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Preface

The 7th Workshop on Approximation and Online Algorithms (WAOA 2009)
focused on the design and analysis of algorithms for online and computation-
ally hard problems. Both kinds of problems have a large number of applications
from a variety of fields. WAOA 2009 took place in Copenhagen, Denmark, dur-
ing September 10–11, 2009. The workshop was part of the ALGO 2009 event
that also hosted ESA 2009, IWPEC 2009, and ATMOS 2009. The previous
WAOA workshops were held in Budapest (2003), Rome (2004), Palma de Mal-
lorca (2005), Zurich (2006), Eilat (2007), and Karlsruhe (2008). The proceedings
of these previous WAOA workshops have appeared as LNCS volumes 2909, 3351,
3879, 4368, 4927, and 5426, respectively.

Topics of interest for WAOA 2009 were: algorithmic game theory, approx-
imation classes, coloring and partitioning, competitive analysis, computational
finance, cuts and connectivity, geometric problems, inapproximability results,
mechanism design, network design, packing and covering, paradigms for design
and analysis of approximation and online algorithms, parameterized complexity,
randomization techniques, real-world applications, and scheduling problems.

In response to the call for papers, we received 62 submissions. Each submis-
sion was reviewed by at least three referees, and the vast majority by at least four
referees. The submissions were mainly judged on originality, technical quality,
and relevance to the topics of the conference. Based on the reviews, the Program
Committee selected 22 papers.

We are grateful to Andrei Voronkov for providing the EasyChair conference
system, which was used to manage the electronic submissions, the review process,
and the electronic PC meeting. It made our task much easier. We would also
like to thank all the authors who submitted papers to WAOA 2009 as well as
the local organizers of ALGO 2009.

December 2009 Evripidis Bampis
Klaus Jansen
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Online Scheduling of Bounded Length Jobs to Maximize Throughput . . . 116
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On the Competitiveness of the Online
Asymmetric and Euclidean Steiner Tree

Problems

Spyros Angelopoulos

Max-Planck-Institut für Informatik
Saarbrücken 66123, Germany

Abstract. This paper addresses the competitiveness of online algorithms
for two Steiner Tree problems. In the first problem, the underlying graph
is directed and has bounded asymmetry, namely the maximum weight of
antiparallel links in the graph does not exceed a parameter α. Previous
work on this problem has left a gap on the competitive ratio which is as
large as logarithmic in k. We present a refined analysis, both in terms of
the upper and the lower bounds, that closes the gap and shows that a
greedy algorithm is optimal for all values of the parameter α.

The second part of the paper addresses the Euclidean Steiner tree
problem on the plane. Alon and Azar [SoCG 1992, Disc. Comp. Geom.
1993] gave an elegant lower bound on the competitive ratio of any deter-
ministic algorithm equal to Ω(log k/ log log k); however, the best known
upper bound is the trivial bound O(log k). We give the first analysis that
makes progress towards closing this long-standing gap. In particular, we
present an online algorithm with competitive ratio O(log k/ log log k),
provided that the optimal offline Steiner tree belongs in a class of trees
with relatively simple structure. This class comprises not only the ad-
versarial instances of Alon and Azar, but also all rectilinear Steiner trees
which can be decomposed in a polylogarithmic number of rectilinear full
Steiner trees.

1 Introduction

Problem statements and motivation The Steiner tree problem occupies a central
place in combinatorial optimization, and has been studied extensively under
many variants. The standard setting involves an underlying graph G = (V, E),
with a non-negative weight function c : E → R+ over its edges (which reflects
the cost of the edge). Given a subset K ⊆ V of vertices also called terminals, the
objective is to find a tree of minimum cost that spans all vertices in K. Here,
the cost of the tree is defined as the sum of the cost of all the edges in the tree.

In this paper we focus on the following Steiner tree problems.

• In the asymmetric Steiner tree problem, the underlying graph is directed, and
a specific vertex r ∈ V is designated as the root. We define the asymmetry α
of graph G as the maximum ratio of the cost of antiparallel links in G. More

E. Bampis and K. Jansen (Eds.): WAOA 2009, LNCS 5893, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 S. Angelopoulos

formally, let A denote the set of pairs of vertices in V such that if the pair u, v
is in A, then either (v, u) ∈ E or (u, v) ∈ E (i.e, there is an edge from u to v or
an edge from v to u or both). Then the edge asymmetry is defined as

α = max
{v,u}∈A

c(v, u)
c(u, v)

Given a set K ⊆ V of terminals, we seek the minimum cost arborescence rooted at
r that spans all vertices in K. In addition, our aim is to express the performance
of the algorithm in terms of the parameters k and α.

• In the Euclidean Steiner tree problem on the plane, there is no underlying
graph. Instead, the input consists of k points (terminals) on the plane and the
objective is to construct a connected graph that spans all terminals so as to
minimize the total length (based on Euclidean distances). The case in which the
distance between points of the plane is given by the rectilinear metric is known as
the Rectilinear Steiner tree problem. Here, the tree consists only of horizontal and
vertical segments. Clearly, any solution to the Euclidean Steiner tree problem
can be translated to a solution to the rectilinear Steiner tree problem, at the
expense of a constant-factor increase of the solution cost.

Steiner tree problems are often used in formulating multicast routing over
computer networks, in that information must be disseminated from a designated
source to all members of a subscribing group (namely the set of terminals K).
The asymmetric Steiner tree problem is motivated by the observation that a di-
rected graph is a more appropriate and realistic representation of a real network.
A typical communication network consists of links asymmetric in the quality of
service they provide. This observation led Ramanathan [9] to define the con-
cept of graph asymmetry as a measure of network homogeneity. According to
this measure, undirected graphs are the class of graphs of asymmetry α = 1,
whereas directed graphs in which there is at least one pair of vertices v, u such
that (v, u) ∈ E, but (u, v) /∈ E are graphs with unbounded asymmetry (α = ∞).

On the other hand, the Euclidean Steiner tree problem can be used in mod-
eling problems where a number of facilities is given (on a certain planar region),
and we want to guarantee connectivity among any given pair of these facili-
ties (e.g., by building a network of roads, or by deploying a communications
network). The objective translates into a solution that is as cheap as possible.

In this work we address the above problems from the point of view of online
algorithms, in that the set K of terminals is not known in advance, but rather
is revealed as a sequence of requests. Upon a new request for terminal t, the
algorithm must guarantee a directed path from the root to t, in the case of the
asymmetric Steiner tree problem, or simply that t is connected to the current
solution, in the case of the Euclidean Steiner tree problem.

Related Work. We review some important results that pertain to online Steiner
tree problems. For graphs of either constant or unbounded asymmetry, the com-
petitive ratio is tight. For the former class, Imase and Waxman [8] showed that
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a simple greedy algorithm is optimal and achieves competitive ratio Θ(log k).
Berman and Coulston [5] extended the result to the Generalized Steiner Problem
by providing a more sophisticated algorithm. Westbrook and Yan [10] showed
that in directed graphs (of unbounded asymmetry), the competitive ratio of any
algorithm can be as bad as Θ(k).

The first study of the online asymmetric Steiner tree problem is due to Falout-
sos et al. [7] who showed that a simple greedy algorithm (to which we refer
to as Greedy) has competitive ratio O(min{α log k, k}). The algorithm works
by connecting each requested terminal u to the current arborescence by buy-
ing the edges in a least-cost directed path from the current arborescence to
u. On the negative side, they showed a lower bound of Ω

(
min

{
α log k
log α , k

})
on the competitive ratio of every deterministic algorithm. A better analysis
of Greedy [2] provides an improved upper bound on the competitiveness of
Greedy, namely O

(
min

{
α log k

log log α , k
})

. The same work showed a correspond-

ing lower bound of Ω
(
min

{
α log k
log log k , k1−ε

})
on the competitiveness of any de-

terministic algorithm (and for every constant 0 < ε < 1). In recent work [3],
a more careful analysis proves that Greedy has a competitive ratio equal
to O

(
min

{
max

{
α log k

log α , α log k
log log k

}
, k
})

. The result almost matches the lower

bound of Ω
(
min

{
max

{
α log k

log α , α log k
log log k

}
, k1−ε

})
(where ε is any arbitrarily

small constant) due to [7] and [2].
It is important to note that when α ∈ Ω(k) the lower bound on the competitive

ratio due to [7] is Ω(k), which is obviously tight (using the trivial upper bound
of O(k) for Greedy). Thus the problem is interesting only when α ∈ o(k).

Even thought the bound of [3] is almost-tight, from a worst-case perspective a
gap still remains. Indeed, [3] is tight when either α ∈ O(k1−ε) (for some constant
ε ∈ (0, 1)), or α ∈ Ω(k), that is, for a broad range of values of asymmetry.
However, when the asymmetry is such that α ∈ O(k), and α �= O(k1−ε), for any
positive constant ε < 1 (e.g, when α = k/polylog(k)), the gap between upper
and lower bounds can be large, namely logarithmic in k.

Concerning the online Steiner Tree in the Euclidean plane, Alon and Azar [1]
presented an elegant adversarial construction that guarantees a lower bound
of Ω(log k/ log log k). The only known upper bound is the O(log k) bound that
applies to any distances induced by undirected graphs (and hence by extension
to Euclidean distances). No better upper bounds have been known.

Contributions of this paper. In the first part of this paper, we give a tight bound
for the online asymmetric Steiner tree problem. In particular, we show that
when α is in the range of values for which [3] is not tight, the competitive
ratio of Greedy is Θ

(
log(k/α)

log log(k/α)

)
, and the bound is tight for any deterministic

algorithm (c.f. Theorem 1 and Theorem 2). This completely resolves the problem
of determining the optimal competitive ratio, for all values of asymmetry.

There are several reasons that motivate the close study of this problem.
First, as argued earlier, for certain values of the asymmetry, a gap as large as
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logarithmic (in k) remains. From a worst-case point of view the gap is large,
even though it occurs for a relatively narrow range of values of α (recall that
Θ(log k) is the competitive ratio in undirected graphs).

More importantly, algorithms for Steiner tree problems are often used as sub-
routines in solving more complex problems, and in many cases the competitive
ratio for the complex problem is a function of the competitive ratio of the Steiner
tree algorithm. A representative example is the problem of file allocation in gen-
eral undirected networks. The influential work of Bartal et al. [4] shows that
if there exists a c-competitive algorithm for the online Steiner tree problem
(in undirected graphs), then it is possible to derive a randomized (2 +

√
3)c-

competitive algorithm for file allocation. Note that, as with multicasting, file
allocation is a problem motivated by distributed networks, and once again, it
would only be natural to study it under directed graphs. Therefore, we expect
that strict optimality results for Steiner trees will provide a useful tool in re-
solving other online network optimization problems, in settings which are more
realistic in practice.

In the second part of the paper, we address the online Euclidean Steiner
tree problem on the plain. Bridging the gap between the known lower and the
upper bounds has been an outstanding open question in the area of competitive
analysis for more than 15 years. Unfortunately, only a trivial upper bound is
known. We make progress by showing that if the underlying optimal tree observes
certain structural properties, then there exists an algorithm that is optimal. In
particular, we require that the optimal, off-line tree is “close” (w.r.t. cost) to a
rectilinear tree that is union of at most a polylogarithmic number of basic trees
(c.f. Theorem 3 and Corollary 1). A formal definition of a basic tree is given in
Section 3. The definition includes, for instance, any Full Rectilinear Steiner tree
(or FST for brevity); see, e.g., [6] for a precise definition of a FST.

We need to further motivate our assumption on optimal trees. First, the lower
bound of Alon and Azar, although fairly technical, is based on an instance for
which the optimal Steiner tree is a single basic tree. Thus our result states that
if we aim to improve the lower bound, more complicated constructions will be
required. Second, the result provides a connection between the number of basic
trees and the performance of an algorithm. This is along the lines of known
results on approximation algorithms, which relate the (offline) construction of
rectilinear Steiner trees and FST’s (see [12] and [11] for representative examples).
Third, the result follows from techniques used in the analysis of the greedy
algorithm for the online asymmetric Steiner tree problem.

2 A Tight Bound for Online Asymmetric Steiner Trees

2.1 The Lower Bound

The main result of this section is the following lower bound:

Theorem 1. The competitive ratio of every deterministic algorithm is
Ω
(
α log(k/α)

log log(k/α)

)
, assuming that α ∈ o(k).
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For the proof of Theorem 1 we will construct an adversarial input, namely a
graph G and an appropriate sequence σ of terminal requests. The graph G will
be defined using Ĝ as a building block, where Ĝ is a parameterized version of
the adversarial graph used in the construction of the lower bound in [2].

Construction of the adversarial graph G. We will begin by defining some
auxiliary constructions. Let v, u be two vertices in a graph, and let the directed
edge (v, u) have cost c, whereas the antiparallel edge e = (u, v) has cost αc,
where α is the asymmetry of the graph in which u, v belong. We say that we
insert a vertex w at height h in e if we introduce a new vertex w and replace
e, e with new edges of costs c(v, w) = c − h, c(w, u) = h, c(u, w) = αh, and
c(w, v) = α(c− h) (for the sake of visualisation, we should think of v as located
higher than u). Note that the insertion maintains the asymmetry of the graph.

Second, let T1 = {v1, . . . , vl} and T2 = {v′1, . . . , v′l} denote two disjoint sets
of l vertices each (again, we should think of vertices in T1 as being located
“higher” than vertices in T2). In addition, we require that T1 and T2 have the
property that all edges of the form ei = (vi, v

′
i) have the same cost, say c, and all

antiparallel edges have cost αc. Informally, the “downwards” direction is cheap,
whereas the “upwards” direction is expensive , and this is a property that will
be maintained throughout the construction. Let E denote the set {ei : i ∈ [1, l]}.
We call index i ∈ [1, l] the i-th column, and require that l is a power of 2, and
that it is large compared to k (e.g., at least 2k). On the collection of columns E
we will define a construction called block which we denote by B(E, m, h). Here
m and h are parameters used in the construction, with h ≤ c and m < k, and
E is the set of columns induced by T1 and T2.

In a nutshell, B(E, m, h) is built by inserting appropriate vertices (and edges)
in E, in a layered fashion. There are m layers inserted in total. Layer i con-
sists of l vertices inserted, one for each column, at height equal to Θ(h/m). Let
wi,1, . . . , wi,l denote these l vertices. We group the vertices of layer i into appro-
priate disjoint groups of the same size, denoted by Si,1, . . . Si,si , which we call
s-sets. Also, for each group of layer i, say Si,j , we add a vertex ui,j, as well as
edges from every w-vertex in Si,j to ui,j , of cost ci,j , whereas the antiparallel
edges from (ui,j to every w-vertex in Si,j) have cost αci,j . The partition of ver-
tices of each layer into s-sets, as well as the precise values of ci,j are functions of
the parameters m, c, h and α. Figure 1 gives an example of a block. The precise
construction of a block is fairly complicated; we will focus only on important
properties.

We say that an s-set crosses a certain set of columns if and only if the set of
columns in which the vertices of S lie intersects the set of columns in question.
Two s-sets cross each other iff the intersection of the sets of columns crossed by
each one is non-empty. Note that there is a 1-1 correspondence between the sets
Si,j and vertices ui,j , which means that several properties/definitions pertaining
to s-sets carry over to the corresponding u vertices (e.g., we will say that two u
vertices cross if their s-sets cross).

Let T1 = {v1, . . . , vl} and T2 = {v′1, . . . , v′l} denote two sets of l vertices each
(here l has to be large compared to k, although it suffices to set l > 2k), with
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Sr

1 161284

h

c

T1

T2

S

Sl

Fig. 1. An example of a block construction. Here l = 16 (i.e., there are 16 columns),
and the block consists of three layers (the first layer consists of 4 s-sets, the second of
2 s-sets and the third of 8 s-sets. For simplicity, the figure illustrates only s-sets: in
reality, each s-set is associated with a u-vertex. Note that according to the definition
of Section 2.1 the two s-sets Sl and Sr are both children of the s-set denoted by S.

c(vi, ui) = 1 and c(ui, vi) = α. Let E denote the set of columns induced by T1
and T2. There is also a root r and edges from r to each vi of infinitesimally small
cost, and the same holds for the antiparallel edges from vi to r). In [2], graph Ĝ
then is derived by adding a single block B(E, k, 1), where k is the total number
of terminals requested by the adversary.

We proceed with the description of the adversarial graph G. At a high level,
the construction is based on phases of insertions of appropriately defined blocks,
unlike Ĝ which consists of a single block. We begin with T1, T2, E and r defined
as above. Given the set of columns E, in the first phase we add the block B1,1 =
(E, m, m/k), where m ≤ k is a function of k and α that will be specified later.
Inductively, let Bi,1, Bi,2, . . . denote the blocks added during the i-th phase in the
construction of G. Consider the highest layer added so far, namely the highest
layer added at phase i, and let {Si,1, Si,2, . . .} denote the collection of s-sets at
this layer. For a set Si,j , in the above collection of highest s-sets, let Ti,j ⊂ T1
denote the set of vertices in T1 of the same column index as vertices in Si,j . The
pairs (Ti,j , Si,j) induce a partition of the columns of E into disjoint subsets of
columns (of equal size). More precisely, let Ei,j denote the set of edges (vp, w),
with p ∈ [1, l] such that w ∈ Si,l. Then, phase i + 1 consists of adding the
blocks B(i+1),j = B(Ei,j , m, m/k), for all j for which the column sets Ei,j are
defined.

We want to ensure that Θ(k) layers are added in total, since the adversarial
request sequence on G will request one u-vertex per layer. Thus the above process
is comprised of Θ(k/m) phases. An illustration is given in Figure 2.
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r

T2

T1

B1,1

Fig. 2. An example of the construction of G, for the case in which the process requires
two phases. Here, each phase will insert a block as depicted in Figure 1, as evident
in the shape of B1,1. In particular, the eight shaded regions corresponds to the eight
blocks of the form B2,1 . . . B2,8.

The algorithm–adversary game. We will describe how to construct an ad-
versarial sequence of requests σ in G. We begin by describing, in high-level,
the algorithm/adversary game in Ĝ, and the corresponding request sequence σ̂.
Later on, we will built upon this game in order to define σ.
• The adversarial game on Ĝ, and the sequence σ̂
Consider Ĝ with k levels in total, and let x be the solution of xx = k, hence
x = Θ(log k/ log log k). The adversarial request sequence σ̂ consists of u-vertices
exclusively, and is comprised of x rounds: In particular, in round i ≤ x, Θ((x+1)i)
terminals are requested.

Every time a new terminal, say u, is requested in σ̂, the online algorithm
must guarantee the existence of a directed path from the root to u, possibly
buying new edges. Among the many such paths the algorithm may establish,
the adversary will fix one such path, to which we refer as the connection path for
u, denoted by p(u). For the lower-bound analysis, we charge parts (edges) of a
connection path, then so long as we guarantee that each edge is charged at most
once, the total cost of all charged edges is a lower bound on the algorithm’s cost.
We need to summarize some properties of the sequence σ̂, and how the edges of
the connection paths are charged.

As argued in [2], for every requested terminal u, the connection path p(u) can
be of one of the following two forms:
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– Connection from r: A connection path which originates from r.
– Connection path from above/below. A connection path which originates from

a previously requested vertex that lies higher (resp. lower) than the requested
vertex u.

A main design aim in the construction of Ĝ and σ̂ is the presence of consecutive
pairs of requests in a parent/child relation. The precise definition is as follows:
Consider the three s-sets S, Sl, Sr in Ĝ with the property that S crosses columns
i, . . . j (with j − i + 1 even number) whereas Sl and Sr cross columns i, . . . (i +
j − 1)/2 and (i + j + 1)/2 + 1, . . . j, respectively. In addition, Sl and Sr are at
the same layer in Ĝ and both higher than S. We call Sl and Sr the left and
right children of S, respectively, and S their parent. The definition extends to
the corresponding u-vertices of these s-sets in the natural way: two u-vertices
are in parent/child relation if their corresponding s-sets are in such relation.

The sequence σ̂ is defined in such a way that almost all consecutive pairs of
requested terminals in σ̂ are in parent/child relation. For such terminals, the
adversary takes advantage of the structure of Ĝ: Suppose that u is the last
requested terminal and that the children of u (say ul, ur) are present in Ĝ. Then
it is easy to argue that no matter what the choice of the connection path p(u),
the path will cross1 exactly one of ul, ur: if it crosses ul, then the next terminal
to be requested is ur, and vice versa.

We summarize the important properties concerning σ̂. We say that a terminal
u requested in the i-th round of the game is typical, if the next requested terminal
in σ̂ is a child of u in Ĝ. It turns out that there are Θ((x+1)i) typical terminals
in round i, thus almost all terminals in a round are typical. We also define the
depth of u in Ĝ as the total cost of the directed path from the root r to the s-set
to which u corresponds.

Property 1 (cost property in σ̂). Let u be a typical request of round i, which is
at depth d in Ĝ. Then:

(i) If p(u) is from the root, then the algorithm is charged cost Ω(d).
(ii) If p(u) is from above/below, then the algorithm is charged cost Ω

(
a

(x+1)i

)
.

The following set of properties will be instrumental in deriving the adversarial
sequence σ in G. The first property implies that an offline algorithm suffices to
buy edges of a single column (in the “downwards” direction), namely a column
that crosses the last terminal in σ̂, as well as the corresponding directed edges
from s-sets to requested terminals. The second property will be useful in applying
iteratively the game in Ĝ to the design of the game in G, one time per phase.

Property 2 (structural property in σ̂). Let u be the current request in σ̂, then:

(i) Every column that crosses u crosses all previously requested terminals in σ̂.
1 We say that the connection path for a terminal crosses an s-set (or its corresponding

u-vertex) if it contains (vertical) edges in a column that is crossed by the s-set.
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(ii) No connection path of any previously requested terminal crosses any columns
of u, and no edges in columns that cross u are charged by the adversary (with
the exception of u itself).

• The adversarial game on G, and the sequence σ
We now show how to use Ĝ and σ̂ in order to construct an adversarial sequence
σ for G. At a high level, the game between the algorithm and the adversary in
G proceeds in Θ(k/m) phases: the i-th phase requests u-vertices which belong
in a block in G that was added in the i-th phase of its construction. Within this
specific block, terminals are requested in a manner similar to requests in σ̂: this
is because Ĝ essentially consists of a single block.

We describe how σ is derived, as well as the actions of the adversary. In the
first phase, the adversary requests a total of m u-vertices in the lowest block,
namely B1,1. This is essentially identical to the game played in Ĝ, i.e., vertices
are requested in rounds. The only difference lies in the cost charged for the
connection paths (informally, in G, the vertices of B1,1 are in a higher depth
than vertices in Ĝ). However this does not affect the decisions of the adversary,
since we can still classify connection paths (from the root, or from above/below),
and we can still classify terminals as typical, in the same manner as in σ̂. In
particular, the last requested terminal of the first phase satisfies Property 2.

Inductively, suppose that the adversary has requested terminals in phase i,
and suppose that every terminal requested in phases up to and including phase i
satisfies Property 2. We will describe the requests of phase i+1. Let u denote the
last terminal requested in the i-th phase, and S its corresponding s-set. From
construction of G, there is a unique block, say Bi+1,j , for some index j, which
was added in iteration i + 1 and which is defined over the set of columns which
are crossed by S. From the structural property, and in particular, Property 2(ii),
right before u is requested no columns crossed by u are charged by the adversary.
This implies that, once again, the adversary can play the same game in Bi+1,j

as the game played in Ĝ, and charge columns in identical manner, without ever
charging an edge more than once. Phase i+1 then is comprised by the u-vertices
requested in rounds within block Bi+1,j . It also follows from the construction of
G, as well as the induction hypothesis, that any terminal requested during this
phase satisfies the structural property. The sequence σ is the sequence derived
by combining the requests of all phases: there are Θ(k/m) phases in total, and
Θ(m) requests per phase, hence there are Θ(k) requests in σ in total.

Because of the correspondence between phases and blocks, we say that a
terminal requested in σ is typical if it is typical in the corresponding block in
which it belongs. Based on this,we derive the following property concerning the
cost of typical terminals in σ. Here, x is set to be Θ(log m/ log log m).

Property 3. Let u be a typical request of phase j and round i, at depth d in G.

(i) If p(u) is from the root, then the algorithm is charged cost Ω(d).
(ii) If p(u) is from above/below, then the algorithm is charged cost Ω

(
a

(x+1)i
m
k

)
.
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2.2 Analysis

For the purpose of the analysis, we need the following lemma:

Lemma 1. For the sequence of requests σ on graph G, the following hold:

– The cost of the optimal offline algorithm is bounded by a constant.
– The cost of any deterministic algorithm is Ω

(
min

{
k
m , α · log m

log log m

})
Once we prove Lemma 1, then Theorem 1 follows by selecting a value m, so as
to minimize the cost expression. In particular, we choose m = Θ

(
k
α

log log(k/α)
log(k/α)

)
.

Substituting this value in the cost expression, it is easy to see that both k/m

and α · log m
log log m are in Ω

(
α · log(k/α)

log log(k/α)

)
, and the theorem is proved.

Proof sketch of Lemma 1. The upper bound on the cost of the optimal algorithm
follows from the fact that there exists a column that crosses all terminals in σ:
an offline algorithm will buy all downwards edges in this column, as well as edges
from the s-sets crossed by the column in question to all u-vertices in σ. The cost
of the latter edges is such that their total contribution is small.

For the lower bound on the cost of any algorithm, the rough idea is that we
classify each phase into one of two possible groups, depending on whether the
algorithm pays its cost mostly due to rule (i) or rule (ii) of Property 3. We can
prove that the first group contributes a total cost of Ω(k/m), whereas the second
group contributes Ω(α log m/ log log m). �

2.3 The Upper Bound

Theorem 2. Suppose that α is such that α ∈ ω(k1−ε), for every constant ε ∈
(0, 1), and also α ∈ o(k). Then for every request sequence σ, the cost paid by
Greedy is cGR(σ) = O

(
α · log(k/α)

log log(k/α)

)
c(T ∗), where k = |σ|, and T ∗ is the

optimal arborescence for σ.

Proof sketch. Partition T ∗ into Θ(α) edge-disjoint trees T1, T2, . . . each contain-
ing Θ(k/α) terminals. Then the total cost for serving the first request in each of
these subtrees is small. On the other hand, we can show that the cost for serving
all remaining terminals within Ti is O

(
α log(k/α)

log log(k/α) · c(Ti)
)
. The lemma follows

from the edge-disjointness of the Ti’s. �

3 A Non-trivial Bound for Online Euclidean Steiner Tree
on the Plane

In this section we present an algorithm for the online Steiner tree problem in the
Euclidean plane, and prove that achieves better competitive ratio than O(log k),
assuming the optimal Steiner tree has certain structural properties. The algo-
rithm is as follows: Suppose that terminal u is requested, and let Tcurr denote
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the current Steiner tree built so far. The algorithm first finds a path of minimum
cost from u to the current tree, say pu, and buys this path. Let c(pu) denote the
cost of the path in question. In addition, the algorithm buys horizontal and ver-
tical segments of size 2c(pu) each, such that u is at the center of each segment2

Hence in serving request u, the algorithm pays a total cost equal to 5c(pu).
Before proceeding with the main result, we will show that the algorithm is

optimal when the underlying optimal Steiner tree has a relatively simple struc-
ture, in particular, when it is a basic tree with respect to the set of requested
terminals. We begin with the definition of a basic tree.

Definition 1. Let K ′ = {u1, . . . , uk′} denote a set of k′ terminals, and let T ′

be a tree that spans K ′ on the Euclidean plane. We call the tree T ′ basic (with
respect to K ′) if the following conditions are met: T ′ consists of a segment P ,
which is either horizontal or vertical, and which we call the backbone of T , as
well as k′ disjoint paths t1, . . . tk′ , one for each terminal in K ′, which we call
the terminal paths. Here, each terminal path ti is such that ui is one of the
end-points of path ti; the other end-point must be part of the backbone P .

The following is the main technical result, which states that if the optimal Steiner
tree for a set of terminals K is “close” to a basic tree wrt K, then the online
algorithm we proposed achieves the best-possible competitive ratio.

Theorem 3. Let K be a set of k terminals, and let T ∗ denote the optimal
Steiner tree for K. If there exists a basic tree T such that c(T ) = O(c(T ∗)), then
the cost of the online algorithm for requests in K is O(log k/ log log k) · c(T ∗).

The proof of Theorem 3 is based on techniques developed for the analysis of the
greedy algorithm for the online asymmetric Steiner tree in [3]. More precisely,
the central technical result in [3] is first derived for a class of directed graphs
(called combs) whose structure is very similar to the structure of a a basic tree
(see the statement of Theorem 3 in [3]). However, there are some important
technical difficulties, in that the analysis in [3] yields a high cost with respect
to the backbone of a comb (which would translate to a high cost with respect
to the backbone of a basic tree for our algorithm). Instead, we need a refined
analysis, that takes into account the geometric nature of the problem.

Specifically, we will rely on the following property (Lemma 2). In informal
terms, the lemma states that if a tree T ′ is basic wrt a set of terminals K ′, then
the online algorithm (on requests drawn from the set K ′) incurs cost which has
only a linear dependency in the backbone cost.

Lemma 2. Let K ′ = {u1, . . . uk′} be a set of k′ terminals, and let T ′ be a
basic tree wrt K ′, with backbone P of cost c(P ), and k′ terminal paths t1, . . . tk′ .
Suppose that terminals in K ′ arrive online. Then the cost of the algorithm is
O(c(P ) + k′ · cmax), where cmax is the cost of the longest path among terminal
paths t1, . . . tk′ .

2 The resulting graph may not be a tree, however this is not an issue since we only
require a connected graph that spans all terminals.
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It is worth pointing out that the construction for the lower bound of Alon and
Azar [1] is such that the optimal Steiner tree is a basic rectilinear tree. Note also
that any full (rectilinear) Steiner tree (FST) is trivially a basic tree. Motivated
by the decomposition of rectilinear Steiner trees to edge-disjoint FST’s , we can
also decompose every rectilinear Steiner tree into a collection of edge-disjoint
basic trees. We can thus extend our result to all instances whose optimal Steiner
tree consists of a small number of basic Steiner trees, in this decomposition.

Corollary 1. Let K denote a set of k terminals, and let T ∗ denote the optimal
rectilinear Steiner tree for K. If T ∗ can be decomposed into a polylogarithmic
(in k) number of basic trees, then the cost of the online algorithm for requests
in K is O(log k/ log log k) · C(T ∗).
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Abstract. The Nemhauser&Trotter Theorem provides an algorithm
which is frequently used as a subroutine in approximation algorithms for
the classical Vertex Cover problem. In this paper we present an exten-
sion of this theorem so it fits a more general variant of Vertex Cover,
namely the Generalized Vertex Cover problem, where edges are al-
lowed not to be covered at a certain predetermined penalty. We show
that many applications of the original Nemhauser&Trotter Theorem can
be applied using our extension to Generalized Vertex Cover. These
applications include a (2 − 2

d
)-approximation algorithm for graphs of

bounded degree d, a PTAS for planar graphs, a (2− lg lg n
2 lg n

)-approximation
algorithm for general graphs, and a 2k kernel for the parameterized Gen-

eralized Vertex Cover problem.

1 Introduction

Given a graph G = (V, E) with vertex weights, the classical Vertex Cover

problem asks to find a minimum weight subset of vertices S ⊆ V that covers all
edges in G, i.e. a subset S with S ∩ e �= ∅ for all e ∈ E. The Vertex Cover

problem is one of the most well-studied problems in theoretical computer science
and discrete mathematics in general, a study dating back to König’s classical
early 1930s result [1], and probably even prior to that. In 1972, Karp listed
the decision version of Vertex Cover in his famous list of initial twenty-one
NP-complete problems [2].

One of the most well known results about Vertex Cover is the half-
integrality of the LP-relaxation of the standard integer programming formulation
of Vertex Cover (see, e.g., [3]). This result directly implies a 2-approximation
algorithm for vertex cover (as observed by Hochbaum [4]). In 1975, only three
years after the publication of Karp’s famous NP-complete list, Nemhauser and
Trotter published their seminal paper [5] in which they present a reduction that
� Supported by the Adams Fellowship, Israel Academy of Sciences and Humanities.
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reduces the problem of finding a vertex cover in an arbitrary graph G, to that
of finding a vertex cover in a subgraph of G whose total weight is not much
more than the weight of any of its vertex covers. This reduction is based on the
half-integrality of Vertex Cover, and it adds additional structure to the Ver-

tex Cover problem in general. Indeed, after applying the Nemhauser&Trotter
reduction, one can use the total weight of the graph as a yardstick for analyz-
ing approximate solutions, rather than use the weight of the optimal solution
of which there is rarely any knowledge of. Below is a precise statement of the
Nemhauser&Trotter Theorem:

Theorem 1 (Nemhauser&Trotter [5]). Let (G, w) be an instance of Ver-

tex Cover, with G = (V, E) and w : V → Q≥0. Then there is a polynomial-time
algorithm that partitions the vertices of G into three subsets, V1, V0 and V1/2,
such that:

(i) if S1/2 is an α-approximate solution for (G[V1/2], w), then V1 ∪ S1/2 is an
α-approximate solution for (G, w), for all α ≥ 1, and

(ii) the w-weight of any vertex cover in G[V1/2] is at least 1
2

∑
v∈V1/2

w(v).

The first condition of the theorem implies that we can restrict our attention to
G[V1/2], ignoring vertices of V1 and V0 in G. The second condition of the theorem
implies that finding a vertex cover of G[V1/2] that is properly contained in V1/2

is guaranteed to give a vertex cover of G whose weight is strictly less than twice
the optimum.

It is important to note that the vertex sets V0, V1/2 and V1 correspond to
the values given to the variables by some half-integral optimal solution x∗ to the
LP-relaxation of vertex cover. Namely, Vi = {u : x∗

u = i}, for every i ∈ {0, 1/2, 1}.
It is not hard to verify that Property (ii) of Theorem 1 follows directly from the
half-integrality of the optimal solution x∗. Moreover, Property (i) holds for every
LP-based approximation algorithm since the optimal fraction solution of G[V1/2]
is (1/2, . . . , 1/2). Nemhauser&Trotter [5] proved that taking V1 into the solution
is a local optimization step, namely that even a non LP-based approximation
algorithm may be used to augment V1.

The Nemhauser&Trotter Theorem is an essential part of Hochbaum’s (2− 2
d )-

approximation algorithm for graphs of bounded degree d [6], and of the (2 −
lg lg n
2 lg n )-approximation algorithm for general graphs given in [7]. In fact, many
known approximation algorithms for Vertex Cover and its special cases use
the Nemhauser&Trotter Theorem as a subroutine. Two other good examples
are the PTASs of Lipton-Tarjan [8] and Baker [9] for Vertex Cover in planar
graphs1, where one finds an optimal solution in a large fraction of the graph, and
adds all remaining vertices to get a solution for the entire graph. We mention
also Chen et al. [10] who observed that the Nemhauser&Trotter Theorem gives a
2k kernel for the parameterized variant of Vertex Cover in the parameterized
complexity setting, when the parameter taken is the total weight of the required
vertex cover (see also [11]).
1 Baker’s algorithm [9] originally did not use the Nemhauser&Trotter Theorem, but

adding it as a preprocessing step makes the analysis somewhat simpler.
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In this paper we focus on a natural generalization of Vertex Cover, which
can be thought of as the “prize-collecting” version of the problem. In this vari-
ant, each edge in the given graph is allowed to be left uncovered at a certain
predetermined penalty. Thus, the input now consists of a graph with vertex and
edge weights, and the goal is to minimize the total weight of vertices selected to
a solution, plus the total weight of edges not covered by the solution. Observe
that this is in fact a generalization of Vertex Cover, since we return to the
original problem by setting all edge weights to ∞. We call this generalization of
Vertex Cover, the Generalized Vertex Cover problem (GVC):

Instance: A graph G = (V, E) and a weight function w : V ∪ E → Q≥0.
Solution: A subset S of V .
Measure: cost(S) =

∑
v∈S w(v) +

∑
e∈E,e∩S=∅ w(e).

The first to consider GVC was Hochbaum [12], who provided a 2-approximation
algorithm, and also pointed out that GVC is polynomial-time solvable in bipar-
tite graphs. The time complexity of this algorithm was later improved in [13],
where a d-approximation algorithm for GVC in d-hypergraphs was given as well.
Hassin and Levin [14] studied a problem that extends GVC in which one pays a
penalty for not covering an edge and a smaller penalty for covering an edge only
by one of its end-points. They presented a 2-approximation algorithm for this
problem. We further note that other “prize collecting covering” problems were
also studied extensively in the literature. This includes the paper by Hassin and
Tamir [15] who considered the prize collecting variant of the Facility Location

on the Real Line problem, and the work of Goemans and Williamson [16] who
presented approximation algorithms for the prize collecting versions for Trian-

gle Inequality Traveling Salesman and Steiner Tree. See also [17,18]
for other prize collecting facility location problems.

Due to the importance that the Nemhauser&Trotter Theorem plays in de-
signing approximation algorithms for Vertex Cover and its special cases, a
natural question to ask is whether a similar theorem can be found for GVC. Ob-
serve that the theorem does not carry-on immediately to the more general case
due to the different way that the edges now come into play; in fact, this poses a
difficulty even in stating the theorem for the more general case. The main result
of this paper overcomes these difficulties and gives an affirmative answer to the
question above by proving a slightly different variant of the Nemhauser&Trotter
Theorem, which is essentially the same for most algorithmic applications. The
following is a precise statement of our result:

Theorem 2. Let (G, w) be an instance of GVC, with G = (V, E) and w : V ∪
E → Q≥0. Then there is a polynomial-time algorithm that partitions the vertices
of G into three subsets, V1, V0 and V1/2, and constructs another weight function
w̃ : V ∪ E → Q≥0, such that:

(i) if S1/2 is an α-approximate solution for (G[V1/2], w̃), then V1 ∪ S1/2 is an
α-approximate solution for (G, w), for all α ≥ 1, and

(ii) the w̃-cost of any subset S ⊆ V1/2 is at least 1
2

∑
v∈V1/2

w̃(v).
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Observe the difference in the second condition of the theorem which is necessary,
since any subset of vertices is a potential solution in GVC. This is what makes the
proof of the theorem in the generalized case more challenging. Another challenge
is that as the edges in GVC play a different role, we are not guaranteed the
combinatorial structure provided by the original theorem. For instance, in the
original theorem the subset V0 in the partition had to be an independent set,
as otherwise any vertex cover had to include at least one vertex from V0. In our
case we can never require such a condition; we must assume that there can be
an edge between any pair of vertices in V0. Furthermore, in the original theorem,
V1 must separate V0 from V1/2 in G. Again, in our case this is not necessarily
so, which makes the reduction more difficult since we insist that the resulting
subgraph be induced, i.e. obtained only by deleting vertices, a fact that allows
carrying-on hereditary properties of G through the reduction.

With the help of Theorem 2, we can show that many algorithms for Vertex

Cover which use the Nemhauser&Trotter Theorem as a subroutine, can be
modified so that they apply also for the more general case. In particular, we
obtain the following new results for GVC as almost immediate corollaries of
Theorem 2:

1. A (2 − 2/d)-approximation algorithm for graphs of bounded degree d.
2. A PTAS for planar graphs.
3. A (2 − lg lg n/2 lg n)-approximation algorithm for general graphs.
4. A 2k kernel for parameterized GVC.

The reader should not be misled into thinking our results imply that Vertex

Cover and GVC are in fact the same in any graph class. To see that this is
not so, note that while Vertex Cover is polynomial-time solvable in complete
graphs, GVC in complete graphs is essentially as hard to approximate as Vertex

Cover in any general graph (and thus it cannot be approximated within 10
√

5−
21 ≈ 1.36, unless P=NP [19]). This can be seen by the following reduction from
Vertex Cover in general graphs to GVC in complete graphs: Given a graph G,
transform G into a complete graph G′ by adding all necessary edges, and assign
a weight to these edges such that their total weight is substantially smaller than
the weight of any vertex in the graph. All original edges are assigned a weight
of ∞, and the vertex weights remain the same. It is not difficult to see that
any α-approximate vertex cover for G is also an (α+ ε)-approximate generalized
vertex cover of G′, for any ε > 0 as small as we want, and vice versa.

Our work is also related to the recent work of Könemann et al. [20], who
presented a reduction from partial covering to prize collecting covering, or in our
context, from Partial Vertex Cover to GVC. The Partial Vertex Cover

problem is another natural generalization of Vertex Cover, where now the goal
is to find a minimum weight subset of vertices that covers a prespecified number
of edges in the graph. Könemann et al. [20] showed how to transform a specific
class of α-approximation algorithms for GVC into an (4

3α + ε)-approximation
algorithms for Partial Vertex Cover. The algorithm in our Theorem 2 can be
used in conjunction with an algorithm from this specific class that works under
the assumption that the cost of any generalized vertex cover is at least half of the
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total weight of the vertices, and so Theorem 2 combined with Könemann et al.
gives a more refined reduction from Partial Vertex Cover to GVC.

The rest of the paper is devoted to proving Theorem 2 along with all of its
applications mentioned above. In the next section, we discuss some preliminaries
necessary for our proof, and in particular we review the local-ratio method which
plays an important part in many of our results. In Section 3 we provide all details
of the proof of Theorem 2, and in Section 4 we discuss all applications mentioned
above. Due to space limitations several proofs are omitted.

2 Preliminaries

In this section we discuss notation and previous work that is necessary for pre-
senting our results. In particular, we introduce terminology that is used for
proving Theorem 2, and briefly review the local-ratio technique which we use
throughout the paper.

We consider graphs that have weights assigned to their vertices and edges.
Let G = (V, E) be a graph given along with a weight function w : V ∪E → Q≥0.
For any edge {u, v} ∈ E, we write w(u, v) as a shorthand for w({u, v}). For a
subset of vertices S ⊆ V , we let w(S) =

∑
v∈S w(v), and for a pair of subsets

S1, S2 ⊆ V , we use w(S1, S2) for the weight of edges with one end-point in S1
and one end-point in S2 (edges whose endpoints are in S1 ∩S2 are counted only
once), namely w(S1, S2) =

∑
u∈S1

∑
v∈S2

w(u, v)−∑u,v∈S1∩S2
w(u, v). Observe

that the cost of a subset S ⊆ V in G is cost(S) = w(S) + w(V \ S, V \ S). Let
opt(G, w) denote the cost of the optimal generalized vertex cover in (G, w). For
an α > 0, we say that S is α-approximate, if cost(S) ≤ α · opt(G, w). Also, we
call any subset S ⊆ V feasible, if it has cost less then ∞.

The Local-Ratio Technique [7] is central in our proof of Theorem 2, and is also
used in its applications. The technique in most part is based on the Local-Ratio
Lemma, which in our terms can be stated as follows:
Lemma 1 (Local-Ratio [7]). Let (G, w1) and (G, w2) be two instances of
GVC, with G = (V, E) a graph and w1, w2 : V ∪ E → Q≥0 two weight func-
tions. If S ⊆ V is α-approximate both in (G, w1), and in (G, w2), then S is also
α-approximate in (G, w1 + w2).

The following definition hints on how to select a good weight function.

Definition 1 ( -effectiveness [21]). A weight function w1 is said to be α-
effective in G, if the following holds: if a subset of vertices is feasible, then it is
also α-approximate with respect to w1.

Below we give a variation of the Local Ratio Lemma which uses the notion of α-
effectiveness, and is the variation that will actually be used in the paper. Its proof
is immediate from the Local-Ratio Lemma and the definition of α-effectiveness,
and is left to the reader.

Lemma 2. Let (G, w) be an instance of GVC, and let wε be a weight function
which is α-effective in G. If S is a β-approximate solution for (G, w−wε), then
S is a max{α, β}-approximate solution for (G, w).

α
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3 The Main Proof

In this section we present the central result of this paper, namely the proof of
Theorem 2. Our proof consists of two main steps: In the first, similar to the proof
of the original Nemhauser&Trotter Theorem, we obtain an initial partition of
the vertices of our graph G into three classes according to an optimal solution
for an appropriate bipartite graph constructed from G. However, unlike the
original proof, in our case we can have edges between all classes, and inside
each class. We show that the only really problematic edges are those that are
between two particular classes. These edges are taken care of in the second step
by several applications of the Local-Ratio Lemma, at the end of which we obtain
our desired partition of the vertices of G, and the desired weight function w̃.
Before describing both steps in actual detail, we start with the following lemma
which will later be used in our proof, but is also of independent interest.

Lemma 3. GVC is polynomial-time solvable in bipartite graphs.

Proof. Let B = (V, V ′, F ) be a bipartite graph, and let w : V ∪ V ′ ∪ F → Q≥0

be a weight function. Construct a flow-network N from B by adding to B a
source s and a destination t, with s connected to all vertices in V , and vertices
in V ′ connected to t. The capacities of the edges in N are: (i) c(s, v) = w(v)
for all v ∈ V , (ii) c(u, v) = w(u, v) for all {u, v} ∈ F , and (iii) c(v, t) = w(v)
for all v ∈ V ′. Observe that there is a one-to-one correspondence between edges
in B and s, t-paths in N , and that the edges on an s, t-path in N correspond
to the three ways of covering the corresponding edge in B: Either adding one
of its endpoints to the generalized vertex cover, or not covering this edge at all.
Specifically, given a subset U ⊆ V ∪V ′ the corresponding s, t-cut is (S, T ), where
S = {s}∪ (V \U)∪ (V ′∩U) and T = {t}∪ (V ∪V ′)\S, and conversely, given an
s, t-cut (S, T ) the corresponding cover is U = (S ∩ V ′) ∪ (T ∩ V ). Hence, there
is a one-to-one correspondence between generalized vertex covers in B and s, t-
cuts in N . Moreover, by our selection of capacities, each generalized vertex cover
corresponds to an s, t-cut whose capacity is equal to the cost of the cover. Since
one can compute minimum s, t-cuts by standard flow techniques, the lemma is
proven. ��

Step I. Given an instance (G, w) for GVC, with G = (V, E) and w : V ∪
E → Q≥0, we construct a bipartite graph B = (V, V ′, F ) along with a weight
function wB : V ∪ V ′ ∪ F → Q≥0 for B, as follows: The set V ′ contains a
duplicate vertex for each vertex in V , and is defined by V ′ = {v′ | v ∈ V }. The
set F of edges in B includes the pair of edges {u, v′} and {u′, v}, for each edge
{u, v} ∈ E. We define wB by wB(v), wB(v′) = w(v) for all v, v′ ∈ V ∪ V ′, and
wB(u′, v), wB(u, v′) = w(u, v) for all {u, v′}, {u′, v} ∈ F . Here, and throughout
the remainder of this section, we denote by S′ the set of duplicates of some
subset S ⊆ V . That is, S′ = {v′ | v ∈ S}.

We compute an optimal solution S∗
B in B using the algorithm implied by

Lemma 3. According to the computed solution S∗
B, we partition V into the
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following three subsets: U1 = {v | v, v′ ∈ S∗
B}, U0 = {v | v, v′ �∈ S∗

B} and U1/2 =
V \ (U1 ∪ U0). We show that we may assume that S∗

B ∩ U ′
1/2

= ∅.
Claim 1. costB(U1 ∪ U ′

1 ∪ U1/2) ≤ costB(S∗
B).

Proof. By a simple manipulation of the cost of S∗
B in (B, wB), we get:

costB(S∗
B) = wB(S∗

B) + wB(U0 ∪ U1/2 \ S∗
B, U ′

0 ∪ U ′
1/2 \ S∗

B)

≥ wB(S∗
B) + wB(U0, U

′
0) + wB(U0, U

′
1/2 \ S∗

B) + wB(U ′
0, U1/2 \ S∗

B) .

Thus, since wB(U0, U
′
1/2

\ S∗
B) + wB(U ′

0, U1/2 \ S∗
B) = wB(U0, U

′
1/2

), we have
costB(S∗

B) ≥ wB(S∗
B) + wB(U0, U

′
0) + wB(U0, U

′
1/2

) = costB(U1 ∪ U ′
1 ∪ U1/2),

and the claim is proven. ��
Next, using Claim 1, we show that we are on the right direction with our initial
partition of the vertices of G, since there is an optimal solution which includes
all vertices of U1 and no vertex of U0.

Claim 2. There is an optimal solution S for (G, w) with U1 ⊆ S and U0∩S = ∅.
Proof. Let S be any subset of vertices in G, and let Sz = Uz∩S for z ∈ {1, 1/2, 0}.
Also, let T = V \ S and Tz = Uz \ Sz for z ∈ {1, 1/2, 0}. To prove the claim, we
argue that the solution U1 ∪ S1/2 does not have greater cost than S. The claim
follows by taking S to be optimal.

For this, consider the difference between the cost of S and the cost of U1∪S1/2.
The only advantage the former has over the latter is that it does not pay for
any vertex in T1, nor for any edge between S0 and U0 ∪ T1/2, all elements which
are paid for by U1 ∪ S1/2. However, S has to pay for all vertices in S0, and
all edges between T1 and T , while U1 ∪ S1/2 does not. Since this is the only
difference between the two solutions, we have costG(S) − costG(U1 ∪ S1/2) =
w(S0) + w(T1, T ) − w(T1) − w(S0, U0 ∪ T1/2).

Now, we construct a solution SB for the bipartite graph B = B(G) described
above, defined by SB = (V \T0)∪S′

1, and we compare this solution to S∗
B. Claim 2

implies that there is no loss of generality in assuming that S∗
B = U1 ∪U1/2 ∪U ′

1,
i.e. that S∗

B does not include any vertices of U ′
1/2

. Now SB does not pay for
any vertex in T ′

1, while S∗
B does, nor does it pay for any edges between S0 and

U ′
0 ∪ U ′

1/2
, all of which are paid for by S∗

B. On the other hand, S∗
B does not pay

for any vertex in S0, nor for any edge between T ′
1 and T0. Noting that this is the

exact difference between their costs, and that all weights are positive, we get

costB(SB) − costB(S∗
B)

= wB(S0) + wB(T ′
1, T0) − wB(T ′

1) − wB(S0, U
′
0 ∪ U ′

1/2
)

= w(S0) + w(T1, T0) − w(T1) − w(S0, U0 ∪ U1/2)
= w(S0) + w(T1, T ) − w(T1, T1 ∪ T1/2) − w(T1) − w(S0, U0 ∪ T1/2) − w(S0, S1/2)
= costG(S) − costG(U1 ∪ S1/2) − w(T1, T1 ∪ T1/2) − w(S0, S1/2)
≤ costG(S) − costG(U1 ∪ S1/2) .

As S∗
B is optimal in B, we know that costB(SB) − costB(S∗

B) ≥ 0. Hence,
cost(S) − cost(U1 ∪ S1/2) ≥ 0, and so the claim is proven. ��
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Claim 2 implies that we can safely restrict ourselves to solutions for (G, w) which
include all vertices of U1, and no vertex of U0. Therefore, all edges which have
at least one endpoint in U1 are redundant to us in this sense. Also, edges with
both endpoints in U0 are redundant, since we can safely leave these uncovered.
The same is not true for edges between U0 and U1/2, as these still might need to
be covered. We take care of these edges in the second step of our algorithm, but
for now consider the graph H obtained by deleting all edges between vertices of
U0 in the induced subgraph G[U0 ∪ U1/2] of G. Define a weight function wH for
H which equals w on all edges of H and all vertices of U1/2 and assigns ∞ to all
vertices in U0. In the following we argue that a good approximation for (H, wH)
gives a good approximation for (G, w).

Claim 3. If S is α-approximate for (H, wH), then U1 ∪ S is α-approximate for
(G, w).

Proof. Let S∗
H denote an optimal solution in (H, wH), and assume w.l.o.g. that

costH(S∗
H) < ∞. Then costH(S) ≤ α · costH(S∗

H) ≤ ∞. Now, according to
Claim 2, there is an optimal solution for (G, w) which includes all vertices of
U1 and no vertex of U0, so let S∗ be such a solution, with S∗

1/2
= S∗ ∩ U1/2 and

T ∗
1/2

= U1/2 \ S∗
1/2

. Hence,

costG(U1 ∪ S) = w(U1) + w(U0, U0) + costH(S)
≤ w(U1) + w(U0, U0) + α · costH(S∗

H)
≤ α · (w(U1) + w(U0, U0) + costH(S∗

1/2))
= α · (w(U1) + w(U0, U0) + wH(S∗

1/2) + wH(U0 ∪ T ∗
1/2, U0 ∪ T ∗

1/2))
= α · (w(U1) + w(U0, U0) + w(S∗

1/2) + w(U0 ∪ T ∗
1/2, U0 ∪ T ∗

1/2))
= α · costG(S∗) ,

and the claim is proven. ��
Furthermore, we show that the total weight of elements in H with finite weight
is at most twice the cost of any solution of (H, wH):

Claim 4. wH(U1/2) + wH(U0, U1/2) ≤ 2 · costH(S) for every S ⊆ U0 ∪ U1/2.

Proof. If S � U1/2, then costH(S) = ∞, and the claim is trivial. Assume therefore
that S ⊆ U1/2, and denote T = U1/2\S. Consider the solution SB = U1∪U ′

1∪S∪S′

for the bipartite graph B constructed above. The cost of this solution is:

costB(SB) = wB(U1 ∪ U ′
1) + wB(S ∪ S′) + wB(U0 ∪ T, U ′

0 ∪ T ′)
= 2 · w(U1) + 2 · w(S) + w(U0, U0) + w(T, T ) + 2 · w(U0, T )
= 2 · w(U1) + 2 · costH(S) + w(U0, U0) − w(T, T ) .

Now let us compare this solution to S∗
B, the optimal solution of B. Recall that

we can assume that U1/2 ⊆ S∗
B and S∗

B∩U ′
1/2

= ∅. The cost of S∗
B equals the total

weight of its vertices plus the total weight of all edges between U0 and U ′
0∪U ′

1/2
.

We have, costB(S∗
B) = 2 ·w(U1) + w(U1/2) + w(U0, U0) + w(U0, U1/2). The claim

can now be easily proven by combining the two equalities above with the fact
that costB(S∗

B) ≤ costB(SB). ��
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Step II. Note that while the instance (H, wH) is close to what we aimed to
achieve, it is not quite there. One reason is that H is not an induced subgraph
of G, it contains vertices of U0 without the edges between them. Another reason
is that the U0 vertices have wH -weight equal to ∞, and therefore any feasible
solution for (H, wH) will not satisfy the second condition of Theorem 2. We
cannot simply discard these U0 vertices, since some of them might be connected
to vertices in U1/2. For this reason, we apply the Local-Ratio lemma to eliminate
edges between U0 and U1/2. This is done by applying the following procedure that
iteratively subtracts 1-effective weight functions from wH , in order to obtain the
weight function w̃ promised by Theorem 2:

While there is an edge e0 = {u, v} in H with u ∈ U0, v ∈ U1/2, and
wH(e0), wH(v) > 0, do:
a. Let ε = min{wH(e0), wH(v)}.
b. Define the weight function wε for H by:

– wε(v), wε(e0) = ε, and
– wε(x), wε(e) = 0 for all x �= v and e �= e0.

c. wH = wH − wε.
The above procedure terminates in polynomial time, since at each iteration,
either a vertex or an edge get their wH -weight reduced to zero. The weight
function w̃ is defined to be wH at the end of the procedure. We define the
partition of the vertices in G which is promised in Theorem 2 using w̃: V1 =
U1 ∪ {v ∈ U1/2 | w̃(v) = 0}, V0 = U0 and V1/2 = V \ (V1 ∪ V0).

To complete the proof, we argue that a good approximation for (G[V1/2], w̃)
gives a good approximation for (H, wH), and that w(V1/2) is at most twice the
cost of any solution for (G[V1/2], w̃).

Claim 5. If S is α-approximate for (G[V1/2], w̃) then S ∪ {v | w̃(v) = 0} is α-
approximate for (H, wH).

Proof. We prove the claim using induction on the number of steps applied in this
procedure. According to Lemma 2, it suffices to show that any weight function
wε subtracted in the procedure above is 1-effective. But this is immediate since
any solution with cost less than ∞ in (H, wε) has cost exactly ε: It either pays
for not covering the edge e0 or for its endpoint in U1/2, but never for both.
Finally, since G[V1/2] is obtained by removing vertices from H with either 0 or
∞ w̃-weights, an α-approximation for (G[V1/2], w̃) implies an α-approximation
for (H, w̃). ��
Claim 6. w̃(V1/2) ≤ 2 · costG[V1/2](S) for every S ⊆ V1/2.

Proof. By Claim 4, we have wH(U1/2) + wH(U0, U1/2) ≤ 2costH(S) for any S ⊆
U0 ∪ U1/2. Since at each iteration in the procedure above, we subtract exactly
2ε from each side of this inequality, at the end of which G[V1/2] includes all
positive weighted vertices of H , we get that w̃(V1/2) ≤ w̃(U1/2) + w̃(U0, U1/2) ≤
2costG[V1/2](S). ��
The partition V1, V0 and V1/2, along with the weight function w̃, satisfy both
conditions of Theorem 2. Combining Claim 5 with Claim 3 proves the first
condition, while the second condition follows directly from Claim 6.
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4 Applications

As mentioned in Section 1, the Nemhauser&Trotter Theorem has several ap-
plications in designing approximation algorithms for Vertex Cover. We show
that several of these extend to GVC using Theorem 2. The section is divided into
four parts, with each part giving a different corollary of Theorem 2. We start
with a (2 − 2

d)-approximation algorithm for graphs of bounded degree d, then
continue to show a PTAS for planar graphs, and a (2 − lg lg n

2 lg n )-approximation
algorithm for general graphs. Finally, we show that Theorem 2 gives a linear
kernel for parameterized GVC.

4.1 Bounded Degree Graphs

Our first application for Theorem 2 is a (2− 2
d)-approximation algorithm for GVC

in graphs of bounded degree d. This is an analogous result to an algorithm of
Hochbaum [6] that applies the original Nemhauser&Trotter Theorem to obtain
the same approximation ratio for Vertex Cover in graphs of bounded degree d.
In her algorithm, Hochbaum uses a classical graph-theoretic result by Brooks [22]
which states that any graph of bounded degree d which is not complete nor an
odd cycle can be properly colored in d colors. (That is, its vertex set can be
partitioned into d classes, with no edges between any pair of vertices in the same
class.) Together with the Nemhauser&Trotter Theorem, this is basically all that
is necessary for Hochbaum’s algorithm. Indeed, in our case it is also all that is
necessary, due to the following lemma:

Lemma 4. GVC is polynomial-time solvable in cycles.

Corollary 1. d-GVC is approximable within 2 − 2
d , for any d > 1.

4.2 Planar Graphs

We next use the technique of Baker [9] together with Theorem 2 to obtain a
PTAS for GVC in planar graphs. The main idea is to first use the algorithm
of Theorem 2, and then to break the planar subgraph G[V1/2] into a set of k-
outerplanar graphs, by removing a set of vertices from G whose weight is at
most w̃(V1/2)/k. Since k-outerplanar graphs have treewidth depending only on
k, we can compute an optimal solution for each graph in the set of remaining
k-outerplanar graphs. (See [23] for the definition of tree width.) Furthermore,
since w̃(V1/2) is at most twice the cost of the optimum solution in (G[V1/2], w̃)
by Theorem 2, this removed set of vertices together with optimal solutions of
the k-outerplanar graphs constitute a (1 + 2

k )-approximate generalized vertex
cover.

We solve GVC in graphs with bounded treewidth using a standard bottom-up
dynamic programming approach.

Lemma 5. GVC can be solved in 2O(w) ·n time in graphs of treewidth at most w.

Corollary 2. GVC in planar graphs has a PTAS.
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4.3 General Graphs

We now show that the (2− lg lg n
2 lg n )-approximation algorithm of [7] can be extended

to GVC, due to Theorem 2. The central component in the algorithm of [7] is
given in the following lemma:

Lemma 6 ([7]). There is a polynomial-time algorithm that given a graph G =
(V, E), a weight function w : V → Q≥0, and an integer k, such that (i) |V | ≥
(2k − 1)k, and (ii) G does not contain an odd cycle of length at most 2k − 1,
computes a vertex cover C of G with w(C) ≤ (1 − 1

2k )w(V ).

Another component we use is given due to the local-ratio technique: We can
remove odd cycles in a given instance (G, w) of GVC at a relatively small cost
to our approximation guarantee. We have the following lemma:

Lemma 7. Let (G, w) be an instance of GVC, and let C be an odd cycle in G
of size 2t − 1, where t ≤ k. Then, the weight function wε which assigns ε to all
vertices and edges in C, and 0 to all other vertices and edges (2 − 1

k )-effective.

Corollary 3. GVC is approximable within 2 − lg lg n
2 lg n .

4.4 Fixed-Parameter Tractability

The Nemhauser&Trotter Theorem has applications outside the world of approxi-
mation algorithms, most notably in the world of parameterized complexity. Chen
et al. [10] observed that this theorem gives a 2k kernel for unweighted param-
eterized Vertex Cover problem, when the parameter is the total weight of
the required vertex cover. We next note that, using Theorem 2, this straightfor-
wardly extends to GVC parameterized by the cost of the optimal solution.

Parameterized complexity deals with parameterized problems, whose in-
stances are given together with a numeric parameter k that encodes various
structural properties of the input, e.g. solution size, maximum degree, and so
forth. This allows a refined definition of tractable problems, where a tractable
problem is now one with an algorithm running in f(k)poly(n) time, where n is
the instance size and f is any computable function. FPT is the class of all pa-
rameterized problems with an f(k)poly(n) algorithm. A kernelization algorithm,
or simply a kernel, is a commonly used technique for showing that a parameter-
ized problem is in FPT. Formally, a kernel is a polynomial-time algorithm that
transforms an instance (I, k) to an instance (I ′, k′), with |I ′| + k′ ≤ f(k) for
some computable function f , and such that (I, k) is a “yes”-instance if and only
if (I ′, k′) is a “yes”-instance. It is easy to see that Theorem 2 gives exactly this,
when the parameter is taken as the cost of the solution.

Corollary 4. GVC parameterized by the cost k of the optimal solution has a 2k
kernel.
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Price Fluctuations: To Buy or to Rent�
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Abstract. We extend the classic online ski rental problem, so that the
rental price may change over time. We consider several models which
differ in the knowledge given to the algorithm: whereas the price devel-
opment is unknown, an algorithm may have full, partial or no knowledge
about the duration of the game. We construct algorithms whose compet-
itive ratios are up to constant or logarithmic factors optimal.

Keywords: Online algorithms, competitive analysis, ski rental problem,
average-case competitiveness.

1 Introduction

In the classic ski rental problem, a skier may rent skis for p dollars per day or
buy them for s · p dollars, where s is an integer greater than one. At the end of
any day, the skier may break his legs along with the skis, or in some other way
irrevocably finish skiing. The goal is to develop an online strategy minimizing
the cost of skiing; this cost is compared to the cost of an optimal offline strategy
for the same input. The worst-case ratio between these two amounts is called
competitive ratio.

A well-known result [11,12] states that the best deterministic online strategy
is to rent skis for s − 1 day and then to buy them on day s. It is easy to check
that such a strategy achieves a competitive ratio of (2 − 1/s).

In this paper, we extend this model, so that the rental price p may evolve with
time. Therefore, the instance of the problem includes not only the duration of the
process in days, but also a sequence of prices in consecutive days. However, if we
do not impose any constraints on the way the price changes, no algorithm may
achieve a competitive ratio better than Ω(s) (even if the process is guaranteed
to last infinitely). To see this, assume that p = 1 at day one. If the skier buys
skis at the first day, then all the future prices are set to 1/s, otherwise they are
set to s. The optimal solution in these cases is to buy at the second day or at
the first one, respectively, and the competitive ratio is Ω(s). Note also that the
ratio O(s) is achieved by a trivial algorithm which buys at the first day. We view
the whole process as a game between an algorithm (the skier) and an adversary
(breaking-legs and fixing-prices reality).

Hence, we assume that the rate of price changes is bounded, i.e., the price for
renting skis at any day is at least 1 and the prices in two consecutive days differ
� Supported by MNISW grants number N N206 1723 33, 2007–2010 and N N206
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at most by 1. Apparently, if we use the standard competitive analysis [1], the
cost of any online algorithm, which knows neither the future prices nor the game
duration, is rather high in comparison to the optimal offline solution. Therefore,
we investigate other scenarios, in which the algorithm has full or partial knowl-
edge about the game duration. We want to emphasize that in all cases, the
algorithm does not know the future prices. In particular, we consider a hybrid
scenario in which the duration of the game is a random variable, corresponding
to the following natural model: each day a skier quits with probability 1/Γ and
continues skiing with probability 1 − 1/Γ . In effect, an input sequence in such
a scenario is generated partially by an adversary and partially by a stochastic
process, and we measure the performance of an algorithm by a mixture of the
average-case and competitive analysis.

In this paper, we consider a continuous variant of the problem. Namely, the
prices are given as a continuous curve satisfying the Lipschitz condition and the
skier is renting skis up to time T when he buys them (T is possibly a non-integer).
This hardly changes the problem; the calculations in the continuous model are
simpler though. Moreover, we show that our algorithms can be modified to work
in the discrete model without increasing their competitive ratios.

1.1 Problem Formulation and Our Results

A parameter of the problem is a real number s > 1, representing the ratio
between the cost of buying skis and renting them.

We assume that the input instance is a pair of an infinite curve of prices
and a game duration. The former is a continuous function pt ≥ 1 satisfying the
Lipschitz condition, i.e., for any two times t0 and t1, it holds that |pt1 − pt0 | ≤
|t1 − t0|. The latter is a real positive number γ.

In online analysis, the input is revealed to an algorithm element by element:
in the discrete counterpart of the problem, the algorithm would be given prices
in consecutive days and may react after reading any of them. We would like
to formulate algorithms in a similar manner, i.e., by saying, for example, that
“the algorithm waits for the price p to reach a given threshold”. While we use
such phrases in the paper, we note that they can be justified without having
the algorithm to process infinite number of input elements. For example, the
algorithm may choose a small probing frequency ε > 0, read the price curve at
times 0, ε, 2ε, 3ε . . . and, at these times, make a decision whether to buy skis.
The last value presented to the algorithm is then the price at time �γ

ε � · ε. As
the price curve satisfies the Lipschitz condition, for a small value of ε this read
model gives the algorithm essentially the same power as the model in which it
is possible to buy skis at any time.

Fix any input curve pt and the game duration γ. For any T , let F(T ) =∫ T

t=0 pt dt and let Buy(T ) be an algorithm which buys at time T . In particular,
Buy(∞) is an algorithm which always rents. Then its cost is equal to

CBUY(T) =

{
F(T ) + s · pT if T ≤ γ ,

F(γ) if T > γ .
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y (−∞, 1/2) [1/2, 2/3) [2/3, 4/5) [4/5, 1) [1,∞)
L(y) 1 s2y−1 sy/2 s(2−y)/3 s1/3

Fig. 1. Function L(y) used in the description of competitive ratios (left), thresholds A
and B used by the algorithm Protsy (right)

The cost of the optimal offline solution, Opt, is COPT = min0≤T≤∞ CBUY(T).
For any deterministic algorithm Alg, we say that Alg is R-competitive if

for any input it holds that CALG/COPT ≤ R. If the algorithm is randomized,
we replace CALG by its expected value. For randomized algorithms, we assume
oblivious adversaries, which do not see random bits used by the algorithm.

We consider several scenarios, which differ in the knowledge given to the
algorithm.

Scenario A: Unknown game end. This is the most straightforward case, in
which the adversary dictates both price curve pt and game duration γ, and
an algorithm learns γ at the end of the game. For this scenario, in Sect. 2,
we give a deterministic O(

√
s)-competitive algorithm. This ratio is asymp-

totically optimal, as we present an up to a constant factor matching lower
bound, which holds even for randomized algorithms.

Scenario B: Known game end. In this scenario, the adversary defines both a
price curve and duration γ, but the algorithm learns γ at the very beginning
and can adjust its behavior accordingly. For describing our results, we define
a function L as in Fig. 1. In Sect. 3, we construct an algorithm Prot which is
O(L(logs γ))-competitive for Scenario B. This means that for the worst possi-
ble choice of γ, we achieve a competitive ratio ofO(s2/5). We provide a match-
ing lower bound for any value of γ and any randomized algorithm in Sect. 4.

Scenario C: Stochastic game end. In this scenario, the adversary defines
a price curve and a parameter Γ ≥ 1, which is revealed to the algorithm
at the very beginning. Then the game duration γ is chosen randomly ac-
cording to the exponential distribution with parameter Γ . The algorithm
learns the game end at time γ. As mentioned above, this is a continuous
counterpart of the following natural model: the probability of breaking a leg
is 1/Γ each day, i.e., the expected duration is Γ . Such modeling of the input
builds another bridge between the average-case and competitive analysis. In
Sect. 3.3, we show that if we run an appropriately parameterized version of
Prot, the expected value of its competitive ratio is O(L(logs Γ ) · (log s)7/9).
We note that asymptotically the same results hold if we consider uniform
distribution over interval [0, 2Γ ], i.e., with the same expected duration Γ .
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Finally, we show that our algorithms for the continuous model can be adjusted
to work in the discrete model without increasing their competitive ratios. Due
to lack of space, some proofs will appear in the full version of the paper.

1.2 Related Work

For the classic ski rental problem (SRP), the competitive ratio of the best deter-
ministic online algorithm is 2− 1/s [11,12]. If we allow randomization, then this
ratio can be reduced to e/(e − 1) ≈ 1.58 [10]. Similar constructions achieving
optimal ratios (2 for the deterministic case and e/(e−1) for the randomized one)
were shown for related rent-or-buy problems like the Bahncard problem [6,9],
the spin-block problem [10], or the TCP acknowledgement problem [3,9].

In the multi-slope SRP [2,13], the buyer may switch between many lease op-
tions (ri, wi), where ri is the startup cost for using this option and wi is the fee
paid each day. In these terms, the classic SRP means a binary choice between
the pure rental option (0, p) and the pure purchase option (s · p, 0).

The SRP was also analyzed in an average-case: Fujiwara and Iwama [7] con-
sidered the case where the game duration is determined by a stochastic process
and the goal is to minimize the expected value of the competitive ratio. In par-
ticular, they proved that if the duration is an exponentially distributed (with
parameter Γ ) random variable, the optimal strategies are either to rent forever
if Γ ≤ s or to buy skis at day s2/Γ if Γ > s.

For other successful applications of the competitive analysis where an input is
generated randomly, see, e.g., [8] and the references therein. However, in contrast
to these papers, we consider a model in which the input is not chosen purely ran-
domly, but partially randomly and partially by an adversary. Our performance
metric for the third scenario (the expected value of the competitive ratio) is thus
similar in flavor to the smoothed competitive ratio [14].

To our best knowledge, the SRP was not analyzed in a model in which prices
may change over time. This problem is loosely related to various versions of
currency trading (see, e.g., [5,4]). Due to different focus and assumptions, algo-
rithmic ideas developed there do not seem to apply to our problem.

2 Unknown Game End

In this section, we present a simple deterministic algorithm Thresh for Sce-
nario A. In period [0,

√
s), Thresh always rents. Then, it buys skis at the first

time k ≥ √
s, such that F(k) ≥ s.

Theorem 1. Thresh is O(
√

s)-competitive for Scenario A.

Proof. Let γ be the duration of the game. Let k be the time of skis purchase or
k = γ if Thresh does not buy skis. To show the theorem, we relate the costs of
Thresh and Opt to F(k), proving the following two relations.
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1. CTHRESH = O(
√

s) · F(k).
If Thresh does not buy skis, then k = γ and the relation holds trivially.
Otherwise, CTHRESH = F(k) + s · pk. By the definition of the algorithm,
F(k) ≥ s and k ≥ √

s. If pk ≤ 2 · √s, then F(k) ≥ √
s · pk/2. If pk > 2 · √s,

then in period [k − √
s, k] the price is at least pk − √

s > pk/2, and thus
F(k) >

√
s · pk/2 as well.

2. COPT ≥ F(k)/2.
This relation clearly holds if Opt rents forever or buys skis at time k or
later. Thus, we assume that Opt buys skis at time 	 < k, paying at least
s · p�. We consider two cases.
(a) k >

√
s. By the construction of Thresh, F(

√
s) < s, and thus F(k) ≤

s ≤ COPT. (The first inequality is strict only in case k = γ.)
(b) k ≤ √

s. As any two prices in period [0, k] can differ at most by k, we
obtain F(k) =

∫ k

0 pt dt ≤ ∫ k

0 (p� + k) dt = k · p� + k2 ≤ 2 · s · p� ≤
2 · COPT. ��

It appears that the achieved competitive ratio is asymptotically optimal, even
for randomized algorithms.

Theorem 2. In Scenario A, the competitive ratio of any randomized algorithm
is Ω(

√
s).

3 Algorithm PROT

In this section, we construct an algorithm Protλ which we further analyze in
Scenarios B and C; λ is a parameter of the algorithm. The algorithm performs
well if λ = γ. This can be guaranteed in Scenario B; in Scenario C, we know
only that E[γ] = Γ , and hence we choose λ close to Γ .

For any values of λ and γ, let R(λ, γ) be the competitive ratio of Protλ

run on a sequence of length γ. Then, the actual competitive ratio of Prot

in Scenario B is R(γ, γ) and the expected value of the competitive ratio in
Scenario C is Eγ [R(λ, γ)].

Description of the Algorithm. The behavior of algorithm Protλ depends
on the parameter λ. We think of λ as the algorithm’s estimate of the game
duration γ. As in the classic ski rental problem, we want to amortize the cost of
skis purchase against the cost of their rental, e.g., to buy if we already rented for
time Θ(s). For example, if λ is small, it makes little sense to buy skis. However,
the fluctuation of the prices may trigger the purchase also at some other points
of the time.

