
Chapter 15
Coordination Between Global Agile Teams:
From Process to Architecture

Jan Bosch and Petra Bosch-Sijtsema

Abstract Traditional process-centric software development has served software-
intensive companies well for decades. During recent years, however, the trends of
increased adoption of software product lines, software ecosystems and in particular
global software engineering have lead to unmanageable complexity and unaccept-
able overhead. In this paper we present research performed at three global compa-
nies in which we studied the relation between large-scale and agile approaches to
software development as well as current problems. In addition, by integrating the
best practices adopted at the case study companies, we present an alternative ap-
proach: architecture-centric software engineering. This approach largely removes
inter-team dependencies and provides much higher efficiency and productivity in
global software development contexts.

15.1 Introduction

For four decades now, software engineering continues to be a fascinating field. With
Moore’s law, the network law and the storage law doubling capacity every 18, 12 and
9 months, respectively, the size of the software systems on top of the hardware and
communication networks is growing at similar rates. One can find examples of this
within large Internet companies, e.g. around search engines, the IT systems support-
ing Fortune 100 companies and in the software ecosystems surrounding large plat-
forms, ranging from PC operating systems to mobile devices. As a consequence, the

P. Bosch-Sijtsema is visiting scholar at Stanford University, Stanford, CA, USA.

J. Bosch (�)
Intuit, Mountain View, CA, USA
e-mail: Jan@JanBosch.com

P. Bosch-Sijtsema
Aalto University School of Science and Technology, Espoo, Finland
e-mail: Petra@PetraBosch.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_15, © Springer-Verlag Berlin Heidelberg 2010

217

mailto:Jan@JanBosch.com
mailto:Petra@PetraBosch.com
http://dx.doi.org/10.1007/978-3-642-12442-6_15

218 J. Bosch and P. Bosch-Sijtsema

scale of software systems increases with an order of magnitude about every decade
and the architectural, tools, processes and organizational approaches need, to a large
extent, be reinvented at the same frequency.

Over the last decade, we can see three main trends drive the increasing complex-
ity of software development [6]. First, the widespread adoption of software product
lines [3, 4, 8] causes increasing dependencies between different organizational units
that earlier were independently developing their software products and services.
Second, the increasing use of global software development teams, where the devel-
opment of a large software system is spread over two or more continents. This is
causing informal or more formal approaches to software process to become signif-
icantly less productive due to the inefficiencies of coordination over geographical,
cultural and time zone boundaries [see e.g., 7, 11, 12, 16]. Third, there is an increas-
ing popularity of software ecosystems [6, 13], i.e. a company providing a software
platform and group of 3rd party developers that provide functionality on top of the
platform. The factors complicating software development in this context include the
lack of process mechanisms over corporate boundaries and the inherent tension be-
tween the interests of the platform company and the 3rd party developers. The focus
of this paper is on the second trend, i.e. distributed and global development.

During the 1990s and the early 2000s, the complexity of software development
was addressed through large software process efforts such as the Capability Maturity
Model [SEI@CMI] that tried to formalize and standardize the development process
to increase predictability of resources usage, time and quality. The negative impli-
cations of heavyweight process approaches were identified and acted upon by the
agile software development community. Over the last decade, several agile software
development process approaches have been developed, including XP [1], lean soft-
ware development [14] and scrum [15, 17]. In the context of smaller scale software
development projects, agile development projects have shown significant success.
Inspired by the agile approaches, especially for web applications and services, soft-
ware teams now focus on small team size, short release cycles, ranging from weeks
to several times per day, and experimentation in the market place, i.e. the notion of
perpetual beta.

Agile development has been widely documented [1, 2] as working well for small
(<10 developers) co-located teams. From Agile software literature it becomes clear
that agile teams work mainly co-located, have frequent face-to-face contact and
highly motivated team members work in self-organized teams. Techniques such as
pair-wise programming, daily standup meetings and sprint planning meetings are
relying to a large extent on the team being co-located. As a consequence, agile
development has shown success especially in small software development projects.

The key topic we address in this paper is the relation between large-scale and
agile approaches to software development. All process approaches discussed so far
assume what we refer to as an integration-oriented approach [6] to software devel-
opment, i.e. system integration is a major and effort consuming part of the software
development cycle as all system components need to be perfectly aligned with each
other in order to provide the required system functionality. As a consequence, re-
lease cycles, size of software teams, the process overhead, etc. are increasing dra-
matically over time and grow exponentially with increasing system size. Although

15 Coordination Between Global Agile Teams: From Process to Architecture 219

there are application domains where systems need to be highly integrated and the
consequences outlined above do not represent a competitive disadvantage, in most
domains this is not the case.

