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The cinema is truth 24 frames-per-second.
-Jean-Luc Godard



•



Acknowledgements

The preparation of this book was made possible by INRIA’s Associate Team VAMP
(Video and Mesh Processing for 3-D Cinematography).

vii



•



Contents

Image and Geometry Processing for 3-D Cinematography:
An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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Image and Geometry Processing for 3-D
Cinematography: An Introduction

Rémi Ronfard and Gabriel Taubin

By 3-D cinematography we refer to techniques to generate 3-D models of dynamic
scenes from multiple cameras at video frame rates. Recent developments in com-
puter vision and computer graphics, especially in such areas as multiple-view
geometry and image-based rendering have made 3-D cinematography possible.
Important applications areas include production of stereoscopic movies, full 3-D
animation from multiple videos, special effects for more traditional movies, and
broadcasting of multiple-viewpoint television, among others. Drawing from two
recent workshop on 3-D Cinematography, the 12 chapters in this book are original
contributions by scientists who have contributed to the mathematical foundations of
the field and practitioners who have developed working systems.

1 Overview of the Field

The name 3-D cinematography is motivated by the fact that it extends traditional
cinematography from 2-D (images) to 3-D (solid objects that can be rendered with
photorealistic textures from arbitrary viewpoints) at the same frame rate.

As the name implies, 3-D cinematography focuses on the inter-relations between
cinematography (the art of placing cameras and lights to produce good motion pic-
tures) with 3-D modeling. This book summarizes the main contributions from two
recent workshops which brought together researchers and practitioners from diverse
disciplines, including computer vision, computer graphics, electrical and optical
engineering.
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2 R. Ronfard and G. Taubin

A first workshop on 3-D Cinematography took place in New York City in June
2006 jointly with the IEEE Conference on Computer Vision and Pattern Recogni-
tion.1 Selected speakers from this workshop were invited to write extended papers,
which after review were published as a special section in IEEE Computer Graph-
ics and Applications [7]. At the time some prototypes had demonstrated the ability
to reconstruct dynamic 3-D scenes in various forms and resolutions [5, 8]. Various
names were used to refer to these systems, such as virtualized reality, free-viewpoint
video, and 3-D video. All of these efforts were multi-disciplinary. These advances
had clearly shown the promises of 3-D cinematography systems, such as allowing
real-time, multiple-camera capture, processing, transmission, and rendering of 3-D
models of real dynamic scenes. Yet, many research problems remained to be solved
before such systems could be transposed from blue screen studios to the real world.

A second workshop on 3-D Cinematography took place at the BANFF Center
in 2008.2 This workshop focused on summarizing the progress made in the field
during the two years subsequent to the first workshop, and in particular on real-time
working systems and applications, with an emphasis on recent, realistic models for
lights, cameras and actions. Indeed, 3-D cinematography can be regarded as the
geometric investigation of lights (how to represent complex lighting, how to relight,
etc.); cameras (how to recover the true camera parameters, how to simulate and
control virtual cameras, etc.); and actions (how to represent complex movements in
a scene, how to edit, etc.).

2 The Geometry of Lights, Cameras and Actions

The theory of 3-D cinematography can be traced back to the discovery of hologra-
phy by Dennis Gabor in 1946. Gabor firmly believed that holography was destined
to replace cinematography as we know it [3]. But to this day, dynamic holograms
present overwhelming technological challenges in bandwidth, storage and comput-
ing power. Some of today’s 3-D cinematography systems follow the more realistic
goal of “sampling” the light rays observed from around the scene, as described in
Tanimoto’s chapter. Most other systems are based on photogrammetry and a partial
reconstruction of the 3-D scene. A very good history of those later efforts in 3-D
cinematography can be found in the review paper by Kanade and Narayanan [5].

From a geometric viewpoint, it is a hard problem to represent complex, time-
varying scenes and their interactions with lights and cameras. One important ques-
tion explored in this book is – what is the dimensionality of such scenes? Space
decomposition methods are popular because they provide approximate answers,
although not of very good quality. It has become increasingly evident that better
representations are needed. Several partial solutions are proposed in the workshop

1 http://perception.inrialpes.fr/3-Dcine/.
2 http://www.birs.ca/birspages.php?task=displayeventn&eventn id=08w5070.

http://perception.inrialpes.fr/3-Dcine/
http://www.birs.ca/birspages.php?task=displayevent &event _id=08w5070
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papers, illustrated with examples. They include wavelet bases, implicit functions
defined on a space grid, etc. It appears that a common pattern is the recovery of
a controllable model of the scene, such that the resulting images can be edited
(interaction).

Changing the viewpoint is only one (important) aspect, but changing the lighting
and action is equally important [2]. Recording and representing three-dimensional
scenes is an emerging technology made possible by the convergence of optics,
geometry and computer science, with many applications in the movie industry, and
more generally in entertainment. Note that the invention of cinema (camera and
projector) was also primarily a scientific invention that evolved into an art form. We
suspect the same thing will probably happen with 3-D movies.

3 Book Contents

The book is composed of 12 chapters, which elaborate on the content of talks given
at the BANFF workshop. The chapters are organized into three sections. The first
section presents an overview of the inter-relations between the art of cinematog-
raphy and the science of image and geometry processing; the second section is
devoted to recent developments in geometry; and the third section is devoted to
recent developments in image processing.

3.1 3-D Cinematography and Applications

The first section of the book presents an overview of the inter-relations between the
art of cinematography and the science of image and geometry processing.

The chapter Stereoscopic Cinema by Frédéric Devernay and Paul Beardsley is
an introduction to stereoscopic 3-D cinematography, focusing on the main sources
of visual fatigue which are specific to viewing binocular movies, and on techniques
that can be used to produce comfortable 3-D movies. The causes of visual fatigue
can be identified and classified into three main categories: geometric differences
between both images which cause vertical disparity in some areas of the images,
inconsistencies between the 3-D scene being viewed and the proscenium arch (the
3-D screen edges), and discrepancy between the accommodating and the conver-
gence stimuli that are included in the images. For each of these categories, the
authors propose solutions to issue warnings during the shooting, or to correct the
movies in the post-production phase. These warnings and corrections are made pos-
sible by the use of state-of-the-art computer vision algorithms. The chapter explains
where to place the two cameras in a real scene to obtain a correct stereoscopic
movie. This is what many people understand as 3-D cinematography [4, 6]. In the
context of this book, it is worth noting that stereoscopic 3-D recreates the percep-
tion of depth from a single viewpoint. In the future, it will be possible for a real
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scene to be photographed from a variety of viewpoints, and then its geometry to be
fully or partially reconstructed, so that it can later be filmed by two virtual cameras,
producing a stereoscopic movie with a variable viewpoint.

One important point made by Devernay and Beardsley is that the success of
3-D cinematography should be measured in terms of psychological and perceptual
qualities, as can be done for traditional cinema [1]. Their chapter can therefore be a
guide for future work in perceptually-guided 3-D reconstruction. We can only hope
that this leads to a better understanding of depth perception in future immersive and
interactive 3-D movies.

The chapter Free-Viewpoint Television by Masayuki Tanimoto describes a new
type of television, named Free viewpoint Television or FTV, where movies are
recorded from a variety of viewpoints. FTV is an innovative visual media that
enables users to view 3-D scenes with freedom to interactively change the view-
point. Geometrically, FTV is based on a ray-space representation, where each ray in
real space is assigned a color value. By using this method, Tanimoto and his team
constructed the world’s first real-time FTV system, which comprises a complete
data pipeline, from capturing, to processing and display. They also developed new
types of ray capture and display technologies, such as a 360ı mirror-scan ray cap-
turing system and a 360ı ray-reproducing display. In his chapter, Tanimoto argues
that FTV is a natural interface between the viewer and a 3-D environment, and an
innovative tool to create new types of content and art.

The chapter Free-Viewpoint Video for TV Sport Production by A. Hilton,
J.-Y. Guillemaut, J. Kilner, O. Grau and G. Thomas, presents a case study for free-
viewpoint television, namely, sports broadcasting. Contrasting Tanimoto’s purely
ray-based approach, here the authors follow a model-based approach, with geo-
metric models for the field, the players and the ball. More specifically, this chapter
reviews the challenges of transferring techniques developed for multiple view recon-
struction and free-viewpoint video in a controlled studio environment, to broadcast
production for football and rugby. This is illustrated by examples taken from the
ongoing development of the iview free-viewpoint video system for sports pro-
duction by the University of Surrey and the BBC. Production requirements and
constraints for use of free-viewpoint video technology in live events are identified.
Challenges presented by transferring studio technologies to large scale sports sta-
dium are reviewed together with solutions being developed to tackle these problems.
This work highlights the need for robust multiple view reconstruction and render-
ing algorithms which achieve free-viewpoint video, with the quality of broadcast
cameras. The advances required for broadcast production also coincide with those
of other areas of 3-D cinematography for film and interactive media production.

The chapter Challenges for Multi-view Video Capture by Bennett Wilburn further
discusses the challenges associated with implementing large scale multi-view video
capture systems, with the capture of football matches as a motivating example. This
chapter briefly reviews existing multiview video capture architectures, their advan-
tages and disadvantages, and issues in scaling them to large environments. Then it
explains that today’s viewers are accustomed to a level of realism and resolution
which is not feasibly achieved by simply scaling up the performance of existing
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systems. The chapter surveys some methods for extending the effective resolution
and frame rate of multiview capture systems. It explores the implications of real-
time applications for smart camera design and camera array architectures, keeping
in mind that real-time performance is a key goal for covering live sporting events.
Finally, it comments briefly on some of the remaining challenges for photo-realistic
view interpolation of multi-view video for live, unconstrained sporting events.

3.2 Recent Developments in Geometry

The second section of the book presents original contributions to the geometric
modeling of large-scale, realistic live-action performances, with an emphasis on the
modeling of cameras and actors.

The chapter Performance Capture from Multi-view Video by Christian Theobalt,
Edilson de Aguiar, Carsten Stoll, Hans-Peter Seidel and Sebastian Thrun, presents
an original method to capture performance from a handful of synchronized video
streams. The method, which is based on a mesh representation of the human body,
captures performance from mesh deformation, and without a kinematic skeleton.
In contrast to traditional marker-based capturing methods, this approach does not
require optical markings, and it is even able to reconstruct detailed geometry and
motion of a dancer wearing a wide skirt. Another important feature of the method
is that it reconstructs spatio-temporally coherent geometry, with surface corre-
spondences over time. This is an important prerequisite for post-processing of the
captured animations. All of this, the authors argue, can be obtained by capturing
a flexible and precise geometrical model of the performers (actors). Their “perfor-
mance capture” approach has a variety of potential applications in visual media
production and the entertainment industry. It enables the creation of high quality
3-D video, a new type of media where the viewer has control over the camera’s
viewpoint. The captured detailed animations can also be used for visual effects in
movies and games.

Most, if not all, 3-D cinematography techniques rely on precise multi-camera
calibration methods. The multi-camera calibration problem has been resolved in a
laboratory setting, but remains a challenging task in uncontrolled environments such
as a theater stage, a sports field, or the set of a live-action movie. The chapter Com-
bining Multi-view Stereo and Bundle Adjustment for Accurate Camera Calibration
by Yasutaka Furukawa and Jean Ponce, presents a novel approach to camera cal-
ibration where top-down information from rough camera parameter estimates and
multi-view stereo are used to effectively guide the search for additional image cor-
respondences, and to significantly improve camera calibration parameters using a
standard bundle adjustment algorithm.

The chapter Cell-Based 3-D Video Capture Method with Active Cameras by
Tatsuhisa Yamaguchi, Hiromasa Yoshimoto, and Takashi Matsuyama, deals with
the important problem of planning a 3-D cinematographic experiment, in such a
way that the best use can be made of a limited number of cameras in a vast area such
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as a theater stage or a sports field. 3-D video is usually generated from multi-view
videos taken by a group of cameras surrounding an object in action. To generate
nice-looking 3-D video, several simultaneous constraints should be satisfied: (1) the
cameras should be well calibrated, (2) for each video frame, the 3-D object surface
should be well covered by a set of 2D multi-view video frames, and (3) the resolu-
tion of the video frames should be high enough to record the object surface texture.
From a mathematical point of view, it is almost impossible to find such camera
arrangement over a large performance area such as a stadium or a concert stage,
where the performers move across the stage. Active motion-controlled cameras can
be used in those cases. In this chapter, Matsuyama and co-workers describe a cellu-
lar method for planning the robotic movements of a set of active cameras, such that
the above constraints can be met at all times. Their method is suitable for scripted
performances such as music, dance or theater.

The chapter Dense 3-D Motion Capture from Synchronized Video Streams by
Yasutaka Furukawa and Jean Ponce, describes a novel approach for recovering the
deformable motion of a free-form object from synchronized video streams acquired
by calibrated cameras. Contrary to most previous work, the instantaneous geometry
of the observed scene is represented by a polyhedral mesh with a fixed topology.
This represent a very significant step towards applications of 3-D cinematography in
computer animation, virtual worlds and video games. The initial mesh is constructed
in the first frame using multi-view stereo. Deformable motion is then captured by
tracking vertices of the mesh over time, using two optimization processes per frame:
a local one using a rigid motion model in the neighborhood of each vertex, and a
global one using a regularized nonrigid model for the whole mesh. Qualitative and
quantitative experiments using realistic data sets show that this algorithm effectively
handles complex nonrigid motions and severe occlusions.

3.3 Recent Developments in Image Processing

The third section of the book presents original contributions in image processing of
large-scale, realistic live-action performances, with an emphasis on the modeling,
capture and rendering of lighting and texture.

Indirectly estimating light sources from scene images and modeling the light
distribution is an important, but difficult problem in computer vision. A practical
solution is of value both as input to other computer vision algorithms and in graph-
ics rendering. For instance, photometric stereo and shape from shading requires
known light sources. With estimated light such techniques could be applied in every-
day environments, outside of controlled laboratory conditions. Light estimated from
images is also helpful in augmented reality, to consistently relight artificially intro-
duced objects. Simpler light models use individual point light sources but only work
for simple illumination environments. The chapter Wavelet-Based Inverse Light and
Reflectance from Images of a Known Object by Dana Cobzas, Cameron Upright and
Martin Jagersand describes a novel light model using Daubechies wavelets and a



Image and Geometry Processing for 3-D Cinematography: An Introduction 7

method for recovering light from cast shadows and specular highlights in images.
Their model is suitable for complex environments and illuminations. Experiments
are presented with both uniform and textured objects and under complex geom-
etry and light conditions. The chapter evaluates the estimation process stability,
and the quality of scene relighting. The approach is based on a smooth wavelet
representation compared to a non-smooth Haar basis, and on two other popular
light representations (a discrete set of infinite light sources and a global spherical
harmonics basis).

The chapter 3-D Lighting Environment Estimation with Shading and Shadows
by Takeshi Takai, Susumu Iino, Atsuto Maki, and Takashi Matsuyama, propose the
Skeleton Cube to estimate time-varying lighting environments: e.g., lighting by can-
dles and fireworks. A skeleton cube is a hollow cubic object placed in the scene
to estimate its surrounding light sources. For the estimation, video of the cube is
taken by a calibrated camera and the observed self-shadows and shading patterns
are analyzed to compute 3-D distribution of time-varying point light sources. An
iterative search algorithm is presented for computing the 3-D light source distribu-
tion and several simulation and real world experiments illustrate the effectiveness of
the method.

As illustrated in the second section of this book, estimating the full 3-D geom-
etry of a dynamic scene is an essential 3-D cinematography operation for sparse
recording setups. When the geometric model and/or the camera calibration are
imprecise, however, traditional methods based on multi-view texturing lead to blur-
ring and ghosting artifacts during rendering. The chapter 3-D Cinematography with
Approximate or No Geometry by Martin Eisemann, Timo Stich and Marcus Magnor,
presents original image-based strategies to alleviate, and even eliminate, rendering
artifacts in the presence of geometry and/or calibration inaccuracies. By keeping the
methods general, they can be used in conjunction with many different image-based
rendering methods and projective texturing applications.

3-D cinematography of complex live-action scenes with transparencies and mul-
tiple levels-of-details requires advances in multi-view image representations. The
chapter View-Dependent Texturing Using a Linear Basis by Martin Jagersand, Neil
Birkbeck and Dana Cobzas, describes a three-scale hierarchical representation of
scenes and objects, and explain how it is suitable for both computer vision cap-
ture of models from images and efficient photo-realistic graphics rendering. Their
model consists of three different scales. The macro-scale is represented by conven-
tional triangulated geometry. The meso-scale is represented as a displacement map.
The micro-scale is represented by an appearance basis spanning viewpoint variation
in texture space. To demonstrate their model, Jagersand et al. implemented a capture
and rendering system based entirely on budget cameras and PC’s. For efficient ren-
dering the meso and micro level routines are both coded in graphics hardware using
pixel shader code. This maps well to regular consumer PC graphics cards, where
capacity for pixel processing is much higher than geometry processing. Thus photo-
realistic rendering of complex scenes is possible on mid-grade graphics cards. Their
chapter is illustrated with experimental results of capturing and rendering models
from regular images of humans and objects.



8 R. Ronfard and G. Taubin

4 Final Remarks

This book presents an overview of the current research in 3-D cinematography, with
an emphasis on the geometry of lights, cameras and actions. Together, the 12 chap-
ters make a convincing point that a clever combination of geometric modeling and
image processing is making it possible to capture and render moderately complex
dynamic scenes in full 3-D independently of viewpoint.

The next frontier is the synthesis of virtual camera movements along arbitrary
paths extrapolating cameras arranged on a plane, a sphere, or even an entire vol-
ume. This problem raises difficult issues. What are the dimensions of the allowable
space of cinematographic cameras that professional cinematographers would want
to synthesize? In other words, what are the independent parameters of the virtu-
alized cameras that can be interpolated from the set of existing views? Further,
what is the range of those parameters that can be achieved using a given phys-
ical camera setup? Among the theoretically feasible parameter values, which are
the ones that will produce sufficient resolution, photorealism, and subjective image
quality? These questions remain open for future research in this new world of 3-D
cinematography.
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Part I
3-D Cinematography and Applications



Stereoscopic Cinema

Frédéric Devernay and Paul Beardsley

Abstract Stereoscopic cinema has seen a surge of activity in recent years, and
for the first time all of the major Hollywood studios released 3-D movies in 2009.
This is happening alongside the adoption of 3-D technology for sports broadcast-
ing, and the arrival of 3-D TVs for the home. Two previous attempts to introduce
3-D cinema in the 1950s and the 1980s failed because the contemporary technology
was immature and resulted in viewer discomfort. But current technologies – such
as accurately-adjustable 3-D camera rigs with onboard computers to automatically
inform a camera operator of inappropriate stereoscopic shots, digital processing for
post-shooting rectification of the 3-D imagery, digital projectors for accurate posi-
tioning of the two stereo projections on the cinema screen, and polarized silver
screens to reduce cross-talk between the viewers left- and right-eyes – mean that
the viewer experience is at a much higher level of quality than in the past. Even so,
creation of stereoscopic cinema is an open, active research area, and there are many
challenges from acquisition to post-production to automatic adaptation for different-
sized display. This chapter describes the current state-of-the-art in stereoscopic
cinema, and directions of future work.

1 Introduction

1.1 Stereoscopic Cinema, 3-D Cinema, and Others

Stereoscopic cinema is the art of making stereoscopic films or motion pictures. In
stereoscopic films, depth perception is enhanced by having different images for the
left and right human eye, so that objects present in the film are perceived by the
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spectator at different depths. The visual perception process that reconstructs the
3-D depth and shape of objects from the left and right images is called stereopsis.

Stereoscopic cinema is also frequently called 3-D cinema,1 but in this work we
prefer using the term stereoscopic, as 3-D cinema may also refer to other novel
methods for producing moving pictures:

� Free-viewpoint video, where videos are captured from a large number of cameras
and combined into 4-D data that can be used to render a new video as seen from
an arbitrary viewpoint in space

� 3-D geometry reconstructed from multiple viewpoints and rendered from an
arbitrary viewpoint

Smolic et al. [54] did a large review on the subjects of 3-D and free-viewpoint
video, and other chapters in the present book also deal with building and using
these moving pictures representations.

In this chapter, we will limit ourselves to movies that are made using exactly
two cameras placed in a stereoscopic configuration. These movies are usually seen
through a 3-D display device which can present two different images to the two
human eyes (see Sexton and Surman [51] for a review on 3-D displays). These
display devices sometimes take as input more than two images, especially glasses-
free 3-D displays where a number of viewpoints are displayed simultaneously but
only two are seen by a human spectator. These viewpoints may be generated from
stereoscopic film, using techniques that will be described later in this chapter, or
from other 3-D representations of a scene.

Many scientific disciplines are related to stereoscopic cinema, and they will
sometimes be referred to during this chapter. These include computer science (espe-
cially computer vision and computer graphics), signal processing, optics, optom-
etry, ophthalmology, psychophysics, neurosciences, human factors, and display
technologies.

1.2 A Brief History of Stereoscopic Cinema

The interest in stereoscopic cinema appeared at the same time as cinema itself,
and the “prehistory” (from 1838 to 1922 when the first public projection was
made [22,83]) as well as “history” (from 1922 to 1952, when the first feature-length
commercial stereoscopic movie, Bwana Devil, was released to the public [83]) fol-
low closely the development of cinematography. The history of the period from
1952 to 2004 can be retraced from the thoughtful conversations found in Zone [82].

In the early 1950s, the television was causing a large decrease in the movie the-
ater attendance, and stereoscopic cinema was seen as a method to get back this
audience. This explains the first wave of commercial stereoscopic movies in the
1950s, when Cinemascope also appeared as another television-killer. Unfortunately

1 Stereoscopic cinema is even sometimes redundantly called Stereoscopic 3-D (or S3D) cinema.
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the quality of stereoscopic movies, both in terms of visual quality and in terms of
cinematographic content, was not on par with 2-D movies in general, especially Cin-
emascope. Viewing a stereoscopic film at that time meant the promise of a headache,
because stereoscopic filming techniques were not fully mastered, and the spectacu-
lar effects were overly used in these movies, reducing the importance of screenplay
to close to nothing. One notable counter-example to the typical weak screenplay of
stereoscopic movies was Dial M for Murder by Alfred Hitchcock, which was shot in
3-D, but incidentally had a much bigger success as a 2-D movie. Finally, Cinemas-
cope won the war against TV, and the production of stereoscopic cinema declined.

The second stereoscopic cinema “wave”, in the 1980s, was formed both by
large format (IMAX 3-D) stereoscopic movies, and by standard stereoscopic movies
which tried again the recipe from the 1950s (spectacular content but weak screen-
play), with no more success than the first wave. There were a few high-quality
movies, such as Wings of Courage by Jean-Jacques Annaud in 1995, which was
the first IMAX 3-D fiction movie, made with the highest standards, but at a con-
siderable cost. The IMAX-3D film camera rig is extremely heavy and difficult to
operate [82]. Stereoscopic cinema wouldn’t take off until digital processing finally
brought the tools that were necessary to make stereoscopic cinema both easier to
shoot and to watch.

As a matter of fact, the rebirth of stereoscopic cinema came from animation,
which produced movies like Chicken Little, Open Season and Meet the Robinsons,
which were digitally produced, and thus could be finely tuned to lower the strain on
the spectator’s visual system, and experiment new rules for making stereoscopic
movies. Live-action movies produced using digital stereoscopic camera systems
came afterwards, with movies such as U2 3D, and of course Avatar, which held
promises of a stereoscopic cinema revival.

Stereoscopic cinema brought many new problems that were not addressed by tra-
ditional movie making. Many of these problems deal with geometric considerations:
how to place the two cameras with respect to each other, where to place the actors,
what camera parameters (focal length, depth of field, . . . ) should be used . . . . As
a matter of fact, many of these problems were somehow solved by experience, but
opinions often diverged on the right solution to film in stereoscopy. The first theo-
retical essay on stereoscopic cinema was written by Spottiswoode et al. [56]. The
Spottiswoodes made a great effort to formalize the influence of the camera geometry
on the 3-D perception by the audience, and also proposed a solution on the diffi-
cult problem of transitions between shots. Their scientific approach of stereoscopic
cinema imposed very strict rules on moviemaking, and most of the stereoscopic
moviemakers didn’t think it was the right way to go [82].

Many years later, Lenny Lipton, who founded StereoGraphics and invented the
CrystalEyes electronic shutter glasses, tried again to describe the scientific founda-
tions of stereoscopic cinema [36]. His approach was more viewer-centric, and he
focused more on how the human visual system perceives 3-D, and how it reacts
to stereoscopic films projected on a movie screen. Although the resulting book
contains many mathematical errors, and even forgets most of the previous finding
by the Spottiswoodes [53], it remains one of the very few efforts in this domain.
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The last notable effort at trying to formalize stereoscopic movie making was this
of Mendiburu [41], who omitted maths, but explained with clear and simple draw-
ings the complicated geometric effects that are involved in stereoscopic cinema. This
book was instantaneously adopted as a reference by the moviemaking community,
and is probably the best technical introduction to the domain.

1.3 Computer Vision, Computer Graphics, and Stereoscopic
Cinema

The discussions in this chapter straddle Computer Vision, Computer Graphics, and
Stereoscopic Cinema: Computer Vision techniques will be used to compute and
locate the defects in the images taken by the stereoscopic camera, and Computer
Graphics techniques will be used to correct these defects.

1.3.1 A Few Definitions

Each discipline has its own language and words. Before proceeding, let us define a
few geometric elements that are useful in stereoscopic cinema [28]:

Interocular (also called Interaxial): (The term baseline is also widely used in
computer vision, but not in stereoscopic cinema.) The distance between the two
eyes/cameras, or rather their optical centers. It is also used sometimes used to des-
ignate the segment joining the two optical centers. The average human interocular
is 65 mm, with large variations around this value.

Hyperstereo (or miniaturization): The process of filming with an interocular
larger than 65 mm (it can be up to a few dozen meters), with the consequence that the
scene appears smaller when the stereoscopic movie is viewed by a human subject.

Hypostereo (or gigantism): The process of filming with an interocular smaller
than 65 mm, resulting in a “bigger than life” appearance when viewing the stereo-
scopic movie. It can be as small as 0 mm.

Roundness factor: Suppose a sphere is filmed by a stereoscopic camera. When
displaying it, the roundness factor is the ratio between its apparent depth and its
apparent width. If it is lower than 1, the sphere appears as a flattened disc parallel to
the image plane. If it is bigger than 1, the sphere appears as a spheroid elongated in
the viewer’s direction. We will see that the roundness factor depends on the object’s
position in space.

Disparity: The difference in position between the projections of a 3-D point in
the left and right images, or the left and right retinas. In a standard stereo setup, the
disparity is mostly horizontal (the corresponding points are aligned vertically), but
vertical disparity may happen (and has to be corrected).

Screen plane: The position in space where the display projection surface is
located (supposing the projection surface is planar).

Vergence, convergence, divergence: The angle formed by the optical axis of the
two eyes in binocular vision. The optical axis is the half 3-D line corresponding
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to the line-of-sight of the center of the fovea. It can be positive (convergence) or
negative (divergence).

Plane of convergence: The vertical plane parallel to the screen plane containing
the point that the two eyes are looking at. If it is in front of the screen plane, then
the object being looked at appears in front of the screen. When using cameras, the
plane of convergence is the zero-disparity plane (it is really a plane if images are
rectified, as will be seen later).

Proscenium arch (also called stereoscopic window and floating window): (Fig. 5)
The perceived depth of the screen borders. If the left and right borders of the left
and right images do not coincide on the screen, the proscenium arch is not in the
screen plane. It is also called the stereoscopic window, since the 3-D scene looks as
if it were seen through that 3-D window. As will be explained later, objects closer
than the proscenium arch should not touch the left or right side of the arch.

1.3.2 Stereo-Specific Processes

The stereoscopic movie production pipeline shares a lot with standard 2-D movie
production [41]. Computer vision and computer graphics tools used in the process
can sometimes be used with no or little modification. For example, matchmoving
(which is more often called Structure from Motion or SfM in Computer Vision) can
take into account the fact that two cameras are taking the same scene, and may use
the additional constraint that the two camera positions are fixed with respect to each
other.

Many processes, though, are specific to stereoscopic cinema production and post-
production, and cannot be found in 2-D movie production:

� Correcting geometric causes of visual fatigue such as images misalignments, will
be covered by Sects. 2.5 and 5.1.

� Color-balancing left and right images is especially necessary when a half-
silvered mirror is used to separate images for the left and right cameras and wide
angle lenses are used: the transmission and reflection spectrum response of these
mirrors depend on the incidence angle and have to be calibrated. This can be
done using color calibration devices and will not be covered in this chapter.

� Adapting the movie to the screen size (and distance) is not as simple as scaling
the left and right views: the stereoscopic display is not easily scalable like a 2-D
display, because the human interocular is fixed and therefore does not “scale”
with the screen size or distance. A consequence is that the same stereoscopic
movie displayed on screens of different sizes will probably give quite different
3-D effects (at least quantitatively). The adaptation can be done at the shoot-
ing stage (Sect. 3) or in post-production (Sect. 5). These processes can either be
used to give the stereoscopic scene the most natural look possible (which usually
means a roundness factor close to 1), or to “play” with 3-D effects, for example
by changing the interocular or the position where the infinity plane appears.

� Local 3-D changes (or 3-D touchup) consist in editing the 3-D content of the
stereoscopic scene. This usually means providing new interactive editing tools
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that work both on the images and on the disparity map. These tools usually share
a lot with colorizing tools, since they involve cutting-up objects, tracking them,
and changing their depth (instead of color). This is beyond the scope of this
chapter.

� Playing with the depth of field is sometimes necessary, especially when adapting
the 3-D scene to a given screen distance: the depth of field should be consistent
with the distance to the screen, in order to minimize vergence-accommodation
conflicts (Sect. 5.4).

� Changing the proscenium arch is sometimes necessary, because objects in front
of the screen may cross the screen borders and become inconsistent with the
stereoscopic window (Sect. 5.5).

� 3-D compositing (with real or CG scenes) should be easier in stereoscopic
cinema, since it has 3-D content already. However, there are some additional dif-
ficulties: 2-D movies mainly have to deal with positioning the composited objects
within the scene and dealing with occlusion masks. In 3-D, the composited scene
must also be consistent between the two eyes, and its 3-D shape must be con-
sistent with the original stereoscopic scene (Sect. 5.6). Relighting the scene also
brings out similar problems.

2 Three-Dimensional Perception and Visual Fatigue

In traditional 2-D cinema, since the result is always a 2-D moving picture, almost
anything can be filmed and displayed, without any effect on the spectator’s health
(except maybe for light flashes and stroboscopic effects), and the artist has a total
freedom on what can be shown to the spectator. The result will appear as a moving
picture drawn on a plane placed at some distance from the spectator, and will always
be physically plausible.

In stereoscopic cinema, the two images need to be mutually consistent, so that
a 3-D scene (real or virtual) can be reconstructed by the human brain. This implies
strong geometric and photometric constraints between the images displayed to the
left and the right eye, so that the 3-D shape of the scene is perceived correctly, and
there is not too much strain on the human visual system which would result in visual
fatigue.

Our goal in this chapter is to deal with the issues related to geometry and visual
fatigue in stereoscopic cinema, but without any artistic considerations. We will just
try to define bounds within which the artistic creativity can freely wander. These
bounds were almost non-existent in 2-D movies, but as we will see they are crucial
in stereoscopic movies.

Besides, since 3-D perception is naturally more important in stereoscopic movies,
we have to understand what are the different visual features that produce depth
perception. Those features will be called depth cues, and surprisingly most are
monoscopic and can be experienced by viewing a 2-D image. Stereoscopy is only
one depth cue amongst many others, although it may be the most complicated to
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deal with. The stereographer Phil Streather, quoting Lenny Lipton, said: “Good 3D
is not just about setting a good background. You need to pay good attention to the
seven monocular cues – aerial perspective, inter position, light and shade, relative
size, texture gradients, perspective and motion parallax. Artists have used the first
five of those cues for centuries. The final stage is depth balancing”.

2.1 Monoscopic Depth Cues

The perception of 3-D shape is caused by the co-occurrence of a number of consis-
tent visual artifacts called depth cues. These depth cues can be split into monoscopic
cues, and stereoscopy (or stereopsis). For a review of 3-D shape perception from the
cognitive science perspective, see Todd [64]. The basic seven monoscopic depth
cues, as described in Lipton [36, Chap. 2] (see also [60]), and illustrated Fig. 1, are:

� Light and shade
� Relative size, or retinal image size (smaller objects are farther)
� Interposition, or overlapping (overlapped objects lie behind)
� Textural gradient (increase in density of a projected texture as a function of

distance and slant)
� Aerial perspective (usually caused by haze)
� Motion parallax (2-D motion of closer objects is faster)
� Perspective, or linear perspective

As can bee seen in a famous drawing by Hogarth (Fig. 2), their importance can
be easily demonstrated by using contradictory depth cues.

Lipton [36] also refers to what he calls a “physiological cue”: Accommodation
(the monoscopic focus response of the eye, or how much the ciliary muscles contract
to maintain a clear image of an object as its distance changes). However, it is not

Light and shade Relative size Interposition

Textural gradient Aerial perspective Perspective

Fig. 1 Six monoscopic depth cues (from Stereographics [60]). The seventh is motion parallax,
which is hard to illustrate, and depth of field can also be considered as a depth cue (see Fig. 3)
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Fig. 2 “Whoever makes a DESIGN without the Knowledge of PERSPECTIVE will be liable to such
Absurdities as are shown in this Frontispiece” (engraving by William Hogarth, 1754), a proof by
contradiction of the importance of many monoscopic depth cues

clear from psychophysics experiments whether this should be considered as depth
cue, i.e. if it gives an indication of depth in the absence of any other depth cue.

Although it is usually forgotten in the list of depth cues, we should also add
depth of field, or retinal image blur [27, 70] (it is different from the accommodation
cue cited before, which refers to the accommodation distance only, not to the depth
of field), the importance of which is well illustrated by Fig. 3. The depth of field
of the Human eye is around 0.3 Diopters (D) in normal situations, although finer
studies [39] claim that it also slightly depends on parameters such as the pupil size,
wavelength, and spectral composition. Diopters are inverse of meters: at a focus
distance of 3 m, a depth of field of ˙0.3 D, means that the in-focus range is from
1=.1

3
C 0:3/ � 1:6m to 1=.1

3
� 0:3/ D 30m, whereas at a focus distance of 30 cm,

the in-focus depth range is only from 27.5 to 33 cm (it is easy to understand from
this formula why we prefer using diopters rather than a distance range to measure
the depth of field: diopters are independent of the focus distance, and can easily be
converted to a distance range). This explains why the photograph in Fig. 3 looks like
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Fig. 3 Focus matters! This photo is of a real scene, but the depth of field was reduced by a tilt-shift
effect to make it look like a model [26] (photo by oseillo)

a model rather than an actual-size scene [26]: the in-focus parts of the scene seem to
be only about 30 cm away from the spectator. The depth of field range is not much
affected by age, so this depth cue may be learned from observations over a long
period, whereas the accommodation range goes from 12 D for children, to 8 D for
young adults, to . . . below 1 D for presbyopes.

2.2 Stereoscopy and Stereopsis

Stereoscopy, i.e. the fact that we are looking at a scene using our two eyes, brings
two additional physiological cues [36]:

� Vergence (the angle between the line-of-sight of both eyes)
� Disparity (the positional difference between the two retinal images of a scene

point, which is non-zero for objects behind or in front of the convergence point)

These cues are used by the perception process called stereopsis, which gives
a sensation of depth from two different viewpoints, mainly from the horizontal
disparity.

Although stereoscopy and motion parallax are very powerful 3-D depth cues,
it should be noted that human observers asked to make judgments about the 3-D
metric structure of a scene from these cues are usually subject to large systematic
errors [62, 65].

2.3 Conflicting Cues

All these cues (the eight monoscopic cues and stereopsis) may be conflicting, i.e.
giving opposite indications on the scene geometry. Many optical illusions make
heavy use of these conflicting cues, i.e. when an object seems smaller because lines
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in the image suggest a vanishing point. Two famous examples are the Ames room
and the pseudoscope.

The Ames room (invented by Adelbert Ames in 1934) is an example where
monocular cues are conflicting. Ames room is contained in a large box, and the
spectator can look at it though a single viewpoint, which is a hole in one of the
walls. From this viewpoint, this room seems to be cubic-shaped because converg-
ing lines in the scene suggest the three standard lines directions (the vertical, and
two orthogonal horizontal directions), but it is really trapezoidal (Fig. 4). Perspec-
tive cues are influenced by prior knowledge of what a room should look like, so that
persons standing in each far corner of the room will appear to be either very small or
very big. The room itself can be seen from a peep hole at the front, thus forbidding
binocular vision. In this precise case, binocular vision would easily disambiguate
the conflicting cues by concluding that the room is not cubic. The Ames room was
used in movies such as Eternal Sunshine of the Spotless Minds by Michel Gondry
or the Lord of the Rings trilogy.

Another example of conflicting cues, which is more related to stereoscopic
cinema, is illustrated by the pseudoscope. The pseudoscope (invented by Charles
Wheatstone) is an binocular device which switches the viewpoints from the left and
right eyes, so that all stereoscopic cues are reversed, but the monoscopic cues still
remain and usually dominate the stereoscopic cues. The viewer still has the impres-
sion of “seeing in 3-D”, and the closer objects in the scene actually seem bigger
than they are, because the binocular disparity indicates that these big objects (in the
image) are far away. This situation happened quite often during the projection of
stereoscopic movies in the past [82], where the filters in front of the projectors or
the film reels were accidentally reversed, but the audience usually did not notice
what was wrong, and still had the impression of having seen a 3-D movie, though
they thought it probably was a bad one because of the resulting headache.

Conflicting perspective and stereoscopic cues were actually used heavily by Pete
Kozachik, Director of Photography on Henry Selick’s stereoscopic film Coraline, to
give the audience different sensations [11, 33]:

Henry wanted to create a sense of confinement to suggest Coraline’s feelings of loneliness
and boredom in her new home. His idea had interiors built with a strong forced perspective

Actual and
apparent position
of person B

Apparent
shape of room

Viewing peephole

Actual
position of
person A

Apparent
position of
person A

Fig. 4 Ames room: an example of conflicting perspective and relative size cues



Stereoscopic Cinema 21

and shot in 3-D to give conflicting cues on how deep the rooms really were. Later, we see
establishing shots of the more appealing Other World rooms shot from the same position
but built with normal perspective. The compositions match in 2-D, but the 3-D depth cues
evoke a different feel for each room.

2.4 Inconsistent Cues

Inconsistent cues are usually less disturbing for the spectator than conflicting cues.
They are defined as cues that indicate different amounts of depth in the same direc-
tion. They have been used for ages in bas-relief, where the lighting cue enhances
the depth perceived by the binocular system, and as a matter of fact bas-relief is
usually better appreciated from a far distance, where the stereoscopic cues have less
importance.

An effect that is often observed when looking at stereoscopic photographs is
called the cardboard effect [40,76]: some depth is clearly perceived, but the amount
of depth is too small with respect to the expected depth from the image size of the
objects, resulting in objects appearing as flat, or drawn on cardboard of billboards.
We will explain later how to predict this effect, and most importantly how to avoid it.

Another well-known stereoscopic effect is called the puppet-theater effect (also
called pinching): background objects do not appear as small as expected, so that
foreground objects appear proportionately smaller.

These inconsistent cues can easily be avoided if there is total control on the
shooting geometry, including camera placement. If there are some unavoidable
constraints on the shooting geometry, we will explain in Sect. 5 how some of
these inconsistent cues related to stereoscopy can be corrected in post-production
(Sect. 5).

2.5 Sources of Visual Fatigue

Visual fatigue is probably the most important point to be considered in stereoscopic
cinema. Stereoscopic movies in the past often resulted in a bad viewing experience,
and this reduced a lot the acceptance of stereoscopic cinema by a large public. Ukai
and Howarth [66] produced a reference study on visual fatigue caused by viewing
stereoscopic films, and is a good introduction to this field.

The symptoms of visual fatigue may be conscious (headache, tiredness, sore-
ness of the eyes) or unconscious (perturbation of the oculomotor system). It should
actually be considered as a public health concern [68], just as the critical fusion fre-
quency on CRT screens 50 years ago, as it may actually lead to difficulties in judging
distances (which is very important in such tasks as driving). Ukai and Howarth [66,
Sect. 6] even report the case of an infant whose oculomotor system was permanently
disturbed by viewing a stereoscopic movie. Although the long-term effects of view-
ing stereoscopic cinema were not studied due to the fact that this medium is not
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yet widespread, many studies exist on the effects on health of using virtual reality
displays [34, 68, 69]. Virtual reality displays are widely used in the industry (from
desktop displays to immersive displays), and are sometimes used daily by people
working in industrial design, data visualization, or simulation.

The sources of visual fatigue that are specific to stereoscopic motion pictures
are mainly due to binocular asymmetry, i.e. photometric or geometric differences
between the left and right retinal images. Kooi and Toet [32] experimentally mea-
sured thresholds on the various asymmetries that will lead to visual incomfort
(incomfort is the lowest grade of conscious visual fatigue). For example, they mea-
sured, in agreement with Pastoor’s rule of thumb [46] that a 35 arcmin horizontal
disparity range is quite acceptable for binocular perception of 3-D and 70 arcmin
disparity is too much to be viewed. They also found out that the human visual
system is most sensitive to vertical binocular disparities. The various quantitative
binocular thresholds computed from their experiments can be found in Kooi and
Toet [32, Table 4].

The main sources of visual fatigue can be listed as:

� Crosstalk (sometimes called crossover or ghosting), which is usually due to a
stereoscopic viewing system with a single screen: a small fraction of the intensity
from the left image can be seen in the right eye, and vice-versa. The typical val-
ues for crosstalk [32] are 0.1–0.3% with polarization-based systems, and 4–10%
with LCD shutter glasses. Preprocessing can be applied to the images before dis-
playing in order to reduce crosstalk by subtracting a fraction of the left image
from the right image [41] – a process sometimes called ghost-busting.

� Breaking the proscenium rule (or breaking the stereoscopic window) happens
when there are interposition errors between the stereoscopic imagery and the
edges of the display (see Fig. 5 and Mendiburu [41, Chap. 5]). A simple way to
correct this is to move the proscenium closer to the spectator by adding borders
to the image, but this is not always as easy as it seems (see Sect. 5.5).

� Horizontal disparity limits are the minimum and maximum disparity values that
can be accepted without producing visual fatigue. An obvious bound for disparity

eyes

display screen

eyes

display screen

proscenium

Fig. 5 Breaking the proscenium rule: (left) part of the object in front of the proscenium arch is
not visible in one eye, which breaks the proscenium rule; (right) masking part of the image in each
eye moves the proscenium closer than the object, and the proscenium rule is re-established



Stereoscopic Cinema 23

is that the eyes should not diverge. Another limit concerns the range of acceptable
disparities within a stereoscopic scene that can be fused simultaneously by the
human visual system.

� Vertical disparity causes torsion motion of the ocular globes, and is only tolerable
for short time intervals. Our oculomotor system learned the epipolar geometry of
our eyes over a lifetime of real-world experience, and any deviation from the
learned motion causes strain.

� Vergence-accommodation conflicts occur when the focus distance of the eyes is
not consistent with their vergence angle. It happens quite often when viewing
stereoscopic cinema, since the display usually consists of a planar surface placed
at a fixed distance. Strictly speaking, any 3-D point that is not in the convergence
plane will have an accommodation distance, which is exactly the screen distance,
different from the vergence distance. However, this constraint can be somewhat
relaxed by using the depth of field of the visual system, as will be seen later.

Geometric asymmetries come very often either from a misalignment or from a
difference between the optics in the camera system or in the projection system, as
seen in Fig. 6. In the following, we will only discuss horizontal disparity limits,
vertical disparity, and vergence-accommodation conflicts, since the other sources
of visual fatigue are easier to deal with.

2.5.1 Horizontal Disparity Limits

The most simple and obvious disparity limit is eye divergence. In their early work
on stereoscopic cinema, the Spottiswoodes said: “It is found that divergence is likely
to cause eyestrain, and therefore screen parallaxes in excess of the eye separation
should be avoided”. But they also went on to say, in listing future development
requirements, that “Much experimental work must be carried out to determine limit-
ing values of divergence at different viewing distances which are acceptable without
eyestrain”.

These limiting values are the maximum disparities acceptable around the con-
vergence point, usually expressed as angular values, such that the binocular fusion

a b c d

Fig. 6 A few examples of geometric asymmetries: a vertical shift, b size or magnification dif-
ference, c distortion difference, d keystone distortion due to toed-in cameras, e horizontal shift –
leading to eye divergence in this case (adapted from Ukai and Howarth [66])
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of the 3-D scene is performed without any form of eyestrain or visual fatigue.
Many publications dealt with the subject of finding the horizontal disparity limits
[29, 46, 78].

The horizontal disparity limits are actually closely related to the depth of field,
as noted by Lambooij et al. [34]:

An accepted limit for DOF in optical power for a 3 mm pupil diameter (common under
normal daylight conditions) and the eyes focusing at infinity, is one-third of a diopter. With
respect to the revisited Panum’s fusion area,2 disparities beyond one degree (a conservative
application of the 60–70 arcmin recommendation), are assumed to cause visual discom-
fort, which actually results from the human eye’s aperture and depth of field. Though this
nowadays serves as a rule-of-thumb, it is acknowledged as a limit, because lower recom-
mendations have been reported as well. If both the limits of disparity and DOF are calculated
in distances, they show very high resemblance.

Yano et al. [77] also showed that images containing disparities beyond the depth of
field (˙0.2 D depth of field, which means ˙0.82ı in disparity) cause visual fatigue.

2.5.2 Vertical Disparity

Let us suppose that the line joining both eyes is horizontal, and that the stereoscopic
display screen is vertical and parallel to this line. The images of any 3-D point
projected onto the display screen using each eye optical center as the centers of pro-
jection are two points which are aligned horizontally, i.e. have no vertical disparity.
Thus all the scene points that are displayed on the screen should have no vertical
disparity. Vertical disparity (see Fig. 6 for some examples) may come from a mis-
alignment of the cameras or of the display devices, from a focal length difference
between the optics of the cameras, from keystone distortion, due to a toed-in camera
configuration, or from nonlinear (e.g. radial) distortions.

However, it is to be noted that vertical disparities exist in the visual system:
remember that the eye is not a linear perspective camera, but a spheric sensor, so
that an object which is not in the median plane between both eyes will be closer
to one eye than to the other, and thus its image will be bigger in one eye than in
the other (a spheric sensor basically measures angles). The size ratio between the
two images is called the vertical size ratio, or VSR. VSR is naturally present when
rectified images (i.e. with no vertical disparity) are projected on a flat display screen:
a vertical rod, though it’s displayed with the same size on the left and right images
on the flat display, subtends a larger angle in the nearest eye.

Psychophysical experiments showed that vertical disparity gradients have a
strong influence on the perception of stereoscopic shape, depth and size [5, 43, 48].
For example, the so-called induced-size effect [43] is caused by a vertical gradient of
vertical disparity (vertical-size parallax transformation) between the half images of
an isolated surface, which creates an impression of a surface slanted in depth. Ogle

2 In the human visual system, the space around the current fixation point which can be fused is
called Panum’s area or fusion area. It is usually measured in minutes of arc (arcmin).
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[43,44] called it the induced-size effect because it is as though the vertical magnifi-
cation of the image in one eye induces an equivalent horizontal magnification of the
image in the other eye.3

Allison [3] also notes that vertical disparities can be used to fool the visual
system: “Images on the retinae of a fronto-parallel plane placed at some distance
actually have some keystone distortion, which may be used as a depth cue. Display-
ing keystone-distorted images on that fronto-parallel screen actually exaggerates
that keystone distortion when the viewer is focusing on the center of the screen, and
would thus giving a cue that the surface is nearer than the physical screen”.

By displaying keystoned images, the VSR is distorted in a complicated way
which may be inconsistent with the horizontal disparities. Besides, that distor-
tion depends on the viewer position with respect to the screen. When the images
displayed on the screen are rectified, although depth perception may be distorted
depending on the viewer position, horizontal and vertical disparities will always be
consistent, as long as the viewer’s interocular (the line joining the two optical cen-
ters) is kept parallel to the screen and horizontal (this viewing position may be hard
to obtain in the side rows of wide movie theaters).

Woods et al. [72] discuss sources of distortion in stereo camera arrangements
as well as the human factors considerations required when creating stereo images.
These experiments show that there is a limit in the screen disparity which it is com-
fortable to show on stereoscopic displays. A limit of 10 mm screen disparity on a
1600 display at a viewing distance of 800 mm was found to be the maximum that all
10 subjects of the experiment could view. Their main recommendation is to use a
parallel camera configuration in preference to converged cameras, in order to avoid
keystone distortion and depth plane curvature.

Is Vertical Disparity Really a Source of Visual Fatigue? From the fact that verti-
cal disparities are actually a depth cue, there has been a debate on whether vertical
disparities can be a source of visual fatigue, since they are naturally present in retinal
images. Stelmach et al. [59] and [55] claim that keystone and depth plane curvature
cause minimal discomfort: images plane shift (equivalent to rectified images) and
toed-in cameras are equally comfortable in their opinion. However, we must distin-
guish between visual discomfort, which is conscious, and visual fatigue, where the
viewer may not be conscious of the problem during the experiment, but headache,
eyestrain, or long-term effects can happen.

Even in the case where the vertical disparities are not due to a uniform trans-
form of the images, such as a rotation, scaling or homography, Stevenson and Schor
[61] demonstrated that human stereo matching does not actually follow the epipo-
lar lines, and human subjects can still make accurate near/far depth discrimination
when the vertical disparity range is as high as 45 arcmin.

Allison [4] concludes that, although keystone-distorted images coming from a
toed-in camera configuration can be displayed with their vertical disparities without

3 However, Read and Cumming [47] show that non-zero vertical disparity sensors are in fact not
necessary to explain the induced size effect.
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discomfort, the images should preferably be rectified, because the additional depth
cues caused by keystone distortion perturb the actual depth perception process.

2.5.3 Vergence-Accommodation Conflicts

When looking at a real 3-D scene, the distance of accommodation (i.e. the focus dis-
tance) is equal to the distance of convergence, which is the distance to the perceived
object. This relation between these two oculomotor functions, called Donder’s
line [77], is learned through the first years of life, and is used by the visual system
to quickly focus-and-converge on objects surrounding us. The relation between ver-
gence and accommodation does not have to follow exactly Donder’s line: there is an
area around it where vergence and accommodation agree, which is called Percival’s
zone of comfort [27, 77].

When viewing a stereoscopic movie, the distance of accommodation differs from
the distance of convergence, which is the distance to the perceived object (Fig. 7).
This discrepancy causes a perturbation of the oculomotor system [17, 77], which
causes visual fatigue, and may even damage the visual acuity, which is reported by
Ukai and Howarth [66] to have plasticity until the age of 8 or later. This problem has
been largely studied for virtual reality (VR) displays, and lately for 3-D television
(3DTV), but has been largely overlooked in movie theater situations. In fact, many
stereoscopic movies, especially IMAX-3D movies, make heavy use of spectacular
effects by presenting perceived objects which are very close to the spectator, when
the screen distance is about 20 m.

Wann and Mon-Williams [68] cite it as one of the main sources of stress in
VR displays. They observed that, in a situation where other sources of visual dis-
comfort were eliminated, prolonged use of a stereoscopic display caused short-term
modifications in the normal accommodation-vergence relationship.

Hoffman et al. [27] designed a special 3-D display where vergence and focus
cues are consistent [2]. The display is designed so that its depth of field approx-
imately corresponds to the Human depth of field. By using this display, they
showed that “when focus cues are correct or nearly correct, (1) the time required to

Depth of focus

Real object

Depth of focus

Perceived object

Display

Fig. 7 Vergence and accommodation: they are consistent when viewing a real object (left), but
may be conflicting when viewing a stereoscopic display, since the perceived object may not lie
within the depth of field range (right). Adapted from Emoto et al. [17]
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identify a stereoscopic stimulus is reduced, (2) stereo-acuity in a time-limited task
is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue
and discomfort are reduced”. However, this screen is merely experimental, and it is
impractical for home or movie theater use.

The depth of field may be converted to disparities in degrees using simple geo-
metric reasoning. The depth of field of the human visual system is, depending on
the authors, between ˙0.2 D or ˙0.82ı [77] and ˙0.3 D [12]. The limit to binocular
fusion is from 2ı to 3ı at the front or back of the stereoscopic display, and Percival’s
zone of comfort is about one-third of this, i.e. 0.67ı to 1ı. We note that the in-focus
range almost corresponds to Percival’s zone of comfort for binocular fusion, which
probably comes from the fact that the visual system only learned to fuse non-blurred
objects within the in-focus range.

Let us take for example a conservative value of ˙0.2 D for the depth of
field. For a movie theater screen placed at 16 m, the in-focus range is from
1=.1=16C0:2/� 3:8m to infinity, whereas for a 3DTV screen placed at 3.5 m, it is
from 1=.1=3:5C0:2/� 2m to 1=.1=3:5C0:2/� 11:7m. As we will see later, this
means that the camera focus range should theoretically be different when shooting
movies for a movie theater or a 3-D television.

3 Picking the Right Shooting Geometry

3.1 The Spottiswoode Point of View

Spottiswoode et al. [56] wrote the first essay on the perceived geometry in stereo-
scopic cinema. They devised how depth is distorted by “stereoscopic transmission”
(i.e. recording and reproduction of a stereoscopic movie), and how to achieve “con-
tinuity in space”, or making sure that there is a smooth transition in depth when
switching from one stereoscopic shot to another.

They did a strong criticism of the “human vision” systems (i.e. systems that were
trying to mimic the human eyes, with a 6.5 cm interocular, and a 0.3ı convergence).
They claimed that all stereoscopic parameters can be and should be adapted, either at
shooting time or as post-corrections, depending on screen size, to get the desirable
effects (depth magnification or reduction, and continuity in space). According to
them, the main stereoscopic parameter is the nearness factor N , defined as the ratio
between the viewing distance from screen and the distance to the fused image (with
our notations, N DH 0=Z0): “for any pair of optical image points, the ratio of the
spectator’s viewing distance from the screen to his distance to the fused image point
is a constant, no matter whereabouts in the theater he may be sitting”. Continuity in
space is achieved by slowly shifting over a few seconds the images in the horizontal
direction before and after the cuts. The spectator does not notice that the images
are slowly shifting: the vergence angle of the eyes is adapted by the human visual
system, and depth perception is almost the same. Due to the technical tools available
at this time, this is the only post-correction method they propose.
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They list three classes of stereoscopic transmission:

� Ortho-infinite, where infinity points are correctly represented at infinity
� Hyper-infinite, where objects short of infinity are represented at infinity (which

means that infinity points cause divergence)
� Hypo-infinite, where objects at infinity are represented closer than infinity (which

causes the cardboard effect, see Sect. 2.4)

In order to help the stereographer picking up the right shooting parameters,
they invented a calculator, called the Stereomeasure, which computes the relation
between the various parameters of 3-D recording and reproduction. They claim that
a stereoscopic movie has to be made for given projection conditions (screen size and
distance to screen), which is a fact sometimes overlooked either by stereographers,
or by the 3DTV industry (however, as discussed in Sect. 5, the stereoscopic movie
may be adapted to other screen sizes and distances).

In the Spottiswoode setup, the standard distance from spectator to screen should
be from 2W 0 to 2:5W 0 (W 0 is the screen width). They place the proscenium arch
at N D 2 (half distance from screen), and almost everything in the scene happens
between N D 0 (infinity) and N D 2 (half distance) (N D 1 is the screen plane).

Their work has been strongly criticized by many stereographers, sometimes with
wrong arguments [36, 53], but the main problem is probably that the artists do not
want to be constrained by mathematics when they are creating: cinematography has
always been an art of freedom, with a few rules of thumb that could always be
ignored. But the reality is here: the constraints on stereoscopic cinema are much
stronger than on 2-D cinema, and bypassing the rules results in bad movies causing
eyestrain or headache to the spectator. A bad stereoscopic movie can be a very good
2-D movie, but adding the stereoscopic dimension will always modify the perceived
quality of the movie, either by adding a feeling of “being there”, or by obfuscating
the intrinsic qualities of the movie with ill-managed stereoscopy.

There are some problems with the Spottiswoode’s theorisation of stereoscopic
transmission, though, and this section will try to shed some light on some of these:

� The parametrization by the nearness factor hides the fact that strong nonlinear
depth and size distortions may occur in some cases, especially on far points.

� Divergence at infinity will happen quite often when images are shifted in order
to achieve continuity in space.

� Shifting the images may break the vergence-accommodation constraints, in
particular Percival’s zone of comfort, and cause visual fatigue.

Woods et al. [72] extended this work and also computed spatial distortion of
the perceived geometry. Although their study is more focused on determining hori-
zontal and vertical disparity limits, they also studied depth plane curvature effects,
where a fronto-parallel plane appears to be curved. This situation arises when
non-rectified images are used and the camera configuration is toed-in (i.e. with a
non-zero vergence angle).

More recently, Masaoka et al. [40] from the NHK labs also did a similar study,
and presented a software tool which is able to predict spatial distortions that happen
when using given shooting and viewing parameters.
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3.2 Shooting and Viewing Geometries

As was shown by Spottiswoode et al. [56] in the early days of stereoscopic cinema,
projecting a stereoscopic movie on different screen sizes and distances will produce
different perceptions of depth.

One obvious solution was adopted by the large format stereoscopic cinema
(IMAX 3-D): if the film is shot with parallel cameras (i.e. vergence is zero), and is
projected with parallel projectors that have a human-like interocular (usually 6 cm
for IMAX-3D), then infinity points will always be perceived exactly at infinity,
and divergence will never occur [82]. Large-format stereoscopic cinema has less
constraints than stereoscopic cinema targeted at standard movie theaters, since the
screen is practically borderless, and the audience is located near the center of the
hemispherical screen. The camera interocular is usually close to the human interoc-
ular, but it may be played with easily, depending on the scene to be shot (as in Bugs!
3-D by Phil Streather, where hypostereo or gigantism is heavily used). If the camera
interocular is the same as the human interocular, then everything in the scene will
appear at the same depth and size as if seen with normal vision, which is a very
pleasant experience.

However, shooting parallel is not always advisable or even possible for standard
stereoscopic movies. Close scenes for example, where the subject is closer than the
movie theater screen, require camera convergence, or the film subject will appear
too close to the spectator and will break the proscenium rule most of the time. But
using camera convergence has many disadvantages, and we will see that it may
cause heavy distortions on the 3-D scene.

Let us study the distortions caused by given shooting and viewing geometries.
The geometric parameters we use (Fig. 8) are very simple but describe fully the
stereoscopic setup. Compared to camera-based parameters, as used by Yamanoue
et al. [76], we can easily attach a simple meaning to each parameter and understand
its effect on space distortions. We assume that the stereoscopic movie is rectified
and thus contains no vertical disparity (see Sect. 5.1), so that the convergence plane,
where the disparity is zero, is vertical and parallel to the line joining the optical
centers of the cameras.

The 3-D distortions in the perceived scene essentially come from different
scene magnifications in the fronto-parallel (or width and height) directions, and in
the depth direction. Spottiswoode et al. [56] defined the shape ratio as the ratio
between depth magnification and width magnification, Yamanoue et al. [76] call it
Ep or depth reduction, and Mendiburu [41] uses the term roundness factor. We will
use roundness factor in the remaining of our study. A low roundness factor will
result in the cardboard effect, and a rule of thumb used by stereographers is that it
should never be below 0.2, or 20%.

Let b, W , H , Z be the stereoscopic camera parameters, and b0, W 0, H 0, Z0
be the viewing parameters, as described in Fig. 8. Let d be the disparity in the
images. The disparity on the display screen is d 0Dd C d0, taking into account an
optional shift d0 between the images (shifting can be done at the shooting stage, in
post-production, or at the display stage).
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b
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M M
W
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Z

Wd

Symbol Camera Display

C, C0 Camera optical center Eye optical center
P Physical scene point Perceived 3-D point
M, M0 Image points of P Screen points
b Camera interocular Eye interocular
H Convergence distance Screen distance
W Width of convergence plane Screen size
Z Real depth Perceived depth
d Disparity (as a fraction of W )

Fig. 8 Shooting and viewing geometries can be described using the same small set of parameters

Triangles MPM0 and CPC0 are homothetic, consequently:

Z �H
Z

D W

b
d: (1)

It can easily be rewritten as:

d D b

W

Z �H

Z
; or Z D H

1 � W
b
d
; (2)

which holds both for the shooting and viewing geometries (i.e. with and without
primes). From these, we can compute the image disparity d from the real depth Z:

d D b

W

Z �H
Z

; (3)

and then compute the perceived depth Z0 from the disparity d 0:

Z0 D H 0

1 � W 0

b0
.d C d0/

: (4)

Finally, eliminating the disparity d from both equations gives the relation between
real depth Z and perceived depth Z0:

Z0 D H 0

1 � W 0

b0 .
b
W

Z�H
Z

C d0/
or Z D H

1 � W
b
. b0

W 0

Z0�H 0

Z0 � d0/
(5)



Stereoscopic Cinema 31

3.3 Depth Distortions

Let us now compute the depth distortion from the perceived depth. In the general
case, points at infinity (Z ! C1) are perceived at

Z0 D H 0

1 � W 0

b0
. b

W
C d0/

: (6)

Eye divergence happens when Z0 becomes negative. The eyes diverge when
looking at scene points at infinity (Z ! C1) if and only if:

b0

W 0
<
b

W
C d0: (7)

In this case, the real depth which is mapped to Z0 D 1 can be computed as

Z D 1

1 � W
b

�
b0

W 0 � d0

� ; (8)

and any object at a depth beyond this one will cause divergence.
The relation betweenZ andZ0 is nonlinear, except if W

b
D W 0

b0 and d0 D 0, which
we call the canonical setup. In this case, the relation between Z and Z0 simplifies
to:

Z0 D Z
H 0

H
:

�
Canonical setup:

W

b
D W 0

b0
; d0 D 0

�
(9)

Let us now study how depth distortion behaves when we are not in the canon-
ical setup anymore. For our case study, we start from a purely canonical setup,
with bD b0D 6:5 cm, W DW 0D 10m, H DH 0D 15m and d0 D 0. In the follow-
ing charts, depth is measured from the convergence plane or the screen plane (depth
increases away from the cameras/eyes).

