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Abstract Nowadays, increasing performance of computing hardware makes it fea-
sible to simulate ever more realistic humans even in real-time applications for the
end-user. To fully capitalize on these computational resources, all aspects of the
human, including textural appearance and lighting, and, most importantly, dynamic
shape and motion have to be simulated at high fidelity in order to convey the impres-
sion of a realistic human being. In consequence, the increase in computing power
is flanked by increasing requirements to the skills of the animators. In this chap-
ter, we describe several recently developed performance capture techniques that
enable animators to measure detailed animations from real world subjects recorded
on multi-view video. In contrast to classical motion capture, performance capture
approaches don’t only measure motion parameters without the use of optical mark-
ers, but also measure detailed spatio-temporally coherent dynamic geometry and
surface texture of a performing subject. This chapter gives an overview of recent
state-of-the-art performance capture approaches from the literature. The core of the
chapter describes a new mesh-based performance capture algorithm that uses a com-
bination of deformable surface and volume models for high-quality reconstruction
of people in general apparel, i.e. also wide dresses and skirts. The chapter concludes
with a discussion of the different approaches, pointers to additional literature and a
brief outline of open research questions for the future.

1 Introduction

Today, photo-realistically rendered virtual humans are becoming ever more impor-
tant elements of feature films. They can perform almost any type of action or stunt
at no risk of fatality, as long as an animator is capable of creating the desired effect.
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In recent years, ever more powerful computing hardware and rendering algorithms
have made it feasible to display detailed realistic humans not only in big-budget fea-
ture films, but even in real-time applications available to the end-user at home. For
instance, it is foreseeable that in the near future computer game engines will be able
to display characters with detailed texture and dynamic geometry, such as correctly
deforming cloth. Another application that will gain increasing importance is 3-D
video, a new form of media where either the user or the broadcasting company can
instantaneously change the viewpoint on a displayed scene. In both cases, it will be
important to be able to capture detailed time-varying 3-D models of humans.

Unfortunately, currently available acquisition technology frequently falls short of
capturing such rich 3-D scene descriptions that would be directly applicable in the
application scenarios mentioned above. Motion capture systems have been around
for many years, but they are merely able to measure skeletal motion under controlled
conditions. Currently, they are unable to capture shape, motion and appearance of
actors in general everyday apparel. Image-based rendering techniques have been
proposed to create novel view points of scenes by computationally combining views
taken from a few input video streams. However, as we will see later in this chapter,
many of these approaches fail to fulfill the visual quality requirements that most
professional productions have.

This chapter therefore describes a new category of algorithms, performance cap-
ture methods, which are able to fulfill these requirements. Performance capture
methods retrieve highly-detailed dynamic shape and motion of moving subjects
from (usually) only a handful of unmodified video recordings, i.e. actively placed
visual markers are not required. In contrast to previous methods from the literature
they are able to handle people in general everyday apparel, such as a skirt or a dress.
Also, they are able to capture spatio-temporally coherent geometry, a characteristic
that sets them apart from many previous methods from the literature, in particular
image-based rendering approaches. Spatio-temporal coherence is an important fea-
ture since only if correspondences between reconstructed poses over time are known
it is easy to post-process, store and modify the captured data.

In the following chapter, we will first review general related work from the
fields of motion capture and image-based rendering. Thereafter, we will discuss
four representative, but conceptually different performance capture methods. The
first method retrieves detailed time-varying geometry of pieces of apparel from
multi-view video using a combination of stereo and cross-parameterization. Along
a similar line of thinking, the second approach described employs a combination of
visual hulls, multi-view stereo and spatio-temporal cross-parameterization to recon-
struct complete performances of humans. The third method described differs from
these two approaches in that it employs a template model and skeleton-based pose-
fitting to visual hull sequences to measure full human performances. The core of
the chapter is a new performance capture approach that takes an unconventional,
yet very effective alternative route. Instead of relying on a classical skeleton-based
representation of humans, it exploits deforming meshes to faithfully capture the
dynamic appearance of actors in arbitrary general apparel. The paper concludes
with a discussion and some pointers to additional reading.
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2 Paving the Way for Performance Capture: Motion Capture,
Image-Based Rendering and 3-D Video Approaches

Modern Performance Capture algorithms can capitalize on a body of related meth-
ods which focused on solving sub-problems of the overall performance capture
problem. In the following we give a brief overview of important categories of such
techniques.

Marker-based optical motion capture systems are the workhorses in many game
and movie production companies for measuring motion of real performers [29].
Despite their high accuracy, their very restrictive capturing conditions (that often
require the subjects to wear skin-tight body suits and reflective markings) make
them incapable of capturing shape and texture simultaneously with motion. Park
et al. [35] try to overcome part of this limitation by using several hundred mark-
ers to extract a model of human skin deformation. While their animation results
are very convincing, manual mark-up and data cleanup times can be tremendous
in such a setting and generalization to normally dressed subjects is difficult. In
contrast, marker-free performance capture algorithm require a lot less setup time
and enable simultaneous capture of shape, motion and texture of people wearing
everyday apparel.

