMS
Design Optimisation: A Comparative Study

Elhadj Benkhelifa, Michael Farnsworth�, Ashutosh Tiwari, and Meiling Zhu

Abstract. The evolutionary approach in the design optimisation of MEMS is a novel
and promising research area. The problem is of a multi-objective nature; hence,
multi-objective evolutionary algorithms (MOEA) are used. The literature shows that
two main classes of MOEA have been used in MEMS evolutionary design Optimi-
sation, NSGA-II and MOGA-II. However, no one has provided a justification for
using either NSGA-II or MOGA-II. This paper presents a comparative investigation
into the performance of these two MOEA on a number of MEMS design optimi-
sation case studies. MOGA-II proved to be superior to NSGA-II. Experiments are,
herein, described and results are discussed.

1 Introduction

Micro-electro-mechanical systems (MEMS) or micro-machines [1] are a field grown
out of the integrated circuit (IC) industry, utilizing fabrication techniques from
the technology of Very-Large-Scale-Integration (VLSI). The goal is to develop
smart micro devices which can interact with their environment in some form.

Elhadj Benkhelifa ·Michael Farnsworth · Ashutosh Tiwari
Decision Engineering Centre, Building 50, School of Applied Sciences, Cranfield Campus,
Cranfield University College Road, Cranfield Bedfordshire, MK43 0AL
e-mail: {e.benkhelifa,m.j.farnsworth,a.tiwari}@cranfield.ac.uk

Meiling Zhu
Microsystems and Nanotechnology, Building 40, School of Applied Sciences,
Cranfield Campus, Cranfield University College Road, Cranfield Bedfordshire, MK43 0AL
e-mail: m.zhu@cranfield.ac.uk
� Corresponding author.

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 199–210, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{e.benkhelifa,m.j.farnsworth,a.tiwari}@cranfield.ac.uk
m.zhu@cranfield.ac.uk

200 E. Benkhelifa et al.

The paradigm of MEMS is well established within both the commercial and aca-
demic fields. At present encompassing more than just the mechanical and electri-
cal [2], MEMS devices now cover a broad range of domains, including the fluidic,
thermal, chemical, biological and magnetic systems. This has resulted in a host of
applications to arise, from micro-resonators and actuators, gyroscopes, micro-fluidic
devices [3], and biological lab on chip devices [4], to name but a few.

Developing MEMS by silicon micromachining fabrication techniques [5] re-
quires both many prototypes and a long line of experimentation (design process).
The process of MEMS design itself is broken down into many levels into which a
designer may provide input and ultimately model, analyse and optimise a device.
The process itself has been outlined by both fedder [6] and also senturia [7]. Nor-
mally, designs are produced in a trial and error approach dependant on user experi-
ence and naturally an antithesis to the goal of allowing designers the ability to focus
on device and system design. This approach, nominally coined a “Build and Break”
iterative, is both time-consuming and expensive.

A number of Computer Aided Design (CAD) tools and simulators have been de-
veloped and used to facilitate an improvement in the design process; however, this
does not solve a fundamental problem with the current approach to MEMS design
optimisation. The development of a design optimisation environment, which can
allow MEMS designers to automate the process of modelling, simulation and opti-
misation at all levels of the MEMS design process, is fundamental to the eventual
progress in MEMS Industry. Such an environment reduces the burden put on the de-
signer and providing mediums that will potentially produce optimal devices within
design constraints [20]. Work in design automation and optimisation can be seen
to fall into two distinct areas; firstly the more traditional approaches found within
numerical methods such as gradient-based search [8] [9]; and secondly the use of
more powerful stochastic methods such as simulated annealing [10] and/or Evolu-
tionary Algorithms (EAs) [11][12][16]. The current work has employed the latter
to evolve and optimise new MEMS devices. Different researchers have used dif-
ferent classes of EAs in this subject domain [10],[12],[13],[14],[15],[17], however
it is not clear which particular EA approach is the most appropriate and efficient
in MEMS design synthesis and optimisation. This paper presents a comparative in-
vestigation into the performance of, particularly, two well known and widely used
EAs (Multi-Objective Genetic Algorithm: MOGA-II [18] and NSGA-II [19]) on a
number of MEMS design optimisation case studies. MOGA-II proved to be supe-
rior to NSGA-II. Experiments are, herein, described and results are discussed.This
study also allows the validation of a design optimisation framework, by coupling
both areas of MEMS simulation and analysis with optimization routines.

The next section describes the evolutionary design optimisation environment for
MEMS. The subsequent section presents the experimental setup for three case stud-
ies of increasing complexity, followed by results and discussions in sections 4 and 5,
respectively. Finally, a conclusion of the findings is presented in section 6.

Evolutionary Algorithms for Planar MEMS Design Optimisation 201

2 MEMS Design Optimisation Framework

It is important as a designer to be able to undertake automated design optimisation
whenever possible in order to speed up the design process. In response to this we
establish a design optimization framework which links a powerful optimization en-
vironment tool based on EAs, with MEMS simulator SUGAR Fig 1. The MOEAs
follow an iterative process, selecting designs based upon their performance in re-
spect to the objectives set out, evolving them using powerful operators. Analysis is
then undertaken by the simulator which is passed a parameters structure which over-
rides a default model design. Finally analysis is retrieved and designs are evaluated
and ranked and finally replacement operators tune out worse designs by replacing
them with better offspring.

Parameter
Structure

Initialise
Simulator

Run Analysis

Pass Variables

Rank Individuals

Select Individuals

Evolve New
Designs:

- Recombination
- Mutation

Evaluate Fitness
Objectives

MEMS Simulator
SUGAR

Optimization Routine
Multi-Objective Evolutionary

Algorithm

Replace
Individuals

Load Model +
Parameters New

Cycle

Fig. 1 An Evolutionary Design Optimisation Framework for MEMS

3 Experiments Set Up

Drawing on previous work undertaken in the field [15][10][21], planar MEMS de-
vices form the basis for our evaluation of our design optimisation approach. A set
of three case studies of increasing complexity have been implemented within our
design optimisation environment, which forms a suitable strategy to evaluate the
performance of the algorithms in question. The experiments investigate the per-
formance of MOGA-II and NSGA-II for the design and optimisation of MEMS
through these case studies. For each case study five experimental runs of each al-
gorithm are conducted. MOGA-II is an improved version of MOGA by Poloni [22],

202 E. Benkhelifa et al.

Table 1 Experimental parameter settings for MOGAII and NSGAII

MOGA-II NSGA-II
Probability of directional crossover 80% Probability of SBX crossover 80%
Probability of classical crossover 14% Probability of Mutation 1%

Probability of Mutation 1% Distribution Index for crossover 20
DNA string Mutation ratio 5% Distribution Index for mutation 20

Population 100 Population 100
Generations 100 Generations 100

utilizing a smart multi search elitism, and a triad of operators (classical one-point
crossover, directional crossover and bit flip mutation) each with their own probabil-
ity of invocation. As with classical MOGA, the representation is a binary string and
in order to simulate continuous variables a sufficiently high base value must be used
to divide between upper and lower bounds the possible variable values. NSGA-II is
an elite preserving multi objective genetic algorithm, which also includes a diver-
sity heuristic to maintain a uniform spread on the Pareto front. Unlike the standard
MOGA, NSGA-II uses a real-valued representation, and therefore both recombina-
tion and mutation operators revolve around these real values. Both algorithms use
some form of elitism based generational evolution and a breakdown of each is found
below. The algorithms’ parameters are fixed as shown in Table 1.

Algorithm 1: MOGA-II Pseudo Code

1. Initialize population

a. Generate random population of size N and elite set E = θ

2. Evaluate objective values
3. Assign rank based on Pareto dominance - ’Sort’
4. Generate offspring population

a. Combine both population and elite sets P’ = P ∪E
b. If the cardinality of P’ is greater than the cardinality of P reduce P’ removing randomly

the exceeding points.
c. Compute the evolution from P’ to P” applying MOGA operators

i. Randomly assign one operator (Local tournament selection, directional crossover,
one point crossover or bit flip mutation) based upon probability of invocation.

5. Evaluate objective values of population P”
6. Assign rank to P” individuals based on Pareto dominance - ’Sort’
7. Copy all non-dominated designs of P” to E - ’Sort’
8. Update E by removing duplicated or dominated designs
9. Resize the elite set E if it is bigger than the generation size N removing randomly the

exceeding individuals
10. Return to step 2 considering P” as the new P until termination

Evolutionary Algorithms for Planar MEMS Design Optimisation 203

Algorithm 2: NSGA-II Pseudo Code

1. Initialize population.

a. Generate random population P of size N.

2. Evaluate objective values.
3. Assign rank based on Pareto dominance - ’Fast-Sort’.
4. Generate offspring population.

a. Create population P’ using tournament selection and apply variation operators (Simu-
lated binary crossover and mutation).

5. Evaluate objective values of population P’.
6. Combine both population sets P and P’ to give set of size 2N P”.
7. Assign rank to P” individuals based on Pareto dominance - ’Fast-Sort’.

a. Fill new P set with non-dominated fronts until cardinality is reached from set P”
b. If the cardinality of new set P is greater than the size N reduce P by computing the

crowding distance of the last front set to be added and fill remaining slots using
crowded-comparison operator.

8. Return to step 4 until termination.

The case studies experimented with are; a simple meandering spring, a meandering
resonator and finally a real world example of an ADXL150 accelerometer. For each
case study, the performance of MOGA-II and NSGA-II is evaluated.

3.1 Case Study: Meandering Spring

The core topology of a large class of MEMS, such as micro-resonators and ac-
celerometers consists generally of a spring + mass system, where a mass is sus-
pended by a spring like structure anchored to a substrate, and the shape and topology
of which effects the behaviour of the device. Therefore the ability to evolve spring
like structures which match certain behaviour is important for the eventual design
optimisation of more complex spring + mass systems such as a micro-resonator.
Following previous work [15] we look to synthesize a simple meandering spring,
composed of several beams, each of which has three variables, length, width and
angle. The variable design parameters can be seen in Table 2.

Table 2 Variables design parameters used in spring case study, taken from [15]

Min Width Max Width Min Length Max Length Angle Min Angle Max Min
Beam No

Max
Beam No

2E-06 2E-05 2E-05 4E-04 -90 90 1 6

204 E. Benkhelifa et al.

The objectives chosen for the experiment were to evolve designs that matched
a certain behaviour in this instance each spring was to have a stiffness in the x
direction Kx = 2N/m, and a stiffness in the y direction Ky = 2N/m following a force
applied deflection. In this instance the objectives simply become the minimization
of error from the design goal of 2 N/m.

3.2 Case Study: Meandering Resonator

It is important to be able to design micro resonators to match a certain frequency
which can be integrated into a band-pass filter device. Following previous work [12]
we look to evolve a MEMS resonator in order to match certain behaviour and design
objectives. For this case study a set of four meandering springs are evolved each of
which consists of several beams. The same variable parameters as described in table 2
are used and the central mass shape is fixed as in [10]. In order to reduce the search
space complexity, a symmetry constraint to the design is applied, where one spring
is evolved and then mirrored in both the x and y directions. The objectives for each
design remain the same as for the spring, but also a third objective of having a first
mode resonance frequency of 93723 Rad/s as taken from [12] are shown in Table 3.

Table 3 Design Objectives for Meandering Resonator

Objective Target
Stiffness Kx N/m 2.0 (Minimize Error)
Stiffness Kx N/m 2.0 (Minimize Error)
Frequency Rad/s 93723 Rad/s (Minimize Error)

3.3 Case Study: ADXL150 Accelerometer

The goal to produce devices that mimic already viable real world macro designs
but at a much smaller and more energy efficient way is a possibility with MEMS
technology. The ADXL accelerometer series is a device which has been fabricated
and tested in real world applications and seen it replacing its macro counterpart.
This device can detect acceleration, as a result of force and gravity. This is crucial
in one of the applications of this device that of car airbag deployment. Upon im-
pact with another vehicle, acceleration as a result of the force occurs, this is then
detected via the accelerometer device and if over a given threshold the signal can
trigger the deployment of the airbag and thus save lives. The design variables fol-
low that of previous work undertaken in [21] and are summarised in table 4. They
consist of a central mass and a special case spring known as a “serpentine” spring,
along with the sensing comb that runs alongside the mass. In this particular case
study a symmetry constraint is applied to the serpentine springs, as a result only one
spring is evolved and then mirrored in the x and y directions. The design objectives
for these experiments are shown in Table 5.

Evolutionary Algorithms for Planar MEMS Design Optimisation 205

Table 4 Design Objectives for ADXL150 Accelerometer

Variable Lower Bounds Upper Bounds
Mass Length 300μm 600 μm
Mass Width 50 μm 150 μm

Finger Length 30 μm 130 μm
Finger Width 2 μm 4 μm

Short Beam Length 10 μm 10 μm
Short Beam Width 2 μm 2 μm
Long Beam Length 10 μm 100 μm
Long Beam Width 2 μm 2 μm

Crenulations 1 6

Table 5 ADXL150 Case Study design Objectives

Objective Target
Frequency Rad/s 150,796 Rad/s (Minimize Error)
Total Area μm2 Minimize

Sense Capacitance fF Maximize

4 Results

For each case study results are represented in four sets of values; firstly the num-
ber of pareto solutions that were present at the end for each experiment (exp) run;
secondly the number of pareto solutions from a particular experiment that remained
when all five sets were combined, thirdly the number that remained when constraints
on objective values were added and finally near the bottom we compare the number
of pareto solutions from these sets that remain for each algorithm when MOGA-II
and NSGA-II pareto individuals are combined.

Table 6 Table 7 and Table 9 shows the number of Pareto optimal solutions found
within each experimental run for case studies described in sections 3.1, 3.2, and 3.3,

Table 6 MOGAII v NSGAII Experimental Results for the Meandering Spring

MOGA-II NSGA-II
Exp No of

Pareto
Sol in
Exp

No of
Pareto Sol
Collated

No Sol
< 1%
Error
per Obj

Exp No of
Pareto
Sol in
Exp

No of
Pareto Sol
Collated

No Sol
< 1%
Error
per Obj

1 4316 2299 0 1 2944 1 0
2 26 0 0 2 2322 0 0
3 910 910 910 3 2866 0 0
4 2919 2873 1 4 2886 0 0
5 1920 0 0 5 209 209 209
Total 10091 6082 911 Total 11227 210 209
Total MOGAII
v NSGAII

- - 1 Total MOGAII
v NSGAII

- - 209

206 E. Benkhelifa et al.

Table 7 MOGAII v NSGAII Experimental Results for the Meandering Resonator

MOGA-II NSGA-II
Exp No of

Pareto
Sol in
Exp

No of
Pareto Sol
Collated

No Sol
< 1%
Error
per Obj

Exp No of
Pareto
Sol in
Exp

No of
Pareto Sol
Collated

No Sol
< 1%
Error
per Obj

1 66 22 7 1 220 10 0
2 31 18 12 2 16 0 0
3 49 1 0 3 87 82 8
4 215 1 0 4 182 31 0
5 42 20 10 5 164 1 0
Total 403 62 29 Total 669 124 8
Total MOGAII
v NSGAII

- - 29 Total MOGAII
v NSGAII

- - 2

Table 8 MOGAII v NSGAII Top 10 Frequency Results for culled < 1% set for the Mean-
dering Resonator

MOGA-II NSGA-II
Exp ID Freq

Error
Rad/s

Kx Error
N/m

Ky Error
N/m

Exp ID Freq
Error
Rad/s

Kx Error
N/m

Ky Error
N/m

1 9630 1.07 1.253E-02 6.911E-03 3 29624 20.15 1.851E-02 8.094E-03
5 47112 2.75 1.644E-02 4.814E-03 3 29693 30.08 1.445E-02 7.766E-03
5 47555 3.93 5.284E-03 3.878E-04 3 29734 33.24 6.372E-03 6.175E-03
1 8608 4.04 3.722E-04 9.670E-03 3 29806 72.17 4.353E-03 2.785E-03
1 9053 4.04 3.722E-04 9.670E-03 3 29660 122.65 4.875E-04 3.309E-03
1 9172 4.04 3.722E-04 9.670E-03 3 28978 245.77 5.755E-03 2.047E-03
1 9880 4.04 3.722E-04 9.670E-03 3 29563 279.95 8.898E-03 1.072E-03
2 19326 10.45 3.079E-03 8.302E-03 3 28733 668.50 1.678E-03 4.429E-05
2 18276 13.29 1.664E-05 6.495E-03 - - - - -
2 19258 13.91 3.165E-03 3.322E-03 - - - - -

Table 9 MOGAII v NSGAII Experimental Results for the ADXL150 Accelerometer

MOGA-II NSGA-II
Exp No of

Pareto
Sol in
Exp

No of
Pareto Sol
Collated

No Sol
< 1%
Error
per Obj

Exp No of
Pareto
Sol in
Exp

No of
Pareto Sol
Collated

No Sol
< 1%
Error
per Obj

1 1525 551 47 1 1741 684 36
2 1389 646 69 2 1781 289 34
3 1613 547 88 3 1298 382 7
4 1494 940 146 4 1325 857 19
5 1464 695 134 5 1229 449 22
Total 7485 3379 484 Total 7374 2661 118
Total MOGAII
v NSGAII

- - 484 Total MOGAII
v NSGAII

- - 18

Evolutionary Algorithms for Planar MEMS Design Optimisation 207

Table 10 MOGAII v NSGAII Top 10 Total Area Results for culled < 1% set for the
ADXL150 Accelerometer

MOGA-II NSGA-II
Exp ID Freq

Error
Rad/s

Kx Error
N/m

Ky Error
N/m

Exp ID Freq
Error
Rad/s

Kx Error
N/m

Ky Error
N/m

1 9630 1.07 1.253E-02 6.911E-03 3 29624 20.15 1.851E-02 8.094E-03
5 47112 2.75 1.644E-02 4.814E-03 3 29693 30.08 1.445E-02 7.766E-03
5 47555 3.93 5.284E-03 3.878E-04 3 29734 33.24 6.372E-03 6.175E-03
1 8608 4.04 3.722E-04 9.670E-03 3 29806 72.17 4.353E-03 2.785E-03
1 9053 4.04 3.722E-04 9.670E-03 3 29660 122.65 4.875E-04 3.309E-03
1 9172 4.04 3.722E-04 9.670E-03 3 28978 245.77 5.755E-03 2.047E-03
1 9880 4.04 3.722E-04 9.670E-03 3 29563 279.95 8.898E-03 1.072E-03
2 19326 10.45 3.079E-03 8.302E-03 3 28733 668.50 1.678E-03 4.429E-05
2 18276 13.29 1.664E-05 6.495E-03 - - - - -
2 19258 13.91 3.165E-03 3.322E-03 - - - - -

respectively. For the constrained set all individuals which did not have an error
value within 1% of the target for each objective were removed and in the case of
the ADXL150 accelerometer an additional constraint of designs with a minimum
sensitivity of 133fF was applied.

Table 8 highlights the top ten results from the culled 1% set, ranked by frequency
error objective for the Meandering Resonator case study. Table 10 highlights the top
ten results from our culled 1% set, ranked by total area objective for the ADXL150
Accelerometer case study.

5 Comparison and Discussion

From the above presented results one can begin to paint a picture into the perfor-
mance of the two selected algorithms on this particular subset of case studies for
MEMS design optimisation. To begin with, it seems that both algorithms are robust
enough to provide similar sets of Pareto fronts from each experimental run when
they are collated. However of the two algorithms, MOGA-II provides results which
fair better, with NSGA-II falling down somewhat with the meandering spring case
study. Of the number of Pareto solutions found within the target constraints for each
case study, MOGA-II outperforms NSGA-II, generally producing two thirds more
solutions for all three case studies. A direct comparison between the final Pareto
sets for each algorithm provides a similar result, with MOGA-II providing more
individuals within the Pareto front for the ADXL150 Accelerometer and the Mean-
dering Resonator case-studies, with only NSGA-II providing better results on the
Meandering Spring example.

Reasons behind such discrepancies could fall into the differences found within
each algorithm; these can lay either in, naturally, the choice of representation, the
role of each algorithms variation operators, or some of the diversity heuristics used.
If one picks up on the third case study, the ADXL150 Accelerometer, from Table 10

208 E. Benkhelifa et al.

one can see a deviation in terms of behaviour between MOGA-II and NSGA-II.
For this case study, the constraints focused upon designs which had as small a total
area as possible while maintaining a sensitivity value above 133 fF and a minimum
frequency error below 1% of the target goal. Though both MOGA-II and NSGA-
II were able to provide individuals which lied within these constraints, NSGA-II
designs seem to lie heavily towards an increased sensitivity, rather than focusing
upon reduced total area.

From the outset this seems to cast a shadow on the performance of NSGA-II in
this example; however it may be an unfair assessment and hence requires further
analysis. NSGA-II employs a diversity heuristic in the form of a crowded distance
operator to enforce a uniform spread of Pareto solutions while MOGA-II does not in
any specific way emulate this behavior. The ADXL150 example contains two partic-
ular objectives which somewhat work in tandem, that being total area and sensitivity.
In this instance changing the mass length of the device can either result in a decrease
in total area and subsequent decrease in sensitivity or provide the opposite effect.
In parallel, increasing finger length can increase sensitivity and the total area and
vice versa. These two variable changes seem to have the most accessible influence
in objective function performance, and as such most likely drive our algorithms for
fitter individuals. As NSGA-II looks to find a suitable spread it will produce designs
which lie upon the whole gradient between these two competing objectives, while
MOGA-II does not feel this selective pressure and can perhaps begin to concentrate
on designs which target improved frequency objectives. As a result MOGA-II can
possibly produce designs which target all three objectives more easily than NSGA-
II. Given the final constraint where we want to focus on one particular area of a
front, something NSGA-II looks to avoid, the MOGA-II is not encumbered by this
and as a result it seems able to produce superior designs. This is only a speculative
explanation and requires further investigation into what effect NSGA-II’s crowded
diversity heuristic has in terms of performance and the reasons why.

Finally, it is a possibility that each algorithm local search approach, be it MOGA-
II’s single bit flip operator or NSGA-II’s real valued polynomial mutation may
provide a profound difference in performance when it comes to local search per-
formance at near optimal design spaces. In the field of MEMS design it is important
for operators to cope with such small scales and is therefore something for further
investigation.

6 Conclusions

The paper presents an important study that compares the performance of two widely
known and used evolutionary algorithms for the design optimisation of MEMS de-
vices, namely, NSGA-II and MOGA-II. Experiments are conducted on three MEMS
case studies with increasing complexity. Initial results clearly show the superiority
of MOGA-II over NSGA-II. Speculative explanations are discussed in section 5,
however, further work is needed to evaluate the reasons why the performance of the

Evolutionary Algorithms for Planar MEMS Design Optimisation 209

two algorithms differed, and essentially the role of various heuristics and operators
in the evolutionary design optimisation of this application domain.

References

[1] Fujita, H.: Two Decades of MEMS– from Surprise to Enterprise. In: Proceedings of
MEMS, Kobe, Japan, January 21-25 (2007)

[2] Hsu, T.R.: MEMS and Microsystems, 2nd edn. Wiley, Chichester (2008)
[3] Isoda, T., Ishida, Y.: Seperation of Cells using Fluidic MEMS Device and a Quantitative

Analysis of Cell Movement. Transactions of the Institute of Electrical Engineering of
Japan 126(11), 583–589 (2006)

[4] Hostis, F.l., Green, N.G., Morgan, H., Akaisi, M.: Solid state AC electroosmosis micro
pump on a Chip. In: International Conference on Nanoscience and Nanotechnology,
ICONN, Brisbane, Qld, July 2006, pp. 282–285 (2006)

[5] Hao, Y., Zhang, D.: Silicon-based MEMS process and standardization. In: Proceedings
of the 7th International Conference on Solid-State and Integrated Circuits Technology
2004, vol. 3, pp. 1835–1838 (2004)

[6] Fedder, G.: Structured Design of Integrated MEM. In: Twelfth IEEE International Con-
ference on Micro Electro Mechanical Systems, MEMS 1999, Orlando, FL, USA, pp.
1–8 (1999)

[7] Senturia, S.D.: Microsystem Design. Kluwer Academic Publishers, Dordrecht (2001)
[8] Haronain, D.: Maximizing microelectromechanical sensor and actuator sensitivity by

optimizing geometry. Sensors and Actuators A 50, 223–236 (1995)
[9] Iyer, S., Mukherjee, T., Fedder, G.: Automated Optimal Synthesis of Microresonators.

In: Solid-State Sensors and Actuators, Chicago, IL, pp. 12–19 (1997)
[10] Kamalian, R., Zhou, N., Agogino, A.M.: A Comparison of MEMS Synthesis Tech-

niques. In: Proceedings of the 1st Pacific Rim Workshop on Transducers and Mi-
cro/Nano Technologies, Xiamen, China, July 22-24, pp. 239–242 (2002)

[11] Li, H., Antonsson, E.K.: Evolutionary Techniques in MEMS Synthesis. In: Proc. DETC
1998, 1998 ASME Design Engineering Technical Conferences, Atlanta, GA (1998)

[12] Zhou, N., Agogino, A.M., Pister, K.S.: Automated Design Synthesis for Micro-Electro-
Mechanical Systems (MEMS). In: Proceedings of the ASME Design Automation Con-
ference, ASME CD ROM, Montreal, Canada, September 29-October 2 (2002)

[13] Kamalian, R.H., Takagi, H., Agogino, A.M.: Optimized Design of MEMS by Evolution-
ary Multi-objective Optimization with Interactive Evolutionary Computation. In: Deb,
K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1030–1041. Springer, Heidelberg
(2004)

[14] Zhang, Y., Kamalian, R., Agogino, A.M., Sequin, C.: Hierarchical MEMS Synthesis
and Optimization. In: Varadan, V.K. (ed.) Proceedings of SPIE, Smart Structures and
Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology. Interna-
tional Society for Optical Engineering, CD ROM. Paper 5763-12, vol. 5763, pp. 96–106
(2005)

[15] Zhou, N., Zhu, B., Agogino, A.M., Pister, K.: Evolutionary Synthesis of MEMS (Micro-
electronic Mechanical Systems) Design. In: Proceedings of ANNIE 2001, IEEE Neural
Networks Council and Smart Engineering Systems Laboratory, Marriott Pavilion Hotel,
St. Louis, Missouri, November 4-7, vol. 11, pp. 197–202. ASME Press (2001)

210 E. Benkhelifa et al.

[16] Benkhelifa, E., Farnsworth, M., Tiwari, A., Zhu, M.: An Integrated Framework for
MEMS Design Optimisation using modeFrontier. In: EnginSoft International Confer-
ence 2009, CAE Technologies For Industry and ANSYS Italian Conference 2009 (2009)

[17] Lohn, J.D., Kraus, W.F., Hornby, G.S.: Automated Design of a MEMS Resonator. In:
Proceedings of the Congress on Evolutionary Computation, pp. 3486–3491 (2007)

[18] Poles, S.: MOGA-II An Improved Multi-Objective Genetic Algorithm. Technical report
2003-006, Esteco, Trieste (2003)

[19] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In: Schonauer, M., et al.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

[20] Benkhelifa, E., Farnsworth, M., Bandi, G., Tiwari, A., Zhu, M., Ramsden, J.: Design and
Optimisation of Microelectromechanical Systems: A Review of the State-of-the-Art.
International Journal of Design Engineering, Special Issue Evolutionary Computing for
Engineering Design (2009) (accepted to be published)

[21] Zhang, Y., Kamalian, R., Agogino, A.M., Séquin, C.H.: Design Synthesis of Micro-
electromechanical Systems Using Genetic Algorithms with Component-Based Geno-
type Representation. In: Proc. of GECCO 2006 (Genetic and Evolutionary Computation
Conference), Seattle, July 8-12, vol. 1, pp. 731–738 (2006) ISBN 1-59593 187-2

[22] Poloni, C., Pediroda, V.: GA coupled with computationally expensive simulations: tools
to improve efficiency. In: Genetic Algorithms and Evolution Strategies in Engineering
and Computer Science, pp. 267–288. John Wiley and Sons, England (1997)

A Distributed Service Oriented Framework for
Metaheuristics Using a Public Standard

P. García-Sánchez, J. González, P.A. Castillo, J.J. Merelo, A.M. Mora,
J.L.J. Laredo, and M.G. Arenas

Abstract. This work presents a Java-based environment that facilitates the develop-
ment of distributed algorithms using the OSGi standard. OSGi is a plug-in oriented
development platform that enables the installation, support and deployment of com-
ponents that expose and use services dynamically. Using OSGi in a large research
area, like the Heuristic Algorithms, facilitate the creation or modification of algo-
rithms, operators or problems using its features: event administration, easy service
implementation, transparent service distribution and lifecycle management. In this
work, a framework based in OSGi is presented, and as an example two heuristics
have been developed: a Tabu Search and a Distributed Genetic Algorithm.

1 Introduction

Nowadays the Metaheuristics Research Area has a wide number of algorithms and
problems. There are many implementations of them, using several programming
languages, frameworks and architectures, but without using a well-defined plug-in
specification.

When building quality software systems it is necessary to design them with a
high level of modularity. Besides the benefits that classic modularization paradigms
can offer (like object-oriented modelling) and the improvements in test, reusability,
availability and maintainability, it is necessary to explore another modelling tech-
niques, like the plug-in based development [21]. This kind of development simpli-
fies aspects such as the complexity, personalization, configuration, development and
cost of the software systems. In the optimization heuristics software area, the bene-
fits the usage of this kind of development can offer are concreted in the development

P. García-Sánchez · J. González · P.A. Castillo · J.J. Merelo · A.M. Mora ·
J.L.J. Laredo ·M.G. Arenas
Dept. of Computer Architecture and Computer Technology
e-mail: pgarcia@atc.ugr.es, jesus@atc.ugr.es, pedro@atc.ugr.es,
jmerelo@geneura.ugr.es, amorag@geneura.ugr.es,
juanlu@geneura.ugr.es, maribel@atc.ugr.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 211–222, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

212 P. García-Sánchez et al.

of algorithms, experimental evaluation, and combination of different optimization
paradigms [21].

On the other hand, other patterns for integration, like SOA, have emerged. SOA
(Service Oriented Architecture) [18] is a paradigm for organizing and utilizing dis-
tributed capabilities, called services. A service is an interaction depicted in Figure 1.

Fig. 1 Service interaction schema. The service provider publish a service description that is
used by the requester to find and use services

The service provider publishes service descriptions (or interfaces) in the ser-
vice registry, so the service requesters can discover services and bind to the service
providers.

Distributed computing offers the possibility of taking advantage of parallel pro-
cessing in order to obtain a higher computing power than other multiprocessor ar-
chitectures. Two clear examples are the research lines centred in clusters [5] and
GRID [9] for parallel processing. SOA it is also used in this area, using platforms
based in Web Services [18], and new standards for this paradigm have emerged, like
OSGi.

OSGi (Open Service Gateway Initiative) [2] was proposed by a consortium of
more than eighty companies in order to develop an infrastructure for the deployment
of service in heterogeneous network of devices, mainly oriented to domotic [15].
Nowadays it defines a specification for a Service Oriented Architecture for virtual
machines (VMs). It provides very desiderable features, like packet abstraction, life-
cycle management, packaging or versioning, allowing significant reduction of the
building, support and deployment complexity of the applications.

OSGi technology allows the components to be dynamically discovered among
them to increase the collaboration to minimize and manage the coupling among
modules. Moreover, the OSGi Alliance has developed several standard component
interfaces for common usage patterns, like HTTP servers, configuration, logs, se-
curity, management or XML management among others, whose implementations
can be obtained by third-parties. Nowadays there are some challenges in the OSGi
development [12], but they only affect to the creation of very complex applications.

A Distributed Service Oriented Framework for Metaheuristics 213

Therefore, the objective of the proposed environment is to facilitate the devel-
opment of distributed computing applications by using the OSGi standard, taking
advantage of the plug-in software development and SOA that can compete with ex-
isting distributed applications in easy of use, compatibility and development.

The rest of this work is structured as follows: first the state of the art in similar
applications is described (section 2). Section 3 introduces the technologies used
in the development of this work. Then, we present (section 4) the design of the
proposed architecture (called OSGiLiath) and the development of two computing
applications using a Distributed Genetic Algorithm and a Tabu Search. Experiments
and yielded results are shown in section 6. Finally the conclusions and future work
are presented.

2 State of the Art

Nowadays there are many works about heuristic frameworks. Most of them have the
lack of low generality, because they are focused in an specific field, like EasyLo-
cal++ [10] (focused in Local Search) or SIGMA [11] (in the field of optimization-
based decision support systems). Another common problem is that they are just
libraries (like ECJ [14], Evolutionary Computation in Java), they have no GUIs, or
they are complicated to install and require many programming skills. Another issue
could be the lack of comfort, for example, C++ has a more complicate sintaxis than
other languages.

Among this great number of frameworks we want to focus in the most widely ac-
cepted distributed algorithms frameworks. MALLBA [1] is based in software skel-
letons with a common and public interface. Every skeleton implements a resolution
technique for optimization in the fields of exact, heuristic or hybrid optimization. It
provides LAN and WAN capacity distribution with MPI . However, it is not based in
the plug-in development, so it can not take advantage of features like the life-cycle
management, versioning, or dynamic service binding, as OSGi proposes.

Another important platform is DREAM [3], which is an open source framework
for Evolutionary Algorithms based on Java that defines an island model and uses the
Gossip protocol and TCP/IP sockets for communication. It can be deployed in P2P
platforms and it is divided in five modules. Every module provides an user inter-
face and different interaction and abstraction level, but adding new functionalities is
not so easy, due to the system must be stopped before adding new modules and the
implementation of interfaces must be defined in the source code, so a new compila-
tion is needed. OSGi lets the addition of new functionalities only compiling the new
features, not the existing ones.

ParadiseEO [6] allows the design of Evolutionary Algorithms and Local Search
with hybridization, providing a variety of operators and evaluation functions. It also
implement the most common parallel and distributed models, and it is based in
standard libraries like MPI, PVM and Pthreads. But it has the same problems that the
previous frameworks, not lifecycle managment or service oriented programming.
GAlib [23] is very similar and share the same characteristics and problems.

214 P. García-Sánchez et al.

In the field of the plug-in based frameworks, HeuristicLab [20] is the most impor-
tant example. It also allows the distributed programming using Web Services and a
centralized database, instead using their own plug-in design for this distributed com-
munication. Moreover, the used plug-in system does not uses a public specification
like OSGi. And also it is a proprietary software, like their execution environment,
the .NET platform [7].

Finally, METCO framework [13] also have the same problems, it not uses a stan-
dard plug-in system or SOA, but let the implementation of existing interfaces, and
lets the user configure its existing functionalities.

In summary, the previous works present a number of shortcomings when design-
ing and adding new features: they need to modify source code or be stopped in order
to add new features and they are not based in a public plug-in specification. Also
they not have an event administration mechanism and they are not service-oriented,
so they not take advantage of this paradigm.

3 Used Technologies

OSGi features can be useful in the development of distributed algorithms, so this
section describes the tools and communication protocols employed within the pre-
sented framework.

3.1 OSGi

OSGi implements a dynamic component model, unlike normal Java environments.
Applications or components (also called bundles) can be remotely installed, started,
stopped, updated or uninstalled on the fly; moreover, the classes and packaging man-
agement is specified in detail. The framework provides APIs for the management of
services that are exposed or used by the bundles.

A bundle is a file that contains compiled and packaged classes and a configura-
tion file. This file indicates which classes imports or exports the bundle.

The most important concept in OSGi is the service. The services allow to connect
bundles in a dynamic way, offering a publication-search-connection model. That
is, a bundle exposes a service by a Java interface, and another bundle (or itself)
implements that interface. A third bundle can access this service using the exposed
interface without having any knowledge of how it is implemented, using the Service
Registry. The Figure 2 shows an example of the OSGi architecture.

It would be useful if this connection could be done out of the source code, so the
OSGi also provides components. A component is a class inside a bundle together
with an XML description. This description is interpreted in execution time to create
and remove services depending the availability of other services, other components
or configuration data. The main difference between a component and a normal class
inside a bundle is that in the second the association between interface and imple-
mentation of the service must be defined in the source code, and also the depen-
dency management and the service state detection, being this a tedious work for the

A Distributed Service Oriented Framework for Metaheuristics 215

Fig. 2 In OSGi a service can be implemented by several bundles. Other bundles may chose
among this implementations using the Service Registry

programmer. To facilitate this task in OSGi the Declarative Services specification
[17] arises. It lets that, for example, we could create a class that is not activated until
an specific and required service is detected. When this service is active, the class
can use it with a bind method. It is important to note that implementation will be
injected in execution time, not in compilation time.

OSGi also provides event handling with an implementation of the event broker
pattern, the Event Admin. It is an interbundle communication mechanism based
on a publish-and-subscribe model. Some bundles publish events and some other
bundles can read this events, being this task transparent for the programmer: the
sender does not need to know who are listening their events, and the listener can
filter among the events.

3.2 R-OSGi

One of the problems of OSGi today is its inability to invoke remote services and
its lack of a distributed module management, so other protocols adapters have been
created, like JINI [22] and UPnP [16]. Nevertheless these approximations can be
considered invasive, due to their requirement of re-structuring the application. This
is the reason that R-OSGi arises [19]. R-OSGi is a middleware layer inside OSGi
that lets a more transparent distribution of the application parts simply distribut-
ing its software modules. Inside the OSGi framework the remote and local services
are indistinguishable, so the existent OSGi applications can be distributed without
modification using R-OSGi. Moreover, this middleware does not imposes client-
server assignation because the modules relationship is symmetric. The authors have

216 P. García-Sánchez et al.

demonstrated that the R-OSGi is similar to the highly optimized Java 5 RMI imple-
mentation and two times faster than UPnP.

R-OSGi creates client proxies. For the client of a service, this proxies behave as
local services and they also are provided by locally instantiated bundles. However
a proxy bundle redirects all received calls to the original service that resides in the
remote machine, and propagates the result of the call back to the client. An example
of this architecture is shown in Figure 3. The events used in the previously explained
Event Admin are also transmitted in a transparent manner: the senders and the re-
ceivers of the events do not need to add anything to the program code in order to
receive the events among distributed nodes, because they do not need to know where
the nodes are.

Fig. 3 Architectural overview of R-OSGi. The node B uses Service Proxy as a normal service

4 OSGiLiath Platform

This section dives in the functionality and design of the proposed environment,
called OSGiLiath (OSGi Laboratory for Implementation and Testing of Heuristics).
This environment is a framework for the development of heuristic optimization ap-
plications, not centred on a concrete paradigm, and whose main objective is to pro-
mote the OSGi usage and offer to programmers the next features:

• Easy interfaces
• Asynchronous data sending/receiving
• Component Oriented Programming
• Client/Server or Distributed Model
• Paradigm independent
• Declarative Services
• Remote event handling

The source code is available in http://atc.ugr.es/~pgarcia, under a GPL
license. The environment presented in this work lets defining implementations for
specific problems using the OSGi benefits. Its architecture is composed by three
levels or layers: Interface, Heuristic and Problem (see Figure 4).

http://atc.ugr.es/~pgarcia

A Distributed Service Oriented Framework for Metaheuristics 217

Fig. 4 Defined layers in OSGiLiath

The Interface layer provides a hierarchy of interfaces defined to develop dis-
tributed heuristics. Some examples are Algorithm, Distributed Algorithm, Solution,
Problem, Input Data or Parameters. It also provides interfaces and objects for dis-
tributed programming, like Server, Node or Task. This class hierarchy, exported as a
bundle is well-defined, because it will be the basis to construct the full application.
As every bundle, it can export these interfaces to be used by another bundles. These
interfaces must be implemented in the next framework level, the Heuristic layer.
Using the OSGi Declarative Services Specification [17], the instances of these im-
plementations will be activated when they are necessary and accessed among them.
Finally, (Problem) layer defines what problems will be executed in the framework.

Furthermore, using the R-OSGi functionality we can add the feature of dis-
tributed applications in an undetermined number of nodes. In this case, we have
to implement several Tasks, whose implementation can be in different nodes. Given
the platform architecture the Heuristic or Problem layers could be in remote nodes,
so the user could define new problems or heuristics and automatically bind with the
necessary elements to execute.

5 Development Example Using OSGiLiath

As an example of usage of the presented framework, a tabu search and a distributed
genetic algorithm have been developed to solve the Vehicle Routing Problem (VRP)
and the capabilities of the framework have been tested. Due to space restriction we
refer the reader to [8], which explains the implemented Tabu Search and a more
formal problem approach. The Tabu Search is a sequential algorithm, while the
Genetic Algorithm uses a distributed island model: every node executes a separate
algorithm and swaps individuals with the other nodes.

218 P. García-Sánchez et al.

5.1 Specifying an Application

The first step to develop in OSGiLiath is to implement the interfaces defined in
previous sections to build specific implementations. For example, TabuSearch and
DistributedGeneticAlgorithm are implementations of Algorithm and DistributedAl-
gorithm. The implementation of each algorithm must be as general as possible, due
to the implementation of the problem to solve its developed in the next level. So, in
this layer more interfaces are defined, like StopCriterion, TabuList, Mutation, Fit-
ness or IndividualInitialization. This level uses the feature of Declarative Services
in order to obtain automatically the implementation of that interfaces.

5.2 Specifying the Problem

Finally in this level the problem to solve is specified in more detail. For example we
have implemented the interfaces Problem, Individual, Crossover or TabuList with
the ProblemVRP, IndividualVRP, CrossoverVRP and TabuListVRP classes. Due to
they have been exposed as declarative services, when they are activated, the services
defined in the previous level also will be activated.

All work developed in this level can be added to the base platform, since all com-
ponent are clearly differentiated, and other developers could implement their own
problems to apply the Genetic Algorithm or Tabu Search, or add new algorithms to
solve the VRP problem.

5.3 Adding Distributed Capacity

Using declarative services implementation of Task interfaces are created. In the Tabu
Search example, remote nodes could search the best neighbourhood of the current
solution, receiving a movement list and the Tabu List, but due to the canonical Tabu
Search is difficult to parallelize because of the latency we only have tested the se-
quential algorithm.

In the case of the Genetic Algorithm, every certain number of iterations each
node receives one of the best individuals of the other nodes, randomly selected.
Thanks to the OSGi features, every service can be distributed in a transparent way
(operators, algorithms, initers, schedulers). The programmer does not need how the
communication is performed or where the implementation is, he only needs to know
the interface of the service.

All the nodes have knowledge of what the other are doing, thanks to the OSGi
event handling mechanism. Whenever an iteration or algorithm over, events are pub-
lished and read by the others, so the algorithms can synchronize or inform to others
about their results.

Along with the challenges of OSGi [12], there exists the issue of the loss of
abstraction in the development of the interfaces of our framework, so a study to find
balance between cohesive and loose coupled hierarchy will be performed in future.
In problem-specific algorithms, where exist a tightly coupled association, the usage

A Distributed Service Oriented Framework for Metaheuristics 219

Fig. 5 OSGiLiath architecture. The user can implement heuristics and problems interfaces

of events and automatic communication mechanisms will be helpful if they are used
properly.

6 Experiments

Once the algorithms development have been explained we present the obtained re-
sults. We have to say that the presented work is a proof-of-concept, so these results
are shown as example. We have used a 4 nodes cluster, each one of them with a 1.6
GHz, 4 GB RAM and Java version 1.5. The common parameters for the algorithms
are a stop criterion of 60 iterations without improve the best solution and random
initial solutions. In Tabu Search the Tabu List have 30 moves. The Genetic Algo-
rithm parameters are: 200 individual population with elitism, migration of one of
the 10 best individuals, randomly selected every 10 iterations; mutation probabil-
ity is 0.5 and a tournament selection for crossover of the 50 best individuals. The
instances of the two problems have been extracted from [4].

The obtained results are shown in Table 1. As can be seen, the Genetic Algo-
rithm results outperforms the Tabu Search, due to the used crossover swaps com-
plete routes, unlike the Tabu Movements, that moves an unique shop in the routes.
The time taken in the sequential Genetic Algorithm also is lower than the sequential
Tabu Search.

However, the purpose of this work is not perform an analysis of the presented
algorithms, but show the ease of using this framework in the distributed algorithm
development.

220 P. García-Sánchez et al.

Table 1 Result table for the experiments (average ± standard deviation)

Nodes Cost Iterations Time (s)

Tabu Search
1 2330.18 ± 86.41 312.13 ± 20.26 224.70 ± 11.61

Genetic Algorithm
1 2318.83 ± 72.89 4222.60 ± 435.04 100.43 ± 10.51
2 2268.11 ± 74.53 4759.52 ± 798.54 113.33 ± 87.80
3 2223.18 ± 54.13 4903.66 ± 338.40 128.94 ± 65.67
4 2212.24 ± 29.85 4740.20 ± 278.45 124.85 ± 98.20

Every experiment was executed 10 times.

7 Conclusions and Future Work

This work presents an environment for the development of distributed algorithms
extensible via plug-ins and based in a wide-accepted software specification (OSGi).
OSGi features (declarative services, dynamic life-cycle management, or package
abstraction) are used to easily create algorithms in a layered way. Moreover, it uses
R-OSGi to develop distributed services. We have shown the Tabu Search and the
Genetic Algorithm implementation as an example.

As future work an automatic generated GUI will be developed to dynamically
control which problems, algorithms or parameters to use. A study about scalability
using other algorithms (like GRASP, Scatter Search, Ant Colony Optimization and
others) will be performed. Also, we are going to increase the usage of the OSGi
capabilities, like the Event Administration or automatic service management in a
deeper way. Additionally we intend to create a web portal to centralize all new im-
plementations of problems and algorithms to let the distribution within the base plat-
form, so the users just have to write the level 3 classes to solve particular problems.
An study of porting existing software to our framework (especially those works
that are written in Java, like DREAM or ECJ) will be performed. Moreover, due to
the ease of implementations binding with their interfaces it is planned to develop
the functionality of chosing one implementation or another depending on several
parameters or, for example, using Genetic Programming to evolve and hybridize
algorithms.

Acknowledgements. Supported by projects AmIVital (CENIT2007-1010) and EvOrq
(TIC-3903).

References

[1] Alba, E., Almeida, F., Blesa, M., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León, C.,
Luque, G., Petit, J., Rodríguez, C., Rojas, A., Xhafa, F.: Efficient parallel LAN/WAN
algorithms for optimization, the MALLBA project. Parallel Computing 32(5-6), 415–
440 (2006)

A Distributed Service Oriented Framework for Metaheuristics 221

[2] Alliance, O.: OSGi alliance (2004), http://www.osgi.org/
[3] Arenas, M., Collet, P., Eiben, A., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M.,

Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós,
J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.)
PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)

[4] BranchAndCutorg. Vehicle routing data sets (2003),
http://branchandcut.org/VRP/data/

[5] Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice-
Hall, Englewood Cliffs (1999)

[6] Cahon, S., Melab, N., Talbi, E.: ParadisEO: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

[7] Escoffier, C., Donsez, D., Hall, R.S.: Developing an OSGi-like Service Platform for
.NET. In: 3rd IEEE Consumer Communications and Networking Conference, vol. 1-3,
pp. 213–217 (2006)

[8] Esparcia-Alcázar, A.I., Cardós, M., Merelo, J.J., Martínez-García, A., García-Sánchez,
P., Alfaro-Cid, E., Sharman, K.: EVITA: An integral evolutionary methodology for the
inventory and transportation problem. Studies in Computational Intelligence 161, 151–
172 (2009)

[9] Foster, I.: The Grid: A new infrastructure for 21st Century Science. Phisics Today 55,
42–47 (2002)

[10] Gaspero, L., Schaerf, A.: Easylocal++: an object-oriented framework for the flexible
desgin of local search algorithms and metaheuristics. In: Proceedings of 4th Metaheuris-
tics International Conference (MIC 2001), pp. 287–292 (2001)

[11] González, J.R., Pelta, D.A., Masegosa, A.D.: A framework for developing optimization-
based decision support systems. Expert Systems with Applications 36(3, Part 1), 4581–
4588 (2009)

[12] Kriens, P.: Research challenges for OSGi (2008),
http://www.osgi.org/blog/2008/02/
research-challenges-for-osgi.html

[13] León, C., Miranda, G., Segura, C.: Metco: A parallel plugin-based framework for multi-
objective optimization. International Journal on Artificial Intelligence Tools 18(4), 569–
588 (2009)

[14] Luke, S., et al.: ECJ: A Java-based Evolutionary Computation and Genetic Program-
ming Research System (2009),
http://www.cs.umd.edu/projects/plus/ec/ecj

[15] Marples, D., Kriens, P.: The Open Services Gateway Initiative: An introductory
overview. IEEE Communications Magazine 39(12), 110–114 (2001)

[16] Miller, B.A., Nixon, T., Tai, C., Wood, M.D.: Home networking with universal plug and
play. IEEE Communications Magazine 39(12), 104–109 (2001)

[17] OSGi Alliance. Declarative services specification, pp. 281–314 (2007),
http://www.osgi.org/download/
r4-v4.2-cmpn-draft-20090310.pdf

[18] Papazoglou, M.P., Van Den Heuvel, W.: Service oriented architectures: Approaches,
technologies and research issues. VLDB Journal 16(3), 389–415 (2007)

[19] Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-osgi: Distributed applications through soft-
ware modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS,
vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

http://www.osgi.org/
http://branchandcut.org/VRP/data/
http://www.osgi.org/blog/2008/02/research-challenges-for-osgi.html
http://www.osgi.org/blog/2008/02/research-challenges-for-osgi.html
http://www.cs.umd.edu/projects/plus/ec/ecj
http://www.osgi.org/download/r4-v4.2-cmpn-draft-20090310.pdf
http://www.osgi.org/download/r4-v4.2-cmpn-draft-20090310.pdf

222 P. García-Sánchez et al.

[20] Wagner, S., Affenzeller, M.: Heuristiclab grid - a flexible and extensible environment
for parallel heuristic optimization. In: Proceedings of the International Conference on
Systems Science, vol. 1, pp. 289–296 (2004)

[21] Wagner, S., Winkler, S., Pitzer, E., Kronberger, G., Beham, A., Braune, R., Affenzeller,
M.: Benefits of plugin-based heuristic optimization software systems. In: Moreno Díaz,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp.
747–754. Springer, Heidelberg (2007)

[22] Waldo, J.: The Jini architecture for network-centric computing. Communications of the
ACM 42(7), 76–82 (1999)

[23] Wall, B.: A genetic algorithm for resource-constrained scheduling, Ph.D. thesis. MIT,
Cambridge (1996), http://lancet.mit.edu/ga

http://lancet.mit.edu/ga

Cellular Genetic Algorithm on Graphic
Processing Units

Pablo Vidal and Enrique Alba

Abstract. The availability of low cost powerful parallel graphic cards has estimu-
lated a trend to implement diverse algorithms on Graphic Processing Units (GPUs).
In this paper we describe the design of a parallel Cellular Genetic Algorithm (cGA)
on a GPU and then evaluate its performance. Beyond the existing works on master-
slave for fitness evaluation, we here implement a cGA exploiting data and instruc-
tions parallelism at the population level. Using the CUDA language on a GTX-285
GPU hardware, we show how a cGA can profit from it to create an algorithm of im-
proved physical efficiency and numerical efficacy with respect to a CPU implemen-
tation. Our approach stores individuals and their fitness values in the global memory
of the GPU. Both, fitness evaluation and genetic operators are implemented en-
tirely on GPU (i.e. no CPU is used). The presented approach allows us benefit from
the numerical advantages of cGAs and the efficiency of a low-cost but powerful
platform.

Keywords: Cellular Genetic Algorithm, Parallellism, GPGPU, CUDA.

1 Introduction

Cellular Genetic Algorithms (cGAs) are effective optimization techniques solving
many practical problems in science and engineering [1]. The basic algorithm (cGA)

Pablo Vidal
LabTEm - Laboratorio de Tecnologías Emergentes, Unidad Académica Caleta Olivia,
Universidad Nacional de La Patagonía Austral,
Ruta 3 Acceso Norte s/n, (9011) Caleta Olivia Sta. Cruz - Argentina
Phone/Fax: +54 0297 4854888
e-mail: pablo.vidal.20@gmail.com

Enrique Alba
Dept. de Lenguajes y Ciencias de la Computación, University of Málaga, ETSI Informática,
Campus de Teatinos, Málaga - 29071, Spain
e-mail: eat@lcc.uma.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 223–232, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

pablo.vidal.20@gmail.com
eat@lcc.uma.es

224 P. Vidal and E. Alba

is selected here because of its high performance and because of its swarm intelli-
gence structure (i.e. emergent behavior and decentralized control flow). By evolv-
ing this kind of algorithm is able of keeping a high diversity in the population until
reaching the region containing the global optimum. This kind of algorithms may
benefit from parallelism as a way of speeding up its operations [2] when the in-
stance of the problem is complex.

Graphic Processing Units (GPUs) are well-known hardware cards with a fixed
function, being traditionally used for visualization purposes. However, the new gen-
erations of GPUs have also unleashed a promising potential for scientific comput-
ing, seen as a new hardware allowing the use of high arithmetic capacity and high
performance.

Thus, researchers and developers have begun to harness GPUs for general pur-
pose computation [4] [7]. In addition to their low cost and ubiquitous availability,
GPUs have a superior processing architecture when compared to modern CPUs, and
thus present a tremendous opportunity for developing lines of research in optimiza-
tion algorithms especially targeted for GPUs, this its shown in present works such
as [3] [5].

Therefore, we work here with a parallel cGA running entirely on GPU (i.e. no
CPU is needed only to start and stop the algorithm), and demonstrate that the pro-
posed optimization technique (called cGA GPU) is quite amenable for massive par-
allelism to obtain larger performances with reduction of times and improvements of
the speedup. This approach offers the possibility to solve larges problem instances
with the improved computing capacity of a GPU. All this will be shown on a bench-
mark of discrete and continuous problem to claim not only for time reductions but
also for numerical advantages of this swarm intelligence algorithm.