We give an informal rationale for algorithm Prots run on an input of length s.
The algorithm has to protect itself against two different types of inputs. An input
may contain a time point with a low price, giving Opt the possibility to buy
for this price. To cope with such inputs, Prots chooses a threshold A and buys
skis when the price falls below A. The second threshold is less intuitive. Assume
that the price grows for the whole input. In this case, the optimal solution is to
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buy as early as possible. On the other hand, the total cost of renting skis grows
quadratically with time (at least from a certain point). To protect against such
inputs, Prots uses the second threshold B; it buys skis when the price goes
above B.

Although it is not necessary in Scenario B, the algorithm never buys skis
(even if thresholds are reached) in period [0, 1). The reason for this stems from
Scenario C: in this case, if we just used thresholds A and B, the adversary could
trigger the skis purchase of Prot at time 0, i.e., CPROT = s·p0. For any Γ , it can
happen (with non-negligible probability) that the sequence ends at time ε � 1.1

In this case, COPT ≈ ε · p0, and the competitive ratio is very high.
Taking these intuitions into account, we formally define the algorithm. Protλ

uses two thresholds: A and B, which are depicted in Fig. 1 and defined as follows.

λ = sy [0, s2/3) [s2/3, s4/5) [s4/5, s) [s,∞)
A 1/2 s(3/2)y−1 s(2y−1)/3 s1/3

B ∞ ∞ s(y+1)/3 s2/3

If at time t ≥ 1 price falls outside range (A, B), then Protλ buys at this price.
Otherwise, if the price remains in range (A, B) for the period [1, s], then Protλ

buys at time s.

Note that as all the prices are at least 1, for λ ≤ s2/3, the strategy of Protλ

is just to rent for the whole period [0, s) and to buy at time s (if the game lasts
till this time).

Observation 1. If the game ends at time γ < 1, then R(λ, γ) = O(1).

Therefore, in the remaining part of this section, we assume that γ ≥ 1. For
making our arguments concise, we consider a restricted version of Opt which is
not allowed to buy in period [0, 1). Such a restriction increases its cost at most
by a constant factor, and can be neglected as we are interested in the asymptotic
performance.

3.1 Types of Sequences

We start with a classification of input curves and we characterize the behavior
of Prot on them.

1. An input is of type (a, b)-middle if all prices in period [1, s] are in range
(a, b).

2. An input is of type (a, b)-low with parameter k < s if all prices in period
[1, k) are within range (a, b) and pk ≤ a.

3. An input is of type (a, b)-high with parameter k < s if all prices in period
[1, k) are within range (a, b) and pk ≥ b.

Note that for any a and b, each input is either (a, b)-low, (a, b)-middle, or (a, b)-
high. Moreover, by the continuity of the price curve, if an input is (a, b)-low
1 Note that such situation cannot occur in the discrete variant of the problem.
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with parameter k, either k = 1 and p1 ≤ a, or k ≥ 1 and pk = a. An analogous
relation holds for (a, b)-high sequences.

Throughout this section, we assume that γ ≥ 1 is the duration of the game,
and A < B are the thresholds used by Protλ. We present three lemmas describ-
ing the algorithm behavior on the corresponding three types of input sequences.
For succinctness, we define

MA,B,γ = min
{

B

A
, 1 +

γ2

s · A
}

. (1)

In the following three lemmas, we characterize the behavior of Prot on different
types of sequences. Proofs of the second and third ones are relatively similar,
and hence we omit one of them.

Lemma 1. On an (A, B)-middle input, it holds that R(λ, γ) = O(MA,B,γ).

Proof. We note that if γ > s, we may set γ = s, as the behavior of the algorithm
remains unchanged and cost of Opt may only decrease. Thus, we assume γ ≤ s.

If γ = s, then Prot buys skis at time s, paying at most s ·B for renting and
s · B for purchase. Further, Opt ≥ s · A, as Opt either buys or rents for the
entire period. Hence, CPROT/COPT ≤ 2B/A.

If γ < s, Prot always rents, paying F(γ). On the other hand, COPT ≥
min{F(γ), s · A}. Thus,

CPROT

COPT
≤ 1 +

F(γ)
s · A ≤ 1 +

γ · A + γ2/2
s · A = O

(
1 +

γ2

s · A
)

.

��
Lemma 2. On an (A, B)-low input with parameter k, it holds that R(λ, γ) =
O(A + s · A/γ + MA,B,γ).

Lemma 3. On an (A, B)-high input with parameter k, it holds that R(λ, γ) =
O (B/A + s/B + s/γ).

Proof. If γ < k, then the prefix of the input seen by the algorithm is (A, B)-
middle, and thus the competitive ratio is at most O(MA,B,γ).

Below, we assume that γ ≥ k. By the definition, CPROT = F(k) + s · pk. The
main complication is that pk is not necessarily equal to B, as the input sequence
may simply start with a very high price.

1. If k ≤ B/2, then pk ≥ B and during period [0, k + B/2] the price remains in
range [pk−B/2, pk+B/2]. We consider a possibly shorter period [0, min{k+
B/2, γ}], which actually appears in the game. Opt either rents skis in this
period paying at least min{k + B/2, γ} · (pk −B/2) = Ω(min{B, γ} · pk), or
buys skis in this period paying at least s · (pk − B/2) = Ω(s · pk). Thus, the
competitive ratio in this case is

CPROT

COPT
= O

(
s · pk

min{B, γ, s} · pk

)
= O

(
1 +

s

γ
+

s

B

)
. (2)
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2. If k > B/2, then pk = B. We consider two subcases.
(a) Opt buys skis in the period [1, k]. Then COPT ≥ s ·A, CPROT ≤ k ·B +

s · B ≤ 2 · s · B, and thus

CPROT

COPT
= O(B/A) . (3)

(b) Opt rents skis in the period [1, k]. Note that during period [k − B/2, k]
the price remains above B/2. Thus, COPT ≥ F(k) and COPT = Ω(B2).
The competitive ratio is then bounded by

CPROT

COPT
= O

(F(k) + s · B
F(k) + B2

)
= O(s/B) . (4)

By combining (2), (3), and (4), we obtain the lemma. ��

3.2 Algorithm Analysis for Known-End Scenario

If we look at thresholds A and B of Protλ, it appears that for particular choices
of parameter λ, we can restrict the input types that may appear during Protλ

execution. For example, if s2/3 ≤ λ < s4/5, B = ∞, and thus the input can be
only (A, B)-low or (A, B)-middle. Applying the results of Lemmas 1, 2, and 3,
we immediately get the following theorem.

Theorem 3. Fix any λ, γ ≥ 0, and let y = logs λ. Then

R(λ, γ) = O(1) ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + γ2/s if y < 2/3 ,

s
3
2 y−1 + s

3
2 y/γ + γ2/s

3
2 y if 2/3 ≤ y < 4/5 ,

(1 + sy/γ) · s(2−y)/3 if 4/5 ≤ y < 1 ,

(1 + s/γ) · s1/3 if y ≥ 1 .

In Scenario B, the algorithm knows the game duration γ and by running Protγ ,
we may achieve the desired competitive ratio.

Corollary 1. The competitive ratio of Protγ on an input of length γ is at most
O(L(logs γ)).

3.3 Algorithm Analysis for Stochastic-End Scenario

For Scenario C, we analyze the performance of Prot run on an input, whose
length is an exponentially distributed random variable γ ∼ Exp(Γ ). The den-
sity function of this distribution is f(x) = 1

Γ · e−x/Γ for x ≥ 0. The following
properties hold.

Observation 2. If f(x) is the probability density function of the exponential
distribution with parameter Γ ≥ 1, then

∫∞
0 x · f(x) dx = Γ ,

∫∞
0 x2 · f(x) dx =

O(Γ 2), and
∫∞
1

1
x · f(x) dx = O( log Γ

Γ ).
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As mentioned earlier, Prot performs well if λ corresponds to the game dura-
tion γ. In Scenario C, this can be fulfilled only in expectation, e.g., by setting
λ = Γ = E[γ].

Theorem 4. For any Γ ≥ 1, the expected value of competitive ratio of ProtΓ

run on a sequence of length γ ∼ Exp(Γ ) is O(L(logs Γ ) · log Γ ).

Proof. Let f be the density function of the exponential distribution. We want
to upper-bound the value of

Eγ [R(Γ, γ)] =
∫ ∞

0
R(Γ, γ) · f(γ) dγ = O(1) +

∫ ∞

1
R(Γ, γ) · f(γ) dγ ,

where the second equality follows by Observation 1. Recall, that by Theorem 3,
R(Γ, γ) is a sum of terms, where each term is a linear function of γc for c ∈
{−1, 1, 2}. Therefore, by Observation 2, we obtain∫ ∞

1
R(Γ, γ) · f(γ) dγ = O(R(Γ, Γ ) · log Γ ) .

As R(Γ, Γ ) = O(L(logs Γ )), this finishes the proof. ��
The theorem above means that we pay an additional factor of log Γ in the com-
petitive ratio for not knowing the exact end of the game, but only its expected
value. In fact, the algorithm pays more because there is a quite big probability
that γ � E[γ]. For such cases, the thresholds chosen by Prot are too large,
which leads to poorer performance. On the other hand, the effects of underes-
timating γ are more benign. Hence, it appears that the expected value of the
competitive ratio can be improved if we choose slightly smaller value of param-
eter λ of the algorithm Prot.

Theorem 5. Fix any Γ ≥ 1 and let λ = Γ/(log s)1/3. Then the expected value
of the competitive ratio of Protλ run on a sequence of length γ ∼ Exp(Γ ) is
O(L(logs Γ ) · (log s)7/9) for Γ ∈ (s2/3, s · log s) and O(L(logs Γ )) for remaining
values of Γ .

Finally, we observe that since in the proofs of Theorems 4 and 5, we base our
reasoning entirely on Observation 2, the same results hold also for all probability
distributions for which this observation holds, e.g., for a uniform distribution over
the interval [0, 2Γ ].

4 Lower Bounds for Known-End Scenario

In this section, we show that Protγ achieves an asymptotically optimal com-
petitive ratio on inputs of length γ. Moreover, we show show that this lower
bound holds even for randomized algorithms against an oblivious adversary.

Theorem 6. Fix any γ. In Scenario B, the competitive ratio of any randomized
algorithm (knowing γ) is at least Ω(L(logs γ)).
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Proof. Let y = logs γ, i.e., γ = sy. For y < 1/2, the lower bound of Ω(L(y)) =
Ω(1) follows trivially, thus we assume that y ≥ 1/2.

To show the theorem, we use Yao min-max principle [15]. Let f = min{y, 1}.
Let a be a non-negative number satisfying a ≤ f/2 and a ≤ 2f − 1; we will
specify the exact value of a later.

We call an input curve α-peaky if the price starts at sa, increases till it achieves
level α, then drops again to level 1 and remains there. Formally,

pt =

{
sa + t if t ≤ α − sa ,

α − (t − α + sa) if t > α − sa .

We will consider only curves for which α ≤ γ. This guarantees that an α-peaky
curve of length γ achieves its peak; however for large α the decreasing part of
the curve may be shortened or not occur.

Note that on an α-peaky curve, the algorithm which always rents pays
O(α2 + sf ) and the algorithm which buys at the very beginning pays s · sa.
Thus, on an α-peaky curve, COPT = O(min{α2 +sf , s1+a}). On the other hand,
on online algorithm does not know α, and cannot choose optimally between these
two strategies.

We construct the following probability distribution π over input curves. With
probability 1/3, the input presented to the algorithm is 1

2sf/2-peaky and with
probability 1/3, it is sf -peaky. The remaining probability 1/3 is distributed
uniformly over α-peaky inputs for α ∈ [ 12sf/2, s(1+a)/2]. This means that the

probability density function is f(α) = 1
3 · (s(1+a)/2 − 1

2sf/2
)−1

= Θ(s−(1+a)/2)
for α ∈ [12sf/2, s(1+a)/2

]
and 0 otherwise.

We want to analyze the best deterministic algorithm Det and its performance
on an input chosen randomly according to the probability distribution π. Let
CDET(α) and COPT(α) be the costs of Det and Opt, respectively, on an α-peaky
input.

Eπ

[
CDET

COPT

]
=

1
3
·CDET(1

2sf/2)
COPT(1

2sf/2)
+

1
3
·CDET(sf )
COPT(sf )

+
∫ s(1+a)/2

1
2 sf/2

CDET(α)
COPT(α)

f(α) dα (5)

Then, by the Yao min-max principle, the competitive ratio R of any randomized
algorithm against an oblivious adversary is at least Eπ[CDET/COPT].

Essentially, Det has the following options. It may opt for the always-rent
strategy or it may choose a parameter r ∈ [sa, sf ] and buy if the price achieves r.
If the price starts to drop before it hits level r, it does not make sense for Det

to buy skis in the remaining period, as this cost would be greater then renting
skis till time γ. We analyze this behavior in four cases below.

1. Det chooses r ∈ [sa, 1
2sf/2). With probability 1/3, the input curve is 1

2sf/2-
peaky. For such an input, CDET ≥ s · sa and COPT = O((1

2sf/2)2 + sf ) =
O(sf ). As all the terms occurring in (5) are non-negative, we may omit some
of them, obtaining

R ≥ 1
3
· CDET(1

2sf/2)
COPT(1

2sf/2)
= Ω

(
s1−f+a

)
. (6)
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2. Det chooses r ∈ [12sf/2, 1
2s(1+a)/2). For α-peaky inputs with r ≤ α ≤

s(1+a)/2, CDET(α) ≥ s · r and COPT(α) = O(α2 + sf ) = O(α2). Then,

R ≥
∫ s(1+a)/2

r

CDET(α)
COPT(α)

f(α) dα

= Θ
(
s−(1+a)/2

)
·
∫ s(1+a)/2

r

s · r
α2 dα

= Θ
(
s−(1+a)/2

)
·
(s · r

r
− s · r

s(1+a)/2

)
= Θ(s−(1+a)/2) · (s − s/2)

= Θ(s(1−a)/2) .

(7)

3. Det chooses r ∈ [ 12s(1+a)/2, sf ]. With probability 1/3, the input is sf -peaky.
For such an input, CDET ≥ s · 1

2s(1+a)/2 and COPT = s · sa. In this case,

R ≥ 1
3
· CDET(sf )
COPT(sf )

= Ω
(
s(1−a)/2

)
. (8)

4. Det never buys skis. On an sf -peaky input, CDET = Ω((sf )2), and therefore

R ≥ 1
3
· CDET(sf )
COPT(sf )

= Ω
(
s2f−1−a

)
. (9)

For any fixed y and a, Det may freely choose one of the strategies above. Thus,
by (6), (7), (8), and (9),

R = Ω
(
min

{
s1−f+a, s(1−a)/2, s2f−1−a

})
.

Finally, the adversary, may choose a to maximize the ratio R.

1. For y ∈ [1/2, 2/3), we choose a = 0. In this case R = Ω(s2y−1).
2. For y ∈ [2/3, 4/5), we choose a = (3/2)y − 1. In this case R = Ω(sy/2).
3. For y ∈ [4/5, 1), we choose a = (2y − 1)/3. In this case R = Ω(s(2−y)/3).
4. For y ≥ 1, we choose a = 1/3. In this case R = Ω(s1/3).

Therefore, in all cases R = Ω(L(y)), which concludes the proof. ��

5 Final Remarks

This paper extends the classic ski rental problem in a way where the rental price
may change each day. Although the ski rental may be perceived as a toy example,
the underlying rent-or-buy structure can be found in many other problems. We
believe that our preliminary work can contribute to developing solutions for these
problems when they are analyzed in a dynamic setting. A natural example would
be the TCP acknowledgement problem [3], where the varying traffic on the link
is modeled by changes in the cost associated with sending acknowledgements.
Moreover, if our algorithms can be adapted for such network problems, their
simplicity ensures that they could be used in constrained devices.
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Abstract. In this paper we study the Multiple Strip Packing (MSP)
problem, a generalization of the well-known Strip Packing problem. For
a given set of rectangles, r1, . . . , rn, with heights and widths ≤ 1, the
goal is to find a non-overlapping orthogonal packing without rotations
into k ∈ N strips [0, 1]× [0,∞), minimizing the maximum of the heights.
We present an approximation algorithm with absolute ratio 2, which is
the best possible, unless P = NP , and an improvement of the previous
best result with ratio 2+ε. Furthermore we present simple shelf-based al-
gorithms with short running-time and an AFPTAS for MSP. Since MSP
is strongly NP-hard, an FPTAS is ruled out and an AFPTAS is also the
best possible result in the sense of approximation theory.
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1 Introduction

In this paper we study the Multiple Strip Packing (MSP) problem, a generaliza-
tion of the well-known Strip Packing (SP) problem. For a given set of rectangles,
r1, . . . , rn, with heights and widths ≤ 1, the goal is to find a non-overlapping
orthogonal packing without rotations into k ∈ N strips [0, 1] × [0,∞), minimiz-
ing the maximum of the heights. As much as Strip Packing, its generalization
Multiple Strip Packing is not only of theoretical interest, but also has many appli-
cations to real-world problems as in computer grids, server consolidation and in
cutting problems. In computer grids for example, MSP is related to the problem
of finding a schedule for parallel tasks into different clusters of processors with
minimum makespan [12]. Consider an instance L = {r1, . . . , , rn} of MSP. The
value k always denotes the number of strips S1, . . . , Sk. For i ∈ {1, . . . , k} the
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value hi denotes the height of a feasible packing in strip Si. For an algorithm A for
MSP let A(L) be the output of the algorithm, in this case the maximum height
of the packing generated, i.e. maxi∈{1,...,k} hi. The optimal value is denoted with
OPT (L), in this case the minimal height that can be achieved. The quality of an
approximation algorithm is measured by its performance ratio. For a minimiza-
tion problem as MSP we say that A has absolute ratio α, if supL

A(L)/OPT (L) ≤ α,
and asymptotic ratio α, if α ≥ lim supOPT (L)→∞ A(L)/OPT (L), respectively. A
minimization problem admits an (asymptotic) polynomial-time approximation
scheme ((A)PTAS), if there exists a family of polynomial-time approximation
algorithms {Aε|ε > 0} of (asymptotic) (1 + ε)-approximations. We call an ap-
proximation scheme fully polynomial ((A)FPTAS), if the running-time of every
algorithm Aε is bounded by a polynomial in n and 1

ε . Zhuk showed in [16] that
there is no approximation algorithm for MSP with absolute ratio less than 2.
Since MSP can be reduced to 3-Partition, it is also strongly NP -hard. Therefore
a PTAS and an FPTAS are ruled out and an AFPTAS is asymptotically the best
possible.

A related problem is 3D Strip Packing (3SP), which also is a generalization of
Strip Packing. Here the goal is to find a packing of a given list of cuboids with
side lengths bounded by one into a 3-dimensional strip [0, 1] × [0, 1] × [0,∞),
minmizing the height of the packing. Multiple Strip Packing with k strips can
be reduced to 3SP by introducing a cuboid with depth 1/k for each rectangle
packing the strips next to each other.

Parallel Job Scheduling in Grids with identical machines is also a related prob-
lem. In the offline case we have m machines Mi with 	 processors and jobs j ∈ J
with processing time pj, and a size sizej. The jobs must be executed on parallel
processors within one machine Mi, but not necessary on consecutive processors.
The machines can be seen as strips with width l and the jobs as vertically scis-
sile rectangles with width sizej and height pj. In Multiple Strip Packing we
have just the additional constraint that a job must be scheduled on consecutive
processors. Unfortunately this is the reason why approximation algorithms for
Parallel Job Scheduling cannot be applied to MSP maintaining their ratio.

Known Results. Multiple Strip Packing was first considered by Zhuk [16], who
showed that there is no approximation algorithm with abolute ratio better than
2, and later by Ye et. al. [15]. Both concentrated on the online case. Additonally
an approximation algorithm for the offline case with ratio 2 + ε was achieved in
[15]. For Strip Packing Coffman et al. gave in [8] an overview about performance
bounds for shelf-orientated algorithms as NFDH (Next Fit Decreasing Height)
and FFDH (First Fit Decreasing Height). Those adopt an absolute ratio of
3, and 2.7, respectively. Schiermeyer [11] and Steinberg [13] presented indepen-
dently an algorithm for SP with absolute ratio 2. A further important result
is an AFPTAS for SP with additive constant O(1/ε2) of Kenyon and Rémila
[9]. This constant was improved by Jansen and Solis-Oba, who presented in [7]
an APTAS with additive constant 1. For 3SP Jansen and Solis-Oba obtained an
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algorithm with ratio 2+ ε in [6] as an improvement of the formerly known result
by Miyazawa and Wakabayashi [10], who presented an algorithm with asymp-
totic ratio at most 2.64. Bansal et al. presented in [2] an algorithm for 3SP with
a ratio of T∞ ≈ 1.69, which is the best known result. Schwiegelshohn et al. [12]
achieved ratio 3 for a version of Parallel Job Scheduling in Grids without release
times, and ratio 5 with release times. Tchernykh et al. presented in [14] an algo-
rithm with absolute ratio 10 for the case of machines with different numbers of
processors and without release times. However, this algorithm cannot be applied
directly to MSP because of the non-contiguity.

Our Results. In this paper we present an approximation algorithm with absolute
ratio 2, which is an improvement of the former result of 2 + ε by Ye et al. [15]
and best possible, unless P = NP. We also introduce an AFPTAS for Mutiple
Strip Packing, which is a generalization of the algorithm of Kenyon and Rémila
[9]. Our algorithm achieves an additive constant of O(1), if the number of strips
is sufficient large, otherwise an additive constant of O(1/ε2). Furthermore we
show how to use the simple shelf-based heuristics NFDH and FFDH to ob-
tain approximation algorithms for MSP with the same asymptotic ratio as for SP.

Organisation of the Paper. In the next section we introduce two shelf-based
algorithms, using Next Fit and First Fit policies. In Section 3 we present a 2-
approximation for MSP. Here we distinguish between different sizes for k. For
k = 1 we use the 2-approximation of Steinberg [13] or Schiermeyer [11]. If k = 2
or bounded by a specified constant c we make use of a result by Bansal et
al. [1] for Rectangle Packing with Area Maximization (RPA). For k ≥ c we
use an approximation algorithm for 2D bin packing with asymptotic ratio 1.69
of Caprara [3]. In the last section we present an AFPTAS for MSP. Here we
generalize the algorithm by Kenyon and Rémila [9]. Interestingly, the additive
constant in our AFPTAS can be reduced from O(1/ε2) to O(1), if the number k
of strips is large enough.

2 Shelf-Based Algorithms

In this section we modify the shelf-based heuristics NFDH and FFDH. [8]. A shelf
is a row of items placed next to each other left-justified. The baseline of a shelf is
either the bottom of the bin or the extended upper edge of the tallest item packed
in the shelf below. NFDH generates for a given list of rectangles L = {r1, . . . , rn}
a packing into a strip with height at most 2OPTSP (L)+hmax, FFDH produces a
packing of height at most 1.7OPTSP (L)+hmax, where OPTSP (L) is the optimum
value of Strip Packing for the instance L and hmax is the height of the tallest
item in L. Via this modification we obtain approximation algorithms for Multiple
Strip Packing with the same asymptotic ratios. Furthermore, we present another
algorithm, that computes for rectangles with widths bounded by ε < 1 a packing
of height at most 1/(1−ε)OPT (L) + 2hmax.
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Theorem 1. Let A be one of the shelf-based Strip Packing algorithms NFDH
or FFDH with asymptotic ratio α > 1, that creates for an instance L a packing
of height less than αOPTSP (L)+hmax. For any k ∈ N there exists an algorithm
Ak that packs a list of rectangles L into k strips with Ak(L) ≤ αOPT(L)+hmax.

Proof. For any instance L of MSP we define the algorithm Ak as follows

1 Pack the sorted rectangles with A into one strip S. (In particular the rect-
angles are first sorted by non-increasing height.) Let A(L) denote the height
of S.

2 Cut out the first shelf and pack it into the first strip S1.
3 Divide the residual strip S into k parts:

3.1 For each 	 ∈ {0, 1, . . . , k} draw a horizontal line across S at height
	(A(L) − hmax)/k.

3.2 For 	 ∈ {0, 1, . . . , k − 1} pack all items intersecting the 	th line and all
items between the 	th and (	 + 1)th line into strip S�+1.

We show now that for any instance L of MSP the output of Ak is less than
αOPT(L) + hmax. Let t ∈ N be the number of shelves produced by A in Step
1 and Hj , j ∈ {1, . . . , t}, the height of the jth shelf. Since there are no items
intersecting the 0th line (see Fig 1), the height h1 of the first strip S1 is bounded
by hmax + 1

k

(∑t
j=1 Hj − hmax

)
after the last step of the algorithm. For a strip

Si, i ∈ {2, . . . , k}, containing the items between the (i − 1)th and the ith line

and the ones intersecting the (i−1)th line, we have hi ≤
∑ t

j=1 Hj−hmax

k +hmax =
A(L)−hmax

k + hmax. We conclude

hmax + H−hmax
k

hmax

0

H1

H2

H3

H4

H5

Fig. 1. Dividing strip S

Ak(L) = max
i∈{1,...,k}

hi ≤ A(L) − hmax

k
+ hmax

≤ αOPTSP (L) + hmax − hmax

k
+ hmax =

αOPTSP (L)
k

+ hmax.

Since 1/kOPTSP (L) is a lower bound for OPT(L) the proof is complete.

The running-time of the above algorithm is O(n log n).
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Corollary 1. Let L be an instance of MSP. In a packing generated by the above
algorithm Ak we have maxi∈{1,...,k} |hi − Ak(L)| ≤ 2hmax, where hi denotes the
height of strip Si.

Another way to pack a set of rectangles with a modified version of the NFDH
heuristic into k strips is the following:

Algorithm 2

1 Sort the rectangles by non-increasing height.
2 For each i ∈ {1, . . . , k} pack one shelf according to the NFDH heuristic into

strip Si, that means starting in the lower left corner pack the rectangles next
to each other on the baseline of strip Si, until the next rectangle does not fit.
Draw a new baseline at the top edge of the tallest rectangle (that clearly is
the first one).

3 Take the strip S− with the current lowest height h− and pack one shelf
according to the NFDH heuristic on top of the shelves.

4 Repeat Step 3 until all rectangles are packed.

The packing generated by the above algorithm is very smooth, in the sense that
the heights of the strips only differ by hmax.

Lemma 1. For a set of rectangles L = {r1, . . . , rn} Algorithm 2 with output
A(L) generates a packing into k strips, so that maxi∈{1,...,k} |A(L)−hi| ≤ hmax.

This leads to a further result about rectangles with bounded width. Coffman et
al. showed in [8] that FFDH applied to an instance L of rectangles with widths
bounded by 1/m for some integer m generates a packing into a strip of height
at most (1 + 1

m )OPTSP (L) + hmax. Our result for packing into k strips is the
following:

Theorem 3. For a set of rectangles L = {r1, . . . , rn} with widths bounded by
ε > 0 we obtain by the Algorithm 2 with output A(L) a packing into k strips
with height less than 1

1−εOPT (L) + 2hmax.

For ε = 1
m this is equal to A(L) ≤

(
1 + 1

m−1

)
OPT(L) + 2hmax.

3 A Two-Approximation for MSP

In this section we construct a polynomial-time approximation algorithm for MSP
with absolute ratio 2. Since there is no approximation algorithm for MSP with
ratio smaller than 2 (unless P=NP), this is the best possible result. To handle
different sizes of k we use, besides the well-known algorithms of Steinberg [13]
or Schiermeyer [11], a result of Bansal et al. [1] for Rectangle Packing with Area
Maximization (RPA) and a of Caprara [3].
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3.1 One or Two Strips

The case k = 1 is trivial, because we can use the algorithm of Steinberg [13] or
Schiermeyer [11] with absolute performance bound 2.

Theorem 4 (Steinberg [13]). Let L = {r1, . . . , rn} be a set of rectangles with
heights hi and widths wi and Q be a rectangle with width u and height v. Let
h := maxi∈{1,...,n} hi and w := maxi∈{1,...,k} wi. If the following inequalities hold,

w ≤ u, h ≤ v, 2SIZE(L) ≤ uv − (2w − u)+(2h − v)+ (1)

then it is possible to pack L into the rectangle Q.(As usual, x+ = max(x, 0).)

Therefore let us first consider the case for k = 2. Here we use the PTAS found by
Bansal et al. [1] for RPA. In RPA we are given a set of rectangles L = {r1, . . . , rn}
with widths wi and heights hi and a bin of unit size. The goal is to find a feasible
packing of a subset L′ ⊂ L of the rectangles and to maximize the area of the
rectangles in L′.

Algorithm 5

1 Guess the height of an optimal solution for MSP and denote it with v.
2 Scale the heights of the rectangles in L by 1/v so that the corresponding pack-

ing fits into one bin of height and width one.
3 The set of resulting rectangles Lv is now considered as an instance of RPA

with OPTRPA(L) = SIZE(Lv), where SIZE(Lv) is the total area of all
rectangles in Lv. Apply the algorithm in [1] with accuracy ε = 1/2 and find
a packing of a subset L′

v ⊂ Lv with total area at least (1 − ε)SIZE(Lv). By
rescaling the rectangles of L′

v get a packing for the first strip with height at
most v.

4 Since SIZE(Lv) ≤ 2 the remaining items in Lv\L′
v have total area

SIZE(Lv\L′
v) ≤ εSIZE(Lv) ≤ 1. Therefore we can pack them with Stein-

berg’s algorithm into a strip of height at most 2. Rescaling gives us a second
strip of height at most 2v.

The running-time of the algorithm is polynomial in n:
In the first step we can assume that the heights of the rectangles are rational, so
by multiplying with a common denominator they become integer values. Then
the optimum height v of MSP is also integer and equals a sum of heights of the
rectangles in L, so we have hmax ≤ v ≤ nhmax. Thus Binary Search takes at
most log(nhmax) iterations to find the value v. Step 3 is also polynomial, since
we apply the algorithm in [1] for a fixed accuracy ε = 1/2.

3.2 A Bounded Number of Strips

In the case of a constant number of strips we can use an extended version of the
PTAS for RPA in [1] called kRPA. Another helpful tool is the next lemma. The
proof can be obtained applying Steinberg’s algorithm for h, w, u = 1 and v = k/2

in equation 1.
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Lemma 2. If L is an instance of 2DBP with total area SIZE(L) ≤ k/4 and
k ≥ 3, then there exists a packing of L into k bins.

Algorithm 6

1 Guess an optimal height for MSP and denote it with v.
2 Scale the heights of the rectangles in L by 1/v so that the corresponding pack-

ing fits into k bins of height and width one.
3 The set of resulting rectangles Lv is now considered as an instance of RPA

with OPTRPA(L) = SIZE(Lv). Apply kRPA to k bins of unit size and
find for an accuracy ε ≤ 1/4 a packing for a subset L′

v ⊂ Lv with total area
(1 − ε)SIZE(Lv). By rescaling the rectangles of L′

v we get k bins of height
v.

4 For the total area of the remaining rectangles in Lv\L′
v we have

SIZE(Lv\L′
v) = εSIZE(Lv) ≤ k/4. Pack those rectangles according to

Lemma 2 into k bins and rescale the rectangles. This results again in k
bins of height at most v.

5 Stack every two bins on top of each other and get a solution with k bins of
height at most 2v.

3.3 A Large Number of Strips

Caprara presented in [3] a shelf algorithm for 2DBP that produces a solution
whose asymptotic ratio can be made arbitrarily close to T∞ = 1.69.... Clearly
if the number of strips is large enough (≈ 104) applying this algorithm we get
a two-approximation for MSP stacking every two bins on each other. Alterna-
tively, we can use the recently published two-approximation for 2DBP by Jansen
et al. [5] to achieve this result. Along with the previous sections we have the
following:

Theorem 7. For any k ∈ N there is a polynomial-time algorithm for MSP with
absolute ratio two.

4 An AFPTAS for MSP

In this section we present an AFPTAS for MSP. The algorithm is a generaliza-
tion of an AFPTAS found by Kenyon and Rémila [9] for Strip Packing. For an
instance L of Strip Packing and an accuracy ε > 0 their algorithm generates
a packing with height (1 + ε)OPTSP (L) + O(1/ε2)hmax. Our algorithm achieves
the same ratio for Multiple Strip Packing. For instances with k sufficient large,
namely k ∈ Ω(1/ε3), our algorithm adopts an improved additive constant of O(1).
More precisely for an accuracy ε and k ≥ �128/ε3� we get an approximation ratio
of (1 + ε)OPT(L) + 6hmax.
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4.1 The Regular Case

As in Section 2 we divide a packing into one strip into k parts of nearly the same
height and distribute them to k strips.

Theorem 8 (Kenyon & Rémila [9]). For a list L = {r1, . . . , rn} of rectangles
and an accuracy ε > 0 the algorithm AKR

ε in [9] generates a packing into one
strip with height at most (1 + ε)OPTSP (L) + (4(2+ε

ε )2 + 1)hmax.

Our result is the following:

Theorem 9. For a list L = {r1, . . . , rn} of rectangles with widths and heights
≤ 1 and an accuracy ε > 0 there exits an algorithm Aε that generates a packing
into k strips, so that Aε(L) ≤ (1 + ε)OPT (L) + (2(2+ε

ε )2 + 2)hmax.

4.2 Instances with a Large Number of Strips

In this section we consider the case k ≥ �128/ε3�. In this case it is possible to
improve the additive constant to O(1)hmax by balancing the configurations.

Rounding. We choose ε′ = ε/4 (w.l.o.g. 1/ε′ integral) and divide the list of rect-
angles L into a list of narrow rectangles Lnarrow := {ri ∈ L|w(ri) ≤ ε′} and
a list of wide rectangles Lwide := {ri ∈ L|w(ri) > ε′}. Then we round Lwide

to an instance Lsup with only M := (1/ε′)2 different widths. For the rounding
step we put the wide rectangles sorted by non-increasing widths left-aligned on
a stack. Let STACK(L) denote the total area of the plane covered by this stack
and let H denote its height. Moreover, for arbitrary lists L′′, L′ we define a
relation ≤g, so that L′′ ≤g L′, if and only if STACK(L′′) ⊆ STACK(L′). We
draw M − 1 horizontal lines through STACK(L) with distance H/M starting at
the bottom. Therefore we get M so-called threshold rectangles. A rectangle is a
threshold rectangle if it either with its interior or with its lower edge intersects
a line at height iH/M, i ∈ {1, . . . , M − 1}. For i ∈ {1, . . . , M − 1} we round up
the width of each rectangle between the lines iH/M and (i+1)H/M to the width of
the ith threshold rectangle. The widths of the rectangles below the first line are
rounded up to the width of the undermost rectangle in the stack. So we get at
most M groups of different widths (see Fig 2). Furthermore, we get a list Lsup of
rectangles with widths larger than ε′ and only M different widths, in particular
we have Lwide ≤g Lsup.

Fractional Packing. Our first objective is to create a fractional packing for the
wide rectangles into k strips. To do this we introduce configurations. A con-
figuration is a non-empty multiset of widths, which sum up to less than one.
Denote with q the number of different configurations Cj with height xj . Let αij

be the number of occurence of width wi in configuration Cj and let βi be the
total height of all rectangles of width wi. Based on the solution of the following
Linear Program
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Fig. 2. Rounding the rectangles in Lsup

min

∑q
j=1 xj

k

s.t.
q∑

j=1

αijxj ≥ βi for all i ∈ {1, . . . , M}

xj ≥ 0 for all j ∈ {1, . . . , q},

(LP(Lsup))

by distributing the configurations to k strips we get the requested fractional
packing for the rectangles in Lsup. Note that rank(αij)ij ≤ M and hence a basic
solution x of LP (Lsup) has at most M nonzero entries. In the next section we
show how to transform a fractional packing into a feasible packing for Lsup. Later
the rectangles in Lnarrow are packed into the idle space in a Greedy manner.
For a list L of rectangles let LIN(L) denote the height of an optimum fractional
packing for L. Let h0 := LIN(Lsup) and note that h0 ≤ OPT (L).

Lemma 3. Let x = (x1, . . . , xq) be a solution of LP (Lsup) with at most m ≤
M nonzero entries x1, . . . , xm. For k ≥ �128/ε3� we get a fractional packing
into k strips with height at most (1 + ε′)h0 and at most m′ ≤ 2M different
configurations.

Proof. First we fractionally pack the rectangles into the configurations. Imagine
each configuration Cj as a bin with height xj and width cj and divide it into αij

columns of widths wi and height xj . Pack the rectangles in Lsup of width wi in a
Greedy manner fractionally into the columns of width wi until exactly height xj ,
starting with j = 1. In this way each column contains a sequence of rectangles,
which completely fits inside the column, and possibly the top part of a rectangle,
that started in a previous column, and the bottom part of a rectangle, that is
too tall to fit into this column. Since

∑m
j=1 αijxj ≥ βi, there will be maybe more

than enough space for the rectangles of width wi in the configurations. In this
case we distribute the rectangles among the columns and delete the additional
space. So we split a configuration Cj into two parts, one of the old type where
the columns of width wi are completely filled and one without columns of width
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wi. This case may happen only M times. So we have in total m′ = m+M ≤ 2M
configurations C1, . . . Cm′ with nonzero heights x1, . . . , xm′ .

Notice that there exist configurations with height larger or equal h0, since if

not we conclude
∑m′

j=1 xj < m′h0 ≤ 2Mh0
ε′=ε/4

= 32h0
ε2 < kh0, which is a con-

tradiction. Consider a configuration Cj , j ∈ {1, . . . , m′}. If xj ≥ h0 we allocate
�xj/h0� empty strips with height h0 for Cj . If then xj/h0 − �xj/h0� ≤ ε′h0, we
assign to Cj additional space with height (xj/h0 − �xj/h0�) in a strip, that has
already height h0. If xj/h0 − �xj/h0� > ε′h0, we divide (xj/h0 − �xj/h0�) into at
most 1/ε′ stripes with height less or equal ε′h0. So assign to Cj additional space
of height ε′h0 in no more than 1/ε′ strips, which are already occupied until height
h0. In the same way as the remaining stripes we handle configurations of height
less than h0. Since there are at most 2M configurations with nonzero height,
we get at most 2M/ε′ = 2/ε′3 ≤ 2·43

/ε3 ≤ k additional assignments of height
ε′h0, which can be distributed to k strips. Thus by this assignment policy, where
the configurations are balanced, each strip has allocated area of height at most
(1 + ε′)h0 for at most 2 different configurations.

0

h0 − hmax

h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Cj

C�

Fig. 3. Si with Cj and C�

Integral Packing. The next Lemma shows how to get from a fractional packing
to a feasible integral packing. A proof is given in the full paper.

Lemma 4. Let x = (x1, . . . , xq) be a solution of LP (Lsup) with at most m′ ≤
2M nonzero entries x1, . . . , xm′ . For k ≥ �128/ε3� we can convert x to a feasible
packing for the wide rectangles with height at most (1 + ε′)h0 + 2hmax and at
most 2 different configurations per strip.

Since we can guarantee that there are at most 2 different configurations per strip,
the additive constant will be improved, while the running-time is still polynomial
in n and 1/ε.

Our last step is to pack the narrow rectangles. We use a modified version
of the NFDH algorithm: For strip Si as above we pack narrow rectangles with
NFDH into the empty space next to the configurations until the total height is at
most (1+ε′)h0+2hmax. After that we repeat the process for strip Si+1. When all
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h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Fig. 4. Si after packing the narrow rectangles

strips are filled in this way, we draw a horizontal line at height (1+ε′)h0 +2hmax
in each strip and pack the remaining narrow rectangles with Algorithm 2 on top
(see Fig 3 and 4). Thus we can ensure by Lemma 1 that the maximum difference
of the heights of two arbitrary strips is at most hmax (see Fig 4). Let hfinal

denote the height of the packing after packing the narrow rectangles.

Lemma 5. Let k ≥ �128/ε3�. If hfinal ≥ (1 + ε′)h0 + 2hmax, then we have
hfinal ≤ SIZE(Lsup∪Lnarrow)

k(1−ε′) + 6hmax + ε′h0.

For details we refer to the full paper. The next lemma is shown in [9] for the
Linear Program corresponding to Strip Packing, but obviously also holds for our
linear program LP (Lsup).

Lemma 6. [9] For the rounded instance Lsup and Lwide the inequalities
LIN(Lsup) ≤ LIN(Lwide)

(
1+ 1

Mε′
)
and SIZE(Lsup) ≤ SIZE(Lwide)

(
1+ 1

Mε′
)

hold.

The entire algorithm is now defined as follows:

Algorithm 10

1 Set ε′ := ε/4 and M := (1/ε′)2.
2 Partition L into Lwide and Lnarrow.
3 Construct Lsup, so that Lwide ≤g Lsup and there are only M different widths

in Lsup.
4 Solve the linear program LP (L).
5 Construct a feasible solution for Lsup by balancing the configurations.
6 Use modified NFDH to pack the rectangles in Lnarrow into the remaining

space and on top of the strips.

Theorem 11. If k ≥ �128/ε3� the Algorithm 10 generates for an instance L of
MSP a packing of height at most (1 + ε)OPT(L) + O(1)hmax.
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mize the total area of rectangle packed into a rectangle. To appear in The 20th
International Symposium on Algorithms and Computation, ISAAC 2009 (2009)

2. Bansal, N., Han, X., Iwama, K., Sviridenko, M., Zhang, G.: Harmonic algorithm for
3-dimensional strip packing problem. In: Proceedings of the eighteenth ACM-SIAM
symposium on Discrete algorithm (SODA 2007), pp. 1197–1206 (2007)

3. Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 490–499
(2002)

4. Caprara, A., Lodi, A., Monaci, M.: An approximation scheme for the two-stage,
two-dimensional bin packing problem. In: Proceedings of the 9th International
IPCO Conference on Integer Programming and Combinatorial Optimization,
pp. 315–328 (2002)
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Abstract. In an asynchronous data stream, the data items may be out
of order with respect to their original timestamps. This paper gives a
space-efficient data structure to maintain such a data stream so that it
can approximate the frequent item set over a sliding time window with
sufficient accuracy. Prior to our work, Cormode et al. [3] have the best so-
lution, with space complexity O( 1

ε
log W log( εB

log W
) min{log W, 1

ε
} log U),

where ε is the given error bound, W and B are parameters of the sliding
window, and U is the number of all possible item names. Our solution
reduces the space to O( 1

ε
log W log( εB

log W
)). We also unify the study of

synchronous and asynchronous data stream by quantifying the delay of
the data items. When the delay is zero, our solution matches the space
complexity of the best solution to the synchronous data streams [8].

1 Introduction

Identifying frequent items in a massive data stream has many applications in
data mining and network monitoring, and the problem has been studied exten-
sively [8, 7, 9, 6, 5, 1]. Recent interest has been shifted from the statistics of the
whole data stream to that of a sliding window of recent data [1, 8]. In most
applications, the amount of data in a window is gigantic when compared with
the amount of memory in the processing units, and it is impossible to store all
the data and to find the exact frequent items. Existing research has focused on
finding space-efficient data structures to support finding approximate frequent
items. The key concern is how to minimize the space so as to achieve a given
level of accuracy.

Asynchronous data stream. Most of the previous work on data streams as-
sume that items in a data stream are synchronous in the sense that the order
of their arrivals is the same as the order of their creations. This synchronous
model is however not suitable to applications that are distributed in nature.
For example, in a sensor network, the sink collects data transmitted from sen-
sors over a large area, and the data transmitted from different sensors would
suffer different delay. It is possible that an item created at time t at a certain
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sensor may arrive at the sink later than an item created after t at another sen-
sor. From the sink’s viewpoint, items in the data stream are out of order with
respect to their creation times. Yet the statistics to be computed are usually
based on the creation times. More specifically, an asynchronous data stream (or
equivalently, out-of-order data stream) [11,2, 3] can be considered as a sequence
〈(a1, d1), (a2, d2), (a3, d3), . . .〉, where ai is the name of a data item chosen from
a fixed universe Σ, and di is an integer timestamp recording the creation time
of this item. Items arriving at the data stream are in arbitrary order regarding
their timestamps. Furthermore, it is possible that more than one data item has
the same timestamp.

Previous work on approximating frequent items. Consider a data stream
and, in particular, those data items whose timestamps fall into the last W
time units (W is the size of the sliding window). An item (precisely, an item
name) is said to be a frequent item if its count (i.e., the number of occur-
rences) exceeds a certain required threshold of the total item count. Arasu and
Manku [1] were the first to study the data structures for computing approximate
frequent items over a sliding window under the synchronous model (in which
data items arrive in non-decreasing order of timestamps). The space complexity
is O(1

ε log2 1
ε log(εB)), where ε is a user-specified error bound and B is the max-

imum number of items with timestamps falling into the same sliding window.
Their work was later improved by Lee and Ting [8] to O(1

ε log(εB)) space. Re-
cently, Cormode et al. [3] has initiated the study of frequent items under the asyn-
chronous model, and gave a solution with space complexity O(1

ε log W log( εB
log W )

min{log W, 1
ε} logU), where U = |Σ| is the number of possible item names.

The earlier work on asynchronous data stream focused on a relatively simpler
problem called basic counting [11,2].1 In the same paper, Cormode et al. [3] im-
proved the space complexity of basic counting to O(1

ε log W log( εB
log W )). Notice

that under the synchronous model, the best data structure requires O(1
ε log(εB))

space [4]. It is believed that there is roughly a gap of log W between the syn-
chronous model to the asynchronous model. Yet, for frequent items, the asyn-
chronous result of Cormode et al. [3] requires space way bigger than that of the
best synchronous result (which is O(1

ε log(εB))) [8]. This motivates us to study
better solutions for approximating frequent items in the asynchronous model.

Formal definition of approximate frequent item set. Consider an asyn-
chronous data stream 〈(a1, d1), (a2, d2), . . .〉. The current time is defined to be
the maximum timestamp over all items received thus far. If the current time is t,
a sliding window of size W covers the time interval [t−W +1, t]. For any time in-
terval I and any data item a, let fa(I) denote the frequency of item a in interval
I, i.e., the number of items named a in the data stream with timestamps falling
into I. Let Σ be the set of all possible item names. Define f∗(I) =

∑
a∈Σ fa(I)

to be the total number of all items in the stream with timestamps within I.

1 It is worth-mentioning that with respect to a sliding time window, the problem of
approximating the basic counting can be reduced to the problem of approximating
the frequent item set problem.
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Table 1. The space and time complexity for finding ε-approximate frequent item set
in a sliding time window. Results from this paper are marked with [†].

Space (words) Update time Query time

Synchronous [8] O( 1
ε

log(εB)) O( 1
ε

log(εB)) O( 1
ε
)

Asynchronous [3]
O( 1

ε
log W log( εB

log W
) ·

O(log( εB
log W

) log W log log U) linear to space
min{log W, 1

ε
} log U)

Asynchronous [†] O( 1
ε

log W log( εB
log W

)) O(log( εB
log W

)( 1
ε

+ log log W ))
O( 1

ε
log W+

log log(εB))
Asynchronous with

O( 1
ε

log τ log( εB
log τ

)) O(log( εB
log τ

)( 1
ε

+ log log W ))
O( 1

ε
log τ+

tardiness τ [†] log log(εB))

Given a user-specified error bound ε and a window size W , we want to main-
tain a data structure to answer any ε-approximate frequent item set query in
the form (φ, W ′), where φ ≥ ε and W ′ ≤ W . The answer to such a query is
a set S of item names defined as follows. Let t be the current time, and let
I = [t − W ′ + 1, t] be the current window.

(i) S contains every item a whose frequency in interval I is at least φf∗(I) (i.e.,
fa(I) ≥ φf∗(I)); and

(ii) For any item a in S, its frequency in interval I is at least (φ − ε)f∗(I) (i.e.,
fa(I) ≥ (φ − ε)f∗(I)).

For example, assume ε = 1%, then the query (10%, 10000) would return all items
whose frequencies are each at least 10% of the total item count in the last 10000
time units, plus possibly some items with frequency at least 9% of the total
count. The set S is also called the ε-approximate φ-frequent item set.

Our contribution. Our main result is a space-efficient data structure for com-
puting an ε-approximate frequent item set; it uses O(1

ε log W log( εB
log W )) words,

where B is the maximum number of items with timestamp in the same window
of W time units. Our memory usage is much smaller than that of the algorithm
in [3], i.e., O(1

ε log W log( εB
log W )min{log W, 1

ε} logU) words. We have also im-
proved the time complexity of the update and query operations. See Table 1 for
a comparison. Interestingly, the space complexity for finding approximate fre-
quent items can now match the best space requirement for the relatively simpler
problem of approximating basic counting (i.e., O(1

ε log W log( εB
log W ))) [3].

In the asynchronous model, if a data item has a delay more than W time units,
it can be immediately discarded when it arrives at the data stream. On the other
hand, in many applications, the delay is relatively small when compared with the
window size. This motivates us to extend the asynchronous model to consider
data items that have a bounded delay. We say that an asynchronous data stream
has tardiness τ if a data item created at time d must arrive at the data stream
no later than a data item created at time d + τ . If we set τ = 0, the model
becomes the synchronous model. If we consider τ = W , this is the asynchronous
model studied above. In general, for any τ ∈ [0, W ], we adapt our approximate
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data structure for the frequent item set to occupy O(1
ε log τ log( εB

log τ )) space.
Note that our work implies the same space complexity as the best result under
the synchronous model [8], but the underlying data structures and algorithms
are more complicated than that in [8].

Technical digest. Our improved solution to the frequent item set problem
stems from two new ideas, namely, a more versatile data structure called λ-
counter for bookkeeping individual data items, and a technique of exploiting
multi-resolution to optimize the space for organizing the λ-counters.

The λ-counter is a generalization of the data structure proposed by Lee and
Ting [8], which estimates the number of an item within a sliding window under
the synchronous model. Roughly speaking, the idea in [8] is to keep a sample of
every λ item a’s received, for some constant λ. In an out-of-order stream, the
order of timestamps is arbitrary, and it does not make sense to sample every λ
item a’s in the stream. Our idea is to use an interval splitting technique, which
dynamically (and erroneously) splits the current window into disjoint intervals
of varying sizes but with similar number of items. An interesting point is that
the splitting will inevitably introduce error, but we are able to keep the error in
control. In Cormode et al.’s solution [3], they make use of the data structure q-
digest (first proposed in [10]) for a similar purpose. Both q-digest and λ-counter
allow efficient insertion of a new item. But an obvious advantage of λ-counter
is that it also allows the deletion of the latest item in O(1) time. The special
deletion operation allows us to have a better and simpler way to organize the
λ-counters for approximating frequent item set.

Based on the new λ-counters, it is not difficult to adapt Lee and Ting’s
synchronous data structure for approximating frequent item set [8] to the asyn-
chronous model. The space complexity would be O(1

ε (log W )B). The extra factor
B is due to the fact that the approximation has to be within an absolute error
εf∗(I), where f∗(I) can be as small as one and as big as B. An useful observation
here is that there is a more error-sensitive way to exploit the λ-counters such
that if f∗(I) is restricted to be in the range [	, r], then the space complexity
for approximating frequent item set would be O(1

ε (log W ) r
� ). We call such a

structure the (Y, δ)-collection (see the details in Section 3). Then we can adopt
the “multi-resolution” idea of [1] to keep O(log( εB

log W )) data structures, each
could estimate the frequent item set with sufficient accuracy when f∗(I) is in a
particular range, and each requires only O(1

ε log W ) space.

Organization of the paper. Sections 2 and 3 present the data structures
λ-counter and (Y, δ)-collection, respectively; the latter gives good estimates on
the frequency of any item, when the total frequency of all items in the win-
dow is bounded by some fixed value Y . Section 4 uses the multi-resolution
technique to remove the restriction on total frequency, and Section 5 shows
how this data structure can identify ε-approximate frequent item set using
O(1

ε log W log( εB
log W )) words of space. Finally, Section 6 extends the results for

out-of-order stream with tardiness.
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2 -Counter: Estimating the Frequency of a Fixed Item

This section presents a new data structure λ-counter, where λ ≥ 1 is a parameter.
Let W be the window size. Each λ-counter counts only one certain item, and it
maintains an estimation for the number of this item within a sliding window of
W ′ time units, for any W ′ ≤ W . The absolute error in the estimation is at most
2λ log W . We first define a λ-counter and then present the analysis.

2.1 Definition of a -Counter

A λ-counter Ca for an item a is simply a list of intervals

〈[p1, q1], [p2, q2], [p3, q3], . . . , [pk, qk]〉, (1)

where pi ≤ qi for i = 1, . . . , k. We will maintain that p1 < qk, and the intervals
in the list form a partition of [p1, qk] (i.e., pi+1 = qi + 1 for any 1 ≤ i < k);
we say that Ca monitors the interval [p1, qk]. Each interval [pi, qi] in the list is
associated with a number ea([pi, qi]), which is an estimate of fa([pi, qi]), i.e., the
number of item a in [pi, qi]. Initially, the list has only one interval [1, W ], and
ea([1, W ]) = 0. A λ-counter is updated and answers queries as follows.

Updating a λ-counter. A λ-counter Ca is updated only when an item a arrives.
Suppose a new item (a, t) arrives. Let the list of Ca be the one shown in (1) for
some k ≥ 1. Then we update the list according to the three cases below.

Case 1: t < p1. We ignore the new item in this case.
Case 2: p1 ≤ t ≤ qk. In this case, let [pi, qi] be the unique interval in the list

with t ∈ [pi, qi]. We increase its estimate ea([pi, qi]) by 1.
Then, if pi �= qi and ea([pi, qi]) = 2λ, we do the following extra step. Let
m = �(pi + qi)/2�. We replace the interval [pi, qi] by the two intervals [pi, m]
and [m + 1, qi]. Then we set both ea([pi, m]) and ea([m + 1, qi]) to λ.

Case 3: qk < t. In this case, we have two subcases.
1. If qk < t ≤ qk + W , then append the interval [qk + 1, qk + W ] to the list

and set its estimate to 1.
2. If qk + W < t, then find the unique integer 	 such that t ∈ [(	 − 1)W +

1, 	W ], and append to the list the two intervals [(	− 2)W + 1, (	− 1)W ]
and [(	 − 1)W + 1, 	W ] with estimates 0 and 1, respectively.

After the above updates, we remove all expired intervals, i.e., intervals [p, q]
in the list with q ≤ tcur − W , where tcur is the current time, i.e., the largest
timestamp of items received so far.

Estimation by a λ-counter. Let tcur be the current time and consider any
time tcur − W + 1 ≤ t ≤ tcur. We estimate the number of item a in the interval
[t, tcur] by summing up the estimates of all intervals [pi, qi] in the list of Ca such
that t ≤ qi. That is, the estimate is

Ea(t) =
∑

{ea([pi, qi]) | [pi, qi] is in list of Ca and t ≤ qi} (2)

λ

λ
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2.2 Analysis of the -Counter

Without loss of generality, we assume that the first item or query arrives no
earlier than time W . We first state a fact which can be proved easily by induction.

Fact 1. At any time tcur ≥ W , suppose Ca contains a list as shown in (1) for
some k ≥ 1. Then, p1 ≤ tcur − W + 1 ≤ tcur ≤ qk, and qk is a multiple of W .

It is not hard to see the memory requirement of a λ-counter Ca (Lemma 1),
since [p1, qk] has length O(W ) and the total number of item a in this interval is
O(B), where B is the maximum number of items with timestamp in a window.

Lemma 1. The memory usage of a λ-counter Ca is O(B
λ ) words.

It is straightforward to see that each update takes O(log(B
λ )) time (by binary

search on the list) and each query takes O(B
λ ) time. It remains to show that

Ca gives estimates within the stated error bound. Suppose Ca contains a list as
shown in (1) for some k ≥ 1. We focus on some time t ∈ [tcur − W + 1, tcur] ⊆
[p1, qk]. For such t, there is a unique interval Ic = [pc, qc] in the list of Ca such
that t ∈ Ic; we call Ic the critical interval for t. We can check that Equation (2)
is equivalent to

Ea(t) =
∑

i=c,...,k

ea([pi, qi])

The following technical lemma analyzes how well Ea(t) estimates fa([t, qk]). We
say that an update is critical to t if it splits the critical interval for t (i.e., Case 2,
and the extra step is executed on the critical interval for t). The proof of the
lemma is a tedious verification of Inequality (3) and will be given in full paper.

Lemma 2. Let I = [p1, qk] be the interval monitored by Ca. Consider any time
t ∈ [tcur −W + 1, tcur]. Let Ic be the critical interval for t and let nc be the total
number of updates made to Ca so far that are critical to t. Then,

Ea(t) − min{ea(Ic), 2λ} − λnc ≤ fa([t, qk]) ≤ Ea(t) + 2λnc. (3)

We can apply Lemma 2 to obtain our main theorem, as follows. Note that if
W < 4, we can use three counters to maintain the exact count of an item a.

Theorem 1. For W ≥ 4 and any W ′ ≤ W , the estimate Ea(tcur − W ′ + 1)
returned by Ca has absolute error at most 2λ log W .

Proof. Observe that no item with a timestamp larger than tcur arrives yet, so
fa([tcur − W ′ + 1, tcur]) = fa([tcur − W ′ + 1, qk]). Then by Lemma 2, we have

Ea(tcur−W ′+1)−2λ−λnc ≤ fa([tcur−W ′+1, tcur]) ≤ Ea(tcur−W ′+1)+2λnc

where nc is the number of updates critical to tcur − W ′ + 1. Since W ≥ 4,
2λ ≤ λ log W . Note that nc ≤ log W because tcur − W ′ + 1 is initially in an
interval of size at most W and each critical update reduces the size of the critical
interval by half. Since the interval length is at least 1, the theorem follows. ��

λ
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3 (Y, )-Collection: Estimating the Frequency of Every
Item When Total Frequency Is at Most Y

Let Y be a fixed constant and δ be an error bound. This section presents a data
structure (Y, δ)-collection, which maintains an estimation of the frequency of any
item within a sliding window of W time units. We will define a (Y, δ)-collection
and show that the absolute error of an estimation is at most δY , when the total
frequency of all items within the window at most Y . In the next section, we will
extend the data structure to remove this restriction.

A (Y, δ)-collection is a collection of at most 24
δ λ-counters where λ = δY

10 log W .
Below we assume that W ≥ 4.2 Initially, the collection has no counter.

3.1 Updating a (Y, )-Collection

When an item (a, t) arrives, we update as follows.

Case 1. If the collection has a λ-counter Ca for a, we update Ca by (a, t). If
after the update, we have either
(i) the total number of intervals of all λ-counters in the collection is greater

than (82
δ ) log W , or

(ii) the total estimate of all intervals of all λ-counters in the collection is
greater than 58

10Y ,
then we find, from the lists of intervals of all λ-counters, the interval [p, q]
with the smallest q, and discard it from the collection.

Case 2. Suppose the collection does not have a λ-counter for a. If the total
number of λ-counters is smaller than 24

δ , we create a new λ-counter for a,
and update it by (a, t). Otherwise, we do nothing about (a, t). Instead, we
perform a “decrement” operation to every λ-counter Cx in the collection:

Decrement of Cx. We find the last interval [p, q] in Cx (i.e., the
one with the largest q) with a positive estimate ex([p, q]). Then,
we decrease this estimate ex([p, q]) by 1. If the estimate becomes
zero, and q is not a multiple of W , and there is another interval
[q +1, r] with estimate zero, then we combine the two intervals [p, q]
and [q + 1, r] into one interval [p, r] with estimate ex([p, r]) = 0.

For ease of reference, we call this step a batch-of-decrement step. After it, we
remove all λ-counters which do not have any interval with positive estimate.

By the update operation, we have some simple fact and observation about a
(Y, δ)-collection. Consider any λ-counter Ca in the (Y, δ)-collection. Suppose that
Ca is monitoring the list of intervals 〈[p1, q1], [p2, q2], . . . , [pk−1, qk−1], [pk, qk]〉.
The following fact is easy to verify.

Fact 2. With respect to the λ-counter Ca, there are at most two intervals in its
list with estimates smaller than λ.
2 If W < 4, we can replace each λ-counter for some item a with W counters to maintain

the exact count of a in the window. Such (Y, δ)-collection using exact counters can
be analyzed similarly to that using λ-counters.

δ

δ
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In Case 1 of the update operation, we discard some interval if (i) the total
number of intervals is greater than (82

δ ) log W or (ii) the total estimate of all
intervals is greater than 58

10Y . The following lemma asserts that no “important”
interval is discarded if the total frequency of all items within the window is at
most Y . Let Icur = [tcur − W + 1, tcur]. Note that Σ is the set of possible items
and f∗(Icur) =

∑
a∈Σ fa(Icur).

Lemma 3. Suppose that we have discarded at or before tcur an interval [p, q]
from the (Y, δ)-collection with q ≥ tcur − W + 1. Then f∗(Icur) > Y .

Proof. Consider the moment of the removal. We claim that∑
Ca in the collection

Ea(tcur − W + 1) > 58
10Y.

It is obviously true if the removal is triggered by Case 1(ii). Suppose the removal
is triggered by Case 1(i). Then there are totally more than (82

δ ) log W intervals
in the collection. Since we remove the interval [p, q] with the smallest q, and
q ≥ tcur−W +1, we conclude that all these intervals [x, y] have y ≥ tcur−W +1.
Together with the fact that there are at most 24

δ λ-counters and each of them
has at most two intervals with estimates smaller than λ (Fact 2), we conclude∑
Ca in the collection

Ea(tcur−W+1) > λ(82
δ log W−2(24

δ )) ≥ λ(82
δ − 24

δ ) log W = 58
10Y

If there is no batch-of-decrement step, by Theorem 1, the total estimate is at
most ∑

Ca in the collection

(fa(Icur) + 2λ log W ) ≤ f∗(Icur) + 24
δ (2λ log W ).

Otherwise, suppose there is a batch-of-decrement step. We first claim that The-
orem 1 still holds. To see this, consider the decrement of some λ-counter Cx,
which essentially deletes the latest item x in the stream. If the decrement com-
bines two intervals [p, q] and [q + 1, r] into an interval [p, r], then the number of
critical update to any time t ∈ [p, r] can be reset to 0 (because ea([p, r]) = 0
and any item x with timestamps in [p, r] has been deleted). Furthermore, the
condition that q is not a multiple of W guarantees [p, r] has size at most W .
Thus, we still have Theorem 1. The decrement operations will only make the
estimates smaller and thus the above inequality still holds even when there are
decrements. Combining the above two inequalities and recall that λ = δY

10 log W ,
the lemma follows. ��

3.2 Estimation by a (Y, )-Counter

Given any W ′ ≤ W , let IW ′ = [tcur−W ′ +1, tcur]. The (Y, δ)-collection gives an
estimate Esta(IW ′ ) of fa(IW ′ ) for every item a as follows.

– If the (Y, δ)-collection has a λ-counter Ca for item a, then Esta(IW ′ ) is equal
to the estimate Ea(tcur − W ′ + 1) of Ca;

– Otherwise, Esta(IW ′) = 0.

δ
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We can analyze the accuracy of the estimate given by a (Y, δ)-collection, as
follows. Note that Icur = [tcur − W + 1, tcur].

Lemma 4. Suppose that f∗(Icur) ≤ Y . Then, for any item a and any W ′ ≤ W ,
we have

fa(IW ′ ) − δY ≤ Esta(IW ′) ≤ fa(IW ′ ) + δY.

Proof. We first derive an upper bound on the number of batch-of-decrement
steps performed during Icur. Note that at time tcur − W , the total estimate of
all intervals in the (Y, δ)-collection is at most 58

10Y . Together with the fact that
f∗(Icur) ≤ Y items arrived during Icur, the total units that can be decreased by
the batch-of-decrement steps performed during Icur is at most 68

10Y . Since each
batch-of-decrement step decreases 24

δ + 1 units (each for a distinct item), we
conclude that the number of batch-of-decrement steps performed during Icur is
at most (68

10Y )/(24
δ + 1) < 68

240δY .
We can now analyze the accuracy of the estimate Esta(IW ′).

– If there is no counter in the (Y, δ)-collection for a, then Esta(IW ′ ) = 0. Note
that fa(IW ′ ) is at most 68

240δY because we need a batch-of-decrement step to
take away a unit for item a and there are at most 68

240δY such steps. Thus,
|Esta(IW ′ ) − fa(IW ′ )| ≤ 68

240δY < δY .
– Suppose that there is a λ-counter Ca for a. Since f∗(Icur) ≤ Y , Lemma 3

asserts that no interval [p, q] with q ≥ tcur−W +1 is removed. Thus, we can
apply Equation (2) in Section 2.1 to determine Ea(tcur −W + 1). If there is
no batch-of-decrement step, by Theorem 1, we have

|Esta(IW ′ ) − fa(IW ′)| = |Ea(tcur − W ′ + 1) − fa(IW ′ )| ≤ 2λ log W.

The decrement operations will introduce an additional error of at most 68
240δY

and thus we have
|Esta(IW ′ )−fa(IW ′ )| ≤ 2λ log W + 68

240δY =2( δY
10 log W ) log W + 68

240δY < δY.��

4 Estimating the Frequency of Every Item

In this section, we build a data structure Dε using (Y, δ)-collections and show
that Dε can give good estimates without any restriction on the total frequency.
We estimate the frequency of any item within a sliding window of the last recent
W ′ time units, for any W ′ ≤ W .

Data structure Dε. Let k be the smallest integer such that 2k ≥ log W
ε . The

data structure Dε comprises the following:
– a (Y, ε

4 )-collection for each Y = 2k, 2k+1, . . . , 2h where h = �log 4B�;
– the 2k items with the largest timestamps among all items received so far;
– the data structure by Cormode et al. [3] which uses O(1

ε log W log( εB
log W ))

words of space and allows us to find an estimate Est∗(IW ′ ) of f∗(IW ′ ) for
any W ′ ≤ W such that

|Est∗(IW ′) − f∗(IW ′ )| ≤ ε
4f∗(IW ′).
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The following theorem analyzes the accuracy of the estimate given by Dε as well
as the memory usage, update time and query time of Dε. Recall that for any
W ′ ≤ W , IW ′ = [tcur − W ′ + 1, tcur].

Theorem 2. Given any W ′ ≤ W at the query time, the data structure Dε can
give an estimate Esta(IW ′ ) for any item a such that

|Esta(IW ′ ) − fa(IW ′ )| ≤ εf∗(IW ′ ),

using O(1
ε log W log( εB

log W )) words of space. Furthermore, an update upon the
arrival of a new item takes O(log( εB

log W )(1
ε +log log W )) time, and a query takes

O(1
ε log W + log log(εB)) time.

Proof. To find an estimate of fa(IW ′ ) for any item a, we first get an estimate
Est∗(IW ′) using the data structure in [3]. Let Y ∗ = 2i be the unique integer with
Est∗(IW ′ )

1−ε/4 ≤ Y ∗ < 2Est∗(IW ′ )
1−ε/4 . Note that f∗(IW ′) ≤ Est∗(IW ′)

1−ε/4 ≤ Y ∗ ≤ 2Est∗(IW ′)
1−ε/4 ≤

2(1+ε/4)f∗(IW ′ )
1−ε/4 ≤ 4f∗(IW ′) ≤ 4B.

If Y ∗ ≤ 2k, then f∗(IW ′) ≤ Y ∗ ≤ 2k and we can obtain the exact value of
f∗(IW ′) from the sequence containing at most 2k items received thus far with
the largest timestamps. Therefore, we have Esta(IW ′) = fa(IW ′) and hence
|Esta(IW ′) − fa(IW ′ )| ≤ εf∗(IW ′ ).

Now, suppose Y ∗ > 2k. Since f∗(IW ′ ) ≤ Y ∗, by Lemma 4, we can find an
estimate Esta(IW ′ ) using the (Y ∗, ε

4 )-collection such that |Esta(IW ′ )−fa(IW ′ )| ≤
ε
4Y ∗. Since Y ∗ ≤ 4f∗(IW ′ ), we have |Esta(IW ′ ) − fa(IW ′)| ≤ εf∗(IW ′ ).

Memory usage. A (Y, ε
4 )-collection has O(4 log W

ε ) intervals, each of which to-
gether with its estimate needs O(1) words. Since the number of (Y, ε

4 )-collections
are O(h−k)=O(log( εB

log W )), the total space used by the collections are O(1
ε log W ·

log( εB
log W )) words. Together with the space of the data structure in [3], the total

space is O(1
ε log W log( εB

log W )) words.

Update and Query time. Consider an update upon the arrival of a new item.
For each (Y, ε

4 )-collection, if the new item causes a batch-of-decrement step, it
takes O(1

ε ) time. Otherwise, we need to update a λ-counter in the (Y, ε
4 )-collection,

in which we need to update an interval in the list of the λ-counter. We can lo-
cate the interval to be updated using binary search; it takes O(log(1

ε log W )) =
O(log(1

ε ) + log log W ) time. Since there are O(log( εB
log W )) (Y, ε

4 )-collections, the
update time required by the collections are O(log( εB

log W )(1
ε + log log W )) time.

Furthermore, it takes O(log(1
ε log W )) time to update the list of the 2k items. To-

gether with the update time of the data structure in [3], which is O(log( εB
log W )·

log log W ), the total update time is O(log( εB
log W )(1

ε +log log W )). Upon a query, it
takes O(1) time to identify which of (Y, ε

4 )-collection or the list of the 2k items to be
used for estimation; in either case, it takes O(1

ε log W ) time to obtain the estimate.
Together with the query time of the data structure in [3], which is O(1

ε log W +
log log(εB)), the theorem follows. ��
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5 Finding ε-Approximate -Frequent Item Set

In this section, we apply the data structure in Section 4 to find ε-approximate
φ-frequent item set S within a sliding window covering the last recent W ′ time
units for any window size W ′ ≤ W given at the query time. Recall that IW ′ =
[tcur − W ′ + 1, tcur]. The set S needs to satisfy the following two requirements:

(i) S contains every item a with fa(IW ′ ) ≥ φf∗(IW ′ ), and
(ii) For any item b ∈ S, fb(IW ′ ) ≥ (φ − ε)f∗(IW ′ ).

To find such set, we maintain the following:
– Our data structure D ε

4
, which enables us to find, for any item a, an estimate

Esta(IW ′) of fa(IW ′ ) such that |Esta(IW ′ ) − fa(IW ′ )| ≤ ε
4f∗(IW ′ ).

– The data structure by Cormode et al. [3] that enables us to find an estimate
Est∗(IW ′) of f∗(IW ′ ) such that |Est∗(IW ′ ) − f∗(IW ′ )| ≤ ε

4f∗(IW ′ ).

The following theorem suggests how to find an ε-approximate φ-frequent item
set, and states the space and time complexity of the data structure.

Theorem 3. Let ε ∈ (0, 1) be the error bound. With respect to the above data
structure, given any threshold φ ∈ [ε, 1] and any window size W ′ ≤ W at the
query time, the set

S = {a | Esta(IW ′ ) ≥ (φ − ε
2 )Est∗(IW ′ )}

is an ε-approximate φ-frequent item set. It uses space O(1
ε log W log( εB

log W ))
words, an update takes O(log( εB

log W )(1
ε + log log W )) time, and a query takes

O(1
ε log W + log log(εB)) time.

Proof. By the estimate guarantees of the two data structures and the fact that
φ ≤ 1, it can be verified that any item a with fa(IW ′ ) ≥ φf∗(IW ′ ) is in S, and any
item a ∈ S has fa(IW ′ ) ≥ (φ−ε)f∗(IW ′). Thus, S is an ε-approximate φ-frequent
item set. The space and time complexity follow directly from Theorem 2. ��

6 Extension for a Stream with Bounded Tardiness

Recall that in an out-of-order data stream with tardniess τ ∈ [0, W ], any item
(a, d) arriving at time tcur satisfies d ≥ tcur−τ ; intuitively, it guarantees that the
delay of any item is at most τ . In this section, we sketch the idea for extending
our data structure to take advantage of this small delay guarantee to reduce the
space requirement.

Modification to λ-counter. We say that an interval [p, q] is short if its length
is no more than τ+1 (i.e., p−q ≤ τ); otherwise it is long. To take advantage of the
small delay guarantee, we make some minor modification to the implementation
of λ-counter. Consider any λ-counter Ca. When an item (a, d) arrives at time
tcur, we update Ca in exactly same way as in the original implementation except
for the case: d belongs to some long interval [p, q] in Ca and ea([p, q]) = 2λ − 1.
Then, we perform the update differently as follows:

φ
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Clean-up step. If q > tcur, replace [p, q] by the two intervals [p, tcur] and [tcur+
1, q], and set their estimates to 2λ − 1 and 0, respectively.

Divide step. Let s = min{q, tcur}. If p < tcur − τ , we replace [p, s] by [p, tcur −
τ − 1] and [tcur − τ, s]; otherwise, we replace [p, s] by [p, m] and [m + 1, s]
where m =

⌊
p+s
2

⌋
. Then, we set the estimates of the two new intervals to λ.

Note that if we add [tcur +1, q] to the list of Ca in the clean-up step, then before
the clean-up, [p, q] must be the last interval in the list. The clean-up will not
increase the error; for any t ∈ [p, q], if t ≤ tcur, then fa([t, q]) = fa([t, tcur])
and in our construction, Ea(t) does not change. Furthermore, note that for any
t ∈ [p, q] where t > tcur, t will be in the new interval [tcur + 1, q] after the clean-
up, and in such case, the number of critical updates to t is reset to 0 (because
Ea(t) = fa([t, q]) = 0 and the estimate for this interval is accurate).