The first chart (Fig. 9) shows the effect of changing only the camera interocular b
(the distance to the convergence plane H remains unchanged, which implies that
the vergence angle changes accordingly). This shows the well-known effects called
hyperstereo and hypostereo: the roundness factor of in-screen object varies from
high values (hyperstereo) to low values (hypostereo).

Let us now suppose that the subject being filmed is moving away from the cam-
era, and we want to keep its image size constant by adjusting the zoom and vergence
accordingly, i.e.W remains constant. To keep the object’s roundness factor constant,
we also keep the interocular b proportional to the object distance H (bD˛H ). The
effect on perceived depth is shown in Fig. 10. We see that the depth magnification
or roundness factor close to the screen plane remains equal to 1, as expected, but the
depth of out-of-screen objects is distorted, and a closer analysis would show that
the wide-interocular-zoomed-in configuration creates a puppet-theater effect, since
farther objects have a larger image size than expected. This is one configuration
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Fig. 9 Perceived depth as a function of real depth for different values of the camera interocular b.
This graph demonstrates the well-known hyperstereo and hypostereo phenomenon
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Fig. 10 When the object moves away, but we keep the object image size constant by zooming in
(i.e. H varies but W is constant), if we keep the camera baseline b proportional to convergence
distance H , the depth magnification close to the screen plane remains equal to 1. But be careful:
divergence may happen!

where the roundness factor of the in-screen objects can be kept constant while
changing the stereoscopic camera parameters, and in the next section we will show
how to compute all the changes in camera parameters that give a similar result.

3.4 Shape Distortions and the Depth Consistency Rule

If we want the camera setup and the display setup to preserve the shape of all
observed objects up to a global 3-D scale factor, a first constraint is that there
must be a linear relation between depths, so we must be in the canonical setup
described by (9). A second constraint is that the ratio between depth magnifica-
tion and image magnification, called the roundness factor, must be equal to 1. This
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means that the only configuration with faithful depth reproduction is when the shoot-
ing and viewing geometries are homothetic (i.e. there is a scale factor between the
two geometries):

W 0

W
D H 0

H
D b0

b
: (Homothetic configuration) (10)

In general, the depth and space distortion is nonlinear: it can easily be shown
that the perceived space is a homographic transform of the real space. Shooting
from farther away while zooming in with a bigger interocular doesn’t distort (much)
depth, as we showed in the previous section, and that’s probably the right way to
zoom in – the baseline should be proportional to the convergence distance. But one
has to take care about the fact that the infinity plane in scene space may cause
divergence.

More generally, we can introduce the depth consistency rule: Objects which are
close to the convergence plane in the real scene or close to the screen in projec-
tion space (ZDH or Z0DH 0) should have a depth which is consistent with their
apparent size, i.e. their roundness factor should be equal to 1.

The depth ration between scene space and projection space close to the conver-
gence plane can be computed from (5) as:

@Z0

@Z
.Z D H/ D b

HW

H 0W 0

b0
; (11)

and the apparent size ratio is simply W 0

W
. Setting the ratio between both, i.e. the

roundness factor, equal to 1 leads to the depth consistency rule:

b

H
D b0

H 0
: (Depth consistency rule) (12)

One important fact arises from the depth consistency rule: for objects that are
close to the convergence plane or the screen plane, screen size (W 0) does not matter,
whereas most spectators expect to get exaggerated 3-D effects when looking at a
movie on a bigger screen. Be careful, though, that for objects farther than the screen,
especially at Z! C 1, divergence may occur on bigger screens. Since neither b,
H , or b0 can be changed when projecting a 3-D movie, the key parameter for the
depth consistency rule is in fact screen distance, which dramatically influences the
perceived depth: the bigger the screen distance, the higher the roundness factor will
be. This means that if a stereoscopic movie, which was made to be seen in a movie
theater from a distance of 16 m, is viewed on a 3DTV from a distance of 4 m, the
roundness factor will be divided by 4 and the spectator will experience the classical
cardboard effect where objects look flat.

What can we do to enforce the depth consistency rule, i.e. to produce the
same 3-D experience in different environments, given the fact that b is fixed and
H 0 is usually constrained by the viewing conditions (movie theater vs. home
cinema vs. TV)? The only possible solution consists in artificially changing the
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shooting parameters in post production using techniques that will be described in
Sect. 5.

3.5 Shooting with the Right Depth of Field

When disparities outside of the Percival zone of comfort are present, Ukai and
Howarth [66] showed that vergence-accommodation conflicts that arise can be atten-
uated by reducing the depth of field: the ideal focus distance should be on the plane
of convergence (i.e. the screen), and the depth of field should match the expected
depth of field of the viewing conditions. They even showed that objects that are out
of this focus range are surprisingly better perceived in 3-D if they are blurred than
if they are in focus.

We saw (Sect. 2.1) that the human eye depth of field in normal conditions is
between 0.2 and 0.3 D (diopters) – let us say 0.2 D to be conservative. This depth
of field should be converted to a depth range in the targeted viewing conditions:
Z0min D 1=

�
1

H 0 � 0:2
�
, Z0max D 1=

�
1
H

C 0:2
�

(if Z0max is negative, then it is consid-
ered to be at infinity). Then, the perceived depth range should be converted to real
depth range ŒZmin; Zmax �, using the inverse of formula (5), and the camera aperture
should be computed from this depth range.

Unfortunately, the viewing conditions are usually not known at shooting time, or
the movie has to be made for a various range of screen distances and sizes. We will
describe a possible solution to this general case in Sect. 5.4.

3.6 Remaining Issues

Even when the targeted viewing conditions are known precisely, the shooting con-
ditions are sometimes constrained: for example, when filming wild animals, a
minimum distance may be necessary, resulting in using a wide baseline and a long
focal length (i.e. a large b

W
). The resulting stereoscopic movie, although it will have

a correct roundness factor around the screen plane, will probably have strong diver-
gence at infinity, since b0

W 0
< b

W
, which may look strange, even if the right depth of

field is used.
Another kind of problem may happen, even with objects which are close to the

screen plane: Psychophysics experiments showed that specular reflections may also
be used as a shape cue, and more specifically as a curvature cue [8,9]. Except when
using a purely homothetic configuration, these depths cues will be inconsistent with
other cues, even near the screen plane, and this effect will be particularly visible
when using long focal lengths. This problem can probably not be overcome by
changing the shooting geometry, and the best solution is probably to edit manu-
ally the specular reflections in post-production to make them look more natural, or
to use the right makeup on the actors . . . .
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Inconsistent specular reflections can also be due to the use of a mirror rig (a
stereoscopic camera rig using a half-silvered mirror to separate images for the left
and right cameras): specular reflections are usually polarized by nature, and the
transmission and reflection coefficients of the mirror depend on the polarization of
incoming light. As a result, specular reflections have a different aspect in the left
and right images.

4 Lessons for Live-Action Stereoscopic Cinema
from Animated 3-D

Shooting live-action stereoscopic cinema has progressed over the last decade with
the arrival of more versatile camera rigs. Older stereo rigs had two fixed cameras,
and the stereo extrinsic parameters – baseline and vergence – were changed by
manual adjustment between shots. Newer rigs allow dynamic change of the stereo
parameters during a shot. This still falls short of a final stage of versatility, which is
the modification of the left- and right-eye images during post-production, to effec-
tively change the stereo extrinsic parameters – in other words, this ultimate goal is
to use the shot footage as a basis for synthesizing left- and right-eye images with
any required stereo baseline and vergence.

New technologies are bringing us closer to the goal of synthesizing left- and
right-eye views with different stereo parameters during post-production. But what
are the benefits, and how will this create a better viewer experience? To answer
this question, in this section we look at current practices in animated stereoscopic
cinema. In animation, the creative team has complete control over camera position,
camera motion, camera intrinsics, stereo extrinsics, and the 3-D structure of the
scene. This allows scope to experiment with the stereoscopic experience, including
doing 3-D manipulations and distortions that do not correspond to any physical
reality but which enhance viewer experience. We describe four core techniques of
animated stereoscopic cinema. The challenge for live-action 3-D is to create new
technologies so that these techniques can be applied to live-action footage as easily
as they are currently applied to animation.

4.1 Proscenium Arch or Floating Window

The proscenium arch or floating window was introduced earlier. The simplest way
to project stereoscopic imagery is to capture images from a left- and right- camera
and then put those images directly onto the cinema screen. This imposes a specific
epipolar geometry on the viewer, and our eyes adjust to it. Now consider the four-
sided boundary of the physical cinema screen. It also imposes epipolar constraints
on the eyes (in fact these are epipolar constraints which are consistent with the
whole rest of the physical world). But note that there is no reason why the epipolar
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geometry imposed by the stereoscopic images will be consistent with the epipolar
constraints associated with the screen boundary. The result is conflicting visual cues.

The solution is to black-mask the two stereoscopic images. Consider the basic
3-D animation setup, and two cameras observing a 3-D scene. Now imagine between
the camera and the scene a rectangular window, in 3-D, so that the cameras view the
scene through the window, but the window is surrounded by a black wall where
nothing is visible. This is the proscenium arch or floating window, a virtual 3-D
entity interjected between the cameras and the scene. The visual effect of the win-
dow is achieved by black-masking the boundaries of the left- and right- eye images.
Since this floating window is a 3-D entity that is consistent with the cameras and the
rest of the 3-D scene, it does not give rise to conflicting visual cues.

4.2 Floating Windows and Audience Experience

Section 4.1 described a basic motivation for the floating window, motivated by com-
fort in the viewing experience. There is a further use for the technique. Note that the
window can be placed anywhere in the 3-D scene, It can lie between the camera and
the scene, part-way through the scene, or behind the scene. This is not perceived
explicitly but placing the 3-D scene behind the floating window relative to the audi-
ence produces a more subdued passive feeling, according to accepted opinion in the
creative community. Placing the scene in front of the floating window relative to the
audience produces a more engaged active feeling. Also note that the window does
not need to be fronto-parallel to the viewer. Instead it can be tilted in 3-D space.
Again the viewer is typically unaware of this consciously, but orientation of the
floating window can produce subliminal effects, e.g. a forward tilt of the upper part
of the window can produce a looming feeling.

4.3 Window Violations

The topic of floating windows leads naturally to another technique. Consider again
the 3-D setup - cameras, floating window, and 3-D scene. First consider objects that
are on the far side of the window from the cameras. When they are center-stage,
they are visible through the window. As they move off-stage and are obscured by
the surrounding wall of the virtual window. This is all consistent from the viewpoint
of the two stereoscopic cameras that are viewing the scene. Now consider an object
that lies between the cameras and the window. While it’s center-stage and visible
in the two eyes, everything is fine. As it moves off-stage, it intersects the view-
frustums created by each camera and the floating window, and nothing is visible
outside the frustum. But this is inconsistent to the eye – it’s as though we are looking
at someone in front of a doorway and their silhouette disappears as it passes over the
view frustums in the left- and right-eyes of the doorway which is to the rear of them.
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The solution to this problem is simply not to allow such violations. This is
straightforward in animation but in live-action stereoscopic cinema, of course, it
requires the non-trivial recovery of the stereo camera positions and the 3-D scene to
detect when this is happening, and avoid it.

4.4 Multi-rigging

So far, we considered manipulations of the left- and right- eye images that are
consistent with a physical 3-D reality. Multi-rigging, however, is a technique for
creating stereoscopic images which produce a desired viewing experience, but could
not have arisen from a physically correct 3-D situation. Consider a scene with
objects A and B. The left camera is kept fixed but there are two right cameras,
one for shooting object A and one for shooting object B. Two different right eye
images are generated, and they are then composited so that objects A and B appear
in a single composite right eye image.

Why do this? Consider the case where A is close to the camera and B is far away.
In a normal setup, B will appear flat due to distance. But by using a large stereo
baseline for shooting object B, it is possible to capture more information around
the occluding contour of the object, and give it a greater feeling of roundedness,
even though it is placed more distantly in the scene. Again this is straightforward
for animated stereoscopic cinema, but requires 3-D capture of the scene, and the
ability to modify stereo baseline at post-production time, to apply it to live-action
stereoscopic cinema.

5 Post-production of Stereoscopic Movies

When filming with stereoscopic cameras, even if the left and right views are rectified
in post-production (Sect. 5.1), there are many reasons for which the movie may not
be adapted to given viewing conditions, among which:

� The screen distance and screen size are different from the ones the movie was
filmed for, resulting in a different roundness factor for objects close to the screen.

� Because of a screen size larger than expected, the points at infinity cause eye
divergence.

� There were constraints on camera placement (as those that happen when filming
sports or wildlife), which cause large disparities, or even divergence, on far-away
objects.

� The stereoscopic camera was not adjusted properly when filming.

As we will see during this section, changing the shooting geometry in post-
production is theoretically possible, although the advanced techniques require high-
quality computer vision and computer graphics algorithms to perform a process
called view interpolation. Due to the fact that 3-D information can be extracted from
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the stereoscopic movies, there are also a few other stereo-specific post-production
processes that may be improved by using computer vision techniques.

5.1 Eliminating Vertical Disparity: Rectification
of Stereoscopic Movies

Vertical disparity is one of the sources of visual fatigue in stereoscopic cinema,
and it may come from misaligned cameras or optics, or from toed-in camera
configurations, where vertical disparity cannot be avoided.

In Computer Vision, 3-D reconstruction from stereoscopic images is usually
preceded by a transformation of the original images [19, Chap. 12]. This transforma-
tion, called rectification is a 2-D warp of the images that aligns matching points on
the same y coordinate in the two warped images. The rectification of a stereoscopic
pair of images is usually preceded by the computation of the epipolar geometry
of the stereoscopic camera system. Knowing the epipolar geometry, one can map
a point in one of the images, to a line or curve in the other image which is the
projection of the optical ray issued from that point onto that image. The rectifica-
tion process transforms the epipolar lines or curves into horizontal lines, so that
stereoscopic matching by computer vision algorithms is made easier.

It appears that this rectification process is exactly what we need to eliminate ver-
tical disparity in stereoscopic movies, so that all the available results from Computer
Vision on computing the epipolar geometry [6, 18, 24, 42, 57] or on the rectification
of stereoscopic pairs [1, 14, 20, 23, 38, 73, 79] will be useful to accurately eliminate
vertical disparity.

However, the rectification of a single image pair acquired in a laboratory with
infinite depth of field for stereoscopic matching, and rectification of a stereo-
scopic movie that will be presented to spectators is not exactly the same task. The
requirements of a rectification method designed for stereoscopic cinema are:

1. It should be able to work without knowing anything from the stereoscopic camera
parameters, because this data is not always available, and may be lost in the film
production pipeline, whereas images are usually not lost.

2. It should require no calibration pattern or grid, since the wide range of camera
configurations and optics would require too many different calibration grid sizes:
all the computation should be made from the images themselves (we call it blind
rectification).

3. The aspect ratio of rectified images should be as close as possible to the aspect
ratio of the original images.

4. The rectified image should fill completely the frame: no “unknown” or “black”
area can be tolerated.

5. The rectification of the whole movie should be smooth (jitter or fast-varying rec-
tification transforms will create shaky movies) so that the rectification parameters
should either be computed for a whole shot, or it should be slowly varying over
time.
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6. The camera parameters (focal length, focus, . . . ) and the rig parameters (interoc-
ular, vergence, . . . ) may be fixed during a shot, but they could also be slowly
varying.

7. The images may have artistic qualities that are difficult to handle for com-
puter vision algorithms: lack of texture, blur, saturation (white or black), sudden
change in illumination, noise, etc.

Needless to say, very few rectification methods fulfill these requirements, and
the best solution will probably have to take the best out of the cited methods in
order to give acceptable results. Cheng et al. [14] recently proposed a method to
rectify stereo sequences with varying camera motions and zooming effects, while
keeping the image aspect ratio, but there is still room for improvements, and there
will probably be many other publications on this subject in the near future.

A proper solution would probably contain the following ingredients:

� A method for epipolar geometry computation and rectification that takes into
account nonlinear distortion [1,6,57]: even if cinema optics are close-to-perfect,
images have a very high resolution, and small nonlinear distortions with an
amplitude of a few pixels may happen at short focal lengths.

� A multi-scale feature detection and matching method, which will be able to
handle blurred or low-texture areas in the images.

� Proper parameterization of the rectification functions, so that only rectifica-
tions that conserve the aspect ratio are allowed. Methods for panorama stitching
reached this goal by using the camera rotation around its optical center as a
parameter – this may be a good direction.

� Temporal filtering, which is not an easy task since the filtered rectifications must
also satisfy the above constraints.

5.2 Shifting and Scaling the Images

Image shifting is a process already used by Spottiswoode et al. [56], in particular
to achieve continuity in space during shot transitions. The human brain is actually
not very sensitive to stereoscopic shifting: if two fixed rectified images are shown
in stereo to a subject, and the images are shifted slowly, the subject will not notice
the change in shift, and surprisingly the scene will not appear to move closer or far-
ther as would be expected. However, shifting the images modifies the eye vergence
and not the accommodation, and thus may break the vergence-accommodation con-
straints and cause visual fatigue: when images are shifted, one must verify that the
disparities are still within Percival’s zone of comfort (which depends on viewing
geometry).

Image shifting is mostly used for “softening the cuts”: If the disparity of the main
area of interest changes abruptly from one shot to the other, the human eyes may take
some time to adjust the vergence, and it will cause visual fatigue or even alter the
oculomotor system, as shown by Emoto et al. [17]. As explained by Spottiswoode
et al. [56], shifting the images is one solution to this problem.
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One way to make a smooth transition between shots is the following: let us say
the main subject of shot 1 is at disparity d1, and the main subject of shot 2 is at dis-
parity d2 (they do not have to be at the same position in the image). About 1 s before
the transition, the images from shot 1 are slowly shifted from d0 D 0 to d0 D d2�d1

2
.

When the transition (cut or fade) happens, the disparity of the main subject in shot
1 is d D d1Cd2

2
. During the transition, the first image of shot 2 is presented with

a shift of d0 D d1�d2
2

, so that the disparity of the main subject is also d D d1Cd2
2

.
After the transition, the disparity continues to be slowly shifted, in order to arrive at
a null shift (d0 D 0) about 1 s after the transition.

During this process, care must be taken not only to stay inside Percival’s zone of
comfort, but also to avoid divergence in the areas in focus (the divergence threshold
depends on screen size).

Another simple post-production process consists in scaling the images. Scaling is
equivalent to changing the widthW of the convergence plane, and allows reframing
the scene by panning simultaneously both rescaled images.

There is no quality loss when shifting or scaling the images, except the one due
to resampling the original images. In particular, no spatial or temporal artifact may
appear in shifted or scaled sequences, whereas they may happen in the processes
described hereafter.

5.3 View Interpolation, View Synthesis,
and Disparity Remapping

5.3.1 Definitions and Existing Work

Image shifting and scaling cannot solve all the issues caused by having different
(i.e. non-homothetic) shooting and viewing geometries. Ideally, we would like to
be able to change two parameters of the shooting geometry in order to get homo-
thetic setups: the camera interocular b and the distance to the convergence planeH .
This section describes the computer vision and computer graphics techniques which
can be used to achieve these effects in stereoscopic movie post-production. The
results that these methods have obtained so far are not on par with the picture qual-
ity requirements of the stereoscopic cinema, but this research field is progressing
constantly, and these requirements will probably be met within the next few years.

The first thing we would like to do is change the camera interocular b, in order
to follow the depth consistency rule b

H
D b0

H 0
. To achieve this, we use view inter-

polation, a technique that takes as input a set of synchronized images taken from
different but close viewpoints, and generates a new view as if it were taken by
a camera placed at a specified position between the original camera positions. It is
different from a well-known post-production effect called retiming, which generates
intermediate images between two consecutive images in time taken by the same
camera, although some people have been successfully using retiming techniques to
do view interpolation if the cameras are close enough. As shown in the first line



Stereoscopic Cinema 41
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Fig. 11 Changing the shooting geometry in post-production (original shooting geometry is drawn
in light gray in the left column). All methods can preserve the roundness of objects in the screen
plane, at some cost for out-of-screen objects: view interpolation distorts dramatically their depth
and size; view synthesis generates a geometrically correct scene, but it is missing a lot of scene
information about objects that cannot be seen in the original images; disparity remapping may pre-
serve the depth information of the whole scene, but the apparent width of objects is not preserved,
resulting in puppet-theater effect

of Fig. 11, although the roundness factor of objects near the screen plane is well
preserved, depth and size distortions are present and are what would be expected
from the interpolated camera setup: far objects are heavily distorted both in size and
depth, and divergence may happen at infinity.

If we also want to change the distance to screen, we have to use view synthesis.
It is a similar technique, where the cameras may be farther apart (they can even
surround the scene), and the synthesized viewpoint can be placed more freely. View
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synthesis usually requires a shooting setup with at least a dozen of cameras, and may
even use hundreds of cameras. It is sometimes used in free-viewpoint video, when
the scene is represented as a set of images, not as a textured 3-D mesh. The problem
is that we usually only have two cameras, and for view synthesis to work, at least all
parts of the scene that would be visible in the synthesized viewpoint must be also
visible in the original viewpoints. Unfortunately, we easily notice (second line of
Fig. 11) that many parts of the scene that were not visible in the original viewpoints
become visible in the interpolated viewpoints (for example the tree in the figure).
Since invisible parts of the scene cannot be invented, view synthesis is clearly not
the right technique to solve this problem.

What we propose is a mixed technique between view interpolation and view syn-
thesis, that preserves the global visibility of objects in the original viewpoints, but
does not produce depth distortion or divergence: disparity remapping. In disparity
remapping (third line of Fig. 11), we apply a nonlinear transfer function to the dis-
parity function, so that perceived depth is proportional to real depth (the scale factor
is computed at the convergence plane). In practice, it consists in shifting all the pix-
els in the image that have a given disparity by the disparity value that would be
perceived in the viewing geometry for an object placed at the same depth. That way,
divergence may not happen, since objects that were at a given distance from the con-
vergence plane will be projected at the same distance, up to a fixed scale factor, and
thus points at infinity are effectively projected at infinity. However, since the object
image size is not changed by disparity remapping, there will still be some kind of
puppet-theater effect, since far-away objects may appear bigger in the image than
they should be. Of course, any disparity remapping function, even one that does not
conserve depth, could be used to get special effects, to obtain effects similar to the
multi-rigging techniques used in animation (Sect. 4.4).

There has been already a lot of work on view interpolation [10,15,25,31,45,49,
63, 67, 71, 74, 75, 80, 81], and disparity remapping as we defined it uses the exact
same tools. They have solved the problem with various levels of success, and the
results are constantly improving, but none could definitely get rid of the two kinds
of artifacts that plague view interpolation:

� Spatial artifacts, which are usually “phantom” objects or surfaces that appear
due to specular reflections, occluded areas, blurry or non-textured areas, semi-
transparent scene components (although many recent methods handle semi-
transparency in some way).

� Temporal artifacts, which are mostly “blinking” effects that happen if the spatial
artifact are not temporally consistent and seem to “pop up” at each frame.

5.3.2 Asymmetric Processing

The geometry changes leading to view interpolation shown in Fig. 11 are symmetric,
i.e. the same changes are made to the left and right view. Interpolating both views
may alter the quality and create artifacts and both views, resulting in a lower-quality
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stereoscopic movie. However, this may not be the best way to change the shooting
geometry by interpolation.

Stelmach et al. [58] showed that the quality of the binocular percept is dominated
by the sharpest image. Consequently, the artifacts could be reduced by interpolat-
ing only one of the two views, and perhaps smoothing the interpolated view if it
contains artifacts. However, a more recent study by Seuntiens et al. [50] contra-
dicts the work of Stelmach et al. [58], and shows that the perceived-quality of an
asymmetrically-degraded image pair is about the average of both perceived quali-
ties when one of the two views is degraded by a very strong JPEG compression.
Still, they admit that “asymmetric coding is a valuable way to save bandwidth, but
one view must be of high quality (preferably the original) and the compression level
of the coded view must be within acceptable range”, so that for any kind of asym-
metric processing of a stereo pair (such as view interpolation), one has to determine
what is this “acceptable range” to get a perceived quality which is better than with
symmetric processing. Kooi and Toet [32] also note that interocular blur suppres-
sion, i.e. fusing an image with a blurred image, requires a few more seconds than
with the original image pair. Gorley and Holliman [21] devised another metric for
stereoscopic pair quality, which is based on comparing areas around SIFT features.
This proved to be more consistent with perceived quality measured by human sub-
jects than the classical PSNR (Peak Signal-to-Noise Ratio) measurement used in
2-D image quality measurements. Further experiments should be led on the per-
ception of asymmetrically-coded stereoscopic sequences to get a better idea of the
allowed amount of degradation in one of the images.

One could argue that the best-quality image in an asymmetrically-processed
stereoscopic sequence should be the one corresponding to the dominant eye,4 but
this means that interpolation should depend on the viewer, which is not possible
in a movie theater or in consumer 3DTV. Seuntiens et al. [50] also studied the
effect of eye dominance on the perception of asymmetrically-compressed images,
and their conclusion is that eye dominance has no effect on the quality perception,
which means that it may be possible to do asymmetric processing while remaining
user-independent.

5.4 Changing the Depth of Field

We have seen in Sects. 2.5.3 and 3.5 that not only the shooting geometry should be
adapted to the display, but also the depth of field: the in-focus plane should be at the
screen depth (i.e. at zero disparity), and the depth of field should follow the human
depth of field (i.e. 0.2–0.3 D), so that there is no visual fatigue due to horizontal
disparity limits or vergence-accommodation conflicts.

Having a limited depth of field may seem limited at first, but Ukai and Howarth
[66] showed that 3-D is actually perceived even for blurred objects, and this also

4 About 70% of people prefer the right eye, and 30% prefer the left, and this is correlated to right-
or left-handedness, but many people are cross-lateral (e.g. right-handed with a left dominant eye).
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results in less visual fatigue when these objects are out of the theoretical focus
range. Another big issue with stereoscopic displays is the presence of crosstalk.
Lenny Lipton claims [37]: “Working with a digital projector, which contributes no
ghosting artifact, proves that the presence of even a faint ghost image may be as
important as the accommodation/convergence breakdown”. Actually, blurring the
objects that have high disparities should also strongly reduce that ghosting effect,
so that changing the depth of field may have the double advantage of diminishing
visual fatigue and reducing crosstalk.

In animated 3-D movies, the depth of field can be artificially changed, since
images with infinite depth of field can be generated, together with a depth map:
[7, 30, 35]. In live-action stereoscopic cinema, the depth of field can be reduced
using similar techniques, given a depth map extracted from the live stereoscopic
sequence. Increasing the depth of field is theoretically possible, but would enhance
dramatically the image noise.

5.5 Dealing with the Proscenium Rule

The proscenium rule states that the stereoscopic sequence should be seen at though
it were happening behind a virtual arch formed by the stereoscopic borders of
the screen, called the proscenium arch. When an object appears in front of the
proscenium, and it touches either the left or the right edges of the screen, then the
proscenium rule is violated, because part of the object becomes not visible in both
eyes, whereas it should be (see Sect. 4.1 and Fig. 5). When the object touches the
top or bottom borders, the stereoscopic scene is still consistent with the proscenium
arch, and some even argue that in this case the proscenium appears bent towards the
object [41, Chap. 5].

Since the proscenium arch is a virtual window formed by the 3-D reconstruction
of the left and right stereoscopic image borders, it can be virtually moved forward or
backward. Moving the proscenium forward is the most common solution, especially
when using the screen borders as the proscenium would break the proscenium rule,
both in live-action stereoscopic movies and in animated 3-D (Sect. 4.3). It can also
be a narrative element by itself, as may be learned from animated 3-D (Sect. 4.2).
The left and right proscenium edges may even have different depths, without the
audience even noticing it (this effect is called “floating the stereoscopic window” by
Mendiburu [41]).

The proscenium arch is usually moved towards the spectator by adding a black
border on the left side of the right view and on the right side of the left view. How-
ever, on display devices with high rates of crosstalk, moving the proscenium may
generate strong artifacts on the screen left and right borders, where one of the views
is blackened out. One way to avoid the crosstalk issues is to use a semi-opaque
mask instead of a solid black mask, as suggested and used by stereographer Phil
Streather. Other alternative solutions may be tried, such as blurring the edges, or a
combination of blurring and intensity attenuation.
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5.6 Compositing Stereoscopic Scenes and Relighting

Compositing consists in combining several image sources, either from live action
or computer-generated, to obtain one shot that is ready to be edited. It can be
used to insert virtual objects in real scenes, real objects in virtual scenes, or real
objects in real scenes. The different image sources should be acquired using the
same camera parameters. For live-action footage, this does usually mean that either
match-moving or motion-controlled cameras should be used to get the optical cam-
era parameters (internal and external). Matting masks then have to be extracted
for each image source: masks are usually automatically-generated for computer-
generated images, and several solutions exist for live-action footage: automatic (blue
screen / green screen / chroma key), or semi-automatic (rotoscoping / hand drawing).
The image sources are then combined together with matting information to form the
final sequence. In non-stereoscopic cinema, if there is no camera motion, the com-
positing operation is often 2-D only, and a simple transform (usually translation and
scaling) is applied to each 2-D image source.

The 3-D nature of the stereoscopic cinema imposes a huge constraint on com-
positing: not only the image sources must be placed correctly in each view, but
the 3-D geometry must be consistent across all image sources. In particular, this
means that the shooting geometry (Sect. 3) must be the same, or must be adjusted
in post-production to match a reference shooting geometry (Sect. 5.3). If there is a
3-D camera motion, it can be recovered using the same match-moving techniques
as in 2-D cinema, which may take into account the rigid link between left and right
cameras to recover a more robust camera motion.

The matting stage could also be simplified in stereoscopic cinema: the dis-
parity map (which gives the horizontal disparity value at each pixel in the left
and right rectified views) or the depth map (which can be easily computed from
the disparity map) can be used as a Z-buffer to handle occlusions automatically
between the composited scenes. The disparity map representation should be able
to handle transparency, since the pixels at depth discontinuities should have two
depths, two colors, and a foreground transparency value [80]. Recent algorithms
for stereo-based 3-D reconstruction automatically produce both a disparity map and
matting information, which can be used in the compositing and view interpolation
stages [10,52,63,74,75]. When working on a sequence that has to be modified using
view interpolation or disparity remapping, it should be noted that the interpolated
disparity map can be obtained as a simple transform of the disparity map computed
from the original rectified sequence, and this solution should be preferred to avoid
the 3-D artifacts caused by running a stereo algorithm on interpolated images (more
complicated transforms happen in the case of view synthesis).

Getting consistent lighting between the composited image sources can be diffi-
cult: even if the two scenes to be composed were captured or rendered using the
same lighting conditions, the mutual lighting (or radiosity) will be missing from the
composited scene, as well as the cast shadows from one scene to the other.

If lighting consistency cannot be achieved during the capture of real scenes (for
example if one of the shots comes from archive footage), the problem becomes much
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more complicated: it is very difficult to change the lighting of a real scene, even
when its approximate 3-D geometry can be recovered (by stereoscopic reconstruc-
tion in our case), because that 3-D reconstruction will miss the material properties
of the 3-D surfaces, i.e. how each surface reacts to incident light, and how light
is back-scattered from the surface, and the 3-D texture and normals of the surface
are very difficult to estimate from stereo. These material properties are contained in
the BRDF (Bi-Directional Reflectance Function), which has a complicated general
form with many parameters, but can be simplified from some classes of materials
(e.g. isotropic, non-specular, . . . ).

The brute force solution to this problem would be to acquire the real scene under
all possible lighting conditions, and then select the right one from this huge data set.
Hopefully, only a subset of all possible lighting conditions is necessary to be able
to recompose any lighting condition: A simple set of lighting conditions (the light
basis) is used to capture the scene, and more complicated lighting conditions can be
computed by linear combination of the images taken under the light basis. This is
the solution adopted by Debevec et al. for their Light Stage setup [13, 16].

5.7 Adding Titles or Subtitles

Whereas adding titles or subtitles in 2-D is rather straightforward (the titles should
not overlap with important information in the image, such as faces or text), it
becomes more problematic in stereoscopic movies.

Probably the most important constraint is that titles should never appear inside or
behind objects in the scene: this would result in a conflict between depth (the object
is in front of the title) and occlusion (the text occludes the object) which will cause
visual fatigue in the long run.

Another constraint is that titles should appear at the same depth as the
focus of attention, because re-adjusting the vergence may take as much as
1 s, and cause visual fatigue [17]. The position of the title within the image is
less important, since the oculomotor system has a well-trained “scanning” func-
tion for looking at different places at the same depth. If the display device has too
much crosstalk, then a better idea may be to find a place within the screen plane
which is not occluded by objects in the scene (because they are highly contrasted,
out-of-screen titles may cause double images in this case).

A gross disparity map produced by automatic 3-D reconstruction should be
enough to help satisfy these two constraints, the only additional information that
has to be provided is where is the person who is speaking. Then, the position and
depth can be computed from the disparity map and the speaker location: The posi-
tion can be at the top or the bottom of the image, or following the speaker’s face like
a speech balloon, and the depth should either be the screen depth (at zero disparity)
or the depth of the speaker’s face.
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6 Conclusion

This chapter has reviewed the current state of understanding in stereoscopic cinema.
It has discussed perceptual factors, choices of camera geometry at time of shoot-
ing, and a variety of post-production tools to manipulate the 3-D experience. We
included lessons from animated stereoscopy to illustrate how the creative process
proceeds when there is complete control over camera geometry and 3-D content,
indicating useful goals for stereoscopic live-action work. Looking to the future,
we anticipate that 3-D screens will become pervasive in cinemas, in the home as
3-D TV, and in hand-held 3-D displays. A new market in consumer stereoscopic
photography has also made an appearance in 2009, as Fuji released the W1 Real
3-D binocular-stereoscopic camera plus auto-stereoscopic photo frame. All of this
activity promises exciting developments in stereoscopic viewing and in the under-
lying technology of building sophisticated 3-D models of the world geared towards
stereoscopic content.
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Free-Viewpoint Television

Masayuki Tanimoto

Abstract Free-viewpoint TV (FTV) is an ultimate 3DTV that enables users to view
a 3D world by freely changing their viewpoints as if they were there. FTV will bring
an epochal change in the history of television since this function has not yet been
achieved by conventional TV technology. FTV will greatly contribute to the devel-
opment of industry, society, life and culture because FTV has an infinite number of
viewpoints and hence it has very high sensing and representation capabilities. Tan-
imoto Lab of Nagoya University proposed the concept of FTV and constructed the
world’s first real-time system including the complete chain of operation from image
capture to display. We also realized FTV on a single PC and FTV with free listening-
point audio. FTV is a ray-based system rather than a pixel-based system. We are cre-
ating ray-based image engineering through the development of FTV. MPEG regards
FTV as the most challenging 3D media and has been conducting the international
standardization activities of FTV. The first phase of FTV was MVC (Multi-view
Video Coding) and the second phase of FTV is 3DV (3D Video). MVC was com-
pleted in March 2009. 3DV is a standard that targets serving a variety of 3D displays.

1 Introduction

Television realized the human dream of seeing a distant world in real time and has
served as the most important visual information technology to date. Now, television
can provide us scenes overcoming distance not only in space but also in time by
introducing storage devices into television. However, TV shows us the same scene
even if we change our viewpoint in front of the display. This is quite different from
what we experience in the real world. With TV, users can get only a single view of
a 3D world. The view is determined not by users but by a camera placed in the 3D
world. Although many important technologies have been developed, this function
of TV has never changed.
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Tanimoto Lab of Nagoya University has developed a new type of television
named FTV (Free-viewpoint TV) [1–7]. FTV is an innovative visual media that
enables us to view a 3D scene by freely changing our viewpoints as if we were
there. FTV will bring an epochal change in the history of visual media since such a
function has not yet been achieved by conventional media technology. FTV is based
on the ray-space method [8–11].

The most essential element of visual systems is not the pixel but the ray. FTV
is not a conventional pixel-based system but a ray-based system. We have been
developing ray capture, processing, and display technologies for FTV [4].

We proposed the concept of FTV and verified its feasibility with the world’s
first real-time experiment [12,13], in which a real, moving object was viewed using
a virtual bird’s-eye camera whose position was moved freely in a space and was
controlled by a 3D mouse.

We have been developing technologies for FTV and realized FTV on a single PC
and a mobile player. We also realized FTV with free listening-point audio [14].

FTV opens a new frontier in the field of signal processing since its process such
as coding and image generation is performed in the ray-space, a new domain with
higher dimensionality than possible with conventional TV. A new user interface is
also needed for FTV to make full use of 3D information.

As the ultimate 3DTV, FTV needs higher performance in all related devices,
equipment and systems, as well as accelerated development of the electronics
industry. As the next-generation TV, it will find applications in the fields of commu-
nication, entertainment, advertising, education, medicine, art, archives and so on.
As part of the social information infrastructure, it can increase the security of public
facilities, roads, vehicles, schools, factories, etc.

In MPEG (Moving Picture Experts Group), FTV has been a framework since
2001 that allows viewing of a 3D world by freely changing the viewpoint. MPEG
regarded FTV as the most challenging 3D media and started the international stan-
dardization activities of FTV. The first phase of FTV was MVC (Multi-view Video
Coding) [15], which enables the efficient coding of multiple camera views. MVC
was completed in March 2009. The second phase of FTV is 3DV (3D Video) [16].
3DV is a standard that targets serving a variety of 3D displays.

In this chapter, the technologies, system and advanced ray technologies of
FTV are presented. The progress of international standardization of FTV is also
described.

2 Ray-Space Representation

We developed FTV based on ray-space representation [8–11]. In ray-space repre-
sentation, one ray in the 3D real space is represented by one point in the ray space.
The ray space is a virtual space. However, it is directly connected to the real space.
The ray space is generated easily by collecting multi-view images while giving
consideration to the camera parameters.
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Let (x; y; z) be three space coordinates and (�; �) be the parameters of direction.
A ray going through space can be uniquely parameterized by its location (x; y; z)
and its direction (�; �); in other words, a ray can be mapped to a point in this 5D, ray-
parameter space. In this ray-parameter space, we introduce the function f , whose
value corresponds to the intensity of a specified ray. Thus, all the intensity data of
rays can be expressed by

f .x; y; zI �; �/:
�� � � < �;��=2 � � < �=2:

(1)

We call this ray-parameter space the “ray-space.”
Although the 5D ray-space mentioned above includes all information viewed

from any viewpoint, it is highly redundant due to the straight traveling paths of the
rays. Thus, when we treat rays that arrive at a reference plane, we can reduce the
dimension of the parameter space to 4D.

We use two types of ray-space for FTV. One is the orthogonal ray-space, where
a ray is expressed by the intersection of the ray and the reference plane and the
ray’s direction as shown in Fig. 1 Another is the spherical ray-space, where the
reference plane is set to be normal to the ray as shown in Fig. 2 The orthogonal ray-
space is used for FTV with a linear camera arrangement, whereas the spherical
ray-space is used for FTV with a circular camera arrangement. The linear camera
arrangement is used for parallel view and the circular camera arrangement is used
for convergent view as shown in Fig. 3.

Both the orthogonal ray-space and the spherical ray-space are 4D and 5D, includ-
ing time. If we place cameras within a limited region, the obtained rays are limited,
and the ray-space constructed from these rays is a subspace of the ray-space. For
example, if we place cameras in a line or in a circle, we have only one part of the
data of the whole ray-space. In such cases, we define a smaller ray-space.

For the linear camera arrangement, the ray-space is constructed by placing many
camera images upright and parallel, as shown in Fig. 4, forming the FTV signal
in this case. The FTV signal consists of many camera images, and the horizontal

Fig. 1 Definition of
orthogonal ray-space
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Fig. 2 Definition of spherical
ray-space
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Fig. 4 Acquisition of orthogonal ray-space

cross-section has a line structure as shown in Fig. 5. The line structure of the ray-
space is used for ray-space interpolation and compression. Vertical cross-sections of
the ray-space give view images at the corresponding viewpoints as shown in Fig. 6.

For the circular camera arrangement, the spherical ray-space is constructed from
many camera images, and its horizontal cross-section has a sinusoidal structure as
shown in Fig. 7. The sinusoidal structure of the ray-space is also used for ray-space
interpolation and compression.
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The hierarchical ray-space [10] is defined for scalable expression of 3D scene.
Figure 8 shows the concept of the hierarchical ray-space. Figure 9 shows free
viewpoint image generation at various distances using the hierarchical ray-space.

There are other representation methods of rays such as light field [17] and con-
centric mosaic [18]. The ray-space was proposed in 1994 [8]. On the other hand, the
light field and the concentric mosaic were proposed in 1996 and 1999, respectively.
The light field is the same as the orthogonal ray-space as explained in Fig. 10. The
concentric mosaic is the same as the spherical ray-space. It is explained in Fig. 11.
The spherical ray-space is obtained by arranging the orthographic images of Fig 11a
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as shown in Fig. 11c It is the same as the concentric mosaic obtained by arranging
the slit images of Fig 11b as shown in Fig. 11d. Therefore, the ray-space is a very
important original method that includes the light field and the concentric mosaic.

3 FTV System

3.1 Configuration of FTV System

Figure 12 shows a basic configuration of the FTV system. At the sender side, a 3D
scene is captured by multiple cameras. The captured images contain the misalign-
ment and luminance differences of the cameras. They must be corrected to construct
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Fig. 12 Basic configuration of FTV system

the ray-space. The corrected images are compressed for transmission and storage by
the MVC (Multi-view Video Coding) encoder.

At the receiver side, reconstructed images are obtained by the MVC decoder. The
ray-space is constructed by arranging the reconstructed images and interpolating
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them. Free-viewpoint images are generated by cutting the ray-space vertically and
are displayed on a 2D/3D display.

The function of FTV was successfully demonstrated by generating photo-
realistic, free-viewpoint images of the moving scene in real time. Each part of the
process shown in Fig 12 is explained in greater detail below.

3.2 Capture

We constructed a 1Darc capturing system shown in Fig. 13 for a real-time FTV
system covering the complete chain of operation from video capture to display [19,
20]. It consists of 16 cameras, 16 clients and 1 server. Each client has one camera
and all clients are connected to the server with Gigabit Ethernet.

A “100-camera system” has been developed to capture larger space by Nagoya
University (Intelligent Media Integration COE and Tanimoto Laboratory) [21]. The
system consists of one host-server PC and 100 client PCs (called ‘nodes’) that are
equipped with JAI PULNiX TM-1400CL cameras. The interface between cam-
era and PC is Camera-Link. The host PC generates a synchronization signal and
distributes it to all of the nodes. This system is capable of capturing not only
high-resolution video with 30 fps but also analog signals of up to 96 kHz. The
specification of the 100-camera system is listed in Table 1.

The camera setting is flexible as shown in Fig. 14. MPEG test sequences “Rena”
and “Akko & Kayo” shown in Fig. 15 were taken by camera arrangements (a) and
(c), respectively.

Fig. 13 1D-arc capturing
system

Table 1 Specification of 100-camera system

Image resolution 1392(H) � 1040(V)
Frame rate 29.4118 fps
Color Bayer matrix
Synchronization Less than 1�s
Sampling rate of A/D 96 kS s�1 maximum
Maximum number of nodes No limit (128 max for one sync output)
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Fig. 14 100-camera system
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Fig. 15 MPEG test
sequences

“Rena” “Akko & Kayo”

a b

3.3 Correction

The geometric correction [22,23] and color correction [24] of multi-camera images
are performed by measuring the correspondence points of images. This measure-
ment is made once the cameras are set.

An example of the geometric correction is shown in Fig. 16 [23]. Here, the
geometric distortion of a 2 dimensional camera array is corrected by the affine trans-
form. It is seen that the trajectory of correspondence point becomes square by the
geometric correction.

An example of color correction is shown in Fig. 17.
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Before rectification After rectification

Fig. 16 An example of geometric correction

Fig. 17 An example of color
correction Before correction

After correction

[Camera A] [Camera B]

[Camera A] [Camera B]

a

b

3.4 MVC Encoding and Decoding

An example of time and view variations of multi-view images is shown in Fig. 18.
They have high temporal and interview correlations. MVC (Multi-view Video Cod-
ing) reduces these correlations [15, 25, 26]. The standardization of multi-camera
image compression is progressing with MVC (Multi-view Video Coding) in MPEG.
Details are described in Sect. 5.

3.5 View Generation

Ray-space is formed by placing the reconstructed images vertically and interpolat-
ing them. Free-viewpoint images are generated by making a cross-section of the
ray-space.

Examples of the generated free-viewpoint images are shown in Fig 19. Com-
plicated natural scenes, including sophisticated objects such as small moving fish,
bubbles and reflections of light from aquarium glass, are reproduced very well.
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Fig. 18 Time and view variations of multi-view images

Fig. 19 An example of
generated FTV images at
various times and viewpoints

The quality of the generated view images depends on the view interpolation. The
ray-space interpolation is achieved by detecting depth information pixel by pixel
from the multi-view video. We proposed several interpolation schemes of the ray-
space [27–32].

The free-viewpoint images were generated by a PC cluster in [19,20]. Now, they
can be generated by a single PC, and FTV on a PC can be accomplished in real
time [31].

3.6 2D/3D Display

FTV needs a new user interface to display free-viewpoint images. Two types of
display, 3D display and 2D/3D display with a viewpoint controller, are used for
FTV as shown in Fig. 20.

Viewpoint control by head-tracking is shown here. Many head-tracking systems
have been proposed using magnetic sensors, various optical markers, infrared cam-
eras, retroreflective light from retinas, etc. Our head-tracking system uses only a
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Fig. 21 2D display with eye
tracking

conventional 2D camera and detects the position of a user’s head by image process-
ing. The user doesn’t need to attach any markers or sensors.

In the user interface using a 2D display, the location of the user’s head is detected
with the head-tracking system and the corresponding view image is generated. Then,
it is displayed on the 2D display as shown in Fig. 21.

Automultiscopic displays enable a user to see stereoscopic images without
special glasses. However, there are two problems: a limited viewing zone and dis-
creteness of motion parallax. Because the width of the viewing zone for each view
approximates the interpupillary distance, the view image does not change with the
viewer’s movement within the zone. On the other hand, when the viewer moves over
the zone, the view image changes suddenly.

In the user interface using the automultiscopic display, the function of providing
motion parallax is extended by using the head-tracking system. The images fed
to the system change according to the movement of the head position to provide
small motion parallax, and the view channel for feeding the images is switched for
handling large motion. This means that binocular parallax for the eyes is provided
by automultiscopic display, while motion parallax is provided by head tracking and
changing the image adaptively as shown in Fig. 22.
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Fig. 22 3D display with and without head tracking
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Fig. 23 Evolution of image systems

4 Creation of Ray-Based Image Engineering

4.1 Evolution of Image Systems

Figure 23 shows the evolution of image systems. In the past, image systems such
as photography, film and TV were individual systems. At present, they are digitized
and can be treated on the same platform as pixel-based systems. These pixel-based
systems are developing toward using more pixels. This trend is exemplified by Super
High-Definition TV [33]. Although Super HDTV has about 100 times the pixels of
SDTV, there is still only one view.

In the future, the demand for more pixels will be saturated, and more views will
be needed. This will result in the evolution from a pixel-based system to a ray-
based system. We have been developing FTV according to this scenario. Roughly
speaking, we can achieve SD-FTV by using the technologies of HDTV or Super
HDTV and balancing the number of pixels and views.

4.2 Ray Capture and Display

We are developing ray-reproducing FTV to create ray-based image engineering.
Ray-reproducing FTV consists of ray capture, ray processing and ray display.
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Fig. 24 Mirror-scan ray
capturing system

We developed a ray capturing system [34] shown in Fig. 24. It acquires a dense
ray-space without interpolation in real time. In this capturing system, a high-speed
camera and a scanning optical system are used instead of multiple cameras. The
important feature of this configuration is that the spatial density of a multi-camera
setup is converted to a time-density axis, i.e. the frame rate of the camera. This
means that we can increase the density of the camera interval equivalently by
increasing the frame rate of the camera. The scanning optical system is composed
of a double-hyperbolic mirror shell and a galvanometric mirror. The mirror shell
produces a real image of an object that is placed at the bottom of the shell. The
galvanometric mirror in the real image reflects the image in the camera-axis direc-
tion. The reflected image observed from the camera varies according to the angle of
the galvanometric mirror. This means that the camera can capture the object from
various viewing directions that are determined by the angle of the galvanometric
mirror. To capture the time-varying reflected images, we use a high-speed camera
with an electronic shutter that is synchronized with the angle of the galvanomet-
ric mirror. We capture more than 100 view images within the reciprocation time of
the galvanometric mirror. The collection of the view images is then mapped to the
ray-space.

However, this system can capture the spherical ray-space with the viewing zone
of only 55ı.

Then, we have developed a 360ı ray capturing system as shown in Fig. 25 [35,
36]. This system uses two parabolic mirrors. Incident rays that are parallel to the
axis of a parabolic mirror gather at the focus of the parabolic mirror. Hence, rays
that come out of an object placed at the focus of the lower parabolic mirror gather
at the focus of the upper parabolic mirror. Then, the real image of the object is
generated at the focus of the upper parabolic mirror and a rotating aslope mirror
scans rays at the focus of the upper parabolic mirror. Finally, the image from the
aslope mirror is captured by a high-speed camera. By using this system, we can
capture all-around convergent views of an object as shown in Fig. 26.

Figure 27 shows SeeLINDER [37], a 360ı, ray-producing display that allows
multiple viewers to see 3D FTV images. Structure of the SeeLinder is shown in
Fig. 28. It consists of a cylindrical parallax barrier and one-dimensional light-source
arrays. Semiconductor light sources such as LEDs are aligned vertically for the
one-dimensional light-source arrays. The cylindrical parallax barrier rotates quickly,
and the light-source arrays rotate slowly in the opposite direction. If the aperture
width of the parallax barrier is sufficiently small, the light going through the aperture
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Fig. 26 Object and captured images of 360ı ray capturing system
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Fig. 27 The SeeLINDER, a
360ı ray-reproducing display
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 with revolution.

Fig. 28 Structure of the SeeLinder

becomes a thin flux, and its direction is scanned by the movement of the parallax
barrier and the light-source arrays. By synchronously changing the intensity of the
light sources with the scanning, pixels whose luminance differs for each viewing
direction can be displayed. We can see the 3D image naturally, and the images have
the strong depth cues of natural binocular disparity. When we move around the
display, the image changes corresponding to our viewing position. Therefore, we
perceive the objects just as if they were floating in the cylinder.

We are going to connect these two systems directly in real time.
Figure 29 shows the progress made in 3D capturing and display systems. In this

figure, the ability of 3D capturing and display is expressed as a factor of the pixel-
view product, defined as (number of pixels) � (number of views). In Fig. 29, ①

denotes the factor of the 100-camera system mentioned earlier. We have also been
developing new types of ray-capturing and display systems. Their factors are indi-
cated by ② and ③; ② is a mirror-scan ray-capturing system [34] and ③ is the 360ı,
ray-reproducing SeeLINDER display [37].

In Fig. 29, the progress of space-multiplexing displays follows Moore’s Law
because it is achieved by miniaturization. The factor of the time-multiplexing
display is larger than that of the space-multiplexing display. The difference is a
result of time-multiplexing technology. The progress of capturing does not follow
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Fig. 29 Progress in increasing pixel-view product for 3D capturing and display

Fig. 30 Typical example of
orthogonal ray-space and a
horizontal cross-section

Moore’s Law because it depends on camera resolution and the number of cameras
used. Furthermore, the pixel-view product has increased very rapidly year after year
in both capture and display. This development strongly supports our scenario.

4.3 Ray Processing

Typical example of orthogonal ray-space with a horizontal cross-section is shown
in Fig. 30. The horizontal cross-section has a line structure. The slope of the line
corresponds to the depth of object.

The ray-space is a platform of ray processing. Various kinds of signal processing
can be done in the ray-space. Vertical cross-sections of the ray-space give real view
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Before filtering
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Fig. 31 An example of ray-space processing: object elimination by non-linear filtering

Fig. 32 Scene composition
by ray-space processing
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images at the corresponding viewpoints. Manipulation, division and composition of
3D scenes are also performed by ray-space processing.

Figure 31 shows an example of the ray-space processing. Bars in the scene
of Fig. 31a are eliminated in Fig. 31b by applying non-linear filtering to the ray-
space [38].

Composition of 2 scenes shown in Fig. 32 is performed by ray-space processing
as shown in Fig. 33 [39].
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Fig. 34 Cutting ray-space with curved planes for image generation with optical effects

Images with optical effects are generated by cutting the ray-space with a curved
plane as shown in Fig. 34. The shape of the curved plane is determined due to
an optical effect to be realized. Artistic images shown in Fig. 35 are generated by
cutting the ray-space with more general planes [40, 41].

5 International Standardization

We proposed FTV to MPEG in December 2001. Figure 36 shows the history of FTV
standardization at MPEG. In the 3DAV (3D Audio Visual) group of MPEG, many
3D topics such as omni-directional video, FTV [42], stereoscopic video and 3DTV
with depth disparity information were discussed. The discussion was converged on
FTV in January 2004. Then, the standardization of the coding part of FTV started as
MVC (Multi-view Video Coding) [15]. The MVC activity moved to the Joint Video
Team (JVT) of MPEG and ITU for further standardization processes in July 2006.
The standardization of MVC is based on H.264/MPEG4-AVC and was completed in
March 2009. MVC was the first phase of FTV. FTV cannot be constructed by coding
part alone. We proposed to standardize the entire FTV [43] and MPEG started a new
standardization activity of FTV in April 2007 [44].

The function of view generation in Fig. 12 is divided into depth search and inter-
polation. As shown in Fig. 37, an FTV system can be constructed in various ways,
depending on the location of depth search and interpolation. In case A, both depth
search and interpolation are performed at the receiver side as in Fig. 12. In case B,
depth search is performed at the sender side and interpolation is performed at the
receiver side. In case C, both depth search and interpolation are performed at the
sender side. Case B is suitable for the download/package and broadcast services
since processing at the sender side is heavy and processing at the receiver side is
light.

Case B was adopted by the FTV reference model [45] shown in Fig. 38. Possible
standardization items are FTV data format, decoder and interpolation. Interpolation
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Fig. 35 Examples of artistic images generated by cutting the ray-space with more general planes

2001/
12

Proposal
of FTV

2003/
10

CfC
on 3DAV

CfE
on MVC

CfP
on MVC

3DAV
seminar

2002/
12 time

2004/
10

2005/
07

MVC (moved to JVT on 2006/07)

Evaluation
of proposals

2006/
01

2007/
07

Requirements
on FTV

FTV/3DV

2004/03
Start MVC (Multi-view Video Coding)

3DAV

•Requirements on 3DAV
•EEs on 3DAV

•CEs on
MVC

2007/04
Start FTV/3DV

2001/12
Start 3DAV

2009/05
MVC completed

Targets
converged
on FTV

Second phase
of  FTV

First phase of  FTV

2009/02
Requirements
on 3DV

Fig. 36 History of FTV Standardization at MPEG



Free-Viewpoint Television 73

Capture Correction Encoder Decoder
Depth
Search

Display
Transmission

/Storage
Interpolation

Capture Correction Encoder Decoder
Depth
Search Display

Transmission
/StorageInterpolation

Capture Correction Encoder Decoder
Depth
Search Display

Transmission
/Storage Interpolation

receiversender

sender

sender

receiver

receiver

Case A

Case C

Case B

FTV Data

FTV Data

FTV Data

FTV Data

FTV Data

FTV Data

view generation

b

c

a

Fig. 37 3 cases of FTV configuration based on the positions of depth search and interpolation

Capture
Correction
/Conversion

Encoder Decoder Display
Transmission

Interpolation

Storage

Multi-Camera Captured Multi-
View Images

Corrected Multi-View
Images and Multi-

View Depth

Free
Viewpoint

Images

FTV
data format

Reconstructed Multi-
View Images and
Multi-View Depth

Fig. 38 FTV reference model and standardization items

might be informative. Thus, FTV is a new framework that includes a coded repre-
sentation for multi-view video and depth information to support the generation of
high-quality intermediate views at the receiver. This enables free viewpoint func-
tionality and view generation for 2D/3D displays. Free-viewpoint images can be
generated efficiently from multi-view images using multi-view depth information
[46, 47].

In January 2008, MPEG-FTV targeted the standardization of 3DV (3D Video).
3DV is the second phase of FTV and a standard that targets serving for a variety of
3D displays. The introduction to 3DV is described in the reference [16].

3DV has two application scenarios [48]. One is enabling stereo devices to
cope with varying display types and sizes, and different viewing preferences. This
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includes the ability to vary the baseline distance for stereo video to adjust the
depth perception, which could help to avoid fatigue and other viewing discomforts.
Another is support for high-quality auto-stereoscopic displays, such that the new
standard enables the generation of many high-quality views from a limited amount
of input data. These two scenarios can be realized by decoupling the capture and
display using the view synthesis function of FTV.

Multi-view test sequences with depth have been collected and the reference
softwares for depth estimation and view synthesis have been determined.

For further information on MPEG-FTV activity, please follow the link and
subscribe MPEG-FTV. https://mailman.rwth-aachen.de/mailman/listinfo/mpeg-ftv

6 Conclusion

We have developed FTV that enables users to view a 3D scene by freely changing
the viewpoints. FTV is the most advanced visual system and will bring an epochal
change in the history of television.

FTV is an ultimate 3DTV that captures and transmits all visual information of
a 3D scene, a natural interface between human and environment, and an innovative
tool to create new types of content and art.

FTV will find many applications in the fields of broadcast, communica-
tion, amusement, entertainment, advertising, exhibition, education, medicine, art,
archives, security, surveillance, and so on.

The most essential element of visual systems is ray. FTV is not a conventional
pixel-based system but a ray-based system. FTV needs advanced technologies of
ray capture, processing and display. We are creating ray-based image engineering
through the development of FTV.

The international standardization of FTV has been conducted in MPEG. The
introduction of FTV is not far because the interactive view generation of FTV has
already been realized in real time. Therefore, we can enjoy FTV on a PC or a
portable player if the standards of FTV are available and FTV contents are delivered
over internet or with packaged media.
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Free-Viewpoint Video for TV Sport Production

Adrian Hilton, Jean-Yves Guillemaut, Joe Kilner, Oliver Grau,
and Graham Thomas

Abstract Free-viewpoint video in sports TV production presents a challenging
problem involving the conflicting requirements of broadcast picture quality with
video-rate generation of novel views, together with practical problems in develop-
ing robust systems for cost effective deployment at live events. To date most multiple
view video systems have been developed for studio applications with a fixed cap-
ture volume, controlled illumination and backgrounds. Live outdoor events such as
sports present a number of additional challenges for both acquisition and processing.
Multiple view capture systems in sports such as football must cover the action taking
place over an entire pitch with video acquisition at sufficient resolution for analy-
sis and production of desired virtual camera views. In this chapter we identify the
requirements for broadcast production of free-viewpoint video in sports and review
the state-of-the-art. We present the iview free-viewpoint video system which enables
production of novel camera views of sports action for use in match commentary,
for example the referees viewpoint. Automatic online calibration, segmentation and
reconstruction is performed to allow rendering of novel viewpoints from the mov-
ing match cameras. Results are reported of production trials in football (soccer) and
rugby which demonstrate free-viewpoint video with a visual quality comparable to
the broadcast footage.

1 Introduction

Multiple view video systems are increasingly used in sports broadcasts for produc-
tion of novel free-viewpoint camera views and annotation of the game play. This
chapter identifies the requirements for free-viewpoint video in sports TV broadcast
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production, reviews previous work in relation to the requirements and presents a
system designed to meet these requirements. Free-viewpoint video in sports TV
production is a challenging problem involving the conflicting requirements of broad-
cast picture quality with video-rate generation. Further practical challenges exist
in developing systems which can be cost effectively deployed at live events. To
date most multiple view video systems have been developed for studio applications
with a fixed capture volume, controlled illumination and backgrounds. Live outdoor
events such as sports present a number of additional challenges for both acquisition
and processing. Multiple view capture systems in sports such as football must cover
the action taking place over an entire pitch with video acquisition at sufficient reso-
lution for analysis and production of desired virtual camera views. The iview system
presented in this chapter is based on use of the live broadcast cameras as the primary
source of multiple view video. In a conventional broadcast for events such as pre-
mier league football these cameras are manually operated to follow the game play
zooming in on events as they occur. Advances are presented in real-time through the
lens camera calibration to estimate both the camera pose, focus and lens distortion
from the pitch marks. Free-viewpoint video is then produced starting with a volu-
metric reconstruction followed by a view-dependent refinement using information
from multiple views. Results are presented from production trials at international
soccer and rugby sports events which show high-quality virtual camera views. This
article is intended to be of benefit to the research community in defining broadcast
industry requirements and identifying open problems for future research.

