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Preface 

The microelectronics market, with special emphasis to the production of complex 
mixed-signal systems-on-chip (SoC), is driven by three main dynamics, time-to-
market, productivity and managing complexity. Pushed by the progress in nano-
meter technology, the design teams are facing a curve of complexity that grows 
exponentially, thereby slowing down the productivity design rate. Analog design 
automation tools are not developing at the same pace of technology, once custom 
design, characterized by decisions taken at each step of the analog design flow, re-
lies most of the time on designer knowledge and expertise. Actually, the use of de-
sign management platforms, like the Cadences Virtuoso platform, with a set of in-
tegrated CAD tools and database facilities  to deal with the design transformations 
from the system level to the physical implementation, can significantly speed-up 
the design process and enhance the productivity of analog/mixed-signal integrated 
circuit (IC) design teams. These design management platforms are a valuable help 
in analog IC design but they are still far behind the development stage of design 
automation tools already available for digital design. Therefore, the development of 
new CAD tools and design methodologies for analog and mixed-signal ICs is essen-
tial to increase the designer’s productivity and reduce design productivitygap.  

The work presented in this book describes a new design automation approach 
to the problem of sizing analog ICs. The developed design optimization tool, 
GENOM, is based on a modified genetic algorithm (GA) kernel and incorporates 
heuristic knowledge on the control mechanism allowing a significant reduction on 
the required number of generations and, therefore, iterations to reach the optimal 
solution. However, the optimization process, employing a simulation-based ap-
proach with a kernel based on stochastic optimization techniques is clearly a com-
putational intensive task typified by high dimension search spaces and high cost 
function evaluations. A step forward to enhance the efficiency of the implemented 
optimization tool corresponds to the introduction of behavior modeling tech-
niques. The model introduced in this paper follows a supervised learning strategy 
based on support vector machines (SVM) which, together with an evolutionary 
strategy, is used to create feasibility models in order to efficiently prune the design 
search space during the optimization process, thus, reducing the overall number of 
required evaluations.  

The book is organized in seven chapters. The first one, the introduction,  
presents the motivation and outlines the original goals for this research work. 



VIII Preface
 

Chapter 1 provides an overview of the thesis motivations, research goals and 
main contributions.  

Chapter 2 presents a state-of-the-art review in analog IC design automation 
field by analyzing and comparing methods, strategies and tools presented in litera-
ture, including some commercial tools.  

Chapter 3 starts with an overview on computation techniques to solve nonlinear 
optimization problems with focus on evolutionary optimization algorithms. Then, 
it introduces a new optimization kernel based on genetic algorithms applied to 
analog circuit optimization. It includes a detailed description of the fitness func-
tion, the genetic operators and design methodology in order to obtain an efficient 
and robust analog circuit design. 

Chapter 4 explores the main learning techniques used to manage large amount 
of information, to discover complex relationships among various factors and ex-
tract meaningful knowledge to improve the efficiency and quality of decision-
making. In particular, it discusses the use and the integration of a learning model 
based in support vector machine (SVM) in order to improve the evolutionary op-
timization strategy for analog circuit design applications introduced in chapter 3.  

Chapter 5 describes the analog design environment and architecture of 
GENOM optimization tool. It discusses the methodology, representation and ar-
chitecture issues, giving details of the analog IC design representation, interfaces 
between the synthesizer and evaluation algorithms, and software architecture. The 
main options taken in this work approach will be described and justified.  

Chapter 6 presents several synthesis experiments, demonstrating the capabili-
ties of the system and providing some insight into factors that affect the synthesis 
process. The suite of test circuits is taken from standard text books and technical 
papers. The first section describes the performance metrics, the algorithm optimi-
zation strategy and input data of each the experiment. The resulting performances 
computed automatically by the optimization tool during the evolutionary process 
are delivered to the user in the form of output reports or by dynamic graphics or 
reports. Apart from accuracy, mean and standard deviation of execution time and 
evaluation cycles are also presented. Additionally, information regarding the cir-
cuit, such as circuit sizing, corner information and performance are also specified. 

Finally, chapter 7 presents the conclusions and the research contributions of the 
thesis and the improvements that are possible to GENOM.  
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1   Introduction 

Abstract. This chapter presents the motivation to the research work in the area of 
analog integrated circuit (IC) design automation, i.e., outlines the market and 
technological evolution, characterizes the analog IC design, discusses the avail-
able CAD solutions and, finally, describes goals for the this work. 