The paper is structured as follows, The next section contains some background
about the parallelism, we explain the Cellular Genetic Algorithm and its imple-
mentation in GPU. Section 3 describes the experimental setup, while Section 4 ex-
plains the test problems used, details of the cGA parameters, and the statistical tests
performed.

Finally, Section 5 provides the obtained results and Section 6 offers our conclu-
sions, as well as some comments on the future work.

Fig. 1 Toroidal structure of a cGA population

Cellular Genetic Algorithm on Graphic Processing Units 225

2 Description of a Cellular Genetic Algorithm

Cellular GAs (cGAs) are a subclass of Genetic Algorithm (GAs) in which the popu-
lation is structured in a specified topology defined as a connected graph, 2D toroidal
grid, in which each vertex is an individual that communicates with its nearest neigh-
bours (e.g, North, South, East, West) and use these individuals for crossover and
mutation. Algorithm 1 (and Figure 1) presents the structure of a cGA.

Each individual interacts only with their neighbours. The resulting overlapped
small neighbourhoods help in exploring the search space because the induced slow
diffusion of solutions through the population provides a kind of exploration, while
exploitation takes place inside each neighbourhood by genetic operations. The
reader can find a deeper estudy on cGAs in [1].

Algorithm 4. Pseudocode of Canonical Cellular GA
1: pop← initializePopulation(pop)
2: pop← evaluatePopulation(pop)
3: while not stop criterion do do
4: for each individual do do
5: neighbours← calculateNeigbourhood(individual)
6: parents← selection (neighbours)
7: offspring← Recombination(parents,prob_Recombination);
8: offspring←Mutation(offspring,prob_Mutation);
9: pop’← evaluate(offspring);

10: replacement(pop’,individual,offspring);
11: end for
12: end while

2.1 The Proposal

The basic idea behind most parallel programs is to divide a task into subtasks and
solve the subtasks simultaneously using multiple processors. This divide and con-
quer approach can be applied to GAs in many different ways, and the literature
contains many examples of successful parallel implementations [2]. Some paral-
lelization methods use a single population, while others divide the population into
several relatively isolated subpopulations. Some methods exploit massively parallel
computer architectures, while others are better suited to multicomputers with fewer
and more powerful processing elements.

In the case of NVIDIA GPUs have (currently) up to 30 Streaming Multiproces-
sors (SM); each SM has eight parallel thread processors called Streaming Processors
(SP). The SPs run synchronously, meaning all eight SPs run a copy of the same pro-
gram, and actually execute the same instruction at the same time by each thread
created (see Figure 2). Different SMs run asynchronously, much like commodity
multicore processors. For achieving this, the notion of kernel is defined. A kernel is
a function callable from the host and executed on the specified GPU simultaneously
by several SPs in parallel.

226 P. Vidal and E. Alba

Algorithm 5. Pseudocode of Cellular GA on a GPU
1: initialize_cGA(Input_param)
2: generate_random_numbers(seeds)
3: allocate problems, seeds for random numbers and data inputs on GPU device memory
4: for each individual in parallel do do
5: individual← initializeOnGPU(individual)
6: individual← evaluateOnGPU(individual)
7: end for
8: while not Stop Criterion do do
9: neighbours← calculateNeigbourhoodOnGPU(individual)

10: parents← selectionOnGPU (neighbours)
11: offspring← RecombinationOnGPU(parents,prob_Recombination);
12: offspring←MutationOnGPU(offspring,prob_Mutation);
13: evaluateOnGPU(offspring);
14: replacementOnGPU(individual,offspring);
15: end while

Fig. 2 Description of the architecture between CPU and GPU

In our present work the proposed algorithm exploits the inherent parallelism of
a GPU using a direct mapping between the population structure and the threads
of the GPU. First of all, at initialization stage, the memory allocations on GPU
have to made. Input parameters for the algorithm (the population generated in the
CPU and the configuration parameters for the algorithm), are stored in the global
memory of the GPU. The population generated is transfered from the CPU to the
device memory, this is a synchronous operation. Since we are not having a Pseudo
Random Number Generator (PRNG) for GPUs, we used a PRNG that is provided
by the SDK of CUDA named Merseinne Twister; the only condition for its use is to
initially copy from CPU to GPU a group of seeds neccesary for execute the PRNG.
Once the copies are done, we execute a series of subtasks implemented only in the
GPU called through a kernel function (that allows to invoke functions implemented
in the GPU) and these are executed for every thread. As a second step, for each
individual, we need to identify its neighrbourhood. Third, we proceed to apply the
GA operators on the solution neighbourhood in each thread. Now, we synchronize

Cellular Genetic Algorithm on Graphic Processing Units 227

all threads for taking the fourth step: replacement of the individual with the offspring
(if a condition is satisfied). Finally, this process is repeated until a stop condition is
satisfied. This algorithm is synchronous, as the individuals of the population of the
next generation are formally created all at the same time. We can see a general
model of the proposal algorithm for GPU in the Figure 3.

The implementation for this algorithm was done with CUDA [6] for GPU .

Fig. 3 Description of the architecture between CPU and GPU

3 Experimental Setup

This section is devoted to describing the methodology that we have used in the
experiments carried out in this work. First, we present the benchmark problems used
to compare the cGA GPU. In order to show the performance on a wide spectrum of
problems we encompass tests both in discrete and continuous domains. Also, we
try to use standard benchmarks as the ones reported in CEC 2005 [8] and 2008 [9]
standards.

4 Methodology and Configurations Used

We have selected for our tests the following problems: Colville Minimization, ECC,
MMDP (discrete optimization) and Shifted GriewankĄfs function, Shifted Rast-
riginĄfs function and Shifted RosenbrockĄfs function (continuous optimization).
These problems were selected because they are generally popular in GAs and/or
used in previous works on GPUs [1] [12].

Our GPU-based implementation is compared against previous software imple-
mentations on a CPU implemented in JCell [1].

228 P. Vidal and E. Alba

Now, we explain the statistical test that we have applied to ensure the confidence
of the obtained results. Since we are dealing with stochastic algorithms and we want
to provide the results with confidence, we have made 30 independent runs of each
experiment, and the following statistical analysis has been performed throughout
this work. Firstly, a Kolmogorov Sminorv test was performed in order to check
whether the values of the result follow a normal (Gaussian) distribution or not.
If the distribution is normal, we will apply Levene test for the homogeneity of
the variances. If samples have equals variance (positive Levene test), an ANOVA
test is performed, otherwise a Welch test is performed. For non Gaussian distribu-
tions, the non-parametric Kruskal-Wallis test is used to compare the medians of the
algorithms.

We always consider in this work a confidence level of 95% (i.e., significance level
of 5% or p-value under 0.05) in the statistical tests, which means that the differences
are unlikely to have occurred by chance with a probability of 95%. Successful tests
are marked with "+" symbols in the last column in the first table; conversely, "•"
means that no statistical confidence was found (p-value 0:05).

In order to make a meaningful comparison among the algorithms, we have used
a common parameterization. The details are described in Table 1, where we include
the maximum number of generations as the stop condition for all the algorithms in
each execution (500). The toroidal grid has different sizes for evaluate the behavior
of the algorithms and compare that exist some advantage or not to use different pop-
ulation sizes for each problem. So, we define four population sizes: 32×32, 64×64,
256×256 and 512×512 individuals. The neighbourhood used is composed of five
individuals: the considered individual plus those located at its North, East,West and
South (see Fig. 1). One selection method have been used in this work: on parent
is always the cosidered individual itself, while the other one is obtained by using
Roulette Wheel (RW) selection in its 4-neighbourhood. For the recombination op-
erator, we obtain just one offspring from two parents: the one having the largest
portion of the best parent. The DPX recombination is applied always (probability
pc = 1.0), this operator is a crossover of two points, keeping the largest part of the
best parent. The bit mutation probability is set to pm = 0.05. We will replace the
considered individual on each generation only if its offspring has a better fitness
value, called Replace if Better [11]. All these parameters are selected after previous
works [1] and an own initial setting study.

Table 1 SpeedUp in seconds obtained with different population size

Parameters Value
Max. Number of Generations 500
Population Size {322,642,2562,5122}
Neighborhood N - E - W - S
Selection of Parents itself + Roulette Wheel (RW)
Recombination DPX = 1.0
Mutation 0.05
Replacement Replace if the new individual is better

Cellular Genetic Algorithm on Graphic Processing Units 229

Experiments were run on a machine equiped with a Intel R . CoreTM Quad pro-
cessor running at 2.67GHz , under Windows XP operating system, and having 4
GB of memory. The GPU used is a nVIDIA GeForce GTX 285 equipped with 1GB
of RAM. The environment used is Microsoft Visual C++ 2008 Express Edition to-
gether with the Toolkit SDK for CUDA v2.1 with the nVIDIA driver v180.49.

5 Results

In this section we present the results obtained when solving the problems selected
with the proposed cGA GPU algorithm. We here describe the numeric and time
performance of the cGA on GPU. In order to compare the time performance we use
a sequential version of a cGA implemented in JCell [1] that is executed in the CPU.

The results of speedup are summarized in Table 2: for each problem, the average
speedup of the 30 executions is shown. This value is the result of the average of the
time for the algorithm in CPU divided by the average time of the algorithm on GPU.
Thus, a value over 1.0 means a more efficient performance of the GPU versus the
CPU.

The results of our tests show that the speedup ranges from 5 to 24. In general, as
the population size increase we see that the GPU can achieve a better performance.

For a population space as 32× 32, the CPU implementation still remains faster
than those in a GPU; the reason is probably because the population are very small
and the existency the some overhead between the CPU and GPU to call the kernel
functions affects the time performance. We would like to point out that the efficiency
showed for the GPU is equivalent to 24 proccessors, an a insteresting benefit drawn
from a commodity computer.

Another interesting observation is that there is not significant difference between
the speedup of the discrete and continuous domains. This indicates that the GPU is
effective to evaluate problem instances of both domains.

The result of the statistical tests are in column Test of the Table 2, where the sym-
bol "+" means that statiscally significant differences exist. In most of the instances
of the problems, the existing statistically significant differences favor the cGA im-
plemented in the GPU versus the CPU. As well, Table 3 gives for each problem
the time (in seconds) of the algorithm executed in CPU and in GPU respectively
(each column shows the time of CPU and the GPU time separated by a "−"). As
expected, the time of the GPU is very small (between 0.14 and 0.35 seconds) while
for the CPU the execution time range between 0.11 and 7.89 seconds. In most of the
cases, the time of the GPU is shorter than the one on CPU (an exception occured
just for the population of 32× 32). Table 5 gives results about of the average of
fitness solutions obtained for each problem. This table shows the average value and
the standard deviation of the averaged best final fitness value for each problem and
algorithm configuration. The values obtained show that the algorithm gets very fre-
quently a near optimal value for every problem. Also, those values are competitive
against other algorithms in the literature [10]. Table 4 show the results of the aver-
age of fitness solutions obtained in CPU. This table show that the values obtained

230 P. Vidal and E. Alba

Table 2 SpeedUp in seconds obtained with different population sizes

Population
SpeedUp Discrete Problems SpeedUp Continuos Problems

TestColville
Minimization

ECC MMDP Rastrigin Rosenbrock Griengwak

32×32 0.561 0.660 0.784 0.494 0.539 0.826 •
64×64 5.441 5.450 5.645 5.417 5.688 5.783 +

256×256 16.433 16.830 14.485 15.463 17.830 16.964 +
512×512 23.593 22.419 22.789 20.810 20.982 20.421 +

Table 3 Average of time performance in seconds with different population sizes

Population
SpeedUp Discrete Problems SpeedUp Continuos Problems

Colville
Minimization

ECC MMDP Rastrigin Rosenbrock Griengwak

32×32 0.10-0.18 0.11-0.17 0.11-0.14 0.12-0.22 0.11-0.19 0.12-0.15
64×64 1.19-0.21 1.25-0.23 1.21-0.21 1.17-0.21 1.20-0.21 0.21-0.20

256×256 4.16-0.25 4.63-.0.27 4.09-0.28 4.31-0.27 4.66-0.26 4.53-0.26
512×512 7.46-0.32 7.89-0.35 7.66-0.33 7.21-0.34 7.12-0.33 7.35-0.35

Table 4 Average of solutions fitness obtained with different population sizes for CPU

Population
Average Solutions Average Solutions Continuos Problem

Colville
Minimization

ECC MMDP Rastrigin Rosenbrock Griengwak

32×32 0.133±5.176e-5 0.066±1.065e-3 39.896±8.709e-6 4.637e-5±5.512e-5 2.600e-5±3.075e-5 3.733e-5±3.750e-3

64×64 0.111±3.684e-6 0.066±0.633e-3 39.900±9.145e-6 2.978e-5±1.136e-6 1.645e-6±5,170e-6 2.687e-5±3.410e-3

256×256 0.100±1.033e-6 0.067±0.361e-6 39.911±1.365e-6 1.218e-5±7.872e-6 1.639e-5±2.816e-6 2.350e-5±3.590e-6

512×512 0.010±0.310e-6 0.067±0.003e-6 39.999±2.713e-5 1.749e-6±4.350e-6 3.311e-5±4.997e-6 1.356e-6±1.450e-6

Table 5 Average of solutions fitness obtained with different population sizes for GPU

Population
Average Solutions Average Solutions Continuos Problem

Colville
Minimization

ECC MMDP Rastrigin Rosenbrock Griengwak

32×32 0.330±9.660e-2 0.065±0.865e-3 39.590±1.070 4.850e-5±2.970e-5 2.600e-5±9.330e-5 3.733e-5±3.750e-3

64×64 0.330±3.122e-2 0.066±0.633e-3 39.720±0.080 4.560e-5±6.810e-5 1.645e-5±7.360e-5 2.687e-5±3.410e-3

256×256 0.130±1.030e-3 0.066±0.361e-5 39.860±0.080 4.540e-5±6.330e-5 1.639e-5±3.870e-5 2.391e-5±1.830e-3

512×512 0.100±1.000e-3 0.067±0.003e-5 39.940±8.000e-3 4.210e-5±1.090e-5 1.500e-5±3.600e-5 2.375e-5±1.050e-3

for the CPU and GPU are very similar with a approximation very similar. As a con-
clusion, the algorithm implemented in GPU presents a robust numerical behavior
because the values are very near or they reached the optimal. So, we can conclude
that in general the cGA GPU is better than the sequential cGA, bothnumerically and
in time.

Cellular Genetic Algorithm on Graphic Processing Units 231

6 Conclusions

In this work we have presented a novel implementation of a cGA running on a GPU.
All operators have been implemented directly in the GPU. We test the performance
of the algorithm with 6 different problems in continuous and discrete domain, and
we compare against a standard cGA. We showed that the inherent parallelism of the
GPU can be exploited to accelerate a cGA.

In the future, we will apply the presented approach to other complex real-world
problems. Especially those that remains open because at their large dimensions,
as well as to applications in industry. Another future work will be to implement
other families of evolutionary algorithms and evaluate its performance in multiGPU
architectures.

Acknowledgements. Authors acknowledge funds from the Spanish Ministry of Sciences
and Innovation European FEDER under contract TIN2008-06491-C04-01
(M* project http://mstar.lcc.uma.es) and CICE, Junta de Andalucía under contract
P07-TIC-03044 (DIRICOM project http://diricom.lcc.uma.es).

References

[1] Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Operations Research / Computer
Science, vol. 42. Springer, Heidelberg (2008)

[2] Alba, E.: Parallel metaheuristics: A new class of algorithms (August 2005)
[3] Lewis, T.E., Magoulas, G.D.: Strategies to minimise the total run time of cyclic graph

based genetic programming with gpus (2009)
[4] Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I., Woolley,

C., Lefohn, A.: Gpgpu: general purpose computation on graphics hardware. In:
SIGGRAPH 2004: ACM SIGGRAPH 2004 Course Notes, vol. 33. ACM, New York
(2004)

[5] Maitre, O., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain paralleliza-
tion of evolutionary algorithms on gpgpu cards with easea (2009)

[6] Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
cuda. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 classes, pp. 1–14. ACM, New
York (2008)

[7] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Pur-
cell, T.J.: A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum 26(1), 80–113 (2007)

[8] Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.:
Problem definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization (2005)

[9] Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.:
Benchmark functions for the CEC 2008 special session and competition on large scale
global optimization (November 2007)

232 P. Vidal and E. Alba

[10] Tseng, L.-Y., Chen, C.: Multiple trajectory search for large scale global optimization.
In: Evolutionary computation, CEC 2008 (IEEE World Congress on Computational In-
telligence). IEEE Congress (2008)

[11] Whitley, D.L.: The genitor algorithm and selection pressure: Why rank-based allocation
of reproductive trials is best. In: Proceedings of the 3rd international conference on
genetic algorithms (1989)

[12] Yu, Q., Chen, C., Pan, Z.: Parallel genetic algorithms on programmable graphics hard-
ware. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005, part III. LNCS, vol. 3612,
pp. 1051–1059. Springer, Heidelberg (2005)

Evolutionary Approaches to Joint Nash – Pareto
Equilibria

D. Dumitrescu, Rodica Ioana Lung, and Tudor Dan Mihoc

Abstract. A new type of equilibrium incorporating different rationality types for
finite non cooperative games with perfect information is introduced. The concept of
strategic game is generalized in order to admit players with different rationalities.
Generative relations are used to characterize several types of equilibria with respect
to players rationality. An evolutionary technique for detecting it is considered. Nu-
merical experiments show the potential of the method.

1 Introduction

Equilibrium concepts are the most common solutions proposed in game theory. In
a particular game it is usually considered that players interact according to a unique
equilibrium concept, i.e. only players guided by the same kind of equilibrium are
allowed to interact. This restriction induces unrealistic predictions. For example, the
concept of Nash equilibrium sometimes can lead to deceptive results [5].

In real life players (agents) can be more or less cooperative, more or less com-
petitive and more or less rational. In order to cope with more complex situations
a concept of generalized game is presented. Players are allowed to have different
behaviors/rationality types considering an adequate meta-strategy concept.

According to [3] game equilibria can be characterized using appropriate gener-
ative relations. Thus Nash equilibrium is characterized by the ascendancy relation
[8] and Pareto equilibrium by the Pareto domination. Combining the two relations
may lead to different types of joint Nash–Pareto equilibria.

An evolutionary technique for detecting the joint Nash–Pareto equilibrium for
the generalized game is used.

D. Dumitrescu · Rodica Ioana Lung · Tudor Dan Mihoc
Babes Bolyai University
e-mail: ddumitr@cs.ubbcluj.ro, rodica.lung@econ.ubbcluj.ro,

mihoct@cs.ubbcluj.ro

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 233–243, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

234 D. Dumitrescu, R.I. Lung, and T. Dan Mihoc

2 Generalized Games

In order to cope with different rationality types the concept of generalized game is
defined [3].

Definition 2.1. A finite strategic generalized game is defined as a system by G =
(N,M,U) where:

• N = {1, ...,n}, represents the set of players, n is the number of players;
• for each player i ∈ N, Si represents the set of actions available to him, Si =
{si1 ,si2 , ...,simi

}; S = S1×S2× ...×SN is the set of all possible situations of the
game;

• for each player i ∈ N, Mi represents the set of available meta-strategies, a meta-
strategy is a system (si|ri) where si ∈ Si and ri is the ith player rationality type;

• M = M1×M2× ...×MN is the set of all possible situations of the generalized
game and (s1|r1,s2|r2, ...,sn|rn) ∈M is a meta-strategy profile.

• for each player i ∈ N , ui : S→ R represents the payoff function.

U = {u1, ...,un}.

Remark 2.1. In a generalized game the set of all possible meta-strategies represents
the meta-strategy search space.

3 Generative Relations for Generalized Games

Three generative relations are considered in this section. Two of them correspond
to Pareto and Nash equilibria. The third induces a new type of joint Nash–Pareto
equilibrium.

3.1 nP–Strict Pareto Domination

We introduce the nP–strict Pareto domination in order to be able to combine the
concepts of Nash and Pareto domination.

In a finite strategic generalized game consider the set of players Pareto biased

IP = { j ∈ {1, ...,n}|r j = Pareto}

and nP = card IP, where card A denotes the number of elements in the set A.
Let us consider two meta strategy profiles x and y from M.

Definition 3.1. The meta strategy profile x nP–strict Pareto dominates the meta strat-
egy profile y if the payoff of each Pareto biased player from IP using meta strategy
x is strictly greater than the payoff associated to the meta strategy y, i.e.

ui(x) > ui(y), ∀i ∈ IP.

Evolutionary Approaches to Joint Nash – Pareto Equilibria 235

Remark 3.1. The set of non dominated meta strategies with respect to the nP–strict
Pareto domination relation when nP = n is a subset of the Pareto front.

3.2 Nash – Ascendancy

Similar to Pareto equilibrium a particular relation between strategy profiles can be
used in order to describe Nash rationality. This relation is called Nash-ascendancy
(NA).

A strategy is called Nash equilibrium [7] if each player has no incentive to uni-
laterally deviate i.e. it can not improve the payoff by modifying its strategy while
the others do not modify theirs.

We denote by (si j ,s
∗−i) the strategy profile obtained from s∗ by replacing the

strategy of player i with si j i.e.

(si j ,s
∗
−i) = (s∗1,s

∗
2, ...,s

∗
i−1,si j ,s

∗
i+1, ...,s

∗
1).

Definition 3.2. The strategy profile x Nash-ascends the strategy profile y, and we
write x <NA y if there are less players i that can increase their payoffs by switching
their strategy from xi to yi then vice versa.

In [8] is introduced an operator

k : S×S→ N,

k(y,x) = card{i ∈ {1, ...,n}|ui(xi,y−i)≥ ui(y),xi
= yi}.
k(y,x) denotes the number of players which benefit by switching from y to x.

Proposition 3.1. The strategy x Nash-ascends y (x is NA-preferred to y), and we
write x <NA y, if the inequality

k(x,y) < k(y,x),

holds.

According to [8] the set of all strategies from S non-dominated by respect of Nash
ascendancy relation equals the set of Nash equilibria.

This result proves that the Nash ascendancy is the generative relation for the Nash
equilibrium.

3.3 Joint Nash–Pareto Domination

Let us consider two meta-strategies

x = (x1|r1,x2|r2, ...,xn|rn) and y = (y1|r1,y2|r2, ...,yn|rn).

Let us denote by IN the set of Nash biased players (N-players) and by IP the set of
Pareto biased players (P-players). Therefore we have

236 D. Dumitrescu, R.I. Lung, and T. Dan Mihoc

IN = {i ∈ {1, ...,n}|ri = Nash}.
We consider the operators kP and kN defined as:

kP(x,y) = card{ j ∈ IP|u j(x) > u j(y),x
= y}
and respectively

kN(x,y) = card{i ∈ IN |ui(yi,x−i)≥ ui(x),xi
= yi}.

Remark 3.2. kP(x,y) measures the relative efficiency of the meta strategies x and y
with respect to Pareto rationality and kN(x,y) measures the relative efficiency of the
meta strategies x and y with respect to Nash rationality.

Definition 3.3. The meta strategy x N–P dominates the meta strategy y if and only
if the following statements hold

1. kP(x,y) = nP

2. kN(x,y) < kN(y,x)

In what follows we consider that efficiency relation induces a new type of equilib-
rium called joint Nash-Pareto equilibrium.

Remark 3.3. Joint Nash-Pareto equilibrium defined in this section is a concept com-
pletely different from the existing concept of Pareto-Nash equilibria [10].

4 Detecting Joint N–P Equilibria in Generalized Games

Consider a three player non-cooperative game. Let ri be the rationality type of
player i.

If r1 = r2 = r3 = Nash then all players are Nash biased and the corresponding
solution concept is the Nash equilibrium.

If r1 = r2 = r3 = Pareto then all players are Pareto biased and the corresponding
equilibria are described by the set of strictly non dominated strategies (Pareto front).

We also intend to explore the joint cases where one of the players is Nash biased
and others are Pareto and the one where one is Pareto and the others are Nash biased.

In order to detect the joint Nash–Pareto equilibria of the generalized game an
evolutionary approach is used.

Let us consider an initial population P(0) of p meta strategies for the generalized
three player game. Each member of the population has the form

x = (s1|r1,s2|r2,s3|r3).

Pairs of meta-strategies are randomly chosen from the current population P(t). For
each pair a binary tournament is considered. The meta strategies are compared by
means of the domination relation. An arbitrary tie breaking is used if the two meta

Evolutionary Approaches to Joint Nash – Pareto Equilibria 237

strategies have the same efficiency. The winers of two binary tournaments are re-
combined using the simulated binary crossover (SBX) operator [11] resulting two
offspring. Offspring population is mutated using real polynomial mutation [2], re-
sulting an intermediate population P′. Population P(t) and P′ are merged.

The resulting set of meta strategies is sorted with respect to the efficiency relation
using a fast non dominant sorting approach [2]. For each meta strategy M′ the num-
ber expressing how many meta strategies in the merged population are less efficient
then M′ is computed. On this basis the first p meta strategies are selected from the
merged population. Selected meta strategies represent the new population P(t + 1).

Let us remark that in the proposed technique selection for recombination and sur-
vival is driven by the efficiency relation. Therefore the population of meta-strategies
is expected to converge toward the joint Nash–Pareto front. According to the pro-
posed approach the members of this front represent the joint N–P equilibria of the
generalized game.

5 Numerical Experiments

In order to illustrate the proposed concepts the oligopoly Cournot model is conside-
red (see for instance [6]).

Let q1, q2 and q3 denote the quantities of a product. This unique product is pro-
duced by three companies. The market price denoted by P(Q) is given by

P(Q) =
{

a−Q, for Q < a,
0, for Q≥ a.

where
Q = q1 + q2 + q3,

is the aggregate quantity on the market and a > 0 is a constant characterizing the
market.

The cost for the company i of producing qi units is Ci(qi)

Ci (qi) = ciqi,

where ci < a. Suppose that the companies choose their quantities simultaneously.
The payoff for the company i is its profit, which can be expressed as:

πi(q1,q2,q3) = qiP(Q)−Ci(qi)
= qi [a− (q1 + q2 + q3)− ci] , i = 1,2,3.

A game strategy is a triple
s = (q1,q2,q3).

Several experiments have been performed for this game by using RED tech-
nique [3].

238 D. Dumitrescu, R.I. Lung, and T. Dan Mihoc

5.1 Symmetric Games

The symmetric Cournot model with parameters a = 24 and c1 = c2 = c3 = 9 is
considered.The payoff corresponding to Nash equilibrium is (14.00, 14.00, 14.00).

Table 1 Average payoff and standard deviation (St, Dev.) of the final populations in 30 runs
with 100 meta-strategies after 30 generations for the symmetric Cournot model where all
three players are Nash biased

N-N-N Average payoff St. dev. Maximum payoff Minimum payoff

player p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Average 14,05 14,06 14,05 0,03 0,04 0,04 14,85 15,57 15,00 12,25 12,49 12,45

St. Dev. 0,02 0,02 0,02 0,08 0,09 0,08 1,39 2,80 1,83 3,25 3,00 3,05

According to the data from the Table 1 in less than 30 generations the algorithm
converges to the Nash equilibrium point.

Table 2 Average payoff and standard deviation (St. Dev.) of the final populations in 30 runs
with 100 meta-strategies after 30 generations for the symmetric Cournot model where two
player are Nash biased and one is Pareto

N-N-P Average payoff St. dev. Maximum payoff Minimum payoff

player p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Average 10,99 11,01 29,80 52,81 53,02 182,28 25,92 25,71 56,24 0,00 0,00 0,49

St. Dev. 0,36 0,33 0,78 1,75 2,33 17,62 0,92 0,88 0,00 0,00 0,00 1,67

The resulting front in the Nash-Nash-Pareto case spreads from the standard Nash
equilibrium corresponding to the two player–Cournot game (25.00, 25.00) to the
Nash equilibrium corresponding to the three player–Cournot game, and from there
to the edges of Pareto front. The equilibrium set is depicted in Figure 1 and Figure 2
from two angles, for a better view. The numerical results are presented in Table 2.

As we can see in the Figure 3 in the Nash-Pareto-Pareto case the result is similar
to the Pareto front, an result that is determined by the strength of the Pareto compo-
nent in the generative relation for the joint Nash–Pareto equilibrium. As we can see
in Table 3 the minimum values for all three players are 0.00 and the maximum are
56.24, the same like the ones for the Pareto front.

5.2 Asymmetric Games

First, let us consider the two player asymmetric Cournot game with parameters a =
24, c1 = 9 and c2 = 12.

Evolutionary Approaches to Joint Nash – Pareto Equilibria 239

Fig. 1 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
symmetric Cournot game

Fig. 2 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
symmetric Cournot game

Fig. 3 The payoffs for the Nash-Pareto-Pareto front detected in less than 30 iterations for the
symmetric Cournot game

240 D. Dumitrescu, R.I. Lung, and T. Dan Mihoc

Table 3 Average payoff and standard deviation (St. Dev.) of the final populations in 30 runs
with 100 meta-strategies after 30 generations for the symmetric Cournot model where one
player is Nash biased and the other two Pareto

N-P-P Average payoff St. dev. Maximum payoff Minimum payoff

player p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Average 17,74 18,52 18,44 242,42 247,83 247,97 56,23 56,24 56,24 0,00 0,00 0,00

St. Dev. 0,40 0,36 0,42 7,36 6,98 6,82 0,04 0,00 0,00 0,00 0,00 0,00

Fig. 4 The payoffs for the Nash-Pareto, Pareto-Nash and Nash-Nash equilibria approxima-
tions detected after 30 iterations for Cournot’s model with a = 24, c1 = 9, and c2 = 12

Table 4 Numerical results for the two asymmetric games with a Nash-Nash-Pareto rational-
ity in final population in 30 runs, for 100 meta strategies and after 30 iterations

N-N-P First game Second game

c1 = 9 c2 = 12 c3 = 9 c1 = 9 c2 = 12 c3 = 5

Player p1 p2 p3 p1 p2 p3

Average payoff 17,19 2,72 46,86 16,12 3,93 29,19

St. Dev. 10,59 2,49 25,90 11,29 2,67 15,45

Minimum payoff 0,00 0,00 0,18 0,00 0,00 0,11

Maximum payoff 36,72 9,24 90,25 36,61 9,43 56,25

In Figure 4 are depicted the payoff functions for two players. The results are in
concordance with those obtained in [3]. The difference between c1 and c2 deter-
mines an asymmetry for the represented detected equilibria.

The asymmetric three player Cournot games with parameters a = 24, c1 = 9,
c2 = 12, c3 = 5 and respectively a = 24, c1 = 9, c2 = 12, c3 = 9 are considered. The
asymmetries allow us to better understand the players behavior in the joint Nash–
Pareto equilibrium.

Evolutionary Approaches to Joint Nash – Pareto Equilibria 241

Fig. 5 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
asymmetric Cournot game with parameters a = 24, c1 = 9, c2 = 12, c3 = 5

Fig. 6 The payoffs for the Nash-Nash-Pareto front detected in less than 30 iterations for the
symmetric Cournot game with parameters a = 24, c1 = 9, c2 = 12, c3 = 9

Comparing Figure 5 and Figure 6 one can observe the influence of the Pareto
component in to the final front. If parameter c3 is close to parameters c1 and c2 the
Pareto influence determines the set so spread out in a plane similar to the pure Pareto
front. The distribution between the Nash equilibrium for two players (as the third
gains nothing) and three players Nash equilibrium remains also for the asymmetric
game.

Analyzing the results one can observe that for these particular cases of joint
Nash–Pareto rationalities, symmetric or not, there is no minimum guaranteed payoff
for any rationality.

As regarding the maximum payoffs an interesting feature appears if we construct
a new game based on the maximum payoffs. The players strategies will be their
rationality (Nash or Pareto) and their payoffs the maximum gains in the joint Nash-
Pareto equilibria. Solving this game in GAMBIT the pure strategies Nash equilib-
rium is the Pareto-Pareto-Pareto rationality.

242 D. Dumitrescu, R.I. Lung, and T. Dan Mihoc

6 Conclusions and Future Work

A concept of generalized game is used in order to capture the behavior of players
with several types of rationalities. A new generative relation between meta strate-
gies induces a new solution concept called joint Nash–Pareto equilibrium. Proposed
method allows the combination of different types of equilibria in a game.

An evolutionary technique for detecting an approximation of the generalized
equilibria is used. The idea are exemplified for Cournot games with three players
and two types of rationality.

Results indicate the potential of the proposed technique. Different analyses prove
that for the presented games there is no minimal payoff but the possibility of a
maximum gain is obtained for the Pareto rationality. These experimental results
offer an inside view of the problems arising when two different type of equilibria
are considered in the same game.

Future work will address generalized games having other rationality types then
Nash and Pareto and other methods of combining them.

Acknowledgements. This research is supported partially by the CNCSIS Grant ID508 "New
Computational paradigms for dynamic complex problems" funded by the MEC and from the
SECTORAL OPERATIONAL PROGRAMME HUMAN RESOURCES DEVELOPMENT,
Contract POSDRU 6/1.5/S/3 "Doctoral studies: through science towards society", Babeş -
Bolyai University, Cluj - Napoca, România.

References

[1] Bade, S., Haeringer, G., Renou, L.: More strategies, more Nash equilibria, Working
Paper 2004-15, School of Economics University of Adelaide University (2004)

[2] Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Schoenauer, M.,
Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN
2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

[3] Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Evolutionary Equilibria Detection in Non-
cooperative Games. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt,
A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoCOMNET.
LNCS, vol. 5484, pp. 253–262. Springer, Heidelberg (2009)

[4] McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman,
H.M., Kendrick, D.A., Rust, J. (eds.) Handbook of Computational Economics. Elsevier,
Amsterdam (1996)

[5] McKelvey, R.D., Palfrey, T.: An experimental study of the centipede game. Economet-
rica 60(4), 803–836 (1992)

[6] Lung, R.I., Muresan, A.S., Filip, D.A.: Solving multi-objective optimization problems
by means of natural computing with application in finance. In: Aplimat 2006, Bratislava,
February 2006, pp. 445–452 (2006)

[7] Nash, J.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)
[8] Lung, R.I., Dumitrescu, D.: Computing Nash Equilibria by Means of Evolutionary

Computation. Int. J. of Computers, Communications & Control, 364–368 (2008)

Evolutionary Approaches to Joint Nash – Pareto Equilibria 243

[9] Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

[10] Maskin, E.: The theory of implementation in Nash equilibrium:A survey. In: Hurwicz,
L., Schmeidler, D., Sonnenschein, H. (eds.) Social Goals and Social Organization, pp.
173–204. Cambridge University Press, Cambridge (1985)

[11] Deb, K., Beyer, H.: Self-adaptive genetic algorithms with simulated binary crossover.
Complex Systems 9, 431–454 (1995)

Accelerated Genetic Algorithms with Markov
Chains

Guan Wang, Chen Chen, and K.Y. Szeto

Abstract. Based on the mutation matrix formalism and past statistics of genetic
algorithm, a Markov Chain transition probability matrix is introduced to provide
a guided search for complex problem optimization. The important input for this
guided search is the ranking scheme of the chromosomes. It is found that the effect
of mutation using the transition matrix yields faster convergence as well as over-
all higher fitness in the search for optimal solutions for the 0-1 Knapsack problem,
when compared with the mutation-only-genetic-algorithm, which include the tradi-
tional genetic algorithm as a special case. The accelerated genetic algorithm with
Markov Chain provides a theoretical basis for further mathematical analysis of evo-
lutionary computation, specifically in the context of adaptive parameter control.

1 Introduction

Successful applications of genetic algorithm using the Darwinian principle of sur-
vival of the fittest have been implemented in many areas [1, 2], such as in solving
the crypto-arithmetic problem [3], time series forecasting [4], traveling salesman
problem [5], function optimization [6], adaptive agents in stock markets [7, 8], and
airport scheduling [9]. A drawback for the practitioners of genetic algorithm is the
need for expertise in the specific application, as its efficiency depends very much
on the parameters chosen in the evolutionary process. An example of this drawback
can be found in the ad-hoc manner in choosing the selection mechanism, where

Guan Wang
School of Physics, Peking University, Beijing, China

Chen Chen
Columbia University, New York, USA

K.Y. Szeto
Department of Physics, the Hong Kong University of Science and Technology Hong Kong,
China
e-mail: phszeto@ust.hk

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 245–254, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

phszeto@ust.hk

246 G. Wang, C. Chen, and K.Y. Szeto

different percentages of the population for survival for different problems are used.
Since the parameters used in a specific application will generally be suboptimal in
a different application, the traditional usage of genetic algorithm is more like an ar-
tisan approach. To tackle this shortcoming, we attempt an adaptive approach where
the number of parameters requiring input from experts is reduced to a minimum.
The basic aim is to make use of past data collected in the evolutionary process of
genetic algorithm to tune the parameters such as the survival probability of a chro-
mosome. This idea is similar to the Estimation Distribution Algorithm or its variants
[10–13]. We can collect the statistics of the chromosomes in past generations to de-
cide the probability of mutation of each locus [14, 15]. A general formalism using
this idea has been constructed through the time dependent mutation matrix, and the
algorithm called MOGA (mutation only genetic algorithm) has been shown to be
very successful in solving various practical problems [3–9]. Generalization of this
formalism to include crossover has also been developed in a recent publication [16].
This approach is reviewed in Section 2. The objective of this paper is to present a
more systematic way of making use of the statistic of the locus during evolution to
provide a guided search in optimization. Similar to MOGA discussed in Section 2,
the mutation probability is time dependent. However, the dependence is not based
on the tensor product of the chromosome mutation probability and locus mutation
probability. We make use a Markov chain to describe the evolution of the probability
of mutation, or more generally, the transition probability between 0 and 1 state in a
binary encoding of the chromosomes in the genetic algorithm. The entire approach
is based on the existence of a target state provided by the fit chromosomes, with
proper weighting. In this approach, which we called MCGA (Markov Chain Ge-
netic Algorithm), the really important input of this algorithm is the weighting func-
tion applied for the chromosomes, which is defined by the fitness ranking scheme.
We will develop this algorithm in section 3. We compare this MCGA with our pre-
vious MOGA algorithm using the standard 0-1 knapsack problem in section 4. Even
though this comparison is limited to the knapsack problem, we expect this approach
of MCGA is more flexible for further development. We will discuss these issues at
the end of the paper.

2 Mutation Matrix and MOGA

In traditional simple genetic algorithm, the mutation/crossover operators are pro-
cessed on the chromosome indiscriminately over the loci without making use of
the loci statistics, which has been demonstrated to provide useful information on
mutation operator [16]. In our mutation matrix formalism, the traditional genetic
algorithm can be treated as a special case. Let’s consider a population of N chro-
mosomes, each of length L and binary encoded. We describe the population by a
N × L matrix, with with entry Ai j(t), i = 1, ...,N; j = 1, ...,L denoting the value
of the jth locus of the ith chromosome. The convention is to order the rows of
A by the fitness of the chromosomes, fi(t) ≤ fk(t) f or i ≥ k . Traditionally we
divide the population of N chromosomes into three groups: (1) Survivors who

Accelerated Genetic Algorithms with Markov Chains 247

are the fit ones. They form the first rows of the population matrix A(t+1). Here
N1 = c1N with the survival selection ratio 0 < c1 < 1. (2) The number of chil-
dren is N2 = c2N and is generated from the fit chromosomes by genetic opera-
tors such as mutation. Here 0 < c2 < 1− c1 is the second parameter of the model.
We replace the next N2 rows in the population matrix A(t+1). (3) The remaining
N3 = N −N1 −N2 rows are the randomly generated chromosomes to ensure the
diversity of the population so that the genetic algorithm continuously explores the
solution space. In our formalism, we introduce a mutation matrix with elements
Mi j(t)≡ ai(t)b j(t), i = 1, ...,N; j = 1, ...,L; 0≤ ai(t), b j(t)≤ 1 where ai(t) and
b j(t) are called the row mutation probability and column mutation probability re-
spectively. Traditional genetic algorithm with mutation as the only genetic opera-
tor corresponds to a time independent mutation matrix with elements Mi j(t) ≡ 0
for i = 1, ...,N1, Mi j(t) ≡ m ∈ (0,1) for i = N1 + 1, ...,N2, and finally we have
Mi j(t) ≡ 1 for i = N2 + 1, ...,N. Here m is the time independent mutation rate. We
see that traditional genetic algorithm with mutation as the only genetic operator re-
quires at least three parameters: N1,N2,andm. We first consider the case of mutation
on a fit chromosome. We expect to mutate only a few loci so that it keeps most of
the information unchanged. This corresponds to “exploitation” of the features of fit
chromosomes. On the other hand, when an unfit chromosome undergoes mutation,
it should change many of its loci so that it can explore more regions of the solution
space. This corresponds “exploration”. Therefore, we require that Mi j(t) should be
a monotonic increasing function of the row index i since we order the population
in descending order of fitness. There are many ways to introduce the row mutation
probability. One simple solution is to use ai(t) = (i− 1)/(N− 1). Next, we must
decide on the choice of loci for mutation once we have selected a chromosome to
undergo mutation. This is accomplished by computing the locus mutation probabil-
ity of changing to X (X=0 or 1) at locus j as p jX by

p jX =
N

∑
k=1

(N + 1− k)δk j(X)

/
N

∑
m=1

m (1)

Here k is the rank of the chromosome in the population. δk j(X) = 1 if the j-th locus
of the k-th chromosome assume the value X, and zero otherwise. The factor in the
denominator is for normalization. Note that p jX contains information of both locus
and row and the locus statistics is biased so that heavier weight for chromosomes
with high fitness is assumed. This is in general better than the original method of
Ma and Szeto[14] where there is no bias on the row. After defining p jX , we define
the column mutation rate as

b j =
(
1−|p j0−0.5|− |p j1−0.5|)

/
L

∑
j′=1

b j′ (2)

For example, if 0 and 1 are randomly distributed, we have p j0 = p j1 = 0.5. There
will be no useful information about the locus, so we should mutate this locus, and
b j = 1. When there is definitive information, such as when p j0 = 1− p j1 = 0or1,

248 G. Wang, C. Chen, and K.Y. Szeto

we should not mutate this column and we have b j = 0. Once the mutation matrix
M is obtained, we are ready to discuss the strategy of using M to evolve A. There
are two ways to do Mutation Only Genetic Algorithm (MOGA). We can first decide
which row (chromosome) to mutate, then which column (locus) to mutate, we call
this particular method the Mutation Only Genetic Algorithm by Row or abbreviated
as MOGAR. Alternatively, we can first select the column and then the row to per-
form mutation. We call this the Mutation Only Genetic Algorithm by Column or
abbreviated as MOGAC. For MOGAR, we go through the population matrix A(t)
by row first. The first step is to order the set of locus mutation probability b j(t) in
descending order. This ordered set will be used for the determining of the set of col-
umn position (locus) in the mutation process. Now, for a given row i, we generate
a random number x. If x < ai(t), then we perform mutation on this row, otherwise
we proceed to the next row and Ai j(t + 1) = Ai j(t), j = 1, ...,L. If row i is to be
mutated, we determine the set Ri(t) of loci in row i to be changed by choosing the
loci with b j(t) in descending order, till we obtain Ki(t) = ai(t) ∗L members. Once
the set Ri(t) has been constructed, mutation will be performed on these columns of
the i-th row of the A(t) matrix to obtain the matrix elements Ai j(t +1), j = 1, ...,L.
We then go through all N rows, so that in one generation, we need to sort a list of
L probabilities b j(t) and generate N random numbers for the rows. After we ob-
tained A(t+1), we need to compute the Mi j(t + 1) = aib j(t + 1) and proceed to the
next generation. For MOGAC, the operation is similar to MOGAR mathematically
except now we rotate the matrix A by 90 degrees. Now, for a given column j we gen-
erate a random number y. If y < b j(t), then we mutate this column, otherwise we
proceed to the next column and Ai j(t + 1) = Ai j(t), i = 1, ...,N. If column j is to be
mutated, we determine the set S j(t) of chromosomes in column j to be changed by
choosing the rows with the ai(t) in descending order, till we obtain Wj(t) = b j(t)∗N
members. Since our matrix A is assumed to be row ordered by fitness, we simply
need to choose the N,N−1, ...,N−Wj +1 rows to have the j-th column in these row
mutated to obtain the matrix elements Ai j(t + 1), i = 1, ...,N. We then go through
all L columns, so that in one generation, we need to sort a list of N fitness val-
ues and generate L random numbers for the columns. For a controlled comparison
between MOGA and MCGA, we first choose which row (chromosome) to mutate,
then which column (locus) to mutate. In this way, we can will compare MCGA with
MOGAR on fair ground, since in our MCGA, we also decide which row to mutate
before deciding which locus to change. The difference then is in the change of the
locus for a given chromosome. In MOGAR, this change of the locus is governed by
the probability b(j), while in MCGA, this change is based on the transition matrix P
for that particular locus j at time t.

3 Markov-Chain Accelerated Genetic Algorithms

In MOGA, the mutation matrix is obtained through the assignment of the row and
column mutation probability, Mi j(t) ≡ ai(t)b j(t), i = 1, ...,N; j = 1, ...,L . In the
implementation of the mutation, there are two different ways or ordering, MOGA by

Accelerated Genetic Algorithms with Markov Chains 249

row or MOGA by column. However, both methods of implementation are rather ad-
hoc. It will be desirable to implement the mutation on a more theoretical platform.
Since we impose no memory effect, we should be able to describe the evolution
process of the mutation probability through a Markov chain. Let us de-note the
population matrix by A. There are N rows each representing a chromo-some and L
columns each representing a locus. We assume that A is a binary matrix where every
entry is either 0 or 1. Let’s assume that there is a transition probability between the
population A(t) with A(t+1) in the next generation. This transition should involve
the basic features of genetic operators, which in the present paper concerns only the
mutation process. In the proposed genetic algorithm, we consider a mutation-only
updating scheme between two generations. During each generation, chromosomes
are sorted from the fittest one to the least fit one. The chromosome at the i-th fittest
place is assigned a row mutation probability a(i) according to some monotonic in-
creasing function of its ranking: r(i)=(i-1)/N’, if i-1<N’ and r(i)=1, otherwise. Here
we use N’=N/2. This choice of r(i) defines the ranking scheme we used. We also
define the survival probability as s(i)=1-r(i). In this way, a(i) and s(i) together decide
the probability to mutate to the other 0-1 state or to remain in the current 0-1 state
for the i-th fittest chromosome. In the spirit of "survival of the fittest", we can use
s(i) as the statistical weight of importance for the i-th chromosomes: w(i)=s(i). After
discussing the row mutation, let’s now turn to the column mutation, which addresses
the relevance of the statistical importance of the locus. For each locus j, we define
C0(j) and C1(j) which count in the current generation the numbers of chromosomes
whose j-th entries are "0"s and "1"s. Next we normalize these counts to obtain

no(j,t) =
Co(j)

Co(j)+C1(j)
; n1(j,t) =

C1(j)
Co(j)+C1(j)

(3)

The normalized vector n(j,t) = (no(j),n1(j)) characterizes the state distribution of
the j-th locus among all the chromosomes in the current generation at time t. In order
to direct the current population to a preferred state distribution for locus j, we first
look at those rows of the population matrix A that has the j-th locus assuming the
value u(=0 or 1). Among these rows with j-th locus equal to u, let’s assume that the
row that has maximum weight is the i*-th row, we should then follow the i* row as
it is the fittest and the weight w(i*) is largest among the N rows. We can then rewrite

C′0(j) = max
{

W (i) |Ai j = 0; i = 1, ...,N
}

;
C′1(j) = max

{
W (i) |Ai j = 1; i = 1, ...,N

} (4)

with their normalized forms

no(j,t + 1) =
C′o(j)

C′o(j)+C′1(j)
; n1(j,t + 1) =

C′1(j)
C′o(j)+C′1(j)

. (5)

The vector n(j,t +1) = (no(j,t + 1),n1(j,t + 1)) provides a direction that the popu-
lation should evolve. This vector characterizes the target state distribution of the locus
j among all the chromosomes in the next generation. Note that in this definition of the

250 G. Wang, C. Chen, and K.Y. Szeto

target state, we make use of the weight w(i) of the rows, which we intuitively set to be
the survival probability of the chromosomes s(i). In turn, the survival probability is
(1-r(i)), which is the type of ranking r(i) used in the formulation. A different scheme
of fitness ranking of the chromosomes will pro-duce a different set of w(i), thereby
a different direction vector n(j, t + 1). Therefore, the ultimate tunable quantity in
MCGA is our choice of ranking scheme for the chromosomes.

Fig. 1 Markov-Chain with transition probability Pab from the current state a to the state b

Assuming that we have chosen a monotonic ranking scheme for the fitness, and
have worked out the direction vector for locus j, we can then apply Markov Chain
theory to compute the transition probability of the various states as defined below

(
no(j,t + 1)
n1(j,t + 1)

)

=
(

P00(j, t) P10(j,t)
P01(j, t) P11(j,t)

)(
no(j,t)
n1(j,t)

)

(6)

In the Markov Chain described in Fig. 1, state 1 changes to state 0 with probability
P10(j,t), and remains to be in state 1 with probability P11(j, t) = 1−P10(j,t). Sim-
ilarly, state 0 changes to state 1 with probability P01(j,t), and remains to be state 0
with probability P00(j,t) = 1−P01(j, t). These conditions allow us to solve for the
transition probability P10(j,t) explicitly in terms of the single variable P00(j,t) as

P10(j,t) = no(j,t+1)−P00(j,t)no(j,t)
n1(j,t)

P11(j,t) = 1−P10(j, t)andP01(j,t) = 1−P00(j, t).
(7)

Thus, we need only to know the probability P00(j,t) to compute all the remaining
probabilities. At the beginning, we can set P00(j, tini) = 0.5 since our guess of the so-
lution is random. In the next time step, we need to make an assumption on P00(j, t).
An intuitive assignment P00(j,t) = n0(j, t) gives very good result. Unlike MOGA,
where a chromosome mutates using the mutation matrix, here our Markov Chain
Genetic Algorithm (MCGA) makes use of the transition probability matrix Pab(j,t)
to move from one state to the next. The entire evolutionary computation of MCGA
depends mainly on the ranking scheme used for the chromosomes.

Accelerated Genetic Algorithms with Markov Chains 251

4 Experiments

In order to evaluate the effectiveness of MCGA, we compare it with MOGAR (Mu-
tation Only Genetic Algorithm by Row). We first choose a row to mutate ac-cording
to the row mutation probability, same as MOGAR, but in the next step when we per-
form the locus mutation in this row we use the Markov Chain method. This gives
a time dependent transition probability between the 0 and 1 states. We have per-
formed numerous experiments to compare MCGA with MOGAR using mutation
matrix. Note that this is a control comparison since we fix the first step to be the
same.

Fig. 2 MOGAR and MCGA for the Knapsack Problem after 40 generations. (a) for one run
(b) the average for 30 runs

Based on tests performed when comparing the locus dependent mutation rate ge-
netic algorithm [14] with other standard methods in solving the knapsack problems
[17], we continue to use this standard problem for the comparison of MOGAR and
MCGA, which are two more sophisticated version of locus dependent mutation ge-
netic algorithm. The knapsack has a maximum weight volume C, called the optimal
number. We consider the allocation of n items in the knapsack. When item i is in the
knapsack, its loading is given by the weight wi while the profit for carrying it is pi.

Given {w1,w2, ...,wn} and {p1, p2, ..., pn}, our goal is to maximize
n
∑

i=1
pixi subject

252 G. Wang, C. Chen, and K.Y. Szeto

to the constraint
n
∑

i=1
wixi ≤C .In our experiment we have n=16 items with weight

wi = 2i−1 and profit pi = 1 for all i. Our goal is to find configuration of item occu-
pancy {xi} so that we get as close to the limit defined by the maximum knapsack
weight volume as possible. Here xi is a binary variable which is 1 if item i is in the
knapsack, and 0 if it is not. We can now use the string of {xi} to denote a chro-
mosome. We set the optimal number (C) between 10000 and 11000, and try to find
the best chromosome that fulfills our goal using MOGAR and MCGA. The results
are shown in Fig. 2 (a). Each algorithm runs for 40 generations. Here we can see
that MCGA has a higher probability of reaching the optimum than MOGAR, which
very often get trapped in local optima. We also run the program for 30 times and the
results are shown in Fig. 2 (b). We can see that the results of MCGA converge to the
optimal number much better than that of MOGAR.

Next we define a performance measure to compare these two algorithms. The first
one is the "hit rate". For the "hit rate", we first introduce a "hit scale" by which we
say that the result "hits" the optimum when it surpasses a critical thre-shold value.
This threshold can be defined as a given percentage of the optimum. For example,
if we set the threshold to be within 30% of the optimum, then in our case with an
optimal number 10000, we will say a particular solution of the knap-sack problem
has "hit" the optimum when its value lies between 7000 and 10000. The "hit rate"
is then defined as the number of hit result over the total number of tests performed
and is between 0 for "never hitting" and 1 for "always hitting". In the context of our
numerical work, we set the optimal number of the knapsack in the range between
10000 and 11000, with a total number of tests being 1000. We change the hit scale
and the result is shown in Fig. 3 (a). We can see that the hit rate of MCGA is
closer to 1.0 than MOGAR with small hit scale. This indicates that MCGA can
obtain more accurate results than MOGAR. The second performance measure used
in the comparison of MOGA with MCGA address the number of generations in each
algorithm. If we run these algorithms for a given number (g) of generations, we can
compute the average best fitness, which we call the "average fit rate", defined as

F(g) =
1

1000

11000

∑
h=10000

B(h,g)
h

(8)

Here B(h,g) is the fitness of the best chromosome in the g-th generation and with
given optimum value of h. In a given test with g generation and optimal number
h, the fitness of the best chromosome will be h if it hits the optimum value, other-
wise it will be less. Therefore, the average fit rate will be smaller than one, unless
the algorithm is perfect and find optimum every time for given g and h. We have
performed test for generation g less than 81. The results are shown in Fig. 3 (b).
We can see that MCGA has a better fit rate than MOGAR in general, especially in
the beginning generations. This is consistent with the result for MCGA in Fig. 3 (a)
where we see that MCGA is more accurate than MOGAR. Furthermore, the result
on fit rate indicates that MCGA can achieve more accurate results with less number
of generations than MOGAR.

