
Online Minimization Knapsack Problem

Xin Han and Kazuhisa Makino

Department of Mathematical Informatics, Graduate School of Information and
Technology, University of Tokyo, Tokyo, 113-8656, Japan
hanxin.mail@gmail.com, makino@mist.i.u-tokyo.ac.jp

Abstract. In this paper, we address the online minimization knapsack
problem, i. e., the items are given one by one over time and the goal is
to minimize the total cost of items that covers a knapsack. We study
the removable model, where it is allowed to remove old items from the
knapsack in order to accept a new item. We obtain the following results.

(i) We propose an 8-competitive deterministic and memoryless algo-
rithm for the problem, which contrasts to the result for the on-
line maximization knapsack problem that no online algorithm has
a bounded competitive ratio [8].

(ii) We propose a 2e-competitive randomized algorithm for the problem.
(iii) Wederivea lowerbound2 fordeterministic algorithms for theproblem.
(iv) We propose a 1.618-competitive deterministic algorithm for the case

in which each item has its size equal to its cost, and show that this
is best possible.

1 Introduction

Knapsack problem is one of the most classical and studied problems in com-
binatorial optimization and has a lot of applications in the real world [9]. The
(classical) knapsack problem is given a set of items with profits and sizes, and
the capacity value of a knapsack, to maximize the total profit of selected items
in the knapsack satisfying the capacity constraint. This problem is also called
the maximization knapsack problem (Max-Knapsack). Many kinds of variants
and generalizations of the knapsack problem have been investigated so far [9].
Among them, the minimization knapsack problem (Min-Knapsack) is one of the
most natural ones (see [1,2,3,4] and [9, pp. 412-413]), that is given a set of items
associated with costs and sizes, and the size of a knapsack, to minimize the total
cost of selected items that cover the knapsack. Note that Min-Knapsack can
be transformed into Max-Knapsack in polynomial time (and vice versa), i.e.,
they are polynomially equivalent. However, Min-Knapsack and Max-Knapsack
exhibit relevant differences in approximation factors for the algorithms. For ex-
ample, a polynomial time approximation scheme (PTAS) for Max-Knapsack does
not directly lead to a PTAS for Min-Knapsack.

In this paper, we focus on the online version of problem Min-Knapsack. To our
best knowledge, this is the first paper on online minimization knapsack problem.
Here, “online” means that items are given over time, i.e., after a decision of
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rejection or acceptance is made on the current item, the next item is given, and
once an item is rejected or removed, it cannot be considered again. The goal of
the online minimization knapsack problem is the same as the offline version, i.e.,
to minimize the total cost.

Related work: It is well-known that offline Max-Knapsack and Min-Knapsack
both admit a fully polynomial time approximation scheme (FPTAS) [1,4,9]. As
for the online maximization knapsack problem, it was first studied on average
case analysis by Marchetti-Spaccamela and Vercellis [12]. They proposed a linear
time approximation algorithm such that the expected difference between the
optimal and the approximation solution value is O(log3/2 n) under the condition
that the capacity of the knapsack grows proportionally to n, the number of
items. Lueker [11] further improved the expected difference to O(log n) under a
fairly general condition on the distribution. Recently, Iwama and Taketomi [7]
studied the problem on worst case analysis. They obtained a 1.618-competitive
algorithm for the online Max-Knapsack under the removable condition, if each
item has its size equal to its profit. Here the removable condition means that it
is allowed to remove some items in the knapsack in order to accept a new item.
They also showed that this is best possible by providing a lower bound 1.618 for
this case. For the general case, Iwama and Zhang [8] showed that no algorithm
for online Max-Knapsack has a bounded competitive ratio, even if the removal
condition is allowed. Some generalizations of the online Max-Knapsack such as
resource augmentations and Multi Knapsacks were also investigated [8,14,5].

Our results: In this paper, we study the online minimization knapsack prob-
lem. We first show that no algorithm has a bounded competitive ratio, if the
removable condition is not allowed. Under the removable condition, we propose
two deterministic algorithms for the online Min-Knapsack. The first one is sim-
ple and has competitive ratio Θ(log Δ), where Δ is the ratio of the maximum
size to the minimum size in the items, and the second one has competitive ratio
8. This constant-competitive result for the online Min-Knapsack contrasts with
the result for the online Max-Knapsack that no online algorithm has a bounded
competitive ratio [8], which is surprising, since problems Max-Knapsack and
Min-Knapsack are expected to have the same behavior from a complexity view-
point (see Table 1).