Marker-less motion capture approaches are designed to overcome some restric-
tions of marker-based techniques and enable performance recording without optical
scene modification [31,39]. Although they are more flexible than intrusive methods,
it remains difficult for them to achieve the same level of accuracy and the same appli-
cation range. Furthermore, since most approaches employ kinematic body models, it
is hard for them to capture motion, let alone detailed shape, of people in loose every-
day apparel. Some methods, such as [42] and [4] try to capture more detailed body
deformations in addition to skeletal joint parameters by adapting the models closer
to the observed silhouettes, or by using captured range scan data [2]. But both algo-
rithms require the subjects to wear tight clothes. Only few approaches, such as the
work by [40], aim at capturing humans wearing more general attire, e.g. by jointly
relying on kinematic body and cloth models. Unfortunately, these methods typically
require hand-crafting of shape and dynamics for each individual piece of apparel.
Also, they focus on joint parameter estimation under occlusion rather than accu-
rate geometry capture, and therefore the shape quality of the captured performers is
typically very crude.

Other related work explicitly reconstructs highly-accurate geometry of moving
cloth from video [43, 56]. However, these methods require visual interference with
the scene in the form of specially tailored color patterns on each piece of garment
which renders simultaneous shape and texture acquisition infeasible.

A slightly more application-driven concept related to performance capture is put
forward by 3-D video methods which aim at rendering the appearance of recon-
structed real-world scenes from new synthetic camera views never seen by any
real camera. Early shape-from-silhouette methods reconstruct rather coarse approx-
imate 3-D video geometry by intersecting multi-view silhouette cones [19, 28].
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Despite their computational efficiency, the moderate quality of the textured coarse
scene reconstructions often falls short of production standards in the movie and
game industry. To boost 3-D video quality, researchers experimented with image-
based methods [52], multi-view stereo [61], multi-view stereo with active illu-
mination [55], or model-based free-viewpoint video capture [10]. In contrast to
performance capture approaches, the first three methods do not deliver spatio-
temporally coherent geometry or full 360 degree shape models, which are both
essential prerequisites for animation post-processing. At the same time, previous
kinematic model-based 3-D video methods were unable to capture performers in
general clothing.

Data-driven 3-D video methods synthesize novel perspectives by a pixel-wise
blending of densely sampled input viewpoints [57]. While even renderings under
new lighting can be produced at high fidelity [15], the complex acquisition appa-
ratus requiring hundreds of densely spaced cameras makes practical applications
often difficult. Further on, the lack of geometry makes subsequent editing a major
challenge.

3 Performance Capture Approaches

Performance capture approaches differ from the methods described in the previous
section in a few key aspects. First, they aim at reconstruction of highly detailed
dynamic scene geometry. By this we mean that the quality of the reconstructed
shape should be of such high fidelity that it can even be used without original
texture, e.g. for rendering under new artificial lighting and surface material. In con-
sequence, even subtle aspects of shape, such as folds in attire, have to be measured
at a sufficient level of detail.

Second, performance capture approaches reconstruct spatio-temporally coher-
ent shape sequences. Here, coherence means that the correspondences between
surface points over time are known. This is an important feature since it allows
for simpler post-processing, editing and representation of the captured perfor-
mances. Establishing these correspondences is one of the hardest problems in
visual scene reconstruction. As we will see later, different strategies have been
explored to achieve coherence. One class of methods uses spatio-temporal cross-
parameterization techniques. Another class of approaches starts off with a detailed
shape model of the performer, e.g. from a laser scan, that is then deformed to match
the input multi-view video data.

Finally, performance capture approaches require no optical modification of the
captured scene, e.g. in the form of intentionally placed visual markings, and they
impose little restrictions on the type of apparel that a person can wear. As we
will show, the majority of algorithms can even handle people in wide and wavy
apparel, such as skirts or dresses. This puts them apart from the vast majority of
marker-based and marker-less motion capture approaches that have been proposed
up to now. In the following sections, we review a few representative examples
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of performance capture algorithms, and go into a slight bit more detail about a
mesh-deformation-based approach that we have developed as part of our research.

3.1 Garment Capture

Capturing the motion of garment is a sub-problem of performance capture by the
previously given definition. However, due to their complex deformation behavior,
pieces of apparel are among the most difficult elements of dynamic scenes to be
reconstructed from video. A recently presented algorithmic recipe to approach the
problem shares many similarities to full performance capture, and it is therefore
instructive to include it into our overview.

Most previously proposed methods for garment capture require active scene
modification, e.g. in the form of color patterns printed on the captured attire (see
also Sect. 2). Therefore, despite good results, they fall short to fulfill one of the
main characteristics of what we call performance capture approaches in this chap-
ter. In contrast, the recent approach by Bradley et al. captures spatio-temporally
coherent geometry of moving pieces of apparel from multi-view video without any
marker pattern [8]. In their method, a person wearing the piece of apparel to be
reconstructed moves in front of a multi-view video camera setup. The method starts
by reconstructing a 3-D mesh of the piece of garment at each time step of video
by means of a multi-view stereo approach, that captures the detailed geometry of
the fabric, including folds and creases, at each time step of video. Naturally, the
meshes found at each time step may contain holes due to occlusions, and there is no
spatio-temporal coherence in the mesh connectivity over time. To obtain a spatio-
temporally coherent 3-D model representation and to fill in holes, Bradley et al.
suggest a spatio-temporal cross parametrization approach that remaps the geometry
from each time step to a template 3-D model. Figure 1 shows the acquisition setup, a
test subject wearing a t-shirt to be reconstructed, and a 3-D mesh model of a recon-
structed shirt illustrating nicely that both the overall shape as well as dynamic folds
can be faithfully reconstructed.