Lemma 5. Suppose that the data stream has tardiness τ ∈ [0, W ]. With respect
to the λ-counter, for any W ′ ≤ W , our new update operation guarantees that
|Ea(tcur − W ′ + 1) − fa(IW ′)| ≤ 2λ(log(τ + 1) + 2).

Proof. It can be verified that the modified implementation still satisfies Lemma 2.
To prove the error bound, it suffices to prove that for any t, the number of up-
dates that are critical to t is at most (log(τ + 1) + 1).

Suppose that initially, t ∈ [p, q]. If [p, q] are short, there will be at most
log(τ + 1) critical updates to t. Suppose [p, q] is long. If t > tcur, the clean-up
step will add the new interval R = [tcur+1, q], and the number of critical updates
to t is reset to 0. In such case, we can treat it as if t was initially in R without
any update yet, and we can repeat the argument by replacing [p, q] by R.

Suppose t ≤ tcur. A divide step can split [p, s] into two new intervals and t
is in one of them, say [x, y]. It can be verified that either (i) [x, y] is short, and
there will be at most log(τ +1) additional critical updates to t, or (ii) y < tcur−τ
and there will be no more update to [x, y] because the tardiness is τ . Thus, the
total number of critical updates to t is at most log(τ + 1) + 1. ��
Finding frequent item set. By setting λ = δY

10(log(τ+1)+2) and using the same
analysis in previous sections, we have the following theorem.

Theorem 4. There is a data structure that finds ε-approximate φ-frequent item
set for data streams with tardiness τ using O(1

ε log τ log( εB
log τ )) words of space.

Furthermore, an update takes O(log( εB
log τ )(1

ε +log log τ)) time and a query takes
O(1

ε log τ + log log(εB)) time.
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Abstract. We consider online algorithms for broadcast scheduling. In
the pull-based broadcast model there are n unit-sized pages of informa-
tion at a server and requests arrive online for pages. When the server
transmits a page p, all outstanding requests for that page are satisfied.
There is a lower bound of Ω(n) on the competitiveness of online al-
gorithms to minimize average flow-time; therefore we consider resource
augmentation analysis in which the online algorithm is given extra speed
over the adversary. The longest-wait-first (LWF) algorithm is a natural
algorithm that has been shown to have good empirical performance [2].
Edmonds and Pruhs showed that LWF is 6-speed O(1)-competitive using
a novel yet complex analysis; they also showed that LWF is not O(1)-
competitive with less than 1.618-speed. In this paper we make two main
contributions to the analysis of LWF and broadcast scheduling.

– We give an intuitive and easy to understand analysis of LWF which
shows that it is O(1/ε2)-competitive for average flow-time with (4+ε)
speed.

– We show that a natural extension of LWF is O(1)-speed O(1)-
competitive for more general objective functions such as average
delay-factor and Lk norms of delay-factor (for fixed k). These metrics
generalize average flow-time and Lk norms of flow-time respectively
and ours are the first non-trivial results for these objective functions
in broadcast scheduling.

1 Introduction

We consider online algorithms for broadcast scheduling in the pull-based model.
In this model there are n pages (representing some form of useful information)
available at a server and clients request a page that they are interested in. The
server broadcasts pages according to some online policy and all outstanding re-
quests for a page are satisfied when that page is transmitted/broadcast. This is
what distinguishes this model from the standard scheduling models where the
server has to process each request separately. Broadcast scheduling is motivated
by several applications. Example situations where the broadcast assumption is
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natural include wireless and satellite networks, LAN based systems and even
some multicast systems. See [22,1,2] for pointers to applications and systems
that are based on this model. In addition to their practical interest, broadcast
scheduling has been of much interest in recent years from a theoretical point of
view. There is by now a good amount of literature in online and offline algorithms
in this model [6,2,1,7].

It is fair to say that algorithmic development and analysis for broadcast
scheduling have been challenging even in the simplest setting of unit-sized pages;
so much so that a substantial amount of technical work has been devoted to the
development of offline approximation algorithms [20,15,16,17,3,4]; many of these
offline algorithms are non-trivial and are based on linear programming based
methods. Further, most of these offline algorithms, with the exceptions of [3,4],
are in the resource augmentation model of Kalyanasundaram and Pruhs [19] in
which the analysis is done by giving the algorithm a machine with speed s > 1
when compared to a speed 1 machine for the adversary. In this paper we are in-
terested in online algorithms in the worst-case competitive analysis framework.
We consider the problem of minimizing average flow-time (or waiting time) of re-
quests and other more stringent objective functions. It is easy to show an Ω(n)
lower bound on the competitive ratio [20] of any deterministic algorithm and
hence we also resort to resource augmentation analysis. For average flow-time
three algorithms are known to be O(1)-competitive with O(1)-speed. The first
is the natural longest-wait-first (LWF) algorithm/policy: at any time t that the
server is free, schedule the page p for which the total waiting time of all out-
standing requests for p is the largest. Edmonds and Pruhs [13], in a complex
and original analysis, showed that LWF is a 6-speed O(1)-competitive algo-
rithm and also that it is not O(1)-competitive with a speed less than (1+

√
5)/2;

they also conjectured that their lowerbound is tight. The same authors also
gave a different algorithm called BEQUI in [12] and show that it is a (4 + ε)-
speed O(1)-competitive algorithm; although the algorithm has intuitive appeal,
the proof of its performance relies on an reduction to an algorithm for a non-
clairvoyant scheduling problem [11]. The recent improved result in [14] for the
non-clairvoyant problem when combined with the reduction mentioned above
leads to a (2 + ε)-speed O(1)-competitive algorithm. The preemptive algorithms
in [12,14] are also applicable when the page sizes are arbitrary; see [18] for em-
pirical evaluation in this model.

At a technical level, a main difficulty in online analysis for broadcast schedul-
ing is the fact shown in [20] that no online algorithm can be locally-competitive
with an adversary1.

We focus on the LWF algorithm in the setting of unit-sized pages. In addition
to being a natural greedy policy, it has been shown to outperform other natural
policies [2]. It is, therefore, of interest to better understand its performance. We
are motivated by the following questions. Is there a simpler and more intuitive

1 An algorithm is locally-competitive if at each time t, its queue size is comparable to
that of the queue size of the adversary. Many results in standard scheduling are based
on showing local-competitiveness.
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analysis of LWF for broadcast scheduling than the analysis presented in [13]?
Can we close the gap between the upper and lower bounds on the speed require-
ment of LWF to guarantee constant competitiveness? Can we obtain competitive
algorithms for more stringent objective functions than average flow-time such as
Lk norms of flow-time, average delay-factor2 and Lk norms of delay-factor? We
give positive answers to these questions.

Results: Our results are for unit-size pages. We make two contributions.

– We give a simple and intuitive analysis of LWF that already improves the
speed bound in [13]; the analysis shows that LWF is (4 + ε)-speed O(1/ε2)-
competitive for average flow time.

– We show that a natural generalization of LWF that we call LF is O(k)-speed
O(k)-competitive for minimizing the Lk norm of flow time — these bounds
extend to average delay factor and Lk norms of delay factor. These are the
first non-trivial results for Lk norms in broadcast scheduling for k > 1.

Lk norms for flow-time for some small k > 1 such as k = 2, 3 have been suggested
as alternate and robust metrics of performance; see [5,21] for more on this. Our
results show that LWF-like algorithms have reasonable theoretical performance
even for these more difficult metrics. We derive these additional results in a
unified fashion via a general framework that is made possible by our simpler
analysis for LWF. We note that the algorithms in [12,14] that perform well for
average flow time do not easily extend to the more general objective functions
that we consider.

Our analysis of LWF borrows several key ideas from [13], however, we make
some crucial simplifications. We outline the main differences in Section 1.1 where
we give a brief overview of our approach.

Notation and Formal Definitions: We assume that the server has n distinct
unit-sized pages of information. We use Jp,i to denote i’th request for a page p ∈
{1, . . . , n}. We let ap,i denote the arrival time of the request Jp,i. The finish time
fp,i of a request Jp,i under a given schedule/algorithm is defined to be the earliest
time after ap,i when the page p is sequentially transmitted by the scheduler; to
avoid notational overload we assume that the algorithm is clear from the context.
Note that multiple requests for the same page can have the same finish time.
The total flow time for an algorithm over a sequence of requests is now defined
as
∑

p

∑
i(fp,i − ap,i). Delay-factor is a recently introduced metric in scheduling

[9,8,10]. In the context of broadcast scheduling, each request Jp,i has a soft
deadline dp,i that is known upon its arrival. The slack of Jp,i is dp,i − ap,i. The
delay-factor of Jp,i with finish time fp,i is defined to be max(1,

fp,i−ap,i

dp,i−ap,i
); in

other words it is the ratio of the waiting time of the request to its slack. It can
be seen that delay-factor generalizes flow-time since we can set dp,i = ap,i + 1
for each (unit-sized) request Jp,i. Given a scheduling metric such as flow-time
or delay-factor that, for each schedule assigns a value mp,i to a request Jp,i, one

2 Delay-factor is a recently introduced metric and we describe it more formally later.
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can define the Lk norm of this metric in the usual way as k

√∑
(p,i) mk

p,i. Note
that minimizing the sum of flow-times or delay-factors is simply the L1 norm
problem. In resource augmentation analysis, the online algorithm is given a faster
machine than the optimal offline algorithm. For s ≥ 1, an algorithm A is s-speed
r-competitive if A when the given s-speed machine achieves a competitive ratio
of r.

In this paper we assume, for simplicity, the discrete time model. In this model,
at each integer time t, the following things happen exactly in the following
order; the scheduler make a decision of which page p to broadcast; the page p
is broadcast and all outstanding requests of page p are immediately satisfied,
thus having finish time t; new requests arrive. Note that new pages which arrive
at t are not satisfied by the broadcasting at the time t. It is important to keep
it in mind that all these things happen only at integer times. See [13] for more
discussion on discrete time versus continuous time models. For the most part,
we assume for simplicity of exposition, that the algorithm is given an integer
speed s which implies that the algorithm schedules (at most) s requests in each
time slot. For this reason we present our analysis for 5-speed, which can be easily
extended to analysis for (4 + ε)-speed, if continuous time model is assumed.

1.1 Overview of Analysis

We give a high level overview of our analysis of LWF. Let OPT denote some
fixed optimal 1-speed offline solution; we overload notation and use OPT also to
denote the value of the optimal schedule. Recall that for simplicity of analysis,
we assume the discrete-time model in which requests arrive at integer times. For
the same reason we analyze LWF with an integer speed s > 1. We can assume
that LWF is never idle. Thus, in each time step LWF broadcasts s pages and
the optimal solution broadcasts 1 page. We also assume that requests arrive at
integer times. At time t, a request is in the set U(t) if it is unsatisfied by the
scheduler at time t. In the broadcast setting LWF with speed s is defined as the
following.

Algorithm: LWFs

– At any integer time t, broadcast the s pages with the largest waiting times,
where the waiting time of page p is

∑
Jp,i∈U(t)(t − ap,i).

Our analysis of LWF is inspired by that in [13]. Here we summarize our
approach and indicate the main differences from the analysis in [13]. Given the
schedule of LWFs on a request sequence σ, the requests are partitioned into two
disjoint sets S (self-chargeable requests) and N (non-self-chargeable requests).
Let the total flow time accumulated by LWFs for requests in S and N be
denoted by LWFS

s and LWFN
s respectively. Likewise, let OPT

S and OPT
N be

the flow-time OPT accumulates for requests in S and N , respectively. S is the set
of requests whose flow-time is comparable to their flow-time in OPT. Hence one
immediately obtains that LWFS

s ≤ ρOPT
S for some constant ρ. For requests
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in N , instead of charging them only to the optimal solution, these requests are
charged to the total flow time accumulated by LWF and OPT. It will be shown
that LWFN

s ≤ δLWFs + ρOPT
N for some δ < 1; this is crux of the proof.

It follows that LWFs = LWFS
s + LWFN

s ≤ ρOPT
S + ρOPT

N + δLWFs ≤
ρOPT + δLWFs. This shows that LWFs ≤ ρ

1−δOPT, which will complete our
analysis. Perhaps the key idea in [13] is the idea of charging LWFN

s to LWFs

with a δ < 1; as shown in [20], no algorithm for any constant speed can be locally
competitive with respect to all adversaries and hence previous approaches in
the non-broadcast scheduling context that establish local competitiveness with
respect to OPT cannot work.

In [13], the authors do not charge LWFN
s directly to LWFs. Instead, they

further split N into two types and do a much more involved analysis to bound the
flow-time of the type 2 requests via the flow-time of type 1 requests. Moreover,
they first transform the given instance to canonical instance in a complex way
and prove the correctness of the transformation. Our simple proof shows that
these complex arguments can be done away with. We also improve the speed
bounds and generalize the proof to other objective functions.

1.2 Preliminaries

To show that LWFN
s ≤ δLWFs + ρOPT

N , we will map the requests in N
to other requests scheduled by LWFs which have comparable flow time. An
issue that can occur when using a charging scheme is that one has to be careful
not to overcharge. In this setting, this means for a single request Jp,i we must
bound of the number of requests in N which are charged to Jp,i. To overcome
the overcharging issue, we will appeal to a generalization of Hall’s theorem.
Here we will have a bipartite graph G = (X ∪ Y ) where the vertices in X will
correspond to requests in N . The vertices in Y will correspond to all requests
scheduled by LWFs. A vertex u ∈ X will be adjacent to a vertex v ∈ Y if u and
v have comparable flow time and v was satisfied while u was in our queue and
unsatisfied; that is, u can be charged to v. We then use a simple generalization of
Hall’s theorem, which we call Fractional Hall’s Theorem. Here a vertex of u ∈ X
is matched to a vertex of v ∈ Y with weight 	u,v where 	u,v is not necessarily an
integer. Note that a vertex can be matched to multiple vertices.

Definition 1 (c-covering). Let G = (X ∪Y, E) be a bipartite graph whose two
parts are X and Y , and let 	 : E → [0, 1] be an edge-weight function. We say
that 	 is a c-covering if for each u ∈ X,

∑
(u,v)∈E 	u,v = 1 and for each v ∈ Y ,∑

(u,v)∈E 	u,v ≤ c.

The following lemma follows easily from either Hall’s Theorem or the Max-Flow
Min-Cut Theorem.

Lemma 1 (Fractional Hall’s theorem). Let G = (V = X ∪Y, E) be a bipar-
tite graph whose two parts are X and Y , respectively. For a subset S of X, let
NG(S) = {v ∈ Y |uv ∈ E, u ∈ S}, be the neighborhood of S. For every S ⊆ X,
if |NG(S)| ≥ 1

c |S|, then there exists a c-covering for X.
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Throughout this paper we will discuss time intervals and unless explicitly men-
tioned we will assume that they are closed intervals with integer end points.
When considering some contiguous time interval I = [s, t] we will say that
|I| = t − s + 1 is the length of interval I; in other words it is the number of
integers in I. For simplicity, we abuse this notation; when X is a set of closed
intervals, we let |X | denote the number of distinct integers in some interval of X .
Note that |X | also can be seen as the sum of the lengths of maximal contiguous
sub-intervals if X is composed of non-overlapping intervals.

To be able to apply Lemma 1, we show another lemma which will be used
throughout this paper. Lemma 2 says that the union of some fraction of time
intervals is comparable to that of the whole time interval.

Lemma 2. Let 0 ≤ λ ≤ 1 be a constant. Let X = {[s1, t1], . . . , [sk, tk]} be a
finite set of closed intervals and let X ′ = {[s′1, t1], . . . , [s′k, tk]} be an associated
set of intervals such that for 1 ≤ i ≤ k, s′i ∈ [si, ti] and |[s′i, ti]| ≥ λ|[si, ti]|. Then
|X ′| ≥ λ|X |.

2 Minimizing Average Flow Time

We focus our attention to minimizing average flow time. A fair amount of no-
tation is needed to clearly illustrate our ideas. Following [13], for each page,
we will partition time into intervals via events. Events for page p are defined
by LWFs’s broadcasts of page p. When LWFs broadcasts page p a new event
occurs. An event x for page p will be defined as Ep,x = 〈bp,x, ep,x〉 where bp,x is
the beginning of the event and ep,x is the end. Here LWFs broadcast page p at
time bp,x and this is the xth broadcast of page p. Then LWFs broadcast page
p at time ep,x and this is the (x + 1)st broadcast of page p. This starts a new
event Ep,x+1. Therefore, the algorithm LWFs does not broadcast p on the time
interval [bp,x + 1, ep,x − 1]. Thus, it can be seen that for page p, ep,x−1 = bp,x.
It is important to note that the optimal offline solution may broadcast page p
multiple (or zero) times during an event for page p. For each event Ep,x we let
Jp,x = {(p, i) | ap,i ∈ [bp,x, ep,x − 1]} denote the set of requests for p that arrive
in the interval [bp,x, ep,x − 1] and are satisfied by LWFs at ep,x. We let Fp,x

denote the flow-time in LWFs of all requests in Jp,x. Similarly we define F ∗
p,x

to be flow time in OPT for all requests in Jp,x. Note that OPT may or may
not satisfy requests in Jp,x during the interval [bp,x, ep,x].

An event Ep,x is said to be self-chargeable and in the set S if Fp,x ≤ F ∗
p,x or

ep,x − bp,x < ρ, where ρ > 1 is a constant which will be fixed later. Otherwise
the event is non-self-chargeable and is in the set N . Implicitly we are classifying
the requests as self-chargeable or non-self-chargeable, however it is easier to
work with events rather than individual requests. As the names suggest, self-
chargeable events can be easily charged to the flow-time of an optimal schedule.
To help analyze the flow-time for non-chargeable events, we set up additional
notation and further refine the requests in N .

Consider a non-self-chargeable event Ep,x. Note that since this event is non-
self-chargeable, the optimal solution must broadcast page p during the interval
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[bp,x + 1, ep,x − 1]; otherwise, Fp,x ≤ F ∗
p,x and the event is self-chargeable. Let

op,x be the last broadcast of page p by the optimal solution during the inter-
val [bp,x + 1, ep,x − 1]. We define o′p,x for a non-self-chargeable event Ep,x as
min{op,x, ep,x − ρ}. This ensures that the interval [o′p,x, ep,x] is sufficiently long;
this is for technical reasons and the reader should think of o′p,x as essentially the
same as op,x.

Let LWFS
s =

∑
p,x:Ep,x∈S Fp,x and LWFN

s =
∑

p,x:Ep,x∈N Fp,x denote the the
total flow time for self-chargeable and non self-chargeable events respectively.
Similarly, let OPT

S =
∑

p,x:Ep,x∈S F ∗
p,x and OPT

N =
∑

p,x:Ep,x∈N F ∗
p,x. For a

non-chargeable event Ep,x we divide Jp,x into early requests and late requests
depending on whether the request arrives before o′p,x or not. Letting F e

p,x and
F l

p,x denote the flow-time of early and late requests respectively, we have Fp,x =

F e
p,x + F l

p,x. Let LWFNe

s and LWFN l

s denote the total flow time of early and
late requests of non-self-chargeable events for LWF’s schedule, respectively.

The following two lemmas follow easily from the definitions.

Lemma 3. LWFS
s ≤ ρOPT

S .

Lemma 4. LWFN l

s ≤ ρOPT
N .

Thus the main task is to bound LWFNe

s . For a non-chargeable event Ep,x we try
to charge F e

p,x to events ending in the interval [o′p,x, ep,x − 1]. The lemma below
quantifies the relationship between F e

p,x and the flow-time of events ending in
this interval.

Lemma 5. For any 0 ≤ λ ≤ 1, if eq,y ∈ [�o′p,x + λ(ep,x − o′p,x)�, ep,x − 1] then
Fq,y ≥ λF e

p,x.

Proof. Let Fp,x(t) be the total waiting time accumulated by LWF for page p on
the time interval [bp,x, t]. We divide Fp,x(t) into two parts F e

p,x(t) and F l
p,x(t),

which are the flow time due to early requests and to late requests, respectively.
Note that Fp,x(t) = F e

p,x(t)+F l
p,x(t). The early requests arrived before time o′p,x,

thus, for any t′ ≥ �o′p,x + λ(ep,x − o′p,x)�, F e
p,x(t′) ≥ λF e

p,x(ep,x) = λF e
p,x.

Since LWFs chose to transmit q at eq,y when p was available to be transmit-
ted, it must be the case that Fq,y ≥ Fp,x(eq,y) ≥ F e

p,x(eq,y). Combining this with
the fact that F e

p,x(eq,y) ≥ λF e
p,x, the lemma follows. ��

With the above setup in place, we now prove that LWFs is O(1) competitive
for s = 5 via a clean and simple proof. This proof can be easily extended to
non-integer speeds, showing that LWF is (4 + ε)-speed O(1/ε2)-competitive.

2.1 Analysis of 5-Speed

This section will be devoted to proving the following main lemma that bounds
the flow-time of early requests of non self-chargeable events.

Lemma 6. For ρ ≥ 1, LWFNe

5 ≤ 4ρ
5(ρ−1)LWF5.
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Assuming the lemma, LWF5 is O(1)-competitive, using the argument outlined
earlier in Section 1.1.

Theorem 1. LWF5 ≤ 90OPT.

Proof. By combining Lemma 3, 4 and 6, we have that LWF5 = LWFS
5 +

LWFN l

5 + LWFNe

5 ≤ ρOPT
S + ρOPT

N + 4ρ
5(ρ−1)LWF5. Setting ρ = 10 com-

pletes the proof. ��
We now prove Lemma 6. In the analysis, we assume that LWF broadcasts 5
pages at each time; otherwise we can apply the same argument to maximal
subintervals when LWF is fully busy, respectively. Let Ep,x ∈ N . We define two
intervals Ip,x = [o′p,x, ep,x − 1] and I ′p,x = [o′p,x + �(ep,x − o′p,x)/2�, ep,x − 1]. Since
ρ ≤ ep,x − o′p,x, it follows that |I ′p,x| ≥ ρ−1

2ρ |Ip,x|. We wish to charge F e
p,x to

events (could be in S or N) in the interval I ′p,x. By Lemma 5, each event Eq,y

that finishes in I ′p,x satisfies the property that Fq,y ≥ F e
p,x/2. Moreover, there

are 5(�ep,x − o′p,x)/2� such events to charge to since LWF5 transmits 5 pages in
each time slot. Thus, locally for Ep,x there are enough events to charge to if ρ is
a sufficiently large constant. However, an event Eq,y with eq,y ∈ I ′p,x may also be
charged by many other events if we follow this simple local charging scheme. To
overcome this overcharging, we resort to a global charging scheme by setting up
a bipartite graph G and invoking the fractional Hall’s theorem (see Lemma 1)
on this graph.

The bipartite graph G = (X ∪Y, E) is defined as follows. There is exactly one
vertex up,x ∈ X for each non-self-chargeable event Ep,x ∈ N and there is exactly
one vertex vq,y ∈ Y for each event Eq,y ∈ A, where A is the set of all events.
Consider two vertices up,x ∈ X and vq,y ∈ Y . There is an edge up,xvq,y ∈ E if
and only if eq,y ∈ I ′p,x. By Lemma 5, if there is an edge between up,x ∈ X and
vq,y ∈ Y then Fq,y ≥ F e

p,x/2.
The goal is now to show that G has a 2ρ

5(ρ−1) -covering. Consider any non-
empty set Z ⊆ X and a vertex up,x ∈ Z. Recall that the interval Ip,x contains at
least one broadcast by OPT of page p. Let I =

⋃
up,x∈Z Ip,x be the union of the

time intervals corresponding to events in Z. Similarly, define I′ =
⋃

up,x∈Z I ′p,x.
We claim that |Z| ≤ |I|. This is because the optimal solution has 1-speed and

it has to do a separate broadcast for each event in Z during I. Now consider
the neighborhood of Z, NG(Z). We note that |NG(Z)| = 5|I′| since LWF5
broadcasts 5 pages for each time slot in |I′| and each such broadcast is adjacent
to an event in Z from the definition of G. From Lemma 2, |I′| ≥ ρ−1

2ρ |I| as we
had already observed that |I ′p,x| ≥ ρ−1

2ρ |Ip,x| for each Ep,x ∈ N . Thus we conclude
that |NG(Z)| = 5|I ′| ≥ 5 ρ−1

2ρ |I| ≥ 5 ρ−1
2ρ |Z|. Since this holds for ∀Z ⊆ X , by

Lemma 1, there must exist a 2ρ
5(ρ−1) -covering. Let 	 be such a covering. Finally,

we prove that the covering implies the desired bound on LWFNe

5 .
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LWFNe

5 =
∑

up,x∈X

F e
p,x [By Definition]

=
∑

up,xvq,y∈E

	up,x,vq,y F e
p,x [By Def. 1, i.e. for ∀up,x∈X ,

∑
vq,y∈Y

	up,x,vq,y =1]

≤
∑

up,xvq,y∈E

	up,x,vq,y 2Fq,y [By Lemma 5]

≤ 4ρ

5(ρ − 1)

∑
vq,y∈Y

Fq,y [Change order of
∑

and 	 is a 2ρ
5(ρ−1) -covering]

≤ 4ρ

5(ρ − 1)
LWF5. [Since Y includes all events]

This finishes the proof of Lemma 6.

3 Generalization to Delay-Factor and Lk Norms

In this section, our proof techniques are extended to show that a generalization
of LWF is O(1)-speed O(1)-competitive for minimizing the average delay-factor
and minimizing the Lk-norm of the delay-factor. Recall that flow-time can be
subsumed as a special case of delay-factor. Thus, these results will also apply
to Lk norms of flow-time. Instead of focusing on specific objective functions, we
develop a general framework and derive results for delay-factor and Lk norms as
special cases. First, we set up some notation. We assume that for each request Jp,i

there is a non-decreasing function mp,i(t) that gives the cost/penalty of that Jp,i

accumulates if it has waited for a time of t units after its arrival. Thus the total
cost/penalty incurred for a schedule that finishes Jp,i at fp,i is mp,i(fp,i − ap,i).
For flow-time mp,i(t) = t while for delay-factor it is max(1,

t−ap,i

dp,i−ap,i
). For Lk

norms of delay-factor we set mp,i(t) = max(1,
t−ap,i

dp,i−ap,i
)k. Note that the Lk

norm of delay-factor for a given sequence of requests is k

√∑
p,i mp,i(fp,i − ap,i)

but we can ignore the outer k’th root by focusing on the inner sum.
A natural generalization of LWF to more general metrics is described below;

we refer to this (greedy) algorithm as LF for Longest First. We in fact describe
LFs which is given s speed over the adversary.

Algorithm: LFs

– At any integer time t, broadcast the s pages with the largest m-waiting times
where the m-waiting time of page p at t is

∑
Jp,i∈U(t) mp,i(t − ap,i).

Remark 1. The algorithm and analysis do not assume that the functions mp,i

are “uniform” over requests. In principle each request Jp,i could have a different
penalty function.
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In order to analyze LF, we need a lower bound on the “growth” rate of the
functions mp,i(). In particular we assume that there is a function h : [0, 1] → R+

such that mp,i(λt) ≥ h(λ)mp,i(t) for all λ ∈ [0, 1]. It is not to difficult to see
that for flow-time and delay-factor we can choose h(λ) = λ, and for Lk norms
of flow-time and delay-factor, we can set h(λ) = λk. We also define a function
m : R+ → R+ as m(x) = max(p,i) mp,i(x). The rest of the analysis depends only
on h and m.

In the following subsection we outline a generalization of the analysis from
Section 2.1 that applies to LFs; the analysis bounds various quantities in terms
of the functions h() and m(). In Section 3.2, we derive the results for minimizing
delay-factor and Lk norms of delay-factor.

3.1 Outline of Analysis

To bound the competitiveness of LFs, we use the same techniques we used for
bounding the competitiveness of LWFs. Events are again defined in the same
fashion; Ep,x is the event defined by the x’th transmission of p by LFs. We
again partition events into self-chargeable and non self-chargeable events and
charge self-chargeable events to the optimal value and charge non-self-chargeable
events to δLFs + m(ρ)OPT

N for some δ < 1. For an event Ep,x, let Mp,x(t) =∑
Jp,i∈Jp,x

mp,i(t− ap,i) denote the total m-cost of all requests for p that arrive
in [bp,x, ep,x − 1] that are satisfied at ep,x. We let M∗

p,x(t) be the m-cost of the
same set of requests for the optimal solution. An event Ep,x is self-chargeable
if Mp,x ≤ m(ρ)M∗

p,x or ep,x − bp,x ≤ ρ for some constant ρ to be optimized
later. The remaining events are non self-chargeable. Again, requests for non-
self-chargeable events are divided into early requests and late requests based
on whether they arrive before o′p,x or not where o′p,x = min{op,x, ep,x − ρ}. Let
M e

p,x and M l
p,x be the flow time accumulated for early and late requests of a

non-self-chargeable event Ep,x, respectively. The values of LFN
s , LFN l

s , LFNe

s ,
and LFS

s are defined in the same way as LWFN
s , LWFN l

s , LWFNe

s , and LWFS
s .

Likewise for OPT. The following two lemmas are analogues of Lemmas 3 and 4
and follow from definitions.

Lemma 7. LFS
s ≤ m(ρ)OPT

S.

Lemma 8. LFN l

s ≤ m(ρ)OPT
N .

We now show a generalization of Lemma 5 that states that any event Eq,y such
that eq,y is close to ep,x has m-waiting time comparable to the m-waiting time
of early requests of Ep,x.

Lemma 9. Suppose Ep,x and Eq,y are two events such that eq,y ∈ [�o′p,x +
λ(ep,x − o′p,x)�, ep,x − 1], Mq,y ≥ h(λ)M e

p,x.

Proof (Sketch). Consider an early request Jp,i in Jp,x and let t ∈ [�o′p,x+λ(ep,x−
o′p,x)�, ep,x − 1]. Since ap,i ≤ o′p,x, it follows that t ≥ λ(ep,x − ap,i) + ap,i. Hence,
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mp,i(t− ap,i) ≥ h(λ)mp,i(ep,x − ap,i). Summing over all early requests, it follows
that M e

p,x(t) ≥ h(λ)M e
p,x. Since LFs chose to transmit q at t = eq,y instead of

p, it follows that Mq,y ≥ Mp,x(eq,y) ≥ M e
p,x(eq,y) ≥ h(λ)M e

p,x. ��
As in Section 2.1, the key ingredient of the analysis is to bound the waiting
time of early requests. We state the analogue of Lemma 6 below. Observe that
we have an additional parameter β. In Lemma 6 we hard wire β to be 1/2 to
simplify the exposition. In the more general setting, the parameter β needs to
be tuned based on h.

Lemma 10. For any 0 < β < 1, LFNe

s ≤ ρ
sh(β)(ρ(1−β)−1)LFs, where h is some

scaling function for m.

The proof of the above lemma follows essentially the same lines as that of
Lemma 6. The idea is to charge M e

p,x to events in the interval [o′p,x + �β(ep,x −
o′p,x)�, ep,x − 1]. Using Lemma 9, each event in this interval is within a factor of
h(λ) of M e

p,x. The length of this interval is at least ρ(1−β)−1
ρ times the length of

the interval [o′p,x, ep,x − 1]. To avoid overcharging we again resort to the global
scheme using fractional Hall’s theorem after we setup the bipartite graph. We
can then prove the existence of a ρ

s(ρ(1−β)−1) -covering and since each event can
pay to within a factor of h(β), the lemma follows.

Putting the above lemmas together we derive the following theorem.

Theorem 2. Let β ∈ (0, 1) and ρ > 1 be given constants. If s is an integer such
that ρ

sh(β)(ρ(1−β)−1) ≤ δ < 1, then algorithm LFs is s-speed m(ρ)
1−δ -competitive.

3.2 Results for Delay-Factor and Lk Norms

We can apply Theorem 2 with appropriate choice of parameters to show that
LFs is O(1)-competitive with O(1) speed.

For minimizing average delay-factor we have h(λ) = λ and m(x) ≤ x. For this
reason, average delay-factor behaves essentially the same as average flow-time
and we can carry over the results from flow-time.

Theorem 3. The algorithm LF is 5-speed O(1) competitive for minimizing the
average delay-factor.

We note that LF can be shown to be (4 + ε)-speed O(1/ε2)-competitive in
continuous time model.

For Lk norms of delay-factor we have h(λ) = λk and m(x) ≤ xk. By choosing
β = k

k+1 , ρ = 90(k + 1) and s = 3(k + 1) in Theorem 2, we can show that the
algorithm LF is 3(k+1)-speed O(ρk)-competitive for minimizing

∑
p,i mp,i(fp,i−

ap,i). Thus for minimizing the Lk-norm delay factor, we obtain k
√

O(ρk) = O(ρ)
competitiveness, which shows the following.

Theorem 4. For k ≥ 1, the algorithm LF is O(k)-speed O(k)-competitive for
minimizing Lk-norm of delay-factor.
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4 Conclusions

We gave a simpler analysis of LWF for minimizing average flow-time in broad-
cast scheduling. This not only helps improve the speed bound but also results in
extending the algorithm and analysis to more general objective functions such
as delay-factor and Lk norms of delay-factor. We hope that our analysis is useful
in other scheduling contexts.

Using a more involved analysis, it can be shown that LWF is O(1/ε3)-
competitive for average flow-time with (3.4 + ε) speed. Likewise, LF for average
delay factor. Recently we have shown that for any fixed ε > 0, LF is not O(1)-
competitive with speed (k + 1 − ε) for minimizing Lk norm of flow time. For
k = 1 this implies that LWF is not O(1)-competitive with (2 − ε)-speed and
disproves the conjecture from [13]. We believe that LWF is O(1)-competitive
with 2-speed. It would be interesting to find an O(1)-speed O(1)-competitive
algorithm for Lk norm of flow time where the speed and competitive ratio are
independent of k.

Acknowledgments. We thank Kirk Pruhs for his helpful comments and
encouragement.
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Abstract. We consider the routing open shop problem being a gener-
alization of the open shop and the metric travelling salesman problems.
The jobs are located at nodes of some transportation network, and the
machines travel on the network to execute the jobs in the open shop en-
vironment. The machines are initially located at the same node (depot)
and must return to the depot after completing all the jobs. It is required
to find a non-preemptive schedule that minimizes the makespan. The
problem is NP-hard even on a two-node network with two machines. We
present new polynomial-time approximation algorithms with worst-case
performance guarantees.

Keywords: Routing open shop, approximation algorithm, worst-case
analysis.

1 Introduction

We consider the routing open shop problem being a generalization of the open
shop and the metric travelling salesman problems. Both problems are strongly
NP-hard (see [16] and [9], respectively).

Open shop problem ([11])
We have a set of n jobs J = {J1, . . . , Jn} and a set of m machines M =
{M1, . . . , Mm}. Each job Jj has to be processed by each machine Mi, and this
operation takes pji ∈ Z+ time units. Operations of each job can be processed in
an arbitrary order. Preemption is not allowed. Different machines cannot work on
the same job simultaneously, and a machine cannot work on more than one job
at a time. The goal is to minimize the makespan. (For this problem it coincides
with the maximum job completion time Cmax.)

Metric traveling salesman problem (metric TSP)
We have an undirected edge-weighted complete graph G = 〈V, E〉, the weight τij
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of edge eij = [vi, vj ] is a nonnegative integer which represents a distance between
nodes vi and vj . Distances satisfy the triangle inequality. The goal is to build a
hamiltonian tour R in G with the minimum total weight |R| .=

∑
eij∈R τij .

Routing open shop problem
The input of this problem combines the inputs of two problems mentioned above.
The jobs are located at nodes of an undirected transportation network G. The
machines have to travel between the jobs (with unit speed). Thus not only the
processing times of the operations, but also the travel times between jobs have
to be taken into account.

It is assumed that all machines are initially located at the same node (depot),
and have to return to the depot after the completion of all jobs. Any number
of machines can travel through the same edge or node simultaneously in any
direction. All machines use the shortest path between the nodes. Without loss of
generality we associate node vj with job Jj for j = 1, . . . , n and a special node
v0 with the depot. Thus, we have a complete graph G = 〈V, E〉, with the set of
nodes V = {v0, v1, . . . , vn} and the set of edges E, where all distances satisfy
the triangle inequality.

The makespan of a feasible schedule is the interval between the instant when
the machines start working or moving and the instant when the last machine
returns to the depot after finishing all its operations. The goal is to minimize
the makespan (Fmax).

According to the standard three-fold notation of scheduling problems [13], we
will denote this problem as 〈RO||Fmax〉 (or 〈ROm||Fmax〉 for a fixed number m
of machines).

In the last decade considerable amount of research has been devoted to rout-
ing scheduling problems. Most of research in this area focuses on single-stage
scheduling environments (e.g., see [7,8,12] and the references therein). Multistage
scheduling problems with machines traveling between jobs located at nodes of a
transportation network have been studied in [1,2,3,4]. Examples of applications
where machines have to travel between jobs either include the situation where
the details are too big or too heavy to be moved between machines (e.g., casings
of ships), or scheduling of robots that perform daily maintenance operations on
immovable objects located at different places of a workshop [2].

Previous approximation results for RO||Fmax
The routing open shop problem was introduced by I. Averbakh, O. Berman, and
I. Chernykh in [3], [4]. It is strongly NP-hard even for a single machine case
as it contains the metric TSP as special case. Moreover, the routing open shop
problem is NP-hard even on a 2-node network with only two machines [4].

For the latter case a 6/5-approximation polynomial time algorithm was pre-
sented in [3]. A 7/4-approximation algorithm for the general 2-machine case and
a simple (m + 4)/2-approximation algorithm for the m-machine case were given
in [4].

A similar problem is considered in [15]. In that problem, n jobs have to be
scheduled in a two-machine open shop to minimize the makespan. It is assumed



The Routing Open Shop Problem: New Approximation Algorithms 77

that there is a known (job-specific) time lag between the completion of an op-
eration and the beginning of the next operation of the same job. These time
lags are also interpreted as transportation times (of jobs between the immovable
machines). At that, any job is available for any machine at the beginning of the
schedule, so the time lags can be interpreted as cooling or heating times in this
model. For this problem, a 1.5-approximate heuristic is presented in [15].

New results
Ourmain results are a ρ-approximationalgorithm with ρ=O(

√
m) for 〈RO||Fmax〉

with m machines and a 13
8 -approximation algorithm for 〈RO2||Fmax〉. We also

present a 3
2 -approximation algorithm for the 2-machines case with a transporta-

tion network that enables one to solve TSP in polynomial time (“easy TSP”).
The remainder of the paper is organized as follows. Section 2 provides neces-

sary definitions and preliminary results. Improved approximation algorithms for
the m-machine and 2-machine cases are given in Sections 3 and 4 respectively.
The 2-machine case with “easy TSP” is considered in Section 5.

2 Preliminary Results, Definitions and Notation

We define the length dj of job Jj ∈ J as the total processing time of its oper-
ations, dj =

∑m
i=1 pji, and denote dmax = maxJj∈J dj , δmax = maxJj∈J (dj +

2τ0j). The total processing time of the operations on machine Mi is denoted by
	i and is called the load of machine Mi; 	max = maxi 	i is the maximum machine
load and Fmax(σ) is the makespan of schedule σ; F ∗

max stands for the optimum;
T ∗ stands for the length of the optimal tour in G.

Since each machine has to execute operations of all jobs, it has to visit all
nodes of G, and we get the following lower bound

F̄ = max{	max + T ∗, δmax} � F ∗
max . (1)

As was mentioned above, the metric TSP is strongly NP -hard. The best
known approximation algorithm for this problem is due to Christofides [6] and
Serdyukov [14].

Algorithm ACS (Christofides-Serdyukov)
Input: A complete edge-weighted graph G.
1. Find a minimal spanning tree H in G.
2. Let X be the set of nodes having odd degrees in H , and let GX be the induced
graph of G. Find a minimum weight matching M in GX .
3. Find an eulerian walk in H

⋃
M . The order in which nodes appear in this

walk defines a near-optimal tour in G.
Output: Hamiltonian tour RCS in G.

The total weight of edges in H does not exceed T ∗, and the weight of M does
not exceed T∗

2 . The triangle inequality immediately implies that

|RCS | � 3
2
T ∗ . (2)
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Note that algorithm ACS runs in O(n3) time (the running time of Step 2).
As for the open shop problem, it is well known that the greedy algorithm

provides 2-approximation [5]. More precisely, the length of any schedule obtained
by the greedy algorithm does not exceed 	max + dmax.

We present a similar result for 〈RO|τj′j′′ = τ |Fmax〉 with equal distances
between all nodes. To do that, we consider a more general problem.

Open shop with post-setup times
This problem differs from the ordinary open shop problem by the following
additional requirement: each machine Mi after the completion of the operation
of job Jj needs a post-setup time pstij before it can start processing the next
job. The goal is to minimize the maximum completion time of the post-setup
procedure over all operations, which is denoted as Fmax.

This problem will be referred to as 〈O|pstij |Fmax〉.
Let Γi =

∑
j pstij stand for the total post-setup time of machine Mi, and

γmax = maxMi∈M (	i + Γi). Since each machine Mi needs at least 	i + Γi time
to process all its operations (including the post-setup times), the following lower
bound on the optimum holds:

F ∗
max � max{γmax, dmax} (3)

Note that in any schedule any machine at any time may have one of the following
three statuses: working (processing some job), resting (undergoing the post-setup
procedure) or waiting (none of the above). Any job can be either busy (while
being processed on a machine) or available. We call a job to be in queue for a
machine, if the job has not yet been processed by the machine.

Consider the following Greedy Algorithm for 〈O|pstij |Fmax〉. At any itera-
tion of the algorithm a partial schedule is defined in the interval [0, t], where t
increases at discrete steps.

Greedy Algorithm

Initialization. All machines are initially waiting, and all jobs are available and
are in queue for every machine (the queue is pre-specified for each machine as a
sequence of jobs). Set ti := ∞ for i = 1, . . . , m. (The infinite value of ti means
that machine Mi is waiting ; a finite value of ti will specify the nearest time
moment when machine Mi changes its status.)

For every machine Mi, i = 1, . . . , m, take the first available job Jj in queue for
this machine (if any) and schedule its operation at time 0 (machine Mi becomes
working, job Jj becomes busy), and set ti := pji.

Iteration. Set t := mini ti, i∗ := min{i|ti = t}. If t = ∞ then STOP (this means
that all machines are waiting and there is no job in queue for any machine).

If t < ∞ and machine Mi∗ is working, this means that at time t machine
Mi∗ is completing the operation of some job Jj ; change the status of job Jj to
available, the status of machine Mi∗ to resting, ti∗ := t + psti∗j ; remove Jj from
the queue for Mi∗ . If there is a waiting machine for which job Jj is in queue,
schedule its operation at time t. GOTO next iteration.
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In the case that Mi∗ is resting (i.e., t is a completion time of the post-setup
procedure), if there is an available job Jj in queue for Mi∗ then schedule its
operation at time t, and set ti∗ := t + pji∗ , else set the status of machine Mi∗ to
waiting. GOTO next iteration.

Note that the Greedy Algorithm can be easily implemented to run in
O(mn · min{m, n}) time.

Lemma 1. The Greedy Algorithm for 〈O|pstij |Fmax〉 runs in O(nm·min{m, n})
time and constructs a schedule σ with makespan at most dmax + γmax.

Proof. Indeed, let schedule σ terminate with the post-setup procedure per-
formed with machine Mi after the processing of job Jj . Then Fmax(σ) = γi +Wi,
where γi = 	i + Γi and Wi is the total waiting time of machine Mi in interval
[0, Fmax(σ)]. Note that at any time when machine Mi is waiting, job Jj is in
queue for Mi but not available (because of being processed by some other ma-
chine). Therefore, Wi � dj , which implies the claim of the Lemma. ��
Bound (3) implies the following

Corollary 1. The Greedy Algorithm is a 2-approximation algorithm for
〈O|pstij |Fmax〉, as well as for its special case 〈RO|τj′j′′ = τ |Fmax〉. ��

3 The m-Machine Routing Open Shop Problem

In this section we present a polynomial time algorithm that for any instance
of the general routing open shop problem delivers a schedule with makespan
Fmax(σ) � O(

√
m)F̄ . Let us briefly sketch the ideas of the algorithm.

The first step consists in finding a near-optimal tour R in graph G.
At step 2 we replace the given set of jobs by at most O(

√
m) new “aggregated”

jobs. Each aggregated job combines several original jobs consecutively located
on a segment of tour R. The processing time of a new operation of an aggregated
job on a machine is equal to the total processing time of its components on that
machine, plus the length of the path connecting those jobs in R. We also set the
post-setup time of each machine to be equal to the maximum distance between
the nodes in graph G.

Next we apply the Greedy Algorithm to the defined above instance of problem
〈O|pstij |Fmax〉. The obtained schedule can be converted to a feasible schedule
for the original instance of the routing open shop problem. The makespan of the
schedule does not exceed c

√
mF ∗

max, where c is a constant.

3.1 Approximation Algorithm for RO||Fmax with m Machines

Each step of the algorithm described below is followed by a brief discussion and
implementation details, if needed. The algorithm uses two positive parameters
α, β (whose exact values will be defined later) and consists of five steps.
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Algorithm ROS(α, β)

Step I. Use algorithm ACS to find a near-optimal hamiltonian tour RCS with
length T � 3

2T ∗ in graph G. Without loss of generality we assume that RCS

walks through the nodes in the order v0, v1, . . . , vn. (The running time is
O(n3).)

Step II. Partition the tour RCS into disjoint paths P1, . . . , Pk, where the num-
ber of pathes k is specified at the completion of step II.
Put i := 0; j := 0.
While j � n do begin
i := i + 1; Pi :=null;
repeat {Pi := Pi ⊕ vj ; j := j + 1} until
at least one of three conditions is satisfied:
(a)

∑
vj∈Pi

dj � α
√

m 	max (where d0 = 0, for certainty),

(b)
∑

vj∈Pi
τj,j+1 � βT√

m
(where τn,n+1 = τn0, for certainty),

(c) j > n.
end (while)
(The running time of step II does not exceed O(nm).)

Step III. Set τ
.= maxj′,j′′ τj′j′′ . We define an instance I of 〈O|pstij = τ |Fmax〉

with k + 1 jobs that have to be executed on the set of m machines. To that
end, for each path Pj , j = 1, . . . , k, we define job J ′

j . The processing time
of job J ′

j on machine Mi is set to p′ji
.=
∑

vh∈Pj
phi +

∑
ehh′∈Pj

τhh′ . We also
define a dummy job J ′

0 with zero processing times of all operations. Let d′j
stand for the length of job J ′

j . Each machine Mi requires the same post-setup
time pstij = τ after the processing of each job J ′

j . (The running time of the
step is O(nm).)

Step IV. Run the Greedy Algorithm on instance I to obtain a schedule σ in
which all machines but one start with the dummy job. Machine M1 starts
with job J1. (The running time is O(km·min{k, m}), according to Lemma 1.)

Step V. Convert schedule σ to a feasible solution of the original problem, treat-
ing each post-setup time of machine Mi as its travel time from one aggregated
job (or base) to another (or base). At that, the post-setup time on machine
Mi after processing the dummy job enables the machine to start with an
aggregated job different from J ′

1. (The running time is O(nm).)

3.2 Performance Ratio of Algorithm ROS

Note that for each path Pi, i �= k, either
∑

vj∈Pi
dj � α

√
m	max or

∑
vj∈Pi

τj,j+1

� βT√
m

holds. Since the total load of all machines does not exceed m	max,

there are at most �
√

m
α � paths with

∑
vj∈Pi

dj � α
√

m	max. Observe that∑k
i=1
∑

vj∈Pi
τj,j+1 = T . It follows that there are at most �

√
m
β � paths with∑

vj∈Pi
τj,j+1 � βT√

m
. Thus, k � �

√
m
α � + �

√
m
β � + 1.

Let d′max be the maximum job length over all jobs and 	′max be the maximum
machine load in instance I obtained at step III of Algorithm ROS. Conditions
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a) and b) at step II ensure that d′j =
∑m

i=1 p′ji =
∑

vh∈Pj
dh +m

∑
ehh′∈Pj

τhh′ �
α
√

m 	max + dmax + m βT√
m

, therefore

d′max � α
√

m 	max + dmax + β
√

m T .

By definition, the load of machine Mi meets

	′i =
k∑

j=1

p′ij =
k∑

j=1

⎛⎝ ∑
vh∈Pj

pih +
∑

ehh′∈Pj

τhh′

⎞⎠ � 	i + T .

It follows that 	′max � 	max + T and γmax = 	′max + (k + 1)τ . Lemma 1 implies

Fmax(σ) � d′max + 	′max + (k + 1)τ � α
√

m 	max + dmax + β
√

m T

+ 	max + T +
(⌊√

m

α

⌋
+
⌊√

m

β

⌋
+ 2
)

τ .

Since T � 3
2T ∗ and τ � 1

2T ∗,

Fmax(σ) � α
√

m	max +
(

3β

2
+

1
2α

+
1
2β

)√
mT ∗ + dmax + 	max +

5
2
T ∗ .

By setting α =
√

3+
√

5
2 and β =

√
3

3 , we obtain

Fmax(σ) �
(√

3 +
√

5
2

√
m + 3.5

)
F̄ .

Note that the running time of step IV does not exceed O(m2) since
k � O(

√
m). This implies the following

Theorem 1. Algorithm ROS runs in O(n3+m2) time and provides an O(
√

m)-
approximation solution for 〈RO||Fmax〉 with m machines.

4 Two-Machine Routing Open Shop Problem

In this section we present a new approximation algorithm for the routing open
shop problem with two machines. We remind the reader that this problem is
strongly NP -hard as it contains the metric TSP. A 7/4-approximation algorithm
A74 for the 2-machine case was given in [4]. It can be briefly described as follows.

Suppose, we have some near-optimal hamiltonian tour R. Let machine M1
perform its operations in the order defined by R, while M2 executes the jobs in
the reverse order. Both machines travel between the nodes without unnecessary
delays. If machines conflict at some job Jj (which is called a conflict job), we
consider two schedules: schedule σ′

R, where the conflict job is first performed by
M1 and then by M2, and schedule σ′′

R with the reverse order of processing these
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two operations. The shortest of two schedules is denoted by σR. Note that in
both schedules σ′

R, σ′′
R at most one of the machines has an idle time.

It is shown in [4] that

Fmax(σR) � |R| + 	max +
1
2
dj . (4)

Thus, for R = RCS we obtain from (2) and (4) that

Fmax(σR) � 3
2
T ∗ + 	max +

1
2
dj . (5)

If 	max � dj then (5) and (1) directly imply Fmax(σR) � 3
2F ∗

max.
For the opposite case it can be shown that Fmax(σR) � 7

4F ∗
max.

4.1 Approximation Algorithm for the Two-Machine Problem

In the approximation algorithm for the two-machine routing open shop problem
we use the following modification of the Christofides-Serdyukov algorithm. Let
Jj be a job with the maximum length, i.e., dmax = dj . We want to get a near-
optimal tour which contains the edge from the depot to node vj .

Algorithm AMCS

1. Find a minimal spanning tree H in G.
2. If e0j �∈ H , add e0j to H and remove any other edge from the obtained cycle.
3. Let X be the set of nodes having odd degrees in H , and let GX be the

induced graph of G. Find a minimum weight matching M in GX .
4. Find an eulerian walk in H

⋃
M. Without loss of generality we can assume

that e0j is the first edge in this walk. The order in which nodes appear in
this walk defines a near-optimal tour R′.

By the triangle inequality the length of the tour R′ does not exceed the total
weight of edges in H plus the sum of weights of M and the length of e0j . This
immediately implies that the obtained tour is no longer than 3

2T ∗ + τ0j .

Algorithm ROS-2

Step I. Find a near-optimal hamiltonian tour R1 in G by algorithm ACS .
Step II. Find the schedule σR1 by algorithm A74.
Step III. Let Jj be a job with the maximum length. Find the near optimal

hamiltonian tour R2 containing the edge e0j by means of algorithm AMCS .
Step IV. Find the schedule σR2 by algorithm A74.
Step V. Take the best of schedules σR1 and σR2 .

4.2 Performance Ratio of Algorithm ROS-2

Let Fmax := min{Fmax(σR1), Fmax(σR2 )} be the makespan of the schedule ob-
tained by Algorithm ROS-2. We have by (5) that

Fmax(σR1 ) � 3
2
T ∗ + 	max +

1
2
dj (6)
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If 	max � dmax, (1) and (6) imply

Fmax � Fmax(σR1 ) � 3
2
F ∗

max .

Let 	max < dmax. We consider the following three cases.

Case 1. If there is no conflict job in σR2 , we have

Fmax(σR2) � 3
2
T ∗ + τ0j + 	max (7)

Case 2. Let Jj be the conflict job in σR2 . In this case algorithm A74 chooses the
best of two schedules: schedule σR′′

2
(in which the second machine has an idle

time, waiting until machine M1 completes its operation of job Jj), and schedule
σR′

2
in which machine M1 has an idle time. In the first schedule machine M2

finishes at time dj + 2τ0j , while machine M1 works without any idle time and
finishes at time |R1|+ τ0j + 	1 � 3

2T ∗ + τ0j + 	max. Therefore, we get the bound

Fmax(σR2) � max
{

dj + 2τ0j,
3
2
T ∗ + τ0j + 	max

}
, (8)

regardless of which of two schedules has been chosen by algorithm A74.

Case 3. Let Ji, i �= j be the conflict job in σR2 . It follows from (4) that

Fmax(σR2) � 3
2
T ∗ + τ0j + 	max +

di

2
(9)

Regardless of which of three cases takes place, we obtain the bound

Fmax(σR2 ) � max
{

dj + 2τ0j ,
3
2
T ∗ + τ0j + 	max +

di

2

}
Since dj + 2τ0j � F̄ , either σR2 is the optimal solution, or

Fmax(σR2) � 3
2
T ∗ + τ0j + 	max +

di

2
(10)

Suppose, schedule σR2 is not optimal. Then, using (6), (10), di + dj � 2	max,
and (1), we obtain

4Fmax � 3Fmax(σR1) + Fmax(σR2) � 3
(

3
2
T ∗ + 	max +

1
2
dj

)
+

3
2
T ∗ + τ0j + 	max +

di

2
= 6T ∗ + 4	max + τ0j +

3
2
dj +

di

2

= 4(T ∗ + 	max) +
2τ0j + dj

2
+
(

T ∗ +
di + dj

2

)
+
(

T ∗ +
dj

2

)
� 13

2
F ∗

max ,

Fmax = min{Fmax(σR1 ), Fmax(σR2)} � 13
8

F ∗
max

Note that the algorithms ACS and AMCS have running times O(n3), while the
schedules σR1 and σR2 can be built in linear time. Thus, we obtain
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Theorem 2. Algorithm ROS-2 provides a 1.625-approximation solution for the
2-machine routing open shop problem in O(n3) time.

5 “Easy TSP” and Approximation Algorithms for the
Two-Machine Routing Open Shop Problem

Though the general TSP is strongly NP-hard, many special cases can be effi-
ciently solved. There are two broad classes of well-solvable TSP. In one class
the problems are polynomially solvable because of restrictions on the matrix of
distances. (For example, the matrix may be circulant or satisfy the Demidenko
conditions.) Another class contains problems in which the transportation net-
work has got a particular structure. (For example, the network may be a tree or
may have a limited bandwidth. For more results see [10].)

In this section we suppose that we can find an optimal hamiltonian tour in G
in polynomial time. (We remind the reader that the routing open shop problem
with two machines remains NP -hard even on a two-node network.) The problem
with this assumption will be referred to as 〈RO2 | easy−TSP |Fmax〉. Under this
assumption, (4) implies

Fmax(σR) � 3
2
F ∗

max

A tighter ratio performance guarantee of 11/8 can be proved for a more compli-
cated approximation algorithm that will be presented in the full version of our
paper.

References

1. Averbakh, I., Berman, O.: Routing Two-Machine Flowshop Problems on Networks
with Special Structure. Transportation Science 30(4), 303–314 (1996)

2. Averbakh, I., Berman, O.: A Simple Heuristic for m-machine Flow-Shop and its
Applications in Routing-Scheduling Problems. Operations Research 47(1), 165–170
(1999)

3. Averbakh, I., Berman, O., Chernykh, I.: A 6
5
-approximation algorithm for the two-

machine routing open shop problem on a 2-node network. European Journal of
Operational Research 166(1), 3–24 (2005)

4. Averbakh, I., Berman, O., Chernykh, I.: The Routing Open-Shop Problem on a
Network: Complexity and Approximation. European Journal of Operational Re-
search 173(2), 521–539 (2006)
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Abstract. We continue the study of the effects of selfish behavior in the network
design problem. We provide new bounds for the price of stability for network
design with fair cost allocation for undirected graphs. We consider the most gen-
eral case, for which the best known upper bound is the Harmonic number Hn,
where n is the number of agents, and the best previously known lower bound is
12/7 ≈ 1.778.

We present a nontrivial lower bound of 42/23 ≈ 1.8261. Furthermore, we
show that for two players, the price of stability is exactly 4/3, while for three
players it is at least 74/48 ≈ 1.542 and at most 1.65. These are the first improve-
ments on the bound of Hn for general networks. In particular, this demonstrates
a separation between the price of stability on undirected graphs and that on di-
rected graphs, where Hn is tight. Previously, such a gap was only known for the
cases where all players have a shared source, and for weighted players.

1 Introduction

The effects of selfish behavior in networks is a natural problem with long-standing
and wide-spread practical relevance. As such, a wide variety of network design and
connection games have received attention in the algorithmic game theory literature (for
a survey, see [1]).

One natural question is how much the users’ selfish behavior affects the performance
of the system. Koutsoupias and Papadimitriou [2,3] addressed this question using a
worst-case measure, namely the Price of Anarchy (PoA). This notion compares the cost
of the worst-case Nash equilibrium to that of the social optimum (the best that could
be obtained by central coordination). From an optimistic point of view, Anshelevich et
al. [4] proposed the Price of Stability (PoS), the ratio of the lowest Nash equilibrium
cost to the social cost, as a measure of the minimal effect of selfishness.

There has been substantial work on the PoA for congestion games, a broad class
of games with interesting properties originally introduced by Rosenthal [5]. Conges-
tion games nicely model situations that arise in selfish routing, resource allocation and
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network design problems, and the PoA for these games is now quite well-understood
[6,7,8,9]. By comparison, much less work has been done on the PoS: The PoS for
network design games has been studied by [4,10,11,12,13], while the PoS for routing
games1 was studied by [4,8,14]. However, PoA techniques cannot easily be transferred
to the study of PoS. New techniques thus need to be developed; this work moves toward
this direction.

The particular network design problem we address here is the one which was initially
studied by Anshelevich et al. [4], sometimes referred to as the fair cost sharing network
design (or creation) game. In it, each player has a set of endpoints in a network that
he must connect; to achieve this, he must choose a subset of the links in the network
to utilize. Each link has a cost associated with it, and if more than one player wishes
to utilize the same link, the cost of that link is split evenly among the players. Each
player’s goal is to pay as little as possible to connect his endpoints. The global social
objective is to connect all player’s endpoints as cheaply as possible.

Anshelevich et al. [4] showed that if G is a directed graph, the price of anarchy
is equal to n, the number of players, whereas the price of stability is exactly the nth
harmonic number Hn. The upper bound is proven by using the fact that our network
design game, and in fact any congestion game, is a potential game. A potential game,
first defined by Monderer and Shapley [15], is a game where the change to a player’s
payoff due to a deviation from a game solution can be reflected in a potential function,
or a function that maps game states to real numbers.

This upper bound of Hn holds even in the case of undirected graphs (since the po-
tential function of the game does not change when the underlying graph is undirected),
however the lower bound does not. Hence the central open question we study is:

What is the price of stability in the fair cost sharing network design game on
undirected graphs?

In the case of two players and a single common sink vertex, Anshelevich et al. [4] show
that the answer is 4/3. Some further progress has also more recently been made toward
answering this question. Fiat et al. [12] showed that in the case where there is a single
common sink vertex and every other vertex is a source vertex, the price of stability is
O(log log n). They also give an n-player lower bound instance of 12/7 [16]. For the
more general case where the agents share a sink but not every vertex is a source vertex,
Li [13] showed an upper bound of O(log n/ log log n). Chen and Roughgarden [10]
studied the price of stability for the weighted variant of the game, where each player
pays a fraction of each edge cost proportional to her weight. Albers [11] showed that in
this variant, the price of stability is Ω(log W/ log log W ), where W is the sum of the
players’ weights.

Our contributions. We show for the first time that the price of stability in undirected
networks is definitively different from the one for directed networks in the general case

1 Both cost-sharing network design games and network routing games fall in the class of conges-
tion games and they differ only in the edge cost functions. Cost sharing network design games
come together with decreasing cost functions on the edges, e.g. ce(x) = ce/x, while routing
games come with increasing latency functions, e.g. ce(x) = ce · x.
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(where all players may have distinct source and destination vertices). In particular, we
show that PoS is exactly 4/3 for two agents (strictly less than PoS in the directed case,
which is H2 = 3/2), while for three agents it is at least 74/48 ≈ 1.542 and at most 1.65
(again strictly less than PoS in the directed case, which is H3 = 11/6). Furthermore,
we show that the price of stability for general n is at least 42/23 > 1.8261, improving
upon the previous bound due to Fiat et al. [12].

1.1 The Model

We are given an underlying network, G = (V, E), where V is the set of vertices and
E is the set of edges in the network. Each player i = 1 . . . n has a set of two nodes
(endpoints) si, ti ∈ V to connect. We refer to si as the source endpoint of player i
and ti as the destination or sink endpoint of player i. The strategy set of each player
i consists of all sets of edges Si ⊆ E such that Si connects all the vertices in Ti.
There is a cost ce associated with each edge e ∈ E. The cost to player i of a solution
S = (S1, S2, . . . , Sn) is Ci(S) =

∑
e∈Si

ce/ne where ne is the number of players in
S who chose a strategy that contains e. Each player i wants to minimize Ci(S). The
global objective is minimize

∑n
i=1 Ci(S).

2 A Lower Bound of 1.826

Consider a 3 by N grid for some large N . There are three nodes and two horizontal
edges in every row. The levels are numbered starting from the bottom. We denote the
horizontal edges on level i by Li and Ri (from left to right). The nodes on level i are
denoted by vij (j = 1, 2, 3) and the vertical edges connecting level i to level i + 1 are
denoted by eij (j = 1, 2, 3). Each node vij for i = 1, . . . , N − 1 and j = 1, 2, 3 is the
source of some agent pi,j , who has node vi+1,j as its sink. We say that player pi,j starts
at level i. Also we will call player pi,j the owner of edge ei,j , with pi,j owning only
edge ei,j (one of the possible paths for a player to reach its sink is to use just the edge
it owns).

Horizontal edges cost 6+ ε and 5+ ε, vertical edges cost 12, 15, and 15 (from left to
right), where ε is a small positive number. We do not refer to ε in the calculations, but
simply state when relevant that the costs of horizontal edges are “more than” 6 and 5,
respectively. One motivation for choosing the numbers as we do is shown in Figure 1,
right.

Proof outline. It is possible to connect the sources and sinks of all the players by using
all the horizontal edges and only the vertical edges on the left. For large N and small ε,
the cost of this tends to 23 per level.

Our goal is to show that in a Nash equilibrium, all players use the direct link between
their source and their sink. Let us assume that some players deviate from this. We start
by considering a level i which is not visited by any agents with higher sources, and also
not by agents that have lower sinks. In Lemma 1, we show that any agent that reaches
such a level moves immediately to its sink.

We prove in Lemma 3 that as long as no agent uses any edge below its source vertex,
all agents move straight to their sinks. Section 2.3 is devoted to showing that it is indeed
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Fig. 1. On the left are two levels in our construction. The situation on the right is not a Nash
equilibrium because of the added ε’s on the horizontal edges. The numbers in the right figure
give the costs for each agent that uses these edges.

the case that no player moves below its source vertex. To do so, we first bound the
number of players that can reach a given level from below in Lemma 4. We find that
there can be at most two such agents. This in turn helps us to show in Lemmas 5-7 that
players that move below their sources would have to pay too much for their paths, thus
showing that no agent moves below their starting levels. This immediately gives us our
result, which is summarized in Theorem 1.

Due to lack of space, certain proofs are omitted.

Observation 1. In a Nash equilibrium, all player paths are acyclic, and the graph that
is formed by the paths of any pair of players is acyclic as well.

Thus, whenever we find a cycle of one of these types, we know that this is not a Nash
equilibrium.

Observation 2. If eij is used by any player, it is used by player pi,j .

Proof. If this were not true, the path of any player using eij together with the path of
pi,j forms a cycle.

Definition 1. We call a node a terminal if it has a single incident edge at the graph
induced by all the player paths in a Nash equilibrium.

Observation 3. Consider the graph induced by all the player paths in a Nash equilib-
rium. (This graph is not necessarily acyclic!) Any path which leads to a terminal and
where all intermediate nodes have degree 2 is used only by agents with sources and/or
sinks on that path. In particular, an edge which leads to a terminal is used by at most
two players: the one with its source at the terminal, and the one with its sink at the
terminal.

Observation 4. Any player that uses a vertical edge ei,j without owning it, must also be
using at least one horizontal edge in some level i′ ≤ i, and one in some level i′′ ≥ i+1.
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Players on the left We begin by making sure that players on the left always use the
edge they own (the direct link between their source and sink). To do so, for all levels i,
we substitute ei,1 by a path of three edges êi,1, êi,2, êi,3 each of which has cost 4 (and
thus the path of the three edges together has cost 12). Player pi,1 is also substituted by
three players p̂i,j(j = 1, 2, 3), with p̂ij having as source and sink the lower and upper
endpoints of edge êi,j , respectively. (Player p̂i,1 has node vi,1 as its source and player
p̂i,3 has node vi+1,1 as its sink.) One can now see that the players p̂i,j(j = 1, 2, 3) will
never deviate from their own edges; each such player would have to share two edges of
cost 4 with only their owners, since its sink and/or its source would be terminals. Given
that these players will never deviate, we will treat them as one player pi,1, and the path
êi,1, êi,2, êi,3 as the single edge ei,1, with pi,1 using edge ei,1 in any Nash Equilibrium.

2.1 Separators

Definition 2. Level i is called a separator if no player with source above level i and no
player with sink below level i visits level i.

Lemma 1. Let level i be a separator. Let p = pi−1,2 and p′ = pi−1,3.

1. If player p arrives at level i via edge ei−1,1 (ei−1,3), and there is no other player
which uses that edge besides its owner, then p uses edge Li (Ri), and shares that
edge with at most 2 players.

2. If player p′ arrives at level i via ei−1,1 together with p, it uses Li and Ri, and pays
at least 4 for them. In particular, there are at most 4 agents on Li.

3. If p′ arrives at level i via edge ei−1,2, it uses edge Ri, and pays at least 5/2 for it.

Lemma 2. Let level i be a separator. Let p = pi−1,2 and p′ = pi−1,3. Assume that
player p′ does not move below its source. If it arrives at level i via edge ei−1,1, then
there is some other player which uses ei−1,1 besides its owner.

Proof. The first three edges on the path of p′ are Ri−1, Li−1, and ei−1,1 in this case.
Consider agent p. It cannot use edge ei−1,3 (in that case, by Observation 2, player p′

would use it too) or edge ei−1,1 (assumption) in this case, so p uses edge ei−1,2. This
means that p′ cannot use edge Li (Observation 1). It also implies that edges ei−1,2 and
ei−1,3 are used by at most three players, since they are not used by any left player, any
player with source at level i + 1 or higher, or p, leaving only pi,2, pi,3 and p′ = pi−1,3
as candidates. Therefore, the cost of these edges is at least 5 to any player. Player p′

must use one of them. In addition, p′ pays 6 for edge ei−1,1, and also 6 for edge ei,1 as
long as player pi,2 or pi,3 do not join it. But in that case, the total cost of p′ is at least
6+6+5 > 15, a contradiction. So pi,2 or pi,3 must be on ei,1. Only one of them can in
fact be there since one of the vertical edges ei,2 and ei,3 must be in use. This means that
the cost for ei,1 is 4 in this case. However, in this case, the edge that p′ uses to come
back down to level i costs 7.5. We conclude that if p′ pays 6 for ei,1, its total cost is at
least 6 + 6 + 5 > 15, and otherwise, its total cost is at least 6 + 4 + 7.5 > 15. In both
cases, this implies that this is not a Nash equilibrium.

Lemma 3. Consider a Nash equilibrium in which no agent uses any edge below its
source. Then all agents move straight to their sinks.
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Proof. We twice use induction. We first show that all players on the right move straight
to their sinks, while players in the middle either move straight to their sink or move left,
up, and immediately right. Using this, we then show that all players in the middle move
straight to their sink.

Consider first level 1. By the assumption of this Lemma, level 2 is a separator. If
player p1,3 uses L1, player p1,2 must do this as well by Lemma 2. In addition, in this
case p1,3 uses R1 as well, but p1,2 does not, and neither does any other player. Both p1,3
and p1,2 then use edge e1,1, and then p1,3 continues via edge L2 and R2 by Lemma 1,
Case 2. This fixes its entire path. We can now calculate the cost for this path depending
on the first edge on the path of p2,2.

If this is L2, the cost is more than 5 + 3 + 4 + 1.5 + 2.5 = 16 (p2,2 is not on
R2 in this case, and neither is p1,2). If the first (and only) edge is e2,2, the cost is
more than 5 + 3 + 4 + 2 + 2.5 = 19. If the first edge is R2, the cost is more than
5 + 3 + 4 + 3 + 2.5 = 17.5 (p2,3 is not on R2 in this case, because p2,2 uses e2,3,
Observation 2). In all cases, this is too much.

This shows that p1,3 does not use edge L1. Suppose that p1,3 uses R1. It then uses
e1,2 together with p1,2 (Observation 2). Since R2 is used by at most one of the players
p2,2 and p2,3 (by Observation 1 and because no agents move down below their source),
p1,3 pays more than 5 + 15/2 + 5/2 = 15, a contradiction. The exact same calculation
shows that p1,2 does not use R1.

The only case left open is the one where p1,2 uses L1, but p1,3 does not. However,
in this case, due to Lemma 1, Case 1, it also uses L2 to reach its sink, making level 3
a separator, because level 3 is not visited by p1,2 or p1,3. Note that if p1,2 does move
directly to its sink from its source, then level 3 is a separator too.

We can now continue the proof by induction. Consider a level i and assume that
all lower players on the right move straight to their source, where lower players in the
middle might deviate and use the left edge. Also by induction, assume that level i + 1
is a separator, so that we can use the same lemmas as in the base case. Compared to
the calculations above for the case where p1,3 uses L1, the only change is that edge Li

might cost only 2 + ε/3 instead of 3 + ε/2, since at most one additional agent (pi−1,2)
may be using it. This still gives a total cost of more than 15 in all cases, completing the
first part of the proof.

We can now prove, also using induction, that agents in the middle move straight to
their source. If p1,2 uses L1, it pays more than 6 + 6 + 3 = 15 since L1 now costs more
than 3, so it does not do that. By induction, if no player below level i deviates, we find
the same calculation for any middle player that moves left. This completes the proof.

2.2 The Number of Agents That Visit a Certain Level

Definition 3. Let S� be a set of players that visit a horizontal edge at or above level 	
and that all have sinks at or below level 	.

Observation 4 implies the following Corollary:

Corollary 1. For any level i, any player with source below i that uses an edge ei−1,j ,
j ∈ {1, 2, 3}, without owning it, belongs to Si.
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Lemma 4. We have |S�| ≤ 2.

Corollary 2. Any horizontal edge is used by at most four agents, any vertical edge by
at most five.

2.3 Agents Do Not Move Down

Due to Lemma 3, all we need to show is that no player moves below its starting level
in a Nash equilibrium. Consider the topmost level i such that there is a player A, with
source at level i, that moves below i. Denote the other player that has its source on level
i and that does not start on the left by A′. (Note that the player with source vi,1 never
deviates). A must visit levels below i before it reaches level i + 1. Otherwise, either i
reaches its sink before going down to i−1, or it will have to form a cycle within its path
to go back up to i + 1. Similarly, since A goes both below and above level i, it cannot
use both Li and Ri. In the following, we will be repeatedly making use of Lemma 4
and Corollary 2, and the fact that no player with source above level i ever visits a level
i′ ≤ i (by definition of A, A′).

Lemma 5. A does not move first horizontally and then down.

Proof. Assume that A uses first one of the horizontal edges of level i and then imme-
diately goes down. Since A has to go back up to level i, it creates a path connecting all
three nodes of level i using only edges incident to nodes of levels j ≤ i. This implies
that there is no player p with source at level i− 1 or below, that visits level i+1. To see
this, note that after reaching i + 1, p would eventually have to go back down to level i,
thus creating another path connecting two nodes of i, this time containing only edges
incident to nodes in levels j′ ≥ i (with at least one vertical edge incident to a node of
level i + 1). Therefore, the paths of A and p would form a cycle. By definition of A,
there is also no player with source above level i that visits level i.