The first algorithm is motivated by the observation: if all the items have the
same size, then a simple greedy algorithm (called Lowest Cost First strategy)
of picking items with the lowest cost first provides an optimal solution. The
algorithm partitions the item set into �log Δ�+1 subsets Fj by their size. When
a new item dt is given, the algorithm guesses the optimal value within O(1)
approximation factor, by using only the items in the knapsack together with the
new item dt, and for each class Fj , chooses items by Lowest Cost First strategy.
Since each class Fj has cost at most O(1) times the optimal value, we have an
O(log Δ)-competitive algorithm, where we also provide a lower bound of the
algorithm to show that it is Θ(log Δ)-competitive.

Note that the first algorithm keeps too many extra items in the knapsack to
guess the optimal value of the Min-Knapsack. In order to improve the algorithm,
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it has to keep items with the low total cost. However, this makes it difficult to
guess the optimal value, since the item removed cannot be reused, even for
guessing the optimal value. We devise the following strategy to overcome this
difficulty. At each time, i) we guess the optimal value within O(1) factor by
repeatedly solving fractional Max-Knapsack problems to maximize the total size
subject to bounded costs with respect to the items in the knapsack, together with
the coming item, and ii) in order to find items to be kept, for each j ≥ 0 we
construct a subset Fj of items by solving the fractional Max-Knapsack problem
subject to 22−j times the optimal cost, we keep items in

⋃
j≥0 Fj . We guarantee

that each class Fj has cost at most 22−j times, which implies that the total cost
in the knapsack is at most 8 times the optimal cost. Since the knapsack always
contains a feasible solution of the Min- Knapsack problem, the procedure above
leads to an 8-competitive algorithm.

We also show that no deterministic online algorithm achieves competitive
ratio less than 2, and provides a randomized online algorithm with competitive
ratio 2e ≈ 5.44. We finally consider the case in which each item has its cost equal
to its size. Similarly to the online Max-Knapsack problem [7], we show that the
online Min-Knapsack problem admits 1.618-competitive deterministic algorithm
which matches the lower bound.

Table 1 summarizes the current status of the complexity of problems Max-
Knapsack and Min-Knapsack, where the bold letters represent the results ob-
tained in this paper.

Table 1. The current status of the complexity of problems Max-Knapsack and Min-
Knapsack

Max-Knapsack Min-Knapsack

lower bound upper bound lower bound upper bound

offline FPTAS [6] FPTAS [1]

online

non- general unbounded [7] unbounded

removable size =cost unbounded [7] unbounded

removable
general unbounded [8] 2

8

2e (randomized)

size = cost 1.618 [7] 1.618 [7] 1.618 1.618

The rest of the paper is organized as follows. Section 2 gives definitions of
the online Min-Knapsack problem, and show that the “removable” condition is
necessary for the online Min-Knapsack problem. Section 3 presents algorithms
for the online Min-Knapsack problem, and Section 4 gives a lower bound 2 for
the online Min-Knapsack problem. Finally, in Section 5, we consider the case
where each item has its cost equal to its size.

Due to space constraints, some proofs are omitted, which can be found in the
full version.
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2 Preliminaries

In this section, we give the definition of the online Min-Knapsack problem and
show that why the removable condition is necessary for the problem.

Let us first define the offline minimization knapsack problem.

Problem Min-Knapsack
Input: A set of items D = {d1, . . . , dn} associated with cost c : D → R+

and size s : D → R+.
Output: A set of items F ⊆ D that minimizes

∑
f∈F c(f) subject to∑

f∈F s(f) ≥ 1.

Here we assume w.l.o.g. that the size of the knapsack is 1. For a set U ⊆ D, let
c(U) =

∑
u∈U c(u) and s(U) =

∑
u∈U s(u).