Fig. 1 Garment capture from multi-view video using the method of Bradley et al. [8]. (a, b) Input
camera setup with test person. (c) Reconstructed 3-D mesh model of the t-shirt at the same time
step. (Images courtesy of Derek Bradley, University of British Columbia, Vancouver)
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3.2 Surface Capture

One of the first full performance capture approaches in the literature, by this we
mean a method to capture entire humans, is the work by Starck and Hilton [48].
Input to their algorithm are eight HD video streams from a fully-calibrated camera
setup. Via chroma-keying, the silhouette of the person in each frame is extracted.

In a first pass, their algorithm reconstructs an individual 3-D geometry model
for each time step of multi-view video. To this end, a combination of visual hull
and stereo reconstruction is used. The visual hull defines an outer boundary for the
shape. By using a combination of sparse multi-view line feature matching and a
graph-cut based stereo reconstruction, the very coarse visual hulls can be refined
and concavities in the surfaces recovered, See Fig. 2 for an example. A surface
texture for each captured pose can be created by projectively blending the input
video frames on the 3-D surface.

Also here, one of the biggest challenges is to establish spatio-temporal cor-
respondences. Similar to Bradley et al., Sect. 3.1, Starck and Hilton also use
a spatio-temporal re-parameterization approach to remesh the individual triangle

Fig. 2 Surface Capture method by Starck and Hilton [48]: 3-D models are reconstructed from
multi-view video by means of a combination of shape-from-silhouette and stereo constraints.
Spatio-temporal coherence in the meshes (at least for sub-sequences) is established during post-
processing by means of spatio-temporal re-parametrization. (Images courtesy of Jonathan Starck,
University of Surrey)
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meshes from each time step to a temporally consistent triangulation [46]. In essence,
they cut the surface open to achieve a genus zero surface that can then be param-
eterized over a sphere. On the sphere an adaptive subdivision and remeshing is
performed such that eventually a mesh with the same graph structure is used to
represent at least subsequences of an entire multi-view data set. Spatio-temporal
reparameterization is a non-trivial problem and it is not guaranteed that under all
circumstances the quality of the correspondences will be sufficient. Therefore, other
researchers resorted to some form or prior model that is matched to each frame of
video. This way, spatio-temporal correspondences are implicitly established.

A method similar to the one by Starck and Hilton has been proposed by Nobuhara
et al. [33]. They also reconstruct shape-from-silhouette volumes and employ a
deformation-based correspondence finding approach to establish spatio-temporal
coherence. Their results show that they are able to successfully handle some cases
of topology change.

3.3 Simultaneous Surface and Skeleton Capture

One approach that uses such a prior model is the work by Vlasic et al. [53]. Their
approach also uses synchronized multi-view video sequences of human perform-
ers as input. The main conceptual difference to the previous two approaches lies in
the fact that it employs a form of template model whose motion is tracked. This
model comprises a surface triangle mesh and an underlying kinematic skeleton that
is coupled to the surface via linear-blend skinning. The surface mesh is either recon-
structed by means of a shape-from-silhouette approach, or obtained from a full-body
laser scan of the person.

The algorithm commences by reconstructing a shape-from-silhouette 3-D model
for each time step of video. The actual performance capture pipeline comprises two
stages. In the first stage, only the skeleton part of the model is fitted into each visual
hull, in order to capture the general body pose of the actor. The tracker minimizes
an energy functional that drives the skeleton close to the medial axis of each visual
hull, enforces temporal coherence, and ensures that the extremities of the skeleton
are correctly positioned into the respective parts of the visual hulls. An additional
term in the energy function takes into account user-defined position constraints that
are required in difficult postures where automatic pose determination is likely to
fail. To improve tracking accuracy, the authors suggest to use both a forward and a
backward tracking pass.

The second stage of the pipeline deforms the surface of the template model such
that the silhouettes in all camera views correctly match the outline of the repro-
jected model. This surface adaptation comprises of several sub-steps itself. First,
the template surface is deformed into a new pose via skinning only. In general, this
will not bring the mesh into agreement with the silhouettes, since, for instance, non-
rigid deformations are only coarsely approximated. Further, skinning deformation
artifacts may have deteriorated the surface. The authors therefore suggest an iterative
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deformation scheme which starts off the skinning pose of the mesh, but purposefully
reduces its geometric complexity and iteratively deforms the reduced complexity
meshes to match the silhouette boundaries. While iterating, high-frequency geo-
metric surface detail of the template mesh is gradually re-introduced. To serve this
purpose, a variant of Laplacian surface deformation [7] is used which allows for
such gradual control of surface detail.

The final output is a sequence of skeleton poses together with the template mesh
deformed in such a way that the multi-view silhouettes are matched. Overall, the
visual quality of the results is very high. The algorithm has been shown to also
handle sequences with more complex clothing, such as woman wearing a skirt.

The method has several advantages over the previous two approaches. It captures
a rigged skeleton-based character which directly matches the animation pipeline
used in most applications. It is also comparably fast, requiring only several tens
of seconds of computation time per frame. This is a significant performance bene-
fit over algorithms involving multi-view stereo. One of the disadvantages is that the
tracking process of most sequences will require supervision by the user, since in dif-
ficult poses manual correction may be required. Further on, even though the quality
of the recovered geometry is very convincing in general, it can naturally only capture
the deformation of the surface as it is visible in the silhouette boundaries. True wav-
ing of cloth (including true folds and creases), as it is mostly observed in the interior
of silhouettes, is not actually captured but in a sense pretended by the employed sur-
face adaptation approach. In other words, high-frequency shape detail stays fixed
and deforms with the underlying base surface. Here, multi-view stereo approaches
are able to capture more true shape detail. Another potential problem is that the
skeleton model, although it facilitates tracking, also imposes a prior on motion
which is incorrect for wide pieces of apparel whose motion is not explained by skin-
ning. Some of these problems were attacked by another template-based performance
capture approach which is detailed in the following sections.

