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Abstract. We continue the study of the effects of selfish behavior in the network
design problem. We provide new bounds for the price of stability for network
design with fair cost allocation for undirected graphs. We consider the most gen-
eral case, for which the best known upper bound is the Harmonic number Hn,
where n is the number of agents, and the best previously known lower bound is
12/7 ≈ 1.778.

We present a nontrivial lower bound of 42/23 ≈ 1.8261. Furthermore, we
show that for two players, the price of stability is exactly 4/3, while for three
players it is at least 74/48 ≈ 1.542 and at most 1.65. These are the first improve-
ments on the bound of Hn for general networks. In particular, this demonstrates
a separation between the price of stability on undirected graphs and that on di-
rected graphs, where Hn is tight. Previously, such a gap was only known for the
cases where all players have a shared source, and for weighted players.

1 Introduction

The effects of selfish behavior in networks is a natural problem with long-standing
and wide-spread practical relevance. As such, a wide variety of network design and
connection games have received attention in the algorithmic game theory literature (for
a survey, see [1]).

One natural question is how much the users’ selfish behavior affects the performance
of the system. Koutsoupias and Papadimitriou [2,3] addressed this question using a
worst-case measure, namely the Price of Anarchy (PoA). This notion compares the cost
of the worst-case Nash equilibrium to that of the social optimum (the best that could
be obtained by central coordination). From an optimistic point of view, Anshelevich et
al. [4] proposed the Price of Stability (PoS), the ratio of the lowest Nash equilibrium
cost to the social cost, as a measure of the minimal effect of selfishness.

There has been substantial work on the PoA for congestion games, a broad class
of games with interesting properties originally introduced by Rosenthal [5]. Conges-
tion games nicely model situations that arise in selfish routing, resource allocation and
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network design problems, and the PoA for these games is now quite well-understood
[6,7,8,9]. By comparison, much less work has been done on the PoS: The PoS for
network design games has been studied by [4,10,11,12,13], while the PoS for routing
games1 was studied by [4,8,14]. However, PoA techniques cannot easily be transferred
to the study of PoS. New techniques thus need to be developed; this work moves toward
this direction.

The particular network design problem we address here is the one which was initially
studied by Anshelevich et al. [4], sometimes referred to as the fair cost sharing network
design (or creation) game. In it, each player has a set of endpoints in a network that
he must connect; to achieve this, he must choose a subset of the links in the network
to utilize. Each link has a cost associated with it, and if more than one player wishes
to utilize the same link, the cost of that link is split evenly among the players. Each
player’s goal is to pay as little as possible to connect his endpoints. The global social
objective is to connect all player’s endpoints as cheaply as possible.

Anshelevich et al. [4] showed that if G is a directed graph, the price of anarchy
is equal to n, the number of players, whereas the price of stability is exactly the nth
harmonic number Hn. The upper bound is proven by using the fact that our network
design game, and in fact any congestion game, is a potential game. A potential game,
first defined by Monderer and Shapley [15], is a game where the change to a player’s
payoff due to a deviation from a game solution can be reflected in a potential function,
or a function that maps game states to real numbers.

This upper bound of Hn holds even in the case of undirected graphs (since the po-
tential function of the game does not change when the underlying graph is undirected),
however the lower bound does not. Hence the central open question we study is:

What is the price of stability in the fair cost sharing network design game on
undirected graphs?

In the case of two players and a single common sink vertex, Anshelevich et al. [4] show
that the answer is 4/3. Some further progress has also more recently been made toward
answering this question. Fiat et al. [12] showed that in the case where there is a single
common sink vertex and every other vertex is a source vertex, the price of stability is
O(log log n). They also give an n-player lower bound instance of 12/7 [16]. For the
more general case where the agents share a sink but not every vertex is a source vertex,
Li [13] showed an upper bound of O(log n/ log log n). Chen and Roughgarden [10]
studied the price of stability for the weighted variant of the game, where each player
pays a fraction of each edge cost proportional to her weight. Albers [11] showed that in
this variant, the price of stability is Ω(log W/ log log W ), where W is the sum of the
players’ weights.