In the online model, the objective is the same with the offline version. But the
input is given over time. Namely, the knapsack of size 1 is known beforehand,
and after a decision is made on the current item dt associated with c(dt) and
s(dt), the next one dt+1 is given. Once items are discarded, they cannot be used
again, even for estimating an optimal value of the problem, i.e, we focus on the
memoryless online algorithm. Note that this assumption is strict in the sense that
most online algorithms can use the items discarded for the calculations. However
we adopt this setting to tackle huge input data. Given an input sequence L and
an online algorithm A, the competitive ratio of algorithm A is defined as follows:

RA = sup
L

A(L)
OPT (L)

,

where OPT (L) and A(L) denotes the costs obtained by an optimal algorithm
and the algorithm A, respectively. If A(L) has no feasible solution, then we define
A(L) = +∞. If A is a randomized algorithm, then we have RA = supL

E[A(L)]
OPT (L) .

In this paper, we consider removable condition for the online Min-Knapsack,
i.e., it is allowed to remove or discard old items in the knapsack. It follows from
the following lemma that removable condition is necessary to have a bounded
competitive ratio. We leave the proof in the full version.

Lemma 1. If at least one of the following conditions is not satisfied, then no
algorithm has a bounded competitive ratio for the online Min-Knapsack problem.

(i) While the total size of the items given so far is smaller than 1 (the size
of the knapsack), no item is rejected.
(ii) It is allowed to remove old items in the knapsack when a new item is
given.

From Lemma 1, in the subsequent sections, we consider the online Min-Knapsack
problem under the removable condition.
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3 Algorithms for the General Case

In this section, we present algorithms for the online Min-Knapsack problem un-
der the removable condition. Note that in our model, once an item is removed or
rejected, it cannot be used again, even for estimating the optimal value. There-
fore, we have to keep items in the knapsack so that they adjust any forthcoming
input sequence.

To construct an online algorithm with small competitive ratio, there are two
points that we have to keep in mind: (I) keep feasible any time (i.e., the total
size in the knapsack is at least 1), after the total size of the items given so far is
at least 1, and (II) the total cost in the knapsack is not too far from the optimal
cost, where (I) follows from (i) in Lemma 1.

3.1 A Simple Deterministic Algorithm

In this subsection, we give a simple online algorithm with a competitive ratio
Θ(log Δ), where Δ is the ratio of the maximum size to the minimum size. The
online algorithm is motivated by the observation: if all the items have the same
size, then the greedy algorithm (Lowest Cost First selection strategy) of picking
items with the lowest cost first provides an optimal solution.

For a non-negative integer t, let D(t) denote the set of the first t items, i.e.,
D(t) = {d1, . . . dt}, and let F (t) denote the set of items that our algorithm keeps
in the knapsack after the t-round. Let t0 be the first time when there is a feasible
solution for D(t), i.e., t0 = min{t | ∑t

i=1 s(di) ≥ 1}. By Lemma 1 (i), for t < t0,
our algorithm keeps all the items, i.e., F (t) = D(t).

Let us then consider when t ≥ t0. For an integer −∞ < j < +∞, define

Sj = {d ∈ D | 2j < s(d) ≤ 2j+1},
Dj(t) = D(t) ∩ Sj and Fj(t) = F (t) ∩ Sj .

Our algorithm keeps F (t) as the union of �log2 Δ + 1� classes Fj(t). When
a new item dt is given, the algorithm computes a guessed value β(t) for the
optimal cost OPT (D(t)) for the input D(t) such that β(t) = O(1)OPT (D(t)),
by using only the items in the knapsack F (t− 1) together with the new item dt,
and then for each j, we construct Fj(t) from Fj(t−1) by keeping the items with
the total cost at most 3β(t) by the Lowest Cost First strategy.

Formally, the algorithm when t ≥ t0 is described as follows.

Algorithm A

1. E(t) := F (t − 1) ∪ {dt}.
2. Guess: Compute a value α(t) by an approximation algorithm (e.g., [1,2])

with E(t) as the input. Set β(t) := min{β(t − 1), α(t)}.
3. For each j, Fj(t) := E(t) ∩ Sj and if c(Fj(t)) > 3β(t) then repeatedly

remove an item with the highest cost until c(Fj(t)) ≤ 3β(t).

4. F (t) :=
⋃

j Fj(t)
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Note that, for any time t, the total number of classes Fj(t) needed in the
algorithm is bounded by �log2 Δ + 1�. Therefore, the algorithm is O(log Δ)-
competitive, if we have s(F (t)) ≥ 1 (i.e., F (t) is feasible) and β(t) = O(1)OPT
(D(t)) for all t ≥ t0. We shall show them by a series of lemmas, where the proofs
for Lemmas 2, 3 and 4 are given in the full version.