Let c1 be the column that A starts from, c2 �= c1 the column it reaches after using the
first horizontal edge, and c3 the remaining column of the grid. Note that since A uses
a horizontal edge of level i, one of c1, c2 must be the middle column. A cannot create
a cycle going from its source back to level i, therefore it must use edge e = ei−1,c3 .
Moreover, edge (vi,c3 , vi,2) is not used by any player, otherwise a cycle with A’s path
would be formed. Therefore, any player on e that does not own it (including A), must
also use e′ = ei,c3 . Given that no player with source below i visits level i + 1, and no
player with source above i visits level i − 1, the edges e′, e′′ can only by used by the
owners and A, A′. Therefore, A pays at least 2 · 12

3 = 8 for them.
Consider now the first edge that A uses to reach level i − 1. By Corollary 2 there

are at most 5 players using it, and thus A pays at least 12
5 > 2 for it. Finally, A visits

both the first column and the third column of the grid, therefore it must use at least two
“right” horizontal edges (of cost 5), and at least two “left” horizontal edges (of cost 6),
each of which can be used by at most four players (by Corollary 2). Thus, A pays at
least 2· 6+5

4 = 5.5 for horizontal edges, implying a total cost more than 8+2+5.5 > 15,
a contradiction.

Lemma 6. If A starts in the middle column, it does not move straight down from its
source.
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Lemma 7. If A starts in the right column, it does not move straight down from its
source.

Proof. Assume that A goes straight down from its source. We denote by e that first edge
down (i.e., e = ei−1,3). Let e′ be the edge that A uses to reach level i again, after going
down. By Lemma 5 and Lemma 6, A′ does not move down which means that A′ does
not use e, e′. Any other player using them, apart from A and the owners, will belong to
Si (remember that no player with source above i visits a level below i + 1). Therefore
A shares e, e′ with at most 3 more players (the owners and two more players that will
belong to Si). Let e′′ be the edge A uses to reach level i + 1 from i. Any player on e′′

(apart from the owner) will belong to Si+1 together with A. Again, since |Si+1| ≤ 2,
A shares e′′ with at most two more players (the owner and one more player that will
belong to Si+1). If any of e′, e′′ is in the left column, then the path of A must cross from
the right side of the grid to the left and back, implying a total cost of at least 15/4 (for
e) +12/4 (for e′) +12/3 (for e′′) +2 · 6+5

4 > 15. If, on the other hand, none of e′, e′′

are in the left column, then the total cost of A is more than 15/4 (for e) +15/4 (for e′)
+15/3 (for e′′) +2 · 5/4 = 15.

Theorem 1. The price of stability in undirected networks is at least 42/23 > 1.826.

Proof. Due to Lemma 5, Lemma 6 and Lemma 7, no agents move down below their
source. Therefore, by Lemma 3, all agents move straight to their sink in the (unique)
Nash equilibrium. On every level, the total cost of the agents in the Nash equilibrium
is 12 + 15 + 15 = 42, whereas the optimal cost is only 12 + 6 + 5 = 23. The optimal
solution has an additional cost of 11 for the two horizontal edges on level 1, but this
cost is negligible for large N .

3 Two and Three Players

We will describe here a lower and an upper bound for three players, as well as an
unconditional upper bound for two players. Again, some proofs are omitted due to lack
of space.

Lower bound for three players. Figure 2 shows a three-player instance where the best
Nash equilibrium has cost 37/24 times that of OPT. Node si, ti is the source, destina-
tion, respectively of player i, i ∈ {1, 2, 3}. The optimal solution would only use the
edges (s1, s2), (s2, s3), (s3, t1), (t1, t2), while the Nash solution uses the direct edges
(s1, t1), (s2, t2), (s3, t3). The cost of the optimal solution sums then up to 48+4ε, while
the Nash Equilibrium solution has cost 74. We have therefore the following theorem.

Theorem 2. In the fair cost sharing network design game with three players, the price
of stability is at least 74/48 ≈ 1.5417.

Upper bound for three players. Given an instance of our problem, let OPT refer to
an optimal solution. We refer to the union of the players’ paths at OPT as the OPT
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24

24

26

s2 s3 t1s1 t2 = t3

15 + ε

8 + ε14 + ε8 + ε 18 + ε

Fig. 2. A three-player instance with price of stability more than 1.54

graph. Recall that our game is a potential game, with potential function Φ(X) =∑
e∈E ceH(Xe) where ce is the cost of edge e, H(x) is the xth harmonic number,

X is a game state or solution, and Xe is the number of players on edge e in X . Let N
be a potential minimizing Nash solution (or, alternatively, N can be defined as a Nash
solution reached by starting from OPT and making alternating best-response moves).
Hence, we have

Φ(N) ≤ Φ(OPT ). (1)

We now give names for various sets of edges, each of which may or may not be empty.
Let A, B, and C be the sets of edges that player 1, player 2, and player 3 (respectively)
use alone in N . Let Sij for i = 1 . . . 2 and j = i+1 . . .3 be the set of edges that players
i and j alone share in N . Let S123 be the set of edges that all three players share in N .
Let A∗, B∗, C∗, S∗

12, S
∗
13, S

∗
23 and S∗

123 be defined analogously for OPT. We will also
use the same names to refer to the total cost of the edges in each set.

Let C(X) refer to the cost of the solution X and let Ci(X) refer to the cost just to
player i of the solution X . By definition, we have

C(N) = A + B + C + S12 + S23 + S13 + S123

C(OPT ) = A∗ + B∗ + C∗ + S∗
12 + S∗

23 + S∗
13 + S∗

123

C1(N) = A +
S12

2
+

S13

2
+

S123

3

C2(N) = B +
S12

2
+

S23

2
+

S123

3

C3(N) = C +
S13

2
+

S23

2
+

S123

3

Lemmas 8, 9 show how to bound the POS depending on whether S∗
123 > 0 or not.

Lemma 8. In the fair cost sharing network design game with three players, if all three
players share at least one edge of positive cost in the optimal solution, the price of
stability is at most 33/20 = 1.65.

Proof. First observe that the edges in the set S∗
123 must form a contiguous path, that

is, once the three players’ paths in the OPT graph merge, as soon as one player’s path
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breaks off, the three may never merge again. (Otherwise the OPT graph would have a
cycle, contradicting the fact that it is an optimal solution.) Without loss of generality,
we can exchange the labels on the endpoint vertices so that the three endpoints on the
same side of the edges in S∗

123 are all source endpoints, and the three endpoints on the
other side are all destination endpoints.

Then observe that at least one of S∗
12, S∗

23, and S∗
13 must be empty. Otherwise the

OPT graph would have a cycle, contradicting the definition of OPT. Without loss of
generality, we assume that S∗

13 is empty, hence S∗
13 = 0 and C(OPT ) = A∗ + B∗ +

C∗ + S∗
12 + S∗

23 + S∗
123.

We know by definition of N that each player i pays not more at N than by unilaterally
defecting to any alternate si − ti connection path. The right hand sides of each of the
following inequalities represents an upper bound on the cost of a feasible alternate si−ti
path for each player i. The existence of these alternate paths depends on the assumption
that the OPT graph is connected and S∗

13 = 0.

C1(N) ≤ A∗ + B∗ + S∗
23 +

B

2
+

S12

2
+

S23

3
+

S123

3
(2)

C2(N) ≤ B∗ + A∗ + S∗
23 +

A

2
+

S12

2
+

S13

3
+

S123

3
(3)

C2(N) ≤ B∗ + C∗ + S∗
12 +

C

2
+

S23

2
+

S13

3
+

S123

3
(4)

C3(N) ≤ C∗ + B∗ + S∗
12 +

B

2
+

S23

2
+

S12

3
+

S123

3
(5)

To interpret the above inequalities intuitively, consider for example the first inequality. It
states the fact that player 1 pays an amount at Nash that is at most the cost of unilaterally
deviating and instead taking the path in the OPT graph from s1 to s2 where player 2’s
OPT path begins (possibly using edges from A∗, B∗, and S∗

23), then following along
player 2’s path in N from s2 to t2 (using edges from B, S12, S23, and S123), then
taking edges in the OPT graph from t2 to t1 (again possibly using edges from A∗, B∗,
and S∗

23). The costs of S∗
12 and S∗

123 need not be included in the right-hand side of the
first inequality for the following reasoning. Recall that by assumption, source vertices
are on one side of the edges in S∗

123 and sink vertices are on the other side of the edges
in S∗

123, so traversing any edges in S∗
123 is not necessary for player 1 to go from s1 to

s2 or from t2 to t1 in the OPT graph. Also note that the edges in S∗
12 must be adjacent

to the contiguous path formed by edges in S∗
123 (since otherwise, the OPT graph would

contain a cycle), and so in fact, s1 and s2 are on one side of S∗
12 ∪ S∗

123, while t1 and t2
are on the other.

From inequality (1) and the assumption that S∗
13 = 0, we can say

A+B+C+
3
2
(S12+S13+S23)+

11
6

S123 ≤ A∗+B∗+C∗+
3
2
(S∗

12+S∗
23)+

11
6

S∗
123.

(6)
Scaling the inequalities 2 and 5 each by 10/99, 3 and 4 each by 8/99, and 6 by 6/11,
then summing all five resulting inequalities yields
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Fig. 3. A sample OPT graph. Each edge is labeled with the name of the set of edges it belongs to.
Each edge here may represent a sequence of edges forming a path. Note that more generally, any
of the sets A∗, B∗, C∗, S∗

12, S∗
23, and S∗

13 could be empty.

20
33

(A + B + C) +
257
297

S13+
245
297

(S12 + S23) + S123

≤ 8
11

(A∗ + C∗) +
10
11

B∗ + S∗
12 + S∗

23 + S∗
123.

(7)

Hence 20/33C(N) ≤ C(OPT ).

Lemma 9. In the fair cost sharing network design game with three players, if no
positive-cost edge is shared by all three players in the optimal solution, the price of
stability is at most 3/2.

We are now ready to present our main theorem of this section.

Theorem 3. In the fair cost sharing network design game with three players, the price
of stability is at most 33/20 = 1.65.

Proof. All possible OPT graph structures are handled by Lemmas 9 and 8. The worst
upper bound for price of stability over these two exhaustive cases is that given by
Lemma 8.

Upper bound for two players. Anshelevich et al. [4] gave a two player lower bound
instance for our problem showing that the price of stability is at least 4/3. They then
show that if both players share a sink, the price of stability is at most 4/3. The following
theorem states an unconditional two-player upper bound on the price of stability of 4/3.

Theorem 4. In the fair cost sharing network design game with two players, price of
stability is at most 4/3.

4 Conclusions

The lower bound instance that we use for large n could be generalized by adding more
columns. However, it seems that this would require a significantly longer and more
involved proof. More importantly, we believe that even with an unbounded number of
columns we could only show a lower bound of a small constant. Hence, the question of
whether the price of stability grows with n remains open. We conjecture that it is in fact
constant.
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Abstract. Finding the largest clique in random graphs is a well known
hard problem. It is known that a random graph G(n, 1/2) almost surely
has a clique of size about 2 log n. A simple greedy algorithm finds a
clique of size log n, and it is a long-standing open problem to find a
clique of size (1 + ε) log n in randomized polynomial time. In this paper,
we study the generalization of finding the largest subgraph of any given
edge density. We show that a simple modification of the greedy algorithm
finds a subset of 2 log n vertices with induced edge density at least 0.951.
We also show that almost surely there is no subset of 2.784 log n vertices
whose induced edge density is at least 0.951.

1 Introduction

Finding the largest clique is a notoriously hard problem, even on random graphs.
It is known that the clique number of a random graph G(n, 1/2) is almost surely
either k or k+1, where k = �2 logn−2 log log n−1� (Section 4.5 in [1], also [2]).
However, a simple greedy algorithm finds a clique of size only log n (1 + o(1)),
with high probability, and finding larger cliques – that of size even (1+ε) logn – in
randomized polynomial time has been a long-standing open problem [3]. In this
paper, we study the following generalization: given a random graph G(n, 1/2)
find the largest subgraph with edge density at least (1 − δ). We show that a
simple modification of the greedy algorithm finds a subset of 2 logn vertices
whose induced subgraph has edge density at least 0.951, with high probability.
To complement this, we show that almost surely there is no subset of 2.784 logn
vertices whose induced subgraph has edge density 0.951 or more.

We useG(n, p) todenote a randomgraph onn verticeswhere eachpairofvertices
appears as an edge independently with probability p. We use V to denote its set of
vertices and E to denote its set of edges. Moreover, given two subsets S ⊆ V and
T ⊆ V , we useE(S, T ) todenote the set of edgeswith one endpoint inSandanother
endpoint in T . The density of the subgraph induced by vertices in S is given by

density (S) =
|E(S, S)|(|S|

2

) .

Therefore, the expected density of G(n, 1/2) is 1/2 and the density of any clique
is 1.
� Work done while at Microsoft Research.

E. Bampis and K. Jansen (Eds.): WAOA 2009, LNCS 5893, pp. 98–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In Section 2 we describe our algorithm for finding subgraphs of density 1 −
δ. We give a bound on the largest subgraph of density 1 − δ in the following
Section 3. Finally, in Section 4, we present some open problems.

2 Algorithm for Finding Large Subgraph of Density 1 −
In this section, we describe our algorithm and give a relationship between the
size of the subgraph obtained by the algorithm, and its density. In particular,
we show that the algorithm can be used to obtain a subset of 2 logn vertices of
density 0.951, with high probability.

Greedy Algorithm to pick a dense subgraph:

Input: a random graph G(n, 1/2) and δ > 0.
Output: a subset S ⊆ V of size k = 2 log n.

1. Partition the vertices into disjoint sets V = V1 ∪ V2 ∪ · · · ∪ Vk, each of
size n/k.

2. Initialize S0 = ∅.
3. For i = 0 to k − 1 do:

(a) Pick vi+1 ∈ Vi+1 that has the maximum number of edges to Si, i.e.,

vi+1 = argmax
v∈Vi+1

|E(vi+1, Si)| .

(b) Si+1 ← Si ∪ {vi+1}.
4. Return S = Sk−1.

Notice that the algorithm first partitions all nodes into k random subsets of
the same size, and then picks one vertex from each partition. This partitioning
is necessary to argue about independence in our analysis of choosing vertices
greedily.

In the analysis below, H(δ) is the standard notation of the Shannon entropy
function, which is −(δ log δ + (1 − δ) log(1 − δ)). The following lemma gives a
lower bound on the number of edges we can expect to add to our subgraph, for
the i-th vertex added by the algorithm.

Lemma 1. For any 0 ≤ i ≤ k and δi that satisfies

H(δi) ≥ 1 − 1
i

log
(

n

2k ln(log n)

)
,

we have
Pr (|E(vi+1, Si)| ≥ (1 − δi) i) ≥ 1 − 1

log2 n
.

δ
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Proof. We know by the previous results, that as long as k < log n, the vertex
added has all edges to Sk−1. Consider k ≥ log n. The algorithm has n

l vertices
to choose from. The expected number of vertices among these, with at least
(1 − δk)k vertices is given by,

Fix v ∈ Vi+1. The probability that v has at least (1 − δi)i edges to Si is

Pr (|E(v, Si)| ≥ (1 − δi)i) =
i∑

t=(1−δi)i

(
i

t

)
2−i = 2(H(δi)+o(1)−1)i,

where H(δ) = −δ log δ − (1 − δ) log(1 − δ) is the Shannon entropy (here log is
taken with base 2). Using independence of these events for different v ∈ Vi+1,
we get

Pr (|E(v, Si)| < (1 − δi)i, ∀v ∈ Vi+1) ≤
(
1 − 2(H(δi)−1)i

)n/k

≤
(

1 − 2k ln(log n)
n

)n/k

≤ 1
log2 n

.

Therefore,

Pr (|E(vi+1, Si)| ≥ (1 − δi) i) ≥ 1 − 1
log2 n

.

We now give a union bound over all k additions of vertices, using the previous
lemma.

Lemma 2

Pr

(
|E(S, S)| ≥

k−1∑
i=0

(1 − δi) i

)
→ 1 as n → ∞.

Proof. Since V1, V2, . . . , Vk are disjoint, using independence and Lemma 1 we get

Pr

(
|E(S, S)| ≥

k−1∑
i=0

(1 − δi) i

)
≥

k−1∏
i=0

Pr (|E(vi+1, Si)| ≥ (1 − δi) i)

≥
(

1 − 1
log2 n

)k−1

≥ e1/ log n using k = 2 logn

The point is that we are picking exactly one vertex from each vertex set/partition,
and hence do not lose any randomness or independence of the edges. This now
gives us a bound on the minimum number of edges one can expect, w.h.p., in
the chosen set of k vertices. We are not able to express, in a closed form, the size
of a subgraph obtainable using this algorithm for a specific density. Therefore,
we state the best density one can guarantee w.h.p. for k = 2 log n. This is stated
as a theorem below, which we prove subsequently.
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Theorem 1. Our algorithm produces a subset S ⊆ V of size k = 2 log n such
that density (S) � 0.951, almost surely.

Proof. From Lemma 2 we have that, almost surely,

|E(S, S)| ≥
k−1∑
i=0

(1 − δi) i

≥
k−1∑
i=0

(
1 − H−1

(
1 − 1

i
log
(

n

2k ln(log n)

)))
i

=
k−1∑
i=0

i −
k−1∑

i=log m

iH−1
(

1 − log m

i

)

=
(

k

2

)
−

k−1∑
i=log m

iH−1
(

1 − log m

i

)
, (1)

where m = n/2k ln(log n). Here we use the fact that we can choose δi = 0 for
the first log m steps. Now let k − 1 = (1 + α) log m. Then

k−1∑
i=log m

iH−1
(

1 − log m

i

)

=
(1+α) log m∑

i=log m

iH−1
(

1 − log m

i

)

=
α log m∑

t=0

(log m + t)H−1
(

1 − log m

log m + t

)

= log2 m
α∑

x=0

(1 + x)H−1
(

1 − 1
1 + x

)
≤ log2 m

∫ α

0
(1 + x)H−1

(
1 − 1

1 + x

)
dx, (2)

Now using Equations (1) and (2) we have

density (S) =
|E(S, S)|(

k
2

)
≥ 1 − log2 m(

k
2

) ∫ α

0
(1 + x)H−1

(
1 − 1

1 + x

)
dx

≥ 1 − 1
2

(1 + o(1))
∫ α

0
(1 + x)H−1

(
1 − 1

1 + x

)
dx

� 0.951.
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using

α =
k

log m
− 1 =

2 logn

log n − log (4 logn · ln(log n))
− 1 = 1 + o(1).

and computing an upper bound on the integral numerically.

3 Upper Bound on Largest Subgraph of Density 1 −
In this section, we upper bound the size of the largest subgraph of density 1− δ
in G(n, 1/2).

Theorem 2. A random graph G(n, 1/2) has no subgraph of size

2 logn + 2 log e

1 − H(δ) − o(1)
+ 1

and density at least 1 − δ, almost surely. In particular, there is no subgraph of
size 2.784 logn and density at least 0.951, almost surely.

Proof. For every S ⊆ V of size k, define an indicator random variable XS as
follows.

XS =

{
1 if S induces a subgraph of density ≥ 1 − δ

0 otherwise.

Thus

E [XS ] =
(k
2)∑

i=(1−δ)(k
2)

((k
2

)
i

)
2−(k

2) = 2(H(δ)+o(1)−1)(k
2).

By linearity of expectation, expected number of subgraphs of size k and density
≥ 1 − δ follows.

E

⎡⎣ ∑
S : |S|=k

XS

⎤⎦ =
∑

S : |S|=k

E [XS ]

=
(

n

k

)
2(H(δ)+o(1)−1)(k

2)

≤
(en

k

)k (
2(H(δ)+o(1)−1) k−1

2

)k

=
(en

k
· 2(H(δ)+o(1)−1) k−1

2

)k

=

(
2(1−H(δ)−o(1)) k

2

k
· 2(H(δ)+o(1)−1) k−1

2

)k

=
(

2(1−H(δ)+o(1))/2

k

)k

→ 0, as n → ∞,

δ
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using

k =
2 logn + 2 log e

1 − H(δ) − o(1)
+ 1.

Therefore, by Markov inequality we have

Pr

⎛⎝ ∑
S : |S|=k

XS ≥ 1

⎞⎠ ≤ E

⎡⎣ ∑
S : |S|=k

XS

⎤⎦→ 0,

as n → ∞. Or in other words, almost surely there is no subset of k vertices that
induce a subgraph of density at least 1 − δ.

Notice that for density 0.951, the gap/ratio between the largest subgraph
that exists and the largest subgraph that we can find is smaller than in the case
of cliques. This is interesting, although not entirely unexpected as for density
0.5, the whole graph can be output. This ratio for density 0.951 is however
significantly smaller than 2; it is 2.784/2 = 1.392.

4 Conclusions

For a concrete open problem, is there a polynomial time algorithm that outputs
a subgraph of density 1 − ε and size 2 logn for any choice of ε > 0 ?

Are there simple algorithms that beat the density bound of 0.95 for subgraphs
of size 2 log n. If not, what is the maximum density obtainable for a subgraph
of size 2 logn? Spectral techniques could be tried. Is there an O(nlog n) time
algorithm that finds the largest clique in G(n, 1/2)? We thank an anonymous
reviewer for pointing out a solution to this: Simply enumerate all cliques of all
sizes, generating them from smaller ones to bigger ones; once all cliques of size
k have been found, try to add to each of them every vertex and see if it can be
expanded. The expected number of cliques of size k is

(
n
k

)
2−(k

2) < (n2−(k−1)/2)k,
and with high probability the number of cliques of each size does not exceed this
expectation by much. The function (n2−(k−1)/2)k attains its maximum around
k = log2 n, and its value for this k is roughly n0.5 log2 n, showing that the above
algorithm will run in time n(0.5+o(1)) log2 n (and find the largest clique with high
probability over the input graphs). Can one do better than this?
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Abstract. It is well-established that input sequences for paging and list
update have locality of reference. In this paper we analyze the perfor-
mance of algorithms for these problems in terms of the amount of locality
in the input sequence. We define a measure for locality that is based on
Denning’s working set model and express the performance of well known
algorithms in term of this parameter. This introduces parameterized-
style analysis to online algorithms. The idea is that rather than nor-
malizing the performance of an online algorithm by an (optimal) offline
algorithm, we explicitly express the behavior of the algorithm in terms
of two more natural parameters: the size of the cache and Denning’s
working set measure. This technique creates a performance hierarchy of
paging algorithms which better reflects their intuitive relative strengths.
Also it reflects the intuition that a larger cache leads to a better perfor-
mance. We obtain similar separation for list update algorithms. Lastly,
we show that, surprisingly, certain randomized algorithms which are su-
perior to MTF in the classical model are not so in the parameterized
case, which matches experimental results.

1 Introduction

The competitive ratio, first introduced formally by Sleator and Tarjan [34], has
served as a practical measure for the study and classification of online algorithms.
An algorithm (assuming a minimization problem) is said to be α-competitive if
the cost of serving any specific request sequence never exceeds α times the cost of
an optimal offline algorithm which knows the entire sequence. The competitive
ratio is a relatively simple measure to apply yet powerful enough to quantify,
to a large extent, the performance of many online algorithms. Notwithstanding
the wide applicability of competitive analysis, it has been observed by numerous
researchers (e.g. [9,11,28,37,14]) that in certain settings the competitive ratio
produces results that are too pessimistic or otherwise found wanting. Indeed,
the original paper by Sleator and Tarjan discusses the various drawbacks of
the competitive ratio and uses resource augmentation to address some of the
observed drawbacks.

E. Bampis and K. Jansen (Eds.): WAOA 2009, LNCS 5893, pp. 104–115, 2010.
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A well known example of the shortcomings of competitive analysis is the pag-
ing problem. A paging algorithm mediates between a slower and a faster memory.
Assuming a cache of size k, it decides which k memory pages to keep in the cache
without the benefit of knowing in advance the sequence of upcoming page re-
quests. After receiving the ith page request the online algorithm must decide
which page to evict, in the event the request results in a fault and the cache is
full. The objective is to design online algorithms that minimize the total num-
ber of faults. Three well known paging algorithms are Least-Recently-Used

(LRU), First-In-First-Out (FIFO), and Flush-When-Full (FWF) [10].
All these paging algorithms have competitive ratio k, which is the best among
all deterministic online paging algorithms [10]. On the other hand, experimental
studies show that LRU has a performance ratio at most four times the opti-
mal offline [37]. Furthermore, it has been empirically well established that LRU

(and/or variants thereof) are, in practice, preferable paging strategies to all other
known paging algorithms [33].

Such anomalies have led to the introduction of many alternatives to competi-
tive analysis of online algorithms (see [19] for a comprehensive survey). Some ex-
amples are loose competitiveness [37,39], diffuse adversary [28,38], the Max/Max
ratio [9], the relative worst order ratio [14], and the random order ratio [27].
None of them fully resolve all the known issues with competitive analysis.

It is well known that input sequences for paging and several other problems
show locality of reference. This means that when a page is requested it is more
likely to be requested in the near future. Therefore several models for paging with
locality of reference have been proposed. In the early days of computing, Denning
recognized the locality of reference principle and modeled it using the well known
working set model [16,17]. He defined the working set of a process as the set of
most recently used pages and addressed thrashing using this model. After the
introduction of the working set model, the locality principle has been adopted
in operating systems, databases, hardware architectures, compilers, and many
other areas. Therefore it holds even more so today. Indeed, [18] states “locality
of reference is one of the cornerstones of computer science.”

One apparent reason for the drawbacks of competitive analysis of paging is
that it does not incorporate the concept of locality of reference. Several models
incorporating locality have been proposed. The access graph model by Borodin
et al. [11,25,15,21] and its generalization by Karlin et al. [26] model the request
sequences as a graph, possibly weighted by probabilistic transitions. Becchetti [8]
refined the diffuse adversary model of Koutsoupias and Papadimitriou by con-
sidering only probabilistic distributions in which locality of reference is present.
Albers et al. [2] introduced a model in which input sequences are classified
according to a measure of locality of reference.

Recently, Angelopoulos et al. introduced Bijective Analysis and Average Ana-
lysis [4] which combined with the locality model of Albers et al. [2], shows that
LRU is the sole optimal paging algorithm on sequences with locality of refer-
ence. This resolved an important disparity between theory and practice of online
paging algorithms, namely the superiority in practice of LRU. An analogous
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result for list update and MTF is shown in [5] and the separation of LRU was
strengthened by Angelopoulos and Schweitzer in [6]. These last separation results
are based on heavy machinery specifically designed to resolve this singular long-
standing question and leave open the question of how to efficiently characterize
the full spectrum of performance of the various known paging and list update al-
gorithms. In contrast, the new measure we propose is easier to apply and creates
a performance hierarchy of paging and list update algorithms which better re-
flects their intuitive relative strengths. Several previously observed experimental
properties can be readily proven using the new model. This is a strength of the
new model in that it is effective, is readily applicable to a variety of algorithms,
and provides meaningful results.

Paging and list update are the best testbeds for developing alternative
measures, given our extensive understanding of these problems. We know why
competitive analysis fails, what are typical sequences in practice and we can bet-
ter evaluate whether a new technique indeed overcomes known shortcomings. It
is important to note that even though well studied, most of the alternative mod-
els for these problems are only partially successful in resolving the issues posed
by them and as such these problems are still challenging case studies against
which to test a new model.

In this paper we apply parameterized analysis and analyze the performance of
well known paging and list update algorithms in terms of a measure of locality
of reference. This measure is related to Denning’s working set model [16], the
locality of reference model of [2], and the working set theorem in the context of
the splay trees and other self-organizing data structures [35,23,24,12]. For pag-
ing, this leads to better separation than the competitive ratio. Furthermore, in
contrast to competitive analysis it reflects the intuition that a larger cache leads
to better performance. We also provide experimental results that justify the ap-
plicability of our measure in practice. For list update, we show that this new
model produces the finest separation yet of list update algorithms. We obtain
bounds on the parameterized performance of several list update algorithms and
prove the superiority of MTF. We also apply our measures to randomized list
update algorithms and show that, surprisingly, certain randomized algorithms
which are superior to MTF in the classical model are not so in the parameter-
ized case. Some of the proofs follow the general outline of standard competitive
analysis proofs (e.g., those in [10]), yet in some cases provide finer separation of
paging and list update algorithms.

2 Parameterized Analysis of Paging Algorithms

Recall that on a fault (with a full cache), LRU evicts the page that is least
recently requested, FIFO evicts the page that is first brought to the cache, FWF

empties the cache, Last-In-First-Out (LIFO) evicts the page that is most
recently brought to the cache, and Least-Frequently-Used (LFU) evicts
the page that has been requested the least since entering the cache. LFU and
LIFO do not have a constant competitive ratio [10]. A paging algorithm is called
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conservative if it incurs at most k faults on any consecutive subsequence that
contains at most k distinct pages. A paging algorithm is said to be a marking
algorithm if it never evicts a marked page, where a page is marked if accessed
and all pages are unmarked at the end of each phase. LRU and FIFO are
conservative algorithms, while LRU and FWF are marking algorithms.

As stated before input sequences for paging show locality of reference in prac-
tice. We want to express the performance of paging algorithms on a sequence
in terms of the amount of the locality in that sequence. Therefore we need a
measure that assigns a number proportional to the amount of locality in each
sequence. None of the previously described models provide a unique numerical
value as a measure of locality of reference. We define a quantitative measure for
non-locality of paging instances.

Definition 1. For a sequence σ we define dσ[i] as either k +1 if this is the first
request to page σ[i], or otherwise, the number of distinct pages that are requested
since the last request to σ[i] (including σ[i]).1 Now we define λ(σ), the “non-
locality” of σ, as λ(σ) = 1

|σ|
∑

1≤i≤|σ| dσ[i]. We denote the non-locality by λ if
the choice of σ is clear from the context.

If σ has high locality of reference, the number dσ[i] of distinct pages between
two consecutive requests to a page is small for most values of i and thus σ has
a low non-locality. Note that while this measure is related to the working set
model [16] and the locality model of [2], it differs from both in several aspects.
Albers et al. [2] consider the maximum/average number of distinct pages in
all windows of the same size, while we consider the number of distinct pages
requested since the last access to each page. Also our analysis does not depend
on a concave function f whose identification for a particular application might
not be straightforward. Our measure is also closely related to the working set
theorem in area of self-organizing data structures [35]. For binary search trees
(like splay trees), the working set bound is defined as

∑
1≤i≤|σ| log (dσ [i] + 1).

The logarithm can be explained by the logarithmic bounds on most operations in
binary search trees. Thus our measure of locality of reference can be considered
as variant of this measure in which we remove the logarithm.

2.1 Experimental Evaluation of the Measure

In order to check validity of our measure we ran some experiments on traces
of memory reference streams from the NMSU TraceBase [36]. Here we present
the results of our experiments on address traces collected from SPARC pro-
cessors running the SPEC92 benchmarks. We considered a page size of 2048
bytes and truncated them after 40000 references. The important thing to notice
is that these are not special cases or artificially generated memory references,
but are access patterns which a real-life implementation of any paging algorithm
might face. The results for the corresponding eleven program traces are shown in
1 Asymptotically, and assuming the number of requests is much larger than the number

of distinct pages, any constant can replace k + 1 for the dσ[i] of the first accesses.
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Table 1. Locality of address traces collected from SPARC processors running the
SPEC92 benchmarks

espresso li eqntott compress tomcatv ear sc swm gcc

Distinct 3913 3524 9 189 5260 1614 561 3635 2663

λ 193.1 195.2 1.7 2.3 348.3 34.1 5.4 166.7 90.6

Ratio 4.9% 5.5% 19.3% 1.2% 6.6% 2.1% 1.0% 4.6% 3.4%

Table 1. The first row shows the number of distinct pages, the second row shows
λ, and finally the third row shows the ratio of the actual locality to the worst
possible locality. The worst possible locality of a trace asymptotically equals the
number of distinct pages in that trace. It is clear from the low ratios that in
general these traces exhibit high locality of reference as defined by our measure.

2.2 Theoretical Results

Next we analyze several well known paging algorithms in terms of the non-
locality parameter. We consider the fault rate, the measure usually used by
practitioners. The fault rate of a paging algorithm A on a sequence σ is defined
as A(σ)/|σ|, i.e., the number of faults A incurs on σ normalized by the length of
σ. The fault rate of A, FR(A), is defined as the asymptotic worst case fault rate
of A on any sequence. The bounds are in the worst case sense, i.e., when we say
FR(A) ≥ f(λ) we mean that there is a sequence σ such that A(σ)

|σ| ≥ f(λ(σ))
and when we say FR(A) ≤ g(λ) we mean that for every sequence σ we have
A(σ)
|σ| ≤ g(λ(σ)). Observe that 0 ≤ FR(A) ≤ 1. Also for simplicity, we ignore

the details related to the special case of the first few requests (the first block
or phase). Asymptotically and as the size of the sequences grow, this can only
change the computation by additive lower order terms. Proof of some lemmas
have been omitted due to space constraints but can be found in the full version
of the paper.

Lemma 1. For any deterministic paging algorithm A, λ
k+1 ≤ FR(A) ≤ λ

2 .

Proof. For the lower bound consider a slow memory containing k + 1 pages.
Let σ be a sequence of length n obtained by first requesting p1, p2, . . . , pk, pk+1,
and afterwards repeatedly requesting the page not currently in A’s cache. Since
A(σ)
|σ| = n/n = 1, and λ is at most k + 1 (there are k + 1 distinct pages in σ), the

lower bound follows.
For the upper bound, consider any request sequence σ of length n. If the ith

request is a fault charged to A, then dσ[i] ≥ 2 (otherwise σ[i] cannot have been
evicted). Hence, 2A(σ) ≤∑n

i=1 dσ[i] and the upper bound follows. ��
We now show that LRU has the best possible performance in terms of λ.

Theorem 1. FR(LRU) = λ
k+1 .
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Proof. It follows from the definition of LRU that it faults on the ith request if
and only if dσ[i] ≥ k+1, which implies LRU(σ) ≤ λ

k+1 . The lower bound follows
directly from Lemma 1. ��

Next, we show a general upper bound for conservative and marking algorithms.

Lemma 2. Let A be a conservative or marking algorithm, then FR(A) ≤ 2λ
k+3 .

Proof. Let σ be an arbitrary sequence and let ϕ be an arbitrary phase in the
decomposition of σ. A incurs at most k faults on ϕ. For any phase except the first,
the first request in ϕ, say σ[i], is to a page that was not requested in the previ-
ous phase, which contained k distinct pages. Hence, dσ[i] ≥ k + 1. There are at
least k − 1 other requests in ϕ to k − 1 distinct pages, which all could have been
present in the previous phase. But these pages contribute at least

∑k−1
j=1 (j +1) =

k − 1 + k2−k
2 to λ. It follows that the contribution of this phase to |σ|λ is at least

k + 1 + k − 1 + k2−k
2 = k2+3k

2 . Hence,

A(σ)
|σ|λ ≤ k

k2+3k
2

=
2

k + 3
⇒ FR(A) ≤ 2λ

k + 3
.

��

There is a matching lower bound for FWF.

Lemma 3. FR(FWF) = 2λ
k+3 .

Thus FWF has approximately twice as many faults as LRU on sequences with
the same locality of reference, in the worst case. FIFO also has optimal perfor-
mance in terms of λ.

Lemma 4. FR(FIFO) = λ
k+1 .

Lemma 5. FR(LFU) ≥ 2λ
k+3 .

In contrast LIFO has much poorer performance than most other paging algo-
rithms (the worst possible) in terms of λ.

Lemma 6. FR(LIFO) = λ
2 .

LRU-2 is another paging algorithm proposed by O’Neil et al. for database disk
buffering [29]. On a fault, LRU-2 evicts the page whose second to the last request
is least recent. If there are pages in the cache that have been requested only once
so far, LRU-2 evicts the least recently used among them. Boyar et al. proved
that LRU-2 has competitive ratio 2k, which is worse than FWF [13].

Lemma 7. 2kλ
(k+1)(k+2) ≤ FR(LRU-2) ≤ 2λ

k+1 .
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While no deterministic on-line paging algorithm can have competitive ratio bet-
ter than k, there are randomized algorithms with better competitive ratio. The
randomized marking algorithm MARK, introduced by Fiat et al. [20], is 2Hk-
competitive, where Hk is the kth harmonic number. On a fault, MARK evicts
a page chosen uniformly at random from among the unmarked pages. Let σ be
a sequence and ϕ1, ϕ2, . . . , ϕm be its phase decomposition. A page requested in
phase ϕi is called clean if it was not requested in phase ϕi−1 and stale otherwise.
Let ci be the number of clean pages requested in phase ϕi. Fiat et al. proved that
the expected number of faults MARK incurs on phase ϕi is ci(Hk − Hci + 1).

Lemma 8. FR(MARK) = 2λ
3k+1 .

Proof. Let σ be {p1p2 . . . pkpk+1pk+2 . . . p2kpkpk−1 . . . p1p2k . . . pk+1}n. This se-
quence has 4n phases. All pages of each phase are clean. Therefore we have
ci = k for 1 ≤ i ≤ 4n and the expected number of faults MARK incurs on
each phase is k × (Hk − Hk + 1) = k. Thus E(MARK(σ)) = 4nk. We have
|σ|λ = 4n(k + 1 + k + 2 + · · ·+ 2k) = 4n(k2 + k(k + 1)/2) = 2n(3k2 + k). Hence

E(MARK(σ))
|σ|λ =

4nk

2n(3k2 + k)
=

2
3k + 1

,

which proves the lower bound. For the upper bound, consider an arbitrary se-
quence σ and let ϕ1, ϕ2, . . . , ϕm be its phase decomposition. Suppose that the
ith phase ϕi has ci clean pages. Therefore the expected cost of MARK on phase
i is at most ci(Hk − Hci + 1). The first request to the jth clean page in a phase
contributes at least k + j to |σ|λ (k pages from previous phase and j − 1 clean
pages that have been seen so far). The first request to the jth stale page in a
phase contributes at least j + 1. Therefore the contribution of phase i to |σ|λ is
at least

∑ci

j=1 (k + j) +
∑k−ci

j=1 (j + 1) = (2c2
i − 2ci + k2 + 3k)/2, and

E(MARK(σ))
|σ|λ ≤ 2ci(Hk − Hci + 1)

2c2
i − 2ci + k2 + 3k

,

where 1 ≤ ci ≤ k. This is an increasing function in terms of ci and attains its
maximum at ci = k. Then we have

E(MARK(σ))
|σ|λ ≤ 2k(Hk − Hk + 1)

2k2 − 2k + k2 + 3k
=

2
3k + 1

.

��
Finally we bound the performance of Longest-Forward-distance (LFD), an
optimal offline algorithm. On a fault, LFD evicts the page whose next request
is farthest in the future.

Lemma 9. λ
3k+1 ≤ FR(LFD) ≤ 2λ

3k+1 .

The results are summarized in Table 2. According to these results, LRU and
FIFO have optimal performance among deterministic algorithms. Marking al-
gorithms can be twice as bad and FWF is among the worst marking algorithms.
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Table 2. The results for paging

Algorithm Lower Bound Upper Bound

Deterministic λ
k+1

λ
2

LRU
λ

k+1
λ

k+1

Marking λ
k+1

2λ
k+3

FWF
2λ

k+3
2λ

k+3

FIFO
λ

k+1
λ

k+1

LFU
2λ

k+3
λ
2

LIFO
λ
2

λ
2

LRU-2
2kλ

(k+1)(k+2)
2λ

k+1

MARK
2λ

3k+1
2λ

3k+1

LFD
λ

3k+1
2λ

3k+1

Table 3. The results for list update

Algorithm Lower Bound Upper Bound

General λ̂ m · λ̂
MTF λ̂ λ̂

Transpose m·λ̂
2

m · λ̂
FC ≈ m·λ̂

2
m · λ̂

TS ≈ 2λ̂ m · λ̂
Bit ≈ 3

2
λ̂ m · λ̂

LIFO has the worst performance possible and LRU-2 is almost twice as bad
as LRU. The performance of the randomized algorithm MARK is better than
any deterministic algorithms: it behaves almost 2/3 better than LRU. LFD, an
optimal offline algorithm, performs almost three times better than LRU, which
coincides with the observed result that the competitive ratio of FIFO and LRU

in practice is a small constant independent of the cache size [10].

3 Parameterized Analysis of List Update Algorithms

In this section we study the parameterized complexity of list update algorithms
in terms of locality of reference. In the list update problem, we have an unsorted
list of m items. The input is a sequence of n requests that should be served
in an online manner. Let A be an arbitrary online list update algorithm. To
serve a request to an item x, A should linearly search the list until it finds x.
If x is ith item in the list, A incurs cost i to access x. Immediately after ac-
cessing x, A can move x to any position closer to the front of the list at no
extra cost. This is called a free exchange. Also A can exchange any two con-
secutive items at a cost of 1. These are called paid exchanges. The idea is to
use free and paid exchanges to minimize the overall cost of serving a sequence.
Three well known deterministic online algorithms are Move-To-Front (MTF),
Transpose, and Frequency-Count (FC). MTF moves the requested item to the
front of the list and Transpose exchanges the requested item with the item
that immediately precedes it. FC maintains a frequency count for each item,
updates this count after each access, and makes necessary moves so that the
list always contains items in non-increasing order of frequency count. Sleator
and Tarjan showed that MTF is 2-competitive, while Transpose and FC do
not have constant competitive ratios [34]. While list update algorithms can be
more easily distinguished using competitive analysis than in the paging case, the
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experimental study by Bachrach and El-Yaniv suggests that the relative perfor-
mance hierarchy as computed by the competitive ratio does not correspond to
the observed relative performance of the algorithms in practice [7]. Several au-
thors have pointed out that input sequences of list update algorithms in practice
show locality of reference [22,32,10] and indeed online list update algorithms
try to take advantage of this property [22,31]. Recently, Angelopoulos et al. [5]
and Albers and Lauer [3] have studied list update with locality of reference. We
define the non-locality of sequences for list update in an analogous way to the
corresponding definition for paging (Definition 1) . The only differences are:

1. We do not normalize the non-locality by the length of the sequence, i.e.,
λ̂(σ) =

∑
1≤i≤|σ| dσ[i].

2. If σ[i] is the first access to an item we assign the value m to dσ[i]2.

Next, we prove bounds on the performance of well known list update algorithms.
Again, proof of some lemmas have been omitted due to space constraints but
can be bound in the full version of the paper.

Theorem 2. For any deterministic list update algorithm A, λ̂ ≤ A(σ) ≤ m · λ̂.

We now show that MTF is optimal in terms of λ̂.

Theorem 3. MTF(σ) = λ̂.

Proof. Consider the ith request of σ. If this is the first request to item σ[i],
then dσ[i] = m, while the cost of MTF on σ[i] is at most m. Otherwise, the
cost of MTF is dσ[i]. Thus the cost of MTF on σ[i] is at most dσ[i]. Hence,
MTF(σ) ≤ ∑1≤i≤n dσ[i] = λ̂, and the upper bound follows. Theorem 2 shows
that this bound is tight. ��

Lemma 10. Transpose(σ) ≥ m·λ̂
2 .

Lemma 11. FC(σ) ≥ (m+1)λ̂
2 ≈ m·λ̂

2 .

Albers introduced the algorithm Timestamp (TS) and showed that it has com-
petitive ratio 2 [1]. After accessing an item a, TS inserts a in front of the first
item b that is before a in the list and was requested at most once since the last
request for a. If there is no such item b, or if this is the first access to a, TS does
not reorganize the list.

Lemma 12. TS(σ) ≥ 2m·λ̂
m+1 ≈ 2λ̂.

Observe that parameterized analysis by virtue of its finer partition of the input
space resulted in the separation of several of these strategies which are not
separable under the classical model. This introduces a hierarchy of algorithms
better reflecting the relative strengths of the strategies considered above. We
2 As for paging, asymptotically, and assuming the number of requests is much larger

than m, any constant can replace m for the dσ[i] of the first accesses.
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can also apply the parameterized analysis to randomized list update algorithms
by considering their expected cost.

In the next theorem we show that, surprisingly, certain randomized algorithms
which are superior to MTF in the standard model are not so in the parameterized
case. Observe that in the competitive ratio model a deterministic algorithm must
serve a pathological, rare worst case even if at the expense of a more common
but not critical case, while a randomized algorithm can hedge between the two
cases, hence in the classical model the randomized algorithm is superior to the
deterministic one. In contrast, in the parameterized model the rare worst case has
a larger non-locality measure if it is pathological, leading to a larger denominator.
Hence such a cases can safely be ignored, with a resulting overall increase in the
measured quality of the algorithm.

The algorithm Bit, considers a bit b(a) for each item a and initializes these bits
uniformly and independently at random. Upon an access to a, it first complement
b(a), then if b(a) = 0 it moves a to the front, otherwise it does nothing. Bit

has competitive ratio 1.75, thus beating any deterministic algorithm [30]. In the
parameterized model this situation is reversed.

Theorem 4. E(Bit(σ)) ≥ (3m+1)λ̂
2m+2 ≈ 3λ̂/2.

Proof. Let L0 = (a1, a2, . . . , am) be the initial list and n be an arbitrary integer.
Consider the sequence σ = {a2

ma2
m−1 . . . a2

1}n. Let σi and σi+1 be two consecutive
accesses to aj . After two consecutive accesses to each item, it will be moved to
the front of the list with probability 1. Therefore aj is in the last position of the
list maintained by Bit at the time of request σi and Bit incurs cost m on this
request. After this request, Bit moves aj to the front of the list if and only if
b(aj) is initialized to 1. Since b(aj) is initialized uniformly and independently at
random, this will happen with probability 1/2. Therefore the expected cost of
Bit on σi+1 is 1

2 (m + 1) and the expected cost of Bit on σ is nm(m + m+1
2 ).

We have λ̂ = m(m + 1)n. Therefore

E(Bit(σ))

λ̂
=

n · m(m + m+1
2 )

m(m + 1)n
=

3m + 1
2m + 2

.

��
The results are summarized in Table 3. According to these results, MTF has the
best performance among well known list update algorithms. TS has performance
at least twice as bad as MTF. The performance of Transpose and FC is at least
m/2 times worse than MTF. The performance of Bit is worse than MTF, while
its competitive ratio is better. Experimental results of [7] show that MTF has
better performance than Bit in practice, which favors our result over competitive
analysis.

4 Conclusions

We applied parameterized analysis in terms of locality of reference to paging
and list update algorithms and showed that this model gives promising results.
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The plurality of results shows that this model is effective in that we can readily
analyze well known strategies. Using a finer, more natural measure we separated
paging and list update algorithms which were otherwise indistinguishable under
the classical model. We showed that a randomized algorithm which is superior
to MTF in the classical model is not so in the cooperative case, which matches
experimental evidence. This confirms that the ability of the online adaptive al-
gorithm to ignore pathological worst cases can lead to the selection of algorithms
that are more efficient in practice.
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Abstract. We consider an online scheduling problem, motivated by the
issues present at the joints of networks using ATM and TCP/IP. Namely,
IP packets have to broken down to small ATM cells and sent out before
their deadlines, but cells corresponding to different packets can be inter-
woven. More formally, we consider the online scheduling problem with
preemptions, where each job j is revealed at release time rj , has pro-
cessing time pj , deadline dj and weight wj . A preempted job can be
resumed at any time. The goal is to maximize the total weight of all jobs
completed on time. Our main results are as follows: we prove that if all
jobs have processing time exactly k, the deterministic competitive ratio
is between 2.598 and 5, and when the processing times are at most k,
the deterministic competitive ratio is Θ(k/ log k).

1 Introduction

Many Internet service providers use an ATM network which has been designed
to send telephone communication and television broadcasts, as well as usual
network data. However, the Internet happens to use TCP/IP, so at the joints of
these networks IP packets have to be broken down into small ATM cells and fed
into the ATM network. This raises many interesting questions, as ATM network
works with fixed sized cells (48 bytes), while IP network works with variable sized
packets. In general, packet sizes are bounded by the capacity of Ethernet, i.e.
1500 bytes, and in many cases they actually achieve this maximal length. Ideally
packets also have deadlines and priorities (weights). The goal is to maximise the
quality of service, i.e. the total weight of packets that have been entirely sent
out on time.

This problem can be formulated as an online-scheduling problem on a single
machine, where jobs arrive online at their release times, have some processing
times, deadlines and weights, and the objective is to maximise the total weight
of jobs completed on time. Preemption is allowed, so a job i can be scheduled
in several separated time intervals, as long as their lengths add up to pi. Time
is divided into integer time steps, corresponding to the transmission time of an
ATM cell, and all release times, deadlines and processing times are assumed
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to be integer. This problem can be denoted as 1|online-ri; pmtn|∑wi(1 − Ui),
according to the notation of [6].

1.1 Our Results

In this paper we consider the case when processing times of all jobs are bounded
by some constant k, and the case when they equal k. Both variants are motivated
by the network application in mind. We study the competitive ratio as a function
of k. Our main results are as follows.

– We provide an optimal online algorithm for the bounded processing time
case that reaches the ratio O(k/ log k).

– We provide a 5-competitive algorithm for the equal processing time case, and
a lower bound of 3

√
3/2 ≈ 2.598 on the competitive ratio of any determistic

algorithm for that case. The lower bound employs a previously known input
sequence, for which a bound of 2.59 was claimed with an incomplete proof [5]
(see discussion at the end of section 5).

We also provide several minor results, which are are only sketched due to space
constraints.

– For the bounded processing time case, we show that the competitive ratio of
a well-known Smith Ratio Algorithm is between k and 2k. We also show
that asymptotically the competitive ratio of any deterministic algorithm is
at least k/ lnk, improving the previous bound [13] by a factor of 2.

– For bounded processing time with unit weights, it is known that the com-
petitive ratio is Ω(log k/ log log k) when time points are allowed to be ra-
tionals [3]. We provide an alternative proof for the more restricted integer
variant, obtaining better multiplicative constant at the same time.

– O(log k)-competitiveness of ShortestRemainingProcessingTimeFirst

for the bounded processing time, unit weight model follows as a byproduct
from an involved proof of [11]. We provide an alternative concise proof of its
2Hk-competitiveness and note that this is tight up to a constant factor.

1.2 Related Work

It is known that the general problem without a bound on processing times has an
unbounded deterministic competitive ratio [3], so different directions of research
were considered. Two related approaches are to consider resource augmenta-
tion and randomisation. For the former an online algorithm that has constant
competitive ratio provided it is allowed a constant speed-up of its machine com-
pared to the adversary is known [10], and for the latter a constant competitive
randomised algorithm is known [11] Finally, a third direction is to restrict to
instances with bounded processing time.

Bounded processing time, unit weights. (∀j pj ≤ k, wj = 1) The offline
problem can be solved in time O(n4) [1] already when the processing time
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is unbounded. Baruah et al. [3] showed that any deterministic online algo-
rithm is Ω(log k/ log log k)-competitive in a model where processing times,
release times and deadlines of jobs can be rational. The currently best known
algorithm is Shortest Remaining Processing Time First, which is
O(log k)-competitive [11]. The same paper provides a constant competitive
randomized algorithm, however with a large constant.

Bounded processing time, arbitrary weights. (∀j pj ≤ k) For fixed k
the offline problem has not been studied to our knowledge, and when the
processing times are unbounded the offline problem is NP-hard by a trivial
reduction from Knapsack Problem. It is known that any deterministic online
algorithm for this case has competitive ratio k/(2 lnk)−1 [13]. For the variant
with tight jobs only, i.e. jobs that satisfy dj = rj + pj , Canetti and Irani
[4] provide an O(log k)-competitive randomised online algorithm and show a
Ω(
√

log k/ log log k) lower bound for any randomized competitive algorithm
against an oblivious adversary.

Equal processing time, unit weights. (∀j pj = k, wj = 1) The offline
problem can be solved in time O(n log n) [12], and the same algorithm can
be turned into a 1-competitive online algorithm, see for example [14].

Equal processing time, arbitrary weights. (∀j pj = k) The offline problem
can be solved in time O(n4) [2]. For k = 1 the problem is well studied, and
the deterministic competitive ratio is between 1.618 and 1.83 [9, 8].

Our model is sometimes called the preemptive model with resume, as opposed
to preemptive model with restarts [7], in which an interrupted job can only be
processed from the very beginning. Overloaded real-time systems [3] form another
related model, in which all the job parameters are reals, the time is continuous,
and uniform weights are assumed.

2 Preliminaries

For a job i we denote its release time by ri, its deadline by di, its processing
time by pi and its weight by wi. All these quantities, except wi, are integers. Let
qi(t) be the remaining processing time of job i for the algorithm at time t. When
there is no confusion, we simply write qi. We say that job i is pending for the
algorithm at time t if it has not been completed yet, ri ≤ t, and t + qi(t) < di.
We say a job j is tight at time t if t + qj(t) = dj . For a job j uncompleted by
the algorithm, the critical time of j is the latest time when j was still pending
for the algorithm. In other words, the critical time s of job j for the algorithm
is such moment s that if the algorithm does not schedule j at time s, it cannot
finish j anymore, i.e. s = max{τ : τ + qj(τ) = dj}. We assume that a unit
(i, a) scheduled at time t is processed during the time interval [t, t + 1), i.e. its
processing is finished just before time t + 1. For this reason by completion time
of a job i we mean t + 1 rather than t, where t is the time its last unit was
scheduled.

Throughout the paper we analyse many algorithms with similar charging
schemes sharing the following outline: for every job j completed by the adversary
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we consider its pj units. Each unit of job j charges wj/pj to some job i0 completed
by the algorithm. The charging schemes satisfy the property that every job i0
completed by the algorithm receives a total charge of at most Rwi0 , which implies
R-competitiveness of the algorithm.

More precisely we distinguish individual units scheduled by both the algo-
rithm and the adversary, where unit (i, a) stands for execution of job i when its
remaining processing time was a. In particular a complete job i consists of the
units (i, pi), (i, pi − 1), . . . , (i, 1). With every algorithm’s unit (i, a) we associate
a capacity π(i, a) that depends on wi and a, whose exact value will be different
from proof to proof. The algorithms, with their capacities, will be designed in
such a way that they satisfy the following properties, with respect to π.

ρ-monotonicity: If the algorithm schedules (i, a) with a > 1 at t and (i′, a′) at
t + 1, then ρπ(i′, a′) ≥ π(i, a),

validity: If a job j is pending for the algorithm at any time t, then the algorithm
schedules a unit (i, a) at t such that π(i, a) ≥ wj/pj.

Let us remark that our algorithms are ρ-monotone for some ρ < 1. Also note
that if at time t there is a job j pending for a valid algorithm, the algorithm
schedules a unit of some job at t.

We distinguish 3 types of charges in the charging scheme; these are depicted
in Figure 1. Let (j, b) be a unit of job j scheduled by the adversary at time t.

Type 1: If the algorithm already completed j by time t, then charge wj/pj to j.
Type 2: Otherwise if the algorithm schedules a job unit (i, a) at time t that

has capacity at least wj/pj then we charge wj/pj to i0, where i0 is the next
job completed by the algorithm from time t + 1 on.

Type 3: In the remaining case, j is not pending any more for the algorithm by
the its validity. Let s be the critical time of j. We charge wj/pj to i0, where
i0 is the first job completed by the algorithm from time s + 1 on.

type 1 charge type 3 chargetype 2 charge

ADV:

ALG:

(j, b) (j, b)
is less than wj/pj

capacity of (i, a)

next job completion

capacity of (i, a)
is at least wj/pj

critical time of j

(i, a) (i0, 1) (i0, 1) (i, a)

(j, b)

(j, 1)

Fig. 1. The general charging scheme

Clearly every job i0 completed by the algorithm can get at most pi0 charges
of type 1 summing up to at most wi0 . We can bound the other types as well.

Lemma 1. Let J be the set of job units that are type 3 charged to a job i0
completed by a monotone and valid algorithm. Then for all p there are at most
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p − 1 units (j, b) ∈ J s.t. pj ≤ p. In particular, |J | ≤ k − 1 if all jobs have
processing time at most k. Moreover, wj/pj ≤ π(i0, 1) holds for each (j, b) ∈ J .

Proof. To be more precise we denote the elements of J by triplets (s, t, j) such
that a job unit (j, b) scheduled at time t by the adversary is type 3 charged
to i0 and its critical time is s. Let t0 ≥ s be the completion time of i0 by the
algorithm. Between s and t0 there is no idle time, nor any other job completion,
so by monotonicity and validity of the algorithm the capacities of all units in
[s, t0) are at least wj/pj. However by definition of type 3 charges, the algorithm
schedules some unit with capacity strictly smaller than wj/pj at t, so t0 ≤ t.

Since s is the critical time of j, s + qj(s) = dj . However, since the adversary
schedules j at time t we have t < dj . Thus t − s < qj(s) ≤ pj . Note that all
triplets (s, t, j) ∈ J have distinct times t. The first part of the lemma follows
from the observation that there can be at most c − 1 pairs (s, t) with distinct t
that satisfy s ≤ t0 ≤ t and t − s < c.

Since j was pending at time s, the unit scheduled by the algorithm at time s
had capacity at least wj/pj. By monotonicity of the algorithm the same holds
at time t0 − 1, so π(i0, 1) ≥ wj/pj. ��
Lemma 2. Let ρ < 1. Then the total type 2 charge a job i0 completed by a
ρ-monotone and valid algorithm receives is at most π(i0, 1)/(1 − ρ).

Proof. Let t0 be the completion time of i0, and let s the smallest time such
that [s, t0) contains no idle time and no other job completion. Then the unit
scheduled at time t0 − i for 1 ≤ i ≤ t0 − s + 1 has capacity at most π(i0, 1)ρi−1,
by ρ-monotonicity. Thus the total type 2 charge is bounded by

π(i0, 1)(1 + ρ + ρ2 + ρ3 . . .) = π(i0, 1)/(1 − ρ) .

��
In the next sections, we adapt this general charging scheme to individual al-
gorithms, demonstrating that the class of algorithms that can be analysed this
way is very rich. Note that as this is only an analysis framework, one still needs
to design their algorithm carefully, and then appropriately choose the capacity
function. In particular, it is possible to analyse a fixed algorithm using differ-
ent capacity functions, and their choice greatly affects the upper bound on the
algorithm’s competitive ratio one obtains.

All our algorithms at every step schedule the job with maximum capacity,
but this is not a requirement for the scheme to work. For example, some of our
preliminary algorithms did not work this way. We also believe our scheme could
be adapted to the model with real numbered release times, processing times and
deadlines, as in the case of overloaded real-time systems for example. Note that
our algorithms need to select jobs only at release times or completion times of
some jobs.

3 Bounded Processing Times

This time we consider instances with arbitrary weights. A natural algorithm for
this model, the Smith Ratio Algorithm, schedules the pending job j that
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maximizes the Smith ratio wj/pj at every step. We sketch its analysis first, and
then introduce an optimal algorithm.

Theorem 1. The competitive ratio of Smith Ratio Algorithm is between
k + 1 and 2k.

Proof (sketch). The upper bound follows easily from our general charging scheme
once it is established that the algorithm is k−1

k -monotone and valid w.r.t. π(i, a)=
wi/a. The lower bound follows from analysis of a simple instance with two jobs
a and b s.t. ra = rb = 0, pa = da = wa = k, pb = 1, wb = 1 + ε, db = k + 1. ��

The Exponential Capacity Algorithm in every step schedules the job j
that maximises the value of π(j, qj) = wj ·αqj−1, which is the capacity function
we use in the analysis; α < 1 is a parameter that we specify later.

In fact, the constant α depends on k, seemingly making Exponential Ca-

pacity Algorithm semi-online. However, the α(k) we use is an increasing
function of k, and the algorithm can be made fully online by using the value
α(k∗) in each step, where k∗ is the maximum processing time among all jobs re-
leased up to that step. Let π∗ denote the capacity function defined by α(k∗). As
π∗ only increase as time goes, it is straightforward to observe that the algorithm
can be analysed using the final values of k∗ and π∗.

Theorem 2. The Exponential Capacity Algorithm is (3 + o(1)) k/ lnk-
competitive.

Proof. As before, we use the general charging scheme. Let us define the proper
value of α(k) now: α(k) = 1 − c2 · ln k/k, where c = 1 − ε for arbitrarily small
ε > 0. The algorithm is clearly α-monotone.

To prove validity it suffices to prove that pαp−1 ≥ 1 for all p ≤ k, as this
implies wj/pj ≤ wjα

pj−1, and for any time step t, any job j pending at t, the
job h scheduled by the algorithm at t and the first job i0 completed by the
algorithm from time t+1 on the following holds by monotonicity and the choice
of π.

wjα
pj−1 ≤ π (j, qj(t)) ≤ π (h, qh(t)) ≤ π (i0, 1) = wi0 . (1)

Hence we introduce the function f(x) = xαx−1, and claim the following holds
for any large enough k and any x ∈ {1, 2, . . . , k}.

f(x) ≥ 1 for 1 ≤ x ≤ k

c2 ln k
, (2)

f(x) ≥ ln k for
k

c2 ln k
< x ≤ k . (3)

In particular f(x) ≥ 1 for x ∈ {1, 2, . . . , k}, hence the algorithm is valid by (1).
Now we bound the total charge of type 3 any job i0 can receive. Let J denote

the set of job units that are type 3 charged to i0. For each (j, b) ∈ J the charge
from it is wj/pj, while wjα

pj−1 ≤ wi0 , by (1). Thus wj/pj ≤ wi0/(pjα
pj−1) =

wi0/f(pj). Recall that for every p ≤ k the number of (j, b) ∈ J such that pj ≤ p
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is at most p − 1 by Lemma 1. Applying it for p = k/(c2 ln k) and p = k, as well
as using (2) and (3), we get

∑
(j,b)∈J

1/f(pj) ≤ k

c2 ln k
+

k

ln k
=

k

ln k

(
1 +

1
c2

)
.

Putting things together, each job i0 completed by the algorithm receives a type 1
charge of at most wi0 . By Lemma 2 for ρ = α it can receive at most wi0k/c2 ln k
type 2 charges in total. And we have just shown that type 3 charges are, for large
k, at most wi0 (1+1/c2)k/ ln k in total. Together, this is wi0 (1+ 2/c2) ·k/ lnk =
wi0 (3 + o(1)) · k/ lnk.

It remains to prove the claims (2) and (3). To this end let us first observe that
for every constant c < 1 and large enough x,(

1 − c

x

)x

≥ 1
e

, (4)

as for x tending to infinity the left hand side tends to e−c > e−1.
Clearly f(1) = 1, and if k is sufficiently large, then, by (4),

f(k) = k

(
1 − c2 ln k

k

)k−1

= k

(
1 − c2 ln k

k

) k
c ln k (k−1) c ln k

k

≥ k

(
1
e

)(k−1) c ln k
k

= k · kc(1−k)/k = k(1−ε+kε)/k ≥ ln k .

Now we observe that the sequence (f(x))k
x=1 is non-decreasing for x ≤ k/(c2 ln k)

and decreasing for x > k/(c2 ln k). For this we analyze the ratio f(x)/f(x−1) =
αx/(x−1), and see that it is at least 1 if and only if x ≥ k/(c2 ln k). Inequalities
(2) and (3) follow. This completes the proof. ��

We complement this result with an improved matching lower bound, as well as
bounds for the case of uniform weights.

Lemma 3. For any deterministic algorithm its competitive ratio is at least
k/ lnk − o(1). In particular, it is at least k/ lnk − 0.06 for k ≥ 16.

Proof (sketch). Our lower bound constructions and its analysis are similar to
Ting’s [13], but we are able to tighten the analysis and show that ratio k/ lnk−
o(1) can be forced, as opposed to k/(2 lnk) − 1. ��

Theorem 3. Any deterministic online algorithm for the case of uniform weights
has ratio at least �ln k/ ln ln k� − 1.

Proof (sketch). Our lower bound constructions and its analysis are similar to
those of [3], but we devise it carefully so that all the job parameters are integral
and yet obtain slightly better bound. ��
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Proposition 1 ([11]). The competitive ratio of Shortest Remaining Pro-

cessing Time First for the case of uniform weights is between �log3(2k + 1)�
and 2Hk ≈ 2 ln k.

Proof (sketch). The upper bound follows easily from our general charging scheme
once it is established that the algorithm is k−1

k -monotone and valid w.r.t. π(i, a)=
1/a, and that there are only k different values of π. The lower bound is obtained
by fine-tuning of the lower bound construction of Theorem 3 to this particular
algorithm. ��

4 Identical Processing Times, Upper Bound

In this section we consider instances where each job has the same processing
time k ≥ 2 and arbitrary weight.

The Conservative Algorithm: At every step execute the pending job
which maximises the priority π(j, qj) = 21−qj/k · wj .

Theorem 4. The Conservative Algorithm is 5-competitive.

Proof. The proof is based on a charging scheme, different from the general charg-
ing scheme of section 2.

Fix some instance. Consider the jobs scheduled by the algorithm and jobs
scheduled by the adversary. Without loss of generality we assume that the ad-
versary completes every job that he starts, and that he follows the Earliest

Deadline First policy. We also assume wlog that whenever the algorithm has
no pending jobs at the very beginning of some step, the adversary will release
no further jobs until he has no pending jobs as well for at least one step. This
partitions the sequence into independent phases in a natural way. From now on
we analyse a single phase.

Every job j scheduled by the adversary that is also completed by the algo-
rithm, is charged to itself. From now on we ignore those jobs, and focus on the
remaining ones.

All jobs scheduled by the adversary will be charged to some jobs completed
by the algorithm, in such a way that job i completed by the algorithm receives
a charge of at most 4wi in total.

For convenience we renumber the jobs completed by the algorithm from 1 to
n, such that the completion times are ordered C1 < . . . < Cn. Also we denote
C0 = 0. For every i = 1, . . . , n we divide [Ci−1, Ci) further into subintervals:
Let ai = �(Ci − Ci−1)/k�. The first subinterval is [Ci−1, Ci − (ai − 1)k). The
remaining subintervals are [Ci − (b + 1)k, Ci − bk) for every b = ai − 2, . . . , 0.
We label every subinterval I with a pair (b, i) such that I = [s, Ci − bk) for
s = max{Ci−1, Ci − (b + 1)k}.

The charging is done by the following procedure, which maintains for every
interval [s, t) a set of jobs P that are started before t by the adversary and that
are not yet charged to any job of the algorithm.
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C0 C1 C2 C3

labels (2,1) (1,1) (0,1) (0,2) (1,3) (0,3)

Fig. 2. The (sub)intervals as used by the charging procedure

Initially P = ∅.
For all subintervals [s, t) as defined above in left to right order, do
– Let (b, i) be the label of the subinterval.
– Add to P all jobs j started by the adversary in [s, t).
– If P is not empty, then remove from P the job j with the smallest

deadline and charge it to i. Mark [s, t) with j.
– If P is empty, then [s, t) is unmarked.
– Denote by Pt the current content of P .

Lemma 4. For every subinterval [s, t), all jobs j ∈ Pt are still pending for the
algorithm at time t.

Proof. Assume that Pt is not empty, and let j be the earliest-deadline job in Pt.
First we claim that there is a time s0, such that every subinterval contained

in [s0, t) is marked with some job j′ satisfying s0 ≤ rj′ and dj′ ≤ dj . Indeed,
let s0 be the minimal starting point of any subinterval in this phase such that
all the subintervals contained in [s0, t) are marked with some job j′ satisfying
dj′ ≤ dj . If s0 is the beginning of the phase, it trivially satisfies our requirements.
In the opposite case, the very previous subinterval is marked with a job j′′ such
that dj′′ > dj . Thus all the jobs j′ marking the subintervals contained in [s0, t)
satisfy rj′ ≥ s0 for otherwise one of them would be selected instead of j′′ by the
marking procedure.

Now let M be the set of jobs charged during all subintervals in [s0, t). In an
Earliest Deadline First schedule of the adversary, job j completes in a step
no earlier than s0 + (|M| + 1)k, so dj ≥ s0 + (|M| + 1)k. As every subinterval
has size at most k, t ≤ |M|k + s0 holds. Thus dj ≥ t + k, which shows that j is
still pending for the algorithm at time t. ��
Lemma 5. Let [s, t) be an subinterval with label (b, i) and j a job pending for
the algorithm at some time t0 ∈ [s, t). Then wj ≤ 21−bwi.

Proof. Let u = Ci and let xt0 , xt0+1, . . . , xu−1 be the respective priorities of
the job units scheduled in [t0, u). Clearly the algorithm is 2−1/k-monotone, i.e.
xt′ ≤ 2−1/kxt′+1 for every t′ ∈ [t0, u).

We have xu−1 = 2−1/kwi since i completes at u and the remaining processing
time of i at time (u − 1) is 1. As the priority of j at time t0 is at least 2−1wj ,

2−1wj ≤ π (j, qj(t0)) ≤ xt0 ≤ 2−(u−1−t0)/kxu−1 ≤ 2−(u−t0)/kwi = 2−bwi.

��
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This lemma permits to bound the total charge of a job i completed by the
algorithm. Let a = �(Ci − Ci−1)/k�. Then i gets at most one charge of weight
at most 21−bwi for every b = a − 1, . . . , 0. Summing the bounds shows that job
i receives at most 4 times its own weight, plus one possible self-charge.

At time t = Cn the algorithm is idle, so Pt = ∅ by Lemma 4. Therefore all
jobs scheduled by the adversary have been charged to some job of the algorithm,
and this completes the proof. ��

5 Identical Processing Time, Lower Bound

Theorem 5. Any deterministic online algorithm for the equal processing time
model with k ≥ 2 has competitive ratio at least 3

2 · √3 ≈ 2.598.

Proof. We describe the adversary’s strategy for k = 2 only, as it can be easily
adapted to larger values of k. Every job j will be tight, i.e. dj = rj +pj = rj +2.
We specify the set of jobs completed by the adversary once the sequence is
finished, and only describe job releases for the time being. We also assume that
when there are pending jobs with positive weights, Alg will process one of them,
and that it will never process a job with non-positive weight.

Initially (t = 0) the adversary releases a job with weight x0 = 1. In every step
t > 0 the adversary releases a job with weight xt that we specify later, unless
the algorithm has already completed one job (this has to be the one with weight
xt−2). In that case the adversary releases no job at time t and the sequence is
finished. The adversary, in that case, completes every other job starting from
the last one, for a total gain of

Xt−1 = xt−1 + xt−3 + . . . + xb+2 + xb ,

where b = t − 1 mod 2, while Alg’s gain is only xt−2.
Now we describe the sequence xi that forces ratio at least R = 1.5

√
3 − ε for

arbitrarily small epsilon. As we later prove, there is a non-positive element xi0

in the sequence, so by previous assumptions the algorithm completes some job
released before the step i0.

If Alg completes a job released in step t, the ratio is

Rt =
Xt+1

xt
=

Xt+1

Xt − Xt−2
,

assuming X−2 = X−1 = 0. As we want to force ratio R, we let Rt = R, i.e.

Xt+1 = R (Xt − Xt−2)

for each t > 0. Note that this defines the sequence xi, as xi = Xi − Xi−2.
To prove existence of i0, we introduce two sequences: qi = R ·Xi−1/Xi+1 and

si = R− qi = R(1−Xi−1/Xi+1). We shall derive a recursive formula defining qi

and si, and then prove that si is a strictly decreasing sequence. Next we prove
by contradiction that si ≤ 0 for some i.
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Assume that si > 0 for all i, and observe that

Xi = R (Xi−1 − Xi−3) = Xi−1

(
R − R

Xi−3

Xi−1

)
= Xi−1 (R − qi−2) ,

which implies

qi = R · Xi−1

Xi+1
=

R

(R − qi−1)(R − qi−2)
. (5)

Rewriting (5) in terms of si, we get

si = R

(
1 − 1

si−1si−2

)
, (6)

and one can calculate that s0 = R, s1 = R− 1/R and s2 = R(R2 − 2)/(R2 − 1);
in particular s0 > s1 > s2 > 0.

We prove by induction that si is a decreasing sequence. Observe that

si+1 − si = R

(
1

si−1si−2
− 1

sisi−1

)
= R · si − si−2

sisi−1si−2
< 0 ,

since by induction hypothesis si−2 > si−1 > si. Since the sequence {si} is
positive and decreasing by assumption, it converges to inf si = g ≥ 0. Moreover,
g ≥ 1 since otherwise we would have 0 < si0−2, si0−1 < 1 for some i0, which
would imply si0 < 0 by (6), a contradiction. So g ≥ 1, and, by (6),

P (g) = g3 − Rg2 + R = 0 . (7)

Since R = 1.5
√

3−ε, 4R2(R2−27/4), the discriminant of P , is negative, so P has
a single real root. This sole root lies in (−1, 0) as P (−1) = −1 and P (0) = R > 0.
This proves that {si} is not positive, contradiction. ��

Discussion. The same construction was used before [5], and it was claimed to
yield 2.59 lower bound on the competitive ratio. However, the proof therein
concludes with a statement that for R < 2.59 an xi ≤ 0 exists.

6 Conclusion

It remains open to determine the best competitive ratio a deterministic algorithm
can achieve for the equal processing time model. Even for k = 1 the question is
not completely answered.

How much the competitive ratio can be improved by use of randomization re-
mains unknown. The only papers we are aware of study rather restricted variants:
either the case of jobs with uniform weights (though with unbounded processing
times), for which there is an O(1)-competitive algorithm [11], or the case of tight
weighted jobs only. For the latter there is a lower bound of Ω(

√
log k/ log log k)

and an upper bound of O(log k) on the competitive ratio [4]. Can a similar ratio
be achieved when jobs are not tight?

We would like to thank Artur Jeż for his valuable comments.
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Abstract. We consider the Work Function Algorithm for the k-server
problem [2,4]. We show that if the Work Function Algorithm is c-
competitive, then it is also strictly (2c)-competitive. As a consequence of
[4] this also shows that the Work Function Algorithm is strictly (4k−2)-
competitive.

1 Introduction

A (deterministic) online algorithm Alg is said to be c-competitive if for all finite
request sequences ρ, it holds that Alg(ρ) ≤ c · OPT (ρ) + β, where Alg(ρ) and
OPT (ρ) are the costs incurred by Alg and the optimal algorithm, respectively,
on σ and β is a constant independent of ρ. When this condition holds for β = 0,
then Alg is said to be strictly c-competitive.