Our contributions. We show for the first time that the price of stability in undirected
networks is definitively different from the one for directed networks in the general case

1 Both cost-sharing network design games and network routing games fall in the class of conges-
tion games and they differ only in the edge cost functions. Cost sharing network design games
come together with decreasing cost functions on the edges, e.g. ce(x) = ce/x, while routing
games come with increasing latency functions, e.g. ce(x) = ce · x.



88 G. Christodoulou et al.

(where all players may have distinct source and destination vertices). In particular, we
show that PoS is exactly 4/3 for two agents (strictly less than PoS in the directed case,
which is H2 = 3/2), while for three agents it is at least 74/48 ≈ 1.542 and at most 1.65
(again strictly less than PoS in the directed case, which is H3 = 11/6). Furthermore,
we show that the price of stability for general n is at least 42/23 > 1.8261, improving
upon the previous bound due to Fiat et al. [12].

1.1 The Model

We are given an underlying network, G = (V, E), where V is the set of vertices and
E is the set of edges in the network. Each player i = 1 . . . n has a set of two nodes
(endpoints) si, ti ∈ V to connect. We refer to si as the source endpoint of player i
and ti as the destination or sink endpoint of player i. The strategy set of each player
i consists of all sets of edges Si ⊆ E such that Si connects all the vertices in Ti.
There is a cost ce associated with each edge e ∈ E. The cost to player i of a solution
S = (S1, S2, . . . , Sn) is Ci(S) =

∑
e∈Si

ce/ne where ne is the number of players in
S who chose a strategy that contains e. Each player i wants to minimize Ci(S). The
global objective is minimize

∑n
i=1 Ci(S).

2 A Lower Bound of 1.826

Consider a 3 by N grid for some large N . There are three nodes and two horizontal
edges in every row. The levels are numbered starting from the bottom. We denote the
horizontal edges on level i by Li and Ri (from left to right). The nodes on level i are
denoted by vij (j = 1, 2, 3) and the vertical edges connecting level i to level i + 1 are
denoted by eij (j = 1, 2, 3). Each node vij for i = 1, . . . , N − 1 and j = 1, 2, 3 is the
source of some agent pi,j , who has node vi+1,j as its sink. We say that player pi,j starts
at level i. Also we will call player pi,j the owner of edge ei,j , with pi,j owning only
edge ei,j (one of the possible paths for a player to reach its sink is to use just the edge
it owns).

Horizontal edges cost 6+ ε and 5+ ε, vertical edges cost 12, 15, and 15 (from left to
right), where ε is a small positive number. We do not refer to ε in the calculations, but
simply state when relevant that the costs of horizontal edges are “more than” 6 and 5,
respectively. One motivation for choosing the numbers as we do is shown in Figure 1,
right.

Proof outline. It is possible to connect the sources and sinks of all the players by using
all the horizontal edges and only the vertical edges on the left. For large N and small ε,
the cost of this tends to 23 per level.

Our goal is to show that in a Nash equilibrium, all players use the direct link between
their source and their sink. Let us assume that some players deviate from this. We start
by considering a level i which is not visited by any agents with higher sources, and also
not by agents that have lower sinks. In Lemma 1, we show that any agent that reaches
such a level moves immediately to its sink.

We prove in Lemma 3 that as long as no agent uses any edge below its source vertex,
all agents move straight to their sinks. Section 2.3 is devoted to showing that it is indeed
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Fig. 1. On the left are two levels in our construction. The situation on the right is not a Nash
equilibrium because of the added ε’s on the horizontal edges. The numbers in the right figure
give the costs for each agent that uses these edges.

the case that no player moves below its source vertex. To do so, we first bound the
number of players that can reach a given level from below in Lemma 4. We find that
there can be at most two such agents. This in turn helps us to show in Lemmas 5-7 that
players that move below their sources would have to pay too much for their paths, thus
showing that no agent moves below their starting levels. This immediately gives us our
result, which is summarized in Theorem 1.

Due to lack of space, certain proofs are omitted.