There is a demand from the broadcast industry for more flexible production tech-
nologies at live events such as sports. Currently cameras are operated manually with
physical restrictions on viewpoint and sampling rate. The ability to place virtual
cameras at any location around or on the pitch is highly attractive to broadcast-
ers greatly increasing flexibility in production and enabling novel delivery formats
such as mobile TV. Examples of the type of physically impossible camera views
which could be desirable are the goal keepers view, a player tracking camera or
even a ball camera. Virtual Replay1 is an example of an existing technology using
synthetic graphics and manual match annotation derived from broadcast footage of
premier league soccer which allows viewers to select a virtual camera view. Manual
annotation is labour intensive and the resulting virtual replay using generic player
models and approximate movements is far from realistic. Ultimately the challenge
is to achieve the flexibility of synthetic graphics with the visual-quality of broadcast
TV in an automated approach.

This article presents the iview2 system which is being developed to address the
requirements of broadcast production. The system primarily utilises footage from
match cameras used for live TV broadcast. Match cameras provide wide-baseline
views and are manually controlled to cover the play. Typically major sporting
events will have 12–18 manually operated high-definition cameras in the stadium.

1 Virtual Replay, http://www.bbc.co.uk/virtualreplay.
2 iview, http://www.bbc.co.uk/rd/iview.

http://www.bbc.co.uk/virtualreplay
http://www.bbc.co.uk/rd/iview
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However, only a fraction of these will be viewing specific events of interest for
production of free-viewpoint renders to enhance the commentary, other cameras are
used for coverage of the pitch, crowd, coaches and close-up shots of players. Robust
algorithms are required for both recovery of camera calibration from the broadcast
footage and wide-baseline correspondence between views for reconstruction or view
interpolation. At major sports events direct access to match cameras is limited as
they are often operated by a third-party. Therefore iview uses a method for real-time
camera calibration from the match footage [45]. Player segmentation is performed
using chroma-key and difference matting techniques independently for each cam-
era view [15]. Automatic calibration and player segmentation for moving broadcast
cameras results in errors of the order of 1–3 pixels which is often comparable to
the size of players arms and legs in the broadcast footage. Robust reconstruction
and rendering of novel viewpoints is achieved in the iview system by an initial
conservative visual-hull reconstruction followed by a view-dependent refinement.
View-dependent refinement simultaneously refines the player reconstruction and
segmentation exploiting visual cues from multiple camera views. This achieves free-
viewpoint rendering with pixel accurate alignment of neighbouring views to render
novel views with a visual quality approaching that of the source video. Results
of the current iview system in production trials are presented. Limitations of the
existing approaches are identified with respect to the requirements of broadcast pro-
duction. This leads to conclusions on future research advances required to achieve
free-viewpoint technology which is exploited by the broadcast industry for use in
production.

2 Background

Over the past decade there has been significant interest in the interpolation of novel
viewpoints from multiple camera views. Recently research in this field for novel
viewpoint interpolation from multiple view image sequences has been referred to
as video-based rendering, free-viewpoint video or 3DTV. In this section we review
the principal methodologies for synthesis of novel views with a focus on the appli-
cation to view-interpolation in sports. We first review the state-of-the-art in studio
based systems where multiple cameras are used in an environment with controlled
illumination and/or backgrounds. Studio systems have been the primary focus of
both research and film production to capture a performance in a limited volume
and allow playback of novel view sequences as free-viewpoint video. The exten-
sion of multiple camera systems to sports TV production requires capture of much
larger volumes with relatively uncontrolled illumination and backgrounds. Here
we review the current state-of-the-art in sports production of live events such as
football and identify the limitations of existing approaches in the context of TV
production.
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2.1 Methodologies for Free-Viewpoint Video

Three principal methodologies have been investigated to rendering novel views of
scenes captured from two or more camera viewpoints: interpolation; reconstruction;
and tracking.

Interpolation: View interpolation directly estimates the scene appearance from
novel viewpoints without explicitly reconstructing the 3D scene structure as an
intermediate step [5, 38]. Interpolation between camera views requires the 2D-to-
2D image correspondence. Given the correspondence image morphing and blending
techniques can be used to interpolate intermediate views [38]. Commonly multiple
view epipolar and tri-focal constraints on visual geometry are used in the estimation
of correspondence to reduce complexity and ambiguities which implicitly exploit
the 3D scene structure. Both sparse feature based and dense stereo techniques have
been used to estimate correspondence for view interpolation. View interpolation
avoids the requirement for explicit 3D reconstruction but is in general limited to
rendering viewpoints between the camera views. This has the advantage of circum-
venting inaccuracies in explicit reconstruction due to errors in camera calibration.
The quality of rendered views is dependent on the accuracy of correspondence
to align multiple view observations. Extrapolation of novel views has also been
investigated based on the colour consistency of observations from multiple views
without explicit reconstruction [24]. A comprehensive survey of image-based ren-
dering techniques for novel view synthesis is given in [40]. Recent research [44] has
demonstrated perceptually convincing rendering of novel viewpoints for dynamic
scenes by purely image-based interpolation between real camera views.

Reconstruction: Reconstruction of the 3D scene structure from multiple view
images is commonly used as a basis for rendering novel views. The intermediate
reconstruction of scene structure provides a geometric proxy which can be used to
combine observations of scene appearance from multiple views in order to render
images from novel viewpoints. The visual geometry of multiple views is now well
understood [21]. Given multiple views of a dynamic scene such as a moving person
a number of approaches have been used for reconstruction: visual-hull; photo-hull;
stereo; and global shape optimisation. Visual-hull reconstruction intersect silhou-
ette cones from multiple views [10, 29–31, 34] to reconstruct the maximal volume
occupied by the scene objects. This requires prior segmentation of the foreground
scene objects, such as a person, from the background. The photo-hull [39] is the
maximal photo consistent volume between multiple views. Given the visual-hull as
the maximum occupied volume the photo-hull is a sub-volume. An advantage of
the photo-hull is that it does not require prior segmentation of the foreground. The
photo-hull relies on the availability of a photo-consistency measure to distinguish
different surface regions, in real scenes this may result in poor results. To over-
come limitations of the visual and photo hull approaches a number of probabilistic
approaches to volumetric reconstruction from multiple views have recently been
introduced [3, 11]. A survey of volumetric reconstruction approaches with further
details can be found in [41]. Both the visual and photo hull are maximal approxi-
mations of the scene structure and therefore commonly result in significant visual
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artifacts in rendering novel views due to inaccurate geometry and resulting mis-
alignment of the observed images. Stereo correspondence has been used for surface
reconstruction from image pairs, a survey of approaches is given in [36]. Stereo
reconstruction from multiple views has been used to reconstruct dynamic scenes of
moving people [25, 48]. Dense correspondence from stereo ensures reconstruction
of a surface which align the multiple view images reducing artifacts in rendering
of novel views. However, stereo correspondence requires local variation in appear-
ance across the scene surface and is ambiguous in regions of uniform appearance.
To overcome this limitation research has investigated the combination of volumet-
ric and stereo reconstruction in a global optimisation framework to ensure robust
reconstruction in areas of uniform appearance and accurate alignment of images
from multiple views [32, 42]. A comparison of approaches for reconstruction of
static scenes from multiple views is presented in [37].

Tracking: An alternative approach to rendering novel viewpoints of a known
scene such as a moving person is model-based 3D tracking as proposed for free-
viewpoint video [4]. Model-based 3D tracking of human motion from multiple
view video has received considerable attention in the field of computer vision [33].
A generic 3D humanoid model approximating the surface shape and underlying
skeletal structure is aligned with the image observations to estimate the pose at
each frame. Typically an analysis-by-synthesis framework is used to optimise the
pose estimate at each frame which minimises the re-projection error of the 3D
humanoid model with the multiple view image observations. State-of-the-art multi-
ple view 3D tracking of human motion [4,8] achieves reconstruction of gross human
pose but does not accurately reconstruct detailed movement such as hand rotations.
Given the estimated pose sequence the model can be rendered from an arbitrary
viewpoint. Shape reconstruction and observed appearance of the subject over time
can be used to render realistic free-viewpoint video of the subjects performance.
Model-based 3D tracking has the advantage over direct reconstruction of providing
a compact structured representation. However, the shape reconstruction is limited by
the constraints of the prior model. Recent approaches [1, 47] have exploited mod-
els constructed from examples of the performer to more accurately represent body
shape and incorporate loose clothing and long-hair. Current 3D human tracking
systems from video are limited to individual people in a controlled studio environ-
ment with high-quality imagery. If these limitations are overcome this approach has
the potential to provide an alternative for free-viewpoint rendering in more general
scenes such as sports with multiple players and inter-player occlusion.

Given multiple camera views of a scene containing multiple moving people
3D scene reconstruction is commonly used to provide an explicit intermediate
representation for rendering novel views. In subsequent sections we review the state-
of-the-art in both studio and outdoor reconstruction with respect to the requirements
of free-viewpoint video.
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2.2 Studio Production of Free-Viewpoint Video

Over the past decade there has been extensive research in multiple camera systems
for reconstruction and representations of dynamic scenes. Following the pioneer-
ing work of Kanade et al. [26] introducing Virtualized RealityTM there has been
extensive research on acquisition of performances to allow replay with interactive
control of a virtual camera viewpoint or free-viewpoint video. This system used 51
cameras over a 5-m hemisphere to capture an actors performance. Reconstruction is
performed by fusion of stereo surface reconstruction from multiple pairs of views.
Novel viewpoints are then rendered by texture mapping the reconstructed surface.
Other multiple camera studio systems with small numbers of cameras (6–12) have
used the visual-hull from multiple view silhouettes [30, 35] and photo-hull [46].
Real-time free-viewpoint video with interactive viewpoint control has also been
demonstrated [12, 30]. An advantage of these volumetric approaches over stereo
correspondence is the use of widely spaced views reducing the number of cameras
required. However, due to visual ambiguity with a limited number of views both
visual and photo-hull approaches are susceptible to phantom volumes and extrane-
ous protrusions from the true scene surface. All of these approaches typically result
in a reduction of visual quality relative to the camera image sequences in render-
ing novel views. This is due to the approximate scene geometry which results in
misalignment of images between views.

A number of subsequent approaches have exploited temporal consistency in
surface reconstruction resulting in improved visual quality by removing spurious
artifacts. Volumetric scene flow [46] was introduced to enforce photo-metric con-
sistency over time in surface reconstruction. Spatio-temporal volumetric surface
reconstruction from multiple view silhouettes using level-sets to integrate informa-
tion over time has also been investigated [13]. Incorporation of temporal information
improves the visual quality by ensuring smooth variation in surface shape over time.

Recent advances have achieved offline production of free-viewpoint video with a
visual quality comparable to the captured video. Zitnick et al. [48] presented high-
quality video-based rendering using integrated stereo reconstruction and matting
with a 1D array of eight cameras over a 30ı arc. Results demonstrate video-quality
rendering comparable to the captured video for novel views along the 30ı arc
between cameras. High-quality rendering for all-round 360ı views has also been
demonstrated for reconstruction from widely spaced views (eight cameras with
30–45ı between views) using global surface optimisation techniques which inte-
grate silhouette constraints with wide-baseline stereo [32, 42, 43]. This approach
refines an initial visual-hull reconstruction to obtain a surface which gives accu-
rate alignment between widely spaced views. As an alternative to refinement of
geometry reconstruction direct texture correspondence and interpolation using opti-
cal flow techniques has been used to correct misalignment due to errors in geometry
and achieve high-quality rendering on relatively low-resolution models [9]. This
approach could be advantageous in the presence of camera calibration error as
it avoids the requirement for a single surface reconstruction which is consistent
between all views.
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In film production rigs of high-resolution digital cameras have been used to
produce high-quality virtual camera sweeps at a single time instant, as popu-
larised by the bullet-time shots in the Matrix. These systems typically use very
narrow baseline configurations (approximately 3ı spacing) of hundreds of cam-
eras. Semi-automatic tools are used in post-production for interpolation between
camera views to render a continuous free-viewpoint camera move. This technology
is now in wide-spread use for film and broadcast advertising with acquisition of
both studio and outdoor scenes, such as dolphins jumping, to produce film qual-
ity sequences (http://www.timeslicefilms.com, http://www.digitalair.com). Virtual
views are limited to interpolating along pre-planned paths along which the cam-
eras are positioned. This restricts the general use of current technologies used in
film production for free-viewpoint video.

2.3 Free-Viewpoint Video in Sports and Outdoor Scenes

Transfer of studio technology to sports events requires acquisition over a much
larger area with uncontrolled conditions such as illumination and background. Stu-
dio systems typically have all cameras focused on a fixed capture volume together
with constant illumination and background appearance. To date the majority of stu-
dio systems have used fixed cameras with similar focal lengths. Achieving broadcast
quality free-viewpoint video of live events such as sports taking place over large
areas presents a significant additional challenge.

Initial attempts have been made to transfer studio-based reconstruction method-
ologies to acquisition and reconstruction of outdoor events. The Virtualized
RealityTM technology [26] was used in the EyeVision3 system to produce virtual
camera sweeps as action replays for Super Bowl XXXV in 2001. In this system
the pan, tilt and zoom of more than 30 cameras spaced around the stadium were
slaved to a single manually controlled camera to capture the same event from differ-
ent viewpoints. Switching between cameras was used in the Super Bowl television
broadcast to produce sweep shots with visible jumps between viewpoints.

More recently a number of groups have investigated volumetric [16] and image-
based interpolation techniques [6, 23, 28] for rendering novel views in sports. Grau
et al. [16] used a texture mapped visual-hull reconstruction obtained from multiple
view silhouettes to render novel views of the players. Their approach utilises a set
of 15 static cameras position around one end of a football pitch. The reconstruc-
tion allows flexible production of free-viewpoint rendering from any virtual camera
viewpoint. Rendered views are lower visual quality than the captured video due to
inaccuracies in the visual hull geometry causing misalignment between views which
results in blur and double exposure. This work forms the basis for the free-viewpoint
rendering system described in further detail in Sect. 4.

3 EyeVision, http://www.ri.cmu.edu/events/sb35/tksuperbowl.html.

http://www.timeslicefilms.com
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84 A. Hilton et al.

Interpolation of novel views between the real cameras without explicit 3D recon-
struction has also been investigate in the context of sports [6, 23, 28]. Inamoto
and Saito [23] allow free-viewpoint video synthesis in football by segmenting the
observed camera images into three layers: dynamic foreground (players); pitch; and
background (stadium). Segmentation of dynamic foreground regions correspond-
ing to players is performed based on motion and colour. Image-based novel view
synthesis is performed by morphing of the foreground layer between adjacent pairs
of views. Morphing is achieved by interpolation along the corresponding intervals of
the epipolar line for the foreground layer. Results from four static camera views of
the penalty area in football demonstrate interpolation of intermediate views. The
approach does not take into account inter-player occlusion which may result in
visual artifacts. A layered representation for the spatio-temporal correspondence and
occlusion of objects for pairs of views is proposed in [6] and applied to football view
interpolation. A MAP formulation is presented using the EM algorithm to estimate
the object layer segmentation and parameters for correspondence and occlusion.
This approach implicitly represents the 3D scene structure using correspondence
and does not require prior camera calibration to interpolate intermediate views.
Results are presented for interpolation of views between a pair of fixed cameras
covering the goal area in football. The layered representation allows view interpola-
tion of intermediate views in the presence of significant inter-player occlusion with
a visual quality comparable to the source video. Interpolation based approaches to
novel view rendering in sports are limited to the generation of intermediate views
between the match cameras. Potential advantages include avoiding the requirement
for camera calibration or explicit 3D reconstruction and direct rendering of novel
views from the camera images. Extrapolation of novel viewpoints away from the
captured views is limited due to the lack of explicit geometry and may result in
unrealistic image distortions.

All current systems for free-viewpoint video in sports use special rigs of aux-
iliary cameras to capture footage over a wide-area and result in a visual quality
below that acceptable for TV broadcast. In addition due to the use of static cameras
players are captured at relatively low resolution. One solution to this is the remote
controlled camera slaved to a single operator used in the EyeVision system allowing
close-ups of the critical action from multiple views. The use of auxiliary cameras in
addition to the match cameras adds a significant cost to rigging which may prohibit
deployment of free-viewpoint video at all but key sports events such as cup finals or
the SuperBowl. The added-value in broadcast production depends on the trade-off
between potential use and costs such as rigging additional cameras.

An attractive alternative would be to use the manually controlled match cam-
eras used for live broadcast which primarily focus on the play action of interest.
Use of match cameras would also avoid the prohibitive costs associated with rig-
ging of additional cameras. Subsequent sections of this article specify the multiple
camera capture requirements for sports and identify practical limitations in using
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either match cameras or special camera rigs. LiberoVision4 recently introduced a
commercial system for interpolation between pairs of match camera views in foot-
ball broadcast. This system has the advantage of only using the existing broadcast
cameras. Current technology is limited to viewpoint interpolation at a single static
frame and does not allow free-viewpoint rendering of the game play from novel
views such as the referee viewpoint. The system is currently in use for half-time
and post-match commentary of football. The Piero5 system developed by BBC
R&D allows annotation of the broadcast video footage together with limit change
in viewpoint using player billboards together with camera calibration to extrapolate
views around a single camera. Red Bee Media commercialised the Piero system
and have introduced free-viewpoints of static plays using manually posed player
models to illustrate the action. Current commercial technologies are limited to
view-interpolation at a single frame and do not allow novel camera views of the
action.

The iview free-viewpoint video system presented in this chapter aims to allow
rendering of live action from informative viewpoints which add to the broadcast
coverage of a sporting event. The system allows rendering of viewpoints on the
pitch such as the referees or goal keepers view of events using the broadcast
match cameras together with additional auxiliary cameras to increase coverage if
available. iview has introduced automatic methods for online calibration, segmen-
tation, reconstruction and rendering of free-viewpoint video for sports broadcast
production.

3 Specification of Requirements for TV Sports Production

There are three critical issues for use of free-viewpoint video in sports TV broad-
casts: visual quality; timing; and cost. In this section we identify the requirements
and constraints for use of free-viewpoint video in sports TV production.

3.1 Visual Quality for Broadcast Production

The hardest technical constraint for free-viewpoint video of novel views in TV
sports production is visual quality. Broadcast video quality equivalent to the live
footage from the broadcast cameras is ideally required to be acceptable to the view-
ing public. Visual artifacts such as flicker and jitter are unacceptable. In addition,
the visual resolution of the broadcast footage should be preserved without spatial
blur or ghosting artifacts. The occurrence of visual artifacts due to reconstruction

4 LiberoVision, http://www.liberovision.com.
5 Piero, http://www.bbc.co.uk/rd/projects/virtual/piero/.

http://www.liberovision.com
http://www.bbc.co.uk/rd/projects/virtual/piero/
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errors such as false volumes due to multiple player occlusion is also unacceptable.
In broadcast production the visual quality is a primary consideration which must be
satisfied for a new technology to be widely used.

High-definition (HD) cameras are now widely used for acquisition at live sports
events together with increasing use of HD transmission to the viewer. Free-viewpoint
rendering needs to achieve HD quality for rendering of full-screen shots. For sports
commentary free-viewpoint video rendering of novel viewpoints may also be used
as in-picture inserts at a lower resolution to illustrate different views of the play
requiring a lower resolution. However, the visual-quality at the displayed resolution
should be equivalent to that of conventional TV broadcast footage.

3.2 Production Requirements on Timing

The time taken to produce free-viewpoint video is critical to the potential uses
in broadcast. From a production standpoint free-viewpoint video would ideally
be available at video broadcast rate (<40 ms per frame) with 100% reliability on
visual quality allowing the sports producer to select free-viewpoint video streams as
additional cameras for broadcast. In practice due to both algorithm reliability and
computational delay there are three critical time points where free-viewpoint video
could be exploited in production:

Action Replay: Within seconds of an event happening (e.g. a player is fouled, and
a novel view is offered in place of conventional instant replays.
Action Review: Within a few minutes, such that a novel view can be presented
during half time or immediately that a match finishes.
Match Analysis: After many minutes, such that a novel view sequence made
available for use as part of a post-match analysis programme (which may be
later that day or week).

Aiming for the replay timeframe is an extreme challenge. Calibration, definition
of viewpoint and rendering must all be done within a small number of seconds.
Additionally, the production crew must make split second decisions about which
replays to present before the match action continues. Consequently, rendered free-
viewpoint sequences must be 100% reliable to be offered as additional shots. In
the case of review or analysis, time pressure is much more relaxed. Particularly for
analysis, it may even be possible to prepare novel view sequences remotely, hav-
ing had video sequences transmitted from the outside broadcast venue. Reliability
levels required for non time-critical post-match analysis are significantly lower as
it is possible to have an operator check sequence quality. The added value to sports
broadcast production of free-viewpoint video decreases rapidly with the time-taken
for shot production. Consequently the level of expenditure available for production
systems will also decrease depending on the production time.
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3.3 Acquisition Requirements

Production of sports events such as football for live broadcast typically use 12–18
match cameras at key locations around the stadium. This number may be increased
at major sports events such as the SuperBowl or a cup final. In the 2006 FIFA World
Cup6 26 HD cameras were used for coverage at each stadium as illustrated in Fig. 1.
The main broadcast cameras are typically located one side and on the ends of the
stadium to avoid disorienting the viewer with switches to reverse views. Additional
high-speed, overhead and reverse side camera views are typically used for action
replays in commentary. All cameras are manually controlled by individual operators
to cover both the action on the pitch and the crowd. This leads to the problem that
even with 15–20 broadcast cameras only a small number will be covering the same
area during normal play. An exception to this is events such as penalties where more
camera angles may be available on a particular player. In addition the framing varies
between cameras from zoomed in shots of individual players with little background
visible for calibration to wider shots of groups of players. Figure 2 shows a typical

Fig. 1 Typical stadium broadcast camera layout for a major sporting event. Out of 26 cameras
1–4, 10, 11, 19, 20 provide potentially useful views, 5–8, 18, 21 are high-speed cameras and the
remainder are at pitch level providing insufficient coverage for calibration or reconstruction

6 http://www.fifa.com/worldcup/archive/germany2006/news/newsid=13449.html.

http://www.fifa.com/worldcup/archive/germany2006/news/newsid=13449.html
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Fig. 2 Broadcast match camera views for a penalty event during a cup-final. Of the 15 match
cameras only the views shown were of the penalty

set of shots from match cameras for a penalty event during a cup-final match where
there were 15 match cameras in total only 8 of which captured the event.

Ideally the broadcast match camera views would be used for free-viewpoint video
production. However, as shown in Fig. 2 only a small proportion of these will have
overlapping fields of view even for a specific event in the game where normal play is
suspended. In addition as the match cameras are individually operated it is necessary
to calibrate the camera orientation and zoom from the broadcast footage. Calibration
requires fixed features such as pitch markings to be visible in the shot which may
not be the case for zoomed in shots of individual players or cameras at pitch level.
Therefore, in practice it may be desirable to use auxiliary cameras in addition to the
match cameras to ensure sufficient coverage for high-quality free-viewpoint video
production. Placement of cameras may be restricted to the pre-defined camera posi-
tions due to access restrictions. The requirement for additional cameras introduces
a significant cost for rigging and operation. This cost must be justified in terms of
the additional value of the free-viewpoint video shots.

In addition to the camera placement simultaneous access to the broadcast camera
footage from multiple camera feeds is required. Commonly only a limited number of
camera views of interest for a particular time instant are stored. These are typically
stored in a compressed format for subsequent editing in post match commentary.
Acquisition and storage of multiple camera views is required for subsequent free-
viewpoint video rendering.

3.4 Production Requirements for Use of Free-Viewpoint Video

An important consideration in the development of free-viewpoint technology for
sports is the end-use in production. To justify the additional cost and complex-
ity of free-viewpoint video technology the content produced must add value to
the programme. The added value to broadcasters and viewers must go beyond the
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short-term novelty of a special-effect such as the virtual camera fly-through shots
produced from the EyeVision system at the SuperBowl. Added value requires the
production of free-viewpoint camera shots which add to the experience of viewing
the game and the associated match commentary. Examples of shots which might
add value in a football (soccer) match include the referees view during a specific
event, the goal-keepers view or a players viewpoint. Virtual cameras able to gener-
ate free-viewpoint video of such views during or shortly after a particular event are
more likely to add-value and be exploited in the programme production.

4 A Free-Viewpoint System for Sports TV Production

This section presents a system being developed for free-viewpoint video in TV pro-
duction of sports events. The system is being developed to utilise footage from both
the manually operated match cameras and fixed auxiliary cameras if available to
ensure full stadium coverage. Automatic camera calibration from the pitch mark-
ings has been developed to allow combination of footage from multiple camera
views including the moving and zooming match cameras. In this section we review
both the acquisition system and algorithms developed to facilitate broadcast qual-
ity free-viewpoint video production. The current prototype system has been used
for production trials capturing test footage of live events for off-line processing to
evaluate the performance with respect to the broadcast production requirements, as
specified in Sect. 3. Results of evaluation for both international soccer and rugby are
presented.

4.1 System Overview

An overview of the free-viewpoint TV production system is shown in Fig. 3. Cap-
ture is performed using time synchronised acquisition from both auxiliary and match
cameras. Synchronisation using genlock is a standard process in conventional broad-
cast acquisition. Uncompressed camera footage is stored directly to disk for offline

Camera calibration 3D Reconstruction

Segmentation

Rendering

Multi−camera
image sequence

Capture Processing Replay

Fig. 3 Overview of the iview free-viewpoint video system
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processing. Automatic calibration of all cameras is performed from the pitch lines
of the captured footage. This avoids the need for prior camera calibration and allows
the use of footage from match cameras. The calibration is capable of real-time
operation for use during live match footage. Calibration estimates the extrinsic and
intrinsic parameters of each camera including lens distortion. Matting of foreground
(players) from the background (pitch) is performed using chroma and difference key
matting. This allows the approximate segmentation of the foreground players for
subsequent processing to produce free-viewpoint video. Aperture correction is also
applied to each video sequence to correct for the camera edge enhancement used in
standard broadcast footage.

The calibration of moving match cameras achieves an rms error of 1–2 pixels.
Likewise matting in relatively uncontrolled outdoor conditions with changing illu-
mination achieves a segmentation within 1–2 pixels of the true foreground with the
addition of background clutter for the crowd, hoardings and on-pitch advertising.
The accumulation of errors from calibration and matting can cause gross errors in
the reconstruction of the scene such as loss of limbs as their image size may also be
of the order of a few pixels. Therefore, robust algorithms have been developed for
scene reconstruction and free-viewpoint rendering in the presence of matting and
calibration errors.

Initial reconstruction from multiple views is performed using a conservative
visual-hull algorithm, taking into account the maximum error to ensure that the
foreground is within the reconstructed volume. This allows robust reconstruction of
a coarse approximation of the scene structure. However, scene rendering of novel
views using the conservative visual hull surface results in visual artifacts due to
errors in the geometry resulting in poor alignment of the foreground between views.
Given the conservative visual hull as an initial reconstruction techniques have been
developed for view-dependent refinement of both the surface reconstruction and
foreground matting. Initialisation of the view-dependent reconstruction from a con-
servative approximation of the scene structure ensures that the resulting refined
segmentation accurately separates the foreground and background in regions of
visual ambiguity by integrating information from multiple views. View-dependent
surface refinement enables robust reconstruction in the presence of camera cali-
bration error for the rendering of high-quality novel viewpoints. The replay module
renders the captured scene in realtime using the computed 3D model and the original
camera images deploying view-dependent texture mapping [7]. The replay mod-
ule is designed to work at interactive rates allowing free-viewpoint camera path
planning for editorial shot production.

Currently the capture, calibration, matting and visual-hull together with inter-
active rendering of novel views can be performed in real-time. Reconstruction
refinement is currently performed as an off-line process taking several minutes per
frame. The capture, reconstruction and rendering components are integrated in a
pipeline for use in live production.
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4.2 Video-Rate Calibration of Live Broadcast Footage

One way in which camera calibration data can be derived is by performing an initial
off-line calibration of the position of the camera mounting using a theodolite or
range-finder, and mounting sensors on the camera and the lens to measure the pan,
tilt, and zoom. However, this is costly and sometimes very difficult, for example if
it is not possible to gain access to the camera mounts, or if cameras are mounted
on non-rigid structures such as a crane. It is often the case in international sports
that the cameras are controlled by a host broadcaster and only access to the match
camera feeds are available.

A more attractive way of deriving calibration data is by analysis of the camera
image sequence. The lines on a sports pitch are usually in known positions, and these
can be used to compute the camera pose. In some sports, such as football, the layout
of some pitch markings (such as those around the goal) are fully specified, but the
overall dimensions vary between grounds. Pitches are also often raised in the middle
by 30–50 cm for drainage. For soccer the Football Association specifies that the
pitch length must be in the range 90–120 m, and the width 45–90 m; for international
matches, less variation is allowed (length 100–110 m and width 64–75 m). It is thus
necessary to obtain a measurement of the actual pitch.

For free-viewpoint video in sports TV production we have developed a real-
time (50–60 Hz) camera pose estimation system for the live broadcast cameras [45].
The online calibration estimates the camera position, orientation, focal length and
lens distortion from the match footage using pitch markings. Camera calibration
is computed to minimise the reprojection error of observed pitch lines. Calibration
is based on line tracking using a multi-hypothesis approach based on edge points
closest to the predicted line position. This provides robustness to the appearance of
other nearby edge points. The method includes an automatic initialisation process
implemented in such a way that the process can be carried out in about one second.
We also take advantage of the fact that TV cameras at outside broadcasts are often
mounted on fixed pan/tilt heads, so that their position remains roughly constant over
time. Further details can be found in [45], the stages of the calibration are as follows:

Initial Estimation of Camera Position: As broadcast cameras are commonly
mounted in a fixed location on a pan and tilt head an initial estimate of the
camera position is obtained from multiple images with a wide range of cam-
era orientations. The camera position, orientation and field-of-view is estimated
with the position constrained to a common value for all images. This initial cal-
ibration from images over a wide range of orientations significantly reduces the
ambiguity between distance of the camera from reference features and the focal
length. Evaluation of this approach found that an accuracy of 0.3 m for the initial
camera position estimate was obtained with 10–20 images across the pitch. This
estimate computed offline is used to initialise the camera tracking and can be
automatically refined during tracking from the online calibration.

Initialisation: A Hough transform is used to quickly establish how well the image
matches the set of lines that would be expected to be visible from a given pose.
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Fig. 4 Calibration initialisation using Hough space: (top) original image, (bottom) Hough space
for full image (left), top or left half of image (centre) and bottom or right half (right)

An exhaustive search process is used to establish the pose which gives the best
line matches to the observed image. For each pre-determined camera position,
we search over the full range of plausible values of pan, tilt, and field-of-view,
calculating the match value by summing the values in the bins in the Hough
transform that correspond to the line positions that would be expected. Figure 4
presents examples of the Hough space corresponding to the single frame shown.
The initialisation has been found to reliably give an initial estimate of the camera
calibration on sports footage in less than 1 s from an unknown orientation and
focal-length [45]. Figure 5 shows some example images successfully used for
initialisation of the calibration.

Tracking: The tracking process uses the pose estimate from the previous image,
and searches a window of the image centred on each predicted line position for
points likely to correspond to pitch lines. A straight line is fitted through each
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Fig. 5 Online calibration from pitch markings for two match cameras showing a synthetic grid
superimposed on the pitch
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set of points, and an iterative process is used to minimise the distance in the
image between the ends of the observed line and the corresponding line in the
model. Figure 6 shows the estimated camera angles for a 20 s sequence. Evalua-
tion of the real-time tracking on sports footage [45] shows that the noise error
in the estimated pan angle is approximately 0.02ı which corresponds to one
image line.

4.3 Foreground Segmentation

For the segmentation of players colour-based methods, like chroma-keying against
the green of football and rugby pitches have been considered. However, the colour of
grass varies significantly on pitches. This is due to inhomogeneous illumination in
the uncontrolled environment and anisotropic effects in the grass caused by the pro-
cess of mowing in alternating directions. Under these conditions chroma-key gives
a segmentation that is too noisy to achieve a high-quality visual scene reconstruc-
tion. Therefore two improved methods have been implemented and tested: A global
colour-based k-nearest-neighbour classifier and a motion compensated difference
key. After segmentation we compute the foreground/background colours for ‘mixed
pixels’ with a method similar to that described by Hillman in [22].
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K-nearest neighbour classifier: This classifier is controlled by a simple GUI:
The user clicks on positions in an image that represent background. The RGB colour
values of that pixel are stored as a prototypePi D I into a list. All pixels in the image
that are within a radius in RGB space r1 of the colour prototype are then marked
as background. The user continues to select background pixels until the resulting
segmentation is satisfactory. The segmentation Sk�nearest is computed by finding the
nearest colour prototype Pbest from the list with the minimum RGB colour distance
d of the pixel RGB values I :

d D argminI fdrgb.Pbest; I /g (1)

The segmentation is then given by:

Sk�nearest D
�
0 , d < r1
1 , otherwise

(2)

In order to get continuous values a soft key can be obtained using a second radius
r2. See [17] for details.

Motion compensated difference keying: Difference keying is often used as a sim-
ple segmentation technique. It is based on the difference in colour space between
a pixel I of the image and the corresponding pixel Ibg in the background plate
(Fig. 7). The background plate can be created by either taking a picture of the scene
without any foreground objects or if this is not possible the background plate can
be generated by applying a temporal median filter over a sequence to remove mov-
ing foreground objects. The difference between I and Ibg can be computed in any
colour space. We used the difference in RGB space here:

ı D drgb.I; Ibg/ (3)

The segmentation Sdiff is computed as a binarisation with threshold � :

Sdiff D
�
0 , ı < �
1 , otherwise

(4)

Difference keying assumes correspondences between image pixel I and Ibg in
the background plate and therefore requires static cameras. However, under known

Fig. 7 Difference keying. The camera image (middle) is compared against a spherical panorama
of the scene (left) giving the key (right)
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Fig. 8 Image of a sport scene from a broadcast camera (left) and detail (right)

nodal (pan, tilt) movement of the camera a background plate can be constructed by
piecewise projection of the camera images into a spherical map. This transformation
is derived from the camera parameters, as computed in the camera calibration
(Sect. 4.2). A clear plate of foreground objects is created by applying a tempo-
ral median filter on the contributing patches. The colour distance ı defined in (4)
is computed by projecting each pixel I into the spherical map using the camera
parameters of the image.

4.3.1 Aperture Correction in Broadcast Cameras

Broadcast cameras have a control known as aperture correction or sometimes detail.
The aperture correction is used to sharpen an image to emphasise high-frequency
image components and is therefore a high-boost filter. Figure 8 shows an example
of a broadcast image. The image was taken during a rugby match with a Sony HDC-
1500 high definition camera.

In sport productions it is quite common to add a lot of detail. The effect can be
seen in the detail picture (Fig. 8 bottom) as over- and undershoots of the image signal
(visible as black haloes of white shirts against the background). In broadcast this
feature is intended to give a better perceived contrast of objects. For segmentation
the effect is a challenge since significant colour changes take place at the edge of
objects of up to 3–5 pixels and can therefore be a significant problem.

The effect of the aperture correction can be compensated by a symmetric low-
pass filter applied to the luminance channel of the broadcast image. We propose to
compute the segmentation on the compensated image to improve the robustness and
quality of the key.

Figure 9 shows results of the difference keying applied to the original broad-
cast image (shown in Fig. 9a,b) and after compensation of the aperture correction
(Fig. 9c,d). In contrast to the global colour-based methods the pitch lines are
suppressed except in areas with shadows. As expected the segmentation in the
compensated image is more precisely aligned to object edges. This is clearly vis-
ible in the right image of Fig. 9. A more detailed analysis and description of the
implemented compensation filter can be found in [14].
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Fig. 9 Detail of difference key computed on broadcast image (a, b) and after compensation of
aperture correction (c, d)

4.4 Free-Viewpoint Video Production from Match Cameras

Free-viewpoint video production for outdoor sports scenes captured over large areas
must be robust to errors in the online camera calibration and natural scene mat-
ting. Typically for moving match cameras and chroma-key or difference matting
errors are of the order 1–3 pixels. In typical camera footage the foreground players
are relatively small 10–20 pixel width with arms and legs of the order 3–6 pixels.
Direct multiple view reconstruction from erroneous foreground mattes can result
in gross errors such as missing arms and legs. Due to the wide-baseline between
cameras direct stereo matching between adjacent views is also problematic. In this
section we present algorithms developed for robust rendering of novel views from
multiple cameras in the presence of matting and calibration errors. The approach
comprises two stages: conservative visual-hull reconstruction to recover a coarse
scene approximation which encloses the true scene surfaces; and view-dependent
optimisation to simultaneously refine the surface reconstruction and foreground seg-
mentation to estimate a scene approximation which aligns images across multiple
adjacent wide-baseline views and accurately segments the foreground player bound-
ary. This approach achieves high-quality rendering of novel views in the presence
of calibration and matting errors.

4.4.1 Conservative Visual-Hull

The conservative visual-hull (CVH) [27] is a volumetric approximation of the scene
from multiple view image silhouettes up to a maximum error in the camera calibra-
tion and matting. The CVH is a global multiple view reconstruction which encloses
the true scene surface. In the presence of camera calibration errors there is no single
global scene reconstruction which corresponds to the observations from all views.
A conservative visual hull with an n-pixel tolerance is obtained by dilating the image
silhouettes by n pixels prior to silhouette intersection. Typically in this work n D 3

gives an upper-bound on the combined calibration and image segmentation errors.
This ensures that the true scene surface projects to inside the dilated silhouettes for
all views given errors in calibration and matting.
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(a) Visual-hull (b) Conservative visual-hull (c) Local refinement

Fig. 10 Novel view rendering for scene reconstructions in the presence of camera calibration and
matting errors

Figure 10 presents examples of novel view rendering of a football match for the
visual-hull and conservative visual-hull. The visual-hull demonstrates the problem
of global reconstruction from multiple views in the presence of calibration and mat-
ting errors. A number of players have missing arms or legs. The CVH in Fig. 10b
reconstructs a surface which enclosed the true foreground scene objects including
narrow limbs. However, significant visual artifacts occur with the CVH rendering
as the surface is over extended at the boundaries and does not accurately align adja-
cent camera views for rendering. In our system the CVH provides an initial global
scene reconstruction which is then locally refined for accurate image alignment and
boundary extraction.

4.4.2 Local View-Dependent Visual-Hull and Segmentation Refinement

The CVH provides a robust initial estimate of a surface which encloses the true
scene surfaces. This surface is then locally refined with respect to a specific cam-
era viewpoint to obtain a surface approximation which aligns the adjacent images
and accurately segments the foreground boundaries. The CVH surface is an initial
approximation which provides constraints to enable wide-baseline stereo match-
ing between adjacent views. Stereo correspondence is constrained to lie inside the
CVH reducing the likelihood of false matches. This approach was previously intro-
duced for wide-baseline reconstruction in multiple camera studios [42] and has
recently been extended for refinement in outdoor sports scenes [20,27]. The critical
advance required for high-quality rendering in sports production is the simultane-
ous refinement of both the initial 2D image segmentation and initial CVH surface
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reconstruction. Refinement in a view-dependent framework is robust to errors in the
global camera calibration where there is no global reconstruction which is consis-
tent with all camera views. Local view-dependent refinement combines information
from multiple views together with priors on background appearance to achieve
robust segmentation and improvements in the surface reconstruction. Simultaneous
matting and reconstruction from multiple views of sports scenes was introduced in
[20]. This approach has been extended to incorporate prior information on back-
ground and foreground appearance and improved optimisation of multiple view
image cues.

The problem of simultaneous segmentation and reconstruction from multiple
views is formulated in a Bayesian framework [20] and extended to incorporate mul-
tiple visual cues [18]. The maximum likelihood solution leads to the minimisation
of an energy function:

E.l; d/ D �colourEcolour.l/C �matchEmatch.l; d /

C�contrastEcontrast.l/C �smoothEsmooth.l; d / (5)

where Ecolour.l/ and Ematch.l; d / are likelihood terms for image foreground and
background layer assignments based on colour models and for depth assignments
based on stereo matching scores. Econtrast.l/ and Esmooth.l; d / are contrast and
smoothness priors on the labelling. The parameters �colour, �match, �contrast and
�smooth control the contribution of each term.

The colour energy is defined in terms of the probability P.Ipjl D li / that a pixel
p belongs to a foreground or background layer li as:

Ecolour.l/ D
X
p2P

� logP.Ipjl/; (6)

A reference background image is constructed a priori from the image sequence by
mosaicing known background pixels and computing the local per pixel mean and
variance (similar to the approach in Sect. 4.3). The probability of a pixel belonging
to a foreground or background layer is evaluated according to a combination of local
per-pixel and a global Gaussian mixture colour models.

The contrast energy term encourages changes in layer label to occur in regions
of high image contrast and is based on the difference in image values for adjacent
pixels p and q as:

Econtrast.l/ D
X

.p;q/2N

�

4
econtrast.l;p;q/; (7)

where

econtrast.l;p;q/ D
�

0 if lp D lq;

exp
��ˇC.Ip; Iq/

�
otherwise:

(8)
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N denotes the pixel neighborhood, and C.�; �/ is a squared colour distance between
adjacent pixels.

The matching energy combines sparse and dense correspondence between cam-
era views:

Ematch.l; d / D
X
p2P

edense.l; d;p/C
X
p2P

esparse.l; d;p/ (9)

where edense.l; d;p/ is the photo-consistency measure with respect to adjacent cam-
era views at a depth d along the optical ray passing through pixel p. A robust
photo-consistency score is evaluated between the reference and adjacent camera.
The sparse correspondence energy esparse.l; d;p/ is introduced to constrain the
depth where feature correspondences have been detected between views using a
Hessian-affine feature detector with SIFT descriptors which is robust to changes in
viewpoint and illumination respectively.

The smoothness term constrains the local continuity of the reconstructed surface
as:

Esmooth.l; d / D
X

.p;q/2N
wp;qesmooth.l; d;p;q/; (10)

where

esmooth.l; d;p;q/ D (11)8<
:

min.jdp � dqj; dmax/ if lp D lq and dp; dq ¤ U ;
0 if lp D lq and dp; dq D U ;

dmax otherwise:

where U is the unknown label. Discontinuities between layers are assigned a con-
stant smoothness penalty equal to dmax , while within a layer the penalty is defined
as a truncated linear distance. This defines a discontinuity preserving function which
does not over-penalise large discontinuities within a layer. Iso-surfaces of the con-
servative visual hull are sampled which results in a reconstructed surface which is
biased towards the visual hull shape. This is useful in the case where other recon-
struction cues are weak which commonly occurs in regions of uniform appearance
such as the players shirts. Optimisation of the energy defined by (5) is performed
using the ˛-expansion graph-cut [2] to obtain an efficient approximation to the
global solution.

4.5 Free-Viewpoint Rendering Results

Production trials of the iview system have been conducted for football and rugby.
In both cases free-viewpoint video sequences were generated for events of edito-
rial value identified by sports producers. Sports events were captured using both the
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Fig. 11 Two moving broadcast camera views (top) and a locked-off camera view (bottom-left)
from a rugby match

moving broadcast cameras and a small number (4–6) of additional fixed cameras to
give coverage of the entire pitch area. Typically in a high-profile football or rugby
match with 12–18 cameras only 6–8 cameras are viewing the events of interest for
free-viewpoint production. All cameras in the production trials were captured in
uncompressed HD-SDI 4:2:2 format for subsequent processing. Figure 11 shows
camera views from an international rugby match for two match cameras and one
static camera with a typical wide-baseline and difference in framing between views.
The close-ups of one player show the difference in resolution of the players between
camera views. This illustrates the variation in viewpoint and scale for a set of multi-
ple view cameras. Players are at a relatively small scale in the static cameras due to
the requirement to cover the complete pitch. In the broadcast camera views players
are at a larger scale but the scale varies between views and there is a high-degree of
motion blur due to camera movement.

A comparison of results for segmentation algorithms for soccer and rugby is
presented in Fig. 12. Chroma-key and difference key are 2D image segmentation
techniques which show errors in segmentation as both additional foreground clut-
ter and areas of the foreground (arms/legs) which are incorrectly classified as
background. In contrast the multiple view segmentation and reconstruction refine-
ment algorithm presented in Sect. 4.4.2 produces a clean foreground segmentation
with correct classification of the foreground objects even in ambiguous situations
where the foreground and background have similar colour ie lines or muddy parts
of the players legs. This is due to the combination of information from multi-
ple views to overcome single view visual ambiguities.The refined segmentation
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Original Chroma-key Difference key Proposed

Fig. 12 Example of segmentation results on rugby (top) and soccer (bottom) data (see attached
video for full sequence)

allows improvements in the reconstruction quality and subsequent free-viewpoint
rendering.

Free-viewpoint rendering results for rugby and soccer trials are shown in Figs. 13
and 14. In both cases the virtual camera sequences were produced for production
trials to generate specific camera views which give added value to the match com-
mentary. In the case of the rugby sequence shots show specific game plays and for
soccer the shot was specified to view the offside line in a contentious incident. Free-
viewpoint camera moves can either take place at a single frame or whilst the action
is taking place according to the production requirements. All sequences were gen-
erated with automatic calibration, 2D segmentation, reconstruction and refinement.
View-dependent rendering is performed using the view-dependent geometry to ren-
der images from the adjacent views with dynamic feathering over cameras rendered
from different views [19]. The stadium backgrounds are manually modelled using
either images from the captured sequences as in Fig. 13a or a synthetic appearance
Fig. 13c. Rugby and soccer present different challenges for free-viewpoint produc-
tion, rugby is particularly challenging as the players are distributed across the field
and groups of players form rucks and malls where individual players come into con-
tact and cannot be isolated. The approach developed in the iview project does not
make any prior assumptions on player shape allowing high-quality free-viewpoint
rendering of both isolated and tightly packed groups of players.

Free-viewpoint rendering with the proposed approach achieves an image qual-
ity comparable to that of the input image sequences as demonstrated in the closeup
of Fig. 13b. Degradation in image quality will occur if there are no real cameras
which see a part of the scene or there are insufficient views for reconstruction. The
proposed approach is robust to the wide-baseline moving camera views at different
resolutions which occur in broadcast coverage. The iview free-viewpoint rendering
system takes advantage of the manually operated broadcast cameras which gener-
ally frame the play to give higher player resolution than the static cameras. The
current iview system can operate from the match cameras only but this limits cover-
age and virtual camera viewpoints to sections of the play where there are sufficient
views. Addition of a small number of auxiliary cameras adds to the production cost
but ensures complete coverage of the game play and increased range of views for
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(a) Rugby virtual camera sequences at 20 frame intervals

(b) Virtual camera closeup

(c) Rugby virtual camera sequences with a virtual stadium model

Fig. 13 Free-viewpoint video rendering of rugby to show pitch level views for commentary

free-viewpoint production. The correct trade-off between coverage and cost will be
determined by the production requirements for a specific sport or event. Production
trials have demonstrated free-viewpoint shots which add value to the commentary
and are of a quality suitable for broadcast.
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Fig. 14 Free-viewpoint video rendering of soccer to show an offside incident

5 Conclusion

Free-viewpoint video in live sports broadcast production presents significant chal-
lenges to achieve a visual quality comparable to captured video with minimal delay
from the manually controlled moving and zooming match cameras. In addition, cap-
ture of stadium sports such as soccer and rugby requires acquisition over a large area
with relatively uncontrolled conditions. Advances over previous studio based free-
viewpoint video are necessary to achieve robust reconstruction for wide-baseline
camera views in the presence of calibration and segmentation errors for manu-
ally operated moving camera which capture the scene at different resolutions. The
iview free-viewpoint video system presented in this chapter incorporates automatic
calibration, segmentation and reconstruction from the broadcast cameras. Online
calibration uses the pitch lines to estimate extrinsic and intrinsic parameters. Scene
reconstruction is performed in two stages: a conservative visual-hull reconstruction
provides a robust initial reconstruction in the presence of calibration and matting
errors; and view-dependent refinement of reconstruction and segmentation has been
introduced which combines cues from multiple views. This approach is robust
to online calibration and 2D image segmentation errors enabling reconstruction
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from wide-baseline moving and zooming broadcast cameras. Production trials of
the iview system have been conducted on soccer and rugby to generate novel
camera sequences which add to the match coverage. The iview system allows
automatic reconstruction and free-viewpoint rendering from the match cameras.
Results demonstrate free-viewpoint rendering with a visual quality comparable to
the captured video.

A number of open-problems remain to achieve widespread deployment in broad-
cast production: calibration and use of close-up and pitch level camera views
where pitch lines are not visible for calibration; rendering quality of close-up
free-viewpoint shots which are limited by the available camera resolution; vali-
dated accuracy of free-viewpoint rendering for match decisions (offside); temporal
coherence of free-viewpoint rendering and representation for moving scenes; robust
free-viewpoint rendering of desired views from match cameras only; and interfaces
for rapid free-viewpoint shot production.
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Challenges for Multi-View Video Capture

Bennett Wilburn

Abstract We discuss challenges in large scale multi-view video capture and use
broadcast soccer matches as a motivating application. How far away are we from
watching a soccer match at home and changing the virtual viewpoint smoothly from
full field views to closeups of individual players, from any angle? We start with a
discussion of the total number of pixels required to capture this event for two differ-
ent kinds of systems: a fixed array of high-resolution cameras, and an active array
of low-resolution cameras. Next we look at strategies for increasing the effective
frame rate of such systems to allow high-speed capture. Most multi-camera systems
are synchronized so all cameras trigger simultaneously, but staggering the triggers
samples more efficiently in time, with no additional cost in data bandwidth. We then
move from sampling issues to rendering realism and look at one open challenge that
is critical for video-based rendering of people: the capture and rendering of mov-
ing human hair. Finally, we consider the real-time processing and broadcast of this
media for a live soccer match.

1 Overview

This chapter will focus on open challenges in multi-view video capture and render-
ing. This is not an attempt to survey past work in the field, and as such we will not
make an attempt to exhaustively cite prior art. Instead, we will focus on unsolved
problems, discuss some prior results when appropriate, and when necessary add a
mix of back of the envelope calculations and suppositions. To motivate this discus-
sion, we consider a “holy grail” application: remotely viewing a professional soccer
match, with viewer control over the virtual viewpoint.

How far away are we from watching a soccer match at home while changing the
virtual viewpoint smoothly, from full-field views to closeups of individual players,
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from any angle? This sort of virtual viewpoint control can be almost arbitrarily diffi-
cult; imagine attempting to view a match from the viewpoint of one of the players. In
the following section, we’ll explore the spatial resolution requirements for a slightly
less ambitious goal: multiview video capture of an entire soccer field with enough
spatial resolution to match our usual broadcast viewing experience. In Sect. 3, we
turn our attention from spatial to temporal resolution, and discuss how to increase
the effective frame rate of a multiple camera array. We show a capture strategy that
increases the effective frame rate of a multiple camera system without increasing the
data bandwidth. After that, we consider open challenges in realism for multi-view
interpolation, specifically the capture and rendering of moving human hair. As sim-
ple as it may sound, hair is a major challenge for 3-D video of real people, and only
very basic steps have been made towards capturing and rendering real, moving hair
in a convincing fashion. Finally, we briefly explore the processing and transmission
requirements for a real-time broadcast.

2 Spatial Resolution

The view of televised soccer matches can vary from a perspective covering the entire
field to a closeup view of a single player. Of course, home viewers are limited to the
viewpoints provided by the broadcaster. How could we capture the entire field so
viewers could choose their own view? Is this possible or affordable given today’s
technologies? For the purposes of the discussion, we will limit the viewpoints to
typical television viewpoints: from the stands, with fields of view ranging from the
entire field to individual players. This precludes creating a view from the ground
level, or zooming in for a high-resolution image of only a player’s face. This sec-
tion estimates the pixel resolution requirements for this task and investigates two
different approaches to meeting those requirements.

2.1 Resolution Requirements

To start, consider capturing the entire soccer field from multiple camera positions.
Figure 1 shows a typical scenario. Suppose a system with a ring of video cameras
around the stadium, with each camera capturing the entire field every frame. We
would like to virtually zoom in on individual players, so the portion of the entire
image occupied by a player should have roughly the same resolution as our dis-
play device. This cropped image of the player (shown on the right in the figure)
corresponds to a certain area on the field, indicated by the dashed lines.

To approximate the pixel resolution required to capture this match, we consider
that cropped area as an image tile, and ask how many such tiles are required to
fill the entire field. We will do this calculation for a camera at midfield, at a thirty
degree vertical angle from the center of the field. For the perspective projection of
typical cameras, this tile-based estimate is only roughly correct, but under some
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Fig. 1 Image resolution requirements for full-field, multi-view video of a soccer match. We will
consider a ring of cameras around the stadium, with each camera capturing the entire field every
frame. The resolution should be high enough that a cropped region filled by a player (shown on the
right) has roughly the same pixel resolution as the viewer’s display

circumstances it is nearly exact. Some “view cameras”, for example, allow the film
plane to tilt relative to the lens plane. The Scheimpflug rule states that it is possible
to focus on a plane not parallel to the lens plane if the lens plane, focal plane and
film plane all intersect in one line. In this case, not only could the soccer field be
the plane of focus, but the image of parallel lines on the field would also remain
parallel, and our tile-based approximation would be nearly exact.

The dimensions of an international soccer field are roughly 110m � 80m. From
the camera’s perspective, a 2 m tall player covers a depth of 4 m on the field. Assume
our display devices are high-definition (HD), which we will take to be 1;280 � 720
pixels. At this aspect ratio, the horizontal extent of our image tile on the field would
be 4 � 1;280=720 � 7m. Filling a 110m � 80m field with 7m � 4m tiles requires
a 19� 16 grid of tiles, for a total of 304 tiles. Although the real number might be
larger (to capture the area around the corner flags, the player benches, and so on), we
will say we need roughly 300 HD image tiles, per camera, to cover the entire field.

2.2 Ring of Cameras

What are the implications of trying to film a soccer match with a ring of fixed cam-
eras, each with 300 times high-definition resolution? Wide-baseline camera arrays
for image-based rendering vary in size from small numbers of cameras [14, 15, 23]
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to tens [9] or even 100 [26]. Eight views is an accepted minimum number of cam-
eras for many algorithms, but with only four cameras on any side of a player,
occlusions could be troublesome. More cameras increase the hardware costs and
bandwidth requirements, but reduce the demands on the accuracy of the view inter-
polation methods. The “Eye Vision” multiple camera system captured Super Bowl
XXXV with a ring of over 30 cameras [6]. Even with that many cameras, the
transition from one view to an adjacent one produces a noticeable jump. We will
err on the side of visual fidelity and consider a 32-camera system. Each cam-
era in this proposed system streams video with 300 times HD resolution. (300
tiles) � (1,280 � 720 pixels/tile) D 276,480,000 pixels, or roughly 300 megapix-
els (MP) per frame. If the cameras run at 30 frames per second (fps), record two
bytes of data per pixel, and use 30:1 video compression, then each one will generate
300 MP � 30 Hz � 2B/30 D 600MB/s of video data, or 19 GB/s for the 32 cam-
era system. An entire 95 min game would require 110TB of storage media. Storage
is increasingly inexpensive, and today 1TB hard drives can be bought for as little
as $100 USD, so we could store an entire game using only $11,000 worth of hard
drives. Even assuming less aggressive image compression, or extra memory capacity
for error protection or backups, storing this multi-view is remarkably inexpensive.

Unfortunately, actually capturing the video is not nearly as affordable. Video
cameras with comparable resolution and frame rate have been or are being devel-
oped, primarily for military surveillance applications [1, 2], but they are not com-
mercially available today. We can do some rough calculations to understand why.
Broadcast quality video cameras must have good noise performance (even at night!),
so such a camera would probably need pixel widths of at least five microns. A
300 MP image sensor with five micron pixels would have an area of 70 cm2. Build-
ing such a large image sensor is impractical, which is why existing systems proposed
for military use reach high resolutions using camera arrays [1], or hybrid systems
with multiple lenses focusing onto arrays of image sensors [2]. Such video cam-
eras would still need the equivalent of 300 HD video encoders running in parallel to
transmit the data in real-time, or 10,000 encoders for the full 32-viewpoint camera
system.

At this point, one must ask why we are capturing all of this data. At any given
time, most of the field is occupied only by grass.1 In Sect. 2.3, we explore a much
more efficient capture system: using many active cameras to follow all of the
interesting subjects in a soccer game.

2.3 Active Cameras

Rather than record the entire field, from every camera, every frame, let us instead
consider using active cameras – motorized cameras which automatically pan, tilt

1 My father, an American uninterested in soccer, claims that watching soccer is nearly the same as
watching grass grow. He may be correct in a literal sense, but I am still trying to convince him he’s
watching the wrong part of the game.
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and zoom – to capture all of the interesting content in a soccer field. What would
using an active camera system for a professional match entail? We will say the
interesting content consists of 27 subjects: 22 players, one referee, two linesman,
the soccer ball, and a wide-angle view of the entire field for context. Assume that
for each subject we have a separate set of 32 HD video cameras around the stadium,
and that all the cameras in a set automatically pan, tilt, and zoom to follow their
subject around the field. For simplicity, we will neglect possible extra cameras to
capture fixed features like the goal cages, corner flags, and so on. This brings us to
a total of 864 HD video cameras.

864 active cameras might seem vastly more complicated than 32 fixed cameras,
but the active system has major efficiency advantages. With fixed cameras, we would
capture the equivalent of 300 HD images from each of 32 cameras spaced around
the stadium. The active system captures only 27 HD images from each of 32 views.
This is over an order of magnitude reduction in the total amount of captured pixels,
data bandwidth, and processing power required at each view. Now, the captured
video from each match could be stored using only $1 K of storage media. A tenfold
decrease in data bandwidth brings the system video bandwidth down to roughly
2 GB/s of compressed data, almost within reach of today’s consumer bus protocols.

The advantage of the active array comes with a cost. Physically arranging the
system is non-trivial. One might imagine two-dimensional, 27-camera arrays spaced
roughly ten meters apart around the stadium. Active cameras must be dynamically
calibrated as they move, increasing the processing requirements for image-based
rendering at each frame. Active cameras must also dynamically and un-erringly
follow their subjects around the field, although one could imagine adding manual
assistance. The mechanics and optics for active cameras will certainly add cost to
the system, but these devices benefit from economies of scale, while 300 MP video
cameras will not.

With a ring of 32 high-resolution, fixed video cameras, we could duplicate some
of the advantages of the active system by throwing away the static pixels (i.e. most
of the grass) in each frame. However, the simple act of capturing all of the pixels
in the first place, only to discard them later, places a huge unnecessary cost on
the system. Active cameras are a much more efficient solution. The chapter in this
book by Takashi Matsuyama offers more information on the challenges and current
technologies for active camera systems.

3 High-Speed Multi-View Video

We have looked at the economics and efficiency of two different systems for cap-
turing multi-view video of a soccer match. For that exercise, we assumed a system
that would capture imagery of players at HD resolution, from 32 different view-
points, at 30 fps. Now let’s consider another aspect of sports television: high-speed
video. Many sports broadcasts are enhanced with imagery from high-speed cam-
eras. How can we add this functionality to the multi-view video systems envisioned
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in the previous section? The most straightforward design would simply replace the
cameras in the previous system with faster ones. Of course, high-speed cameras add
cost. Data rates also scale linearly with the frame rate, increasing the computational
and storage requirements for the system. In this section, we will explore spatiotem-
poral sampling aspects of multi-view video capture, and show how to increase the
effective temporal sampling rate of the system without capturing more images.

3.1 Spatiotemporal Sampling for Camera Arrays

Each pixel in a set of cameras samples what is known as the “plenoptic function”;
the pixel value is a measurement of the light passing through a certain point in a
certain direction. For the hypothetical camera array in this discussion, our rough
sampling requirements have been set as HD-resolution video from a fixed num-
ber of views around our subjects. Chai et al. derived much more precise limits on
camera spacing for Light Field Rendering [12] given the characteristics of the scene,
cameras, and rendered images [7]. In this chapter, we will look at camera array sam-
pling issues, but with an added dimension: time. With few exceptions, video camera
arrays in research and industry are designed so the cameras all trigger simultane-
ously. This has many advantages: if we switch between adjacent views, the scene
appears fixed, and if we try to analyze the structure of the scene from images taken at
the same time, we can reason about a static scene without considering motion. As we
will see, however, from a temporal sampling perspective, simultaneous triggering is
very inefficient [26].

To analyze space-time sampling strategies for moving scenes, we must first
decide how to measure sampling performance. One way is to look at image motion,
and in particular to try to capture images in such a way that the image motion
between any one image and its neighbors (i.e. images captured at nearby positions
and times) is minimized. This is reasonable because image-based rendering meth-
ods and vision algorithms like optical flow and multi-view stereo generally perform
best when the motion between input images is small. Motion between images from
a multiple video camera array is due to two sources: parallax motion as the view-
point changes from one camera to another, and object motion as the scene moves
over time.

For the rest of this discussion, we will consider a planar camera array, a common
arrangement for light field rendering and multi-view video capture. We assume that
images from all cameras are aligned to a common fronto-parallel reference plane,
shown in Fig. 2. This is equivalent to projecting each camera’s image onto the ref-
erence plane, then imaging it from a reference camera, a transformation of image
coordinates that can be represented with a homography. Figure 2 shows how motion
in the images on the reference plane is related to the scene geometry and velocities.
We assume the scene has near and far depth limits with signed distances 	Znear

and	Zfar from the reference plane, and the reference plane is optimally placed at a
depth Z0 as described by Chai et al. [7]. For a camera spacing of 	X , the parallax
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Fig. 2 Image motion

	p in the aligned images for a point P at a distance 	Zp from the reference plane
is 	p D 	x �	Zp D .	Zp CZ0/. If we define the relative depth d of the point
to be 	Zp D .	Zp CZ0/, this simplifies to 	p D 	X � d .