The premise that we put forward is that although both traditional software pro-
cess approaches and agile approaches propose mechanisms to deal with increasing
scale of software systems, the fundamental problem is that the coordination cost
of taking an integration-oriented, process-centric approach to software development
is fundamentally flawed. Process-centric assumes people performing certain tasks
as part of the process definition. The inherent assumption is that by formalizing
the interactions within and between teams, the pitfalls found in less mature project
organizations, e.g. unpredictability, major mismatches between components late in
the lifecycle, etc. can be avoided. Experience shows that this is indeed the case, but
the price that the organization pays for this is a degree of inefficiency that grows
exponentially with increasing system size. The root cause of this inefficiency asso-
ciated with large-scale software development is the coordination cost between all
the teams and individuals involved in the overall software system. Whereas process
approaches aim to structure and optimize these interactions and coordination efforts,
the consequence is that the symptoms are addressed and not the root cause.

Of the three trends complicating software development that we discussed earlier,
we believe that global software development, i.e. distributed development crossing
geographic, cultural and time zone boundaries, are particularly affected by the is-
sues discussed so far. This is because coordination efforts, in the end performed by
humans, are even more costly in cases characterized by geographic distance, mini-
mal overlap in working hours and cultural differences. Several examples exist where
the coordination cost in a global context were a, if not the, major factor in the failure
of a major software development effort.

The contribution of this paper is that we propose an alternative: rather than rely-
ing on process-centric coordination, we propose the use of the system architecture as
a mechanism for coordination and outline how to achieve inter-team coordination.
By basing software development on a software architecture that provides decoupling
and simplicity, large-scale software development can provide the same efficiencies
as small-scale development by providing individual teams, typically associated with
a system component, ease of development, independent releasing of components of
the system as well as allowing for easy incorporation of external developers and the
components developed by them.

The remainder of the paper is organized as follows. In the next section, we dis-
cuss large-scale software development as well as a number of definitions. After that
we present the case study companies in which we, primarily through participant-
observer case study research, studied the challenges of large-scale software develop-
ment. Subsequently, we discuss the problems of coordination in integration-centric
software development approaches. In the next section, we define the architecture-
centric approach to coordinating development teams. Finally, we conclude the pa-
per.

220 J. Bosch and P. Bosch-Sijtsema

15.2 Large-Scale Software Development

Although many development projects are small scale, many if not the majority of
software engineers work in the context of large-scale software development. We
define large-scale software development along three dimensions, i.e. size, team dis-
tribution and specialization. Size we define in terms of the number of individuals and
teams. The number of individuals ranges from tens at the low end to hundreds or
even thousands of engineers. Similarly, the number of teams ranges from a handful
to tens or more than a hundred.

The second dimension is distribution of teams. We define three levels of distribu-
tion, i.e. local, distributed and global. We consider software development local if all
teams are located at the same site and could, potentially, meet daily for face-to-face
meetings. Distributed teams do not have the ability to frequently meet personally,
but can compensate through technological means, e.g. telephone meetings, video
conferencing, etc. to have synchronous (same-time, different place) communication.
Global teams are located, as the name indicates, around the globe and have very few
overlapping working hours during the day. Communication tends to occur primarily
through asynchronous means such as email and file sharing. To illustrate the latter,
the time difference between California and India is 11.5 or 12.5 hours, depending
on the daylight savings schedule. As a consequence, global teams working on the
same system have no overlapping regular working hours. Inter-team communication
tends to be asynchronous, complemented with individuals at both sides organizing
telephone or video meetings during early mornings and late evenings. In Fig. 15.1,
we visualize the three types of team distribution.

The third dimension is the degree of specialization. In small-scale development,
each team member, independent of the job title, is aware of virtually everything

Fig. 15.1 Illustrating local, distributed and global teams

15 Coordination Between Global Agile Teams: From Process to Architecture 221

that is going on just by virtue of being part of the team. That, however, does not
scale to large-scale software development. Consequently, individuals within the or-
ganization need to specialize into specific tasks associated with specific subsystems
and information sharing becomes a formal activity with dedicated operating mech-
anisms associated with it.

Finally, throughout the paper, we use a number of concepts that require a more
precise definition. Coordination is a consciously organized relation between activ-
ities and forces [10], work tasks are divided over actors and the act of is making dif-
ferent people or things work together for a goal or effect. For coordination a number
of coordination mechanisms or instruments can be applied like direct supervision,
standardizations and interaction or communication. Communication (synchronous,
asynchronous and face-to-face) is an important mechanism used for coordination,
but other mechanisms for coordination exist, including the use of the software archi-
tecture as a coordination mechanism that requires minimal communication between
teams. We define integration as the manual process of combining the components
into a working whole. We define composition as the automated process of combin-
ing components into a working system.