1.1   Microelectronics Market and Technology Evolution 

The microelectronics market trends present an ever-increasing level of integration 
with special emphasis on the production of complex mixed-signal systems-on-chip 
(SoC), as a consequence of the boom in telecom devices, wireless communications, 
electronic consumer products, etc. These devices integrate complex digital cores 
with analog and RF functions on a single chip [1]-[2]. Fig. 1.1 illustrates the  
relevance of analog circuitry in this renewed invigorating market showing the evo-
lution of SoC percentage that will contain analog parts. According to IBS Corpora-
tion, digital/mixed-signal SoCs accounted for approximately 20% of worldwide 
SoCs in 2001[3]. The tendency curve in the left graph shows that the percentage 
continues to rise, and it was around 75% in 2006. Driven by the demand to provide 
higher performances, i.e., increasing functionalities with less power consumption, 
semiconductor manufacturers developed newer technologies allowing an exponen-
tial increase in IC density, described by the well known Moore’s law.   

The famous Moore’s law observed for the first time in 1965, which states that 
transistor density on integrated circuits doubles about every two years, is still applied 
nowadays. It is a measure of the technological progress verified in semiconductor  
 

 

Fig. 1.1 (a) SoCs including analog circuitry by year [3], (b) Digital circuit density by proc-
ess technology 



2 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques
 

 

fabrication technologies but now, more than ever it has become a source of concerns. 
As far as new process technologies evolve, more and more functionalities can be in-
tegrated, increasing as a side effect, the complexity of IC design. A large augment of 
parasitics and leakage currents that make chips fail are the first visible sign. Actually, 
while the exponential growth in capacity moves on into the nanometer technology 
domain, the design teams are facing a curve of complexity that rises exponentially 
faster, thereby slowing down the productivity design rate. This phenomenon, referred 
as the design productivity gap [3] is illustrated in Fig. 1.1 (right) and represents the 
growing difference between the improvement in manufacturing productivity needed 
to satisfy the pressures of the market and the progress in productivity achieved by 
Computer-Aided-Design (CAD) development teams. The development of new CAD 
tools and design methodologies is essential to increase the designer’s productivity and 
reduce design productivity gap. However, the development of mixed-signal SoC de-
signs can be very challenging since the design and verification processes for both 
digital and analog sections are supported by design automation tools in different 
stages of maturity. The analog section, despite of typically occupying a minor frac-
tion of the overall circuit area (20% approximately as illustrated in Fig. 1.2), is the 
bottleneck in terms of design time by being far more complex than the digital coun-
terpart. Generally, digital design is based on well-established practices supported by 
well-defined automated synthesis methodologies and tools. As a result, digital intel-
lectual property (IP) reuse is a common practice available through different CAD 
companies leading to an increase in the design productivity.  

 

Fig. 1.2 Digital versus Analog design reality 

Unlike digital circuits, analog/mixed-signal designs are ruled by many different 
strategies. There are not a large variety of tools or mature design methodologies 
that efficiently support the complexity of analog design flow. The strong sensitiv-
ity of analog design parameters to the fabrication process made the analog IP re-
use expensive when compared with the capacity of acquiring and using digital IPs. 
The circuit libraries, as known from the digital world, became easily out-of-
date/obsolete as the technology or the rules of the project changed. For example, 
the performance noise of an operational amplifier degenerates with smaller dimen-
sion technologies whereas the gain DC of small signal improves. This way, the 
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upgrade of new capabilities and functionalities offered by a recent technology be-
came more difficult.  

Finally, despite the great progress achieved in the past few years concerning 
analog circuit technologies, analog design tools and methods are still far from 
reaching a mature stage.  

1.2   Analog Integrated Circuit Design 

1.2.1   Analog Design Issues 

The difficulty of analog circuit design is higher than digital circuit design. The 
signals of the digital technology are more tolerant to noise levels, by having only 
two possible values each one with a large tolerance range. The Boolean function-
ality of digital systems represented through the use of high level description lan-
guages and mature digital CAD tools facilitates the automation of design tasks. 
Analog design, on the other hand, deals with an infinite or continuous range of 
values, which force it to exploit the physics of the fabrication process to achieve 
high performance designs. Therefore, second-order and third-order effects that are 
not so critical for digital design become a major problem for analog designs [1][4].  

Due to these problems, the employment of standard cell libraries for analog de-
sign is not widespread since each analog cell is characterized by several continu-
ous parameters (including power dissipation, DC gain, bandwidth, phase mar-gin, 
slew rate, noise, power, area, etc.) which produce hundreds or thousands of in-
stances for each cell with different performance measures [1].  Additionally, some 
of them will not create functional solutions. Hence, the technology migration and 
the retargeting of analog designs usually require substantial redesign of the circuit, 
unlike the digital design [4].  

Today, one of the major challenges faced by semiconductor companies is how 
to increase yield of their circuits. During the layout and production phase, the ap-
pearance of parasitic effects, device mismatch and changes in environment condi-
tions have a negative influence on the behavior of the designed circuit, changing 
the performance parameters and leading to undesired performance of the circuit. 
One way to minimize the effect of these variations consists in the use of evalua-
tion and compensation techniques during the design phase, combined with a care-
ful layout [5]. Corners analysis in extreme variation points is an example of such 
techniques consisting in the circuit simulation for different operational conditions, 
for example, different temperatures and process variations. 