The worst-case parallax occurs at the near and far depth planes. The worst case
temporal motion will occur if P is moving at the maximum velocity in the scene, 
,
on the near-depth plane, such that the vector PtPtC1 is orthogonal to the projection
ray from C0 at time tC1. If we assume a narrow field of view for our lenses, we can
approximate this with a vector parallel to the focal plane, shown as v	t . If P has
velocity 
, the maximum temporal motion of its image in C0 is 
	tZ0 D .Z0 C
	Znear/. Equating this motion to the maximum parallax for P in a neighboring
camera yields

	t D 	X	Znear
Z0 (1)

This is the time step for which maximum image motion between views at the
same camera equals the maximum parallax between neighboring views. If we rep-
resent a view by two spatial .x; y/ coordinates and one time coordinate t , measuring
time in increments of the time step 	t and space in units of camera spacings pro-
vides a normalized set of axes to relate space-time views. Because motion due
to parallax and temporal motion are not orthogonal, the true distance measure is
the Euclidean spatial distance plus the temporal distance. Minimizing this distance
measure between views minimizes the maximum image motion.

This metric gives us a method to optimize our distribution of samples in space
and time, as well as a way to evaluate a given sampling strategy. Figure 3 plots
the .x; t/ coordinates of captured views for a linear camera array with different
values of 	x and 	t . Figure 3(a) compares two sampling strategies for a scene
with rapid object motion. The red dots show views captured using a linear array
with all cameras triggering simultaneously. Because the object velocities are fast,
the distance between horizontal lines of red dots is large; objects are moving a lot
between subsequent video frames. In this case, synchronized time samples is one
of the worst sampling patterns, because it creates dense rows of samples with large
areas blank. As the blue dots show, simply staggering the samples in time results in
a much more even sampling pattern using the same number of image samples.



114 B. Wilburn

Fig. 3 Space-time sampling for a linear video camera array. The plots show space and time coor-
dinates for images captured by a linear array of video cameras. The x coordinate represents camera
position along the array, and the t coordinate is the time the frame was captured by that camera.
Both figures show a uniform time sampling in red and an optimal distribution of samples in blue.
(a) For scenes with small camera spacings or high velocities, uniform sampling creates dense rows
of samples and leaves most of the space-time area unsampled. (b) For scenes with large camera
spacings or very slow motion, time shifting of the cameras makes little difference

In scenes with little motion (Fig. 3(b)), the temporal pattern makes little differ-
ence, since the main image motion is from parallax. Since the object motion is often
not known in advance, we want a sampling that works for a wide variety of motion
vectors. For fast moving scenes, the best timing for the cameras is one where the
available time resolution increases with increasing parallax distance from the main
sample. For N cameras, an optimized sample pattern starts each camera at Q� i mod
N, where i is the index of the camera, and Q is chosen to be roughly 1/3 and also
relatively prime with N. Over the entire baseline, every one of the frame-time/N
possible starting times is used. This is the pattern shown in blue in Fig. 3(a). Using
this offset timing pattern does not hurt in the low object velocities, since the changes
in time make little difference in the images that are formed.

Without fundamentally changing the hardware or increasing the data bandwidth,
we can improve the spatiotemporal sampling efficiency of the system. The total
number of images captured by the array is exactly the same, and the camera frame
rates are unchanged. We have simply added fixed delays to triggers of different
cameras. In some senses, this increase in temporal resolution is “free”.

3.2 Spatiotemporal View Interpolation

Staggered camera triggers may produce a more even sampling of images in space
and time, but the reader may be concerned that multi-view video captured in this
way is more difficult to analyze. Better spatiotemporal sampling would improve
even the simplest view interpolation algorithms like blending, but the sampling
densities required for ghost-free images using blending are prohibitive. Here, we
present one example algorithm for spatiotemporal view interpolation that exploits
improved sampling from staggered triggers: view interpolation using a multibase-
line, spatiotemporal optical flow variant [26]. We will again consider a planar
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camera array, with each image described by an .x; y; t/ coordinate. This method will
be approximately correct for arrays of other shapes, for example inward-pointing
cameras on a sphere, if the shape can be locally approximated as a sphere.

Optical flow typically computes flow between two images by iteratively warping
the first image to the second based on the flow field computed for pixels in the
second image. Because we have several input views, we choose to solve for a flow
field at the .x; y; t/ location of our desired virtual view. Similar approaches had
been used previously for optical flow from a single video [10, 28]. Computing flow
at a frame halfway between two images in a video sequence is more accurate and
avoids the hole-filling problems of forward-warping when creating new views. For
view interpolation, we compute a flow field for the desired view in our normalized
.x; y; t/ view space. The results in this chapter were produced by modifying the
robust optical flow estimator of Black and Anandan [4], using code available on
the author’s web site. We iteratively warp the nearest (according to the space-time
sampling distance described above) four captured images toward the virtual view
and minimize the weighted sum of pairwise robust data and smoothness error terms.

The standard intensity constancy equation for optical flow is

I.i; j; t/ D I.i C uıt; j C vıt; t C ıt/:

Here, .i; j; t/ represent the pixel image coordinates and time, and u and v are the
horizontal and vertical image velocities of a point in the image. To be precise, .u; v/
is the projection of the point’s velocity onto the image plane. Typically optical flow
is computed between subsequent images at times ıt apart in a single video. Because
we are analyzing motion between images captured at different times and from dif-
ferent camera positions, we also use the relative depth d of each pixel to account for
parallax motion between views. As before, the parallax motion of a point between
images from different camera positions d � .ıx; ıy/, where .ıx; ıy/ is the vector
from one camera position to the other in the camera array plane. This leads to the
following intensity constancy equation representing constancy between the virtual
view and a nearby captured image at some offset .ıx; ıy; ıt/ in the space of source
images:

Ivirtual.i; j; x; y; t/ D Isource.i C uıt C dıx; j C vıt C dıy; t C ıt/

The flow components are separated into parallax motion, determined by a point’s
relative depth d and the spatial distance between views, and temporal motion, the
product of the time between views and the projection .u; v/ of the temporal motion
onto the virtual view’s image plane.

For each virtual view, we choose input views for the flow algorithm by com-
puting a three-dimensional Delaunay triangulation of the camera sampling points
and selecting the views from the tetrahedron which encloses the desired .x; y; t/
view. These images are progressively warped toward the common virtual view at
each iteration of the algorithm. We cannot test the intensity constancy equation for
each warped image against a virtual view, so we instead minimize the error between
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the four warped images themselves, using the sum of the pairwise robust intensity
constancy error estimators. This produces a single flow map, which can be used
to warp the four source images to the virtual view. One could attempt to reason
about occlusions, but for the images in this chapter we simply blend the flowed
images using barycentric weights defined by the virtual view coordinates and the
tetrahedron formed by the input views.

Figures 4, 5, and 6 compare the results of synthesizing new views with different
methods. Figure 4 is a simple cross-dissolve between two subsequent images from
the same camera. This is not a satisfactory interpolation method because of the
object motion between frames. Figure 5 shows a new view created using a camera
array with staggered triggers. The new view was synthesized by blending the four
views captured from different positions nearest in space and time to the virtual view.
The ghosting artifacts are significantly reduced, but still objectionable. Using the
spatiotemporal optical flow algorithm, we can remove the ghosting artifacts, and
seen in Fig. 6.

The optical flow based, spatiotemporal view interpolation method just described
is an example of how better spatiotemporal sampling allows us to create new views
using a relatively simple, image-based algorithm. The method, however, relies on
dense camera spacing, so it will not work for the widely separated cameras pro-
posed earlier for soccer matches. The results suggest, however, that we could use
more sophisticated algorithms to take advantage of staggered camera timings for
widely spaced cameras. Such techniques would offer a powerful way to extend the
performance of any multiple video camera system.

Fig. 4 Blending two sequential images from the same camera is a poor interpolation strategy when
the object motion between frames is large
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Fig. 5 Using staggered camera triggers and nearest neighbor interpolation produces an interpo-
lated image significantly better than a simple cross-dissolve (blending)

Fig. 6 Using staggered camera triggers and the multibaseline spatiotemporal view interpolation
method, we can synthesize a new view without ghosting artifacts

4 Realism

Sections 2 and 3 discuss different aspects of data collection for multi-view video
systems, and describe one method for interpolating new virtual views. In this sec-
tion, we look more closely at generating photorealistic videos from a user-chosen,
smoothly moving virtual viewpoint. Given enough cameras, one could create the
illusion of smooth camera motion by simply hopping from one camera’s video to
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its neighbor’s, or blending between the two views’ images. This basic image-based
rendering approach, however, requires a high density of input views for visually
pleasing results [7]. Instead, using computer vision and graphics techniques, we
can model scenes captured from fewer views, then synthesize images that appear
to have been taken from new viewpoints. A review of such image-based modeling
and rendering techniques easily fills books, not to mention a mere chapter section.
Two such references for interested readers are the books by Shum et al. [19] and
Magnor [13]).

Although image-based modeling and rendering techniques have grown increas-
ingly powerful, some objects and materials are still difficult to capture and render.
Rather that catalogue all of these items, this subsection deals with just one such
material that is ubiquitous in our lives and media, and essential for convincing
images of real people: hair. With rare exceptions, the multi-view video community
avoids the challenges of rendering real dynamic hair by constraining their subjects
to have simple, easily-modeled hairstyles. For example, the main characters in The
Matrix, the movie which popularized view interpolation as a special effect, all had
short or slicked-back hairstyles. The hairstyle choice may have had nothing to do
with the special effects, but it certainly made the view interpolation simpler. Many
of our most-watched celebrities, however, are known for their long hairstyles. More
often than not female entertainers and athletes have long hair. For men, long hair
has often been used to express a rebellious attitude. The 1980s hairstyle of tennis
player Andre Agassi is one example; from the world of soccer, the iconic blonde
afro of soccer player Valderrama is another.

Hair poses a challenge for image-based rendering techniques because there are
so many of them on typical human heads 2, their structure is much too fine to capture
at typical camera image resolutions, and their optical properties are very complex.
View interpolation using purely image-based methods is difficult because changes in
the relative position between the viewer, hair and lights can cause dramatic changes
in the hair appearance, and also because the numerous occlusions and disocclusions
in different views of some hairstyles is not amenable to simple blending or image
warping. Standard multi-view stereo methods [21] are in general not appropriate
for hair because the hair width is such a tiny fraction of the typical image pixel
dimension.

Because more general-purpose image-based modeling methods do not apply
well to hair, researchers have developed systems specifically for hair. Readers are
referred to the survey by Ward et al. [24] for a review of the current state of the art
in graphics and vision for hair modeling. Several methods are capable of modeling
static hairstyles from real images. Some use constraints provided by varying illu-
mination [8, 16], while others use multiple view geometry [11, 25]. Wei et al. [22]
capture many images of a static hairstyle from different viewpoints and measure
2D hair orientations in the images to determine 3-D hair orientations. Their algo-
rithm attempts to grow hairs, starting from the scalp, in such a way that the hair

2 or none, in the case of this author
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orientations match the input views. Yamaguchi et al. [27] extended this method to
multi-view video of long moving hair, but produced only basic results for simple
motions and hairstyles.

What is the state of the art for photorealistic view interpolation of real, dynamic
hair? One indication is the latest SIGGRAPH publications on acquisition of real
hairstyles. Paris et al. presented a system called Hair Photobooth [17] in 2008. They
use a 16-camera array, three DLP projectors, and 150 LED lights on a dome to
capture very convincing models of the structure and appearance of real hairstyles.
The results are excellent, but the system requires that the object hold still, and the
hardware is not appropriate for an unconstrained event like a live soccer match.
Moreover, they show results only for short hairstyles. This work produces an
unprecedented level of realism for its intended use (static, relatively short and simple
hairstyles), but also shows how far we still are from a general capture and rendering
method for live performances.

5 Real-Time Processing and Broadcast

Assume we have a system that can capture a soccer match from multiple views, and
that we can analyze the content of the videos well enough to render realistic images
or individual players or the entire field, from smoothly interpolated viewpoints
around the stadium. What other challenges remain for providing this experience to
the home user? Sports media is notoriously time-sensitive; fans want to see matches
live, and the value of the media is worth substantially less the day after the match.
The multi-view video must therefore be processed in real-time, with latency on the
order of minutes, and certainly under an hour. Given real-time processing, we face
another challenge: how do we distribute this media to the home viewer? In this
section, we consider the challenges of real-time processing and broadcast.

5.1 Processing

The throughput of a live, broadcast multi-view camera system must be real-time,
say 30 fps. The permissible latency depends on how much delay the average soc-
cer fan is willing to tolerate in a live broadcast. Let us say that a 5 min delay is
acceptable. To get a sense for how close the state of the art is to satisfying this
constraint on 5 min latency, and real-time throughput, we will look at one represen-
tative technology: multi-view stereo. Generally speaking, some form of multi-view
stereo, depth estimation, or motion estimation is required for high quality view
interpolation.

Multi-view stereo is a well-researched field, and rather than summarize it here we
refer the reader to the survey by Seitz et al. [21]. The Middlebury Multi-view Stereo
web site [20] which accompanies that survey includes an evaluation that is still
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used today as a benchmark for comparing multi-view stereo algorithms. Fortunately,
this site reports execution times as well as accuracy measures, so we can use it to
compare the execution times of state of the art algorithms with the constraints for a
real-time broadcast.

We have been discussing a system with 32 views of the field (either for the whole
field, or for each individual player). As of this writing, the Middlebury web site
uses two datasets: “Temple”, with 312, 47, or 16 views; and “Dino”, with 363,
48, or 16 views. For the 16-view datasets, there are 23 methods compared for the
Temple data, and 22 for the Dino. The execution times have all been approximately
normalized to 3 GHz performance on their processors. A quick scan shows that
most algorithms take between 30 min and a few hours to analyze the data. This
is prohibitively long – 30 min is five orders of magnitude too slow for real-time! For
the 48-image datasets, essentially every method gets more accurate results, but the
run times are even longer.

Luckily, as the quality of multi-view stereo methods improved, researchers have
begun to focus on execution time, too. This is important for multi-view stereo
for static scenes, and critical for multi-view video. Currently, two of the methods
on the Middlebury evaluation show both high accuracy and high speed. Bradley
et al. [5] produce the most accurate results for the 16-view Temple dataset in the
least time (only 3 min, 33 s), and Pon et al. [18] produce very good results for the
Dino set in only 3 min. These datasets are VGA resolution (640 � 480 pixel). For
1;280 � 720 pixel resolution video, one would expect results three times slower, or
roughly 9 min. This is good news; the latency for multi-view stereo, using existing
techniques (but ignoring problematic areas like hair), is roughly the right order of
magnitude.

Although the latency for these fast multi-view stereo methods is acceptable, the
throughput for a single computer is not. The two methods cited above run at roughly
16,000 times real-time performance for one set of 32 HD videos. For our hypotheti-
cal stadium with active cameras tracking the players, ball, referee and linesman, the
throughput demands will be 26 times higher. Using existing technology, the system
throughput is 400,000 times too slow.

Closing a gap of five orders of magnitude to reach real-time performance will
require advances in algorithms and hardware, but is not inconceivable. Processors
with a hundred cores or more will be common in a few years, and for sporting
events a server farm of 100 machines or more would be economically feasible. This
might yield a throughput improvement of 1,000 times or more simply through brute
force parallelism. Another avenue for accelerating multi-view video processing is
exploiting the temporal coherence of the content. Each frame of multi-view video is
very similar to the previous one, and thus the structure of one frame is a very good
approximation for the next one. It seems possible, but non-trivial, to reach real-time
throughput within a few years using a combination of algorithmic and hardware
advances.
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5.2 Broadcast

Analyzing multi-view video in real-time is challenging, but transmitting that data
to the home viewer might be even more challenging. Transmission offers the least
flexibility because it must use existing national or global infrastructure. We might
be able to instrument a single stadium with as many cameras and computers as we
like, but it is unlikely that we will be able to radically change existing digital cable
or satellite television broadcast systems.

To get an idea of whether existing broadcast systems could support a soccer
match, let us make an assumption: for the active camera system, regardless of the
number of views of each subject, each multi-view video stream can be compressed
to the equivalent of two high-definition video streams. This may be too optimistic,
and readers are welcome to substitute more conservative estimates. For 27 total
objects (players, referees, the ball and a wide-angle view of the field), this means
the bandwidth equivalent of 54 HD video streams for a single match. Given this
approximation, let us examine whether or not we could broadcast a match using
existing systems.

As of this printing, Sky TV [22], the most-watched satellite television dis-
tributor in the United Kingdom, offers roughly 540 channels, of which 33 are
high-definition. Sky states that HD channels have up to four times the resolution
of regular channels, so we can estimate the total bandwidth of the Sky TV broad-
cast as 500=4 C 33 � 150 channels. Sky would have to dedicate one third of its
total video bandwidth to broadcast a single soccer match. The situation in the USA
is similar: DirectTV [3] offers roughly 150 HD channels and 150 regular definition
channels. Again, a single soccer match would occupy a significant fraction of the
total satellite bandwidth.

Although it seems technically feasible to broadcast the holy grail soccer match, it
may be economically impractical for the near future. Distributors will most likely be
unwilling to trade fifty revenue-generating HD channels for a single soccer match.
Also, one match may be feasible, but four soccer matches played at the same time
would fill the system bandwidth. Broadcasting the holy grail soccer match will
require a major evolution in television distribution. Then again, maybe this sort of
immersive media will prove to be the killer application that motivates deployment
of higher bandwidth media delivery systems using either cable TV, the internet, or
higher bandwidth satellite television.

6 Discussion

It appears that we have much work to do before we can broadcast a live soccer
match in such a way that home viewers can view the match from different per-
spectives in the stands, and smoothly zoom in to and pan around players of their
choice. Some aspects of this brief survey, however, are encouraging. Using today’s
technologies, albeit with a large financial investment, we could certainly capture
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the match in high-resolution. Active camera arrays will make this relatively effi-
cient, and if desired, staggered camera triggers will increase the effective frame rate
without adding more video data. Storing the compressed data for this match is not
only possible, but easily affordable today. It seems technically possible, although
financially impractical, to deliver this media using existing television distribution
systems.

The critical challenge to overcome is understanding and modeling the scene well
enough to smoothly interpolate new views, and doing this analysis in real-time. The
best methods for recovering 3-D scene structure are still several orders of magnitude
too slow for a real-time system. Still, one might imagine that we can accelerate
current methods sufficiently using parallel computing hardware. Even accelerating
our best existing methods to real-time rates, however, would be insufficient. There
are still scenes and content that we cannot handle properly. This chapter mentioned
one of the most challenging materials, hair, but there are certainly others (faces,
fingers, and so on). Before we can consider a real-time broadcast, we must be able
to automatically create convincing virtual views of the most challenging subjects,
regardless of the execution time.

Multi-view video broadcast is a very broad topic, and one book chapter is
certainly too short to do it justice. The chapter only briefly mentions critical com-
ponents like compression and rendering, and includes no discussion of more exotic
approaches to multi-video view interpolation. We have also avoided the question of
what kind of experience viewers would really want to see. Interpolating views along
a ring in the stadium may not be compelling enough to warrant major infrastructure
investments. Watching a soccer match from a virtual perspective on the field almost
certainly would be. It will be interesting to watch the evolution of multi-view video
technologies and see at what point these technologies become compelling, practical,
and affordable enough to enter our living rooms as mainstream products.
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Performance Capture from Multi-View Video

Christian Theobalt, Edilson de Aguiar, Carsten Stoll, Hans-Peter Seidel,
and Sebastian Thrun

Abstract Nowadays, increasing performance of computing hardware makes it fea-
sible to simulate ever more realistic humans even in real-time applications for the
end-user. To fully capitalize on these computational resources, all aspects of the
human, including textural appearance and lighting, and, most importantly, dynamic
shape and motion have to be simulated at high fidelity in order to convey the impres-
sion of a realistic human being. In consequence, the increase in computing power
is flanked by increasing requirements to the skills of the animators. In this chap-
ter, we describe several recently developed performance capture techniques that
enable animators to measure detailed animations from real world subjects recorded
on multi-view video. In contrast to classical motion capture, performance capture
approaches don’t only measure motion parameters without the use of optical mark-
ers, but also measure detailed spatio-temporally coherent dynamic geometry and
surface texture of a performing subject. This chapter gives an overview of recent
state-of-the-art performance capture approaches from the literature. The core of the
chapter describes a new mesh-based performance capture algorithm that uses a com-
bination of deformable surface and volume models for high-quality reconstruction
of people in general apparel, i.e. also wide dresses and skirts. The chapter concludes
with a discussion of the different approaches, pointers to additional literature and a
brief outline of open research questions for the future.

1 Introduction

Today, photo-realistically rendered virtual humans are becoming ever more impor-
tant elements of feature films. They can perform almost any type of action or stunt
at no risk of fatality, as long as an animator is capable of creating the desired effect.
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In recent years, ever more powerful computing hardware and rendering algorithms
have made it feasible to display detailed realistic humans not only in big-budget fea-
ture films, but even in real-time applications available to the end-user at home. For
instance, it is foreseeable that in the near future computer game engines will be able
to display characters with detailed texture and dynamic geometry, such as correctly
deforming cloth. Another application that will gain increasing importance is 3-D
video, a new form of media where either the user or the broadcasting company can
instantaneously change the viewpoint on a displayed scene. In both cases, it will be
important to be able to capture detailed time-varying 3-D models of humans.

Unfortunately, currently available acquisition technology frequently falls short of
capturing such rich 3-D scene descriptions that would be directly applicable in the
application scenarios mentioned above. Motion capture systems have been around
for many years, but they are merely able to measure skeletal motion under controlled
conditions. Currently, they are unable to capture shape, motion and appearance of
actors in general everyday apparel. Image-based rendering techniques have been
proposed to create novel view points of scenes by computationally combining views
taken from a few input video streams. However, as we will see later in this chapter,
many of these approaches fail to fulfill the visual quality requirements that most
professional productions have.

This chapter therefore describes a new category of algorithms, performance cap-
ture methods, which are able to fulfill these requirements. Performance capture
methods retrieve highly-detailed dynamic shape and motion of moving subjects
from (usually) only a handful of unmodified video recordings, i.e. actively placed
visual markers are not required. In contrast to previous methods from the literature
they are able to handle people in general everyday apparel, such as a skirt or a dress.
Also, they are able to capture spatio-temporally coherent geometry, a characteristic
that sets them apart from many previous methods from the literature, in particular
image-based rendering approaches. Spatio-temporal coherence is an important fea-
ture since only if correspondences between reconstructed poses over time are known
it is easy to post-process, store and modify the captured data.

In the following chapter, we will first review general related work from the
fields of motion capture and image-based rendering. Thereafter, we will discuss
four representative, but conceptually different performance capture methods. The
first method retrieves detailed time-varying geometry of pieces of apparel from
multi-view video using a combination of stereo and cross-parameterization. Along
a similar line of thinking, the second approach described employs a combination of
visual hulls, multi-view stereo and spatio-temporal cross-parameterization to recon-
struct complete performances of humans. The third method described differs from
these two approaches in that it employs a template model and skeleton-based pose-
fitting to visual hull sequences to measure full human performances. The core of
the chapter is a new performance capture approach that takes an unconventional,
yet very effective alternative route. Instead of relying on a classical skeleton-based
representation of humans, it exploits deforming meshes to faithfully capture the
dynamic appearance of actors in arbitrary general apparel. The paper concludes
with a discussion and some pointers to additional reading.
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2 Paving the Way for Performance Capture: Motion Capture,
Image-Based Rendering and 3-D Video Approaches

Modern Performance Capture algorithms can capitalize on a body of related meth-
ods which focused on solving sub-problems of the overall performance capture
problem. In the following we give a brief overview of important categories of such
techniques.

Marker-based optical motion capture systems are the workhorses in many game
and movie production companies for measuring motion of real performers [29].
Despite their high accuracy, their very restrictive capturing conditions (that often
require the subjects to wear skin-tight body suits and reflective markings) make
them incapable of capturing shape and texture simultaneously with motion. Park
et al. [35] try to overcome part of this limitation by using several hundred mark-
ers to extract a model of human skin deformation. While their animation results
are very convincing, manual mark-up and data cleanup times can be tremendous
in such a setting and generalization to normally dressed subjects is difficult. In
contrast, marker-free performance capture algorithm require a lot less setup time
and enable simultaneous capture of shape, motion and texture of people wearing
everyday apparel.

Marker-less motion capture approaches are designed to overcome some restric-
tions of marker-based techniques and enable performance recording without optical
scene modification [31,39]. Although they are more flexible than intrusive methods,
it remains difficult for them to achieve the same level of accuracy and the same appli-
cation range. Furthermore, since most approaches employ kinematic body models, it
is hard for them to capture motion, let alone detailed shape, of people in loose every-
day apparel. Some methods, such as [42] and [4] try to capture more detailed body
deformations in addition to skeletal joint parameters by adapting the models closer
to the observed silhouettes, or by using captured range scan data [2]. But both algo-
rithms require the subjects to wear tight clothes. Only few approaches, such as the
work by [40], aim at capturing humans wearing more general attire, e.g. by jointly
relying on kinematic body and cloth models. Unfortunately, these methods typically
require hand-crafting of shape and dynamics for each individual piece of apparel.
Also, they focus on joint parameter estimation under occlusion rather than accu-
rate geometry capture, and therefore the shape quality of the captured performers is
typically very crude.

Other related work explicitly reconstructs highly-accurate geometry of moving
cloth from video [43, 56]. However, these methods require visual interference with
the scene in the form of specially tailored color patterns on each piece of garment
which renders simultaneous shape and texture acquisition infeasible.

A slightly more application-driven concept related to performance capture is put
forward by 3-D video methods which aim at rendering the appearance of recon-
structed real-world scenes from new synthetic camera views never seen by any
real camera. Early shape-from-silhouette methods reconstruct rather coarse approx-
imate 3-D video geometry by intersecting multi-view silhouette cones [19, 28].
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Despite their computational efficiency, the moderate quality of the textured coarse
scene reconstructions often falls short of production standards in the movie and
game industry. To boost 3-D video quality, researchers experimented with image-
based methods [52], multi-view stereo [61], multi-view stereo with active illu-
mination [55], or model-based free-viewpoint video capture [10]. In contrast to
performance capture approaches, the first three methods do not deliver spatio-
temporally coherent geometry or full 360 degree shape models, which are both
essential prerequisites for animation post-processing. At the same time, previous
kinematic model-based 3-D video methods were unable to capture performers in
general clothing.

Data-driven 3-D video methods synthesize novel perspectives by a pixel-wise
blending of densely sampled input viewpoints [57]. While even renderings under
new lighting can be produced at high fidelity [15], the complex acquisition appa-
ratus requiring hundreds of densely spaced cameras makes practical applications
often difficult. Further on, the lack of geometry makes subsequent editing a major
challenge.

3 Performance Capture Approaches

Performance capture approaches differ from the methods described in the previous
section in a few key aspects. First, they aim at reconstruction of highly detailed
dynamic scene geometry. By this we mean that the quality of the reconstructed
shape should be of such high fidelity that it can even be used without original
texture, e.g. for rendering under new artificial lighting and surface material. In con-
sequence, even subtle aspects of shape, such as folds in attire, have to be measured
at a sufficient level of detail.

Second, performance capture approaches reconstruct spatio-temporally coher-
ent shape sequences. Here, coherence means that the correspondences between
surface points over time are known. This is an important feature since it allows
for simpler post-processing, editing and representation of the captured perfor-
mances. Establishing these correspondences is one of the hardest problems in
visual scene reconstruction. As we will see later, different strategies have been
explored to achieve coherence. One class of methods uses spatio-temporal cross-
parameterization techniques. Another class of approaches starts off with a detailed
shape model of the performer, e.g. from a laser scan, that is then deformed to match
the input multi-view video data.

Finally, performance capture approaches require no optical modification of the
captured scene, e.g. in the form of intentionally placed visual markings, and they
impose little restrictions on the type of apparel that a person can wear. As we
will show, the majority of algorithms can even handle people in wide and wavy
apparel, such as skirts or dresses. This puts them apart from the vast majority of
marker-based and marker-less motion capture approaches that have been proposed
up to now. In the following sections, we review a few representative examples



Performance Capture from Multi-View Video 131

of performance capture algorithms, and go into a slight bit more detail about a
mesh-deformation-based approach that we have developed as part of our research.

3.1 Garment Capture

Capturing the motion of garment is a sub-problem of performance capture by the
previously given definition. However, due to their complex deformation behavior,
pieces of apparel are among the most difficult elements of dynamic scenes to be
reconstructed from video. A recently presented algorithmic recipe to approach the
problem shares many similarities to full performance capture, and it is therefore
instructive to include it into our overview.

Most previously proposed methods for garment capture require active scene
modification, e.g. in the form of color patterns printed on the captured attire (see
also Sect. 2). Therefore, despite good results, they fall short to fulfill one of the
main characteristics of what we call performance capture approaches in this chap-
ter. In contrast, the recent approach by Bradley et al. captures spatio-temporally
coherent geometry of moving pieces of apparel from multi-view video without any
marker pattern [8]. In their method, a person wearing the piece of apparel to be
reconstructed moves in front of a multi-view video camera setup. The method starts
by reconstructing a 3-D mesh of the piece of garment at each time step of video
by means of a multi-view stereo approach, that captures the detailed geometry of
the fabric, including folds and creases, at each time step of video. Naturally, the
meshes found at each time step may contain holes due to occlusions, and there is no
spatio-temporal coherence in the mesh connectivity over time. To obtain a spatio-
temporally coherent 3-D model representation and to fill in holes, Bradley et al.
suggest a spatio-temporal cross parametrization approach that remaps the geometry
from each time step to a template 3-D model. Figure 1 shows the acquisition setup, a
test subject wearing a t-shirt to be reconstructed, and a 3-D mesh model of a recon-
structed shirt illustrating nicely that both the overall shape as well as dynamic folds
can be faithfully reconstructed.

Fig. 1 Garment capture from multi-view video using the method of Bradley et al. [8]. (a, b) Input
camera setup with test person. (c) Reconstructed 3-D mesh model of the t-shirt at the same time
step. (Images courtesy of Derek Bradley, University of British Columbia, Vancouver)
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3.2 Surface Capture

One of the first full performance capture approaches in the literature, by this we
mean a method to capture entire humans, is the work by Starck and Hilton [48].
Input to their algorithm are eight HD video streams from a fully-calibrated camera
setup. Via chroma-keying, the silhouette of the person in each frame is extracted.

In a first pass, their algorithm reconstructs an individual 3-D geometry model
for each time step of multi-view video. To this end, a combination of visual hull
and stereo reconstruction is used. The visual hull defines an outer boundary for the
shape. By using a combination of sparse multi-view line feature matching and a
graph-cut based stereo reconstruction, the very coarse visual hulls can be refined
and concavities in the surfaces recovered, See Fig. 2 for an example. A surface
texture for each captured pose can be created by projectively blending the input
video frames on the 3-D surface.

Also here, one of the biggest challenges is to establish spatio-temporal cor-
respondences. Similar to Bradley et al., Sect. 3.1, Starck and Hilton also use
a spatio-temporal re-parameterization approach to remesh the individual triangle

Fig. 2 Surface Capture method by Starck and Hilton [48]: 3-D models are reconstructed from
multi-view video by means of a combination of shape-from-silhouette and stereo constraints.
Spatio-temporal coherence in the meshes (at least for sub-sequences) is established during post-
processing by means of spatio-temporal re-parametrization. (Images courtesy of Jonathan Starck,
University of Surrey)
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meshes from each time step to a temporally consistent triangulation [46]. In essence,
they cut the surface open to achieve a genus zero surface that can then be param-
eterized over a sphere. On the sphere an adaptive subdivision and remeshing is
performed such that eventually a mesh with the same graph structure is used to
represent at least subsequences of an entire multi-view data set. Spatio-temporal
reparameterization is a non-trivial problem and it is not guaranteed that under all
circumstances the quality of the correspondences will be sufficient. Therefore, other
researchers resorted to some form or prior model that is matched to each frame of
video. This way, spatio-temporal correspondences are implicitly established.

A method similar to the one by Starck and Hilton has been proposed by Nobuhara
et al. [33]. They also reconstruct shape-from-silhouette volumes and employ a
deformation-based correspondence finding approach to establish spatio-temporal
coherence. Their results show that they are able to successfully handle some cases
of topology change.

3.3 Simultaneous Surface and Skeleton Capture

One approach that uses such a prior model is the work by Vlasic et al. [53]. Their
approach also uses synchronized multi-view video sequences of human perform-
ers as input. The main conceptual difference to the previous two approaches lies in
the fact that it employs a form of template model whose motion is tracked. This
model comprises a surface triangle mesh and an underlying kinematic skeleton that
is coupled to the surface via linear-blend skinning. The surface mesh is either recon-
structed by means of a shape-from-silhouette approach, or obtained from a full-body
laser scan of the person.

The algorithm commences by reconstructing a shape-from-silhouette 3-D model
for each time step of video. The actual performance capture pipeline comprises two
stages. In the first stage, only the skeleton part of the model is fitted into each visual
hull, in order to capture the general body pose of the actor. The tracker minimizes
an energy functional that drives the skeleton close to the medial axis of each visual
hull, enforces temporal coherence, and ensures that the extremities of the skeleton
are correctly positioned into the respective parts of the visual hulls. An additional
term in the energy function takes into account user-defined position constraints that
are required in difficult postures where automatic pose determination is likely to
fail. To improve tracking accuracy, the authors suggest to use both a forward and a
backward tracking pass.

The second stage of the pipeline deforms the surface of the template model such
that the silhouettes in all camera views correctly match the outline of the repro-
jected model. This surface adaptation comprises of several sub-steps itself. First,
the template surface is deformed into a new pose via skinning only. In general, this
will not bring the mesh into agreement with the silhouettes, since, for instance, non-
rigid deformations are only coarsely approximated. Further, skinning deformation
artifacts may have deteriorated the surface. The authors therefore suggest an iterative
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deformation scheme which starts off the skinning pose of the mesh, but purposefully
reduces its geometric complexity and iteratively deforms the reduced complexity
meshes to match the silhouette boundaries. While iterating, high-frequency geo-
metric surface detail of the template mesh is gradually re-introduced. To serve this
purpose, a variant of Laplacian surface deformation [7] is used which allows for
such gradual control of surface detail.

The final output is a sequence of skeleton poses together with the template mesh
deformed in such a way that the multi-view silhouettes are matched. Overall, the
visual quality of the results is very high. The algorithm has been shown to also
handle sequences with more complex clothing, such as woman wearing a skirt.

The method has several advantages over the previous two approaches. It captures
a rigged skeleton-based character which directly matches the animation pipeline
used in most applications. It is also comparably fast, requiring only several tens
of seconds of computation time per frame. This is a significant performance bene-
fit over algorithms involving multi-view stereo. One of the disadvantages is that the
tracking process of most sequences will require supervision by the user, since in dif-
ficult poses manual correction may be required. Further on, even though the quality
of the recovered geometry is very convincing in general, it can naturally only capture
the deformation of the surface as it is visible in the silhouette boundaries. True wav-
ing of cloth (including true folds and creases), as it is mostly observed in the interior
of silhouettes, is not actually captured but in a sense pretended by the employed sur-
face adaptation approach. In other words, high-frequency shape detail stays fixed
and deforms with the underlying base surface. Here, multi-view stereo approaches
are able to capture more true shape detail. Another potential problem is that the
skeleton model, although it facilitates tracking, also imposes a prior on motion
which is incorrect for wide pieces of apparel whose motion is not explained by skin-
ning. Some of these problems were attacked by another template-based performance
capture approach which is detailed in the following sections.

4 Mesh-Based Performance Capture

Template-based performance capture approaches bear several advantages over algo-
rithms doing without strong a priori model assumptions. The template imposes a
prior on geometry and motion which can be exploited to make scene reconstruction
more robust and correspondence finding easier. The price to be paid is often mea-
sured in loss of flexibility since only scenes for which a template is easy to obtain
can be reconstructed. Nonetheless, template-based approaches prove very success-
ful for reconstructing performances of humans, as it was shown in the previous
section where a kinemtic body model was used. However, a kinematic skeleton with
surface skinning is obviously not the right prior model for representing wavy cloth.
Although the previous method has shown that on a coarse scale cloth tracking is
feasible with a kinematic prior and surface deformation, cloth tracking artifacts are
likely to occur.
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The method in this chapter intentionally abandons the skeleton-component of
the template and uses a deformable surface model as scene representation [11]. This
idea has been motivated by the fact that recently many new animation design [7],
animation editing [58], deformation transfer [51] and animation capture methods [5]
have been proposed that employ shape deformation approaches with great success.
The explicit abandonment of kinematic parameterizations makes performance cap-
ture a much harder problem, but bears the striking advantage that it enables more
reliable capturing of both rigidly and non-rigidly deforming surfaces with the same
underlying technology.

First approaches that implemented this idea in the context of full body per-
formance capture were suggested by de Aguiar et al. [12, 13]. Both approaches
reconstruct a deformable human template model from a laser scan of the subject to
be tracked. The mathematical deformation approach used in either case is a variant
of Laplacian surface editing. Performances are retrieved by extracting features from
the multi-view image streams and using their 3-D trajectories as deformation han-
dles to change the model pose. Although these approaches can track performances
of people wearing complex apparel at high reliability, the algorithms are subject
to a few important limitations. Surface-based deformation represents a relatively
“weak” prior on 3-D motion that may lead to erroneous deformation if the mea-
sured features are starkly noise contaminated, or if there are large regions with no
deformation handle at all. This frequently happens when the motion is very fast and
thus the image displacement of features is big. Therefore, rapid movements are hard
to track with both these approaches. Further on, both methods share the limitation
of the skeleton-based approach from the previous section that true high-frequency
shape detail cannot be reconstructed.

This chapter describes a new deformation-based performance capture method
that exceeds the abilities of the aforementioned algorithms in several ways. First,
a new analysis-through-synthesis tracking framework enables capturing of motion
that shows a very high complexity and speed. Secondly, we propose a volumetric
deformation technique that greatly increases robustness of pose recovery. Finally, in
contrast to previous related methods, our algorithm explicitly recovers small-scale
dynamic surface detail by applying model-guided multi-view stereo.

Related to our approach are also recent animation reconstruction methods that
jointly perform model generation and deformation capture from scanner data [54].
However, their problem setting is different and computationally very challenging
which makes it hard for them to generate the visual quality that we achieve by resort-
ing to an explicit prior model. The approaches proposed in [50] and [44] are able
to deform mesh-models into active scanner data or visual hulls, respectively. Unfor-
tunately, neither of these methods has shown to match our method’s robustness, or
the quality and detail of shape and motion data which our approach produces from
video only.
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4.1 Overview

Input data to our method are a full-body laser scan of the subject in its current
apparel and a multi-view video stream of the subject recorded with eight synchro-
nized geometrically and photometrically calibrated video cameras. We perform a
color-based background subtraction to all video footage to yield silhouette images
of the captured performers.

We convert the raw 3-D scan into a high-quality surface mesh Ttri using a robust
surface reconstruction algorithm, which yields a water-tight high quality mesh. We
also create a coarser tetrahedral version of the surface scan Ttet by applying a
quadric error decimation and a subsequent constrained Delaunay tetrahedralization
(see Fig. 3 (r)). Typically Ttri contains between 30,000 and 40,000 triangles, and
the corresponding tet-version between 5,000 and 6,000 tetrahedrons. We register
both models to the first pose of the actor in the input footage by means of a pro-
cedure based on iterative closest points (ICP). Since we asked the actor to strike in
the first frame of video a pose similar to the one that she/he was scanned in, pose
initialization is greatly simplified, as the model is already close to the target pose.

Since our capture method explicitly abandons a skeletal motion parametrization
and resorts to a deformable model as scene representation, we are facing a much
harder tracking problem. On the other hand we gain an intriguing advantage: we
are now able to track non-rigidly deforming surfaces (like wide clothing) in the
same way as rigidly deforming models and do not require prior assumptions about
material distributions or the segmentation of a model.

We capture performances in a multi-resolution way to increase reliability. In a
first step we employ an analysis-through-synthesis method to estimate the global
pose of an actor at each frame on the basis of the tetrahedral input model, Sect. 4.3.

Fig. 3 A surface scan Ttri of an actress (l) and the corresponding tetrahedral mesh Ttet in an
exploded view (r)
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Afterwards we capture the high-frequency aspects of the performances, Sect. 4.3.4.
This is achieved by transferring the pose to the high-detail surface and refining the
mesh to fit closely to the input video. The output is a dense representation of the
performance in both space and time. One important ingredient to achieve this is a
fast and reliable shape deformation framework which we will detail in the following
section.

4.2 A Deformation Toolbox

We use two variants of Laplacian shape editing in our performance capture tech-
nique. For low-frequency tracking, we use an iterative volumetric Laplacian defor-
mation algorithm which is based on our tetrahedral mesh Ttet. For recovery of
high-frequency surface details, we transfer the captured pose of Ttet to the high-
resolution surface scan. Being already roughly in the correct pose, we can resort to
a simpler variant of surface-based Laplacian deformation to infer shape detail from
silhouette and stereo constraints.

4.2.1 Volumetric Deformation

We want to deform the tetrahedral mesh Ttet as naturally as possible under the influ-
ence of a set of position constraints. To this end, we iterate a linear Laplacian
deformation step and a subsequent update step, which compensates the (mainly
rotational) errors introduced by the nature of the linear deformation. This proce-
dure minimizes the amount of non-rigid deformation each tetrahedron undergoes,
and thus exhibits qualities of an elastic deformation. Our technique implicitly pre-
serves certain shape properties, such as cross-sectional areas, after deformation.
This greatly increases tracking robustness since non-plausible model poses (e.g. due
to local flattening) are far less likely.

Our algorithm is related to [45] and it is based on the following steps:

� Solve the linear tetrahedral Laplacian system given the current constraints
� Extract the transformation of each tetrahedral element and split it into rotational

and non-rotational components
� Update the right hand side of the linear system using the extracted rotations
� Iterate the procedure

This procedure minimizes the amount of non-rigid deformation ED remaining in
each tetrahedron with each iteration. While our subsequent tracking steps would
work with any physically plausible deformation or simulation method, our technique
has the advantages of being extremely fast, of being very easy to implement, and of
producing plausible results even if material properties are unknown. Further details
on the deformation technique can be found in [49].
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4.2.2 Deformation Transfer

To transfer a pose from the tetrahedral mesh Ttet to the high-resolution mesh Ttri,
we express the position of each vertex of Ttri as a linear combination of the vertices
of the tetrahedral mesh. The coefficients for this are calculated in the rest pose and
can be used afterwards to update the pose of the triangle mesh.

The coefficients are calculated as a weighted sum of the barycentric coordinates
of nearby tetrahedra for each vertex. Using more than a single set of barycentric
coordinates ensures that we get smooth deformations over the whole mesh. The
weights for each tetrahedron are based on the respective distance from the initial
vertex using a radial basis function.

4.2.3 Surface-Based Deformation

Our surface-based deformation relies on a simple least-squares Laplacian system as
it has been widely used in recent years (see [7] for an overview). The linear system
is calculated using cotangent weights and is used to deform the surface under the
influence of a set of weighted position constraints. This simple surface based Lapla-
cian deformation allows for a much wider and more detailed range of deformations
than the tetrahedral deformation presented above.

4.3 Capturing the Global Model Pose

The first step in global model pose capture recovers for each time step of video a
global pose of the tetrahedral input model that matches the pose of the real actor. In
summary, our framework first computes deformation constraints from each pair of
subsequent multi-view input video frames at times t and tC1, and then it applies the
volumetric shape deformation procedure to modify the pose of Ttet at time t until it
aligns with the input recorded data at time t C 1.

Our pose recovery process is divided into three steps and it begins with the extrac-
tion of 3-D vertex displacements from reliable image features which brings our
model close to its final pose even if scene motion is rapid or complex. Subsequently,
two additional steps are performed that exploit silhouette data to fully recover the
global pose. The first step refines the shape of the outer model contours until they
match the multi-view input silhouette boundaries and the second one optimizes 3-D
displacements of key vertex handles until optimal multi-view silhouette overlap is
reached. The additional steps are important since 3-D features on the model surface
are dependent on scene structure, e.g. texture, and can, in general, be non-uniform
or sparse.

We gain further tracking robustness by subdividing the surface of Ttet into
approximately 100–200 regions of similar size during pre-processing [59]. Rather
than inferring displacements for each vertex, each individual step is applied to a
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representative vertex handle for each region, as explained in more details in the
following sections.

4.3.1 Pose Initialization from Image Features

Given two sets of multi-view video frames from subsequent time steps, we first
extract image features. SIFT features are chosen since they are largely invariant
under illumination and out-of-plane rotation and enable reliable correspondence
finding even if the scene motion is fast or complex [27].

In order to transform the feature data into deformation constraints, we first asso-
ciate image features from time t with vertices in the model. After creating the spatial
feature associations across camera views, we establish temporal correspondences
between the features from time t and t C 1, Fig. 4a. Outliers are reduced by using a
robust spectral matching [25] technique.

The positions of the 3-D deformation constraints are found by calculating the
pseudo-intersection point of the reprojected rays passing through the image feature
locations at t C 1. The 3-D constraints are applied to deform Ttet using a step-
wise procedure which, in practice, is unlikely to converge to implausible model
configurations. We resort to the set of regions on the surface of the tet-mesh and
find for each one the best handle from all candidate handles that lie in that region. If
no handle is found for a region, we constrain the center of that region to its original
3-D position to prevent unconstrained surface areas from arbitrary drifting.

For each region handle, new intermediate target positions are calculated such
that the corresponding vertices in Ttet.t/ move in directions as similar as possible
to their original normal directions. This step-wise deformation is repeated until the
multi-view silhouette overlap error SIL.Ttet; t C1/ (computed as pixel-wise XOR)
cannot be improved further. At the end of this step, a feature-based pose estimate
TF

tet.t C 1/ has been obtained.

Fig. 4 (a) 3-D correspondences from corresponding SIFT features are used to deform the model
into a first pose estimate for t C 1. (b) Color-coded distance field and rim vertices with respect to
one camera view marked in red on the 3-D model. (c) Model and silhouette overlap after the rim
step. Slight pose inaccuracies in the leg and the arms are removed and the model strikes a correct
pose after key vertex optimization
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4.3.2 Refining the Pose Using Silhouette Rims

In image regions with sparse or low-frequency textures, the pose of TF
tet.t C 1/may

not be entirely correct as only few SIFT features could potentially be found. We
therefore resort to another constraint that is independent of image texture and has
the potential to correct for such misalignments.

We derive additional deformation constraints for a subset of vertices on TF
tet.tC1/

that lie on the silhouette contour. By displacing the constraints along their normals
until alignment with the respective silhouette boundaries in 2D is reached, we are
able to improve the pose accuracy for the model at t C 1. The result is a new model
configuration TR

tet.t C 1/ in which the projections of the outer model contours more
closely match the input silhouette boundaries, Fig. 4b.

4.3.3 Optimizing Key Handle Positions

In the majority of cases, the pose of the model in TR
tet.t C 1/ is already close to a

good match. However, in particular if the scene motion was fast or the initial pose
estimate from the first step was not entirely correct, residual pose errors remain. We
therefore perform an additional optimization step that corrects such residual errors
by globally optimizing the positions of a subset of deformation handles until good
silhouette overlap is reached, Fig. 4c.

We only optimize the position of typically 15–25 key vertices, previously selected
by the user in a pre-processing step, until the tetrahedral deformation produces opti-
mal silhouette overlap. Tracking robustness is increased by designing our energy
function such that surface distances between key handles are preserved, and pose
configurations with low distortion energy ED (see Sect. 4.2.1) are preferred.

Tracking robustness is increased by preserving the distances between key han-
dles, and by generating pose configurations with low distortion energies.

The output of this step is a new configuration of the tetrahedral model TO
tet.t C1/

that captures the overall stance of the model and serves as a starting point for the
subsequent surface detail capture.

The above sequence of steps (Sect. 4.3.1–4.3.3) is performed for each pair of
subsequent time instants. Typically the second step (silhouette rims) is performed
once more after the last silhouette optimization step which, in difficult poses, leads
to a better model alignment. Surface detail capture commences after the global poses
for all frames were found.

4.3.4 Capturing Surface Detail

After recovering the global pose for each frame we transfer the poses of the tetra-
hedral mesh Ttet to the triangle mesh Ttri using the algorithm from Sect. 4.2.2. This
sequence of high resolution triangle meshes will now be further refined in order
to capture small-scale surface detail. We again match the reprojected model to the
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Fig. 5 Capturing small-scale surface detail: (a) First, deformation constraints from silhouette
contours, shown as red arrows, are estimated. (b) Additional deformation handles are extracted
from a 3-D point cloud that was computed via model-guided multi-view stereo. (c) Together, both
sets of constraints deform the surface scan to a highly accurate pose. – Evaluation: (d) per-frame
silhouette overlap in per cent after global pose estimation (blue) and after surface detail reconstruc-
tion (green). (e) Blended overlay between an input image and the reconstructed model showing the
almost perfect alignment of our result

silhouette rims to better fit the input data and recover deformation detail in the inte-
rior of the silhouette with help of a multi-view stereo reconstruction algorithm. The
details of the employed stereo reconstruction approach can be found in [11]. We
extract position constraints from both of these cues and deform the triangle mesh
using our surface Laplacian scheme from Sect. 4.2.3 to match the constraints as
closely as possible. A typical set of found position constraints and the result of sur-
face refinement are illustrated in Fig. 5a–c). After a temporal smoothing pass this
yields our final output, a dense representation of the performance in both space and
time matching the input video as closely as possible.

4.4 Results

The multi-view video data used in our tests comprise of 12 sequences that show
four different actors and that feature between 200 and 600 frames each. To show
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the large application range of our algorithm, the performers wore a wide range of
different apparel, ranging from tight to loose, and made of fabrics with prominent
texture as well as plain colors only. Also, the recovered set of motions ranges from
simple walks, over different dance styles, to fast capoeira sequences. The images
in Figs. 6 and 7, as well as the results in the video that can be obtained from

Fig. 6 (a) Poses from a fast capoeira performance. (b) Jazz dance posture with reliably captured
inter-twisted arm motion (Input camera viewpoint and virtual camera viewpoint differ minimally)

Fig. 7 Side-by-side comparison of input and reconstruction of a dancing girl wearing a skirt (input
and virtual viewpoints differ minimally). Body pose and detailed geometry of the waving skirt,
including lifelike folds and creases visible in the input, have been recovered
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http://www.mpi-inf.mpg.de/resources/perfcap/ show that our algorithm faithfully
reconstructs this wide spectrum of scenes.

Figure 6a shows two captured poses of a very rapid capoeira sequence in which
the actor performs a series of turn kicks. Despite the fact that in our 24 fps record-
ings the actor rotates by more than 25 degrees in-between some subsequent frames,
both shape and motion are reconstructed at high fidelity. The resulting animation
even shows deformation details such as the waving of the trouser legs (see video).
Furthermore, even with the plain white clothing that the actor wears in the input and
which exhibits only few traceable SIFT features, our method performs reliably as it
can capitalize on rims and silhouettes as additional sources of information.

The video also shows the captured capoeira sequence with a static checkerboard
texture. This result demonstrates that temporal aliasing, such as tangential surface
drift of vertex positions, is negligible, and that the overall quality of the meshes
remains highly stable.

In Fig. 6b we show two poses from a captured jazz dance performance. As the
comparison to the input in image and video shows, we are able to capture this
fast and fluent motion. In addition, we can also reconstruct the many poses with
complicated self-occlusions, such as the inter-twisted arm-motion in front of the
torso.

Figure 7 shows that our algorithm is able to capture the full time-varying shape
of a dancing girl wearing a skirt. Even though the skirt is of largely uniform color,
our results capture the natural waving and lifelike dynamics of the fabric. In all
frames, the overall body posture, and also the folds of the skirt were recovered
nicely without the user specifying a segmentation of the model beforehand. We
would also like to note that in all skirt sequences the benefits of the stereo step in
recovering concavities are most apparent. In the other test scenes, the effects are
less pronounced and we therefore deactivated the stereo step (Sect. 4.3.4) there to
reduce computation time.

Apart from the scenes shown in the result images, the video contains three more
capoeira sequences, two more dance sequences and two more walking sequences.

4.4.1 Validation and Discussion

Table 1 gives detailed average timings for each individual step in our algorithm
obtained after code optimization of the version from [11]. These timings were
obtained with a single-threaded code running on a Quad Core Intel Xeon Processor
E5410 workstation with 2.33 GHz. We still see plenty of room for implementation
improvement, and anticipate that parallelization can lead to significant further run
time reduction.

To formally validate the accuracy of our method, we have compared the sil-
houette overlap of our tracked output models with the segmented input frames.
We use this criterion since, to our knowledge, there is no gold-standard alterna-
tive capturing approach that would provide us with accurate time-varying 3D data.
The re-projections of our final results typically overlap with over 85% of the input
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Table 1 Average run times per frame for individual steps

Step Time

SIFT step (Sect. 4.3.1) �5 s
Global rim step (Sect. 4.3.2) �4 s
Key handle optimization (Sect. 4.3.3) �40 s
Capturing Surface Detail (Sect. 4.3.4) �34 s

silhouette pixels, already after global pose capture only (blue curve in Fig. 5d). Sur-
face detail capture further improves this overlap to more than 90% as shown by the
green curve. Please note that this measure is slightly negatively biased by errors in
foreground segmentation in some frames that appear as erroneous silhouette pixels.
Visual inspection reveals almost perfect overlap, Fig. 5e.

All 12 input sequences were reconstructed fully-automatically after only minimal
initial user input. As part of pre-processing, the user marks the head and foot regions
of each model to exclude them from surface detail capture. Even slightest silhouette
errors in these regions (in particular due to shadows on the floor and black hair
color) would otherwise cause unnatural deformations. Furthermore, for each model
the user once marks at most 25 deformation handles needed for the key handle
optimization step, Sect. 4.3.3.

In individual frames of two out of three capoeira turn kick sequences (11 out
of around 1;000 frames), as well as in one frame of each of the skirt sequences
(2 frames from 850 frames), the output of global pose recovery showed slight mis-
alignments in one of the limbs. Please note that, despite these isolated pose errors,
the method always recovers immediately and tracks the whole sequence without
drifting – this means the algorithm can run without supervision and the results can
be checked afterwards. All observed pose misalignments were exclusively due to
oversized silhouette areas because of either motion blur or strong shadows on the
floor. Both of this could have been prevented by better adjustment of lighting and
shutter speed, and more advanced segmentation schemes. In either case of global
pose misalignment, at most two deformation handle positions had to be slightly
adjusted by the user. In none of the over 3;500 input frames we processed it was
necessary to manually correct the output of surface detail capture (Sect. 4.3.4).

Our method is subject to a few further limitations. The current silhouette rim
matching may produce erroneous deformations in case the topological structure of
the input silhouette is too different from the reprojected model silhouette. How-
ever, in none of our test scenes did this turn out to be an issue. In the future, we
plan to investigate more sophisticated image registration approaches to solve this
problem entirely. Currently, we are recording in a controlled studio environment
to obtain good segmentations, but are confident that a more advanced background
segmentation will enable us to handle outdoor scenes.

Moreover, there is a resolution limit to our deformation capture scheme. Some
of the high-frequency detail in our final result, such as fine wrinkles in clothing or
details of the face, has been part of the laser-scan in the first place. The deformation
on this level of detail is not actually captured, but this fine detail is “baked in”
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Fig. 8 Input frame (l) and reconstructions using a detailed (m) and a coarse model (r). Although
the fine details on the skirt are due to the input laser scan (m), even with a coarse template, our
method captures the folds and the overall lifelike motion of the cloth (r)

to the deforming surface. To illustrate the level of detail that we are actually able
to reconstruct, we generated a result with a coarse scan only that lacks any fine
surface detail. Figure 8 shows an input frame (l), as well as the reconstructions using
the detailed scan (m) and the coarse scan (r). While, as noted before, finest detail
in Fig. 8(m) is due to the high-resolution laser scan, even with a coarse scan, our
method still captures the important lifelike motion and deformation of all surfaces
at sufficient detail, Fig. 8(r), in particular cloth motion not visible in the silhouettes
alone.

Also, since we rely on a laser scan with fixed topology, our system can currently
not track sequences with arbitrarily changing apparent topology (e.g. the movement
of hair or deep folds with self-collisions).

Our volume-based deformation technique essentially mimics elastic deforma-
tion, thus the geometry generated by the low-frequency tracking may in some cases
have a rubbery look. For instance, an arm may not only bend at the elbow, but rather
bend along its entire length. Surface detail capture eliminates such artifacts in gen-
eral, and a more sophisticated yet slower finite element deformation could reduce
this problem already at the global pose capture stage.

Despite these limitations, our skeleton-less method can robustly capture a large
range of performances at very high detail.

5 Conclusion and Further Reading

Performance capture algorithms enable reconstruction of detailed spatio-temporally
coherent scene geometry of scenes from video without having to rely on opti-
cal markers. This puts them apart from many previous approaches in the liter-
ature and opens up the perspective for many new applications. In this chapter,
we presented several recent methods for video-based performance capture, and
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exemplified the different strategies used to represent geometry and to establish
spatio-temporal coherence. The core of the chapter describes a mesh-deformation-
based approach and analyzes its benefits and drawbacks in comparison to the other
approaches.

The first methods reviewed did not use an a priori template model, but used either
stereo, or a combination of stereo and visual hulls to reconstruct a base model to be
used as scene representation. From a high-level perspective, the advantage of this
strategy is that it makes a method more flexible, and many different scenes can
be captured, even if a laser-scan is not available. The conceptual disadvantage is
that robustness is much harder to achieve and spatio-temporal coherence is much
harder to establish. The methods discussed use some clever yet often computation-
ally expensive cross-parameterization algorithms to solve the latter problem. 3D
correspondence finding is itself one of the most challenging problems in dynamic
scene reconstruction. The following methods propose a few different strategies to
approach this problem that we have not discussed in this chapter [1, 3, 47]. This
is not a complete list of references but merely meant to give the reader a starting
point.

The second class of algorithms discussed uses a stricter form of a priori shape
model to capture performances of humans in general apparel. The first method
from this category which we discussed employs a kinematic template model with
a loosely deformable surface to retrieve human shape and motion from multi-view
video. The kinematic prior greatly helps to make tracking fast and robust, and the
silhouette-based surface deformation makes retrieval of cloth motion at a coarse
scale feasible. Despite its benefits for tracking the human body itself, however, a
skeleton (with surface skinning) generally introduces a wrong bias when tracking
cloth regions of a model. The fourth approach discussed in this chapter tries to
overcome some of these limitations by explicitly abandoning a skeleton model and
using deformable shapes as scene representation. Additionally, the deformation-
based approach described also uses a multi-view stereo method to recover true
time-varying surface movement also in areas away from silhouette boundaries. This
way, more time-varying surface detail than in the purely skeleton-based method
can be recovered, lending the final results a more lifelike look. This is particu-
larly visible in the tracking results of the dancer in a skirt shown previously in
this chapter where true fold motion, at least at medium resolution, is apparent.
The price to be paid, however, is a longer run-time compared to the skeleton-
based method and the fact that a kinematic skeleton is not directly available. In our
research we were able to show, however, that kinematic skeletons can automatically
be learned from moving deforming surfaces which reduces the latter mentioned
disadvantage [14].

Overall, this chapter as shown that performance capture techniques open up a
new chapter in dynamic scene reconstruction and allow for retrieval of real world
performances at such a high level of detail that new levels of quality can be expected
in future video game, virtual environment and 3D video productions.
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Combining Multi-view Stereo and Bundle
Adjustment for Accurate Camera Calibration

Yasutaka Furukawa and Jean Ponce

Abstract This article presents an algorithm to achieve accurate camera calibra-
tion for 3D reconstruction/visualization systems observing static scenes. The advent
of high-resolution digital cameras, and sophisticated 3D reconstruction algorithms
such as multi-view stereo offer the promise of unprecedented geometric fidelity in
image-based modeling tasks, but it also puts unprecedented demands on camera
calibration to fulfill these promises. Camera calibration is an essential step of most
such systems involving multiple cameras. While there exist several standard proce-
dure for the task, it is not easy to ensure accurate calibration. In this article, we talk
about existing popular camera calibration procedure together with their problems
and potential sources of errors, then provide a solution to these problems with an
algorithm that produces accurate camera calibration starting from an initial guess
possibly containing some errors. More concretely, the algorithm uses a multi-view
stereo system on scaled-down input images to reconstruct rough 3D geometry of a
scene from initial camera parameters, which is used to effectively guide the search
for additional image correspondences. A standard bundle-adjustment algorithm is
used with the obtained image correspondences to tighten-up camera calibration. The
proposed method has been tested on various real datasets to prove its effectiveness.

1 Introduction

Automated acquisition of 3D geometric models from images has been an impor-
tant research problem. One of the most successful methods (for static scenes) is
multi-view stereo (MVS) that takes calibrated photographs, namely, images and their
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associated camera parameters, then produces a dense 3D model. Modern MVS sys-
tems are capable of capturing dense and accurate surface models of static complex
objects or scenes from a moderate number of calibrated images. More specifically,
according to a recent survey by Seitz et al. [20], several algorithms achieve surface
coverage of about 95% and depth accuracy of about 0.5 mm for an object 10 cm
in diameter observed by 16 low-resolution .640 � 480/ cameras. Combined with
the emergence of affordable, high-resolution (10 megapixel and higher) consumer-
grade cameras, this technology promises even higher, unprecedented geometric
fidelity in image-based modeling tasks, but puts tremendous demands on the cal-
ibration procedure used to estimate the intrinsic and extrinsic camera parameters,
lens distortion coefficients, etc.