15.3 Case Study Companies

The research and approach presented in this paper is based on a participant obser-
vation methodology applied by the authors in numerous software-intensive system
companies as well as in other industries. The participant observation techniques
were applied per case study and individual case study analysis was performed. As a
second step, the case study data were compared with help of comparative case study
analysis methods [9]. Data was collected in three global organizations by participant
observation, interviews and workshops over a period of 3 years per case company
(see Table 15.1 for an overview).

15.3.1 Case Company GLOembed

Case company GLOembed is a Fortune 100 company that builds a wide variety of
embedded systems for different markets. We mainly focus on the division that de-
velops products for the global consumer market, basically servicing all continents.
The business strategy of the company is focused on having a rich set of consumer
products in the market, while minimizing the development effort through the appli-
cation of software product line principles. The size of the software in the products
ranges in the several million lines of code. The development teams are distributed
across three continents, resulting in global development that requires careful coor-
dination as the company employs a product line approach. Although each product
is built from a standard platform, the development of the platform is not central-
ized, but rather the platform components are owned by distributed teams, but can

222 J. Bosch and P. Bosch-Sijtsema

still be used, extended and changed by product teams in other locations. The case
company does not work with agile teams as such, but has subsystem teams (build-
ing components) and product teams (who build products out of subsystems). The
teams are primarily co-located, although some are global, and intra-team coordi-
nation is mainly performed through same-site and same-place communication and
mostly through informal means. Coordination within the team is a relatively simple
tasks shared by all team members. Inter-team coordination is performed through ar-
chitects in whom the lead architect communicates all strategy related aspects to the
globally distributed teams.

15.3.2 Case Company GLOtelcom

Company GLOtelcom is a Fortune 100 company developing embedded products,
i.e. products that include mechanical, hardware and software parts. The company
releases several new products per year and uses a software product line approach to
decrease the per product software R&D expenditure. As a consequence a significant
part, i.e. more than half, of the software R&D is performed in the central platform
organization. The size of the software ranges in the 7 to 15 million lines of code
range. The company, being global, has development sites in several locations in Eu-
rope, the Americas and Asia, specifically India. The software platform organization
is, consequently, also distributed across the world. The organization is transitioning
to work more with agile teams (currently 30%). In these agile teams full component
responsibility was assigned to a geographically local team in Asia. Development
takes place in 2-week cycles; teams consist of 10–20 members and coordinate de-
velopment efforts mostly through informal means. The head of the team and lead
architect coordinate over geographical and architectural boundaries. The team has
bi-weekly integration processes with HQ through central architecture teams, inte-
gration teams and product management teams. The inter team coordination involves
a large amount of communication between many different teams and organization
members and units.

15.3.3 Case Company GLOsoftware

Company GLOsoftware is a Fortune 500 company developing software products
and services operating, primarily, on personal computers. The company’s products
address both consumer and business markets and the company releases several prod-
ucts per year, including new releases of existing products and completely new prod-
ucts. The products developed by the company range in the multi- to tens of million
lines of code and tend to contain very complex components that implement na-
tional and international regulations. Although significant opportunities for sharing
between different products exist, the company has organized its development based

15 Coordination Between Global Agile Teams: From Process to Architecture 223

on a product-centric approach, i.e. teams are organized around a product and tend
to be geographically local. Consequently, little or no sharing takes place between
teams. The company works for 50% with agile teams and 50% with TSP/PSP teams,
which are fully local (and co-located). It has new product development teams (who
have no interdependency with other teams) and component teams in large estab-
lished products in both Northern America and Asia. The teams are fully co-located
in either the US or in Asia and have a local leader. Intra team coordination is per-
formed by 4-week sprints and the normal agile coordination mechanisms such as
daily stand-up meetings, product backlog, etc. Coordination between teams is per-
formed centrally by the product management organization.

Table 15.1 Summary of the case studies

Summary of
cases

GLOembed GLOtelcom GLOsoftware

Number of de-
velopers

> 1000 > 1000 > 1000

Domain Consumer electronics Telecommunication Software development
Software
development
approach

No agile teams. Top
down approach

– Teams building sets
of components

– Product teams (set
of sub systems of
components build
into product)

Transition to agile teams
(+/−30%). Local teams
in Asia with one remote
team lead at Head quar-
ters.