4 Mesh-Based Performance Capture

Template-based performance capture approaches bear several advantages over algo-
rithms doing without strong a priori model assumptions. The template imposes a
prior on geometry and motion which can be exploited to make scene reconstruction
more robust and correspondence finding easier. The price to be paid is often mea-
sured in loss of flexibility since only scenes for which a template is easy to obtain
can be reconstructed. Nonetheless, template-based approaches prove very success-
ful for reconstructing performances of humans, as it was shown in the previous
section where a kinemtic body model was used. However, a kinematic skeleton with
surface skinning is obviously not the right prior model for representing wavy cloth.
Although the previous method has shown that on a coarse scale cloth tracking is
feasible with a kinematic prior and surface deformation, cloth tracking artifacts are
likely to occur.
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The method in this chapter intentionally abandons the skeleton-component of
the template and uses a deformable surface model as scene representation [11]. This
idea has been motivated by the fact that recently many new animation design [7],
animation editing [58], deformation transfer [51] and animation capture methods [5]
have been proposed that employ shape deformation approaches with great success.
The explicit abandonment of kinematic parameterizations makes performance cap-
ture a much harder problem, but bears the striking advantage that it enables more
reliable capturing of both rigidly and non-rigidly deforming surfaces with the same
underlying technology.

First approaches that implemented this idea in the context of full body per-
formance capture were suggested by de Aguiar et al. [12, 13]. Both approaches
reconstruct a deformable human template model from a laser scan of the subject to
be tracked. The mathematical deformation approach used in either case is a variant
of Laplacian surface editing. Performances are retrieved by extracting features from
the multi-view image streams and using their 3-D trajectories as deformation han-
dles to change the model pose. Although these approaches can track performances
of people wearing complex apparel at high reliability, the algorithms are subject
to a few important limitations. Surface-based deformation represents a relatively
“weak” prior on 3-D motion that may lead to erroneous deformation if the mea-
sured features are starkly noise contaminated, or if there are large regions with no
deformation handle at all. This frequently happens when the motion is very fast and
thus the image displacement of features is big. Therefore, rapid movements are hard
to track with both these approaches. Further on, both methods share the limitation
of the skeleton-based approach from the previous section that true high-frequency
shape detail cannot be reconstructed.

This chapter describes a new deformation-based performance capture method
that exceeds the abilities of the aforementioned algorithms in several ways. First,
a new analysis-through-synthesis tracking framework enables capturing of motion
that shows a very high complexity and speed. Secondly, we propose a volumetric
deformation technique that greatly increases robustness of pose recovery. Finally, in
contrast to previous related methods, our algorithm explicitly recovers small-scale
dynamic surface detail by applying model-guided multi-view stereo.

Related to our approach are also recent animation reconstruction methods that
jointly perform model generation and deformation capture from scanner data [54].
However, their problem setting is different and computationally very challenging
which makes it hard for them to generate the visual quality that we achieve by resort-
ing to an explicit prior model. The approaches proposed in [50] and [44] are able
to deform mesh-models into active scanner data or visual hulls, respectively. Unfor-
tunately, neither of these methods has shown to match our method’s robustness, or
the quality and detail of shape and motion data which our approach produces from
video only.
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4.1 Overview

Input data to our method are a full-body laser scan of the subject in its current
apparel and a multi-view video stream of the subject recorded with eight synchro-
nized geometrically and photometrically calibrated video cameras. We perform a
color-based background subtraction to all video footage to yield silhouette images
of the captured performers.

We convert the raw 3-D scan into a high-quality surface mesh Ttri using a robust
surface reconstruction algorithm, which yields a water-tight high quality mesh. We
also create a coarser tetrahedral version of the surface scan Ttet by applying a
quadric error decimation and a subsequent constrained Delaunay tetrahedralization
(see Fig. 3 (r)). Typically Ttri contains between 30,000 and 40,000 triangles, and
the corresponding tet-version between 5,000 and 6,000 tetrahedrons. We register
both models to the first pose of the actor in the input footage by means of a pro-
cedure based on iterative closest points (ICP). Since we asked the actor to strike in
the first frame of video a pose similar to the one that she/he was scanned in, pose
initialization is greatly simplified, as the model is already close to the target pose.

Since our capture method explicitly abandons a skeletal motion parametrization
and resorts to a deformable model as scene representation, we are facing a much
harder tracking problem. On the other hand we gain an intriguing advantage: we
are now able to track non-rigidly deforming surfaces (like wide clothing) in the
same way as rigidly deforming models and do not require prior assumptions about
material distributions or the segmentation of a model.

We capture performances in a multi-resolution way to increase reliability. In a
first step we employ an analysis-through-synthesis method to estimate the global
pose of an actor at each frame on the basis of the tetrahedral input model, Sect. 4.3.

Fig. 3 A surface scan Ttri of an actress (l) and the corresponding tetrahedral mesh Ttet in an
exploded view (r)
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Afterwards we capture the high-frequency aspects of the performances, Sect. 4.3.4.
This is achieved by transferring the pose to the high-detail surface and refining the
mesh to fit closely to the input video. The output is a dense representation of the
performance in both space and time. One important ingredient to achieve this is a
fast and reliable shape deformation framework which we will detail in the following
section.