1.1 Existing Approaches and Their Problems

There are two main approaches to the calibration problem: The first one, dubbed
chart-based calibration (or CBC) in the rest of this article, assumes that an object
with precisely known geometry (the chart) is present in all input images, and com-
putes the camera parameters consistent with a set of correspondences between
the features defining the chart and their observed image projections [2, 26]. It is
often used in conjunction with positioning systems such as a robot arm [20] or a
turntable [12] that can repeat the same motion with high accuracy, so that object and
calibration chart pictures can be taken separately but under the same viewing con-
ditions. The second approach to calibration is structure from motion (SFM), where
both the scene shape (structure) and the camera parameters (motion) consistent with
a set of correspondences between scene and image features are estimated [11, 19].
In this process, the intrinsic camera parameters are often supposed to be known a
priori [18], or recovered a posteriori through auto-calibration [19, 25]. A final bun-
dle adjustment (BA) stage is then typically used to fine tune the positions of the
scene points and the entire set of camera parameters (including the intrinsic ones
and possibly the distortion coefficients) in a single non-linear optimization [16,24].
A key ingredient of both approaches to calibration is the selection of feature corre-
spondences (SFC), procedure that may be manual or (partially or totally) automated,
and is often intertwined with the calibration process: In a typical SFM system for
example [19], features may first be found as “interest points” in all input images,
before a robust matching technique such as RANSAC [4] is used to simultaneously
estimate a set of consistent feature correspondences and camera parameters. Some
approaches propose to improve feature correspondences for robust camera calibra-
tion [17]. However, reliable automated SFC/SFM systems are hard to come by,
and they may fail for scenes composed mostly of objects with weak textures (e.g.,
human faces). In this case, manual feature selection and/or CBC are the only viable
alternatives.

Today, despite decades of work and a mature technology, putting together a com-
plete and reliable calibration pipeline thus remains non-trivial procedure requiring
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much know-how, with various pitfalls and sources of inaccuracy. Automated
SFC/SFM methods tend to work well for close-by cameras in controlled environ-
ments – though errors tend to accumulate for long-range motions, and they may
be ineffective for poorly textured scenes and widely separated input images. CBC
systems can be used regardless of scene texture and view separation, but it is dif-
ficult to design and build accurate calibration charts with patterns clearly visible
from all views. This is particularly true for 3D charts (which are desirable for uni-
form accuracy over the visible field), but remains a problem even for printed planar
grids (the plates the paper is laid on may not be quite flat, laser printers are sur-
prisingly inaccurate, etc.). In addition, the robot arms or turntables used in many
experimental setups may not be exactly repetitive. In fact, even a camera attached to
a sturdy tripod may be affected during experiments by vibrations from the floor, ther-
mal effects, etc. These seemingly minor factors may not be negligible for modern
high-resolution cameras,1 and they limit the effectiveness of classical chart-based
calibration. Of course, sophisticated setups that are less sensitive to these diffi-
culties have been developed by photogrammeters [27], but they typically require
special equipment and software that are unfortunately not available in many aca-
demic and industrial settings. Our goal, in this article, is to develop a flexible but
high-accuracy calibration system that is affordable and accessible to everyone. To
this end, a few researchers have proposed using scene information to refine camera
calibration parameters: Lavest et al. [15] propose to compensate for the inaccuracy
of a calibration chart by adjusting the 3D position of the markers that make it up,
but this requires special markers and software for locating them with sufficient sub-
pixel precision. The calibration algorithms proposed in Hernández Esteban et al.
[13] and Wong and Cipolla [28] exploit silhouette information instead. They work
for objects without any texture and are effective in wide-baseline situations, but are
limited to circular camera motions.

1.2 Overview of the Proposed Approach

In this article, we propose a very simple and efficient BA algorithm that does not
suffer from these limitations and exploits top-down information provided by a rough
surface reconstruction to establish image correspondences. Concretely, given a set
of input images, possibly inaccurate camera parameters that may have been obtained
by an SFM or CBC system, and some conservative estimate of the corresponding
reprojection errors, the input images are first scaled down so these errors become

1 For example, the robot arm (Stanford spherical gantry) used in the multi-view stereo evaluation of
[20] has an accuracy of 0.01ı for a 1 m radius sphere observing an object about 15 cm in diameter,
which yields approximately 1:0 Œm� � 0:01 � �=180 D 0:175 Œmm� errors near an object. Even
with the low-resolution 640� 480 cameras used in [20], where a pixel covers roughly 0.25 mm on
the surface of an object, this error corresponds to 0:175=0:25 D 0:7 pixels, which is not negligi-
ble. If one used a high-resolution 4,000 � 3,000 camera, the positioning error would increase to
0:7� 4; 000=640 D 4:4 pixels.
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small enough to successfully run a patch-based multi-view stereo algorithm (PMVS
[8]) that reconstructs a set of oriented points (points plus normals) densely cov-
ering the surface of the observed scene, and identifies the images where they are
visible. The core component of the approach proposed in this paper is essentially
guided-matching procedure in its second stage, where image features are matched
across multiple views using the estimated surface geometry and visibility informa-
tion. Finally, matched features are input to the SBA bundle adjustment software [16]
to tighten up camera parameters.2 Besides improving camera calibration, the pro-
posed method can significantly speed up SFM systems by running the SFM software
on scaled-down input images, then using the proposed algorithm on full-resolution
images to tighten-up camera calibration. The left diagram of Fig. 1 illustrates the
relationship of the three steps in our algorithm, namely, MVS, BA, and the pro-
posed guided-matching procedure: (1) MVS uses camera parameters (motion) to
generate a dense 3D model (structure); (2) BA uses feature correspondence infor-
mation (observation) to refine camera parameters (motion) and 3D coordinates of
matched feature points (structure); (3) The guided-matching uses rough structure
information to generate feature correspondence (observation). Note that the pro-
posed guided matching procedure closes the loop in this diagram, which enables us
to iterate the three stages of our algorithm to improve three types of information (i.e.,
structure, motion, and observation) one by one, and finally achieves high-fidelity
camera calibration. The proposed method has been tested on various real datasets,
including objects without salient features for which image correspondences cannot
be found in a purely bottom-up fashion, and objects with high-curvature and thin
structures that are lost in the construction of visual hulls without our bundle adjust-
ment procedure (Sect. 4). In summary, the contributions of the proposed approach
can be described as follows:

P1

P2
P3p11

p12
p13

p21

p22 p32

p33

V1={1,2,3}
V2={1,2}
V3={2,3}

C1
C2

C3

Structure
Pi

Motion
Cj

Observation
pij ,Vi

Multi-View Stereo

Bundle
Adjustment

Proposed
Approach

Fig. 1 Left: Relationship of multi-view stereo, bundle-adjustment, and the proposed guided-
matching approach. Right (notations): Three points P1; P2; P3 are observed by three cameras
C1; C2; C3. Pij is the image projection of Pi in Cj . Vi is a set of indexes of cameras in which
Pi is visible

2 The spirit of guided-matching is also used in [6] to match features of objects with weak tex-
tures, although approximate geometry of an object must be known in advance and manual feature
correspondences are required in their work.
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� Better feature localization by taking into account surface geometry estimations
� Better coverage and dense feature correspondences by exploiting surface geom-

etry and visibility information
� An ability to handle objects with very weak textures and resolve accumulation

errors, two difficult issues for existing SFM and BA algorithms

The rest of this article is organized as follows. Section 2 presents our imaging model
together with some notations, and briefly introduce the MVS algorithm used in
the article [10]. Section 3 details the proposed algorithm. Experimental results and
discussions are given in Sect. 4, with a conclusion given in Sect. 5. Note that imple-
mentations of MVS (PMVS by [10]), BA (SBA by [16]), and SFM (Bundler by
[22]) algorithms, and several CBC systems such as [2] are publicly available. Bun-
dled with our software, which is also available online at [9], they make a complete
software suite for high-accuracy camera calibration.

2 Imaging Model and Preliminaries

Our approach to camera calibration accommodates in principle any parametric pro-
jection model of the form p D f .P;C /, where P denotes both a scene point and
its position in some fixed world coordinate system, C denotes both an image and
the corresponding vector of camera parameters, and p denotes the projection of P
into the image. In practice, our implementation is currently limited to a standard per-
spective projection model whereC records five intrinsic parameters and six extrinsic
ones. Distortion is thus supposed to be negligible, or already corrected, for example
by software such as DxO Optics Pro [3]. Standard BA algorithms take the follow-
ing three data as inputs: a set of n 3D point positions P1; P2; : : : ; Pn, m camera
parameters C1; : : : ; Cm, and the positions of the projections pij of the points Pi in
the images Cj where they are visible (Fig. 1). They optimize both the scene Pi and
camera parametersCj by minimizing, for example, the sum of squared reprojection
errors:

nX
iD1

X
j2Vi

.pij � f .Pi ; Cj //
2; (1)

where Vi encodes visibility information as the set of indices of images where Pi is
visible. Unlike BA algorithms, multi-view stereo algorithms are aimed at recovering
scene information alone given fixed camera parameters. In our implementation, we
use the PMVS software [8, 10] that generates a set of oriented points Pi , together
with the corresponding visibility information Vi . We have chosen PMVS because
(1) it is one of the best MVS algorithms to date according to the Middlebury bench-
marks [20], (2) our method does not require a 3D mesh model but just a set of
oriented points, which is the output of PMVS, and (3) as noted earlier, PMVS
is freely available [10]. This is also one of the reasons for choosing the SBA
software [16] for bundle adjustment, the others being its flexibility and efficiency.
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3 Algorithm

The overall algorithm is given in Fig. 2. We first use the oriented points Pi (i D
1; : : : ; n/ and the corresponding visibility information Vi output by PMVS to form
initial image correspondencespij , then refine these parameterspij and Vi by simple
local image texture comparison in the second step. Given the refined image corre-
spondences, it is possible to rely on SBA to improve the camera parameters. The
entire process is repeated a couple of times to tighten up the camera calibration. In
this section, we will explain how to initialize and refine feature correspondences.

3.1 Initializing Feature Correspondences

In practice, we have found PMVS to be robust to errors in camera parameters as
long as the image resolution matches the corresponding reprojection errors – that
is, when features to be matched are roughly within two pixels of the correspond-
ing 3D points. Given an initial set of camera parameters, it is usually possible
to obtain a conservative estimate of the expected reprojection error Er by hand
(e.g., by visually inspecting a number of epipolar lines) or automatically (e.g., by
directly measuring reprojection errors associated with the features matched by a

Input: Cameras parameters fKj ;Rj ; tj g and
expected reprojection error Er .

Output: Refined cameras parameters fKj ;Rj ; tj g.
Build image pyramids for all the images.
Compute a level L to run PMVS: L max.0; blog2 Erc/.
Repeat four times
� Run PMVS on level L of the pyramids to obtain patches
fPig and their visibility information fVig.
� Initialize feature locations: pij  F.Pi ; fKj ;Rj ; tj g/.
� Sub-sample feature correspondences.
� For each feature correspondence fpij jj 2 Vig

– Identify a reference camera Cj0 in Vi with the
minimum foreshortening factor.

– For each non-reference feature pij .j 2 Vi ; j ¤ j0/

� For L� L down to 0
– Use level L� of image pyramids to refine pij :

pij  argmaxpij NCC.qij ; qij0 /.
– Filter out features that have moved too much.
� Refine fPi ;Kj ; Rj ; tj g by a standard BA with fpij g.
� Update Er by the mean and std of reprojection errors.

Fig. 2 Overall algorithm description. Starting from initial camera parameters possibly contain-
ing some errors, we iterate MVS, the guided-matching, and BA procedure to tighten-up camera
calibration
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SFM system).3 Thus, we first build image pyramids for all the input images, then
run PMVS on the level L D dlog2Ere of the pyramids. At this level, images are
2L times smaller than the originals, with reprojection errors of at most about two
pixels. We then project the points Pi output by this program into the images where
they are visible to obtain an initial set of image correspondences pij D f .Pi ; Cj /,
with j in Vi . Depending on the value of L and the choice of the PMVS parameter �
that controls the density of oriented points it constructs, the number of these points,
and thus, the number of feature correspondences may become quite large. Dense
reconstruction is not necessary for bundle adjustment, and we sub-sample feature
correspondences for efficiency.4 More concretely, we first divide each image into
10 � 10 uniform blocks, and randomly select within each block at most � features.
A feature correspondence will be used in the next refinement step if at least one of
its associated image features pij was sampled in the above procedure. In practice,
� is chosen so that the number of feature correspondences becomes 10–20% of the
original one after this sampling step. Note that sub-sampling is performed in each
block (as opposed to each image) in order to ensure uniformly distributed feature
correspondences.

3.2 Refining Feature Correspondences

Due to the use of low-resolution images in PMVS and errors in camera parameters,
the initial values of pij are not accurate. Therefore, the second step of the algo-
rithm is to optimize the feature locations pij by comparing local image textures.
Concretely, since we have an estimate of the surface normal at each point Pi , we
consider a small 3D rectangular patchQi centered at Pi and construct its projection
qij in the set Vi of images where Pi is visible (Fig. 3). We automatically determine
the extent of Qi so its largest projection covers an image area of about ı � ı pixels
(we have used ı D 7 throughout our experiments). In practice, as in [8], a patch
Qi is represented by a ı � ı grid of 3D points and the local image texture inside
qij is, in turn, represented by a set of pixel colors at their image projections that are
computed by a bilinear interpolation method.

Next, our problem is to refine feature locations by matching local image textures
qij . For efficiency, we fix the shapes of the image patches qij and only allow the
positions of their centers to change. This is not a problem because, as explained later,
we iterate the whole procedure a couple of times and the shapes of the image patches
improve over iterations. Note that this image patch optimization is fundamentally

3 In practice, reprojection errors reported by a SFM system tend to be small even when camera
parameters contain errors due to poor coverage of matched features. Since Er is just a conservative
estimate of reprojection errors, it is advisable to over-approximate the value.
4 We could increase the value of � to obtain a sparser set of patches without sub-sampling, but, as
detailed in [8], a dense reconstruction is necessary for this algorithm to work well and determine
visibility information accurately.
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Fig. 3 Given a patch
.Pi ;Qi/ and the visibility
information Vi , we initialize
matching images patches
.pij ; qij / p
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different from 3D patch optimization procedure performed by PMVS in that the
optimization is carried out as 2D feature matching and does not enforce epipolar
geometry constraints that come from possibly erroneous camera parameters. Let
us call the camera with the minimum foreshortening factor with respect to Pi the
reference camera of Pi , and use j0 to denote its index. We fix the location pij0

in the reference camera and optimize every other element pij ; j ¤ j0 one by one
by maximizing the consistency between qij0

and qij in a multi-scale fashion. More
concretely, starting from the level L of the image pyramids where PMVS was used,
a conjugate gradient method is used to optimize pij by maximizing the normalized
cross correlation between qij0

and qij . The process is repeated after convergence
at the next lower level. After the optimization is complete at the bottom level, we
check whether pij has not moved too much during the optimization. In particular,
if pij has moved more than Er pixels from its original location, it is removed as an
outlier and Vi is updated accordingly. Having refined feature correspondences, we
then use the SBA bundle adjustment software [16] to update the camera parameters.
In practice, we repeat the whole procedure (PMVS, multi-view feature matching,
and SBA) four times to tighten up the camera calibration, while Er is updated to be
the mean plus three times the standard deviation of reprojection errors computed in
the last step. Note that L is fixed across iterations instead of recomputed from Er .
This is for efficiency, since PMVS runs slowly with a small value of L.

4 Experimental Results and Discussions

4.1 Datasets

The proposed algorithm has been implemented in CCC and tested on six real
datasets, with sample input images shown in Fig. 4, and the number of images and
their (approximate) resolution listed in Table 1. The vase and step datasets have
been calibrated by a local implementation of a standard automated SFC/SFM/BA
suite as described in [11]. For the step dataset, the input images are scaled-down by
a factor of five to speed up the execution of the SFM software, but the full-resolution
images are used for our refinement algorithm. Our SFM implementation fails on all
other datasets except for predator, for which 14 out of the 24 images have been cal-
ibrated successfully. It is of course possible that a different implementation would
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Fig. 4 Sample pictures for the six datasets used in the experiments

Table 1 The number of images and their approximate resolution (in megapixels) are listed for
each dataset. Er is the expected reprojection error in pixels, L is the level of image pyramids used
by PMVS, Np is the number of patches reconstructed by PMVS, and Nt is the number of patches
that have successfully generated feature correspondences after sub-sampling

# of images # of pixels Er L Np Nt

vase 21 3M 12 3 9,926 1,310
dino 16 0.3M 7 2 5,912 1,763
face 13 1.5M 8 3 7,347 1,997
spiderman 16 1M 7 2 3,344 840
predator 24 2M 7 2 12,760 3,587
step 7 6M 5 2 106,806 9,500

have given better results, but we believe that this is rather typical of practical situa-
tions when different views are widely separated and/or textures are not prominent,
and this is a good setting to exercise our algorithm. The spiderman dataset has been
calibrated using a planar checkerboard pattern and a turntable with the calibration
software from [2], and the same setup has been used to obtain a second set of camera
parameters for the predator dataset. The face dataset was acquired outdoors, with-
out a calibration chart, and textures are too weak for typical automated SFC/SFM
algorithms to work. This is a typical case where, in post-production environments
for example, feature correspondences would be manually inserted to calibrate cam-
eras. This is what we have actually done for this dataset. The dino dataset is part
of the Middlebury MVS evaluation project, and it has been carefully calibrated by
the authors of [20]. Nonetheless, this is a very interesting object lacking in salient
features and a good example to test our algorithm. Therefore, we have artificially
added Gaussian noise to the camera parameters so that reprojection errors become
approximately six pixels, yielding a challenging dataset.

Probably due to the use of a rather inaccurate planar calibration board, and a
turntable that may not be exactly repetitive, careful visual inspection reveals that
spiderman and predator contain some errors, in particular, for points far away from
the turntable where the calibration board was placed. The calibration of face is not
tight either, because of the sparse manual feature correspondences (at most a few
dozens among close-by views) used to calibrate the cameras. The vase dataset has
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relatively small reprojection errors with many close-by images for which SFM algo-
rithms work well, but some images contain large reprojection errors because of the
use of a flash and the limited depth of field, and errors do accumulate. The step data
set does not have these problems, but since scaled-down images are used for the
SFC/SFM/BA system, it contains some errors in full resolution images. Note that
since silhouette information is used both by the PMVS software and the visual hull
computations described in the next section, object silhouettes have been manually
extracted using PhotoShop for all datasets except dino, where background pixels are
close to black, and thresholding followed by morphological operations is sufficient
to obtain the silhouettes. Note that the silhouette extraction is not essential for our
algorithm, although it helps the system to run and converge more quickly. Further-
more, the use of PMVS is not essential either and this software can be replaced by
any other multi-view stereo system.

4.2 Experiments

The two main parameters of PMVS are a correlation window size  , and a param-
eter � controlling the density of the reconstruction: PMVS tries to reconstruct at
least one patch in every � � � image window. We use  D 7 or 9 and � D 2 or 4 in
all our experiments. Figure 5 shows for each dataset a set of patches reconstructed
by PMVS (top row), and its subset that have successfully generated feature corre-
spondences after sub-sampling (bottom row). Table 1 gives some statistics on the
matching procedure. Er denotes a conservative estimate of the expected reprojec-
tion errors in pixels, and L denotes the level of image pyramids used by PMVS
to reconstruct a set of patches. The number of patches reconstructed by PMVS is
denoted byNp, and the number of patches that successfully generated feature corre-
spondences after sub-sampling is denoted by Nt . Examples of matched 2D features
for each dataset are shown in Fig. 6. The histograms of the numbers of images where
features are matched by the proposed algorithm are given in Fig. 7. By taking into
account the surface orientation and the visibility information estimated by PMVS,
the proposed method has been able to match features in many views taken from
quite different angles even when image textures are very weak, and hence, produc-
ing strong constraints for the BA step. This is also clear from Fig. 8 that shows
histograms for feature correspondences obtained by standard SFC/SFM/BA proce-
dure for the vase and step datasets,5 and illustrates the fact that features are matched
in fewer images compared to the proposed method.

It is impossible to give a full quantitative evaluation of our results given the lack
of ground truth 3D data, because constructing such dataset is difficult and expen-
sive, which is beyond the scope of this paper. We can, however, demonstrate that

5 Histograms are shown only for vase and step in Fig. 8, because the SFC/SFM/BA software fails
on the other datasets due to the problems mentioned earlier.
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Fig. 5 Top: Patches reconstructed by PMVS at level L of the pyramid. Bottom: Subsets of these
patches that have successfully generated feature correspondences after sub-sampling

our camera calibration procedure does its job as far as improving the reprojec-
tion errors of the patches associated with the established feature correspondences.
Figure 9 shows matched images features for each dataset, while their colors rep-
resent the amounts of the associated final reprojection errors: Red, green, and blue
corresponds to two, one, and zero pixels, respectively. Figure 10 shows the mean
and standard deviation of these reprojection errors at each iteration of our algorithm
for every dataset. The bottom-left graph shows the number of 2D features matched
and used to refine camera parameters for the six iterations. The mean reprojection
error decreases from 2–3 pixels before refinement to about 0.25–0.5 pixels for most
datasets. As described earlier, the process is repeated for four iterations in practice
to obtain the final camera parameters, as the two extra iterations in Fig. 10 show a
decrease in error but do not seem to affect the quality of our reconstructions much.
Note that the following assessment is performed after the fourth iteration of our
algorithm.

We have used a couple of different methods to qualitatively assess the accu-
racy of the estimated camera parameters. First, epipolar geometry has been used to
check the consistency between pairs of images (Fig. 2). More concretely, for a pair
of images, we draw pairs of epipolar lines in different colors to see if correspond-
ing epipolar lines of the same color pass through the same feature points in the
two images. Several images in the vase dataset contained large errors before refine-
ment (approximately six pixels in some places) because of the limited depth of field
and an exposure difference due to the use of a flash. The spiderman and predator
datasets also contain very large errors, up to seven (or possibly more) pixels for
points far from the ground plane where the calibration chart is located. In each case,
the proposed method has been able to refine camera parameters to sub-pixel level
precision. Inconsistencies in the dino dataset introduced by the added noise have
also been corrected by our method despite its weak texture.

Next, we have tested the ability of our algorithm to recover camera parameters
that are highly consistent across widely separated views. We use the spiderman
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Fig. 6 A set of matching 2D features is shown for each dataset. The proposed method is able to
match features in many images even without salient textures due to the use of surface geometry
and visibility information estimated by the multi-view stereo algorithm

and predator datasets in this experiment (Fig. 12) since parts of these objects are
as thin as a few pixels in many images. Recovering such intricate structures nor-
mally requires exploiting silhouette information in the form of a visual hull [1] or a
hybrid model combining silhouette and texture information [7, 12, 21, 23]. In turn,
this requires a high degree of geometric consistency over the cameras, and provides
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Fig. 7 Histograms of the number of images in which features are matched by the proposed
algorithm
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Fig. 8 Histograms of the number of images in which features are matched with a standard
SFC/SFM/BA software for vase and step datasets. In comparison to the proposed algorithm whose
results are presented in Fig. 7, features are matched in fewer images

a good testing ground for our algorithm. We have used the EPVH software of Franco
and Boyer [5] to construct polyhedral visual hulls in our experiments, and Fig. 12
shows that thin, intricate details such as the fingers of spiderman and the blades of
predator are successfully recovered with refined camera parameters, and completely
lost otherwise.

For dino and face, we have used PMVS to reconstruct a set of patches that are
then converted into a 3D mesh model using the method described in [14] (Fig. 12,
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Fig. 9 Matched image features are shown for each data set. The colors represent the associated
reprojection errors computed after the last bundle adjustment step. See text for more details
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Fig. 10 The mean and standard deviation of reprojection errors in pixel for each dataset at each
iteration. The bottom-left graph shows the total number of matched 2D features per iteration

bottom right). The large artifacts at the neck and the chin of the shaded face
reconstruction before refinement are mainly side effects of the use of visual hull
constraints in PMVS (patches are not reconstructed outside the visual hull [8]), exac-
erbated by the fact that the meshing method of [14] extrapolates the surface in areas
where data is not present. Ignoring these artifacts, the difference in quality between
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Calibration chart Proposed method

SFM Proposed method Initial Proposed method

Calibration chart Proposed method

SFM Proposed method

Fig. 11 Epipolar lines are used to assess the improvements in camera parameters. A pair of
epipolar lines of the same color must pass through the same feature points

the reconstructions before and after refinement is still obvious in Fig. 12, near the
fins of the dinosaur, or the nose and mouth of the face for example. In general,
however, the accumulation of errors due to geometric inconsistencies among widely
separated cameras is not always visually recognizable in 3D models reconstructed
by multi-view stereo, because detailed local reconstructions can be obtained from
a set of close cameras, and wide-baseline inconsistencies turn out as low-frequency
errors. In order to assess the effectiveness of our algorithm in handling this issue, we
pick a pair of widely separated cameras C1 and C2, map a texture from one cam-
era C1 onto the reconstructed model, render it as seen from C2, and compare the
rendered model with the input image associated with C2. The two images should
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SFM Calibration chart Proposed method Calibration chart Proposed method

Initial Proposed Manual Proposed

Fig. 12 Visual hull models are used to assess the accuracy of camera parameters for spiderman
and predator. Intricate structures are reconstructed only from the camera parameters refined by
the proposed method. For dino and face, a set of patches reconstructed by PMVS and a 3D mesh
model extracted from these patches are used for the assessment. See text for more details

look the same (besides exposure differences) when the camera parameters and the
3D model are accurate. Figure 13 illustrates this on the vase and face datasets: Mesh
models obtained again by combining PMVS [8] and the surface extraction algorithm
of [14] are shown for both the initial and refined camera parameters. Although the
reconstructed vase models do not look very different, the amount of drifting between
rendered and input images is approximately six pixels for initial camera parameters.
Similarly, for the face model, the reconstructed surfaces at the left cheek just beside
the nose look detailed and similar to each other, while the rendered image is off
by approximately six pixels as well. In both cases, the error decreases to sub-pixel
levels after refinement. Note that reducing low-frequency errors may not necessar-
ily improve the appearance of 3D models, but is essential in obtaining accuracy in
applications where the actual model geometry, and not just their overall appearance,
is important (e.g., engineering data analysis or high-fidelity surface modeling in the
game and movie industries).

Finally, the running time in minutes per iteration of the three steps (PMVS,
feature matching, bundle adjustment) of the proposed algorithm on a Dual Xeon
3.2 GHz PC is given in Table 2. As shown by the table, the proposed algorithm is
efficient and takes at most a few minutes per iteration to refine camera parameters.
Note that the running time of typical CBC systems is also in an order of a few min-
utes for these data sets. SFC/SFM/BA systems are more computationally expensive,
and in particular, a local implementation (Matlab) of a standard SFC/SFM/BA soft-
ware takes several hours to calibrate the step data set with full resolution images.
As explained before, the proposed approach reduces such computational expenses
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Fig. 13 Inconsistencies in widely separated cameras (accumulation errors) are often not recogniz-
able from 3D mesh models reconstructed by a MVS algorithm. For further assessments, we pick a
pair of separated cameras shown in the middle row, texture-map the surface from the right image,
render it to the left, and compare the rendered model with the left image. The rendered and the
input images look the same only if camera parameters and the reconstructed model are accurate.
The top and the bottom rows show rendered images and the reconstructed 3D mesh model before
and after the refinement, respectively. The amount of errors with the initial camera parameters
(calibrated by SFM for vase and manual feature correspondences for face) is roughly six pixels for
both datasets, which are very large

Table 2 Running time in minutes of the three steps of the proposed algorithm for the first iteration

vase dino face spiderman predator step

PMVS 1.9 0.40 0.65 0.34 1.9 4.0
Match 1.1 0.66 0.96 0.24 1.6 0.39
BA 0.17 0.13 0.17 0.03 0.38 1.2

for the step data set by first running a SFC/SFM/BA system with scaled-down input
images, which takes only a few minutes, then using the proposed method to tighten
up camera calibration.

5 Conclusion

Despite the development and the sophistication of camera calibration software and
algorithms, it is, by no means, trivial to obtain camera parameters with high-fidelity
for various reasons. We have proposed a novel approach for camera calibration
where top-down information from rough camera parameter estimates and the output
of a multi-view stereo system on scaled-down input images is used to effectively
establish feature correspondences. By taking into account the surface orientation
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and the visibility information estimated by a multi-view stereo system, the proposed
method has been able to match features in many views taken from quite different
angles even when image textures are very weak. We have performed three different
ways to qualitatively assess the accuracy of refined camera calibration, which shows
that the proposed method has successfully reduced calibration errors significantly.
Future work will focus on the analysis of remaining errors and influences of various
factors that have been ignored in the current framework, such as the second order
effects in the camera projection model (distortions) or surface reflectance properties
that are assumed to be Lambertian. The implementation of the proposed algorithm
is publicly available at [9]. Also see [2, 10, 16, 22] for other useful software that are
publicly available.
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Cell-Based 3D Video Capture Method
with Active Cameras

Tatsuhisa Yamaguchi, Hiromasa Yoshimoto, and Takashi Matsuyama

Abstract This paper proposes a 3D video capture method with active cameras,
which enables us to produce 3D video of a moving object in a widespread area. Most
existing capture methods use fixed cameras and have strong restrictions on allowable
object motion; an object cannot move in a wide area. To solve this problem, our
method partitions a studio space into a set of subspaces named “cells”, and conducts
the camera calibration and control for object tracking based on the cells. We first
formulate our method as an optimization problem and then propose an algorithm to
solve it.

1 Introduction

3D video is a full 3D dynamic shape and texture data generated from multi-view
video. A number of studies have proposed 3D video generation methods [1, 2, 5,
9, 10]. These methods first capture target objects as a multi-view video by a set of
calibrated video cameras that surrounds the objects, and then generate a 3D video
using shape reconstruction algorithms such as Shape-From-Silhouette technique [8].
Namely, these methods are based on the analysis of images using camera geometry
and photometry cues that are obtained separately.

In general, the requirements on the multi-view video for 3D video generation
from multi-view video are summarized as follows:

Req. 1 Camera calibration: For computing the 3D shape of the objects, all the
cameras must be calibrated accurately.

Req. 2 Visual coverage: The cameras must capture the whole surface of the
objects.

Req. 3 Spatial resolution: The cameras must capture object texture with high
spatial resolution.
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3D video can be generated in the space where these three requirements are satisfied.
We call such space “capture space”.

In existing 3D video capture methods, the size of the capture space is small and
it is difficult to generate 3D videos of moving objects in a widespread area, such
as a walking person. One reason is the use of a fixed set of cameras. As mentioned
in [11], camera configurations – camera positions, directions, and focal lengths –
are adjusted first in most existing 3D video capture methods. Then, the cameras are
calibrated accurately to satisfy Req. 1. However, as the camera configurations are
fixed, a trade-off problem between Reqs. 2 and 3 arises. It comes from the trade-off
between the angle of view and the spatial resolution of each camera; if we choose
a wider angle of view to satisfy Req. 2, the spatial resolution becomes lower and
Req. 3 will not be satisfied.

One possible approach to extend the capture space without affecting the resolu-
tion is to increase the number of cameras proportionally to the desired capture space
size. Nevertheless there is a limitation on the number of cameras due to their cost or
spatial constraints of the studio. Moreover, this approach is not desirable from the
standpoint of effective use of the cameras because not all cameras can contribute
to the reconstruction of each 3D video frame. This issue is also discussed in the
chapter by Bennett Wilburn.

Another approach is to track the objects with active cameras. This approach
dynamically moves the capture space by controlling directions and zooms of all
the active cameras. Hence it can virtually extend the capture space without increas-
ing the number of cameras. In other words, it can use the limited number of cameras
more effectively. We adopt this approach.

However, two problems arise when active cameras are used for 3D video pro-
duction. One concerns the active camera calibration for Req. 1. Although several
methods have been proposed to calibrate active cameras [14], it is still difficult to
accurately and robustly calibrate active cameras that largely change focal lengths
and lens distortions. The other one concerns the real-time camera control for 3D
video capture. The 3D position of target objects must be computed from multi-
view images and the cameras must be controlled so that Reqs. 2 and 3 are satisfied.
Consequently, we derive the fourth requirement:

Req. 4 Track target objects in real-time while satisfying Reqs. 2 and 3.

Ukita et al. have proposed a real-time cooperative active camera control method
[13]. They realize real-time tracking of multiple objects with multiple active cam-
eras. Kanade et al. have developed a tracking system with multiple active cameras
[6]. These methods cannot be used for 3D video production, because they do not
satisfy Reqs. 1 and 2. They produce camera parameters based on the active camera
calibration, but there is a limitation in the accuracy. Thus Req. 1 is not satisfied. As
for Req. 2, they do not guarantee to satisfy the visual coverage.

We propose a cell-based tracking method for 3D video capture. Our method can
be applied to the following situation:

1. There is only one target object.
2. The object moves along a given path and its maximum velocity is given.
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3. The resolution requirement is specified by the lowest allowable resolution.
4. The cameras are active PTZ cameras. A camera control value consists of pan,

tilt, zoom and focus, and their projection centers are almost fixed.
5. The cameras are surrounding the desired capture space to view the objects there

from varying directions.

Our method consists of four steps: The first step divides the space along the
given path into Nk subsets named “cells”. The second step adjusts a camera control
value per camera and per cell, with which every camera can “watch the cell”. In
this paper, the term “watch a cell” means to capture the whole cell with allowable
resolution with a single camera control value. We then calibrate the cameras for
each cell; we apply the camera control values associated with the cell and apply
existing camera calibration methods for static cameras such as [15] and [12]. By
these two steps, Reqs. 1 and 3 are satisfied while each camera is watching one of
the cells. The third step makes a camera control schedule by assigning three roles to
each camera at every point of the given path in an off-line process: watching the cell
where the object is in, switching its view to the next cell, or watching the next cell to
anticipate the object movement. The final step is on-line tracking and active camera
control. Our method computes the object position from images and controls the
cameras based on the schedule. Then, it generates 3D video using images captured
by calibrated cameras that were watching a cell. In other words, while a camera
is switching its view from one cell to another, the captured images do not satisfy
Req. 1. Thus we discard such images.

The rest of this paper formulates the cell-based tracking method as an optimiza-
tion problem, proposes an algorithm to solve it, and then shows the experimental
results and evaluates the performance of our method.

2 Problem Formulation

We formulate each step of our cell-based 3D video capture based on the four
requirements described in Sect. 1. The processes to satisfy Reqs. 1, 3 and 4 can
be formulated as cell-based processes. Req. 1 can be satisfied by camera calibration
on each cell. Req. 3 can be satisfied by adjusting zooms for each cell. Req. 4 can be
satisfied by on-line tracking and camera control based on cells. In contrast, Req. 2
cannot be always satisfied in 3D video generation from multi-view video. This is
because the visual coverage depends on the shape of captured objects, as well as the
relative position of objects to cameras. In extreme cases, some types of object shape
hinder complete visual coverage by self-occlusion.

This paper proposes a practical method that guarantees to satisfy Reqs. 1, 3 and 4
exactly while achieving best effort to satisfy Req. 2. For this purpose, we first define
an evaluation function that estimates how well Req. 2 is satisfied and formulate the
process to satisfy Req. 2 as an optimization problem of camera control for maxi-
mizing the evaluation function. As for the trade-off problem between Reqs. 2 and 3,
mentioned in Sect. 1, our algorithm gives higher priority to Req. 2; it guarantees the
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Table 1 Notations for defining the visual coverage

S � R3 3D video studio space.
NE Number of active cameras to be used.
Ei .i D 1; � � � ; NE/ Camera parameters (intrinsic and extrinsic, geometry and photom-

etry parameters.)
r [mm/pixel] Lowest allowable spatial resolution.
Fi � S View frustum: The space where objects can be captured by camera i

with higher resolution than r . This is bounded by the distance from
the camera, the depth of field, and the angle of view.

v � S Volume occupied by the object.
pj .j D 1; 2; : : : ; Nj / Points on the object surface.
nj Surface normal vectors on pj .
Oi Projection center of active camera i .
�
j
i Angle formed by nj and .Oi � pj /
visible.p; .Ei ;Fi // Visibility function: Binary function that returns 1 when p is visible

by a camera with state .Ei ;Fi / and 0 when unobservable.
V .t/ � S Space occupied by the object at time t
ei .t / Camera control value for camera i at time t .
NEi .ei .t // Camera parameters of camera i with control value ei .t /.
F i .ei .t // � S View frustum of camera i with control value ei .t /

spatial resolution to be higher than the lowest allowable resolution, but no longer
optimizes the active camera control for the resolution.

We define the symbols to formulate the problem in Table 1.
Figure 1 shows the geometric relations of some symbols. In order to generate a

3D video, the following two requirements must be satisfied for each point pj .

� In order to get texture information, pj must be observed from the viewpoint
directly facing the surface.

� In order to capture good images for Shape-From-Silhouette, pj must be observed
from the orthogonal direction to the surface normal.

As mentioned, it is sometimes impossible to satisfy these requirements for all of the
surface points, considering the shape complexity or self-occlusion of target objects.
We first quantify these two requirements for a given pair of a point pj and camera i
with parameter Ei and view frustum Fi .

qt.pj ; .Ei ;Fi // D visible.pj ; .Ei ;Fi // cos �j
i

qs.pj ; .Ei ;Fi // D visible.pj ; .Ei ;Fi //j sin �j
i j

The larger the values of these functions are, the more each requirement is satisfied.
These functions imply that it is impossible to satisfy the two requirements by a sin-
gle camera. However, each requirement can be satisfied by different cameras in the
3D video production with multiple cameras. Thus we quantify the two requirements
on each point pj as follows:
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Fig. 1 Geometric relations of the symbols that define the visual coverage

q0t.pj ; f.Ei ;Fi /giD1;��� ;NE/ D max
i
qt.pj ; .Ei ;Fi //

q0s.pj ; f.Ei ;Fi /giD1;��� ;NE/ D max
i
qs.pj ; .Ei ;Fi //

Then, we choose the least observable point by (1) and (2).

Qt.v; f.Ei ;Fi /giD1;��� ;NE/ D min
j
q0t.pj ; f.Ei ;Fi /giD1;��� ;NE/ (1)

Qs.v; f.Ei ;Fi /giD1;��� ;NE/ D min
j
q0s.pj ; f.Ei ;Fi /giD1;��� ;NE/ (2)

The larger the values of (1) and (2) are, the lager area on the object is observed well.
Finally, we define an evaluation function that estimates how well Req. 2 is satisfied
by (3).

Q.v; f.Ei ;Fi /giD1;��� ;NE/ D Qt.v; f.Ei ;Fi /giD1;��� ;NE/Qs.v; f.Ei ;Fi /giD1;��� ;NE/

(3)

Using (3), Req. 2 can be quantitatively evaluated for a given pair of v and
f.Ei ;Fi /giD1;��� ;NE . Next, to deal with the object movements, let V .t/ � S be the
space occupied by the object at time t . The active cameras are controlled via camera
control values ei .t/. Therefore, we denote the camera parameters and view frustums
at each time as the functions of ei .t/; NEi .ei .t// and F i .ei .t//.

Based on these definitions, the process to capture the whole object surface can be
formulated as follows: when given V .t/, optimize fei .t/giD1;2;��� ;NE for maximizing
Q.V .t/; f NEi .ei .t//;F i .ei .t//giD1;��� ;NE/.
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3 Cell-Based Active Tracking Algorithm

As described in Sect. 2, cell-based 3D video capture can be formulated as cell-based
computations regarding Reqs. 1, 3 and 4, and an optimization for Req. 2 using (3).
Our algorithm solves this problem by two steps. The first step divides a studio space
into cells and sets up camera control values for each cell in order to satisfy Reqs. 1
and 3. The second step optimizes the camera control timings for Reqs. 2 and 4.

Our algorithm cannot always produce the optimal solution, but just a pseudo-
optimal one. This is because the optimization problem mentioned in Sect. 2 is
computationally complex. The variables have dependencies on each other; more-
over, (3) cannot be computed without setting all the camera control values. These
characteristics of the function makes it difficult to apply efficient algorithms such
as dynamic programming. Our algorithm is a practical way to find one acceptable
solution as it guarantees the multi-view video to satisfy Reqs. 1, 3, and 4.

The inputs to our algorithm consists of scenario and resources described in
Table 2 and 3, and the output is a 3D video of a moving object in a widespread
area. The algorithm consists of five processes.

1. Cell formation
2. Camera calibration
3. Camera control scheduling
4. Real-time object tracking and camera control
5. 3D video generation

We use the symbols listed in Tables 4 and 5 in the following descriptions.

Table 2 Scenario and its notations
fL.l/ 2 Sjl 2 Œ0; L�g Path of the object motion to capture, expressed as a curve with length

L, and parameterized by arc length.
L Length of the path.
QV .x/ � S Object shape model. When the object is at x.t/, V .t/ � QV .x.t// must

be satisfied.
Vmax Maximum allowable velocity of the object movement.
r Lowest allowable spatial resolution.

Table 3 Resources and its notations
�cam Video capture interval.
Ki.v/ Function that computes an ei for camera i to capture all the points in v

with higher resolution than r . If there is no such ei , Ki.v/ D �. This
function must be designed reflecting the structure of the active camera.

�i .ei ; e0

i / Length of time needed for camera i to change its state from ei into e0

i .
�proc Length of time needed to measure the 3D position of the object.
visible.p; .Ei ;Fi // Visibility function (cf. Sect. 2). This must be given depending on the

studio setup.
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Table 4 Symbols for the cell formation algorithm

	l D Vmax�cam Length of each path fragment.
f.n/.n D 0; : : : ; Nf � 1/ Path fragments.
Nf Total number of fragments generated.
W .n/ Unit space: space along the nth fragment.
Ck � S.k D 1; : : : ; Nk/ Cells.
Nk Total number of the cells generated.
ck Cell border fragment indices. Fragments from f.ck/ to f.ckC1/

belongs to cell k.
Neki Camera control value for camera i to watch the kth cell.

Table 5 Symbols for camera control scheduling and real-time tracking

mn
i Camera mode. The index of the cell that camera i should watch when

the object is on fragment n.
gn � f1; 2; : : : ; NEg Subset of cameras that watches a cell when the object is at fragment n
Ak Fragment indices where the scheduling problem is divided.
x.t/ Object position.
Ii .t / Image captured by camera i at time t .

3.1 Cell Formation

This subsection first describes the conditions that cells should satisfy, the definition
of cells, and then states the cell formation algorithm.

As mentioned in Sect. 2, our method satisfies Req. 1 and 3 by cell-based pro-
cesses. Our method satisfies Req. 3 by capturing the whole space of a cell with
higher resolution than r , with all the cameras. It means that each cell must be created
so that Nek

i satisfying (4) can exist.

Ck � F i .Nek
i / (4)

On the other hand, considering the camera calibration costs, the number of the cells
should be minimized. In other words, each single cell should be as large as possible.

The cell formation algorithm divides the 3D space along the path into cells that
satisfy Reqs. 1 and 3. First, we discretize the given path as well as the nearby space.
The path is divided into fragments. The length of each fragment is 	l D Vmax�cam,
which is the maximum possible length that the object can advance in one video
capture interval. We also define the unit spaces as the parts of the studio space that
may be occupied by the object when the object is on each associated fragment.
Equations (6) and (7) show the definitions of the fragments and the unit spaces
respectively.
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k 1

ck  0

while ck < Nf � 1 do
for i = 1,2,. . . ,NE do
ni  ck

while ni < Nf � 1 and Ki

�SniC1
nDck

W .n/
�
¤ � do

ni  ni C 1
end while
if ni D ck then

return ˆ

end if
Neki  Ki

�Sni
nDck

W .n/
�

end for
ckC1  minfnigiD1;2;:::;NE

Ck  SckC1

nDck
W .n/

k k C 1
end while
Nk  k � 1
return fNk; fckgkD1;2;:::;NkC1; fCkgkD1;2;:::;Nk ; fNeki giD1;��� ;NE;kD1;2;:::;Nkg

Fig. 2 Cell formation algorithm

Nf D d L
	l

e (5)

f.n/ D fL.l/jl 2 Œ	ln;max .L;	l.nC 1//�g.n D 0; : : : ; Nf � 1/ (6)

W .n/ D
[

x2f.n/

QV .x/ (7)

Second, we define each cell Ck as a union of some consecutive W .n/ by the
cell formation algorithm presented in Fig. 2. This algorithm outputsNk , a list ofNk

cells and camera control values for each cell that satisfies (4). When there is no such
solution, it returns the empty list ˆ, meaning that our method cannot satisfy Req. 3
for given scenario with given resources. In this case, our algorithm terminates at this
step.

Note that a camera watching Ck can also satisfy Reqs. 1 and 3 in some part of
neighbor cells, i.e., Ck�1 and CkC1. These parts of camera views are not necessary
for 3D video capture in Ck , but we can make use of it in the camera control schedul-
ing algorithm. As described in Sect. 3.3, such spatial redundancy of camera views
are useful for improving the visual coverage.

3.2 Camera Calibration

In order to satisfy Req. 1, camera parameters for each cell, NEi .Nek
i /, are obtained by

camera calibration. All the active cameras can be regarded as fixed cameras, when



Cell-Based 3D Video Capture Method with Active Cameras 179

they are watching one of the cells. Thus any existing camera calibration methods for
fixed cameras, e.g., Zhang’s [15] and Svoboda’s [12], can be applied here.

3.3 Camera Control Scheduling

In order to satisfy Req. 2, camera control values that maximize the evaluation func-
tion (3) are needed. Our algorithm performs this computation by path fragments.

We introduce camera modes mn
i that express the active camera states. They are

defined as follows:

mn
i D

(
k watching Ck with parameter Nek

i

0 switching its view

These camera modes have the following constraint: Assume that camera i begins
to switch its view from Ck0

to Ck1
when the object arrives at f.n0/. There are two

kinds of delays before the camera finishes switching its view. The first one is the
processing time �proc, which includes capturing an image, computing the object
position, and communications between computers and active cameras. After that,
the active camera requires �i .Nek0

i ; Nek1

i / time before finishing its motion and resume

capturing Ck1
. Thus, this camera movement requires 	T D �proc C �i .Nek0

i ; Nek1

i /

in total. Meanwhile, the object can advance by Vmax	T at the worst case. As
shown in Fig. 3, the camera is not guaranteed to capture the object when the
object is within the fragments, from f.n0/ to f.n1 Dn0 C b Vmax�T

�l
c/. As a result,

m
n0

i D 0; � � � ; mn1

i D 0 must be assigned.
Based on the camera modes, we first consider the case when the object is within

one of the path fragments f.n/. Only the subset of cameras that is gazing at a cell,

gn D fi jmn
i ¤ 0g

can capture the object, satisfying Req. 1. Note that when the object is in Ck , a
camera watching another cell Ck0.k0 ¤ k/ can sometimes capture the object as
mentioned in Sect. 3.1, therefore such cameras are contained in gn. We compute the
evaluation function for Req. 2 using only the cameras that belong to gn as follows:

n0 n1
n

Vmaxτproc
Δ l

Vmaxτi(ē
k0
i ,ē

k1
i )

Δ l

mn
i = k0 k1mn

i = 0 mn
i =

Fig. 3 Assignment of mn
i reflecting �i .e; e0/ and �proc
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Q
�
V .t/; f. NEi .Nemn

i

i /;F i .Nemn
i

i //ji 2 gng
�

Next, from (7) and the definition of QV , V .t/ � W .n/ can be derived. Therefore

we assume that fNemn
i

i ji 2 gng which maximizes (3) for W .n/ also maximizes the
evaluation function for V .t/ as well. Thus we compute the evaluation function for
visual coverage for each fragment n using (8).

Q.W .n/; f. NEi .Nemn
i

i /;F i .Nemn
i

i //ji 2 gng/ (8)

Finally, from the standpoint of guaranteeing 3D video capture, we choose the
worst value of (8) in the path as the objective function. In conclusion, the scheduling
algorithm solves the following maximization problem.

Variables fmn
i giD1;��� ;NE;nD0;��� ;Nf

Objective Function

min
nD0;:::;Nf�1

Q.W .n/; f. NEi .Nemn
i

i /;F i .Nemn
i

i //ji 2 gng/ (9)

Constraints If the gaze of camera i is switched from Ck0
to Ck1

when
the object arrives at f.n0/, then mn

i D 0 for all n that satisfy n0 � n �
n0 C b Vmax

�
�procC�i .Nek

i
;NekC1

i
/
�

�l
c.

This problem requires the full search on the solution space because gn changes
depending on the combinations of the camera mode values. The solution space
consists of all the possible combinations of camera mode values, and its size is
O.Nk

NfNE/. As shown in Sect. 5, Nf exceeds 100 and NE is more than 20 in our
assumed scenarios and resources. ThereforeO.Nk

NfNE/ is still too large to find the
optimal solution by a full search practically. As a reasonable solution, our algorithm
divides the problem into Nk � 1 independent sub-problems between every pair of
adjoining cells, .Ck;CkC1/, by grouping the path fragments into Nk � 1 sections
ŒAk ; AkC1�.k D 1; � � � ; Nk � 1/, where

Ak D

8
ˆ̂<
ˆ̂:

c1 .k D 1/

b ckCckC1

2
c .2 � k � Nk � 1/

cNkC1 .k D Nk/

and solve each of them. That is, this division puts a restriction on the camera sched-
ule that all the cameras watch Ck when the object is at Ak and switch its view from
Ck to CkC1 only once when the object moves from Ck to CkC1. Here, choosing
the values for Ak.k D 2; 3; : : : ; Nk � 1/ that maximize (9) itself is an optimization
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problem that is difficult to solve because of the similar reason described above.
Instead we choose the center of each cell for Ak based on the following heuristics:
In general, the more cameras see the object, the larger the value of (8) is. As to the
number of cameras gazing at a cell, it is reduced in the following two cases; While
the object is in Œck ; Ak � 1�, some of the cameras switch their view from Ck�1 to
Ck in order to follow the object. And while the object is in ŒAk ; ckC1 � 1�, some
of the cameras switch their view from Ck to CkC1 in order to anticipate the object
movement. In both cases, the more frequently those cameras switch their view in the
same time, the fewer cameras see the object. Our method reduces such possibilities
by making both Œck ; Ak � 1� and ŒAk; ckC1 � 1� as long as possible. For this reason,
we set Ak to the center of each cell, in order to make the value of (9) larger.

Each kth sub-problem is formulated as follows:

Variables fmn
i giD1;��� ;NE;nD0;��� ;Nf

Objective Function

min
n2ŒAk ;AkC1�

Q.W .n/; f. NEi .Nemn
i

i /;F i .Nemn
i

i //ji 2 gng/ (10)

Constraints Each camera switches its gaze from Ck to CkC1 only
once when the object arrives at fragment n0i .Ak < n0i < AkC1 �
b Vmax

�
�procC�i .Nek

i
;NekC1

i
/
�

�l
c/. mn

i must satisfy

mn
i D

8
ˆ̂̂
<
ˆ̂̂
:

k .Ak � n < n0i /

0 .n0i � n � n0i C b Vmax

�
�procC�i .Nek

i
;NekC1

i
/
�

�l
c

k C 1 .n0i C b Vmax

�
�procC�i .Nek

i
;NekC1

i
/
�

�l
c < n � AkC1/

The number of solution candidates for each sub-problem is O..Ak �Ak�1/
NE/.

On the average, Ak � Ak�1 can be approximated by Nf
Nk

. Our algorithm solves this
problem using genetic algorithm. A sequence of n0i .i D 1; � � � ; NE/ composes a
chromosome, and the fitness function is (10).

3.4 Real-Time Object Tracking and Camera Control

The cell formation and the scheduling processes compute a pseudo-optimal assign-
ment of the cameras as fNek

i giD1;��� ;NE;kD1;��� ;Nk
and fmn

i giD1;��� ;Nk ;nD0::::;Nf�1. Thus
the tracking can be performed by measuring the object position x.t/ and controlling
the active cameras in parallel.

Figure 4 summarizes the capture process. It is performed by a computer cluster
with NE camera nodes �Ci .i D 1; � � � ; NE/ and one master node �M. These nodes
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time

finish moving

Fig. 4 Overview of capture process

are connected each other to share the object position x.t/. Every camera node has
one active camera connected.

In the following descriptions, we denote the time as t and we assume that all the
system clocks on the nodes are synchronized. The measurement of the object 3D
position is performed as follows:

The 2D Tracking Process on each �C
i

�Ci .i D 1; � � � ; NE/ repeats the following process in every time interval �cam.

1. Grab an image Ii .t/.
2. If camera i is gazing at one of the cells,

a. Store ft; Ii .t/; ki .t/g. Here, ki .t/ is the cell number that camera i has been
gazing at.

b. Track the object position on the image and compute its centroid ui .t/. The
tracking is performed by Condensation algorithm [4].

c. If ui .t/ is successfully computed, transmit ft;ui .t/; ki .t/g to �M.
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The 3D Tracking Process on �M

�M repeats the following process in every time interval �cam.

1. When two or more sets out of fft;ui .t/; ki .t/gji D 1; : : : ; NEg have been recei-
ved, triangulate the 3D position of the object using ui .t/, NEi .Neki .t/

i /.
2. If the 3D position x.t/ is successfully calculated, project x.t/ onto the path and

find the corresponding fragment f.n/. Transmit n to all �Ci .

The camera control is performed by each �Ci as follows:

The Camera Control Process on each �C
i

1. Whenever a new n, the fragment number in which the object exists, is received,

look up mn
i and begin switching the active camera state into Nemn

i

i .

3.5 3D Video Generation

In the algorithm described above, each �Ci stores ft; Ii .t/; ki .t/g. From these data,

a sequence of multi-view images and camera parameters, fIi .t/; NEi .Neki .t/
i /g, which

satisfy the four requirements can be obtained. It means that our method can generate
a 3D video.

4 Experiments and Evaluations

For the experiments described in this section, we arranged 23 active cameras in our
3D video studio, which is about 8 m2. Each of them is a partially-fixed viewpoint
active camera [7] composed of a zoom camera SONY DWF-VL500 and a pan-tilt
unit Directed Perception Inc. PTU-46. We set up 23 computers as the camera nodes
and 1 computer as the master node.

Figure 5 shows the studio and the active camera arrangement. The hatched area
is F16, the capturable part of the studio by camera 16, when the camera is directed
to a person standing at (�1,500, 0, 0). As shown by this example, in general, camera
views that satisfy Req. 3 are limited to part of the studio space and cannot cover all
the studio space at one time.

As the resources required by the algorithm, �i .ei ; e
0
i / was given based on mea-

sured dynamic characteristics of each active camera.Ki .v/ was made up to find the
camera control parameter that captures v near the center of image was given. As to
visible.p;n; . NEi ;F i //, a function to compute self-occlusion of the object shape
was given because there is no other object that occludes the object in our studio.
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Fig. 5 The studio and the camera arrangement. The numbers represent the camera positions

The following Sects. 4.1, 4.2, and 4.3 describe the details of three experiments
conducted under this environment.

4.1 Evaluation of the Visual Coverage Function

First, we show that the evaluation function (3) is effective for estimating the visual
coverage of real objects. For this purpose, we compared the evaluation function
valueQ to the non-observed surface rateR for several different scenes. The lowerR
is, the better Req. 2 is satisfied.

We used 2 types of digitized human shape model as test data. We generated
1,000 virtual camera configurations for each using the path and camera configura-
tion shown in Fig. 7(a). Each of them was generated by putting an object at a random
position on the path, randomly choosing a subset of cameras to be used, and then
setting up their control values by Ki . For the object shape model QV used for com-
puting (3), a sphere that includes upper half part of the human body was used. The
reason why we chose such QV is described in Sect. 4.2.

Figure 6 shows the result distribution of .Q;R/. Each black dot represents one
camera configuration. Because the visual coverage is largely affected by the shape
of target object and relative positions of the cameras to the object, there is a large
variance in R for any Q. Some parts of the object such as the soles of the feet are
physically unobservable and thus R never reaches zero. The maximum value of R
for each Q, however, tends to be the lower for the higher Q. It shows that (3) can
estimate the worst-case visual coverage for objects that have unknown shape, using
the shape model QV . The results proves that optimizing camera views for (3) leads to
better capture of multi-view video from the standpoint of Req. 2.
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Fig. 6 Distribution of .Q;R/ – the visibility function and non-visibility ratio – for two human
shape model data

4.2 Tracking Experiments

As an experiment to show the effectiveness of our method, we captured 3D videos
of a walking person in a widespread area. The value of (3) changes depending on
the relative positions of the cameras to the object. Consequently, the cell formation
and camera control scheduling in our algorithm is also affected by them. Hence, we
prepared two scenarios with different paths. The arrows in Figs. 7(a) and 7(b) stand
for the given path L for each scenario. We assumed that the height of the target
person is 1.8 m, and that he moves along the given path with varying speed slower
than 0.5 m/s. The resolution requirement was set to r D 8[mm/pixel].

First, we attempted to capture the whole body of the target. Hence, QV .x/ was
specified as double-stacked spheres at x whose radii are 0.45 m. With these scenarios
and the resources, our cell formation algorithm detected that it was impossible to
capture the target. This is due to our studio setup. Some cameras were too close
to the paths. For example, when the object is at (�1,500, 0, 0), camera 16 cannot
capture all part of the target because the projected height on its image exceeds the
image height. This result shows one of the benefits with our method; it can judge if
the requirements can be satisfied before capture.

Second, we attempted to guarantee that the upper half of the body is success-
fully captured and verified the generated 3D video of it. QV .x/ was specified by a
single 0.45 m-radius sphere 0.9 m above the floor, which includes the upper half
part of a standing person. Other resources and scenarios were the same as the first
experiment.

We ran the cell formation algorithm with these inputs. The cell formation algo-
rithm was implemented on a computer with Xeon 3.6 GHz CPU. The cells were
successfully generated and the running time was less than 5 s in both cases. The
hatched areas in Fig. 7 visualize the generated cells Ck for each scenario. Then,
the camera parameters for each cell were calibrated; the intrinsic parameters were
estimated by Zhang’s method [15], the extrinsic parameters were estimated by the
eight-point algorithm [3] for each pair of cameras with 2D-to-2D correspondences



186 T. Yamaguchi et al.

– 4000

– 2000

0

2000

4000

a

–4000 –2000  0  2000  4000

y 
[m

m
]

x [mm]

C1

C2 C3

 1

2  658

9

10 12  3

 4

21

16

11
20 15 18 19

17

23

13

722
14

(a) Scenario 1
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Fig. 7 Path and cells. The arrows represent the given path for each scenario. The hatched parts are
generated cells by our algorithm

Table 6 GA optimization details

Number of units per generation 2,000
Crossover method Uniform crossover
Mutation Replace one gene, n0

i , with a random value per unit. No
mutation for top 200 units.

Generations computed 2,000

of unknown 3D points, and then refined through a bundle adjustment process which
minimizes the sum of symmetric epipolar distances of all cameras. After that,
camera control was scheduled based on the generated cells. The camera control
scheduling algorithm was implemented on a computer with Xeon 3.6 GHz CPU.
The parameters for the genetic algorithm in the optimization process is described
in Table 6. The computation times were about 80 h. Figure 8 visualizes the result
schedules. In these figures, vertical axis represents each active camera and horizon-
tal axis represents target position by fragment number n. Each solid line expresses
an interval where the camera is gazing at a cell, and blank parts represents the inter-
vals where the camera is switching view to the next cell. We can see that these
schedules are avoiding that too many cameras are switching view to the next cell
simultaneously in both cases.

A walking person was tracked for a multi-view video by the cell-based tracking
algorithm using these cells and schedules. Then 3D video was generated from the
tracking records. Figure 9 shows the captured multi-view video and the generated
3D video. These results indicate that the upper half of the body was successfully
captured and 3D video of that part could be generated. Thus it was shown that our
method can produce high-resolution 3D video of the specified object.

On the contrary, the lower half was not successfully captured in some frames.
This was due to mechanical limitations of the active cameras. This resulted in the
lack of texture on the legs, as shown in Fig. 9(c).
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Fig. 8 Optimized schedules. Vertical axis represents each active camera. Horizontal axis repre-
sents target position by fragment number. Each solid line expresses an interval where the camera
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Fig. 9 Captured multi-view video and generated 3D video, at frame 15, 54, 104, and 151
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In summary, our method has realized these two functions. First, it has realized 3D
video production of an object moving in a widespread area. Second, our algorithm
can detect that the four requirements cannot be satisfied before tracking.

4.3 Performance Evaluation

For the quantitative evaluation of our method, we compared it with a pair of possible
methods with static cameras, from a viewpoint of the effectiveness of the camera
usage. We define the following two indices.

Viewpoint Usage D jGj
NE

(11)

Pixel Usage D 1

jGj
X
i2G

N
p
i

N I
i

(12)

G fi jcamera i is capturing the objectg
N

p
i Number of the pixels occupied by the object in image i

N I
i Number of pixels in image i . e.g. 307,200(D 640 � 480) for VGA.

The larger these indices are, the more information can be obtained for 3D video
generation from images. Thus, it leads to the high fidelity of 3D video. As men-
tioned in Sect. 1, there is a trade-off between the two indices when methods with
static cameras are used, especially when capturing an object moving in a widespread
area. As mentioned in Sect. 1, we can think of two methods using static cameras:
(1) the “view-optimized” method, which gives higher priority to the viewpoint usage
and (2) the “resolution-optimized” method, which gives higher priority to the pixel
usage.

We used the same scenario as the experiment in Sect. 4.2. In the fixed camera
settings for the view-optimized method, views of every camera were adjusted in
order to include the entire volume where the object passes. Hence, lenses with very
wide angle of view were virtually generated. For the resolution-optimized method,
the cameras were divided into 3 groups and assigned to watch one of the three cells
generated by the cell formation algorithm. There are 323 combinations to assign
23 cameras to one of the 3 cells independently. Thus we randomly generated 1012

combinations and chose the best one that maximizes (3).
The two indices are also sensitive to the shape of the object, as well as the camera

configurations. In order to evaluate different camera control methods using the same
dynamic scene, we first generated a 3D video using our method and then simulated
the other two methods by synthesizing virtual images from the 3D video data.