Accelerated Genetic Algorithms with Markov Chains 253

Fig. 3 (a) Hit Rate and (b) Fit Rate for MOGAR and MCGA

5 Conclusion

We test our new genetic algorithm using a Markov Chain formulation of the mu-
tation matrix, so that the direction of search is a guided search using a transition
matrix based on a given ranking scheme of the chromosomes. This new algorithm
(MCGA) makes transparent the fundamental assumption of the evolutionary pro-
cess lies in the choice of ranking scheme. The important input for this guided search
is the ranking scheme of the chromosomes. The simple ranking scheme used in
this paper suggests that MCGA is better than the original formulation of MOGA,
which makes use of past statistics to construct a mutation matrix. We compare a
particular choice of MOGA using row first (MOGAR) and conclude that MCGA
is in general better than MOGAR both in terms of accuracy (measured by hit rate)
and in terms of speed (measured by fit rate) for the knapsack problem. We expect
this superiority of MCGA over MOGA remains valid in other standard tests of the
algorithms. Various combinations of these algorithms involve resource allocation,
which have been addressed for MOGA, but not yet for MCGA. In future works, we
will present the results on managing these combinations using intelligent resource
allocation techniques [9, 15, 18].

Acknowledgements. K.Y. Szeto acknowledges the support of CERG grant 602506 and
602507.

References

[1] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

[2] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)

[3] Li, S.P., Szeto, K.Y.: Crytoarithmetic problem using parallel Genetic Algorithms. In:
Mendl 1999, Brno, Czech (1999)

254 G. Wang, C. Chen, and K.Y. Szeto

[4] Szeto, K.Y., Cheung, K.H.: Multiple time series prediction using genetic algorithms op-
timizer. In: Proceedings of the International Symposium on Intelligent Data Engineering
and Learning, IDEAL 1998, Hong Kong, pp. 127–133 (1998)

[5] Jiang, R., Szeto, K.Y., Luo, Y.P., Hu, D.C.: Distributed parallel genetic algorithm with
path splitting scheme for the large traveling salesman problems. In: Shi, Z., Faltings,
B., Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing,
16th World Computer Congress 2000, Beijing, August 21-25, pp. 478–485. Publishing
House of Electronic Industry (2000)

[6] Szeto, K.Y., Cheung, K.H., Li, S.P.: Effects of dimensionality on parallel genetic al-
gorithms. In: Proceedings of the 4th International Conference on Information System,
Analysis and Synthesis, Orlando, Florida, USA, vol. 2, pp. 322–325 (1998)

[7] Szeto, K.Y., Fong, L.Y.: How adaptive agents in stock market perform in the presence of
random news: a genetic algorithm approach. In: Leung, K.-S., Chan, L., Meng, H. (eds.)
IDEAL 2000. LNCS(LNAI), vol. 1983, pp. 505–510. Springer, Heidelberg (2000)

[8] Fong, A.L.Y., Szeto, K.Y.: Rule Extraction in Short Memory Time Series using Genetic
Algorithms. European Physical Journal B 20, 569–572 (2001)

[9] Shiu, K.L., Szeto, K.Y.: Self-adaptive Mutation Only Genetic Algorithm: An Applica-
tion on the Optimization of Airport Capacity Utilization. In: Fyfe, C., Kim, D., Lee,
S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 428–435. Springer, Heidelberg
(2008)

[10] Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans-
actions on Evolutionary Computation, 523–528 (1998)

[11] Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning (1994)

[12] Pelikan, M., Goldberg, D.E., Cantu-Paz, E.: BOA: The Bayesian optimization algo-
rithm. In: Proc. of the Genetic and Evolutionary Computation Conference GECCO, pp.
525–532 (1999)

[13] Pelikan, M., Goldberg, D.E.: Scalable optimization via probabilistic modeling: From
algorithms to applications, pp. 63–90 (2006)

[14] Ma, C.W., Szeto, K.Y.: Locus Oriented Adaptive Genetic Algorithm: Application to
the Zero/One Knapsack Problem. In: Proceeding of The 5th International Conference
on Recent Advances in Soft Computing, RASC 2004, Nottingham, UK, pp. 410–415
(2004)

[15] Szeto, K.Y., Zhang, J.: Adaptive genetic algorithm and quasi-parallel genetic algorithm:
Application to knapsack problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.)
LSSC 2005. LNCS, vol. 3743, pp. 189–196. Springer, Heidelberg (2006)

[16] Law, N.L., Szeto, K.Y.: Adaptive Genetic Algorithm with Mutation and Crossover Ma-
trices. In: Proceeding of the 12th International Joint Conference on Artificial Intelli-
gence (IJCAI 2007), January 6 - 12. Theme: Al and Its Benefits to Society, pp. 2330–
2333. International Joint Conferences on Artificial Intelligence, Hyderabad (2007)

[17] Gordon, V., Bohm, A., Whitley, D.: A Note on the Performance of Genetic Algo-
rithms on Zero-One Knapsack Problems. In: Proceedings of the 9th Symposium on
Applied Computing (SAC 1994), Genetic Algorithms and Combinatorial Optimization,
Phoenix, Az, pp. 194–195 (1994)

[18] Szeto, K.Y., Rui, J.: A quasi-parallel realization of the Investment Frontier in Computer
Resource Allocation Using Simple Genetic Algorithm on a Single Computer. In: Fager-
holm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds.) PARA
2002. LNCS, vol. 2367, pp. 116–126. Springer, Heidelberg (2002)

Adapting Heuristic Mastermind Strategies to
Evolutionary Algorithms

Thomas Philip Runarsson and Juan J. Merelo-Guervós

Abstract. The art of solving the Mastermind puzzle was initiated by Donald Knuth
and is already more than thirty years old; despite that, it still receives much attention
in operational research and computer games journals, not to mention the nature-
inspired stochastic algorithm literature. In this paper we try to suggest a strategy
that will allow nature-inspired algorithms to obtain results as good as those based
on exhaustive search strategies; in order to do that, we first review, compare and im-
prove current approaches to solving the puzzle; then we test one of these strategies
with an estimation of distribution algorithm. Finally, we try to find a strategy that
falls short of being exhaustive, and is then amenable for inclusion in nature inspired
algorithms (such as evolutionary of particle swarm algorithms). This paper proves
that by the incorporation of what we call local entropy into the fitness function of
the evolutionary algorithm it becomes a better player than a random one, and gives
a rule of thumb on how to incorporate the best heuristic strategies to evolutionary
algorithms without incurring in an excessive computational cost.

Keywords: puzzles, games, Mastermind, bulls and cows, search strategies, oracle
games, evolutionary algorithms, estimation of distribution algorithms.

Thomas Philip Runarsson
School of Engineering and Natural Sciences,
University of Iceland,
Reykjavik, Iceland
e-mail: tpr@hi.is

Juan J. Merelo-Guervós
Department of Architecture and Computer Technology, ETSIIT, University of Granada, Spain
e-mail: jmerelo@geneura.ugr.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 255–267, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

tpr@hi.is
jmerelo@geneura.ugr.es

256 T.P. Runarsson and J.J. Merelo-Guervós

1 Introduction

Mastermind in its current version is a board game that was introduced by the
telecommunications expert Mordecai Merowitz [15] and sold to the company In-
victa Plastics, who renamed it to its actual name; in fact, Mastermind is a version
of a traditional puzzle called bulls and cows that dates back to the Middle Ages. In
any case, Mastermind is a puzzle (rather than a game) in which two persons, the
codemaker and codebreaker try to outsmart each other in the following way:

• The codemaker sets a length � combination of κ symbols. In the classical version,
� = 4 and κ = 6, and color pegs are used as symbols over a board with rows of
� = 4 holes; however, in this paper we will use uppercase letters starting with A
instead of colours.

• The codebreaker then tries to guess this secret code by producing a combination.
• The codemaker gives a response consisting on the number of symbols guessed in

the right position (usually represented as black pegs) and the number of symbols
in an incorrect position(usually represented as white pegs).

• The codebreaker then, using that information as a hint, produces a new combina-
tion until the secret code is found.

For instance, a game could go like this: The codemaker sets the secret code ABBC.
The rest of the game is shown in Table 1.

Table 1 Progress in a Mastermind game that tries to guess the secret combination ABBC. The
player here is not particularly clueful, playing a third combination that is not consistent with
the first one, not coinciding in two positions and one color (corresponding to the 2 black/1
white response given by the codemaker) with it

Combination Response
AABB 2 black, 1 white
ACDE 1 black, 1 white
FFDA 1 white
ABBE 3 black
ABBC 4 black

Different variations of the game include giving information on which position
has been guessed correctly, avoiding repeated symbols in the secret combination
(bulls and cows is actually this way), or allowing the codemaker to change the code
during the game (but only if this does not make responses made so far false).

In any case, the codebreaker is allowed to make a maximum number of combi-
nations (usually fifteen, or more for larger values of κ and �), and score corresponds
to the number of combinations needed to find the secret code; after repeating the
game a number of times with codemaker and codebreaker changing sides, the one
with the lower score wins.

Since Mastermind is asymmetric, in the sense that the position of one of the
players after setting the secret code is almost completely passive, and limited to

Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms 257

give hints as a response to the guesses of the codebreaker, it is rather a puzzle than a
game, since the codebreaker is not really matching his skills against the codemaker,
but facing a problem that must be solved with the help of hints, the implication
being that playing Mastermind is more similar to solving a Sudoku than to a game of
chess; thus, the solution to Mastermind, unless in a very particular situation (always
playing with an opponent who has a particular bias for choosing codes, or maybe
playing the dynamic code version), is a search problem with constraints.

What makes this problem interesting is its relation to other, generally called or-
acle problems such as circuit and program testing, differential cryptanalysis and
other puzzle games (these similarities were reviewed in our previous paper [10]) is
the fact that it has been proved to be NP-complete [5, 14] and that there are several
open issues, namely, what is the lowest average number of guesses you can achieve,
how to minimize the number of evaluations needed to find them (and thus the run-
time of the algorithm), and obviously, how it scales when increasing κ and �. This
paper will concentrate on the first issue.

This NP completeness implies that it is difficult to find algorithms that solve the
problem in a reasonable amount of time, and that is why in our previous work [2, 9,
10] we introduced stochastic evolutionary and simulated annealing algorithms that
solved the Mastermind puzzle in the general case, finding solutions in a reasonable
amount of time that scaled roughly logarithmically with problem size. The strategy
followed to play the game was optimal in the sense that is was guaranteed to find
a solution after a finite number of combinations; however, there was no additional
selection on the combination played other than the fact that it was consistent with
the responses given so far.

In this paper, after reviewing how the state of the art in solving this puzzle has
evolved in the last few years, we examine how we could improve the code-breaking
skills of an evolutionary algorithm by using different techniques, and how these
techniques can be further optimized. In order to do that we examine different ways
of scoring combinations in the search space, how to choose one combination out
of a set of combinations that have exactly the same score, and how all that can be
applied to a simple estimation of distribution algorithm to improve results over a
standard one. This paper presents for the first time an evolutionary algorithm that
biases search so that combinations played have a better chance of reducing the size
of the remaining search space, and adapt to an stochastic environment deterministic
techniques that had been previously published; all techniques, unlike our former
papers, have been tested over the whole code space, instead of a random sample, so
that they can be compared and yield significant results.

The rest of the paper is organized as follows: next we establish terminology and
examine the state of the art; then heuristic strategies for Mastermind are examined in
Section 3; the way they could be adapted to an evolutionary algorithm is presented
in Section 5, and finally, conclusions are drawn in the closing section 6.

258 T.P. Runarsson and J.J. Merelo-Guervós

2 State of the Art

Before presenting the state of the art, a few definitions are needed. We will use
the term response for the return code of the codemaker to a played combination,
cplayed . A response is therefore a function of the combination, cplayed and the secret
combination csecret , let the response be denoted by h(cplayed,csecret). A combination
c is consistent with cplayed iff

h(cplayed ,csecret) = h(cplayed,c) (1)

that is, if the combination has as many black and white pins with respect to the
played combination as the played combination with respect to the secret combina-
tion. Furthermore, a combination is consistent iff

h(ci,c) = h(ci,csecret) for i = 1..n (2)

where n is the number of combinations, ci, played so far; that is, c is consistent with
all guesses made so far. A combination that is consistent is a candidate solution.
The concept of consistent combination will be important for characterizing different
approaches to the game of Mastermind.

One of the earliest strategies, by Knuth [6], is perhaps the most intuitive for Mas-
termind. In this strategy the player selects the guess that reduces the number of
remaining consistent guesses and the opponent the return code leading to the max-
imum number of guesses. Using a complete minimax search Knuth shows that a
maximum of 5 guesses are needed to solve the game using this strategy. This type
of strategy is still the most widely used today: most algorithms for Mastermind start
by searching for a consistent combination to play.

In some cases once a single consistent guess is found it is immediately played, in
which case the object is to find a consistent guess as fast as possible. For example,
in [10] an evolutionary algorithm is described for this purpose. These strategies are
fast and do not need to examine a big part of the space. Playing a consistent combi-
nations eventually produces a number of guesses that uniquely determine the code.
However, the maximum, and average, number of combinations needed is usually
high. Hence, some bias must be introduced in the way combinations are searched. If
not, the guesses will be no better than a purely random approach, as solutions found
(and played) are a random sample of the space of consistent guesses.

The alternative to discovering a single consistent guess is to collect a set of con-
sistent guesses and select among them the best alternative. For this a number of
heuristics have been developed over the years. Typically these heuristics require all
consistent guesses to be first found. The algorithms then use some kind of search
over the space of consistent combinations, so that only the guess that extracts the
most information from the secret code is issued, or else the one that reduces as much
as possible the set of remaining consistent combinations. However, this is obviously
not known in advance. To each combination corresponds a partition of the rest of the
space, according to their match (the number of blacks and white pegs that would be
the response when matched with each other). Let us consider the first combination:

Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms 259

if the combination considered is AABB, there will be 256 combinations whose re-
sponse will be 0b, 0w (those with other colors), 256 with 0b, 1w (those with either
an A or a B), etc. Some partitions may also be empty, or contain a single element
(4b, 0w will contain just AABB, obviously). For a more exhaustive explanation see
[7]. Each combination is thus characterized by the features of these partitions: the
number of non-empty ones, the average number of combinations in them, the max-
imum, and other characteristics one may think of.

The path leading to the most successful strategies to date include using the worst
case, expected case, entropy [3, 13] and most parts [7] strategies. The entropy strat-
egy selects the guess with the highest entropy. The entropy is computed as follows:
for each possible response i for a particular consistent guess, the number of remain-
ing consistent guesses is found. The ratio of reduction in the number of guesses is
also the a priori probability, pi, of the secret code being in the corresponding par-
tition. The entropy is then computed as ∑n

i=1 pi log2(1/pi), where log2(1/pi) is the
information in bit(s) per partition, and can be used to select the next combination to
play in Mastermind [13]. The worst case is a one-ply version of Knuth’s approach,
but Irving [4] suggested using the expected case rather than the worst case. Kooi [7]
noted, however, that the size of the partitions is irrelevant and that rather the number
of non empty partitions created, n, was important. This strategy is called most parts.
The strategies above require one-ply look-ahead and either determining the size of
resulting partitions and/or the number of them. Computing the number of them is,
however, faster than determining their size. For this reason the most parts strategy
has a computational advantage.

The heuristic strategies described above use some form of look-ahead which is
computationally expensive. If no look-ahead is used to guide the search a guess
is selected purely at random. However, it may be possible to discriminate by using
local information. If this were possible one could even dismiss searching for all con-
sistent guesses and search for a single consistent guess with the bias. In section 3
these heuristic strategies are compared. In section 4 an EDA using only local infor-
mation is compared with those that need to examine all consistent guessed in order
to select the best one.

3 Comparison of Heuristic Strategies

As has been mentioned before, there have been a number of different strategies pro-
posed over the years for selecting among consistent guesses in Mastermind. These
heuristics do not consider an exhaustive minimax search, but rather one-ply search.
What is, however, not clear in these research papers is how ties are broken, which
probably implies that a first come, first served approach is taken, using the first
combination in lexicographical order out of all tied combinations. For this reason
we propose to perform a comparison of the heuristic methods here where the ties
are broken randomly. Each strategy is, therefore, used on all possible secret combi-
nations (they are 64 = 1296) using ten independent runs.

260 T.P. Runarsson and J.J. Merelo-Guervós

The heuristics compared are the entropy, most parts and worst case strategy, as
performed by Bestavros and Belal [3]. The worst case refers to the fact that for each
possible return code for a particular guess the smallest reduction in assumed, i.e.
the worst case. The actual consistent guess chosen is the one which maximizes the
worst case. Finally, the expected size strategy, [4] is also tested; in this strategy the
expected case is used instead of the worst case. These strategies are compared with
the random strategy.

Table 2 A comparison of the mean number of games played using all 64 colour combinations
and breaking ties randomly, ranked from best to worst average number of guesses needed.
Statistics are given for 10 independent experiments. The maximum number of moves used
for the 10× 64 games is also presented in the final column. Horizontal separators are given
for statistically independent results

Strategy min mean median max st.dev. max
guesses

Entropy 4.383 4.408 4.408 4.424 0.012 6
Most parts 4.383 4.410 4.412 4.430 0.013 7
Expected size 4.447 4.470 4.468 4.490 0.015 7
Worst case 4.461 4.479 4.473 4.506 0.016 6
Random 4.566 4.608 4.608 4.646 0.026 8

The results of the experiments are given in table 2. The first combination played
is always AABC, as proposed by [4]. The Wilcoxon rank sum (used instead of t-test
since the variable does not follow a normal distribution) with a 0.05 significance
level is used to determine which results are statistically different form another. The
horizontal lines are used to group together heuristics that are not statistically dif-
ferent from the other. From these results we can gather that there is no statistical
difference between the entropy and most parts strategies. However, out of all games
played the maximum number of guesses needed by the Entropy strategy was only 6
while for most parts it was 7. These strategies are also better than the worst and ex-
pected case, which are statistically equivalent. For the worst case strategy used, nev-
ertheless, only a maximum of 6 guesses, unlike the expected case with 7. The worst
performer is the random strategy which also required a maximum of 8 guesses.
Finally, note that the optimal expected result on playing all secrets is 4.340 [8].

4 Estimation of Distribution Algorithm Using Local Entropy

One of the common approaches to using evolutionary algorithms for Mastermind,
is simply to search for a single consistent guess which is then immediately played.
This is especially true for the generalized version of the game, for N > 6 and L > 4,
where the task of just finding a consistent guess can be difficult. The result of such
an approach is likely to do as well as the random strategy discussed in the previous
sections if there are no major biases in searching for these consistent solutions. For

Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms 261

steady state evolutionary algorithms it may, however, be the case that the consec-
utive consistent guesses found may be similar to others played before; that is, the
strategy of play may not necessarily be purely random. In any case it is highly likely
that evolutionary algorithms of this type will not do better than the random strategy,
as seen above, since consistent combinations found are a random sample of the set
of consistent combinations.

In this section we investigate the performance of strategies that find a single con-
sistent guess and play it immediately. In this case we use an estimation of distribu-
tion algorithm [12] EDA included with the Algorithm::Evolutionary Perl
module [11], with the whole EDA-solving algorithm available as Algorithm::-
MasterMind::EDA from CPAN (the comprehensive Perl Archive Network). This
is an standard EDA that uses a population of 200 individuals and a replacement rate
of 0.5; each generation, half the population is generated from the previously gener-
ated distribution. The first combination played was AABB, since it was not found
significantly different from using AABC, as before.

The fitness function used previously [10] to find consistent guesses is as follows,

f (cguess) =
n

∑
i=1

|h(ci,cguess)−h(ci,csecret)|

that is, the sum of the absolute difference of the number of white and black pegs
needed to make the guess consistent. However, this approach is likely to perform as
well as the random strategy discussed in the previous section. When finding a single
consistent guess we cannot apply the heuristic strategies from the previous section.
For this reason we introduce now a local entropy measure, which can be applied
to non-consistent guesses and so bias our search. The local entropy assumes that
the fact that some combinations are better than others depends on its informational
content, and that in turn depends on the entropy of the combination along with the
rest of the combinations played so far. To compute local entropy, the combination is
concatenated with n combinations played so far and its Shannon entropy computed:

s(cguess) = ∑
g∈{A,...,F}

#g
(n + 1)�

log

(
(n + 1)�

#g

)

(3)

with g being a symbol in the alphabet and # denotes the number of them. Thus, the
fitness function which includes the local entropy is defined as,

f�(cguess) =
s(cguess)

1 + f (cguess)

In this way a bias is introduced to the fitness to as to select the guess with the highest
local entropy. When a consistent combination is found, the combination with the
highest entropy found in the generation is played (which might be the only one or
one among several; however, no special provision is done to generate several).

The result of ten independent runs of the EDA over the whole search space are
now compared with the results of the previous section. These results may be seen in

262 T.P. Runarsson and J.J. Merelo-Guervós

table 3. Two EDA experiments are shown, one using the fitness function designed to
find a consistent guess only (f) and ones using local entropy f�. The EDA using local
entropy is statistically better than playing pure random, whereas the other EDA is
not. In order to confirm the usefulness of the local entropy, an additional experiment
was performed. This time, as in the previous sections, all consistent guesses are
found and the one with the highest local entropy played. This results is labelled
LocalEntropy in table 3. The results are not statistically different from the EDA
results using fitness function f�.

Table 3 A comparison of the mean number of games played using all 64 colour combina-
tions and breaking ties randomly, ranked from best to worse mean number of combinations.
Statistics are given for 10 independent experiments. The maximum number of moves used
for the 10× 64 games is also presented in the final column. Horizontal separators are given
for statistically independent results

Strategy min mean median max st.dev. max
guesses

Entropy 4.383 4.408 4.408 4.424 0.012 6
Most parts 4.383 4.410 4.412 4.430 0.013 7
Expected size 4.447 4.470 4.468 4.490 0.015 7
Worst case 4.461 4.479 4.473 4.506 0.016 6
LocalEntropy 4.529 4.569 4.568 4.613 0.021 7
EDA+ f� 4.524 4.571 4.580 4.600 0.026 7
EDA+ f 4.562 4.616 4.619 4.665 0.032 7
Random 4.566 4.608 4.608 4.646 0.026 8

As a local conclusion, the Entropy method seemed to perform the best on aver-
age, but the estimation of distribution algorithm is not statistically different from
(admittedly naive) exhaustive search strategies such as LocalEntropy and performs
significantly better than the Random algorithm on average.

We should remark that the objective of this paper is not to show which strategy is
the best runtime-wise, or which one offers the best algorithmic performance/runtime
trade-off; but in any case we should note that the algorithm with the least number
of evaluations and lowest runtime is the EDA. However, its average performance
as a player is not as good as the rest, so some improvement might be obtained by
creating a set of possible solutions. It remains to be seen how many solutions would
be needed, but that will be investigated in the next section.

5 Heuristics Based on a Subset of Consistent Guesses

Following a tip in one of our former papers, recently Berghman et al. [1] proposed
an evolutionary algorithm which finds a number of consistent guesses and then uses
a strategy to select which one of these should be played. The strategy they apply is
not unlike the expected size strategy. However, it differs in some fundamental ways.

Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms 263

In their approach each consistent guess is assumed to be the secret in turn and each
guess played against every different secret. The return codes are then used to com-
pute the size of the set of remaining consistent guesses in the set. An average is
then taken over the size of these sets. Here, the key difference between the expected
size method is that only a subset of all possible consistent guesses is used and some
return codes may not be considered or considered more frequently than once, which
might lead to a bias in the result. Indeed they remark that their approach is compu-
tationally intensive which leads them to reduce the size of this subset further. Note
that Berghman et al. only present the result of a single evolutionary run and so their
results cannot be compared with those here.

Their approach is, however, interesting, and lead us to consider the case where
an evolutionary algorithms has been designed to find a maximum of μ consistent
guesses within some finite time. It will be assumed that this subset is sampled uni-
formly and randomly from all possible consistent guesses. The question is, how
do the heuristic strategies discussed above work on a randomly sampled subset of
consistent guesses? The experiment performed in the previous sections are now re-
peated, but this time only using the four best one-ply look-ahead heuristic strategies
on a random subset of guesses, bounded by size μ . If there are many guesses that
give the same number of partitions or similar entropy then perhaps taking a random
subset would be a good representation for all guesses. This has implications not only
with respect to the application of EAs but also to the common strategies discussed
here.

The size of the subsets are fixed at 10, 20, 30, 40, and 50, in order to investigate
the influence of the subset size. The results for these experiments and their statistics
are presented in table 4. The results are presented are as expected better as the subset
size, μ , gets bigger. Noticeable is the fact that the entropy and most parts strategies
perform the best as before, however, at μ = 40 and 50 the entropy strategy is better.

Is there a statistical difference between the different subset sizes? To answer this
we look at only the two best strategies in more detail, entropy and most parts, and
compare their performances for the different subset sizes, μ , and using the complete
set, case when μ = ∞, as presented in table 3. These results are given in table 5 and
6. From this analysis it may be concluded that a set size of μ = 20 is sufficiently
large and not statistically different from using the entire set of consistent guesses.
This is actually quite a large reduction is the set size, which is about 250 on average
after the first guess, then 55, followed by 12 [1].

This implies that, at least in this case, using a subset of the combination pool
that is around 1/10th of the total size potentially yields a result that is as good as
using the whole set; even as algorithmically finding 20 tentative solutions is harder
than finding a single one, using this in stochastic search algorithms such as the EDA
mentioned above or an evolutionary algorithm holds the promise of combining the
accuracy of exhaustive search algorithms with the speed of an EDA or an EA. In
any case, for spaces bigger than κ = 6, � = 4 there is no other option, and this 1/10
gives at least a rule of thumb. How this proportion grows with search space size is
still an open question.

264 T.P. Runarsson and J.J. Merelo-Guervós

Table 4 Statistics for the average number of guesses for different maximum sizes μ of sub-
sets of consistent guesses. The horizontal lines are used as before to indicate statistical inde-
pendent, with the exception of one case: for μ = 10 the expected size and worst case are not
independent

Strategy min mean median max st.dev. max
guesses

μ = 10
Most parts 4.429 4.454 4.454 4.477 0.016 7
Entropy 4.438 4.468 4.476 4.483 0.016 7
Expected size 4.450 4.472 4.474 4.493 0.014 7
Worst case 4.447 4.486 4.487 4.519 0.020 7

μ = 20
Entropy 4.394 4.423 4.426 4.455 0.021 7
Most parts 4.424 4.431 4.427 4.451 0.009 7
Expected size 4.427 4.454 4.455 4.481 0.017 7
Worst case 4.429 4.453 4.451 4.486 0.017 7

μ = 30
Entropy 4.380 4.413 4.410 4.443 0.020 6
Most parts 4.393 4.416 4.416 4.435 0.015 7
Expected size 4.426 4.453 4.456 4.491 0.019 7
Worst case 4.434 4.459 4.461 4.477 0.013 7

μ = 40
Entropy 4.372 4.398 4.399 4.426 0.017 7
Most parts 4.383 4.424 4.427 4.448 0.020 7
Expected size 4.418 4.457 4.455 4.491 0.023 7
Worst case 4.424 4.458 4.457 4.490 0.022 7

μ = 50
Entropy 4.365 4.397 4.393 4.438 0.020 6
Most parts 4.400 4.424 4.422 4.454 0.017 7
Expected size 4.419 4.453 4.453 4.495 0.022 7
Worst case 4.431 4.456 4.457 4.474 0.012 6

Table 5 No statistical advantage is gained when using a set size larger than μ = 30 when
using the entropy strategy. However, there is also no statistically difference between μ = 20
and both μ = 30 and μ = ∞ (the only cases not indicated by the horizontal lines)

μ = min mean median max st.dev.

10 4.438 4.468 4.476 4.483 0.016
20 4.394 4.423 4.426 4.455 0.021
30 4.380 4.413 4.410 4.443 0.020
40 4.372 4.398 4.399 4.426 0.017
50 4.365 4.397 4.393 4.438 0.020
∞ 4.383 4.408 4.408 4.424 0.012

Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms 265

Table 6 No statistical advantage is gained when using a set size larger than μ = 20 for the
most parts strategy. However, there is a statistical difference between μ = 20 and μ = ∞ (the
only case not indicated by the horizontal lines

μ = min mean median max st.dev.

10 4.429 4.454 4.454 4.477 0.016
20 4.424 4.431 4.427 4.451 0.009
30 4.393 4.416 4.416 4.435 0.015
40 4.383 4.424 4.427 4.448 0.020
50 4.400 4.424 4.422 4.454 0.017
∞ 4.383 4.410 4.412 4.430 0.013

6 Discussion and Conclusion

In this paper we have tried to study and compare the different heuristic strategies
for the simplest version of Mastermind in order to come up with a nature-inspired
algorithm that is able to beat them in terms of running time and scalability. The main
problem with heuristic strategies is that they need to have the whole search space
in memory; even the most advanced ones that run over it only once will become
unwieldy as soon as � or κ increase. However, evolutionary algorithms have already
been proved [10] to scale much better, the only problem being that their performance
as players is no better than a random player.

In this paper, after improving (or maybe just clarifying) heuristic and determin-
istic algorithms with an random choice of a combination to play, we have incorpo-
rated the simplest of those strategies to an estimation of distribution algorithm (the
so-called local entropy, which takes into account the amount of surprise the new
combination implies); results are promising, but still fall short of the best heuris-
tic strategies, which take into account the partition of search space created by each
combination. That is why we have tried to compute the subset that would be able
to obtain results that are indistinguishable, in the statistical sense, from those ob-
tained with the whole set, coming up with a subset whose size is around 10% of the
whole one, being thus less computational intensive and easily incorporated into an
evolutionary algorithm.

However, how this is incorporated within the evolutionary algorithm remains to
be seen, and will be one of our future lines of work. So far, distance to consistency
and entropy are combined in an aggregative fitness function; the quality of partitions
induced will also have to be taken into account; however, there are several ways of
doing this: putting consistent solutions in an archive, in the same fashion that mul-
tiobjective optimization algorithms do, leave them into the population and take the
quality of partitions as another objective, not to mention the evolutionary parameter
issues themselves: population size, operator rate. Our objective, in this sense, will be
not only to try and minimize the number of average/median games played, but also
to minimize the proportion of the search space examined to find the final solution.

All the tests and algorithms have been implemented using the Matlab package,
and are available as open source source software with a GPL licence from the

266 T.P. Runarsson and J.J. Merelo-Guervós

authors. The evolutionary algorithm and several mastermind strategies are also
available from CPAN; most results and configuration files needed to compute them
are available from the group’s CVS server (at http://sl.ugr.es/algmm).

Acknowledgements

This paper has been funded in part by the Spanish MICYT projects NoHNES (Spanish Min-
isterio de Educación y Ciencia - TIN2007-68083) and TIN2008-06491-C04-01 and the Junta
de Andalucía P06-TIC-02025 and P07-TIC-03044. The authors are also very grateful to the
traffic jams in Granada, which allowed limitless moments of discussion and interaction over
this problem.

References

[1] Berghman, L., Goossens, D., Leus, R.: Efficient solutions for Mastermind using genetic
algorithms. Computers and Operations Research 36(6), 1880–1885 (2009),
http://www.scopus.com/inward/
record.url?eid=2-s2.0-56549123376&partnerID=40

[2] Bernier, J.L., Herráiz, C.I., Merelo-Guervós, J.J., Olmeda, S., Prieto, A.: Solving mas-
termind using GAs and simulated annealing: a case of dynamic constraint optimization.
In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS,
vol. 1141, pp. 553–563. Springer, Heidelberg (1996),
http://www.springerlink.com/content/78j7430828t2867g

[3] Bestavros, A., Belal, A.: Mastermind, a game of diagnosis strategies. Bulletin of the
Faculty of Engineering. Alexandria University (1986),
citeseer.ist.psu.edu/bestavros86mastermind.html,
http://www.cs.bu.edu/fac/best/res/papers/alybull86.ps

[4] Irving, R.W.: Towards an optimum mastermind strategy. Journal of Recreational Math-
ematics 11(2), 81–87 (1978-1979)

[5] Kendall, G., Parkes, A., Spoerer, K.: A survey of NP-complete puzzles. ICGA Jour-
nal 31(1), 13–34 (2008),
http://www.scopus.com/inward/
record.url?eid=2-s2.0-42949163946&partnerID=40
(Cited By (Since 1996) 1)

[6] Knuth, D.E.: The computer as Master Mind. J. Recreational Mathematics 9(1), 1–6
(1976-1977)

[7] Kooi, B.: Yet another Mastermind strategy. ICGA Journal 28(1), 13–20 (2005),
http://www.scopus.com/inward/
record.url?eid=2-s2.0-33646756877&partnerID=40

[8] Koyama, K., Lai, T.W.: An optimal Mastermind strategy. J. Recreational Mathemat-
ics 25(4) (1993/1994)

[9] Merelo-Guervós, J.J., Carpio, J., Castillo, P., Rivas, V.M., Romero, G.: Finding a needle
in a haystack using hints and evolutionary computation: the case of genetic mastermind.
In: Scott Brave, A.S.W. (ed.) Late breaking papers at the GECCO 1999, pp. 184–192
(1999)

http://sl.ugr.es/algmm
http://www.scopus.com/inward/record.url?eid=2-s2.0-56549123376&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-56549123376&partnerID=40
http://www.springerlink.com/content/78j7430828t2867g
citeseer.ist.psu.edu/bestavros86mastermind.html
http://www.cs.bu.edu/fac/best/res/papers/alybull86.ps
http://www.scopus.com/inward/record.url?eid=2-s2.0-42949163946&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-42949163946&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646756877&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646756877&partnerID=40

Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms 267

[10] Merelo-Guervós, J., Castillo, P., Rivas, V.: Finding a needle in a haystack using hints and
evolutionary computation: the case of evolutionary MasterMind. Applied Soft Comput-
ing 6(2), 170–179 (2006),
http://www.sciencedirect.com/science/article/
B6W86-4FH0D6P-1/2/40a99afa8e9c7734baae340abecc113a,
http://dx.doi.org/10.1016/j.asoc.2004.09.003

[11] Merelo-Guervós, J.J., Castillo, P.A., Alba, E.: ALGORITHM::EVOLUTIONARY, a
flexible Perl module for evolutionary computation. Soft Computing - A Fusion of
Foundations, Methodologies and Applications (2010), doi 10.1007/s00500-009-0504-3,
http://www.springerlink.com/content/8h025g83j0q68270

[12] Mühlenbein, H., Paass, G.: From recombination of genes to the estimation of distri-
butions: I. binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

[13] Neuwirth, E.: Some strategies for mastermind. Zeitschrift fur Operations Research. Se-
rie B 26(8), B257–B278 (1982)

[14] Stuckman, J., Zhang, G.Q.: Mastermind is np-complete. CoRR abs/cs/0512049 (2005)
[15] Wikipedia: Mastermind (board game) — Wikipedia, The Free Encyclopedia (2009),

http://en.wikipedia.org/w/
index.php?title=Mastermind_board_game&oldid=317686771
(Online: accessed October 9, 2009)

http://www.sciencedirect.com/science/article/B6W86-4FH0D6P-1/2/40a99afa8e9c7734baae340abecc113a
http://www.sciencedirect.com/science/article/B6W86-4FH0D6P-1/2/40a99afa8e9c7734baae340abecc113a
http://dx.doi.org/10.1016/j.asoc.2004.09.003
http://www.springerlink.com/content/8h025g83j0q68270
http://en.wikipedia.org/w/index.php?title=Mastermind_board_game&oldid=317686771
http://en.wikipedia.org/w/index.php?title=Mastermind_board_game&oldid=317686771

Structural versus Evaluation Based Solutions
Similarity in Genetic Programming Based
System Identification

Stephan M. Winkler

Abstract. Estimating the similarity of solution candidates represented as structure
trees is an important point in the context of many genetic programming (GP) ap-
plications. For example, when it comes to observing population diversity dynamics,
solutions have to be compared to each other. In the context of GP based system
identification, i.e., when mathematical expressions are evolved, solutions can be
compared to each other with respect to their structure as well as to their evaluation.
Obviously, structural similarity estimation of formula trees is not equivalent to eval-
uation based similarity estimation; we here want to see whether there is a significant
correlation between the results calculated using these two approaches. In order to
get an overview regarding this issue, we have analyzed a series of GP tests including
both similarity estimation strategies; in this paper we describe the similarity estima-
tion methods as well as the test data sets used in these tests, and we document the
results of these tests. We see that in most cases there is a significant positive linear
correlation for the results returned by the evaluation based and structural methods.
Especially in some cases showing very low structural similarity there can be signif-
icantly different results when using the evaluation based similarity methods.

1 Solutions Similarity Estimation in GP Based System
Identification

1.1 Related Work

Genetic diversity and population dynamics are very interesting aspects in the ana-
lysis of genetic programming (GP, [7, 8]) processes; several methods for measuring

Stephan M. Winkler
Department for Medical and Bioinformatics, Upper Austria University of Applied Sciences,
Heuristic and Evolutionary Algorithms Laboratory
e-mail: stephan.winkler@fh-hagenberg.at

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 269–282, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

stephan.winkler@fh-hagenberg.at

270 S.M. Winkler

the diversity of population using some kind of similarity measure can be found in
the literature.

The entropy of a population of trees can be measured for example by considering
the programs’ scores (as is explained for example in [13]); in [10] the traditional
fitness sharing concept from the work described in [4] is applied to test its feasibility
in GP.

Several other approaches consider the programs’ genotypes, i.e., their genetic
make-up instead of their fitness values, the most common type of diversity measure
being that of structural differences between programs. Koza [7] used the term variety
to indicate the number of different programs in populations by comparing programs
structurally and looking for exact matches. The Levenshtein distance [9] can be
used for calculating the distance between trees, but it is considered rather far from
ideal ([6], [12], [8]); in [5] an edit distance specific to genetic programming parse
trees was presented which considered the cost of substituting between different node
types.

A comprehensive overview of program tree similarity and diversity measures has
been given for instance in [3]. The standard tree structures representation in GP
makes it possible to use more fine grain structural measures that consider nodes,
subtrees, and other graph theoretic properties (rather than just entire trees). In [6],
for example, subtree variety is measured as the ratio of unique subtrees over total
subtrees and program variety as a ratio of the number of unique individuals over the
size of the population; [11] investigated diversity at the genetic level by assigning
numerical tags to each node in the population.

1.2 Solutions Similarity Estimation Measures Used in This Work

In this section we describe measures which we have used for estimating the genetic
diversity in GP populations as well as among populations of multi-population GP
applications. What we use as basic measures for this are the following two functions
that calculate the similarity of GP solution candidates or, a bit more specific, in our
case formulas represented as structure trees:

• Evaluation based similarity estimation compares the subtrees of two GP formu-
las with respect to their evaluation on the given training or validation data. The
more similar these evaluations are with respect to the squared errors or linear
correlation, the higher is the similarity for these two formulas.

• Structural similarity estimation compares the genetic material of two solution
candidates; we can so determine how similar the genetic make-up of formulas is
without considering their evaluation.

As documented for example in [15] and [2], these similarity estimation mea-
sures can be used for monitoring population diversity in GP populations. We have
analyzed the effects of the use of several different selection schemes as well as
multi-population approaches. Please note that in these applications we use similarity
estimation in the following way: The similarity measures used here are asymmetric,
so when comparing structure trees T1 and T2 there might be a difference between

Structural versus Evaluation Based Solutions Similarity in GP 271

the similarities sim(T1,T2) and sim(T2,T1). This is why we mostly use a symmet-
ric variant of the measures described here: We calculate both similarity values and
calculate their average as simavg(T1,T2) = sim(T1,T2)+sim(T2,T1)

2 . This average similar-
ity function (simavg) is used for estimating the similarities of GP individuals and
monitoring the progress of genetic diversity in GP populations.

1.3 Evaluation Based Solutions Similarity Estimation

The main idea of our evaluation based similarity measures is that the building blocks
of GP formulas are subtrees that are exchanged by crossover and so form new for-
mulas. So, the evaluation of these branches of all individuals in a GP population can
be used for measuring the similarity of two models m1 and m2:

For all sub-trees in the structure-tree of model m, collected in t, we collect
the evaluation results by applying these sub-formulas to the given data collection
data as

∀(sti ∈ t)∀(j ∈ [1;N]) : ei[j] = eval(sti,data[j]) (1)

where N is the number of samples included in the data collection, no matter if train-
ing or validation data are considered.

The evaluation based similarity of models m1 and m2, es(m1,m2), is calculated
by iterating over all subtrees of m1 (collected in t1) and, for each branch, picking that
subtree of t2 (containing all sub-trees of m2) whose evaluation is most “similar" to
the evaluation of that respective branch. So, for each branch ba in t1 we compare its
evaluation ea with the evaluation eb of all branches bb in t2, and the “similarity" can
be calculated using the sum of squared errors or the linear correlation coefficient:

• When using the sum of squared errors (sse) function, the sample-wise differences
of the evaluations of the two given branches are calculated and their sum of
squared differences is divided by the total sum of squares tss of the first branch’s
evaluation. This results in the similarity measure s for the given branches.

ea =
1
N

N

∑
j=1

ea[j]; eb =
1
N

N

∑
j=1

eb[j] (2)

sse =
N

∑
j=1

(ea[j]− eb[j])2; tss =
N

∑
j=1

(ea[j]− ea)2; ssse(ba,bb) = 1− sse
tss

(3)

• Alternatively the linear correlation coefficient can be used:

slc(ba,bb) = |
1

n−1 ∑
N
j=1(ea[j]− ea)(eb[j]− eb)

√
1

n−1 ∑
N
j=1(ea[j]− ea)2

√
1

n−1 ∑
N
j=1(eb[j]− eb)2

| (4)

No matter which approach is chosen, the calculated similarity measure for the
branches ba and bb, s(ba,bb), will always be in the interval [0;1]; the higher this
value becomes, the smaller is the difference between the evaluation results.

272 S.M. Winkler

As we can now quantify the similarity of evaluations of two given subtrees, for
each branch ba in ta we can elicit that branch bx in tb with the highest similarity to
ba; the similarity values s are collected for all branches in ta and their mean value
finally gives us a measure for the evaluation based similarity of the models ma and
mb, es(ma,mb).

Optionally we can force the algorithm to select each branch in tb not more than
once as best match for a branch in ta for preventing multiple contributions of certain
parts of the models.

Finally, this similarity function can be parameterized by giving minimum and
maximum bounds for the height and / or the level of the branches investigated. This
is important since we can so control which branches are to be compared, be it the
rather small ones, rather big ones or all of them.

Further details about this similarity measure can be found in [15].

1.4 Structural Solutions Similarity Estimation

Structural similarity estimation is, unlike the evaluation based method described be-
fore, independent of data; it is calculated on the basis of the genetic make-up of
the models which are to be compared. When analyzing the structure of models we
have to be aware of the fact that often structurally different models can be equiva-
lent. This is why we have designed and implemented a method that systematically
collects all pairs of ancestor and descendant nodes and information about the prop-
erties of these nodes. Additionally, for each pair we also document the distance
(with respect to the level in the model tree) and the index of the ancestor’s child tree
containing the descendant node. The similarity of two models is then, in analogy to
the method described in the previous section, calculated by comparing all pairs of
ancestors and descendants in one model to all pairs of the other model and averaging
the similarity of the respective best matches.

Figure 1 shows a simple formula and all pairs of ancestors and descendants in-
cluded in the structure tree representing it; the input indices as well as the level
differences (“level delta”) are also given. Please note: The pairs given on the right
side of Figure 1 are shown intentionally as they symbolize the pairs of nodes with
level difference 0, i.e., nodes combined with themselves.

+

ex 0.7*X4t-2

1.1*X2t-1

+ ex

1.1*X2t-1 +

+ 0.7*X4t-2

ex 1.1*X2t-1

Index: 1
Level Delta: 1

Index: 1
Level Delta: 2

Index: 2
Level Delta: 1

Index: 1
Level Delta: 1

1

2

3

4

1

2

3

4

+

1.1*X2t-1

+

0.7*X4t-2

ex

1.1*X2t-1

Index: -
Level Delta: 0

Index: -
Level Delta: 0

Index: -
Level Delta: 0

Index: -
Level Delta: 0

0.7*X4t-2

ex

Fig. 1 Simple formula structure and all included pairs of ancestors and descendants (genetic
information items)

Structural versus Evaluation Based Solutions Similarity in GP 273

We define a genetic item as a 6-tuple storing the following information about the
ancestor node a and descendant node d: typea (the type of the ancestor a), typed (the
type of the descendant d), δ l (the level delta), index (the index of the child branch of
a that includes d), npa (the node parameters characterizing a), and npd (the node pa-
rameters characterizing d); the parameters characterizing nodes are represented by
tuples containing the following information: var (the variant (of functions)), coe f f
(the coefficient (of terminals)), to (the time offset (of terminals)), and vi (the variable
index (of terminals)).

Now we can define the similarity of two genetic items gi1 and gi2, s(gi1,gi2), as
follows: Most important are the types of the definitions referenced by the nodes;
if these are not equal, then the similarity is 0 regardless of all other parameters. If
the types of the nodes correspond correctly, then the similarity of gi1 and gi2 is cal-
culated using the similarity contributors s1 . . . s10 of the parameters of gi1 and gi2
weighted with coefficients c1 . . .c10. The similarity contributors s1 . . . s10, all rang-
ing from 0.0 to 1.0, are calculated with respect to input indices, variants, variable
indices, level differences, coefficients, and time offsets; details can be found in [15]
and [2].

Finally, there are two possibilities how to calculate the structural similarity of gi1
and gi2, sim(gi1,gi2): On the one hand this can be done in an additive way, on the
other hand in a multiplicative way.

• When using the additive calculation, which is the obviously more simple way,
sim(gi1,gi2) is calculated as the sum of these similarity contributions s1...10

weighted using the factors c1...10 and, for the sake of normalization of results,
divided by the sum of the weighting factors:

simadd(gi1,gi2) = ∑10
i=1 si · ci

∑10
i=1 ci

. (5)

• Otherwise, when using the multiplicative calculation method, we first calculate a
punishment factor pi for each si (again using weighting factors ci, 0≤ ci ≤ for all
i∈ [1;10]) as ∀(i∈ [1;10]) : pi = (1−si) ·ci and then get the temporary similarity
result as simtmp(gi1,gi2) = ∏10

i=1(1− pi).
In the worst case scenario we get si = 0 for all i ∈ [1;10] and therefore the

worst possible simtmp is simworst = ∏10
i=1(1− ((1− si) · ci)) = ∏10

i=1(1− ci). As
simworst is surely greater than 0 we linearly scale the results to the interval [0;1]:

simmult(gi1,gi2) =
simtmp(gi1,gi2)− simworst

1− simworst
. (6)

In fact, we prefer this multiplicative similarity calculation method since it allows
more specific analysis: By setting a weighting coefficient c j to a rather high value
(i.e., near or even equal to 1.0) the total similarity will become very small for
pairs of genetic items that do not correspond with respect to this specific aspect
j, even if all other aspects would lead to a high similarity result.

274 S.M. Winkler

Based on this similarity measure it is easy to formulate a similarity function that
measures the structural similarity of two model structures. In analogy to the ap-
proach presented in the previous section, for comparing models m1 and m2 we col-
lect all pairs of ancestors and descendants (up to a given maximum level difference)
in m1 and m2 and look for the best matches in the respective opposite model’s pool
of genetic items, i.e., pairs of ancestor and descendant nodes. As we are able to
quantify the similarity of genetic items, for each genetic item gi1 in the structure
tree of m1 we can elicit exactly that genetic item gix in the model structure m2 with
the highest similarity to gi1; the similarity values s are collected for all genetic items
contained in m1 and their mean value finally gives us a measure for the structure-
based similarity of the models m1 and m2, sim(m1,m2).

2 Test Setup

For comparing structural and evaluation based similarity values we executed GP
based system identification experiments using the following two data sets:

• The NOx data set contains the measurements taken from a 2 liter 4 cylinder BMW
diesel engine at a dynamical test bench (simulated vehicle: BMW 320d Sedan).
Several emissions (including NOx, CO and CO2) as well as several other engine
parameters were recorded; for identifying formulas for the NOx emissions we
have only used parameters which are directly measured from the engine’s control
unit and not in any sense connected to emissions. We cordially thank members
of the Institute for Design and Control of Mechatronical Systems at JKU, Linz1

who provided and helped us with these data.
• The Thyroid data set is a widely used machine learning benchmark data set con-

taining 21 attributes and 7200 samples representing the results of medical mea-
surements which were recorded while investigating patients potentially suffering
from hypotiroidism2. In short, the task is to determine whether a patient is hy-
pothyroid or not; three classes are formed: normal (not hypothyroid), hyperfunc-
tion and subnormal functioning.

Detailed information about these two data collections can also be found in [15] as
well as in [2].

For the target variables of both data collections we trained nonlinear models us-
ing a functional basis containing standard functions (such as for example addition,
subtraction, multiplication, trigonometrics, conditionals, and others) as described in
[16]; the maximum formula tree height was set to 6, the maximum number of nodes
was set to 50. We have used the GP implementation for HeuristicLab [14] and ap-
plied two different training methods for training models for both data sets: Stan-
dard GP as well as GP using strict offspring selection (OS, [1]). In both cases the

1 The homepage of the Institute for Design and Control of Mechatronical Systems at the
Johannes Kepler University, Linz can be found at http://desreg.jku.at/

2 Further information about the data set used can be found on the UCI homepage
http://www.ics.uci.edu/~{}mlearn/

http://desreg.jku.at/
http://www.ics.uci.edu/~{}mlearn/

Structural versus Evaluation Based Solutions Similarity in GP 275

population size was set to 1000, we used single point crossover and 15% structural
as well as parametric mutation as described in [15], e.g; in standard GP we applied
tournament selection (k = 3), in GP with OS we applied gender specific parents
selection combining random and proportional selection. For standard GP processes
the number of iterations was set to 2000, GP runs with offspring selection were
terminated as soon as the selection pressure reached 100.

All test cases were executed three times independently; the maximum tree height
was set to 6, the maximum tree size to 50 (for NOx as well as Thyroid tests). The
similarity values among individuals were calculated in the context of population
diversity estimation analysis executed after every 100th generation in standard GP
runs and after each 5th generation in GP runs with offspring selection. We have
thus collected the results of all similarity calculations; as this is done for 1,000
models we get 1,000,000 for each similarity function each time the population is
analyzed. For each standard GP test we therefore eventually get 21 million similarity
values for each function (because we also analyze after initializing the population),
and for each GP test with OS we get a comparable amount of similarity values3.
We will in the following not care whether standard or extended GP produced pairs
of solutions are compared; in total we will use data of approximately 120 million
solution comparisons for each function and each data set.

The following similarity estimation functions are used:

• Evaluation based similarity estimation: As described in Section 1.3, all subtrees
are evaluated on training and validation data, and we can analyze the similarity
of the values calculated by evaluating the subtrees of the formula trees which are
to be compared. We here use validation data for this similarity estimation and the
squared differences based approach.

• Additive structural similarity estimation: Structural components of structure trees
are analyzed as described in Section 1.4 using the additive approach; we here
weight all possible contributing aspects equally, i.e. the contributions’ weighting
factors c1...10 are all set to 1.0, only the level difference is weighted stronger with
factor 4.0.

• Multiplicative structural similarity estimation: Again, structural components of
structure trees are analyzed as described in Section 1.4 using the multiplicative
approach; again, we set all weighting factors equally, namely to 0.2, only the
level difference is weighted stronger with factor 0.8.

3 Test Results

The NOx test series are hereafter referred to as series (n), the Thyroid runs as (t).
The similarity values calculated for the (n) series using evaluation based, additive
structural and multiplicative structural comparison are hereafter denoted as ne, ns1
and ns2, respectively; in analogy to this, the similarity values for the (t) series are
denoted as te, ts1 and ts2, respectively.

3 This number is not constant for extended GP with OS due to the fact that the selection
pressure reaches its limit not at the same time in each test case execution.

276 S.M. Winkler

Please note that for each index i the values ne(i), ns1(i) and ns2(i) belong to the
same pair of models (structure trees) that have been compared; in analogy to this,
for each index i also the corresponding comparison results te(i), ts1(i) and ts2(i) are
associated to the same pair of formulas.

All test runs were executed on Pentium© 4 computers with 3.00 GHz CPU speed
and 2 GB RAM.

First, several statistics are calculated for the similarity values collected in ne, ns1,
ns2, te, ts1 and ts2; Nn stands for the number of values in ne, ns1 and ns2, Nt for
the number of values in te, ts1 and ts2. The results are summarized in Table 1; std

here stands for standard deviation (std(x) =
√

1
N ∑i∈[1;N](xi− x̄)2, x̄ = 1

N ∑i∈[1;N] x,

N = |x|), and corr again for the linear correlation (please see for example Section 1.3
for details about this function).