50% agile teams and
50% TSP/PSP teams

– New product develop-
ment teams (no inter
team coordination)

– Component teams
in large established
products

Size of devel-
opment teams

20–40 team members 10–20 team members
(agile)

5–10 team members (ag-
ile)

Location Primarily co-located de-
velopment teams

Main development team
co-located with remote
team lead.

Primarily co-located de-
velopment teams

Teams all over the world Teams mainly in Europe
and Asia

Teams mainly US and
Asia

Coordination
within team
(intra team)

Teams primarily co-
located, but some
global. Coordination
mainly through informal
mechanisms

Co-located teams in
Asia, 2-week devel-
opment and informal
coordination. Much
contact with lead at HQ
in Europe

Teams fully local (co-
located) in either US or
Asia, with local leader.
Sprints of 4 weeks
periods, daily stand-
up meetings, product
back-log, etc.

Coordination
between teams
(inter team)

Coordination and com-
munication through
architects. Lead archi-
tect communicated to
all teams on strategy
related aspects

Bi-weekly integration
process.

– Central architecture
team

– Integration team
– Product management

teams

Many people involved.

Central coordination be-
tween teams by prod-
uct management organi-
zation.

224 J. Bosch and P. Bosch-Sijtsema

15.4 Coordination and Integration Inter-team Challenges

From our cases we found that the smaller (local) teams were able to coordinate their
work rather efficiently and effective as is confirmed by agile software development
literature. However, the main problems we found in the case studies were chal-
lenges between inter-team communication and inter-team coordination especially
for large-scale software development. These challenges can be placed on a contin-
uum on which on one side local inter-team coordination is placed and on the other
side of the continuum the global inter-team coordination is situated. The inter-team
coordination challenges increase when teams have to coordinate over different time
zones, cultures and countries (global).

Below we discuss the main problems we found from the case studies.

1. Top-down approach challenges or process-centric approach problems related to
inter-team interaction.

2. Interaction problems.

15.4.1 Top-Down Approach Challenges

Process-Centric Coordination All three cases applied a process-centric ap-
proach for inter-team coordination for all phases of the software development lifecy-
cle, including road mapping, requirements, dependency management during devel-
opment, API evolution, integration and release management. Case study GLOem-
bed applied a model in which only architects between the teams communicated
with each other and a lead architect traveled to all the different team sites to com-
municate about the strategic plans and road maps. Case study GLOtelcom had local
teams in India, but the lead architects were at headquarters. Furthermore, road map-
ping, product management and integration were done by numerous meetings that
either took place in person at the headquarters, requiring all remote team represen-
tatives to travel, or through teleconferencing, requiring remote team members to
attend outside work hours. Case GLOsoftware had a central organized inter-team
coordination process lead by a central product management department who com-
municated to all the different component teams. All these teams were dependent on
a central and top-down unit for inter-team coordination, which implied challenges
in amount of communication (case GLOtelcom and GLOsoftware) and coordination
needed for integration, and high dependency on one lead architect (GLOembed). In
all cases, the amount of effort that was spent on non-value adding activities was very
high and increasing over time as more and more items were identified that required
collaboration between teams.

Integration Costs All three cases applied some sort of process-centric approach
for coordinating work between teams for large-scale software development. How-
ever, we found that all cases had high and unpredictable product integration cost.

15 Coordination Between Global Agile Teams: From Process to Architecture 225

We observed in all case study companies that during product integration, incompat-
ibilities between components are detected during system tests and quality attributes
break down in end-to-end test scenarios. This causes a costly and unpredictable
integration process that, being at the end of the development cycle, causes major
difficulties at the affected companies.

Coordination and Communication Costs Between Teams A problem observed
in all case study companies is that when decoupling between shared software assets
is insufficiently achieved, excessive coordination cost between teams are one out-
come. One might expect that alignment is needed at the road mapping level and to
a certain extent at the planning level. When teams need to closely cooperate dur-
ing iteration planning and have a need to exchange intermediate developer releases
between teams during iterations in order to guarantee interoperability, the coordina-
tion cost of shared asset teams is starting to significantly affect efficiency. Case study
GLOtelcom showed an example where communication and coordination costs were
very high due to a large amount of integration meetings between all the different
involved units for large-scale software development.

Unintended Resource Allocation Resource allocation is a tool used by compa-
nies to align resources with the business strategy. In practice, however, at two of the
case study companies, i.e. GLOtelcom and GLOsoftware, teams frequently assign
part of their resources to other software components and their associated teams. The
reason is that they are dependent on the other components to be able to get their own
functionality developed and released. One can view this as a lack of road mapping
activities and inter-team coordination. The consequence is again, that the coordina-
tion costs between teams easily become excessive, resulting in a general perception
in the organization that significant inefficiencies exist.