Figures 10 and 11 shows the two indices for each method. These results show the
trade-off problem between viewpoint usage and pixel usage in the methods using
static cameras. For example, as shown in Fig. 10, if higher priority is given to view-
point usage, it is high through the sequences but the pixel usage is lower, since
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Fig. 10 Viewpoint and pixel usage in scenario 1
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Fig. 11 Viewpoint and pixel usage in scenario 2

the object is projected small into those camera images. The same trade-off is also
shown in Fig. 11. As shown, the methods using static cameras cannot capture with-
out losing one of them. On the contrary, our method can improve viewpoint usage
while keeping the same pixel usage with the resolution-optimized method. As to the
viewpoint usage, though it changes largely depending on the object position and
the path, our method has improved the worst values in the sequences compared to
the resolution-optimized method in both case.

Finally, we discuss the minimal number of static cameras that would be necessary
to achieve the same quality of 3D video with our methods, with these scenar-
ios. Resolution-optimized method retained the same pixel usage with our method.
Therefore, the average viewpoint usage gives a rough estimation of the 3D video
quality. The average viewpoint usage is 83% with our method whereas it is 54%
with the resolution-optimized method. From these figures, we estimate that our
method can attain the viewpoint usage about 1.6 times higher than the resolution-
optimized method, while keeping the same pixel usage. Consequently, we estimate
that roughly 36 fixed cameras are required.

To summarize, our method is effective from the standpoint of viewpoint usage
and pixel usage as well.
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5 Conclusion and Future Work

Existing 3D video capture methods cannot capture moving objects in a widespread
area with high resolution. It is because they use a static camera array with fixed
camera views and a trade-off problem arises between the capture space size and
the spatial resolution. In order to overcome this limitation, we first summarized the
requirements for 3D video capture using active cameras and then formulated the
active camera control problem for 3D video capture. Then we proposed a cell-based
capture method as a practical solution and showed that our method can capture
high-resolution 3D video of an object that moves along a given path.

However, our method can only find a pseudo-optimal camera control but not the
optimal one. Moreover, it puts a strong assumption that the target object’s path is
given in advance. In the near future, we would like to address situations where the
target object’s path is unknown and would also like to invent the algorithm that can
find the optimal camera control, based on the formulations that we have discussed
in this paper.
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Dense 3D Motion Capture from Synchronized
Video Streams

Yasutaka Furukawa and Jean Ponce

Abstract This article proposes a novel approach to nonrigid, markerless motion
capture from synchronized video streams acquired by calibrated cameras. The
instantaneous geometry of the observed scene is represented by a polyhedral mesh
with fixed topology. The initial mesh is constructed in the first frame using the pub-
licly available PMVS software for multi-view stereo (Furukawa and Ponce, PMVS,
2008). Its deformation is captured by tracking its vertices over time, using two
optimization processes at each frame: a local one using a rigid motion model in
the neighborhood of each vertex, and a global one using a regularized nonrigid
model for the whole mesh. Qualitative and quantitative experiments using seven
real datasets show that our algorithm effectively handles complex nonrigid motions
and severe occlusions.

1 Introduction

The most popular approach to motion capture today is to attach distinctive markers
to the body and/or face of an actor, and track these markers in images acquired by
multiple calibrated video cameras [24]. The marker tracks are then matched, and
triangulation is used to reconstruct the corresponding position and velocity infor-
mation. The accuracy of any motion capture system is limited by the temporal
and spatial resolution of the cameras. In the case of marker-based technology, it
is also limited by the number of markers available: Although relatively few (say,
50) markers may be sufficient to recover skeletal body configurations, thousands

Y. Furukawa (B)
Computer Science and Engineering, University of Washington, Box 352350, Seattle,
WA 98195-2350, USA
e-mail: furukawa@cs.washington.edu

J. Ponce
Willow Team, LIENS (CNRS/ENS/INRIA UMR 8548), Ecole Normale Supérieure, Paris, France
e-mail: Jean.Ponce@ens.fr

R. Ronfard and G. Taubin (eds.), Image and Geometry Processing for 3-D
Cinematography, Geometry and Computing 5, DOI 10.1007/978-3-642-12392-4 9,
c� Springer-Verlag Berlin Heidelberg 2010

193

furukawa@cs.washington.edu
Jean.Ponce@ens.fr


194 Y. Furukawa and J. Ponce

may be needed to accurately recover the complex changes in the fold structure of
cloth during body motions [25], or model subtle facial motions and skin defor-
mations [17, 18], a problem exacerbated by the fact that people are very good
at picking unnatural motions and “wooden” expressions in animated characters.
Markerless motion capture methods based on computer vision technology offer an
attractive alternative, since they can (in principle) exploit the dynamic texture of the
observed surfaces themselves to provide reconstructions with fine surface details1

and dense estimates of nonrigid motion. Markerless technology using special make-
up is indeed emerging in the entertainment industry [15], and several approaches
to local scene flow estimation have also been proposed to handle less constrained
settings [5, 13, 16, 19, 23]. Typically, these methods do not fully exploit global spa-
tiotemporal consistency constraints. They have been mostly limited to relatively
simple and slow motions without much occlusion, and may be susceptible to error
accumulation. We propose a different approach to motion capture as a 3D tracking
problem and show that it effectively overcomes these limitations.

1.1 Related Work

Three-dimensional active appearance models (AAMs) are often used for facial
motion capture [11, 14]. In this approach, parametric models encoding both facial
shape and appearance are fitted to one or several image sequences. AAMs require an
a priori parametric face model and are, by design, aimed at tracking relatively coarse
facial motions rather than recovering fine surface detail and subtle expressions.
Active sensing approaches to motion capture use a projected pattern to indepen-
dently estimate the scene structure in each frame, then use optical flow and/or
surface matches between adjacent frames to recover the three-dimensional motion
field, or scene flow [10,26]. Although qualitative results are impressive, these meth-
ods typically do not exploit the redundancy of the spatiotemporal information, and
may be susceptible to error accumulation over time. Several passive approaches
to scene flow computation have also been proposed [5, 13, 16, 19, 23]. Some start
by estimating the optical flow in each image independently, then extract the 3D
motion from the recovered flows [13, 23]. Others directly estimate both 3D shape
and motion [5, 16, 19]: A variational formulation is proposed in [19], the motion
being estimated in a level-set framework, and the shape being refined by the multi-
view stereo component of the algorithm (see [6] for related work). A subdivision
surface model is used in [16], the shape and motion of an object being initial-
ized independently, then refined simultaneously. In contrast, visible surfaces are

1 This has been demonstrated for static scenes, since, as reported in [21], modern multi-view stereo
algorithms now rival laser range scanners with sub-millimeter accuracy and essentially full surface
coverage from relatively few low-resolution cameras. Of course, instantaneous shape recovery
is not sufficient for motion capture, since nonrigid motion cannot (easily) be recovered from a
sequence of instantaneous reconstructions.
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represented in [5] as collections of surfels – that is, small patches encoding shape,
appearance, and motion. In this case, shape is first estimated in each frame indepen-
dently by a multi-view stereo algorithm, then the 3D motion of each surfel from one
frame to the next is estimated.

Existing scene flow algorithms suffer from two limitations: First, they have so far
mostly been restricted to simple motions with little occlusion. Second, local motions
are typically estimated independently between adjacent frames, then concatenated
into long trajectories, causing accumulating drift [20] which may pose problems
in applications such as body and face motion capture, or facial expression transfer
from human actors to imaginary creatures [3, 15]. A strategy aptly called “track to
first” in [4] solves the accumulation problem, and it is exploited in our approach (see
[1, 22] for approaches free from accumulation drifts).

1.2 Problem Statement and Proposed Approach

This article addresses motion capture from synchronized, calibrated video streams
as a 3D tracking problem, as opposed to scene flow estimation. The instantaneous
geometry of the observed scene is represented by a polyhedral mesh with fixed
topology. An initial mesh is constructed in the first frame using the publicly avail-
able PMVS software for multi-view stereo [7,8], and its deformation is captured by
tracking its vertices over time with two successive optimization processes at each
frame: a local one using a rigid motion model in the neighborhood of each ver-
tex, and a global one using a regularized nonrigid deformation model for the whole
mesh. Erroneous motion estimates at vertices with high deformation energy are fil-
tered out as outliers, and the optimization process is repeated without them (see
Fig. 1). As demonstrated by our experiments (Sect. 4), the main contributions of this
article are in three areas:

� Handling complex, long-range motions: Our approach to motion capture as a 3D
tracking problem allows us to handle fast, complex, and highly nonrigid motions
with limited error accumulation over a large number of frames. This involves
several key ingredients: (a) an effective mixture of locally rigid and globally
nonrigid, regularized motion models; (b) the decomposition of the former into
normal and tangential components, which allows us to use the mature machin-
ery of multi-view stereopsis for shape estimation; and (c) a simple expansion
procedure that allows us to propagate to a given vertex the shape and motion
parameters inherited from its neighboring vertices.

� Handling gross errors and heavy occlusion. Our approach is capable of detecting
and recovering from gross matching errors and tracks lost due to partial occlu-
sion, thanks to a second set of key ingredients: (d) an effective representation of
surface texture and image photoconsistency that allows us to easily spot outliers;
(e) a global representation of shape by an evolving mesh that allows us to stop or
restart tracking vertices as they become occluded or once again visible; and (f)
an effective means for associating with a surface patch a reference frame and the
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Fig. 1 In our approach to motion capture, a polyhedral mesh deforms as its vertices are contin-
uously tracked under locally rigid and globally nonrigid motion models. This is illustrated here
with a mesh extracted from real data consisting of eight synchronized video streams 155 frames
long [25]. The mesh is shown from two different viewpoints in states 30 frames apart, along
with the trajectories of a subset of its vertices (the translational motion is exaggerated for better
visualization). See Sect. 4 for details

corresponding texture adaptively during the sequence, which frees us from the
need for a perfect initialization.

� Quantitative validation. This issue has been mostly ignored in scene flow
research, in part because ground truth is usually not available. We have quan-
titatively as well as qualitatively evaluated the proposed algorithm.

The rest of this article is organized as follows. We first describe our local surface
model together with the core tracking procedure to estimate its parameters in Sect. 2,
then provide an overall algorithm description in Sect. 3. Experimental results and
their discussion are given in Sect. 4, while Sect. 5 concludes this article with some
future work.

2 Spatiotemporal Surface Model

We model the surface being tracked as a polyhedral mesh model with a fixed topol-
ogy and moving vertices v1; : : : ; vn. As will become clear in the rest of this section,
each vertex may or may not be tracked at a given frame, including the first one,
allowing us to handle occlusion, fast motion, and parts of the surface that are not
visible initially. The core computational task of our algorithm is to estimate in each
frame f the position vf

i of each vertex vi . The rest of this section presents our local
geometric and photometric models of the surface area si in the vicinity of vi (Fig. 2),
as well as the core tracking procedure used by our algorithm.



Dense 3D Motion Capture from Synchronized Video Streams 197
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Fig. 2 Local geometric (top) and photometric (bottom) surface models. The surface region si
associated with the vertex vi is simply the union of the incident triangles. The motion of the local
surface region around each vertex vi is represented by a 3D rigid transformation, i.e., translational
t f .vi / and rotational velocities !f .vi /

2.1 Local Surface Model

2.1.1 Local Geometric Model

We represent the surface in the vicinity of a vertex vi by the union si of the incident
triangles, and assume local rigid motion at each frame (the mesh globally moves in
a nonrigid manner with the iteration of the local/global motion steps as explained in
Sect. 3.2). Concretely, we attach a coordinate system to si with an origin at vi and a
z axis along the surface normal at vi (the x axis is arbitrarily in the tangent plane),
and represent its rigid motion by translational and rotational velocities tf .vi / and
!f .vi / (Fig. 2, top).

2.1.2 Local Photometric Model

Some model of spatial texture distribution is needed to measure the photoconsis-
tency of different projections of the surface region si . We assume that a surface is
Lambertian and represent the appearance of si in an image by a finite number of
pixel samples, which are computed as follows: We construct a discrete set of points
sampled at regular intervals in concentric rings around vi on si (Fig. 2, bottom). The
spacing di between rings is chosen so images of two consecutive rings are (roughly)
separated by one pixel in the image where si is visible with minimum foreshorten-
ing. There are � rings around each vertex (� D 4 or 5 in all our experiments), and
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Translational component (t)

Rotational component (ω)

Normal component

Tangential component
vi

Tangent plane

Fig. 3 A local rigid motion consists of translation and rotation, while it can be also considered as
a combination of the tangential and normal components. The normal component encodes depth as
well as surface normal, which amounts to the shape information of a surface

the ring points are sampled uniformly between corner points located at di intervals
from each other along the edges incident to vi , with i � 1 samples per face for ring
number i . Finally, each sample point is assigned the corresponding pixel value from
an image by bilinear interpolation of neighboring pixel colors. Note that the sample
point positions are computed as above only in the reference frame Ofi attached to vi

(see Sect. 3 for how it is determined), and stored as barycentric coordinates in the
affine coordinate systems formed by the vertices of the triangles they lie in. In all
the other frames, the barycentric coordinates are used to recompute the sample posi-
tions. This provides a simple method for projecting them into new images despite
nonrigid motions, and retrieving the corresponding texture patterns.2

2.2 Shape and Motion Estimation

The rotational and translational velocities !f .vi / and tf .vi / representing the local
rigid motion of the patch si can be decomposed into normal and tangential com-
ponents (Fig. 3). The normal components essentially encode what amounts to shape
information in the form of a “tangent plane” (the first two elements of !f .vi /) and
a “depth” (the third element of tf .vi /) along its “normal”, and their tangential com-
ponents encode an in-plane rotation (the third element of !f .vi /) and a translational
motion tangent to the surface (the first two elements of tf .vi /). Instead of estimating
all six parameters at once, which is difficult for complex motions, we first estimate
the normal (shape) component, then the full 3D motion.

In the following, we describe how motion parameters are initialized before each
optimization by a simple expansion strategy, how the two motion estimation rou-
tines are executed, and how the visibility information .V f

i / is estimated for these
optimizations.

2 Many reconstruction methods, both in multi-view stereo and scene flow reconstructions, use a
tangent plane to approximate a local surface region [5, 7], but we choose instead a set of adjacent
mesh triangles, because this approximation is more accurate and provides a natural and easy way
to handle nonrigid surface deformations.
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2.2.1 Initial Motion Estimation by Expansion

Expansion strategies have recently proven extremely effective in turning a sparse
set of matches into a dense one in multi-view stereo applications [7, 12]: Typically,
a set of matching image patches is iteratively expanded using the spatial coherence
of nearby features to predict the approximate position of a (yet) unmatched patch.
Here, we propose to use the spatiotemporal coherence of nearby vertices to predict
the motion structure of a vertex not tracked yet. Concretely, before applying the
optimization procedures described below, the instantaneous motion parameters are
simply initialized by taking an average of the values at the adjacent vertices that
have already been tracked in the current frame. When no adjacent vertex has been
tracked (yet), motion parameters are initialized by the values estimated at the vertex
itself in the previous frame.

2.2.2 Shape Optimization

Optimizing the normal component of motion is very similar to optimizing depth and
surface normal in multi-view stereo [7, 9]. Concretely, we maximize the sum of a
shape photoconsistency function and a smoothness term

2
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using a conjugate gradient (CG) method. The first term simply compares sampled
local textures in multiple images of the current frame to compute an average pair-
wise correlation score (Fig. 4). In this term, V f

i denotes the set of indexes of the

cameras in which vi is visible in frame f ; Qf
ij is the set of sampled pixels colors

for vi in the image If
j acquired by camera number j ; and N.Q;Q0/ denotes the

normalized cross correlation betweenQ andQ0. Note thatQf
ij is determined by the

normal components of the velocity field: This is how these parameters enter in our
energy function. The second (smoothness) term prevents the vertex from moving too
far from its initial position. In this term, �f

v is the number of nearby vertices used to
initialize the motion parameters, which increases the effect of the smoothness term
in the presence of many tracked neighbors, Nvf

i denotes the position of the vertex at
initialization, and � is the average edge length in the mesh for normalization.

2.2.3 Motion Optimization

After optimizing the normal component, the local velocity parameters are all refined
by maximizing the sum of a full motion photoconsistency function and the same
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Fig. 4 Structure photoconsistency is computed by comparing images in the current frame, which is
the same function used in multi-view stereo algorithms. Full motion photoconsistency is computed
from images in the current frame as well as in the reference frame, since it essentially provides
tracking information

smoothness term as before:
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using again a CG method. Here, Ofi is the reference frame of vi (see Sect. 3 for the
method used to determine it), and the first term simply compares reference textures
with the image textures in the current frame (this is an example of the “track to
first” [4] strategy mentioned earlier). In practice, both the shape and the full motion
optimization steps are performed in a multi-scale, coarse-to-fine fashion using a
three-level pyramid for each input image.

2.2.4 Visibility Estimation

The computation of the photoconsistency functions ((1) and (2)) requires the visibil-
ity information V f

i , which is estimated as follows: We use the current mesh model

to initialize V f
i , then perform a simple photoconsistency check to filter out images

containing unforeseen obstacles or occluders. Concretely, for each image in V f
i , we

compute an average normalized cross correlation score of sampled pixel colors with
the remaining visible images. If the average score is below a certain threshold  1,
the image is filtered out as outlier. Specific values for this threshold as well as all
other parameters are given in Sect. 4 (Table 1).
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Table 1 Top: Characteristics of the seven datasets: N , F and M are the numbers of cameras,
frames and vertices on the mesh; w and h are the width and the height of input images in pixels;
and s is the approximate size in pixels of the projection of mesh edges in frontal views. Bot-
tom: Parameter values for our algorithm: .�1; �2/ are the regularization parameters for the first
deformation step (they are four times smaller after the filtering); . 1;  2;  3/ are thresholds on
photoconsistency functions; and � is the minimum number of images in which a vertex has to be
visible

flag shirt neck face1 pants1 pants2 face2

N 7 7 7 22 8 8 10
F 37 12 69 90 100 155 325
M 4,828 10,347 5,593 9,035 8,652 8,652 39,612
w 722 722 722 644 480 480 1,000
h 482 482 482 484 640 640 1,002
s 10 6 6 10 6 6 3

�1 16 16 32 80 20 20 20
�2 8 200 64 32 40 40 40
 1 0.3 0.3 0.3 0.3 0.1 0.1 0.3
 2 0.5 0.5 0.5 0.5 0.3 0.3 0.5
 3 0.4 0.4 0.4 0.4 0.2 0.2 0.4
� 3 3 3 3 2 2 3

3 Algorithm

This section presents the three main steps – local optimization, mesh deformation,
and filtering – of our tracking procedure. In practice, these steps are repeated four
times at each frame to improve the accuracy of the results. See Fig. 5 at the end of
this section for the overall algorithm.

3.1 Local Tracking

Let us now explain how the optimization procedures presented in Sect. 2.2 can be
used to estimate the velocity of each vertex in the mesh and identify as needed
the corresponding reference frame and reference texture. Vertices to be tracked are
stored in a priority queue Z, where pairwise priority is determined by the follow-
ing rules in order: (1) if a vertex has already been assigned a reference frame, and
another one has not, the first one has higher priority; (2) the vertex with most neigh-
bors already tracked in the current frame has higher priority; (3) the vertex with
smaller translational motion in the previous frame has higher priority. At the begin-
ning of each frame, we compute a set of visible images for each vertex as described
in Sect. 2.2.4, then push onto Z all the vertices with (yet) unknown motion param-
eters that are visible in at least � images. While the queue is not empty, we pop a
vertex vi from the queue, and initialize its instantaneous motion parameters !f .vi /

and tf .vi / by the expansion procedure of Sect. 2.2.1. If the vertex has already been
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Input: Vertices vf �1
i in the previous frame.

Output: Vertices vfi in the current frame.

Repeat four times
Update V f

i for each vertex vi (Sect. 2.2.4).
Push vertices with unknown motion parameters that
are visible in at least � images onto a queue Z.
While Z is not empty

Pop a vertex vi from Z.
If vi does not have a reference texture

Perform the shape optimization (Sect. 2.2.2).
If the optimization succeeds

Remember the reference texture and sampling points.
Update priorities of its adjacent vertices in Z.

else
Perform the shape optimization (Sect. 2.2.2).
Perform the full motion optimization (Sect. 2.2.3).
If the optimization succeeds

Update priorities of its adjacent vertices in Z.
Deform the mesh by estimated motions (Sect. 3.2).
Filter out erroneous motion estimates (Sect. 3.3).
Deform the mesh without the erroneous motions (Sect. 3.2).

Fig. 5 Overall tracking algorithm. In each frame, it iterates local tracking, global mesh deforma-
tion and filtering four times to deform a mesh to track a surface of interests

assigned a reference frame, the shape optimization and full motion optimization
(Sect. 2.2) are performed. At this point, tracking is deemed a failure if the shape
photoconsistency term in (1) is below  2 or the full motion photoconsistency term
in (2) is below  3, and a success otherwise. If the vertex has not been assigned a
reference frame yet, we first compute barycentric coordinates of sample points as
described in Sect. 2.1, then perform shape optimization only (the full motion opti-
mization cannot be performed due to the lack of a reference frame). At this point,
if the shape photoconsistency in (1) is below  2, we reject the estimated motion.
Otherwise, the shape optimization is deemed a success, f becomes the reference
frame Ofi , and the corresponding texture is computed by averaging the pixel values
in Qf

ij over the images j in V f
i . In all cases, when tracking succeeds, we update

the priority of the vertices adjacent to vi and their positions in the queue.

3.2 Mesh Deformation

The local tracking step may contain erroneous motion estimates due to its rather
greedy approach and the lack of regularization. Therefore, instead of just mov-
ing each vertex independently according to the estimated motion, we deform the
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mesh as a whole by minimizing an energy function that is a weighted sum of
data-attachment, smoothness, and local rigidity terms over all the vertices:

X
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The first (data-attachment) term simply measures the deviation between the actual
position vf

i of vi in frame f and the position Ovf
i predicted by the local optimization

process. The second term uses the (discrete) Laplacian operator	 of a local param-
eterization of the surface in vi to enforce smoothness (�1 D 0:6 and �2 D 0:4 in all
our experiments) [7]. The third (local rigidity) term prevents too much stretching
or shrinking of the surface in the neighborhood of vi by measuring the discrepancy
between the mean �.vf

i / of the edge lengths around vi in frame f and its counterpart

�.v
Ofi

i / in the reference frame Ofi . The total energy is minimized with respect to the
3D positions of all the vertices again by a CG method. Note that the data-attachment
term is used only for vertices that have been successfully tracked.

3.3 Filtering

After surface deformation, we use the residuals rd .vi / and rl.vi / of the data-
attachment and local rigidity terms to filter out erroneous motion estimates.3 Con-
cretely, we smooth the values of rd .vi / and rl.vi / at each vertex by replacing each
of them by its average over vi and its neighbors, which process is repeated ten times.
After smoothing, a motion estimate is detected as an outlier if rd .vi / is more than

�2.v
Ofi

i / or rl.vi / is more than �2.v
Ofi

i /=4. Having filtered out the erroneous motions,
the mesh is deformed again. We decrease the two regularization parameters �1 and
�2 by a factor of 4 after the filtering, since the main purpose of the first deforma-
tion is to act as a filter, while the second one is used to estimate an accurate surface
model.

4 Experimental Results and Discussion

� Implementation and datasets. The proposed algorithm has been implemented in
C++. A 3D mesh model for each dataset is obtained in the first frame by using the
publicly available PMVS software [8] that implements [7], one of the best multi-
view stereo algorithms to date according to the Middlebury benchmarks [21].

3 The smoothness residual is not used for filtering, since we want to keep sharp features of the
mesh. On the other hand, we want to avoid too much stretching or shrinking for materials such as
cloth.
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This program outputs a set of oriented points (points plus normals), then fits a
closed polyhedral mesh over these points, deforming it under the influence of
photoconsistency and regularization energy terms. The resulting mesh smoothly
extrapolates the reconstructed data in places occluded from the cameras, an
important point in practice, since it allows us to start tracking the (extrapo-
lated) vertices when the corresponding surface area becomes visible. Seven real
datasets are used for the experiments (Fig. 6): flag, shirt, neck (courtesy of [5]);
face1 (courtesy of [2]); pants1, pants2 (courtesy of [25]), and face2 (courtesy
of ImageMoversDigital). The characteristics of these datasets and the parameter
values used in our experiments are given in Table 1. The motions in neck and
face1 are very slow, but the textures are weak compared to the other datasets,
and the mouth and eye motions in face1 are challenging. Motions are fast in
flag and shirt, but still relatively simple. On the other hand, pants1 and pants2,
although heavily textured, are quite challenging datasets involving fast and com-
plex motions of cloth and its folds, with occlusions in various parts of the videos:
In pants1, the actor picks up the cloth with his hands, causing severe occlusions
and, in pants2, he dances very fast, yielding very complex motion and severe self-
occlusions due to cloth folding, with image velocities greater than twenty pixels
per frame in some image regions. Motions are relatively slow for face2 through-
out the sequence, but occasionally become very fast when the actress speaks.

Fig. 6 Sample input images of several contiguous frames from one camera for each dataset. From
left to right and top to bottom, flag, shirt, neck, face1, pants1, pants2, and face2 datasets
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fa
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Fig. 7 From left to right: an input image, a tracked mesh with and without texture-mapping, and
the corresponding motion field. See Fig. 7 for the same results on pants1 and pants2 datasets

For shirt and pants1, we have reversed the original sequences: the motion was
too fast otherwise at the beginning of the shirt sequence for tracking to succeed.
The pants1 sequence has been reversed in order not to track the hand and arm of
the actor, that occlude large portions of the pants in the first frame.

� Qualitative motion capture experiments. Figures 7 and 7 show, for each dataset,
a sample input image from one frame in the sequence, the corresponding mesh
with and without texture mapping, and the estimated motion field, rendered by
line segments connecting the positions of sample vertices in the previous frame
(red) to the current ones (green). Textures are mapped onto the mesh by averaging
the back-projected textures from every visible image in every tracked frame. This
is a good way to visually assess the quality of the results, since textures will
only look sharp and clear when the estimated shape and motion parameters are
accurate throughout the sequence. As shown by the figure, this is indeed the
case in our experiments, with sharp images looking very close to the originals.
Of course, there are discrepancies in some places. The eyes of face1 and face2
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Fig. 8 From left to right: an input image, a tracked mesh with and without texture-mapping, and
the corresponding motion field. In the close-ups of pants2, our texture-mapped model is indeed
very close to the corresponding input image, but there are moderate discrepancies in some places,
in particular in the middle of the complex fold structure where a surface region not visible by a
sufficient number of cameras has not been tracked

provide an example, with a motion different from the other parts of the face and
strongly conflicting with our local rigidity term rl.vi /. A second example is given
for pants2 (see closeups of Fig. 7), corresponding to a case where part of the
fold structure of the cloth is not clearly visible by several of the eight cameras.
Overall however, our algorithm has been able to accurately capture the cloth’s
very complicated shape and motion. Given the absence of ground truth data, it
is difficult to compare our results to other experiments on the same datasets. The
most obvious difference is that our method captures much denser information
than [5, 25] for the pants, flag, shirt, and neck datasets. Indeed White et al. only
track the vertices (about 2,400 total) of the triangular pattern printed on the pants
in [25], as opposed to the 7,000 mesh vertices or so that we track throughout the
two pants sequences (see Fig. 11 for more details), without of course exploiting
the known structure of the triangular pattern in our case. Likewise, Carceroni
and Kutulakos track about 120 surfels for neck, and 200 for shirt and flag in [5],
whereas the number of tracked vertices varies from about 4,000 to 8,000 for our
method.

� Qualitative evaluation of different key components of the proposed algorithm.
Two experiments have been used for this evaluation. First, we have run the pro-
posed algorithm without the expansion procedure on pants2 (Fig. 9, top) simply
copying motion parameters estimated at the previous frame instead of interpo-
lating the motion of nearby vertices already tracked. As shown in Fig. 9, the
cloth motion cannot be captured in frame 124 without the expansion proce-
dure. Our second experiment assesses the contribution of the proposed motion
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Proposed method (with expansion)

Without expansion

Input image
Frame 124

Proposed method (with decomposition)
Input image
Frame 137

Without decomposition

Frame 147

Frame 132

Fig. 9 Qualitative assessments on two key procedure in our algorithm. Top: Tracking results
with/without the expansion procedure. Bottom: Tracking results with/without instantaneous motion
decomposition
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decomposition. This time, we have run our algorithm by directly applying the
full motion optimization step without shape optimization. The bottom half of
Fig. 9 shows that tracking without the decomposition fails in recovering details
at the back side of both legs. One interesting observation regarding these two
experiments is that tracking fails in frame 124 without the expansion scheme, and
in frame 137 without motion decomposition, but the algorithm quickly recovers
and recaptures the correct shape and motion in frames 132 and 147 of the two
sequences (Fig. 9). Thus, even when our basic tracking procedure (local opti-
mization, mesh deformation, and filtering) fails locally in certain frames due to
overly complex or fast motions, it is capable of recovering from gross errors, even
when deprived of two key ingredients that further enhance its robustness. This is
a very appealing property for motion capture in practice, because one needs not
reinitialize the model every time the tracker fails, and users can just work later
on frames where automatic tracking is difficult.

� Quantitative experiments. Our last experiments demonstrate the robustness of
the proposed method against drift (accumulating errors) and occlusion. Let us
first show how our “track to first” strategy limits drift. We have chosen the
flag, pants1, and pants2 sequences for this experiment, since the corresponding
motions are relatively complex. We run the proposed algorithm with and without
using a reference frame, updating the reference texture in every frame when a ver-
tex is tracked successfully in the latter case (this resembles the approach followed
by most scene flow algorithms). In order to quantitatively measure accuracy, we
have appended to each sequence of F frames in the three datasets its reversed
copy (without its first frame) to form a new sequence consisting of 2F�1 frames.
Images at frames F � x and F C x are the same, hence the corresponding two
meshes should be very close to each other (see [20] for similar experiments for
assessing drift in 2D tracking). Let d denote the distance between the positions
of the same vertex in frames F � x and F C x, divided by the mean edge length
of the mesh for normalization. The leftmost graph in Fig. 10 plots, for each frame
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Fig. 10 A synthetic dataset is used to assess the amounts of accumulation errors with and without
the use of a reference frame. The left graph shows an average distance between a tracked surface
and the ground truth model over vertices throughout the sequence. The graph in the center shows
the distribution of errors associated with all the vertices in one frame. Right: The accumulation
errors can also be assessed qualitatively by comparing texture-mapped models, where the model is
blurred if no reference frame is used
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Fig. 11 The number of
vertices that have been
successfully tracked in each
frame. Our algorithm can
start tracking new surface
regions as shown in the graph
for shirt dataset
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and each dataset, the value of d averaged over all vertices with and without the
use of a reference frame.4 As shown by this figure, the mean distance is consis-
tently three to five times larger for each dataset when reference frames are not
used. The value of d for frames 1 and 2F � 1 (x D F � 1) is plotted for every
vertex in the next graph (the vertices being sorted in an increasing order of the
values of d ), showing a similar contrast between the two variants for long-term
drift. The added value of reference frames is also (qualitatively) clear from the
texture-mapped models for pants2 shown in the right of Fig. 10, where texture is
blurred for the model not using reference frames.

Figure 11 shows the number of vertices that have been successfully tracked in
each frame. The number keeps decreasing for face1, because a large surface region
faces away from most cameras in the middle of the sequence. On the other hand,
the number keeps increasing for shirt as the cloth moves away from the camera and
more surface regions become visible, which illustrates the fact that our method is
able to start tracking new vertices in surface areas that have been extrapolated by
PMVS but are not visible from the cameras in the first frame with the topology of
the mesh being fixed. Of course, a portion of the surface completely hidden from
all cameras in the first frame cannot be reconstructed by the multi-view stereo at
the beginning for shirt, but a surface model larger than the visible portion can be
output by interpolation and regularization. Finally, Fig. 12 shows how occlusions are
handled by our algorithm for the pants1 dataset. In frame 51, vertices at the left side
of the pants are not tracked due to the severe occlusions caused by a hand, but our
algorithm restarts tracking these vertices once they become visible again as shown
in our results for frame 77. Note that the right side of the pants is also occluded by
the actor’s right hand in frame 77, but it is visible from two other cameras, and thus
has been successfully tracked by our algorithm.

4 We only retain the “best” vertices with the smallest distances to construct this graph. This is to
exclude “outliers” such as vertices that do not correspond to actual parts of the surface (e.g., the top
and bottom portions of the mesh in the pants sequences). In practice, 30% and 20% of the vertices
in the flag and the pants sequences are excluded, respectively. See the next graph for the full
distance distribution including “outliers”.
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Frame 77Frame 51

Fig. 12 At the left side of the pants, the tracking has not been performed due to occlusion in frame
55, but our algorithm starts tracking in frame 77 once it becomes visible. In frame 77, the right
side of the pants is occluded by a hand in one image but visible in other two, and hence, is tracked

Finally, the running time of the proposed method depends on the dataset, the
mesh resolution, and the number of input images, but it takes about one to two
minutes per frame on a dual Xeon 3.2 GHz PC. It should be possible to speed up the
whole computation quite a bit, for example by replacing the numerical derivatives
currently used by our conjugate gradient implementation by analytical ones.

5 Conclusion and Future Work

This article proposes a markerless non-rigid motion capture algorithm that tracks a
surface by deforming a polyhedral mesh with fixed topology. The proposed algo-
rithm is able to capture dense 3D motion information, which is impossible with
existing marker-based technology. One of our future work is to analyze the relative
contributions of the key components of our algorithm more thoroughly to reduce
the amount of redundant computations. It also seems wasteful to compute angular
velocities during local tracking, then discard them during global surface deforma-
tion, so we will seek more effective uses for this local information. More importantly
perhaps, our current approach to the appearance of new surface regions over time is
somewhat ad hoc, relying on PMVS to extrapolate the mesh in regions that are not
matched in the first frame without allowing the topology of a mesh to change. A key
part of our future work will be to address this problem in a more principled fashion.
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Wavelet-Based Inverse Light and Reflectance
from Images of a Known Object

Dana Cobzas, Cameron Upright, and Martin Jagersand

Abstract Having an accurate model of the lights in a scene is important for many
applications. Augmented reality requires light information for seamlessly com-
posing computer generated objects into a real scene. Similarly, computer vision
algorithms such as photometric stereo and shape from shading require accurate
lighting. Inverse lighting allows such algorithms to be used in real world environ-
ments, instead of strictly controlled laboratory setups. While algorithms that recover
light as individual point light sources work for simple illumination environments, it
has been shown that a basis representation achieves better results for complex illu-
mination. We propose a light model that uses Daubechies wavelets and a method for
recovering light from cast shadows and specular highlights in images. Experimen-
tally, we tested our method for difficult cases of both uniform and textured objects
and under complex geometry and light conditions. We evaluate the stability of esti-
mation and quality of the relight scene using our smooth wavelet representation
compared to a non-smooth Haar basis and two other popular light representations
(a discrete set of infinite light sources and a global spherical harmonics basis). We
show good results using the proposed Daubechies basis on both synthetic and real
datasets.

1 Introduction

Light representation and recovery is an important but less explored problem in com-
puter vision. A practical solution is of value both as input to other computer vision
algorithms and in computer graphics rendering. As an example, photometric stereo
and shape from shading require known light. In most situations, simplified assump-
tions about light or object reflectance are made in order to solve the shape problem.
With estimated light, such techniques could be applied in everyday environments
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outside of controlled lab conditions. Light estimated from images is also impor-
tant in augmented reality applications in order to consistently relight an artificially
introduced object. Therefore light reconstruction (referred as inverse light) has
significant importance among vision problems.

In this work we consider the problem of estimating light from images given some
3D shape (i.e. shape of an object) but not necessarily the whole scene. One advan-
tage of capturing the lighting on an existing object as opposed to introducing a light
probe is that we not only recover the scene’s lighting but also the reflectance param-
eters of the object. This allows us to render the scene under the same or different
lighting conditions as well as to introduce synthetic objects into an augmented real-
ity application. Another advantage of using existing shapes in a scene instead of
a light probe is that the recovered light minimizes the error in the current scene,
allowing a potentially higher quality rendering for moderate view changes. Further-
more, reflectance probes are not always practical to use, and they cannot be inserted
afterwards into existing images. By contrast, many images contain some man-made
object for which either a CAD model can be obtained, or an identical copy of the
object can be scanned post-hoc to obtain the required shape information. Hence a
technique that recovers light from known shape has more general applicability.

A variety of techniques have been applied to the inverse light problem, which can
be classified mainly into two categories: (1) techniques that estimate a small number
of point or directional lights and (2) techniques that recover light as projected on a
set of basis functions across the entire light hemisphere (usually spherical harmon-
ics basis [1, 20]). Methods in the first category are designed for recovering sharp
light effects while the ones from the second category work best only for diffuse
(Lambertian) scenes.

To model both diffuse and sharp light effects, people have proposed bases that
provide local support in both the spatial domain (here image dimension) and the
frequency domain. Wavelets are an example of such a basis. Few works [16, 17]
used a Haar wavelet basis for light representation. Our work proposes a new light
representation based on Daubechies wavelets, and a general method for estimating
the light basis from images. We investigate the advantages of using this smooth basis
compared to the non-smooth Haar basis and show the superiority of the smooth basis
for both synthetic and real datasets.

Our inverse light method uses shadows and specular highlights on textured
objects. Sato et al. [23] previously used shadows on diffuse objects for recovering
light as a discrete illumination hemisphere. We extend the method to incorporate
specular highlights. Other works [13, 29] incorporate multiple cues in the light esti-
mation but without giving insights on which cue most helps the light reconstruction.
Here we study the influence of shadows vs. specular highlights on the quality and
stability of the reconstruction.

In addition to proposing a new light representation and a complete system to esti-
mate light from images, we also study the stability, efficiency and quality of the light
reconstruction when comparing four representations: a smooth Daubechies and non-
smooth Haar wavelet basis and two other popular choices for the basis – a discrete
set of infinite light sources and spherical harmonics basis. We provide upper bounds



Wavelet-Based Inverse Lighting 217

on error propagation using classical Wilkinson condition number numerical analysis
[8], and experimentally, we give real-world practical results for simple and com-
plex scenes, for diffuse and specular objects, for different illumination conditions,
and for different levels of noise in real and synthetic images. This study brings an
important contribution and insight to practical aspects of the inverse light problem
which is known be inherently ill-conditioned. For example, Marschner and Green-
berg [15] empirically observed that under diffuse reflectance inverse light tends to be
ill-conditioned. For a global basis, Ramamoorthi and Hanrahan theoretically proved
that only the low-frequency light components can be reconstructed from diffuse
scenes [20]. They later showed that for a specular scene, estimating the spherical
harmonics light coefficients is well conditioned only up to an order related to the
surface roughness [21]. Okabe et al. [17] showed that the inverse problem becomes
well conditioned when using shadows and a spherical harmonics light representa-
tion under diffuse light conditions. However no study has been made for a basis
with local support, like the wavelet, for both high and low frequency lights as well
as different perturbations in the input data.

The remainder of this chapter is organized as follows. The next section sum-
marizes most relevant works in inverse light. Section 3 presents the proposed
wavelet-based light representation and a method that estimates light either from one
image of a uniformly colored object or from multiple images of a textured object.
The complete inverse light system and few implementation details are described
in Sect. 4. Section 5 presents comparative experimental results and Sect. 6 a short
discussion and future directions.

2 Related Works in Inverse Light

A variety of inverse light methods have been proposed over the last 20 years, that
can be divided in two main categories. The first category, presented in Sect. 2.1,
involves using a small number of point lights to represent the illumination environ-
ment. While this is useful in simple laboratory setups, in general the lighting in a
real scene is far more complex. The second category of inverse lighting approaches,
detailed in Sect. 2.2, uses a set of basis functions over the entire sphere (represent-
ing all incoming directions). This representation allows more complex illumination
conditions when compared to the individual point-light representation, especially
in scenes with large area-lights or many point-lights. One work that doesn’t fall
in either of these two categories is the work of Debevec [5] that ray traced the
reflections on a spherical mirror ball (an illumination probe) to directly measure the
lighting hemisphere. Sato et al. [22] proposed a similar approach where the radiance
distribution of the scene is estimated from a set of omnidirectional images. The dif-
ference is that the radiance map is projected onto the estimated scene geometry and
not on an infinite illumination hemisphere.
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2.1 Point Light Representations

Much of the literature about the inverse light problem involves estimating the posi-
tion of a small number of point lights. A point light representation may seem limited,
but Debevec [6] shows how a small number of point lights can be used to approxi-
mate a complex radiance map (as few as 64 point lights can accurately represent a
complex environment).

Early methods recover light using a Lambertian white sphere to detect critical
points [2,31,32]. Critical points are points where the surface normal is perpendicular
to light source direction. The critical points form critical lines which divide the
object into regions illuminated by a single virtual light source. The real light sources
corresponding to a critical line can be detected using the difference of virtual lights
of the two adjacent regions. Different methods can be employed for finding the
critical points. Zhang and Yang [32] detect critical points by analyzing intensity
along an arc of the sphere, while Bouganis uses a moving window to find critical
points [2]. Takai et al. [25] used the intensity difference between two spheres to
estimate location and radiance for near point light sources together with directional
light sources and ambient light.

More general methods of inverse light use a Lambertian object instead of
a sphere. One of the first approaches to the inverse light problem was that of
Yang and Yuille [31]. They use image intensity of a Lambertian object along the
silhouette to determine light directions. A different approach using a Lambertian
object is taken by Wang and Samaras [28]. Building on the work of Zhang and
Yang [32], they detect critical points as borders between large difference in inten-
sities. Once critical points have been detected, they are grouped into critical lines
which are used to determine the positions of virtual and real lights (similar to the
case when the object is a sphere).

An interesting analysis of the inverse light problem that also uses a Lambertian
object is that of Luong, Fua and Leclerc [14]. They solved for multiple lights, cam-
era response and surface albedo using multiple images. Pixel values are formulated
as an affine transformation of actual surface radiance resulting in a linear solution
for the lighting. They also demonstrate many similarities between the radiometric
reconstruction problem and that of geometric recovery with multiple views. A non-
linear radiometric bundle adjustment algorithm is presented which is analogous to
the geometric bundle adjustment algorithm.

Better and more stable light reconstruction methods use specular objects. This
is due to the smoothing effect of a Lambertian BRDF, which makes inverse light
ill-posed. Highlights on two specular spheres with known position can be used to
triangulate the light position [18]. Similarly two images of a specular calibrated
sphere are used by Zhou and Kambhamettu [33] for detecting discrete light posi-
tions. The intensity difference between corresponding points in the two images is
used to detect specular and diffuse pixels. The illuminant direction is then found by
tracing the reflection at a specular highlight, which is averaged between images. A
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similar approach was recently proposed by Wong, Schnieders and Li [30] to recover
both the light directions and camera calibration from multiple images of a specular
sphere. Unlike other methods, their work doesn’t require knowledge of the sphere’s
radius. The image of the sphere is represented as a conic, and a single parameter
family of solutions are found for the sphere’s position based on the radius. They
show that the light directions recovered by tracing the reflections of specular pixels
are independent of the sphere’s radius.

Specular objects were used as an alternative to diffuse objects in inverse light
algorithms. Methods make the assumption that the object geometry is known
and use a parametric or non-parametric model for object reflectance. Hara and
Ikeuchi [9] propose a method to estimate both the position of a finite light source
along with a Torrance–Sparrow [26] reflectance model of the surface. Specular high-
lights are used to determine light direction, while the diffuse parts of the object are
used to calibrate the distance of the light. To separate out the specular from diffuse
reflectance components they use polarization filters. Once the light position has been
determined, the diffuse parameters can be solved for analytically. Another approach
based on the Torrance–Sparrow reflectance model is that of Hara, Nishino and
Ikeuchi [10] that uses the von Mises–Fisher distribution from directional statistics
to approximate the Torrance–Sparrow model. Light is estimated by backproject-
ing rays from specular highlights on a discrete illumination sphere, represented by
a geodesic dome. This resulting illumination sphere is equivalent to a mixture of
von Mises–Fisher distributions that are estimated using a modified version of the
Expectation Maximization algorithm.

Strong constraints between shape, reflectance and illumination can be formed
using frontier points [27]. Frontier points are points on the object where the epipo-
lar plane is tangential to the object’s surface, giving both the point and the surface
normal and allowing calculation of BRDF and illumination in that point (using
deconvolution from multiple images).

The vast majority of inverse light approaches use objects without texture due to
the fact that it is difficult to distinguish the effect of lights from varying albedo.
Nevertheless, a few methods have been proposed to solve the inverse light prob-
lem in the presence of texture. Li, Lin, Lu and Shum [13] proposed a method that
makes use of several image cues (critical points, specular highlights and shadows
cast by the object) to disambiguate light and object texture. Pixels with similar
albedo (color) along critical lines are used to determine light color. Exploiting
consistency between cues helps prevent spurious light detection. Another method
that uses specular highlights on a textured object to detect multiple lights is pro-
posed by Lagger and Fua [12]. They detect specular highlights as local maxima in
image intensity and filtered out texture maxima by ignoring maxima which don’t
change position between images. These remaining specularities are then traced
back onto the illumination sphere to detect both the number of lights and their
directions.
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2.2 Basis Function Representations

While a small number of point lights can be enough to accurately illuminate a Lam-
bertian object (due to the low-pass filtering effect of the Lambertian BRDF), a more
complete representation is required to properly reconstruct shadows and specular
highlights. To deal with this problem the entire lighting sphere is discretized with
a set of point lights infinitely far away (directional lights). A set of basis functions
is defined over the discretized sphere, and the inverse light problem reduces to the
problem of finding the best set of basis coefficients.

Marschner and Greenberg [15] were the first to represent lighting as a set of
basis functions over the illumination sphere. From an arbitrary set of lighting basis
functions, they generate basis images of the object illuminated under those basis
functions. An image of the object under arbitrary illumination is therefore obtained
as a linear combination of those basis images.

While Marschner and Greenberg observed poor conditioning in the inverse light
of a Lambertian scene, it was not until few years later when Ramamoorthi and Han-
rahan [20] and Basri and Jacobs [1] formally proved that light deconvolution is
ill-posed. They represented the reflectance and the lighting in terms of Spherical
Harmonics and show that the Lambertian BRDF acts as a low-pass filter in which
99.2% of the energy is present in the first nine spherical harmonics. Ramamoorthi
and Hanrahan [21] extended their previous work to use arbitrary BRDF functions.
The Phong BRDF is shown to act like a Gaussian filter with a width proportional
to the shininess. In this case inverse light is shown to work best when the shininess
is high. Similarly, the ability for a Torrance–Sparrow model to reconstruct higher
frequency components is limited by the roughness parameter. This analysis allowed
them to present a method for estimating both BRDF and lighting simultaneously.
The theoretical results provided by [1,20] are used by Simakov et al. [24] to perform
dense shape reconstruction. A low-dimensional linear approximation of spherical
harmonics are used to create a new consistency measure, which is used in the dense
shape reconstruction algorithm of Boykov, Veksler and Zabih [3].

While Spherical Harmonics have been useful for analyzing the inverse light prob-
lem, they are not very good at compactly representing lighting distributions that are
not spatially localized. Each basis function has an effect over the entire sphere.
Representing a point light in spherical harmonics requires a large number of basis
functions. If not enough functions are used, ringing artifacts can be noticed around
the light (i.e. the Gibbs phenomenon). One alternative to spherical harmonics are
Haar wavelets which were investigated by Ng, Ramamoorthi and Hanrahan [16].
They showed that Haar was much better at compactly representing radiance maps,
and used this to create an algorithm to re-light scenes in real time using graphics
hardware.

One way of dealing with the poor conditioning of the inverse light problem is to
analyze the shadows cast by the object [23]. Cast shadows essentially introduce
high frequency components into the otherwise smooth transfer function, allow-
ing high frequency lighting to be robustly estimated. Sato and Ikeuchi [23] use a
geodesic dome to represent the lighting that is iteratively refined using constraints
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from cast shadows. The method was later extended by Okabe and Sato [17] to use
a light representation based on Haar wavelets. They also analyzed the relationship
between frequency in illumination and rank deficiency of the inverse light problem.
They show that as the lighting distribution gains more high frequency components
the rank deficiency of the inverse light increases. In addition they noticed that
the geometry of the object casting the shadow has a large influence on the stabil-
ity of inverse light. Finally they compare the performance of spherical harmonics
and Haar wavelets and found that spherical harmonics blur shadows given larger
reconstruction error.

We made few improvements over previous work in hemisphere-based represen-
tations. Our method uses the Daubechies wavelet to represent the lighting. We show
that Daubechies is able to accurately represent the lighting with fewer basis func-
tions. Secondly, by using multiple images, the lighting and per-point albedo on the
object can be obtained. This allows us to use textured objects in the inverse light
problem, and to reconstruct albedo maps that can be used later with the object in
augmented reality applications.

3 Theory

This section presents our proposed wavelet-based light representation (Sect. 3.2) and
the use of this model in two inverse light methods: one that uses a single calibrated
image of a uniformly colored object (Sect. 3.4) and a second one that uses multiple
calibrated images of a textured object (Sect. 3.5). Light estimation is interleaved
with reflectance estimation (Sect. 3.6). Details on regularization and numerical
light estimation are presented in the last subsection. We begin by mathematically
formalizing the problem and the image formation process.

3.1 Inverse Light Problem Definition

The light recovery (or the inverse light) problem can be stated as follows: given
a set of calibrated images Ii ; i D 1 : : : N of an object with known geometry S D
fxj ; j D 1 : : :M g (xj are 3D points that define the object geometry) and reflectance
recover the light that illuminates the scene. This process, as implemented in our
system, is illustrated in Fig. 1.

The inverse light problem formulation relies on a chosen light model as well as
an image formation (rendering) model. As described in the following subsection,
the light is represented as a linear combination of basis functions. Here we propose
the use of a Daubechies wavelet basis, but the formulation is valid for any basis.
The image formation model involves choosing both a camera projection model that
defines how the object geometry is mapped on the image, and an object reflectance
model that defines how the object appearance is formed given the light conditions
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Inverse Lighting

Albedo & LightingLaser Scanner Object Calibration

HDR Images

Camera Calibration

Fig. 1 A brief outline of the inverse light process. High dynamic range input images
Ii ; i D 1 : : : N and a scanned 3D model SDfxj ; j D 1 : : :M g are used by the inverse light
method to reconstruct the lighting
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Fig. 2 The top half of a cubemap which represents the illumination hemisphere, divided into nine
faces. The resolution of one face of the cube is n

and camera position. We chose to use a projective camera model and compare two
parametric reflectance models, Lambertian and specular Phong (Sect. 3.3).

It is known that given only one image it is not possible to disambiguate light color
from albedo. We therefore assume uniform albedo for the proposed single-view
inverse-light method. This is later generalized for objects with general unknown
textured albedo by using multiple images from different viewpoints around the
scene.

3.2 Wavelet-Based Light Model

We chose to represent light using a basis defined over the illumination hemisphere.
The hemisphere is discretized into many point lights, each one representing a light
at infinity. A basis is defined over those lights. While a sphere map is natural for
representing lighting, a cubemap was chosen due to its simplicity and common use
in computer graphics. We limit the lighting representation to only include lights
above the ground plane, assuming that the image shading is mostly caused by light
coming from above the object. The top half of the cube map shown in Fig. 2 is
divided into nine faces, to ensure that each face is square. This allows a basis to be
defined over each face, without having to be scaled non-uniformly.

The simplest basis we can define over our cube map is one where each basis
corresponds to only one pixel, a per-pixel basis function (discrete hemisphere).
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Although this representation is simple to implement, it has a few drawbacks. In
order to represent all the point lights on the top half of a cubemap with a per pixel
basis, 3n2 bases are required, where n is the width (resolution) of a single face of
the cubemap. Therefore inverse light involves estimating many degrees of freedom
and overfitting can become a concern.

Spherical harmonics provide a more compact basis representation for the illumi-
nation of a scene. For diffuse objects, only a small number of spherical harmonics
are needed to accurately illuminate the object. However, spherical harmonics are not
well suited for representing the radiance of specular objects, in which case a large
number of functions must be used to accurately model high-frequency variation in
the lighting.

The two sets of basis functions discussed so far are on opposite sides of the spec-
trum: the per-pixel basis is highly localized in space while spherical harmonics have
a global influence over the pixels in the cube map. Wavelets are localized in both the
spatial and frequency domains making them a preferred representation for both dif-
fuse and specular lighting effects. There are a variety of wavelet basis functions, the
simplest being Haar. For all wavelet types, the wavelet basis functions, or daugh-
ter wavelets, are scaled and translated versions of a single wavelet known as the
mother wavelet. In addition to all the wavelet basis functions, there is a single func-
tion known as the scaling function. We propose here the use of a smooth wavelet
basis (Daubechies) for representing light, and we compare it with the more simple
Haar basis.

Haar Daubechies Spherical Harmonics

Fig. 3 Top: Cubemap corresponding to three basis functions. Bottom: scene illuminated under
those basis functions; From left to right: Diagonal Haar and Daubechies wavelet at lowest scale,
and a first order Spherical Harmonic. Each image is normalized to be in a Œ0W1� range and therefore
zero basis entries appear as gray



224 D. Cobzas et al.

Images of a scene illuminated under a single Haar, Daubechies and Spherical
Harmonic basis function can be seen in Fig. 3. Each image is normalized to be in
a Œ0W1� range. Since the wavelet basis functions are not always positive, a value of
zero shows up as gray in the images.

All the basis functions given above can be linearly combined to represent the light
map. More specifically, the intensity of the each light is given by the following:

li D
KX

kD1

Bikwk (1)

or in vector form:
l D Bw (2)

where a column of matrix B is a basis function Bw, w a column vector containing
corresponding weights, and l is the vector corresponding to the flattened lightmap.

3.3 Reflectance Models

We next show how the light model is incorporated in the image formation equation.
Throughout this chapter we assume that the cameras are calibrated and we denote
the image projection of a 3D point xj by I.xj /D Ij . The appearance of a point
on a surface depends on the material properties of that surface. The Bidirectional
Reflectance Distribution Function (BRDF) defines how light interacts with a sur-
face. A BRDF describes the proportion of incoming radiance that leaves in a given
outgoing direction, and is denoted as follows:

f .�i ; �i ; �o; �o/

The angles of incoming and outgoing radiance, represented in spherical coordinates,
are given respectively as .�i ; �i / and .�o; �o/. The total amount of radiance leaving
a point on a surface at a given outgoing angle is given by:

L.�o; �o/ D
ZZ

�

f .�i ; �i ; �o; �o/L.�i ; �i / cos.�i / sin �id�id�i

where L.�i ; �i / is the amount of radiance arriving at the point from the angle
.�i ; �i /. sin �id�id�i D d! where ! is the solid angle subtended by an infinitesi-
mal patch at the given point. When estimating a lighting distribution, we use a set of
point lights at infinity as opposed to some function over the hemisphere. In the case
of a point light with an intensity l at an incoming angle of .�; �/, the term L.�i ; �i /

becomes lı.�i � �; �i ��/, where ı is the Dirac delta function. The double integral
then simplifies to:
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L.�o; �o/ D f .�; �; �o; �o/l cos.�/! (3)

The simplest reflectance model is the Lambertian model, which has a constant
BRDF f D kd . The Lambertian reflectance model is useful for modeling rough or
matte surfaces, but is not good for materials with specular reflections. To represent
general reflectance we chose a dichromatic model that has a Lambertian term for
the diffuse part and a specular term given by the Phong model. While not physically
based, it works very well in practice and it is one of the most popular reflectance
models used for rendering in the computer graphics community. The BRDF of the
Phong model is given by:

f .�; �; �o; �o/ D kd C ks

cos.�r /
n

cos.�/

where �r is the angle between the reflected viewing direction and the light direction,
� in the angle of the incoming light and n is the shininess of the material.

For implementation reasons, it is much easier to represent the Phong and Lam-
bertian models in the world’s frame of reference. See Fig. 4 for an illustration of
light geometry. We define N, R and L as the normalized surface normal, reflected
viewing direction and light direction respectively. Rewriting (3) for the intensity of
an observed pixel x we get:

I.x/ D V.x/S.x/.kd hN;Li C kshR;Lin/ l! (4)

where I.x/ is the image intensity of the point x, V.x/ is the visibility of the point
from the camera’s view, and S.x/ is an indication function which is equal to one
when the point is not in shadow, and zero otherwise. One commonly used varia-
tion of the Phong reflectance model is the Blinn–Phong model. Instead of using the
dot product between the normalized reflected viewing direction and light direction
hR;Li, Blinn–Phong uses the dot product between the surface normal and half-
angle vector H between light and view direction hN;Hi. With this modification, (4)
becomes:

I.x/ D V.x/S.x/.kdhN;Li C kshN;Hin/ l! (5)

Li Li N

X

Light H
V View

R

Fig. 4 The vectors used in lighting calculations
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3.4 Inverse Light from a Single Image

When given just a single image of a scene we are unable to distinguish between
lighting and albedo only the product of the two can be found. The same is true
for a specular object. Due to this limitation, with one image we are only able to
reconstruct lighting for objects with uniform albedo. Without loss of generality we
can assume that the object is white, with kd D 1. We also assume known reflectance,
setting ks D 1 and n to a fixed value in the Blinn–Phong model. The intensity of a
pixel xj illuminated with N lights can be obtained using the Blinn–Phong model
(5) with multiple light directions:

I.xj / D V.xj /

NX
i

Si .xj /.kd hNj ;Li i C kshHij;Nj in/ li!i (6)

Rewriting in a more simple linear form we get:

I D Ts l (7)

where the components of the light transport matrix Ts are given by:

tji D Si .xj /.kd hNj ;Li i C kshHij;Nj in/!i (8)

The visibility term V.xj / is dropped because all the points we use are visible in the
image. By combining this equation with the wavelet basis light model from (2) we
get:

I D TsBw (9)

Generalized linear inequality constraints are required to prevent negative lighting
and are written compactly as:

Bw >D 0

The inverse light problem is therefore formulated as a constrained linear equa-
tion system that is solved for the light basis linear weights w. Equation (9) can
be interpreted as a sum of “basis images”, and can be efficiently implemented on
graphics hardware. Examples of these basis images can be seen in Fig. 3. The top
row displays the light basis while the second row an example of image basis (scene
illuminated with the light basis).

3.5 Inverse Light from a Multiple Images

We now generalize the light and reflectance estimation method for objects with
varying albedo. We make the assumption that the lighting does not change and that
the object remains stationary with respect to the lighting (only the camera moves).
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In this case, when viewing a fixed point on an object from different camera angles,
the difference in the image intensity of that point is due to the specular component.
By adding a superscript v to (6) to indicate the view, and taking the difference of
the two observed pixel values I v0.xj / and I v1.xj / we get the following system of
equations:

I v0.xj /� I v1.xj / D
NX
i

Si .xj /ks.hHv0

ij ;Nj in � hHv1

ij ;Nj in/li!i (10)

where the visibility term is dropped because we only consider points which are
visible in both views. Rewriting in a more compact form we get:

I v0.xj /� I v1.xj / D
NX
i

c
v0v1

ji li (11)

where
c

v0v1

j i D Si .xj /ks.hHv0

ij ;Nj in � hHv1

ij ;Nj in/!i (12)

Every pair of views .v0; v1/ and every point visible in both views adds a
new equation. All these equations can be stacked together into a linear system of
equations similar to the one from the single-view case,

I0 D Tml D TmBw (13)

and again we have to impose non-negativity constraints Bw >D 0.
After an initial light is calculated from corresponding specular pixels in pairs

of images, per-point albedo is recovered from the corresponding diffuse pixels in
multiple views v. This can be easily done by linearly solving for kdj in the least
square form equations obtained by replacing the constant albedo kd with varying
per-point albedo kdj in (6):

I v.xj / D kdjaj C bv
j (14)

where

aj D V.xj /

NX
i

Si .xj /hNj ;Li ili!i

bv
j D V.xj /

NX
i

Si .xj /kshHv
ij ;Nj inli!i

Next we refine the light using the full equation system (9) (not pairwise) with the
estimated per-pixel albedo. Figure 5 shows on the left the reconstructed albedo for
the object on the right side.
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Fig. 5 Example of albedo estimation. Reconstructed albedo (left), one of the original images
(right)

3.6 Reflectance Estimation

Having a good light estimate, we turn our attention to find the reflectance param-
eters. Initial light estimation is done using approximative values for the specular
parameters. We have noticed through experimentation with synthetic data that
incorrect specular parameters only seem to influence the overall brightness of the
recovered lightmap, not the individual positions of the lights. The inverse light
method seems not to be very sensitive to moderately incorrect specular parameters.
By interleaving reflectance estimation with lighting estimation, we achieve nearly
the same quality reconstruction as the true non-linear global optimum would.

When presented with just a single image, there is no way to separate the recorded
values into specular and diffuse parts. The best we can do is try to find the specu-
lar parameters that make the reconstructed image look as close as possible to the
original. We can rewrite (6) in a simpler form:

I.xj / D aj C ks

NX
i

bij c
n
ij (15)

with

aj D V.xj /

NX
i

Si .xj /hN;Liili!i

bij D V.xj /Si .xj /li!i

cij D hHij ;Ni

where kdj is omitted since it is assumed to be equal to one. We pose the reflectance
estimation problem as a non-linear least squares problem:

fkr
s ; k

g
s ; k

b
s ; ng D argmin

X
j2S

.Ij � aj � ks

NX
i

bij cij
n/2 (16)
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where S is the set of sample points. In practice we only use points where the specular
dot product hR;Li i is near one. Those points that have the normal almost aligned
with light direction correspond to a strong specular highlight. This way we avoid the
problem of fitting specular highlights to noise in regions where there is no highlight.