Table 1 Comparing similarity estimation results: Basic statistics

mean(ne) = 1
Nn ∑i∈[1;Nn] (ne(i)) 0.3444 std(ne−ns1) 0.1625

mean(ns1) = 1
Nn ∑i∈[1;Nn](ns1(i)) 0.6467 std(ne−ns2) 0.1500

mean(ns2) = 1
Nn ∑i∈[1;Nn](ns2(i)) 0.6061 std(ns1 −ns2) 0.0268

mean(te) = 1
Nn ∑i∈[1;Nt] (te(i)) 0.4224 std(te− ts1) 0.2159

mean(ts1) = 1
Nn ∑i∈[1;Nt] (ts1(i)) 0.6595 std(te− ts2) 0.1992

mean(ts2) = 1
Nn ∑i∈[1;Nt] (ts2(i)) 0.6327 std(ts1 − ts2) 0.0305

mse(ne ,ns1) = 1
Nn ∑i∈[1;Nn] (ne(i)−ns1(i))2 0.1178 corr(ne ,ns1) 0.8179

mse(ne ,ns2) = 1
Nn ∑i∈[1;Nn] (ne(i)−ns2(i))2 0.0910 corr(ne ,ns2) 0.8455

mse(ns1 ,ns2) = 1
Nn ∑i∈[1;Nn] (ns1(i)−ns2(i))2 0.0024 corr(ns1 ,ns2) 0.9954

mse(te , ts1) = 1
Nn ∑i∈[1;Nt] (te(i)− ts1(i))2 0.1028 corr(te , ts1) 0.7634

mse(te , ts2) = 1
Nn ∑i∈[1;Nn] (te(i)− ts2(i))2 0.0839 corr(te , ts2) 0.7998

mse(ts1 , ts2) = 1
Nn ∑i∈[1;Nn] (ts1(i)− ts2(i))2 0.0016 corr(ts1 , ts2) 0.9947

Runtime consumption per generation (evaluation based similarity) 2h08’30”
Runtime consumption per generation (structural similarity, per method) 38’02”

Obviously, the structural similarity values tend to be a lot higher than the eval-
uation based ones – which is not really surprising as even small changes in the
formula’s structure can affect its evaluation significantly. The mean squared differ-
ence between structural and evaluation based similarity values ranges from ∼0.08
to ∼0.12; the respective standard deviations of the similarity differences range from
0.15 to ∼0.216. The much more informative statistic feature is the linear correla-
tion coefficient: Analyzing NOx tests we see that the correlation between structural
and evaluation based similarities is between ∼0.82 (for the additive structural cal-
culation) and∼0.8455 (for multiplicative structural approach); for the Thyroid tests,
these are not quite as high, namely ∼0.76 and ∼0.8, respectively.

As we had expected, the correlation between the results calculated using the ad-
ditive structural model comparison method and the multiplicative one is very high,
namely approximately 0.995 for NOx as well as Thyroid tests.

The runtime consumption of the evaluation based similarity estimation method
is, of course, a lot higher than the runtime consumption caused by structural pop-
ulation diversity analysis: Although only 400 validation samples are evaluated for

Structural versus Evaluation Based Solutions Similarity in GP 277

evaluation based similarity estimation, structural similarity calculation consumes
only approximately a fourth as much runtime.

Even more detailed results discussion becomes possible by partitioning all pairs
of corresponding similarity values into five groups with equal range. This means that
we collect all structural similarity results in the intervals [0.0 . . . 0.2], [0.2 . . . 0.4],
. . . , [0.8 . . . 1.0]; of course, we also collect all evaluation based similarity values in
the same intervals. Thus, what we get is a number of partitions of data sets which
are defined and summarized in Table 2.

Table 2 Partitions formed for detailed comparison of similarity estimation results

Partition Index Index and Data Set Definitions

a0 Ia0 = {i : (0.0≤ ne(i)≤ 0.2)}; na0
e = ne(Ia0), na0

s1 = ns1(Ia0), na0
s2 = ns2(Ia0)

a1 Ia1 = {i : (0.2 < ne(i)≤ 0.4)}; na1
e = ne(Ia1), na1

s1 = ns1(Ia1), na1
s2 = ns2(Ia1)

a2 Ia1 = {i : (0.4 < ne(i)≤ 0.6)}; na2
e = ne(Ia2), na2

s1 = ns1(Ia2), na2
s2 = ns2(Ia2)

a3 Ia1 = {i : (0.6 < ne(i)≤ 0.8)}; na3
e = ne(Ia3), na3

s1 = ns1(Ia3), na3
s2 = ns2(Ia3)

a4 Ia1 = {i : (0.8 < ne(i)≤ 1.0)}; na4
e = ne(Ia4), na4

s1 = ns1(Ia4), na4
s2 = ns2(Ia4)

b0 Ib0 = {i : (0.0≤ ns1(i)≤ 0.2)}; nb0
e = ne(Ib0), nb0

s1 = ns1(Ib0), nb0
s2 = ns2(Ib0)

b1 Ib1 = {i : (0.2 < ns1(i)≤ 0.4)}; nb1
e = ne(Ib1), nb1

s1 = ns1(Ib1), nb1
s2 = ns2(Ib1)

b2 Ib2 = {i : (0.4 < ns1(i)≤ 0.6)}; nb2
e = ne(Ib2), nb2

s1 = ns1(Ib2), nb2
s2 = ns2(Ib2)

b3 Ib3 = {i : (0.6 < ns1(i)≤ 0.8)}; nb3
e = ne(Ib3), nb3

s1 = ns1(Ib3), nb3
s2 = ns2(Ib3)

b4 Ib4 = {i : (0.8 < ns1(i)≤ 1.0)}; nb4
e = ne(Ib4), nb4

s1 = ns1(Ib4), nb4
s2 = ns2(Ib4)

c0 Ic0 = {i : (0.0≤ ns2(i)≤ 0.2)}; nc0
e = ne(Ic0), nc0

s1 = ns1(Ic0), nc0
s2 = ns2 (Ic0)

c1 Ic1 = {i : (0.2 < ns2(i)≤ 0.4)}; nc1
e = ne(Ic1), nc1

s1 = ns1(Ic1), nc1
s2 = ns2 (Ic1)

c2 Ic2 = {i : (0.4 < ns2(i)≤ 0.6)}; nc2
e = ne(Ic2), nc2

s1 = ns1(Ic2), nc2
s2 = ns2 (Ic2)

c3 Ic3 = {i : (0.6 < ns2(i)≤ 0.8)}; nc3
e = ne(Ic3), nc3

s1 = ns1(Ic3), nc3
s2 = ns2 (Ic3)

c4 Ic4 = {i : (0.8 < ns2(i)≤ 1.0)}; nc4
e = ne(Ic4), nc4

s1 = ns1(Ic4), nc4
s2 = ns2 (Ic4)

d0 Id0 = {i : (0.0≤ te(i)≤ 0.2)}; td0
e = te(Id0), td0

s1 = ts1(Id0), td0
s2 = ts2(Id0)

d1 Id1 = {i : (0.2 < te(i)≤ 0.4)}; td1
e = te(Id1), td1

s1 = ts1(Id1), td1
s2 = ts2(Id1)

d2 Id1 = {i : (0.4 < te(i)≤ 0.6)}; td2
e = te(Id2), td2

s1 = ts1(Id2), td2
s2 = ts2(Id2)

d3 Id1 = {i : (0.6 < te(i)≤ 0.8)}; td3
e = te(Id3), td3

s1 = ts1(Id3), td3
s2 = ts2(Id3)

d4 Id1 = {i : (0.8 < te(i)≤ 1.0)}; td4
e = te(Id4), td4

s1 = ts1(Id4), td4
s2 = ts2(Id4)

e0 Ie0 = {i : (0.0≤ ts1(i)≤ 0.2)}; te0
e = te(Ie0), te0

s1 = ts1(Ie0), te0
s2 = ts2(Ie0)

e1 Ie1 = {i : (0.2 < ts1(i)≤ 0.4)}; te1
e = te(Ie1), te1

s1 = ts1(Ie1), te1
s2 = ts2(Ie1)

e2 Ie2 = {i : (0.4 < ts1(i)≤ 0.6)}; te2
e = te(Ie2), te2

s1 = ts1(Ie2), te2
s2 = ts2(Ie2)

e3 Ie3 = {i : (0.6 < ts1(i)≤ 0.8)}; te3
e = te(Ie3), te3

s1 = ts1(Ie3), te3
s2 = ts2(Ie3)

e4 Ie4 = {i : (0.8 < ts1(i)≤ 1.0)}; te4
e = te(Ie4), te4

s1 = ts1(Ie4), te4
s2 = ts2(Ie4)

f 0 I f 0 = {i : (0.0≤ ts2(i)≤ 0.2)}; tf0e = te(I f 0), tf0s1 = ts1(I f 0), tf0s2 = ts2(I f 0)

f 1 I f 1 = {i : (0.2 < ts2(i)≤ 0.4)}; tf1e = te(I f 1), tf1s1 = ts1(I f 1), tf1s2 = ts2(I f 1)

f 2 I f 2 = {i : (0.4 < ts2(i)≤ 0.6)}; tf2e = te(I f 2), tf2s1 = ts1(I f 2), tf2s2 = ts2(I f 2)

f 3 I f 3 = {i : (0.6 < ts2(i)≤ 0.8)}; tf3e = te(I f 3), tf3s1 = ts1(I f 3), tf3s2 = ts2(I f 3)

f 4 I f 4 = {i : (0.8 < ts2(i)≤ 1.0)}; tf4e = te(I f 4), tf4s1 = ts1(I f 4), tf4s2 = ts2(I f 4)

Now we can analyze these partitions separately: For each partition we have calcu-
lated the linear correlation between evaluation based, additive structural and multi-
plicative structural similarities as well as the mean squared difference between these
respective values; Table 3 summarizes these partition-wise statistics. Additionally,
the frequency of each partition is also given: The frequency of a partition is hereby
given by the number of pairs of values included divided by the number of all pairs
of values available, f requ(Iki) = |Iki |

∑ j∈[0;4] Ik j
for k ∈ {a,b,c,d,e, f} and i ∈ [0;4].

278 S.M. Winkler

Table 3 Comparing similarity estimation results: Detailed partition-wise statistics

f req(Ia0) = 0.3172 corr(na0
e ,na0

s1) = 0.6294 corr(na0
e ,na0

s2) = 0.6772 f req(Ia1) = 0.2609 corr(na1
e ,na1

s1) = 0.8407 corr(na1
e ,na1

s2) = 0.8574

mse(na0
e ,na0

s1) = 0.1061 mse(na0
e ,na0

s2) = 0.0751 mse(na1
e ,na1

s1) = 0.1083 mse(na1
e ,na1

s2) = 0.0818

f req(Ia2) = 0.2595 corr(na2
e ,na2

s1) = 0.7886 corr(na2
e ,na2

s2) = 0.8047 f req(Ia3) = 0.1272 corr(na3
e ,na3

s1) = 0.6963 corr(na3
e ,na3

s2) = 0.7376

mse(na2
e ,na2

s1) = 0.1364 mse(na2
e ,na2

s2) = 0.1106 mse(na3
e ,na3

s1) = 0.1279 mse(na3
e ,na3

s2) = 0.1077

f req(Ia4) = 0.0352 corr(na4
e ,na4

s1) = 0.7174 corr(na4
e ,na4

s2) = 0.7559

mse(na4
e ,na4

s1) = 0.1184 mse(na4
e ,na4

s2) = 0.0983

f req(Ib0) = 0.0974 corr(nb0
s1 ,nb0

e) = 0.3815 corr(nb0
s1 ,nb0

s2) = 0.9890 f req(Ib1) = 0.1222 corr(nb1
s1 ,nb1

e) = 0.6744 corr(nb1
s1 ,nb1

s2) = 0.9931

mse(nb0
s1 ,nb0

e) = 0.1407 mse(nb0
s1 ,nb0

s2) = 0.0057 mse(nb1
s1 ,nb1

e) = 0.0884 mse(nb1
s1 ,nb0

s2) = 0.0028

f req(Ib2) = 0.1363 corr(nb2
s1 ,nb2

e) = 0.7591 corr(nb2
s1 ,nb2

s2) = 0.9962 f req(Ib3) = 0.2451 corr(nb3
s1 ,nb3

e) = 0.8350 corr(nb3
s1 ,nb3

s2) = 0.9963

mse(nb2
s1 ,nb2

e) = 0.0985 mse(nb2
s1 ,nb0

s2) = 0.0026 mse(nb3
s1 ,nb3

e) = 0.1080 mse(nb3
s1 ,nb0

s2) = 0.0024

f req(Ib4) = 0.3990 corr(nb4
s1 ,nb4

e) = 0.7677 corr(nb4
s1 ,nb4

s2) = 0.9975

mse(nb4
s1 ,nb4

e) = 0.1337 mse(nb4
s1 ,nb0

s2) = 0.0013

f req(Ic0) = 0.1160 corr(nc0
s2 ,nc0

e) = 0.4119 corr(nc0
s2 ,nc0

s1) = 0.9888 f req(Ic1) = 0.1335 corr(nc1
s2 ,nc1

e) = 0.7667 corr(nc1
s2 ,nc1

s1) = 0.9961

mse(nc0
s2 ,nc0

e) = 0.0997 mse(nc0
s2 ,nc0

s1) = 0.0059 mse(nc1
s2 ,nc1

e) = 0.0580 mse(nc1
s2 ,nc0

s1) = 0.0023

f req(Ic2) = 0.1584 corr(nc2
s2 ,nc2

e) = 0.8229 corr(nc2
s2 ,nc2

s1) = 0.9963 f req(Ic3) = 0.2728 corr(nc3
s2 ,nc3

e) = 0.8764 corr(nc3
s2 ,nc3

s1) = 0.9967

mse(nc2
s2 ,nc2

e) = 0.0730 mse(nc2
s2 ,nc0

s1) = 0.0027 mse(nc3
s2 ,nc3

e) = 0.0794 mse(nc3
s2 ,nc0

s1) = 0.0021

f req(Ic4) = 0.3193 corr(nc4
s2 ,nc4

e) = 0.7528 corr(nc4
s2 ,nc4

s1) = 0.9969

mse(nc4
s2 ,nc4

e) = 0.1205 mse(nc4
s2 ,nc0

s1) = 0.0011

f req(Id0) = 0.3241 corr(td0
e , td0

s1) = 0.4233 corr(td0
e , td0

s2) = 0.4777 f req(Id1) = 0.1239 corr(td1
e , td1

s1) = 0.8323 corr(td1
e , td1

s2) = 0.8409

mse(td0
e , td0

s1) = 0.1964 mse(td0
e , td0

s2) = 0.1572 mse(td1
e , td1

s1) = 0.0336 mse(td1
e , td1

s2) = 0.0295

f req(Id2) = 0.2216 corr(td2
e , td2

s1) = 0.8455 corr(td2
e , td2

s2) = 0.8606 f req(Id3) = 0.1919 corr(td3
e , td3

s1) = 0.8471 corr(td3
e , td3

s2) = 0.8607

mse(td2
e , td2

s1) = 0.0703 mse(td2
e , td2

s2) = 0.0587 mse(td3
e , td3

s1) = 0.0688 mse(td3
e , td3

s2) = 0.0566

f req(Id4) = 0.1385 corr(td4
e , td4

s1) = 0.7956 corr(td4
e , td4

s2) = 0.8109

mse(td4
e , td4

s1) = 0.0433 mse(td4
e , td4

s2) = 0.0375

f req(Ie0) = 0.1079 corr(te0
s1 , te0

e) = 0.2693 corr(te0
s1 , te0

s2) = 0.9853 f req(Ie1) = 0.1043 corr(te1
s1 , te1

e) = 0.3053 corr(te1
s1 , te1

s2) = 0.9854

mse(te0
s1 , te0

e) = 0.1435 mse(te0
s1 , te0

s2) = 0.0077 mse(te1
s1 , te1

e) = 0.2216 mse(te1
s1 , te0

s2) = 0.0024

f req(Ie2) = 0.1193 corr(te2
s1 , te2

e) = 0.4652 corr(te2
s1 , te2

s2) = 0.9954 f req(Ie3) = 0.2412 corr(te3
s1 , te3

e) = 0.8559 corr(te3
s1 , te3

s2) = 0.9986

mse(te2
s1 , te2

e) = 0.2120 mse(te2
s1 , te0

s2) = 0.0015 mse(te3
s1 , te3

e) = 0.0479 mse(te3
s1 , te0

s2) = 0.0006

f req(Ie4) = 0.4274 corr(te4
s1 , te4

e) = 0.8376 corr(te4
s1 , te4

s2) = 0.9985

mse(te4
s1 , te4

e) = 0.0641 mse(te4
s1 , te0

s2) = 0.0006

f req(Ie0) = 0.1305 corr(te0
s2 , te0

e) = 0.3430 corr(te0
s2 , te0

s1) = 0.9860 f req(Ie1) = 0.0978 corr(te1
s2 , te1

e) = 0.3380 corr(te1
s2 , te1

s1) = 0.9964

mse(te0
s2 , te0

e) = 0.0837 mse(te0
s2 , te0

s1) = 0.0069 mse(te1
s2 , te1

e) = 0.2230 mse(te1
s2 , te0

s1) = 0.0021

f req(Ie2) = 0.1456 corr(te2
s2 , te2

e) = 0.6722 corr(te2
s2 , te2

s1) = 0.9960 f req(Ie3) = 0.2435 corr(te3
s2 , te3

e) = 0.8513 corr(te3
s2 , te3

s1) = 0.9986

mse(te2
s2 , te2

e) = 0.1307 mse(te2
s2 , te0

s1) = 0.0012 mse(te3
s2 , te3

e) = 0.0505 mse(te3
s2 , te0

s1) = 0.0007

f req(Ie4) = 0.3826 corr(te4
s2 , te4

e) = 0.8501 corr(te4
s2 , te4

s1) = 0.9985

mse(te4
s2 , te4

e) = 0.0518 mse(te4
s2 , te0

s1) = 0.0005

Fig. 2 Distribution of similarity values calculated using structural and evaluation based sim-
ilarity functions

Figure 2 shows the distributions of structural and evaluation based similarity es-
timation for the NOx and Thyroid tests separately. As we see in both charts the
structural similarity values are significantly higher than the evaluation based ones.

Structural versus Evaluation Based Solutions Similarity in GP 279

Partition-wise correlations of similarity values: Results for Thyroid test series

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Eval. Sim. vs. Struct. Sim.
(add.)

Struct. Sim. (add.) vs.
Eval. Sim.

Eval. Sim. vs. Struct. Sim.
(mult.)

Struct. Sim. (mult.) vs.
Eval. Sim.

Struct. Sim. (add.) vs.
Struct. Sim. (mult.)

Struct. Sim. (mult.) vs.
Struct. Sim. (add.)

Partition [0.0; 0.2]

Partition]0.2; 0.4]

Partition]0.4; 0.6]

Partition]0.6; 0.8]

Partition]0.8; 1.0]

(a) NOx test series

Partition-wise correlations of similarity values: Results for Thyroid test series

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Eval. Sim. vs. Struct. Sim.
(add.)

Struct. Sim. (add.) vs.
Eval. Sim.

Eval. Sim. vs. Struct. Sim.
(mult.)

Struct. Sim. (mult.) vs.
Eval. Sim.

Struct. Sim. (add.) vs.
Struct. Sim. (mult.)

Struct. Sim. (mult.) vs.
Struct. Sim. (add.)

Partition [0.0; 0.2]

Partition]0.2; 0.4]

Partition]0.4; 0.6]

Partition]0.6; 0.8]

Partition]0.8; 1.0]

(b) Thyroid test series

Fig. 3 Partition-wise correlations of similarity values for NOx and Thyroid test series

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (NOx series)

Similarity values (structural, additive calculation method)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(a) NOx test series

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (Thyroid series)

Similarity values (structural, additive calculation method)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(b) Thyroid test series

Fig. 4 Similarity values comparison: Structural (additive calculation) vs. structural (multi-
plicative calculation)

Regarding results correlations, the figures documented in Table 3 can be summa-
rized in the following way: The correlations between structural and evaluation based
similarity are approximately in the range between 0.3 and 0.85. Especially low cor-
relation coefficients are calculated for the comparison of structural and evaluation
based similarities, especially when the structural similarity is considered very low
(<0.4). This impression becomes even more clear when we analyze Figures 3(a)
and 3(b) which give the partition wise correlations of similarity values. In each of
the 6 series shown in each of these figures we show the correlations of similarity
values calculated by each possible pair of methods; in each case those partitions of
value pairs are selected that correspond to the values calculated by the first method
mentioned in the respective label. So, for example, in the first series we see the
partition-wise correlations of similarity values calculated by the evaluation based
and the additive structural method; the values are classified in partitions with re-
spect to the evaluation specific similarities.

280 S.M. Winkler

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, a
dd

iti
ve

 c
al

cu
la

tio
n

m
et

ho
d)

 Similarity Values Comparison (NOx series)

(a) NOx test series

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (Thyroid series)

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, a
dd

iti
ve

 c
al

cu
la

tio
n

m
et

ho
d)

(b) Thyroid test series

Fig. 5 Similarity values comparison: Evaluation based vs. structural (additive calculation)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (NOx series)

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(a) NOx test series

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (Thyroid series)

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(b) Thyroid test series

Fig. 6 Similarity values comparison: Evaluation based vs. structural (multiplicative calcula-
tion)

The Figures 3(a) and 3(b) show clearly that the structural similarity estimation
methods calculate very similar values (with high correlations for trees that are very
different as well as for those which are considered rather similar). Furthermore, the
correlation of structural and evaluation based similarity values is rather low in the
case of low structural similarities (<0.4).

Finally, for graphically illustrating the direct comparison of similarity values cal-
culated by the three estimation methods chosen we have randomly chosen 100,000
structure tree comparison cases both from the NOx and the Thyroid tests. The
respectively correspondent similarity values are drawn against each other in the

Structural versus Evaluation Based Solutions Similarity in GP 281

Figures 4 – 6. On the one hand there is no high correlation which can be seen when
comparing structural and evaluation based similarity values, but on the other hand
the high correlation between the similarities calculated by the structural similarity
estimation methods becomes obvious.

4 Conclusion

In this paper we have summarized a series of GP test runs incorporating evaluation
based as well as structural similarity estimation for measuring the genetic diversity
in GP populations.

In general, evaluation based similarity calculation consumes a lot more runtime
than structural comparison, and on average it also tends to produce lower similarity
values. The results show that in most cases there is a linear correlation of approx-
imately 0.4 – 0.9 for the results returned by the evaluation based and structural
methods; not very surprisingly, this correlation is positive, but not very high. Espe-
cially in some cases showing very low structural similarity there can be significantly
different results when using the evaluation based similarity methods.

Furthermore, we have also compared additive and multiplicative structural simi-
larity estimation. These two variants tend to produce rather similar results with high
correlations for pairs of structure trees with low as well as rather high similarities;
the results retrieved by the multiplicative structural method show a higher correla-
tion with those calculated using the evaluation based similarity function.

Thus, analyzing these correlations, we see that structural and evaluation based
similarity measures give non-redundant information about the similarity of structure
trees used in GP; both types of similarity measures should therefore be used for
analyzing GP populations and algorithms.

Acknowledgments

The work described in this paper was done within the Translational Research Project L284-
N04 “GP-Based Techniques for the Design of Virtual Sensors” funded by the Austrian Sci-
ence Fund (FWF).

References

[1] Affenzeller, M., Wagner, S.: Offspring selection: A new self-adaptive selection scheme
for genetic algorithms. In: Adaptive and Natural Computing Algorithms, pp. 218–221.
Springer, Springer Computer Science, Heidelberg (2005)

[2] Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic
Programming - Modern Concepts and Practical Applications. Chapman & Hall / CRC
(2009)

[3] Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis
of measures and correlation with fitness. IEEE Transactions on Evolutionary Computa-
tion 8(1), 47–62 (2004)

282 S.M. Winkler

[4] Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic
function optimization. In: Proceedings of the Third International Conference on Genetic
Algorithms, pp. 42–50. Morgan Kaufmann, San Francisco (1989)

[5] Ekart, A., Nemeth, S.Z.: A metric for genetic programs and fitness sharing. In: Poli, R.,
Banzhaf, W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000)

[6] Keijzer, M.: Efficiently representing populations in genetic programming. In: Angeline,
P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming, vol. 2, ch.13, pp. 259–
278. MIT Press, Cambridge (1996)

[7] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press, Cambridge (1992)

[8] Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg
(2002)

[9] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and rever-
sals. Soviet Physics Doklady 10(8), 707–710 (1966)

[10] McKay, R.I.B.: Fitness sharing in genetic programming. In: Whitley, D., Goldberg, D.,
Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2000), pp. 435–442. Morgan Kauf-
mann, Las Vegas (2000)

[11] McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population history.
In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation
Conference, vol. 2, pp. 1112–1120. Morgan Kaufmann, Orlando (1999)

[12] O’Reilly, U.M.: Using a distance metric on genetic programs to understand genetic
operators. In: IEEE International Conference on Systems, Man, and Cybernetics, Com-
putational Cybernetics and Simulation, Orlando, Florida, USA, vol. 5, pp. 4092–4097
(1997)

[13] Rosca, J.P.: Entropy-driven adaptive representation. In: Rosca, J.P. (ed.) Proceedings
of the Workshop on Genetic Programming: From Theory to Real-World Applications,
Tahoe City, California, USA, pp. 23–32 (1995)

[14] Wagner, S.: Heuristic optimization software systems – modeling of heuristic optimiza-
tion algorithms in the heuristiclab software environment. PhD thesis, Johannes Kepler
University Linz (2009)

[15] Winkler, S.: Evolutionary system identification - modern concepts and practical ap-
plications. PhD thesis, Institute for Formal Models and Verification, Johannes Kepler
University Linz (2008)

[16] Winkler, S., Affenzeller, M., Wagner, S.: Using enhanced genetic programming tech-
niques for evolving classifiers in the context of medical diagnosis - an empirical study.
Genetic Programming and Evolvable Machines 10(2), 111–140 (2009)

Artificial Bee Colony Optimization: A New
Selection Scheme and Its Performance

Andrej Aderhold, Konrad Diwold, Alexander Scheidler, and Martin Middendorf

Abstract. The artificial bee colony optimization (ABC) is a population based algo-
rithm for function optimization that is inspired by the foraging behaviour of bees.
The population consists of two types of artificial bees: employed bees (EBs) which
scout for new good solution in the search space and onlooker bees (OBs) that search
in the neighbourhood of solutions found by the EBs. In this paper we study the in-
fluence of the populations size on the optimization behaviour of ABC. Moreover,
we investigate when it is advantageous to use OBs. We also propose two variants of
ABC which use new methods for the position update of the artificial bees. Empir-
ical tests were performed on a set of benchmark functions. Our findings show that
the ideal population size and whether it is advantageous to use OBs depends on the
hardness of the optimization goal. Additionally the newly proposed variants of the
ABC outperform the standard ABC significantly on all test functions. In comparison
to several other optimization algorithm the best ABC variant performs better or at
least as good as all reference algorithms in most cases.

1 Introduction

Swarm intelligence [6] is a subfield of biological inspired computation that applies
concepts found in the collective behaviour of swarms such as social insects to prob-
lems in various domains such as robotics or optimization [5]. In recent years a num-
ber of bee inspired optimization methods have been proposed (the interested reader
can refer to Baykasoglu et al.’s overview of bee inspired optimization methods [3]).

One behaviour of honey bees that has inspired optimization methods is forag-
ing. Although it is a decentralized process that works at the basis of decisions of

Andrej Aderhold · Konrad Diwold · Alexander Scheidler ·Martin Middendorf
Department of Computer Science, University of Leipzig, Johannisgasse 26,
04103 Leipzig, Germany
e-mail: aaderhold@gmail.com,

{kdiwold,scheidler,middendorf}@informatik.uni-leipzig.de

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 283–294, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

284 A. Aderhold et al.

individual bees, a colony is still able to maintain a good ratio of exploitation and
exploration of food sources and can adapt toward changing needs for food if neces-
sary [4]. The waggle dance has been identified as a communication mechanism that
allows scout bees that found a food site to promote this site to other foragers [19].
Besides distance and direction to a site the bee can also encode its quality. Utilizing
this mechanism foragers can distribute on the available resources regarding their
profitability. A recent study has shown [7] that recruitment strategies as they are
used in honeybees are especially beneficial if resources are of poor quality, few in
number, and of variable quality.

The artificial bee colony optimization algorithm (ABC) is an algorithm that is
inspired by principles of the foraging behaviour of honeybees and was introduced
by Karaboga [9] in 2005. The ABC algorithm has been applied to various problem
domains including the training of artificial neural networks [11, 16], the design of
a digital infinite impulse response (IIR) filters [10], solving constrained optimiza-
tion problems [13], and the prediction of the tertiary structures of proteins [2]. Its
optimization performance has been tested and compared to other optimization meth-
ods such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Particle
Swarm Inspired Evolutionary Algorithm (PS-EA), Differential Evolution (DE), and
different evolutionary strategies [1, 12, 14, 15].

The ABC algorithm works with a population of artificial bees. The bees are di-
vided into two groups, one group of bees — called employed bees (EBs) — is re-
sponsible for finding new promising solutions and the other group of bees — called
onlooker bees (OBs) — for performing local search at these solutions. It should be
mentioned that the EB are sometimes divided into two subgroups the EBs that stay
at a location and the EBs that search for a new location. The latter one are called
scouts.

In this paper we study a central aspect of ABC which has not been studied be-
fore. That is the influence of the size of the bee population and of the ratio between
the number of employed bees and onlooker bees on the performance of the algo-
rithm. Moreover, we propose two variants of the standard ABC algorithm that use
new methods for the selection of new locations. The performance of the new vari-
ants of ABC and the standard ABC is tested against several other population based
optimization heuristics.

This article is structured as follows. In Section 2 the ABC is described. The new
variants of ABC are introduced in Section 3. The experimental setup is given in
Section 4 and the experimental results are described in Section 5. Conclusion are
given in Section 6.

2 Artificial Bee Colony Optimization (ABC)

The ABC algorithm [9] is a population based algorithm for function optimization
that can be seen as a minimal honeybee foraging model. The artificial bee popu-
lation consists of two types of bees: employed bees (EB) and onlooker bees (OB).
In ABC the search space represents an environment and each point in the search

Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance 285

space corresponds to a food source (solution) that the artificial bees can exploit. The
quality of a food source is given by the value of the function to be optimized at
the corresponding location. Initially the EBs scout and each EB decides to exploit
a food source it has found. The number of EBs thus corresponds to the number of
food sources that are currently exploited in the system. EBs communicate their food
sources to the OBs. Based on the quality of a food source the OBs decide whether
or not to visit it. Good food sources will attract more OBs. Once an OB has chosen
a food source it flies there and tries to find a better location in its neighborhood by
using a local search strategy. If the quality of a new location found by the OB is bet-
ter than the quality of the location originally communicated by of the corresponding
EB, the EB will change its location and promote the new food source. Otherwise,
the EB remains on its current food source. If the solution of an EB has not been
improved for a certain number of steps the EB will abandon the food source and
scout for a new one (i.e., it decides for a new food source in search space).

More formally: Given a dim dimensional function F and a population of n virtual
bees consisting of neb employed bees and nob onlooker bees (i.e., n = neb + nob).
Initially and when scouting an EB i (i ∈ [1 . . .neb]) is placed on a randomly chosen
position pi = (xi

1, . . . ,x
i
dim) in the search space. At the beginning of an iteration each

EB i tries to improve its current position by creating a new candidate position p∗i
using the following local search rule

p∗i = (xi
1, . . . ,xi

j + rand(−1,1)(xk
j− xi

j), . . . ,xi
dim) (1)

where j ≤ dim is a randomly chosen dimension, k
= i) denotes a randomly chosen
EB (called reference EB), and rand(−1,1) is a real valued random number drawn
from a uniform distribution between −1 and 1. Note, that only one dimension is
changed via Equation 1. Based on the follwoing greedy selection mechanism each
EB decides whether to discard pi in favor of p∗i

pi =

{
pi if F(pi) > F(p∗i)
p∗i else

(2)

where F(p) denotes the fitness at location p.
After each EB has updated its location, every OB chooses one of the current EB

locations by using a standard roulette wheel selection so that the probability Pi of
choosing the location pi of EB i is

Pi =
F(pi)

∑neb
k=1 F(pk)

. (3)

After an OB has chosen the location of an EB i it tries to find a better location using
Equation 1. In response, the corresponding EB updates its position as described be-
fore in case the OB has found a better location. The algorithm monitors the number
of steps an EB remains on the same position. When the number of steps an EB has
spent at the same location reaches a limit l ≥ 1 the EB abandons its position and

286 A. Aderhold et al.

scouts for a new one. In [15] the impact of l was investigated and as a good value
l = ne · dim was proposed. The algorithm stops when a certain stop criterion (e.g.,
maximum number of iterations, or a good function value has been found) is met. An
outline of ABC is given in Algorithm 6.

Algorithm 6. Artificial Bee Colony
1: place each employed bee on a random position in the search space
2: while stop criterion not met do
3: for all employed bees do
4: if # steps on same position = l then
5: choose random position in search space
6: else
7: try to find better position (according to equations 1 and 2)
8: if better position found then
9: move from current position to found position

10: end if
11: end if
12: end for
13: for all onlooker bees do
14: choose an employed bee and move to its position (according to Equation 3)
15: try improve position (according to equations 1 and 2)
16: end for
17: end while

For the standard ABC algorithm it was defined that the number of employer bees
equals the number of onlooker bees, i.e., neb = nob = n/2. Thus algorithm ABC de-
pends only on the parameters n and l. In [15] experiments with different population
sizes n were performed with the conclusion that, a population size of 50-100 bees
can provide reasonable convergence behaviour. The parameter l determines how fast
solutions are abandoned. In [15] it is argued that l = ne · dim shows better perfor-
mance than very high or low values of l. In a very recent study on ABC parameter
tuning [1] Akay and Karaboga concluded that for small colony sizes l = ne · dim
might not be sufficient, as the algorithm is not able to explore EB solutions enough
before they are abandoned. Hence, it is suggested to use higher values of l for small
colonies.

3 ABC Variants

The variants of ABC that are proposed in this section concern the selection of ref-
erence EBs when OBs and EBs generate candidate solutions according to Equation
1). In the standard ABC algorithm the reference EBs are selected randomly with
uniform distribution. A potential disadvantage is that the location of the chosen ref-
erence EB might not fit well to the current location of the bee. The two modifications

Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance 287

of the reference selection rule that are proposed in the following aim to overcome
this problem.

Including global best solution as reference (ABCgBest). In the proposed ABCgBest

the global best solution found so far is used in addition to the randomly chosen ref-
erence EB in order to generate new candidate solutions. Note, that this has some
similarity to the functioning of a Particle Swarm Optimization (PSO) algorithm
where the global best particles influence the position update of the particles [17].
To incorporate the global best solution Equation 1 is altered as follows

p∗i = (xi
1, . . . ,xi

j + rand(−1,1)(xk
j− xi

j)+ rand(0,1)(xbest
j − xi

j), . . . ,xi
dim) (4)

where pi denotes the bees current position, k refers to the randomly chosen reference
EB pk, best refers to the best position pbest found so far, and j ≤ dim denotes a ran-
dom dimension. To make sure that the global best term in Equation 4 always points
towards the global best reference rand(0,1) was used (instead of rand(−1,1)).

ABCgBest with additional distance based reference selection (ABCgBestDist). Be-
sides including the global best reference in the generation of candidate solutions, in
this modification the distance between the current location and a potential reference
EB influences the selection probability. Therefore, instead of using the same proba-
bility for all reference EBs, an EB (or OB) at position pi chooses the reference EB
k ∈ {1, ..,neb} with k
= i according to the following probability

Pk =
1

dist(pi,pk)
neb

∑
j=1, j
=i

(
1

dist(pi,p j)

) (5)

where dist(x,y) is the euclidean distance between positions x and y.
After a reference EB has been chosen the new candidate solution is created using

Equation 4. As can be seen, the further away a potential reference EB is located
from the current position, the smaller is the probability to be selected as a reference.
The idea of this modification is to prefer near references because for many types of
optimization functions it is more reasonable to search between good positions that
are close to each other.

4 Experimental Setup

The performance of ABC, the proposed ABC modifications, and other reference
algorithms was tested on several standard benchmark problems (see Table 1 for
details). The following five algorithms were used as reference algorithms: the Par-
ticle Swarm Optimization (PSO) algorithm from [22], two forms of the hierarchi-
cal PSO (H-PSO and

∨
H-PSO) from [8], the differential evolution (DE) algorithm

from [18, 21], and the Ant Colony Optimization algorithm for continuous functions
(ACOR) from [20]. The parameter values that were used for these algorithms have
been adopted from the given references (see Table 2).

288 A. Aderhold et al.

Table 1 Test function names and equations (F), domain space range (R), a standard opti-
mization goal (Gstd) that is often used in the literature and a harder optimization goal (Ghrd).
The hard goals were chosen in such a way that a standard ABC (with n = 100) will need
approximately 105 function evaluations to reach them. The dimension of the test functions
was dim = 30 with the exception of Schaffer’s F6 were dimension dim = 2 was used

F R Gstd Ghrd

Schaffer’s F6 fsc(x) = 0.5+
sin2(

√

x2
1 + x2

2)−0.5

(1 +0.001(x2
1 + x2

2))2
[−100;100]2 10−5 10−25

Sphere fsp(x) =
n
∑

i=1
x2
i [−100;100]n 0.01 10−10

Griewank fgr (x) =
1

4000

(
n
∑

i=1
x2
i

)

−
n
∏
i=1

cos

(
xi√

i

)

+1 [−600;600]n 0.1 10−9

Rastrigin frg (x) =
n
∑

i=1
(x2

i −10cos(2πxi)+10) [−5.12;5.12]n100 10−7

Rosenbrock frn(x) =
n−1
∑
i=1

(100(xi+1− x2
i)2 +(xi −1)2) [−30;30]n 100 1

Ackley fac(x) =−20exp

(

−0.2

√
√
√
√ 1

n

n
∑

i=1
x2
i

)

− exp

(

1
n

n
∑

i=1
cos(2πxi)

)

+20 + e [−32;32]n 0.1 10−7

Table 2 Setting of control parameters used in the final experiment: n is the population size,
swarm size, or colony size respectively; neb is the number of employed bees; nob is the num-
ber of onlooker bees; l is the abandon limit; dim is the dimension of problem function; ω is
the inertia weight; c(∗) is the constriction factors; CR is the crossover rate; F is the scaling
factor; k is the archive size; q is the locality of search; ε is the convergence speed

ABC PSO H-PSO
∨

H-PSO DE ACOR

n = 30 n = 40 n = 31 n = 31 n = 50 n = 2
neb = 15 ω = 0.6 ω = 0.6 ω = [0.729;0.4] CR = 0.8 k = 50
nob = 15 c1 = c2 = 1.7 c1 = c2 = 1.7 c1 = c2 = 1.7 F = 0.5 q = 0.1
l = dim∗ne ε = 0.85

All test runs were repeated 100 times. The number of function evaluations that
each algorithm required to reach the specified goal — the standard optimization goal
(Gstd) and the hard optimization goal (Ghrd) as given in Table 1 — was recorded for
each run. To evaluate the significance of the observed performance differences the
algorithms were tested pairwise against each other by using a one sided Wilcoxon
Rank Sum Test with a significance level of α = 0.05.

5 Results

5.1 Population Size

As pointed out in Section 2 population size is one of ABCs two control parame-
ters. In a recent study Karaboga and Basturk [15] investigated the influence of the
population size on the performance of ABC. Based on a comparison of fitness im-
provement per algorithm step they argue that an increase of population size up to
a certain value increases the algorithms performance. Their suggestion is to use a
population size of 50 - 100 as it provides acceptable convergence speed and good
solutions.

Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance 289

A problem with a comparison that is based on the number of algorithmic steps is
that an algorithm with a larger population sizes requires more function evaluations
per step. For example an ABC with a population of size 100 needs 10 times as many
function evaluations as one with a population of 10 per step.

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 50000 100000 150000 200000 250000 300000

M
ea

n
B

es
t V

al
ue

Schaffer
n=10
n=30
n=60

n=100
n=120
n=140

 0

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 1e+50

 0 50000 100000 150000 200000 250000 300000

Sphere

n=10
n=30
n=60

n=100
n=120
n=140

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0 50000 100000 150000 200000 250000 300000

M
ea

n
B

es
t V

al
ue

Griewank
n=10
n=30
n=60

n=100
n=120
n=140

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0 50000 100000 150000 200000 250000 300000

Rastrigin
n=10
n=30
n=60

n=100
n=120
n=140

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 50000 100000 150000 200000 250000 300000

M
ea

n
B

es
t V

al
ue

Function Evaluations

Rosenbrock
n=10
n=30
n=60

n=100
n=120
n=140

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 50000 100000 150000 200000 250000 300000
Function Evaluations

Ackley
n=10
n=30
n=60

n=100
n=120
n=140

Fig. 1 ABC population size test: Comparing improvement of mean best solution (y-axis) per
iteration (x-axis) for different population sizes n over 300000 function evaluations; Standard
ABC settings are used except for l. To avoid very small limit values with small population
sizes l = 100 if ne dim < 100

Therefore we have done a comparison of different population sizes with respect
to the total number of function evaluations. Figure 1 depicts the average quality of
the best found solution over the first 3 ·105 function evaluations for different popula-
tion sizes n∈ {10,30,60,100,120,140} and all six test functions. As can be seen the
relative quality differs in different stages of the optimization process. For most test
functions (i.e., Griewank, Rosenbrock, Rastrigin, Ackley) very small populations

290 A. Aderhold et al.

(i.e., n = 10) show a fast convergence at the beginning of the optimization process
(i.e., in the first 20 000 evaluation steps). However larger populations perform bet-
ter in later stages of the optimization process. Only for the Sphere function very
small populations perform best throughout the whole optimization process. But this
is a very simple optimization function. For the more complex functions as Schaf-
fer Griewank, Rastrigrin, and Ackley population size 30-60 performs best for more
than 700000 evaluations. Only for the Ackely function the population size 100 is
best for a higher number of function evaluations. Thus, our results suggest that a
population size of 30− 60 seems good for many test functions. This is a slightly
smaller populations size than recommended in [12, 15].

5.2 Number of Onlooker Bees

The influence of the number of onlooker bees is studied in this subsection. Table 3
presents the mean number of function evaluations that are necessary to reach the op-
timization goals for populations containing 15 and 50 EBs. For each number of EBs
the ABC with a standard number of onlooker bees (i.e., the number of OBs equals
the number of EBs) is compared to a modified ABC were no OBs are used. Each
version has been tested on the standard and hard optimization goal (see Table 1).

Table 3 ABC with different number of employed bees neb and with or without and onlooker
bees nob for the standard optimization goal Gstd and the hard optimization goal Ghrd . Mean
number of function evaluations (mean) to reach the goal for the six test functions and signif-
icance (sig) comparing the ABC with and without onlooker bees and with the same number
of neb; ’X’ denotes significantly better; ’-’ denotes not significantly better

ABC (neb,nob) Schaffer Sphere Griewank Rastrigin Rosenbrock Ackley
mean/sig mean/sig mean/sig mean/sig mean/sig mean/sig

Standard Gstd
(15,0) 17525/– 13915/– 14085/– 3578/– 16073/– 18162/–
(15,15) 14820/– 7810/X 10404/X 3162/X 10017/X 15969/X

(50,0) 21644/X 43345/– 42739/– 10580/– 48751/– 54750/–
(50,50) 23599/– 15632/X 22326/X 8909/X 18055/X 45794/X
Hard Ghrd
(15,0) 31419/– 28318/X 53337/X 45041/– 68847/– 39292/X
(15,15) 31412/– 32970/– 60383/– 38361/X 82921/– 39947/–

(50,0) 68079/– 89694/X 102639/X 127124/– 118932/– 124140/X
(50,50) 74350/– 104216/– 107023/– 93845/X 92714/X 125344/–

As can be seen the performance regarding the number of OBs differs. Using OBs
increases the performance of the algorithm significantly for the standard optimiza-
tion goal Gstd in 5 of 6 test unctions for both numbers of EBs. But this is not the case
for the hard optimization goal Ghrd . For the case of 15 EBs the algorithm containing

Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance 291

no OBs performs significantly better for three of the six test functions. Only for the
Rastrigin function the algorithm with OBs is able to perform significantly better.
For two test functions no significant difference can be constituted. When 50 EBs
are used the algorithm with no OBs performs significantly better in 3 of the 6 test
cases, whereas the algorithm with OBs performs significantly better for only two
test function (Rastrigin and Rosenbrock). For one function no statistic difference
can be constituted.

These results suggests that the advantage of using OBs in the ABC algorithm is
not so clear for the hard optimization goal Ghrd while OBs are advantageous for
most cases when only the standard optimization goal Gstd is given. This questions
the standard rule to set the ratio between the number of OB and EBs to 1/2. A
more detailed analysis is necessary to fully understand the impact of OBs on the
algorithms performance and under what conditions they are useful and when not.

5.3 Comparison of ABC and Other Algorithms

In this section the performance of the standard ABC and the suggested modifica-
tions are compared with other optimization algorithms. As the standard optimization

Table 4 Mean number of function evaluations to reach the standard goal Gstd for ABC,
ABCgBest , and ABCgBestDist; Population size n = 30, number of EBs neb = 15, number of
OBs nob = 15; For each test function the significance between each pair of algorithms is
shown, ’X’ denotes that the algorithm in the corresponding line is significantly better than
the algorithm in the corresponding row, ’-’ denotes no significance

Standard Test
Function Method Mean Significance

ABC ABCgBest ABCgBestDist

Schaffer ABC 19038 – –
ABCgBest 6680 X –
ABCgBestDist 6377 X –

Sphere ABC 7773 – –
ABCgBest 6509 X –
ABCgBestDist 6245 X X

Griewank ABC 10160 – –
ABCgBest 9020 X –
ABCgBestDist 8680 X X

Rastrigin ABC 3218 – –
ABCgBest 2506 X –
ABCgBestDist 2466 X –

Rosenbrock ABC 9800 – –
ABCgBest 6682 X –
ABCgBestDist 7049 X –

Ackley ABC 15759 – –
ABCgBest 10118 X –
ABCgBestDist 10038 X –

292 A. Aderhold et al.

ABC ABCgBestDist ACOR DE H −PSO PSO VH −PSO

1e
+

03
5e

+
03

2e
+

04
1e

+
05

Schaffer

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC ABCgBestDist ACOR DE H −PSO PSO VH −PSO

50
00

10
00

0
20

00
0

Sphere

ABC ABCgBestDist ACOR DE H −PSO PSO VH −PSO

10
00

0
20

00
0

40
00

0 Griewank

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC ABCgBestDist ACOR DE H −PSO PSO VH −PSO

2e
+

03
1e

+
04

5e
+

04
2e

+
05

Rastrigin

ABC ABCgBestDist DE H −PSO PSO VH −PSO

5e
+

03
2e

+
04

1e
+

05

Rosenbrock

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC ABCgBestDist DE H −PSO PSO VH −PSO

10
00

0
15

00
0

20
00

0
Ackley

Fig. 2 Boxplots of the number of function evaluations needed to reach the standard optimiza-
tion goal Gstd for ABC, ABCgBestDist , PSO,

∨
H-PSO, H-PSO, DE and ACOR. Results for

ACOR are omitted when it was not able to reach the optimization goal in 500000 function
evaluations

goals will be used in order to compare the algorithms OBs have been used in the tests
for ABC and the proposed variants. Table 4 shows the mean number of function
evaluations and pairwise significance tests for the standard ABC and the proposed
modifications ABCgBest and ABCgBestDist on the test functions.

The results show that the proposed variants of ABC — ABCgBest and ABCgBestDist

— improve the performance of ABC on all test functions significantly. ABCgBestDist

is able to enhance the performance of ABCgBest on two test functions (i.e., Sphere
and Griewank). In the other cases no significant difference between the two ABC
variants could be observed.

The standard ABC algorithm and ABCgBestDist , the best performing ABC variant,
were tested against 5 reference algorithms for the standard optimization goal Gstd .
Figure 2 depicts boxplots of the number of function evaluation for each algorithm
on each test function.

In terms of the necessary number of function evaluations the proposed ABC vari-
ant ABCgBestDist performs significantly better than all the reference algorithms for
two test functions (i.e., Ackley, Rosenbrock). For two test functions (i.e., Sphere and

Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance 293

Schaffer) its performance is on par with the performance of the PSO respectively
the

∨
H-PSO algorithm. For the remaining two test functions (i.e., Griewank and

Rastrigin) the hierarchical PSO variant
∨

H-PSO outperforms all other algorithms
significantly, ABCgBestDist is the second best algorithm for this test functions.

6 Conclusion

In this paper we have proposed two variants — called ABCgBest and ABCgBestDist

— of the artificial bee colony optimization (ABC) algorithm. Both variants con-
cern the selection of the reference locations that influence the position update for
the artificial bees. Moreover, we investigated the influence of the colony size and
the relative number of so called onlooker bees in the artificial bee population on
the optimization performance. Experimental results for six standard benchmark test
functions suggest that ABC performs better with a smaller population size than used
in a standard ABC setup. However, it was also shown that the ideal population size
depends on the optimization goal. For harder optimization goals larger populations
seem to be advantageous. Whether it is advantageous to use onlooker bees depends
also on the optimization goals. For weaker optimization goals using OBs was ad-
vantageous for all test functions. But for the harder optimization goals it was in
most cases better not to use OBs. This questions the standard division of the popu-
lation of ABC into an equal number of EBs and OBs. The proposed ABC variants
ABCgBest and ABCgBestDist performed better than the standard ABC on all test func-
tions. ABCgBestDist performed slightly better than ABCgBest . In comparison to other
optimization algorithms ABCgBestDist was better or at least as good as all tested al-
gorithm on all test functions. Only for two test functions

∨
H-PSO performed better.

Acknowledgments

This work was supported by the Human Frontier Science Program Research Grant ”Opti-
mization in natural systems: ants, bees and slime moulds”.

References

[1] Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm. In:
Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp.
608–619. Springer, Heidelberg (2009)

[2] Bahamish, H.A.A., Abdullah, R., Salam, R.A.: Protein tertiary structure prediction us-
ing artificial bee colony algorithm. In: Asia International Conference on Modelling &
Simulation, pp. 258–263 (2009)

[3] Baykasoglu, A., Oezbakir, L., Tapkan, P.: Artificial Bee Colony Algorithm and Its Ap-
plication to Generalized Assignment Problem. In: Swarm Intelligence: Focus on Ant
and Particle Swarm Optimization, pp. 113–144. Itech Education and Publishing (2007)

294 A. Aderhold et al.

[4] Biesmeijer, J.C., de Vries, H.: Exploration and exploitation of food sources by social
insect colonies: a revision of the scout-recruit concept. Behavioral Ecology and Socio-
biology 49, 89–99 (2001)

[5] Blum, C., Merkle, D. (eds.): Swarm Intelligence: Introduction and Applications.
Springer, Heidelberg (2008)

[6] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial
systems. Oxford University Press, Oxford (1999)

[7] Dornhaus, A., Kluegl, F., Oechslein, C., Puppe, F., Chittka, L.: Benefits of recruitment in
honey bees: effects of ecology and colony size in an individual-based model. Behavioral
Ecology (2006)

[8] Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive
variant. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 35,
1272–1283 (2005)

[9] Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Tech.
rep., Erciyes University, Engineering Faculty (2005)

[10] Karaboga, D.: A new design method based on artificial bee colony algorithm for digital
IIR filters. Journal of the Franklin Institute 346(4), 328–348 (2009)

[11] Karaboga, D., Akay, B.: Artificial bee colony (abc) algorithm on training artificial neu-
ral networks. In: IEEE 15th Signal Processing and Communications Applications, pp.
1–4 (2007)

[12] Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Applied
Mathematics and Computation 214(1), 108–132 (2009)

[13] Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for
solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T.,
Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, p. 789. Springer,
Heidelberg (2007)

[14] Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimiza-
tion 39(3), 459–471 (2007)

[15] Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algo-
rithm. Applied Soft Computing 8(1), 687–697 (2008)

[16] Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm
for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.)
MDAI 2007. LNCS (LNAI), vol. 4617, p. 318. Springer, Heidelberg (2007)

[17] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

[18] Krink, T., Filipic, B., Fogel, G., Thomsen, R.: Noisy optimization problems - a partic-
ular challenge for differential evolution? In: Proc. Congress on Evolutionary Computa-
tion. IEEE Press, Los Alamitos (2004)

[19] Seeley, T.D.: The wisdom of the hive. Harvard University Press, Cambridge (1995)
[20] Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European

Journal of Operational Research 185(3), 1155–1173 (2008)
[21] Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global op-

timization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)
[22] Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and pa-

rameter selection. IPL: Information Processing Letters 85, 317–325 (2003)

A Heuristic-Based Bee Colony Algorithm for the
Multiprocessor Scheduling Problem

Pascal Rebreyend, Cedric Clugery, and Emmanuel Hily

Abstract. The multiprocessor scheduling is one of the NP-complete scheduling
problems. This problem comes when a known parallel program must be executed
on a parallel computer. Different methods and algorithms have been tested for this
scheduling problem. This paper presents and tests a hybrid bee algorithm. In this ap-
proach, the bee algorithm is combined with a heuristic in order to produce quickly
good solutions. The choosen heuristic is a greedy approach and hybridization is
done using the indirect representation. The heuristic is a list heuristic and the bee
algorithm has to find the best order for the ordered list of tasks used by the heuris-
tic. Experimental results on different benchmarks will be presented and analized, as
well as a comparison with other hybrid approaches.

1 Introduction

Combinatorial optimization problems are an important research field in computer
science because most of these problems are really important in business and daily
life. Most of the real optimization problems belong to the NP-class such as Travel-
ing Salesman problem, Vehicle routing problems,. . . Among these problems, there
is an important interest for scheduling problem. Most of them are NP-complete
but come from different areas. Aside timetabling which is difficult to handle since
it deal with human wishes and considerations, most of scheduling problems are

Pascal Rebreyend
School of Technology and Business Studies, Högskolan Dalarna
e-mail: prb@du.se

Cedric Clugery
Université de Bretagne Occidentale
e-mail: cedric.clugery@gmail.com

Emmanuel Hily
Université de Bretagne Occidentale
e-mail: emmanuel.hily@gmail.com

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 295–304, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

prb@du.se
cedric.clugery@gmail.com
emmanuel.hily@gmail.com

296 P. Rebreyend, C. Clugery, and E. Hily

NP-complete optimization problems of processes. In general, people focus on pro-
cesses inside factories. In our case, we will focus on scheduling tasks on an homoge-
nous multiprocessor computer. Nowadays, parallelism is widely used as a program-
ming scheme for complex computations such as simulations, physics computations,
solvers,. . . Aside its importance as optimization problem, this scheduling problem
has the advantage to be both simple and representing well scheduling problems in
general. Therefore it’s a good choice to investigate the efficiency and behaviour of
an hybrid bee-based algorithm.