The above described problems deal with the characteristic of analog circuits, 
which makes the analog design a hard task. The performance of analog blocks is a 
key factor in the success of an integrated circuit. The time-to-market imposes a 
first time right on both digital and analog blocks in integrated circuits and systems 
on chip. To create a complete solution and achieve the target of first time right in 
analog systems, careful methodologies, tool flows and an appropriate set of tools 
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must be used by analog designers. These techniques and tools will be summarized 
in the next sections. 

1.2.2   The Hierarchical Decomposition Model  

The increase in complexity of analog and mixed-signal integrated circuits leads to 
the general use of IC design methodologies based on divide-to-conquer strategies, 
sustained by a  hierarchical decomposition model that define the top-down design 
and bottom-up verification flows [4][6][7][8][9][10] and a set of design tasks in 
each hierarchical level [4][6][7][8]. In order to illustrate the above concepts of a 
typical design flow, Fig. 1.3 shows the design of an Analog Front-end ADSL mo-
dem system [11] using a top-down methodology.  

 

 

Fig. 1.3 Design of an analog frontend ADSL using a typical design flow 

The main analog functions are high speed digital-to-analog (D/A) and analog-
to-digital (A/D) conversion, low pass filtering (LPF) and transmitter and receiver 
gain-controlled amplifier (AMP). The design of the above system can follow two 
different approaches: design the circuit as a whole (not a recommended practice 
considering the systems dimension and complexity) or using a divide-to-conquer 
strategy (a common procedure to solve hard problems in different engineering 
domains). Applying this strategy, to analog integrated circuit design, results in a 
hierarchical subdivision of the system under study, in sub-blocks of different ab-
straction layers. Therefore, in the first level the initial system concept is refined in 
a series of steps, which will compose the building blocks of the next level: filters, 
data converters, amplifiers, etc, in the third level: amplifiers, comparators, etc. 
This decomposition process continues down until the device level. Moreover, the 
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performance specifications obtained by these sub-blocks must be once more simu-
lated to verify their correctness – this is known as the verification or validation 
phase. The validation phase can result in the redesign of the same block or a modi-
fication of the dependent block at the upper level. 

One of the main advantages pointed out by the hierarchical methodology is the 
possibility of reusing the design knowledge [12][13][14]. Reusability of knowl-
edge and procedures that are acquired by the design and refined for the verifica-
tion of a building block in a hierarchical decomposition of a certain circuit can be 
used later when designing another circuit or used as a starting design for the next 
generation of the product. Moreover, there is an opportunity to perform system ar-
chitectural exploration in order to improve the overall system optimization (e.g. 
finding an architecture that consumes less power) at a higher level before starting 
detailed circuit implementations [15]. In conclusion, embracing a top-down design 
representation is an important step to decrease the redesign spins and time-to-
market, and to increase the levels of productivity.  

1.2.3   Analog IC Design Flow  

Besides the benefits of design methodology described in the preceding section, in 
the analog domain the hierarchy levels of this design process are not well de-fined 
and are not generally accepted [12]. Nevertheless, some approaches have already 
been implemented through this concept [16]. A general design flow for ana-
log/mixed-signal systems is illustrated in Fig. 1.4 and is described through the fol-
lowing steps: 

(a) System level – On this first stage of development, the required target specifi-
cations, technology process are defined. The overall architecture of the system 
is designed and partitioned into a set of high-level building blocks for the next 
level. During this phase, specifications for system are mapped into intermedi-
ate-level parameters which become the specifications for the lower level 
building blocks. The system-level partitioning and specifications are then 
verified using appropriate high-behavioral tools or system simulators such as 
Matlab [17], Verilog AMS [18], MMSIM [19], etc. 

(b) Block level – In this stage there is an effective translation of the high-level 
building blocks into architecture of functional blocks required to realize the 
specified behavioral description. Then, all blocks are described individually in 
an appropriate hardware description language, like VHDL [20] and VHDL-
AMS [21] and then verified against the specifications using behavioral simula-
tions tools, such as Ultrasim [22], NcSim [22], Hsim [19], Modelsim [23], etc. 

(c) Circuit level – For each analog building block an optimization process is pro-
vided, given the inherited specifications from the upper level and the selected 
technology process. The optimization is seen as an iterative process to deter-
mine physical dimensions at device-level. This stage covers two nuclear  
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activities: the selection of the proper circuit topology and a device sizing 
methodology of the circuit parameters. A robust design should be achieved 
taking into account the process variations and device tolerances in order to 
guarantee a high yield design. The required performance specifications of the 
final circuit design are then verified using circuit simulations such as HSPICE 
[24] and Spectre [18]. 