4.2 A Deformation Toolbox

We use two variants of Laplacian shape editing in our performance capture tech-
nique. For low-frequency tracking, we use an iterative volumetric Laplacian defor-
mation algorithm which is based on our tetrahedral mesh Ttet. For recovery of
high-frequency surface details, we transfer the captured pose of Ttet to the high-
resolution surface scan. Being already roughly in the correct pose, we can resort to
a simpler variant of surface-based Laplacian deformation to infer shape detail from
silhouette and stereo constraints.

4.2.1 Volumetric Deformation

We want to deform the tetrahedral mesh Ttet as naturally as possible under the influ-
ence of a set of position constraints. To this end, we iterate a linear Laplacian
deformation step and a subsequent update step, which compensates the (mainly
rotational) errors introduced by the nature of the linear deformation. This proce-
dure minimizes the amount of non-rigid deformation each tetrahedron undergoes,
and thus exhibits qualities of an elastic deformation. Our technique implicitly pre-
serves certain shape properties, such as cross-sectional areas, after deformation.
This greatly increases tracking robustness since non-plausible model poses (e.g. due
to local flattening) are far less likely.

Our algorithm is related to [45] and it is based on the following steps:

� Solve the linear tetrahedral Laplacian system given the current constraints
� Extract the transformation of each tetrahedral element and split it into rotational

and non-rotational components
� Update the right hand side of the linear system using the extracted rotations
� Iterate the procedure

This procedure minimizes the amount of non-rigid deformation ED remaining in
each tetrahedron with each iteration. While our subsequent tracking steps would
work with any physically plausible deformation or simulation method, our technique
has the advantages of being extremely fast, of being very easy to implement, and of
producing plausible results even if material properties are unknown. Further details
on the deformation technique can be found in [49].
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4.2.2 Deformation Transfer

To transfer a pose from the tetrahedral mesh Ttet to the high-resolution mesh Ttri,
we express the position of each vertex of Ttri as a linear combination of the vertices
of the tetrahedral mesh. The coefficients for this are calculated in the rest pose and
can be used afterwards to update the pose of the triangle mesh.

The coefficients are calculated as a weighted sum of the barycentric coordinates
of nearby tetrahedra for each vertex. Using more than a single set of barycentric
coordinates ensures that we get smooth deformations over the whole mesh. The
weights for each tetrahedron are based on the respective distance from the initial
vertex using a radial basis function.

4.2.3 Surface-Based Deformation

Our surface-based deformation relies on a simple least-squares Laplacian system as
it has been widely used in recent years (see [7] for an overview). The linear system
is calculated using cotangent weights and is used to deform the surface under the
influence of a set of weighted position constraints. This simple surface based Lapla-
cian deformation allows for a much wider and more detailed range of deformations
than the tetrahedral deformation presented above.

4.3 Capturing the Global Model Pose

The first step in global model pose capture recovers for each time step of video a
global pose of the tetrahedral input model that matches the pose of the real actor. In
summary, our framework first computes deformation constraints from each pair of
subsequent multi-view input video frames at times t and tC1, and then it applies the
volumetric shape deformation procedure to modify the pose of Ttet at time t until it
aligns with the input recorded data at time t C 1.

Our pose recovery process is divided into three steps and it begins with the extrac-
tion of 3-D vertex displacements from reliable image features which brings our
model close to its final pose even if scene motion is rapid or complex. Subsequently,
two additional steps are performed that exploit silhouette data to fully recover the
global pose. The first step refines the shape of the outer model contours until they
match the multi-view input silhouette boundaries and the second one optimizes 3-D
displacements of key vertex handles until optimal multi-view silhouette overlap is
reached. The additional steps are important since 3-D features on the model surface
are dependent on scene structure, e.g. texture, and can, in general, be non-uniform
or sparse.

We gain further tracking robustness by subdividing the surface of Ttet into
approximately 100–200 regions of similar size during pre-processing [59]. Rather
than inferring displacements for each vertex, each individual step is applied to a
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representative vertex handle for each region, as explained in more details in the
following sections.

4.3.1 Pose Initialization from Image Features

Given two sets of multi-view video frames from subsequent time steps, we first
extract image features. SIFT features are chosen since they are largely invariant
under illumination and out-of-plane rotation and enable reliable correspondence
finding even if the scene motion is fast or complex [27].

In order to transform the feature data into deformation constraints, we first asso-
ciate image features from time t with vertices in the model. After creating the spatial
feature associations across camera views, we establish temporal correspondences
between the features from time t and t C 1, Fig. 4a. Outliers are reduced by using a
robust spectral matching [25] technique.

The positions of the 3-D deformation constraints are found by calculating the
pseudo-intersection point of the reprojected rays passing through the image feature
locations at t C 1. The 3-D constraints are applied to deform Ttet using a step-
wise procedure which, in practice, is unlikely to converge to implausible model
configurations. We resort to the set of regions on the surface of the tet-mesh and
find for each one the best handle from all candidate handles that lie in that region. If
no handle is found for a region, we constrain the center of that region to its original
3-D position to prevent unconstrained surface areas from arbitrary drifting.

For each region handle, new intermediate target positions are calculated such
that the corresponding vertices in Ttet.t/ move in directions as similar as possible
to their original normal directions. This step-wise deformation is repeated until the
multi-view silhouette overlap error SIL.Ttet; t C1/ (computed as pixel-wise XOR)
cannot be improved further. At the end of this step, a feature-based pose estimate
TF

tet.t C 1/ has been obtained.