This multiprocessor scheduling has been studied with lot of different approaches
which represent well the main possibilities to find good approximate solutions for
an NP-complete problem. Among these approaches, the most interesting one seems
to be hybrid evolutionary methods such as genetic algorithms combined with heuris-
tics [5]. Two different approaches exist to combine a heuristic and an evolutionary
algorithm: the direct and indirect representation. Even if they differ a lot, both meth-
ods give simular results [1]. But new evolutionary algorithms such as bee colonies
haven’t been tested yet on this problem. The scope of this work is to investigate
the efficiency of bee colonies for this problem and how they can be combined with
heuristics.

2 Problem Description

The multiprocessor scheduling is a scheduling problem which belongs to the class
of NP-complete problems ([5]). Given a parallel program decomposed into different
tasks and a multiprocessor computer , the goal is to find the optimal (or sub-optimal)
schedule of tasks. In the case we are dealing with, the number of processor is fixed,
all processors are the same. To assume that all processors are identical is motivated
by the fact that this reflects the architecture of parallel computers. If this is not the
case, algorithms and approaches explain in this paper can be easily deal with this
fact and efficiency can be still achieved since the choice of cpu is already part of the
solving process. Obviously, we will take into account communication time to reflect
the latency of the communication network.

Formelly, we can describe the multiprocessor scheduling as an acyclic digraph
D = (V,A) where:

• The set of vertices V = t1, . . . ,tn represents the set of the n tasks which compose
the program. Each vertex is labeled with a value representing the size of the task.

• Each arc (ti1 ,ti2) of A represents that, at the end of its execution, the task ti1 sends
a message which is required by ti2 in order to start its execution. Each arc is
labeled with a value representing the size of the corresponding message.

• The goal is to find the optimal schedule s. A schedule s can be represented by a
vector s1, . . . ,sn where s j is the ordered list of tasks on the processor j. Each S j

is therefore a vector too. It has been shown and proven that this is way of descris-
bing the solution (and to built the real schedule by a greedy scheme) reduce the
search space but do not exclude all optimal solution [3]. Therefore in this article
we will look to find this set of vectors.

A Heuristic-Based Bee Colony Algorithm 297

The communication time between two tasks is null if they are schedule on the same
processor. Otherwise, the formula used is α +λ ∗ s where α is the time needed to
start the communication, s the amount of data to transmit and α the time needed to
transmit one data. The amount of data to transmit between the two tasks is labeled
on each arc of teh graph.

3 Artificial Bee Colony

Studies and modelizations of insects colonies such as ants and bees have shown that
swarm intelligence can solve complex problems ([6]). Bee colonies is one of the
latest development in this area. Like other methods (ant colonies,. . .), the aim is to
stimulate their behaviour to solve our complex problems. Bee lives in “hives” and
like ants, they have to explore the surroundings to find food sources. But the com-
parison between bees and ants stops at this point: the communication between bees
is completly different from communication between ants. Communication between
bees is done by a dance. Before to go out and bring back some food, bees are watch-
ing other bees dancing on the “dance floor” and the dance is their way of describing
where the food is. This scheme has lot of differences with the usage of pheromons
by ants. With pheromon, the “talk” of different ants is naturally agregated as the
quantity of pheromon increases on the path. At the same time, the description of
one solution is spread out on its set of paths. On the other hand, on the dance floor
it’s only a set of differents solutions which are presented at the same time.

In the litterature, descriptions of bee behaviour and bee algorithms differ but all
of them have a common part: a dance floor where bees express their solution an
dthey work on a complete solution.

Few researchers have worked with bee colonies on scheduling problems and have
shown interesting results ([2, 4, 12]). Chong and al ([2]) are focused on the job shop
scheduling. This problem shows some similarities with the multiprocessor schedul-
ing problem such as minimizing the makespan. Authors define the profitability rat-
ing of a bee as the inverse of the makespan of the solution. This profitability rating is
used to comute the duration of the dance of the corresponding bee. A lookup-table is
used to adjust the probability for a bee to follow a particular path. Experiments are
done on problems up to 50 jobs and with 5 to 20 machines. Results shows that the
bee approach performs slightly better than an ant colony system but cannot match a
tabu search. Wong and al ([12]) are working on the job schop sscheduling too. Their
work is based on the big valley landscape structure ([11]). In their work, authors
starts to generate feasible solutions using different dispatching rules or heuristics.
Another particularity of thei bee colony is to add to each some memory using a
tabu list. Authors also introduce a measure of the distance between two solutions to
replace a solution by solutions which are not too “far” from it. INstead of using a
lookup table as in [2], authors have tried different strategies for a bee to pick and
follow a dance and after initial experiment decided to use the round robin method.
Experiments are done on small-size problem as Chang and al ([2]). Results obtained
are in the line with top of the art methods for this problem but their bee approach

298 P. Rebreyend, C. Clugery, and E. Hily

seems to perform well in the long term. Davidović and al ([4]) work on the mul-
tiprocessor scheduling problem but they do not take into account communication
times. Their algorithm consists of two passes: a forward pass where bee constructs
solutions and a forward pass where communication between bees is done. In the for-
ward pass, the processing time of a task is used to biased the probability for a task to
be choosen. Bee are producing partial solutions and durng the backward pass, bee
decides to continue to complete the partial solution or to explore the search space.
Their algorithm is test with graphs up to 100 tasks scheduled on 4 processors and in
few second the optimal solution is found.

Anyway, a real comparison with other existing methods is interesting to investi-
gate. An interesting point is that descriptions of algorithms based on bee colonies
differ a lot between authors. Especially, often the application of biological facts to
the specific problem is confusing.

4 Proposed Method

As explained in the previous section, bee colonies work on a complete solution.
Like others evolutionary methods, they suffer from a slow convergence to interesting
solutions. It’s why in general they are mixed with other methods such as heuristic in
order to reach quickly good solutions. This meta-method is called hybrid algorithm.

4.1 Background on Hybrid Methods

Research on this problem has shown the efficiency of hybrid methods. Best results
known so far comes mainly from hybrid algorithms which mixed a heuristic and
an evolutionary algorithm such as genetic algorithms as shown in [9]. Hybridization
between an evolutionary algorithm and a heuristic can be done in two different ways
([1]):

The indirect approach is based on a list heuristic. A list heuristic is a heuristic
which take as input a total order among elements. For scheduling problems, ele-
ments are often the different tasks. Based on this order, the heuristic will produce
a final solution using the knowledge embedded in the algorithm. The goal of this
evolutionary method is to find an order among elements as best as possible. Often,
the list heuristic used is a greedy approach which schedules as soon as possible each
task. One main advantage of this approach is in the ease of building an hybrid algo-
rithm. The drawback is that the heuristic is a gateway to the solution and therefore
its choice is very sensitive and this kind of algorithm can perform well or badly
depending of the instance and the poor flexibilty of this approach. This approach is
often used with a simulated annealing and a list algorithm

The direct approach as been designed to overcome this problem. In this approach,
the heuristic knowledge is integraded directly into the evolutionary algorithm. In
most cases, the evolutionary part is a genetic algorithm. Instead of being a TSP-like
representation (total order) like in the indirect method, the genetic algorithm works
on a complete solution of the problem. The heuristic is introduced into the genetic

A Heuristic-Based Bee Colony Algorithm 299

algorithm via the crossover and/or the mutation operators. This approach is more
robust since by design the complete solution is not built only through the heuristic
but also by the evolutionary algorithm. This approach is more flexible: the heuristic
is just a redesign of an operator and more than one heuristic can be used at the same
time. The main drawback is that this approach needs more work to design the hybrid
algorithms and the complexity of the new operator can be high ([10]). And for each
evolutionary algorithm some work is needed to built the complete method.

Practical results on this scheduling problems show similar results. We have de-
cided to follow the first approach, the indirect method to test bee colonies on our
scheduling problem.

4.2 The Greedy Heuristic

The chosen heuristic is a simple greedy approach. This choice is guided by the need
to have a heuristic which does not excludes too many potential solutions. Therefore
we have decided to use a randomized heuristic. By randomized, we mean that we
use the greedy scheme to filter the different choices but in case of equality regarding
the starting time between different tasks to schedule, we will pick at random a task.
The choice of processor will be done ramdomly too among all processor minimizing
the starting time of the corresponding task. This can be seems as a weak heuristic
but this weakness is in fact some flexibility and this is a wish in order to be able to
guide the heuristic by the evolutionary method. The heuristic picks at random a free
task (i.e a task for which all predecessors are already scheduled) and assigns to one
processor at random. The starting time is the earliest one. This is repeated until the
complete schedule is built.

4.3 The Dance Floor

In our case, we will work with a fix number of bees and like other methods, we will
simulate the evolution by iterations of a main loop. For a shake of simplicity, we
will assume that a bee has two possible states: either the bee is dancing on the floor,
either the bee is looking for some food source.

At each generation, bees who are looking on the dance floor will either, with a
probability 0.1, generates a random solution or look at random a bee dancing on the
floor (probability 0.9) and picks its solution except for the first iteration where all
bees generate random solutions. When a bee observes the dance of another bees, this
communication is prone to error or inacurracy. For us, this means that the bee will
look for a solution in the neighborhood of the solution of the dancing bee. This idea
is close to the mutation of the Genetic Algorithm or on how simulated annealing
and tabu search work. In our case, each bee represents the solution by an ordered
list of tasks. We have choosen to swap some pairs of tasks. after some experiments,
a number of pairs has been fixed at 5 % of the tasks.

Once a bee has generated a new solution, the bee may stay on the dance floor. The
general idea is that, the better is the solution, the longer should dance the bee and

300 P. Rebreyend, C. Clugery, and E. Hily

expose its solution. This is simply done by, at the end of each generation, keeping the
bees representing the best 5% of solutions. Other possibilities exist in the litterature
but this is one is simple and has two advantages: the number of bee dancing is kept
constant and we don’t compute in advance how long a bee will dance, regardless of
the quality of solutions which will enter the dance floor later.

We have tested two different list heuristics to build the complete schedule from
the total order amon the tasks. Both heuristics are based on the same engine: We
built the schedule step by step. At each step, a task is scheduled on one processor. In
order to do that, the list of free tasks (i.e tasks for which all predecessors in the graph
are already schedule) is built and the one with the higher order of priority according
the list build by the bee part of the algorithm is choosen. For both heuristics, the
processor is chosen at random between all processor on which the starting time of
the task is the earliest one.

4.4 Heuristic 1

In this heuristic, we filter the list of free tasks such as to keep only tasks with the
earliest starting time. Using this method, we use the knowledge represented by the
greedy approach. Since this approach is not design to make distinctions between
tasks with the same starting time, the bee colony will be used to choose the task to
schedule among all tasks with the minimum starting time.

4.5 Heuristic 2

In the second heuristic, we release the constraint about the starting time of free tasks.
Therefore we choose at random among all free tasks. This lead to give relatively
more power to the evolutionary algorithmand therefore may extend the search space
and avoid particular local minimas. The greedy idea is still used in the schedule
since we are scheduling each as soon as possible on only on a processor where the
starting time is the minimum for this task.

4.6 Parameters

The number of bees is equal to the number of tasks. The number of bees is one of
the parameters of bee colony algorithms. This number is connected to the number
of parallel explorations of solutions by bees and to the number of bees dancing on
the dance floor. Obviously, the bigger the problem (or the higher is its dimension),
the more bees should be in the system since the search space is bigger and has more
dimensions. It’s why we have adapted this rule and in practice, like hybrid genetic
algorithm, this parameter has not strong effect on the efficiency as far as its value is
average. Some initial experiments with a fixed number of bees has confirmed us in
this choice.

A Heuristic-Based Bee Colony Algorithm 301

Other parameters have been choosen after some experiments: The probability for
a bee to watch a given dance is 0.9 (and 0.1 to explore at ranom). Like the number
of bees in the systems, results show that this hybrid system is not very sensitive to
this parameter, like most of hybrid systems. An interesting point is that, since the
number of bees is fixed and a bee is either dancing, either watching the dancefloor
and exploring the surroundings, we keep 5 % of the bees on the dance floor at the
end of each generation and we don’t decide in advance how long the bee will dance.

Table 1 Summary of results, 2 hours run

Graph size Best known Heuri Random bee-1 bee-2
results before 2 hours 2 hours 2 hours

Bellford
m 71 936 050 81 088 350 73 254 250 73 254 250
l 193 794 250 210 392 700 185 960 150 185 960 150

Diamond-1
m 131 940 750 134 422 800 131 940 750 131 940 750
l 276 758 950 301 345 850 295 760 200 303 439 950

Diamond-2
m 127 224 450 154 219 000 133 327 550 137 920 400
l 218 954 400 286 231 500 240 218 850 278 276 200

Diamond-3
m 176 982 100 191 046 900 179 024 600 179 024 600
l 228 590 500 245 601 300 229 520 750 228 642 100

Diamond-4
m 132 875 550 161 903 850 160 468 850 159 578 500
l 164 264 000 193 110 750 186 117 300 186 117 300

Divconq
m 97 307 880 101 788 840 99 460 640 98 524 780
l 169 043 350 175 227 610 172 662 500 171 417 990

fft
m 29 888 250 32 085 550 30 986 900 30 986 900
l 102 647 300 105 023 800 100 875 950 100 875 950

Gauss
m 226 882 900 249 342 850 241 115 100 234 992 850
l 307 395 800 353 121 550 330 620 250 315 658 650

Iteratif
m 16 733 350 22 099 550 21 382 050 21 808 700
l 47 936 700 54 820 850 52 661 200 54 542 100

ms-gauss
m 4 598 559 550 4 605 112 750 4 605 112 750 4 605 112 750
l 2 559 388 750 2 710 832 350 2 561 870 800 2 559 444 800

prolog
m 60 499 350 63 292 900 60 575 800 60 575 800
l 258 529 350 261 322 900 261 322 900 258 605 800

qcd
m 1 173 100 600 1 176 047 050 1 176 047 050 1 176 047 050
l 2 038 576 050 2 041 522 500 2 041 522 500 2 041 522 500

elbow 6630 6630 6630 6630
stanford 627 647 629 629

ssc

5 74 106 104 107
6 77 127 124 128
7 82 150 145 150
8 86 177 173 176
9 89 187 184 181

Average
distance from 0.193 21.183 16.349 20.307
the best in %

302 P. Rebreyend, C. Clugery, and E. Hily

5 Experiments

Experiments are done using different benchmarks. Some benchmarks has been gen-
erated by the tool ANDES-SYNTH ([8]). These synthetic graphs represent the most
common parallel programs and values represents an IBM-SP1. Graphs called ssc
come from a controller and elbow and stanford graphs represent a robot shoulder
and arm ([7]). Results are presented in the table (1). Best known results (oublished
in [9]) before this project are presented in the first column. The computations were
performed on UPPMAX resources under Project p2009019. All other columns rep-
resent results achieved after 2 hours of computation on a single nod of an X3455
IBM computer (AMD opteron) of the Uppmax cluster Isis.

From the results, we clearly see that the bee algorithm is more efficient than the
random heuristic used by it but at the same time, it suffer from this approach by
giving poor results on some graphs (like the ssc family). By comparison to detailed
results of other methods ([9], results are mixed. Obviously, the heuristic used can be
improved by using other criterias such as the level of the task in the graph.

The figure 1 shows for 4 different graphs results obtained by the different meth-
ods proposed here with the respect of their processing time. They represent well the

 1.3e+08

 1.32e+08

 1.34e+08

 1.36e+08

 1.38e+08

 1.4e+08

 1.42e+08

 1.44e+08

 1.46e+08

 0.01 0.1 1 10 100 1000 10000

M
ak

es
pa

n

Time in seconds

Heuristic
Bee 1
Bee 2

(a) diamond1b-m

 1e+08

 1.01e+08

 1.02e+08

 1.03e+08

 1.04e+08

 1.05e+08

 1.06e+08

 1.07e+08

 1.08e+08

 1.09e+08

 0.01 0.1 1 10 100 1000 10000

M
ak

es
pa

n

Time in seconds

Heuristic
Bee 1
Bee 2

(b) fft-l

 1.85e+08

 1.9e+08

 1.95e+08

 2e+08

 2.05e+08

 2.1e+08

 2.15e+08

 2.2e+08

 2.25e+08

 0.01 0.1 1 10 100 1000 10000

M
ak

es
pa

n

Time in seconds

Heuristic
Bee 1
Bee 2

(c) Bellford-l

 6e+07

 6.1e+07

 6.2e+07

 6.3e+07

 6.4e+07

 6.5e+07

 6.6e+07

 6.7e+07

 0.01 0.1 1 10 100 1000 10000

M
ak

es
pa

n

Time in seconds

Heuristic
Bee 1
Bee 2

(d) Prolog-m

Fig. 1 Experimental results on some graphs

A Heuristic-Based Bee Colony Algorithm 303

general behaviour of other graphs of the benchmark. The two bee algorithms have
similar results and outperformed the heuristice on which they are based after some
time.

6 Future Work

Results leads to think about the connection between the evolutionary method and
the heuristic. To develop a hybrid method using the direct representation can be an
idea. Another idea can be to improve the bee colony algorithm: we may add extra
information to the solution to guide more the heuristic (and therefore use a less
strong greedy method), or modify the bee algorithm in the way that a bee is looking
at several dances and mix them. But at this stage the question is what will be then
the difference with a Genetic Algorithm in practice?

7 Conclusion

Bee algorithms have been recently tested on different problems. Aside their novelty,
methods based on bees colonies are often simple to develop. Experiments show that
bee methods give some improvments in comparison of the heuristic used in this
approach, especially for huge problems. But, on the other hand, like other indirect
approaches ([9]), the choice heuristic is very important and results are very sensitive
to the input data. Experiments confirm previous conclusions about the indirect hy-
brid approach used b other evolutionnary algorithms: easy to implement, fast results
but strongly connected of the heuristic used and find the compromise between the
power of each method is rather difficult and unflexible. Anyway, bee colonies are a
good solution to such problems.

References

[1] Chamaret, B., Rebreyend, P., Sandnes, F.E.: Scheduling problems: A comparison of
hybrid genetic algorithms. In: Proceedings of the 2nd IASTED International Confer-
ence on Parallel and Distributed Computing and Networks, pp. 210–213. ACTA Press,
Brisbane (1998) ISBN 0-88986-237-0, ISSN 1027-2658

[2] Chong, C.S., Sivakumar, A.I., Low, M.Y.H., Gay, K.L.: A bee colony optimization algo-
rithm to job shop scheduling. In: Perrone, L.F., Lawson, B., Liu, J., Wieland, F.P. (eds.)
Winter Simulation Conference, WSC, pp. 1954–1961 (2006)

[3] Corrêa, R., Ferreira, A., Rebreyend, P.: Integrating list heuristic into genetic algorithms
for multiprocessor scheduling. In: Eighth IEEE Symposium on Parallel and Distributed
Processing, pp. 462–469. IEEE Computer Society, New-Orleans (1996) ISSN-ISBN
0-8186-7683-3

[4] Davidovic, T., Selmic, M., Teodorovic, D.: Scheduling independent tasks: Bee colony
optimization approach. In: Mediterranean Conference on Control and Automation, pp.
1020–1025 (2009),
http://doi.ieeecomputersociety.org/10.1109/
MED.2009.5164680

http://doi.ieeecomputersociety.org/10.1109/MED.2009.5164680
http://doi.ieeecomputersociety.org/10.1109/MED.2009.5164680

304 P. Rebreyend, C. Clugery, and E. Hily

[5] Hou, E.S., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor schedul-
ing. IEEE Transactions on Parallel and Distributed Systems 5(2), 113–120 (1994),
http://doi.ieeecomputersociety.org/10.1109/71.265940

[6] Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm.
Applied Soft Computing 8(1), 687–697 (2008),
http://www.sciencedirect.com/science/article/
B6W86-4NWCGRR-G/2/422ccff5df9d32a5bf8517068ca2a094

[7] Kasahara, H., Narita, S.: Practical multiprocessor scheduling algorithms for efficient
parallel processing. IEEE Transactions on computers C-33(11), 1023–1029 (1984)

[8] Kitajima, J.: Modèles quantitatifs d’algorithmes parallèles. PhD thesis, LMC-IMAG
(1994)

[9] Rebreyend, P.: Algorithmes génétiques hybrides en optimisation combinatoires. PhD
thesis, Lip, ENS-Lyon, France (1999),
http://pascal.rebreyend.free.fr/Fichiers/these.pdf

[10] Rebreyend, P., Sandnes, F., Megson, G.: Static multiprocessor task graph scheduling
in the genetic paradigm: A comparison of genotype representations. Research Report
RR1998-25, LIP-ENS-Lyon, 46 allée d’Italie, F-69364 Lyon Cedex 07, France (1998),
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1998/
RR1998-25.ps.Z

[11] Reeves, C.: Landscapes, operators and heuristic search. Annals of Operations Re-
search 86(0), 473–490 (1986),
http://dx.doi.org/10.1023/A:1018983524911

[12] Wong, L.P., Puan, C.Y., Low, M.Y.H., Chong, C.S.: Bee colony optimization algorithm
with big valley landscape exploitation for job shop scheduling problems. In: Mason,
S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) Winter Simula-
tion Conference, WSC, pp. 2050–2058 (2008)

http://doi.ieeecomputersociety.org/10.1109/71.265940
http://www.sciencedirect.com/science/article/B6W86-4NWCGRR-G/2/422ccff5df9d32a5bf8517068ca2a094
http://www.sciencedirect.com/science/article/B6W86-4NWCGRR-G/2/422ccff5df9d32a5bf8517068ca2a094
http://pascal.rebreyend.free.fr/Fichiers/these.pdf
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1998/RR1998-25.ps.Z
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1998/RR1998-25.ps.Z
http://dx.doi.org/10.1023/A:1018983524911

A Bumble Bees Mating Optimization Algorithm
for Global Unconstrained Optimization
Problems

Yannis Marinakis, Magdalene Marinaki, and Nikolaos Matsatsinis

Abstract. A new nature inspired algorithm, that simulates the mating behavior of
the bumble bees, the Bumble Bees Mating Optimization (BBMO) algorithm, is pre-
sented in this paper for solving global unconstrained optimization problems. The
performance of the algorithm is compared with other popular metaheuristic and
nature inspired methods when applied to the most classic global unconstrained op-
timization problems. The methods used for comparisons are Genetic Algorithms,
Island Genetic Algorithms, Differential Evolution, Particle Swarm Optimization,
and the Honey Bees Mating Optimization algorithm. A high performance of the
proposed algorithm is achieved based on the results obtained.

1 Introduction

In the last years, several biological and natural processes have been influencing the
methodologies in science and technology in an increasing manner. Among the most
popular nature inspired approaches, when the task is optimization within complex
domains of data or information, are those methods representing successful animal
and micro-organism team behaviour, such as the Particle Swarm Optimization [14],
the artificial immune systems [6], the Ant Colony Optimization [7], etc. Also, a
number of swarm intelligence algorithms, based on the behaviour of the bees have

Yannis Marinakis · Nikolaos Matsatsinis
Decision Support Systems Laboratory,
Department of Production Engineering and Management,
Technical University of Crete, 73100 Chania, Crete, Greece
e-mail: {marinakis,nikos}@ergasya.tuc.gr

Magdalene Marinaki
Industrial Systems Control Laboratory,
Department of Production Engineering and Management,
Technical University of Crete, 73100 Chania, Crete, Greece
e-mail: magda@dssl.tuc.gr

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 305–318, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{marinakis,nikos}@ergasya.tuc.gr
magda@dssl.tuc.gr

306 Y. Marinakis, M. Marinaki, and N. Matsatsinis

been presented [4]. These algorithms are divided, mainly, in two categories accord-
ing to their behaviour in the nature, the foraging behaviour and the mating be-
haviour. The most important approaches that simulate the foraging behaviour of the
bees are the Artificial Bee Colony (ABC) Algorithm proposed by [13], the Virtual
Bee Algorithm proposed by [27], the Bee Colony Optimization Algorithm proposed
by [24], the BeeHive algorithm proposed by [26], the Bee Swarm Optimization Al-
gorithm proposed by [8] and the Bees Algorithm proposed by [22]. Contrary to the
fact that there are many algorithms that are based on the foraging behaviour of the
bees, the main algorithm proposed based on the marriage behaviour is the Honey
Bees Mating Optimization Algorithm (HBMO), that was presented in ([1, 2]) and
simulates the mating process of the queen of the hive. Since then, it has been used
on a number of different applications [3, 10, 11, 15–20, 23].

In this paper, a new algorithm that simulates the mating behavior of the Bumble
bees, the Bumble Bees Mating Optimization (BBMO) algorithm is presented, anal-
ysed and used for solving unconstrained optimization problems. This algorithm is a
population-based swarm intelligence algorithm that simulates the mating behavior
that a swarm of bumble bees perform. An hybridized initial version of the algorithm
was presented in [21] for clustering. The other methods used for the comparisons are
the Genetic Algorithms [12] and their variants, the Differential Evolution [25], the
Particle Swarm Optimization [14] and its variants and the Honey Bees Mating Op-
timization algorithm [1, 3]. The test functions used are the Rosenbrock, the Sphere,
the Rastrigin and the Griewank.

The rest of the chapter is organized as follows. In the next section an analytical
description of the proposed algorithm is given. In the third section, the test functions
used are given while in the fourth section computational results are presented and
analyzed. The last section gives the conclusions and future research.

2 The Proposed Bumble Bees Mating Optimization Algorithm

In this section, initially, the bumble bees behavior is presented, while in the fol-
lowing the proposed algorithm based on this behavior is presented and analyzed in
detail.

2.1 Bumble Bees Behavior

Bumble bees are social insects that form colonies consisting of the queen, many
workers (females) and the drones (males). Queens are the only members of the nest
to survive from one season to the next, as they spend the winter months hibernating
in a protected underground overwintering chamber. Upon emerging from hiberna-
tion, a queen collects pollen and nectar from flowers and searches for a suitable nest
site and when she finds such a place, she prepares wax pots to store food and wax
cells into which eggs are laid ([28–31]).

The bumble bee queen can lay fertilized or unfertilized eggs. The fertilized eggs
have chromosomes from the queen and a male or males she mated with the previous

A BBMO Algorithm for Global Unconstrained Optimization Problems 307

year and they develop into workers while the unfertilized eggs contain chromo-
somes from the queen alone and they develop into males. After the emergence of
the first workers, the queen no longer forages as the workers take over the respon-
sibilities of collecting food (foragers) and the queen remains in the nest laying eggs
and tending to her young. Some workers, also, remain in the nest and help raise the
brood (household workers). Males do not contribute in collecting food or helping
rear young as the sole purpose of the males are to mate with the queens. Bumble
bee workers are able to lay haploid eggs when the queen’s ability to suppress the
workers’ reproduction diminishes. These eggs are developed into viable male bum-
ble bees ([28–31]).

A few days after the males leave the nest, new queens will emerge. After new
queens and males have gone, the colony begins to deteriorate. The founder queen
stops laying eggs and grows weak from old age while the remaining workers con-
tinue to forage for food but only for themselves. Away from the colony, the new
queens and males live off nectar and pollen and spend the night on flowers or in
holes. The queens are eventually mated (often more than once), the sperm from the
mating is stored in spermatheca and she searches for a suitable location for diapause.
Three different mating behaviors exist in bumble bees. The first mating behavior is
where a male perches on a tall structure and waits for queens to fly by and he will
pursue them for mating once one queen is spotted. The second mating behavior is
when males create a scent trail, marking their flight path with pheromones and, thus,
queens of the same species will be attracted to the pheromones and follow the scent
trail. The third mating behavior is where males wait at the entrance of a bumble bee
nest for queens to leave ([28–31]).

2.2 BBMO for Global Unconstrained Optimization

In the BBMO algorithm, there are three kind of bumble bees in the colony, the
queen, the workers and the drones (males). Initially, a number of bees are selected
randomly. Each bee (a bee corresponds to an individual in the population) represents
a candidate solution of the problem. Let n be the total number of variables. The
bees are represented by vectors of dimension n. We use a real valued representation
where initially the values of each of the bees are random numbers between 0 and 1.
Afterwards, the fitness of each bee is calculated using each one of the test functions
depending of the problem (see section 3) and the best bee is selected as the queen.
All the other bees in the initialization phase of the algorithm are the drones.

The queen selects the drones that are used for mating by using the second mating
behavior where it is assumed in the algorithm that the fittest males let larger amount
of pheromone in their flight paths and, thus, the queen selects the most promis-
ing paths. This procedure is realized by sorting of all drones based on their fitness
function. Each time the queen successfully mates with a drone, the genotype of the
drone is stored in her spermatheca until the maximum number of matings has been
reached.

308 Y. Marinakis, M. Marinaki, and N. Matsatsinis

After the mating, the queen finds a place to hibernate and in the next year (a year
corresponds to an iteration) finds a place to create the hive and to begin to lay eggs.
There are three kinds of bees that a queen lays: new queens, workers and drones.
The first two kinds of bees are created by crossover of the genotype of the queen
and the genotype of the drones using a specific crossover operator. In this crossover
operator, the points are selected randomly from the selected drones and from the
queen. Thus, initially a crossover operator number is selected (Cr1) that controls
the fraction of the parameters that are selected for the drones and the queen. The
Cr1 value is compared with the output of a random number generator, randi(0,1). If
the random number is less or equal to the Cr1 the corresponding value is inherited
from the queen, otherwise it is selected, randomly, from the solutions of one of the
drones’ genotypes that are stored in spermatheca. Thus, if the solution of the brood i
is denoted by bi j(t) (t is the iteration number and j is the dimension of the problem
(j = 1, · · · ,n)), the solution of the queen is denoted by q j(t) and the solution of the
drone k is denoted by dk j(t):

bi j(t) =
{

q j(t), if randi(0,1)≤Cr1

dk j(t), otherwise.
(1)

The fittest of the broods are selected as new queens while the rest are the workers.
The new queens are selected to be equal to the maximum number of the queens. Ini-
tially, the new queens are fed from the old queen (or queens) and, afterwards, from
the workers and the old queen (or queens). The reason that we use this procedure is
to improve the genotype (solution) of each new queen. This is achieved by using a
local search phase where each new queen selects which of the workers and the old
queen (or queens) are going to feed her by using the following equation:

nqi j = nqi j +(bmax− (bmax−bmin)∗ lsi
lsimax

)∗ (nqi j−q j)+

1
M
∗

M

∑
k=1

(bmin− (bmin−bmax)∗ lsi
lsimax

)∗ (nqi j−wk j) (2)

where nqi j is the solution of the new queen i, q j is the the solution of the old queen
(or queens), wk j is the solution of the worker, M is the number of the workers that
each queen selects for feeding her and it is different for each queen, bmax,bmin are
two parameters with values in the interval (0,1) that control if the new queen is
fed from the old queen (or queens), from the workers or from both of them, lsi is
the current local search iteration and lsimax is the maximum number of local search
iterations. Initially, the new queens are fed more from the old queen (or queens) and
as the local search iterations increase, then only the workers feed the new queen.
The appropriate choice of the values of bmax and bmin controls the feeding process,
i.e. in order to have the feeding process described previously, a large value for bmax

and a value almost equal to zero for bmin are necessary. Afterwards, the new queens
leave from the hive.

A BBMO Algorithm for Global Unconstrained Optimization Problems 309

The drones are produced by mutate the old queen’s (or old queens’) genotype or
by mutate the fittest workers’ genotype using a random mutation operator. In this
mutation operator, the changes in the genotype of the old queens or the workers are
performed randomly.

The drones, then, leave from the hive and they are looking for new queens for
mating. As the drones leave from the hive they are moving in a swarm in order
to find the best places to wait for the new queens to find them by their marked
flight paths. The movement of the drones away from the hive is calculated from the
following equation:

di j = di j +α ∗ (dk j−dl j) (3)

where di j,dk j and dl j are the solutions of the drones i,k, l respectively and α is
a parameter that determines the percentage that the drone i is affected by the two
other drones k and l. The new queen select the drones that are used for mating
by the procedure described previously. In the next generation, the best fertilized
queens survive and all the other members of the population die. A pseudocode of
the proposed algorithm is presented in Table 1.

It should be noted that the proposed Bumble Bees Mating Optimization (BBMO)
algorithm that is inspired from the mating behavior of the bumble bees, it has a num-
ber of differences compared to another nature inspired algorithm that is based on the
mating behavior of honey bees, the Honey Bees Mating Optimization (HBMO) al-
gorithm [1, 15, 20]. The Honey Bees Mating Optimization algorithm simulates the
mating process of the queen of the hive, where there are three kinds of bees, the
queen, the drones and the workers. The mating process of the queen begins when
the queen flights away from the nest performing the mating flight during which the
drones follow the queen and mate with her in the air. The main differences of the
two algorithms are:

• In the BBMO the workers are different solutions while in the HBMO they are lo-
cal search phases. This helps the exploration abilities of the population by search-
ing in different places in the solution space.

• In the BBMO after the mating of the queen three kinds of bumble bees are
produced, the new queens and the workers (by using a crossover operator) and
the drones (by using a mutation operator). On the other hand, in the HBMO after
the mating of the queen two kinds of honey bees are produced, the queen and the
drones (both of them by using a crossover operator). By using in the proposed
algorithm a mutation operator to produce new solutions we have the possibility
to obtain completely different solutions.

• In the BBMO the fittest of the broods produced by the crossover operator are the
new queens and all the others are the workers while in the HBMO the fittest of
the broods is the new queen and all the others are the drones.

• In the BBMO the drones are produced by mutation of the queen or by mutation
of the fittest workers. In the HBMO the drones are all the bees produced by
the crossover operator except of the queen. By using in the proposed algorithm

310 Y. Marinakis, M. Marinaki, and N. Matsatsinis

Table 1 Bumble Bees Mating Optimization Algorithm

Algorithm Bumble Bees Mating Optimization Algorithm
Definition of parameters for the main phase of the algorithm

Definition of the maximum number of iterations
Definition of the maximum number of matings
Definition of the maximum number of queens

Initialization Phase
Generate the initial population of the bumble bees
Calculation of the fitness function of each bumble bee
Selection of the bee with the best fitness function as the queen
Selection of the rest bees as the drones
Sorting the drones according to their fitness’ functions
Selection of the drones for mating by the queen
Storing the drones’ genotype to queen’s spermatheca

Main Phase
do while the maximum number of iterations has not been reached

Creation of the broods by using a crossover operator
Calculation of the fitness function of each brood
Sorting the broods according to their fitness’ functions
Selection of the best broods as the new queens
Selection of the rest broods as the workers
Feeding of the new queens by the old queens and the workers
Creation of a percentage of the drones by mutating of the old queens’ genotypes
Creation of the rest of the drones by mutating of the workers’ genotypes
Calculation of the fitness function of each drone
Calculation of the moving direction of the drones away from the hive
Sorting the drones according to their fitness’ functions
do while the maximum number of matings for each new queen has not been reached

Selection of the drones for mating by each new queen
Storing the drones’ genotypes to each new queen’s spermatheca

enddo
Survival of the new queens for the next iteration
Dying of all the other members (workers and drones) of the population

enddo
return The best queen (best solution found)

a mutation operator to produce new solutions we have the possibility to obtain
completely different solutions.

• In the BBMO the drones are moving away of the hive and this affects their
solutions.

• The feeding procedure in the BBMO is as described previously using the Equa-
tion (2) while in the HBMO the feeding procedure is local search phases that are
applied independently in each brood.

A BBMO Algorithm for Global Unconstrained Optimization Problems 311

3 Test Functions

In this paper, four functions are used in order to show the effectiveness of the pro-
posed BBMO algorithm when used for global unconstrained optimization prob-
lems. The test functions used are the Rosenbrock, the Sphere, the Rastrigin and
the Griewank. The Rosenbrock function is given by:

f (x) =
n−1

∑
i=1

(100(xi+1− x2
i)

2 +(xi−1)2) (4)

The Sphere function is given by:

f (x) =
n

∑
i=1

x2
i (5)

The Rastrigin function is given by:

f (x) =
n

∑
i=1

(x2
i −10cos(2πxi)+ 10) (6)

The Griewank function is given by:

f (x) =
n

∑
i=1

(xi−100)2

4000
−

n

∏
i=1

cos(
xi−100
√

(i)
)+ 1 (7)

In functions Sphere, Rastrigin and Griewank the global minima is f (x∗) = 0 with
x∗ = (0, · · · ,0), and in Rosenbrock the global minima is f (x∗) = 0 with x∗ =
(1, · · · ,1).

4 Results

The algorithm was implemented in Fortran 90 and was compiled using the La-
hey f95 compiler on a Centrino Mobile Intel Pentium M750 at 1.86GHz, running
Suse Linux 9.1. The parameter settings for the Bumble Bees Mating Optimization
algorithm were selected after thorough empirical testing. A number of different al-
ternative values were tested and the ones selected are those that gave the best com-
putational results. Thus, the selected parameters are: The number of the total bees
(workers - males - queens) is set equal to 100, the number of generations is set equal
to 10000. Usually the total number of bees is divided in 5 queens, 45 workers and
50 males but as it is presented in Table 2 the algorithm is tested and for different
number of queens. The lsimax is set equal to 100, the bmax is set equal to 0.99, the
bmin is set equal to 0.001 and the α is set equal to 0.8. All the algorithms used in the
comparisons are population based algorithms and, thus, in order to have fair com-
parisons we test the algorithms using the same number of individuals (or particles

312 Y. Marinakis, M. Marinaki, and N. Matsatsinis

for the PSO or bees for the Honey Bees Mating Optimization) and generations (or
iterations). Thus, we have the same function evaluations.

In Table 2, the performance of the proposed Bumble Bees Mating Optimization
algorithm in Rosenbrock function is presented. In this Table, the final cost of the
Rosenbrock for six different variables (n = 2,4,8,10,20,50) is presented. The ef-
fectiveness of the proposed algorithm is given using different number of queens,
namely, q = 1,2,5,10,20. As it can be observed in all cases the proposed algorithm
finds the optimum when the number of variables is less or equal to 10. When the
number of variables becomes equal to 20, the optimum is found with the use of 5
or 10 queens. The algorithm did not find a solution near to the optimum only in
the case when we use 50 variables. The combination of parameters that gave the
best results is when 5 queens are used and, thus, in all other Tables that are pre-
sented in this section, the algorithm uses 5 queens. After the selection of the final
parameters, 50 different runs with the selected parameters were performed for each
of the problems. The results presented in Tables are the best results found for each
problem.

Table 2 Results of Bumble Bees Mating Optimization algorithm for the Rosenbrock

n
Queens 2 4 8 10 20 50

1 0.00 0.00 0.00 0.00 1.28E-09 31.69
2 0.00 0.00 0.00 0.00 1.93E-09 75.85
5 0.00 0.00 0.00 0.00 0.00 24.37

10 0.00 0.00 0.00 0.00 0.00 76.63
20 0.00 0.00 0.00 0.00 2.31E-09 77.94

We, also, tested the algorithm using 100000 iterations. In Table 3, the results
of all the functions used are presented. As it can be observed for all test functions
when the number of variables is less or equal to 20, the proposed algorithm finds the
optimum. When the number of variables is equal to 50 the proposed algorithm finds
the optimum in Sphere and Griewank test functions. For the Rastrigin function if
the number of iterations is equal to 10000 the solution is close to the optimum and
is equal to 1.59E-08, while when the number of iterations becomes equal to 100000
the optimum is found. Only in the case of the Rosenbrock function for n = 50 the
optimum was not found but the increase of iterations to 100000 leads the algorithm
to find a better solution near to the optimum.

A comparison with other population based metaheuristic approaches for the solu-
tion of the same test functions is presented in Tables 4 and 5. In these Tables, besides
the proposed algorithm, five other algorithms are used for the solution of the four
test functions. The algorithms are a Honey Bees Mating Optimization algorithm,
a Genetic Algorithm, an Island Genetic Algorithm [9], a Differential Evolution al-
gorithm and a Particle Swarm Optimization algorithm. In all algorithms, we used

A BBMO Algorithm for Global Unconstrained Optimization Problems 313

Table 3 Results of Bumble Bees Mating Optimization algorithm for the four functions

n
Function Iterations 2 4 8 10 20 50

Rosenbrock 10000 0.00 0.00 0.00 0.00 0.00 24.37
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 1.59E-08
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

Rosenbrock 100000 0.00 0.00 0.00 0.00 0.00 1.62E-02
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 0.00
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

the same parameters as in the previous comparisons, the same number of individ-
uals (or particles for the PSO or bees for the HBMO) and two different number of
generations (or iterations in PSO), namely 10000 (Table 4) and 100000 (Table 5).
As all these algorithms have a number of different variants we use in the compar-
isons the variant that worked better for global unconstrained optimization problems.
Thus, the selected variants for the final comparisons are, for the Differential Evolu-
tion the rand/1/bin, where "rand" corresponds to the target vector (a random target
vector), "1" corresponds to the number of different vectors and "bin" corresponds to
the crossover operator (for more details for the notation in differential evolution al-
gorithms please see [25]), for the PSO the Constriction PSO [5], for the Genetic Al-
gorithms the combination with Linear Crossover and Roulette Wheel Selection and
for the Island Genetic Algorithms, the combination with Linear Crossover, Tourna-
ment selection, ten different islands and migration of the best individuals after 100
generations.

As it can be observed the proposed BBMO algorithm performs better compared
to the other population based metaheuristic algorithms used in the comparisons. The
BBMO algorithm performed better than the HBMO as the performance of HBMO
algorithm was, in general, very good but HBMO found the optimum in less cases
than the BBMO. For n=2, independently of the number of iterations, the HBMO
algorithm found the optimum, for n=4, 8, 10, the optimum was not found in all
cases but values near to the optimum were found (these values were even closer
to the optimum or became equal to the optimum when the number of iterations
was equal to 100000), for n=20, 50 the results of HBMO were less efficient than
the cases where a smaller number of variables was used for all test functions but
also in these cases an increase in the performance of HBMO was observed when
100000 iterations were used. It should be noted that for the case of n=50, the results
of the BBMO are much better than the ones of the HBMO. The BBMO algorithm
performed better than the GA as the GA found the optimum in less cases than the
BBMO. In the cases where the optimum was not found by the GA, values near
to the optimum were found and these values were improved when the number of
iterations was equal to 100000. When the number of variables was equal to 50,

314 Y. Marinakis, M. Marinaki, and N. Matsatsinis

Table 4 Comparisons of the BBMO algorithm with other metaheuristics for the four func-
tions (10000 iterations)

n
Function Iterations 2 4 8 10 20 50

BBMO Rosenbrock 10000 0.00 0.00 0.00 0.00 0.00 24.37
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 1.59E-08
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

HBMO Rosenbrock 0.00 1.32E-05 8.35E-03 5.90E-02 6.38 46.07
Sphere 0.00 0.00 0.00 0.00 1.39E-07 0.67

Rastrigin 0.00 0.00 0.00 1.58E-09 3.93E-05 4.03
Griewank 0.00 0.00 0.00 0.00 0.00 1.44E-02

GA Rosenbrock 0.00 0.00 1.30 0.90 5.28 26.85
Sphere 0.00 0.00 6.75E-08 7.31E-08 1.10E-06 9.83E-06

Rastrigin 0.00 2.32E-07 1.33E-05 2.05E-05 2.31E-04 2.53E-03
Griewank 0.00 0.00 0.00 0.00 4.77E-07 5.90E-06

IGA Rosenbrock 3.21E-08 8.67E-02 4.52 16.87 74.79 461.52
Sphere 0.00 1.02E-03 0.12 0.29 0.81 7.51

Rastrigin 1.50E-08 0.26 7.43 14.19 58.76 287.68
Griewank 0.00 5.13E-04 6.06E-02 0.13 0.36 0.98

DE Rosenbrock 0.00 0.00 0.00 0.00 0.00 0.00
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 1.99 18.22
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

PSO Rosenbrock 0.00 0.00 4.97E-06 3.92E-09 5.62E-08 71.31
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 1.99 1.99 6.97 34.85
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

the GA’s results were inferior than the ones obtained by the GA for all the other
cases. The improvement achieved to these results when the number of iterations
was increased was not so significant as the one performed by the BBMO for the
corresponding case. The BBMO algorithm performed better than the IGA as the
IGA found the optimum in less cases than the BBMO. The IGA did not find the
optimum for all test functions even when the number of variables was equal to 2. The
values found by IGA were in some cases far from the optimum. However, a small
improvement in the results of IGA was performed when the number of iterations
was equal to 100000 but still in some cases the values found were far from the
optimum. The BBMO algorithm performed slightly better than the DE. The DE
gave the optimum in most of the cases, only for Rastrigin test function and for n=20
and n=50 the optimum was not found. However, when the number of iterations was
increased, these values were not improved, contrary to BBMO algorithm where an
increase to the number of iterations always led to an improvement of the solution.
The BBMO algorithm performed better than the PSO algorithm. The PSO algorithm

A BBMO Algorithm for Global Unconstrained Optimization Problems 315

Table 5 Comparisons of the BBMO algorithm with other metaheuristics for the four func-
tions (100000 iterations)

n
Function Iterations 2 4 8 10 20 50

BBMO Rosenbrock 100000 0.00 0.00 0.00 0.00 0.00 1.62E-02
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 0.00 0.00
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

HBMO Rosenbrock 0.00 5.34E-07 7.56E-03 4.80E-02 6.38 41.00
Sphere 0.00 0.00 0.00 0.00 0.00 5.59E-02

Rastrigin 0.00 0.00 0.00 0.00 2.02E-06 3.00
Griewank 0.00 0.00 0.00 0.00 0.00 4.66E-03

GA Rosenbrock 0.00 0.00 6.69E-02 8.50E-02 0.24 18.35
Sphere 0.00 0.00 0.00 0.00 4.14E-09 7.98E-08

Rastrigin 0.00 6.87E-09 4.47E-08 4.11E-08 7.76E-07 1.65E-05
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

IGA Rosenbrock 0.00 1.47E-02 3.27 9.12 70.95 418.67
Sphere 0.00 2.61E-04 5.53E-02 0.16 0.81 7.07

Rastrigin 0.00 7.20E-02 3.38 9.04 49.70 260.71
Griewank 0.00 1.06E-04 2.74E-02 8.01E-02 0.34 0.97

DE Rosenbrock 0.00 0.00 0.00 0.00 0.00 0.00
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 0.00 0.00 1.99 18.22
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

PSO Rosenbrock 0.00 0.00 0.00 0.00 0.00 0.11
Sphere 0.00 0.00 0.00 0.00 0.00 0.00

Rastrigin 0.00 0.00 1.99 1.99 6.97 34.85
Griewank 0.00 0.00 0.00 0.00 0.00 0.00

performed efficiently but in some cases did not find the optimum and the increase in
the number of iterations did not manage to improve the results of PSO in all cases,
as for example for the Rastrigin test function for n=8, 10, 20, 50 the results were not
improved at all.

A statistical analysis based on the Mann-Whitney U-test is presented in Table 6.
In this Table, a value equal to 1 indicates a rejection of the null hypothesis at the
5% significance level, which means that the proposed method is statistically sig-
nificant different from the other methods. On the other hand, a value equal to 0
indicates a failure to reject the null hypothesis at the 5% significance level, mean-
ing that no statistical significant difference exists between the two methods. As it
can be seen from this Table, the proposed method is statistically significant different
from HBMO, GA, IGA and PSO in 10000 iterations, while in 100000 iterations the
proposed method is statistically significant different from HBMO, GA and IGA.

316 Y. Marinakis, M. Marinaki, and N. Matsatsinis

Table 6 Results of Mann - Whitney test

10000 iterations
BBMO HBMO GA IGA DE PSO

BBMO - 1 1 1 0 1
HBMO 1 - 0 1 1 0

GA 1 0 - 1 1 0
IGA 1 1 1 - 1 1
DE 0 1 1 1 - 1

PSO 1 0 0 1 1 -
100000 iterations

BBMO HBMO GA IGA DE PSO
BBMO - 1 1 1 0 0
HBMO 1 - 0 1 1 0

GA 1 0 - 1 1 0
IGA 1 1 1 - 1 1
DE 0 1 1 1 - 0

PSO 0 0 0 1 0 -

5 Conclusions

In this paper, an algorithm based on the mating behavior of the bumble bees, the
Bumble Bees Mating Optimization algorithm, was proposed for the solution of
global unconstrained optimization problems. This algorithm was analytically pre-
sented and tested using four test functions, the Rosenbrock, the Sphere, the Rastrigin
and the Griewank. The results of the algorithm were compared with the results of
other popular metaheuristic and nature inspired methods, like Genetic Algorithms,
Island Genetic Algorithms, Differential Evolution, Particle Swarm Optimization and
the Honey Bees Mating Optimization algorithm. The results obtained showed the ef-
ficiency of the proposed algorithm and its high performance compared to the other
metaheuristic algorithms.

References

[1] Abbass, H.A.: A monogenous MBO approach to satisfiability. In: International Confer-
ence on Computational Intelligence for Modelling, Control and Automation, CIMCA
2001, Las Vegas, NV, USA (2001)

[2] Abbass, H.A.: Marriage in honey-bee optimization (MBO): a haplometrosis polygy-
nous swarming approach. In: The Congress on Evolutionary Computation (CEC 2001),
Seoul, Korea, pp. 207–214 (May 2001)

[3] Afshar, A., Haddad, O.B., Marino, M.A., Adams, B.J.: Honey-bee mating optimiza-
tion (HBMO) algorithm for optimal reservoir operation. J. Franklin. Inst. 344, 452–462
(2007)

A BBMO Algorithm for Global Unconstrained Optimization Problems 317

[4] Baykasoglu, A., Ozbakir, L., Tapkan, P.: Artificial bee colony algorithm and its appli-
cation to generalized assignment problem. In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm
Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 113–144. I-Tech Ed-
ucation and Publishing (2007)

[5] Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a
multi-dimensional complex space. IEEE T. Evolut. Comput. 6, 58–73 (2002)

[6] Dasgupta, D. (ed.): Artificial immune systems and their application. Springer, Heidel-
berg (1998)

[7] Dorigo, M., Stützle, T.: Ant colony optimization. A Bradford Book. The MIT Press,
Cambridge (2004)

[8] Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum
weighted satisfiability problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.)
IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

[9] Engelbrecht, A.P.: Computational intelligence: An introduction, 2nd edn. John Wiley
and Sons, England (2007)

[10] Fathian, M., Amiri, B., Maroosi, A.: Application of honey bee mating optimization
algorithm on clustering. Appl. Math. Comput. 190, 1502–1513 (2007)

[11] Haddad, O.B., Afshar, A., Marino, M.A.: Honey-bees mating optimization (HBMO)
algorithm: A new heuristic approach for water resources optimization. Water Resour.
Manag. 20, 661–680 (2006)

[12] Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor (1975)

[13] Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algo-
rithm. Appl. Soft Comput. 8, 687–697 (2008)

[14] Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE International Conference
on Neural Networks 4, 1942–1948 (1995)

[15] Marinaki, M., Marinakis, Y., Zopounidis, C.: Honey bees mating optimization al-
gorithm for financial classification problems. Appl. Soft Comput. (2009), doi:
10.1016/j.asoc.2009.09.010

[16] Marinakis, Y., Marinaki, M.: ŞA hybrid honey bees mating optimization algorithm for
the probabilistic traveling salesman problem. In: IEEE Congress on Evolutionary Com-
putation (CEC 2009), Trondheim, Norway (2009)

[17] Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm
for the vehicle routing problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D.
(eds.) Nature inspired cooperative strategies for optimization - NICSO 2007. Studies in
Computational Intelligence, vol. 129, pp. 139–148. Springer, Berlin (2008)

[18] Marinakis, Y., Marinaki, M., Matsatsinis, N.: A hybrid clustering algorithm based on
Honey Bees Mating Optimization and Greedy Randomized Adaptive Search Procedure.
In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS, vol. 5313, pp.
138–152. Springer, Heidelberg (2008)

[19] Marinakis, Y., Marinaki, M., Matsatsinis, N.: Honey bees mating optimization for the
location routing problem. In: IEEE International Engineering Management Conference
(IEMC – Europe 2008), Estoril, Portugal (2008)

[20] Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm
for large scale vehicle routing problems. Nat. Comput. (2009), doi: 10.1007/s11047-
009-9136-x

318 Y. Marinakis, M. Marinaki, and N. Matsatsinis

[21] Marinakis, Y., Marinaki, M., Matsatsinis, N.: A hybrid bumble bees mating optimiza-
tion – GRASP algorithm for clusterin. In: Corchado, E., Wu, X., Oja, E., Herrero, Á.,
Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 549–556. Springer, Heidelberg
(2009)

[22] Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algo-
rithm - A novel tool for complex optimization problems. In: IPROMS 2006 Proceeding
2nd International Virtual Conference on Intelligent Production Machines and Systems,
Oxford. Elsevier, Amsterdam (2006)

[23] Teo, J., Abbass, H.A.: A true annealing approach to the marriage in honey bees opti-
mization algorithm. Int. J. Comput. Intell. Appl. 3(2), 199–211 (2003)

[24] Teodorovic, D., Dell’Orco, M.: Bee colony optimization - A cooperative learning ap-
proach to complex transportation problems. Advanced OR and AI Methods in Trans-
portation. In: Proceedings of the 16th Mini - EURO Conference and 10th Meeting of
EWGT, pp. 51–60 (2005)

[25] Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

[26] Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: An efficient fault-tolerant routing al-
gorithm inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C., Gam-
bardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94.
Springer, Heidelberg (2004)

[27] Yang, X.S.: Engineering optimizations via nature-inspired virtual bee algorithms. In:
Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer,
Heidelberg (2005)

[28] http://www.bumblebee.org
[29] http://www.everythingabout.net/articles/biology/animals/

arthropods/insects/bees/bumble_bee
[30] http://bumbleboosters.unl.edu/biology.shtml
[31] http://www.colostate.edu/Depts/Entomology/courses/en570/

papers_1998/walter.htm

http://www.bumblebee.org
http://www.everythingabout.net/articles/biology/animals/arthropods/insects/bees/bumble_bee
http://www.everythingabout.net/articles/biology/animals/arthropods/insects/bees/bumble_bee
http://bumbleboosters.unl.edu/biology.shtml
http://www.colostate.edu/Depts/Entomology/courses/en570/papers_1998/walter.htm
http://www.colostate.edu/Depts/Entomology/courses/en570/papers_1998/walter.htm

A Neural-Endocrine Architecture for Foraging
in Swarm Robotic Systems

Jon Timmis, Lachlan Murray, and Mark Neal

Abstract. This paper presents the novel use of the Neural-endocrine architecture
for swarm robotic systems. We make use of a number of behaviours to give rise
to emergent swarm behaviour to allow a swarm of robots to collaborate in the task
of foraging. Results show that the architecture is amenable to such a task, with the
swarm being able to successfully complete the required task.