(d) Layout hierarchy - In this stage the optimized building blocks obtained from 
the preceding step are mapped into a physical representation of the circuit 
schematic taking the form of a multilayer layout. Layout is a set of geometric 
shapes obeying design rules specified by the fabrication process. The layout 
area generated manually or automatically is optimized for minimum area. Af-
ter the verification phase (verification of design rules (DRC)) layout is fol-
lowed by the extraction of layout parasitics whose effects must be verified 
with circuit simulation in order to ensure that the initial performance does not 
deviate significantly from the target specifications even with their influence. 
Crosstalk, substrate coupling analysis and mismatch are also important sub-
jects under the umbrella of layout techniques. 

(e) Fabrication and Testing – In this last stage the masks are generated and the IC 
is finally produced. The fabrication process is accompanied by rigorous qual-
ity tests to avoid defective devices. The test and validation are fundamental 
steps to verify the correct operation of the circuit and so a good test board and 
test setup must be defined. 

During the top-down path, each of these hierarchical abstraction levels is com-
bined with a top-down and bottom-up strategy together with redesign or back-
tracking iteration loops [6],[12] as illustrated in Fig. 1.4 (right). 

The top-down flow consists of the following steps: 

(a) Topology selection – This step is responsible for choosing the best suitable 
circuit topology or architecture in order to meet the specification requirements 
from the preceding higher levels. There are several ways of solving this prob-
lem,  from manual topology selection from a database employing heuristic 
rules [25] to the use of deterministic approaches, such as,  the one that use the 
information from feasible performance space [26][27][28][29] or another one 
that combines the topology selection with the device sizing task using optimi-
zation based approach [30]. Section 2.1.1 presents a detailed discussion on 
methods applied to automate the topology selection task. 

(b) Specification translation/Sizing – An optimized design is searched so that the 
complete block meets the required specifications. In higher levels of design 
hierarchy this process implements the decomposition of the block under de-
sign in a subset of specifications that are passed down in the hierarchy for 
each sub-block in such a way that the actual block meets its specs. For the 
lowest levels in the hierarchy, where the sub-blocks are materialized in single 
devices (transistors, resistors, etc), circuit sizing is taking place according to  
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the performance specs and the selected topology received from upper levels. 
Here, there are two main approaches, namely, the knowledge-based approach 
and an optimization-based approach, relying on different optimization meth-
ods. In section 2.2 a detailed discussion on methods applied to automate this 
fundamental task is presented. 

(c) Synthesis Verification – The optimized design is simulated and verified to see 
if performance meets the original requirements. If the desired performance is 
obtained, the design progresses down to sub-blocks of lower level. If not, a 
redesign process is initiated inside the same hierarchical level or a backtrack-
ing iteration is started involving other hierarchical level. 

 

Fig. 1.4 The design flow in level i of analog IC design [6] 

The bottom-up layout flow implements the next steps: 

(a) Layout generation – It generates the optimal geometrical layout of the block 
under study taking into account design constraints. 

(b) Extraction – After design rule checking (DRC) and layout versus schematic 
(LVS), layout is extracted to obtain the layout-induced effects to the circuit 
schematic, the layout parasitics. 

(c) Layout Verification – The extracted layout is then verified and simulated to 
check the impact of the layout parasitics on the overall circuit performance. If 
the influence of parasitics produces unacceptable deviations from desired  
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performance, the design should be repeated again changing the dependent 
blocks in one or several upper levels. Some iteration among the upper levels 
in the design hierarchy is likely to occur. These verifications are done using 
3rd generation SPICE simulators as HSIM [19] and NANOSIM [19] which 
can deal with large circuits in a reasonable period of time. 

In order to support the process with adequate evaluation of design alternatives at 
different levels of abstraction, CAD (Computer Aided Design) tools have been 
developed, which reduce the execution time and allow the identification of prob-
lems at an early stage so that the right decision in the design process can be taken. 

1.2.4   Analog Design Flow of a 15-Bit Pipeline CMOS A/D 
Converter 

To illustrate the methodology of analog design flow, a partial design flow of a 15-
Bit Pipeline CMOS A/D Converter system [11] suitable for ASDL modem is 
shown in Fig. 1.5 and, there is the reference to a variety of design tools such as 
behavioral level simulators, sizing tools, and physical layout tools. The pipelined 
ADC consists of a front-end sample and hold amplifier (S/H) and M pipelined 
stages. The S/H amplifier samples and holds analog input signal that will be quan-
tized by the following stages. Each stage samples the signal from a previous stage 
and quantizes to Bn-bits using a flash ADC. Then the input is subtracted by the 
quantized signal and the residue is amplified by 2Bn before sending it to the next 
stage through the inter-stage S/H amplifier. 

To begin with, the required target specifications, technology process and an ar-
chitecture approach must be defined. Then, an architectural design phase (System 
level) is undertaken where the overall system concept is broken down into a set of 
high-level building blocks. 