Observation 1. In a Nash equilibrium, all player paths are acyclic, and the graph that
is formed by the paths of any pair of players is acyclic as well.

Thus, whenever we find a cycle of one of these types, we know that this is not a Nash
equilibrium.

Observation 2. If eij is used by any player, it is used by player pi,j .

Proof. If this were not true, the path of any player using eij together with the path of
pi,j forms a cycle.

Definition 1. We call a node a terminal if it has a single incident edge at the graph
induced by all the player paths in a Nash equilibrium.

Observation 3. Consider the graph induced by all the player paths in a Nash equilib-
rium. (This graph is not necessarily acyclic!) Any path which leads to a terminal and
where all intermediate nodes have degree 2 is used only by agents with sources and/or
sinks on that path. In particular, an edge which leads to a terminal is used by at most
two players: the one with its source at the terminal, and the one with its sink at the
terminal.

Observation 4. Any player that uses a vertical edge ei,j without owning it, must also be
using at least one horizontal edge in some level i′ ≤ i, and one in some level i′′ ≥ i+1.
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Players on the left We begin by making sure that players on the left always use the
edge they own (the direct link between their source and sink). To do so, for all levels i,
we substitute ei,1 by a path of three edges êi,1, êi,2, êi,3 each of which has cost 4 (and
thus the path of the three edges together has cost 12). Player pi,1 is also substituted by
three players p̂i,j(j = 1, 2, 3), with p̂ij having as source and sink the lower and upper
endpoints of edge êi,j , respectively. (Player p̂i,1 has node vi,1 as its source and player
p̂i,3 has node vi+1,1 as its sink.) One can now see that the players p̂i,j(j = 1, 2, 3) will
never deviate from their own edges; each such player would have to share two edges of
cost 4 with only their owners, since its sink and/or its source would be terminals. Given
that these players will never deviate, we will treat them as one player pi,1, and the path
êi,1, êi,2, êi,3 as the single edge ei,1, with pi,1 using edge ei,1 in any Nash Equilibrium.

2.1 Separators

Definition 2. Level i is called a separator if no player with source above level i and no
player with sink below level i visits level i.

Lemma 1. Let level i be a separator. Let p = pi−1,2 and p′ = pi−1,3.

1. If player p arrives at level i via edge ei−1,1 (ei−1,3), and there is no other player
which uses that edge besides its owner, then p uses edge Li (Ri), and shares that
edge with at most 2 players.

2. If player p′ arrives at level i via ei−1,1 together with p, it uses Li and Ri, and pays
at least 4 for them. In particular, there are at most 4 agents on Li.

3. If p′ arrives at level i via edge ei−1,2, it uses edge Ri, and pays at least 5/2 for it.

Lemma 2. Let level i be a separator. Let p = pi−1,2 and p′ = pi−1,3. Assume that
player p′ does not move below its source. If it arrives at level i via edge ei−1,1, then
there is some other player which uses ei−1,1 besides its owner.

Proof. The first three edges on the path of p′ are Ri−1, Li−1, and ei−1,1 in this case.
Consider agent p. It cannot use edge ei−1,3 (in that case, by Observation 2, player p′

would use it too) or edge ei−1,1 (assumption) in this case, so p uses edge ei−1,2. This
means that p′ cannot use edge Li (Observation 1). It also implies that edges ei−1,2 and
ei−1,3 are used by at most three players, since they are not used by any left player, any
player with source at level i + 1 or higher, or p, leaving only pi,2, pi,3 and p′ = pi−1,3

as candidates. Therefore, the cost of these edges is at least 5 to any player. Player p′

must use one of them. In addition, p′ pays 6 for edge ei−1,1, and also 6 for edge ei,1 as
long as player pi,2 or pi,3 do not join it. But in that case, the total cost of p′ is at least
6+6+5 > 15, a contradiction. So pi,2 or pi,3 must be on ei,1. Only one of them can in
fact be there since one of the vertical edges ei,2 and ei,3 must be in use. This means that
the cost for ei,1 is 4 in this case. However, in this case, the edge that p′ uses to come
back down to level i costs 7.5. We conclude that if p′ pays 6 for ei,1, its total cost is at
least 6 + 6 + 5 > 15, and otherwise, its total cost is at least 6 + 4 + 7.5 > 15. In both
cases, this implies that this is not a Nash equilibrium.