1 Introduction

Swarm robotic systems have many potential uses, ranging from the cleanup of haz-
ardous waste or search and rescue operations at disaster sites that are often too
dangerous for humans to respond effectively to or areas that need large coverage
for monitoring (such as the ocean) and are simply too large a task for a single robot
to cope. Good reviews of swarm robotics and associated issues can be found in [9]
and [5]. However, in order to develop such systems, the task of foraging is used
as a standard test arena for new approaches. Foraging is a popular task for mobile
autonomous robots, both individual robots and swarms have been shown to success-
fully complete various types of foraging problem. The basic principles of foraging
involve an agent collecting objects that are spread throughout the environment and
returning them to some specified location. The task is completed once all of the

Jon Timmis
Department of Electronics and Department of Computer Science, University of York,
Heslington, York. UK
e-mail: jtimmis@cs.york.ac.uk

Lachlan Murray
Department of Electronics, University of York, Heslington, York. UK
e-mail: ljm505@ohm.york.ac.uk

Mark Neal
Department of Computer Science, Aberystwyth University, Aberystwyth, Wales. UK
e-mail: mjn@aber.ac.uk

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 319–330, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

jtimmis@cs.york.ac.uk
ljm505@ohm.york.ac.uk
mjn@aber.ac.uk

320 J. Timmis, L. Murray, and M. Neal

objects in the environment have been collected. Part of our on-going work is the de-
velopment of a neural-endocrine architecture for deployment in ocean going robotic
systems, and the eventual construction of a swarm of ocean going vessels that would
be able to operate for prolonged periods of time.

This paper investigates and extends our previous work on a neural endocrine con-
trol architecture developed in [2, 3, 6, 7]. Until now its effectiveness at controlling a
collection of robots has not been investigated, though work on using two robots has
been undertaken in the context of task switching [8]. The addition of more robots
brings added complexity to the system, it is necessary that a multi-robot control
system not only encompasses the ability to control individual robots, but is also ca-
pable of appropriately handling the interactions with other robots. If we are to work
towards developing an ocean going version of such a system then the understanding
of the ability of our architecture to operate in a swarm of robots is essential. In order
to assess the effectiveness of the system it was necessary to design a task for the
robots performance to be measured on, the task chosen was a variant of foraging
and was one of the most complicated tasks that the neural endocrine control archi-
tecture has been applied to. Specifically, in this paper we: investigate whether the
neural endocrine control architecture is capable of controlling a multi-robot system;
investigate how effective the architecture is at controlling a multi-robot system and
investigate the capabilities of the architecture at a new and complex task.

2 Neural Endocrine Control Architecture

The neural endocrine control architecture of [2] is a combination of standard per-
ceptron artificial neural networks, with a novel artificial endocrine system that has
the ability to affect the weights of the neural networks, depending on external and
internal factors. Here we review the basic neural endocrine architecture, for a more
detailed description the reader is directed to [3, 6].

2.1 Artificial Endocrine Systems

The Artificial Endocrine System (AES) described here is based on the original de-
sign proposed by [2, 3] as well as subsequent modifications made by [6].

As is the case in the biological endocrine system, the two main components of
an AES are glands and hormones. Artificial glands (g) release artificial hormones
when they are stimulated. Stimulation can be caused by both the internal state of the
system and external stimuli. In [6] signal values Ai were obtained by summing sen-
sor inputs and similar gland activation values were calculated from the combination
of sensor values and the internal state of the robot. The stimulation of a gland (Rg)
as given by [6] is shown in equation 1 where αg is the stimulation rate, that is the
rate at which a hormone is released from a gland g.

Rg(t) = αg∑
i

Ai(t) (1)

A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems 321

Our previous work, unpublished, investigated a second method of stimulation that
also takes into account the current concentration of hormone cg(t) this is given by
equation 2. As can be seen in equation 2 the amount of hormone released in this
method is subject to a negative feedback mechanism, the reason for including this
is to prevent the system from becoming over saturated with a particular type of
hormone.

Rg(t) =
αg

1 + cg(t−1)∑i
Ai(t) (2)

Every hormone has an associated decay rate (βg) which takes a value from [0,1],
this means that without stimulation the concentration of a hormone will eventually
be reduced to an insignificant amount. The concentration of a particular hormone cg

at time t + 1 is given by equation 3.

cg(t + 1) = βgcg(t)+ Rg(t + 1) (3)

2.2 Neural Endocrine Systems

Artificial hormones can only affect artificial neurons. In line with the biological
endocrine system not all of the neurons in a system will be sensitive to all hormones,
the sensitivity of a neuron i to the hormone released by a particular gland g is given
by sig. The effect that hormones have on neurons can be calculated by equation
4 which takes into account the sensitivity of inputs to particular hormones and the
concentration of those hormones using an artificial endocrine system with ng glands.

u =
nx

∑
i=0

xi·wi

ng

∑
g=0

cg·sig (4)

The most common form of coordination between networks is a cooperative ap-
proach whereby the outputs of each network are simply summed together. The re-
sulting behaviour of a multi-network neural endocrine system is dependent on the
current hormone levels of the system. High levels of a particular hormone will affect
some networks more than others, giving these networks more or less influence over
the global result when the network outputs are summed together.

3 System Design

3.1 Behaviours

In this work, we make use of eleven different behaviours, the majority of which
can be categorised into the three different groups: taxes, reflexes and fixed-action

322 J. Timmis, L. Murray, and M. Neal

patterns (FAP). One of the behaviours, wander, can not easily be classified by type.
We also observe resultant emergent behaviours not programmed into the system.

Wander: A wander behaviour is necessary to ensure that robots keep exploring the
environment even if none of their other behaviours are currently being stimulated,
without a wander behaviour an unstimulated robot would just remain stationary. To
implement a wander behaviour we take into account the current hormone levels of
the system.

3.1.1 Reflexes

Reflexes are involuntary, spontaneous responses to stimuli, which last only as long
as the stimulus that initiates them. The foraging task of this work requires only a
single reflex behaviour. Because of their spontaneous and sporadic nature reflex be-
haviours do not require a neural endocrine control network, their response is simply
tied directly to their stimulus.

Signal bin: As robots will have no awareness of the location of the bin, in order
to improve their chances of finding it a signal bin behaviour is required, allowing
robots to communicate the approximate location of the bin to others. In this case,
robots signal that the bin is in their vicinity by the use of a light or beacon. The
strength of the response should always be the same, i.e. the brightness of the light
should not be effected by the closeness of the bin, it should either be on if the bin is
in-sight, or off otherwise.

3.1.2 Taxes

Taxes are behavioural responses that cause agents to move towards, or away from
certain stimuli. This work involves six taxes behaviours, two of which are repellent
and four of which are attractive. Taxes behaviours are well suited to control using
neural endocrine networks because both their inputs and outputs are continuous and
should vary according to the current state of the system, i.e. the hormone levels.
Robots have the capability of signalling via an LED, and observing that signal on
other robots.

Obstacle avoid: Prevents robots from crashing into the walls of the environment,
or obstacles within the environment. The response of an obstacle avoid behaviour
should be proportional to the distance between a robot and its nearest obstacle, such
that a robot responds more urgently to obstacles that are nearer. The inputs to the
network of an obstacle avoid behaviour come from a range finding sensor, for ex-
ample a sonar.

Separation: Prevents robots from crashing into each other. The stimuli of a sep-
aration behaviour, also the inputs to the behaviour’s network, are the locations of
other robots, these can be determine using a camera device. In a similar manner to
obstacle avoidance, the strength of a response should be proportional to the distance

A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems 323

between a robot and its neighbours, such that the closer a fellow robot is, the faster
the robot should retreat.

Cohesion: Attracts a robot its neighbours. As with separation, a cohesion behaviour
is useful in the development of emergent global behaviours. The strength of the
stimulus should have an effect on the strength of the response so that robots are less
attracted to neighbours that are closer, reducing the chance of collisions. The inputs
to a cohesion behaviour’s network are similar to those of a separation behaviour and
come from the positions of their neighbours via a camera device.

Seek rubbish: Robots should be stimulated by the presence of a piece of rubbish,
which can be detected using a camera. Robots should be attracted to the location
of the rubbish with a strength of response that is relative to the how far away the
rubbish is, the further away, the stronger the attraction.

Seek power: Robots should be attracted to charging stations. Inputs are provided
in the same manner as the seek rubbish behaviour, using a camera device, and the
strength of the response is once again relative to the distance of the stimulus.

Seek bin: A seek bin behaviour is very similar to both the seek power and seek
rubbish behaviours, however in this case robots should be attracted to the bin. The
stimulus is the presence of the bin, and the strength of response is relative to the
distance between the robot and the bin.

3.1.3 Fixed-Action-Patterns

Fixed Action Patterns (FAP) are behaviours that continue even if the stimulus that
triggered them is not present, usually they run uninterrupted until completion. Their
response is always identical and so they are not suitable for control using neural
endocrine networks, like reflexes they can be implemented by directly tying stimulus
to response.

Pickup rubbish: A pickup rubbish behaviour should be stimulated when a robot is
close enough to a piece of rubbish and is not already carrying some. The behaviour
should involve the robot moving towards the piece of rubbish and either successfully
or unsuccessfully picking it up, both of which should result in the end of the pattern,
however if the pickup is unsuccessful it is possible that the behaviour will be re-
stimulated immediately.

Drop Rubbish: If a robot is carrying a piece of rubbish and is close enough to
the bin, the drop rubbish pattern should be stimulated. The pattern starts with the
robot approaching the bin and continues until the robot has either successfully or
unsuccessfully dropped the rubbish into the bin.

Recharge: A recharge behaviour should be stimulated when a robot is close enough
to a charging station and its internal state dictates that it needs to recharge. The
behaviour should begin with the robot moving towards the charging station and
attempting to dock with it, if the robot fails to dock, the pattern should end, if the
robot successfully docks the pattern should continue until the robot is fully charged.

324 J. Timmis, L. Murray, and M. Neal

3.2 Neural-Endocrine Design

In section 2, it was noted that not every hormone in a system must affect every
neuron. In all previous work the approach has been to make all the neurons of a
single network sensitive to the same hormones, for example in a system with two
hormones ha and hb and two networks Na and Nb, a possible configuration would be
that all the neurons of Na are sensitive to ha and all the neurons of Nb are sensitive
to hb, this is shown in figure 1. The alternative is to make different neurons of the
same network sensitive to different hormones, for example in a system with two
hormones ha and hb and a single network of seven nodes {n1,n2, ...,n7}, nodes n1 –
n4 might be sensitive to ha and nodes n5 – n7 might be sensitive to hb, this is shown
in figure 2. Since each network in a system corresponds to a single behaviour, it
seems sensible that, as is the case in the previous approach, each network should be
affected by the same hormones. For simplicity, here each network is only associated
with a single gland-hormone pair. The sensitivity of a neuron i to a particular gland
g is denoted sig, in theory sig can take any value, however in this work sig only takes
the value 1 or 0, representing full or no sensitivity of i to g.

Fig. 1 Two networks, the neurons of which are all sensitive to the same hormone

Fig. 2 A single network with different neurons sensitive to different hormones

Having decided that all neurons in a network will be sensitive to the same hor-
mones, that each network will only respond to one hormone and that sensitivity is
only ever 1 or 0 it is possible to refine equation 4 from section 2. Removing the sen-
sitivity and multiplicity of 4 leaves 5 where cg is the concentration of the network’s

A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems 325

only associated hormone. For simplicity, here each network is only associated with
a single gland-hormone pair.

u =
nx

∑
i=0

xi·wi·cg (5)

The activation of a gland can be calculated from a combination of both internal
and external properties of the system. Each gland is associated with a single acti-
vation parameter which changes over time according to a dedicated function and is
represented here as ag. The stimulation of a gland, as was seen in section 2 can be
calculated in one of two ways. Early implementations had shown success with using
a negative feedback mechanism, we therefore adopted that approach in this work.
The stimulation of a gland is calculated using 6, which is a slightly adjusted version
of 2 in order to take into account the new representation of activation.

Rg(t) =
αg ·ag(t)

1 + cg(t−1)
(6)

The final consideration with ANN-AES integration, is what values of stimulation
(αg) and decay (βg) rate are used by the networks. The stimulation rate helps de-
termine the amount of hormone released by a gland at a particular time-step and
the decay rate determines how long the hormone remains in the system, hence they
both have a big influence on the behavioural response. Values of αg and βg can
vary widely between different networks. These values were chosen experimentally,
however an automated learning process could be adopted.

3.2.1 Network Size and Weights

ANNs can be defined by four properties: the number of hidden layers, the number
of nodes in each of the hidden layers, the number of nodes in the input layer and
the number of nodes in the output layer. For more information on neural networks,
the reader is directed to [1]. The number of nodes in the input layer of a network
are determined by the number of sensor values needed to define the stimulus of that
behaviour, for example in the case of obstacle avoidance which is stimulated by the
presence of nearby objects, the number of sonar devices (two in this piece of work)
determines the number of input nodes. The number of output nodes is determined
by the actuator that the response affects, in most cases, where the response affects
the locomotion of the robot, it is the number of inputs to the motors that decides the
number of output nodes (which again in this study is two).

The number of hidden layers and the number of hidden layer nodes is less depen-
dent on the behaviour, and puts more pressure on the designer to choose sensible
values. It was known from our previous work that the networks required would be
relatively simple, consequently we only include one hidden layer.

With regards to setting the weights, we used a combination of determining the
weights by hand and back-propogation [1].

326 J. Timmis, L. Murray, and M. Neal

3.2.2 Coordination of Different Behaviour Types

Behaviours that are encapsulated as neural endocrine networks are coordinated by
summing their outputs. We have not discussed how these behaviours are coordinated
with the other types of behaviour, such as the fixed-action-patterns and reflexes. The
signal bin behaviour is a reflex, it does not affect anything other than the state of the
robot’s beacon and so it does not need to be coordinated with the other behaviours. In
terms of the FAPs, when stimulated, these will always take complete control of the
robot’s motors, inhibiting any of the suggested commands from the other behaviours.
It is very rare for conflicts to arise between different FAPs since it is never the case
that a robot will want to both drop and pickup rubbish at the same time and because
the bin and charging posts are positioned far apart (in the experiments carried out in
this work) there will never be a conflict between wanting to charge and wanting to
drop rubbish. However, we recognise that this is an avenue for further exploration.

3.2.3 Environments

In order to test the adaptability of the system it was necessary to test the performance
of the robots in two different environments. Both of the environments were designed
with the capabilities of the robots in mind, for example, it was known that because
the robots had only two sonar sensors, both of which were located at the front,
they would struggle to find their way out of concave obstacles with small internal
angles. When faced with concave obstacles robots can be indecisive about which
way to turn and in the end may either end up stalling or crashing into the obstacle.
Another deficiency caused by the poor sonar coverage is that if an obstacle is too
small (smaller than the width of the robot) when a robot approaches it head on, its
sonar devices will not recognise it and the robot will crash. Due to these problems,
both of the environments were designed to contain no concave obstacles (with small
internal angles) and no obstacles smaller than the width of a robot.

Fig. 3 Environment used for experiments

A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems 327

The first environment, referred to as world 1, can be seen in figure 3, it contains
a single bin, shown by the large square; three charging stations, represented by the
circles; and twenty pieces of rubbish, depicted as very small squares, the robots are
the squares located by the bin. The world was made deliberately challenging by
placing the bin in the centre of the environment and surrounding it with obstacles.
The reason for placing the bin in a difficult position, was the expectation that to
reach it, robots would fair better if they cooperated with each other, for example by
signalling and flocking. A second world was used, but space restricts the inclusion
of those results.

4 Experiments

All experiments were carried out in the Player/Stage environment [4], running on
Linux. We simulated Pioneer mobile robots, containing sonars, a camera, a gripper
and a beacon. All code is available on request. The variant of foraging that was
chosen for this project is known as rubbish or garbage collection. The task of rubbish
collection used here involves a group of robots collecting pieces of rubbish that are
randomly distributed throughout the environment and returning them to a bin. In
order to make the task slightly more complex and to model the real world closer
robots are required to monitor their power levels and when they are running low
find a charging station at which to recharge.

4.1 Results for Neuro-endocrine Swarms

The success of the system is measured in terms of the amount of rubbish that was
collected. Graphs are presented to show how the success of the system changed as
the number of robots was varied. The total amount of rubbish collected by the group
as a whole, as well as the number of pieces collected per robot are analysed.

4.2 Results

Figures 4(a) and 4(b) show the success of the robots after periods of 300 and 1200
seconds respectively. Each boxplot shows the results of ten different runs with ten
different starting positions for the rubbish. Both the graphs show a strong positive
correlation between the number of robots and the number of pieces of rubbish col-
lected, until the case where five robots were used, at which the performance starts
to level out and even drops in figure 4(b). The levelling out is expected in 4(b) since
the maximum number of pieces that can be collected is twenty, but the fact that it is
observed in 4(a) and that the performance drops in 4(b) indicates that interference
starts to have an effect after five robots. The case with five robots also had the small-
est interquartile range showing that five robots not only performed the best, but did
so consistently.

328 J. Timmis, L. Murray, and M. Neal

The first outlier in 4(b), where the number of robots was three and the number
of pieces picked up was six, was caused by one robot crashing, and the other robots
crashing into the obstruction formed by the other robots, which emphasises the im-
portance of redundancy in multi-robot systems. The outlier where the number of
robots was five and the number of pieces collected was sixteen can be attributed, at
least partly, to the simulator and the way the bin is represented. Since robots cannot
see the inside of the bin from the outside, there is always the danger that collisions
can occur as one robot travels into and one robot travels out of the bin, this is what
happened in case of this outlier, two robots crashed whilst entering and leaving the
bin which meant that when other robots came to drop rubbish there was a pileup
effect. Only one other crash at the bin was observed in the seventy experiments of
world 1, again for an experiment involving five robots however in this case it did
not involve all of the robots and two were able to continue functioning, resulting in
nineteen pieces being collected.

1 2 3 4 5 6 7

2

4

6

8

10

12

14

16

18

P
ie

ce
s

of
 r

ub
bi

sh
 c

ol
le

ct
ed

 a
fte

r
30

0
se

co
nd

s

Number of robots

(a)

1 2 3 4 5 6 7

6

8

10

12

14

16

18

20

P
ie

ce
s

of
 r

ub
bi

sh
 c

ol
le

ct
ed

 a
fte

r
12

00
 s

ec
on

ds

Number of robots

(b)

Fig. 4 Graphs showing the number of pieces of rubbish collected over periods of 300 (a) and
1200 (b) seconds, with varying numbers of robots between one and seven: World 1

Figure 5 shows the number of pieces of rubbish collected per robot after 300
and 1200 seconds, as to be expected, in both graphs the number of pieces drops
as more robots are added. What is interesting about figure 5(b) is that the smallest
interquartile range is observed for the case where there were five robots, showing
that a group of five robots is most consistent on an individual level as well as a group
level as indicated by figure 4(b). The outliers in figure 5(b) relate to the same runs
as in figure 4(b).

What is interesting to note from the observation of the experimental runs are the
emergence of certain types of behaviour: specifically flocking of robots and disper-
sion of robots. Flocking emerges from the combination of obstacle avoidance, seek
bin, signal bin, separation and cohesion and dispersion emerges from the combina-
tion of obstacle avoidance and separation, simply stated it is the spreading out of

A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems 329

1 2 3 4 5 6 7

1

2

3

4

5

6

7

P
ie

ce
s

of
 r

ub
bi

sh
 c

ol
le

ct
ed

 p
er

 r
ob

ot
 a

fte
r

30
0

se
co

nd
s

Number of robots

(a)

1 2 3 4 5 6 7

2

4

6

8

10

12

14

P
ie

ce
s

of
 r

ub
bi

sh
 c

ol
le

ct
ed

 p
er

 r
ob

ot
 a

fte
r

12
00

 s
ec

on
ds

Number of robots

(b)

Fig. 5 Graphs showing the number of pieces of rubbish collected per robot over periods
of 300 (a) and 1200 (b) seconds, with varying numbers of robots between one and seven:
World 1

robots over the environment to ensure the greatest amount of coverage. Robots re-
charge when necessary, and collaborate together, through flocking etc. to remove as
much garbage as possible from the environment. We have not undertaken a compari-
son between other approaches as yet, this would be outside the scope of a conference
paper. However, we have investigated the efficiency and the effect of speed up on
the swarm (how does adding more swarm members effect the overall performance),
but have not room to report those results here. In summary, however, we have been
able to show that there is an optimal number of robots for each world to achieve the
best performance in garbage collection.

5 Conclusions

This work has adapted the neural-endocrine architecture for the development of
swarm robotic systems. An architecture has been proposed for the task of foraging
and has been showed to allow for good collection of garbage over two basic envi-
ronments. The work has also shown us that the simple neural-endocrine approach
can easily be used for the development of such swarm systems. We observe that
too many robots in the environment causes a potential problem (to be expected) for
the optimal collection of garbage. The work presented in this paper is also the most
complex task that the neural-endocrine approach has been used for to date. This
gives us confidence in our approach and further work will investigate the actual role
of each behaviour, and its importance to the overall performance of the system, and
developing neural-endocrine systems on an ocean-going platform.

Acknowledgements. This work is funded by EOARD, grant number FA-8655-07-3061.

330 J. Timmis, L. Murray, and M. Neal

References

[1] Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice-Hall, Englewood
Cliffs (1999)

[2] Neal, M., Timmis, J.: Timidity: A useful emotional mechanism for robot control? Infor-
matica 27(2), 197–204 (2003)

[3] Neal, M., Timmis, J.: Once more unto the breach: Towards artificial homeostasis? In:
Recent Developments in Biologically Inspired Computing, pp. 340–365. Idea Group,
USA (2005), http://www.cs.kent.ac.uk/pubs/2005/1948

[4] Player: The Player Project (2009) http://playerstage.sourceforge.net
(accessed: April 23, 2009)

[5] Şahin, E., Winfield, A.: Special issues on swarm robotics. Swarm Intelligence 2(2-4),
69–72 (2008)

[6] Timmis, J., Neal, M., Thorniley, J.: An adaptive neuro-endocrine system for robotic sys-
tems. In: IEEE Workshop on Robotic Intelligence in Informationally Structured Space.
Part of IEEE Workshops on Computational Intelligence, pp. 129–136 (2009)

[7] Vargas, P., Moioli, R., de Castro, L.N., Timmis, J., Neal, M., Von Zuben, F.: Artificial
homeostatic system: A novel approach. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J.,
Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 293–306.
Springer, Heidelberg (2005)

[8] Walker, J., Wilson, M.: A performance sensitive hormone-inspired system for task dis-
tribution amongst evolving robots. In: Proceedings of IEEE/RSJ 2008 International Con-
ference on Intelligent Robots and Systems (2008)

[9] Winfield, A.F., Nembrini, J.: Safety in numbers: Fault tolerance in robot swarms. Inter-
national Journal of Modelling, Identification and Control 1(1), 3–37 (2006)

http://www.cs.kent.ac.uk/pubs/2005/1948
http://playerstage.sourceforge.net

Using Entropy for Evaluating Swarm
Intelligence Algorithms

Gianluigi Folino and Agostino Forestiero

Abstract. In the last few years, the bio-inspired community has experienced a
growing interest in the field of Swarm Intelligence algorithms applied to real world
problems. In spite of the large number of algorithms using this approach, a few
methodologies exist for evaluating the properties of self-organizing and the effec-
tiveness in using these kinds of algorithm. This paper presents an entropy-based
model that can be used to evaluate self-organizing properties of Swarm Intelligence
algorithms and its application to SPARROW-SNN, an adaptive flocking algorithm
used for performing approximate clustering. Preliminary experiments, performed
on a synthetic and a real-world data set confirm the presence of self-organizing
characteristics differently from the classical flocking algorithm.

1 Introduction

Swarm Intelligence (SI) [1] is an innovative computational method for solving prob-
lems that originally took its inspiration from the biological examples provided by
social insects such as ants, termites, bees, etc. These systems are typically made
up of a population of simple agents interacting directly or indirectly (by acting on
their local environment) with each other. Indirect interaction, i.e. when an individual
modify the environment and the other responds to this change, is named stigmergy
[5]. This mechanism permits to reduce direct communication among agents, and
must be taken into account when designing artificial systems. In practice, an agent
deposits something in the environment that makes no direct contribution to the task
being undertaken, but is used to influence the subsequent behavior that is task re-
lated. Although there is normally no centralized control structure dictating how in-
dividual agents should behave, local interactions between such agents often lead
to the emergence of global behavior. Examples of systems like these can be found
in nature, including ant colonies, bird flocking, animal herding, bacteria molding

Gianluigi Folino · Agostino Forestiero
Institute for High Performance Computing and Networking (ICAR-CNR)
e-mail: {folino,forestiero}@icar.cnr.it

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 331–343, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{folino,forestiero}@icar.cnr.it

332 G. Folino and A. Forestiero

and fish schooling. The advantages of SI are twofold. Firstly, it offers intrinsically
distributed algorithms that can use parallel computation quite easily. Secondly, the
use of multiple agents supplies a high level of robustness, as the failure of a few
individuals does not alter too much the behavior of the overall system.

Clustering is the act of partitioning an unlabeled dataset into groups of similar
objects. Each group, called a cluster, consists of objects that are similar between
themselves and dissimilar to objects of other groups.

The SPARROW-SNN (Shared Nearest-Neighbor similarity), better described in
[4], couples an adaptive flocking algorithm with a shared nearest neighbor (SNN)
[3] cluster algorithm to discover clusters with differing sizes, shapes in noise and
high dimensional data.

In the last few years, innovative algorithms based on SI models [7] [8][10][2]
have been introduced to solve real world problems in a decentralized fashion (i.e.
the clustering problem, correlated to the SPARROW-SNN algorithm).

In spite of the large number of algorithms using this approach, a few method-
ologies exist for evaluating the properties of self-organizing and the effectiveness of
using these kinds of algorithm. In this work, a methodology based on the concept
of entropy inspired by the paper [11], is illustrated. The main principle stated in the
paper is that the key to reduce disorder in a multi-agent system and to achieve a
coherent global behavior is coupling that system to another in which disorder in-
creases. This corresponds to a macro-level where the order increases, i.e. a coherent
behavior arises, and a micro-level where an increase in disorder is the cause for this
coherent behavior at the macro-level.

Using this approach, the self organizing properties of SI algorithms can be exper-
imentally evaluated, considering macro and micro levels of entropy. The method is
applied to evaluate self-organizing properties of the SPARROW-SNN, the adaptive
flocking algorithm cited above. However, it can be easily applied to any type of SI
algorithm.

The rest of this paper is organized as follows: Section 2 presents the multi agent
adaptive flocking algorithm for searching interesting objects and shows how this
algorithm can be used as a basis for clustering spatial data, combining it with a local
merging strategy based on the SNN algorithm; Section 3 introduces a methodology
based on the concept of entropy useful to evaluate self-organizing properties of SI
based algorithms. Section 4 shows how entropy can be experimentally evaluated
and used to assess the goodness of the flocking algorithm.

Finally, section 5 draws some conclusions.

2 An Adaptive Flocking Algorithm

In this section, a multi-agent adaptive flocking algorithm is presented, which has
the advantage of being easily implementable on parallel and distributed machines
and is robust compared to the failure of individual agents. First, the rules govern-
ing the flock model originally introduced by Reynolds [13] are explained; then, the
modified behavioral rules of the swarm agents are illustrated. They add an adaptive

Using Entropy for Evaluating Swarm Intelligence Algorithms 333

behavior to the flock and make it more effective in searching points, which have
some desired properties in the space.

The flocking algorithm was proposed by Reynolds as a method for simulating
the flocking behavior of birds on a computer both for animation and as a way to
study emergent behavior. Flocking is an example of emergent collective behavior:
there is no leader, i.e., no global control. Flocking behavior emerges from the local
interactions. In the flock algorithm each agent has direct access to the geometric
description of the whole scene, but reacts only to flock mates within a certain small
radius. The basic flocking model consists of three kind of simple steering behavior:

Separation gives an agent the ability to maintain a certain distance from others
nearby. This prevents agents from crowding too closely together, allowing them to
scan a wider area.

Cohesion supplies an agent with the ability to cohere (approach and form a
group) with other nearby agents. Steering for cohesion can be computed by find-
ing all agents in the local neighborhood and computing the average position of the
nearby agents. The steering force is then applied in the direction of that average
position.

Alignment gives an agent the ability to align with other nearby characters. Steer-
ing for alignment can be computed by finding all agents in the local neighborhood
and averaging together the ’heading’ vectors of the nearby agents.

Our flocking algorithm extends Reynolds’s rules and is inspired by a work pre-
sented by Macgill [9], first introducing colored agents.

The algorithm starts with a fixed number of agents that occupy a randomly gener-
ated position in the search space. Each agent moves around the spatial data, testing
the neighborhood of each location in order to verify whether a point can have some
desired properties. Each agent follows the rules of movement described in Reynolds’
model. In addition, this model considers four different kinds of agents, classified on
the basis of some properties of data in their neighborhood. Different agents are char-
acterized by a different color: red, revealing interesting patterns in the data, green, a
medium one, yellow, a low one, and white, indicating a total absence of patterns.

The main idea behind this approach is to take advantage of the colored agent
in order to explore more accurately the most interesting regions (signaled by the
red agents) and avoid the ones without interesting properties (signaled by the white
agents). Red and white agents stop moving in order to signal this type of region to
the others, while green and yellow ones fly to find denser zones. Indeed, each flying
agent computes its heading by taking the weighted average of alignment, separation
and cohesion (as illustrated in figure 1).

The following are the main features which make this model different from
Reynolds’ model:

• Alignment and cohesion do not consider yellow agents, since they move in a not
very attractive zone.

• Cohesion is the resultant of heading towards the average position of the green
flockmates (centroid), of the attraction towards reds, and of the repulsion from
whites, as illustrated in figure 1.

• A separation distance is maintained from all the agents, apart from their color.

334 G. Folino and A. Forestiero

Fig. 1 Computing the direction of a green agent

2.1 Formal Description of the Flock

Consider the search space, in which the swarm moves, having dimension d. Let
N be the number of birds and B be the set of all the birds {B1,B2, . . . ,BN}. Each
bird Bk can be represented by three d-dimensional vectors: its position in this space
Posk : (x1

k ,x
2
k , . . . ,x

d
k), its direction Dirk : (dir1

k ,dir2
k , . . . ,dird

k), where diri
k repre-

sents the component along the axis i of the direction of the bird and the color
Colk ∈ {white,yellow,green,red}, indicating the type of bird. We used as distance
between two birds Ba and Bb, the euclidean distance between their respective posi-

tions: dist(Ba,Bb) =
√

∑d
i=1(xi

a− xi
b)

2.
We define as dist_max and dist_min respectively the radius indicating the

limited sight of the birds and the minimum distance that must be maintained
among them. Neigh(Bk) denotes the neighborhood of a bird Bk, i.e. the set {Bα ∈
B | dist(Bk,Bα) ≤ dist_max}, that is the set of the birds visible from the bird
Bk. Furthermore, we define as Neigh(col,Bk) the set {Bα ∈ B | dist(Bk,Bα) ≤
dist_max,Colα = col}, that is the set of the birds, having color col, visible from
the bird Bk.

Each bird moves with speed v, depending on the color of the agents (green agents’
speed is slower, because they are exploring interesting zones). Then, for each itera-
tion t, the new position of a bird Bk can be computed as:

∀i = 1 . . .d xi
k(t + 1) = xi

k(t)+ v×diri
k (1)

Note also that for each iteration the new direction of the agent k is obtained summing
the three components of alignment, separation and cohesion:

diri
k = dir_ali

k−dir_sepi
k + dir_coi

k. (2)

Considering as dir(Ba,Bb) the normalized direction of the vector between a bird Ba

and a bird Bb, these components can be computed using the following formulas (3,
4 and 5):

Using Entropy for Evaluating Swarm Intelligence Algorithms 335

dir_ali
k =

1
|Neigh(green,Bk)| · ∑

Bα∈Neigh(green,Bk)
diri

α (3)

and considering centr(green,Bk) as the position of the centroid of the green agents
in the neighborhood of k with generic coordinate i:

1
|Neigh(green,Bk)| ·∑Bα∈Neigh(green,Bk) xi

α , then:

dir_coi
k = dir(centr(green,Bk),Bk)i + attr_red− rep_white (4)

where attr_red is equals to:

∑
Bα∈Neigh(red,Bk)

dir(Bα ,Bk)i

and rep_white is equals to:

∑
Bα∈Neigh(white,Bk)

dir(Bα ,Bk)i

i.e the sum of the attraction towards the centroid, of the attraction towards the red
birds and of the repulsion from the white birds;

dir_sepi
k = ∑

Bα∈Neigh(Bk),dist(Bα ,Bk)<dist_min

dir(Bα ,Bk)i (5)

2.2 Using the Flocking Algorithm for Clustering Spatial Data

SNN is a clustering algorithm developed by Ertöz, Steinbach and Kumar [3] to
discover clusters with differing sizes, shapes and densities in noise and high dimen-
sional data. The algorithm extends the nearest-neighbor non-hierarchical clustering
technique by Jarvis-Patrick [6] redefining the similarity between pairs of points in
terms of how many nearest neighbors the two points share. Using this new definition
of similarity, the algorithm eliminates noise and outliers, identifies representative
points, and then builds clusters around the representative points. These clusters do
not contain all the points, but rather represent relatively uniform group of points.

SPARROW-SNN combine the strategy of search of the previously described clus-
tering algorithm with the SNN algorithm main principles for discovering clusters of
arbitrary form and density. In practice, the flocking algorithm performs a biased
sampling of the points of the dataset, as it focuses the search on interesting parts of
the search space. Thus, the SNN algorithm was applied to merge the clusters and
to eliminate the noise points. A more complete description of the algorithm can be
found in [4].

To better understand as SPARROW-SNN works, the pseudocode was shown in
figure 2. The algorithm starts with a fixed number of agents placed in a randomly
generated position. From their initial position, each agent moves around the spatial

336 G. Folino and A. Forestiero

for i=1 . . . MaxIterations

foreach agent (yellow, green)

age=age+1;

if (age > Max_Life)

generate_new_agent();die();

endif

if (not visited (current_point))

property = compute_local_property(current_point);

mycolor= color_agent(property);

endif

end foreach

foreach agent (yellow, green)

dir= compute_dir();

end foreach

foreach agent (all)

switch (mycolor){

case yellow, green: move(dir, speed(mycolor)); break;

case white: stop(); generate_new_agent(); break;

case red: stop(); generate_new_close_agent(); break; }

end foreach

end for

Fig. 2 The pseudo-code of the adaptive flocking algorithm

data testing the neighborhood of each location in order to verify whether the point
can be identified as a representative (or core) point.

The compute_property function represents the connectivity of the point as de-
fined in the SNN algorithm. In practice, when an agent falls on a data point A, not
yet visited, it computes the connectivity, conn(A), of the point, i.e. computes the
total number of strong links the points has, according to the rules of the SNN algo-
rithm. Points having connectivity smaller than a fixed threshold (noise_threshold)
are classified as noise and are considered for removal from clustering. Then a color
is assigned to each agent, on the basis of the value of the connectivity computed in
the visited point, using the following procedure (called color_agent() in the pseu-
docode):

conn > core_threshold ⇒ mycolor = red (speed = 0)
noise_threshold < conn ≤ core_threshold ⇒ mycolor = green (speed = 1)
0 < conn < noise_threshold ⇒ mycolor = yellow (speed = 2)
conn = 0 ⇒ mycolor = white (speed = 0)

The colors assigned to the agents are: red, revealing representative points, green,
border points, yellow, noise points, and white, indicating an obstacle (uninterest-
ing region). After the coloration step, the green and yellow agents compute their
movement observing the positions of all other agents that are at most at some fixed
distance (dist_max) from them and applying the rules described in the previous sub-
section. In any case, each new red agent (placed on a representative point) will run

Using Entropy for Evaluating Swarm Intelligence Algorithms 337

the merge procedure, so that it will include, in the final cluster, the representative
point discovered, together to the points that share with them a significant (greater
that Pmin) number of neighbors and that are not noise points. The merging phase
considers two different cases: when points in the neighborhood have never been
visited and when there are points belonging to different clusters. In the former, the
same temporary label will be assigned and a new cluster will be constituted; in the
latter, all the points will be merged into the same cluster, i.e. they will get the label
corresponding to the smallest label. Thus clusters will be built incrementally.

3 An Entropy-Based Model

This section describes the application of a new methodology for understanding and
evaluating self-organizing properties in bio-inspired systems. The approach is exper-
imentally evaluated on the flocking system of the previous subsection, but it could
be easily applied to any bio-inspired systems.

To this aim, we used a model based on the entropy introduced in [11] by Parunak
and Brueckner. The authors adopted a measure of entropy to analyze emergence
in multi-agent systems. Their fundamental claim is that the relation between self-
organization based on emergence in multi-agent systems and concepts as entropy is
not just a loose metaphor, but it can provide quantitative and analytical guidelines
for designing and operating agent systems. These concepts can be applied in mea-
suring the behavior of multi-agent systems. The main result, that the above cited
paper suggests, concerns the principle that the key to reduce disorder in a multi-
agent system and to achieve a coherent global behavior is coupling that system to
another in which disorder increases. This corresponds to a macro-level where the
order increases, i.e. a coherent behavior arises, and a micro-level where an increase
in disorder is the cause for this coherent behavior at the macro-level.

A multi-agent system follows the second law of thermodynamics “Energy spon-
taneously disperses from being localized to becoming spread out if it is not hin-
dered”, if agents move without any constriction. However, if we add information in
an intelligent way, the agents’ natural tendency to maximum entropy will be con-
trasted and the system will go towards self-organization. For the sake of simplicity,
in the case of the flocking, the attractive behavior of the red birds and the repulsive
effect of the white agents add self-organization to the system, while in the case of
ant systems, this is typically originated from the pheromone.

Really, as stated in [11], we can observe two levels of entropy: a macro level
in which organization takes place, balanced by a micro level in that we have an
increase of entropy. For the sake of clarity, in the flocking algorithm, micro-level
is represented by red and white agents’ positions, signaling respectively interesting
and desert zones, and the macro level is computed considering all the agents’ posi-
tions. So, we expect to observe an increase in micro entropy due to the birth of new
red and white agents and, on the contrary, a decrease in macro entropy indicating
organization in the coordination model of the agents.

338 G. Folino and A. Forestiero

[12] defines autocatalytic property for agent systems as follows: “A set of agents
has autocatalytic potential if, in some regions of their joint state space, their inter-
action causes system entropy to decrease (and thus leads to increased organization).
In that region of state space, they are autocatalytic”. As for our algorithm, at the
beginning, the agents move and spread out randomly. Afterward, the red agents act
as catalyzers towards the most interesting zones, organization increases and entropy
should decrease. Note that in the case of ants, attraction is produced by the effect of
pheromone, while for our flock, it is caused by the attractive power of the red birds
(and by the repulsion of the white birds).

Now, a more formal description of the entropy-based model is described. In in-
formation theory, entropy can be defined as:

S =−∑
i

pi log pi (6)

Now, to adapt this formula to our aims, a location-based (locational) entropy is
introduced. Consider an agent moving in a space of data divided in a grid N×M =
K, where all the cells have the same dimensions. So, if N and M are quite large and
each agent is placed in a randomly chosen cell of this grid (as in the first iteration of
the flocking algorithm), then the probability that the agent is in one of the K cells of
the grid is equal for all the agents.

The entropy can be measured experimentally running the flocking algorithm for
T tries and counting how many times an agent falls in the same cell i for each time-
step. Dividing this number by T we obtain the probability pi that the agent be in this
cell.

Then, the locational entropy will be:

S =−∑k
i=1 pi log pi

logk
(7)

In the case of a random distribution of the agents, every state has probability 1
k , so

the overall entropy will be logk
logk = 1; this explains the factor of normalization log k in

the formula. Obviously, in the case of the flocking algorithm, clustering zones will
be visited more frequently and the probability will be higher in this zones and lower
outside them. Consequentially, the entropy will be lower than 1. This situation can
be verified for the Cure dataset (figure 3 a), observing the probability distribution
(figure 4) in the grid.

The above equation can be generalized for P agents, summing over all the agents
and averaging dividing by P. Equation (7) represents the macro-entropy; if we con-
sider only red and white agents, it represents the micro entropy.

4 Experimental Results

Using the approach described in the previous section, the micro and macro entropy
has been evaluated experimentally. All the experiment have been conducted using

Using Entropy for Evaluating Swarm Intelligence Algorithms 339

the real world North-East dataset, showed in figure 3 b, containing 123,593 points
representing postal addresses of three metropolitan areas (New York, Boston and
Philadelphia) in the North East States, It comprises a lot of noise represented from
distributed rural areas and smaller towns. The artificial Cure dataset (figure 3 a) is
also used, as it presents a cluster distribution quite regular and this permits a bet-
ter understanding of the catalytical properties; in fact, the dataset contains 100,000
points distributed in three circles and two ellipsoids and connected by a chain of
outliers and random noise scattered in the entire space.

(a) (b)

Fig. 3 a) CURE dataset. b) North-East dataset

We run the adaptive flocking algorithm (averaged over 100 tries) for 2000 time-
steps using 100 agents and the same standard parameters for the flocking algorithm
of the work in [4] and computed the probability an agent falls in every cell of the
grid (as shown in figure 4 for the CURE dataset). Using these data and settings, we
computed the micro and macro locational entropy both for SPARROW-SNN and,
for the sake of comparison, for the random search algorithm and for the classical
Reynolds model (without the adaptive behavior of the colored birds).

The result of these experiments, for the North-East dataset, is reported in figure 5.
As expected, we can observe an increase in micro entropy (figure 5 b) and a decrease
in macro entropy (figure 5 a) due to the organization introduced in the coordination
model of the agents by the attraction towards red agents and the repulsion of white
agents. On the contrary, in random search and standard flock model, the curve of
macro entropy is almost constant, confirming the absence of organization.

A similar trend was observed for the Cure dataset (here not reported for the lack
of space).

In addition, we conducted simulations in order to verify the property of au-
tocatalysm of our system and to better understand the behavior of our algorithm
specifically for the CURE dataset.

In figures 6 a and b, respectively the entropy in the cluster zones and outsides
the clusters is reported. Entropy decreases both in cluster zones and outsides the

340 G. Folino and A. Forestiero

Fig. 4 Probability that an agent falls in a cell of the Grid for the Cure dataset (probability
greater than 0.01 is set to 0.01)

(a)

(b)

Fig. 5 North-East dataset: a) Macro Entropy (all the agents) using SPARROW-SNN, random
search and standard flock b) Micro Entropy (red and white agents) using SPARROW-SNN

Using Entropy for Evaluating Swarm Intelligence Algorithms 341

(a)

(b)

Fig. 6 Macro Entropy a) inside the cluster zones and b) outside the cluster zones for the Cure
dataset using SPARROW-SNN, random and standard flock

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%
 A

g
en

ts

Iteration

Agents in cluster zones
Agents outside cluster zones

Fig. 7 Percentage of agents exploring cluster and non cluster zones for the Cure dataset using
SPARROW-SNN

clusters zones, as the flock visits more frequently cluster zones and keeps away
from the other zones (this behavior also causes a decrease in the entropy).

However these curves are not sufficient to verify the effectiveness of the algo-
rithm as organization alone is not sufficient to solve problems, but it must bring the

342 G. Folino and A. Forestiero

search in the appropriate zones. In fact, the main idea behind our algorithm is to let
the flock explore the search space and, when the birds reach a desirable region (zone
dense of clusters), an autocatalytic force is applied to the system (red birds) to keep
searching in these zones.

Thus, we analyzed the average percentage of birds present in these two different
zones (figure 7). In cluster zones we have about the 80% of the entire flock (while the
space occupied by the clusters is about 65%) and this confirms the goodness of the
algorithm, as in the interesting zones of the clusters, not only there is organization
but there also a larger presence of searching agents.

5 Conclusions

This paper shows how an entropy-based model can be used to evaluate self-
organizing properties of SI algorithms. Preliminary experiments, conducted using
a flocking algorithm successfully employed for performing approximate clustering,
demonstrate the presence of self-organizing characteristics differently from random
search and classical flocking algorithm. However, entropy alone is not sufficient to
assess the goodness of the algorithm in searching the space (i.e. performing clus-
tering) and other measures are needed in order to verify the search is concentrated
in interesting zones. Anyway, we believe that this model could be useful to better
understand and control the behavior of multi-agent systems and to drive the user
for choosing the appropriate parameters. Future works aim to evaluate and com-
pare self-organization properties of other SI models, as Ants Colony Optimization,
Particle Swarm Optimization, etc..

References

[1] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial
systems. Oxford University Press, New York (1999)

[2] Ellabib, I., Calamai, P., Basir, O.: Exchange strategies for multiple ant colony system.
Inf. Sci. 177(5), 1248–1264 (2007),
http://dx.doi.org/10.1016/j.ins.2006.09.016

[3] Ertoz, L., Steinbach, M., Kumar, V.: A new shared nearest neighbor clustering algorithm
and its applications. In: Workshop on Clustering High Dimensional Data and its Appli-
cations at 2nd SIAM International Conference on Data Mining, pp. 105–115 (2002)

[4] Folino, G., Forestiero, A., Spezzano, G.: An adaptive flocking algorithm for performing
approximate clustering. Inf. Sci. 179(18), 3059–3078 (2009)

[5] Grassé, P.: La Reconstruction du nid et les Coordinations Inter-Individuelles chez
Beellicositermes Natalensis et Cubitermes sp. La Théorie de la Stigmergie: Essai
d’interprétation du Comportement des Termites Constructeurs in Insect. Soc. 6. Morgan
Kaufmann, San Francisco (1959)

[6] Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near-
est neighbors. IEEE Transactions on Computers C 22(11) (1973)

http://dx.doi.org/10.1016/j.ins.2006.09.016

Using Entropy for Evaluating Swarm Intelligence Algorithms 343

[7] Kuntz, P., Snyers, D.: Emergent colonization and graph partitioning. In: SAB 1994:
Proceedings of the third international conference on Simulation of adaptive behavior:
from animals to animats, vol. 3, pp. 494–500. MIT Press, Cambridge (1994)

[8] Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In:
From Animals to Animats: Proc. of the Third Int. Conf. on Simulation of Adaptive
Behaviour, pp. 501–508. MIT Press, Cambridge (1994)

[9] Macgill, J.: Using flocks to drive a geographical analysis engine. In: Bedau, M.A.,
McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Artificial Life VII: Proceedings of
the Seventh International Conference on Artificial Life, pp. 446–453. The MIT Press,
Cambridge (2000)

[10] Monmarché, N., Slimane, M., Venturini, G.: On improving clustering in numerical
databases with artificial ants. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS,
vol. 1674, pp. 626–635. Springer, Heidelberg (1999)

[11] Parunak, H.V.D., Brueckner, S.: Entropy and self-organization in multi-agent systems.
In: AGENTS 2001: Proceedings of the fifth international conference on Autonomous
agents, pp. 124–130. ACM Press, New York (2001),
http://doi.acm.org/10.1145/375735.376024

[12] Parunak, H.V.D., Brueckner, S.: Engineering swarming systems. In: Methodologies and
Software Engineering for Agent Systems, pp. 341–376. Kluwer, Dordrecht (2004)

[13] Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: SIG-
GRAPH 1987: Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, pp. 25–34. ACM Press, New York (1987),
http://doi.acm.org/10.1145/37401.37406

http://doi.acm.org/10.1145/375735.376024
http://doi.acm.org/10.1145/37401.37406

Empirical Study of Performance of Particle
Swarm Optimization Algorithms Using Grid
Computing

Miguel Cárdenas-Montes, Miguel A. Vega-Rodríguez, Antonio Gómez-Iglesias,
and Enrique Morales-Ramos

Abstract. This article presents an empirical study of the performance of the Parti-
cle Swarm Optimization algorithms catalog. The original Particle Swarm Optimizer
has proved to be a very efficient algorithm, being applied in a wide portfolio of op-
timization problems. Spite of their capacities to find optimal solutions, some draw-
backs, such as: the clustering of the particles with the consequent losing of genetic
diversity, and the stagnation of the fitness amelioration, are inherent to the nature
of the algorithm. Diverse enhancements to avoid these pernicious effects have been
proposed during the last two decades. In order to test the improvements proposed,
some benchmarks are executed. However, these tests are based on different config-
urations and benchmark functions, impeding the comparison of the performances.
The importance of this study lies in the frequent use of Particle Swarm Optimizer to
seek solutions in complex problems in the industry and science. In this work, several
improvements of the standard Particle Swarm Optimization algorithm are compared
using a identical and extensive catalog of benchmarks functions and configurations,
allowing to create a ranking of the performance of the algorithms. A platform of
Grid Computing has been used to support the huge computational effort.

Miguel Cárdenas-Montes · Antonio Gómez-Iglesias
CIEMAT, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas,
Avda. Complutense 22, 28040, Madrid, Spain
e-mail: {miguel.cardenas,antonio.gomez}@ciemat.es

Miguel A. Vega-Rodriguez · Enrique Morales-Ramos
ARCO Research Group, Dept. Technologies of Computers and Communications,
University of Extremadura, Escuela Politécnica, Campus Universitario s/n,
10071, Cáceres, Spain
e-mail: mavega@unex.es,enmorales@alumnos.unex.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 345–357, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{miguel.cardenas,antonio.gomez}@ciemat.es
mavega@unex.es, enmorales@alumnos.unex.es

346 M. Cárdenas-Montes et al.

1 Introduction

Particle Swarm Optimization (PSO) is an evolutionary computation technique in-
troduced by Kennedy and Eberhart in 1995 [6], and later [4]. The Particle Swarm
Optimization concept originated as a simulation of a social system. Initial simula-
tions were modified to incorporate nearest-neighbour velocity matching and multi-
dimensional search and acceleration by distance (Eberhart and Kennedy 1995 [3];
Kennedy and Eberhart 1995 [6]). At some point in the evolution of the algorithm, it
was realised that the conceptual model was, in fact, an optimiser. The result was a
very simple implementation of a powerful new optimizer.

The Standard Particle Swarm Optimization has been demonstrated to be an ef-
ficient and fast optimizer, with a wide applicability to very diverse scientific and
technical problems. In spite of the efficiency demonstrated by the SPSO, also some
disadvantages have appeared. Mainly the premature convergence which prevents the
finding of optimal solutions.

When enhancements are proposed, the original authors execute some bench-
marks. These benchmarks includes the most profitable configuration and function
for the enhancements proposed, being, in general, a reduce number of them. The
benchmarks have been executed with different set of functions and configuration,
impeding the matching of the results. In any case, these tests verify the new algo-
rithm proposed versus the standard algorithm, impeding that the diverse enhance-
ments can be compared between them.

The grid computing paradigm [5] [7] has made proof of being able to cover the
requirements of a lot of scientific communities, such as, high energy physics, fusion,
astrophysics and astronomy, chemistry, biomedicine, etc. The computing capabili-
ties delivered by this paradigm have increased the generation of new science inside
of these communities. Moreover, some challenges tackled by them do not have been
faced without the strategic support of the grid computing. For these reasons, a plat-
form of grid computing has been selected for the present work. Grid computing
has emerged as a powerful paradigm in E-Science, providing to the researchers an
immense volume of computational resources distributed along diverse institutions.

As consequent of the set of benchmarks functions selected, taking several config-
urations for each algorithm, a huge volume of executions appear. In order to cover
this volume of executions, a sub-set of the Spanish National Grid Initiative comput-
ing platform based on the middleware gLite and the metascheduler GridWay was
chosen, providing the necessary computational resources to execute the work pro-
posed.

This paper is organized as follows: in section 2, a resume of the Particle Swarm
Optimization algorithms family is introduced, as well as, some reflexions about the
weaknesses of the original algorithm. In section 3, the details of the implementation
and the production setup are shown. The results are displayed in section 4. And
finally, the conclusions and the future work are presented in section 5.

Empirical Study of Performance of Particle Swarm Optimization Algorithms 347

2 Particle Swarm Algorithms Family

In the PSO technique, each particle is represented as a point inside of a
N-dimensional space. The dimension (N) of the problem is the number of variables
of the problem to be evaluated.

Initially, a set of particles are created randomly. During the process, each particle
keeps track of its coordinates in the problem space that are associated with the best
solution it has achieved so far. Not only the best historical position of each particle
is kept, also the associated fitness is stored. This value is called localbest.

Another "best" value that is tracked and stored by the global version of the par-
ticle swarm optimizer is the overall best value, and its location, obtained so far by
any particle in the population. This location is called globalbest.

The PSO concept consists in, at each time step, changing the velocity (acceler-
ating) each particle toward its localbest and the globalbest locations (in the global
version of PSO). Acceleration is weighted by a random term, with separate ran-
dom numbers being generated for acceleration toward locallbest and globalbest
locations.

2.1 Standard Particle Swarm Optimization

The process for implementing the global version of PSO is as follows:

1. Creation of a random initial population of particles. Each particle has a position
vector and a velocity vector on N dimensions in the problem space.

2. Evaluation of the desired (benchmark function) fitness in N variables for each
particle.

3. Comparative of the each particle fitness with its localbest. If the current value
is better than the recorded localbest, it is replaced. Additionally, if replacement
occurs, the current position is recorded as localbest position.

4. For each particle, comparation of the present fitness with the global best fitness,
global best. If the current fitness improves the globalbest fitness, it is replaced,
and the current position is recorded as globalbest position.