During high-level synthesis, specifications for the pipeline ADC converter are 
mapped into intermediate-level parameters which become the specifications for 
the S/H, residue amplifier, the current steering DAC and input flash converter. 
The low-level synthesis phase uses these specifications as constraints to design the 
sub-blocks. These blocks are further decomposed (block level) until they are small 
enough in size to be treated as atomic circuit cells. Once all cells are designed at 
the circuit level, the system layout is done (layout level). Then, bottom-up verifi-
cation is performed, and changes are made as necessary. During this process some 
iteration among the levels in the design hierarchy is likely to occur. 

Special emphasis has been put on top-level simulations, to ensure the correct 
functionality of the entire converter circuit. Top-level simulations were performed 
using Matlab/Simulink [17] models, including all digital and analog blocks. Lower 
level sub-block simulations have been carried out using Spectre [18] and HSPICE 
[24] to verify circuit performance. Additional simulation with PowerMill [19] was 
taken to ensure the correct operation of the combination of digital and analog 
blocks. 
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Validation: MatLab/Simulink [17]  mod-
els.  

High level tools describe the circuit in an 
abstract way. Models should be efficient 
and accurate. To verify the performance of 
the developed architecture, a complete 
Matlab model was built using Simulink. 
This helped to identify the main sources of 
non-linearity in the frontend blocks and to 
take the necessary precautions to avoid 
their undesired effects. Worst-case simula-
tions were also performed with Matlab 
models. 

Alternative tools: Nanosim, Verilog-AMS. 
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ADC Validation: SPICE [31], AHDL 

The solutions from the high-level optimi-
zation problem are now constraints during 
the low-level synthesis phase. All per-
formances are evaluated analytically re-
sulting in a problem easily solved by stan-
dard optimization techniques.  

Alternative tools: VHDL, VHDL-AMS. 
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Validation: SPICE like simulators.  

The requirements for high gain and GBW, 
with low output impedance and noise 
leads to a special topology based on tele-
scopic cascade amplifiers followed by a 
common source stage.  

These sizes were verified with SPICE and 
by analytic equations to meet the design 
constraints. 

Alternative tools: HSPICE, SPECTRE. 

4.
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Validation: Assura, Diva.  

 

Manual layout was required for the S/H 
and residue amplifier. 

 

Other alternative tools: Calibre. 

Fig. 1.5 Hierarchical analog design flow of a 15-Bit Pipeline CMOS A/D converter 
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1.3   Analog Design Automation  

1.3.1   CAD Tools for Analog Circuit Design  

As analog automation tools are not developing at the same pace of technology, 
custom design will inherently require manual guidance and careful tuning. All the 
decisions that must be taken in each step of analog design flow rely on designer 
knowledge and experience. In the traditional design approach, designers interact 
manually with appropriate tools in order to get the best design parameters satisfy-
ing performance specifications, optimize some application specific parameters, 
and, at the same time, achieve a robust design. Since the search space of the objec-
tive function, which relates optimization parameters and system specification, is 
characterized by high complex multidimensional space, the manual search for the 
optimal solution will be difficult to obtain and frequently only a fraction of that 
space is explored due to design timing constraints [4],[32]. 

The manual design flow for analog circuit design, is supported by industrial 
CAD tools, like circuit simulators (eg. Synopsys® HSPICE), top level simulators 
Nanosim, which  solve the critical issue of analyzing circuit behavior while taking 
into account the electrical and parasitic effects of nanometer-scale silicon (eg. 
Synopsys® HSIM), layout tools (eg. Cadence® Virtuoso Layout) and verification 
tools (eg. Cadence® Diva and Mentors® Calibre). They are a valuable help to the 
designer but have a low degree of automation. The time needed to manually de-
velop such demanding tasks, usually in order of weeks or months, does not match 
the tight agenda due to market pressure to speed up the launching of the new and 
high challenging ICs. The key to address these challenging problems lies in the 
development of new CAD or EDA tools to speed up the analog design process. 

Actually, some specialized computer-aided design methodologies for SoC cir-
cuits are already available to automate some steps of the design methodology. An 
improved but yet limited degree of automation is supplied by the use of a CAD 
methodology which involves the integration of one or more mature CAD tools 
into a flow. One of the most known CAD methodologies is the Cadence® Virtuoso 
platform which is composed by a set of integrated circuit tools that cover all the 
stages, from the schematic to the layout (see Fig. 1.6).  

 Apart from the Composer schematic editor (2), Cadence® Virtuoso includes a 
high accuracy circuit simulator, like Virtuoso Spectre (4) that is usually used at the 
block level, a layout editor and Layout Verification tools such as Assura and Diva 
(5) and (6), that implement the three different phases of layout process: the design 
rule checking (DRC), layout versus schematic (LVS) and parasitic extraction 
(RCX). Additionally, the system level analog behavioral descriptions may be 
simulated with the Verilog®-A simulator (AHDL).  