The k-server problem is one of the most extensively studied online problems
(cf. [1]). To date, the best known competitive ratio for the k-server problem
on general metric spaces is 2k − 1 [4], which is achieved by the Work Function
Algorithm [2]. A lower bound of k for any metric space with at least k+1 nodes is
also known [5]. The question whether online algorithms are strictly competitive,
and in particular if there is a strictly competitive k-server algorithm, is of interest
for two reasons. First, as a purely theoretical question. Second, at times one
attempts to build a competitive online algorithm by repeatedly applying another
online algorithm as a subroutine. In that case, if the online algorithm applied as
a subroutine is not strictly competitive, the resulting online algorithm may not
be competitive at all due to the growth of the additive constant with the length
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of the request sequence. In the context of the k-server Work Function Algorithm
this idea was already proved fruitful [3].

In this paper we show that there exists a strictly competitive k-server al-
gorithm for general metric spaces. In fact, we show that if the Work Function
Algorithm is c-competitive, then it is also strictly (2c)-competitive. As a conse-
quence of [4], we thus also show that the Work Function Algorithm is strictly
(4k − 2)-competitive.

2 Preliminaries

Let M = (V, δ) be a metric space. We consider instances of the k-server problem
on M, and when clear from the context, omit the mention of the metric space.
At any given time, each server resides in some node v ∈ V . A subset X ⊆ V ,
|X | = k, where the servers reside is called a configuration. The distance between
two configurations X and Y , denoted by D(X, Y ), is defined as the weight of
a minimum weight matching between X and Y . In every round, a new request
r ∈ V is presented and should be served by ensuring that a server resides on
the request r. The servers can move from node to node, and the movement of a
server from node x to node y incurs a cost of δ(x, y).

Fix some initial configuration A0 and some finite request sequence ρ. The
work function wρ(X) of the configuration X with respect to ρ is the optimal
cost of serving ρ starting in A0 and ending up in configuration X . The collection
of work function values wρ(·) = {(X,wρ(X)) | X ⊆ V, |X | = k} is referred to as
the work vector of ρ (and initial configuration A0).

A move of some server from node x to node y in round t is called forced if a
request was presented at y in round t. (An empty move, in case that x = y, is also
considered to be forced.) An algorithm for the k-server problem is said to be lazy
if it only makes forced moves. Given some configuration X , an offline algorithm
for the k-server problem is said to be X-lazy if in every round other than the last
round, it only makes forced moves, while in the last round, it makes a forced move
and it is also allowed to move servers to nodes in X from nodes not in X . Since
unforced moves can always be postponed, it follows that wρ(X) can be realized by
an X-lazy (offline) algorithm for every choice of configuration X .

Given an initial configuration A0 and a request sequence ρ, we denote the total
cost paid by an online algorithm Alg for serving ρ (in an online fashion) when
it starts in A0 by Alg(A0, ρ). The optimal cost for serving ρ starting in A0 is
denoted by Opt(A0, ρ) = minX{wρ(X)}. The optimal cost for serving ρ starting
in A0 and ending in configuration X is denoted by Opt(A0, ρ, X) = wρ(X). (This
seemingly redundant notation is found useful hereafter.)

Consider some metric space M. In the context of the k-server problem, an
algorithm Alg is said to be c-competitive if for any initial configuration A0, and
any finite request sequence ρ, Alg(A0, ρ) ≤ c · Opt(A0, ρ) + β, where β may
depend on the initial configuration A0, but not on the request sequence ρ. Alg
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is said to be strictly c-competitive if it is c-competitive with additive constant
β = 0, that is, if for any initial configuration A0 and any finite request sequence
ρ, Alg(A0, ρ) ≤ c · Opt(A0, ρ). As common in other works, we assume that the
online algorithm and the optimal algorithm have the same initial configuration.

3 Strictly Competitive Analysis

We prove the following theorem.

Theorem 1. If the Work Function Algorithm is c-competitive, then it is also
strictly (2c)-competitive.

In fact, we shall prove Theorem 1 for a (somewhat) larger class of k-server on-
line algorithms, referred to as robust algorithms (this class will be defined soon).
We say that an online algorithm for the k-server problem is request-sequence-
oblivious, if for every initial configuration A0, request sequence ρ, current con-
figuration X , and request r, the action of the algorithm on r after it served
ρ (starting in A0) is fully determined by X , r, and the work vector wρ(·). In
other words, a request-sequence-oblivious online algorithm can replace the ex-
plicit knowledge of A0 and ρ with the knowledge of wρ(·). An online algorithm
is said to be robust if it is lazy, request-sequence-oblivious, and its behavior
does not change if one adds to all entries of the work vector any given value
d. We prove that if a robust algorithm is c-competitive, then it is also strictly
(2c)-competitive. Theorem 1 follows as the work function algorithm is robust.

In what follows, we consider a robust online algorithm Alg and a lazy optimal
(offline) algorithm Opt for the k-server problem. (In some cases, Opt will be
assumed to be X-lazy for some configuration X . This will be explicitly stated.)
We also consider some underlying metric M = (V, δ) that we do not explicitly
specify. Suppose that Alg is α-competitive and given the initial configuration
A0, let β = β(A0) be the additive constant in the performance guarantee.

Subsequently, we fix some arbitrary initial configuration A0 and request se-
quence ρ. We have to prove that Alg(A0, ρ) ≤ 2αOpt(A0, ρ). A key ingredient
in our proof is a designated request sequence σ referred to as the anchor of A0
and ρ. Let 	 = min{δ(x, y) | x, y ∈ A0, x �= y}. Given that A0 = {x1, . . . , xk},
the anchor is defined to be

σ = (x1 · · ·xk)m ,

where

m =
⌈
max

{
2kOpt(A0, ρ)

	
+ k2,

2αOpt(A0, ρ) + β(A0)
	

}⌉
+ 1 .

That is, the anchor consists of m cycles of requests presented at the nodes of A0
in a round-robin fashion.

Informally, we shall append σ to ρ in order to ensure that both Alg and
Opt return to the initial configuration A0. This will allow us to analyze request
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sequences of the form (ρσ)q as q disjoint executions on the request sequence ρσ,
thus preventing any possibility to “hide” an additive constant in the performance
guarantee of Alg(A0, ρ). Before we can analyze this phenomenon, we have to
establish some preliminary properties.

Proposition 1. For every initial configuration A0 and request sequence ρ, we
have Opt(A0, ρ, A0) ≤ 2 · Opt(A0, ρ).

Proof. Consider an execution η that (i) starts in configuration A0; (ii) serves ρ
optimally; and (iii) moves (optimally) to configuration A0 at the end of round
|ρ|. The cost of step (iii) cannot exceed that of step (ii) as we can always retrace
the moves η did in step (ii) back to the initial configuration A0. The assertion
follows since η is a candidate to realize Opt(A0, ρ, A0).

Since no moves are needed in order to serve the anchor σ from configuration A0,
it follows that

Opt(A0, ρ) ≤ Opt(A0, ρσ) ≤ 2 · Opt(A0, ρ) . (1)

Proposition 1 is also employed to establish the following lemma.

Lemma 1. Given some configuration X, consider an X-lazy execution η that
realizes Opt(A0, ρσ, X). Then η must be in configuration A0 at the end of round
t for some |ρ| ≤ t < |ρσ|.

Proof. Assume by way of contradiction that η’s configuration at the end of
round t differs from A0 for every |ρ| ≤ t < |ρσ|. The cost Opt(A0, ρσ, X) paid
by η is at most 2 · Opt(A0, ρ) + D(A0, X) as Proposition 1 guarantees that this
is the total cost paid by an execution that (i) realizes Opt(A0, ρ, A0); (ii) stays
in configuration A0 until (including) round |ρσ|; and (iii) moves (optimally) to
configuration X .

Let Y be the configuration of η at the end of round |ρ|. We can rewrite the to-
tal cost paid by η as Opt(A0, ρσ, X) = Opt(A0, ρ, Y ) + Opt(Y, σ, X). Clearly, the
former term Opt(A0, ρ, Y ) is not smaller than D(A0, Y ) which lower bounds
the cost paid by any execution that starts in configuration A0 and ends in
configuration Y . We will soon prove (under the assumption that η’s configu-
ration at the end of round t differs from A0 for every |ρ| ≤ t < |ρσ|) that
the latter term Opt(Y, σ, X) is (strictly) greater than 2 · Opt(A0, ρ) + D(Y, X).
Therefore D(A0, Y ) + 2 · Opt(A0, ρ) + D(Y, X) < Opt(A0, ρ, Y ) + Opt(Y, σ, X) =
Opt(A0, ρσ, X). The inequality Opt(A0, ρσ, X) ≤ 2 · Opt(A0, ρ) + D(A0, X) then
implies that D(A0, X) > D(A0, y) + D(Y, X), in contradiction to the triangle
inequality.

It remains to prove that Opt(Y, σ, X) > 2 · Opt(A0, ρ) + D(Y, X). For that
purpose, we consider the suffix φ of η which corresponds to the execution on
the subsequence σ (φ is an X-lazy execution that realizes Opt(Y, σ, X)). Clearly,
φ must shift from configuration Y to configuration X , paying cost of at least
D(Y, X). Moreover, since φ is X-lazy, and by the assumption that φ does not
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reside in configuration A0, it follows that in each of the m cycles of the round-
robin, at least one server must move between two different nodes in A0. (To see
this, recall that each server’s move of the lazy execution ends up in a node of A0.
On the other hand, all k servers never reside in configuration A0.) Thus φ pays
a cost of at least 	 per cycle, and m	 altogether. A portion of this m	 cost can
be charged on the shift from configuration Y to configuration X , but we show
that the remaining cost is strictly greater than 2 · Opt(A0, ρ), thus deriving the
desired inequality Opt(Y, σ, X) > 2 · Opt(A0, ρ) + D(Y, X).

The k servers make at least m moves between two different nodes in A0 when
φ serves the subsequence σ, hence there exists some server s that makes at least
m/k such moves as part of φ. The total cost paid by all other servers in φ is
bounded from below by their contribution to D(Y, X). As there are k nodes in
A0, at most k out of the m/k moves made by s arrive at a new node, i.e., a node
which was not previously reached by s in φ. Therefore at least m/k−k moves of
s cannot be charged on its shift from Y to X . It follows that the cost paid by s
in φ is at least (m/k − k)	 plus the contribution of s to D(Y, X). The assertion
now follows by the definition of m, since (m/k − k)	 > 2 · Opt(A0, ρ).

Since the optimal algorithm Opt is assumed to be lazy, Lemma 1 implies the
following corollary.

Corollary 1. If the optimal algorithm Opt serves a request sequence of the form
ρστ (for any choice of suffix τ) starting from the initial configuration A0, then
at the end of round |ρσ| it must be in configuration A0.

Consider an arbitrary configurationX . We want to prove that wρσ(X)≥wρσ(A0)+
D(A0, X). To this end, assume by way of contradiction that wρσ(X) < wρσ(A0)+
D(A0, X). Fix w0 = wρσ(A0). Lemma 1 guarantees that an X-lazy execution η
that realizes wρσ(X) = Opt(A0, ρσ, X) must be in configuration A0 at the end of
some round |ρ| ≤ t < |ρσ|. Let wt be the cost paid by η up to the end of round
t. The cost paid by η in order to move from A0 to X is at least D(A0, X), hence
wρσ(X) ≥ wt + D(A0, X). Therefore wt < w0, which derives a contradiction,
since w0 can be realized by an execution that reaches A0 at the end of round t
and stays in A0 until it completes serving σ without paying any more cost. As
wρσ(X) ≤ wρσ(A0) + D(A0, X), we can establish the following corollary.

Corollary 2. For every configuration X, we have wρσ(X) = wρσ(A0) +
D(A0, X).

Recall that we have fixed the initial configuration A0 and the request sequence
ρ and that σ is their anchor. We now turn to analyze the request sequence
χ = (ρσ)q , where q is a sufficiently large integer that will be determined soon.
Corollary 1 guarantees that Opt is in the initial configuration A0 at the end of
round |ρσ|. By induction on i, it follows that Opt is in A0 at the end of round
i · |ρσ| for every 1 ≤ i ≤ q. Therefore the total cost paid by Opt on χ is merely

Opt(A0, χ) = q · Opt(A0, ρσ) . (2)
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Suppose by way of contradiction that the online algorithm Alg, when invoked
on the request sequence ρσ from initial configuration A0, does not end up in A0.
Since Alg is lazy, we conclude that Alg is not in configuration A0 at the end of
round t for any |ρ| ≤ t < |ρσ|. Therefore in each cycle of the round-robin, Alg
moves at least once between two different nodes in A0, paying cost of at least
	. By the definition of m (the number of cycles), this sums up to Alg(A0, ρσ) ≥
m	 > 2αOpt(A0, ρ) + β(A0). By inequality (1), we conclude that Alg(A0, ρσ) >
αOpt(A0, ρσ) + β(A0), in contradiction to the performance guarantee of Alg. It
follows that Alg returns to the initial configuration A0 after serving the request
sequence ρσ.

Consider some two request sequences τ and τ ′. We say that the work vector
wτ (·) is d-equivalent to the work vector wτ ′(·), where d is some real, if wτ (X)−
wτ ′(X) = d for every X ⊆ V , |X | = k. It is easy to verify that if wτ (·) is d-
equivalent to wτ ′(·), then wτr(·) is d-equivalent to wτ ′r(·) for any choice of request
r ∈ V . Corollary 2 guarantees that the work vector wρσ(·) is d-equivalent to the
work vector wω(·) for some real d, where ω stands for the empty request sequence.
(In fact, d is exactly wρσ(A0).) By induction on j, we show that for every prefix
π of ρσ and for every 1 ≤ i < q such that |(ρσ)iπ| = j, the work vector w(ρσ)iπ(·)
is d-equivalent to the work vector wπ(·) for some real d. Therefore the behavior
of the robust online algorithm Alg on χ is merely a repetition (q times) of its
behavior on ρσ and

Alg(A0, χ) = q · Alg(A0, ρσ) . (3)

We are now ready to establish the following inequality:

Alg(A0, ρ) ≤ Alg(A0, ρσ)

=
Alg(A0, χ)

q
by inequality (3)

≤ αOpt(A0, χ) + β(A0)
q

by the performance guarantee of Alg

=
αqOpt(A0, ρσ) + β(A0)

q
by inequality (2)

≤ 2αqOpt(A0, ρ) + β(A0)
q

by inequality (1)

= 2αOpt(A0, ρ) +
β(A0)

q
.

For any real ε > 0, we can fix q = �β(A0)/ε�+1 and conclude that Alg(A0, ρ) <
2αOpt(A0, ρ) + ε. Theorem 1 follows.

As the Work Function Algorithm is known to be (2k − 1)-competitive [4], we
also get the following corollary.

Corollary 3. The Work Function Algorithm is strictly (4k − 2)-competitive.

Acknowledgments. We thank Elias Koutsoupias for useful discussions.
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Abstract. We present a (4 + ε)-approximation algorithm for the prob-
lem of computing a minimum-weight dominating set in unit disk graphs,
where ε is an arbitrarily small constant. The previous best known approx-
imation ratio was 5+ε. The main result of this paper is a 4-approximation
algorithm for the problem restricted to constant-size areas. To obtain the
(4 + ε)-approximation algorithm for the unrestricted problem, we then
follow the general framework from previous constant-factor approxima-
tions for the problem: We consider the problem in constant-size areas,
and combine the solutions obtained by our 4-approximation algorithm
for the restricted case to get a feasible solution for the whole problem. Us-
ing the shifting technique (selecting a best solution from several consid-
ered partitionings of the problem into constant-size areas) we obtain the
claimed (4 + ε)-approximation algorithm. By combining our algorithm
with a known algorithm for node-weighted Steiner trees, we obtain a
7.875-approximation for the minimum-weight connected dominating set
problem in unit disk graphs.

1 Introduction

A subset D ⊆ V of the vertices of an undirected graph G = (V, E) is called a
dominating set if every vertex in V is contained in D or has a neighbor in D.
A vertex in D is called a dominator, and we say that a dominator dominates
itself and all its neighbors. The minimum dominating set problem (MDS) is
to compute a dominating set of smallest size. MDS belongs to the classical
NP-hard optimization problems listed in the book of Garey and Johnson [7].
MDS for general graphs is equivalent to the set cover problem, and can thus
be approximated within a factor of O(log n) for graphs with n vertices using a
greedy algorithm (see, e.g., [16]), but no better unless all problems in NP can be
solved in nO(log log n) time [6]. If every vertex of the input graph is associated with
a weight, the minimum-weight dominating set problem (MWDS) is to compute
a dominating set of minimum weight. Approximation ratio O(log n) can also be
achieved for the weighted set cover problem and thus for MWDS [7]. The variants
of the problems where the dominating set is asked to be connected in the input
graph are called, in an obvious way, the minimum connected dominating set
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problem (MCDS) and the minimum-weight connected dominating set problem
(MWCDS), respectively. The best known approximation ratio for MWCDS in
general graphs is O(log n) as well [8].

We consider the problem of computing a minimum-weight (connected) domi-
nating set in unit disk graphs. A unit disk graph is a graph where every vertex is
associated with a disk of unit radius in the plane and there is an edge between
two vertices of the graph if the two corresponding disks intersect. These prob-
lems are NP-hard already for the unweighted case [4,12]. We are thus interested
in approximation algorithms. An algorithm for MDS (or MWDS) is called a ρ-
approximation algorithm, and has approximation ratio ρ, if it runs in polynomial
time and always outputs a dominating set whose size (or total weight) is at most
a factor of ρ larger than the size (or total weight) of the optimal solution. The
definitions for MCDS and MWCDS are analogous. A polynomial-time approxi-
mation scheme (PTAS) is a family of approximation algorithms with ratio 1+ ε
for every constant ε > 0.

Constant-factor approximation algorithms for MDS and MCDS in unit disk
graphs were given by Marathe et al. [13]. For MDS in unit disk graphs, a PTAS
was presented by Hunt et al. [11], based on the shifting strategy [2,9]. These
algorithms, however, do not extend to the weighted version. In particular, the
PTAS is based on the fact that the optimal dominating set for unit disks in a
k × k square has size at most O(k2) and can thus be found in polynomial time
using complete enumeration if k is a constant. In the weighted case, there is no
such bound on the size of an optimal (or near-optimal) solution, as an optimal
solution may consist of a large number of disks with tiny weight. For MCDS in
unit disk graphs, a PTAS was presented in [3]. For unit disk graphs with bounded
density, asymptotic fully polynomial-time approximation schemes (with running
time polynomial in 1

ε and in the size of the input, but achieving ratio 1 + ε only
for large enough inputs) were presented for MDS and MCDS in [15].

The first constant-factor approximation algorithms for MWDS and MWCDS
in unit disk graphs were given by Ambühl et al. [1], with approximation ratios 72
and 89, respectively. Huang et al. [10] presented approximation algorithms with
approximation ratio 6 + ε and 10 + ε, respectively. Currently the best approxi-
mation algorithm for MWDS is due to Dai and Yu [5], with approximation ratio
5+ ε. Zou et al. [17] present an approximation algorithm with ratio 2.5ρ < 3.875
for the node-weighted Steiner tree problem in unit disk graphs, where ρ = 1+ ln 3

2
is the best known approximation ratio for the classical Steiner tree problem [14].
This result can be used to connect a dominating set by adding nodes of weight
at most 2.5ρ times the weight of an optimal connected dominating set, yielding
the currently best approximation ratio of 8.875 for MWCDS.

Our Results. We present a (4 + ε)-approximation algorithm for MWDS in unit
disk graphs. Our algorithm is based on several ideas of previous constant-factor ap-
proximation algorithms for the problem [1,10]. We partition the plane into areas of
sizeK×K, whereK is an arbitrary constant. For each of these areaswe consider the
following subproblem: find a minimum-weight set of disks that dominate all disks
that have a center in the area. The union of feasible solutions for each subproblem
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yields a dominating set for the original problem. Using the shifting technique as
presented in [10], the loss in the approximation factor is only (1 + O(1)/K), i.e.,
if the solution for every subproblem is a ρ-approximation, then, using the shifting
technique, the (best) combination of the solutions is a (ρ+O(1)/K)-approximation
for the original problem. Thus, for any constant ε, one can set K such that the
obtained solution is a (ρ + ε)-approximation. We present a 4-approximation algo-
rithm for the subproblem, which thus leads, using the shifting technique and set-
ting K appropriately, to a (4 + ε)-approximation algorithm. We note that Huang
et al. [10] presented a 6-approximation for the subproblem, and Dai and Yu [5] a
5-approximation for the subproblem. Connecting the dominating set computed by
our algorithm using the node-weighted Steiner tree algorithm of Zou et al. [17], we
obtain a 7.875-approximation for MWCDS, which improves the previously best
approximation ratio of 8.875.

We note that independently from our work, Zou et al. [18] have also obtained
a (4 + ε)-approximation algorithm for MWDS.

The Problem as a Covering Problem. We assume an instance of the problem
is given by a set D of n weighted unit disks in the plane, where every disk d ∈ D
has radius 1 and weight wd. We denote by C the centers of the disks in D. Also,
for a set of disks X ⊆ D, we denote by w(X) the total weight of disks in X , i.e.,
w(X) =

∑
d∈X wd.

In the following we consider the problem as a covering problem – for a set C
of centers of disks D, every disk of the same radius, find a minimum-weight set
D′ ⊆ D of disks the union of which contains all points in C. If a disk d contains
point p, we say that the disk d covers point p, and that p is covered by d. It is
not difficult to see that the original problem and this covering problem are in
fact equivalent – a dominating set for input D of unit disks induces a solution
for the covering problem given by disks of radius 2 with centers identical to
centers C, and a solution to the covering problem induces a dominating set for
the original problem. Thus, given an instance of MWDS, we can consider the
equivalent covering problem with disks of radius 2. Scaling the setting down by
a factor of 2 (i.e., dividing the coordinates of the center of every disk by 2, and
considering disks of unit radius) we obtain an instance of the covering problem
with unit disks. From now on we assume we have performed such a modification
to the setting, and our goal is to find a minimum-weight subset of unit disks D
that cover all points C.

Structure of the paper. We first present the general approach to solving the
covering problem by considering covering subproblems induced by constant-size
squares in Sect. 2. In Sect. 3 we present our 4-approximation algorithm for the
covering subproblem. We conclude the paper in Sect. 4.

2 General Algorithm for the Covering Problem

The general algorithm follows the approach of Huang et al. [10]. First, we partition
the plane into squaresof size μ×μ, where μ =

√
2

2 . The squareSij , i, j ∈ Z, contains
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points with coordinates (x, y), where i·μ ≤ x < (i+1)·μ, and j ·μ ≤ y < (j+1)·μ.
We say that a disk d ∈ D is from square Sij , if the center of disk d lies in Sij . For
a square Sij we denote by Dij the disks from Sij , and by Cij the centers of disks
in Sij . Notice that the size of squares is chosen such that any disk from square Sij

contains the whole square Sij , and thus covers all centers Cij .
Second, we consider the squares Sij , i, j ∈ Z, in groups, each group consisting

of k×k squares, k ≥ 1. We call such a group of squares a block. Formally a block
Ba,b consists of squares Sij , a · k ≤ i < (a + 1) · k, and b · k ≤ j < (b + 1) · k. We
say that a disk d ∈ D is from block B, if the center of d lies in B. We denote by
DB the set of disks from block B, and by CB the set of centers from block B.

For each block B, we consider the following covering subproblem induced by
block B: find a minimum-weight set of disks in D that covers the centers CB. Let
XB denote a feasible solution to the covering subproblem for block B. Clearly,
the union X of the solutions XB for every block B is a feasible solution for the
whole covering problem. Observe that only disks from B and disks with centers
at distance at most one from B need to be considered for XB. Thus, only disks
close to the boundary of every block can be part of solutions to more than one
block. Consider now an optimum solution OPT for the covering problem. For an
appropriate choice of the origin of the coordinate system (which causes different
positioning of the grid formed by the blocks), a substantial part of OPT, in terms
of the weight of disks, is formed by disks in the area formed by the “central” parts
(i.e., not close to the boundary) of nonempty blocks. Thus, we can use the shifting
technique to try out different choices for the origin and construct a good feasible
solution X for the covering problem: Consider the k/4 partitionings in blocks
induced by the origin set to (p · (4μ), p · (4μ)), p = 0, 1, . . . , k/4 (observe that for
every such choice of the origin the partitioning into squares Sij , i, j ∈ Z, is the
same, just every square has now different subscripts i, j). For the partitioning
induced by p, let Xp be the union of solutions for the covering subproblems
induced by every block B that were obtained by a ρ-approximation algorithm.
Our algorithm then returns X = arg minp w(Xp) as the solution to the covering
problem. Generalizing (and restating) the result of Huang et al. (phase 2 in the
proof of Theorem 1 in [10]) we have that X is a (ρ + O(1)/k)-approximation.

Lemma 1 (Generalized formulation of [10]). Solution X is a (ρ+O(1)/k)-
approximation for the covering problem.

In the following section we present a 4-approximation algorithm for the covering
subproblem induced by a block B. This together with the preceding discussion
and Lemma 1 yields the main theorem of this paper.

Theorem 1. There is a (4+ε)-approximation algorithm for MWDS in unit disk
graphs.

With the node-weighted Steiner tree algorithm by Zou et al. [17] that has
approximation ratio smaller than 3.875, we obtain:

Theorem 2. There is a 7.875-approximation algorithm for MWCDS in unit
disk graphs.
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3 4-Approximation for the Covering Subproblem

In this section we present a 4-approximation algorithm for the covering sub-
problem induced by a block B: given a block B of k × k squares Sij , compute a
minimum-weight set of disks that covers all points CB.

Let OPTB denote the set of disks in an optimal solution for the covering
subproblem. In the following, we will often write that the algorithm “guesses”
certain properties of OPTB . By this we mean that the algorithm enumerates all
possible choices for the guess (there will be a polynomial number of such choices)
and computes a solution for each choice. If a choice leads to an infeasible solution,
the algorithm does not consider that solution anymore. The algorithm keeps the
best solution found and outputs it at the end. In the analysis of the algorithm,
we concentrate on the solution Xguess

B for which the algorithm makes the right
guesses about OPTB. As the output of the algorithm is at least as good as this
solution, it is enough to show that the approximation ratio of Xguess

B is 4.
First, the algorithm guesses for each of the k × k squares Sij in block B

whether there is a disk from OPTB in Sij , or not. If yes, the algorithm also
guesses one such disk (clearly, there are no more than (n + 1)k2

guesses). The
guessed disks are then added to the set Xguess

B (empty in the beginning) that
will form a solution to the covering problem.

Next, for every square Sij containing an uncovered point, the algorithm guesses
whether there is a point in Sij that is covered in OPTB only by disks from re-
gions UM and LM. The regions UM and LM lie above and below Sij , respectively,
and between the vertical lines that contain the vertical parts of the boundary of
Sij (see Fig. 1). We call such a point a middle-unique point. If there is a middle-
unique point in Sij , the algorithm further guesses whether there is a middle-unique
point that is covered by a disk from UM and, if yes, the algorithm also guesses the
“leftmost” and the “rightmost” (with respect to the resulting sandglass lines, see
below) such point pl and pr (pl and pr can be the same point), together with
the corresponding disks dpl

and dpr from UM. Similarly, the algorithm guesses
whether there is a middle-unique point that is covered by a disk from LM, and if
yes, the algorithm also guesses the leftmost and rightmost such point ql and qr,
together with the corresponding disks dql

and dqr from LM.
The leftmost and rightmost middle-unique points pl, pr, ql, qr define a special

region inside Sij , called the sandglass of Sij [10]: The union of the upper sandglass
and the lower sandglass. The upper sandglass is a region inside Sij determined
by the line of slope −1 going through pl and the line of slope 1 going through pr

as outlined in Fig. 1. The lower sandglass is, defined in a similar way, a region
inside Sij determined by the line of slope 1 going through ql and the line of slope
−1 going through qr. Note that the sandglass region can be empty, if there is
no middle-unique point in Sij . Note also that the guessed disks dpl

, dpr , dql
, dqr

partially cover the sandglass, but there may be a region that is not covered
by these four disks. We define a sandglass point to be a point that lies in a
sandglass but is not covered by dpl

, dpr , dql
, dqr . Again, we add these four disks

to the solution set Xguess
B .
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Si,j

UM

LM

Si,j

UM

LM

pl pr

ql qr

Fig. 1. Definition of regions UM and LM of a square Sij (left figure). An example of a
sandglass (the shaded area) for the case where ql = qr. For the upper sandglass, also
the lines with slopes 1 and −1 are depicted (right figure).

The following lemma allows us to split the yet uncovered points in B into two
parts, which we consider separately in the following. We say that a point lies left
of Sij if the x-coordinate of the point is smaller than the smallest x-coordinate
of any point of Sij . We define similarly in a natural way the notions of lying
right of, above, and below Sij .

Lemma 2 ([10]). Any sandglass point is covered in OPTB only by disks with
center above or below Sij. Any point of Sij not contained in the sandglass of Sij

is covered in OPTB only by disks with center left or right of Sij .

Using this lemma, we can partition the yet uncovered points into two parts.
The horizontal part contains yet uncovered points that can be covered in OPTB

only by disks with center above or below the respective Sij . The vertical part
contains the rest of the yet uncovered points, i.e., the points that can be covered
in OPTB only by disks with center left or right of Sij .

In the following we concentrate on the problem of covering the points in
the horizontal part by a set of disks of minimum weight. We present a 2-
approximation algorithm for this problem. Clearly, as the problem of covering
the points in the vertical part can be solved by the same 2-approximation algo-
rithm by rotating the setting by 90 degrees, we obtain a solution Xguess

B – all
guessed disks plus the disks obtained by applying the 2-approximation algorithm
to cover points in the horizontal and vertical part – which is a 4-approximation
of OPTB , thus showing the following theorem.

Theorem 3. There is a 4-approximation algorithm for the covering subproblem
in a block B.

3.1 Covering Points Only from above or below

In the following we consider a generalized version of the covering problem of
points in the horizontal part of block B. Let us consider k horizontal strips, each
of height μ, containing m points P , where strip Si, i = 1, 2, . . . , k, lies between
the horizontal lines y = (i−1) ·μ and y = i ·μ. Let D be a set of n unit disks. We
say that a disk d covers point p ∈ P from above, if the center of disk d lies above
the strip in which p is located. Similarly, we say that a disk d covers point p ∈ P
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from below, if the center of disk d lies below the strip in which p is located. For a
given set X ⊆ D of disks we say that p is covered in X only from above or from
below, if p is covered by at least one disk from X , and for every disk d ∈ X , d
covers p from below, or d covers p from above, or d does not cover p. We call
the problem of covering points inside a horizontal strip of constant height with
a minimum-weight set of disks for instances where there is an optimum solution
such that every point p ∈ P is covered in the optimal solution only from above
or from below the horizontal covering problem.

Theorem 4. There is a 2-approximation algorithm for the horizontal covering
problem.

Clearly, a constant-height horizontal strip can be seen as k strips of height μ,
k being a constant. The simplest version of the problem is when k = 1. For this
case, Ambühl et al. [1] present an algorithm that computes an optimum solu-
tion in polynomial time. The algorithm is based on the dynamic programming
technique. The main idea is to consider the boundary of the disks that form an
optimum solution inside the strip: the disks from above form in the strip the
upper envelope, and the disks from below form in the strip the lower envelope
of the optimum solution. The dynamic programming considers the points from
left to right and stores, for each considered point and for each choice of current
disks on the lower and upper envelope at that point, a minimum-weight set of
disks that covers all points from the left up to the considered point.

The 2-approximation algorithm for the general case k > 1 can be obtained by
extending this approach. Let X ⊆ D denote a feasible solution for the covering
problem in k strips. In every strip Si, i = 1, . . . , k, we define the upper envelope
Ui of X to be the intersection of the strip with the disks of X that lie above
strip Si. Similarly, the lower envelope Li of X is the intersection of strip Si with
the disks of X that lie below Si.

The algorithm uses a sweep line 	i in every strip Si to move on the boundary of
the upper and lower envelope of every strip. Suppose we know an optimum solution
OPT to the covering problem which covers every point only from above or below.
Consider the upper and lower envelopes of OPT. We can sweep the lines 	i through
the solution OPT. All sweep lines li, i = 1, 2, . . . , k, start somewhere to the left of
the setting such that they do not intersect any disk or point. We move the sweep
lines in discrete steps, always one line at a time. Every line li moves to the right,
and visits (with its x-coordinate) the corners of the upper and lower envelope of
strip Si. A corner of an envelope is the intersection point of two disks which lies
on the boundary of the envelope, or the intersection of a disk with one of the hor-
izontal lines that delineate the strip, and the intersection lies on the boundary of
the envelope. The sweeping process finishes when all corners of every strip have
been visited. For this we make the sweep lines finish somewhere to the right of the
setting, where no sweep line intersects a disk or a point of the setting. If we count
the weight of every visited disk, at the end we end up with a weight that is at most
three times w(OPT), as every disk can be visited in at most three strips, and in ev-
ery strip, we cannot count a disk more than once (as the disk cannot appear more
than once on the boundary of an envelope [1]).
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Our algorithm uses the sweeping approach to actually find a solution, i.e., to
find the corners of envelopes which then define the disks in the final solution. We
start with all sweep lines to the left of the setting. This indicates that no disk
was chosen to cover a point in any strip. For every sweep line 	i we remember
the disks of the boundary of the upper and lower envelope that 	i intersects at
any time (for this we see the horizontal lines that define the strip as virtual disks
of weight zero). The sweep line moves between corner points of the envelopes,
so the disks we remember are the two disks that form the newly visited corner
point, plus a disk that forms the boundary on the other envelope (upper or
lower). We assume here that if a sweep line visits a corner of the upper (lower)
envelope, then the lower (upper) envelope at this x-coordinate is formed by one
disk only. We note that this assumption is without loss of generality, as we can
initially rotate the whole problem setting so that this is true in every strip. For
this purpose, we denote the current status of line 	i by ((d̄l, d̄r), (dl, dr)) with
the meaning that d̄l and d̄r form the boundary of the upper envelope and dl

and dr form the boundary of the lower envelope at the position of the sweep
line li. Since we assume that at any position of the sweep line one of the two
envelopes is formed by one disk only, we have d̄l = d̄r or dl = dr. For our
algorithm we require that a line 	i can move from a corner point c to a corner
point c′ only when all points between c and c′ are covered by the disks that
form the boundary of the envelopes at c and at c′. (That is, for example, if
line 	i is at position x at state ((d̄l, d̄r), (dl, dr)) and moves to position x′ with
state ((d̄′l, d̄

′
r), (d

′
l, d

′
r)) then all points in strip Si between x and x′ have to be

covered by disks d̄l, d̄r, dl, dr, d̄
′
l, d̄

′
r, d

′
l, d

′
r.) This restriction makes sure that if a

sweep line gets from the start to the end, all points in the strip are covered by
the chosen (visited) disks. If we do not pose any other restriction on the way
the sweep line may move, we could use the dynamic programming approach of
Ambühl et al. [1] for each strip individually and then combine the solutions of
each strip to obtain a solution for the whole covering problem in k strips. As
was shown in [10] this leads to a 3-approximation algorithm. The approximation
ratio 3 comes from the fact that every disk can be counted three times, as it can
appear as part of an upper or lower envelope in three strips.

We now show how to do sweeping in all strips simultaneously, achieving a
better approximation ratio. We pose a new constraint on when a sweep line can
move. Consider a disk d from strip Si (i.e., the center of d lies in Si). The disk
can cover from above or from below points in at most three strips. Recall that
the disk cannot cover any point in the strip Si, as we are looking for solutions
where every point is covered only from above or from below. Fig. 2 illustrates
how a disk can intersect, besides Si, two or three strips. In any case, a disk from
strip Si always intersects strips Si−1 and Si+1. The constraint we pose on the
sweep lines is that a line 	i−1 for which the lower envelope Li−1 is formed by
disk d from strip Si can move to the next corner point of Li−1 not formed by d
only if disk d has already appeared on the upper envelope of the sweep line 	i+1
in strip Si+1 (provided that it appears on that upper envelope at all). In other
words, sweep line 	i−1 at Li−1 formed by d can move and “leave behind” disk d
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Si

Si+1

Si+2

Si−1

Si−2

d d′ d′′

Fig. 2. Various examples of how a disk can cover points in strips. Disk d′′ can cover
points in Si−2 from below. Disks d, d′ and d′′ can cover points in Si−1 from below, and
points in Si+1 from above. Disk d can cover points in Si+2 from above.

only if sweep line 	i+1 has already “met” d. If this is not the case, the line 	i−1
cannot move and we say that 	i−1 waits for the sweep line 	i+1. Naturally, we
pose a similar constraint for the line 	i+1 with respect to line 	i−1, i.e., line 	i+1
can move from a corner point (d, d′) of the upper envelope Ui+1 to the right and
“leave behind” disk d only if the sweep line 	i−1 has already “met” the disk d in
strip Si−1. We call these constraints the move compatibility constraints.

While sweeping through the strips, we count the weight of disks that were
visited (i.e., the weight of disks that form the corner points which the sweep lines
visit). We do not count, however, the weight of disk d every time (otherwise we
would obtain a 3-approximation). If a line 	i moves from a corner point (d, d′)
to a corner point (d′, d′′), the weight of disk d′′ is added to the considered total
weight only if at that moment no other sweep line contains the disk d′′ already.
Assume without loss of generality that d′′ forms the lower envelope Li in Si.
Then, with the previously posed constraint on how the sweep lines can move, we
count the weight of the disk d′′ in strips Si and Si+2 only once. Thus, in total,
the weight of any disk d′′ used in the solution found by sweeping the lines in the
strips is counted at most twice. This motivates the sweep lines to visit already
used disks, as subsequent visits of a visited disk can cover points at no cost. This
is the main reason why we get a 2-approximation algorithm.

We want to find a minimum-weight solution that moves the sweep lines from
left to right and covers all points with visited disks. To find such a solution, we
construct an auxiliary graph GA and compute a shortest path in this graph. The
vertex set VA of the auxiliary graph GA contains every possible configuration
of the sweep lines. We will interchangeably call a vertex of GA a configuration
of the sweep lines. Clearly, every sweep line can be in at most n3 different con-
figurations, as there are at most n2 corner points in every strip, and thus for
any sweep line at a corner point, there can be at most n other disks forming the
boundary of the other envelope. Thus, having k strips, there are no more than
O
(
(n3)k

)
vertices in GA. There are two special configurations. The start vertex

(or the start configuration) s corresponds to the situation when all sweep lines
are left of any disk, i.e., no disk forms an upper or lower envelope in any strip.
Similarly, the target vertex t of GA corresponds to the configuration where every
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sweep line is right of any disk. We connect the vertices in GA with weighted
edges. There is an edge between two configurations v and v′ if one move of a
sweep line 	i in v results into the configuration v′, and the move of the sweep
line obeys the rule that all points between the original and new position of the
moved sweep line are covered by the disks that the sweep line registers. Let d′′

be the disk that forms the corner point in v′ where the line 	i moved to, but in v
the disk was not part of the envelopes in Si. The weight of the edge connecting
v and v′ is zero, if the disk d′′ appears at another sweep line in v, otherwise the
weight of the edge is wd′′ , the weight of the disk d′′.

Our algorithm finds a shortest path in GA from s to t. This can be done in
polynomial time if k is a constant. The computed path determines a move of the
sweep lines from s to t, and the disks that the sweep lines meet is the solution of
our algorithm. If there exists a path between s and t then clearly any such path
gives a solution to the covering problem in k strips. In the following we show that
the considered optimum solution OPT for the covering problem induces a path
between s and t that additionally satisfies the move compatibility constraints.
As our algorithm computes a shortest path between s and t, the total weight
incurred by the sweep lines of our algorithm is at most the total weight incurred
by the sweep lines that follow the s-t path induced by OPT. As we have argued
above, the total weight of the s-t path induced by OPT is at most twice the
weight of disks in OPT, as every disk in OPT can be counted by the sweep
lines at most twice. Thus, the solution to the covering problem produced by our
algorithm is at most twice the weight of OPT, which shows that the algorithm
is a 2-approximation algorithm.

Lemma 3. Let GA be the auxiliary graph of the covering problem in k strips.
Let OPT be an optimum solution for the problem. There is a path from s to t in
GA that corresponds to OPT, i.e., the disks visited on the s-t path are exactly
the disks of OPT, and satisfies the move compatibility constraints.

Proof. We will prove the claim by showing that at no point of time the sweep
lines traversing the optimum solution OPT get stuck, i.e., we show that there
is always a sweep line that can move to the right (unless, of course, the sweep
lines are at the target configuration t).

Clearly, at the beginning, all sweep lines are left of any disk (the configuration
s), and all sweep lines can move to the first disk in their respective strip (or to
the end, if there is no disk of OPT in the strip). Assume for a contradiction that
later in time, at a configuration v �= t, no sweep line can move to the right, i.e.,
every sweep line 	i that is not right of all disks waits for another sweep line to
move first. We say that the lines are in a deadlock.

Let Si∗ be the strip with the minimum index i, i = 1, 2, . . . , k, such that a
sweep line 	i waits for another sweep line to move. Thus, from the minimality
of i∗, the sweep line 	i∗ waits for a sweep line 	i∗+2 to move. As we assume the
sweep lines are in a deadlock, sweep line 	i∗+2 waits for another sweep line –
	i∗+2 waits either for 	i∗ or for 	i∗+4. We will later show that no two sweep lines
	i and 	i+2 can mutually wait for each other. Therefore, 	i∗+2 does not wait for
	i∗ , and it thus waits for 	i∗+4. Then as the lines are in deadlock, 	i∗+4 waits



A (4 + ε)-Approximation for the MWDS in Unit Disk Graphs 145

Si

Si+1

�id d′
x

Fig. 3. Illustration for the proof of Lemma 3

either for 	i∗+2 or for 	i∗+6. Using the same argument, 	i∗+4 waits for 	i∗+6.
Thus, using this argumentation iteratively, we end up claiming that 	i∗+2j waits
for 	i∗+2(j+1), for any j ≥ 0. This is not possible, as there are only k sweep lines.

We are left to show that the situation in which sweep lines 	i and 	i+2 wait for
each other does not occur. Assume such a situation. Sweep line 	i waits for sweep
line 	i+2 because 	i wants to leave a disk d but the line 	i+2 did not pass the disk d in
strip Si+2 yet. Similarly, line 	i+2 wants to leave a disk d′ but the line 	i did not pass
the disk d′ in strip Si. We show that these assumptions give contradicting claims
on the position of the disks d and d′. Consider now the disks d and d′ alone, i.e.,
without the other disks of OPT. Now, as 	i is currently at disk d and the line did not
pass the disk d′ yet, disk d′ has to appear in Si after d. This implies, however, that
the center of d′ is strictly right of the center of d (in terms of the x-coordinates).
Fig. 3 illustrates this situation. Observe first that if disk d′ (which appears right
of d in Si) intersects disk d, say at point x, then disk d′ can be seen as a rotation
of disk d around point x in counterclockwise direction. As the rotation leaves the
center of the disk in the strip below, the rotation translates the center of the disk
strictly to the right. If the disk d′ does not intersect d, we can move the disk d to
the right until the first moment when the translated disk d intersects d′. Repeating
the argument we see that the center of d′ is strictly right of the center of d.

Similarly, we can argue for the positions of disks in strip Si+2, leading to the
claim that the center of d′ is strictly left of the center of d. This is a contradiction
and the lemma follows. ��

4 Conclusions

In this work we have presented a (4+ε)-approximation algorithm for the problem
of computing a minimum-weight dominating set in unit disk graphs. The main
ingredient is a new 4-approximation algorithm for settings restricted to constant-
size squares. This, in turn, uses a new 2-approximation algorithm for the problem
of covering points in a constant-height strip only by disks from above or below.
The 2-approximation algorithm finds a solution by computing a shortest path in
an auxiliary graph that can be seen as mimicking a sweep-line approach with k
sweep lines, which in turn mimic computing k parallel dynamic programs. This
technique may be of independent interest. It remains open whether MWDS in
unit disk graphs admits a PTAS.
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Abstract. A team of mobile agents, called guards, tries to keep an in-
truder out of an assigned area by blocking all possible attacks. In a
graph model for this setting, the agents and the intruder are located on
the vertices of a graph, and they move from node to node via connect-
ing edges. The area protected by the guards is a subgraph of the given
graph. We investigate the algorithmic aspects of finding the minimum
number of guards sufficient to patrol the area. We show that this problem
is PSPACE-hard in general and proceed to investigate a variant of the
game where the intruder must reach the guarded area in a single step in
order to win. We show that this case approximates the general problem,
and that for graphs without cycles of length 5 the minimum number of
required guards in both games coincides. We give a polynomial time al-
gorithm for solving the one-step guarding problem in graphs of bounded
treewidth, and complement this result by showing that the problem is
W [1]-hard parameterized by the treewidth of the input graph. We con-
clude the study of the one-step guarding problem in bounded treewidth
graphs by showing that the problem is fixed parameter tractable (FPT)
parameterized by the treewidth and maximum degree of the input graph.
Finally, we turn our attention to a large class of sparse graphs, including
planar graphs and graphs of bounded genus, namely graphs excluding
some fixed apex graph as a minor. We prove that the problem is FPT
and give a PTAS on apex-minor-free graphs.

1 Introduction

An intruder is trying to enter an area patrolled by a team of mobile units, for
example robots. The goal of the robots is to protect the assigned area by blocking
all possible attacks. We model this problem as a variant of the classical Cops and
Robbers game [1] and we borrow the Cops and Robbers terminology, calling the
guarding agents cops and the intruder a robber. The game of Cops and Robbers
is a pursuit-evasion game played on a graph, see [3,16] for references on different
pursuit-evasion and search games on graphs.

The study of cop-robber guard games was initiated by Fomin et al. [14]. The
guard game is played on a graph G by two players, the cop-player and the
robber-player. The graph G can be directed or undirected, but we only consider
undirected graphs in this paper. Each player has pawns, the cop-player has cops

E. Bampis and K. Jansen (Eds.): WAOA 2009, LNCS 5893, pp. 147–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and the robber-player has a robber, placed on the vertices of G. The aim of the
cop-player is to prevent the robber from entering the protected region C � V , also
called the cop-region, and correspondingly the aim of the robber is to penetrate
the protected region. The robber can not enter a vertex if it is occupied by a
cop, and the cops guard the protected region C by blocking all vertices which
the robber can use as entry points to C. We say that a cop guards the vertex v
which he occupies.

The game is played in alternating turns. In their first move players choose
their initial positions. The cops choose vertices inside C to occupy, and the
robber chooses some vertex outside C to start in. In each subsequent turn the
respective player can move each of his pawns to a vertex adjacent to the vertex
the pawn occupies or leave the pawn in its current position. The cops are only
allowed to move within the protected region C, and the robber can only move
onto a vertex with no cops on it. At any time of the game both players know
the positions of the cops and the robber in G. The guard game is a robber-win
game if the robber-player can at some turn move the robber onto a vertex within
C with no cop on it. In this case we say that the robber-player wins the game.
Otherwise the cop-player can forever prevent the robber-player from winning. In
this case we say that the game is a cop-win game, that the cop-player wins the
game and that the cop-player can guard C.

The only difference between the game considered in this article and the game
studied in [14] is the order of turns. In [14] the robber had to make the first move
while in the problem studied here the cop-player starts the game. Despite the
similar settings, the difference between the two games can be tremendous even for
very simple examples. For instance consider the graph G in Figure 1 consisting
of two paths PR and PC of same length connected by a perfect matching. The
path PC is the cop-region, and the task of the robber to enter PC from PR. If
the robber starts first, then one cop is sufficient to guard C since the cop only
needs to occupy the vertex in PC which is matched to the vertex occupied by the
robber after the robber-players move. If cops start first, their initial positions
should form a dominating set of PC because otherwise the robber player can
start in a vertex adjacent to an undominated vertex in C and enter C on his
next turn. Thus, to protect PC in the “cops-first” variant of the game we need
at least �(V (PC)− 2)/3� cops. The algorithmic behavior of the two problems is
also quite different. It was proved in [14] that when the robber’s territory is a
path, the “robber-first” variant of the game is solvable in polynomial time. In
contrast, a simple reduction from the minimum dominating set problem shows
that “cops-first” variant is NP-hard, see Proposition 2.

A different well-studied problem, the Eternal Domination problem which
also is known as Eternal Security is strongly related to the guard game.
In the Eternal Domination the objective is to place the minimum number
of guards on the vertices of a graph G such that the guards can protect the
vertices of G from an infinite sequence of attacks. In response to an attack of an
unguarded vertex v, at least one guard must move to v and the other guards can
either stay put, or move to adjacent vertices. Different variants of this problem
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Cop-region PC

Robber’s path PR

Fig. 1. Paths PC and PR connected by a matching

have been considered in [4,9,8,18,20,23,22]. The Eternal Domination problem
is a special case of our game. This can be seen as follows. Let G be a graph on
n vertices, we construct a graph H from G by adding a clique K on n vertices
and connecting the clique and G by n edges which form a perfect matching. If
the cop-region of H is V (G) then G has an eternal dominating set of size k if
and only if k cops can guard V (G).

Our results. In this paper we prove a number of algorithmic and complexity
results about the guarding problem. We start with a proof that the problem
is PSPACE-hard on undirected graphs. While many games are known to be
PSPACE-hard, all known PSPACE-hardness results for cops and robbers, or
pursuit evasion games are for the directed graph variant of the games [14,19]. For
example, the classical Cop and Robbers game was shown to be PSPACE-hard on
directed graphs by Goldstein and Reingold in 1995 [19] whereas for undirected
graphs, even an NP-hardness result was not known until very recently [15].

We show that the number of cops required to guard a graph is at most twice
the number of cops required to protect the graph in the one-step variant of the
game, that is when all players only make one move after the initial placement
step. We show that this game is not only a good approximation of the general
problem, but that for many graph classes like graphs without cycles of length
5 the two games are equivalent. We provide a number of FPT algorithms and
parameterized complexity results for the one-step guarding problem. Our re-
sults include a polynomial time algorithm for the problem in graphs of bounded
treewidth, a complexity result showing that our algorithm is essentially optimal,
and an FPT algorithm for the problem parameterized by the treewidth and max-
imum degree of the input graph. Finally we use our treewidth-based algorithms
to show that on graphs excluding some fixed apex graph as a minor the one-step
guarding problem is FPT and admits a PTAS.

2 Definitions and Preliminaries

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G), or simply by
V and E if this does not create confusion. If U ⊆ V (G) then the subgraph of
G induced by U is denoted by G[U ]. For a vertex v, the set of vertices which
are adjacent to v is called the (open) neighborhood of v and denoted by NG(v).
The closed neighborhood of v is the set NG[v] = NG(v)∪ {v}. If U ⊆ V (G) then
NG[U ] =

⋃
v∈U

NG[v]. The distance distG(u, v) between a pair of vertices u and
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v in a connected graph G is the number of edges on a shortest u, v-path in G.
For a positive integer r, N r

G[v] = {u ∈ V (G) : distG(u, v) ≤ r}. Whenever there
is no ambiguity we omit the subscripts.

The length of a shortest cycle in G is called the girth of G and denoted by
g(G). If G is an acyclic graph then g(G) = +∞. We use Δ(G) for the maximum
degree of a vertex in G. Let C � V (G), and R = V (G) \ C. We call the set
R where the robber moves while trying to enter C the robber-region. A triple
[G; C, R] is called the board of the game. For convenience, we keep both sets C
and R in our notation despite the fact that they define each other. Clearly, the
game is fully specified by the number of cops c and the board. We call the set
δ[G; C, R] = {v ∈ C : N(v) ∩ R �= ∅} the boundary of the board.

Since the game is played in alternating turns starting at turn 1, the cop-player
moves his cops at odd turns, and robber-player moves the robber at even turns.
Two consecutive turns 2 · i−1 and 2 · i are jointly referred to as a round i, i ≥ 1.

A state of the game at time i is given by the positions of all cops and robbers on
the board after i−1 turns. A strategy of a cop-player (strategy of a robber-player)
is a function X which, given the state of the game, determines the movements
of the cops (the robber) in the current turn. If there are no cops (no robber) on
the board, the function determines the initial positions of the cops (the robber).

The Guarding problem is, given a board [G; R, C], to compute the minimum
number of cops that can guard the protected region C. We call this number the
guard number of the board and denote it by gn(G; C, R). Despite the differences
between the robber-first and cops-first games, some of the results established in
[14] carry over to the cops-first game. In particular, the following claim holds
(see also [6,19,21]).

Proposition 1 ([14, Proposition 1]). There is an algorithm that given an
integer c ≥ 1 and a board [G; C, R] with the n-vertex graph G determines whether
c cops can guard C in time

(|C|+c−1
c

)2 · |R|2 · nO(1) = nO(c).

Thus for every fixed c, one can decide in polynomial time whether c cops can
guard the protected region against the robber on a given graph G. The running
time nO(c) cannot be improved to an FPT running time unless FPT = W [2]. We
refer to the book of Downey and Fellows [11] for an introduction to parameterized
complexity. A reduction from the Dominating Set problem yields the following
proposition.

Proposition 2. [�]1 The Guarding problem is NP-hard. The Guarding De-

cision problem parameterized by the number c of guards is W[2]-hard. Finally,
there is a constant ρ > 0 such that there is no polynomial time algorithm that,
for every instance, approximates the guard number within a multiplicative fac-
tor ρ log n, unless P = NP. Both the hardness results and the inapproximability
result hold even when the robber territory is an independent set.

1 Proofs of results marked with [�] are omitted due the space restrictions an will appear
in the journal paper.
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3 Hardness of Guarding

Fomin et al. proved in [14] that the robber-first variant of Guarding problem is
PSPACE-hard for directed graphs. For undirected graphs only NP-hardness was
proved and PSPACE-hardness was left as an open question. In this section we
prove that the cops-first game is PSPACE-hard both for undirected and directed
graphs. It should be noted that the complexity analysis for Cops and Robbers
games for undirected graphs is much more complicated than for directed graphs
(see e.g. [19]).

Theorem 1. The Guarding problem is PSPACE-hard on undirected graphs.

Proof. We reduce the PSPACE-complete Quantified Boolean Formula in

Conjunctive Normal Form (QBF) problem [17] to the decision variant of the
Guarding problem. For a set of Boolean variables x1, x2, . . . , xn and a Boolean
formula F = C1 ∧ C2 ∧ · · · ∧ Cm, where Cj is a clause, the QBF problem asks
whether the expression φ = Q1x1Q2x2 · · ·QnxnF is true, where for every i, Qi

is either ∀ or ∃.
Due the space restrictions we present here only the sketch of the proof. Given

a quantified Boolean formula φ, we construct an instance of a guard game in
several steps. We first construct a board [G; C, R] and show that if the robber
strategy is restricted to some specific conditions, then φ is true if and only if the
cop player can win on this board with a a specific number of cops.

Constructing [G; C, R]. For every Qixi we introduce a gadget graph Gi. For
Qi = ∀, we define the graph Gi(∀) with vertex set {ui−1, ui, xi, xi, yi, yi, zi, zi, ai,
ai, si, ti} and edge set {ui−1yi, yiui, ui−1yi, yiui, yiai, aizi, xizi, yiai, aizi,
xizi, xisi, xiti, xisi, xiti}. Let Si = {xi, xi, zi, zi, si, ti}. For Qi = ∃, we define
Gi(∃) as the graph with vertex set {ui−1, ui, xi, xi, yi, zi, ai, si, ti} and edge set
{ui−1yi, yiui, yiai, aizi, xizi, xizi, xisi, xiti, xisi, xiti}, and Si = {xi, xi, zi, si, ti}.
The graphs Gi(∀) and Gi(∃) are shown in Figure 2. Observe that the vertex ui ap-
pears both in the gadget graph Gi and in the gadget Gi+1 for i ∈ {1, 2, . . . , n−1}.

The graph G also has vertices C1, C2, . . . , Cm corresponding to clauses. The
vertex xi is joined with Cj by an edge if Cj contains the literal xi, and xi is joined
with Cj if Cj contains the literal xi. The vertex un is connected with all vertices
C1, C2, . . . , Cm by paths of length two with middle vertices w1, w2, . . . , wm. For
every i ∈ {1, 2, . . . , n}, the vertex si is joined by edges with all vertices uj , yj

and yj for 0 ≤ j < i, and the vertices si and ti are connected by paths of length
two with ui and with all vertices uj , yj and yj for i < j ≤ n. Let W be the set
of middle vertices of these paths. This completes the construction of G.

Let C = S1 ∪ S2 ∪ · · · ∪ Sn ∪ {C1, C2, . . . , Cm} be the cop-region of G, and
R = V (G) \ C′ be the robber-region. An example of the board [G; C, R] for
φ = ∃x1∀x2 x1 ∨ x2 is shown in Figure 2. The paths added in the last stage of
the construction are shown by dashed lines and the vertices in W are not shown.

We proceed to prove several properties of this board.
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Fig. 2. Graphs Gi(∀), Gi(∃) (vertices of Si are shown by the black color) and the board
[G; C, R]

Lemma 1. [�] If φ = false, then the robber-player has a winning strategy on
the board [G; C, R] against n cops. Moreover, suppose that the robber can use
only strategies with the following properties:

– he starts from u0,
– he moves along edges ui−1yi, yiui, ui−1yi, yiui only in the direction induced

by this ordering, i.e. these edges are ”directed” for him.

Then n cops can win on [G; C, R] if φ = true.

Then we add gadgets which force the robber to choose a particular vertex as
starting vertex and to follow the restricted strategy described in Lemma 1 (oth-
erwise he looses). These steps of reduction are omitted due the space restrictions.

The statement of Theorem 1 also holds for directed graphs since we can model
an edge with two arcs, one going in each direction. Moreover, by using a simpli-
fied variant of our reduction, it can be proved that the Guarding problem is
PSPACE-hard even on directed acyclic graphs.

4 One-Step Guarding

4.1 The One-Step Guard Number

In any cop-winning strategy, when the robber occupies some vertex u ∈ R, the
cops should prevent him from entering C by blocking all vertices of C ∩ N(u).
Since the robber makes his first move after the cops have chosen their initial
positions, the cops have to start from an initial position such that for every
vertex u ∈ R they can occupy all vertices of C ∩ N(u) in one step. Thus it is
not unreasonable that the number of cops needed to protect C from a robber
that is only allowed to make one move after the initial step approximates the
guard number of the board. Consider the variant of the game, where the robber
is allowed to make only one move after the placement step. We call this variant
of the game the one-step game. Then the minimum number of cops sufficient to
guard the graph in this game is called the one-step guard number, and we denote
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the one-step guard number for the board [G; C, R] by gn1(G; C, R). We call the
problem of computing the one-step guard number of a graph by the One-Step

Guarding problem.
In the One-Step Guarding problem, a strategy for the cop-player on the

board [G; C, R] is defined as a pair S = (s,F) where

– s is a mapping assigning to every vertex v of C a non-negative integer s(v)
— the number of cops in v.

– F = {fu}u∈R is a family of functions fu : C ∩ N(u) → C defining moves of
cops if the robber occupies u (a cop moves to w ∈ C ∩ N(u) from fu(w)),
such that for every w ∈ C ∩ N(u), fu(w) ∈ N [w], and for every v ∈ C,
|{w ∈ C ∩ N(u) : fu(w) = v}| ≤ s(v).

If X ⊆ C, then s(X) =
∑

v∈X

s(v). We say that S is a winning strategy for c cops

if s(C) ≤ c. The simple but useful property of the one-step guard number is that
it depends only on the local structure of the border neighborhood. We formalize
this property in the following proposition, whose proof follows directly from the
definition of one-step guarding.

Proposition 3. For every board [G; C, R], gn1(G; C, R) = gn1(G′; C′, R′) for
G′ = G[NG[δ[G; C, R]]], C′ = C ∩NG[δ[G; C, R]] and R′ = R ∩NG[δ[G; C, R]].

The one-step guard number gives the following approximation of the guard
number.

Theorem 2. [�] For any board [G; C, R], gn1(G; C, R) ≤ gn(G; C, R) ≤ 2 ·
gn1(G; C, R).

A tightness of the upper bound can be seen from the following example. Let G
be a graph with vertices x, y, z, such that the vertices x and y are adjacent. The
vertices x and z, and the vertices y and z are joined by k paths of length two.
Let R = {x, y}, and C = V (G)\R. It can be easily shown that gn1(G; C, R) = k
and gn(G; C, R) = 2k. We now show that the lower bound is tight for a large
collection of boards.

Theorem 3. [�] Let [G; C, R] be a board such that for every cycle C5 of length
5 in G, |E(C5) ∩ E(G[R])| �= 1. Then gn1(G; C, R) = gn(G; C, R).

Since the Guarding Decision problem remains difficult even in the case when
R is an independent set, it follows from Proposition 2 and Theorem 3 that the
computation of the one step guard number is difficult too. .

Corollary 1. The decision version of the One-Step Guarding problem is
NP-complete and it remains NP-complete for planar graphs. Moreover, the pa-
rameterized version of the problem with k being a parameter is W[2]-hard. Also,
there is a constant ρ > 0 such that there is no polynomial time algorithm that,
for every instance, approximate the border dominating number within a multi-
plicative factor ρ log n, unless P = NP.
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Despite the algorithmic lower bounds in Corollary 1, it is sometimes possible to
use the one-step guard number for an approximation of the guard number.

Let us consider a generalization of the Dominating Set problem called
Black and White Dominating Set problem (see e.g. [2]). The input is a
black and white graph, which simply means that the vertex set of the graph G
has been partitioned into two disjoint sets B and W of black and white ver-
tices. Given a black and white graph G, the problem is to find a dominating set
X ⊂ V (G) of the minimum cardinality which dominates B, i.e. such that for
each vertex v ∈ B, NG[v]∩X �= ∅. We call the cardinality of such a set the black
and white domination number and denote it by γ(G; B, W ). Observe for any
cop-winning strategy the set of vertices occupied by the cops in the beginning
of the game has to dominate the boundary δ[G; C, R]. This yields the follow-
ing proposition about the relationship between black and white domination and
one-step graph guarding.

Proposition 4. For any board [G; C, R], γ(G[C]; δ[G; C, R], C \ δ[G; C, R]) ≤
gn1(G; C, R).

These two parameters can be arbitrarily far apart. Consider the graph G con-
structed from two vertices u and v by joining them by k paths of length
two with middle vertices w1, . . . , wk, and let C = {v, w1, . . . , wk}. Obviously,
gn1(G; C, R) = k and γ(G[C]; δ[G; C, R], C \ δ[G; C, R]) = 1. Still there are
cases when these parameters coincide.

Proposition 5. [�] Let [G; C, R] be a board such that g(G) ≥ 5. Then
γ(G[C]; δ[G; C, R], C \ δ[G; C, R]) = gn1(G; C, R).

Combining Theorem 3 and Proposition 5, we obtain the next corollary.

Corollary 2. Let [G; C, R] be a board such that g(G) ≥ 6. Then
γ(G[C]; δ[G; C, R], C \ δ[G; C, R]) = gn1(G; C, R) = gn(G; C, R).

It is known [24] that the parameterized variant of the Black and White Domi-

nating Set problem with the cardinality of dominating set being the parameter
is FPT for graphs of girth at least 5. Together with Theorem 3 this yields the
following corollary.

Corollary 3. The (One-step) Guarding and Guarding problems are FPT
when parameterized by the number of cops for boards [G; C, R] with g(G) ≥ 6.

4.2 One-Step Guarding for Sparse Graphs

In this section we consider the One-Step Guarding problem in graphs of
bounded treewidth. We denote the treewidth of G by tw(G) (see e.g. [7] for
the definition of the treewidth). It is well known that many problems, which
are difficult for generals graphs, can be solved in polynomial time in graphs of
bounded treewidth. We show here that this is also the case for the computation
of the one-step guard number. We construct a dynamic programming algorithm
for this problem.
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Theorem 4. [�] Let G be an n vertex graph given with its tree decomposition of
width t. Then gn1(G; C, R) can be computed in time h(t)nO(t2), where h is some
function of t.

Note that this algorithm is polynomial if the treewidth if fixed, but it is not
an FPT algorithm when t is the parameter. In what follows, we show that (up
to widely believed assumption that FPT �= W[1]) the One-Step Guarding

problem parameterized by the treewidth of the input graph is not FPT.

Theorem 5. [�] The One-Step Guarding problem is W[1]-hard when param-
eterized by the treewidth of the input graph.

Using Theorem 3, we have the following corollary.

Corollary 4. The parameterized version of the Guarding problem with the
treewidth of the input graph being a parameter is W[1]-hard.

In the following theorem we show that with some additional restrictions on
graphs the One-step Guarding problem become fixed parameter tractable.

Theorem 6. [�] For any positive integers t and d, gn1(G; C, R) can be computed
in linear time for boards [G; C, R], with tw(G) ≤ t and Δ(G) ≤ d.

4.3 One-Step Guarding in Apex-Minor-Free Graphs

Our results for graphs of bounded treewidth can be used for approximation of
the one-step guard number for some graph classes.

It is said that a graph class G has bounded local treewidth with bounding func-
tion f if there is a function f : N → N such that for every graph G ∈ G, every
v ∈ V (G), and every positive integer r it holds that tw(G[N r[v]]) ≤ f(r). An
apex graph is a graph obtained from a planar graph G by adding a vertex and
making it adjacent to some vertices of G. A graph class is apex-minor-free if it
does not contain any graph with some fixed apex graph as a minor. For example,
planar graphs (and bounded-genus graphs) are apex-minor-free graphs.

Eppstein [12,13] characterized all minor-closed graph classes that have
bounded local treewidth. It was proved that they are exactly apex-minor-free
graphs. These results were improved by Demaine and Hajiaghayi [10]. They
proved that all apex-minor-free graphs have linear local treewidth. We show
that there is a polynomial time approximation scheme (PTAS) on the class of
apex-minor-free graphs for the computation of the one-step guard number. To
do this we use the well known technique for solving NP-hard problems on planar
graphs proposed by Baker [5] and generalized by Eppstein [12,13] (see also [10])
to minor-closed graph classes with bounded local treewidth. We start with a
simple observation.

Lemma 2. [�] Let [G1; C1, R2] and [G2; C2, R2] be two boards such that C1 ∩
R2 = C2 ∩ R1 = ∅. Then gn1(G; C, R) ≤ gn1(G1; C1, R1) + gn1(G2, C2, R2),
where G = G1 ∪ G2, C = C1 ∪ C2 and R = R1 ∪ R2.
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Let u be a vertex of a graph G. For i ≥ 0 we denote by Li the i-th level of
breadth first search from u, i.e. the set of vertices at distance i from u. We call
the partition of the vertex set V (G) L(G, u) = {L0, L1, . . . , Lr} breadth first
search (BFS) decomposition of G. We assume for convenience that for a BFS
decomposition L, (G, u) Li = ∅ whenever i < 0 or i > r, The BFS decomposition
can be constructed using a breadth first search in a linear time.

Let [G; C, R] be a board, and let G be a graph with BFS decomposition
L(G, u) = (L0, L1, . . . , Lr), and t be a positive integer. Suppose that i ≤ j are

integers. For i ≤ j, we define Gij = G[
j⋃

p=i

Lp]. For all i ≤ j, we set Ci,j =

C ∩ Gi−2,j+2, Ri,j = R ∩ Gi,j and Fi,j = G[Ci,j ∪ Ri,j ].
The following result is due to Demaine and Hajiaghayi [10] (see also the paper

by Eppstein [13]),

Lemma 3 ([10]). Let G be an apex-minor-free graph. Then tw(Fij) = O(j−i).

Now we are ready to describe our algorithm. Let k ≥ 4 be an integer. For a
given board [G; C, R] for an apex-minor-free graph G, the BFS decomposition
L(G, u) = (L0, L1, . . . , Lr) is constructed for some vertex u.

If r ≤ k then gn1(G; C, R) is computed directly. We use the fact that tw(G) =
O(k) and, for example, use Bodlaender’s Algorithm [7] to construct in linear time
a suitable tree decomposition of G. Then, by Theorem 4, gn1(G; C, R) can be
computed in a polynomial time.

Suppose now that r > k. Let Fi = Fi,i+k−1, Ci = Ci,i+k−1 and Ri = Ri,i+k−1.
For i = 1, . . . , k, we construct boards [Fi+(j−1)·k; Ci+(j−1)·k, Ri+(j−1)·k] for 0 ≤
j ≤ p = � r−i+1

k � + 1, and compute

ci =
p∑

j=0

gn1(Fi+(j−1)·k ; Ci+(j−1)·k, Ri+(j−1)·k).

We approximate gn1(G; C, R) by the value gn′
1(G; C, R) = min{ci : i ∈

{1, . . . , k}}.
The following lemma gives properties of the algorithm.

Lemma 4. [�] For any board [G; C, R] for an apex-minor-free graph G and for
each fixed positive integer k,

1. gn′
1(G; C, R) can be computed in a polynomial time.

2. gn1(G; C, R) ≤ gn′
1(G; C, R) ≤ (1 + 4

k ) · gn1(G; C, R).

Finally, we have the following claim.

Theorem 7. The problem of computation of the one-step guard number admits
a PTAS for classes of apex-minor-free graphs and hence, for planar graphs and
for graphs with bounded genus.

Using Theorem 2, we get an approximation for the guard number.
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Corollary 5. For any ε > 0, the guard number can be approximated within the
factor 2 + ε in a polynomial time for apex-minor-free graph classes.

Notice that Corollary 5 together with Proposition 3 yields a PTAS for the guard
number of a restricted class of apex-minor-free graphs. This class includes, but is
not limited to the apex-minor-free graphs with girth at least 6. For some special
cases it is possible to get better results for planar graphs.

Theorem 8. [�] Let [G; C, R] be a board such that G is a planar graph which is
embedded in such a way that all vertices of R ∩N [C] lay on the boundary of the
external face of G[N [C]]. Then gn1(G; C, R) can be computed polynomially.

This theorem means that in this case the guard number can be approximated
polynomially within the factor 2. Moreover, for some cases (see Proposition 3)
the guard number itself can be computed polynomially. For example, when G is
bipartite. Note also that it is possible to give a ”symmetric” sufficient conditions
for the board.
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Abstract. We describe the two-to-one assignment problem, a problem
in between the axial three-index assignment problem and the three-
dimensional matching problem, having applications in various domains.
For the (relevant) case of decomposable costs satisfying the triangle in-
equality we provide, on the positive side, two constant factor approx-
imation algorithms. These algorithms involve solving minimum weight
matching problems and transportation problems, leading to a 2-approxi-
mation, and a 3

2
-approximation. Moreover, we further show that the best

of these two solutions is a 4
3
-approximation for our problem. On the nega-

tive side, we show that the existence of a polynomial time approximation
scheme for our problem would imply P=NP.

Keywords: Assignment problem, matching problem, efficient algorithm,
approximation.

1 Introduction

The two-to-one assignment problem (2-1-AP) in the title of this paper is defined
as follows: Given are a set R of 2n red elements and a set G of n green elements.
A feasible triple (or just triple, for short) consists of two distinct elements from
R and of a single element from G. There is a cost-coefficient cijk given for each
feasible triple, where the indices i and j run over the set R, and the index k runs
over the set G. The goal is to select n triples such that each element from the
ground set R ∪G is used exactly once, and such that the sum of all triple costs
is minimized.

The two-to-one assignment problem is closely related to the three-dimensional
matching problem (3DM) and to the axial three-index assignment problem (3AP),
which play the role of rock and hard place in the title. In the 3DM a single set of
3n elements is given, and any three elements constitute a feasible triple. In the
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3AP three n-element sets are given, and a feasible triple consists of one element
from each of the three sets. We observe that problem 2-1-AP (i) is a special case
of 3DM, and (ii) does contain 3AP as a special case. To see (i), observe that
adding the ‘missing’ cost-coefficients with a sufficiently high cost to an instance
of 2-1-AP produces an equivalent instance of 3DM. An analogous observation
turns any instance of 3AP into an equivalent instance of 2-1-AP, and thus yields
(ii). Hence, difficulty-wise problem the two-to-one assignment problem 2-1-AP
is sandwiched between the rock 3AP and the hard place 3DM.

From the practical point of view, any setting where one selects triples that
consist of two elements from one set and a single element from another set can
be modeled as problem 2-1-AP. We list several applications from diverse areas:

Satellite refueling. Servicing and refueling spacecraft in orbit extends the life-
time of the spacecraft, reduces launching and insurance cost, and increases
operational flexibility and robustness. Dutta & Tsiotras [4] investigate a
scenario where satellites exchange fuel amongst themselves in pairs. This
amounts to pairing up 2n satellites and to assigning these pairs to n loca-
tions in orbit.

Chromosome pairing. A human cell contains two homologous chromosomes
from each of the 22 chromosome classes known as the autosomes, and two
sex chromosomes from the X and the Y class depending on the gender of
the individual. Biyani, Wu & Sinha [1] investigate a joint classification and
pairing problem, where 2n chromosomes have to be paired in homologues
and then assigned to n autosome classes. The cost-coefficients rely on statis-
tical properties of chromosome data and encode certain maximum likelihood
estimates.

Sports scheduling. Urban & Russel [11] discuss the scheduling of football
competitions that take place on n venues that are not associated with any
of the 2n participating teams. Apart from financial constraints, the cost-
coefficients of triples also encode travel distances and fan-related issues.