Fig. 4 (a) 3-D correspondences from corresponding SIFT features are used to deform the model
into a first pose estimate for t C 1. (b) Color-coded distance field and rim vertices with respect to
one camera view marked in red on the 3-D model. (c) Model and silhouette overlap after the rim
step. Slight pose inaccuracies in the leg and the arms are removed and the model strikes a correct
pose after key vertex optimization
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4.3.2 Refining the Pose Using Silhouette Rims

In image regions with sparse or low-frequency textures, the pose of TF
tet.t C 1/may

not be entirely correct as only few SIFT features could potentially be found. We
therefore resort to another constraint that is independent of image texture and has
the potential to correct for such misalignments.

We derive additional deformation constraints for a subset of vertices on TF
tet.tC1/

that lie on the silhouette contour. By displacing the constraints along their normals
until alignment with the respective silhouette boundaries in 2D is reached, we are
able to improve the pose accuracy for the model at t C 1. The result is a new model
configuration TR

tet.t C 1/ in which the projections of the outer model contours more
closely match the input silhouette boundaries, Fig. 4b.

4.3.3 Optimizing Key Handle Positions

In the majority of cases, the pose of the model in TR
tet.t C 1/ is already close to a

good match. However, in particular if the scene motion was fast or the initial pose
estimate from the first step was not entirely correct, residual pose errors remain. We
therefore perform an additional optimization step that corrects such residual errors
by globally optimizing the positions of a subset of deformation handles until good
silhouette overlap is reached, Fig. 4c.

We only optimize the position of typically 15–25 key vertices, previously selected
by the user in a pre-processing step, until the tetrahedral deformation produces opti-
mal silhouette overlap. Tracking robustness is increased by designing our energy
function such that surface distances between key handles are preserved, and pose
configurations with low distortion energy ED (see Sect. 4.2.1) are preferred.

Tracking robustness is increased by preserving the distances between key han-
dles, and by generating pose configurations with low distortion energies.

The output of this step is a new configuration of the tetrahedral model TO
tet.t C1/

that captures the overall stance of the model and serves as a starting point for the
subsequent surface detail capture.

The above sequence of steps (Sect. 4.3.1–4.3.3) is performed for each pair of
subsequent time instants. Typically the second step (silhouette rims) is performed
once more after the last silhouette optimization step which, in difficult poses, leads
to a better model alignment. Surface detail capture commences after the global poses
for all frames were found.

4.3.4 Capturing Surface Detail

After recovering the global pose for each frame we transfer the poses of the tetra-
hedral mesh Ttet to the triangle mesh Ttri using the algorithm from Sect. 4.2.2. This
sequence of high resolution triangle meshes will now be further refined in order
to capture small-scale surface detail. We again match the reprojected model to the
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Fig. 5 Capturing small-scale surface detail: (a) First, deformation constraints from silhouette
contours, shown as red arrows, are estimated. (b) Additional deformation handles are extracted
from a 3-D point cloud that was computed via model-guided multi-view stereo. (c) Together, both
sets of constraints deform the surface scan to a highly accurate pose. – Evaluation: (d) per-frame
silhouette overlap in per cent after global pose estimation (blue) and after surface detail reconstruc-
tion (green). (e) Blended overlay between an input image and the reconstructed model showing the
almost perfect alignment of our result

silhouette rims to better fit the input data and recover deformation detail in the inte-
rior of the silhouette with help of a multi-view stereo reconstruction algorithm. The
details of the employed stereo reconstruction approach can be found in [11]. We
extract position constraints from both of these cues and deform the triangle mesh
using our surface Laplacian scheme from Sect. 4.2.3 to match the constraints as
closely as possible. A typical set of found position constraints and the result of sur-
face refinement are illustrated in Fig. 5a–c). After a temporal smoothing pass this
yields our final output, a dense representation of the performance in both space and
time matching the input video as closely as possible.

4.4 Results

The multi-view video data used in our tests comprise of 12 sequences that show
four different actors and that feature between 200 and 600 frames each. To show
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the large application range of our algorithm, the performers wore a wide range of
different apparel, ranging from tight to loose, and made of fabrics with prominent
texture as well as plain colors only. Also, the recovered set of motions ranges from
simple walks, over different dance styles, to fast capoeira sequences. The images
in Figs. 6 and 7, as well as the results in the video that can be obtained from

Fig. 6 (a) Poses from a fast capoeira performance. (b) Jazz dance posture with reliably captured
inter-twisted arm motion (Input camera viewpoint and virtual camera viewpoint differ minimally)

Fig. 7 Side-by-side comparison of input and reconstruction of a dancing girl wearing a skirt (input
and virtual viewpoints differ minimally). Body pose and detailed geometry of the waving skirt,
including lifelike folds and creases visible in the input, have been recovered



Performance Capture from Multi-View Video 143

http://www.mpi-inf.mpg.de/resources/perfcap/ show that our algorithm faithfully
reconstructs this wide spectrum of scenes.

Figure 6a shows two captured poses of a very rapid capoeira sequence in which
the actor performs a series of turn kicks. Despite the fact that in our 24 fps record-
ings the actor rotates by more than 25 degrees in-between some subsequent frames,
both shape and motion are reconstructed at high fidelity. The resulting animation
even shows deformation details such as the waving of the trouser legs (see video).
Furthermore, even with the plain white clothing that the actor wears in the input and
which exhibits only few traceable SIFT features, our method performs reliably as it
can capitalize on rims and silhouettes as additional sources of information.

The video also shows the captured capoeira sequence with a static checkerboard
texture. This result demonstrates that temporal aliasing, such as tangential surface
drift of vertex positions, is negligible, and that the overall quality of the meshes
remains highly stable.