Insufficient Pre-iteration Cycle Work In some of the teams in case company
GLOsoftware, features that cross component boundaries were underspecified be-
fore the development cycle started and were “worked out” during the development.
In practice, this requires close interaction between the involved teams and causes
significant overhead that could easily be avoided by more upfront design and inter-
face specification. A consequence of this approach is that it builds an “addiction”
between teams in that there is a need for frequent (daily) developer-to-developer
drops of code that is under development in order to avoid integration problems later
on. This, in turn, often results in largely manual testing of new functionality because
requirements solidify during the development cycle and automated tests could not
be developed in time.

15.4.2 Interaction Problems

Global Interaction Problems Between Teams Interaction between global teams
implies more challenges due to time zone differences, cultural and language differ-
ences and, often, different work practices. For example, in one organization that we

226 J. Bosch and P. Bosch-Sijtsema

worked with, case company GLOtelcom, teams were geographically split, with the
team lead architect and senior engineers located at the main site of the organization
in Europe and the remaining engineers in a remote site in India. This required sig-
nificant communication taking place over geographical boundaries resulting in very
inefficient development processes as well as a de-motivated team at the remote site,
due to a lack of autonomy and responsibility of the remote site. Another example is
case company GLOsoftware in which teams from the US cooperate with teams from
Asia with a 12.5 hour time difference. Inter-team communication and coordination
can only happen asynchronously or by traveling to the different locations to meet
face-to-face. In GLOembed the lead architect travelled to all the global sites to visit
the teams in person to discuss road mapping and strategic decisions.

Maintaining Motivation in Remote Teams In all case companies, we observed
behavior at the main site of the organization that would keep the most interesting
and strategic work at the main site and outsource the routine and less strategic work.
In addition, there was a strong desire to maintain control over work that took place
at the remote sites and to exercise that control through direct supervision of remote
individuals and teams. This was caused both by a sense of protectionism at the
main site, where work at the remote site was considered threatening. It also was a
consequence of applying the same operating mechanisms that are applied locally,
where frequent face to face contact is not experienced as supervision, in a global
context where the interaction tends to become much more formal. The consequence
was significantly reduced motivation and retention in the remote sites. This may turn
into a self reinforcing system if work performed at the remote sites is of insufficient
quality, or at least perceived to be, which further reduced trust in the main site to
delegate work to the remote site.

Low Productivity In case study company GLOembed and GLOtelcom, the pro-
ductivity of teams as well as of the overall system integration was very low in the
cases where teams were internally distributed and where the coordination between
teams was very process-centric with extensive coordination taking place during ev-
ery phase of the lifecycle. Especially during systems integration, where the software
assets from the various teams are brought together, many incoherencies were iden-
tified, despite the coordination efforts during the development process.

Table 15.2 presents a summary of the observed problems on inter-team coordi-
nation of both local teams compared to organizations with global agile teams that
need integration between the teams.

15.5 Coordination Through Architecture

Throughout the chapter, we have presented the viewpoint that the root cause of the
inefficiency associated with large-scale software development is concerned with the
amount of coordination that is required between teams. The problems discussed ear-
lier in the chapter are either a direct consequence of that root cause or can be traced

15 Coordination Between Global Agile Teams: From Process to Architecture 227

Table 15.2 Observed problems with process-centric coordination approaches between agile teams

Observed problems in inter-
team coordination

Local Global

Process-centric coordination Relatively inexpensive due to
largely informal, face-to-face
communication. Broad inter-
faces between teams

High costs
– Dependency on archi-

tects/central units for
inter-team coordination
tasks

Integration cost Lower to medium cost. Pro-
ductivity and outcome higher
(faster)

High cost
Low productivity

Communication & coordina-
tion cost

Lower communication and
coordination costs.
– Daily face-to-face or syn-
chronous mediated interac-
tion

High communication and co-
ordination costs. Very costly
– Inconvenience due to time

differences
– Quality of interaction

lower
– Technology solutions

Interaction problems Interaction between teams
easier because of close prox-
imity, same time zone and
similar language, culture and
work practices

Problems with time zones,
cultural and language differ-
ences, differences in work
practice. Influence coordina-
tion and communication cost

back to it. Addressing this root cause is conceptually very simple: remove all need
for inter-team coordination. That would allow small, agile teams to develop and re-
lease independently and increase efficiency of software development tremendously.
However, the teams are still building solutions that are part of a larger system and
therefore cannot be completely independent. The approach that we, based on our
experience with Web 2.0 companies and software ecosystems, describe here is to
move any remaining coordination needs from the process level to the architecture.
This, in effect, replaces manual work with an automated solution.