The use of design management platforms, with a set of integrated CAD tools 
and database facilities to deal with the design transformations from the conception 
to the physical implementation, can significantly speed up the design process and  
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Fig. 1.6 CADENCE - Virtuoso custom design platform diagram 

enhance the productivity of analog/mixed-signal design teams. These design man-
agement platforms are a valuable help in analog integrated circuit design but they  
are still far behind the development stage of design automation tools already 
available for digital design. 

A new class of CAD tools for analog IC design have emerged taking advantage 
of the automation of some analog design process tasks. Design Automation (DA) 
tools help the automation of particular design tasks (Fig. 1.7), like a decision-
making algorithm for circuit sizing (a system, a module or a cell), topology selec-
tion and layout generation, as well as the automation of retargeting operations and 
design flow control. The aim is to free the designer to more creative design tasks 
(working out better architectures and topologies) and to develop more efficient 
and accurate design automation tools. 

1.3.2   Automated Analog IC Design  

Today, the development of new analog synthesis tools is accomplished in order to 
fulfill the needs of the modern analog IC design. Analog synthesis consists  
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Fig. 1.7 Hierarchical top-down bottom-up applied to analog design automation 

essentially of two major steps, circuit synthesis followed by layout synthesis [15]. 
The majority of the applied techniques for both circuit and layout synthesis are 
based on powerful numerical optimization engines (e.g. evolutionary algorithms, 
geometric programming) conjugated with evaluation engines (e.g. circuit simula-
tors) which evaluate the merit of some developing analog circuit or layout candi-
date. Fig. 1.8 illustrates a top-down design flow, developed in this thesis, to 
produce a sized circuit based on certain circuit specifications.  

The lack of an unique and structured design flow definition and, on the other 
hand, the mature state reached by the simulation/analysis support tools, led to the 
appearance of several simulation environments, including important commercial 
solutions, which showed promising results. However, the most relevant ones are 
still at very low level of abstraction. These tools focus predominantly the topology 
selection, circuit sizing and layout generation tasks since they are the most time-
consuming processes. Examples of these automated EDA tools developed mainly 
by the scientific community domain are IDAC [33], ANACONDA [34], 
MAELSTROM [35], FRIDGE [36], AMGIE[37], GPCAD [38], [39], TAGUS 
[40], [41] and some layout generators like ILAC [42], ANAGRAM [43], [44], 
LAYLA [45], ALADIN [46] and LAYGEN [47], [48], among others. However, 
only very few examples in analog IC design industry embrace these new para-
digms like Barcelona Design® and NeoLinear (Cadence®), which support both an 
automated circuit synthesis and layout generation tools called NeoCircuits [49] 
and NeoCell [49], respectively. Nevertheless, many of the used techniques were 
not efficient enough or produced the desired performance accuracy to become a 
mainstream application. In spite of these limitations, automated EDA tools can be 
helpful in increasing design productivity and circuit performances as shown sym-
bolically in Fig. 1.9.  
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Fig. 1.8 Top-down design flow developed in this thesis 

 

 

Fig. 1.9 Trends or trade-off in automatic design 

In short, there is still a long way to go concerning IC design automation re-
search, until the generalization of automatic analog IC design in industry takes 
place. The majority of the available tools do not provide a satisfactory answer to 
the complete design process, since they apply only to a specific part of the design 
this process. Therefore, there are still many situations, in which high performance 
analog IC design must be controlled by manual design rules, hence the research in 
design automation continues to be a matter of great importance. 
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From the exposed in the previous paragraphs there is a need to increase produc-
tivity, to reduce product development cycle and time-to-market in order to cope 
with the ever increasing design complexity.  Hence, the main and partial goals of 
this work are summarized as: 
 
Main goals [50] 
This work aims at developing a new design automation methodology and tool 
based on an evolutionary computation kernel, in order to increase the efficiency of 
the analog IC circuit design cycle. 

 
Partial goals [51][52][53][54][55][56][57][58][59][60] 

1. R&D of new optimization methodologies, particularly, using modified ge-
netic algorithm techniques including additional strategies to increase effi-
ciency on algorithm convergence. 

2. R&D of new synthesis methodologies, particularly, using evolutionary com-
putation techniques together with modeling techniques to implement an effi-
cient approach to optimize the performance of integrated analog circuits at 
the circuit level. 

3. Develop a new multi-objective and multi-constrained optimization method-
ology for circuit sizing of integrated analog circuits, addressing perform-
ance, robustness and efficiency key factors. 

4. Demonstrate the effectiveness of the new optimization methodology for well 
known analog integrated circuits and systems.  