Lemma 2. Let j be an integer. At time t ≥ t0, we have c(p) ≥ c(q) for all
p ∈ Dj(t) − Fj(t) and q ∈ Fj(t).

Let F ∗(t) denote an optimal solution for an input D(t) and F ∗
j (t) = F ∗(t)∩Sj .

Lemma 3. For a time t ≥ t0, assume that there is a feasible solution in F (t),
i.e., s(F (t)) ≥ 1. Then, for all j, we have c(Fj(t)) ≥ 2β(t) if F ∗

j (t) 
⊆ Fj(t).

Lemma 4. At any time t ≥ t0, F (t) contains a feasible solution for D(t) with
cost at most 2OPT (D(t)).

Lemma 5. Algorithm A is O(log Δ)-competitive.

Proof. By Lemma 4, F (t) contains a feasible solution for D(t) with cost at most
2OPT (D(t)).

Since (offline) Min-Knapsack problem admits a FPTAS [1],

β(t) ≤ (1 + ε)OPT (F (t)) ≤ 2(1 + ε)OPT (D(t))

for some ε > 0 and the cost by algorithm A satisfies

A(D(t)) ≤ 3(�log2Δ� + 1)β(t),

and hence we have A(D(t)) ≤ O(log Δ)OPT (D(t)). ��
The next lemma shows that the analysis of the competitive ratio for algorithm
A is tight.

Lemma 6. Algorithm A is Ω(log Δ)-competitive.

Proof. To prove this lemma, we present an instance D such that A(D) ≥ log Δ ·
OPT (D).

For 0 ≤ i ≤ k, let bi be an item with s(bi) = c(bi) = 2−i, and we construct
an input sequence D by D = D(0), D(1), . . . , D(k), where D(i) is a sequence
consisting of 2i bi’s. Note that this instance has an optimal solution F ∗ = {b0}
whose cost is OPT (D) = 1. On the other hand, algorithm A keeps all the items,
and hence A(D) = k + 1 > log2 Δ · OPT (D), where Δ = 2k is the ratio of the
largest size to the smallest size. ��
By Lemmas 5 and 6, we have the following theorem.

Theorem 1. Algorithm A is Θ(log Δ)-competitive.



188 X. Han and K. Makino

3.2 An Improved Deterministic Algorithm

Note that the first algorithm keeps too many extra items in the knapsack to
keep a feasible solution and to guess the optimal value of the Min-Knapsack. In
order to obtain an O(1)-competitive online algorithm, for any time t (≥ t0), we
represent the knapsack F (t) as the union of subsets Fj(t) (j ≥ 0) which satisfy
the following three conditions. Note that here the definition of Fj(t) is different
from the one in the subsection 3.1.

1 A guessed value β(t) satisfies β(t) ≤ r ·OPT (D(t)) for some constant r > 1.
2 For each j ≥ 0, c(Fj(t)) ≤ 2β(t)/rj .
3 F (t) :=

⋃
j Fj(t) satisfies the feasibility, i.e., s(F (t)) ≥ 1.

It is not difficult to see that the algorithm has constant competitive ratio
if it satisfies all the conditions above. We now show how to construct such
Fj ’s.

Let F (t − 1) denote a set of items in the knapsack at time t − 1, and let
E(t) := F (t−1)∪{dt}. For a guessed value β(t), let Ej(t) = {di ∈ E(t) | c(di) ≤
β(t)/rj} and construct Fj(t) from Ej(t) by repeatedly removing an item e with
the highest unit cost c(e)

s(e) , until the total cost becomes at most 2β(t)/rj . Clearly
this construction assures the second condition above.

To assure the first and third conditions, we first initialize β(t) by β(t) :=
c(E(t)) if t = t0; otherwise β(t) := β(t − 1). We check if s(Fj(t)) ≥ 1 for
each j. Let � be the maximum number j such that s(Fj(t)) ≥ 1. Then we have
OPT (D(t)) ≤ c(Fl(t)) ≤ 2β(t)/r�. If OPT (D(t)) > 2β(t)/r�+1 holds in addi-
tion, then 2β(t)/r� is a good guessed value for OPT (D(t)). However, in general
this is not true, since some item in D(t) has been already discarded before round
t, and hence 2β(t)/r� may not be a good guessed value for OPT (D(t)). In order
to overcome this difficulty, we solve the following (offline) fractional maximiza-
tion knapsack problem for each class Fj(t).

max
∑

f∈Fj(t)

s(f) · x(f)

s.t.
∑

f∈Fj(t)

c(f) · x(f) ≤ β(t)/rj ; (1)

0 ≤ x(f) ≤ 1, f ∈ Fj(t).