Lemma 3. Consider a Nash equilibrium in which no agent uses any edge below its
source. Then all agents move straight to their sinks.
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Proof. We twice use induction. We first show that all players on the right move straight
to their sinks, while players in the middle either move straight to their sink or move left,
up, and immediately right. Using this, we then show that all players in the middle move
straight to their sink.

Consider first level 1. By the assumption of this Lemma, level 2 is a separator. If
player p1,3 uses L1, player p1,2 must do this as well by Lemma 2. In addition, in this
case p1,3 uses R1 as well, but p1,2 does not, and neither does any other player. Both p1,3

and p1,2 then use edge e1,1, and then p1,3 continues via edge L2 and R2 by Lemma 1,
Case 2. This fixes its entire path. We can now calculate the cost for this path depending
on the first edge on the path of p2,2.

If this is L2, the cost is more than 5 + 3 + 4 + 1.5 + 2.5 = 16 (p2,2 is not on
R2 in this case, and neither is p1,2). If the first (and only) edge is e2,2, the cost is
more than 5 + 3 + 4 + 2 + 2.5 = 19. If the first edge is R2, the cost is more than
5 + 3 + 4 + 3 + 2.5 = 17.5 (p2,3 is not on R2 in this case, because p2,2 uses e2,3,
Observation 2). In all cases, this is too much.

This shows that p1,3 does not use edge L1. Suppose that p1,3 uses R1. It then uses
e1,2 together with p1,2 (Observation 2). Since R2 is used by at most one of the players
p2,2 and p2,3 (by Observation 1 and because no agents move down below their source),
p1,3 pays more than 5 + 15/2 + 5/2 = 15, a contradiction. The exact same calculation
shows that p1,2 does not use R1.

The only case left open is the one where p1,2 uses L1, but p1,3 does not. However,
in this case, due to Lemma 1, Case 1, it also uses L2 to reach its sink, making level 3
a separator, because level 3 is not visited by p1,2 or p1,3. Note that if p1,2 does move
directly to its sink from its source, then level 3 is a separator too.

We can now continue the proof by induction. Consider a level i and assume that
all lower players on the right move straight to their source, where lower players in the
middle might deviate and use the left edge. Also by induction, assume that level i + 1
is a separator, so that we can use the same lemmas as in the base case. Compared to
the calculations above for the case where p1,3 uses L1, the only change is that edge Li

might cost only 2 + ε/3 instead of 3 + ε/2, since at most one additional agent (pi−1,2)
may be using it. This still gives a total cost of more than 15 in all cases, completing the
first part of the proof.

We can now prove, also using induction, that agents in the middle move straight to
their source. If p1,2 uses L1, it pays more than 6 + 6 + 3 = 15 since L1 now costs more
than 3, so it does not do that. By induction, if no player below level i deviates, we find
the same calculation for any middle player that moves left. This completes the proof.

2.2 The Number of Agents That Visit a Certain Level

Definition 3. Let S� be a set of players that visit a horizontal edge at or above level �
and that all have sinks at or below level �.

Observation 4 implies the following Corollary:

Corollary 1. For any level i, any player with source below i that uses an edge ei−1,j ,
j ∈ {1, 2, 3}, without owning it, belongs to Si.



92 G. Christodoulou et al.

Lemma 4. We have |S�| ≤ 2.

Corollary 2. Any horizontal edge is used by at most four agents, any vertical edge by
at most five.