When using multiple images we estimate specular parameters from pairs of
image differences. This way we avoid using albedo values estimated with incor-
rect specular parameters. Similarly to the single view case we select only visible
specular points that have a specular dot product close to unity in one of the views
for at least one light. If we define Sv0v1

as the set of sample points for the pair of
views v0 and v1, the least squares problem can be posed as:

fkr
s ; k

g
s ; k

b
s ; ng D argmin

X
v0v1;v0¤v1

X
j2Sv0v1

..I
v0

j � I v1

j /� ks

NX
i

bij .c
v0

ij

n � cv1

ij

n
//2

(17)
where

cv
ij D hHv

ij ;Nji
For both single and multiple view cases, the nonlinear minimization is solved

with the Levenberg–Marquardt algorithm [11].

3.7 Numerical Light Estimation and Regularization

Inverse light is an inherently ill-conditioned problem, especially when using real
images and noisy data. To alleviate this problem, we used a smoothness regulariza-
tion on the gradient of the light map.

Es D �s

X
i

krli k2 (18)

where �s is a positive constant that controls the magnitude of the smoothness
penalty. The gradient of the lightmap is computed as:

rli D
	
liR � liL
liT � liB




where liR, liL, liT and liB are the right, left, top and bottom neighbors respectively of
light li .

This penalty term is quadratic in the lighting coefficients. By rewriting (18) as a
quadratic form and combining it with (2), we get the following:

Es D �slTQsl l D �swTBTQslBw D �swTQsw (19)

The light estimation with known reflectance is therefore a linear least squares
problem with linear inequality constraints for both the one image with uniform
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albedo and the multi-image with varying albedo cases ((9), (13), and (19)). It can be
re-formulated as a quadratic programming problem.

min
w

�
wT ..TB/T .TB/C �sQs/w � IT .TB/w

�
(20)

subject to
Bw 	 0 (21)

where T is the light transport matrix, B is the light basis, w is the vector of basis
function coefficients and I is a vector of the observed pixel values.

As shown by Ramamoorthi and Hanrahan [19] in the context of efficient ren-
dering, a good approximation of an environmental map can be achieved by zeroing
small wavelet coefficients. Here, in the case of the inverse light problem, the areas
of the cubemap that need more detail are initially unknown. We start with a coarse
basis that is then locally refined based on projected image residual (see next section
for details).

4 System and Implementation Details

Algorithm 1: Wavelet-based Lighting Reconstruction
Require: n images I1 : : : In with camera calibration

object geometry xj ; j D 1 : : :M

initial specular params ks; n
initial basis subdivision

1: solve for light basis coefficients w (See Equation 9 or 13 for single- and multi-view cases)
2: project the image residual onto the scene illuminated with the unused basis functions, and

add the top 75%
3: solve for w again using the new basis matrix (Equations 9 or 13)
4: solve for reflectance parameters (See Equation 16 or 17)
5: if multi-view reconstruction then
6: solve for albedo
7: end if
8: estimate lighting coefficients w for the final time

The lighting reconstruction algorithm outlined above is an iterative method that
starts with an initial estimation of the reflectance parameters. In the case of the
wavelet basis functions, we start with a sparse initial set of basis functions comprised
of the scaling function and lowest level wavelets. For efficiently representing the
wavelet basis we use a quad tree. An empty tree has just a single scaling function
to represent the image. Every node added into the tree contains the three wavelets
needed to add the next level of detail to that region. By using this structure, we are
able to focus our representation in regions of the cubemap that need it, while keeping
dark or smooth regions sparsely encoded. After solving for the basis coefficients, we
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need to add new basis functions which are useful in the reconstruction. We calculate
the image residual and project it onto the unused basis of the light transport matrix T
and add new basis vectors (and their parents in the quad tree) corresponding to the
top 75% of residuals. In the case of the Spherical Harmonic and discrete hemisphere
basis, no refinement is needed. Once an initial light is estimated, we estimate the
specular parameters and, in the multi-view case, we solve for albedo. It is important
to do this after performing the reflectance estimation, because errors in specular
highlights will work their way into the albedo calculations. With a good estimate of
the reflectance (and albedo), we perform one last pass of solving for lighting basis
coefficients.

One important detail that is necessary when doing light estimation is related to
the quality of input images. We found that we need High Dynamic Range images [7]
for reliable light reconstruction. Typical fixed-range images are unable to represent
the large range of radiance values in some scenes. Without HDR, a compromise
would have to be made between detail in dark regions and prevention of pixel satura-
tion in bright regions. We used the algorithm developed by Debevec and Malik [7] to
reconstruct the non-linear camera response to exposure and to create high dynamic
range images from multiple images taken at different shutter times.

An extra normalization step was also needed when using multiple images in esti-
mating light. Some of the images come out brighter than the others, causing diffuse
regions of the object to show up at different intensities. These errors show up as
specular differences when solving for the lighting, creating spurious lights with the
same color as the object. This problem is dealt with by scaling the input images to
minimize the pixel value differences of points which are diffuse.

5 Experiments

We experimentally compared the proposed smooth Daubechies wavelet light repre-
sentation (DB4) with the Haar (Haar) [17] and spherical harmonics (SH) [17, 21]
based light maps as well as a simple uniform discrete map defined over the cube
map (DH) [23]. For Haar and Daubechies representations only 75% of the basis
functions are used, which is 75% of the total number of cubemap pixels. In the
spherical harmonics basis the first nine low-order basis functions are used. For all
experiments, the reconstructed lightmaps have a resolution of 8 � 8 for the top face
and 4 � 4 for the side faces (as presented in Fig. 2).

We performed two types of experiments. First, in Sect. 5.1, we evaluate the qual-
ity of the light reconstruction in real and synthetic images. In Sect. 5.2 we evaluate
the stability of the inverse light method for the different representations in noisy
conditions (for both scene and image noise). We also test the impact of shadows and
specular highlights on the quality of inverse light. Finally in Sect. 5.3 we show the
application of the inverse light method in augmented reality.
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5.1 Quality of the Reconstructed Light Basis

The use of synthetic scenes allows us to evaluate the quality of reconstructed
lightmaps as well as the reconstructed images. We generated synthetic images lit
with two environmental maps courtesy of P. Debevec [4]. We chose these two light
maps as examples of an environment with few sharp lights (St. Peter) and an envi-
ronment with a large area light (Ufizzi). For all light representations, we first tested
the single-view inverse light method (Sect. 3.4) on a white teapot model. Next, we
tested the multiview inverse light method (Sect. 3.5) using a colored teapot with a
simple texture based on a sine wave.

We also tested the quality of the proposed inverse light method on two real
scenes. For the real scenes, we used images of two identical glossy ceramic ducks.
One was painted white for the one view case and the other left colored for the mul-
tiview case. We obtained the geometric model of the duck using a laser scanner, and
we registered it with the image using manually selected corresponding points. The
images were calibrated with respect to the camera using the dotted calibration pat-
tern shown in Fig. 7 (third row left). We notice that the inverse light is not sensitive
to small changes in surface reflectance parameters, and therefore we used a heuristic
approximation of the reflectance parameters for the real images.

Reconstructed lightmaps for the synthetic case are displayed in Fig. 6 (left) for
the St. Peter’s Basilica lightmap and in Fig. 6 (right) for the Ufizzi lightmap. Results
show that the spherical harmonics representation tends to blur the whole light map,
and all other three basis show good quality similar results. For St. Peter’s light map
that has sharp lights Haar works better than the Daubechies while for the Ufizzi

Haar Daubechies Discrete Spherical Haar Daubechies Discrete Spherical
hemisphere harmonics hemisphere harmonics

St. Peter’s Basilica lightmap Ufizzi galleria lightmap

Fig. 6 Lightmaps reconstructed by the proposed inverse light method using four example basis:
Haar wavelet, Daubechies wavelet, simple discrete cubemap and spherical harmonics. All experi-
ments are performed with the teapot object from Fig. 7. The first row presents the original lightmap
and a scaled version that shows the important lights. The second presents the results on the one-
view specular object with uniform texture and the last row presents the result of the multi-view
textured scene



Wavelet-Based Inverse Lighting 233

lightmap that has one big area light the smooth basis gives a more accurate recon-
struction. This is expected since the smooth basis offers better area support than
the non-smooth one. In both cases the discrete hemisphere also shows good perfor-
mance. Among different objects tested, the white specular one (row 2) gives better
results. The multiview case (row 3) is numerically more difficult as the estimated
non-uniform albedo creates some artifacts in the light map.

Next we tested the quality of the reconstructed images. We chose a view that
was not included in the training set used for the light estimation and rendered the
image with the recovered light (and albedo for the multiview case). We performed
experiments for the two inverse light methods (single and multi-view case) for both
synthetic and real test images. In the case of real images, an extra view was taken
and not used in the light reconstruction method but kept only for the purpose of
evaluation. A selection of the reconstructed images are shown in Fig. 7, while the

image error

synthetic single view

synthetic multi view

real one view

real multi view

Original Original Haar Daubechies Discrete Spherical
Cropped Haar Daubechies hemisphere harmonics

Fig. 7 Results with the four representations (Haar, Daubechies, discrete hemisphere and spherical
harmonics) for synthetic and real images. We tested on a novel view, not included in the light
reconstruction. The second and third rows show the single and multi view reconstruction for a
white and colored specular teapot and the last two rows are real experiments for a white and
colored shinny duck. The corresponding lightmaps for the synthetic case are shown in Fig. 6 (left)
third, fourth rows. The numerical errors are presented in Table 1. An illustration of the image errors
for the single view case is shown in the first row. White represents low errors, and black represents
big errors
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Table 1 Results for quality of light reconstruction for different basis. All image errors represent
mean intensity error of the original with respect to image rendered with reconstructed light. Errors
are normalized to the range Œ0W255�. The corresponding reconstructed images are shown in Fig. 7

Lightmap Object Image error
Haar DB4 SH DH

St. Peter’s Teapot diffuse 8.2 2.6 6.4 8.3
Teapot specular 6.9 2.3 5.6 7.0
Teapot multi 3.7 2.0 3.2 3.7

Ufizzi Teapot diffuse 9.0 1.6 8.8 9.0
Teapot specular 9.2 1.8 9.1 9.0
Teapot multi 5.6 2.1 3.3 5.7

White duck indoor 21.3 21.3 21.4 21.3
Yellow duck indoor 25.6 25.6 25.6 25.6

numerical errors are shown in Table 1. All image errors are normalized to the range
Œ0W255�. In Fig. 7, the first row displays the error images corresponding to the second
row in the same figure as well as the second row in Table 1.

From this experiment we noticed that the Daubechies basis gives the best over
all performance. The spherical harmonics give very poor perceptual quality (looking
at the images in Fig. 7) but the measured error is surprisingly better than the Haar
or discrete hemisphere case (see Table 1 and first row in Fig. 7). This is due to
the fact that the spherical harmonics perform better for the diffuse/non-shadowed
parts of the object, but it tends to blur any specular highlights or shadows that have
large influence on the perceptual appearance. The Haar and discrete hemisphere
lightmaps give similar results with good perceptual quality on the reconstructed
images but poor image error. The Daubechies basis gives the compromise between
visual quality and numerical accuracy.

Despite having bigger numerical errors1 the real scene reconstruction was visu-
ally quite close to the original, with the Daubechies basis giving the best results.
This shows that when using real (and thus non-perfect) images, the smooth wavelet
representation is more robust and spreads the error more evenly on the objects giv-
ing a better appearance in the reconstructed view. In the multi-view case (yellow
duck – last row Fig. 7) the results are quite similar.

5.2 Stability of the Inverse Light Method for Different
Light Basis

When solving the inverse light problem, a variety of sources of noise can interfere
with results. Errors in camera calibration, image noise and object geometry can all

1 The larger numerical errors for the real images are likely due to difficulty in calibration. It is
important for the light estimation to get the rays exactly right from light via reflection to camera.
This is a much more difficult problem than camera calibration alone.
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Table 2 Condition number for stability experiments

Test Condition numb. ~ (	105)
Haar DB4 SH DH

Geometry error 1.2 1.1 2.5 1.2
Calibration error 1.2 0.82 2.5 1.3
Image noise 1.2 0.83 2.5 1.3
No shadow cues 3.4 1.1 9.6 6.8
No specular cues 6.5 7.4 3.1 10.9
No spec. & no shadows 11,893 5,541 13.5 18,920

have a negative effect on the reconstructed lightmaps and images. In a second set
of experiments, we analyzed the stability of the inverse light reconstruction in the
presence of noise. We again compared all four basis representations (Haar-Haar,
Daubechies-DB4, discrete hemisphere-DH and spherical harmonics-SH). All tests
are performed on the single-view method with the white teapot and the St. Peter’s
Basilica environmental map. We introduced three types of errors: noise in the object
geometry (by perturbing the normals), noise in camera calibration and image noise.
Finally, we compared the contribution of shadow cues vs. specular highlight cues in
the reconstruction method. Numerical results are presented in Table 2.

Given a fixed setup, the image intensities are coupled to the light sources by
the light transport matrix (T is (9) and (13)). An error in calibration or geom-
etry manifests itself as a perturbation of the matrix QTs DTs C E. Likewise an
image error/noise can be modeled as QI D I C	I . Classical Wilkinson perturbation
analysis [8] gives a bound on the calculated light as

k	wk
kwk � ~.As/

� kEk
kTsk C k	Ik

kIk
�

The above formula assumes that the angle between the residual and the solution
is small. The condition number ~ thus gives an upper bound on how difficult it
is to recover light. A large condition number indicates that small image errors or
calibration problems could lead to very large changes in the lightmap. The condition
number thus indicates relative “difficulty” of the reconstruction (higher ~ D more
difficult).

Among the different bases, the spherical harmonics are the most stable. This
can be explained by the fact that they uses global functions that smooth any high
frequency perturbations. Additionally, we noticed that in practice, the Daubechies
and Haar wavelets are influenced more by the errors in the camera position than
the errors in object geometry or image noise. This is due to the fact that camera
calibration errors result in large consistent image misalignment compared to the
noise due to perturbed normals that is more evenly distributed on the object (we
noticed this difficulty in the real image experiments from Fig. 7). Looking at the
influence of shadows vs. specular reflections, we notice that the specular reflectance
makes the inverse light more stable than just the shadows (except for the spher-
ical harmonic basis). As expected and in accordance to previous results [15, 20],
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when no shadows and no specular reflections are present the light estimation from
only shading becomes ill-conditioned. Only the spherical harmonics are able to
reconstruct from diffuse light effects.

It should be noted that the number of basis functions used in our experiments
differed between each basis. The discrete basis used the most (the same as the num-
ber of lights), Haar and Daubechies used 75% of the available basis functions, while
Spherical Harmonics only used the top 9. One would expect the discrete basis to out-
perform the others, since there are more degrees of freedom available. While this
basis does appear to outperform the others in Fig. 6, it gives higher reconstructed
image errors in Table 1. Another disadvantage of the discrete basis is that it does not
scale too well. When using a 16 � 16 cubemap for example, there are 768 variables
to solve for. Even if running time was not a problem in this case, the conditioning is
so bad that the constrained least square solver fails.

5.3 Augmented Reality

An application of the inverse light problem is augmented reality. With an accurate
knowledge of the lighting in a scene, it is possible to seamlessly composite a com-
puter generated image into a real scene. An experiment was performed to test the
visual quality of reconstructed lighting in an augmented reality scene. Refer to Fig. 8
for the following description of the experiment. We used our proposed single-view

Fig. 8 The top row contains from left to right: the original scene with calibration object, the
empty scene and the augmented reality scene with incorrect lighting. The recovered lightmap and
augmented reality scene with the correct lighting are shown on the bottom row
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algorithm and the top left image to reconstruct lighting. Next, without changing
light conditions, we took another image with no calibration object (top middle) and
inserted a graphically generated skull lit with the recovered light (bottom right). The
AR image that uses the recovered light looks realistic, especially compared with the
top right image that has incorrect lighting on the skull. The bottom left image shows
the recovered lightmap, where one can notice the presence of overhead lights and a
bright light coming from the side.

6 Conclusion and Discussion

We have presented a new light representation based on a Daubechies wavelet basis,
and we have presented an inverse light method that uses the proposed representa-
tion to recover light from calibrated images of a known object using shadows and
specular highlights. We showed that when using multiple images, both the light and
the varying object albedo can be recovered. To get a more stable solution and over-
come the ill-conditioned nature of the inverse light problem, we propose the use of
a smoothing penalty over the lightmap. For testing the quality and stability of the
proposed Daubechies representation in the context of inverse light, we compared
it with three other light bases: spherical harmonics, Haar wavelet and a discrete
hemisphere. We have shown that the Daubechies basis gives the most accurate
reconstruction for several types of real and synthetic scenes. We also compared the
stability on the four representations in the presence of errors (geometric, camera and
image noise). While spherical harmonics gave the most stable light reconstruction,
Daubechies proved to be comparably stable.

One limitation of the light recovery method is its sensitivity to geometry and cal-
ibration noise. Inaccurate surface normals attribute the lighting effects to incorrect
areas of the lightmap. We notice the effects of geometry error, especially in the mul-
tiple image case because the lighting is reconstructed based on specular highlights.
A promising area of future work is to integrate both lighting and surface normal
deviation into the minimization framework. This formulation may no longer be rep-
resented as a constrained least squares problem, and an iterative method may be
required to repeatedly solve for lighting followed by surface normal optimization.
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3-D Lighting Environment Estimation
with Shading and Shadows

Takeshi Takai, Susumu Iino, Atsuto Maki, and Takashi Matsuyama

Abstract We present a novel method for estimating 3-D lighting environments that
consist of time-varying 3-D volumetric light sources from a single-viewpoint image.
While various approaches for lighting environment estimation have been proposed,
most of them assume the lighting environment as a distribution of directional light
sources or a small number of near point light sources. Therefore, the estimation of
a 3-D lighting environment still remains a challenging problem. In this paper, we
propose a framework for estimating 3-D volumetric light sources, e.g. a frame of
candles, using shadows cast on surfaces of a reference object by taking into account
the geometric structures of the real world. We employ a combination of the Skeleton
Cubes as a reference object and verify the utilities. We then describe how it works
to estimate the 3-D lighting environment stably. We prove its effectiveness with
experiments using a real scene under flames.

1 Introduction

Lighting environment estimation is one of the important research topics in computer
vision. By recovering the lighting information from an input image of a real scene,
we can superimpose virtual objects into the scene with natural shading and shadows
by controlling the lighting effects in the generated or captured images accordingly
(Fig. 1). The applications of lighting environment estimation are widespread, such
as object tracking, face recognition, VR and graphics.

Various methods for lighting environment estimation, either direct or indirect,
have been proposed. Pioneering work includes those of estimating illuminant direc-
tions in the framework of shape from shading [10, 23]. In direct sensing such
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Fig. 1 CG image rendered
under lighting environment
estimated by the proposed
method. The candles in the
left are real, but the objects in
the right are virtual ones lit by
the estimated lighting
environment including the
candles

as in [2, 14, 18], images of the illuminant distribution are directly captured by a
camera, and the lighting environment is estimated by analyzing the pixel values
of the images. Ihrke and Magnor presented a method for representing a fire with
multiple cameras, but not in the context of estimating radiant intensities as a light
source [4].

Among indirect sensing approaches some exploit the occluding boundary that
puts strong constraints on the light source directions using an object that has a
(locally) Lambertian surface [9, 20]. Some other indirect approaches [7, 19, 21, 24],
so-called inverse lighting, employ images containing a reference object with known
shape and reflectance properties, and estimate the lighting environment by analyz-
ing its shading or highlights. Nevertheless, since most of these methods represent
the lighting environment as a set of directional light sources, it is difficult to apply
them to certain types of real scene, especially to an indoor scene which requires
to consider the effects such as attenuation of radiant intensity caused by the posi-
tional relationship between the light source and the object. Although a few advances
[3, 8, 12] allow estimation of near light source, it is still a challenging problem to
solve for parameters of multiple light sources including their radiant intensity. On
the other hand, as pointed out in [7] the Lambertian model for surface reflectance
is too simple. Theoretically as supported by [1, 13] it performs low-pass filtering
of the lighting environment, which results in a coarse resolution estimated lighting
distribution.

Accordingly, another clue is required in order to estimate complex lighting
environments. Sato et al. have introduced a method which utilizes shadows and
estimate radiant intensities of a known distributed set of light sources [15]. While
this method can estimate the lighting environment with higher stability than the
shading-based methods, it only works in a simple case, that is, the lighting envi-
ronment is represented by directional light sources. For estimating a complex 3-D
lighting environment, we have the following difficulties, i.e. the solution space is
larger than the measurement space (underdetermined problem), and the ambiguity
of matching shadows and light sources.

In this paper, we employ a combination of the Skeleton Cubes [16] as a reference
object, and propose a method for solving an unsolvable problem by simple linear
algebra, utilizing the geometric structure of the real world. In the following sections,
we first describe the lighting environment estimation with shading and shadows,
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and verify the utility of the Skeleton Cube. We then describe the difficulties of this
problem, and how it can be solved with our geometric-structure based approach.
After describing the algorithm of our method, we demonstrate the effectiveness of
our method with a real scene, and conclude with discussions.

2 Lighting Environment Estimation with Shading
and Shadows

In this section, we describe the framework for estimating lighting environment from
shadows. The lighting environment is approximated by a distribution of point light
sources so that the problem is to solve for the radiant intensity of each of discretely
sampled sources.

Before going to the details, we summarize the following terms.

Reference object The object with known shape and reflectance.
Shadow surface The surface of the reference object onto which shadows are

cast.
Camera The camera that captures an image of the reference object,

which is calibrated so that we know the relationship of cor-
responding points in the scene and in the image.

Point light source The light source that has a position and radiant intensity, which
illuminates in all directions (isotropic) as a light bulb. We also
consider the effect of attenuation, that is, the energy of the light
source decreases in proportion to the squared distance.

2.1 Reflectance Model

We assume that the surface reflection of the reference object is described by the
simplified Torrance-Sparrow model [5, 17] which can represent both diffuse and
specular reflection, and it especially describes the specular reflection with physical
properties. It is in this sense more general than other models such as the Phong
reflectance model [11]. In this paper, we presume the influence of interreflection is
ignorable and concentrate our discussion on the first reflection.

With the simplified Torrance-Sparrow model, observed radiance, I.x/, at the
minute area around point x is described as

I.x/ D .kdRd C ksRs/LL; (1)

where L is the radiant intensity of light source L. Rd and Rs denote the diffuse
and the specular component of a reflectance function, respectively, whereas kd and
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Fig. 2 The geometry of
reflection. V is unit vector in
direction of the viewer, L is
unit vector in direction of the
light source, N is unit surface
normal, and H is unit angular
bisector of V and L

dS

N

V

L H
β β

Incident beam

Reflected beamα

ks are the weighting coefficients of them. Though I.x/ and L are functions with
respect to the wavelength, we utilize the functions at three wavelengths for red,
green and blue. For the sake of a simple description, we do not denote it explicitly
in the following.

Assuming the diffuse component is represented as Lambertian, we have Rd D
N � L=r2; where N , L and r denote the surface orientation, the direction of light
source L from point x, and the distance between light source L and point x,
respectively. The specular component,Rs, is represented as

Rs D 1

r2

1

N � V exp

	
� .cos�1.N � H //2

2�2



; (2)

where V , H , and � denote the viewing direction, the half vector of L and V , and
the surface roughness, respectively (Fig. 2).

The observed radiance of point x on the surface can be generally formulated as

I.x/ D
NX

iD1

M.x;Li / .kdRd C ksRs/LLi
; (3)

where N is the number of point light sources, and M.x;Li / is a mask term
that encodes the self shadow of the skeleton cube.1 The mask term, M.x;Li /,
is binary, indicating whether point x is illuminated by light source Li or not, i.e.
M.x;Li /D 1 if light source Li illuminates point x and M.x;Li / D 0 otherwise
(see Fig. 3).

1 Note that the observed radiance is constant despite the distance between a point and a camera.
While irradiance decreases with distance from the surface, the size of the captured area increases
instead. Accordingly, these two effects will get balanced out and the incoming energy to one ele-
ment stays constant. We can regard the energy, i.e. a value of a pixel, as radiance of one certain
point since the size of the element is minute.
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Fig. 3 Relationship between
a light source and a reference
object. The green object in
the right denotes an occluding
object, and the black region at
the bottom denotes a shadow.
The mask term of the shadow
point is set to 0, and the
observed intensity at the point
becomes 0

Occluding object

Shadow

2.2 Computational Algorithm

When we sample M points on the shadow surface for observing the radiance, we
have a matrix representation based on (3)

2
6664

I.x1/

I.x2/
:::

I.xM /

3
7775 D

2
6664

K11 K12 � � � K1N

K21 K22 � � � K2N

:::
:::

: : :
:::

KM1 KM2 � � � KMN

3
7775

2
6664

LL1

LL2

:::

LLN

3
7775 ; (4)

where
Kmn D M.xm;Ln/ .kdRd C ksRs/: (5)

We then write (4) simply as
I D KL; (6)

where K D .Kmn/. Given a sufficient number of surface radiance samples (i.e.
M >N ), it is in principle possible to solve (6) for L by the linear least squares
method with non-negative variables (the non-negative least squares; NNLS [6]),

min
L

1

2
kKL � Ik2

2 subject to L 	 0: (7)

Namely, we can obtain the radiant intensities in vector ŒLL1
; LL2

; : : : ; LLN
�.

3 Skeleton Cube

3.1 3-D geometric Features

In order to estimate the parameters of 3-D distributed light sources, we need to have
a 3-D structured object so as to observe shadows caused by the lighting environment.
Given that we can utilize a reference object of known shape, we design the skeleton
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Fig. 4 The skeleton cube.
Sampling points are at the
lattice positions on the inside
surface of the cube

Width of the Pillar

Pillar

Sampling points

cube, a hollow cube which casts shadows to its inside surface, as shown in Fig. 4.
The design is on the basis of the two requirements that are inconsistent to each other.
Namely, the shape should be simple while some complexity is desirable:

Simplicity A large portion of the surface should be observable for sampling the
surface intensity, and also a simple shape reduces the computational
cost.

Complexity The shape needs to be complex to a certain extent so that self shadows
occur under variable lighting conditions.

We employ the skeleton cube as a reference object that satisfies the above require-
ments. That is, under light sources at almost any positions in a scene, it casts
shadows on its inside surfaces and the shadows can be observed from any view-
points.

The skeleton cube can also be used as a reference object for geometric calibra-
tion of cameras, which is an ordinary method by matching corresponding points
in a captured image and the model. Although we do not go into the details of the
geometric calibration in this paper.

3.2 Verifying Utilities of Skeleton Cube

In this section, we verify the utilities of the skeleton cube as a reference object
for estimating the lighting environment. We first investigate the effectiveness of the
lighting environment estimation using shadows by analyzing matrix K that consti-
tutes (4). We then examine the occurrence of shadows for different positions of point
light sources.

3.2.1 Evaluating Effectiveness of Lighting Environment Estimation
with Shadows

Since the lighting environment estimation based on Lambertian shading of an object
is an ill-posed or numerically ill-conditioned problem, we utilize the shadows, i.e.
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Fig. 5 Distribution of light
sources. The points in the
images illustrate point light
sources. The skeleton cube
and the camera are also
placed in the lighting
environment. Grid lines are
added for the sake of display

the M term in (5) to make the problem better-conditioned. Here, we study the rel-
evancy of our lighting environment estimation with shadows by comparing matrix
K in (6) for the cases with and without the M term. We generate matrix K in
respective cases with the following conditions.

� Lighting environment: A set of point light sources on 3-D grid points ranging
from .�1500;�1000; 0/ to (1500, 1000, 2500) with spacing of 500 as shown in
Fig. 5. The number of the light sources is 209.

� Camera position: (450, 450, 450).
� Skeleton cube

– Cube size: 100 on a side. The width of pillar 10.
– Reflectance properties: kd D 1.0E+9, ks D 0.8E+2 and � D 0.3.2

– Number of the sampling points from a viewpoint: 2,293.

We visualize the generated matrix in Fig. 6. The rows of matrix K is sorted
according to the categories of surface normals of the skeleton cube whereas the row
and the column correspond to sampling points and light sources, respectively. The
color denotes the value of entries; blue for low, red for high and white for 0 values.

With the M term as a consequence of shadows, matrix K contains variations of
rows as observed in Fig. 6 because occluded light sources are different depending on
the sample points even if the surface normals on those points are identical. Without
the M term, on the other hand, variations of the rows are roughly in three categories,
which illustrate that the rank of matrix K without the M term is degenerated close
to rank three. This is because the number of the sorts of surface normals that are
viewable from a single viewpoint is at most three. In other words, the rows within
each categories are quite similar except for the difference due to specularities or the

2 These are the estimated parameters of a skeleton cube under a controlled lighting environment.
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Fig. 6 Visualized matrix K .
The row and the column
correspond to sampling
points and light sources,
respectively. The color
denotes the value of entries;
blue for low, red for high and
white for 0 values

(a) With M term. (b) Without M term.

distance to the light sources, which causes rank deficiency. We later discuss the rank
of matrix K in detail.

In order to verify the rank of matrix K more qualitatively, we apply the singular
value decomposition to then matrix in the cases of using the point light sources with
and without the M term, and investigate the contributions of each singular value to
the entire sum.

We compare matrix K in the two cases (with or without the M term) by analyz-
ing their rank in terms of the contributions of the major singular values. In order to
solve (7) stably, a certain rank of matrix K is required. As shown in Fig. 7, however,
matrix K without the M term degenerates close to rank three, which is observable
in contributions of the singular values that falls drastically after the third singular
value. With the M term, singular values the third still show relatively high contri-
butions, and it proves that matrix K with the M term has a higher rank, which is
more desirable for solving (7).

Overall we have seen that the shadows effectively reflect the complication of the
lighting environment, so that it is beneficial for computing the radiant intensities of
the light sources with higher stability.

3.2.2 Evaluating Capability of Shadow Generation of the Skeleton Cube

In order to examine the occurrence of shadows, we count the number of sam-
pling points on the inside surface of the skeleton cube that are self-occluded by
another pillar of the hollow cube when viewed from each possible point light
source. We consider the space for the point light sources to be placed, ranging from
.�1500;�1500; 0/ to (1500, 1500, 3000) with spacing 100.
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Fig. 7 Contributions of
singular values of matrix K .
Horizontal axis for the
singular values and vertical
axis for the corresponding
contributions to the entire
sum. The part for the higher
singular values is enlarged
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Fig. 8 Self-occlusion of the
skeleton cube. We count the
number of sampling points on
the inside surface of the
skeleton cube that are
self-occluded by other pillar
of the hollow cube when
viewed from each possible
3-D grid position for a point
light source. The color
corresponds to the number of
self-occluded points: red for
few, blue for many

Vmin

Skeleton cube

When a certain sampling point is self-occluded viewing from a certain grid point,
a shadow is cast on the point by a light source on the grid point. Hence, it would be
a problem if there were only few points that were self-occluded, since in that case
almost all the M term in (5) would equal to 1, and thus the estimation of radiant
intensities might become unstable. In this respect the skeleton cube is desirable of it
has shadows to some extent wherever the point light sources are placed.

We show some results for verification in Fig. 8. The color of each position on
the planes in Fig. 8 signifies the possible number of self-occlusions by a point light
source that is placed on that position. The color denotes the number, i.e. red denotes
a low and blue denotes a high number. For the total number of sampling points,
5,300, even the minimum number of occluded points was 704 (when viewed from
Vmin in Fig. 8) whereas the maximum was 3,540. This indicates that the skeleton
cube has shadows of some good extent by light sources at almost all the considered
positions, but in some points such as Vmin in Fig. 8 it cannot create enough shadows
to be observable.
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Fig. 9 Example of
underdetermined problem

I on 2D surface

L in 3D space

4 Estimation Algorithm for 3-D Lighting Environment

4.1 Problems: Underdeterminedness and Uncertainty

The framework shown in Sect. 2 enables us to estimate a lighting environment with
a set of directional light sources (hemispherical lighting) [15], but for a complex
3-D lighting environment, we have the following fundamental problems.

� Underdeterminedness: Equation (7) easily becomes underdetermined when we
extend it to 3-D distribution estimation, because the dimension of the sampling
surface is two and the estimation space is three (see Fig. 9). Accordingly, we
cannot have a unique solution of (7).

� Uncertainty: Even if we make the problem overdetermined, we have a problem
of uncertainty of the non-negative least squares (NNLS). As shown in the name
of the NNLS, the solution of it has no negative components and thus it does
not fit as well as the least squares method without constraints. Furthermore, it
finds a solution only from a viewpoint of minimizing the sum of the errors, it
cannot take account of the geometrical structures in the real world. Hence, almost
all of the solutions that the NNLS finds is a local optimum, which has a lot of
unnatural elements when they are projected in the real world. We call them as
phantoms, which are caused by the following two reasons, i.e. the structure of a
reference object (Phantom-I) and the ambiguity of shadow–light source matching
(Phantom-II).

– Phantom-I
As described in Sect. 3.2.2, the skeleton cube has some regions where shad-
ows are not easily observed. The estimated radiant intensities of light sources
in these regions will be uncertain, and there can be phantoms as a result
(Fig. 10).



3-D Lighting Environment Estimation with Shading and Shadows 249

Unstable region

Light source
Shadows

Fig. 10 Unstable region of Skeleton Cube. The gray regions denote the unstable region of the
skeleton cube. Estimated radiant intensity of a light source in the region is unstable, because the
shadows generated by the light source are small and hard to be observed

Fig. 11 Uncertainty of
shadow–light source
matching. Suppose we have
two pair of light source
candidates, i.e. black pair and
white pair. We cannot
distinguish which pair the
true light sources are based
on the shading and shadows
on the sampling surface,
because both possibilities can
represent the same shading
and shadows

Occluding object

Sampling surface

Shadow edges

– Phantom-II
On the other hand, the shadow based method implicitly evaluates shadow–
light source matching during the numerical optimization. It is obvious from
the results that the estimated light sources appear where the observed shadows
can be represented by them. The ambiguity of this shadow–light source
matching generates another type of phantoms. Figure 11 shows an example
of this uncertainty. We have two pairs of light sources drawn by the white and
black circles, and cannot distinguish which pair is the phantom by the shading
and shadows on a single surface. Hence, these light sources are in a uncertain
situation, and can be phantoms.

As described the above, this is a typical ill-posed problem that often appears
in the computer vision problems, which cannot be solved by simple numerical
approaches. One of the reasons of this is that the most of these numerical approaches
cannot preserve the structure of the real world because the permutation operation of
the equations does not affect the solutions. That is, these approaches ignore the rela-
tionships between points that are closely connected in the real world, and make it
into the pointwise process. We need to apply a clue to make the problem well-posed,
that is what we propose here, the geometric structure.
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Fig. 12 Combination of
skeleton cubes

4.2 Geometric Structure based Approach

As we described above, 3-D lighting environment estimation from shading and
shadows is underdetermined and uncertain. For overcoming this, we utilize the
geometric structure.

To make the problem overdetermined, we dived the problem into solvable ones
and integrate partial solutions by taking account of the real world’s structure. We
also utilize the geometric structure for eliminating phantoms, which are caused by
the structure of the skeleton cube (Phantom-I) and the uncertainty of the coefficient
matrix K (Phantom-II). To cancel out the unstable regions and eliminate the phan-
toms, we employ two skeleton cubes so that the direction of each surface normal is
different each other (Fig. 12). By integrating the results that are separately estimated
from each skeleton cube,3 true light sources can be extracted since they will appear
in the same space of the both estimation results, but the phantoms will appear in
different spaces corresponding to the structure of each skeleton cube. The details of
the algorithm is shown in the next section.

4.3 Overall Algorithm

Our basic strategy for estimating light source distribution in the 3-D space is
twofold, i.e., directional analysis and distance identification. We first assume a light
source distribution on a hemisphere that has a certain radius, and estimate the radiant
intensities of the light sources by solving (6). Then, by repeating the estimation of
the radiant intensities with different radii of hemispheres, we can identify the direc-

3 Note that we compute matrices K of both skeleton cubes in the same space at the same time, and
thus these matrices have shadow information cast from the other cube as well as from itself, which
denotes the correct relationship between light sources and skeleton cubes.
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Fig. 13 Diagram of directional search

tions along which the estimated radiant intensities remain high at all the distances
as those of major light sources in the scene4 (Fig. 13). Through this process, light
sources with weak radiant intensities such as reflections from the walls are regarded
as ambient lighting. In this step, we separately estimate radiant intensities from each
skeleton cube, and then integrate the results to eliminate phantoms. The detail of the
directional search is shown in the following (Alg. 1).

In order to explicitly identify the light sources in the 3-D space, we also need
to know the distances to them, i.e. from the center of the reference object, which is
also the origin of the world coordinate system. This is important especially when
there are near light sources in the scene. For this purpose, we can investigate pos-
sible locations of the light sources on lines along the above estimated directions.
In practice, we consider distributions of light source candidates at a certain interval
along the lines and then solve (6) for L, analogously as in the directional analysis.
In this step, we estimate radiant intensities from both of the skeleton cubes. Note
that it is useful to retain the assumption of a light source distribution on the hemi-
sphere for describing the ambient light. After these two steps, we distribute light
source candidates in the vicinity of the once identified locations of light sources,
and obtain the distribution of light source candidates in the 3-D space.

4 We also utilize the coarse to fine strategy for this step.
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Algorithm 2: Directional search.
for scID 1 to numberSkeletonCubes do

Linit, 0  Create a recursively subdivided icosahedron as an initial candidate
distribution;
for itr 1 to maxIterations do

for r  Rmin to Rmax do
Linit, itr
r  Generate a distribution of light source candidates with Linit, itr-1 that

has radius, r ;
Lest
r  Estimate radiant intensities by the NNLS with Linit, itr

r ;

Lopt, scID  Integrate the light source candidates that have values of all Lest
r ;

if resolution is enough then
Quit the loop and output Lopt, scID as a result;

else
Linit;itr Add new light source candidates around the candidates that have
values to Linit, itr-1;

Lopt, *  Eliminate phantoms by computing ‘and operation’ to
Lopt, 1; : : : ;Lopt, numberSkeletonCubes;

Consequently, the algorithm for one frame of the captured sequence is shown in
the following:

1. Configure a scene.
2. Estimate 3-D distribution of light sources:

(a) Directional search with phantom elimination.
(b) Depth identification.
(c) Distribute light source candidates around the light sources that are estimated

by the above.

3. Estimate radiant intensities with the estimated distribution.

For an image sequence, we estimate a light source distribution of the first image
with the full processing of the above, and then use the result as an initial distribution
for the succeeding images. We distribute light source candidates around the initial
distribution and go to step 3 in the above procedure.

5 Performance Evaluation

We evaluate the performance of our method with a real scene under the following
configuration (Fig. 14).

Skeleton Cubes Two different sizes of cubes. The small cube is hanged with
a fine thread inside the large cube. The sizes are 100 mm
and 300 mm, respectively. We assume the reflectance as
Lambertian, and ignore the interreflection.
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Fig. 14 Configuration for
experiments

Lighting environment Four candles in a dark room and reflected lighting from the
walls. We moved the candles around the cubes during the
capture.

Camera Sony PMW-EX3, 1920 � 1080 pixels, 29.97 fps. We rec-
tified the captured image with easycalib [22] and estimate
the camera parameters with the Skeleton Cubes.

Directional search We utilize an initial hemisphere that has 301 vertices, and
specify Rmin D 400 and Rmax D 1600 with spacing 200,
and the number of iterations to 4.

Depth identification We place 80 light sources for each detected direction in the
directional search from 400 from the center of the cubes
with spacing 15.

The figures in the left of Fig. 15 show the captured images. We find that the posi-
tion, shape and radiant intensity vary with time. The figures in the right of Fig. 15
show the estimated light sources that represent the candles in the lighting environ-
ment. We find that the time-varying 3-D volume of the candles are represented, but
the estimation of the distance is not so accurate as the estimation of the direction.
This is because that the shape of the shadow is affected by the direction of light
sources much more than their distance, and thus there is uncertainty for the distance
estimation.

Although the estimation of the distance is not quite accurate, we have realistically
relit images of the skeleton cubes with the estimated lighting environment as shown
in the left of Fig. 16. The figures in the middle of Fig. 16 show that the difference
of the radiance on the surfaces of the skeleton cubes in the captured images and the
relit images, blue denote low and red denotes high values (Numerically, see Table 1).
While most of regions of the images show low errors (The average errors are at most
2% of the maximum intensity, 255.), we can find some high errors in the regions
where the edges of the shadows and concave portions due to the interreflection.

Finally, the figures in the right of Fig. 16 show that the superimposed virtual
objects under the estimated lighting environment. In the figures, the candles to
the left are real and the all other objects to the right are virtual. We can find that
the objects are illuminated photo-realistically with the flicker of the candles and the
soft-shadows on the objects represented.
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Initial frame

# 60

# 120

# 180

# 240
Frame number. (a) Captured image. (b) Estimated light sources and

relit skeleton cube with them.

Fig. 15 Experimental results of real scene (I). The color of the points in the right of (b) denotes
the value of the estimated radiant intensity, i.e. blue is low and red is high. The green regions on
the skeleton cube in (b) denote areas we do not use sampling intensities, such as edges of the cubes
and surfaces with screws
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Initial frame

# 60

# 120

# 180

# 240
Frame number. (a) Relit skeleton cube. (b) Difference. (c) Real candles and virtual objects

under estimated lighting environment.

Fig. 16 Experimental results of real scene (II). The green regions in (a) denote areas we do not
use sampling intensities as described in Fig. 15. The color in (b) denote the value of the difference,
blue is low and red is high. Figures in (c) show superimposed virtual objects in the real scene,
where the candles are real, and the objects in the right are virtual ones under the estimated lighting
environment

6 Conclusion

We have presented a method for estimating complex 3-D lighting environment with
a combination of skeleton cubes. Taking into account the geometric structure of the
real world enables us to solve what simple linear algebra cannot solve. Experimental
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Table 1 Experimental results of real scene

Initial frame # 60 # 120 # 180 # 240

Max difference 64:3 55:8 49:4 38:7 50:0

Average of differences 4:66 4:31 3:84 2:67 3:71

Variance of differences 18:4 15:1 11:1 5:91 10:7

results have demonstrated that our method can estimate a complex 3-D lighting
environment by localizing a distribution of 3-D volumetric light sources. As future
work, we point out the following issues; a mathematical proof of why our method
can eliminate phantoms, the optimal shape of the reference object, precise depth
identification, and multiple camera system to observe the blind side of the reference
objects so as to stabilize the distribution estimation.
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3-D Cinematography with Approximate
or No Geometry

Martin Eisemann, Timo Stich, and Marcus Magnor

Abstract 3-D cinematography is a new step towards full immersive video, allow-
ing complete control of the viewpoint during playback both in space and time. One
major challenge towards this goal is precise scene reconstruction, either implicit or
explicit. While some approaches exist which are able to generate a convincing geo-
metry proxy, they are bound to many constraints, e.g., accurate camera calibration
and synchronized cameras. This chapter is about methods to remedy some of these
constraints.

1 Introduction

As humans we perceive most of our surroundings through our eyes and visual sti-
muli affect all of our senses, drive emotion, arouse memories and much more. That
is one of the reasons why we like to look at pictures. A major revolution occurred
with the introduction of moving images, or videos. The dimension of time was sud-
denly added, which gave incredible freedom to film- and movie makers to tell their
story to the audience.

With more powerful hardware, computation power and clever algorithms we are
now able to add a new dimension to videos, namely the third spatial dimension.
This will give users or producers the possibility to change the camera viewpoint on
the fly.

The standard 2-D video production pipeline can be split into two parts, acqui-
sition and display. Both are well understood. 3-D cinematography adds a new
intermediate step, the scene reconstruction. This could be a 3-D reconstruction of
the scene combined with retexturing for displaying a new viewpoint or a direct
estimation of a plausible output image for a new viewpoint without the need for
reconstruction. Both methods have their benefits and drawbacks and will be further
discussed in the next sections. Purely image-based approaches as Lightfields [36]
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or the Lumigraph [27] might not need any sophisticated reconstruction as the sheer
amount of images allows for smooth interpolation. But more practical systems need
to rely on some clever reconstruction as the number of cameras is seldom larger than
a dozen. These are the systems we are interested in this chapter.

2 3-D Reconstruction

Despite the acquired image or video footage one of the most important factors for
3-D cinematography is arguably a 3-D model of the scene. Depending on the task
only a 3-D model of the foreground or a complete scene reconstruction is needed.
Most methods aim at the reconstruction of the foreground in controlled environ-
ments, e.g. the reconstruction of an actor. For proper reconstruction the camera
parameters need to be known in advance. These can be acquired by several methods
and the choice depends on the task [29, 53, 58].

Usually the most simple camera, a frontal pinhole camera, is assumed. With
this model every point xw in a 3-D scene can be simply projected to its image
space position xip using a projection matrix P. Given this dependency between the
3-D world and its 2-D image equivalent reconstruction of the scene geometry is
then possible. There are basically three established methods that can compute 3-D
information from images alone. These are parameterized template model matching,
shape-from-silhouette and depth-from-stereo.

2.1 Model Reconstruction

In Hollywood movies it is quite common to replace actors with hand-made, ren-
dered 3-D models, which are crafted by some designers using modelling tools such
as Maya, 3DS Max, Blender, Cinema4D, etc. Using marker-based motion capture
methods the model animation can be brought into congruence with the motion of
the actor. Nevertheless this is very laborious work and only suitable for studios that
are willing to spend a tremendous amount of money on skilled artists and designers,
additionally in some situations, like sports, or public events it might be impossible
to place markers on the object of interest.

The Free-Viewpoint Video System of Carranza et al. [15] combines motion cap-
ture and 3-D reconstruction by using a single template model. In a first step the
silhouettes of the object of interest are extracted in all input images. A generic
human body model consisting of several segments, i.e. submeshes, and a corre-
sponding bone system is then adapted to resemble the human actor and fitted to the
silhouettes of each video frame by an analysis-by-synthesis approach.

A single parameterized template model can seldom represent all possibilities
of human shapes sufficiently, therefore the result can be improved by identifying
multi-view photo-inconsistent regions and fine-tuning the mesh in these regions by
enforcing a color-consistency criterion [3].
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Small details usually cannot be sufficiently recovered by these methods, as the
underlying mesh is quite coarse, usually only up to 21k triangles [15]. An improve-
ment can be achieved by acquiring a detailed mesh beforehand. One way to do this
would be to use a structured light approach [33, 46, 50]. Anguelov et al. [7] make
use of detailed laser scans of an actor in different poses, from which they learn a pose
deformation model and a model of variation for the body shape in order to simulate
realistic muscle behaviour on the model. Using a set of markers on the human, their
system can use the motion capture data to animate the model. De Aguiar et al. also
make use of detailed laser scans of the actor which they deform in order to maxi-
mize the congruence with the multi-view recordings [5]. Their system is not aiming
at muscle behaviour but is more focussed on arbitrary inputs, as e.g. humans wearing
different kinds of apparel, and markerless tracking, which is less intrusive. Similar
to Carranza et al. [15] a template model is fitted to the videos first. In a next step
the laser scan is deformed to fit the template model by specifying correspondence
points between the two meshes.

To capture non-rigid surface deformations occurring from wearing wide apparel
for example, optical flow-based 3-D correspondences are estimated and the laser
scanned model is deformed using a Laplacian mesh deformation such that it follows
the motion of the actor over time [4]. Fusing of efficient volume- and surface-based
deformation schemes, a multi-view analysis-through-synthesis procedure, and a
multi-view stereo approach, cf. Sect. 2.3, can lead to an even higher correspondence
match of the mesh with the input video [2]. This allows to capture performances of
people wearing a wide variety of everyday apparel and performing extremely fast
and energetic motions.

While this approach delivers an evidentiary high quality it is not so well suited
for situations in which a high-quality laser scan of the actor cannot be acquired
beforehand. For such situations more general methods are needed that are described
in the following sections.

2.2 Shape-From-Silhouettes

The shape-from-silhouettes approach by Laurentini et al. [34] uses the extracted sil-
houettes of the object to define its visual hull. In 2-D the visual hull is equivalent
to the convex hull, in 3-D the visual hull is a subset of the convex hull includ-
ing hyperbolic regions. It is the maximal volume constructed from reprojecting the
silhouettes cones of each input image back into 3-D space and computing their
intersection. As the number of input images is limited, only an approximation of the
visual hull, sometimes called inferred visual hull, can be reconstructed, ref. Fig. 1.
As this method rather conservatively estimates the real geometry, results can become
relatively coarse. On the other hand this algorithm can be easily implemented on
graphics hardware to achieve real-time frame rates, e.g. [40], and can even be calcu-
lated in image-space rather than 3-D space [41]. An improvement can be achieved
by adding color constraints in order to detect concavities as well [32, 52], also
known as space-carving, or to employ an optimization process, as it is done by
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Fig. 1 The inferred visual
hull (light gray) of an object
(dark gray) is estimated by
reprojecting each silhouette
cone and computing the
intersection

Starck et al. [54]. Their approach combines cues from the visual hull and stereo-
correspondences, cf. Sect. 2.3, in an optimization framework for reconstruction. The
visual hull is used as an upper bound on the reconstructed geometry. Contours on
the underlying surface are extracted using a wide-baseline feature matching, which
serve as further constraints. In a final step an optimization framework based on graph
cuts reconstructs the smooth surface within the visual hull that passes through the
features while reproducing the silhouette images and maximizing the consistency in
appearance between views.

2.3 Depth-From-Stereo

Sometimes a whole scene has to be reconstructed, in which case all previously men-
tioned methods fail (except for [32]), as they are based on silhouettes, which can
no longer be extracted. In this case depth-from-stereo systems perform better, as
they extract a depth map for each input image, which can then be used for 3-D
rendering. The basic principle of depth-from-stereo is triangulation. Given two cor-
responding points in two images and the camera parameters, the exact position of
this point in 3-D can be reconstructed, see Fig. 2. Finding these correspondences
can be arbitrarily hard and sometimes even ambiguous. To relax the problem of
doing an exhaustive search for similarity over the whole image, one usually makes
use of the epipolar constraint. By employing epipolar constraints the search can be
reduced to a 1D line search along the conjugate epipolar lines, Fig. 2. Usually a
rectification precedes the line search so that the search can be performed along the
same scanline, i.e. the input images are projected onto a plane parallel to the line
between the optical centers of the input cameras. The correspondence finding can be
performed for example by a window-based matching, i.e. the matching is performed
on a n� n window instead of a single pixel. If further knowledge about the scene is
given or scene characteristics are assumed, as for example local smoothness, more
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Fig. 2 Using epipolar constraints and triangulation the 3-D position of any scene point can be
reconstructed

sophisticated methods based on energy minimization can be employed, e.g. [10,11].
If more than two images should be used for depth estimation a plane sweep algo-
rithm can be used [18]. In this approach a plane is placed at different depths, the
input images are projected onto it and the plane is rendered from the virtual view-
point. The color variation at every fragment serves as a quality estimate for this
depth value. This approach is especially appealing in real-time acquisition systems
as it can be computed very efficiently on graphics hardware [26, 37, 62]. Even ded-
icated hardware is nowadays available for multi-view stereo reconstruction and has
already been successfully applied in an image-based rendering system [43].

One of the first systems to achieve high quality interpolation with a relatively
sparse camera setup was the approach by Zitnick et al. [64]. Instead of matching
single-pixels or windows of pixels, they match segments of similar color. As they
assume that all pixels inside a segment have similar disparities an oversegmentation
of the image is needed. The segments are then matched and the estimated disparities
are further smoothed to remove outliers and create smooth interpolation between
connected segments belonging to the same object.

Methods based on this matching are commonly applied only for dense stereo,
i.e. the distance between the cameras are rather small, only up to a few dozen inches.
For larger distances, or fewer cameras, additional information is needed for recon-
struction. Waschbüsch et al. [60] use video bricks, which consist of a color camera
for texture acquisition, and two calibrated grayscale cameras that are used together
with a projector to estimate depth in the scene using structured light. The benefit of
these bricks is that depth ambiguities are resolved in textureless areas. These depth
estimations are used as initialization for a geometry filtering, based on bilateral fil-
tering, for generation of time-coherent models with removed quantization noise and
calibration errors.

There are many other 3-D reconstruction methods, like Shape-from-Texture,
Shape-from-Shading, etc., but these are commonly not used for multi-view stereo
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reconstruction for 3-D cinematography and therefore we refer the interested reader
to the appropriate literature.

3 Texturing with Imprecise Geometry and Sparse
Camera Setups

In the previous section several approaches have been presented to reconstruct 3-D
geometry from a collection of images. All these reconstruction approaches have
usually one thing in common: they are imprecise (especially the faster ones, which
are essential for real-time acquisition). While this may not be such a big problem
when looking at the mesh alone, it will become rather obvious when the mesh
is to be textured again using only a set of input images. One way to circumvent
this problem is to use a large enough number of input cameras or a camera array
[13, 25, 27, 36, 42] and then simply interpolate between the images in ray space.
This is of course arguably the way to achieve the best rendering quality, but rather
impractical as thousands of images might be needed for sufficient quality and free-
dom of camera movement [36]. The number can be effectively reduced by making
use of a more precise geometry proxy [27]. But reconstruction of scene geometry is
seldom perfect. Another possibility is to make use of dynamic textures [17]. Here
a coarse geometry is used to capture large scale variations in the scene, while the
residual statistical variability in texture space is captured using a PCA basis of spa-
tial filters. It can be shown that this is equivalent to the analytical basis. New poses
and views can then be reconstructed by first synthesizing the texture by modulating
the texture basis and then warping it back onto the geometry. However for a good
estimation of the basis quite a few input images are needed. Therefore the challenge
is generating a perceptually plausible rendering with only a sparse setup of cameras
and a possibly imperfect geometry proxy.

Commonly in image-based rendering (IBR) the full bidirectional reflectance dis-
tribution function (i.e. how a point on a surface appears depending on the viewpoint
and lighting) is approximated by projective texture mapping [51] and image blend-
ing. Assuming the camera parameters of the input cameras are given the recorded
images can be reprojected onto the geometry. If more than one camera is used
the corresponding projected color values must be somehow combined for the final
result. Usually the influence of a cameras’ projected color value to the result is based
on either its angular deviation to the normal vector at the corresponding mesh posi-
tion [15] or its angular deviation to the view vector [13, 19]. The first approach
is suitable for Lambertian surfaces but can result in either cracks in the texture
or, even worse, a complete loss of the 3-D impression, this would, e.g., happen
to a light-field [36] where the geometry proxy is only a simple quad. The second
approach is more general but has to deal with ghosting artifacts if the textures do
not match on the surface. This is the case if too few input images are available or
the geometry is too imprecise, see Fig. 3 for an example. Some approaches prevent
the ghosting artifacts by smoothing the input images at the cost of more blurriness.
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Fig. 3 Comparison of
standard linear interpolation
using the Unstructured
Lumigraph weighting scheme
[13] (left) and the Floating
Textures approach [9] (right)
for similar input images and
visual hull geometry proxy.
Ghosting along the collar and
blurring of the shirt’s front,
noticeable in linear
interpolation, are eliminated
by the non-linear approach

The bandlimiting approach, discussed by Stewart et al. in [55], chooses the amount
of blur based on the disparity. For light field rendering they propose to add back
high frequency details from a wide aperture filtered image, but this approach is only
suitable to two-plane light field rendering and not for general IBR or even sparse
camera setups. Eisemann et al. [21] vary the amount of smoothness depending on
the current viewpoint, but the constant change of blurriness in the rendered images
can cause distractions. Let us take a more detailed look at the underlying problem
before dealing with more convincing solutions.

In a slightly simplified version, the plenoptic function P.x; y; z; �; �/ describes
radiance as a function of 3-D position in space .x; y; z/ and direction .�; �/ [1]. The
notion of IBR now is to approximate the plenoptic function with a finite number
of discrete samples of P for various .x; y; z; �; �/ and to efficiently re-create novel
views from this representation by making use of some sort of object geometry proxy.

Any object surface that one chooses to display can be described as a function
G W .x; y; z; �; �/ ! .xo; yo; zo/, i.e., by a mapping of viewing rays .x; y; z; �; �/
to 3-D coordinates .xo; yo; zo/ on the object’s surface. Of course, the function G is
only defined for rays hitting the object, but this is not crucial since one can simply
discard the computation for all other viewing rays. Let GO denote the function of
the true surface of the object, and GA denote a function that only approximates this
surface, Fig. 4.

Next, a variety of camera calibration techniques exist to establish the projection
mapping Pi W .x; y; z/ ! .s; t/ which describes how any 3-D point .x; y; z/ is
mapped to its corresponding 2-D position .s; t/ in the i -th image [29, 58]. From its
projected position .s; t/ in image Ii , the 3-D point’s color value .r; g; b/ can be read
out, Ii W .s; t/ ! .r; g; b/. Then, any novel view IV

Linear from a virtual viewpoint V
synthesized by a weighted linear interpolation scheme, as employed by most IBR
systems, can be formulated as

IV
Linear.x; y; z; �; �/ D

X
i

IV
i .x; y; z; �; �/ !i (1)
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Fig. 4 Left: Geometry inaccuracies cause ghosting artifacts. Point P on the original surface GO is
erroneously projected to 3-D-position P1 from camera C1 and to 3-D-position P2 from camera C2 if
only the approximate geometry GA is available. Middle: Small imprecisions in camera calibration
can lead to false pixel projections (dark gray lines, compared to correct projections displayed as
light gray lines). This leads to a texture shift on the object surface and subsequently to ghosting
artifacts. Right: Visibility errors. Given only approximate geometry GA, point P is classified as
being visible from C2 and not visible from camera C1. Given correct geometry GO, it is actually
the reverse, resulting in false projections

with

IV
i .x; y; z; �; �/ D Ii .Pi .GA.x; y; z; �; �/// (2)

!i D ıi .GA.x; y; z; �; �// wi .x; y; z; �; �/ (3)

and
P

i !i D 1. The notation IV
i is used to denote the image rendered for a viewpoint

V by projecting the input image Ii as texture onto GA. ıi is a visibility factor which
is one if a point on the approximate surface GA is visible by camera i , and zero
otherwise. wi is the weighting function which determines the influence of camera i
for every viewing ray, also called weight map.

Note that (1) is the attempt to represent the plenoptic function as a linear com-
bination of re-projected images. For several reasons, weighted linear interpolation
cannot be relied on to reconstruct the correct values of the plenoptic function:

1. Typically, GO ¤ GA almost everywhere, so the input to (2) is already incorrect
in most places, Fig. 4 left.

2. Due to calibration errors, Pi is not exact, leading to projection deviations and,
subsequently, erroneous color values, Fig. 4 middle.

3. In any case, only visibility calculations based on the original geometry GO

can provide correct results. If only approximate geometry is available, visibility
errors are bound to occur, Fig. 4 right.

In summary, in the presence of even small geometric inaccuracies or camera
calibration imprecisions, a linear approach is not able to correctly interpolate from
discrete image samples.
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4 Floating Textures

As pointed out in the last section an adaptive, non-linear approach is necessary
for high quality texturing in the presence of imprecise geometry and undersam-
pled input data to reduce blurring and ghosting artifacts. Assuming that a set of
input images, the corresponding, possibly imprecise, calibration data and a geo-
metry proxy are given (cf. to Sect. 2 for common 3-D reconstruction methods), the
task is to find a way to texture this proxy again without noticeable artifacts and
shadowing the imprecision of the underlying geometry.

Without occlusion, any novel viewpoint can, in theory, be rendered directly from
the input images by warping, i.e. by simply deforming the images, so that the
following property holds:

Ij D WIi!Ij
ı Ii ; (4)

where WIi!Ij
ıIi warps an image Ii towards Ij according to the warp field WIi!Ij

.
The problem of determining the warp field WIi!Ij

between two images Ii , Ij is a
heavily researched area in computer graphics and vision and several techniques exist
which try to solve this problem, the most famous known are optical flow estimations,
e.g. [31, 38]. If pixel distances between corresponding image features are not too
large, algorithms to robustly estimate per-pixel optical flow are available [12, 45].
The issue here is that in most cases these distances will be too large.

In order to relax the correspondence finding problem, the problem can literally be
projected into another space, namely the output image domain. By first projecting
the photographs from cameras Ci onto the approximate geometry surface GA and
rendering the scene from the desired viewpoint V , creating the intermediate images
IV
i , the corresponding image features are brought much closer together than they

have been in the original input images, Fig. 5. This opens up the possibility of using
well-established techniques like optical flow estimation to the intermediate images
IV
i to robustly determine the pairwise flow fields WIV

i
!IV

j
, i.e. to find the corre-

sponding features in both images. To compensate for more than two input images,
a linear combination of the flow fields according to (6) can be applied to all inter-
mediate images IV

i , which can then be blended together to obtain the final rendering
result IV

Float [9]. To reduce computational cost, instead of establishing for n input
photos .n � 1/n flow fields, it often suffices to consider only the three closest input
images to the current viewpoint. If more than three input images are needed, the
quadratic effort can be reduced to linear complexity by using intermediate results.

It is important to use an angular weighting scheme as proposed in [13,19] because
it provides smooth changes of the camera influences and therefore prevents snapping
problems which could otherwise occur.