Let FKP(Fj(t), β(t)/rj) denote the optimal value of (1), where the second
argument β(t)/rj denotes the capacity of the knapsack. It is well-known [9]
that the fractional knapsack problem can be solved by a greedy approach for
s(f)/c(f). Let � = max{j | FKP(Fj(t), β(t)/rj) ≥ 1}. Then we can see
below that β(t)/r� is a good guessed value and F�(t) is feasible for our
problem.
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Formally, the algorithm is described as follows.

Algorithm B for t ≥ t0

1. E(t) := F (t − 1) ∪ {dt}. If t = t0, then α(t) := c(E(t)); otherwise
α(t) := β(t − 1).

2. For each integer j ≥ 0, construct a class Fj(t) as follows.
2.1 Let Ej(t) := {di ∈ E(t) | c(di) ≤ α(t)/rj} where Ej(t) is not

constructed if Ej(t) = ∅.
2.2 Construct Fj(t) from Ej(t) by repeatedly removing an item e with

the highest unit cost c(e)
s(e) , until the total cost becomes at most

2α(t)/rj .

3. Let � = max{j | FKP(Fj(t), α(t)/rj) ≥ 1}, let F (t) :=
⋃

j≥� Fj(t) and
β(t) := α(t)/r�.

Observe that in Step 2.1 of the algorithm Ej(t) is empty for all j with
α(t)/rj < min{c(d) | d ∈ D(t)}, and we have α(t) ≤ t max{c(d) | d ∈ D(t)}.
Hence, the number of nonempty Ej(t) is bounded by O

(
log t max{c(d)|d∈D(t)}

min{c(d)|d∈D(t)}
)
.

Lemma 7. At any time t ≥ t0, the index � in Step 3 must exist.

Proof. We prove this lemma by induction on t. When t = t0, we have α(t) =
c(E(t)) (= c(D(t))) and E0(t) = D(t). After Step 2.2, we have F0(t) = E0(t),
since c(E0(t)) = α(t) < 2α(t). We also have FKP(F0(t), α(t)) = s(D(t)) ≥ 1,
where the last inequality follows from the definition of t0. Therefore, the lemma
holds for t = t0.

Assume that the lemma holds for time t = t1(≥ t0), i.e., FKP(F0(t1), α(t1)) ≥
1, and consider time t = t1 + 1.

At time t, if the new item dt is not selected in F0(t) at Step 2.2, then we have
F0(t) = F0(t1). Then by the inductive hypothesis, we have FKP(F0(t), α(t)) ≥ 1,
where we note that α(t) = β(t1). On the other hand if dt is selected in F0(t) at
Step 2.2, we have

FKP(F0(t), α(t)) = FKP(F0(t), β(t1)) ≥ FKP(F0(t1), β(t1)) ≥ 1,

where the first inequality FKP(F0(t), β(t1)) ≥ FKP(F0(t1), β(t1)) follows from
the greedy construction of F0(t) from E0(t). Hence the lemma holds for t = t1+1.

��
For a U ⊆ D and a positive integer p, let KP(U, p) denote the optimal value for
the knapsack problem that maximize

∑
u∈U s(u) · x(u) subject to

∑
u∈U c(u) ·

x(u) ≤ p and x(u) ∈ {0, 1} for all u ∈ U . By definition, we have KP(U, p) ≤
FKP(U, p).

Lemma 8. At any time t (≥ t0), we have FKP(Fj(t), α(t)/rj) ≥ KP(D(t),
α(t)/rj) for all j ≥ 0.
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Proof. At time t(≥ t0), let Dj(t) denote the set of items with cost at most
α(t)/rj in D(t). We shall prove that

FKP
(
Fj(t),

α(t)
rj

)
= FKP

(
Dj(t),

α(t)
rj

)
.