5. Updating the velocity and the position of the particle according to eq. 1 and
eq. 2:

vid(t + δ t)← vid(t)+ c1 ·Rand() · (xlocalbest
id − xid)+

c2 ·Rand() · (xglobalbest
id − xid) (1)

xid(t + δ t)← xid(t)+ vid (2)

6. If the end execution criterion – fitness threshold or number of generations– is not
met, back to the step 2.

Apparently, in eq. 1 a velocity is added to a position. However, this addition occurs
over a single time increment (iteration), so the equation keeps its coherency.

348 M. Cárdenas-Montes et al.

2.2 Weaknesses of Standard Particle Swarm Optimization

Diverse authors ([8], [1]) have demonstrated that the particles in SPSO oscillate in
damped sinusoidal waves until they converge to new positions. These new positions
are between the global best position and their previous best position. During this
oscillation, a position visited can have better fitness than its previous local best,
reactivating the oscillation. This movement is continuously repeated by all particles
until the convergence is reached or any end execution criteria is met.

However, in some cases, where the global optimum has not a direct path be-
tween current position and the local minimum already reached, the convergence is
prevented. In this case, the efficiency of the algorithm diminishes. From the compu-
tational point of view, a lot of CPU-time is wasted exploring the area of suboptimal
solution already discovered.

In order to avoid this pernicious effect, diverse alternatives to SPSO formulation
have been proposed. Frequently, these enhancements are based on effects present in
the nature, enforcing the image of the PSO algorithm as a mechanism presents in
the nature.

2.3 Inertial Weight

Historically, this modification was the first enhancement proposed for the SPSO [4].
It consists in a progressive reduction of the importance of the previous velocity by a
factor, called Inertial Weight, and being the algorithm modified, IWPSO, shown in
eq. 3.

vid(t + δ t)← μ · vid(t)+ c1 ·Rand() · (xlocalbest
id − xid)+

c2 ·Rand() · (xglobalbest
id − xid) (3)

In our implementation, the Inertial Weight, μ , diminishes linearly from 0.9 to 0.4
throughout the number of generations.

2.4 Particle Swarm Optimization with Massive Extinction

The fossil record shows the existence of massive extinction throughout the history
of the Earth. After these massive extinctions, the remove of the stagnant groups from
the niches creates opportunities for new species. The importance of this mechanism
is based on the fact that allows to flourish new species genetically very different of
the former ones.

The massive extinction (ME) can be adapted to the SPSO in several ways. The
simplest one is to re-initialise the position and velocity of the particles with a fitness
below a threshold predefined and after a number of generation established [11]. The
remove of particles stagnated allows to create new particles able to explore new
areas of the search space. In this way, the new algorithm is called Particle Swarm
Optimizer with Massive Extinction [11] (PSOME).

Empirical Study of Performance of Particle Swarm Optimization Algorithms 349

In the PSOME, two new parameters appear. The first one is the threshold under
which the particles are reinitialized. And, the second one is the number of gener-
ation after which the ME mechanism is activated. These two parameters have to
be carefully selected in order to maximize the contribution of the ME mechanism to
reinitialize the population only when the stagnation of the amelioration of the fitness
appears. Otherwise, pernicious effect will be introduced in the population, such as:
premature reinitialization whereas particles are approaching to optimal solutions.

In the our implementation, the value of the period to reinitialize the particles
is each 10% of the number of generations, and the threshold of fitness above the
particles are reinitialized is the 10% of the global best fitness.

2.5 Fitness Distance Ratio Based Particle Swarm Optimization

The SPSO has foundations in a learning process for all particles. This process is
based on the capacity to learn from the particle’s own experience and from the ex-
perience of the most successful particle.

The Fitness-Distance-Ratio modification for the PSO algorithm (FDRPSO) pro-
poses that particles are also able to learn from the experience of the neighboring
particles having a better fitness that itself spite of it is not the global best [9]. For
each particle, the FDRPSO algorithm selects only one other particle at a time when
modify the velocity. This particle is chosen satisfying two criteria:

• The particle chosen must be near of the particle being updated.
• The particle chosen must have visited a position of better fitness.

One of the simplest way to satisfy these two criteria is to maximize the ratio of the
fitness difference to one dimensional distance. In other words, the dth dimension of
the ith particle’s velocity is updated using a particle called the nbest, with prior best
position Pj, chosen to maximize the expression 4.

Fitness(Pj)−Fitness(Xi)
Pjd−Xid

(4)

The expression 4 is called Fitness-Distance-Ratio, suggesting the name of the
algorithm.

The FDRPSO algorithm modifies the original velocity eq. 1 adding a new term
based on the best experience of the best near neighbor (nbest). Thus eq. 1 results in
eq. 5.

vid(t + δ t)← vid(t)+ c1 ·Rand() · (xlocalbest
id − xid)+

c2 ·Rand() · (xglobalbest
id − xid)+

c3 ·Rand() · (xnbest
id − xid) (5)

In this work, the value chosen for the new parameter was c3 = 2, as proposed the
original authors in order to maximize the performance. The values of the other pa-
rameters are identical for the rest of the survey, c1 = c2 = 1.

350 M. Cárdenas-Montes et al.

2.6 Dissipative Particle Swarm Optimization

As it has been exposed, as much the swarm evolves, going to equilibrium, the evolu-
tion process falls in the stagnation. To prevent this trend, a dissipative PSO (DPSO)
is constructed introducing a negative entropy through additional chaos for the parti-
cles [12].

The simplest way to implement this approach is by the reset of the velocities and
positions by new ones randomly generated, eq. 6.

IF(rand() < cv)T HENvid = rand() · vmax

IF(rand() < cl)T HENxid = RANDOM(lowerlimit,upperlimit) (6)

In an open system, the individuals in the social swarm are not only governed by the
historical experiences, global best and local best, but also, they are affected by the
environment. Due to the changes in the environment, the best historical positions
may be not longer compatible. This alternate environment can have a stronger in-
fluence that the social learning, driving the individual to move toward directions in
principle incompatibles with the present global best and local best.

The new positions and velocities assigned to the particle will allow to explore a
different area in the search space, escaping from the local optima.

2.7 A Diversity-Guide Particle Swarm Optimizer

In the SPSO, the fast information flowing between particles seems to be the reason
for clustering of particles. Diversity declines rapidly, leaving the SPSO algorithms
with great difficulties of escaping local optima. Consequently, the clustering leads
to low diversity with a fitness stagnation as final result.

An accepted hypothesis explains that maintenance of high diversity is crucial for
preventing premature convergence in SPSO. The introduction of a repulsive phase
in the PSO, as well as, the attractive already presents, tries to overcome the problem
of premature convergence. In order to control the algorithm, a diversity measure is
introduced. The results is an algorithm that alternates between phases of attraction
and repulsion, giving the name to the algorithm, ARPSO [10].

During the repulsion phase, the particle is no longer attracted to, but instead re-
pelled by the global best and local best. In this case, the equation governing the
movement inverts the sign of global best and local best terms, eq. 7. In the other
hand, the attractive phase is still governed by the same eq. 1 that SPSO.

vid(t + δ t)← vid(t)− c1 ·Rand() · (xlocalbest
id − xid)−

c2 ·Rand() · (xglobalbest
id − xid) (7)

The swarm contracts during the attraction phase, consequently the diversity de-
creases. In ARPSO, when diversity measure drops below a lower bound, dlow, it
switches to the repulsion phase. Similarly, when the diversity reaches a upper bound,
dhigh, it switches back to the attraction phase. The final mechanism is an algorithm

Empirical Study of Performance of Particle Swarm Optimization Algorithms 351

that alternates between phases of attraction and repulsion, or low diversity and high
diversity.

The diversity parameter is defined by eq. 8. The inputs for this diversity measure
are: |S| is the swarm size, |L| is the length of the longest diagonal in the search space,
N is the dimensionality of the problem, Pi j is the j’th value of the i’th particle and
p j is the j’th value of the average point, p.

diversity(S) =
1

|S| · |L| ·
|S|
∑
i=1

√
√
√
√

N

∑
j=1

(pi j− p j)2 (8)

2.8 Mean Particle Swarm Optimization

The Mean Particle Swarm Optimization [2] proposes an alternative equation to cal-
culate the velocity of the particles. Instead of comparing the particle’s current po-
sition with global best and local best, it is compared with a linear combination of
them. Thus, the equation resulting for the velocity is the eq. 9. Clearly, MeanPSO
seems to be a suitable name for this modified PSO, see Fig. 1.

vid(t + δ t)← vid(t)+ c1 ·Rand() · (xlocalbest
id + xglobalbest

id

2
− xid)+

c2 ·Rand() · (xlocalbest
id − xglobalbest

id

2
− xid) (9)

Fig. 1 Comparative movement of a particle in SPSO and MeanPSO

352 M. Cárdenas-Montes et al.

3 Production Setup

The empirical study was conducted using a set of benchmarks, where diverse func-
tions widely used in these studies were selected. These functions were selected in
order that the set has a mixture of multimodal (functions: f1, f2, f6 and f8) and
monomodal functions (functions: f3, f4, f5, f7, f9, f10 and f11). For each benchmark
function and algorithm, a set of identical configurations was executed. These con-
figurations show the most characteristic values of dimensionality, population size
and number of generations. The benchmark functions selected are presented in the
table 1.

Table 1 Benchmark functions used in the survey

Expression
Search
Space Optimum

f1 = ∑D
i=1[sin(xi)+ sin(2·xi

3)] [3,13] ≈−1.21598 ·D
f2 = ∑D−1

i=1 [sin(xi · xi+1)+ sin(2·xi·xi+1
3)] [3,13] -2D + 2

f3 = ∑D
i=1[(xi +0.5)2] [−100,100] 0

f4 = ∑D
i=1[(xi)2−10 · cos(2πxi)+10] [−5.12,5.12] 0

f5 = ∑D
i=1[(xi)2] [−5.12,5.12] 0

f6 = ∑D
i=1[xi · sin(10 ·π · xi)] [−1,2] ≈−1.95 ·D

f7 = 20+20 · exp(−20 · exp(−0.2
√

∑D
i=1 x2

i
D))−exp(∑D

i=1
cos(2πxi)

D) [−30,30] 0
f8 = 418.9828 ·D−∑D

i=1[xi · sin(
√|xi|)] [−500,500] 0

f9 = ∑D−1
i=1 [100 · (xi+1−x2

i)2 +(xi−1)2] [−5.12,5.12] 0
f10 = ∑D

i=1[i · (xi)2] [−5.12,5.12] 0
f11 = ∑D

i=1[(xi)2]+ [∑D
i=1(

i
2 · xi)]2 +[∑D

i=1(
i
2 · xi)]4 [−5.12,5.12] 0

In order to avoid statistical fluctuations, a total of 400 tries of each configuration,
each algorithm and each benchmark function have been executed. In these tries, the
powerful machinery of the grid was used to support the computational activity.

To manage the complexity of the problem, involving several algorithms and
benchmark functions, and the set of configuration of each of them; the grid jobs
were created with 50 tries of each configuration of one specific algorithm and func-
tion. This structure assures the optimization of the time execution for the grid envi-
ronment. A total of 8 runs were executed to reach the statistical level desired.

Each job was composed with a shellscript that handled the execution, and a tarball
containing the source code (C++) of the program and the configuration files. When
the job arrives to the Worker Node, it executes the instructions of the shellcript: roll-
out the tarball, compile the source code, execute the 50 tries of each configuration
for a particular algorithm and benchmark function, and finally resume in a tarball all
the output files. When the job finishes, the middleware recuperates the output tarball
containing the the output files.

All PSO algorithms shares some common parameters, such as, c1 = c2 = 1 in
eq. 1, and the maximum velocity, Vmax = 5. Furthermore, the configuration values
of dimensionality (20, 100), population size (10, 100) and number of generations
(100, 1000, 10000) were established.

Empirical Study of Performance of Particle Swarm Optimization Algorithms 353

This methodology has demonstrated to be quite flexible face to Middleware and
Operating System updates. During the production period, the infrastructure suffers
some major upgrades, both gLite and Scientific Linux Operating System, being the
production methodology completely transparent to these changes. Spite of this flex-
ibility to surf over computational resources being updated, the heterogeneity of the
grid made that the efficiency of job success was only 40%. In the most of the cases,
the jobs aborted or be lost due to major failures, such as: unexpected stops or net-
work connectivity.

Finally, the production was composed by a total of 616 jobs, resulting from the
11 functions and 7 types of PSO algorithms tested; and 8 runs per function and
algorithm established. As consequence that each job has 400 tries, the number of
total tries executed was 246,400. On the other hand, the mean CPU-time employed
for run was 148.7 hours, then the total CPU-time for the eight runs was 1,189.6
hours.

4 Results

In the tables 2 and 3 a resume of the best results obtained for each fitness function,
configuration and PSO algorithm are presented. For each function and configuration
the function that obtains the best result is presented. In the case of several functions
obtaining equal best results, all them are presented.

Table 2 Results of benchmarks for the functions f1, f2, f3, f4, f5 and f6 after 400 tries

Dim. Pop. Gen. f1 f2 f3 f4 f5 f6

100

10
100 DPSO DPSO MeanPSO MeanPSO MeanPSO MeanPSO

1000 DPSO PSOME MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
SPSO

PSOME DPSO MeanPSO MeanPSO MeanPSO MeanPSO

100
100 DPSO SPSO MeanPSO MeanPSO MeanPSO MeanPSO

1000 SPSO SPSO MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
SPSO

PSOME DPSO MeanPSO MeanPSO MeanPSO MeanPSO

20

10
100 SPSO IWPSO MeanPSO MeanPSO MeanPSO MeanPSO

1000 SPSO DPSO MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
SPSO

PSOME DPSO MeanPSO MeanPSO MeanPSO MeanPSO

100
100 DPSO IWPSO MeanPSO MeanPSO MeanPSO MeanPSO

1000

DPSO
SPSO

IWPSO PSOME MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
SPSO

PSOME
IWPSO DPSO MeanPSO MeanPSO IWPSO MeanPSO

354 M. Cárdenas-Montes et al.

Table 3 Results of benchmarks for the functions f7, f8, f9, f10 and f11 after 400 tries

Dim. Pop. Gen. f7 f8 f9 f10 f11

100

10
100

MeanPSO
FDRPSO PSOME MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

10000
MeanPSO
FDRPSO FDRPSO SPSO MeanPSO MeanPSO

100
100

MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

10000
MeanPSO
FDRPSO MeanPSO SPSO MeanPSO MeanPSO

20

10
100

MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO DPSO SPSO MeanPSO MeanPSO

10000
MeanPSO
FDRPSO FDRPSO SPSO MeanPSO MeanPSO

100
100

MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO DPSO MeanPSO MeanPSO MeanPSO

10000

MeanPSO
FDRPSO

DPSO DPSO SPSO MeanPSO MeanPSO

5 Analysis and Conclusions

As consequence of the results obtained, the following conclusions can be extracted:

• Thanks to the tests executed in this work, a ranking of the most efficient Particle
Swarm Algorithm can be created.

• The MeanPSO is the most powerful algorithm, obtaining the best result in 91
from the total 132 tests, the 69% of the tests, being the algorithm dominant for
the functions f3, f4, f6, f10 and f11. Moreover, the MeanPSO produces the best
results in 11 of the 12 configurations for f5, and for f7 shares the best results with
FDRPSO for all configurations.

• However, in the functions f1 and f2 MeanPSO does not obtain any best result
independently of the configuration. Furthermore, for the function f8 it obtains
only one best result. Consequently, the marriage between the function and the
algorithm is critical in order to reach optimal solutions.

• It is well known that the particles in SPSO oscillate in damped sinusoidal waves
until they converge to new best positions. With the modification of MeanPSO,

the factors
xlocalbest

id +xglobalbest
id

2 and
xlocalbest

id −xglobalbest
id

2 allows to widen the area under
exploration by the particles. So, a substancial increment of the probability to pass
over good solutions apears.

Empirical Study of Performance of Particle Swarm Optimization Algorithms 355

Table 4 Best results in relation with the dimension

SPSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO
For dimension

equal to 20 8 5 3 9 11 0 44
For dimension
equal to 100 7 0 2 10 8 0 47

Table 5 Best results in relation with the swarm size

SPSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO
Any configuracion
with 10 particles 7 1 3 10 9 0 45

Any configuracion
with 100 particles 8 4 2 9 10 0 46

Table 6 Best results in relation with the number of cycles

SPSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO

For few cycles (100) 2 2 0 7 4 0 32
For a lot of cycles (10000) 8 2 5 8 10 0 27

• The second best algorithm is FDRPSO, obtaining 19 from the total tests, the 14%.
However, the results for this algorithm are concentrated in the functions f7 and
f8, reinforcing the idea of the good selection between the function to optimize
and the algorithm elected.

• For the third place, two algorithms obtain 17 best results (13%), they are the
SPSO and the DPSO. Specially significant is the fact that the original algorithm
obtains 17 best results wining to other more complex modifications; underlining
the xx of the original mechanism embedded in algorithm.

• The two following algorithms are the PSOME and the IWPSO with 7 (5.3%) and
5 (3.8%) best results.

• In general, other complex PSO modifications do not deserve improvement in the
efficiency of the original PSO algorithm. In this line, the only algorithms which
does not obtain any best result is ARPSO.

• As it can be appreciated in Tables: 4, 5 and 6, there are not major differences
in the behavior of the algorithms face to different number of particles, cycles or
dimension. The number of better results are similar independently of the config-
uration executed.

As main and final conclusion, it can be said that MeanPSO obtains better results
for monomodal functions than for multimodal functions, Table 7. The reason of
this result may correspond to the difficulties of MeanPSO to escape fro deep local
minimums in multimodal functions. MeanPSO has a great capacity to explore the

356 M. Cárdenas-Montes et al.

Table 7 Best results in relation with the behavior of the function

SPSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO

Monomodal 5 0 1 12 1 0 68
Multimodal 10 7 4 7 18 0 11

local environment of the particles, converging quickly toward good near solutions.

This feature arises from the two factors which modify the SPSO:
xlocalbest

id +xglobalbest
id

2

and
xlocalbest

id −xglobalbest
id

2 . The combination of the global best and local best allows to
broaden the area explored in each step or generation. However, this methodology
lacks the capacity to escape from local minimum, visiting far away areas where
deeper minimums (and, therefore, better solutions) could be found.

Other alternatives, such as: DPSO or PSOME, have the capacity to generate new
particles genetically different from the represented ones in the population; or to keep
some diversity in the particles presented in the swarm, in the case of FDRPSO. The
mechanism adopted to generated new particles or keep a genetic diversity allows to
escape from deep minimums in multimodal functions; however, it diminishes the
effectiveness of the algorithm to find good solutions. In fact, DPSO obtains more
better results that MeanPSO in multimodal functions, see Table 7.

Possibly a different scenario could happen for extremely long number of cycles,
where the lesser effectiveness can be mitigated with bigger number of steps. In
this case, the major factor to find good solutions should be the capacity to keep
some genetic diversity in the swarm, avoiding that all particles became clones of the
better one. Moreover, a similar effect could be foreseen for extremely multimodal
functions.

The design of a new Particle Swarm Algorithm ought to combine the capacity
to explore the closest area to the better particles with a mechanism to generate new
individuals or, alternatively, to keep some genetic diversity. In this case, we are close
to some mechanisms employed Particle Swarm Algorithm when they are applied to
dynamic tasks. These type of approaches propose two kind of particles, some neutral
particles which have a behavior similar to SPSO and some charged particles which
feel not a attractive force to the other particles, but a repulsion force. This repulsion
force is in charge to keep the genetic diversity.

Finally, the following future work is proposed:

• Some improvements over Standard PSO could prove its efficiency under ex-
tremely long number of generations. Subsequently, studies with bigger number
of generations will allow to better characterize the algorithms.

• Moreover, the study can be broadened including further PSO enhancements. In
this way, further studies could cover extra PSO variations.

• Similarly that other Evolutionary Algorithm, the techniques of multipopulations
with periodic interchange of individuals could be explored in order to measure
the improvements obtained.

Empirical Study of Performance of Particle Swarm Optimization Algorithms 357

Acknowledgement

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement number 211804
(EUFORIA) and grant agreement Number 222667 (EGEE III).

References

[1] Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability and Convergence in a
Multi-dimensional Complex Space. IEEE Transaction on Evolutionary Computation 6,
58–73 (2002)

[2] Deep, K., Bansal, J.C.: Mean particle swarm optimisation for function optimisation. Int.
J. Computational Intelligence Studies 1(1), 72–92 (2009)

[3] Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceed-
ings of the Sixth International Symposium on Micro Machine and Human Science, pp.
39–43. IEEE Service Center, Nagoya (1995)

[4] Eberhart, R.C., Morgan, Y.S.: Computational Intelligence: Concepts to Implementa-
tions. Kaufmann Publishers, San Francisco (2007)

[5] Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastruc-
ture, 1st edn. Morgan Kaufmann Publishers, San Francisco (1998)

[6] Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948.
IEEE Service Center, Piscataway (1995)

[7] Li, B., Baker, M.: The Grid Core Technologies. John Wiley and Sons Ltd., Chichester
(2005)

[8] Ozcan, E., Mohan, C.K.: Particle Swarm Optimization: Surfing the waves. In: Congress
on Evolutionary Computation, Washington, pp. 1939–1944 (July 1999)

[9] Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-Distance-Ratio Based Particle
Swarm Optimization. In: Swarm Intelligence Symposium, pp. 174–181 (2003)

[10] Riget, J., Vesterstrom, J.S.: A Diversity-Guided Particle Swarm Optimizer. Tech. R., U.
Aarhus (2002)

[11] Xiao-Feng, X., Wen-Jun, Z., Zhi-Lian, Y.: Hybrid Particle Swarm Optimizer with Mass
Extinction. In: International Conference on Communication, Circuits and Systems,
Chengdu, China (2002)

[12] Xiao-Feng, X., Wen-Jun, Z., Zhi-Lian, Y.: A Dissipative Particle Swarm Optimization.
In: Congress on Evolutionary Computation, Honolulu, USA, pp. 1456–1461 (2002)

Using PSO and RST to Predict the Resistant
Capacity of Connections in Composite
Structures

Yaima Filiberto, Rafael Bello, Yaile Caballero, and Rafael Larrua

Abstract. In this paper, a method is proposed that combines the methaheuristic Par-
ticle Swarm Optimization (PSO) with the Rough Set Theory (RST) to carry out the
prediction of the resistant capacity of connectors (Q) in the branch of Civil Engineer-
ing. The k-NN method is used to calculate this value. A feature selection process is
performed in order to develop a more efficient process to recover the similar cases;
in this case, the feature selection is done by finding the weights to be associated
with the predictive features that appear in the weighted similarity function used for
recovering. In this paper we propose a new alternative for calculating the weights
of the features based on extended RST to the case of continuous decision features.
Experimental results show that the algorithm k-NN, PSO and the method for calcu-
lating the weight of the attributes constitute an effective technique for the function
approximation problem.

1 Introduction

An interesting problem in Civil Engineering area is to predict the resistant capacity
of connectors, the stud type, and the influence of each of the features in the forecast
using the gathered information of rehearsals of these connectors. The stud is an es-
sential component of a composite beam, it is responsible of ensuring the connection
between the steel section and the armed concrete flagstone. The studs are installed in
the upper wing of the steel beam. The connectors ensure that the different materials
constituting the composite section have an effect in a combined way.

Yaima Filiberto · Yaile Caballero · Rafael Larrua
Department of Computer Sciences, University of Camagüey, Cuba
e-mail: yaimafiliberto@yahoo.com, yailec@yahoo.com,

rafael.larrua@reduc.edu.cu

Rafael Bello
Department of Computer Sciences, Central University of Villa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 359–370, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

rbellop@uclv.edu.cu

360 Y. Filiberto et al.

A remarkable number of experimental studies have been developed to deepen
in the study of the behavior of the connections. Specifically, the rehearsals of con-
nectors of the push-out type have been an important way for the evaluation of the
influence of different parameters in the behavior of the same ones, as well as obtain-
ing the formulations that allow predicting their resistant capacity. In consequence,
it is possible to have a volume of valuable derived information of the set of inter-
national experimental programs development in the environment of the connections
in steel-concrete compound construction, where prevailing studies dedicated to the
stud type with head.

At the same time, they have gone evolving the calculation methods. Neverthe-
less, it has been proven that in some cases the calculus expressions of the resistant
capacity of the stud type connectors with head, the main international norms, (AISC-
LRFD 2005) & Eurocode 4 (EN-1994-1-1:2004), are underestimate excessively and
in other cases they are overestimate; for this reason it is necessary to improve this
calculus expressions for this connection type, that is the more internationally dif-
fused. The same happens for other types of connectors, with the added difficulty
that the experimental investigation on these connectors is very poor. In spite of the
numerous experimental works that have been internationally realized, to reach a bet-
ter understanding of the behavior of the connections in compound structures of the
concrete-steel, exist some aspects that affect significant in their answer and require
more study and deepening.

Machine Learning techniques allow to extract underlying knowledge in the in-
formation. This learning process can be inductive or lazy learning. In the case of
the lazy learning the solution of problems is based on the relationships of similarity
among the cases, being the k-NN algorithm the classical method in this family. In
this work, we use the Nearest Neighbors algorithm [6], as the prediction algorithm
to calculate the resistant capacity of connections in composite structures.

To implement the function approximation based on k-nn algorithm in this work
we propose a method for calculating the weights of the features using the Rough Set
Theory (RST) [13]. This theory has been widely used in data analysis, particularly
in the selection of features and calculation of the weights of the attributes. However,
the most results have been achieved in this theory for the case of discrete decision
values, which is not the case of function approximation. For that reason, it was
necessary to develop a new method for calculating the weight of features in the case
of continuous decision systems.

2 Improving the Application of the K-NN Method in the
Approximation Function Problem

In order to calculate the weights, a heuristic search is performed. We selected Parti-
cle Swarm Optimization’s technique (PSO, [8] and [9]) for assigning weights, taking
into account the relative ease of implementation, speed in locating the optimal so-
lution, its powerful scanning capabilities and its relative lower computational cost
in terms of memory and time. The implementation of an optimization algorithm to

Using PSO and RST to Predict the Resistant Capacity of Connections 361

calculate different weights for each attribute would free the researcher of the civil
engineering area of their definition by using other qualitative or quantitative criteria.

2.1 K-Nearest Neighbours Approximator

The key idea in k-Nearest Neighbours (k-NN) method is that similar input data
vectors have similar output values. It is necessary to find a certain quantity of near-
est neighbours and their output values, to compute the output approximation. This
output can be calculated as an average of outputs of the neighbours in the neigh-
bourhood. Let be a new vector Xh and N(Xh) the neighbourhood of Xh, the output
of Xh, denoted by dh, can be computed from outputs of vector in N(Xh) using
expression 1.

dh =

∑d j
X j∈N(Xh)

k
(1)

Where k is the cardinality of N(Xh). One obvious refinement of expression 2 is to
weight the contribution of each of the k neighbours according their distance to the
vector Xh such as is analyzed in [12].

In order to built the neighbourhood N(Xh), a similarity measure between two
vectors X and Y is defined by expression 2

sim(X ,Y) =
N
∑

i=1
wi ∗ simi(Xi,Yi) (2)

The weights wi, usually normalised so that ∑wi = 1, are used to strengthen or
weaken the relevance of each dimension. The function simi(Xi,Yi) assesses the de-
gree of similarity of vector X and Y according to dimension i; frequently the Euclid-
ian distance is used to compute this measure simi().

Other alternatives to expressions 1 and 2 are presented in [14]. The similarity is
estimated using a weighted distance function given by expression 3

d(X ,Y) =
(

N
∑

i=1
wi ∗ ∂i(Xi,Yi)2

)1/2

(3)

Where wi denotes the weight of dimension i and the function ∂i() defines how values
of a given dimension differ. For instance, ∂i() can be defined as expression 4

∂i(Xi,Yi) =

⎧
⎨

⎩

|Xi−Yi| i f i is continuous
0 i f i is discrete and Xi = Yi

1 i f i is discrete and Xi
= Yi

(4)

In both expressions 2 and 3 the weight of each dimension is taking into account in
order to find the similarity degree between vectors. The adjustment of weights wi

may have a significant influence in the accuracy of estimation, such as showed in [4].
So, to calculate the best set of weights is a key point in this process. The relevance

362 Y. Filiberto et al.

of each dimension may be learned using a heuristic search, as it is proposed in the
following section; in which the heuristic value is calculated based in a rough set
approach.

2.2 Finding the Weights for k-NN Based on Similarity Relations

The main principle “similar problems have similar solutions”, that is, “similar input
vectors have similar output values”, can be used when employing k-NN method for
function approximation, provided that the target function to be approximated can
be characterised as locally smooth [16]. According to this principle, the best set of
weights must allow to establish a close relation between the similarity according to
the input vectors and the similarity between the output real values. This similarity
relation can be formulated as following:

For all vectors X and Y :

xR1y i f and only i f F1(X ,Y)≥ e1 (5)

xR2y i f and only i f F2(X ,Y)≥ e2 (6)

Where F1 and F2 are similarity functions to compare vector X and Y , F1 includes
input data and the weight of each dimension, such as expression 2 or 3, and F2
computes the similarity degree between two objects according to the output value,
such as expression 4 or 7; e1 and e2 are thresholds.

∂ (x,y) =
{

1 i f |x− y| ≤ ε
0 otherwise

(7)

In order to find the similarity relations R1 and R2 we could define the sets N1 and
N2 for all vector X by expression 8 and 9, N1 and N2 of X is the neighbourhood of
X according to the relations R1 and R2 respectively:

N1(X) = {Y : xR1y} (8)

N2(X) = {Y : xR2y} (9)

Then, the problem is to find the functions F1 and F2 such that N1(x) = N2(x),
where the equal symbol (=) denotes the greatest similarity between N1(x) and
N2(x) given the thresholds e1 and e2. But, given the comparison functions for each
dimension and the output value, the problem is to find the weights wi.

In order to solve the problem the measure defined by expression 10 is proposed
for each vector X :

ϕ(X) =
|N1(X)

⋂
N2(X)|

0.5 ∗ |N1(X)|+ 0.5 ∗ |N2(X)| 0≤ ϕ(X)≤ 1 (10)

Using PSO and RST to Predict the Resistant Capacity of Connections 363

Using expression 10 the quality of similarity of the set of M vectors of input-output
data in the form (X , f (X)) denoted by DS, is defined by expression 11

θ (DS) =

⎧
⎪⎪⎨

⎪⎪⎩

M
∑

i=1
ϕ(X)

M

⎫
⎪⎪⎬

⎪⎪⎭

(11)

This measure θ (DS) represents the degree in which the similarity between vectors
according to all input dimensions is the same as the similarity according to the
output value.

Then, the problem is finding the set of weights W = w1,w2, . . . ,wn , where n is
the number of dimensions, which maximizes the expression 11.

To find the set W , heuristic methods such as Particle Swarm Optimization (PSO)
[8] or Genetics Algorithms (GA) [15] and [5] can be used. In our case, PSO is
used to find the best set W , this method has showed good performance to solve
optimization problems [10] and [11].

The particles represent the vector W , they have n components (one for each di-
mension). The quality of particles is calculated by using the expression 11; in this
case, we employ the following comparison function 12:

∂ (Xi,Yi) =

⎧
⎪⎨

⎪⎩

|1−(Xi−Yi)|
Max(Ni)−Min(Ni)

i f i is continuous

0 i f i is discrete and Xi = Yi

1 i f i is discrete and Xi
= Yi

(12)

At the end of the PSO search, the best particle is the best weight set W to build
the function F1; then the similarity relation R1 established by expression 5 can be
implemented using F1.

2.3 Application of the Heuristic Particle Swarm Optimization
(PSO) in the Allocation of Weights to the Attributes

The PSO technique is an optimization technique developed by Eberhart and Kennedy
in 1995, based on the behavior of a population such as swarms of fish or birds. Each
particle has a measure of quality, as well as a position and a velocity in the space
of the search, where the position determines the content of the possible solution.
Each particle knows the position of its neighbors, interact with them, "learns" and
adjusts its position and velocity in part attracted to its best position so far, and partly
attracted to the best position of the swarm (global optimum point).

The general steps of the PSO algorithm are:
The position of a particle i is denote by Xi, where Xi is a vector that stores the

values for each dimensions in the search space. Furthermore, we denote by Vi the
velocity of particle i, which is also a vector, which contains each of the velocity that

364 Y. Filiberto et al.

have the particle in each dimension. This velocity is added to the position of the
particle to move the particle from time t−1 to the time t.

The following describes each of the steps involved in this algorithm:

Step 1: Initialize a population of particles with random positions and velocities
in a D-dimensional space.

Step 2: For each particle, evaluate the fitness function in D variables.
Step 3: Compare the current fitness of each particle with the fitness of its best

previous position, pbest. If the current value is better than pbest, pbest receives the
current value, and Pi = Xi.

Step 4: Identify the particle in the vicinity (may be the entire set of particles, or
a subset of them) with the best value of the objective function so far, and assign its
index to the variable g.

Step 5: Adjust velocity and position of the particle according to following equa-
tions (for each dimension):

vi(t +1)= w∗vi(t)+c1∗rand()∗(pbest(t)−xi(t))+c2∗rand()∗(gbest(t)−xi(t))
(13)

xi(t + 1) = xi(t)+ vi(t + 1) (14)

Step 6: Check the stop criterion (maximum number of iterations or fitness value
reached), if not go to the Step 2.

It is necesary to prevent the explosion of the swarm using the parameter Vmax ,
where Vmax is the point of saturation of the velocity, if the velocity of a particle is
greater than Vmax or smaller than −Vmax it is valorized as Vmax. If Vmax is too
small there is not enough exploration beyond locally good regions (may fall into
local optimal), if too large can be overcome with good solutions. Other parameters
to consider are:

- The number of particles (swarm size).
- The number of generations or iterations.
- The inertia weight (w).
- The reason for cognitive learning (c1).
- The reason of social learning (c2).

The recommended values for the parameters are the following:
The number of particles is between 10 and 40. The number of generations is

between 100 and 200. While more higher are the values of these parameters grows
the chance of finding the optimum but grows the computational cost. It is recom-
mended that c1 = c2 = 1.5 or c1 = c2 = 2, since the low values allow to explore
more regions before going to the objective. The weight of the inertia
(w) controls the impact of the historical velocity; high values facilitate the global
exploration and the small ones the local exploration while an appropriate value pro-
duces a balance between global and local search by reducing the amount of gen-
erations required. The rule is to give a high initial value and gradually decrease,
w(k) = Wmax− (Wmax−Wmin)/Ncmax ∗ k, it is suggested that Wmax = 1.4,

Using PSO and RST to Predict the Resistant Capacity of Connections 365

Wmin = 0.4. Other interesting alternative to prevent the explosion of the swarm
is using the restriction coefficient defined by expression 15.

const coe f f =
2

2−ϕ−
√
ϕ2−4ϕ

(15)

where ϕ = c1 + c2 > 4

3 Experimental Setup

In order to evaluate the quality of the weight set W obtained using the method pro-
posed in this paper the following study was performed.

The database has eight input variables and one output with a total of 66 instances.
The input variables are:

1. Area of the connector (area X10−2(m2))
2. Number connectors (nr).
3. Position of the connector (Pos).
4. Average width of the channel of the Steel Deck (bo).
5. Depth of the channel or the Steel Deck (hp).
6. Height of connector (hsc).
7. Resistance of the concrete to the compression (fc).
8. Tension of fluency of the connector (Fu).

The output for each instance is the value of resistant capacity (Q).
Using the method previously described proposed in this paper the weight for each

feature was computed W=(w1, . . . ,w8); after that, this W was used to implement
the k-NN method to approximate the real function, where the similarity function
employed in k-NN was F1 defined by expression 2 and using the weights in W.
The result obtained using this set W in the k-NN method was compared with other
four alternatives to W. The k-fold cross-validation process was employed. K - Fold
Cross - Validation divides the original dataset into 10 subsets of equal size where
one is used as test set while the others as used as the training set. Then the overall
accuracy of the classifier is calculated as the average precision obtained with all test
subsets. This technique eliminates the problem of overlapping test sets and makes
an effective use of all available data. The recommended value k = 10 was used[7].

Five alternatives of methods to calculate the weights and four values for k were
employed for the experimentation. The variants for calculating the weights are: (i)
the proposed method in this paper (called PSO+RST), (ii) assigning the same weight
to each feature (called Standard), (iii) three alternatives based in the expert criteria.
The value denoted by “optimum” it is the value of k that minimizes LOOCE, that it
is the error that is made in the prediction, this k is calculated for each instance of the
data set. The table 1 shows the five variants with their respective values of weights
and k. The first row showed the best set of weighs calculated by our method.

366 Y. Filiberto et al.

Table 1 Value of weight and k for each variant

Variant Values of K Values of weights for attributes

1 PSO+RST 1, 3, 5, optimum 0.406, 0.034, 0.086, 0.161, 0.117, 0.124, 0.059, 0.013

2 Standard 1, 3, 5, optimum 0.125 one-size-fits-all attributes

3 Variant 1 1, 3, 5, optimum 0.30, 0.075, 0.075, 0.075, 0.075, 0.075, 0.25, 0.075

4 Variant 2 1, 3, 5, optimum 0.25, 0.092, 0.092, 0.092, 0.092, 0.092, 0.20, 0.092

5 Variant 3 1, 3, 5, optimum 0.20, 0.108, 0.108, 0.108, 0.108, 0.108, 0.15, 0.108

The results obtained by these 20 variants were compared with the real value of
the resistant capacity according to the experiments that are described next.

Experiment 1: Comparing the results of accuracy of each alternative according to
the measures: (i) Mean Absolute Percentage Error (MAPE), (ii) Root Mean Square
Error (RMSE), and (iii) the average magnitude of the difference between the desired
value and that obtained by the prediction (PMD). These measures are defined by
expressions 16-18.

MAPE =

N
∑

i=1

∣
∣
∣

ai−yi
ai

∣
∣
∣

N
∗ 100% (16)

RMSE =

√
√
√
√
√

N
∑

i=1

∣
∣
∣

ai−yi
ai

∣
∣
∣
2

N
∗ 100% (17)

PMD =

N
∑

i=1
|ai− yi|

N
(18)

Where:

ai is the desired output value belonging to the BD of actual experimentation.
yi is the expected output value for each variant prediction.
N is the number of instances.

The results of MAPE, RMSE and PMD for each variant are summarized in Table 2
shown below.

The results of the errors are expressed in percent (MAPE and RMSE) and the
average (PMD) in absolute values. In the Table 2 we can observe that the values of
MAPE, RMSE and PMD, for the first variant (PSO+RST with k = 1) are smaller
than the other ones, you can also appreciate the difference among the values of this
variant with the other ones, for what we concludes that PSO+RST with k = 1 the is
the most effective variant.

Experiment 2: Comparing the results of accuracy of each alternative in order to
determine whether there are significant differences in accuracy with respect to the
real value by means of the coefficient R2, the correlation coefficient and standard

Using PSO and RST to Predict the Resistant Capacity of Connections 367

Table 2 Summary of results of errors MAPE, RMSE and PMD

Weight K neighbors MAPE (%) RMSE (%) PMD

PSO+RST K 1 11,841 14,657 6,432

K 3 14,807 21,711 7,192

K 5 17,405 25,966 8,326

K Optimum 19,304 33,151 9,399

Srandard K 1 14,7994 19,321 8,348

K 3 16,6067 22,793 8,155

K 5 18,680 28,341 8,527

K Optimum 26,367 44,439 10,572

Variant 1 K 1 15,478 21,236 8,522

K 3 17,395 26,693 8,626

K 5 19,142 31,848 9,156

K Optimum 22,452 37,783 9,962

Variant 2 K 1 13,819 18,658 7,524

K 3 16,644 23,772 8,305

K 5 18,341 29,940 8,684

K Optimum 22,777 39,357 9,625

Variant 3 K 1 14,071 18,218 7,637

K 3 15,914 22,639 7,884

K 5 18,117 28,749 8,433

K Optimum 24,205 40,929 9,961

error; in this case the best combination (PSO+RST with k = 1) was used for the
comparison.

In Table 3, the test values for the case of k = 1 are summarized because they were
the best results.

The stadistical analysis yielded the following results: With PSO + RST for k = 1,
for standard error, the results are significantly lower than the other variants, the R2

coefficient value is relatively high, above 86 %, and the correlation coefficient is
above 0.9.

Table 3 Summary of results statisticians of the experiment 2 for K = 1

K1 PSO+RST Standard Variant 1 Variant 2 Variant 3

Standard Error 7.7769 10,8661 11,3890 10,0711 9,7370

R2 Coefficient 0,8810 0,7667 0,7437 0,7996 0,8127

Correlation Coefficient 0,9386 0,8756 0,8624 0,8942 0,9015

We used nonparametric tests for two related samples (Wilcoxon test) where
RST+PSO with K = 1 was compared to the other variants of weight. We applied
the Monte Carlo method, confidence intervals 99% and a number of samples equal
to 66. We considered:

• significant→significance less than 0.05 and greater than 0.01
• highly significant→a significance less than 0.01

368 Y. Filiberto et al.

• fairly significant→a result less than 0.1 and greater than 0.05
• not significant→a result greater than 0.1.

In processing the results of the experiments we used the SPSS version 13.0. In
Table 4 we show the result of test of Wilcoxon.

Table 4 Test of Wilcoxon

PSO+RST-K=1 vs Others Variants R+ R− p-value

Standard K=1 7.73 6.67 .041

Variant 1 K=1 15 9.44 .037

Variant 2 K=1 11.18 8.38 .260

Variant 3 K=1 9.45 6.40 .063

These results show the PSO+RST k = 1 obtained better results than the other
alternatives to calculate the weights, and in some cases the difference is very notice-
able. For the case of the Wilconxon test we can observe that it overcomes signifi-
cantly to the standard variant of weights and for the remaining ones that it is the case
of the approach of experts it overcomes them in some significantly and in others not.

3.1 A Comparative Study between the New Method and Other
Classical Methods

As demonstrated above the best results of our method were obtained in the case of
PSO+RST with K = 1. Next, this method is compared with other classical methods
for the prediction of the resistant capacity of connectors (Q). These methods are:

- AISC-LRFD (LRFD) [2]
- Eurocode 4 (EC4) [1]
- NRMC 080: 2007 (CN) [3]

Table 5 shows the results of the comparison parameters between different calcula-
tion methods with PSO+RST. We can observe that the arithmetic mean approaches
more to the unit for the case of the PSO+RST method, that which means that the

Table 5 Summary of the comparison of the method of PSO+RST with the different calcula-
tion methods

Parameters Qexp/LRFD Qexp/NC Qexp/EC−4 Qexp/PSO+RST −K = 1

Arithmetic Mean 0,88883 1,16046 1,16172 1,00310

Max Value 1,23172 1,83945 1,84486 1,33991

Min value 0,56592 0,72086 0,72088 0,72276

Standard Deviation 0,13291 0,24862 0,24793 0,14302

Correlation Coefficient 0,89425 0,79491 0,79710 0,90715

0.85≤ Qexp/Q≤ 1.15 33 16 16 40

Qexp/Q < 0.85 20 10 10 8

Qexp/Q > 1.15 3 30 30 8

Using PSO and RST to Predict the Resistant Capacity of Connections 369

values obtained by the proposed method approach more to the real value that the
remaining methods. When observing the quantity of predictions that are inside the
central interval 0.85≤Qexp/Q≤ 1.15 we can say that the PSO+RST method gener-
ates more predictions in the interval. On the other hand the maximum and minimum
values in the proposed method are among the more approach to the unit and the
quantity of elements outside of the central interval for excess and for defect they are
the minor. This means that the proposed method is the most stable. For the case of
the standard deviation the proposed method is the second of smaller value, and the
correlation coefficient is the highest. To compare the experimental results we used
nonparametric tests for two related samples (Wilcoxon test) as the previous case.
The results of Wilcoxon test are revealed on Table 6.

Table 6 Test of Wilcoxon

PSO+RST-K=1 vs Methods R+ R− p-value

EC4 30.57 20.92 .000

NC 30.55 21 .000

LRFD 31.21 22.78 .002

We compared the average modulus of the differences between the actual value
and the experimental. It shown highly significant differences between the proposed
method and the different methods compared. The difference between the actual and
the experimental value is significantly lower with the proposed method.

4 Conclusions

In this paper a new method of function approximation was proposed to solve the
problem of the prediction of the resistant capacity of connectors, a classical task in
the branch of the Civil Engineering.

The solution to the problem was achieved by means of the implementation of
the k-NN method joint to the metaheuristic Particle Swarm Optimization. PSO al-
lows calculating the weights for the input variables included in the similarity func-
tion used to recover similar instances in the k-NN method. PSO looks for the set
of weights which maximizes the similarity between objects respects to the input
variables and the output value; for do this, a new measure based in the rough set
approach was introduced.

References

[1] Eurocode 4 (EN 1994-1-1). Desing of Composite Steel and Concrete Structures Part
1.1. European Committee for Standardization, Brussels (2004)

[2] Load and Resistance Factor Design (LRFD) Specification for Structural Steel Building.
American Institute of Steel Construction (AISC), Inc., Chicago (2005)

370 Y. Filiberto et al.

[3] NR 080-2007, Calculation of between floors made up of concrete and steel with soul
beams full subjected to load static. Code of good practical: Brunch Norma of the Min-
istry of the Construction of Cuba (2007)

[4] Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 537–551.
Springer, Heidelberg (2003)

[5] García Martíez, C., et al.: Global and local real-coded genetic algorithms based on
parent-centric crossover operators. European Journal of Operational Research 185,
1088–1113 (2008)

[6] Dasarathy, B.V., Sánchez, J.S.: Nearest neighbour editing and condensing. tools - syn-
ergy exploitation. Pattern Analysis Applications (2000)

[7] Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7, 1–30 (2006)

[8] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995
IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Service Cen-
ter, Piscataway (1995)

[9] Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann Publishers, San Fran-
cisco (2001)

[10] Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems
through particle swarm optimization. Natural Computing 1, 235–306 (2002)

[11] Reyes-Sierra, M., Coello Coello, C.: Multi-objective particle swarm optimizers: A
survey of the state-of-the-art. International Journal of Computational Intelligence Re-
search 2(3), 287–308 (2006)

[12] Mitchell, T.: Machine learning, p. 414. McGraw Hill, New York (1997)
[13] Pawlak, Z.: Rough sets. International Journal of Information Computer Sciences 11,

145–172 (1982)
[14] Lopez, R.L., Armengol, E.: Machine learning from examples: Inductive and lazy meth-

ods. Data Knowlege Engineering 25, 99–123 (1998)
[15] Herrera, F., Lozano, M., Sánchez, A.: A taxonomy for the crossover operator for real

coded genetic algorithms: An experimental study. International Journal of Intelligent
Systems 18, 309–338 (2003)

[16] Gabel, T., Riedmiller, M.: CBR for state value function approximation in reinforcement
learning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620,
pp. 206–221. Springer, Heidelberg (2005)

Improvement Strategies for Multi-swarm PSO
in Dynamic Environments

Pavel Novoa-Hernández, David A. Pelta, and Carlos Cruz Corona

Abstract. Many real world optimization problems are dynamic, meaning that their
optimal solutions are time-varying. In recent years, an effective approach to address
these problems has been the multi-swarm PSO (mPSO). Despite this, we believe that
there is still room for improvement and, in this contribution we propose two simple
strategies to increase the effectiveness of mPSO. The first one faces the diversity
loss in the swarm after an environment change; while the second one increases the
efficiency through stopping swarms showing a bad behavior. From the experiments
performed on the Moving Peaks Benchmark, we have confirmed the benefits of our
strategies.

1 Introduction

Real world is full of problems where uncertainty and dynamism are features that
should be taken into account. Many of these phenomena occur in industrial or busi-
ness environments, where there is a need to find high quality solutions. A particular
case are the so called dynamic optimization problem (DOP), whose main character-
istic is that their optimal solutions are time-varying. In other words, the objective
function changes with time.

Denoting Ω as search space, a DOP can be formally defined as the set of objective
functions f (t) :Ω → IR (t ∈ IN0) where the goal is to find the set of global optimums
X (t) in every time t, that:

Pavel Novoa-Hernández
Dept. of Mathematics,
University of Holguin, Cuba
e-mail: pnovoa@facinf.uho.edu.cu

David A. Pelta · Carlos Cruz Corona
Dept. of Computer Science and Artificial Intelligence,
University of Granada, 18071 Granada, Spain
e-mail: {dpelta,carloscruz}@decsai.ugr.es

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 371–383, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

pnovoa@facinf.uho.edu.cu
{dpelta,carloscruz}@decsai.ugr.es

372 P. Novoa-Hernández, D.A. Pelta, and C.C. Corona

X (t) = {x∗ ∈Ω | f (t)(x∗)� f (t)(x),∀x ∈Ω}.
Here, � is a comparison relation which means is better than, hence �∈ {≤,≥}.
These DOPs can be also understood as tracking problems, where one has to stay as
close as possible to a peak that is moving.

It is usually claimed that population based techniques are well suited to deal
with DOPs as it is easier to track a moving optimum using a set of solutions than
using a trajectory based method. Most existing work uses computational methods
(mainly based on evolutionary computing) that have been effective in stationary
problems and have had to undergo certain adjustments to ensure proper behavior
in dynamic environments [2, 8, 13]. One of these computational paradigms is the
Particle Swarm Optimization (PSO)[10]. PSO is based on the social behavior of
organisms that live and do most of their activities in groups (eg. bird flocks, fish
schools). Because of it is easy to implement and effective in complex problems,
PSO has been applied in various real problems, see [3] for a good survey.

In order to adapt a PSO for dynamic environments, two important features must
be addressed: outdated memory and diversity loss. The outdated memory appears
when the best solutions obtained so far by the algorithm are no longer true (eg.
the global memory), this implies that particles fly will be around false attractors.
Diversity loss occurs when the global optimum is shifted away from a converged
swarm. In that case, if the swarm is already converged (or has a significant level of
convergence), the slow velocities of its particles prevent it to reach the new shifted
optimum. This behavior is quite similar to be trapped in local optima in multi-modal
optimization problems. While the first of these adaptation issues can be solved rel-
atively easy (eg. updating particle and swarm memories) the diversity loss is more
difficult to deal with.

Among the methods to overcome the above issues, effective multi-population
approaches had been proposed by Blackwell and Branke in [4]: the multi-swarm
charged PSO (mCPSO) and the multi-swarm quantum PSO (mQSO). Both imple-
ment an atomic structure for the swarms: neutral (classic PSO) particles are mov-
ing close to the current best (nucleus), and charged/quantum particles are moving
around the nucleus. In what follow we will call multi-swarm PSO (or just mPSO) to
the approach (not to a certain algorithm) represented by the algorithms mCPSO and
mQSO. Although mPSO had shown good results in certain dynamic environments,
we believe that there is still room for improvement.

In this context, the aim of this contribution is to provide two simple mechanisms
to enhance the performance of the mPSO approach. This will be achieved through:
a new diversity management strategy and swarm control strategy which will detect
and stop those swarms showing a bad behavior. This paper is organized as follows:
Section 2 presents some theoretical foundations of this research. Later, in Section 3
is intended to detail our strategies. Section 4 describes the experiments performed.
Finally, conclusions and future work arising from this work are shown in Section 5.

Improvement Strategies for Multi-swarm PSO in Dynamic Environments 373

2 Multi-swarm PSO in Dynamic Environments

PSO is a stochastic, population-based technique proposed by Kennedy and Eberhart
[9]. Basically each individual i (called particle) is a candidate solution, whose move-
ment in the search space is governed by four vectors: its position xi, its speed vi, the
position of the best solution found individually pi, and the position of the best solu-
tion found in the neighborhood gbest . When the neighborhood is represented by the
whole swarm, then the resulting model is called gbest, otherwise lbest. In this work
we consider the gbest model. Specifically, the formulas that govern the dynamics of
the particles are:

v(t+1)
i = ω v(t)

i + c1η1 ◦ (pi−x(t)
i)+ c2η2 ◦ (gbest−x(t)

i) (1)

x(t+1)
i = x(t)

i + v(t+1)
i (2)

Where ω is an inertia weight that says how much of the previous velocity will be
preserved in the current one. Besides, c1 and c2 are acceleration constants, while η1

and η2 are random vectors with components in the interval [0.0,1.0]. Note that the
operator ◦ means an entrywise product.

The basic PSO scheme has been used as a basis for developing more sophisti-
cated, problem-specific algorithms. In the context of optimization in dynamic en-
vironments, there are several works in literature based on PSO. Among them, we
should highlight the multi-swarm approach proposed in [4] (mPSO for short). The
simultaneous use of several swarms not only allows for an effective exploration of
the search space, but also to follow the optima over time if the DOP is multimodal.
The main steps of the mPSO approach are shown in Algorithm 7:

Algorithm 7. The mPSO approach

Randomly initialize the particles in the search space;1

while stopping condition is not met do2

Apply exclusion test;3

Apply anti-convergence test;4

Detecting changes in the environment;5

foreach swarm s do6

Move its particles according to their type (neutral, charged or quantum);7

Evaluate each particle position;8

Update pi and gbest ;9

endfch10

endw11

The exclusion principle avoid multiples swarms exploring the same optimum.
If two swarms are close enough then the worst of them is reset randomly over the
search space. Moreover, the anti-convergence test is intended to explore new areas
of space, through the reset of the worst among all the swarms. For more details
about the mPSO functionalities, please refer to [4].

374 P. Novoa-Hernández, D.A. Pelta, and C.C. Corona

The use of multiple swarms in PSO in dynamic environments has been suggested
not only by the mPSO approach. Other authors have proposed other interesting al-
ternatives. See for example the speciation-based PSO (SPSO) [11] or the Different
Topology Multi-swarm PSO (DTMPSO) [14].

3 Improvement Strategies for Multi-swarm PSO

In this section, we describe the two strategies for improving the mPSO approach.
Firstly, we propose a diversity management strategy that will be applied after a prob-
lem’s change. Secondly, we describe a swarm control mechanism that will detect
and stop those swarms showing a bad behaviour.

3.1 Diversity Management Strategy

The diversity mechanism in mPSO is based on the use of charged and quantum
particles. However, recent studies confirmed that the usefulness of these particles
strategies is not always satisfactory throughout the run [1]. For example, quantum
particles are useful as a response to problem change.