2.3 Agents Do Not Move Down

Due to Lemma 3, all we need to show is that no player moves below its starting level
in a Nash equilibrium. Consider the topmost level i such that there is a player A, with
source at level i, that moves below i. Denote the other player that has its source on level
i and that does not start on the left by A′. (Note that the player with source vi,1 never
deviates). A must visit levels below i before it reaches level i + 1. Otherwise, either i
reaches its sink before going down to i−1, or it will have to form a cycle within its path
to go back up to i + 1. Similarly, since A goes both below and above level i, it cannot
use both Li and Ri. In the following, we will be repeatedly making use of Lemma 4
and Corollary 2, and the fact that no player with source above level i ever visits a level
i′ ≤ i (by definition of A, A′).

Lemma 5. A does not move first horizontally and then down.

Proof. Assume that A uses first one of the horizontal edges of level i and then imme-
diately goes down. Since A has to go back up to level i, it creates a path connecting all
three nodes of level i using only edges incident to nodes of levels j ≤ i. This implies
that there is no player p with source at level i− 1 or below, that visits level i+1. To see
this, note that after reaching i + 1, p would eventually have to go back down to level i,
thus creating another path connecting two nodes of i, this time containing only edges
incident to nodes in levels j′ ≥ i (with at least one vertical edge incident to a node of
level i + 1). Therefore, the paths of A and p would form a cycle. By definition of A,
there is also no player with source above level i that visits level i.

Let c1 be the column that A starts from, c2 �= c1 the column it reaches after using the
first horizontal edge, and c3 the remaining column of the grid. Note that since A uses
a horizontal edge of level i, one of c1, c2 must be the middle column. A cannot create
a cycle going from its source back to level i, therefore it must use edge e = ei−1,c3 .
Moreover, edge (vi,c3 , vi,2) is not used by any player, otherwise a cycle with A’s path
would be formed. Therefore, any player on e that does not own it (including A), must
also use e′ = ei,c3 . Given that no player with source below i visits level i + 1, and no
player with source above i visits level i − 1, the edges e′, e′′ can only by used by the
owners and A, A′. Therefore, A pays at least 2 · 12

3 = 8 for them.
Consider now the first edge that A uses to reach level i − 1. By Corollary 2 there

are at most 5 players using it, and thus A pays at least 12
5 > 2 for it. Finally, A visits

both the first column and the third column of the grid, therefore it must use at least two
“right” horizontal edges (of cost 5), and at least two “left” horizontal edges (of cost 6),
each of which can be used by at most four players (by Corollary 2). Thus, A pays at
least 2· 6+5

4 = 5.5 for horizontal edges, implying a total cost more than 8+2+5.5 > 15,
a contradiction.

Lemma 6. If A starts in the middle column, it does not move straight down from its
source.
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Lemma 7. If A starts in the right column, it does not move straight down from its
source.

Proof. Assume that A goes straight down from its source. We denote by e that first edge
down (i.e., e = ei−1,3). Let e′ be the edge that A uses to reach level i again, after going
down. By Lemma 5 and Lemma 6, A′ does not move down which means that A′ does
not use e, e′. Any other player using them, apart from A and the owners, will belong to
Si (remember that no player with source above i visits a level below i + 1). Therefore
A shares e, e′ with at most 3 more players (the owners and two more players that will
belong to Si). Let e′′ be the edge A uses to reach level i + 1 from i. Any player on e′′

(apart from the owner) will belong to Si+1 together with A. Again, since |Si+1| ≤ 2,
A shares e′′ with at most two more players (the owner and one more player that will
belong to Si+1). If any of e′, e′′ is in the left column, then the path of A must cross from
the right side of the grid to the left and back, implying a total cost of at least 15/4 (for
e) +12/4 (for e′) +12/3 (for e′′) +2 · 6+5

4 > 15. If, on the other hand, none of e′, e′′

are in the left column, then the total cost of A is more than 15/4 (for e) +15/4 (for e′)
+15/3 (for e′′) +2 · 5/4 = 15.

Theorem 1. The price of stability in undirected networks is at least 42/23 > 1.826.

Proof. Due to Lemma 5, Lemma 6 and Lemma 7, no agents move down below their
source. Therefore, by Lemma 3, all agents move straight to their sink in the (unique)
Nash equilibrium. On every level, the total cost of the agents in the Nash equilibrium
is 12 + 15 + 15 = 42, whereas the optimal cost is only 12 + 6 + 5 = 23. The optimal
solution has an additional cost of 11 for the two horizontal edges on level 1, but this
cost is negligible for large N .