The remainder of the book is organized as follows: Chapter 2 presents an exten-
sive state of the art analysis on Analog IC design Automation.  Chapter 3 gives an 
overview on computation techniques to solve nonlinear optimization problems and 
introduces a new optimization kernel based on genetic algorithms applied to ana-
log circuit optimization. Chapter 4 explores the main learning techniques used to 
manage large amount of information and integrates a support vector machine 
(SVM) approach with evolutionary optimization strategy for analog circuit design 
applications defined in Chapter 3. Chapter 5 describes the analog IC design envi-
ronment and the architecture of GENOM optimization tool. Chapter 6 presents 
several synthesis experiments, demonstrating the capabilities of the system and 
providing some insight into factors that affect the synthesis process. Finally, 
Chapter 7 concludes the book.  
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2   State-of-the-Art on Analog Design 
Automation  

Abstract. This chapter presents the State-of-the-Art (SOA) in analog circuit de-
sign automation. First, the analog design flow is reviewed and the fundamental 
trends in design automation are discussed. Then, the existing approaches to circuit 
sizing are presented, outlining in each case their advantages and limitations. Next, 
a detailed discussion over the existing tools approaches is provided. Finally, con-
clusions concerning the specification and design of a new analog design automa-
tion methodology implementation will be drawn. 

2.1   Trends in Design Automation Methodology 

A typical design flow for analog and mixed-signal IC circuits (AMS)  consists of 
a series of design steps repeated from the system level to the device-level, and bot-
tom-up for layout generation and verification. The steps between any two of these 
hierarchical levels are: topology selection, circuit sizing, design verification and 
layout generation task, illustrated in Fig. 2.1.  

 

Fig. 2.1 Hierarchical level and design tasks of design flow architectures [1] 
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In order to handle the increasing complexity of analog and mixed-signal IC de-
sign, a clear definition of a hierarchical design flow is essential. Despite the  
advances made during the last decades, the design automation (DA) tools in ana-
log domain cannot support the complete design process, since they either concen-
trate on specific parts of the design flow or require the intervention of an expert 
designer. Moreover, they mainly address circuit level design as a whole (tradi-
tional design approach), which makes it difficult to apply to highly complex  
circuits and systems. Therefore, as the SoC complexity increases, the design 
automation tools must incorporate an hierarchical design decomposition feature in 
order to apply the well-known divide-to-conquer strategy already applied by most 
analog designers in a manual design approach.  

Trends in this area have been running towards a class of design automation 
methodology under three aspects, improving:  

• Flexibility, allowing the designer to have a higher interaction during the syn-
thesis process and providing a more general approach to deal with multiple ar-
chitectures or circuit types. 

• Modularity, allowing the use of different tools and techniques to address differ-
ent design tasks, such as topology selection, circuit sizing and layout. 

• Hierarchy, allowing the handling of complex system designs and implementing 
strategies involving several abstraction levels. 

2.1.1   Automated Topology Selection 

The selection of an adequate architecture is fundamental to achieve a high perform-
ance design [2]. The topology selection task receives the performance specifications, 
for a particular class of circuits or systems, and delivers the most promising topol-
ogy, traditionally from a predefined library. In IDAC [3] the decision is taken di-
rectly by the designer. Heuristic rules [4] have been used in the first attempts by 
TAGUS [5]-[6], OASYS [7], BLADES [8], and OPASYN [9] to automate the to-
pology selection task. The tool FASY [10] uses fuzzy–logic based reasoning to select 
one topology among a fixed set of alternatives. The decision rules are introduced by 
an expert designer or automatically generated by means of a learning process. An-
other method comprises computing the feasible performance space for each topol-
ogy within the library and, then compare with the desired performance specs, by 
AMGIE [2] and [11]. A different method consists of combining the topology selec-
tion with the device sizing task and employing an optimization based approach by 
DARWIN [12] using genetic algorithms. This design mechanism illustrated in Fig. 
2.2, uses a template rather than an architecture library. This template specifies the 
topology in terms of blocks, each one with possible different alternatives. In short, 
this last method is more reliable since it treats the problem in a more deterministic 
way and at the same time decreases the setup time, as it does not need to rearrange a 
new set of rules each time a new topology is added to the library; the computation 
time, however, is worse than in all methods described above.  

A new step towards the increase of the automation level is given by a new set 
of tools where topology selection is performed at a higher abstraction level. In-
stead of selecting the architecture from a library, a high level functionality of the 



2   State-of-the-Art on Analog Design Automation  21
 

system is defined now by a hardware description language. Then, an automatic 
translation is carried out, mapping the functional description into an internal repre-
sentation and then into a specific topology. The mapping step is implemented after 
or during the device sizing process. This class of tools usually differs from the 
type of internal representation used. In the case of [13] the internal representation 
is a data flow graph, whereas in TAGUS [5]-[6], [14] and Konczykowska [15] it is 
a symbolic signal flow graph and in ARCHGEN [16] a state-space description is 
used. Then, a mapping operation is performed, resulting in a connection of lower-
level building blocks whose parameters are optimized, obeying to some design 
constraints. The operation flow is executed in a top-down basis. 