The cost associated with process-centric coordination is much higher in a global
context than in a local context due to the communication inefficiencies. Develop-
ment approaches that rely on significant inter-team communication perform poorly
in global and distributed contexts. The amount of coordination between teams can
be reduced to a quite significant extent compared to what traditional software devel-
opment approaches dictate. Below, we discuss the coordination needs for each stage
of a traditional software development lifecycle.

15.5.1 Road Mapping

Traditionally, the road mapping process outlines high-level features and assigns
these to releases of a large system. Assuming a release frequency of 6 to 12 months,

228 J. Bosch and P. Bosch-Sijtsema

every release contains several new features. The road mapping process requires the
organization to decide on the relative priority of the things that it could build. In
order to decide on this, the effort associated with each high-level feature needs to
be estimated. The effort estimations are naturally rather coarse and lack accuracy,
which often affects the latter stages quite significantly.

The importance of an accurate ROI (return on investment) and effort estimation
for each high level feature causes most organizations to involve people from virtu-
ally every function and team involved in the development, sales and deployment of
the system. Especially for large systems, this often means that several tens of people
are involved.

In the architecture-centric approach the organization translates its business
strategy into a number of domains of functionality where it wants to see sig-
nificant improvement. The teams take these domains as input for determining
what to build in the next iteration. However, as discussed in the next section,
the organization does not plan and order the exact functionality to be built but
instead relies on the teams to optimize.

For the organization, it means giving up control and predictability in terms of the
functionality delivered. However, it is important to realize that the notion of control
and predictability tends to be an illusion in most companies.

15.5.2 Requirements

In traditional development, at the start of every iteration the high-level features as-
signed to this iteration are translated to more detailed system level requirements.
These requirements are, in turn, translated to component level requirements. At this
stage the overlapping with other activities starts in earnest as the process of trans-
lating system level requirements to component level requirements requires active
involvement of the architects and team leads to make sure that the requirements
allocation is appropriate and that the effort estimations are supported by the teams.

In the architecture-centric approach, there is no centralized requirement man-
agement process. Each team, which is associated with a component in the
system, evaluates the domains in which progress is desired, complements that
with its own customer understanding and announces to the organization what
it intends to release at the end of the iteration. There is no coordination of
requirements and there is a risk that more than one component team attacks
related or similar functionality. On the other hand, because there is no coordi-
nation between teams, no effort was lost on non-value adding activities.

15 Coordination Between Global Agile Teams: From Process to Architecture 229

15.5.3 Architecture

The next activity in development is to determine the impact of the new requirements
on the architecture and to design the changes to the architecture. This typically re-
sults in added and removed components, but the primary area of concern is often
the impact on interfaces between existing components and, by extension, the teams
responsible for these components.

As we discussed earlier in the chapter, in traditional software development, the
architecture is often underspecified and teams are at liberty to develop interfaces
between their components during development in mutual discussion. This may seem
efficient as it allows for working in a decentralized fashion, our research at the case
study companies as well as with other companies shows that architecture is the one
area where discipline needs to be enforced. For every problem not handled by the
architecture, a process coordination mechanism needs to be put in place to allow
teams to release the system.

In architecture-centric development, component teams not only announce the
requirements but also the changes to their component from an external per-
spective, including interfaces to be added, deprecated and removed by the end
of iteration. A separate team manages the architecture, with a focus on com-
positionality and backward compatibility.

15.5.4 Development

The fourth activity is development. The case study companies had, to a significant
extent, adopted agile development methods with four to six week development cy-
cles. Ideally, development takes place in isolation from other teams so that each
team can be as effective as possible. In practice, the teams need to spend a lot of
time aligning their development effort with other development teams, test teams
and the integration team.

The high coordination cost was caused by several of the issues discussed earlier
in the chapter, but two of the key drivers were the lack of architectural specification
and concurrent development of functionality. Teams spent too little time during the
preparation of the iteration on analyzing and designing detailed changes to the com-
ponent interfaces with the intention to “work it out” during the development cycle.
Especially in global development this is particularly inefficient. The second main
cause of coordination overhead is concurrent development. System-level features
often require changes in multiple components and these changes typically have de-
pendencies on each other. Concurrent development requires teams to interact during
the development stage to work out compatibility issues and detailed assignment of
responsibilities.