3 Two and Three Players

We will describe here a lower and an upper bound for three players, as well as an
unconditional upper bound for two players. Again, some proofs are omitted due to lack
of space.

Lower bound for three players. Figure 2 shows a three-player instance where the best
Nash equilibrium has cost 37/24 times that of OPT. Node si, ti is the source, destina-
tion, respectively of player i, i ∈ {1, 2, 3}. The optimal solution would only use the
edges (s1, s2), (s2, s3), (s3, t1), (t1, t2), while the Nash solution uses the direct edges
(s1, t1), (s2, t2), (s3, t3). The cost of the optimal solution sums then up to 48+4ε, while
the Nash Equilibrium solution has cost 74. We have therefore the following theorem.

Theorem 2. In the fair cost sharing network design game with three players, the price
of stability is at least 74/48 ≈ 1.5417.

Upper bound for three players. Given an instance of our problem, let OPT refer to
an optimal solution. We refer to the union of the players’ paths at OPT as the OPT
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Fig. 2. A three-player instance with price of stability more than 1.54

graph. Recall that our game is a potential game, with potential function Φ(X) =∑
e∈E ceH(Xe) where ce is the cost of edge e, H(x) is the xth harmonic number,

X is a game state or solution, and Xe is the number of players on edge e in X . Let N
be a potential minimizing Nash solution (or, alternatively, N can be defined as a Nash
solution reached by starting from OPT and making alternating best-response moves).
Hence, we have

Φ(N) ≤ Φ(OPT ). (1)

We now give names for various sets of edges, each of which may or may not be empty.
Let A, B, and C be the sets of edges that player 1, player 2, and player 3 (respectively)
use alone in N . Let Sij for i = 1 . . . 2 and j = i+1 . . .3 be the set of edges that players
i and j alone share in N . Let S123 be the set of edges that all three players share in N .
Let A∗, B∗, C∗, S∗

12, S
∗
13, S

∗
23 and S∗

123 be defined analogously for OPT. We will also
use the same names to refer to the total cost of the edges in each set.

Let C(X) refer to the cost of the solution X and let Ci(X) refer to the cost just to
player i of the solution X . By definition, we have

C(N) = A + B + C + S12 + S23 + S13 + S123

C(OPT ) = A∗ + B∗ + C∗ + S∗
12 + S∗

23 + S∗
13 + S∗

123

C1(N) = A +
S12

2
+

S13

2
+

S123

3

C2(N) = B +
S12

2
+

S23

2
+

S123

3

C3(N) = C +
S13

2
+

S23

2
+

S123

3

Lemmas 8, 9 show how to bound the POS depending on whether S∗
123 > 0 or not.

Lemma 8. In the fair cost sharing network design game with three players, if all three
players share at least one edge of positive cost in the optimal solution, the price of
stability is at most 33/20 = 1.65.

Proof. First observe that the edges in the set S∗
123 must form a contiguous path, that

is, once the three players’ paths in the OPT graph merge, as soon as one player’s path
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breaks off, the three may never merge again. (Otherwise the OPT graph would have a
cycle, contradicting the fact that it is an optimal solution.) Without loss of generality,
we can exchange the labels on the endpoint vertices so that the three endpoints on the
same side of the edges in S∗

123 are all source endpoints, and the three endpoints on the
other side are all destination endpoints.

Then observe that at least one of S∗
12, S∗

23, and S∗
13 must be empty. Otherwise the

OPT graph would have a cycle, contradicting the definition of OPT. Without loss of
generality, we assume that S∗

13 is empty, hence S∗
13 = 0 and C(OPT ) = A∗ + B∗ +

C∗ + S∗
12 + S∗

23 + S∗
123.

We know by definition of N that each player i pays not more at N than by unilaterally
defecting to any alternate si − ti connection path. The right hand sides of each of the
following inequalities represents an upper bound on the cost of a feasible alternate si−ti
path for each player i. The existence of these alternate paths depends on the assumption
that the OPT graph is connected and S∗

13 = 0.