Gender matching. Back in 1963, Brian Wilson [12] wrote the song “Surf
City”, which deals with a community of surfers in the California of the 1960s.
The song text contains the well-known line “Two girls for every boy!”. A re-
cent cover version by the Go-Gos changed the lyrics into “Two boys for
every girl!”. Problem 2-1-AP covers a variety of scenarios in similar non-
monogamous societies.

In the special case DECOM of 2-1-AP, there is a non-negative symmetric dis-
tance dij specified for every pair (i, j) of elements in R∪G. The cost-coefficients
of feasible triples (i, j, k) are decomposable, which means that they are defined
as

cijk = dij + dik + djk. (1)

If additionally these distances dij satisfy the triangle inequality

dij ≤ dik + djk for all i, j, k (2)

then we denote the resulting special case of 2-1-AP as problem Δ-DECOM.
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Let us first recall several special cases of 3DM and 3AP from the literature,
where the underlying cost-coefficients are decomposable in a similar fashion;
notice however, that in the case of cost-coefficients satisfying (1) and (2), the re-
ductions from 3AP to 2-1-AP, and from 2-1-AP to 3DM sketched above no longer
work. Crama & Spieksma [3] showed that 3AP with decomposable costs (1) does
not admit any polynomial time constant factor approximation algorithm, unless
P=NP. However if the distances also satisfy the triangle inequality (2), then
a polynomial time 4/3-approximation algorithm becomes possible. Spieksma &
Woeginger [10] prove that 3AP with decomposable costs remains NP-hard when
the distances dij are the Euclidean distances of a set of points in the Euclidean
plane. Magyar, Johnsson & Nevalainen [7] describe genetic algorithms for 3DM
with decomposable costs of the form cijk = min{dij + dik, dij + djk, dik + djk}.
Burkard, Rudolf & Woeginger [2] deal with a variant of 3AP with decompos-
able costs of the form cijk = aibjck; this special case is NP-hard and does
not admit any polynomial time constant factor approximation algorithm unless
P=NP.

Our Results
The results of Crama & Spieksma [3] for 3AP easily imply that DECOM is NP-
hard, and that DECOM does not admit any polynomial time constant factor
approximation algorithm unless P=NP. Therefore, we will mainly concentrate
on the approximation of the more tractable variant Δ-DECOM. We will derive
the following results.

– Problem Δ-DECOM is APX-hard, and thus cannot possess a PTAS unless
P=NP.

– We exhibit a polynomial time 4/3-approximation algorithm for Δ-DECOM.
This extends and generalizes the results of Crama & Spieksma [3].

2 APX-Hardness of -DECOM

In this section we prove that Δ-DECOM is APX-hard. Our proof is through an
approximation preserving reduction from the following matching problem.

Problem: Maximum bounded 3-dimensional matching (Max-3DM-B)

Instance: Three sets X = {x1, . . . , xq}, Y = {y1, . . . , yq}, and Z =
{z1, . . . , zq}. A subset T ⊆ X × Y × Z such that any element in X ,
Y , Z occurs in one, two or three triples in T ; note that this implies
q ≤ |T | ≤ 3q.

Goal: Find a subset T ′ of T of maximum cardinality such that no
two triples of T ′ agree in any coordinate; such sets of triples are called
matchings.

Kann [6] established that Max-3DM-B is APX-hard. An instance of this prob-
lem is called a perfect instance, if its optimal solution consists of q triples that

Δ
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Fig. 1. The gadget in the APX-hardness proof of Δ-DECOM

cover all elements in X ∪ Y ∪ Z. Petrank [8] proved that Max-3DM-B has a
hard gap at location 1: This means that even perfect instances of Max-3DM-B

are hard to approximate, and that the existence of a PTAS for perfect instances
would imply P=NP.

The rest of this section is dedicated to the APX-hardness argument for Δ-
DECOM. Starting from an arbitrary instance I ′ of Max-3DM-B, we will build
a corresponding instance I of Δ-DECOM by using the gadget depicted in Fig-
ure 1. We note that this gadget is a simplification of another gadget that has
been designed by Garey & Johnson [5] to establish NP-hardness of the problem
PARTITION INTO TRIANGLES.

– For each element of X ∪ Y ∪ Z in instance I ′ of Max-3DM-B, there is
a corresponding point in instance I of Δ-DECOM; these points are called
element points.

– For each triple (xi, yj , zk) in T , there are six corresponding points in instance
I. These six points are called gadget points, and they are connected through
auxiliary edges to the three element points corresponding to xi, yj , zk as
indicated in Figure 1.

The sets R and G in instance I are defined according to the colors in Figure 1;
dark-grey points are in R, light-grey points are in G. In particular, element
points that correspond to elements of X∪Y are in the set R, and element points
that correspond to elements of Z are in the set G. What about the distances
d(·, ·)? If two points are connected by an auxiliary edge in the gadget in Figure 1,
then they are at distance 1; otherwise their distance equals 2. Note that these
distances satisfy the triangle inequality, and note that any two gadget points
from different gadgets are at distance 2. This completes the description of the
instance I of Δ-DECOM.

Note that instance I contains 3q + 6|T | points. Any feasible solution parti-
tions the points into q + 2|T | triangles of perimeters 3, 4, 5, and 6. Triangles of
perimeter 3 are called good, and triangles of perimeter 4 or more are called bad.
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The following observation will be useful.

Observation 1. Consider a feasible solution, in which all nine points in Fig-
ure 1 belong to good triangles. Then either the three element points are all
matched with two gadget points from this gadget, or none of them is matched
with a point from this gadget.

The following two lemmas are easy consequences of Observation 1.

Lemma 1. Instance I ′ of Max-3DM-B possesses a matching of size q, if and
only if the constructed instance I of Δ-DECOM satisfies OPT(I) = 3q + 6|T |.
Lemma 2. Let δ ≥ 0 be a real number. If instance I has a feasible solution of
cost at most 3q +6|T |+ δq, then instance I ′ possesses a matching of size at least
(1− 4δ)q.

Proof. Fix some feasible solution for instance I with cost at most 3q +6|T |+ δq.
Note that at most δq of the triangles in this feasible solution are bad. We call
a gadget damaged, if at least one of its six gadget points lies in a bad triangle.
We call an element point damaged, if (i) it is in a bad triangle, or if (ii) it is in
a good triangle but together with a gadget point from a damaged gadget.

There are at most 3δq damaged element points of type (i). Furthermore,
there are at most 3δq damaged gadgets, each of which may yield at most three
damaged element points of type (ii). Hence altogether there are at most 12δq
damaged element points, which leads to at least 3(1− 4δ)q undamaged element
points. Every undamaged element point is in a triangle with two gadget points
from the same undamaged gadget, and there are two other undamaged element
points that are in triangles with points from the very same gadget. Hence the
3(1 − 4δ)q undamaged element points can be divided into groups of three that
correspond to (1 − 4δ)q undamaged gadgets. Then the corresponding (1 − 4δ)q
triples in instance I ′ form a matching.

In case we start the construction from a perfect instance I ′ of Max-3DM-B,
Lemma 1 yields OPT(I) = 3q + 6|T | for the resulting instance I. A (1 + ε)-
approximation algorithm for Δ-DECOM would yield an approximate objective
value of at most

(1 + ε) ·OPT(I) ≤ 3q + 6|T |+ 21ε · q.
Here we have applied |T | ≤ 3q. Then Lemma 2 yields a matching of size at least
(1− 84ε)q for instance I ′. Hence, a PTAS for Δ-DECOM would imply a PTAS
for perfect instance of Max-3DM-B.

Theorem 1. Δ-DECOM is APX-hard.

Similar arguments can be used to show that also the special cases of problems
3AP and 3DM with decomposable costs with dij ∈ {1, 2} are APX-hard.

3 Approximation Results for -DECOM

We formulate and analyze three polynomial time approximation algo-
rithms for Δ-DECOM: We first design a 2-approximation algorithm, then a

Δ



164 D. Goossens et al.

3/2-approximation algorithm, and finally combine these two algorithms to
get a 4/3-approximation. Our approach adds a number of new ideas to the
work of Crama & Spieksma [3]. Our methods involve solving assignment prob-
lems, weighted matching problems, and transportation problems; we refer to
Schrijver [9] for an overview of methods and achievable time complexities for
these problems.

3.1 The Transportation Heuristic

Consider some instance I of Δ-DECOM. Our first heuristic TP uses the following
transportation problem as a main ingredient:

min
∑

i∈R

∑
k∈G dikxik

s.t.
∑

i∈R xik = 2 for all k ∈ G∑
k∈G xik = 1 for all i ∈ R

xik ∈ {0, 1} for all i ∈ R, for all k ∈ G.

Let x∗ denote an optimal solution to this transportation problem, which assigns
to every element of G two distinct elements from R. Then heuristic TP returns
the corresponding feasible solution X = {(i, j, k) : x∗

ik = 1, x∗
jk = 1}. For the

analysis of TP we fix an optimal set Z of feasible triples for instance I. We
deduce successively:

TP(I) =
∑

(i,j,k)∈X

(dij + dik + djk) ≤ 2
∑

(i,j,k)∈X

(dik + djk) (3)

≤ 2
∑

(i,j,k)∈Z

(dik + djk) ≤ 2 ·OPT(I). (4)

Here the inequality in (3) follows by applying the triangle inequality in order
to bound dij . The first inequality in (4) holds since the transportation problem
minimizes the underlying value

∑
dik + djk. The second inequality in (4) is

trivial.
To see that equality may be attained in (4), consider the instance I depicted in

Figure 2. This instance has R = {r1, r2, r3, r4} and G = {g1, g2} with distances as
indicated in the picture. The optimal solution Z = {(r1, r2, g1), (r3, r4, g2)} has
cost OPT(I) = 4. If the transportation problem assigns r1 and r3 both to g1 and
assigns r2 and r4 both to g2, then TP ends up with X = {(r1, r3, g1), (r2, r4, g2)},
and hence TP(I) = 8. All in all, this yields the following theorem.

Theorem 2. Heuristic TP is a polynomial time 2-approximation algorithm
for problem Δ-DECOM. Moreover, there exist instances I for which TP(I) =
2OPT(I).
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Fig. 2. A worst case instance for heuristic TP

3.2 The Match-and-Assign Heuristic

The Match-and-Assign heuristic MA for Δ-DECOM goes through two stages
that both solve a minimum weight matching problem: In the first stage, MA
computes a minimum weight matching M for the 2n elements in R under the
distances dij with i, j ∈ R. In the second stage, MA computes a minimum weight
assignment of the pairs (i, j) in M to the elements k in G under the costs cijk.
This second stage can be described by the following integer program:

min
∑

(i,j)∈M

∑
k∈G cijkxijk

s.t.
∑

(i,j)∈M xijk = 1 for all k ∈ G∑
k∈G xijk = 1 for all (i, j) ∈M

xijk ∈ {0, 1} for all (i, j) ∈M, k ∈ G.

For an optimal solution x∗ of this assignment problem, heuristic MA returns the
feasible solution X = {(i, j, k) : x∗

ijk = 1}. For the analysis of MA we fix an
optimal solution Z of I.

Lemma 3. There exists a partition of R into two subsets R1 and R2 with |R1| =
|R2| = n that has the following properties.

– Every pair (i, j) ∈M has one element in R1, and the other element in R2.
– In the optimal solution Z, every element k ∈ G is in a triple with one element

Z1(k) in R1 and one element Z2(k) in R2.

Proof. We construct a multi-graph with 2n edges on the vertex set R. The edge
set contains all n edges in M ; these edges are called matching-edges. Further-
more, for every triple (i, j, k) in the optimal solution Z there is a corresponding
edge between i and j; these edges are called triple-edges. Since every vertex in
this multi-graph is incident to exactly one matching-edge and one triple-edge,
the multi-graph is a collection of even cycles.
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We consistently orient the edges along every cycle, so that every vertex has
precisely one in-going and one out-going arc. If a triple-edge corresponding to
triple (i, j, k) is oriented from i to j, then we define Z1(k) = i and Z2(k) = j, and
we put i into R1 and j into R2. This construction satisfies all desired properties.
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Fig. 3. A worst case instance for heuristic MA

We define another feasible solution Y that consists of n triples from R1×R2×
G: A triple (i, j, k) is in Y , if and only if (i, j) ∈M and Z2(k) = j. This yields

MA(I) =
∑

(i,j,k)∈X

cijk ≤
∑

(i,j,k)∈Y

cijk (5)

=
∑

(i,j,k)∈Y

(dij + dik + djk) ≤ 2
∑

(i,j,k)∈Y

(dij + djk) (6)

= 2
∑

(i,j,k)∈Y

dij + 2
∑

(i,j,k)∈Z

djk ≤ 2
∑

(i,j,k)∈Z

(dij + djk). (7)

Here the inequality in (5) follows, since the second stage of MA matches the
pairs in M at minimum cost with the elements of G, whereas Y matches them
according to Z2(·). The inequality in (6) follows by applying the triangle inequal-
ity in order to bound dik. Finally the inequality in (7) follows from the fact that
matching M is the minimum cost matching for the set R.

Next, by a similar argument we get the following inequality that is perfectly
symmetric to inequality (7):

MA(I) ≤ 2
∑

(i,j,k)∈Z

(dij + dik). (8)

Adding (7) to (8) and using the triangle inequality entails

MA(I) ≤
∑

(i,j,k)∈Z

(2dij + dik + djk)

≤
∑

(i,j,k)∈Z

3
2
(dij + dik + djk) =

3
2
·OPT(I). (9)



Between a Rock and a Hard Place: The Two-to-One Assignment Problem 167

To see that equality may hold in (9), consider the instance I in Figure 3. This
instance has R = {r1, r2, r3, r4} and G = {g1, g2}. The distances are as indi-
cated in the picture; whenever two elements are not connected by an edge, their
distance equals 2. An optimal solution is Z = {(r1, r4, g1), (r2, r3, g2)} with cost
OPT(I) = 8. In the first stage, heuristic MA may find the matching M =
{(r1, r2), (r3, r4)}. Then the second stage yields X = {(r1, r2, g1), (r3, r4, g2)},
and MA(I) = 12. We summarize our results in the following theorem.

Theorem 3. Heuristic MA is a polynomial time 3/2-approximation algorithm
for problem Δ-DECOM. Moreover, there exist instances I for which MA(I) =
(3/2)OPT(I).

3.3 The Combined Heuristic

Do there exist instances of Δ-DECOM on which both TP and MA perform
poorly (that is, close to their worst case performance guarantees)? We will
demonstrate that the answer is actually no. The combined heuristic COMB runs
TP and MA on instance I, and then outputs the better of the two solutions.

In the analysis of COMB we use the same notation as above. Let I be an
instance of Δ-DECOM, and let Z be an optimal solution of I. We add (4), (7),
and (8) to get

3 · COMB(I) ≤ TP(I) + MA(I) + MA(I)

≤ 2
∑

(i,j,k)∈Z

(dik + djk) + 2
∑

(i,j,k)∈Z

(dij + dik) + 2
∑

(i,j,k)∈Z

(dij + djk)

= 4
∑

(i,j,k)∈Z

(dij + dik + djk) = 4 ·OPT(I). (10)
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Fig. 4. A worst case instance for heuristic COMB
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To see that equality may be attained in (10), consider the instance I depicted in
Figure 4. This instance has |R| = 8 and |G| = 4. All edges in the picture corre-
spond to distance 1, and all non-edges in the picture correspond to distance 2.
Observe the following: If a triple (i, j, k) forms a triangle in the picture (with
all three edges present), then its cost is 3. If a triple does not form a triangle,
then its cost is at least 4. Now an optimal solution consists of the four triangles
(r1, r8, g1), (r2, r3, g2), (r6, r7, g3), and (r4, r5, g4), and the corresponding optimal
cost is OPT(I) = 12. How do our heuristics TP and MA behave on instance I?

– Suppose that the transportation problem in heuristic TP assigns r5 and r8
to g1; assigns r2 and r7 to g2; assigns r3 and r6 to g3; and assigns r1 and r4 to
g4. Then each of the four resulting triples has cost 4, and hence TP(I) = 16.

– Suppose that the first stage of heuristic MA finds the matching (r1, r2),
(r3, r4), (r5, r6), and (r7, r8). Note that none of these four pairs belongs to
any triangle in Figure 4. Hence, no matter how the second stage matches the
pairs to elements of G, every resulting triple will incur a cost of at least 4.
This leads to MA(I) = 16.

To summarize, the instance in Figure 4 is a worst case instance for heuristic
COMB with COMB(I) = (4/3)OPT(I). We formulate the following theorem.

Theorem 4. COMB is a polynomial time 4/3-approximation algorithm for
Δ-DECOM. Moreover, there exist instances I for which COMB(I) =
(4/3)OPT(I).

4 Conclusion

We introduced the two-to-one assignment problem, and investigated the approx-
imability of a special case of this problem, called Δ-DECOM. Possible avenues
for further research include

– finding approximation algorithms for the corresponding special case of 3DM,
– investigating the geometric case of Δ-DECOM, and
– decreasing the gap between the current lower and upper bound of what is

achievable (in terms of approximation)) by polynomial time algorithms.
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Abstract. We study two related problems in non-preemptive scheduling and
packing of malleable tasks with precedence constraints to minimize the make-
span. We distinguish the scheduling variant, in which we allow the free choice
of processors, and the packing variant, in which a task must be assigned to a
contiguous subset of processors.

For precedence constraints of bounded width, we completely resolve the com-
plexity status for any particular problem setting concerning width bound and
number of processors, and give polynomial-time algorithms with best possible
performance. For both, scheduling and packing malleable tasks, we present an
FPTAS for the NP-hard problem variants and exact algorithms for all remain-
ing special cases. To obtain the positive results, we do not require the common
monotonous penalty assumption on processing times, whereas our hardness re-
sults hold even when assuming this restriction.

With the close relation between contiguous scheduling and strip packing, our
FPTAS is the first (and best possible) constant factor approximation for (mal-
leable) strip packing under special precedence constraints.

1 Introduction

Parallelism plays a key role in high performance computing. The apparent need for
adequate models and algorithms for scheduling parallel task systems has attracted sig-
nificant attention in scheduling theory over the past decade [4,14]. Several models have
been proposed, among which scheduling malleable tasks as proposed in [17] is an im-
portant and promising model [11].

In the problem of scheduling malleable tasks, we are given a set J = {1,2, . . . ,n} of
tasks and m identical parallel processors. The tasks are malleable, which means that the
processing time of a task j ∈ J is a function p j(α j) depending on the number of pro-
cessors α j ∈ N allotted to it. The tasks must be processed non-preemptively respecting
precedence constraints given by a partial order (J,≺): For any i, j ∈ J, let i ≺ j de-
note that task i must be completed before task j starts processing. Two tasks are called
incomparable if neither i ≺ j nor j ≺ i, otherwise, they are called comparable. The
width ω of a partial order is the maximum number of pairwise incomparable tasks.

An allotment (α j) j∈J and an assignment of start times σ j ≥ 0 for each task j ∈ J
establish a feasible schedule if the precedence constraints are respected and at no point

E. Bampis and K. Jansen (Eds.): WAOA 2009, LNCS 5893, pp. 170–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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in time the number of required processors exceeds the number of available processors m.
The goal is to find a feasible schedule of minimum total length, called makespan.

Quite some research has been dedicated to malleable task scheduling since its in-
troduction in [17]. For the problem with general precedence constraints among tasks,
Lepère et al. [13] provide an approximation algorithm with performance guarantee 3+√

5≈ 5.236. For special cases, such as series-parallel precedence constraints and prece-
dence constraints of bounded width, they prove a ratio of (3 +

√
5)/2 ≈ 2.618 in the

same paper, improving on an earlier factor 4+ε approximation for trees by [12]. Jansen
and Zhang [11] consider the case of general precedence constraints and provide an algo-
rithm with performance guarantee ≈ 4.730598, which they show to be asymptotically
tight.

All these results crucially require the monotonous penalty assumption, which ensures
that for any malleable task j, its processing time function p j(α j) is non-increasing, and
its work function α j p j(α j) is non-decreasing. In this work, we abandon this restriction,
such that an arbitrary set of feasible allotments can be prescribed (simply set the task
duration for forbidden allotments to some large constant). Notice that scheduling paral-
lel tasks, for which the number of allotted processors is already given, is a special case
in our model if m is polynomially bounded in the input. This assumption is reasonable
and quite common, see [10]. It is necessary at this point, because the input encoding of
the malleable task scheduling problem is polynomial in m, while the input of a parallel
task scheduling problem is polynomial in logm.

A remarkable amount of literature deals with scheduling independent parallel tasks.
The only work concerning precedence constraints, that we are aware of in this set-
ting, investigates the special case of chains [2]. Therein, Błażewicz and Liu show that
scheduling unit size parallel tasks with precedence constraints that form chains is NP-
hard already for three processors. Assuming monotonously increasing (decreasing) pro-
cessing times along chains, they give polynomial-time algorithms.

We also consider the contiguous variant of the malleable scheduling problem in
which we require that each task is processed on a subset of processors with consec-
utive indices. That such a schedule is desirable in certain applications is mentioned
already in [17]. Duin and van der Sluis [5] investigate contiguous scheduling of paral-
lel tasks in the context of assigning check-in counters at airports; they call it adjacent
scheduling. Another problem closely related to contiguous scheduling is strip packing,
i.e., the problem of packing rectangles in a strip of width 1 such that the packing height
is minimized. More generally, we define the discrete malleable strip packing problem
as strip packing with malleable rectangles: For strip width m, each rectangle j may have
a width α j ∈ {1, . . . ,m}, and the height of j is a function depending on α j.

The classical strip packing problem with arbitrary precedence constraints has been
investigated by Augustine et al. [1]; they present a factor Θ(logn) approximation. As
lower bounds, they use the longest chain, i.e., the largest set of pairwise compara-
ble tasks, and the total volume to be packed. Since these bounds immediately apply
for scheduling parallel tasks as well, the approximation guarantee carries over. More-
over, with the techniques in [13] or [11], the result can be transferred to malleable task
scheduling with arbitrary precedence constraints if the monotonous penalty assumption
holds, see [9]. Augustine et al. [1] also provide a packing instance for which the gap
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between the optimal value and both lower bounds is indeed logn, which indicates that
new ideas and bounds are necessary for improving on this performance guarantee.

Our results. We derive a fully polynomial-time approximation scheme (FPTAS) for
scheduling malleable tasks under precedence constraints of bounded width, ω . This sig-
nificantly improves on the previously best known approximation ratio of (3+

√
5)/2≈

2.618 in [13] under the restriction to monotonous penalty functions. To the best of
our knowledge, our FPTAS also constitutes the first constant factor approximation for
scheduling parallel tasks with precedence constraints. The algorithm is a dynamic pro-
gramming scheme based on Dilworth’s well-known decomposition theorem [3] which
has been widely used to solve related scheduling problems [8,13,16,18].

For the special case ω = m = 2, we provide an efficient algorithm that solves the
problem to optimality. We complement our positive results by showing that the prob-
lem becomes NP-hard for ω ≥ 3 or m ≥ 3. Thus, our algorithms are best possible,
unless P=NP.

When scheduling parallel tasks, our positive results can be extended even further,
yielding an efficient exact algorithm for ω ≥ 2 and any m. All other cases are shown
to be NP-hard. Furthermore, we resolve the complexity question for precedence con-
straints which form caterpillars, a special case of trees, by showing that these problems
are also NP-hard for malleable tasks and even parallel tasks, for any m.

Regarding contiguous scheduling, or discrete malleable strip packing, all of our
hardness results carry over. Also, the FPTAS can be adapted naturally. For the special
case of ω = 2, our algorithm efficiently computes optimal solutions for classical (non-
malleable) strip packing. Similarly, we efficiently solve discrete malleable strip packing
for ω = m = 2 to optimality. Under the assumption that the width of the strip m is polyno-
mially bounded (see e.g. also [10]), our FPTAS is the first constant factor approximation
for classical strip packing under special precedence constraints. The best previous result
is a general factor Θ(logn) approximation for arbitrary precedence constraints in [1,9].

Quite notably, unlike most previous algorithms for malleable scheduling, none of
our algorithms requires the monotonous penalty assumption on processing times. On
the other hand, our hardness results hold even when assuming this restriction.

2 A Fully Polynomial-Time Approximation Scheme (FPTAS)

Given a scheduling instance with precedence constraints of width bounded by a con-
stant ω , the number of tasks processed concurrently in a feasible schedule can never
exceed ω . On the other hand, any maximal set A of incomparable tasks partitions the
set of all tasks into two subsets containing tasks that must be processed before, re-
spectively after, some task in A. We exploit this structure to obtain an exact dynamic
programming algorithm with pseudo-polynomial running time. Then, we show how to
turn this algorithm into an FPTAS.

2.1 Dynamic Programming Algorithm (DP)

The structure of our dynamic program is based on a correlation between feasible sub-
schedules and ideals of orders as described in [15]. An ideal I of (J,≺) is a subset of J
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such that every task of I implies all its predecessors to be elements of I. In order to
respect precedence constraints, every initial part of a feasible schedule must consist of
a subset of tasks fulfilling the ideal property. We will define our dynamic program in
terms of finding paths in a directed graph based on ideals; reaching an ideal I′ from I⊂ I′
will correspond to feasibly extending a subschedule by the tasks in I′ \ I.

Utilizing Dilworth’s Decomposition Theorem [3] which states that for any partial
order (J,≺) of width ω , there exists a partition of (J,≺) into ω chains C1, . . . ,Cω ,
we can represent order ideals as follows. For a given chain decomposition C1, . . . ,Cω ,
every ideal I of (J,≺) can be described by an ω-tuple (Ii)i=1,...,ω , where component Ii

indicates that the first Ii tasks of chain Ci are contained in I. Thus, the number of distinct
ideals is bounded by nω . Such a chain decomposition can be found in polynomial time,
see e.g. Fulkerson [6]. To simplify notation, we identify Ii with the Ii-th task of chain Ci

and denote its processing time as pi(·).
A state in our dynamic program is a triple [I,α,C] which specifies an ideal I, repre-

sented by its front tasks I1, . . . , Iω , as well as an allotment vector α = (αi)i=1,...,ω and
a vector of completion times C = (Ci)i=1,...,ω for the front tasks of I. This information
also defines start times σi := Ci− pi(αi) for all front tasks (Ii)i=1,...,ω . We call a state
valid, if the number of processors used by its front tasks does not exceed the number
of available processors m at any completion time Ci. If Ii = 0, no task of chain Ci is
contained in I, and we set αi and Ci to 0. We call the particular state � := [ /0,0,0] start
state and every state [I,α,C] with I = J end state.

Every feasible subschedule has a representation as a state defined by the allotment
values and the completion times of its front tasks. We establish a state graph G by link-
ing two valid states F = [I,α,C], F ′ = [I′,α ′,C′] by an arc (F,F ′), if F ′ is an extension
of F by one task j with feasible α j and Cj. More formally, the conditions for inserting
the arc are:

1. The ideals differ only in one component i, and I′i = Ii + 1. All other components
of I′,α ′ and C′ remain equal.

2. The start time σ ′i of I′i in F ′ respects precedence constraints, i.e., σ ′i ≥ Cj for all
front tasks (I j) j=1,...,ω with I j ≺ I′i

3. The new task starts no earlier than the other front tasks, i.e., σ ′i ≥ σ ′j for all j =
1, . . . ,ω .

Note, that the validity of a state as well as conditions 1–3 can be checked in con-
stant, i.e., O(ω2), time.

Condition 1 clearly ensures, that across a path P in G from � to an end state, every
task in J is assigned exactly one α j and σ j. By conditions 2 and 3, and the ideal property
of the states, these start times respect all precedence constraints. Finally, the number of
available processors is never exceeded due to condition 3: When a new task j is added
to F with start time σ j and allotment α j, all tasks in I active at or after σ j are front tasks,
thus they are all taken into account when determining α j. Furthermore, the makespan
of such schedule is given by the largest Ci in its end state.

We have hence established, that any path P in G corresponds to a feasible schedule
with makespan determined by the end state of P. We will now prove that the converse
holds as well.
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Lemma 1. Any feasible schedule S with makespan Cmax corresponds to a path in G
from � to an end state with latest completion time Cmax.

Proof. Our argument is inductive, and we start with an arbitrary feasible schedule S
containing all tasks in J. The graph G obviously contains an end state F ′ = [I′,α ′,C′],
in which α ′ and C′ respectively correspond to the allotment and completion times of the
last tasks in the chains C1, . . . ,Cω of an appropriate chain decomposition of J. These
tasks form the front tasks of F ′, defining ideal I′ containing all tasks in J. Let j denote a
front task of I′ with the latest start time. Now I := I′ \ { j} is again an ideal. Thus, there
is a valid state F = [I,α,C] in G with α and C corresponding to the allotment values
and completion times of the front tasks of I in S. By construction and the feasibility
of S the states F and F ′ fulfill conditions 1–3. Hence, G contains the edge (F,F ′). By
induction, this yields the desired result. ��
With Lemma 1 we find an optimal schedule as follows: We search for an end state
with minimum makespan reachable from the start state, and create the schedule by
backtracking.

The number of distinct ideals I was already mentioned to be bounded by nω , where-
as the number of feasible allotments for each ideal does not exceed mω . The optimal
makespan is at most by ZUB = npmax with pmax := max{p j(m) | j ∈ J}. Thus, assuming
w.l.o.g. that processing times are integral (standard scaling argument), the task com-
pletion time can attain up to ZUB different values. Hence, the number of valid states is
bounded by nωmωZω

UB which gives a bound on the overall running time of the dynamic
programming algorithm, O(n2ωm2ωZ2ω

UB).

Theorem 1. For a given scheduling instance with precedence constraints of width ω ,
algorithm DP finds a feasible solution with minimum makespan in time O(n2ωm2ωZ2ω

UB).

2.2 FPTAS

In a fully polynomial time algorithm, we cannot afford to consider all values in [0,ZUB]
for possible completion times of front tasks. Using a standard rounding technique, this
number can be reduced to be polynomially bounded in the input size and 1/ε at the cost
of increasing the makespan by at most a factor (1 + ε) in the following way.

For a given parameter ε > 0, we partition the interval [0,ZUB] into subintervals
of size εZLB/n and restrict the possible completion times to the set E of endpoints
of the subintervals. This reduces the number of values for possible completion times
to nZUB/(εZLB)≤ n2/ε , for some lower bound on the optimal value ZLB ≥ pmax. Now
we run algorithm DP’ which is a slightly modified variant of algorithm DP in which we
round the completion times in a state to the nearest value in E . This restriction increases
an optimal solution value of DP by at most εZLB/n per task. Thus, DP’ finds a sched-
ule with a makespan that exceeds the optimal makespan found by DP by at most εZLB

time units. We skip further details and refer to [19] for an overview of techniques for
obtaining FPTASs.

Theorem 2. There exists an FPTAS for scheduling malleable tasks with precedence
constraints of bounded width with running time.
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In case a particular allotment is given, the number of states which need to be consid-
ered obviously reduces significantly. Here, the running time of DP drops to O(n2ωZ2ω

UB),
and we obtain an FPTAS for scheduling parallel tasks, even if m is not polynomially
bounded.

3 Optimally Solvable Special Cases

The problem of scheduling malleable tasks is clearly optimally solvable in polynomial
time if either the number of processors is m = 1 or the width of the partial order is ω = 1.
Thus, we assume m,ω ≥ 2 from now on. We provide an efficient algorithm solving the
special case m = ω = 2 to optimality. It is based on the the idea of the dynamic program
in Sec. 2.1 and the following observations regarding optimal (sub)solutions for special
allotments. We prove NP-hardness of all remaining cases of m and ω in Sec. 4.

Observation 1. Given a subset of tasks J′ ⊆ J with an allotment α j = 2 for all j ∈ J′,
an optimal schedule for J′ can be found in polynomial time if m = ω = 2.

Observation 2. Given a subset of tasks J′ ⊆ J with an allotment α j = 1 for all j ∈ J′,
an optimal schedule for J′ can be found in polynomial time if m = ω = 2.

While the former is obvious, the latter can be realized by list scheduling tasks j in
topological order, and setting σ j = maxi≺ j{σi + pi(1)}, or σ j = 0 if no such i exists.
The makespan obtained clearly coincides with a longest chain in (J,≺) w.r.t. processing
times under (α j) j∈J , a lower bound on the optimum. The resulting schedule is also
feasible since ω = 2.

Theorem 3. The problem of scheduling malleable tasks with precedence constraints of
width bounded by ω = 2 on m = 2 processors can be solved optimally in polynomial
time.

Proof. For m = 2, any optimal solution can be split into maximal subsequent subsched-
ules SJ′ for subsets J′ ⊆ J, such that in any SJ′ , either α j = 1 for all j ∈ J′, or α j = 2
for all j ∈ J′. We say these subschedules are of type one or type two, respectively. Their
makespans simply add up to the makespan of the whole schedule.

We now define a graph G whose nodes correspond to the (polynomially many) ideals
of (J,≺) as in Sec. 2.1, such that any solution of the above structure is represented as
a path in G—a shortest path in G will correspond to an optimal schedule. There is an
edge from I to I′ in G, if and only if I ⊂ I′. Such an edge corresponds to a subsched-
ule SJ′ for the tasks in J′ := (I′ \ I) ⊆ J as follows. If J′ forms a chain in (J,≺), in
particular, if |J′|= 1, we set α j = argmin{p j(α) |α ∈ {1,2}} for all j ∈ J′ and define
the corresponding schedule by concatenating optimal schedules of type one and two for
the cases α j = 1 and α j = 2, respectively. Otherwise, we define SJ′ to be an optimal
subschedule of type two. Note that by Obs. 1 and 2, all of these SJ′ can be computed
in polynomial time. The lengths of edges are set to the makespans of these optimal
subschedules.

Clearly, paths in G from /0 to J correspond to feasible schedules of the same length.
Furthermore, any optimal schedule is represented as a path in G, since for each of its
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subsolutions SJ′ of type one, there are ideals I, I′ with J′ = I′ \ I connected by an edge,
and for each SJ′ of type two, there is a path from I to I′ across ideals only differing by
one task and J′ = I′ \ I. ��
Using the same idea as in the proof above, we can state an even stronger positive result
for the special case of parallel tasks.

Corollary 1. The problem of scheduling parallel tasks with precedence constraints of
width ω = 2 can be solved optimally in polynomial time for any number of processors m.

The result ensues when redefining the notions of subschedules of type one and type two
in the proof of Thm. 3. We adapt the correspondence between edges in the ideal graph
and subschedules accordingly: Define maximal subschedules containing no concurrent
tasks to be of type one, and those in which the processing interval of any tasks overlaps
with that of another to be of type two. Now note that an analog of Obs. 2 remains valid.

4 Hardness Results

In this section we show that the results in the previous section are the best that we can
hope for, unless P=NP. We fully settle the complexity status of scheduling malleable
tasks under precedence constraints of bounded width ω by showing that the problem is
NP-hard even under the monotonous penalty assumption when ω ≥ 3,m≥ 2 (Thm. 4)
or ω = 2,m ≥ 3 (Thm. 5), where the former result holds for parallel tasks as well.
We complement these results with proving NP-hardness for precedence constraints that
form a caterpillar, i.e., a special tree.

Theorem 4. The problem of scheduling malleable tasks with precedence constraints
of width bounded by a constant ω ≥ 3 on any fixed number of processors m ≥ 2 is
NP-hard, even under the monotonous penalty assumption.

Proof. We give a reduction from the NP-complete PARTITION problem, see [7], to
the scheduling problem with precedence constraints that form 3 independent chains. It
is easy to see that this specific problem variant can be reduced to any other problem
with ω ≥ 3 and m≥ 2 by adapting the number of processors needed by tasks to achieve
the processing times used in the reduction.

Consider an instance P of PARTITION: Given a set of values {vi}i=1,...,n with V :=
∑n

i=1 vi, does there exist a partition A1,A2 of {1, . . . ,n} such that ∑i∈A1
vi = ∑i∈A2

vi =
V/2?

We construct an instance S of our scheduling problem by borrowing ideas from a
reduction for scheduling with communication delays in [18]. Instance S consists of 3n
tasks to be scheduled on m = 2 processors. The precedence relations form 3 chains
{ai}i=1,...,n, {bi}i=1,...,n, and {ci}i=1,...,n of n tasks each. Suppose that the tasks of each
chain are ordered with respect to their indices, i.e., ai ≺ a j for all i < j. Each node in
chains {ai}i=1,...,n and {bi}i=1,...,n has processing time V for any processor allotment.
Each task i in chain {ci}i=1,...,n corresponds to element i of instance P and has pro-
cessing time vi independently of the processor allotment. Note that all processing times
obey the monotonous penalty assumption.



Scheduling and Packing Malleable Tasks 177

We prove that there is a feasible schedule for instance S with makespan at most nV +
V/2 if and only if P is a yes-instance.

Let A1,A2 be a partition satisfying ∑i∈A1
vi = ∑i∈A2

vi = V/2, and let π(i) denote the
index of the subset containing i. Consider the schedule, in which all tasks ai are processed
on the first processor, all tasks bi on the second processor, and every task ci on proces-
sor π(i) placed between task ai−1 and ai respectively bi−1 and bi. More formally, we de-
fine start times for all tasks σai := ∑k∈A1,k≤i vk +(i−1)V, σbi := ∑k∈A2,k≤i vk +(i−1)V,
and σci := ∑k∈Aπ(i),k<i vk +(i−1)V . Simple calculations show that no precedence rela-
tion is violated and that the number of used processors never exceeds 2. Thus, there exists
a feasible schedule with makespan nV +V/2.

Consider now a schedule for instance S with makespan at most nV +V/2. Clearly,
on each processor there are exactly n tasks with processing time V ; these are the tasks
of chains {ai}i=1,...,n and {bi}i=1,...,n. Thus, on every processor there are V/2 time units
left for processing the remaining tasks of chain {ci}i=1,...,n. And therefore, there must
exist a partition for instance P. ��
The reduction in the proof of Thm. 4 adapts naturally to the problem of scheduling
parallel tasks.

Corollary 2. The problem of scheduling parallel tasks, each using exactly one proces-
sor, under precedence constraints of width bounded by a constant ω ≥ 3 on any fixed
number of processors m≥ 2 is NP-hard.

Theorem 5. The problem of scheduling malleable tasks with precedence constraints
of width ω = 2, is NP-hard on any fixed number of processors m ≥ 3, even under the
monotonous penalty assumption.

Proof. We give a reduction from an arbitrary instance of the NP-complete KNAPSACK

decision problem, see [7], to the problem of scheduling 2 independent chains of tasks
on m = 3 processors. It is easy to see that this case can be reduced to any problem
setting with m > 3 by adapting the number of processors needed by tasks to achieve the
processing times used in the reduction.

Let K denote an instance of KNAPSACK in slightly modified formulation: Given a set
of values {vi}i=1,...,n, a set of weights {wi}i=1,...,n and numbersV and W , does there exist
a set A⊆ {1, . . . ,n} with total weight at most W , i.e., ∑i∈A wi ≤W and a complement
valued at most V , i.e., ∑i/∈A vi ≤ V? By a standard scaling argument we may assume
w.l.o.g. that V = W .

We construct a corresponding instance S of our scheduling problem as follows: For
each item i = 1, . . . ,n, we introduce tasks ji and j̄i. All ji, and all j̄i respectively, form
a chain in the order of their indices. In each chain, between any two tasks, there is an
additional task hi, respectively h̄i, which has processing time ph := nmaxi{vi,wi} for
any allotment of processors. All tasks ji, j̄i have the same processing time pb := 2ph

on 2 and 3 processors; when processed by a single processor, the processing time of
task ji increases by vi, and the processing time of task j̄i increases by wi, respectively.
These processing times clearly obey the monotonous penalty assumption.

We prove that the KNAPSACK instance K has a solution (yes-instance) if and only if
there is a schedule with makespan at most (n−1)ph + npb +V .
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Given a feasible solution set A for K we can construct a feasible scheduling solution
for the corresponding instance S as follows: For every item i ∈ A we allot 2 processors
to task ji and 1 processor to task j̄i; for every item i /∈ A vice versa. The remaining
tasks get 1 processor. We schedule every task directly after the completion of its prede-
cessor, i.e., σ ji := (i−1)ph + ∑k<i p jk (α jk ), σhi := (i−1)ph + ∑k≤i p jk(α jk ); the start
times σ j̄i and σh̄i

are defined the same way. In this schedule, the processing of task ji−1

is completed before the processing of task j̄i starts, i.e.,

σ ji−1 + p ji−1(α ji−1) = (i−2)ph + ∑
k≤i−1

p jk(α jk ) = (i−2)ph + ∑
k≤i−1

pb + ∑
k≤i−1,k/∈A

vk

≤ (i−1)ph + ∑
k<i

pb ≤ σ j̄i .

This holds analogously for j̄i−1 and ji. Thus, there are never more than 3 proces-
sors in use and the schedule is feasible. Moreover, its makespan is (n− 1)ph + npb +
max{∑i/∈A vi,∑i∈A wi} which is at most (n−1)ph + npb +V .

For a given schedule with makespan at most (n−1)ph +npb +V we can construct a
feasible set A for the KNAPSACK instance K. Suppose there are two tasks ji and j̄i with
disjoint processing intervals; w.l.o.g. let j̄i be processed before ji. Then all predecessors
of j̄i must be processed before j̄i and all successors of ji must be processed after task ji.
Thus, the makespan of the schedule is at least npb +(n−1)ph + pb > (n−1)ph +npb +
V . Thus, for any two tasks ji or j̄i at least one of them must be processed on a single
processor.

Let A contain all items i that correspond to tasks j̄i using a single processor. It is easy
to verify that this set is a feasible solution to K. Given the makespan of the schedule, we
have that (n−1)ph +npb +∑i∈A wi ≤ (n−1)ph +npb +V which implies ∑i∈A wi ≤V .
On the other hand, (n− 1)ph + npb + ∑i/∈A vi ≤ (n− 1)ph + npb + V which satis-
fies ∑i/∈A vi ≤V . ��
Note that the use of malleable tasks in the reduction above is imperative—thus, the
proof does not carry over to the case of parallel tasks. However, in Cor. 1 we have
already shown this case to be tractable for ω = 2 and any m.

We conclude our complexity investigations by showing that the scheduling problem
is also NP-hard under precedence constraints that form a caterpillar, i.e., a special tree
composed of a path and leaves only. This result still holds for parallel tasks or when
assuming monotonous penalties. Recall that trees are a special case of series-parallel
orders. This complexity status was left open in previous work presenting approximation
algorithms for trees and generally series-parallel precedence constraints for malleable
tasks in [12,13].

Theorem 6. The problem of scheduling malleable tasks with precedence constraints
that form a caterpillar is NP-hard for every fixed m ≥ 2, even under the monotonous
penalty assumption.

Proof. It suffices to consider the case m = 2, since again for any greater number of
processors, we can adapt the number of processors needed by tasks to achieve the pro-
cessing times used below. We give a reduction from an arbitrary instance P of the NP-
complete 3-PARTITION decision problem, see [7]. Such instance consists of natural
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numbers z, B and ai with ∑3z
i=1 ai = zB and B/4 < ai < B/3 for all i = 1, . . . ,3z, and the

question is whether there exists a partition of {1, . . . ,3z} into z disjoint sets A1, . . . ,Az

such that ∑i∈A j
ai = B for all j = 1, . . . ,z.

We construct the following instance S of malleable scheduling on two processors:
The set of tasks J contains two tasks ji, ki for all i = 1, . . . ,3z and two tasks gi, hi for
all i = 1, . . . ,z with the following processing times with monotonous penalties:

p ji(1) = ai, p ji(2) = ai; pki(1) = 2B, pki(2) = B;

pgi(1) = B, pgi(2) = B; phi(1) = 2B, phi(2) = B.

We introduce the following precedence constraints, which obviously form a caterpillar:

k1 ≺ ·· · ≺ k3z ≺ g1 ≺ h1 ≺ ·· · ≺ gz ≺ hz (1)

k1 ≺ j1, . . . ,k3z ≺ j3z (2)

We now argue that P is a yes-instance if and only if S has a solution with makespan at
most 5zB. Suppose there exists a partition of the ai as required. To obtain a solution to S,
we can first process all tasks ki on two processors each. Then, we alternately schedule
one task hi on two processors, and one task gi on one processor. In parallel to each gi

we schedule three tasks ai belonging to the same subset Ax in the partition. This results
in a schedule with makespan

3z · pki(2)+ z · phi(2)+ ∑
i=1,...,z

max{B, ∑
k∈Ai

ak}= 3zB + zB + zB = 5zB.

If there exists a solution to S with makespan at most 5zb, we know that all tasks ki and hi

must run on two processors, already accounting for time 4zB during which all proces-
sors are busy. The remaining tasks ji and gi must thus be scheduled within time zB, and
this can only be achieved when all of these tasks are allotted only one processor and
there are no gaps in their schedule.

Due to precedence constraints (1), tasks gi need to be scheduled alternately with
tasks hi. Since the latter run on two processors each, the only way to avoid gaps is to
divide tasks ai into B triplets of length z each, and to process each triplet in parallel to
one task gi. ��
This reduction can be adapted to suit the case of parallel tasks.

Corollary 3. The problem of scheduling parallel tasks with precedence constraints that
form a tree is NP-hard for every fixed m≥ 2.

5 Scheduling on Contiguous Processors and Strip Packing

When we require each task to run on contiguous processors, an allotment (α j) j∈J

can be interpreted as associating a rectangle of width α j and height p j(α j) with each
task j ∈ J. Optimally scheduling the tasks in J under this allotment amounts to packing
these rectangles into a strip of width m of minimum length (height). Hence, malleable
scheduling on contiguous processors corresponds to strip packing under discrete
malleability. In the case of parallel tasks, contiguous scheduling is equivalent to strip
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packing with strip width m and rectangle widths in {1, . . . ,m}. Clearly, any strip packing
instance with rational data can be stated this way.

Note that even the problem of deciding whether a given feasible schedule is contigu-
ous, i.e., whether it possesses a feasible contiguous mapping of tasks to processors, is
NP-hard. This was shown in [5] in the context of assigning check-in counters at air-
ports, and independently in [9]. We will argue, however, that all of our algorithms and
reductions can be adapted to yield contiguous processors by construction. Thus, our
results also hold for the corresponding strip packing problems. We omit the detailed
proofs due to space constraints.

First, the dynamic program from Sec. 2.1 can easily be adapted to yield contiguous
schedules: We merely need to keep track of the distinct processors used by every task
in each state. Hence, the deduced FPTAS remains valid with a running time increased
by a factor m2ω .

Corollary 4. There exists an FPTAS for finding an optimal contiguous schedule of mal-
leable tasks under precedence constraints of bounded width.

Note that our algorithm yields a polynomial running time for classical strip packing
instances with integral rectangle widths, only when the strip width m is polynomial in
the input size. This assumption is quite common, see [10].

Next, observe that for m≤ 2, any schedule is contiguous. Consequently, Thm. 3 can
be formulated for the contiguous case. Also, Cor. 1 remains valid, since for ω = 2, at
most two parallel tasks can be processed concurrently.

Corollary 5. Optimal contiguous schedules on m processors under precedence con-
straints of width bounded by a constant, ω , can be found in polynomial time for mal-
leable tasks with ω = m = 2, and for parallel tasks with ω = 2 and arbitrary m.

Furthermore, the scheduling instances constructed in the reductions for Thms. 4 and 6
only use m = 2 processors. Also, the scheduling instances arising from the reduction
for Thm. 5 clearly permit a contiguous schedule with the required makespan if and only
if they permit any such schedule. Consequently, all of our hardness results carry over to
the contiguous case.

Corollary 6. Even when assuming monotonous penalties, contiguous scheduling of
malleable and parallel tasks is NP-hard under precedence constraint which form a
caterpillar on m ≥ 2 processors, and under precedence constraints of width bounded
by a constant, ω , with ω ≥ 3. For malleable tasks, it remains NP-hard for ω = 2
when m≥ 3.

Acknowledgments. We thank Rolf H. Möhring and Martin Skutella for fruitful
discussions.
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Abstract. In this paper, we address the online minimization knapsack
problem, i. e., the items are given one by one over time and the goal is
to minimize the total cost of items that covers a knapsack. We study
the removable model, where it is allowed to remove old items from the
knapsack in order to accept a new item. We obtain the following results.
(i) We propose an 8-competitive deterministic and memoryless algo-

rithm for the problem, which contrasts to the result for the on-
line maximization knapsack problem that no online algorithm has
a bounded competitive ratio [8].

(ii) We propose a 2e-competitive randomized algorithm for the problem.
(iii) Wederivea lowerbound2 fordeterministic algorithms for theproblem.
(iv) We propose a 1.618-competitive deterministic algorithm for the case

in which each item has its size equal to its cost, and show that this
is best possible.

1 Introduction

Knapsack problem is one of the most classical and studied problems in com-
binatorial optimization and has a lot of applications in the real world [9]. The
(classical) knapsack problem is given a set of items with profits and sizes, and
the capacity value of a knapsack, to maximize the total profit of selected items
in the knapsack satisfying the capacity constraint. This problem is also called
the maximization knapsack problem (Max-Knapsack). Many kinds of variants
and generalizations of the knapsack problem have been investigated so far [9].
Among them, the minimization knapsack problem (Min-Knapsack) is one of the
most natural ones (see [1,2,3,4] and [9, pp. 412-413]), that is given a set of items
associated with costs and sizes, and the size of a knapsack, to minimize the total
cost of selected items that cover the knapsack. Note that Min-Knapsack can
be transformed into Max-Knapsack in polynomial time (and vice versa), i.e.,
they are polynomially equivalent. However, Min-Knapsack and Max-Knapsack
exhibit relevant differences in approximation factors for the algorithms. For ex-
ample, a polynomial time approximation scheme (PTAS) for Max-Knapsack does
not directly lead to a PTAS for Min-Knapsack.

In this paper, we focus on the online version of problem Min-Knapsack. To our
best knowledge, this is the first paper on online minimization knapsack problem.
Here, “online” means that items are given over time, i.e., after a decision of
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rejection or acceptance is made on the current item, the next item is given, and
once an item is rejected or removed, it cannot be considered again. The goal of
the online minimization knapsack problem is the same as the offline version, i.e.,
to minimize the total cost.

Related work: It is well-known that offline Max-Knapsack and Min-Knapsack
both admit a fully polynomial time approximation scheme (FPTAS) [1,4,9]. As
for the online maximization knapsack problem, it was first studied on average
case analysis by Marchetti-Spaccamela and Vercellis [12]. They proposed a linear
time approximation algorithm such that the expected difference between the
optimal and the approximation solution value is O(log3/2 n) under the condition
that the capacity of the knapsack grows proportionally to n, the number of
items. Lueker [11] further improved the expected difference to O(log n) under a
fairly general condition on the distribution. Recently, Iwama and Taketomi [7]
studied the problem on worst case analysis. They obtained a 1.618-competitive
algorithm for the online Max-Knapsack under the removable condition, if each
item has its size equal to its profit. Here the removable condition means that it
is allowed to remove some items in the knapsack in order to accept a new item.
They also showed that this is best possible by providing a lower bound 1.618 for
this case. For the general case, Iwama and Zhang [8] showed that no algorithm
for online Max-Knapsack has a bounded competitive ratio, even if the removal
condition is allowed. Some generalizations of the online Max-Knapsack such as
resource augmentations and Multi Knapsacks were also investigated [8,14,5].

Our results: In this paper, we study the online minimization knapsack prob-
lem. We first show that no algorithm has a bounded competitive ratio, if the
removable condition is not allowed. Under the removable condition, we propose
two deterministic algorithms for the online Min-Knapsack. The first one is sim-
ple and has competitive ratio Θ(log Δ), where Δ is the ratio of the maximum
size to the minimum size in the items, and the second one has competitive ratio
8. This constant-competitive result for the online Min-Knapsack contrasts with
the result for the online Max-Knapsack that no online algorithm has a bounded
competitive ratio [8], which is surprising, since problems Max-Knapsack and
Min-Knapsack are expected to have the same behavior from a complexity view-
point (see Table 1).

The first algorithm is motivated by the observation: if all the items have the
same size, then a simple greedy algorithm (called Lowest Cost First strategy)
of picking items with the lowest cost first provides an optimal solution. The
algorithm partitions the item set into �log Δ�+1 subsets Fj by their size. When
a new item dt is given, the algorithm guesses the optimal value within O(1)
approximation factor, by using only the items in the knapsack together with the
new item dt, and for each class Fj , chooses items by Lowest Cost First strategy.
Since each class Fj has cost at most O(1) times the optimal value, we have an
O(log Δ)-competitive algorithm, where we also provide a lower bound of the
algorithm to show that it is Θ(log Δ)-competitive.

Note that the first algorithm keeps too many extra items in the knapsack to
guess the optimal value of the Min-Knapsack. In order to improve the algorithm,
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it has to keep items with the low total cost. However, this makes it difficult to
guess the optimal value, since the item removed cannot be reused, even for
guessing the optimal value. We devise the following strategy to overcome this
difficulty. At each time, i) we guess the optimal value within O(1) factor by
repeatedly solving fractional Max-Knapsack problems to maximize the total size
subject to bounded costs with respect to the items in the knapsack, together with
the coming item, and ii) in order to find items to be kept, for each j ≥ 0 we
construct a subset Fj of items by solving the fractional Max-Knapsack problem
subject to 22−j times the optimal cost, we keep items in

⋃
j≥0 Fj . We guarantee

that each class Fj has cost at most 22−j times, which implies that the total cost
in the knapsack is at most 8 times the optimal cost. Since the knapsack always
contains a feasible solution of the Min- Knapsack problem, the procedure above
leads to an 8-competitive algorithm.

We also show that no deterministic online algorithm achieves competitive
ratio less than 2, and provides a randomized online algorithm with competitive
ratio 2e ≈ 5.44. We finally consider the case in which each item has its cost equal
to its size. Similarly to the online Max-Knapsack problem [7], we show that the
online Min-Knapsack problem admits 1.618-competitive deterministic algorithm
which matches the lower bound.

Table 1 summarizes the current status of the complexity of problems Max-
Knapsack and Min-Knapsack, where the bold letters represent the results ob-
tained in this paper.

Table 1. The current status of the complexity of problems Max-Knapsack and Min-
Knapsack

Max-Knapsack Min-Knapsack
lower bound upper bound lower bound upper bound

offline FPTAS [6] FPTAS [1]

online

non- general unbounded [7] unbounded

removable size =cost unbounded [7] unbounded

removable
general unbounded [8] 2

8

2e (randomized)
size = cost 1.618 [7] 1.618 [7] 1.618 1.618

The rest of the paper is organized as follows. Section 2 gives definitions of
the online Min-Knapsack problem, and show that the “removable” condition is
necessary for the online Min-Knapsack problem. Section 3 presents algorithms
for the online Min-Knapsack problem, and Section 4 gives a lower bound 2 for
the online Min-Knapsack problem. Finally, in Section 5, we consider the case
where each item has its cost equal to its size.

Due to space constraints, some proofs are omitted, which can be found in the
full version.
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2 Preliminaries

In this section, we give the definition of the online Min-Knapsack problem and
show that why the removable condition is necessary for the problem.

Let us first define the offline minimization knapsack problem.

Problem Min-Knapsack
Input: A set of items D = {d1, . . . , dn} associated with cost c : D → R+

and size s : D → R+.
Output: A set of items F ⊆ D that minimizes

∑
f∈F c(f) subject to∑

f∈F s(f) ≥ 1.

Here we assume w.l.o.g. that the size of the knapsack is 1. For a set U ⊆ D, let
c(U) =

∑
u∈U c(u) and s(U) =

∑
u∈U s(u).

In the online model, the objective is the same with the offline version. But the
input is given over time. Namely, the knapsack of size 1 is known beforehand,
and after a decision is made on the current item dt associated with c(dt) and
s(dt), the next one dt+1 is given. Once items are discarded, they cannot be used
again, even for estimating an optimal value of the problem, i.e, we focus on the
memoryless online algorithm. Note that this assumption is strict in the sense that
most online algorithms can use the items discarded for the calculations. However
we adopt this setting to tackle huge input data. Given an input sequence L and
an online algorithm A, the competitive ratio of algorithm A is defined as follows:

RA = sup
L

A(L)
OPT (L)

,

where OPT (L) and A(L) denotes the costs obtained by an optimal algorithm
and the algorithm A, respectively. If A(L) has no feasible solution, then we define
A(L) = +∞. If A is a randomized algorithm, then we have RA = supL

E[A(L)]
OPT (L) .

In this paper, we consider removable condition for the online Min-Knapsack,
i.e., it is allowed to remove or discard old items in the knapsack. It follows from
the following lemma that removable condition is necessary to have a bounded
competitive ratio. We leave the proof in the full version.

Lemma 1. If at least one of the following conditions is not satisfied, then no
algorithm has a bounded competitive ratio for the online Min-Knapsack problem.

(i) While the total size of the items given so far is smaller than 1 (the size
of the knapsack), no item is rejected.
(ii) It is allowed to remove old items in the knapsack when a new item is
given.

From Lemma 1, in the subsequent sections, we consider the online Min-Knapsack
problem under the removable condition.
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3 Algorithms for the General Case

In this section, we present algorithms for the online Min-Knapsack problem un-
der the removable condition. Note that in our model, once an item is removed or
rejected, it cannot be used again, even for estimating the optimal value. There-
fore, we have to keep items in the knapsack so that they adjust any forthcoming
input sequence.

To construct an online algorithm with small competitive ratio, there are two
points that we have to keep in mind: (I) keep feasible any time (i.e., the total
size in the knapsack is at least 1), after the total size of the items given so far is
at least 1, and (II) the total cost in the knapsack is not too far from the optimal
cost, where (I) follows from (i) in Lemma 1.

3.1 A Simple Deterministic Algorithm

In this subsection, we give a simple online algorithm with a competitive ratio
Θ(log Δ), where Δ is the ratio of the maximum size to the minimum size. The
online algorithm is motivated by the observation: if all the items have the same
size, then the greedy algorithm (Lowest Cost First selection strategy) of picking
items with the lowest cost first provides an optimal solution.

For a non-negative integer t, let D(t) denote the set of the first t items, i.e.,
D(t) = {d1, . . . dt}, and let F (t) denote the set of items that our algorithm keeps
in the knapsack after the t-round. Let t0 be the first time when there is a feasible
solution for D(t), i.e., t0 = min{t |∑t

i=1 s(di) ≥ 1}. By Lemma 1 (i), for t < t0,
our algorithm keeps all the items, i.e., F (t) = D(t).

Let us then consider when t ≥ t0. For an integer −∞ < j < +∞, define

Sj = {d ∈ D | 2j < s(d) ≤ 2j+1},
Dj(t) = D(t) ∩ Sj and Fj(t) = F (t) ∩ Sj .

Our algorithm keeps F (t) as the union of �log2 Δ + 1� classes Fj(t). When
a new item dt is given, the algorithm computes a guessed value β(t) for the
optimal cost OPT (D(t)) for the input D(t) such that β(t) = O(1)OPT (D(t)),
by using only the items in the knapsack F (t− 1) together with the new item dt,
and then for each j, we construct Fj(t) from Fj(t−1) by keeping the items with
the total cost at most 3β(t) by the Lowest Cost First strategy.

Formally, the algorithm when t ≥ t0 is described as follows.

Algorithm A

1. E(t) := F (t− 1) ∪ {dt}.
2. Guess: Compute a value α(t) by an approximation algorithm (e.g., [1,2])

with E(t) as the input. Set β(t) := min{β(t− 1), α(t)}.
3. For each j, Fj(t) := E(t) ∩ Sj and if c(Fj(t)) > 3β(t) then repeatedly

remove an item with the highest cost until c(Fj(t)) ≤ 3β(t).

4. F (t) :=
⋃

j Fj(t)
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Note that, for any time t, the total number of classes Fj(t) needed in the
algorithm is bounded by �log2 Δ + 1�. Therefore, the algorithm is O(log Δ)-
competitive, if we have s(F (t)) ≥ 1 (i.e., F (t) is feasible) and β(t) = O(1)OPT
(D(t)) for all t ≥ t0. We shall show them by a series of lemmas, where the proofs
for Lemmas 2, 3 and 4 are given in the full version.

Lemma 2. Let j be an integer. At time t ≥ t0, we have c(p) ≥ c(q) for all
p ∈ Dj(t)− Fj(t) and q ∈ Fj(t).

Let F ∗(t) denote an optimal solution for an input D(t) and F ∗
j (t) = F ∗(t)∩Sj .

Lemma 3. For a time t ≥ t0, assume that there is a feasible solution in F (t),
i.e., s(F (t)) ≥ 1. Then, for all j, we have c(Fj(t)) ≥ 2β(t) if F ∗

j (t) �⊆ Fj(t).

Lemma 4. At any time t ≥ t0, F (t) contains a feasible solution for D(t) with
cost at most 2OPT (D(t)).

Lemma 5. Algorithm A is O(log Δ)-competitive.

Proof. By Lemma 4, F (t) contains a feasible solution for D(t) with cost at most
2OPT (D(t)).

Since (offline) Min-Knapsack problem admits a FPTAS [1],

β(t) ≤ (1 + ε)OPT (F (t)) ≤ 2(1 + ε)OPT (D(t))

for some ε > 0 and the cost by algorithm A satisfies

A(D(t)) ≤ 3(�log2Δ�+ 1)β(t),

and hence we have A(D(t)) ≤ O(log Δ)OPT (D(t)). ��
The next lemma shows that the analysis of the competitive ratio for algorithm
A is tight.

Lemma 6. Algorithm A is Ω(log Δ)-competitive.

Proof. To prove this lemma, we present an instance D such that A(D) ≥ log Δ ·
OPT (D).

For 0 ≤ i ≤ k, let bi be an item with s(bi) = c(bi) = 2−i, and we construct
an input sequence D by D = D(0), D(1), . . . , D(k), where D(i) is a sequence
consisting of 2i bi’s. Note that this instance has an optimal solution F ∗ = {b0}
whose cost is OPT (D) = 1. On the other hand, algorithm A keeps all the items,
and hence A(D) = k + 1 > log2 Δ · OPT (D), where Δ = 2k is the ratio of the
largest size to the smallest size. ��
By Lemmas 5 and 6, we have the following theorem.

Theorem 1. Algorithm A is Θ(log Δ)-competitive.
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3.2 An Improved Deterministic Algorithm

Note that the first algorithm keeps too many extra items in the knapsack to
keep a feasible solution and to guess the optimal value of the Min-Knapsack. In
order to obtain an O(1)-competitive online algorithm, for any time t (≥ t0), we
represent the knapsack F (t) as the union of subsets Fj(t) (j ≥ 0) which satisfy
the following three conditions. Note that here the definition of Fj(t) is different
from the one in the subsection 3.1.

1 A guessed value β(t) satisfies β(t) ≤ r ·OPT (D(t)) for some constant r > 1.
2 For each j ≥ 0, c(Fj(t)) ≤ 2β(t)/rj .
3 F (t) :=

⋃
j Fj(t) satisfies the feasibility, i.e., s(F (t)) ≥ 1.

It is not difficult to see that the algorithm has constant competitive ratio
if it satisfies all the conditions above. We now show how to construct such
Fj ’s.

Let F (t − 1) denote a set of items in the knapsack at time t − 1, and let
E(t) := F (t−1)∪{dt}. For a guessed value β(t), let Ej(t) = {di ∈ E(t) | c(di) ≤
β(t)/rj} and construct Fj(t) from Ej(t) by repeatedly removing an item e with
the highest unit cost c(e)

s(e) , until the total cost becomes at most 2β(t)/rj . Clearly
this construction assures the second condition above.

To assure the first and third conditions, we first initialize β(t) by β(t) :=
c(E(t)) if t = t0; otherwise β(t) := β(t − 1). We check if s(Fj(t)) ≥ 1 for
each j. Let 
 be the maximum number j such that s(Fj(t)) ≥ 1. Then we have
OPT (D(t)) ≤ c(Fl(t)) ≤ 2β(t)/r�. If OPT (D(t)) > 2β(t)/r�+1 holds in addi-
tion, then 2β(t)/r� is a good guessed value for OPT (D(t)). However, in general
this is not true, since some item in D(t) has been already discarded before round
t, and hence 2β(t)/r� may not be a good guessed value for OPT (D(t)). In order
to overcome this difficulty, we solve the following (offline) fractional maximiza-
tion knapsack problem for each class Fj(t).

max
∑

f∈Fj(t)

s(f) · x(f)

s.t.
∑

f∈Fj(t)

c(f) · x(f) ≤ β(t)/rj ; (1)

0 ≤ x(f) ≤ 1, f ∈ Fj(t).

Let FKP(Fj(t), β(t)/rj) denote the optimal value of (1), where the second
argument β(t)/rj denotes the capacity of the knapsack. It is well-known [9]
that the fractional knapsack problem can be solved by a greedy approach for
s(f)/c(f). Let 
 = max{j | FKP(Fj(t), β(t)/rj) ≥ 1}. Then we can see
below that β(t)/r� is a good guessed value and F�(t) is feasible for our
problem.
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Formally, the algorithm is described as follows.

Algorithm B for t ≥ t0

1. E(t) := F (t − 1) ∪ {dt}. If t = t0, then α(t) := c(E(t)); otherwise
α(t) := β(t− 1).

2. For each integer j ≥ 0, construct a class Fj(t) as follows.
2.1 Let Ej(t) := {di ∈ E(t) | c(di) ≤ α(t)/rj} where Ej(t) is not

constructed if Ej(t) = ∅.
2.2 Construct Fj(t) from Ej(t) by repeatedly removing an item e with

the highest unit cost c(e)
s(e) , until the total cost becomes at most

2α(t)/rj .

3. Let 
 = max{j | FKP(Fj(t), α(t)/rj) ≥ 1}, let F (t) :=
⋃

j≥� Fj(t) and
β(t) := α(t)/r�.

Observe that in Step 2.1 of the algorithm Ej(t) is empty for all j with
α(t)/rj < min{c(d) | d ∈ D(t)}, and we have α(t) ≤ t max{c(d) | d ∈ D(t)}.
Hence, the number of nonempty Ej(t) is bounded by O

(
log t max{c(d)|d∈D(t)}

min{c(d)|d∈D(t)}
)
.

Lemma 7. At any time t ≥ t0, the index 
 in Step 3 must exist.

Proof. We prove this lemma by induction on t. When t = t0, we have α(t) =
c(E(t)) (= c(D(t))) and E0(t) = D(t). After Step 2.2, we have F0(t) = E0(t),
since c(E0(t)) = α(t) < 2α(t). We also have FKP(F0(t), α(t)) = s(D(t)) ≥ 1,
where the last inequality follows from the definition of t0. Therefore, the lemma
holds for t = t0.

Assume that the lemma holds for time t = t1(≥ t0), i.e., FKP(F0(t1), α(t1)) ≥
1, and consider time t = t1 + 1.

At time t, if the new item dt is not selected in F0(t) at Step 2.2, then we have
F0(t) = F0(t1). Then by the inductive hypothesis, we have FKP(F0(t), α(t)) ≥ 1,
where we note that α(t) = β(t1). On the other hand if dt is selected in F0(t) at
Step 2.2, we have

FKP(F0(t), α(t)) = FKP(F0(t), β(t1)) ≥ FKP(F0(t1), β(t1)) ≥ 1,

where the first inequality FKP(F0(t), β(t1)) ≥ FKP(F0(t1), β(t1)) follows from
the greedy construction of F0(t) from E0(t). Hence the lemma holds for t = t1+1.

��
For a U ⊆ D and a positive integer p, let KP(U, p) denote the optimal value for
the knapsack problem that maximize

∑
u∈U s(u) · x(u) subject to

∑
u∈U c(u) ·

x(u) ≤ p and x(u) ∈ {0, 1} for all u ∈ U . By definition, we have KP(U, p) ≤
FKP(U, p).

Lemma 8. At any time t (≥ t0), we have FKP(Fj(t), α(t)/rj) ≥ KP(D(t),
α(t)/rj) for all j ≥ 0.



190 X. Han and K. Makino

Proof. At time t(≥ t0), let Dj(t) denote the set of items with cost at most
α(t)/rj in D(t). We shall prove that

FKP
(
Fj(t),

α(t)
rj

)
= FKP

(
Dj(t),

α(t)
rj

)
.

Observe that: i) β(t) and α(t) are non-increasing functions, ii) if Dj(t) ≥ α(t)/rj

then the total cost of Fj(t) is at least α(t)/rj (= 2α(t)/rr−α(t)/rj), since every
item in Fj(t) has cost at most α(t)/rj , and iii) s(p)/c(p) ≤ s(q)/c(q) holds for
any items p ∈ (Dj(t) − Fj(t)) and q ∈ Fj(t) such that q is contained in an

optimal solution of FKP
(
Fj(t),

α(t)
rj

)
, by the greedy construction of Fj(t) in

Step 2. Therefore, we have

FKP
(
Fj(t),

α(t)
rj

)
= FKP

(
Dj(t),

α(t)
rj

)
.

This implies

FKP
(
Fj(t),

α(t)
rj

)
=FKP

(
Dj(t),

α(t)
rj

)
≥KP

(
Dj(t),

α(t)
rj

)
=KP

(
D(t),

α(t)
rj

)
.

��
Lemma 9. At any time t (≥ t0) β(t) satisfies β(t) < r ·OPT (D(t)).

Proof. Assume this lemma does not hold, i.e., β(t) ≥ r · OPT (D(t)). Then we
have

FKP(F1(t), β(t)/r) ≥ KP(D(t), β(t)/r) ≥ KP(D(t),OPT (D(t))) ≥ 1,

where the first inequality follows from Lemma 8, the second one follows from
assumption β(t) ≥ r · OPT (D(t)), and the last one holds for t ≥ t0. This con-
tradicts the maximality of 
 at Step 3. ��
Theorem 2. When r = 2, algorithm B is 8-competitive, i.e., B(D(t)) ≤ 8OPT
(D(t)) for any t ≥ t0.

Proof. By Lemma 7 and the definition of F0(t), we have

s(F0(t)) ≥ FKP(F0(t), β(t)) ≥ 1,

i.e., F0(t) is a feasible solution for the Min-Knapsack with the input D(t), and
hence F (t) =

⋃
j≥0 Fj(t) is also feasible. The total cost in the knapsack F (t)

satisfies

c(F (t)) ≤ 2β(t)
∑
j=0

r−j <
2rβ(t)
(r − 1)

≤ 2r2

r − 1
OPT (D(t)),

where the last inequality follows from Lemma 9. Since 2r2

r−1 = 8 if r = 2, this
completes the proof. ��
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3.3 A Randomized Algorithm

Observe that the worst case of algorithm B is when the optimal cost OPT (D(t))
is sufficiently close to β(t)/r. We find that a randomized technique in [10]
can foil the worst case. Namely, let ξ be a random variable uniformly dis-
tributed in [0, 1). Then the competitive ratio can be improved if algorithm B
uses α(t0) = rξc(E(t0)) instead of α(t0) = c(E(t0)) in Step 1, i.e., if we shift
α(t0) by multiplying a factor rξ. Let us call this randomized algorithm RB.

We shall below show that E[RB(D)]/OPT (D) ≤ 2e for all D against an
oblivious adversary[13].

Theorem 3. For r = e, algorithm RB is 2e-competitive.

4 A Lower Bound on the Online Min-Knapsack Problem

In this section, we give a lower bound 2 for the competitive ratio for the online
Min-Knapsack problem. The main idea of our proof is given as follows. Assume
that an online algorithm has competitive ratio smaller than 2. After t ≥ t0, if
a small item with a small cost is given, the algorithm has to accept it, since
otherwise the adversary can kill the algorithm by giving an item with large
size and zero cost, i.e., the adversary will cause the online algorithm to have
competitive ratio at least 2. However, after accepting small items, the total cost
in the knapsack would be arbitrarily close to twice the total cost before accepting
small items, This implies that the competitive ratio is at least 2. We leave the
details of the proof in the full version .

Theorem 4. Any deterministic algorithm for the online Min-Knapsack problem
has competitive ratio at least 2.

5 A Special Case Where the Cost Equals the Size

In this section, we focus on the case where every item has its cost equal to its
size. We first give a lower bound 1.618 and then propose an online algorithm
which matches the lower bound. The proof of Lemma 10 will be given in the full
version.

Lemma 10. If any item has its cost equal to its size, then no deterministic
algorithm for the online Min-Knapsack problem has competitive ratio r < 1+q (≈
1.618), where q is the golden ratio, i.e., q is the positive root for q2 + q = 1.

Let us then construct an online algorithm. Note that any optimal cost is at least
1, since any item has its cost equal to its size.

An item d is called x-large, large, medium, and small if s(d) > 1 + q, 1 ≤
s(d) ≤ 1 + q, q < s(d) < 1, and 0 < s(d) ≤ q, respectively. Let us denote by
XL, L, M, S the set of x-large, large, medium and small items,s respectively. In
other words,
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XL = {d ∈ D | s(d) > 1 + q}, L = {d ∈ D | 1 ≤ s(d) ≤ 1 + q},
M = {d ∈ D | q < s(d) < 1}, S = {d ∈ D | s(d) ≤ q}.

Similarly to the previous sections, let D(t) = {d1, . . . , dt} and let F (t) denote
the set of items in the knapsack after the t-th round. Let t0 be the first time
when D(t) has a feasible solution.