Observe that: i) β(t) and α(t) are non-increasing functions, ii) if Dj(t) ≥ α(t)/rj

then the total cost of Fj(t) is at least α(t)/rj (= 2α(t)/rr −α(t)/rj), since every
item in Fj(t) has cost at most α(t)/rj , and iii) s(p)/c(p) ≤ s(q)/c(q) holds for
any items p ∈ (Dj(t) − Fj(t)) and q ∈ Fj(t) such that q is contained in an

optimal solution of FKP
(
Fj(t),

α(t)
rj

)
, by the greedy construction of Fj(t) in

Step 2. Therefore, we have

FKP
(
Fj(t),

α(t)
rj

)
= FKP

(
Dj(t),

α(t)
rj

)
.

This implies

FKP
(
Fj(t),

α(t)
rj

)
=FKP

(
Dj(t),

α(t)
rj

)
≥KP

(
Dj(t),

α(t)
rj

)
=KP

(
D(t),

α(t)
rj

)
.

��
Lemma 9. At any time t (≥ t0) β(t) satisfies β(t) < r · OPT (D(t)).

Proof. Assume this lemma does not hold, i.e., β(t) ≥ r · OPT (D(t)). Then we
have

FKP(F1(t), β(t)/r) ≥ KP(D(t), β(t)/r) ≥ KP(D(t),OPT (D(t))) ≥ 1,

where the first inequality follows from Lemma 8, the second one follows from
assumption β(t) ≥ r · OPT (D(t)), and the last one holds for t ≥ t0. This con-
tradicts the maximality of � at Step 3. ��
Theorem 2. When r = 2, algorithm B is 8-competitive, i.e., B(D(t)) ≤ 8OPT
(D(t)) for any t ≥ t0.

Proof. By Lemma 7 and the definition of F0(t), we have

s(F0(t)) ≥ FKP(F0(t), β(t)) ≥ 1,

i.e., F0(t) is a feasible solution for the Min-Knapsack with the input D(t), and
hence F (t) =

⋃
j≥0 Fj(t) is also feasible. The total cost in the knapsack F (t)

satisfies

c(F (t)) ≤ 2β(t)
∑

j=0

r−j <
2rβ(t)
(r − 1)

≤ 2r2

r − 1
OPT (D(t)),

where the last inequality follows from Lemma 9. Since 2r2

r−1 = 8 if r = 2, this
completes the proof. ��
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3.3 A Randomized Algorithm

Observe that the worst case of algorithm B is when the optimal cost OPT (D(t))
is sufficiently close to β(t)/r. We find that a randomized technique in [10]
can foil the worst case. Namely, let ξ be a random variable uniformly dis-
tributed in [0, 1). Then the competitive ratio can be improved if algorithm B
uses α(t0) = rξc(E(t0)) instead of α(t0) = c(E(t0)) in Step 1, i.e., if we shift
α(t0) by multiplying a factor rξ. Let us call this randomized algorithm RB.

We shall below show that E[RB(D)]/OPT (D) ≤ 2e for all D against an
oblivious adversary[13].

Theorem 3. For r = e, algorithm RB is 2e-competitive.

4 A Lower Bound on the Online Min-Knapsack Problem

In this section, we give a lower bound 2 for the competitive ratio for the online
Min-Knapsack problem. The main idea of our proof is given as follows. Assume
that an online algorithm has competitive ratio smaller than 2. After t ≥ t0, if
a small item with a small cost is given, the algorithm has to accept it, since
otherwise the adversary can kill the algorithm by giving an item with large
size and zero cost, i.e., the adversary will cause the online algorithm to have
competitive ratio at least 2. However, after accepting small items, the total cost
in the knapsack would be arbitrarily close to twice the total cost before accepting
small items, This implies that the competitive ratio is at least 2. We leave the
details of the proof in the full version .

Theorem 4. Any deterministic algorithm for the online Min-Knapsack problem
has competitive ratio at least 2.

5 A Special Case Where the Cost Equals the Size

In this section, we focus on the case where every item has its cost equal to its
size. We first give a lower bound 1.618 and then propose an online algorithm
which matches the lower bound. The proof of Lemma 10 will be given in the full
version.

Lemma 10. If any item has its cost equal to its size, then no deterministic
algorithm for the online Min-Knapsack problem has competitive ratio r < 1+q (≈
1.618), where q is the golden ratio, i.e., q is the positive root for q2 + q = 1.

Let us then construct an online algorithm. Note that any optimal cost is at least
1, since any item has its cost equal to its size.