C1(N) ≤ A∗ + B∗ + S∗
23 +

B

2
+

S12

2
+

S23

3
+

S123

3
(2)

C2(N) ≤ B∗ + A∗ + S∗
23 +

A

2
+

S12

2
+

S13

3
+

S123

3
(3)

C2(N) ≤ B∗ + C∗ + S∗
12 +

C

2
+

S23

2
+

S13

3
+

S123

3
(4)

C3(N) ≤ C∗ + B∗ + S∗
12 +

B

2
+

S23

2
+

S12

3
+

S123

3
(5)

To interpret the above inequalities intuitively, consider for example the first inequality. It
states the fact that player 1 pays an amount at Nash that is at most the cost of unilaterally
deviating and instead taking the path in the OPT graph from s1 to s2 where player 2’s
OPT path begins (possibly using edges from A∗, B∗, and S∗

23), then following along
player 2’s path in N from s2 to t2 (using edges from B, S12, S23, and S123), then
taking edges in the OPT graph from t2 to t1 (again possibly using edges from A∗, B∗,
and S∗

23). The costs of S∗
12 and S∗

123 need not be included in the right-hand side of the
first inequality for the following reasoning. Recall that by assumption, source vertices
are on one side of the edges in S∗

123 and sink vertices are on the other side of the edges
in S∗

123, so traversing any edges in S∗
123 is not necessary for player 1 to go from s1 to

s2 or from t2 to t1 in the OPT graph. Also note that the edges in S∗
12 must be adjacent

to the contiguous path formed by edges in S∗
123 (since otherwise, the OPT graph would

contain a cycle), and so in fact, s1 and s2 are on one side of S∗
12 ∪ S∗

123, while t1 and t2
are on the other.

From inequality (1) and the assumption that S∗
13 = 0, we can say

A+B+C+
3
2
(S12+S13+S23)+

11
6

S123 ≤ A∗+B∗+C∗+
3
2
(S∗

12+S∗
23)+

11
6

S∗
123.

(6)
Scaling the inequalities 2 and 5 each by 10/99, 3 and 4 each by 8/99, and 6 by 6/11,
then summing all five resulting inequalities yields
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Fig. 3. A sample OPT graph. Each edge is labeled with the name of the set of edges it belongs to.
Each edge here may represent a sequence of edges forming a path. Note that more generally, any
of the sets A∗, B∗, C∗, S∗

12, S∗
23, and S∗

13 could be empty.

20
33

(A + B + C) +
257
297

S13+
245
297

(S12 + S23) + S123

≤ 8
11

(A∗ + C∗) +
10
11

B∗ + S∗
12 + S∗

23 + S∗
123.

(7)

Hence 20/33C(N) ≤ C(OPT ).

Lemma 9. In the fair cost sharing network design game with three players, if no
positive-cost edge is shared by all three players in the optimal solution, the price of
stability is at most 3/2.

We are now ready to present our main theorem of this section.

Theorem 3. In the fair cost sharing network design game with three players, the price
of stability is at most 33/20 = 1.65.

Proof. All possible OPT graph structures are handled by Lemmas 9 and 8. The worst
upper bound for price of stability over these two exhaustive cases is that given by
Lemma 8.

Upper bound for two players. Anshelevich et al. [4] gave a two player lower bound
instance for our problem showing that the price of stability is at least 4/3. They then
show that if both players share a sink, the price of stability is at most 4/3. The following
theorem states an unconditional two-player upper bound on the price of stability of 4/3.

Theorem 4. In the fair cost sharing network design game with two players, price of
stability is at most 4/3.

4 Conclusions

The lower bound instance that we use for large n could be generalized by adding more
columns. However, it seems that this would require a significantly longer and more
involved proof. More importantly, we believe that even with an unbounded number of
columns we could only show a lower bound of a small constant. Hence, the question of
whether the price of stability grows with n remains open. We conjecture that it is in fact
constant.
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