In Fig. 6b we show two poses from a captured jazz dance performance. As the
comparison to the input in image and video shows, we are able to capture this
fast and fluent motion. In addition, we can also reconstruct the many poses with
complicated self-occlusions, such as the inter-twisted arm-motion in front of the
torso.

Figure 7 shows that our algorithm is able to capture the full time-varying shape
of a dancing girl wearing a skirt. Even though the skirt is of largely uniform color,
our results capture the natural waving and lifelike dynamics of the fabric. In all
frames, the overall body posture, and also the folds of the skirt were recovered
nicely without the user specifying a segmentation of the model beforehand. We
would also like to note that in all skirt sequences the benefits of the stereo step in
recovering concavities are most apparent. In the other test scenes, the effects are
less pronounced and we therefore deactivated the stereo step (Sect. 4.3.4) there to
reduce computation time.

Apart from the scenes shown in the result images, the video contains three more
capoeira sequences, two more dance sequences and two more walking sequences.

4.4.1 Validation and Discussion

Table 1 gives detailed average timings for each individual step in our algorithm
obtained after code optimization of the version from [11]. These timings were
obtained with a single-threaded code running on a Quad Core Intel Xeon Processor
E5410 workstation with 2.33 GHz. We still see plenty of room for implementation
improvement, and anticipate that parallelization can lead to significant further run
time reduction.

To formally validate the accuracy of our method, we have compared the sil-
houette overlap of our tracked output models with the segmented input frames.
We use this criterion since, to our knowledge, there is no gold-standard alterna-
tive capturing approach that would provide us with accurate time-varying 3D data.
The re-projections of our final results typically overlap with over 85% of the input
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Table 1 Average run times per frame for individual steps

Step Time

SIFT step (Sect. 4.3.1) �5 s
Global rim step (Sect. 4.3.2) �4 s
Key handle optimization (Sect. 4.3.3) �40 s
Capturing Surface Detail (Sect. 4.3.4) �34 s

silhouette pixels, already after global pose capture only (blue curve in Fig. 5d). Sur-
face detail capture further improves this overlap to more than 90% as shown by the
green curve. Please note that this measure is slightly negatively biased by errors in
foreground segmentation in some frames that appear as erroneous silhouette pixels.
Visual inspection reveals almost perfect overlap, Fig. 5e.

All 12 input sequences were reconstructed fully-automatically after only minimal
initial user input. As part of pre-processing, the user marks the head and foot regions
of each model to exclude them from surface detail capture. Even slightest silhouette
errors in these regions (in particular due to shadows on the floor and black hair
color) would otherwise cause unnatural deformations. Furthermore, for each model
the user once marks at most 25 deformation handles needed for the key handle
optimization step, Sect. 4.3.3.

In individual frames of two out of three capoeira turn kick sequences (11 out
of around 1;000 frames), as well as in one frame of each of the skirt sequences
(2 frames from 850 frames), the output of global pose recovery showed slight mis-
alignments in one of the limbs. Please note that, despite these isolated pose errors,
the method always recovers immediately and tracks the whole sequence without
drifting – this means the algorithm can run without supervision and the results can
be checked afterwards. All observed pose misalignments were exclusively due to
oversized silhouette areas because of either motion blur or strong shadows on the
floor. Both of this could have been prevented by better adjustment of lighting and
shutter speed, and more advanced segmentation schemes. In either case of global
pose misalignment, at most two deformation handle positions had to be slightly
adjusted by the user. In none of the over 3;500 input frames we processed it was
necessary to manually correct the output of surface detail capture (Sect. 4.3.4).

Our method is subject to a few further limitations. The current silhouette rim
matching may produce erroneous deformations in case the topological structure of
the input silhouette is too different from the reprojected model silhouette. How-
ever, in none of our test scenes did this turn out to be an issue. In the future, we
plan to investigate more sophisticated image registration approaches to solve this
problem entirely. Currently, we are recording in a controlled studio environment
to obtain good segmentations, but are confident that a more advanced background
segmentation will enable us to handle outdoor scenes.

Moreover, there is a resolution limit to our deformation capture scheme. Some
of the high-frequency detail in our final result, such as fine wrinkles in clothing or
details of the face, has been part of the laser-scan in the first place. The deformation
on this level of detail is not actually captured, but this fine detail is “baked in”
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Fig. 8 Input frame (l) and reconstructions using a detailed (m) and a coarse model (r). Although
the fine details on the skirt are due to the input laser scan (m), even with a coarse template, our
method captures the folds and the overall lifelike motion of the cloth (r)

to the deforming surface. To illustrate the level of detail that we are actually able
to reconstruct, we generated a result with a coarse scan only that lacks any fine
surface detail. Figure 8 shows an input frame (l), as well as the reconstructions using
the detailed scan (m) and the coarse scan (r). While, as noted before, finest detail
in Fig. 8(m) is due to the high-resolution laser scan, even with a coarse scan, our
method still captures the important lifelike motion and deformation of all surfaces
at sufficient detail, Fig. 8(r), in particular cloth motion not visible in the silhouettes
alone.

Also, since we rely on a laser scan with fixed topology, our system can currently
not track sequences with arbitrarily changing apparent topology (e.g. the movement
of hair or deep folds with self-collisions).

Our volume-based deformation technique essentially mimics elastic deforma-
tion, thus the geometry generated by the low-frequency tracking may in some cases
have a rubbery look. For instance, an arm may not only bend at the elbow, but rather
bend along its entire length. Surface detail capture eliminates such artifacts in gen-
eral, and a more sophisticated yet slower finite element deformation could reduce
this problem already at the global pose capture stage.