230 J. Bosch and P. Bosch-Sijtsema

Architecture-centric development is concerned with facilitating independent
development by component teams and to minimize the number of unproduc-
tive hours spent on coordination while maximizing the amount of productive
hours. As the team has announced the interface changes, knows what back-
ward compatibility is required, knows what functionality it wants to build and
the other component interfaces to develop against, this stage should allow the
team to focus solely on development. One of the principles that need to be en-
forced in this context is that no team can initiate development on functionality
that is dependent on functionality that is under development by another team.
Although this at first may seem to slow development as the implementation
of a system level feature requires multiple iterations depending on the number
of dependencies, in practice the removal of coordination cost and the short
cycles for most agile teams outweighs any benefits that may be achieved by
concurrent development.

15.5.5 Integration or Composition

In traditional development, the development of the next version of the components
is followed by an integration phase. Here the fruits of the work of the various devel-
opment teams are brought together and integrated in a product or platform release.
As discussed in the problems statement, in the case study companies, the integra-
tion stage is very effort consuming and unpredictable. All case study companies
used forms of continuous or frequent integration. However, the SCM (source con-
trol management) and test infrastructure did not allow for full coverage and hence
the companies still used an explicit integration and validation phase before releasing
the new product system to market.

The integration phase is especially painful in global software development as
there is enormous need for interaction between the integration team and all of the
component teams. During system testing, many issues are found that require collab-
orative resolution between teams. Although the amount of interaction needed may
be limited, in global contexts there often are significant delays due to time zone dif-
ferences, causing many issues that could be resolved in minutes or a few hours to
become part of a daily rhythm instead.

In architecture-centric development, there is no integration phase, but instead
the system is focused on composition. Each component team releases fre-
quently, but uncoordinated with other teams. When a component team re-
leases, its component has to pass the automated SCM and test system. The
automated test system is improved in response to any problem that manages

15 Coordination Between Global Agile Teams: From Process to Architecture 231

to get through the system and is only surfaced after deployment. As a conse-
quence, over time the quality of the validation reaches a very high level. The
traditional approach is to put process steps in place to avoid problems to oc-
cur, but this requires coordination and manual effort. This additional focus on
the automated SCM, test system and deployment infrastructure removes the
need for an unpredictable and effort consuming integration phase and allows
teams to release their components independently.

15.5.6 Architecture-Centric Software Engineering

Architecture-centric software engineering focuses on minimizing the inefficiencies
associated with traditional process-centric development. The approach adopts a set
of principles that is different and often initially uncomfortable in corporate contexts.
However, there is of course a clear parallel to the development approaches found in
the open-source software communities.

The key enabler for architecture-centric software engineering is to minimize de-
pendencies between components. Although this central to architecture design, ar-
chitects often de-prioritize decoupling to achieve other attributes. In [5], we present
the notion of software ecosystems where architecture decoupling is paramount for
its success. The principles it introduces are valuable in this context as well.

The concerns in a corporate context are often related to the loss of control over
R&D investment, resource allocation and product roadmaps. Our experience from
the case study companies as well as other organizations is that the perception of
control often is an illusion. Either the R&D organization operates at such a low
expectation level that any organization can meet it, or plans and milestones are fre-
quently missed in unpredictable ways.

Architecture-centric software engineering removes so many inefficiencies from
the software development process that the output of the organization is much higher,
even if senior management has less visibility into the operational issues in the R&D
organization.

Although none of the case study companies has implemented all aspects of the
architecture-centric software engineering approach, each employs some of the prac-
tices. The consequences of globalizing their software development while interested
in adopting more agile development approaches necessitated each of the case study
companies to change some of their, initially process and integration-oriented, prac-
tices and adopt a more architecture-centric approach. Based on our research at these
companies, Web 2.0 companies and in the context of software ecosystems, we are
convinced that the presented approach provides enormous benefit to organizations
that adopt it.

232 J. Bosch and P. Bosch-Sijtsema

Practical Tip: Illustrate the lack of predictability in large-scale software devel-
opment by collecting and analyzing historical data. In most companies, there
is a significant gap between plan and outcome. This data can then be used to
break the illusion of control and to create an opening for experimenting with
a new approach. Once the experiment is approved, make sure to deliver real
business value as soon as humanly possible and collect data on relevant met-
rics, e.g. productivity or time to customer of new functionality. Select compa-
rable development efforts using the traditional approach to support the transi-
tion from a belief that the new approach is better to a quantitatively supported
position that the new approach is superior.