The processing steps are summarized in the following functions and visualized
in Fig. 5:

IV
Float D

nX
iD1

.WIV
i

ı IV
i /!i (5)
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Fig. 5 Rendering with Floating Textures [9]. The input photos are projected from camera positions
Ci onto the approximate geometry GA and onto the desired image plane of viewpoint V . The
resulting intermediate images IVi exhibit mismatch which is compensated by warping all IVi based
on the optical flow to obtain the final image IVFloat

WIV
i

D
nX

jD1

!j WIV
i
!IV

j
(6)

WIV
i

is the combined flow field which is used for warping image IV
i . Equation (5)

is therefore an extension of (1) by additionally solving for the non-linear part in P .

4.1 Soft Visibility

Up to now only occlusion-free situations can be precisely handled, which is sel-
dom the case in real-world scenarios. Simple projection of imprecisely calibrated
photos onto an approximate 3-D geometry model typically causes unsatisfactory
results in the vicinity of occlusion boundaries, Fig. 6 top left. Texture information
from occluding parts of the mesh project incorrectly onto other geometry parts.
With respect to Floating Textures, this not only affects rendering quality but also the
reliability of flow field estimation.

A common approach to handle the occlusion problem is to establish a binary
visibility map for each camera, multiply it with the weight map, and normalize the
weights afterwards so they sum up to one. This efficiently discards occluded pixels
in the input cameras for texture generation. In [15] the camera is slightly displaced
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Fig. 6 Top row, left: Projection errors occur if occlusion is ignored. Middle left: Optical flow
estimation goes astray if occluded image regions are not properly filled. Middle right: Visualization
of a binary visibility map for three input cameras. Right: Visualization of a soft visibility map for
three input cameras. Second row, left: Weight map multiplied with the binary visibility map. Middle
left: Weight map multiplied with the soft visibility map; note that no sudden jumps of camera
weights occur anymore between adjacent pixels. Middle right: Final result after texture projection
using a weight map with binary visibility. Right: Final result after texture projection using a weight
map with soft visibility. Note that most visible seams and false projections have been effectively
removed

several times in order to reliably detect occluded pixels. Lensch et al. [35] discard
samples which are close to large depth changes, as they cannot be relied on. One
drawback of this approach is that it must be assumed that the underlying geometry
is precise, and cameras are precisely calibrated. In the presence of coarse geometry,
the usage of such binary visibility maps can create occlusion boundary artifacts at
pixels where the value of the visibility map suddenly changes, Fig. 6 bottom row,
middle right.

To counter these effects, a “soft” visibility map � for the current viewpoint and
every input camera can be generated using a distance filter on the binary map:

�.x; y/ D
8<
:
0 if ı.x; y/ D 0
occDist.x;y/

r
if occDist.x; y/ � r

1 else
(7)

Here r is a user-defined radius, and occDist.x; y/ is the distance to the next
occluded pixel. If� is multiplied with the weight map, (7) makes sure that occluded
regions stay occluded, while hard edges in the final weight map are removed.
Using this “soft” visibility map the above mentioned occlusion artifacts effectively
disappear, Fig. 6 bottom right.

To improve optical flow estimation, occluded areas in the projected input images
IV
i need to be filled with the corresponding color values from that camera whose

weight! for this pixel is highest, as the probability that this camera provides the cor-
rect color is the highest. Otherwise, the erroneously projected part could seriously
influence the result of the Floating Texture output as wrong correspondences could
be established, Fig. 6 top row, middle left. Applying the described filling procedure
noticeably improves the quality of the flow calculation, Fig. 6 bottom right.
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4.2 GPU Implementation

The non-linear optimization before the blending step is computationally very inten-
sive and cannot be sufficiently calculated in advance. Therefore for immediate
feedback it is important to compute the whole rendering part on-the-fly exploit-
ing the power of modern graphics hardware. A block diagram is given in Fig. 7.
The geometry representation can be of almost arbitrary type, e.g., a triangle mesh, a
voxel representation, or a depth map (even though correct occlusion handling with
a single depth map is not always possible due to the 2.5D scene representation).

First, given a novel viewpoint, the closest camera positions are queried. For
sparse camera arrangements, typically the two or three closest input images are
chosen. The geometry model is rendered from the cameras’ viewpoints into differ-
ent depth buffers. These depth maps are then used to establish for each camera a
binary visibility map for the current viewpoint. These visibility maps are used as
input to the soft visibility shader which can be efficiently implemented in a two-
pass fragment shader. Next, a weight map is established by calculating the camera
weights per output pixel, based on the Unstructured Lumigraph weighting scheme
[13]. The final camera weights for each pixel in the output image are obtained by
multiplying the weight map with the visibility map and normalizing the result.

To create the input images for the flow field calculation, the geometry proxy is
rendered from the desired viewpoint several times into multiple render targets in
turn, projecting each input photo onto the geometry. If the weight for a specific
camera is 0 for a pixel, the color from the input camera with the highest weight at
this position is used instead.

To compute the optical flow between two images efficient GPU implementations
are needed [9, 45]. Even though this processing step is computationally expen-
sive and takes approximately 90% of the rendering time, interactive to real-time
speedups are possible with modern GPUs. Once all needed computations have been
carried out, the results can be combined in a final render pass, which warps and
blends the projected images according to the weight map and flow fields. The bene-
fits of the Floating Textures approach are best visible in the images in Fig. 8, where
a comparison of different image-based rendering approaches is given.

Input Images 1..n

Geometry Input

Visibility Calculation

Weighting Step

Projective Texturing Projected Images

Pairwise Flow Fields

Warp and blend Images

Binary Visibility Map

General steps in projective texturing
Soft Visibility
Floating Textures

Soft Visibility Map

Weight * Soft Visibility Map

Hole Filled Projected Images

Flow Field Calculation

Morph Step

Depth Maps

Weight Map

Fig. 7 Complete overview of the Floating Textures algorithm on GPU. See text for details
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Different texturing approaches
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No ground truth
available

No ground truth
available
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Unstructured
Lumigraph
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Textures

Fig. 8 Comparison of different texturing schemes in conjunction with a number of image-based
modelling and rendering (IBMR) approaches. From left to right: Ground truth image (where avail-
able), bandlimited reconstruction [16], Filtered Blending [21], Unstructured Lumigraph Rendering
[13], and Floating Textures. The different IBMR methods are (from top to bottom): Synthetic data
set, Polyhedral Visual Hull Rendering [24], Free-Viewpoint Video [15], SurfCap [54], and Light
Field Rendering [36]

4.3 Static Correspondence Finding

Under some circumstances it might be important to prewarp the textures, not for
each viewpoint but once for each time step. One application in this direction would
be the estimation of the BRDF of the model. Therefore reflectance information is
needed for every point on a surface throughout the whole sequence.
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Ahmed et al. [6] incorporate BRDF estimation into the free-viewpoint video
system [15]. They specifically solve two problems. First, due to the underlying
parameterized model a consistent image to surface correspondence for each frame
must be found. This is done by reprojecting the input images onto the geometry and
back into the views of the other cameras. Then they optimize the projected image
for each camera to create a multi-view video texture. For every point on the surface
they estimate the camera for which the surface point to the camera deviates the least
from the normal vector at that position and use this projected color as reference
value. They then warp the input image so that it most resembles this view.

A second registration problem is the model change over time. A parameterized
model cannot directly cope with changes of the recorded object, as e.g. shifting
clothes. This would invalidate the assumption that a constant set of BRDF param-
eters could be assigned to each location on the object. To deal with this the texture
is transformed into a square domain, similar to geometry images [28] and frame to
frame correspondences are computed to handle the shift.

During acquisition two recording passes are usually needed, one pass to acquire
the reflectance information, where the actor needs to slowly turn himself around and
one recording for the actual motion that one wants to capture. For both, calibrated
light sources need to be used.

Assigning constant texture information through warping for each vertex is only
possible if a mesh with consistent vertex topology is given. In many reconstruction
approaches, cf. Sect. 2, this is not provided. Furthermore assigning constant tex-
ture coordinates to each vertex even per frame may lead to wrong results on coarse
geometry. This is due to the assumption, that at least one camera projects the cor-
rect color value onto the mesh is not always true and the amount of warping must be
based on the current viewpoint [9]. That means the correspondences can still be pre-
computed but the amount of warping during rendering must be scaled depending on
the viewpoint to theoretically generate an artifact free image. In our experience the
dynamic approach from Sect. 4 reveals more realistic results and should be preferred
if no complete BRDF estimation is needed.

5 View and Time Interpolation in Image Space

Up to now we considered the case where at least an approximate geometry could be
reconstructed. In some cases however it is beneficial not to reconstruct any geometry
at all, but instead work solely in image space. In some sense reconstructing geometry
imposes an implicit quality degradation by creating a 3-D scene from a 2-D video,
for the purpose creating a 2-D video out of the 3-D scene again.

While sophisticated methods are still able to create high quality, in controlled
studio environments, cf. Sect. 3, these methods also pose several constraints on the
acquisition setup. First of all, many methods only reconstruct foreground objects,
which can be easily segmented from the rest of the image. Second, the scene to be
reconstructed must be either static or the recording cameras must be synchronized,
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so that frames are captured at exactly the same time instance, otherwise reconstruc-
tion will fail for fast moving parts. Even though it is possible to trigger synchronized
capturing for modern state-of-the-art cameras, it still poses a problem in outdoor
environments or for moving cameras, due to the amount of cables and connec-
tors. Third, if automatic reconstruction fails, laborious modelling by hand might
be necessary. Additionally sometimes even this approach seems infeasible due to
fine, complicated structures in the image like, e.g., hair.

Working in image-space directly can solve or at least ease most of the afore-
mentioned problems for 3-D cinematography, as the problem is altered from a
3-D reconstruction problem to a 2-D correspondence problem. If perfect correspon-
dences are found between every pixel of two or more images, morphing techniques
can create the impression of a real moving camera to the human observer, plus
time and space can be treated equally in a common framework. While this enforces
some constraints, as e.g. limiting the possible camera movement to the camera hull,1

see Fig. 9, it also opens up new possibilities as e.g. easier acquisition and render-
ing of much more complex scenes. In addition rendering quality is better in many
cases.

Computing the true motion field from the images alone, however, is a formidable
task that, in general, is hard to solve due to inherent ambiguities. For example the
aperture problem and insufficient gradient strength can make it impossible to com-
pute the correct motion field using e.g. optical flow. However, the true motion field
is not needed if the goal is to generate perceptually convincing image interpola-
tions. Because a perceptually plausible motion is interpreted as a physically correct
motion by a human observer, we can rely on the capabilities of the human visual
system to understand the visual input correctly in spite of all ambiguities. It is thus
sufficient to focus on the aspects that are important to human motion perception to
solve the interpolation problem. Or in other words:

The human eye does not care about optimal solutions in a least squares sense, as long as it
looks good.

Fig. 9 Image-based
interpolation techniques can
create the impression of a
moving camera along the
space spanned by the input
cameras (here depicted by the
dashed line)

1 This is not completely true. Extrapolation techniques could be used to go beyond this limitation,
but quality will quickly prevail.
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5.1 Image Morphing and Spatial Transformations

Image morphing aims at creating smooth transitions between pairs or arbitrary num-
bers of images. For simplicity of explanation we will stick to two images first. The
basic procedure is to warp, i.e. to deform, the input images I1 and I2 towards each
other depending on some warp functions WI1!I2

, WI2!I1
and a time step ˛, with

˛ 2 Œ0; 1� so that ˛WI1!I2
ıI1 D .1�˛/WI2!I1

ıI2 and vice versa in the best case.
This optimal warp function can usually only be approximated, so to achieve more
convincing results when warping image I1 towards I2, one usually also computes
the corresponding warp from I2 towards I1 and blends the results together. More
mathematically formulated we can write

I1;2.˛/ D B..˛WI1!I2/ ı I1; ..1 � ˛/WI2!I1/ ı I2; ˛/ (8)

where the blending function B is usually a simple linear cross-dissolve. We will
have a more detailed look on how to implement a sophisticated warping function in
Sect. 5.4.

5.2 Image Deformation Model for Time and View Interpolation

Analyzing properties of the human visual system shows that it is sensitive to three
main aspects [30, 47, 48, 59]. These are:

1. Edges
2. Coherent motion for parts belonging to the same object
3. Motion discontinuities at object borders

It is therefore important to pay special attention to these aspects for high-quality
interpolation.

Observing our surroundings we might notice that objects in the real world are
seldom completely flat, even though many man-made objects are quite flat. However
they can be approximated quite well by flat structures, like planes or triangles, as
long as these are small enough. Usually this limit is given by the amount of detail
the eye can actually perceive. In computer graphics it is usually set by the screen
resolution (you may try as hard as you wish, but details smaller than a pixel are
simply not visible).

If it is assumed that the world consists of such planes, then the relation between
two projections of such a 3-D plane can be directly described via a homography in
image space. Such homographies for example describe the relation between a 3-D
plane seen from two different cameras, the 3-D rigid motion of a plane between two
points in time seen from a single camera or a combination of both. Thus, the interpo-
lation between images depicting a dynamic 3-D plane can be achieved by a per pixel
deformation according to the homography directly in image space without the need
to reconstruct the underlying 3-D plane, motion and camera parameters explicitly.
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Fig. 10 An image (upper left) and its decomposition into its homogeneous regions (upper right).
Since the transformation estimation is based on the matched edglets, only superpixels that contain
actual edglets (lower left) are of interest. Stich et al. [56, 57] merge superpixels with insufficient
edglets with their neighbors (lower right)

Only the assumption that natural images can be decomposed into regions, for which
the deformation of each element is sufficiently well described by a homography has
to be made, which is surprisingly often the case. Stich et al. [56, 57] introduced
translets which are homographies that are spatially restricted. Therefore a translet is
described by a 3�3matrix H and a corresponding image segment. To obtain a dense
deformation, they enforce that the set of all translets is a complete partitioning of
the image and thus each pixel is part of exactly one translet, an example can be seen
in Fig. 10 on the bottom right. Since the deformation model is defined piecewise, it
can well describe motion discontinuities as for example resulting from occlusions.

The first step in estimating the parameters of the deformation model is to find a
set of point correspondences between the images from which the translet transfor-
mation can be derived. This may sound contradictive as we stated earlier that this is
the overall goal. However at this stage we are not yet interested in a complete cor-
respondence field for every pixel. Rather we are looking for a subset for which the
transformation can be more reliably established and which convey already most of
the important information concerning the apparent motion in the image. As it turns
out classic point features such as edges and corners, which have a long history of
research in computer vision, are best suited for this task. This is in accordance to
the human vision, which measures edge- and corner-features early on.

Using the Compass operator [49], a set of edge pixels, called edglets, is obtained.2

Depending on the scene, between 2,000 and 2,0000 pixels are edglets. Having
extracted these edges in both images, the task is now to find for each edglet in image

2 Other edge detectors could be used for this step as well, as the Canny operator [14].
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I1 a corresponding edglet in image I2 and this matching should be an as complete as
possible one-to-one matching. This problem can be posed as a maximum weighted
bipartite graph matching problem, or in other words, one does not simply assign the
best match to each edglet, but instead tries to minimize an energy function to find the
best overall solution. Therefore descriptors for each edglet need to be established.
The shape context descriptor [9] has been shown to perform very well at capturing
the spatial context Cshape of edglets and is robust against the expected deformations.
To reduce computational effort and increase robustness for the matching process
only the k nearest neighbor edglets are considered as potential matches for each
edglet. Also one can assume that edglets will not move from one end of the image
I1 to the other in image I2 as considerable overlap is always needed to establish
a reliable matching. Therefore an additional distance term Cdist can be added. One
prerequisite for the reformulation is that for each edglet in the first set a match in the
second set exists, otherwise the completeness cannot be achieved. While this is true
for most edglets, some will not have a correspondence in the other set due to occlu-
sion or small instabilities of the edge detector at faint edges. However, this is easily
addressed by inserting virtual occluder edglets for each edglet in the first edglet set.
The graph for the matching problem is then build as depicted in Fig. 11. Each edge
pixel of the first image is connected by a weighted edge to its possibly correspond-
ing edge pixels in the second image and additionally to its virtual occluder edglet.
The weight or cost function for edglet ei in I1 and e0j in I2 is then defined as

C.ei; e0j / D Cdist C Cshape (9)

where the cost for the shape is the �2-test between the two shape contexts and the
cost for the distance is defined as

Cdist.ei; e0j / D a

.1C e
�b jjei�e0

j
jj
/

(10)

with a; b > 0 such that the maximal cost for the euclidean distance is limited by
a. The cost Coccluded to assign an edglet to its occluder edglet is user defined and
controls how aggressively the algorithm tries to find a match with an edglet of the
second image. The lower Coccluded the more conservative the resulting matching
will be, as more edges will be matched to their virtual occluder edglets.

Now that the first reliable matches have been found this information can be used
to find good homographies for the translets of both images. But first the spatial sup-
port for these translets need to be established, i.e. the image needs to be segmented
into coherent, disjoint regions. From Gestalt theory [61] it is known that for natu-
ral scenes, these regions share not only a common motion but in general also share
other properties such as similar color and texture. Felzenszwalb and Huttenlocher’s
superpixel segmentation [22] can be exploited to find an initial partitioning of the
image into regions to become translets, based on neighboring pixel similarities.
Then from the matching between the edge pixels of the input images, local homogra-
phies for each set of edge pixels in the source image that are within one superpixel
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Fig. 11 Subgraph of the
weighted bipartite graph
matching problem for a single
edglet. Each edglet has an
edge to its possible match
candidates and an additional
edge to its virtual occluder
edglet

Fig. 12 During optimization,
similar transformed
neighboring translets are
merged into a single translet.
After merging, the resulting
translet consists of the
combined spatial support of
both initial translets (mid and
dark gray) and their edglets
(black and white)

are estimated. In order to do this four reliable point correspondences need to be
found to compute the homography. Since the least-squares estimation based on all
matched edglets of a translet is sensitive to outliers and often more than the minimal
number of four matched edge pixels is available, a RANSAC approach to obtain
a robust solution and filter match outliers is preferred instead [23]. Usually still
between 20% and 40% of the computed matches are outliers and thus some translets
will have wrongly estimated transformations. Using a greedy iterative approach, the
most similar transformed neighboring translets are merged into one, as depicted in
Fig. 12, until the ratio of outliers to inliers is lower than a user defined threshold.
When two translets are merged, the resulting translet then contains both edglet sets
and has the combined spatial support. The homographies are re-estimated based on
the new edglet set and the influence of the outliers is again reduced by the RANSAC
filtering.

Basically in this last step a transformation for each pixel in the input images
towards the other image was established. Assuming linear motion only, the defor-
mation vector d.x/ for a pixel x is thus computed as

d.x/ D Ht x � x: (11)

Ht is the homography matrix of the translet t with x being part of the spatial support
of t . However, when only a part of a translet boundary is at a true motion discon-
tinuity, noticeably incorrect discontinuities still produce artifacts along the rest of
the boundary. Imagine for example the motion of an arm in front of the body. It
is discontinuous along the silhouette of the arm, while the motion at the shoulder
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changes continuously. We can then resolve the per pixel smoothing by an anisotropic
diffusion [44] on this vector field using the diffusion equation

ıI=dt D div. g.min.jrd j; jrI j/ rI / (12)

which is dependent on the image gradient rI and the gradient of the deformation
vector field rd . The function g is a simple mapping function as defined in [44].
Thus, the deformation vector field is smoothed in regions that have similar color or
similar deformation, while discontinuities that are both present in the color image
and the vector field are preserved. During the anisotropic diffusion, edglets that have
an inlier match, meaning they are only slightly deviating from the planar model, are
considered as boundary conditions of the diffusion process. This results in exact
edge transformations handling also non-linear deformations for each translet and
significantly improves the achieved quality.

5.3 Optimizing the Image Deformation Model

There are three ways to further optimize the image deformation model from the
previous section:

1. Using motion priors
2. Using coarse-to-fine translet estimation
3. Using a scale-space hierarchy

Since the matching energy function (9) is based on spatial proximity and local geo-
metric similarity, a motion prior can be introduced by pre-warping the edglets with a
given deformation field. The estimated dense correspondences described above can
be used as such a prior. So the algorithm described in Sect. 5.2 can be iterated using
the result from the i -th iteration as the input to the .i C 1/-th iteration.

To overcome local matching minima a coarse to fine iterative approach on the
translets can be applied. In the first iteration, the number of translets is reduced
until the coarsest possible deformation model with only one translet is obtained.
Thus the underlying motion is approximated by a single perspective transformation.
During consecutive iterations, the threshold is decreased to allow for more accurate
deformations as the number of final translets increases.

Additionally, solving on different image resolutions similar to scale-space [63]
further improves robustness. Thus a first matching solution is found on the coarse
resolution images and is then propagated to higher resolutions. Using previous solu-
tions as motion prior significantly reduces the risk to getting stuck in local matching
minima, cf. Fig. 13.

In rare cases, some scenes still cannot be matched automatically sufficiently well.
For example, when similar structures appear multiple times in the images the match-
ing can get ambiguous and can only be addressed by high level reasoning. To resolve
this, a fallback on manual intervention is necessary. Regions can be selected in both
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Fig. 13 Local matching minima (left) can be avoided by multiple iterations. In a coarse to fine
manner, in each iterations the number of translets increases avoiding local matching minima by
using the previous result as prior (right)

images by the user and the automatic matching is computed again only for the so
selected subset of edglets. Due to this restriction of the matching, the correct match
is found and used to correct the solution.

5.4 Rendering

Given the pixel-wise displacements from the previous sections the rendering can
then be efficiently implemented on graphics hardware to allow for real-time image
interpolation. Therefore a regular triangle mesh is placed over the image plane, so
that each pixel in the image is represented by two triangles with appropriate tex-
ture coordinates. A basic morphing scheme algorithm as presented in (8) would be
straight-forward to implement by just displacing the vertices in the vertex shader
by the scaled amount of the corresponding displacement vector according to the
˛-value chosen. However, two problems arise with forward warping at motion dis-
continuities: Fold-overs and missing regions. Fold-overs occur when two or more
pixels in the image end up in the same position during warping. This is the case when
the foreground occludes parts of the background. Consistent with motion parallax it
is assumed that the faster moving pixel in x-direction is closer to the viewpoint to
resolve this conflict. When on the other hand regions get disoccluded during warp-
ing the information of these regions is missing in the image and must be filled in
from the other image. Mark et al. [39] proposed to use a connectedness criterion
evaluated on a per-pixel basis after warping. This measure can be computed directly
from the divergence of the deformation vector field such that

cI1
D 1 � div.dI1!I2

/2: (13)

with cI1
being the connectedness and dI1!I2

is the vector field between the images
I1 and I2 (cf. Fig. 14). The connectedness is computed on the GPU during blending
to adaptively reduce the alpha values of pixels with low connectedness. Thus, in
missing regions only the image which has the local information has an influence on
the rendering result.
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Fig. 14 Left: Per-vertex mesh deformation is used to compute the forward warping of the image,
where each pixel corresponds to a vertex in the mesh. The depicted mesh is at a coarser resolution
for visualization purposes. Right: The connectedness of each pixel that is used during blending to
avoid a possibly incorrect influence of missing regions

Opposed to recordings with cameras, rendered pixels at motion boundaries are
no longer a mixture of background and foreground color but are either foreground or
background color. In a second rendering pass, the color mixing of foreground and
background at boundaries can be modelled using a small selective low-pass filter
applied only to the detected motion boundary pixels. This effectively removes the
artifacts with a minimal impact on rendering speed and without affecting rendering
quality in the non-discontinuous regions.

The complete interpolation between two images I1 and I2 can then be described
as

I.˛/ D cI1
.1 � ˛/.˛dI1!I2

ı I1/C cI2
.˛/..1 � ˛/dI2!I1

ı I2/

cI1
.1 � ˛/C cI2

.˛/
(14)

where cX .�/ is the locally varying influence of each image on the final result which
is modulated by the connectedness

cX .˛/ D cX � ˛ (15)

Thus, the (possibly incorrect) influence of pixels with low connectedness on the
final result is reduced.

The interpolation is not restricted to two images. Interpolating between multiple
images is achieved by iteratively repeating the warping and blending as described
in (14), where I takes over the role of one of the warped images in the equation.
To stay inside the image manifold that is spanned by the images the interpolation
factors must sum to one,

P
i ˛i D 1.

As can be seen in Table 1 the proposed algorithm produces high-quality results,
e.g. using the Middlebury examples [8].

The results have been obtained without user interaction. As can be seen the
approach is best when looking at the interpolation errors and best or up to par in
the sense of the normalized interpolation error. It is important to point out that
from a perception point of view the normalized error is less expressive than the
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Table 1 Interpolation, normalized interpolation and angular errors computed on the Middlebury
optical flow examples by comparison to ground truth with results obtained by our method and by
other methods taken from Baker et al. [8]

Venus Interp. Norm. Interp. Ang:

Stich et al. 2.88 0.55 16:24
Pyramid LK 3.67 0.64 14:61

Bruhn et al. 3.73 0.63 8:73

Black and Anandan 3.93 0.64 7:64

Mediaplayer 4.54 0.74 15:48

Zitnick et al. 5.33 0.76 11:42

Dimetrodon Interp. Norm. Interp. Ang:

Stich et al. 1.78 0.62 26:36
Pyramid LK 2.49 0.62 10:27

Bruhn et al. 2.59 0.63 10:99

Black and Anandan 2.56 0.62 9:26

Mediaplayer 2.68 0.63 15:82

Zitnick et al. 3.06 0.67 30:10

Hydrangea Interp. Norm. Interp. Ang:

Stich et al. 2.57 0.48 12:39

RubberWhale Interp. Norm. Interp. Ang:

Stich et al. 1.59 0.40 23:58

unnormalized error since discrepancies at edges in the image (e.g. large gradients)
are dampened. Interestingly, relatively large angular errors are observed with the
presented method emphasizing that the requirements of optical flow estimation and
image interpolation are different.
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View Dependent Texturing Using a Linear Basis

Martin Jagersand, Neil Birkbeck, and Dana Cobzas

Abstract We present a texturing approach for image-based modeling and render-
ing, where instead of texturing from one (or a blend of a few) sample images, new
view-dependent textures are synthesized by modulating a differential texture basis.
The texture basis contains image derivatives, and it models the first order intensity
variation due to image projection errors, parallax and illumination variation. We
derive an analytic form for this basis and show how to obtain it from images. Exper-
imentally, we compare rendered views to ground truth real images and quantify
how the texture basis can generate a more accurate rendering compared to con-
ventional view-dependent textures. In a hardware accelerated implementation, we
achieve frame rate on regular PCs and consumer graphics cards.

1 Introduction

Texture normally refers to fine-scale visual or tactile properties of a surface. The
word is related to textile. Originally it was used to describe the particular surface
created by the the interwoven threads in a fabric. In computer graphics, texturing
is the process of endowing a surface with fine-scale properties. Often this is used
to make the visualization richer and more natural than if only the 3D geometry had
been rendered. There are a wide range of computer graphics texturing approaches.
Early texturing involved replicating a small texture element over the surface of an
object to enrich its appearance. Commonly this is done by warping a small, arti-
ficially generated 2D intensity image onto the structure, but other variations exist
including 3D texturing. Texture can also be used to model light and reflections by
texturing a model with a specular highlight texture.

The focus of this chapter is on texturing from photographic images. We will
study how to compose a texture image suitable for photo-realistic image-based ren-
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dering. In this case the texturing element is a comparably large image, and unlike in
the above mentioned techniques, the texture image is not repeated over the surface.
Hence, we are to some extent transcending out of the original domain of texturing
by now not only representing a repetitive fine scale structure, but also potentially
medium and large scale changes in texture, including light and geometry aspects not
included in the geometric 3-D model. Here we will focus on aspects that are spe-
cific to image based modeling and rendering. We will not cover standard issues such
as implementation of 2-D warps, filtering and multi-resolution texturing. The back-
ground on basic texturing is covered in the literature [16] and recent text books [20].

One purpose of the texture representation is to capture intensity variation on
the pixel level. This includes the view dependency of potentially complex light
surface interactions. Another purpose, for models captured from images, is to com-
pensate for discrepancies between the approximate captured geometry and the true
object surface. The first purpose is similar to that of Bi-directional Texture Function
(BTF) representations [6] and the second similar to view-dependent texture mapping
(VDTM) [7].

In a parallel line of research Freeman, Adelson and Heeger noted that small
image motions could be modulated using a fixed spatial image basis [11]. Using
more basis vectors extracted by PCA from example images whole motion sequences
could be synthesized [17]. A later work used the same idea to animate stochas-
tic motion [8]. The texture basis can also be decomposed into a multi-linear form,
where two or more variations (e.g. light and viewpoint) are represented separately
[27]. The above works all represent intensity variation on the 2D image plane, but
others realized that it is more efficient to represent the intensity variation on the
surface facets of a 3D triangulated model [5, 12]. Both in spirit and in actual imple-
mentation all these representations are quite similar in their use of a set of basis
textures/images to modulate a new texture.

The work presented in this chapter falls between relief textures and lightfield rep-
resentations in its approach to photorealistic rendering. Relief textures provide an
explicit geometric solution for adding 3D structure to a planar texture [21]. How-
ever, relief textures require a detailed a-priori depth map of the texture element.
This is normally not available in image-based modeling if only 2-D camera video
is used. Thus, relief textures have been mostly used with a-priori graphics models.
The floating textures approach is similar to relief textures and performs a geometric
perturbation of the pixels at render time, but instead of a depth map it uses a 2D
motion vector field to drive the perturbation [9].

While initially lightfield (e.g. [13, 18]) and geometry-plus-texture approaches to
image-based rendering were disparate fields, recent work attempts to close this gap.
Our work is in the intersection of the two, using a relatively dense image sampling
from real-time video, and representing appearance on an explicit geometric model.
Work in the lightfield area using geometric proxies is closely related. Here the light-
field can be represented on a geometry that closely envelops an object [4]. However,
lightfield rendering directly interpolates input images, unlike in our approach which
uses an intermediate basis with well defined geometric and photometric interpola-
tion capabilities. In surface light fields, instead of a geometric proxy, an accurate
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object geometry is used. Wood et al. [29] studies how to efficiently parameterize
these light fields to capture complex reflectance. They do not address the issues aris-
ing from geometric misalignments, but instead rely on range scanned precise models
being accurately hand-registered with calibrated imagery. On the other hand, our
approach explicitly addresses the misalignment issues and the necessary correction
is built into the texturing process.

The main contributions of the chapter cover theoretical and practical issues in
texturing models from images, and experimentally evaluates these.

1. Theoretically, we derive the analytical form of texture variation under a full
perspective camera, where previous formulations have been either image-plane
based or used simplified linear camera models. The derived variation to captures
misalignments between the geometric model and the texture images, paral-
lax arising when planar model facets approximate non-planar scenes, and light
variation occurring naturally in camera-based texture capture.

2. Practically, we show how the actually occurring variability in a particular texture-
image sequence can be estimated. We show how the the above mentioned
analytically derived forms can be identified in real data. To show that our
method is practical, we present an implementation allowing real-time rendering
on consumer grade PC’s and graphics cards.

3. Experimentally, we compare rendering results from our model to static tex-
tures, to traditional view-dependent texturing, and to lumigraph ray-based ren-
dering. For the experimental comparison, we use image sequences from four
increasingly difficult objects.

Our texturing method combined with standard geometry acquisition using Structure-
From-Motion (SFM) or Shape-from-Silhouette (SFS) is particularly suited for the
consumer market. Anyone with any video camera, from a $100 web cam to a high
quality digital camera, can capture image sequences of scenes and objects, build his
or her own image-based scene models, and then generate reasonable quality render-
ings. To stimulate use by others we provide a downloadable capture and modeling
system and a renderer [2].

2 Background: Image Geometry

Given images of a scene or object, the 3D geometry can be recovered in a vari-
ety of ways. Classic photogrammetry recovers 3D from 2D point correspondences
using calibrated cameras. In the past decade, much work was devoted to 3D recov-
ery from uncalibrated images [15]. Despite this, no system can recover accurate
dense geometry robustly and reliably from general scenes. One of the few publicly
accessible systems is KU Leuven’s 3D Webservice [28], for which one can upload
image sets of scenes and get back 3D reconstructions. It sequences Structure-From-
Motion (SFM), auto-calibration, and dense stereo. The procedure is computationally
demanding and runs in parallel on a computer network. Reconstructions often take
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hours to complete. Practically, care must be taken in selecting both scenes and view-
points for the system to work well. Nonetheless, it is a representative of the state of
the art in SFM based systems.

Shape-From-Silhouette (SFS) [25], on the other hand is a very robust method
that obtains a visual hull geometry. It only requires the object silhouette and the
calibration of the cameras, and it is quite robust to silhouette or calibration errors.
In our system, we implement an efficient algorithm for silhouette carving that uses
an orthogonal ray set and the Marching Intersections [26] algorithm. This decreases
storage cost and improves geometric precision (by recording silhouette intersections
exactly on the rays) compared to the conventional discrete voxel representation.

For the examples in this chapter, a rough 3D geometry has been obtained using
either SFM or SFS as indicated. Independent of how the geometry was obtained, but
central to image-based modeling, is that this 3D structure can be reprojected into a
new virtual camera and thus novel views can be rendered. In mathematical terms
we assume that starting with a set of m images I1 : : : Im from different views of
a scene, a structure of n physical scene points X1 : : : Xn, and m view projections
P1 : : : Pm has been computed. These project onto image points xj;i as

xj;i D PjXi i 2 1 : : : n; j 2 1 : : :m (1)

The structure is divided into Q planar facets (triangles or quadrilaterals are used
in our experiments) with the points xj;i as node points. For texture mapping, each
one of the model facets are related by a planar projective homography to a texture
image; see Fig. 1.

3 Texture Basis

In conventional texture mapping, one or more of the real images are used as a source
to extract texture patches from. These patches are then warped onto the re-projected
structure in the new view.

Instead of using one image as a source texture, here we study how to relate and
unify all the input sample images into a texture basis. Let xT;i be a set of texture
coordinates in one-to-one correspondence to each model point Xi and thus also for
each view j with the image points xj;i above. A texture warp function W translates
the model-vertex to texture correspondences into a pixel-based re-arrangement (or
warp) between the texture space T to screen image coordinates I .

T .x/ D I.W.xI�// (2)

where � are the warp parameters and x the image pixel coordinates. For notational
clarity in later derivations, we let the warp function act on the parameter space, as is
usual in the computer vision literature, but perhaps less often seen in graphics.
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Common texture warp functions are affine, bi-linear and projective warps. The
warp function W acts by translating, rotating and stretching the parameter space of
the image, and hence for discrete images a re-sampling and filtering step is needed
between the image and texture spaces. Details of these practicalities can be found in
Moller and Haines [20].

Now if for two sample views j and k, we warp the real images Ij and Ik from
image to texture coordinates into a texture images Tj and Tk , we would find that
in general the two texture images are not identical, Tj ¤ Tk; j ¤ k as illustrated
in Fig. 1. Typically, the closer view j is to k, the smaller the difference is between
Tj and Tk . This is the rationale for view-dependent texturing, where a new view
is textured from the closest sample image, or by blending the three closest sample
images [7].

In this chapter we will develop a more principled approach, where we seek a
texture basis B such that for each sample view:

Tj D Byj ; j 2 1 : : :m: (3)

Here, assuming gray-scale images1, T is a column vector representation of the
image, i.e. the q�q texture image flattened into a q2 �1 column vector.B is a q2 �r

T(x)  =I(   (x))Ww

Input images Re−projected geometry Texture image

warp

I

T
I

1

j

T

j

1

Fig. 1 Textures generated from two different images using are usually different. In the figure this
is exemplified using a very coarse geometry that is only approximately aligned with the images.
Common texturing problems are misalignment of texture coordinates, as visible on the right house
edge, and parallax as visible on windows and door

1 For color images we have a similar equation for each color channel.
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matrix, where normally r 
m, and y is a modulation vector. The texture basis
B needs to capture geometric and photometric texture variation over the sample
sequence, and to correctly interpolate new in-between views. We first derive a first-
order geometric model and then add the photometric variation. For clarity, we derive
these for a single texture warp (as in Fig. 7), whereas in practical applications a scene
will be composed by texturing several model facets (as in Fig. 1).

3.1 Geometric Texture Variation

The starting point for developing a spatial texture basis to represent small geometric
variations is the well known optic flow constraint. For small image plane translations
it relates texture intensity change	T D Tj �Tk to spatial derivatives @

@uT;
@
@vT with

respect to texture coordinates x D Œu; v�T under an image constancy assumption [14].

	T D @T

@u
	u C @T

@v
	v (4)

Note that given one reference texture T0 we can now build a basis for small image
plane translations BD ŒT0;

@T
@u ;

@T
@v � and from this generate any slightly translated

texture T .	u; 	v/ D BŒ1;	u; 	v�T D By.
In a real situation, a texture patch deforms in a more complex way than just

translation. Recall that the texture warp, (2), has re-arranged pixel coordinates from
the image into the texture coordinate space, T D I.W.xI�//. This warp may not be
exact; image variability introduced by the imperfect stabilization can be captured by
an additional warp, W.xI	�/, occurring in the texture coordinates.2 We study the
residual image variability, 	T D T .W.xI	�// � T , introduced by this imperfect
perturbed warp. Rewriting as an approximation of image variability to the first order,
we have the following:

	T D T .W.xI	�//� T

� T .W.xI 0//C rT @W
@�
	� � T

D rT @W
@�
	�

D
h

@T
@u ;

@T
@v

i "
@u

@�1
� � � @u

@�k
@v

@�1
� � � @v

@�k

#
	Œ�1 : : : �k�

T

(5)

The above equation expresses an optic flow type constraint in an abstract formula-
tion without committing to a particular form or parameterization of W.xI�/, except
that � D 0 gives the identity warp: x D W.xI 0/. The main purpose in the following

2 An alternative to this texture-based formulation is to consider the perturbed warp as a composition
with the warp from image space, e.g., T .W.xI	�// D I.W.xI�ı	�//, where W.xI�ı	�/ D
W.W.xI	�/I�//. The texture-based representation is more convenient for our argument.
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is that (5) lets us express (small) texture perturbation due to a geometric shift, 	�,
without the explicit pixel shifting used in [9, 21], but rather using a basis of deriva-
tive images, namely the spatial derivatives of the image texture	T multiplied by the
Jacobian of the warp function @W

@�
. In practice, the function W is usually discretized

using e.g., triangular or quadrilateral mesh elements. Next we give examples of how
to concretely express image variability from these discrete representations.

For image-based modeling and rendering we warp real source images into new
views given an estimated scene structure. Errors between the estimated and true
scene geometry cause these warps to generate imperfect renderings. We divide these
up into two categories, image plane and out of plane errors. The planar errors cause
the texture to be sourced with an incorrect warp.3 The out of plane errors arise when
piecewise planar facets in the model are not true planes in the scene. Rewarping into
new views under a false planarity assumption will not correctly represent parallax.
This can be due to the geometry being coarse (common when using SFM) and/or
inaccurate (e.g. a visual hull from SFS).

Planar texture variability. First we will consider geometric errors in the tex-
ture image plane. In most IBR (as well as conventional rendering) textures are
warped onto the rendered view from a source texture T by means of a projective
homography.

	
u0
v0



D Wh.xhI h/ D 1

1C h7u C h8v

	
.1C h1/u C h3v C h5

h2u C .1C h4/v C h6



(6)

We rewrite (5) with the partial derivatives of Wh for the parameters h1 : : : h8 into a
Jacobian matrix. Let c1 D 1 C h7u C h8v, c2 D .1 C h1/u C h3v C h5, and c3 D
h2uC.1Ch4/vCh6. The resulting texture image variability due to variations in the
estimated homography is (to the first order) spanned by the following spatial basis:

	Th.u; v/

D 1

c1

	
@T
@u
;
@T
@v


 "
u 0 v 0 1 0 � uc2

c1
� vc2

c1

0 u 0 v 0 1 � uc3

c1
� vc3

c1

# 2
64
	h1

:::

	h8

3
75 (7)

D ŒB1 : : :B8�Œy1; : : : ; y8�
T D Bhyh

Where here and throughout the paper y is used for the texture modulation coeffi-
cients. Examples of the B1 : : :B8 derivative images can be seen in Fig. 3. Similar
expressions can be derived for other warps. For example, dropping the two last
columns of the above Jacobian gives the variability for the affine warp.

3 Errors in tracking and point correspondences when computing an SFM geometry, as well as
projection errors due to differences between the estimated camera model and real camera (SFM
and SFS) both cause model points to be reprojected incorrectly in images.
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Fig. 2 Texture parallax
between two views when
using planar facets. True
scene points project to
different points on the model
facet (dashed line). A texture
representation needs to
account for this

Camera
plane
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Texture plane
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Non-planar parallax variation. In image-based modeling, a scene is represented as
piecewise planar model facets, but the real-world scene is seldom perfectly rep-
resented by and aligned with these model planes. In rendering this gives rise to
parallax errors. Figure 2 illustrates how the texture plane image T changes for dif-
ferent scene camera centers C . Given a depth map d.u; v/ representing the offset
between the scene and texture plane, relief texturing [21] can be used to compute the
rearrangement (pre-warp) of the texture plane before the final homography renders
the new view. In image-based methods, an accurate depth map is seldom available.
However, we can still develop the analytic form of the texture intensity variation
as above. For a point on the model facet, let Œ˛; ˇ� be the angles between the facet
normal vector and the ray pointing to the camera center Cj along the u and v axis
(i.e. v D jCj � P j D .vx; vy ; vz/

T , ˛ D tan�1. vx

vz
/, and ˇ D tan�1.

vy

vz
/). The pre-

warp rearrangement needed on the texture plane to correctly render this scene using
a standard homography warp is then:

	
ıu
ıv



D Wp.xI d/ D d.u; v/

	
tan˛
tanˇ



(8)

As before, taking the derivatives of the warp function with respect to a camera angle
change and inserting into (5), we get:

	Tp.u; v/ D d.u; v/

	
@T
@u
;
@T
@v


 "
1

cos2 ˛
0

0 1
cos2 ˇ

# 	
	˛

	ˇ



D Bpyp (9)

3.2 Photometric Variation

In image-based rendering real images are re-warped into new views, and hence
the composite of both reflectance and lighting is used. If the light conditions are
the same for all sample images, there is no additional intensity variability intro-
duced. However, commonly the light will vary at least somewhat. In the past
decade, both empirical studies and theoretical motivations have shown that a low
dimensional intensity subspace of dimension 5–9 is sufficient for representing
the light variation of most natural scenes. Recently, Barsi and Jacobs [3] and
Ramamoorthi and Hanrahan [23] have independently derived an analytic formula
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for irradiance (and reflected radiance from a convex Lambertian object) under dis-
tant illumination, explicitly considering attached shadows. They shown that the
irradiance can be regarded as a convolution of the incident illumination with the
Lambertian reflectance function and express the irradiance in terms of coefficients
for a spherical harmonics function basis of the illumination. An important result of
their work is that Lambertian reflections act as a low-pass filter, so actual irradiance
lies very close to a 9-D subspace.

Let .˛; ˇ/ be the spherical coordinates of the distant light source and T .˛; ˇ; �; �/
the intensity of the image at a point with surface normal whose spherical coordinates
are .�; �/. Assuming a Lambertian surface and ignoring albedo, T .˛; ˇ; �; �/ can
be thought as the irradiance at orientation .�; �/ due to a unit directional source at
.˛; ˇ/. The analytical formula for T is then [3]:

T .˛; ˇ; �; �/ D
1X

lD0

lX
kD�l

AlLlk.˛; ˇ/Ylk.�; �/ (10)

�
2X

lD0

lX
kD�l

AlLlk.˛; ˇ/Ylk.�; �/ (11)

where Ylk.�; �/ are the spherical harmonics, Al is a constant that vanishes for
odd l > 1 and Llk.˛; ˇ/ are the spherical harmonic coefficients of the incident
illumination.

The first nine spherical harmonics and constants:
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.3z2 � 1/; Y22.�; �/ D
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15
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.x2 � y2/

A0 D �; A1 D 2�

3
; A2 D �

4

Using single index notation

Y1; Y2; Y3; Y4 D Y00; Y1�1; Y10; Y11

Y5; Y6; Y7; Y8; Y9 D Y2�2; Y2�1; Y20; Y21; Y22

OAj D
8<
:
A0 if j D 1

A1 if j 2 2; 3; 4
A2 if j 2 5 : : : 9
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and defining Bj .�; �/ D OAjYj .�; �/, j D 1 : : : 9, we can rewrite (11) for all the
pixels in the images as:

T D ŒB1 : : :B9�ŒL1 : : : L9�
T (12)

The image difference caused by light change can be then expressed as:

	Tl D ŒB1 : : :B9�Œy1 : : : y9�
T D Blyl (13)

3.3 Estimating Composite Variability

In textures sampled from a real scene using an estimated geometric structure we
expect that the observed texture variability is the composition of the above derived
planar, parallax and light variation plus other unmodeled errors. Hence we can write
the texture for any sample view k, and find a corresponding texture modulation
vector yk:

Tk D ŒT0; Bh; Bp ; Bl �Œ1; y1; : : : ; y19� D Byk (14)

where T0 is the reference texture. Textures for new views are synthesized by inter-
polating the modulation vectors from the nearest sample views into a new y, and
computing the new texture Tnew D By.

Since this basis was derived as a first order representation it is valid for (reason-
ably) small changes only. In practical image-based modeling the geometric point
misalignments and parallax errors are typically within 3–5 pixel, which is small
enough.

Often in IBR, neither dense depth maps nor light is available. Hence Bp , and
Bl cannot be directly analytically computed using (9) and (11). Instead the only
available source of information are the sample images I1 : : : Im from different views
of the scene, and from these, the computed corresponding textures T1 : : :Tm.

However, from the above derivation we expect that the effective rank of the sam-
ple texture set is the same as of the texture basis B , i.e. rankŒT1; : : : ;Tm� � 20.
Hence, from m � 20 (typically 100–200) sample images, we can estimate the best
fit (under some criterion) rank-20 subspace using e.g. PCA, SVD, or ICA. This
yields an estimated texture basis OB and corresponding space of modulation vectors
Oy1; : : : Oym in one-to-one correspondence with the m sample views. From the deriva-
tion of the basis vectors inB , we know this variation will be present and dominating
in the sampled real images. Hence, the analytical B and the estimate OB span the
same space and just as before, new view dependent textures can now be modulated
from the estimated basis by interpolating the Oy from Oyj ; Oyk; Oyl corresponding to the
closest sample views j; k; l and modulating a new texture T D OB Oy. We call this a
dynamic texture (DynTex) as it is continuously changing with viewpoint variation.
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3.4 Experimental Comparison for Analytical and PCA Basis

To validate the equivalence between the analytical formulation of the texture basis
(Sects. 3.1 and 3.2) and the statistically estimated one (Sect. 3.3), we performed
several experiments where we isolated different types of texture variability (pla-
nar, parallax, light). In the following sections we show that the analytical basis is
represented in the estimated PCA subspace.

Planar texture variation. The planar variation is usually caused by tracking inaccu-
racies that are about 1–5 pixels. To replicate this variability in a controlled way, a
planar region from a toy house (Fig. 3a was selected and warped using a homogra-
phy warp to a 128�128 texture (Fig. 3b). The corners were then randomly perturbed
with 1–5 pixels to generated 200 textures. We calculated the analytical texture basis
using (7) with the initial texture (see Fig. 3 (c1, d1, e1)) and the PCA basis for the
perturbed textures. We projected the analytical basis onto a subspace of the PCA tex-
ture basis. Figure 3 (c2, d2, e2) illustrates the recovered analytical textures from the
PCA subspace. The average intensity pixel error between the original and recov-
ered basis was 0.5%. Hence the PCA basis spans the analytically derived texture
variability quite well.

Non-planar texture variation (parallax). The parallax variability is caused by a pla-
nar facet in the geometric model representing a non-planar scene. To simulate this
variability 90 images from different pan angles were captired of a non-planar wall
from the toy house used above while tracking four corners of a quadrilateral region.

(a) (c1) (d1) (e1)

(b) (c2) (d2) (e2)

Fig. 3 Comparison of analytical and PCA basis for planar variability. (a) Original image; (b)
warped texture quadrilateral; (c1), (d1), (e1) analytical basis (1st, 4th, 7th from (7)); (c2), (d2),
(e2) corresponding recovered basis using PCA subspace
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Image patch Depth map Analytic bp PCA Obp
(a) (b) (c1) (c2)

Fig. 4 Comparison of analytical form (9) of bl and the estimated PCA basis Obl for parallax
variability. Image patch is from the right side wall of the house, see Fig. 1 top row

The corners are used to warp each quad into a standard shape for generating the tex-
ture images. Choosing a reference texture (see Fig. 4a), we manually inputted the
depth map (see Fig. 4b) and calculated the analytical texture basis using (9). From
the other sample textures we estimated a PCA subspace and projected the analyti-
cal basis into this space. Figure 4 (c1) shows the original analytical basis (B1) and
Fig. 4 (c2) shows the recovered basis from the PCA subspace.

Photometric texture variation. Photometric variation is caused by changing light
conditions or by object rotation relative to the light source. We simulated this vari-
ability by moving a toy house on a pivot rig relative to incoming sunlight. Other
forms of variation were avoided by attaching the camera to the pivot rig (i.e., the
projection of the house in the sequence is fixed). A laser-scanned model was then
aligned to the image sets, and the spherical harmonic functions were computed
for this geometry. Figure 5 shows the first few of these analytical spherical har-
monic basis functions and their reconstruction from a PCA basis that was computed
from the image sequence. The similarity of the harmonics reconstructed from the
PCA basis to the analytic harmonic functions illustrates that the empirical basis
sufficiently encodes light variation.

4 Model and Texture Capture System Implementation

Computing the texture basis involves reprojecting input images using the object or
scene geometry. The geometry is usually computed from the same images, but could
be obtained in some other way. We developed a software integrating the steps from
images to model. The whole procedure of making a textured model takes only a few
minutes in most cases, see Video 1 [1] . The software is downloadable; see [2]. To
quickly capture views from all sides of an object we use a rotating platform (Radio
Shack TV stand). Our software can take live video from an IEEE1394 camera, (we
use a Unibrain web cam or a PtGrey Scorpion 20SO in the experiments to follow) or
it can import digital image files from a still camera. Camera calibration is obtained
with a pattern, and object silhouettes through bluescreening. Figure 6 shows the
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bl1 (Albedo) bl2 bl3 bl4

Fig. 5 Comparison of analytical form (11) of bl and the estimated PCA basis Obl for light variabil-
ity. Top row: Angular map of the spherical harmonics. Middle: Analytic spherical harmonic basis.
Bottom: Corresponding light basis computed by PCA

Fig. 6 Left: experimental capture-setup. Right: GUI for our capture system. The screenshot shows
the texture coordinate step
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capture setup. An object is rotated in front of the camera to capture different view-
points. Hence light variation is implicitly captured with viewpoint direction into a
lit texture. Alternatively light direction can be separately parameterized using the
image of the specular ping-pong ball put on the rotating platform. The geometry
is then computed using SFS as in Sect. 2. Alternatively, a separately obtained geo-
metry can be imported. To stay with the camera-based paradigm we have used KU
Leuven’s 3D Webservice [28].

Texture coordinates. While in computer vision it is common to texture directly from
images, in graphics applications a unified texture space is desired and often neces-
sary. To automatically compute texture coordinates, the object geometry is first split
along high curvature regions. Then each region is flattened using a conformal map-
ping [19] and packed into an OpenGL texture square (the GUI screenshot in Fig. 6
illustrates an example of this mapping). In the PCA texture basis computation, all
input images are transformed into and processed in this space.

Texture basis generation. The projection of the estimated structure into the sample
images, xj , is divided into planar facets (triangles). Practically, using HW acceler-
ated OpenGL each frame Ij is loaded into texture memory and warped to a standard
shape texture Tj based on the texture coordinate atlas. We next estimate a tex-
ture basis OB and a set of texture coefficients Oyj by performing PCA on the set of
zero-mean textures ŒTj � T �, j 2 1 : : : m.

Final model. The PCA/DynTex basis is the largest component of a model. However
it compresses well using jpeg, and model storage size of 50 kB–5 MB are typical.
(The storage is proportional to texture image dimension and number of basis vec-
tors.) The complete model consisting of the 3-D geometry and texture basis can
be exported, either for inclusion in Maya or Blender, for which we have written
a dynamic texture rendering plugin, or direct real-time rendering by a stand-alone
program downloadable from our web site. An example of several objects and peo-
ple captured separately using our capture system and incorporated into a scene from
Edmonton can be seen in Fig. 8, and Video 1 [1]. A cylindrical panorama from a
location near the Muttart conservatory is used as a city backdrop.

Rendering. A desired view is given by the projection matrix P with the camera
direction v. For calculating the texture blending y we first apply 2-dimensional
Delaunay triangulation over the camera viewing directions in the training set. Then
we determine which simplex the new camera direction is contained in, and estimate
the new texture modulation coefficients by linearly interpolating the coefficients
associated with the corner points of the containing simplex. The new texture is gen-
erated from the basis textures, and then the geometric model is rendered into the
desired pose. The most computationally demanding part of rendering is blending
the texture basis. Hardware accelerated blending helps to achieve real time render-
ing. Depending on the graphics hardware capabilities, one of several methods are
choosen. On old, modest graphics cards, multipass rendering is used to blend the
basis textures. On newer graphics hardware, a shader program is used to directly
blend the textures. If graphics hardware acceleration is unavailable, a SIMD MMX
routine performs the texture blending. Rendering our textures on midrange HW,
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with shader programs, single objects render at well over 100 Hz using 20 512� 512
resolution basis textures per object. Ten dynamically textured objects in a scene still
render at over 30 Hz.

Example renderings. The first example illustrates the difference between a mod-
ulated texture and standard image texturing. A wreath made of natural straw and
flowers was captured and processed into a texture basis. In Fig. 7, a rotating quadri-
lateral is textured with the image of the wreath. Using only one image, the texture
appears unnatural from all but the capture direction, as illustrated in the top row. On
the other hand, by modulating the view dependent texture, the fine scale variability
from the wreath physical geometric texture as well as its photometric properties is
realistically reproduced (bottom row).

As mentioned, we are not limited to small objects. We can import geometries
from 3D Webservice [28]. In Video 3 [1] and Fig. 9, we show a preacher’s chair
captured in situ from the Seefeld church in Germany.

5 Experiments

Rendering quality of textures can be judged subjectively by viewers and evaluated
numerically by comparing to ground truth images. Unlike comparisons of geometry
alone, numeric errors are not indicative of perceptual quality. Furthermore, a static
image does not show how light and specularities move. Therefore we rely mainly
on the video renderings to argue photo-realistic results. As far as we know there
is no commonly accepted standard for a perceptually relevant numerical measure.
We use just the mean pixel intensity difference between the rendered model and a
real image (from a pose not used in the capture data to compute the model). For
each experiment, a set of input images were acquired using the turntable setup. Half
were used to compute the model, and the other half (from different viewpoints) were
used as reference in the comparison videos and intensity error computation. For the
three sequences below captured in our lab (house, elephant, and wreath) a PtGrey
Scorpion camera at 800 � 600 resolution was used. Due to the calibration pattern
taking up image space, the effective object texture resolution is however closer to
web-cam VGA (640 � 480) resolution.

Four algorithms compared. To evaluate the subspace-based dynamic texture (Dyn-
Tex), we compared it to several other popular texturing methods in the literature.
As a base case we use standard single texturing with the pixel values of the single
texture computed to minimize the reprojection error in all training views. Next we
choose the popular view dependent texturing (VDTM) [7], and our final comparison
is against ray-based “Unstructured Lumigraph” rendering [4]. While more methods
have been published, many are variations or combinations of the four we compare.
To put the methods on an equal footing we use 20 basis vectors in our dynamic
texture. The VDTM texturing blends textures sourced from 20 input images. In the
lumigraph, for each texturespace pixel a list of view rays and their corresponding
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Fig. 7 Texturing a rotating quadrilateral with a wreath. Top: by warping a flat texture image.
Bottom: by modulating the texture basis B and generating a continuously varying texture which is
then warped onto the same quad

Fig. 8 Several objects and persons composed in Blender, Video 1
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Fig. 9 Seefeld Kanzel: input image, geometry, static and dynamic texture rendering

colors are stored. The lumigraph is then computed on the geometry by picking the
20 rays per texture pixel that minimize the reprojection error over all input images.
(Note: Unlike the VDTM and DynTex basis, jpeg compression does not work for
the ray indices yielding in practice a larger data representation).

Selection of four test data sets. Depending on the complexity of the scene or object
to be captured and rendered, different texturing methods can be used. In the follow-
ing evaluation we choose four data sets of increasing complexity to challenge the
texturing methods.

For a comparison to existing literature, we start with the downloadable temple
scene from [24] (Fig. 10, I.) A close approximation to the true geometry is computed
using SFS by our system, with 90% reconstructed within 1.7 mm of ground truth,
a further geometry refinement improves this to 1.1 mm. Our geometry is not quite
as good as Hernandez et al. (0.5 mm) [10], but comparing texture renderings for
the initial SFS model with those of the refined model, there is next to no perceptual
difference. Likewise for this simple BRDF we find little perceptual or numerical
error difference between using just a conventional static single texture or any of the
view dependent textures (see Video 5 [1] ).

Our second data set is of a house, with wood, bark and moss materials, and a more
complex structure. For the house there is a significant difference between the SFS
visual hull geometry and the underlying true geometry (particularly in the middle
inside corner). Also can be seen in Video 6 [1] and Fig. 11 now the static texture
compares badly to the view dependent ones, which there is little difference between.

Third we try an elephant carved in jade. This object has a complex reflectance
with both specularities and subsurface scattering. Here a single texture gives a dull
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Input Static VDTM Lumigr DynTex DynTex
SFS Geometry Refined Geom

Fig. 10 Renderings of the temple from Middlebury multiview stereo image set. Texture is simple,
and renders well with any texturing method, even on the initial SFS geometry. Texturing a refined
model (right) gives almost no perceptual improvement

Input Geometry Static VDTM Lumigr DynTex

Fig. 11 Renderings of a textured SFS house model. The static texture is blurred due to averaging
colors on different rays, while the other textures are sharp with indistinguishable quality differences

Input Static VDTM Lumigr DynTex

Fig. 12 A Jade elephant with complex reflectance. Static and VDTM textures are dull and com-
pletely miss the specularity on the ear. DynTex and Lumigraph capture the light and material more
faithfully

flat appearance. VDTM is perceptually better, but a close analysis shows that some
specularities are missing (e.g. on ears in Fig.12), and others have incorrect gradi-
ents. The DynTex and unstructured lumigraph show better results both visually and
numerically for difficult (particularly specular) views, with a max intensity error of
6% compared to 10% for the standard view dependent texture and 19% for a static
texture, Fig. 12 (Video 7 [1] ).

Finally, we show an example of a straw wreath, where obtaining a good geo-
metry is very difficult (Fig. 13 IV, Video 8 [1] ). Here, a purely image-based method
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Input Image static VDTM Lumi DynTex

Fig. 13 Detail crops showing results for the Wreath with complex micro-geometry rendered on a
rough proxy geometry

Table 1 Numerical texture intensity errors and (variance). %-scale
Error (variance) Temple House Elephant Wreath
Static texture 10.8 (1.5) 11.8 (1.2) 19.0 (1.4) 28.4 (2.8)
VDTM 8.3 (1.9) 9.8 (1.3) 10.1 (1.9) 21.4 (3.5)
Lumigraph 10.8 (2.5) 9.8 (1.2) 5.9 (0.7) 14.3 (1.3)
DynTex 7.3 (1.0) 9.4 (1.0) 6.6 (0.7) 13.4 (1.2)

can represent a dense sample of the rayset, but at a huge storage (gigabytes) cost.
We used a rough visual hull proxy geometry. The static texture is blurred out. The
VDTM looks sharper because input images are used directly, but a close inspec-
tion shows somewhat jumpy transitions in the video, and during these transitions
two input images are blended on top, creating a wreath with more straws. Both the
DynTex and Unstructured Lumigraph code view dependency in texture space in dif-
ferent ways. These instead blur detail somewhat but give an overall lower error as
explained below.

Summarizing the experiments we find that for simple reflectance and geometry,
any texturing method works well, while for more complex cases, view-dependent
appearance modeling helps, and for the two most complex cases the DynTex has a
better performance than VDTM. Both of these can be rendered in hardware using
simple texture blending. The unstructured lumigraph has similar performance to the
DynTex, but at a much higher storage cost, and would require a complicated plu-
gin to render in Maya or Blender. The maximum image errors and error variance
are summarized in Table 1. The variance indicates smoothness of texture modula-
tion over viewpoint changes. Perceptually a high value manifests itself as a jumpy
appearance change. An example of viewpoint error variation can be seen in Fig. 14.
The jumpy appearance of the VDTM is due to it working better when close to an
image in the reference set.

6 Discussion

We have presented a texturing method where for each new view a unique view-
dependent texture is modulated from a texture basis. The basis is designed so that
it encodes a texture intensity spatial derivatives with respect to warp and parallax
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Fig. 14 Viewpoint variation of rendering error for the wreath

parameters in a set of basis textures. In a rendered sequence the texture modulation
plays a small movie on each model facet, which correctly represents the underlying
true scene structure to a first order. This effectively compensates for small (up to a
few pixels) geometric errors between the true scene structure and captured model.

The strength of our method lies in its ability to capture and render scenes with
reasonable quality from images alone. Hence, neither a-priori models, expensive
laser scanners nor tedious manual modeling is required. Only a PC computer and
a camera is needed. This can potentially enable applications of modeling from
images such as virtualized and augmented reality in the consumer market. Experi-
ments show better performance than static or conventional view dependent textures,
and equal performance to more cumbersome and slower unstructured Lumigraph
methods.
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