An item d is called x-large, large, medium, and small if s(d) > 1 + q, 1 ≤
s(d) ≤ 1 + q, q < s(d) < 1, and 0 < s(d) ≤ q, respectively. Let us denote by
XL, L, M, S the set of x-large, large, medium and small items,s respectively. In
other words,
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XL = {d ∈ D | s(d) > 1 + q}, L = {d ∈ D | 1 ≤ s(d) ≤ 1 + q},
M = {d ∈ D | q < s(d) < 1}, S = {d ∈ D | s(d) ≤ q}.

Similarly to the previous sections, let D(t) = {d1, . . . , dt} and let F (t) denote
the set of items in the knapsack after the t-th round. Let t0 be the first time
when D(t) has a feasible solution.

By Lemma 1, our algorithm accepts all the items before t0, i.e., F (t) = D(t).
At time t (≥ t0), our algorithm keeps at most two medium items and at most
one x-large item, i.e., |F (t) ∩M | ≤ 2 and |F (t) ∩XL| ≤ 1. If two medium items
are contained in the knapsack, no x-large item is kept in the knapsack, i.e., if
|F (t)∩M | = 2 then F (t)∩XL = ∅. Moreover, once we find a feasible solution U
with the cost within [1, 1+q], then our algorithm only keeps this feasible solution
in the knapsack and rejects all the forthcoming items, i.e., F (t′) = U for t′ ≥ t.
For example, if dt is large and c(F (t − 1)) 
∈ [1, 1 + q], then F (t′) = {dt} for
t′ ≥ t. Our algorithm always accepts the small items before finding a feasible
solution with the cost within [1, 1+q]. Table 2 shows three possible patterns for
the number of x-large, large, medium and small items in the knapsack.

Let us now describe our algorithm.

Algorithm C for t ≥ t0

1. If 1 ≤ c(F (t − 1)) ≤ 1 + q, then F (t) := F (t − 1) and halt.

2. If dt ∈ XL, /* we have three cases */
(a) If s(F (t − 1)) < 1, then F (t) := F (t − 1) ∪ {dt}.
(b) If |F (t − 1) ∩ M | = 2, then F (t) := F (t − 1).

(c) If F (t − 1) ∩ XL = {e}, then construct F (t) from F (t − 1) ∪ {dt} by
removing the largest x-large item f (i.e., f = dt if s(dt) ≥ s(e); otherwise,
f = e)

3. If dt ∈ L, then F (t) := {dt} and halt. /* we have only one case */

4. If dt ∈ M , /* we have four cases */
(a) if s(dt) + s(F (t − 1) ∩ S) ≥ 1 then let F (t) be a feasible solution with

cost at most 1 + q.

(b) if |F (t−1)∩M | = 2, then construct F (t) from F (t−1)∪{dt} by removing
the smallest medium item f .

(c) if |F (t − 1) ∩ M | = 1, then F (t) := (F (t − 1) ∪ {dt}) \ XL.

(d) if F (t − 1) ∩ M = ∅, then F (t) := F (t − 1) ∪ {dt}.
5. If dt ∈ S, /* we have three cases */

(a) If F (t − 1) ∩ M = ∅ and s(F (t − 1) ∩ S) + s(dt) ≥ 1, then let F (t) be a
feasible solution with cost at most 1 + q.

(b) If F (t − 1) ∩ M �= ∅ and s(e) + s(F (t − 1) ∩ S) + s(dt) ≥ 1 for some
medium e ∈ F (t − 1), then let F (t) be a feasible solution with cost at
most 1 + q.

(c) Otherwise, F (t) := F (t − 1) ∪ {dt}.
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Table 2. Three possible patterns for the number of x-large, large, medium and small
items in the knapsack

pattern small medium large x-large

1 0 0 1 0

2 ≥ 0 2 0 0

3 ≥ 0 ≤ 1 0 ≤ 1

Lemma 11. For U ⊆ D, if s(U ∩S) ≥ 1 or s(U ∩S)+s(e) ≥ 1 for some u ∈ U ,
then U contains a feasible solution with the cost at most 1 + q.

The above lemma ensures that Steps 4a, 5a, and 5b are always possible. By the
same reason, Step 2 has only three cases.

Theorem 5. Algorithm C has competitive ratio 1.618, which matches the lower
bound.
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