Here, we will just use standard particles and apply the strategy shown in Fig. 1.
When a change is detected, each swarm is divided into two groups depending on
the quality of the particles. A β part will remain fixed, while the rest (1−β) will
be diversified. Similarly, the later population is also divided in two groups of sizes
α and (1−α). The particles in the former group will be randomly reset over the
whole search space, while those in the later, will be resampled around the swarm
best particle (eg. gbest).

% restart around the
best (1 − α)

% restart in the
search space (α)

% diversified particles
(1 − β)

best onesworst ones

worst onesbest ones

% fixed particles
(β)

swarm

After the problem
changed

Fig. 1 Diversity management strategy after a problem’s change

Improvement Strategies for Multi-swarm PSO in Dynamic Environments 375

This resampling around gbest is performed by a Gaussian perturbation of a ran-
domly selected component of the position vector. For example being xk

i the k-th
component of particle i, then: xk

i = gk
best + N(0,1), where gk

best is the k-th compo-
nent of the vector gbest , and N(0,1) stands for a random number generator using a a
normal distribution with 0 mean and 1 variance. In what follows we refer to mPSO
scheme with diversity strategies described above as mPSOD.

3.2 Swarm Control Mechanism

The idea underlying this mechanism is quite simple: if a swarm is showing a bad
behaviour then, we can stop it. As a consequence it will not waste cost function
evaluations that could be profitable to other swarms. This idea was also developed
in the context of multi-threads cooperative strategies for optimization [12].

In order to model the concept of bad behaviour, and being s a swarm, we resort
to the following simple fuzzy decision rule: IF (the quality of s is low AND s has
converged)) THEN Stop s.

To measure the quality of a swarm s we will calculate its degree of membership
to the fuzzy set of low quality swarms using the membership function shown in 3.
This function takes as argument the fitness of a particular swarm.

μlow(x) =

⎧
⎪⎨

⎪⎩

0.0 si x > b;
(b−x)
(b−a) si a � x � b;

1.0 si x < a.

(3)

Here, a and b are two time-varying parameters. Formally, in each generation both
are updated through the following expressions:

a =
1
m

m

∑
i=1

f (t)(gi) (4)

b = max
i=1...m

f (t)(gi) (5)

where m is the number of swarms in the algorithm. In short, the quality of a swarm
depends on the average quality of the set of swarms and on the quality of the best of
the swarms. The first part of the rule’s antecedent will be True when μlow(f its)≥ γ .
The value γ-cut is the threshold to define the low quality feature.

It would be unfair to measure the quality of the swarms regardless of their level
of convergence. Especially since a fitness value does not has the same meaning
or significance at different stages of convergence. That’s why we have considered
the atomic state as a measure of convergence of the swarm. Denoting the cloud of
diversified particles as Bcloud and the set of fixed particles as N, then we can formally
establish the atomic state by the following function:

isInAtomState(s) =
{

true if ‖BN‖> ‖N‖
2 ;

f alse otherwise.
(6)

376 P. Novoa-Hernández, D.A. Pelta, and C.C. Corona

where BN = {i ∈ s|xi ∈ Bcloud}, is the set of neutral particles that are within the
cloud. The cloud Bcloud depends on a radii rcloud , which will be equal to 1.0 as
suggested in [4].

Now, the rule is implemented as:

IF (no change AND isInAtomState(s) AND μlow(f its)≥ γ) THEN Stop s.

Note that we also added the antecedent no change, which means that there is no
change in the environment (at least recently). The mPSO approach with the two
strategies described above is shown in Algorithm 8.

Algorithm 8. The mPSO approach with two new strategies

Randomly initialize the particles in the search space;1

while stopping condition is not met do2

Apply exclusion test;3

Apply anti-convergence test;4

Detect changes in the environment;5

foreach swarm s do6

if change then7

generateInSearchSpace(s);8

generateAroundGBest(s);9

endif10

if no change and isInAtomState(s) and μlow(f its)≥ γ then11

Stop s;12

endif13

else14

Move its particles according to their type (neutral, charged or quantum);15

Evaluate each particle position;16

Update pi and g;17

endif18

endfch19

Update a and b parameters;20

endw21

Note that the diversification strategy after the change is represented by the first if
block, which contains the generateInSearchSpace(s) and generateAroundGBest(s)
functions. Furthermore, the strategy for increasing efficiency by stopping low qual-
ity swarms is contained in the second if block.

4 Experiments

The main objective of the experiments is to study the impact of the parameters
related to the strategies discussed above. For comparative purposes we selected as
test problem the well known Scenario 2 of the Moving Peaks Benchmark (MPB),
proposed in [5]. The parameter settings of the Scenario 2 are shown in Table 1.

Improvement Strategies for Multi-swarm PSO in Dynamic Environments 377

Table 1 Standard settings for the Scenario 2 of the Moving Peaks Benchmark

Parameter Setting

Number of peaks (p) 10
Number of dimensions (d) 5
Peaks heights (Hi) ∈ [30,70]
Peaks widths (Wi) ∈ [1,12]
Change frequency (Δe) 5000
Change severity (s) 1.0
Correlation coefficient (λ) 0.0

Table 2 Algorithm settings indicating the presence (�) or absence (–) of features. The values
within parenthesis stands for the number of corresponding particles. Diversity and Swarm
Control refer to our proposals

Algorithm Neutral particles Quantum particles Diversity Swarm Control

mQSO �(5) �(5) – –

mQSOE �(5) �(5) – �
mPSOD �(10) – � –

mPSODE �(10) – � �

Several algorithms will be used for the computational experiments. These are
shown in Table 2, where the main features for each method are described. The reader
should note that for mQSO and mQSOE, the diversity is obtained using neutral and
quantum particles simultaneously and it would have no sense to also include our
diversity management strategy. Nevertheless, the swarm control mechanism can be
added to the mQSO method. The basic method mPSO is not included as it is not
well suited to deal with dynamic environments.

To evaluate the algorithms performance we used the offline error measure, which
is an error average through the run [6]. The offline error is always greater or equal
to zero, so if it becomes zero means a perfect algorithm performance. This measure
has the following expression:

error(t)
o f f line =

1
t

n

∑
t=1

(f (t)(xglobal)− f (t)(xbest)) (7)

Unless otherwise stated, we performed 30 runs with different random seeds for the
problem and algorithms. Every algorithm has 10 swarms with 10 particles each.
Besides, with respect to the PSO parameters we have selected the following values:
ω = 0.7298 and c1 = c2 = 1.4960, as suggested in [7].

378 P. Novoa-Hernández, D.A. Pelta, and C.C. Corona

4.1 Analysis of the Diversity Management Strategy

Here, we will analyze how the diversity setup (parameters α and β) affects the
performance of the algorithm when different severities of the changes occurs. It is
important to note that the severity (s) is one the most influential parameter in the
algorithm’s performance. It represents the magnitude of change (eg. the distance
that problem’s optimum will be displaced as a result of an environment change).

To better explore the impact of the parameters α and β , we have tested the mP-
SOD algorithm on the Scenario 2 but with different severity values s ={0, 2, 4, . . . ,
10}. For each severity value, we tested every combination of α and β in the range
{0.00, 0.25, 0.50, 0.75, 1.00} leading to 25 different diversity configuration variants
of mPSOD.

The results are shown in Figure 2, which contains contour plots for different
severities. Each contour plot shows how α and β affect the performance of the
algorithm. The color bars on the right side indicates the correspondence of each
color with the offline error value. As the severity increases, we can observe that
the black area looks like a triangle with the base concentrating around β = 0.50
and the top vertex goes down (the corresponding α values is decreasing). Also the
error increases as the severity is greater. This is quite obvious since problem optima
(represented by peaks) move to ever larger distances.

From the plots, it can be said that the best results are clustered around α = 0.00
and β = 0.50 (eg. 0% and 50% resp.). This means that after the change, the best
strategy is to diversify half the population around gbest. These results are in corre-
spondence with those obtained in [4], where the best configuration for each swarm
is (5 + 5q) (5 neutral and quantum particles).

4.2 Analysis of the Swarm Control Mechanism

Now we will analyze the impact of detecting and stopping the swarms that show
bad behaviour. The swarm control mechanism is included in the best mPSOD al-
ternative (eg. α = 0.00, β = 0.50) and also in the mQSO [4] algorithm. The new
algorithms will be called mPSODE and mQSOE respectively and both are tested
with the parameter γ ∈ {0.00, 0.25, 0.50, 0.75, 1.00}.

The results over the Scenario 2 of MPB are shown in the Table 3. We have also
included the basic algorithms (eg. mQSO and mPSOD) for comparison purposes.
In order to ascertain whether our strategy can be used without a predefined value
for the γ-cut, we have considered randomly generating this value at runtime (γ ∈
random(0.0,1.0)). In this case, our strategy would not add an extra parameter to
the mPSOD approach, which is kept as simple as possible. Table 3 also includes for
each algorithm the minimum and maximum offline error, and the improvement rate
compared with mQSO.

The superiority of the algorithms including the control mechanism is clear, except
for the variants with γ = .00. This is because, for this γ value, all the swarms are
stopped until a new environment change is detected. Interestingly, when γ = rand

Improvement Strategies for Multi-swarm PSO in Dynamic Environments 379

β(%)

α(
%

)
a) severity = 0.0

0 25 50 75 100
0

25

50

75

100

0 25 50 75 100
0

25

50

75

100
d) severity = 6.0

β(%)

α(
%

)

b) severity = 2.0

β(%)

α(
%

)

0 25 50 75 100
0

25

50

75

100
e) severity = 8.0

β(%)
α(

%
)

0 25 50 75 100
0

25

50

75

100

c) severity = 4.0

β(%)

α(
%

)

0 25 50 75 100
0

25

50

75

100
f) severity = 10.0

β(%)

α(
%

)

0 25 50 75 100
0

25

50

75

100

0.4

0.6

0.8

4

6

8

10

2

3

4

5

6

8

10

12

3

4

5

6

7

8

7

8

9

10

11

12

13

Fig. 2 Contour plot for different instances of the MPB. The bar on the right side associated
the color with the offline error

the mQSOE and mPSODE performances are as good as the best alternative (eg.
when γ = 0.25).

To statistically analyze the benefit of our mechanism, we have selected the
most representative algorithms (eg. mQSO, mQSOEγ=.25, mQSOEγ=rand, mPSOD,
mPSODEγ=.25 and mPSODEγ=rand). First, we applied a Friedman test to detect dif-
ferences at group level. The ρ-value for this test was 0.000, thus suggesting that
significant differences exist in at least one pair of algorithms. Then, we applied
a Wilcoxon test to detect which pairs of algorithms have these differences. The
ρ-value for each pair of algorithms is shown in Table 4.

Note that almost all comparisons showed significant differences between the al-
gorithms (according a significance level of 0.05). The situation is different for pairs
mQSOEγ=.25-mPSODEγ=.25 and mQSOEγ=rand-mPSODEγ=rand, which have simi-
lar performance (ρ > 0.05). In that sense, perhaps the most important conclusions
emerging from these comparisons are: first our variants outperform the state-of-art
mQSO (even mPSOD that only includes the new diversity strategy), and second
the strategy for increasing efficiency can be used without having to set a predefined
value for the γ parameter.

380 P. Novoa-Hernández, D.A. Pelta, and C.C. Corona

Table 3 Offline error for different values of γ in the Scenario 2 of MPB. Value rand stands
for a random number in [0.0,1.0]

Algorithm Mean(Std. Dev.) Maximum Minimum Improvement rate

mQSO 1.57(0.32) 1.08 2.29 -

mQSOEγ=.00 3.15(0.56) 2.16 4.20 -100.99%

mQSOEγ=.25 0.83(0.29) 0.48 1.60 47.40%

mQSOEγ=.50 0.90(0.27) 0.53 1.60 42.63%

mQSOEγ=.75 1.02(0.32) 0.62 1.80 35.11%

mQSOEγ=1.0 1.17(0.35) 0.73 2.03 25.68%

mQSOEγ=rand 0.92(0.29) 0.54 1.71 41.09%

mPSOD 1.17(0.27) 0.68 1.80 25.33%

mPSODEγ=.00 2.57(0.39) 1.74 3.42 -63.52%

mPSODEγ=.25 0.88(0.33) 0.48 1.97 44.17%

mPSODEγ=.50 0.94(0.38) 0.48 2.24 40.18%

mPSODEγ=.75 1.03(0.36) 0.50 1.84 34.32%

mPSODEγ=1.0 1.20(0.39) 0.56 2.04 23.82%

mPSODEγ=rand 0.94(0.34) 0.45 1.82 39.90%

Table 4 ρ-values for the Wilcoxon test

mQSO mQSOEγ=.25 mQSOEγ=rand mPSOD mPSODEγ=.25 mPSODEγ=rand

mQSO – – – – – –

mQSOEγ=.25 .000 – – – – –

mQSOEγ=rand .000 .001 – – – –

mPSOD .000 .000 .000 – – –

mPSODEγ=.25 .000 .504* .014 .000 – –

mPSODEγ=rand .000 .000 .861* .000 .033 –

To extend our analysis, we have plotted the evolution of the offline error and the
optimum tracking over time. To make the comparison more understandable we have
separated mQSO from mPSOD, and we have only considered the first 50 changes
the problem. These algorithms will be compared with their respective best variants,
mQSOEγ=.25 and mPSODEγ=.25. Figures 3 and 4 show the plots. As can be seen,
there are clear differences between algorithms, which in mQSO-mQSOEγ=.25 pair
are more remarkable than the other one.

Improvement Strategies for Multi-swarm PSO in Dynamic Environments 381

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8
A

vg
. O

ffl
in

e
er

ro
r

(3
0

ru
ns

)
a) Offline error

Problem change

0 5 10 15 20 25 30 35 40 45 50

65

66

67

68

b) Optimum tracking

A
vg

.
O

ffl
in

e
pe

rf
or

m
an

ce
 (

30
 r

un
s)

Problem change

mQSO mQSOEγ = .25

Optimum mQSO mQSOEγ = .25

Fig. 3 Evolution of the offline error and optimum tracking. Pair mQSO-mQSOEγ=.25

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

A
vg

. O
ffl

in
e

er
ro

r
(3

0
ru

ns
)

a) Offline error

Problem change

0 5 10 15 20 25 30 35 40 45 50

65

66

67

68

b) Optimum tracking

A
vg

.
O

ffl
in

e
pe

rf
or

m
an

ce
 (

30
 r

un
s)

Problem change

mPSOD mPSODEγ = .25

Optimum mPSOD mPSODEγ = .25

Fig. 4 Evolution of the offline error and optimum tracking. Pair mPSOD-mPSODEγ=.25

382 P. Novoa-Hernández, D.A. Pelta, and C.C. Corona

5 Conclusion

In this work we have proposed two simple control mechanisms to improve the per-
formance of a well-known approach for optimization in dynamic environments: the
multi-swarm PSO (mPSO). The first of these strategies is intended to diversify the
swarm after the problem undergoes a change. Through the experiments performed,
it has been observed that the best strategy is to divide half the population of each
swarm, a party must remain unchanged while the other must be diversified around
the best solution in the swarm. Obviously, this conclusion is valid so far only for
instances of problems discussed. Remains to be seen whether this strategy are valid
for different dynamic problems as well.

The second strategy is aimed at improving mPSO through stopping those swarms
with bad behavior and a certain level of convergence. The experimental results con-
firmed a remarkable improvement in those algorithms using this idea because of
a simple reason: the resources (objective function evaluations) are not wasted in
unprofitable areas of the search space.

As future work, we consider that self-adaptation is a clear research area to ex-
plore. The parameters that govern these control mechanisms can be carried by every
swarm and then centralized/descentralized sharing information mechanism can be
used to promote those parameters configurations that are well suited at every stage
of the search.

Acknowledgments

Pavel Novoa-Hernández has the support of the Coimbra Group Scholarships Programme
for Young Professors and Researchers from Latin American Universities. In addition, This
work is supported by Projects TIN2008/01948 from the Spanish Ministry of Science and
Innovation and P07-TIC02970 from the Consejería de Innovación Ciencia y Empresa, Junta
de Andalucía.

References

[1] Garcia del Amo, I., Pelta, D., Gonzalez, J., Novoa, P.: An analysis of particle properties
on a multi-swarm pso for dynamic optimization problems. In: CAEPIA-TTIA (2009)

[2] Angeline, P.: Tracking extrema in dynamic environments. In: Angeline, P.J., McDon-
nell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 335–345.
Springer, Heidelberg (1997)

[3] Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. part ii:
hybridisation, combinatorial, multicriteria and constrained optimization, and indicative
applications. Natural Computing: an international journal 7, 109–124 (2008)

[4] Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)

[5] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1875–
1882. IEEE Press, Los Alamitos (1999)

Improvement Strategies for Multi-swarm PSO in Dynamic Environments 383

[6] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems. In: Tsutsui, S., Ghosh, A. (eds.) Theory and Application of Evolutionary
Computation: Recent Trends, pp. 239–262. Springer, Heidelberg (2002)

[7] Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Computa-
tion 6(1), 58–73 (2002)

[8] Dasgupta, D., Mcgregor, D.: Nonstationary function optimization using the structured
genetic algorithm. In: Parallel Problem Solving From Nature, pp. 145–154. Elsevier,
Amsterdam (1992)

[9] Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings
of the Sixth International Symposium on Micro Machine and Human Science MHS
1995, pp. 39–43. IEEE Press, Los Alamitos (1995)

[10] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Confer-
ence on Neural Networks, vol. 4, pp. 1942–1948 (1995),
doi:10.1109/ICNN.1995.488968,
http://dx.doi.org/10.1109/ICNN.1995.488968,

[11] Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dynamic
environment using speciation. In: IEEE Congress on Evolutionary Computation, pp.
98–103 (2004)

[12] Pelta, D., Sancho-Royo, A., Cruz, C., Verdegay, J.L.: Using memory and fuzzy rules
in a co-operative multi-thread strategy for optimization. Information Sciences 176(13),
1849–1868 (2006)

[13] Pelta, D., Cruz, C., Verdegay, J.: Simple control rules in a cooperative system for dy-
namic optimization problems. International Journal of General Systems 38(7), 701–717
(2009)

[14] Xiangwei, Z., Hong, L.: A different topology multi-swarm pso in dynamic environment.
In: IEEE International Symposium on IT in Medicine & Education, vol. 1, pp. 790–795
(2009), doi:10.1109/ITIME.2009.5236313

http://dx.doi.org/10.1109/ICNN.1995.488968

J.R. González et al. (Eds.): NICSO 2010, SCI 284, pp. 385–397, 2010.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Particle Swarm Optimization Based Tuning of Genetic
Programming Evolved Classifier Expressions

Hajira Jabeen* and Abdul Rauf Baig

Abstract. Genetic Programming (GP) has recently emerged as an effective tech-
nique for classifier evolution. One specific type of GP classifiers is arithmetic
classifier expression trees. In this paper we propose a novel method of tuning
these arithmetic classifiers using Particle Swarm Optimization (PSO) technique. A
set of weights are introduced into the bottom layer of evolved GP classifier ex-
pression tree, associated with each terminal node. These weights are initialized
with random values and optimized using PSO. The proposed tuning method is
found efficient in increasing performance of GP classifiers with lesser computa-
tional cost as compared to GP evolution for longer number of generations. We
have conducted a series of experiments over datasets taken from UCI ML reposi-
tory. Our proposed technique has been found successful in increasing the accuracy
of classifiers in much lesser number of function evaluations.

1 Introduction

Data classification has received increasing interest as a consequence of tremend-
ous increase in data generating abilities due to automation. The task of classifica-
tion can be viewed as labeling unseen data based upon some knowledge extracted
from data with known labels. Automated classification algorithms are required to
handle the problem of knowledge discovery from large amounts of data. Evolutio-
nary algorithms have been found efficient in solving classification problems due
to their stochastic global search mechanism.

"Genetic programming is an evolutionary computation technique that automati-
cally solves problems without requiring the user to know or specify the form or
structure of the solution in advance" [1].These inductively learned solutions are
efficient in learning hidden relationships among data and discriminate them in a
concise mathematical manner. Since introduction of GP, various methods have
been introduced to for data classification using GP. These solutions range from
derivation of decision trees [2], evolution of classification rules [3] and generation
of SQL queries [4]. A relatively new GP based classification method is numeric
expression trees [5]. These mathematical expressions trees are evolved using GP
as discriminating expression for a certain class using some arithmetic functions
and variables defined the in the primitive set. The variables are usually the
attributes present in training data and some constants.

*Hajira Jabeen · Abdul Rauf Baig
National University of Computer and Emerging Sciences,
Department of Computer Science, Islamabad, Pakistan
e-mail: hajira.jabeen@nu.edu.pk, rauf.baig@nu.edu.pk

386 H. Jabeen and A.R. Baig

The expression trees evolved using GP can form arithmetic or logical expres-
sions based upon the primitive set used. In either case these expressions output a
single numeric value and this value must be translated into the class labels. In case
of binary classification one can simply assign one class to positive values and oth-
er class to negatives output values. The challenge arises in the case of Multi-Class
classification problems where a single output has to be mapped to more than two
classes. For this case methods like Static Range Selection [5] and Dynamic Range
Selection [6] have been proposed.

GP presents numerous advantages for classification purpose. GP offers flexible
and complex search space to search during classifier evolution. The classifier re-
presentations differ in each run, so we can eventually get several different classifi-
ers with same or slightly different accuracy [7]. Easy and fast interpretation of
result is possible as only one expression is evaluated to obtain the result [13]. The
dependencies inherent in the data can be inducted into the classifier without expert
intervention [7]. The classifiers are data distribution free, and able to operate upon
the data in its original form [7].

Apart from above mentioned benefits, GP also suffers from the following is-
sues:- GP based classification requires long training time. The classifiers increase
in their complexity if necessary measures for avoiding code growth are not taken
into account. GP yields different results after each run, both in structure of
solution and accuracy.

In this paper we present a novel method for tuning of evolved classifiers mak-
ing them more efficient and accurate. Several datasets with varying classes and
attributes have been used to support the effectiveness of proposed tuning algo-
rithm. Next section gives an overview of classification methods that use GP and
an introduction to Particle Swarm Optimization PSO used for tuning. Method sec-
tion explains the GP Algorithm used for classification and PSO based tuning algo-
rithm proposed in this paper. Results section presents the experimental results fol-
lowed by conclusions in the end.

2 Literature Review

2.1 Classification Using Genetic Programming

GP’s outstanding abilities for the task of classification have been recognized since
its inception [14]. Lots of work has been done to solve the problem of
classification using GP. The main reason of interest in GP for classification is its
ability to represent and learn solutions of varying complexity. In this section we
will discuss some of the major techniques used for classification using GP.

Alex Frietas [4] has introduced a GP based classification framework where
SQL queries are encoded into the GP Grammar. These are named Tuple Set De-
scriptor (TSD). The fitness of an individual is the number of rows satisfying the
TSD. The framework incorporates lazy learning, i.e. rule consequences are eva-
luated first and one with the higher fitness is assigned to the rule. The advantages
of using SQL based encoding is faster and parallel execution of queries, scalability
and privacy. Another method using GP Classifier Expressions (GPCE) for

PSO Based Tuning of Genetic Programming Evolved Classifier Expressions 387

Multi-Class classification is used by Kishore et al [7]. A 'c' class problem is de-
composed into 'c' two class problems. And a GPCE is evolved to discriminate
each class from other classes. They define Strength of Association and Heuristic
rules to tackle the conflicts arising between classifiers of different classes. They
have used incremental learning and interleaved data format for speedup in the
learning process. The work done by Bozarczuk et al [8] discovers classification
rules for chest pain diagnosis. There are 12 classes present in the dataset and 165
attributes and 138 examples only. They have also evolved GP system for each
class separately i.e. 12 times and chose best member as representative rule for
each class. The fitness function takes into account classification accuracy, sensi-
tivity, specificity and rule simplicity. At the end predictive accuracy of rule set as
a whole and that of individual rules is evaluated. Loveard et al [6] have evaluated
five different methods for Multi-Class Classification using strongly typed GP. One
is binary decomposition in which the given problem is decomposed into binary
problem, where one class is named as desired class and all other classes present in
the data are assigned to reject class, the process is repeated for each class. Other
method is static range selection, where the real output of a GP tree is divided into
class boundaries and classes are assigned to input data based upon the GP tree
output. Third method is dynamic range Selection where a subset of data is used to
dynamically determine the class boundaries, and rest of the training data is used to
evolve the classifiers. Fourth method is class enumeration, where a new data type
is introduced into the terminal set of the GP trees. And all trees return a class type
which is enumeration of the classes present in the data. The last method used is
evidence accumulation, in which each GP tree contains a vector data storage cor-
responding to each class and these values are updated using new terminal which
adds values ranging from -1 to 1 to the vector position particular class. The high-
est value is declared as the class outcome of tree. The results show that the dynam-
ic range selection method is better for both binary and Multi-Class classification.
Loveard et al have proposed two methods for classification of data containing no-
minal attributes [9]. One method considers splitting of GP execution based upon
the value of a nominal attribute (execution branching) and other is conversion of a
nominal attribute to binary or continuous attribute. Both methods are found effi-
cient for classification of data containing nominal attributes. An interesting ap-
proach for Multi-Class classification using GP has been proposed by Muni [10]. In
which collaborative view of classifiers for all the classes is considered. A Multi-
Tree representation for classifier is presented. A chromosome has as many trees as
there are classes in the data and each tree represents acceptor for samples belong-
ing to its own class and rejecter to samples belonging to other classes. For evolu-
tion of this type of classifiers modified crossover operator is proposed. A new
notion for unfitness of trees for genetic operations is proposed. A method Oring is
proposed to combine results of classifier to achieve better performance. Heuristic
rules and weight based scheme are also used to cater for ambiguous conflicting
situations. The classifiers are can also output a 'do not know' when confronted
with unfamiliar exemplars. A method for addition of weights has been proposed in
[11] for Multi-Class object classification. The method for classification is range
selection and the gradient descent method is used for searching during the evolu-
tion of GP Classifiers. This methodology makes the system more complex but it

388 H. Jabeen and A.R. Baig

offers increase in performance of Genetic Programs. Many others methods have
also been proposed for data classification using GP.

GP is found a very efficient innovative technique to handle to problem of data
classification. GP suffers from an inherent drawback of inefficient code growth
(bloat) during evolution. This increases the program complexity during the evolu-
tion process without effective increase in fitness. This increase in complexity has
to be tackled explicitly by placing a bound on the upper limit of tree depth or
nodes of the tree.

Another issue with GP based classification is long training time, which increas-
es many folds with the increase in tree sizes during evolution. In this paper we
have proposed a method that eliminates the need of evolving GP for longer num-
ber of generations and optimizes the GP evolved intelligent structures using PSO.
Next section discusses some basics of PSO algorithm used for optimization in our
proposed technique.

2.2 Particle Swarm Optimization

Particle Swarm Optimization Algorithm is originally formulated by Kennedy and
Eberhart in 1995 [12]. Although it is also classified as an evolutionary algorithm
but it models the sociological principle of bird flocking behavior during flying.
The algorithm usually operates upon set of real multidimensional points scattered
in the search space. These points move with certain velocity in the search space,
mimicking bird's flight in search of optimal solution. The velocity of a particle in a
given iteration is a function of the velocity of the previous step, its best previous
position in the search space and the global best position. This exhibits a behavior
of flying towards better position keeping in view its own best position and exploit-
ing the knowledge of global best particle. The algorithm has been compared with
various evolutionary algorithms and found equally efficient. Following are the
update equations for particles in standard PSO.

iii VXX += (1)

igbestilbestii XXrandCXXrandCVV −+−+=)1,0()1,0(10ω (2)

Where X gbest is the global best or local best particle and X lbest is the personal best
of each particle. The values C0 and C1 are problem specific constants.

The Equation (1) is used to update position of a particle and Equation (2) is
used to update the velocity of a particle during the PSO evolution process.

3 Methodology

In this section we will explain the algorithm used for classification and our pro-
posed PSO based tuning method. The algorithm used for classification has been
proposed by Muni [10]. One of the specialties of this algorithm is its Multi-
Tree representation that makes it possible to evolve classifiers for multiclass

PSO Based Tuning of Genetic Programming Evolved Classifier Expressions 389

classification in a single GP run. The evolved trees are in the form of arithmetic
expressions elaborating relationships among different attributes of data. Each tree
outputs a real value for each data instance. The output of a chromosome is a vector
of real values. The tree corresponding to class label is trained to output positive
value. Other trees must output negative value for a valid result.

Next section discusses the proposed optimization method that can increase the
efficiency of GP evolved classifier expressions.

3.1 Tuning of Classifier Expressions

As mentioned in the previous section the classifiers contain attributes as terminals
of the tree and a few constants. We have associated weights to all the terminals
present in a tree. Consider a simple tree ((A1+A2)/A3 where A1, A2, and A3 are
attribute 1, 2 and 3 respectively. This tree will become [(A1*W1) + (A2*W2)] /
(A3*W3), after weight addition, where W1, W2 and W3 are weights associated to
each terminal. As shown in Figure1. The weight chromosome for this tree will be
[W1, W2, W3] . If the number of terminal nodes present in a tree is 'n'. The number
of nodes added for the sake of optimization is equal to '2n'. . Let c be the classes in
the data , and t be the terminals in each tree: Then the total number of nodes added
to chromosome will be :- ෍2 כ ௜௖ݐ

௜ୀଵ (3)

In case of multi tree representation, we add weights to each tree in the chromo-
some. Let c be the classes in the data, and ‘t’ be the terminals in each tree. The
weight vector will be :-

[Wij] where i=1:c and j=1:t (4)

Here each weight is associated to the node j of the tree i. and we are interested in
finding optimal value of this weight for each attribute in order to increase the effi-
ciency of classifiers. An important point to note here is that the classifier remains
intact if the values of all the added weights are set to ‘1’. Let CH0 be the original
chromosome and CHw be the weight added chromosome, then

CH0 = CHw if V [Wij]=1 (5)

Fig. 1 Addition of weights for optimization

390 H. Jabeen and A.R. Baig

For the sake of optimization, a population of random particles having weights as
their dimension is initialized. These weights are assigned random values between -
1 and 1. This creates a multidimensional point in hyper space that has as many
dimensions as there are weights in a GP chromosome corresponding to each ter-
minal. PSO is used to evolve these weights for optimal values. The fitness of each
particle is calculated by putting the values of weights in their corresponding posi-
tions and evaluating the accuracy of classifier for training data. We have used
cognitive-social model that keeps track of its previous best as well as the global
best particle. These weight particles are evolved for optimal position for a few
generations until termination criteria is fulfilled.

Fig. 2 Proposed tuning algorithm

4 Experimental Details

The data sets used for the classification purpose are taken from UCI repository.
These data sets are Iris, Bupa, Wine, Glass and Wisconsin breast cancer. All these
datasets are real valued data sets with varying number of classes and attributes.
This is to prove the effectiveness of the proposed algorithm.

Each tree in the GP evolved classifier chromosome is appended by weights at
its terminals, and the weights are evolved using PSO. The number of generations
for evolution in GP is not kept fixed. The system is allowed to evolve until the fit-
ness keeps on increasing. The evolution process is stopped only when the fitness
increase is not observed for certain number of generations.

Table 1 GP parameters for Classification

S.No Name Value

1 Population size 600

2 Incremental Generations 20

3 Total generations 50

4 Maximum Depth 5

PSO Based Tuning of Genetic Programming Evolved Classifier Expressions 391

Table 1 lists the GP parameters used for the experimentation all the other para-
meters were kept same as mentioned in (10). Table 2 lists the parameters used for
PSO. The results reported after tuning are averaged for 10 executions of PSO

Table 2 PSO parameters

S.No Name Value

1 No of particles 20

2 Initial value range [+1 , -1]

3 Number of iterations 30

4.1 Iris Dataset

Iris data set is one of the simple and small data set used for classification. It has 4
attributes and three classes with 150 instances. Figure 3 shows increase in accura-
cy of GP classifiers before, and after tuning. It can be observed that PSO based

75

80

85

90

95

100

50 57 97 99 115 117

A
c
c
u

ra
c

y

Generations

GP
PSO …

Fig. 3 Increase in Accuracy by PSO for Iris data

25000

35000

45000

55000

65000

75000

80 90 91,5 93,5 97 98

N
F

C

Accuracy

GP
PSO

Fig. 4 NFC comparison with PSO for Iris data

392 H. Jabeen and A.R. Baig

tuning offers a considerable increase in most of the cases. Figure 4 compares the
Number of Function calls used by GP and tuning method. GP achieves good re-
sults in much larger number of fitness evaluations as compared to PSO based tun-
ing which achieves same accuracy in much lesser number of Function calls. PSO
tuning method is efficient in finding better solutions in lesser number of Function
evaluations. Results of 10 executions of PSO tuning on one classifier are reported
in Table3 where PSO based tuning increases the accuracy in all the cases. Table 4
shows that on average 14% increase in accuracy is achieved.

4.2 Wisconsin Breast Cancer (WBC) Dataset

This data has two classes, 13 attributes and 699 instances. Figure 5 shows the in-
crease in accuracy achieved for different GP classifiers. PSO tuning has increased
the accuracy of simple GP classifiers. Figure 6 shows that PSO based tuning offers
better accuracy with lesser number of functions calls(NFC) for achieving same ac-
curacy as GP evolution process. Average increase in accuracy achieved is 7 %
shown in Table 4. A result of 10 PSO runs is reported in Table3.

60

65

70

75

80

85

90

95

20 23 50 130

A
c
c
u

ra
c

y

Generations

GP
PSO

Fig. 5 Increase in Accuracy by PSO for Wbc data

10000

20000

30000

40000

50000

60000

70000

80000

90000

68 67 69 72 73 78 80

N
F

C

Accuracy

GP
PSO

Fig. 6 NFC comparison with PSO for Wbc data

PSO Based Tuning of Genetic Programming Evolved Classifier Expressions 393

4.3 Glass Dataset

The Glass data has 6 classes and ten attributes having 214 instances. Figure 7
shows the increase in accuracy after tuning of GP classifiers. Figure 8 shows the
difference in function calls to achieve same accuracy. PSO offered increase in the
accuracy in much lesser number of function calls. Table 3 shows the result of 10
PSO runs and Table 4 summarizes the increase in accuracy achieved that was
1.7%.

42

44

46

48

50

52

54

56

23 50 57 183

A
c
c
u

ra
c

y

Generations

GP
PSO

Fig. 7 Increase in Accuracy by PSO for Glass data

0

20000

40000

60000

80000

100000

120000

46,2 47,7 49,2 49,3 50,7 54,2

N
F

C

Accuracy

GP
PSO

Fig. 8 NFC comparison with PSO for Glass data

4.4 Bupa Dataset

This dataset has 345 instances with 6 attributes and two classes. Figure 9 and
Figure 10 show that tuning of weights has offered a prominent increase in the ac-
curacy of the classifier with lesser number of function calls as compared to evolv-
ing GP for more number of generations. Average increase in accuracy achieved is

394 H. Jabeen and A.R. Baig

8.4% .Table3 presents results of 10 executions of PSO on one classifier evolved
using GP. It is evident that in most of the cases weight tuning method offered an
efficient increase in accuracy of the original classifiers. Table 4 gives an overview
of increase in accuracy achieved.

40

45

50

55

60

65

70

20 34 48

A
c
c
u

ra
c

y

Generations

GP
PSO

Fig. 9 Increase in Accuracy by PSO for Bupa data

0

10000

20000

30000

40000

50000

60000

70000

48,6 56,7 65,7

N
F

C

Accuracy

GP
PSO

Fig. 10 NFC comparison with PSO for Bupa data

4.5 Wine Dataset

The Wine data set has 178 instances in 13 dimensions having three classes.
Table 4 presents the result of 10 runs of PSO for the classifier evolved for Wine
data. Figure 11 and Figure 12 show the increase in accuracy using the tuning me-
thod and difference in number of function calls in achieving the same accuracy.
As observed in the previous cases, the PSO tuning method has achieved better ac-
curacy with lesser function evaluations. The average increase achieved is 6.5%
shown in Table 3.

PSO Based Tuning of Genetic Programming Evolved Classifier Expressions 395

55

60

65

70

75

80

20 38 41 50 99 165

A
c
c
u

ra
c

y

Generations

GP
PSO

Fig. 11 Increase in Accuracy by PSO for Wine data

0

20000

40000

60000

80000

100000

120000

58 60 69 74 74,5 74,5 75,8 76

N
F

C

Accuracy

GP
PSO

Fig. 12 NFC comparison with PSO for Wine data

Table 3 Increase in accuracy after 10 PSO runs

Datasets IRIS GLASS BUPA WINE WBC

GP Accuracy 80.5% 46.0% 56.0% 70.0% 69.8%

PSO1 98.0% 47.8% 65.7% 79.3% 78.4%

PSO2 93.5% 49.2% 64.8% 79.3% 78.4%

PSO3 95.5% 47.7% 65.7% 70.6% 74.7%

PSO4 93.5% 47.7% 65.7% 70.6% 74.7%

PSO5 91.0% 47.7% 65.7% 80.0% 78.0%

PSO6 93.5% 47.8% 65.7% 80.0% 77.9%

PSO7 95.5% 49.2% 64.8% 78.0% 79.0%

PSO8 92.0% 47.8% 65.7% 79.3% 75.8%

PSO9 96.0% 47.8% 64.8% 70.6% 74.1%

PSO10 96.0% 49.2% 65.7% 78.0% 77.9%

396 H. Jabeen and A.R. Baig

Table 4 Average Increase in Accuracy

Datasets
Average Increase in
Accuracy

Maximum Accuracy
Achieved

Minimum Accuracy
Achieved

Standard Devia-
tion

IRIS 14 % 98.0% 91.0% 0.02

WBC 7.1% 78.4% 74.1% 0.01

GLASS 1.9% 49.2% 47.7% 0.006

WINE 6.5% 92.5% 87.5% 0.04

BUPA 8.4% 71.6% 65.0% 0.02

5 Conclusions

In this paper we have proposed a new method for the tuning of classifier expres-
sions evolved by GP, it has been shown that this method tends to increase the
training as well as testing accuracy of the classifiers. This method can eliminate
the need for evolving GP classifiers for longer number of generations in search of
better accuracy. It also helps in reducing the number of function evaluations de-
sired for GP evolution. The more number of generations in GP also means in-
crease in GP tree sizes over generation making the task more complex. On the
other hand, in case of PSO based tuning we can get better results in much lesser
number of function evaluations with increase in depth of trees by only one level.
This increase in tree complexity gives an attractive outcome of increase in corres-
ponding accuracy. Future work includes determination of optimal parameters for
PSO for tuning and use of different variants of PSO for tuning.

References

1. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming
(2008)

2. Eggermont, J.: Data Mining using Genetic Programming: Classification and Symbolic
Regression. Leiden University, PhD Thesis (2005)

3. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Discovering Comprehensible Classifica-
tion Rules using Genetic Programming: A Case Study in a Medical Domain. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 953–958.
Morgan Kaufmann, San Francisco (1999)

4. Freitas, A.A.: A Genetic Programming Framework For Two Data Mining Tasks: Clas-
sification And Generalized Rule Induction. In: Genetic Programming, pp. 96–101.
Morgan Kaufmann, USA (1997)

5. Zhang, M., Ciesielski, V.: Genetic Programming For Multiple Class object Detection.
In: Proceedings of the 12th Australian Joint Conference on Artificial Intelligence, Aus-
tralia, pp. 180–192 (1999)

6. Loveard, T., Ciesielski, V.: Representing Classification Problems in Genetic Pro-
gramming. In: IEEE Congress on Evolutionary Computation, pp. 1070–1077 (2001)

PSO Based Tuning of Genetic Programming Evolved Classifier Expressions 397

7. Kishore, J.K., et al.: Application of Genetic Programming for Multicategory Pattern
Classification. IEEE Transactions on Eolutionary Computation (2000)

8. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Genetic programming for knowledge dis-
covery in chest-pain diagnosis. IEEE Engineering in Medicine and Biology Magazine,
38–44 (2000)

9. Loveard, T., Ciesielski, V.: Employing nominal attributes in classification using genet-
ic programming. In: 4th Aisa pacific conference on simulated evolution and learning,
Singapore, pp. 487–491 (2002)

10. Muni, D.P., Pal, N.R., Das, J.: A Novel Approach To Design Classifiers Using GP.
IEEE Transactions of Evolutionary Computation (2004)

11. Zhang, M., Smart, W.: Genetic Programming with Gradient Descent Search for Mul-
ticlass Object Classification. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E.,
Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 399–408. Springer, Heidelberg
(2004)

12. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International Con-
ference on Neural Networks, pp. 1942–1948 (1995)

13. Engelbrecht, A.P., Schoeman, L., Rouwhorst, S.: A Building Block Approach to Ge-
netic Programming for Rule Discovery, in Data Mining: A Heuristic Approach. [book
auth.]. In: Abbass, H.A., Sarkar, R., Newton, C. (eds.) Data Mining, pp. 175–189. Idea
Group Publishing, USA (2001)

14. Koza, J.R.: Genetic Programming: On the Programming of computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

Author Index

Aderhold, Andrej 283
Alba, Enrique 223
Amaya, Jhon Edgar 39
Andalon-Garcia, Irma R. 127
Antony, Mathis 141
Arenas, M.G. 163, 211

Baig, Abdul Rauf 385
Bello, Rafael 359
Benkhelifa, Elhadj 199

Caballero, Yaile 359
Cadenas, J.M. 25
Cárdenas-Montes, Miguel 345
Carmona, C.J. 113
Castillo, P.A. 163, 211
Chavoya, Arturo 127
Chen, Chen 245
Clugery, Cedric 295
Corona, Carlos Cruz 371
Cotta, Carlos 39

da Silva Neto, Antônio José 53
Deb, Suash 101
de Vega, Francisco Fernández 185
Diwold, Konrad 283
Dumitrescu, D. 151, 233

Echevarŕıa, Ĺıdice Camps 53

Farnsworth, Michael 199
Filiberto, Yaima 359
Fischer, Verena 1
Folino, Gianluigi 331
Forestiero, Agostino 331
Fŕıas, Maŕıa Pilar 113

Garćıa-Sánchez, P. 163, 211
Gómez-Iglesias, Antonio 345
González, J. 211

Hickinbotham, Simon 1
Hily, Emmanuel 295

Jabeen, Hajira 385

Krasnogor, Natalio 89

Landa-Silva, Dario 89
Laredo, J.L.J. 163, 211
Larrua, Rafael 359
Leiva, Antonio J. Fernández 39
Llanes-Santiago, Orestes 53
Lopez-Martin, Cuauhtemoc 127
Lung, Rodica Ioana 233

Marinaki, Magdalene 305
Marinakis, Yannis 305
Masegosa, A.D. 25
Matousek, Radomil 177
Matsatsinis, Nikolaos 305
Meda-Campaña, M.E. 127
Merelo-Guervós, Juan J. 163, 211,

255
Middendorf, Martin 283
Mihoc, Tudor Dan 233
Mora, A.M. 163, 211
Morales-Ramos, Enrique 345
Muñoz, E. 25
Murray, Lachlan 319

400 Author Index

Neal, Mark 319
Novoa-Hernández, Pavel 371

Parras, Manuel 113
Pelta, David A. 25, 371
Pérez-Godoy, M.D. 113
Pérez-Recuerda, P. 113
Perez-Uribe, Andres 13

Rebreyend, Pascal 295
Ribeiro, José Carlos Bregieiro 185
Rivera, A.J. 113
Runarsson, Thomas Philip 255

Satizábal M., Héctor F. 13
Scheidler, Alexander 283
Ŝırghi, Andrei 151
Szeto, K.Y. 141, 245

Terrazas, Germán 89
Timmis, Jon 319
Tiwari, Ashutosh 199

Upegui, Andres 13

Vega-Rodŕıguez, Miguel A. 345
Vidal, Pablo 223

Wang, Guan 245
Winkler, Stephan M. 269
Wu, Degang 141

Yamamoto, Lidia 75
Yang, Xin-She 65, 101

Zenha-Rela, Mário Alberto 185
Zhu, Meiling 199

	Title Page
	Preface
	Organization
	Table of Contents
	A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck
	Introduction
	TheRobotModel
	Subsumption Architecture
	Artificial Metabolomes
	Metabolic Subsumption
	Experimental Evaluation
	Conclusions
	References

	Social Target Localization in a Population of Foragers
	Introduction
	Localizing a Target
	Landmarks and Beacons
	Social Localization

	Experimental Setup
	The Arena
	The Robots

	Testing Dynamic Landmarks and the Use of Population Knowledge
	From Random Search to Social Search
	Varying Attraction between Robots

	Conclusions
	References

	Using Knowledge Discovery in Cooperative Strategies: Two Case Studies
	Introduction
	A Centralized Cooperative Search Strategy
	Knowledge Discovery for Rule Design and Parameters Setup
	New Set of Control Rules
	Parameters Adjustment

	Case Studies Details
	Case Study 1
	Case Study 2 Description

	Experiments and Results
	On the Impact of KD Rule versus EK Rule
	On the Impact of the Parameters Setup Method

	Discussions
	References

	Hybrid Cooperation Models for the Tool Switching Problem
	Introduction
	Background
	The Tool Switching Problem
	Related Work on the ToSP
	Background on Cooperative Models

	Hybrid Cooperative Models
	Local Searchers
	Interaction Topology

	Computational Results
	Conclusions
	References

	Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies
	Introduction
	Differential Evolution and Ant Colony Optimization
	Differential Evolution
	Ant Colony Optimization

	The Two Tanks System
	Results and Discussion
	Conclusions
	References

	A New Metaheuristic Bat-Inspired Algorithm
	Introduction
	Echolocation of Bats
	Behaviour of Microbats
	Acoustics of Echolocation

	Bat Algorithm
	Movement of Virtual Bats
	Loudness and Pulse Emission

	Validation and Comparison
	Benchmark Functions
	Comparison with Other Algorithms

	Discussions
	References

	Evaluation of a Catalytic Search Algorithm
	Introduction
	Background
	Catalytic Search Algorithm
	Catalysts
	Find the Hidden Sentence
	Experimental Results

	Conclusions and Future Work
	References

	Discovering Beneficial Cooperative Structures for the Automated Construction of Heuristics
	Introduction
	Heuristics Design
	Proposed Approach
	Methods and Results
	Pattern-Based Heuristics Generation
	Cross Validation
	Template-Based Heuristics Distilling

	Conclusions
	References

	Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization
	Introduction
	Stochastic Multiobjective Optimization
	Eagle Strategy
	Eagle Strategy
	Firefly Algorithm

	Simulations and Comparison
	Validation
	Comparison of ES with PSO

	Conclusions
	References

	CO$\^{2}$RBFN for Short and Medium Term Forecasting of the Extra-Virgin Olive Oil Price
	Introduction
	Background
	CO$\^{2}$RBFN for Time Series Forecasting
	Experimentation and Results
	Concluding Remarks
	References

	3D Cell Pattern Generation in Artificial Development
	Introduction
	The French Flag Problem
	Cellular Growth Testbed
	Morphogenetic Gradients
	Genome
	Regulatory Genes
	Structural Genes

	Genetic Algorithm
	Results
	Conclusions
	References

	Partial Imitation Rule in Iterated Prisoner Dilemma Game on a Square Lattice
	Introduction
	Methods
	Memory Encoding
	Monte Carlo Simulation

	Imitation Rule
	Results
	Conclusion
	References

	A Dynamical Game Model for Sustainable Development
	Introduction
	Sustainable Development Problem
	Related Work
	Dynamical Systems of Areas Evolution
	Sustainable Development Game
	Payoffs in the SD Game

	Sustainable Development Game Equilibrium
	System Equilibrium
	Numerical Experiments
	Conclusion and Further Work
	References

	Studying the Influence of the Objective Balancing Parameter in the Performance of a Multi-Objective Ant Colony Optimization Algorithm
	Introduction
	The Military Unit Bi-criteria Pathfinding Problem
	hCHAC Algorithms
	Algorithms to Compare
	The λ Parameter
	Experiments and Results
	Conclusions and Future Work
	References

	HC12: Highly Scalable Optimisation Algorithm
	Introduction
	HC12 Algorithm
	The F6 Test Function
	Parallel Implementation
	Results and Conclusions
	References

	Adaptive Evolutionary Testing: An Adaptive Approach to Search-Based Test Case Generation for Object-Oriented Software
	Introduction
	Background and Terminology
	Adaptive Evolutionary Testing
	Dynamic Adaptation Strategy

	Experimental Studies
	Setup
	Results

	Conclusions
	References

	Evolutionary Algorithms for Planar MEMS Design Optimisation: A Comparative Study
	Introduction
	MEMS Design Optimisation Framework
	Experiments Set Up
	Case Study: Meandering Spring
	Case Study: Meandering Resonator
	Case Study: ADXL150 Accelerometer

	Results
	Comparison and Discussion
	Conclusions
	References

	A Distributed Service Oriented Framework for Metaheuristics Using a Public Standard
	Introduction
	State of the Art
	Used Technologies
	OSGi
	R-OSGi

	OSGiLiath Platform
	Development Example Using OSGiLiath
	Specifying an Application
	Specifying the Problem
	Adding Distributed Capacity

	Experiments
	Conclusions and Future Work
	References

	Cellular Genetic Algorithm on Graphic Processing Units
	Introduction
	Description of a Cellular Genetic Algorithm
	The Proposal

	Experimental Setup
	Methodology and Configurations Used
	Results
	Conclusions
	References

	Evolutionary Approaches to Joint Nash – Pareto Equilibria
	Introduction
	Generalized Games
	Generative Relations for Generalized Games
	nP–Strict Pareto Domination
	Nash – Ascendancy
	Joint Nash–Pareto Domination

	Detecting Joint N–P Equilibria in Generalized Games
	Numerical Experiments
	Symmetric Games
	Asymmetric Games

	Conclusions and Future Work
	References

	Accelerated Genetic Algorithms with Markov Chains
	Introduction
	Mutation Matrix and MOGA
	Markov-Chain Accelerated Genetic Algorithms
	Experiments
	References

	Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms
	Introduction
	State of the Art
	Comparison of Heuristic Strategies
	Estimation of Distribution Algorithm Using Local Entropy
	Heuristics Based on a Subset of Consistent Guesses
	Discussion and Conclusion
	References

	Structural versus Evaluation Based Solutions Similarity in Genetic Programming Based System Identification
	Solutions Similarity Estimation in GP Based System Identification
	Related Work
	Solutions Similarity Estimation Measures Used in This Work
	Evaluation Based Solutions Similarity Estimation
	Structural Solutions Similarity Estimation

	Test Setup
	Test Results
	Conclusion
	References

	Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance
	Introduction
	Artificial Bee Colony Optimization (ABC)
	ABCVariants
	Experimental Setup
	Results
	Population Size
	Number of Onlooker Bees
	Comparison of ABC and Other Algorithms

	Conclusion
	References

	A Heuristic-Based Bee Colony Algorithm for the Multiprocessor Scheduling Problem
	Introduction
	Problem Description
	Artificial Bee Colony
	Proposed Method
	Background on Hybrid Methods
	The Greedy Heuristic
	The Dance Floor
	Heuristic 1
	Heuristic 2
	Parameters

	Experiments
	Future Work
	Conclusion
	References

	A Bumble Bees Mating Optimization Algorithm for Global Unconstrained Optimization Problems
	Introduction
	The Proposed Bumble Bees Mating Optimization Algorithm
	Bumble Bees Behavior
	BBMO for Global Unconstrained Optimization

	Test Functions
	Results
	Conclusions
	References

	A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems
	Introduction
	Neural Endocrine Control Architecture
	Artificial Endocrine Systems
	Neural Endocrine Systems

	SystemDesign
	Behaviours
	Reflexes
	Taxes
	Fixed-Action-Patterns

	Neural-Endocrine Design
	Network Size and Weights
	Coordination of Different Behaviour Types
	Environments

	Experiments
	Results for Neuro-endocrine Swarms
	Results

	Conclusions
	References

	Using Entropy for Evaluating Swarm Intelligence Algorithms
	Introduction
	An Adaptive Flocking Algorithm
	Formal Description of the Flock
	Using the Flocking Algorithm for Clustering Spatial Data

	An Entropy-Based Model
	Experimental Results
	Conclusions
	References

	Empirical Study of Performance of Particle Swarm Optimization Algorithms Using Grid Computing
	Introduction
	Particle Swarm Algorithms Family
	Standard Particle Swarm Optimization
	Weaknesses of Standard Particle Swarm Optimization
	Inertial Weight
	Particle Swarm Optimization with Massive Extinction
	Fitness Distance Ratio Based Particle Swarm Optimization
	Dissipative Particle Swarm Optimization
	A Diversity-Guide Particle Swarm Optimizer
	Mean Particle Swarm Optimization

	Production Setup
	Results
	Analysis and Conclusions
	References

	Using PSO and RST to Predict the Resistant Capacity of Connections in Composite Structures
	Introduction
	Improving the Application of the K-NN Method in the Approximation Function Problem
	K-Nearest Neighbours Approximator
	Finding the Weights for k-NN Based on Similarity Relations
	Application of the Heuristic Particle Swarm Optimization (PSO) in the Allocation of Weights to the Attributes

	Experimental Setup
	A Comparative Study between the New Method and Other Classical Methods

	Conclusions
	References

	Improvement Strategies for Multi-swarm PSO in Dynamic Environments
	Introduction
	Multi-swarm PSO in Dynamic Environments
	Improvement Strategies for Multi-swarm PSO
	Diversity Management Strategy
	Swarm Control Mechanism

	Experiments
	Analysis of the Diversity Management Strategy
	Analysis of the Swarm Control Mechanism

	Conclusion
	References

	Particle Swarm Optimization Based Tuning of Genetic Programming Evolved Classifier Expressions
	Introduction
	Literature Review
	Classification Using Genetic Programming
	Particle Swarm Optimization

	Methodology
	Tuning of Classifier Expressions

	Experimental Details
	Iris Dataset
	Wisconsin Breast Cancer (WBC) Dataset
	Glass Dataset
	Bupa Dataset
	Wine Dataset

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