15.6 Conclusions

Over the last four decades, software engineering has continuously evolved to ad-
dress the continuous and enormous increase in complexity due to sheer system size,
the complexity of the application domains and level of interaction required with
other embedded and IT systems. The case study companies reported on in this paper
have been very successful in applying traditional software development approaches
to their product development and have, as a consequence, seen significant growth.

With increased globalization of software development and the increasing popu-
larity of agile software development approaches, it has become blindingly obvious
that a process-centric approach to large-scale software development over time re-
sults in unmanageable complexity and unacceptable inefficiency. In the paper, we
discuss several problems, categorized in four categories, i.e. process-centric co-
ordination, integration cost, communication and coordination cost and interaction
problems. These problems can largely be attributed to one root cause: dependen-
cies between components in the architecture and the teams responsible for these
dependencies.

Based on our research with the case study companies, but also with a several
other companies as well as software ecosystems, we propose an alternative: rather
than relying on process-centric coordination, we propose the use of the system ar-
chitecture as a mechanism for coordination and outline how to achieve inter-team
coordination. By basing software development on a software architecture that pro-
vides decoupling and simplicity, large-scale software development can provide the
same efficiencies as small-scale development by providing individual teams, typ-
ically associated with a system component, ease of development, independent re-
leasing of components of the system as well as allowing for easy incorporation of
external developers and the components developed by them.

The contribution of the paper is twofold. First, it presents the results of a case
study into the implications of applying process-centric, integration- approaches in
large-scale oriented software development based on longitudinal case studies at

15 Coordination Between Global Agile Teams: From Process to Architecture 233

three large organizations. Second, it presents architecture-centric software engineer-
ing as a novel approach that combines the best practices from these companies, as
well as from companies in the Web 2.0 and software ecosystem industries.

References

1. Beck, K. (1999). Extreme programming explained: Embrace change. Boston: Addison-
Wesley.

2. Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed.
Boston: Addison-Wesley.

3. Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a product
line approach. London: Pearson Education (Addison-Wesley & ACM Press).

4. Bosch, J. (2002). Maturity and evolution in software product lines: Approaches, artifacts and
organization. In Proceedings of the 2nd software product line conference (SPLC) (pp. 257–
271), San Diego, USA, 19–22 August 2002.

5. Bosch, J. (2009). From software product lines to software ecosystems. In: Proceedings of the
13th international software product line conference (SPLC 2009), August 2009.

6. Bosch, J., & Bosch-Sijtsema, P. M. (2010). From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and Software,
83, 67–76.

7. Carmel, E., & Agarwal, R. (2001). Tactical approaches for alleviating distance in global soft-
ware development. IEEE Software, 1(2), 22–29.

8. Clements, P., & Northrop, L. (2001). Software product lines: Practices and patterns. Boston:
Addisson-Wesley.

9. Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Manage-
ment Review, 14(4), 532–550.

10. Hatcheul, A. (2001). Coordination and control. In A. Sorge & M. Warner (Eds.), The IEBM
handbook of organizational behavior (pp. 320–339). London: Thompson Business Press.

11. Herbsleb, J. D., & Moitra, D. (2001). Global software development. IEEE Software, 18(2),
16–20.

12. Kraut, R., Steinfield, C., Chan, A. P., Butler, B., & Hoag, A. (1999). Coordination and virtual-
ization: The role of electronic networks and personal relationships. Organisation Scientifique,
19(6), 722–740.

13. Messerschmitt, D. G., & Szyperski, C. (2003). Software ecosystem: Understanding an indis-
pensable technology and industry. Cambridge: MIT Press.

14. Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile toolkit.
Boston: Addison-Wesley.

15. Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams.
IEEE Software, 17(4), 26–32.

16. Sanwan, R., Bass, M., Mullick, N., Paulish, D. J., & Kazmeier, J. (2006). Global software
development handbook. New York: CRC Press.

17. Schwaber, K. (2001). Agile software development with Scrum. New York: Prentice Hall.

	Coordination Between Global Agile Teams: From Process to Architecture
	Introduction
	Large-Scale Software Development
	Case Study Companies
	Case Company GLOembed
	Case Company GLOtelcom
	Case Company GLOsoftware

	Coordination and Integration Inter-team Challenges
	Top-Down Approach Challenges
	Process-Centric Coordination
	Integration Costs
	Coordination and Communication Costs Between Teams
	Unintended Resource Allocation
	Insufficient Pre-iteration Cycle Work

	Interaction Problems
	Global Interaction Problems Between Teams
	Maintaining Motivation in Remote Teams
	Low Productivity

	Coordination Through Architecture
	Road Mapping
	Requirements
	Architecture
	Development
	Integration or Composition
	Architecture-Centric Software Engineering

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