By Lemma 1, our algorithm accepts all the items before t0, i.e., F (t) = D(t).
At time t (≥ t0), our algorithm keeps at most two medium items and at most
one x-large item, i.e., |F (t) ∩M | ≤ 2 and |F (t) ∩XL| ≤ 1. If two medium items
are contained in the knapsack, no x-large item is kept in the knapsack, i.e., if
|F (t)∩M | = 2 then F (t)∩XL = ∅. Moreover, once we find a feasible solution U
with the cost within [1, 1+q], then our algorithm only keeps this feasible solution
in the knapsack and rejects all the forthcoming items, i.e., F (t′) = U for t′ ≥ t.
For example, if dt is large and c(F (t − 1)) �∈ [1, 1 + q], then F (t′) = {dt} for
t′ ≥ t. Our algorithm always accepts the small items before finding a feasible
solution with the cost within [1, 1+ q]. Table 2 shows three possible patterns for
the number of x-large, large, medium and small items in the knapsack.

Let us now describe our algorithm.

Algorithm C for t ≥ t0

1. If 1 ≤ c(F (t − 1)) ≤ 1 + q, then F (t) := F (t − 1) and halt.
2. If dt ∈ XL, /* we have three cases */

(a) If s(F (t − 1)) < 1, then F (t) := F (t − 1) ∪ {dt}.
(b) If |F (t − 1) ∩ M | = 2, then F (t) := F (t − 1).

(c) If F (t − 1) ∩ XL = {e}, then construct F (t) from F (t − 1) ∪ {dt} by
removing the largest x-large item f (i.e., f = dt if s(dt) ≥ s(e); otherwise,
f = e)

3. If dt ∈ L, then F (t) := {dt} and halt. /* we have only one case */
4. If dt ∈ M , /* we have four cases */

(a) if s(dt) + s(F (t − 1) ∩ S) ≥ 1 then let F (t) be a feasible solution with
cost at most 1 + q.

(b) if |F (t−1)∩M | = 2, then construct F (t) from F (t−1)∪{dt} by removing
the smallest medium item f .

(c) if |F (t − 1) ∩ M | = 1, then F (t) := (F (t − 1) ∪ {dt}) \ XL.

(d) if F (t − 1) ∩ M = ∅, then F (t) := F (t − 1) ∪ {dt}.
5. If dt ∈ S, /* we have three cases */

(a) If F (t − 1) ∩ M = ∅ and s(F (t − 1) ∩ S) + s(dt) ≥ 1, then let F (t) be a
feasible solution with cost at most 1 + q.

(b) If F (t − 1) ∩ M �= ∅ and s(e) + s(F (t − 1) ∩ S) + s(dt) ≥ 1 for some
medium e ∈ F (t − 1), then let F (t) be a feasible solution with cost at
most 1 + q.

(c) Otherwise, F (t) := F (t − 1) ∪ {dt}.
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Table 2. Three possible patterns for the number of x-large, large, medium and small
items in the knapsack

pattern small medium large x-large
1 0 0 1 0
2 ≥ 0 2 0 0
3 ≥ 0 ≤ 1 0 ≤ 1

Lemma 11. For U ⊆ D, if s(U ∩S) ≥ 1 or s(U ∩S)+s(e) ≥ 1 for some u ∈ U ,
then U contains a feasible solution with the cost at most 1 + q.

The above lemma ensures that Steps 4a, 5a, and 5b are always possible. By the
same reason, Step 2 has only three cases.

Theorem 5. Algorithm C has competitive ratio 1.618, which matches the lower
bound.
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Abstract. We study various optimization problems in t-subtree graphs,
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optimization point of view. We present approximation algorithms for the
Maximum Independent Set, Minimum Coloring, Minimum Vertex

Cover, Minimum Dominating Set, and Maximum Clique problems
in t-subtree graphs.

1 Introduction

Geometric intersection graphs are a very popular topic in algorithmic graph the-
ory. This is mostly because of the many natural applications they model, and
due to the rich combinatorial structure that comes along with most of them, al-
lowing for numerous algorithmic techniques and frameworks. Two of the oldest
and most well-studied graph classes in this area are the class of interval graphs,
intersection graphs of intervals of a line, and the class of chordal graphs, inter-
section graphs of subtrees of a tree [1]. Many classical NP-complete problems
become polynomial-time solvable in both these classes of graphs (for more details
see [2] and references therein).

In [3,4], various optimization problems were considered in the class of t-interval
graphs, a natural generalization of interval graphs. These are defined as intersec-
tion graphs of t-intervals, which are 1-dimensional objects formed by taking the
union of t disjoint intervals. In this paper, we study the class of t-subtree graphs
which generalizes t-interval graphs by replacing intervals with subtrees. Thus,
t-subtree graphs form a hybrid between t-interval graphs and chordal graphs,
and provide a natural generalization for these two graph classes.
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We consider various classical optimization problems in t-subtree graphs. Given
a t-subtree graph G along with its t-subtree representation S (a formal definition
is given in Section 2), we present approximation algorithms for the following
problems:

– Minimum Dominating Set: Find a minimum weight subset S′ ⊆ S such
that for each t-subtree S ∈ S there is a t-subtree S′ ∈ S′ which intersects S.

– Maximum Independent Set: Find a maximum weight pairwise non-
intersecting subset S′ ⊆ S.

– Minimum Coloring: Partition S into the smallest number of subsets such
that each subset is pairwise non-intersecting.

– Minimum Vertex Cover: Find a minimum weight subset S′ ⊆ S such
that S \ S′ is pairwise non-intersecting.

– Maximum Clique: Find a maximum weight pairwise intersecting subset
S′ ⊆ S.

Related work. Gavril [5] showed that the above optimization problems, with
the exception of Minimum Dominating Set, can be solved in polynomial-time
in chordal graphs. On the other hand, Minimum Dominating Set in chordal
graphs was shown to be NP-hard in [6]. In t-interval graphs all problems are
computationally hard. Griggs and West [7] showed that the class of graphs with
maximum degree Δ are �(Δ + 1)/2�-interval graphs. It follows that Minimum

Dominating Set and Minimum Vertex Cover are APX-hard, for t ≥ 2 [8],
and that Minimum Coloring is NP-hard, for t ≥ 3 [9]. Maximum Clique was
shown to be NP-hard for t ≥ 3 in [4]. Bar-Yehuda et al. [3] showed that, for
t ≥ 2, Maximum Independent Set in t-interval graphs is APX-hard, and that
it cannot be approximated within a factor of O(t/ log t) unless P=NP. Finally,
it is NP-hard to determine whether a given graph is t-interval for t ≥ 2 [10].

Our results. In this paper we present approximation algorithms for optimiza-
tion problems in t-subtree graphs. For Maximum Independent Set, Minimum

Coloring, Minimum Vertex Cover, and Maximum Clique we obtain ap-
proximation ratios of 2t, 2t, 2 − 1/t, and (t2 − t + 1)/2, respectively, which
match the approximation ratios of the corresponding algorithms for t-interval
graphs in [3,4] by extending these in a natural manner. We show that Minimum

Dominating Set is different in that it is already as hard to approximate as
Minimum Set Cover even in chordal graphs (i.e. 1-subtree graphs). We there-
fore consider the special case where each t-subtree has 
 leaves, and provide an

2-approximation algorithm for this case.

2 Preliminaries

All graphs in this paper are simple and undirected. As usual, we denote the
vertex-set and edge-set of a given graph G by V (G) and E(G), respectively.
For a graph G and a subset of vertices V ⊆ V (G), we let G − V denote the
graph obtained by deleting all vertices of V from G, and by G[V ] the subgraph
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G− (V (G) \ V ). For a vertex v ∈ V (G), we let N(v) denote the set of neighbors
of v, i.e. N(v) = {u ∈ V : (v, u) ∈ E}, and we let N [v] = N(v) ∪ {v}.

Let T be an infinite rooted tree with vertices denoted by Greek letters. A set
of vertices T ⊆ V (T ) is a subtree of T if T [T ] is a tree. Two subtrees T and
T ′ intersect, denoted T ∩ T ′, if they share a common vertex, and otherwise they
are disjoint. A set S of at most t subtrees of T is called a t-subtree over T .
Two t-subtrees S and S′ intersect, denoted S ∩ S′, if there is a subtree T ∈ S
which intersects a subtree T ′ ∈ S′, and they are disjoint whenever they are
non-intersecting. If α ∈ T for a subtree T in a t-subtree S, we slightly abuse
notation by writing α ∈ S.

A family of t-subtrees S is a representation of some graph G if there exists a
bijective correspondence v → Sv from the vertices of G to the t-subtrees in S
such that {u, v} ∈ E(G) if and only if Su ∩Sv. In this case, G is the intersection
graph of S, and thus a t-subtree graph, and we write this as G = GS . We will
be considering weighted t-subtree graphs, i.e. t-subtree graphs G with weight
functions w : V (G)→ Q+.

3 Minimum Dominating Set

We begin with Minimum Dominating Set. We show that this problem is as
hard as Minimum Set Cover even when t = 1, i.e. in chordal graphs. This
implies that it is NP-hard to approximate Minimum Dominating Set in 1-
subtree graphs within c ln n, for some constant c, due to [11]. We also show that
Minimum Dominating Set is NP-hard to approximate within 
(S)− 1− ε, for
any ε > 0, where 
(S) is the maximum total number of leaves in any t-subtree
belonging to S. On the positive side, we present an 
(S)2-approximation algo-
rithm that extends the t2-approximation algorithm for Minimum Dominating

Set in t-intervals graphs. This algorithm is based on a reduction to the Min-

imum Path Hitting problem, and on the approximation algorithm of Parekh
and Segev [12] given for this problem.

3.1 Approximation Lower Bounds

We start by showing lower bounds for the approximation factor guarantee of
any polynomial-time algorithm for Minimum Dominating Set in t-subtree
graphs. These are obtained by simple approximation preserving reductions for
Minimum Set Cover.

Lemma 1. There is an approximation preserving reduction from Minimum Set

Cover to Minimum Dominating Set in 1-subtree (chordal) graphs.

Proof. Let (X, C) be a Minimum Set Cover instance, where X = {x1, . . . , xn}
is a universe of n elements, and C = {C1, . . . , Cm} is the family of m subsets
of X . We assume without loss of generality that

⋃
j Cj = X . We construct

a tree T and a family S of (1-)subtrees as follows. First, T is a star with a
center denoted by α0 and n leaves denoted α1, . . . , αn. The family S is a family
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of n + m subtrees, S = {T1, . . . , Tn+m}, one per each element in X and set
in C. The subtree Ti, for i ∈ {1, . . . , n}, contains only the ith leaf αi of T . The
subtree Tn+j , for j ∈ {1, . . . , m}, is the subtree induced by {α0}∪{αi : i ∈ Cj}.
Finally, let G = GS be the intersection graph of the subtrees in S. Clearly the
construction of S can be carried out in polynomial-time. To complete the proof,
we argue that any set cover of X corresponds to a dominating set in G of equal
size, and vice-versa.

Let C′ ⊆ C be a set cover of the universe X . Then, the subset of vertices
D = {vn+j : Cj ∈ C′}, with vn+j the vertex corresponding to the subtree Tn+j ,
dominates all vertices in G. Indeed, all vertices vn+j , 1 ≤ j ≤ m, dominate each
other, and if a vertex vi that corresponds to a leaf αi is not dominated by D,
then xi is not covered by C′. Conversely, suppose that D is a dominating set in
G. We may assume that D does not contain vertices that correspond to leaves,
since each vertex that correspond to a leaf can be replaced by a vertex that
correspond to a subtree containing this leaf. Furthermore, since all leaves are
dominated, the set C′ = {Cj : Sn+j ∈ D} is a set cover of U . ��
Next, we present a reduction from the special case of Minimum Set Cover in
which each element appears in at most t sets, i.e. the t-Minimum Set Cover

problem, to Minimum Dominating Set in t-subtree graphs.

Lemma 2. For every positive integer t ∈ N, there is an approximation preserv-
ing reduction from t-Minimum Set Cover to Minimum Dominating Set in
t-subtree graphs.

Proof. Given a t-Minimum Set Cover instance (X, C), with X = {x1, . . . , xn}
and C = {C1, . . . , Cm}, we construct a tree T and a family F of subtrees as
follows. The tree T consists of a root α0 adjacent to m vertex-disjoint paths
αj1 , . . . , αjn , for j ∈ {1, . . . , m}. For each element Cj ∈ C, we designate the sub-
tree Tj = {α0, αj1 , . . . , αjn}. Also, we let Tji = {αji}. Now the set of t-subtrees
S consists of n + m t-subtrees, where Si = {Tji : xi ∈ Cj}, for i ∈ {1, . . . , n},
and Sn+j = {Tj}, for j ∈ {1, . . . , m}. Observe that S is a t-subtree family, and
that it can be constructed in polynomial-time. We argue that dominating set in
G = GS , the intersection graph of S, corresponds to a set cover of X of equal
size, and vice-versa.

Let C′ ⊆ C be a set cover of X . We claim that D = {vn+j : Cj ∈ C′} is a
dominating set in G. First, observe that all vertices vn+j , where 1 ≤ j ≤ m,
dominate each other since each Sn+j includes the root α0. Also, if a vertex vi

is not dominated by D, then xi is not covered by any set in C′. Conversely, let
D be a dominating set in G. Without loss of generality, we may assume that
vi /∈ D for all 1 ≤ i ≤ n, since if xi ∈ Cj then we can replace vi with vn+j in
D. Thus, since all t-subtrees that correspond to elements are dominated, the set
C′ = {Cj : Tn+j ∈ D} is a set cover of X . ��
It is known that it is NP-hard to approximate Minimum Set Cover within a
factor of c lnn for some constant c [11], and that it is NP-hard to approximate
t-Minimum Set Cover within t−1−ε for any ε > 0 [13]. Thus, the two lemmas
above show:
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Corollary 1. Minimum Dominating Set in t-subtree graphs is NP-hard to
approximate within

– c ln n for some constant c,
– 
(S)− 1− ε for any ε > 0.

3.2 Bounded Number of Leaves

We next present an 
(S)2-approximation algorithm for Minimum Dominating

Set in t-chordal graphs. As a first step, we show that we can consider edge
intersections in the subtrees, rather than vertex intersections.

Lemma 3. Let G be a t-chordal graph with a t-subtree representation S over a
tree T . Then G has an t-subtree representation S∗ over another tree T ∗, with
(u, v) ∈ E(G) if and only if the t-subtrees corresponding to u and v in S∗ share
an edge. Furthermore, S∗ can be computed in polynomial-time, and 
(S∗) = 
(S).

Proof. We construct a t-subtree representation S∗ over T ∗ as follows. First, T ∗

is obtain by splitting every vertex α of T into two adjacent vertices:

V (T ∗) = {α′ : α ∈ V (T )} ∪ {α′′ : α ∈ V (T )}
E(T ∗) = {{α′′, β′} : {α, β} ∈ E(T )} ∪ {{α′, α′′} : α ∈ V (T )}

Second, for every subtree T belonging to some t-subtree in S, we define the
associated subtree T ∗ with

V (T ∗) = {α′ : α ∈ V (T )} ∪ {α′′ : α ∈ V (T )} .

Each t-subtree S = {T1, . . . , Tt} in S is then associated with the t-subtree S∗ =
{T ∗

1 , . . . , T ∗
t }. It is not hard to verify that two subtrees S1 and S2 contain a node

α if and only if the subtrees induced by S∗
1 and S∗

2 contain the edge (α′, α′′).
Clearly, S∗ can be computed in polynomial-time, and in addition 
(S∗) = 
(S)
by construction. ��
Next, we define a more general variant of Minimum Dominating Set in t-
subtree graphs. In this variant, we are given two (not necessarily disjoint)
families of t-subtrees, a red family R = {R1, . . . , Rn} and a blue family
B = {B1, . . . , Bm}, and our goal is to find a minimum weight subset R′ ⊆ R
which dominates B, i.e. every t-subtree B ∈ B is intersected by some R ∈ R′.
(We assume that R dominates B.) Notice that when B = R, we return to Min-

imum Dominating Set in t-chordal graphs.
The extended variant of Minimum Dominating Set in t-subtree graphs can

be formulated using the following linear integer program:

min
∑
R∈R

w(R)x(R)

s.t.
∑

R : B�R

x(R) ≥ 1 ∀B ∈ B

x(R) ∈ {0, 1} ∀R ∈ R

(DS)
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where x(R) is a variable corresponding R ∈ R and is interpreted as to x(R) = 1
if and only if R is taken to the solution. We use � instead of ∩ to remind the
reader that we consider edge intersections, rather than vertex intersections. The
linear programming relaxation of DS is obtained by replacing the integrality
constraints by: x(R) ≥ 0, for every R ∈ R.

We will need the notion of descending paths and 
-paths in T . Recall that T is
rooted. A descending path in T is a path α1, α2, . . . , αp, where αi is an ancestor
of αj for i < j. An 
-path P in T is a collection of at most 
 descending paths
which are pairwise edge-disjoint. An 
-path representation of a t-subtree graph
G, is a representation which consists only of 
-paths.

The proof of the next lemma is immediate:

Lemma 4. If G is a t-subtree graph with a t-subtree representation S, then there
exists an 
-path representation of G with 
 = 
(S).

For the rest of this section we design an approximation algorithm for (DS) in
graphs with 
-path representations (where intersections are by edges). We first
address the case where both R and B contain 1-paths, each consisting of a single
descending path. In [12], Parekh and Segev devised a 4-approximation algorithm
for the Minimum Path Hitting problem using a reduction to this special case
of (DS). Formally, they obtained the following result:

Lemma 5 ([12]). If R and B consist of 1-subtrees, each of which contains a
single descending path, then the LP-relaxation of (DS) has an integral optimal
solution, and this solution can be computed in polynomial time.

We next show how to use this result to obtain an approximation algorithm in the
case of 
 > 1. Let R and B be two families of 
-paths. We may assume without
loss of generality that all 
-paths in R and B contain exactly 
 paths. Now, let
x∗ denote the corresponding optimal solution of the LP-relaxation of DS.

For a descending path P in a blue 
-path B ∈ B, let R(P ) ⊆ R denote
that subset of red 
-paths that have descending paths intersecting P . For each
B ∈ B, we select a unique representative descending path PB ∈ B that maximizes
the expression

∑
R∈R(P ) x∗(R). In other words, the representative PB is the

maximum dominated descending path of B. For a red 
-path R ∈ R, we let P i
R

denote the ith path in R, for 1 ≤ i ≤ 
. We construct a new 1-path instance
(R′,B′, w′) by taking the representatives of the blue 
-subtrees to be B′, i.e.
B′ = {PB : B ∈ B}, and defining R′ =

{
P i

R : Pi ∈ R, R ∈ R} with w′(P i
R) =

w(R)/
 for P i
R ∈ R′. Next we use Lemma 5 to obtain an integral optimal solution

x′ of the LP-relaxation of (DS) with respect to the new instance (R′,B′, w′). We
output the solution D ⊆ R defined by D =

{
R : x′(P i

R) = 1 for some i
}
.

Lemma 6. D is an 
2-approximate dominating set of B.

Proof. First observe that D dominates B, since all representatives are dominated
by D. Also, note that∑

R∈D
w(R)x(R) ≤ 
 ·

∑
R′∈R′

w′(R′)x′(R′),
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and that this inequality is tight in case no two descending paths of the same

-path appear in D. To complete the proof of the lemma, we show that∑

R∈R
w(R)x(R) ≤ 
2 ·

∑
R∈R

w(r)x∗(R).

For this, we define a fractional solution x̄ for the new instance (R′,B′, w′) by
setting x̄(P i

R) = 
 · x∗(R) for each P i
R ∈ R′. To see that x̄ is feasible consider

any blue 
-interval B ∈ B and its representative PB. By our selection of PB, we
have

∑
R∈R(PB) x∗(R) ≥ 1/
, since otherwise x∗ would not be feasible. It follows

that
∑

R′∈R′,R′�B′ x̄(R′) ≥ 1 for each B′ ∈ B′. By Lemma 5, we know that the
integral solution x′ is an optimal fractional solution for (R′,B′, w′). Hence, the
weight of x̄ is at least as high as the weight of x′. It follows that∑

R∈R
w(R)x(R) ≤ 
 ·

∑
R′∈R′

w′(R′)x′(R′) ≤ 
 ·
∑

R′∈R′
w′(R′)x̄(R′)

Furthermore,∑
R′∈R′

w′(R′)x̄(R′) =
∑
R∈R

∑
P∈R

w(R)



· 
 · x∗(R) = 
 ·
∑
R∈R

w(R) · x∗(R)

and we are done. ��
Corollary 2. Minimum Dominating Set in t-subtree graphs can be approxi-
mated in polynomial-time within a factor of 
(S)2, where S is the representation
of the input graph.

We remark that our algorithm works for the case where R contains r-paths and
B contains b-paths, and in this case the approximation ratio is r · b. In fact,
the instance that is generated by our second reduction (see Section 3.1) can be
described by r = 1 and b = t, and in this case the approximation ratio of our
algorithm comes close to the 
(S) lower bound given in Corollary 1.

4 Maximum Independent Set

We next consider Maximum Independent Set. We present a 2t-approximation
algorithm for Maximum Independent Set that is based on the fractional local-
ratio 2t-approximation algorithm for t-interval graphs from [3].

Let G = (V, E) be a t-subtree graph, and let (T ,S) be its t-subtree represen-
tation, with ρ the root of T . We define the root of a subtree T of T , denoted
ρ(T ), to be the node in T that is closest to ρ in T . (Note that ρ(T ) can be ρ it-
self.) We let root(S) denote the set of roots of subtrees that belong to t-subtrees
of S. That is, root(S) = {ρ(T ) : T ∈ S, S ∈ S}.
Lemma 7. Let S and S′ be two intersecting t-subtrees in S. Then, there exists
some vertex α ∈ root(S) such that α ∈ S and α ∈ S′.
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Proof. If S and S′ intersect, they have a pair of intersecting subtrees T ∈ S and
T ′ ∈ S′. For these two trees we have either ρ(T ) ∈ T ′ or ρ(T ′) ∈ T . ��
Recall that, for a vertex v of G, Sv denotes the t-subtree in S corresponding to v,
and w(v) denotes the weight of v. Lemma 7 implies that it is sufficient to look for
intersections at root(S). This allows us to formulate Maximum Independent

Set in t-subtree graphs as the following integer program:

max
∑

v

w(v) · x(v)

s.t.
∑

v : α∈Sv

x(v) ≤ 1 α ∈ root(S)

x(v) ∈ {0, 1} ∀v ∈ V (G)

(IS)

As usual, x(v) above denotes a variable corresponding to a vertex v of G which is
to be interpreted as x(v) = 1 if and only if the vertex v is chosen to the indepen-
dent set. The linear programming relaxation of (IS) is obtained by replacing the
constraints x(v) ∈ {0, 1} with 0 ≤ x(v) ≤ 1, for every vertex v of G. Note that
the integer (and linear) programming formulation for Maximum Independent

Set in t-interval graphs given in [14] is identical to the one above when T is a
path.

Given a feasible solution x to the LP-relaxation of (IS), let us call the sum∑
u∈N [v] x(u) the fractional neighborhood of a vertex v with respect to x (recall

that N [v] denotes the set of neighbors of v in G including v itself). The frac-
tional local-ratio based algorithm for Maximum Independent Set in t-interval
graphs given in [3] essentially works by repeatedly selecting a vertex with a min-
imal fractional neighborhood, and deciding whether this vertex is in the solution
independent set according to the recursive solution for G − N [v]. They proved
that if for any feasible solution x, there is always some vertex v with fractional
neighborhood at most r, then their algorithm computes an r-approximate inde-
pendent set. In order to extend their algorithm to t-subtree graphs, we prove
the following lemma which generalizes the corresponding lemma for t-interval
graphs from [3]:

Lemma 8. Given any feasible solution x of the LP-relation of of (IS), there
exists a vertex v of G with fractional neighborhood at most 2t with respect to x.

Proof. In order to prove this lemma, it is enough to show that∑
v

∑
u∈N [v]

x(v) · x(u) =
∑

v

x(v)
∑

u∈N [v]

x(u) ≤ 2t ·
∑

v

x(v) .

If {u, v} ∈ E then u ∈ N [v] and v ∈ N [u]. Therefore, the term x(v) · x(u) is
counted twice in the sum on the left hand side for every pair of neighboring
vertices v and u. Furthermore, if {u, v} ∈ E then either there exists T ∈ Sv such
that ρ(T ) ∈ Su or there exists T ∈ Su such that ρ(T ) ∈ Sv. Thus,∑

v

∑
u∈N [v]

x(v) · x(u) ≤ 2 ·
∑

v

∑
T∈Sv

∑
ρ(T )∈Su

x(v) · x(u) .
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Since x is a feasible solution of P , for every v and T ∈ Sv, we get that∑
ρ(T )∈Su

x(v) · x(u) = x(v) ·
∑

ρ(T )∈Su

x(u) ≤ x(v) .

Therefore,∑
v

∑
u∈N [v]

x(v) · x(u) ≤ 2 ·
∑

v

∑
T∈Sv

x(v) = 2t ·
∑

v

x(v) ,

and we are done. ��
Corollary 3. Maximum Independent Set in t-subtree graphs can be approx-
imated in polynomial-time within a factor of 2t.

5 Minimum Coloring and Vertex Cover

In this section we present approximation algorithms for Minimum Coloring

and Minimum Vertex Cover. The former achieves an approximation factor
of 2t, and the latter achieves a factor of 2 − 1/t. Both algorithms rely on the
following structural lemma for t-subtree graphs, which extends the corresponding
lemma for t-interval graphs from [3]:

Lemma 9. Any t-subtree graph G with maximum clique size k can be colored
in polynomial-time using at most 2t(k − 1) colors.

Proof. Let G be a t-subtree, and let S denote its t-subtree representation. Denote
by G∗ the intersection graph of

⋃S, the set of subtrees that appear in S. Clearly,
|V (G∗)| ≤ t · |V (G)|, since each vertex in G corresponds to at most t vertices in
G, and |E(G)| ≤ |E(G∗)|, since each edge in G corresponds to at least one edge
in G∗. Notice that G∗ is chordal and has maximum clique size at most k. Thus,
|E(G∗)| < (k − 1)|V (G∗)|, as can be seen by counting all forwards edges in a
simplicial ordering of G. Therefore,

|E(G)| ≤ |E(G∗)| < (k − 1)|V (G∗)| ≤ t(k − 1)|V (G)| .

It follows that the average degree of G is less than 2t(k−1), and so the standard
greedy algorithm can be used to color G with at most 2t(k − 1) colors. ��
Since the maximum clique size of a graph G is a lower bound on the number of
colors used in any coloring of G, and in particular in an optimal one, we obtain:

Corollary 4. Minimum Coloring in t-subtree graphs can be approximated in
polynomial-time within a factor of 2t.

Let us next consider Minimum Vertex Cover. Here we propose an algorithm
which consists of two stages. The first stage involves removing triangles from our
input graph G by applying a technique originally introduced in [15] in order to
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remove short odd cycles. Using this technique, we obtain in polynomial-time a
triangle-free subgraph G′ of G such that any r-approximate vertex cover of G′

can be easily transformed into a max {r, 1.5}-approximate vertex cover of G. The
same triangle-cleaning phase is also performed in [4] to approximate Minimum

Vertex Cover in t-interval graphs.
The second stage consists of using the algorithm of Hochbaum [16] which

gives a factor of (2− 2/c) for Minimum Vertex Cover in graphs that can be
colored in polynomial-time with c colors. Combining this with Lemma 9, we get
an algorithm that computes in polynomial-time a (2− 1/t)-approximate vertex
cover for the triangle-free subgraph G′ produced in the first stage. As mentioned
above, this vertex cover can be transformed into a vertex cover of G which is
(2− 1/t)-approximate for t ≥ 2.

Corollary 5. Minimum Vertex Cover in t-subtree graphs can be approxi-
mated in polynomial-time within a factor of (2− 1/t).

6 Maximum Clique

In this section we present a (t2−t+1)/2-approximation algorithm for Maximum

Clique in t-subtree graphs.
We begin with the notion of a transversal. A transversal of a subset S′ ⊆ S is

a set of vertices {α1, . . . , ατ} ⊂ V (T ) such that for every S ∈ S′ there is at least
one αi ∈ {α1, . . . , ατ} with αi ∈ S. Note that due to Lemma 7, we can assume
that any transversal is a subset of root(S′). The transversal number of S′ is the
minimum size of any transversal of S.

A pairwise intersecting subset of S is called a τ -clique if it has transversal num-
ber equal to τ . (Note that a τ -clique is not a clique with τ vertices.) Berger [17]
proved upper bounds on the transversal number of any pairwise intersecting
family of t-subtrees.

Lemma 10 ([17]). Any pairwise intersecting subset S′ ⊆ S is a (t2 − t + 1)-
clique.

As in t-interval families, the maximum weight 2-clique in S can be computed in
polynomial-time due to a couple of simple observations.

Lemma 11. A maximum weight 2-clique in S can be computed in polynomial
time.

Proof. Consider a pair of vertices α, β ∈ root(S), and let

S′ = {S ∈ S : α ∈ S or β ∈ S} .

Then the intersection graph GS′ is the complement of a bipartite graph, since
both {S ∈ S : α ∈ S} and {S ∈ S : β ∈ S} are pairwise intersecting. Since
Maximum Independent Set is polynomial-time solvable in bipartite graphs,
we can compute the maximum weight clique in GS′ in polynomial-time. Thus,
by iterating over all O(n2) pairs of vertices in root(S), we can compute the
maximum weight 2-clique in S in polynomial time. ��



204 D. Hermelin and D. Rawitz

Combining both lemmas above, we obtain:

Corollary 6. Maximum Clique in t-subtree graphs can be approximated in
polynomial-time within a factor of (t2 − t + 1)/2.
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Abstract. We present randomized approximation algorithms for multi-
criteria traveling salesman problems (TSP), where some objective func-
tions should be minimized while others should be maximized. For the
symmetric multi-criteria TSP (STSP), we present an algorithm that com-
putes (2/3−ε, 4+ε) approximate Pareto curves. Here, the first parameter
is the approximation ratio for the objectives that should be maximized,
and the second parameter is the ratio for the objectives that should be
minimized. For the asymmetric multi-criteria TSP (ATSP), we present
an algorithm that computes (1/2 − ε, log2 n + ε) approximate Pareto
curves. In order to obtain these results, we simplify the existing approxi-
mation algorithms for multi-criteria Max-STSP and Max-ATSP. Finally,
we give algorithms with improved ratios for some special cases.

1 Multi-Criteria TSP

1.1 Traveling Salesman Problems

The traveling salesman problem (TSP) is a basic problem in combinatorial op-
timization. An instance of Max-TSP is a complete graph G = (V, E) with edge
weights w : E → Q+. The goal is to find a Hamiltonian cycle (also called a tour)
of maximum weight, where the weight of a Hamiltonian cycle is the sum of its
edge weights. (The weight of an arbitrary set of edges is analogously defined.)
If G is undirected, then we speak of Max-STSP (symmetric TSP). If G is di-
rected, we have Max-ATSP (asymmetric TSP). Min-TSP is similarly defined,
but now the edge weights d : E → Q+ are required to fulfil the triangle inequal-
ity: d(u, v) ≤ d(u, x)+ d(x, v) for all u, v, x ∈ V (without the triangle inequality,
approximating the problem is impossible). The aim is to find a Hamiltonian cycle
of minimum weight. Min-STSP is the symmetric variant, where G is undirected,
while Min-ATSP is the asymmetric variant.

All four variants of TSP are NP-hard and APX-hard. Thus, we are in need
of approximation algorithms. Christofides’ algorithm [14] achieves a ratio of 3/2
for Min-STSP. Min-ATSP can be approximated with a factor of 2

3 · log2 n, where
n is the number of vertices of the instance [8]. The currently best approximation
algorithm for Max-STSP achieves an approximation ratio of 7/9 [12], and the
currently best algorithm for Max-ATSP achieves a ratio of 2/3 [9].

Cycle covers are one of the main tools for designing approximation algorithms
for the TSP [3, 9, 8, 12]. A cycle cover of a graph is a set of vertex-disjoint

E. Bampis and K. Jansen (Eds.): WAOA 2009, LNCS 5893, pp. 205–216, 2010.
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cycles such that every vertex is part of exactly one cycle. Hamiltonian cycles
are special cases of cycle covers that consist just of a single cycle. The general
idea is to compute an initial cycle cover, and then we join the cycles to obtain a
Hamiltonian cycle.

1.2 Multi-Criteria Optimization

In many optimization problems, there is more than one objective function. This
is also the case for the TSP: We might want to minimize travel time, expenses,
number of flight changes, etc., while a taxi driver might want to maximize his
profit, or we want to maximize, for instance, our profit along the way. This gives
rise to multi-criteria TSP, where Hamiltonian cycles are sought that optimize
several objectives simultaneously. However, as far as we are aware, multi-criteria
TSP has only been considered in a restricted setting, where either all objectives
should be minimized or all objectives should be maximized. In this paper, we
consider the general setting with both types of objectives at the same time.

If k objectives are to be maximized and 
 objectives are to be minimized,
then we have k-Max-
-Min-ATSP and k-Max-
-Min-STSP. If the number of
criteria does not matter, we will also speak of MC-ATSP and MC-STSP. If

 = 0 or k = 0, then we obtain the special cases k-Max-ATSP and k-Max-STSP
as well as 
-Min-ATSP and 
-Min-STSP. Analogously, if the number of criteria
is unimportant, we have MC-Max-ATSP and so on.

With respect to a single objective function, the notion of an optimal solution
is well-defined. But if we have more than one objective function, there is no nat-
ural notion of a best choice. Instead, we have to content ourselves with trade-off
solutions. The goal of multi-criteria optimization is to deal with this dilemma.
In order to transfer the notion of an optimal solutions to multi-criteria optimiza-
tion problems, Pareto curves (also known as Pareto sets or efficient sets) were
introduced introduced (cf. Ehrgott [6]). A Pareto curve is a set of solutions that
are potential optimal choices.

An instance of k-Max-
-Min-ATSP is a directed complete graph G = (V, E)
with edge weights w1, . . . , wk : E → Q+ and d1, . . . , d� : E → Q+. The functions
w1, . . . , wk should be maximized while d1, . . . , d� should be minimized. We call
w1, . . . , wk the max objectives and d1, . . . , d� the min objectives. For convenience,
let w = (w1, . . . , wk) and d = (d1, . . . , d�). Inequalities of vectors are meant
component-wise.

A Hamiltonian cycle H dominates another Hamiltonian cycle H ′ if w(H) ≥
w(H ′) and d(H) ≤ d(H ′) and at least one of these inequalities is strict. This
means that H is strictly preferable to H ′. A Pareto curve of solutions contains
all solutions that are not dominated by another solution. For other optimization
problems, multi-criteria variants are defined analogously.

Unfortunately, Pareto curves cannot be computed efficiently in many cases:
First, they are often of exponential size. Second, they are NP-hard to com-
pute even for otherwise easy optimization problems. Third, TSP is NP-hard al-
ready with a single objective function, and optimization problems do not become
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easier with more objectives involved. Therefore, we have to be satisfied with
approximate Pareto curves.

A set P of Hamiltonian cycles is called an (α, β) approximate Pareto curve
for the instance (G, w, d) if the following holds: For every Hamiltonian cycle H ′,
there exists an H ∈ P with w(H) ≥ αw(H ′) and d(H) ≤ βd(H ′). We have
α ≤ 1, β ≥ 1, and a (1, 1) approximate Pareto curve is a Pareto curve.

An algorithm is called an (α, β) approximation algorithm if, given G and w,
it computes an (α, β) approximate Pareto curve. It is called a randomized (α, β)
approximation if its success probability is at least 1/2. This success probability
can be amplified to 1 − 2−m by executing the algorithm m times and taking
the union of all sets of solutions. A fully polynomial time approximation scheme
(FPTAS) for a multi-criteria optimization problem computes (1 − ε, 1 + ε) ap-
proximate Pareto curves in time polynomial in the size of the instance and 1/ε
for all ε > 0. Multi-criteria matching admits a randomized FPTAS [13], i. e., the
algorithm succeeds in computing a (1− ε, 1 + ε) approximate Pareto curve with
a probability of at least 1/2. This randomized FPTAS yields also a randomized
FPTAS for the multi-criteria cycle cover problem [11].

1.3 Previous Work

Most research on multi-criteria TSP is about heuristics for finding approx-
imate solutions without any worst-case guarantee. We refer to Ehrgott and
Gandibleux [6,7] for a comprehensive survey.

The first result concerning computing approximate Pareto curves for the TSP
is due to Angel et al. [1,2], who considered Min-STSP restricted to edge weights
1 and 2. Ehrgott [5] considered a variant of MC-Min-STSP, where all objec-
tives are encoded into a single objective by using some norm. MC-Min-STSP
allows for a (2+ε) approximation [11]. Bläser et al. [4] devised the first random-
ized approximations for MC-Max-STSP and MC-Max-ATSP. Their algorithms
achieve ratios of 1

k − ε for k-Max-STSP and 1
k+1 − ε for k-Max-ATSP. This has

been improved to 2/3− ε and 1/2− ε, respectively [10]. MC-Min-ATSP can be
approximated with a factor of log2 n + ε [10].

All approximation algorithms mentioned above deal with the special cases
where we have either only min objectives or only max objectives. As far as we
are aware, nothing is known so far about the approximability of multi-criteria
TSP with both min and max objectives.

1.4 New Results

We present randomized approximation algorithms for k-Max-
-Min-TSP for any
k, 
 ∈ N. As far as we are aware, this is the first paper that deals with approx-
imation algorithms for multi-criteria TSP with both min and max objectives
simultaneously. Our approximation algorithm for k-Max-
-Min-ATSP computes
(1/2− ε, log2 n + ε) approximate Pareto curves for any 
 and k (Section 3). Our
approximation algorithm for k-Max-
-Min-STSP computes (2/3 − ε, 4 + ε) ap-
proximate Pareto curves for any 
 and k (Section 4). The running-times of our
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algorithms are polynomial in the input size for any fixed k, 
, and ε. But, since
even the sizes of approximate Pareto curves are exponential in the number of
objectives, it is unavoidable that the running-time is exponential in k and 
.

The main difficulty is that min and max objectives are different in nature:
For max objectives, we have to collect as much weight as possible. If we have
a substructure, i. e., a collection of paths that can be extended to a Hamilto-
nian cycle, then we can add any edges to actually get a Hamiltonian cycle. For
min objectives, we have to be careful since adding any single heavy edge can
deteriorate the approximation ratio.

The idea to deal with this difficulty is to first detect a collection of paths that
have sufficient weight with respect to the max objectives. (In fact, we compute a
set of collections of paths since a single collection does not suffice.) We will take
care that these collections of paths are not too heavy with respect to the min
objectives. After that, we connect our collections of paths to get Hamiltonian
cycles. In this second step, we only pay attention to the min objectives; we
already have enough weight with respect to the max objectives, and adding
further edges does not decrease the weight.

In the next section, we introduce decompositions, which have already been
used to approximate MC-Max-TSP [4, 10]. Then we present our algorithms and
their analyses in the subsequent sections. As a byproduct, our algorithms are
simplified 1/2 − ε and 2/3 − ε approximation algorithms for MC-Max-ATSP
and MC-Max-STSP, respectively. In particular, they avoid the recursion from
k to k − 1 objectives that was used in the earlier approximation algorithms
for MC-Max-TSP [10,4]. Finally, we consider some variants of the problem like
combining asymmetric and symmetric objective functions (Section 5).

Due to space constraints, most proofs are omitted due to space constraints.

2 Decompositions

From now on, let ηk,ε = ε2

2 ln k < 1 for ε > 0. We assume ε < 1
2 ln k throughout the

paper. This is no restriction since the number k of max objectives is considered
to be fixed. For n ∈ N, let [n] = {1, 2, . . . , n}.

We call a Hamiltonian cycle H a ξ-heavy-weight Hamiltonian cycle if there
exists an i ∈ [k] and an edge e ∈ H such that wi(e) > ξw(H). In this case, e is
called a ξ-heavy-weight edge of H . If ξ is clear from the context, we also speak
simply of a heavy-weight Hamiltonian cycle and a heavy-weight edge. Vice versa,
H is a ξ-light-weight Hamiltonian cycle if it is not ξ-heavy-weight. Light-weight
and heavy-weight cycle covers as well as heavy-weight edges of cycle covers are
defined analogously.

A decomposition of a cycle cover C is a set P ⊆ C of edges that consists solely of
paths. The collection P of paths is obtained by removing a single edge of every cy-
cle of C. The set P is called a γ decomposition if w(P ) ≥ γw(C). Decompositions
play a crucial role in approximating MC-Max-TSP: We can add edges to a collec-
tion P of paths to get a Hamiltonian cycle. Thus, if C allows for an γ decomposi-
tion P , then we can find a Hamiltonian cycle H ⊇ P with w(H) ≥ w(P ) ≥ γw(C).
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For our algorithms, we exploit that (1/2−ε) decompositions of directed ηk,ε-light-
weight cycle covers and (2/3− ε) decompositions of undirected ηk,ε-light-weight
cycle covers exist and can be found in polynomial time [10].

We call the procedure that finds decompositions Decompose with parameters
C, w, and ε: C is a cycle cover (directed or undirected), w = (w1, . . . , wk) are
k edge weights, and ε > 0. Then Decompose(C, w, ε) returns a (1/2 − ε)-
or (2/3 − ε)-decomposition P ⊆ C, depending on whether C is directed or
undirected, provided that C is an ηk,ε-light-weight cycle cover.

In addition to Decompose, we use the following existing algorithms for our
algorithms: CyCo-Approx denotes the randomized FPTAS for cycle covers: on
input (G, w, d, ε, p), CyCo-Approx returns a (1− ε, 1 + ε) approximate Pareto
curves of cycle covers with respect to (G, w, d) with a success probability of at
least 1− p. We use CyCo-Approx for computing both undirected and directed
cycle covers. If either d or w is missing, CyCo-Approx computes a (1 − ε) or
(1 + ε) approximate Pareto curve with respect to w or d, respectively.

MST-Approx denotes the deterministic FPTAS for multi-criteria spanning
trees of minimum weight [13]: MST-Approx(G, d, ε) computes a (1+ε) approx-
imate Pareto curve of spanning trees of the instance (G, d).

By MinATSP-Approx, we denote the (log2 n + ε) approximation algorithm
for MC-Min-ATSP [10]: On input (G, d, ε, p), MinATSP-Approx computes a
(log2 n+ ε) approximate Pareto curve for MC-Min-ATSP for the instance (G, d)
with a success probability of at least 1− p.

3 Asymmetric Multi-Criteria TSP

3.1 Preparation for MC-ATSP

In this section, we focus our attention on the max objectives w. For a graph
G = (V, E) and a subset K ⊆ E of G’s edges, we obtain G−K by contracting
all edges of K. Contracting a single edge (u, v) means removing all outgoing
edges of u, removing all incoming edges of v, and identifying u and v. (The set
K will always be such that no conflicts arise during contraction. In particular,
the order in which the edges are contracted does not matter.) Analogously, for a
Hamiltonian cycle H and edges K, we obtain a Hamiltonian cycle H−K of G−K

by contracting the edges in K. We will usually have K ⊆ H in this case.
If (G, w, d) is an instance for a multi-criteria TSP problem, then (G−K , w, d)

denotes the instance with w and d modified according to the edge contractions.
For any Hamiltonian cycle H , let ζi = max{wi(e) | e ∈ H} be the weight of the

heaviest edge with respect to the i-th objective. Let ζ = ζ(H) = (ζ1, . . . , ζk). We
will distinguish between H being a light-weight cycle cover, i. e., all components
of ζ = ζ(H) are small, and H being a heavy-weight cycle cover, i. e., there is
some i such that ζi is large. ¿From the edge weights w and ζ, we obtain new
edge weights wζ by setting the weight of all edges that are heavier than any edge
in H to 0:

wζ(e) =

{
w(e) if w(e) ≤ ζ and
0 if wi(e) > ζi for some i.
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This does not affect the weight of H since all edges e ∈ H fulfil w(e) ≤ ζ.
The reason for this definition is the following: Assume that H is a light-weight
cycle cover, and assume that we have a (1− ε) approximate Pareto curve Cζ(H)

of cycle covers with respect to wζ(H). Then Cζ(H) contains a light-weight cycle
cover whose weight is close to H ’s weight. This is stated more precisely in the
following lemma.

Lemma 1 (Manthey [10]). Let ε > 0 be sufficiently small. Let H be an
(ηk,ε/2 − ( ε

2 )3)-light-weight Hamiltonian cycle. Let ζ = ζ(H), and let Cζ be a
(1− ε

2 ) approximate Pareto curve of cycle covers with respect to wζ .
Then Cζ contains a cycle cover C with wζ(C) ≥ (1− ε

2 ) · w(H) and wζ(e) ≤
ηk,ε/2 · wζ(C) for all e ∈ C. This cycle cover C yields a decomposition P ⊆ C
with w(P ) ≥ (1/2− ε) · w(H).

This is all we need so far for dealing with light-weight Hamiltonian cycles. Next,
we deal with heavy-weight Hamiltonian cycles H̃. Of course it can happen that
we somehow get a light-weight cycle cover C that approximates H̃, i. e., w(C) ≥
(1− ε)w(H̃). In this case, we can apply decomposition and are done.

However, we cannot guarantee that we find such a cycle cover, not even that
such a cycle cover exists. Thus, heavy-weight Hamiltonian cycles need special
treatment. The idea how to deal with them is to collect a few number of heavy-
weight edges. This should be done such that the following properties are met:
The collection should contain a 1/2−ε fraction of the weight of H̃ with respect to
some objective functions. And the rest of H̃, after all edges of the collection have
been contracted, should be a light-weight Hamiltonian cycle. This would allow
us to use decomposition for the rest of H̃ . Let f(k, ε) = k · ⌈ log( 1

2+ε)
log(1−ηk,ε/2+( ε

2 )3)

⌉
.

Our goal is now to prove that for every Hamiltonian cycle H , there exists a set
K ⊆ H of cardinality at most f(k, ε) such that H−K is a

(
ηk,ε/2 − ( ε

2 )3
)
-light-

weight Hamiltonian cycle.

Lemma 2. For every H and every ε > 0, there exists a subset K ⊆ H such
that |K| ≤ f(k, ε) and, for every i ∈ [k], we have

1. wi(K) ≥ (1/2− ε)wi(H) or
2. wi(e) ≤

(
ηk,ε/2 − ( ε

2 )3
)
wi(H−K) for all e ∈ H−K .

3.2 Approximation Algorithm for MC-ATSP

From the results of the previous section, we know that ζ and K exist such that,
for every H̃, we will find an appropriate light-weight cycle cover that eventually
yields a tour H whose weight approximates H̃ ’s weight. To actually obtain an
algorithm, we have to find K and ζ. But there is only a polynomial number
of possibilities for ζ and K: For all ζ and for all i ∈ [k], we can assume that
there is an edge with wi(e) = ζi. Thus, there are at most O(n2) choices for
ζi, hence at most O(n2k) in total. The cardinality of K is bounded in terms of
f(k, ε) as we have shown in the lemma above. For fixed k and ε, there is only
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PTSP ← ATSP-Approx(G, w, d, ε)
input: directed complete graph G = (V, E), w : E → Qk

+, d : E → Q�
+, ε > 0

output: (1/2 − ε, log2 n + ε) approximate Pareto curve PTSP for k-Max-
-Min-ATSP
with a success probability of at least 1/2

1: for all path covers K ⊆ E with |K| ≤ f(k, ε) and bounds ζ do
2: CK,ζ ← CyCo-Approx

(
G−K , wζ , d, ε

2
, 1

4n2k+f(k,ε)

)
3: for all I ⊆ [k] and C ∈ CK,ζ do
4: if wζ

I (e) ≤ ηk,ε/2 · wζ
I (C) for all e ∈ C then

5: P ← Decompose

(
C, wζ

I , ε
2

)
6: let V ′ be the start-points of paths of P
7: P ′

TSP ← MinATSP-Approx

(
V ′, d, ε

2
, 1

2k4n2k+f(k,ε)|CK,ζ |
)

8: for all H ′ ∈ P ′
TSP do

9: A ← H ′ ∪ C
10: obtain a tour H ′′ from the Eulerian set A of edges with H ′′ ⊇ P
11: combine H ′′ and K to a tour H ; add H to PTSP

Algorithm 1. ATSP-Approx: Approximation algorithm for MC-ATSP

a polynomial number of subsets of cardinality at most f(k, ε). We can restrict
K to be a path cover, which is an acyclic set of edges such that both indegree
and outdegree of each vertex is at most one. Of course, the running-time of
our algorithm is exponential in the number k of max objectives. But this is
unavoidable since the sizes of approximate Pareto curves can be exponential in
the number of objectives. In the following, wI for a set I ⊆ [k] denotes the vector
of edge weights restricted to the components in I. Instead of taking edges one-
by-one as in the proof of Lemma 2, we take all edges at once. This means that
we take a subset of the edges of cardinality at most f(k, ε). Furthermore, we
do not distinguish between light-weight and heavy-weight Hamiltonian cycles:
light-weight Hamiltonian cycles are simply those for which K = ∅ works.

The min objectives remain to be taken into account. The main idea behind
the algorithm is first to collect enough weight with respect to the max objec-
tives. This gives us a collection of paths that fulfil the weight requirements
for the max objectives. We have to be careful not to get too much weight
with respect to the min objectives. After that we connect the paths using
MinATSP-Approx, which is the approximation algorithm for MC-Min-ATSP.
Overall, we get ATSP-Approx (Algorithm 1) and the following theorem.

Theorem 1. For every ε > 0, ATSP-Approx (Algorithm 1) is a randomized
(1/2 − ε, log2 n + ε) approximation algorithm for k-Max-
-Min-ATSP for any
k, 
 ∈ N. For fixed ε, k, and 
, its running-time is polynomial in the input size.

Proof. For want of space, we only analyze the approximation ratio. To do this, we
assume that all randomized computations are successful. We have to show that
for every Hamiltonian cycle H̃ , there exists a Hamiltonian cycle H ∈ PTSP with
w(H) ≥ (1/2−ε)w(H̃) and d(H) ≤ (log2 n+ε)d(H̃). Thus, let H̃ be an arbitrary
Hamiltonian cycle. By Lemma 2, there exists a set K ⊆ H̃ of cardinality at most
f(k, ε) and a set I ⊆ [k] with the following properties:
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– For every i ∈ [k] \ I, we have wi(K) ≥ (1/2− ε)wi(H̃).
– For every i ∈ I and for every edge e ∈ H−K , we have wi(e) ≤

(
ηk,ε/2 −

( ε
2 )3
)
wi(H−K).

Let ζ = ζ(H−K). According to Lemma 1, the set CK,ζ contains a cycle cover
C with the following properties:

– C is a ηk,ε/2-light-weight cycle cover with respect to wI .
– wi(C) ≥ (1− ε

2 )wi(H̃) for every i ∈ I.
– d(C) ≤ (1 + ε

2 )d(H̃−K).

This means that there exists a decomposition P ⊆ C such that wi(P ) ≥
(1/2 − ε)wi(H̃−K) and P consists of at most n/2 paths. The former follows
from Lemma 1. The latter holds since H−K has at most n vertices and every
cycle of C consists of at least two vertices, which implies that every connected
component of P consists of at least two vertices.

Thus, V ′ has at most n/2 vertices. This implies that P ′
TSP contains a Hamil-

tonian cycle H ′ with d(H ′) ≤ (log2(
n
2 ) + ε

2

)
d(H−K).

We obtain the Hamiltonian cycle H ′′ of V \ K as follows: Assume that P
contains a path from u to v and H ′ contains an edge from u to x. Then we add
the path from u to v plus the edge (v, x) to H ′′. We do this for all paths of P .
The triangle inequality guarantees d(v, x) ≤ d(v, u) + d(u, x). This yields

d(H ′′) ≤ d(C) + d(H ′) ≤ d(C) +
(
log2

(
n
2

)
+ ε

2

) · d(H−K)

≤ (1 + ε
2 + log2

(
n
2

)
+ ε

2

) · d(H−K) = (log2 n + ε) · d(H−K).

We observe that d(H̃) = d(K) + d(H̃−K) since K ⊆ H̃ . Furthermore, d(H) =
d(H ′′)+ d(K). Thus, d(H) ≤ (log2 n + ε) ·d(H−K)+ d(K) ≤ (log2 n + ε) ·d(H̃).
In addition, we have wi(H) ≥ wi(K) ≥ ( 1

2 − ε
) · w(H̃) for every i ∈ I and

wi(H) ≥ wi(P )+wi(K) ≥ ( 1
2 − ε

)
wi(H̃−K)+wi(K) ≥ ( 1

2 − ε
)
wi(H̃) for every

i ∈ [k] \ I. This proves the approximation ratio. ��

4 Symmetric Multi-Criteria TSP

Of course, ATSP-Approx works also for MC-STSP. However, this ignores d and
w being symmetric. In this section, we present a (2/3− ε, 4 + ε) approximation
algorithm for MC-STSP.

4.1 Preparation for MC-STSP

As we did for ATSP, we first focus our attention on the max objectives w.
For our approximation algorithm, we need counterparts of Lemmas 1 and 2.

The following function g plays a similar role as f in the directed case: g(k, ε) =
k · ⌈ log( 1

3+ ε
3 )

log(1−ηk,ε/3+( ε
3 )3)

⌉
. For bounds ζ = (ζ1, . . . , ζk) ∈ Qk

+, we define wζ in the
same way as for directed graphs. We have the following counterpart of Lemma 1.
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Lemma 3 (Manthey [10]). Let ε > 0 be arbitrary. Let H̃ be an undirected
Hamiltonian cycle that is

(
ηk,ε/3 − ( ε

3 )3
)
-light. Let ζ = ζ(H̃), and let Cζ be a(

1− ε
3

)
approximate Pareto curve of cycle covers with respect to wζ .

Then Cζ contains a cycle cover C with wζ(C) ≥ (1 − ε
3

)
w(H̃) and wζ(e) ≤

ηk,ε/3w
ζ(C) for all e ∈ C. This cycle cover C yields a decomposition P ⊆ C

with w(P ) ≥ ( 2
3 − 2ε

3

)
w(H̃).

However, the main difficulty when dealing with STSP is that contractions are no
longer possible. If we contract an edge in the straight-forward way, we obtain a
directed instance. Since we aim at better approximation ratios for STSP than we
have for ATSP, something more sophisticated has to be done. Instead of taking
only single edges, we take longer paths. We do not contract these paths, but set
the weights of all edges incident to vertices on the path to 0. In this way, we can
later remove the edges of a cycle that traverse these vertices, and then we can
add the edges of the path. The problem is that we might lose the two edges at
the ends of the paths; we cannot force them to be in a cycle cover in the same
way. However, as the following lemma shows, we can choose the two edges at
the end such that they contribute only little to the weight of the Hamiltonian
cycle. Thus, we do not lose too much weight and are still able to achieve a good
approximation ratio. The following lemma shows that any sufficiently long path
contains an edge that is light with respect to all objectives w1, . . . , wk.

Lemma 4 (Manthey [10]). Let H̃ be a Hamiltonian cycle on n vertices, and
let e1, . . . , em be any m distinct edges of H̃. Then there exists a z ∈ [m] such
that w(ez) ≤ k

m · w(H̃).

Now let H̃ be a Hamiltonian cycle, and let K ⊆ H̃. Let L = L(K) = {v ∈ V |
∃e ∈ K : v ∈ e} be the set of vertices incident to edges in K. Let w−L be defined
by w−L(e) = w(e) if e ∩ L = ∅ and w−L(e) = 0 if e ∩ L �= ∅. This means that
the weight of edges incident to L is set to 0, which includes the edges in K. But
there are more edges whose weight is affected by w−L: Let

T = T (K) = {e ∈ H̃ | e /∈ K, e ∩ L(K) �= ∅}
be the set of edges that have exactly one endpoint in L. The weights of these
edges are set to 0 in w−L, but we cannot force them to be in any cycle cover
as mentioned above. (They are the edges at the ends of the paths in K.) The
following lemma is the undirected counterpart of Lemma 2. In particular, it
takes care of the set T . This set T is only needed for the analysis and not for
the algorithm.

Lemma 5. For every Hamiltonian cycle H and every ε > 0, there exists a
subset K ⊆ H of at most g(k, ε) paths, each of length at most 6k

ε g(k, ε) with the
following properties: Let L = L(K) and T = T (K). For every i ∈ [k], we have

1. wi(K) ≥ (2/3− ε)wi(H) or
2. w−L

i (e) ≤ (ηk,ε/3 − ( ε
3 )3
)
w−L

i (H) for all e ∈ H.

Furthermore, we have w(T ) ≤ 2ε
3 w(H).
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PTSP ← STSP-Approx(G, w, d, ε)
input: undirected complete graph G = (V, E), w : E → Qk

+, d : E → Q�
+, ε > 0

output: (2/3− ε, 4 + ε) approximate Pareto curve PTSP for k-Max-
-Min-ATSP with
a success probability of at least 1/2

1: for all K ⊆ E consisting of ≤ g(k, ε) paths of length ≤ 6kg(k, ε) and all ζ do
2: L ← L(K)
3: CL,ζ ← CyCo-Approx

(
G, w−L,ζ , ε

4
, 1

n2k+6kg2(k,ε)

)
4: for all I ⊆ [k] and C ∈ CL,ζ do
5: if w−L,ζ

I (e) ≤ ηk,ε/3 · w−L,ζ
I (C) for all e ∈ C then

6: P ← Decompose

(
C, w−L,ζ

I , ε
4

)
7: remove edges of weight 0 from P
8: choose one end-point of each path of P and K to obtain V ′

9: let G′ be the corresponding graph
10: T ← MST-Approx

(
G′, d, ε

4

)
11: for all T ∈ T do
12: combine T , P , and K to a spanning tree T ′ of G
13: duplicate each edge of T ′ to get an Eulerian graph T ′′

14: traverse T ′′, take shortcuts to get a tour H ⊇ P ∪K; add H to PTSP

Algorithm 2. STSP-Approx: Approximation algorithm for MC-STSP

4.2 Approximation Algorithm for MC-STSP

The main difficulty in getting approximation ratios for MC-STSP is threefold:
First, we have to be more careful than for MC-ATSP since contractions are im-
possible. When inserting the edges of the set K, we have to take into account two
points: First, we need all edges of K since we need the weight for the max ob-
jectives. Second, we cannot afford to add arbitrary edges to build a Hamiltonian
cycle since this might add too much weight with respect to the min objectives.
Third, concerning the approximation ratio, we will construct Eulerian graphs
from which we obtain the Hamiltonian cycles by taking shortcuts. However, on
the one hand, we have to make sure that none of the edges of K is removed
by taking shortcuts. On the other hand, this gives us another factor of 2 in the
approximation ratio. (The problem is that Christofides’ algorithm for MC-Min-
STSP gives us only a ratio of 2+ε instead of 3/2 as it does for Min-STSP with a
single objective.) We deal with these issues in the proof of the main theorem of
this section. Overall, we obtain Algorithm 2 (STSP-Approx) and the following
result.

Theorem 2. For every ε > 0, STSP-Approx (Algorithm 2) is a randomized
(2/3−ε, 4+ε) approximation algorithm for k-Max-
-Min-STSP for any k, 
 ∈ N.
For fixed ε, k, and 
, its running-time is polynomial in the input size.

5 Variants

Since k and 
 are usually quite small, a natural question is if the approximation
ratios can be improved for particular values of k and 
.
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Our first observation is that k-Max-1-Min-STSP allows for a (2/3− ε, 3.5+ ε)
approximation: Instead of using the spanning tree heuristic in lines 10 to 13, we
use Christofides’ algorithm [14]. More general and along the same lines: If 
-Min-
STSP can be approximated with a ratio of s�, then this yields a (2/3−ε, s�+2+ε)
approximation algorithm for k-Max-
-Min-STSP.

Our second observation concerns ATSP: If 
-Min-ATSP can be approximated
with a ratio of s�(n) on graphs with n vertices, then this yields a (1/2 − ε, 1 +
s�(n/2) + ε) approximation algorithm for k-Max-
-Min-ATSP. This follows im-
mediately from the analysis in Section 3. In particular, for 
 = 1, we obtain a
(1/2− ε, 2

3 log2 n + 1
3 + ε) approximation using the algorithm of Feige and Singh

for Min-ATSP [8].
Finally, an obvious variant of multi-criteria TSP that has not been analyzed

yet is a combination of ATSP and STSP: Some objectives are asymmetric, while
others are symmetric. The difficulty with this variant is that, for asymmetric ob-
jectives, only cycle covers with a minimum cycle length of two can be computed
efficiently. Thus, if also the symmetric objectives require cycle cover compu-
tations, which is the case for symmetric max objectives, it seems hard to get
approximation ratios better than the trivial ratios that we obtain by using the
ATSP algorithms for both symmetric and asymmetric objectives.

One setting, however, allows for better ratios: If the max objectives are asym-
metric and the min objectives are symmetric, then a straightforward combination
of ATSP-Approx (Algorithm 1) and STSP-Approx (Algorithm 2) gives a ra-
tio of (1/2− ε, 4+ ε): We run ATSP-Approx until we have enough weight with
respect to the max objectives w. Then we switch to STSP-Approx to connect
the components. We do not lose any weight with respect to w by connecting the
components, although the max objectives w are asymmetric.

6 Concluding Remarks

We have presented approximation algorithms for multi-criteria traveling sales-
man problems that have min and max objectives simultaneously. Our algorithms
work for any fixed number of minimization and maximization objectives. They
are randomized and have polynomial running-time. The approximation ratios
obtained, (1/2− ε, log2 n + ε) for MC-ATSP and (2/3− ε, 4 + ε) for MC-STSP,
match the approximation ratios for multi-criteria TSP with only maximization
or only minimization problems, except for the Min-STSP part of MC-STSP. For
this, the ratio is only 4+ε, compared to 2+ε for MC-Min-STSP. This raises the
questions whether this 4+ε can be improved. More precisely: If there exists an r�

approximation algorithm for 
-Min-STSP, does this yield a (2/3− ε, r�) approx-
imation algorithm for k-Max-
-Min-STSP? So far, we only get a performance
ratio of (2/3− ε, r� + 2 + ε) according to Section 5.

To simplify the analysis of the approximability of multi-criteria TSP, it would
be nice if any improvement for k-Max-STSP also yields an improvement for k-
Max-
-Min-STSP: Assume that k-Max-STSP can be approximated with a ratio
of sk and 
-Min-STSP can be approximated with a ratio of r�. Does this yield
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a (rk, s�) approximation for k-Max-
-Min-STSP? Or at least a (fk, g�) approxi-
mation for some non-trivial functions fk and g� that depend on rk and s�? The
same question arises for k-Max-ATSP, 
-Min-ATSP, and k-Max-
-Min-ATSP.

Finally, we ask whether there are also faster and deterministic algorithms for
multi-criteria TSP. The algorithms presented here use randomness only because
no deterministic FPTAS for multi-criteria cycle covers is known. Maybe either
the randomized FPTAS can be derandomized or cycle covers as an intermediate
step can be avoided at all.
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Abstract. Store-and-forward packet routing belongs to the most funda-
mental tasks in network optimization. Limited bandwidth requires that
some packets cannot move to their destination directly but need to wait
at intermediate nodes on their path or take detours. In particular, for
time critical applications, it is desirable to find schedules that ensure
fast delivery of the packets. It is thus a natural objective to minimize
the makespan, i.e., the time at which the last packet arrives at its des-
tination. In this paper we present several new ideas and techniques that
lead to novel algorithms and hardness results.

1 Introduction

In this paper we study the packet routing problem. Given a set of packets in
a network originating at possibly different start vertices, we want to transfer
them to their respective destination vertices. The goal is to minimize the overall
makespan, that is the time when the last packet arrives at its destination. We
consider the offline version of the problem in which all information about the
network and the packets, in particular the start- and destination vertices, are
given in advance. In our routing model, we assume store-and-forward routing.
This means that every node can store arbitrarily many packets but each link
(a directed or undirected edge) can be used by only one packet at a time. We
study the case where the paths of the packets are fixed in advance as well as the
case where their computation is part of the problem. Moreover, we distinguish
between different types of underlying graphs, e.g., directed graphs, undirected
graphs, planar graphs or trees.

This problem has important applications in all settings where packets need
to be transferred through a network. The priority of the packets in the schedule
is not immediately clear and inappropriate routing rules can lead to inefficient
schedules. Delay due to packet latency is not desirable. In particular, in time-
critical applications, packets need to be delivered within a certain time frame in
order to work accurately. Therefore, we are interested in schedules that guarantee
the packets to arrive at their respective destinations as early as possible. Finding
such efficient schedules in distributed systems is a challenging task.
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1.1 Packet Routing Problem

The packet routing problem is defined as follows: Let G = (V, E) be a directed
or undirected graph. A packet Mi = (si, ti) is a tuple consisting of a start vertex
si ∈ V and a destination vertex ti ∈ V . Let M =

{
M1, M2, M3, ..., M|M|

}
be a

set of packets.
Then (G,M) is an instance of the packet routing problem with variable paths.

The problem has two parts: First, for each packet Mi we need to find a path
Pi = (si = v0, v1, . . . , v�−1, v� = ti) from si to ti such that {vi, vi+1} ∈ E if G
is undirected and (vi, vi+1) ∈ E if G is directed for all i with 0 ≤ i ≤ 
 − 1.
Assuming that it takes one timestep to send a packet along an edge we need to
find a routing schedule for the packets such that

– each message Mi follows its path Pi from si to ti and
– each edge is used by at most one packet at a time

We assume that time is discrete and that all packets take their steps simultane-
ously. The objective is to minimize the makespan, i.e., the time when the last
packet has reached its destination vertex. For each packet Mi we define Di to be
the length of the shortest path from si to ti, assuming that all edges have unit
length. Moreover, the dilation D is defined by D := maxi Di. It holds that D is
a lower bound on the length of an optimal schedule.

Since there are algorithms known to determine paths for routing the packets
(see [28,18] or simply take shortest paths) we will also consider the packet routing
problem with fixed paths. An instance of this problem is a tripel (G,M,P) such
that G is a (directed or undirected) graph,M is a set of packets and P is a set of
predefined paths. Because the paths of the packets are given in advance they do
not need to be computed here. The aim is to find a schedule with the properties
described above such that the makespan is minimized. For each packet Mi we
define Di to be the length of the path Pi, again assuming that all edges have
unit length. Like above we define the dilation D by D := maxi Di. For each
edge e we define Ce to be the number of packets that are routed along edge e.
The congestion C is then defined by C := maxe Ce. It holds that C and D are
lower bounds on the length of an optimal schedule.

Throughout the paper we will use the notation |S| for the length of a sched-
ule S. We call a schedule direct if each packet is delayed only in its start vertex.
For a packet routing instance I with fixed or variable paths let OPT (I) denote
a schedule with minimum makespan. For an algorithm A for the packet routing
problem denote by A(I) the schedule computed by A for the instance I. The al-
gorithm A is an α-approximation algorithm if it runs in polynomial time and for
all instances I it holds that |A(I)| ≤ α · |OPT (I)|. We call α the approximation
ratio or performance ratio of A.

1.2 Related Work

Packet routing and related problems have been widely studied in the literature.
Di Ianni [7] shows that the so-called delay routing problem is NP -hard. The proof
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implies that the packet routing problem is NP -hard as well. Leung et al. [21,
chapter 37] study packet routing on different graph classes, including in- and
out-trees. In particular, they show that for those trees the farthest-destination-
first (FDF)-algorithm works optimally. Busch et al. [5] study the direct routing
problem, i.e., the problem of finding the shortest direct schedule. They give
complexity results and algorithms for finding direct schedules.

Mansour and Patt-Shamir [22] study greedy scheduling algorithms (algo-
rithms that always forward a packet if they can) in the setting where the paths
of all packets are shortest paths. They prove that in this setting every packet Mi

reaches its destination after at most Di + |M| − 1 steps where Di is the length
of the path of Mi and |M| is the number of packets in the network. Thus, giving
priority to the packets according to the lengths of their paths yields an optimal
algorithm if we assume that the path-lengths are pairwise distinct.

Leighton et al. [19] show that there is always a routing schedule that finishes
within O(C + D) steps. In [20] Leighton et al. present an algorithm that finds
such a schedule in polynomial time. However, this algorithm is not suitable for
practical applications since the hidden constants are very large. There are also
some local algorithms for this problem (algorithms in which each node must
take the scheduling decisions for its packets without knowing the packets in the
rest of the network) needing O (C)+(log∗ |M|)O(log∗ |M|)

D + poly (log |M|) [26]
and O

(
C + D + log1+ε |M|) [24] steps with high probability. For the case that

all paths are shortest paths, Meyer auf der Heide et al. [2] present a random-
ized online routing protocol which needs only O(C + D + log |M|) steps with
high probability. Busch, Magdon-Ismail, and Mavronicolas [4] present a buffer-
less routing algorithm whose length is bounded by O

(
(C + D) · log3 (n + |M|))

where n denotes the size of the network. Using the algorithm by Leighton et. al as
a subroutine, Srinivasan and Teo [28] present an algorithm that solves the packet
routing problem with variable paths with a constant approximation factor. This
algorithm was recently improved by Koch et al. [18] for the more general message
routing problem (where each message consists of several packets).

The packet routing problem is closely related to the multi-commodity flow over
time problem [10,15,16]. In particular, Hall et al. [15] show that this problem is
NP -hard, even in the very restricted case of series-parallel networks. We obtain
the packet routing problem with variable paths if we additionally require unit
edge capacities, unit transit times, and integral flow values. If there is only one
start and one destination vertex then the packet routing problem is equivalent to
the quickest flow problem. It can be solved optimally in polynomial time, e.g.,
using the Ford-Fulkerson algorithm for the maximum flow over time problem
[11,12] together with a binary search framework. Using Megiddo’s method of
parametric search [23], Burkard, Dlaska, and Klinz [3] present a faster algorithm
which solves the quickest flow problem in strongly polynomial time. Adler et
al. [1] study the problem of scheduling as many packets as possible through a
given network in a certain time frame. They give approximation algorithms and
NP -hardness results.
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For our algorithm on directed trees we need to find a path coloring for the
paths of the packets. The path coloring problem is widely studied in the lit-
erature. For instance, Raghavan et al. [27] present a (3/2)-approximation al-
gorithm for the path coloring problem on undirected trees. Erlebach et al. [9]
give NP -hardness results and algorithms for the problem. In particular, they
improve the algorithm by Raghavan et al. mentioned above and present a (4/3)-
approximation. For coloring directed paths on bidirected trees (i.e., trees in which
each edge represents two links, one in each direction) there are algorithms known
which need at most 5

3L colors where L denotes the maximum load on a directed
link [8]. This is tight since there are instances which actually need 5

3L colors
[17]. Gargano et al. [14] investigate the problem of coloring all directed paths in
a bidirected tree.

1.3 Our Contributions

We present three individual algorithms and several complexity results for the
packet routing problem. If the underlying graph is a directed tree, we first show
how to solve the path coloring problem optimally. This is based on ideas pre-
sented in [9,14]. Having computed such a coloring, we present a new technique
which constructs a direct schedule whose length is bounded by C + D − 1. In
comparison, the best known algorithm for computing direct schedules for packet
routing on general trees guarantees a schedule of length 2C + D − 2 [5]. (Note
that the authors of [5] assume that the edges can be used in opposite directions
at the same time.)

The new idea and method we employ is likely to be useful as a subroutine for
packet routing on other topologies as well. Note that makespan C + D − 1 is a
2-approximation since C and D are both lower bounds on the optimum, but it
guarantees a much better ratio if C � D or C � D. Moreover, we show that C+
D−1 is the best ratio we can possibly guarantee in terms of C and D since there
are instances which actually need this many steps. We show that even for the
very simple case of directed trees the natural farthest-destination-first-algorithm
(FDF) can yield arbitrarily large approximation factors. However, we show how
to use it as a subroutine to obtain a 2-approximation algorithm for undirected
trees. This guarantees a better performance ratio than the algorithm by Busch
et al. [5] since 2C + D − 2 can asymptotically as bad as a 3-approximation.

Then we present a very general condition which guarantees a direct schedule
of a given time horizon T in directed graphs. Also, we present an algorithm which
computes this schedule. This result is particularly substantial in the case where
T = D since then we can guarantee an optimal schedule. As an application, we
show that if the paths of all packets are shortest paths and their lengths are
pairwise different, we can compute an optimal direct schedule of length D. This
improves [22] where it was shown that under this condition there exists a (not
necessarily directed) schedule of this length. We would like to emphasize that in
our understanding of directed graphs, each edge can be used only in the direction
of the edge. For all our algorithms we show that the analysis of the respective
approximation ratios is tight. The algorithms are presented in Section 2.
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Then, in Section 3, we study the complexity of the packet routing problem:
We show that it is NP -hard to approximate within a factor of (6/5− ε), for any
ε > 0. This implies, in particular, that there is no polynomial time approximation
scheme (PTAS), unless P = NP . We show that this still holds if we restrict
the graph topology to directed trees or chain graphs with fixed paths. Then we
investigate whether there can be an algorithm with an absolute error. We answer
the question in the negative. We show that it is NP -hard to approximate the
packet routing problem with fixed paths with an absolute error of k for any fixed
k ≥ 0. This holds even on planar graphs.

Due to space restrictions, some proofs are shortened or moved to the appendix.
For full details we refer to our technical report [25].