Despite these limitations, our skeleton-less method can robustly capture a large
range of performances at very high detail.

5 Conclusion and Further Reading

Performance capture algorithms enable reconstruction of detailed spatio-temporally
coherent scene geometry of scenes from video without having to rely on opti-
cal markers. This puts them apart from many previous approaches in the liter-
ature and opens up the perspective for many new applications. In this chapter,
we presented several recent methods for video-based performance capture, and
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exemplified the different strategies used to represent geometry and to establish
spatio-temporal coherence. The core of the chapter describes a mesh-deformation-
based approach and analyzes its benefits and drawbacks in comparison to the other
approaches.

The first methods reviewed did not use an a priori template model, but used either
stereo, or a combination of stereo and visual hulls to reconstruct a base model to be
used as scene representation. From a high-level perspective, the advantage of this
strategy is that it makes a method more flexible, and many different scenes can
be captured, even if a laser-scan is not available. The conceptual disadvantage is
that robustness is much harder to achieve and spatio-temporal coherence is much
harder to establish. The methods discussed use some clever yet often computation-
ally expensive cross-parameterization algorithms to solve the latter problem. 3D
correspondence finding is itself one of the most challenging problems in dynamic
scene reconstruction. The following methods propose a few different strategies to
approach this problem that we have not discussed in this chapter [1, 3, 47]. This
is not a complete list of references but merely meant to give the reader a starting
point.

The second class of algorithms discussed uses a stricter form of a priori shape
model to capture performances of humans in general apparel. The first method
from this category which we discussed employs a kinematic template model with
a loosely deformable surface to retrieve human shape and motion from multi-view
video. The kinematic prior greatly helps to make tracking fast and robust, and the
silhouette-based surface deformation makes retrieval of cloth motion at a coarse
scale feasible. Despite its benefits for tracking the human body itself, however, a
skeleton (with surface skinning) generally introduces a wrong bias when tracking
cloth regions of a model. The fourth approach discussed in this chapter tries to
overcome some of these limitations by explicitly abandoning a skeleton model and
using deformable shapes as scene representation. Additionally, the deformation-
based approach described also uses a multi-view stereo method to recover true
time-varying surface movement also in areas away from silhouette boundaries. This
way, more time-varying surface detail than in the purely skeleton-based method
can be recovered, lending the final results a more lifelike look. This is particu-
larly visible in the tracking results of the dancer in a skirt shown previously in
this chapter where true fold motion, at least at medium resolution, is apparent.
The price to be paid, however, is a longer run-time compared to the skeleton-
based method and the fact that a kinematic skeleton is not directly available. In our
research we were able to show, however, that kinematic skeletons can automatically
be learned from moving deforming surfaces which reduces the latter mentioned
disadvantage [14].

Overall, this chapter as shown that performance capture techniques open up a
new chapter in dynamic scene reconstruction and allow for retrieval of real world
performances at such a high level of detail that new levels of quality can be expected
in future video game, virtual environment and 3D video productions.
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53. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view
silhouettes. ACM Trans. Graph. 27(3), 1–9 (2008)

54. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., Schilling, A.: Reconstruction of
deforming geometry from time-varying point clouds. In: Proc. SGP, pp. 49–58 (2007)

55. Waschbüsch, M., Würmlin, S., Cotting, D., Sadlo, F., Gross, M.: Scalable 3D video of dynamic
scenes. In: Proc. Pacific Graphics, pp. 629–638 (2005)

56. White, R., Crane, K., Forsyth, D.: Capturing and animating occluded cloth. In: ACM TOG
(Proc. SIGGRAPH) (2007)

57. Wilburn, B., Joshi, N., Vaish, V., Talvala, E., Antunez, E., Barth, A., Adams, A., Horowitz, M.,
Levoy, M.: High performance imaging using large camera arrays. ACM Trans. Graph. 24(3),
765–776 (2005)

58. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., Guo, B.: Gradient domain editing of deforming
mesh sequences. In: Proc. SIGGRAPH, p. 84ff. ACM (2007)

59. Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by gaussian
curvature. Vis. Comput. 21(8–10), 649–658 (2005)

60. Yee, Y.L.H.: Spatiotemporal sensistivity and visual attention for efficient rendering of dynamic
environments. Master’s thesis, Cornell University (2000)

61. Zitnick, C.L., Kang, S.B., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality video view
interpolation using a layered representation. ACM Trans. Graph. 23(3), 600–608 (2004)


	Performance Capture from Multi-View Video
	1 Introduction
	2 Paving the Way for Performance Capture: Motion Capture, Image-Based Rendering and 3-D Video Approaches
	3 Performance Capture Approaches
	3.1 Garment Capture
	3.2 Surface Capture
	3.3 Simultaneous Surface and Skeleton Capture

	4 Mesh-Based Performance Capture
	4.1 Overview
	4.2 A Deformation Toolbox
	4.2.1 Volumetric Deformation
	4.2.2 Deformation Transfer
	4.2.3 Surface-Based Deformation

	4.3 Capturing the Global Model Pose
	4.3.1 Pose Initialization from Image Features
	4.3.2 Refining the Pose Using Silhouette Rims
	4.3.3 Optimizing Key Handle Positions
	4.3.4 Capturing Surface Detail

	4.4 Results
	4.4.1 Validation and Discussion


	5 Conclusion and Further Reading
	References