2 Algorithms

In this section we study approximation algorithms for packet routing. For di-
rected trees we show that the path coloring problem can be solved optimally in
O(n log C) time, where n denotes the number of vertices in the graph and C the
congestion of the packet routing instance. Based on this, we present an algorithm
which computes a schedule whose length is bounded by C + D − 1 (D denotes
the dilation). For undirected trees, we present a 2-approximation algorithm. It
uses the farthest-destination-first-algorithm (FDF) as a subroutine. Even though
the latter performs optimally on in- and out-trees [21], we show that on general
directed trees it might compute arbitrarily bad schedules. Then we give a con-
dition for the existence of a direct schedule with a given time horizon T and an
algorithm which computes this schedule. In particular, if the lengths of the paths
of the packets are pairwise different, all paths are shortest paths, and the graph
is directed this yields an optimal direct schedule of length D. This improves [22]
where for this setting the existence of a not necessarily direct schedule of that
length was proven.

2.1 Approximation for Directed Trees

For directed trees we show how to construct a direct schedule of length at most
C + D − 1 in polynomial time. The algorithm works as follows: First we find
a coloring for the paths of the packets such that two paths that share an edge
have different colors. We will show that the number of colors needed is exactly C.
We assign to each packet the color of its path. Then we assign to each edge a
time-dependent color. The idea behind this is that we transfer a packet P with
color cP along an edge e = (u, v) only when e has the color cP . We define the
coloring such that for two consecutive edges e = (u, v) and e′ = (v, w) it holds
that at time t the edge e′ has always the color that e had at time t − 1. This
ensures that once a packet starts moving, it will never stop until it reaches its
destination. In the sequel we describe the algorithm in detail.

Path Coloring. First we want to find a coloring for the paths such that two
paths with the same color do not share an edge. Our algorithm works in two
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phases: in the first phase we consider each vertex v together with its adjacent
vertices (this subgraph forms a star). For each of these subgraphs (together with
the paths of the packets in this subgraph) we solve the path coloring problem
optimally (here we use the fact that our tree is directed). Then we combine all
these part-solutions and obtain a solution for the global path-coloring problem.

Phase one: Let v be a vertex and denote by Tv the subgraph induced by v
and its adjacent vertices. We want to find a coloring for the paths which use
edges in Tv. We reduce this problem to the edge-coloring problem on bipartite
multigraphs (note that it is crucial that the edges in Tv are directed). This
construction was already mentioned in [14].

Let U be the set of vertices which have outgoing edges to v, i.e., U =
{u| (u, v) ∈ E}. Similarly, let W be the set of vertices having ingoing edges from
v, i.e., W = {w| (v, w) ∈ E}. We construct an undirected graph Bv as follows:
the set U ∪W forms the set of vertices in Bv. For each path P that goes from a
vertex u ∈ U through v to a vertex w ∈ W we introduce an edge eP := {u, w}
in Bv. For all paths P that start in a vertex u ∈ U and end in v we introduce
a new vertex wP ∈ W and an edge eP := {u, wP } in Bv. Similarly, for paths P
that start in v and end in a vertex w ∈W we add a vertex vP and introduce an
edge eP := {vP , w} in Bv. Thus, for the maximum degree Δ (Bv) of a node in
Bv it holds that Δ (Bv) ≤ C. Also, it holds that two edges eP and eP ′ share an
end-vertex if and only if their corresponding paths P and P ′ share an edge in
Tv. Thus, a valid edge-coloring for Bv implies a valid path coloring for Tv and
vice versa. Moreover, from the construction it follows that Bv is bipartite. We
compute a minimum edge coloring for Bv (e.g., see [6]). The number of colors
needed equals the maximum node degree Δ (Bv) [6].

Phase two: Now we combine the found solutions for the graphs Tv one by
one to obtain a global solution (a similar construction is described in [9, Lemma
2]). We start with an arbitrary vertex v and the path coloring of Tv. Now let
v′ be a vertex adjacent to v and consider the graph Tv′ . We permute the colors
of the paths in Tv′ such that the paths which use the edge (v, v′) (or (v′, v),
respectively) have the same colors in Tv and Tv′ . We iterate over the vertices
by always adding a vertex that is adjacent to one of the vertices that have been
considered already. Eventually, for each edge e = (u, v) all paths that use e have
the same color in Tu and Tv. Since T is a tree in each iteration we can find a valid
permutation of the colors of the paths by using a simple greedy strategy. Since
for each graph Tv we find path colorings with at most C colors, the resulting
path coloring for T has C colors as well.

Time-Dependent Edge Coloring. Now we construct a time-dependent col-
oring c : E × N → {1, 2, ..., C} for the edges of T . It has the consecutive
property: for two consecutive edges e = (u, v) and e′ = (v, w) it holds that
c (e, i) = c (e′, i + 1). Since our graph is a directed tree such a coloring can be
found with a greedy method: Start with an arbitrary edge e and define its col-
oring c (e, i) := i mod C for all i ∈ N. Then inductively assign the colors to the
remaining edges such that the consecutive property holds.



Packet Routing: Complexity and Algorithms 223

Routing Schedule. Finally, we describe the scheduling algorithm. First, we
assign to each packet the color of its path. Now let M be a packet which is
located on a vertex u at time t and which needs to use the edge e = (u, v) next.
Let cP be the color of M . We move M along e in the first timestep t′ with t′ ≥ t
and c (e, t′) = cP . Due to the consecutive property of the time-dependent edge
coloring a packet is never delayed once it has left its start vertex. Denote by
DTREE (I) the resulting schedule for an instance I.

Theorem 1. Let T be a directed tree and let I = (T,M) be a packet routing
instance. It holds that |DTREE (I)| ≤ C + D − 1. A packet is never delayed
once it has left its start vertex (direct routing). Moreover, DTREE (I) can be
computed in O (n · |M| · log C).

Proof. Since no two packets with the same color share an edge there can be
at most one packet that uses an edge e at a time t. Each packet M waits in
its origin vertex for at most C − 1 timesteps. Due to the consecutive property
once it left its start vertex it moves to its destination without being delayed any
further. Thus, the length of the overall makespan is bounded by C − 1 + D.

The edge coloring problem on bipartite multigraphs can be solved optimally
in O (m logΔ) where m denotes the number of edges in the graph and Δ the
maximum node degree, see [6]. Thus, computing the optimal path coloring for one
graph Tv can be done in O (|M| · log C) and for all graphs Tv in O (n·|M| · log C).

Then we need to combine the colorings for the graphs Tv to a global path
coloring. We say a path P touches a vertex v if P goes through v, starts in v
or ends in v. We pick an arbitrary vertex v and color all paths which touch v
in the colors that they have in Tv. After this initialization we iterate by taking
vertices v′ which are adjacent to already considered vertices. When we iterate
we need to find a color permutation for Tv′ which is consistent with the coloring
for Tv. This permutation is partly already defined by the color assignment for
Tv. The remainder can be found in O(C) ⊆ O(|M|) steps. Since the order of the
vertices can be obtained by a depth-first-search the second phase can be done
in O (n · |M|). This gives a total runtime of O (n · |M| · log C). ��
Note that the bound C + D − 1 is the best bound we can give in terms of C
and D since there are packet routing instances which need this many steps. E.g.,
consider a path of length D with vertices v0, ..., vD and C packets all with start
vertex v0 and destination vertex vD.

2.2 Algorithm for Undirected Trees

It is not clear how the technique described in Section 2.1 could be applied to
undirected trees. In particular, the path coloring problem on undirected trees is
significantly harder than on directed trees. Also, it is not clear how the consec-
utive edge-coloring technique could be applied to undirected trees. However, we
present a 2-approximation for the packet routing problem on undirected trees.

The algorithm works as follows: Let T = (V, E) be a tree and let I = (T,M)
be a packet routing instance. Let vr be an arbitrary vertex. We define vr to
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be the root of the tree. We observe that the path of each packet can be split
into two subparts: in the first part Mi moves towards vr. In the second part Mi

moves away from vr. Let vi be the vertex which divides these two parts. We split
the routing problem into two subproblems: First we move each packet Mi from
si to vi. In the second part we move each packet Mi from vi to ti. We observe
that the first part is a packet routing problem on an in-tree (a tree in which all
vertices have an out-degree of at most one) and can therefore easily be solved
optimally in polynomial time (FDF-algorithm, see [21]). Similarly, the second
part is a packet routing instance on an out-tree (a tree in which all vertices have
an in-degree of at most one) which can also be solved optimally in polynomial
time (FDF-algorithm, see [21]). In the overall schedule for I, we run the optimal
schedule for the first part. Then we run the optimal schedule for the second part.
Denote by TREE (I) the resulting schedule for the instance I.

Theorem 2. For the schedule TREE (I) it holds that |TREE(I)|≤ 2·|OPT (I)|.
Proof. Since the length of an optimal schedule for each of the two subproblem
forms a lower bound on the size of an optimal schedule for the original problem,
we achieve an approximation ratio of two. ��
It can be shown that the time needed to compute TREE (I) is bounded by
O
(
n2
)

where n = max {|M| , |V |}. For details see [25].
When implementing the algorithm one would not let a packet Mi wait in

vi until all other packets have finished the first part of the schedule. We would
rather always move a packet when the next edge on its path is free (and prioritize
the packets such that at each timestep each packet is at least as far on its path
as in the original schedule described above). But even then there are instances
which show that our analysis is asymptotically tight [25].

2.3 Directed Graphs and Shortest Paths

We give a condition which allows the existence of a direct schedule within a
given time horizon T . As a corollary we obtain that if the lengths of the paths
are pairwise different there is an optimal direct schedule of length D.

Let G = (V, A) be a directed graph, let T ≥ 0 be a time horizon and let
I = (G,M,P) be a packet routing instance. We demand that for the lengths of
the paths of the packets the following conditions hold:

– All paths are shortest paths.
– For each packet Mi denote by Mi the set of packets Mj such that Pj shares

an edge with Pi and Dj ≥ Di. We demand that |Mi| ≤ T −Di + 1.

For two packets Mi and Mj such that Pi and Pj share an edge we define a
value d (Mi, Mj). Let vij be the first vertex on Pi and Pj which is used by
both paths. Denote by d (si, vij) and d (sj, vij) the number of edges on Pi and
Pj between si and vij and between sj and vij , respectively. Then we define
d (Mi, Mj) := d (si, vij)− d (sj , vij). Note that d (Mi, Mj) = −d (Mj , Mi).
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Assuming that Mi is delayed for k timesteps in the beginning, Mi collides with
Mj if and only if Pi and Pj share an edge and Mj is delayed for d (Mi, Mj) + k
steps (here we use the fact that G is a directed graph and all paths are shortest
paths). We order the packets in decreasing order of the lengths of their paths.
W.l.o.g. we assume that M0, ..., Mk is such an order. Now we iterate over the
packets. In the i-th iteration, we consider the packet Mi. Denote by wj with
0 ≤ j ≤ i − 1 the waiting time which was computed in a previous iteration for
the packet Mj . (This implies that in our schedule the packet Mj waits for wj

steps and then moves to its destination without any further delay.) We say a
packet Mj blocks a certain waiting time m for Mi if Pi and Pj share an edge and
m = d (Mi, Mj) + wj . Note that each packet whose path shares an edge with Pi

blocks exactly one waiting time for Pi.
Let m be the smallest unblocked waiting time for Mi. We define wi := m.

In our schedule the packet Mi then waits for wi steps and then moves to its
destination without any further delay. We denote by Di the length of Pi. We
will prove in Theorem 3 that Di + wi ≤ T and thus Mi needs at most T steps
to reach its destination. We denote by SPATHS(I) the resulting schedule.

Theorem 3. Let G be a directed graph, let I = (G,M,P) be a packet routing
instance, and let T ≥ 0 be a time horizon with the above conditions. Then for the
schedule SPATHS(I) it holds that |SPATHS(I)| ≤ T . Moreover, SPATHS(I)
is a direct schedule.

Proof. It remains to prove that Di + wi ≤ T for each packet Mi. Since we
considered the packets in decreasing order of their path lengths, only packets in
Mi can possibly block a certain waiting time for Mi. Since |Mi| ≤ T −Di + 1
and Mi ∈Mi we conclude that at most T −Di waiting times for Mi are blocked
by packets Mj with j < i. This proves that wi ≤ T − Di which implies that
Di + wi ≤ Di + (T −Di) = T . ��
Note that the bound for the length of SPATH(I) is tight. E.g., let C and D be
arbitrary positive integers and consider a packet routing instance as follows: Let
the graph be a directed path with vertices v0, v1, ..., vD and consider C packets all
with start vertex v0 and destination vertex vD. We define T := C +D− 1. Then
the above conditions are satisfied (since for all packets Mi we have that |Mi| =
|M| = C = T − Di + 1) and the length of the optimal schedule is exactly T .
Moreover, if we weaken our condition and require only that |Mi| ≤ T −Di + 2
we cannot guarantee the existence of a schedule of length T anymore. E.g., take
the above example with C + 1 packets from v0 to vD and T := C + D− 1. Then
each schedule needs at least C + D > T steps.

We obtain the following two corollaries:

Corollary 1. Let G be a directed graph, let I = (G,M,P) be a packet routing
instance, and let T ≥ 0 be a time horizon with the following conditions:

– All paths are shortest paths.
– Let Mi denote the set of packets whose path has at least D − i edges. For

each i ≥ 0 we have that |Mi| ≤ i + 1.
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Then the schedule SPATHS(I) is optimal with |SPATHS(I)| = D.

Corollary 2. Let G be a directed graph and let I = (G,M,P) be a packet
routing instance such that all paths are shortest paths and the lengths of all
paths are pairwise different. Then the schedule SPATHS(I) is optimal with
|SPATHS(I)| = D.

Compare that in [22] it was shown that under the condition of Corollary 2 there
is a (not necessarily direct) schedule whose length is bounded by D. We proved
that in this case there is even a direct schedule with this makespan.

2.4 Farthest-Destination-First-Algorithm on Directed Trees

The farthest-destination-first-algorithm prioritizes the packets according to the
length of their remaining path. That is, packets whose remaining path is longer
have a higher priority than packets whose remaining path is shorter. Ties are
broken arbitrarily. It was shown by Leung [21] that on in-trees and on out-trees
the FDF-algorithm works optimally. However, we show that on general directed
trees the FDF-algorithm can perform arbitrarily bad in terms of the achieved
performance ratio. For an instance I of the packet routing problem, denote by
FDF (I) a longest schedule that the FDF-algorithm could possibly compute.

Theorem 4. For every k ≥ 1 there is a a directed tree Tk and a packet routing
instance Ik = (Tk,Mk) such that

|FDF (Ik)| ≥ k · |OPT (Ik)|

Due to space constraints we refer to our technical report [25] for the construction.

3 Complexity Results

In this section we study the complexity of the packet routing problem. Due to
space constraints we refer to our technical report [25] for detailed descriptions
of the reductions.

Theorem 5. For all ε > 0, there is no (6/5 − ε)-approximation algorithm for
the packet routing problem with fixed paths, unless P = NP .

Proof (sketch). In the reduction we employ a technique which was used in [29] for
showing that the general acyclic job shop problem is NP -hard to approximate
within an approximation factor of 5/4− ε. We reduce from 3-BOUNDED-3-SAT
[13]. In this variant of 3-SAT in the given formula each variable occurs at most
three times (positive and negative). ��
We can modify the reduction to show that the packet routing problem is also
NP -hard to approximate on planar graphs and even on directed trees. Note here
that in the latter case it does not make a difference whether the paths of the
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packets are given in advance or not. As a corollary we obtain the same result for
directed chain graphs with given paths.

All these reductions rely on creating a gap of one time unit between yes-
and no-instances of 3-BOUNDED-3-SAT. This raises the question whether it is
NP -hard to approximate the packet routing problem with an absolute error in
polynomial time.

Theorem 6. For all k > 0, there is no approximation algorithm for the packet
routing problem with fixed paths which guarantees an absolute error of at most k,
unless P = NP .
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Abstract. Video-on-Demand (VoD) services require frequent updates
in file configuration on the storage subsystem, so as to keep up with the
frequent changes in movie popularity. This defines a natural reconfigu-
ration problem in which the goal is to minimize the cost of moving from
one file configuration to another. The cost is incurred by file replications
performed throughout the transition. The problem shows up also in pro-
duction planning, preemptive scheduling with set-up costs, and dynamic
placement of Web applications. We show that the reconfiguration prob-
lem is NP-hard already on very restricted instances. We then develop
algorithms which achieve the optimal cost by using servers whose load
capacities are increased by O(1), in particular, by factor 1 + δ for any
small 0 < δ < 1 when the number of servers is fixed, and by factor of
2 + ε for arbitrary number of servers, for some ε ∈ [0, 1). To the best of
our knowledge, this fundamental optimization problem is studied here
for the first time.

1 Introduction

Video on Demand (VoD) services have become common in library information
retrieval, entertainment and commercial applications. In a VoD system, clients
are connected through a network to a set of servers which hold a large library
of video programs. Each client can choose a program he wishes to view and the
time he wishes to view it. The service should be provided within a small latency
and guaranteeing an almost constant transfer rate of the data. The transmission
of a movie to a client requires the allocation of unit load capacity (or, a data
stream) on a server which holds a copy of the movie.

Since video files are typically large, it is impractical to store copies of all
movies on each server. Moreover, as observed in large VoD systems (see, e.g.,
[6,21]), the distribution of accesses to movie files is highly skewed; indeed, only
small fraction of the movies are requested frequently, while the vast majority
(i.e., more than 80%) of the movies are rarely accessed. Hence, the number of
copies held for each movie needs to reflect its popularity. The goal is to store
the movie files on the servers in a way which enables to satisfy as many client
requests as possible, subject to the storage and load capacity constraints.

Formally, suppose that the system consists of M video program files and N
servers. Each movie file i, 1 ≤ i ≤ M , is associated with a popularity parameter
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p0
i ∈ (0, 1], where

∑M
i=1 p0

i = 1. Each server j, 1 ≤ j ≤ N , is characterized by (i)
its storage capacity, Cj , that is the number of files that can reside on it,1 and
(ii) its load capacity, Lj, which is the number of data streams that can be read
simultaneously from that server. For a given popularity vector {p0

1, . . . , p
0
M},

the broadcast demand of file i is D0
i = p0

iL, where L =
∑N

j=1 Lj is the total
load capacity of the system.2 The data placement problem is to determine a
placement of file copies on the servers and the amount of load capacity assigned
to each file copy, so as to maximize the total amount of broadcast demand
satisfied by the system. A solution to the placement problem can be represented
as two M ×N matrices: (i) The placement matrix, A, a {0, 1}-matrix, Ai,j = 1
iff a copy of movie file i is stored on server j. (ii) The broadcast matrix B,
Bi,j ∈ {0, 1, . . . , Lj}, Bi,j is the number of broadcasts of movie i transmitted
from server j. A legal placement has to satisfy the following conditions:

– Ai,j = 0 ⇒ Bi,j = 0. Clearly, server j can transmit broadcasts of movie i
only if it holds a copy of this movie.

– For each server j,
∑

i Bi,j ≤ Lj , that is, the total number of broadcasts
transmitted from server j does not exceed its load capacity.

– For each server j,
∑

i Ai,j ≤ Cj , that is, the number of files stored on server
j does not exceed its storage capacity.

A placement is perfect if it satisfies the broadcast demands of all movie files.
Formally, ∀i, ∑j Bi,j = D0

i . Under certain conditions, it is known that a perfect
placement always exists (see Section 1.2).

The above static data placement problem captures well the goal of maximizing
throughput in periods of time where broadcast requirements remain unchanged.
However, in general, throughout the operation of a VoD system new movies are
released and may become most popular, while the popularity of the previously
hot movies drops. The system should be able to support any change in the
distribution on file popularities. Thus, in order to maintain high throughput,
the system needs to adjust the placement of file copies and the allocation of load
capacity to these copies. This involves replications and deletions of files. File
replications incur significant cost as they require bandwidth and other resources
on the source, as well as the destination server. Minimizing this cost is crucial
for optimizing system performance. This is the focus of our paper.

Our dynamic data placement problem can be formalized as follows. Given a
perfect placement of file copies on the servers, with the popularity vector
〈p0

1, . . . , p
0
M 〉, suppose that the popularity vector changes to 〈p1, . . . , pM 〉, with the

corresponding broadcast demands 〈D1, . . . , DM 〉. The reconfiguration problem is
to modify the initial data placement to a perfect placement for 〈D1, . . . , DM 〉 at
minimum total cost. In updating system configuration, the cost of storing a new
copy of movie file i on server j is given by si,j , while the assignment of load
capacity to existing copy of file i on server j is free. We denote by ci,j the cost

1 Unless specified otherwise, we assume that all files have the same size.
2 The broadcast demands are assumed to be integers. Rounded values can be obtained

by standard solutions for the apportionment problem [22].
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of having a copy of movie i on server j after the reconfiguration. Given the ini-
tial placement matrix A, we denote by A′ the placement after reconfiguration.
Then, by definition, ci,j = 0 if Ai,j = 1, and ci,j = si,j if Ai,j = 0 and A′

i,j = 1.
In other words, the cost of increasing the (i, j)-entry in the assignment matrix,
A, is si,j while changes in the broadcast matrix B are free. The total cost of
switching from a placement A to a placement A′ is given by

∑
i,j ci,j . Note that

file deletions incur no cost. Clearly, the new assignment must satisfy the three
legal-placement conditions.

A VoD system is homogeneous if all servers have the same load capacities, i.e.,
L1 = · · · = LN = L, and the same storage capacities, i.e., C1 = · · · = CN = C
(see, e.g., [5,10]). In this paper we assume that the system is semi-homogeneous,
i.e., all servers have the same load capacities and arbitrary storage capacities.

Example 1. Consider a system of two servers which holds 6 movies. The pop-
ularity vector is 〈0.05, 0.6, 0.05, 0.15, 0.05, 0.1〉. Both servers have the same load
capacity L1 = L2 = 10, while the storage capacities are C1 = 3, C2 = 4. Hav-
ing L = 20, the demand vector is D0 = 〈1, 12, 1, 3, 1, 2〉. Figure 1(a) presents
a possible perfect placement for this instance. The assignment is described by
the assignment and broadcast matrices A, B and by a bipartite graph, in which
the left hand side nodes represent movie files and the right hand side nodes
represent servers; an edge (i, j) implies that a copy of movie file i is stored on
server j. The maximal degree of a server-node is its storage capacity. Assume
that the popularity vector is changed to 〈0.1, 0.15, 0.05, 0.15, 0.45, 0.1〉. Figure
1(b) presents a new placement, obtained from the previous one by adding (and
deleting) copies of two files. The new placement is perfect for the new demand
vector D = 〈2, 3, 1, 3, 9, 2〉. The reconfiguration cost is c1,2 + c5,1.
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Fig. 1. A perfect placement before (a) and after (b) the popularity change. Bold edges
represent changes in storage assignment.

Applications. As mentioned above, a main motivation for this work comes
from the constant need for dynamic data placement in VoD systems. Our recon-
figuration problem shows up also in production planning, as well as in machine
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scheduling (see a survey in [17]). Suppose that M tasks are processed by N ma-
chines. Each machine has limited amount of resources and a time interval in which
it is active. The resource requirements of the tasks are changing over time. Tasks
may need to be reassigned to the machines in order to fit their new requirement.
Reassignment of tasks incurs some cost due to migration overhead and the set-up
of the machines. The goal is to reassign the tasks to the machine so as to minimize
the transition cost. Finally, our problem naturally arises in dynamic placement
of clustered Web applications (see, e.g., [8]). Web applications are dynamically
placed on server machines so as to adjust system configuration to the availability
of resources. The goal is to maximize the amount of client demands that can be
satisfied by the applications while minimizing the number of placement changes.

1.1 Our Results

We first show (in Section 2) that the reconfiguration problem is NP-hard, already
when the system consists of two servers, with unit reconfiguration costs and very
restricted changes in file popularity. In practical scenarios, it is often the case
that the new popularity vector has a perfect placement. This occurs, e.g., where
the new vector is a permutation of the initial vector, that is, the popularity dis-
tribution function remains unchanged. For such scenarios, we give in Sections
3 and 4 algorithms which solve the reconfiguration problem optimally, by using
servers whose load capacities are increased by a small constant factor. Specif-
ically, for a fixed number of servers, we give in Section 3 an algorithm which
accepts as parameter a value 0 < δ < 1 and achieves the optimal reconfiguration
cost by using servers whose load capacities are L(1+δ). The running time of the
algorithm depends on the value of δ (see Section 3.1). For more general inputs,
in which the number of servers may be arbitrarily large, we give in Section 4 an
algorithm that achieves the optimal cost, by using servers whose load capacities
are increased by factor of 2 + ε, for some ε ∈ [0, 1).

Our main approximation technique, applied (in Section 4) to general instances
of the reconfiguration problem, relies on finding a linear programming relaxation
whose optimal (fractional) solution is a lower bound on the optimal solution for
our problem, and for which we can apply rounding without increasing the total
cost. To find such a relaxation, we iteratively modify the initial linear relaxation
for our problem until we obtain a linear program which reduces our problem to
job scheduling on unrelated machines. It is worth noting that even though the
optimal integral solutions for the programs in this sequence cannot be related to
the optimum cost for our problem, it holds that the optimal (fractional) solution
for each program is a lower bound for the optimum cost for our problem.

Due to space constraints, some of the proofs and implementation details are
omitted. The detailed results appear in [15].

1.2 Related Work

The data placement problem has been extensively studied (see, e.g., [20,5,10,18,8]
and a comprehensive survey in [9]). The paper [16] considers the problem of finding
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a perfect placement of movie files on the servers. The paper shows the hardness
of the perfect placement problem and that such a placement always exists, e.g.,
when

∑N
j=1 Cj ≥ M + N − 1. The paper [16] also presents an algorithm for the

data placement problem, for inputs in which the ratio Lj/Cj is equal for all 1 ≤
j ≤ N (uniform ratio servers). The paper shows that the algorithm achieves a
ratio of 1 − 1/(1 + Cmin) to the optimal, where Cmin = minj Cj . Golubchik et
al. gave in [5] a tighter analysis of this algorithm and showed that it achieves the
ratio 1 − 1/(1 +

√
Cmin)2, and that this ratio is optimal for any algorithm for

this problem. The paper [5] also presents a PTAS for the data placement problem
with uniform ratio servers. Later papers considered a generalized version of the
problem, where files may be of different sizes (see, e.g., [10,18]).

For the more realistic model, where file popularities may change over time,
there has been some earlier work which refers to the resulting data migration
problem: Compute an efficient plan for moving data stored on devices (e.g., a
set of servers) in a network from one configuration to another. Since the servers
are constrained in handling simultaneous transmissions of files, data migration is
done in rounds, where each round handles the delivery of a subset of the files to
their destinations. Common objective functions are minimizing the makespan of
the migration schedule, or the sum of completion times of the servers (see, e.g.,
[12,13]). The paper [11] considers a somewhat ‘dual’ reconfiguration problem:
the goal is to convert the existing layout to a good new layout (that is part of
the solution), using a limited number of migration rounds. Surveys of known
results for the data migration problem are given in [11,4]. The data migration
problem differs from our reconfiguration problem in several ways. (i) The final
configuration is given as part of the input for data migration, while it is part of
the solution for our problem. (ii) In data migration the output is a migration
schedule, while no assignment schedule is output when solving the reconfigu-
ration problem, and finally, (iii) in data migration we measure the quality of
the migration schedule, while in our problem we measure the cost of the final
configuration.

There has been some other work on reconfiguration of data placement, in
which heuristic solutions were investigated through experimental studies (e.g.,
[14,23,3,7]). The paper [8] studies a generalization of our reconfiguration prob-
lem, in which file deletions incur unit costs, and the files are of arbitrary sizes.
The paper presents experimental results for greedy-based heuristics for the prob-
lem. We are not aware of earlier theoretical results for our reconfiguration
problem.

2 Hardness Result

We show that the reconfiguration problem is NP-hard even if the system consists
of only two servers, and even if the popularity changes are limited such that the
new popularity vector is a permutation of the previous one. In other words, the
popularity distribution function is preserved. We use a reduction from a variant
of the subset-sum problem. For a set of integers X , let SX denote the total size
of elements in X .
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Definition 1. The smallest subsets with a given difference problem is defined
as follows: Given are two sets of non-negative integers X = {x1, x2, . . . xnX}
and Y = {y1, y2, . . . , ynY }, and an integer z. W.l.o.g, nX ≤ nY . It is known that
there exists a subset Y ′′ ⊆ Y of size nX such that SX = SY ′′ + z. The goal is to
find the smallest integer k ≥ 1 such that there exist X ′ ⊆ X and Y ′ ⊆ Y , where
|X ′| = |Y ′| = k, and SX′ = SY ′ + z. Note that such an integer k must exist,
since for k = nX , the sets X ′ = X, Y ′ = Y ′′ form a solution.

Based on the hardness of the the smallest subsets with a given difference problem
(hardness proof omitted), we can prove the following:

Theorem 1. The reconfiguration problem is NP-hard even if the system consists
of only two servers, all replication costs are uniform, and even if the popularity
changes are limited such that the new popularity vector is a permutation of the
previous one.

3 Minimal Cost Algorithm for Fixed Number of Servers

We present a poly-time algorithm which finds a minimal-cost reconfiguration for
a semi-homogeneous system, assuming that the number of servers, N , is some
fixed constant. The algorithm outputs a placement which achieves the optimal
cost and uses servers with load capacities (1 + 3δ)L, for a parameter δ ∈ (0, 1].

Given the parameter 0 < δ ≤ 1, a movie file i is considered big, if Di ≥ δL,
else, movie i is small. Our algorithm handles separately the two types of movies.
It produces allocations with the following properties: (P1) For every big movie i,
and every server j, the broadcast allocation Bi,j of server j to movie i is either
0 or at least δL and an integral multiple of δ2L, i.e., Bi,j = kδ2L, where k is
an integer in [1/δ, 1/δ2]. (P2) Every small movie is stored on a single server, on
which it is allocated all of its broadcast demand. Formally, for any small movie
i, for a single server j, Bi,j = Di, and for any j′ �= j, Bi,j′ = 0.

We show below that if a slight augmentation of the load capacities is allowed,
then a minimal cost reconfiguration fulfilling the above properties can be found in
polynomial time. In addition, limiting the set of reconfigurations to ones fulfilling
the properties does not affect the minimal cost. An overview of the algorithm is
given in Figure 2.

Reconfiguration Algorithm
For each storage and load allocation to the big movies, satisfying P1, do:

Let Lb
j and Cb

j be the total load and storage allocation to big movies on server j.
For all 1 ≤ j ≤ N do Lj := L − Lb

j + 2δ and Cj := Cj − Cb
j

Find a minimum cost placement of the small movies on the servers
assuming server j has load capacity Lj and storage capacity Cj .

Select a configuration for the big movies which yields minimum total cost.

Fig. 2. Algorithm for updating data placement on a set of servers
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3.1 Analysis of the Algorithm

In analyzing the algorithm, we use the next technical lemmas.

Lemma 1. Limiting the allocation to a one satisfying (P1) and (P2) may require
an increase by at most a factor of (1+2δ) in the load capacity, without changing
the configuration cost.

Lemma 2. The set of possible configurations of copies of the big movies, along
with the corresponding allocations of load capacities, has a polynomial size.

Lemma 3. Given a configuration of the big movies on the servers, there exists
a polynomial time algorithm which finds for the small movies a placement of
minimum cost, fulfilling property (P2), where each server j has storage capacity
Cj and load capacity Lj(1 + δ).

Proof. Let R denote the set of small movies, and Mr = |R|. Index the small
movies 1, . . . , Mr. Denote by xi,j ∈ {0, 1} an indicator variable for the assign-
ment of movie i to server j, i ∈ R and 1 ≤ j ≤ N . The costs ci,j are the given
replication costs. Note that once the big movies have been assigned, the servers
may have different load capacities; however, by scaling the broadcast require-
ments of the movies, we may assume, w.l.o.g., that the load capacities of the
servers satisfy L1 = · · · = LN = L̂. Specifically, for a movie i and server j, define
Di,j = Di · L̂/Lj. The assignment will be determined by rounding the solution
to the following linear program, LP.

(LP) : minimize
Mr∑
i=1

N∑
j=1

xi,j · ci,j

subject to:
Mr∑
i=1

xi,j · Di,j ≤ L̂ for 1 ≤ j ≤ N,

Mr∑
i=1

xi,j ≤ Cj for 1 ≤ j ≤ N,

N∑
j=1

xi,j = 1 for 1 ≤ i ≤ Mr,

xi,j ≥ 0 for 1 ≤ j ≤ N, 1 ≤ i ≤ Mr.

Claim 1. Given an optimal solution for LP, with the cost C, there exists a poly-
nomial time algorithm which finds an assignment of the small movies to servers
of load capacity L̂(1 + δ), whose total cost is at most C.

Proof. Given an optimal (fractional) solution for LP, we use a rounding technique
of Shmoys and Tardos [19]. Specifically, we construct a bipartite graph in which
server j is represented by at most Cj vertices, 1 ≤ j ≤ N . A solution for the
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fractional matching problem on this graph induces an integral matching of the
same cost with the same cardinality. We show below that the resulting integral
solution may use servers whose load capacities are at most L̂(1 + δ).

Formally, sort the small movies in non-decreasing order by load requirements.
Let GB = (V ∪U, E) be a bipartite graph, where U = {ui|1 ≤ i ≤Mr} represents
the set of small movies, and V is the set of server vertices: V = {vj,k|1 ≤ j ≤
N, 1 ≤ k ≤ σj} where σj = �∑Mr

i=1 xi,j� is the total number of small movies
stored on server j. Clearly, σj ≤ Cj . The vertices vi,1, . . . , vi,σj correspond to
server j.

The set of edges E of GB is defined as follows. Given the values of xi,j for
1 ≤ i ≤Mr, 1 ≤ j ≤ N , for any server j:

(i) If
∑Mr

i=1 xi,j ≤ 1 then there is a single vertex vi,1 ∈ V corresponding to
server j. In this case, for any 1 ≤ i ≤ Mr such that xi,j ≥ 0, we add in GB an
edge (ui, vj,1), and set its weight to be w(ui, vj,1) = xi,j .

(ii) If
∑Mr

i=1 xi,j > 1, find the minimum index i1 such that
∑i1

i=1 xi,j ≥ 1, then
E contains all the edges (ui, vj,1), 1 ≤ i ≤ i1 − 1 for which xi,j > 0. For each
of these edges set w(ui, vj,1) = xi,j . Now, add to E an edge (ui1 , vj,1), whose
weight is w(ui1 , vj,1) = 1 −∑i1−1

i=1 w(ui, vj,1). Thus, the sum of weights of the
edges incident to vj,1 is exactly 1. If

∑i1
i=1 xi,j > 1 add an edge (ui1 , vj,2), whose

weight is w(ui1 , vj,2) = (
∑i1

i=1 xi,j) − 1. Proceed next to movies with i > i1
i.e., those with smaller broadcast requirements on server j. Similar to the above
process for vj,1, add edges incident to vj,2, until a total of exactly one movie is
assigned to vj,2, and so on.

Let i′ be the index of the last movie for which an edge is assigned this way,
i.e, i′ = iσj−1. Now, for any i > i′ for which xi,j > 0 add an edge (ui, vj,σj ) and
set w(ui, vj,σj ) = xi,j .

For each server vertex vj,k, let Dmax
j,k (Dmin

j,k ) denote the maximum (minimum)
of the broadcast requirements Di,j corresponding to the edges (ui, vj,k) incident
to vj,k. We note that the weight function on the edges of GB defines a fractional
matching, in which any movie vertex Ui is exactly matched to a server vertex
vj,k, 1 ≤ k ≤ σj − 1. In other words, for any 1 ≤ j ≤ N and 1 ≤ k ≤ σj − 1,∑Mr

i=1 w(ui, vj,k) = 1. In addition, for all 1 ≤ j ≤ N and 1 ≤ k ≤ σj − 1,

Dmin
j,k ≥ Dmax

j,k+1. (1)

We now summarize the steps of the rounding procedure which assigns the small
movies to the servers.

1. Given an optimal solution for LP, form the bipartite graph GB.
2. Find a min-cost (integer) matching H that matches all movie vertices in GB .
3. For each edge (ui, vj,k) ∈ H place movie i on server j.

We show that the assignment obtained in Step 3 of the algorithm has cost
C, and that the overall load capacity used on any server is at most L̂(1 + δ).
Since we defined in GB a fractional matching of cost C, there exists in GB

an integral matching, H , whose cost is C, such that all the movie vertices are
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exactly matched. Therefore, the matching found in Step 2 has cost C. Since the
cost of the assignment is equal to the cost of the matching, the output solution
has at most the optimal cost C.

Next, we show that the total broadcast requirement assigned on each server is
at most L(1 + δ). Consider the movies assigned to server j. For any 1 ≤ j ≤ N ,
there are σj ≤ Cj vertices representing server j in GB. Each of these vertices
vj,k adds at most one movie file to server j (the movie which corresponds to the
edge selected for the matching H , among those incident to vj,k). Therefore, at
most Cj small movies are assigned to server j. It follows that the total broadcast
requirement of the movies on server j is at most∑σj

k=1 Dmax
j,k ≤ Dmax

j,1 +
∑σj

k=2 Dmax
j,k ≤ δL̂+

∑σj−1
k=1 Dmin

j,k

≤ δL +
∑σj

k=1
∑

{i|(ui,vj,k)∈E} Di,j · w(ui, vj,k)=δL̂+
∑Mr

i=1 Di,jxi,j≤ L̂(1 + δ).

The second inequality follows from (1) and the fact that Di,j ≤ δL̂ for all
1 ≤ i ≤Mr. This completes the proof.

Combining the above lemmas, we summarize in the next result.

Theorem 2. Given a system of N servers, each having load capacity L and
arbitrary storage capacities Cj ≥ 1, 1 ≤ j ≤ N , the Reconfiguration algorithm
finds in polynomial time a placement of the files whose cost is optimal, by using
servers with load capacities L(1 + 3δ).

4 Minimal Cost Algorithm for Any Number of Servers

In this section we consider a system with arbitrary number of servers. We first
show that when M is fixed, the problem can be optimally solved.

Theorem 3. The reconfiguration problem is solvable in polynomial time when
M , the number of movies, is fixed.

For the case where M may be arbitrarily large, we present below a polynomial
time algorithm which finds a minimal-cost reconfiguration in a semi-homogeneous
system. Given an instance I, our algorithm outputs a minimal-cost placement, by
using servers of load capacities (2+ε)L where ε = max{i|Di>L}{Di/L−�Di/L�}.

The Algorithm. The following is an overview of the algorithm. (i) Partition
the movies to big and small; movie i is big if Di > L, else movie i is small. (ii)
Solve a linear programming relaxation to obtain a lower bound on the optimal
solution for the reconfiguration problem. (iii) Round the (fractional) solution of
the linear program to obtain an integral solution of optimal cost. (iv) Use the
integral solution to assign movie copies to N servers, where server j has storage
capacity Cj and load capacity (2 + ε)L.
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(LP 1) : minimize
∑

i∈Big

N∑
j=1

xi,j · ci,j +
∑

i∈Small

N∑
j=1

yi,j · ci,j

subject to:
∑

i∈Big

xi,j · L +
∑

i∈Small

yi,j · Di ≤ L for 1 ≤ j ≤ N (2)

∑
i∈Big

xi,j +
∑

i∈Small

yi,j ≤ Cj for 1 ≤ j ≤ N (3)

N∑
j=1

xi,j =
Di

L
for i ∈ Big (4)

N∑
j=1

yi,j = 1 for i ∈ Small (5)

0 ≤ xi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Big

0 ≤ yi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Small

Solving an LP Relaxation. We show how a natural LP relaxation for our
problem can be modified to obtain another LP, from which we derive an optimal
integral solution. Let xij ∈ [0, 1] denote the fraction of the load capacity L of
server j allocated to big movie i. We denote by yij the fraction of Di allocated to
small movie i on server j. Also, ci,j is the given replication cost (which depends
on the initial configuration). Consider the following LP relaxation, LP 1 for the
reconfiguration problem.

Constraints (2) ensure that the total load capacity used by copies of the big
movies and by the small movies on each server is at most L. Constraints (3)
ensure that the total storage required on server j is at most Cj . Constraints (4)
and (5), together with constraints (2), guarantee that each (big or small) movie
is allocated Di broadcasts.

Next, we modify LP1 as follows. For any big movie i let ki = �Di/L�. Consider
the linear program LP 2, in which constraints (2) and (4) are replaced by∑

i∈Big

xi,j · Di

ki
+

∑
i∈Small

yi,j ·Di ≤ L for 1 ≤ j ≤ N and (6)

N∑
j=1

xi,j = ki for i ∈ Big (7)

Note that constraints (6) allow to assign to big movie i some fraction of Di/ki

on server j; also, constraints (7) guarantee that big movie i is allocated Di

broadcasts. Finally, partition each big movie i to ki sub-movies. Thus, we replace
the variables xi,j , 1 ≤ j ≤ N , i ∈ Big by the set of variables xi,j,r , 1 ≤ r ≤ ki.
Intuitively, we partition the load requirement of movie i to ki, so we can now
consider ki sub-movies, where each needs to be allocated D̂i = Di

ki
broadcasts.

Note that D̂i ≤ maxi∈Big{Di/ki}. We rewrite the LP relaxation as LP 3.
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Rounding the Fractional Solution. We note that LP 3 can be viewed as
the linear programming relaxation of an input for job scheduling on unrelated
machines with cardinality constraints, in which we need to schedule a set of
jobs on N unrelated machines. The set of jobs J corresponds to all the small
movies and the collection of sub-movies for the big movies, i.e., |J | = |Small|+∑

i∈Big ki. The processing time of a job corresponding to a small movie i on
machine j is pij = Di, and the processing time of any of the jobs corresponding
to the ki sub-movies of big movie i on machine j is pij = �Di/ki�. Note that if
ki = 1 then pij = Di < 2L. If ki > 1 then Di/ki < 1.5L implying (for all L > 1)
�Di/ki� < 2L. In the reduction to the scheduling problem, the cost of processing
job i on machine j is cij , ∀ i and 1 ≤ j ≤ N . The makespan of any machine j is
at most L, and the maximal number of jobs that can be assigned to machine j
is Cj . The goal is to schedule all jobs on the machines, subject to the makespan
and cardinality constraints, so as to minimize the total cost.

Given an optimal solution for LP 3, we can apply the rounding technique
of Shmoys and Tardos [19], as described in the proof of Claim 1. The resulting
integral solution can be used to determine the storage allocation. The assignment
matrix is given by the variables xi,j,r , yi,j and the broadcast matrix is given by
the allocated processing time. Formally, for a small movie i, assign a single copy
of i on server j if yi,j = 1, i.e., Ai,j = 1 and Bi,j = Di. For any big movie i,
note that each sub-movie is allocated �Di/ki� > L processing units, therefore
(given that the makespan of the rounded solution is at most 2L) for all i, j,∑ki

r=1 xi,j,r ∈ {0, 1}. If
∑ki

r=1 xi,j,r = 1 then assign a copy of big movie i on
server j, i.e., Ai,j = 1 and Bi,j = �Di/ki�.

(LP 3) : minimize
∑

i∈Big

ki∑
r=1

N∑
j=1

xi,j,r · ci,j +
∑

i∈Small

N∑
j=1

yi,j · ci,j

subject to:
∑

i∈Big

ki∑
r=1

xi,j,r · �Di

ki
� +

∑
i∈Small

yi,jDi ≤ L 1 ≤ j ≤ N

∑
i∈Big

ki∑
r=1

xi,j,r +
∑

i∈Small

yi,j ≤ Cj 1 ≤ j ≤ N

N∑
j=1

xi,j,r = 1 for i ∈ Big, 1 ≤ r ≤ ki

N∑
j=1

yi,j = 1 for i ∈ Small

0 ≤ xi,j,r ≤ 1 for 1 ≤ j ≤ N, i ∈ Big, 1 ≤ r ≤ ki

0 ≤ yi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Small
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Analysis. The proof of the following theorem is based on the fact that the
optimal solution for LP 3 is a lower bound for the cost of an optimal solution.

Theorem 4. The above algorithm outputs in polynomial time a solution of cost
at most OPT (I). The movies can be stored on N servers with storage capacities
C1, . . . , CN and load capacities (2+ε)L where ε = max{i|Di>L}{Di/L−�Di/L�}.
In the full version of the paper [15] we extend the above result to a system where
the servers may have arbitrary load capacities.
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Abstract. We study d-dimensional dynamic bin packing for general d-
dimensional boxes, for d ≥ 2. This problem is a generalization of the bin
packing problem in which items may arrive and depart dynamically. Our
main result is a 3d-competitive online algorithm. We further study the 2-
and 3-dimensional problem closely and improve the competitive ratios.
Technically speaking, our d-dimensional result is due to a space efficient
offline single bin packing algorithm, which is a variant of d-dimensional
NFDH. We introduce an interesting notion of d-dimensional L-shape bin
and show that effective offline packing into L-shape bin leads to effective
online dynamic packing into unit-sized bins.

We also investigate the resource augmentation version of the problem
where the online algorithm can use d-dimensional bins of size s1 × s2 ×
· · ·×sd for si ≥ 1 while the optimal offline algorithm uses unit-sized bins.
We give conditions for the online algorithm to match the performance of
the optimal offline algorithm, i.e., 1-competitive.

1 Introduction

Bin packing is a classical combinatorial optimization problem that has been
studied since the early 70’s and different variants continue to attract researchers’
attention (see [9,7,5]). The problem was first studied in one-dimension (1-D) and
has been extended to multi-dimension (d-D for d ≥ 1). In d-D bin packing, the
items are d-dimensional with length in the range (0, 1] in each dimension and
the bin is a d-dimensional bin with all lengths equal to 1. Items are oriented and
cannot be rotated. The objective is to pack the items into a minimum number of
unit-size bins such that the items do not overlap and do not exceed the boundary
of the bin. The bin packing problem is NP-complete [13], even for 1-D.

The problem has been studied both in offline and online setting. In the offline
setting, all the items and their sizes are given in advance. In the online setting,
items may arrive at arbitrary time; item arrival time and item size are only known
when an item arrives. The performance of an online algorithm is measured using
competitive analysis [2]. Consider any online algorithm A. Given an input I, let
OPT (I) and A(I) be the maximum number of bins used by the optimal offline
algorithm and A, respectively. Algorithm A is said to be c-competitive if there
exists a constant b such that A(I) ≤ c OPT (I) + b for all I.
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Table 1. Competitive ratios. Results in this paper are marked with [*].

1-D 2-D 3-D d-D

upper bound 2.788 [6] 7.788 [*] 22.788 [*] 3d [*]
(previous) 8.5754 [11] 35.346 [11] 2 × 3.5d [11]

lower bound 2.666 [19] 3.70301 [11] 4.85383 [11] d + 1 [11]

Dynamic bin packing. Most existing work focused on “static” bin packing in
the sense that items do not depart. In some potential applications like warehouse
storage, a more realistic model takes into consideration of dynamic arrival and
departures of items. This natural generalization, known as dynamic bin packing,
was introduced by Coffman, Garey and Johnson [6]. In this generalization, items
arrive over time, reside for some period of time, and may depart at arbitrary time.
Each item has to be assigned to a bin from the time it arrives until it departs. The
objective is to minimize the maximum number of bins used over all time. Note
that migration to another bin is not allowed yet rearrangement of items within a
bin is allowed. One can imagine that warehouses (c.f. bins) may be geographically
far from each other making migration infeasible but rearrangement within a
warehouse is feasible.1

The dynamic bin packing problem was first studied in 1-D by Coffman, Garey
and Johnson [6] who showed that a modified first-fit algorithm, which we called
FFM, is 2.788-competitive. This algorithm works by classifying items into large
(size larger than 1

2 ) and small ones (size 1
2 or less), then using a dedicated bin for

each large item and using first-fit for the small ones. The 2.788 bound is derived
from the 1.788-competitive ratio if all items are small [6]. Recently, Chan, Wong
and Yung [4] have shown a lower bound that there is no algorithm better than
2.5-competitive and this is further improved to 8/3  2.666 very recently [19] .

Multi-dimensional dynamic bin packing has been studied by Epstein and
Levy [11]. They gave a 2 × 3.5d-competitive algorithm for d-D dynamic bin
packing, i.e., 24.5 for d = 2 and 85.75 for d = 3. They further presented al-
gorithms specifically for d = 2 and d = 3 and claimed that they are 8.5754-
and 35.346-competitive, respectively. They also gave lower bounds of d + 1 for
general d, 3.70301 and 4.85383 for d = 2 and d = 3.

Resource augmentation [14] has also been studied in 1-D dynamic bin pack-
ing [4] and online static bin packing [1, 12, 10] for various dimensions. In this
setting, the online algorithm can use larger bins than the optimal offline algo-
rithm. For 1-D dynamic bin packing, it is shown that using bins of double size
is both necessary and sufficient to achieve 1-competitiveness [4].

Our contribution. In this paper, we study multi-dimensional dynamic bin
packing and give the following results (see Table 1 for a summary).

– For d-D where d ≥ 2, we present a 3d-competitive algorithm (Theorem 1).
1 If rearrangement within a bin is not allowed, one can show that there is no constant

competitive deterministic online algorithm.
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– For 2-D and 3-D, we further improve the above general ratio. We give 7.788-
and 22.788-competitive algorithms, respectively (Theorems 2 and 3).

– We consider resource augmentation and give conditions for the online algo-
rithm to match the offline algorithm, i.e., 1-competitive (Corollary 1).

For the d-D result, our algorithm classifies items into large and small items.
Roughly speaking, we show that large items can be handled as small items of
lower dimensions, hence, we can focus on small items. The main idea is a test-
ing procedure to check whether a new small item can be packed into existing
bins. This naturally involves a space efficient offline single bin packing proce-
dure, which is indeed an interesting problem by itself. Multi-dimensional NFDH
(next-fit-decreasing-height) is a common strategy to achieve this; in particular,
a formula has been given in [16,15] for the minimum total volume of d-D cubes
(i.e., all sides are equal) that can be packed without overflowing a bin. However,
there is no matching results for d-D boxes of general size. We devise a single
bin packing procedure using a variant of NFDH, which instead of packing items
using the whole bin space, reserves space to accommodate the new item and tries
to repack existing items into a so called L-shape space. At first glance, reserving
space may be too pessimistic, yet it can be shown that packing boxes using full
space may perform only as good as the L-shape approach (we skip the details
due to space limit). Using this new packing procedure, we show that the same
formula in [15] can be obtained even for packing boxes of general sizes.

Notations and definitions. We now give a precise definition of the problem
and the necessary notations for further discussion. In general, a d-D object (item
or bin) is called a d-D cube if all sides have the same length; and d-D box
otherwise. A packing configuration is said to be feasible if all items do not overlap
and the packing in each bin does not exceed the boundary of the bin; otherwise,
the packing is said to overflow and is infeasible.

In d-D dynamic bin packing, d-D items arrive and depart at arbitrary time.
When an item arrives, it must be assigned to a unit-sized bin immediately so
that the resulting packing is feasible. The item then resides in the assigned bin
until it departs, i.e., migration is not allowed. Rearrangement of items within a
bin is allowed upon item arrival or departure. The objective is to minimize the
maximum number of bins used over all time.

For 2-D packing, we call the two dimensions width and height. For general
d-D packing, we name the d dimensions x1, x2, · · · , xd and denote the length
of an item R along dimension xi by xi(R). When the context is clear, we may
also call xd the height. In the d-D packing algorithms, we use the concept of
projection of higher dimension item to lower dimension item. We say that an
item is projected along xd when the item is projected on the hyperplane of
dimensions x1, x2, x3, · · · , xd−1.

Several of our algorithms involve reserving some space for a new item and
repacking existing items in a bin to check if the new item can be packed to
this bin. If such a repacking is not feasible, it is understood that we restore the
packing to the original configuration.
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2 -Dimensional Dynamic Bin Packing

In this section, we consider d-D dynamic bin packing for any d ≥ 2 and present
a 3d-competitive online algorithm, called DynamicPack(d). Roughly speaking,
when an item R arrives, Algorithm DynamicPack(d) checks if an existing bin
can accommodate R by reserving some space for R and repacking existing items
into the remaining space. If there is any bin that such repacking is feasible, R
is assigned to this bin. If no such bin exists, open a new bin for R. In other
words, the algorithm involves a repacking procedure that rearranges items in a
given bin. We present this repacking procedure in Section 2.1 and the overall bin
assignment algorithm in Section 2.2. Furthermore, the algorithm distinguishes
between small and large items. An item R is said to be small if xi(R) ≤ 1

2 for all
1 ≤ i ≤ d, and large otherwise. In Section 2.2, we show that large items can be
handled as small items of lower dimensions and so we can focus on small items.

2.1 Repacking Procedure for Small Items into a Single Bin

In this section, we present a procedure to repack small items into a single bin
and give a formula for the minimum total volume of small items that can be
packed in the bin. This procedure is invoked when a new item arrives, some
space is reserved and existing items are repacked into the remaining space. We
call the remaining space an L-shape bin. The repacking makes use of a variant
of NFDH (next-fit-decreasing-height) approach.

Below we first formally define a d-D L-shape bin and describe some property
of NFDH. Then we show that if a set of items cannot be packed in a d-D L-shape,
the volume of these items is at least 2d (Lemma 1).

d-D L-shape bin. For any d ≥ 2, a d-D L-shape bin is a unit d-D bin with a
corner removed: the corner removed is a d-D cube with all sides equal to 1

2 . For
the sake of reference, we say that the cube removed is the “bottom left-most”
corner of the bin. See Figure 1 (a) and (b) for examples. We note the following
property about a unit d-D bin and a d-D L-shape bin.

Property 1. Consider a unit d-D bin and a d-D L-shape bin.

(i) Any small item can be packed into the cube that is removed from the unit
bin to form the L-shape bin.

(ii) Take a layer of the unit bin with length h in dimension xd and length 1 in all
other dimensions, if we remove a box of length h in xd and length 1

2 in other
dimensions from bottom left corner of the layer and project along dimension
xd, we obtain a (d−1)-D L-shape bin. See Figure 1 (c) for an example.

NFDH. Our procedure to pack into an L-shape bin makes use of the idea of
NFDH. In general, the d-D version of NFDH first sorts the items in descending
order of the length of dimension xd, say R1, R2, R3, · · · such that xd(Ri) ≥
xd(Ri−1). Then the items are packed into layers aligned to dimension xd. The

d
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(a) (b) (c)

Fig. 1. (a) 2-D L-shape bin. (b) 3-D L-shape bin. (c) Removing a box at the bottom
left corner from a layer of a 3-D bin and projecting on 2-D gives a 2-D L-shape bin.

first layer has a “height” equal to xd(R1). Items, projected along xd, are then
packed into this layer using some (d−1)-D packing algorithm until a certain
item, say Rj , cannot be packed. Then the next layer is constructed with height
equals to xd(Rj). We then observe the following property about NFDH.

Property 2. Suppose NFDH has packed k layers with height h1 ≥ h2 ≥ · · · ≥ hk.

(i) All the items in Layer-i have height at least hi+1.
(ii) If the (d−1)-D packing algorithm guarantees each layer is packed with a

(d−1)-D volume of at least V , then the total d-D volume of items in Layer-i
≥ hi+1V and the total volume of all items in all layers ≥∑k

i=2 hiV .

Packing an L-shape bin. We now present the recursive procedure, called
NFDH-LS(d), that packs into a d-D L-shape bin. As to be shown in Lemma 1,
if NFDH-LS(d) cannot pack a set S of small items into a d-D L-shape bin, the
total volume of S is more than 1

2d . We first describe the base case NFDH-LS(2).

Single-bin repacking procedure NFDH-LS(2): packing small items into
a 2-D L-shape bin. We first sort the items in descending order of height. Items
are packed into layers as follows (see Figure 2 for an example). Layer-0 is the
bottom square with height and width 1

2 . We pack the items (in order of height)
to Layer-0 until a certain item, say Q, cannot be packed. Then the height of
Q becomes the height of Layer-1. Layer-1 is divided into two equal partitions
each with width 1

2 . We place Q into the first partition and continue packing the
remaining items into the second partition until overflow. In general, the item
that overflows from a layer is packed to the first partition of the next layer.
The procedure returns whether all items can be packed in the L-shape bin (i.e.,
whether the last layer can be packed without overflow).

Single-bin repacking procedure NFDH-LS(d): packing small items into
a d-D L-shape bin. We first sort the items in descending order of xd(·). Items
are then packed one by one in the sorted order into layers along dimension xd

(see Figure 3). Layer-0 has height 1
2 along dimension xd. Projecting the layers

along dimension xd forms (d−1)-D L-shape bins (Property 1 (ii)). Items are
packed with dimension xd aligned to the height of the layer, and then projecting
the items along dimension xd, we use NFDH-LS(d−1) to recursively pack the
items into Layer-0. For Layer-i, if NFDH-LS(d−1) reports feasible packing, we
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Layer-0

Layer-1

Layer-2
Layer-3

1 2

3 4 5 6

7 8 9 10

11 12 13

reserved

Fig. 2. Example for NFDH-LS(2). The number on the items is the order the items
are packed. The item overflows from a layer (e.g., 3, 7 and 11) is packed in the first
(reserved) partition of the next layer and the height of this item determines the height
of the next layer. Packing then continues in the second partition.

try to include the next item into Layer-i; if packing is not feasible with the
inclusion of a certain item R, we create Layer-(i+1) with xd(R) as the layer
height along dimension xd. We then reserve a box with height xd(R) along
dimension xd and length 1

2 along all other dimensions; the box is at the bottom
leftmost corner of the layer. Hence, projecting the layer along dimension xd gives
a (d−1)-D L-shape bin (Property 1 (ii)). We pack R into the reserved box and
continue the process with the remaining items: adding them one by one and use
NFDH-LS(d−1) recursively to pack into the (d−1)-D L-shape bin.

Whenever NFDH-LS(d−1) reports packing is not feasible with the next item
included, a new layer is created. At the end, if all the layers constructed can be
packed into the d-D L-shape bin without overflow, then NFDH-LS(d) reports a
feasible packing, otherwise NFDH-LS(d) reports infeasible packing.

Lemma 1. Let S be a set of items with sides bounded by 1
2 . If NFDH-LS(d)

cannot pack S into a d-D L-shape bin, the total volume of S is more than 1
2d .

Proof. We prove the lemma by induction on the dimension. Base case: when
d = 2, Layer-0 together with the first item on Layer-1 has width greater than 1

2 .
For i > 0, all items in Layer-i (except the first item in the reserved box) together
with the first item in Layer-(i+1) has width greater than 1

2 . All items in Layer-i
has a height at least the height of Layer-(i+ 1) (Property 2 (i)). If not all items
can be packed, the total height of the layers (including the one that cannot fit)
is more than 1. Since Layer-0 has height at most 1

2 , the total volume of all items
is greater than (1− 1

2 )× 1
2 = 1

22 (Property 2 (ii)).
Assume the lemma is true for dimension d − 1. For dimension d, we can use

a similar argument as the base case to show that if not all items can be packed,
the total height of all layers in dimension d is at least 1. Using the induction
hypothesis, all items in each layer has volume greater than 1

2d−1 . Hence, the total
volume of all items is greater than (1− 1

2 )× 1
2d−1 = 1

2d (Property 2 (ii)).
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Layer-0

Layer-1

Layer-2

overflow

overflow

reserved

reserved

1
2

5
16

5
16

1
8

1
8

(a) (b) (c)

Fig. 3. Example for NFDH-LS(3). (a) 3-D L-shape bin. (b) In each layer, the 2-D L-
shape on the right is the projection of the layer. The overflow item is packed in the
reserved box in the next layer and the height of this item determines the height of the
next layer. (c) The layers as shown in the 3-D L-shape.

The results in this section can be generalized as follows. Let S be a set of items
with sides bounded by 1

k . There is a packing algorithm such that if S cannot be
packed into a d-D L-shape bin, then the total volume of S is more than (1− 1

k )d.
As mentioned in the introduction, this bound has been shown for packing d-D
cubes and we show that it is also true for packing d-D boxes.

2.2 Bin Assignment Algorithm

We now present a 3d-competitive online dynamic bin packing algorithm. We
first present an algorithm AFReserveNFDH(d) for packing small items (AF for
any-fit) and then an algorithm DynamicPack(d) for arbitrary items.

Bin assignment algorithm AFReserveNFDH(d) for small items. When
an item R with sides bounded by 1

2 arrives, we consider every bin in turn to
reserve for R the bottom leftmost cube of all sides 1

2 and check if all the existing
items in that bin can be packed into the d-D L-shape bin using NFDH-LS(d).
If NFDH-LS(d) finds a bin that there is feasible packing, R is packed in the
reserved bottom leftmost corner of that bin and the other items are packed in
the way NFDH-LS(d) packs them. If there is no such existing bin, open a new
bin for R. Lemma 2 is a direct consequence of Lemma 1.

Lemma 2. Algorithm AFReserveNFDH(d) is 2d-competitive for packing d-D
items with sides bounded by 1

2 .

Algorithm DynamicPack(d) for arbitrary sized items. We distinguish
items based on whether each dimension xi is larger than 1

2 or at most 1
2 , and
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classify the items into 2d classes. Consider items of the same class. If xi(·) > 1
2 in

this class, then in any packing, a line drawn parallel to dimension xi intercepts
at most one item in that class. Suppose there are z dimensions with length at
most 1

2 and (d − z) dimensions larger than 1
2 . Then items in this class can be

considered as z-D small items. We use AFReserveNFDH(z) to pack the items
by projecting along all the dimensions xi such that xi(·) > 1

2 . These items will
be packed to align to the facets for those dimensions with xi(·) > 1

2 .
For the class where all dimensions are larger than 1

2 , we pack each in a separate
bin (no two such items can be packed into the same bin by any packing).

Theorem 1. Algorithm DynamicPack(d) is 3d-competitive.

Proof. For each z, we run a couple of Algorithm AFReserveNFDH(z) and the
number is at most

(
d
z

)
. By Lemma 2, the competitive ratio of DynamicPack(d)

is at most the sum over all ratios of AFReserveNFDH(z), i.e.,
∑d

z=1

(
d
z

)
2z = 3d.

3 Two- and Three-Dimensional Dynamic Bin Packing

In this section, we improve the results in Section 2 for d = 2 and 3 by more
careful classification and assignment of items into bins. Similar to Section 2, the
algorithms make use of reserve-and-repacking procedures to check if a new item
can be assigned to an existing bin.

3.1 Two-Dimensional Dynamic Bin Packing

Repacking Procedures. The procedures described in this section will be
reused later and so they are stated in a more general form. We assume we
are given a bin with width u and height v throughout Section 3.1. Before we
present our two-dimensional repacking procedures, we first note the result by
Steinberg [18] for static bin packing. In particular, we will use the following
lemma which is implied by Theorem 1.1 in [18].

Lemma 3 ( [18]). Given a bin with width u and height v, if all items have
width at most u

2 and height at most v, then any set of these items with total area
at most uv

2 can fit into the same bin by using Steinberg’s algorithm.

While Steinberg’s result gives a condition for a set of items to be fit into a bin, we
also need a slightly different condition which bounds the area of existing items
in a bin if a new item cannot be packed into the bin. The latter is a typical
notion required when the objective is to minimize the number of bins. Below we
describe two such packing procedures.

Procedure 2DRepackNarrow: for items with width in (0, u
3 ] and height

in (0, v]. We divide each bin into two partitions both with height v, and the first
one with width u

3 , second with width 2u
3 . Note that any item can fit into the first

partition. When an item R arrives, we reserve the first partition for R, and repack
existing items using the second partition as a bin of width 2u

3 and height v using
Lemma 3. If repacking is feasible, the packing configuration is returned as solution.
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Procedure 2DRepackMedium: for items with width in (u
3 , u

2 ] and height
in (0, v]. Note that since the items have width more than u

3 , in any packing in-
cluding the optimal one, at most two items can be packed side by side along
the width. We divide each bin into two equal partitions each with width u

2 and
height v. When a new item R arrives, we reserve the first partition for R and stack
the existing items (in arbitrary order) along the height of the second partition.
Similar to 2DRepackNarrow, if repacking is feasible, the packing configuration
is returned as solution.

Lemma 4. Consider a bin with width u and height v.
(i) Consider items with width in (0, u

3 ] and height in (0, v]. If 2DRepackNarrow
returns an infeasible repacking, the total area of the existing items in the bin
is more than uv

3 .
(ii) Consider items with width in (u

3 , u
2 ] and height in (0, v]. If 2DRepackMedium

returns an infeasible repacking, the total height of the existing items in the
bin is more than v.

Proof. (i) This means that existing items cannot be packed into the second
partition (the larger one) of the bin. By Lemma 3, the total area of these items
is more than 1

2 × 2uv
3 = uv

3 ; otherwise, the items can be packed in the partition.
(ii) This means the total height of the existing items exceed the height of the
second partition, i.e., v.

Bin Assignment Algorithm. Using the above two procedures, we present
an algorithm called 2DDynamicPack, which classifies items into three classes:
narrow, medium-wide and wide according to their width. An item is said to be
narrow if its width is in (0, 1

3 ]; medium-wide if in (1
3 , 1

2 ]; and wide if in (1
2 , 1].

Algorithm 2DDynamicPack. Classify items into narrow, medium-wide, and
wide as they arrive. Items of the same class are assigned to bins independently
of other classes.

– Narrow items. When a narrow item R arrives, find any bin that existing
narrow items in the bin can be repacked using procedure 2DRepackNarrow
into the larger partition of the bin and pack R into the smaller partition of
the bin. If no such bin exists, open a new bin for R.

– Medium-wide items. When a medium-wide item R arrives, find any bin
that existing medium-wide items in the bin can be repacked using procedure
2DRepackMedium into the second partition of the bin and pack R into the
first partition of the bin. If no such bin exists, open a new bin for R.

– Wide items. Items are packed so that the width of the item is aligned to
the width of the bin, and then ignoring the width of the items, use the 1D
algorithm FFM to pack according to the height of the items.

Theorem 2. Algorithm 2DDynamicPack is 7.788-competitive.
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Proof. Let OPT denote the maximum number of bins used by the optimal of-
fline algorithm, and n, n1, n2, and n3 be that used by 2DDynamicPack for all,
narrow, medium-wide and wide items, respectively, i.e., n ≤ n1 +n2 +n3. When
2DDynamicPack opens the n1-th bin for a new narrow item, the total area of all
items is more than n1−1

3 (Lemma 4 (i)). Hence, we have OPT ≥ �n1−1
3 �+1 ≥ n1

3 .
When 2DDynamicPack opens the n2-th bin for a new medium-wide item, by
Lemma 4 (ii), the total height of all items is more than n2 − 1. Since the width
of these items is more than 1

3 , in any packing of the items, every horizontal line
drawn intercepts at most two items and hence, the total number of bins used is
at least �n2−1

2 �+ 1, i.e., OPT ≥ n2
2 . Finally, for wide items, using FFM means

OPT ≥ n3
2.788 . In total, n ≤ n1 + n2 + n3 ≤ 7.788OPT and the lemma follows.

3.2 Upper Bounds for 3-D Dynamic Bin Packing

Recall that the three dimensions are x1, x2 and x3 and the length of an item R
along dimension xi is denoted as xi(R). Our algorithm, called 3DDynamicPack,
classifies the items into four classes according to xi of the items. An item R is
said to be in

– Class-1 if x1(R) > 1
2 ;

– Class-2 if x1(R) ≤ 1
2 and x2(R) > 1

2 ;
– Class-3 if x1(R) ≤ 1

2 and 1
3 < x2(R) ≤ 1

2 ; and
– Class-4 if x1(R) ≤ 1

2 and x2(R) ≤ 1
3 .

Classes 1 and 2 can be handled rather straightforwardly by using 2-D packing
algorithm (details to be given later). Classes 3 and 4 need more attention. We
describe two repacking procedures for handling these two classes.

Procedure 3DRepackClass3: for items with x1(R) ≤ 1
2 and 1

3 < x2(R) ≤
1
2 . Similar to an observation made in 2DRepackMedium, in any packing including
the optimal one, at most two items can be packed side by side along dimension
x2. We divide a bin into two equal partitions along dimension x2 both with length
1
2 (the length along dimension x1 and x3 remains 1). When a new item R arrives,
we reserve the first partition for R and check if existing items can be packed into
the second partition: project existing items along dimension x2, repack them by
Lemma 3, treating them as rectangles with dimension x1 as width and x3 as
height. If repacking is feasible, the packing configuration is returned as solution.

Procedure 3DRepackClass4: for items with x1(R) ≤ 1
2 and x2(R) ≤ 1

3 .
We first sort the existing items in descending order of x1(R). Items are then
packed into layers constructed along dimension x1, in an NFDH manner (next-
fit-decreasing-height). The first layer has length 1

2 along dimension x1. Project
the items along dimension x1 and treating x2 as width x3 as height, we pack items
into this layer using 2DRepackNarrow, i.e., create two partitions with width 1

3
and 2

3 , and pack to the larger partition. If some item Q cannot be packed into
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this layer, we then create a new layer with length x1(Q) along dimension x1
and pack Q into the first partition of this layer. Then we use 2DRepackNarrow
similarly to pack items to the second partition. The item that overflows from a
layer will be packed into the first partition of the next layer. Repeat this until
all existing items are packed or a new layer overflows dimension x1 of the bin.
If repacking is feasible, the packing configuration is returned as solution.

Algorithm 3DDynamicPack. Classify the items as they arrive into the four
classes defined above. Items in each class are assigned to bins independently of
other classes.

– Class-1: Project the items along dimension x1 treating them as rectangles,
and then pack the items using Algorithm 2DDynamicPack.

– Class-2: Project each item along dimension x2 and further classify the items
into two sub-classes with 0 < x1 ≤ 1

3 and 1
3 < x1 ≤ 1

2 . For items of the
first sub-class, find a bin such that existing items can be repacked using
2DRepackNarrow. If there is no such bin, open a new bin for the new item.
Similarly for the second sub-class, use 2DRepackMedium.

– Class-3: When a new item R of Class-3 arrives, find any bin that existing
items can be repacked using procedure 3DRepackClass3 into the second par-
tition and pack R into the first partition. If there is no such bin, open a new
bin for R.

– Class-4: When a new item R of Class-4 arrives, find any bin that existing
items can be repacked using procedure 3DRepackClass4 and pack R into the
reserved space in the first layer. If there is no such bin, open a new bin for R.

Theorem 3. 3DDynamicPack is 22.788-competitive.

Proof. Let OPT be the maximum number of bins used by the optimal offline
algorithm, n, n1, n2, n3, and n4 be that by 3DDynamicPack for all, Classes 1, 2,
3 and 4 items, respectively, i.e., n ≤ n1 + n2 + n3 + n4. When 3DDynamicPack
opens the n1-th bin for a new Class-1 item, by Theorem 2, we have OPT ≥ n1

7.788 .
Let n2,1 and n2,2 be the maximum number of bins used for the two sub-classes

of Class-2 items, i.e., n2 ≤ n2,1 + n2,2. By Lemma 4 (i) and (ii) and a similar
argument as Theorem 2, we have OPT ≥ n2,1

3 and OPT ≥ n2,2
2 . So, OPT ≥ n2

5 .
When 3DDynamicPack opens the n3-th bin for a new Class-3 item, by Lemma 3,

the total area of all Class-3 items is more than n3−1
2 . Furthermore, the length

of these items along dimension x2 is more than 1
3 , in any packing of the items,

every line drawn parallel to dimension x2 intercepts at most two items. Hence,
OPT ≥ �n3−1

4 �+ 1 ≥ n3
4 .

When 3DDynamicPack opens the n4-th bin for a new Class-4 item, by Lemma 4
(i), in the repacking of each bin, the total area of all Class-4 items in the second
partition in each layer and the first partition in the next layer is more than 1

3 .
Furthermore, the height of all items in each layer is at least the height of the next
layer. Since existing items cannot be repacked into the same bin using the proce-
dure 2DRepackNarrow, the total height of all layers is more than 1 and that of all
but the first layer is more than 1

2 (since the first layer has height 1
2 ). Therefore,
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the total volume of existing items in each bin is more than 1
6 and the total vol-

ume of all existing items is more than n4−1
6 . Hence, OPT ≥ �n4−1

6 �+ 1 ≥ n4
6 . In

summary, we have n ≤ n1 + n2 + n3 + n4 ≤ 22.788OPT .

4 Concluding Remarks

In this paper, we have studied multi-dimensional dynamic bin packing. We have
presented a general competitive ratio for d ≥ 2 and improved the ratio further for
d = 2 and d = 3. So far the competitive ratio for multi-dimensional bin packing
(both static and dynamic, as well as for both cube and box) grows exponentially
with d. Yet there is no matching lower bound that also grows exponentially with
d. It is believed that this is the case [8] and any such lower bound would be of
great interest. Furthermore, the general upper bound for d-dimension is usually
worse than the corresponding 2-D or 3-D upper bound when substituting d = 2
or d = 3. It would be desirable to have d-dimensional packing algorithm that
have a more accurate formula to reflect the ratio for lower dimension. As for
lower dimension, an obvious open question is to close the gap between the upper
bound and lower bound.

Another direction is to consider resource augmentation in which the online
algorithm can use d-dimensional bins of size s1×s2×· · ·×sd for si ≥ 1 while the
optimal offline algorithm uses unit-sized bins. As a first step, we give some simple
conditions for the online algorithm to match the performance of the optimal
offline algorithm, i.e., 1-competitive. The results here are obtained directly from
those in Sections 2 and 3.

Corollary 1. Consider the optimal offline algorithm that uses unit sized bins.

(i) For 2-D, there is a 1-competitive online algorithm using bins of size 3× 1.
(ii) For d-D, there is a 1-competitive online algorithm using bins of size {2}d.
(iii) For d-D, no online algorithm is 1-competitive using bins of size {2 − ε}d

for any ε > 0.
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