 

 

Fig. 2.2 Topology selection mechanism before (a) and during (b) device sizing 

Finally, a design methodology able to create new topologies explores the im-
mense potential from low abstraction level. Small elementary blocks are con-
nected bottom-up to each other to form a new topology. The general description of 
this design methodology illustrated in Fig. 2.3 begins by selecting an initial topol-
ogy, having in mind the desired specifications. As the design process takes place, 
an optimizer selects a transformation, adding or deleting a basic entity and/or at-
tributing a value to a parameter. Various fundamental entities can be applied, such 
as, single transistors, elementary building blocks or node connections. As soon as 
the architecture is generated, the performance function is evaluated, providing 
some hints to the optimizer who makes a new selection of transformation. Essen-
tially two exploration methods can be applied in topology generation for analog 
design. The knowledge-based exploration is based on a systematic or a random 
strategy where the circuit elements can be added, replaced or removed by an ex-
perienced designer with the help of standard CAD tools, like SPICE, and a circuit 
schematic editor. This method mimics the daily basis design approach supported 
mainly by simulation tools, and, therefore, suffers from the same drawbacks, i.e., 
as the number of entities in the system rise, the computational time increases ac-
cordingly. The computation time at the circuit description level can become intol-
erable if no efficient guidance is provided during the exploration step. 
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Fig. 2.3 A general description of the topology selection bottom-up methodology 

New automation tools appeared, based on stochastic evolutionary computation 
methods, which apply an appropriate representation for standard circuit-level de-
scriptions and recombination operations. Population-based optimizers provide 
multiple dimensioned architectures which are then simulated by SPICE-like simu-
lators. In [17] the optimizer is based on a genetic algorithm and in [18]-[19] uses 
genetic programming techniques. Table 2.1 summarizes the general characteristics 
of automated topology selection and generation mechanisms. 

Table 2.1 General characteristics of automated topology selection and generation 

 Topology Selection Topology Generation 

 Heuristic Rules Feasible Region Top-down* Bottom-up 

T
oo

ls
 TAGUS [5]-[6], OASYS [7], 

BLADES [8], OPASYN [9] 
and FASY [10]  

AMGIE [11], and 
Gielen [2], 
DARWIN [12] 

Graeb [13], 
TAGUS[5]-[6], 
[14], Konc-
zykowska [15] 

Colombano[17], Koza[18], 
Toumazou [19] 

D
ra

w
ba

ck
s 

(-) Large set up time in order 
to update the selection rules to 
a new topology. 

(-) Qualitative approach and 
sometimes extremely difficult 
to codify heuristic rules. 

(-) Time  
consumption 

(-) Less  
generalized. 

(-) Large time consumption. 

(-) No technological param. 

(-) No corner validation. 

(-) Not in a mature state. 

A
dv

an
t. 

(+) Reduced execution time. 
(+) Quantitative 
and general ap-
proach. 

(+) Reduced exe-
cution time and 
well defined 
process  

(+) Extremely promising.  

(+) Generic Approach. 

(+) No expert knowledge. 

 * Properties depend on methodology. This column considers knowledge-based approach. 
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2.1.2   Automated Circuit Sizing/Optimization  

The sizing stage receives a topology description, a set of performance specs and a 
technology reference and, based on these inputs, produces a sizing solution for 
each block or component depending on the abstraction level. Several solutions 
were proposed derived from either knowledge-based methods, using some kind of 
knowledge and heuristics, or optimization-based approaches for both topology se-
lection and specification translation or circuit sizing [1],[20]. The knowledge-
based approach requires the expert knowledge of a designer to produce a set of 
rules and equations for every new circuit topology or technology. Another alterna-
tive is obtained considering the circuit sizing as an optimization problem. In these 
approaches the design problem is first mapped or modeled into an optimization 
problem and then solved by an appropriate optimization method, as illustrated in 
Fig. 2.4.  

 

Fig. 2.4 Steps in optimization of circuit design 

In this approach, there is a strong correlation between the modeling of a design 
problem and the way the modeled problem is solved. Since these steps are not in-
dependent and have influence on each other, the optimization method will be de-
cided by the chosen model of the problem. For example, if the design problem is 
formulated in a set of posynomial equations the optimization method candidate 
could be the geometric programming (GP) algorithm or other computation algo-
rithm able to process the convex optimization problem defined by posynomial 
equations [21]. If the design problem is formulated by SPICE models, a simulated 
annealing or a stochastic pattern algorithm could be used instead. Section 2.2 will 
explore the main optimization methods and alternative models in the area of ana-
log IC design problems. 

2.1.3   Automated Layout Generation 

The earliest approaches to automate the layout generation followed a procedural 
module generation [22]-[23] with the codification of the entire circuit layout and 
its generation during the run time for the parameters attained during the sizing 
task. The procedural generators define a parametric representation of the geomet-
ric layout developed by the designer, accomplished either through a procedural 
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language or a graphical user interface. The disadvantages of this approach are the 
lack of flexibility and generality and the high cost of the generation task. 

Next, a template-based approach was developed [24] allowing the employ-
ment of geometric templates, which define the relative position and interconnec-
tion of devices. The templates are used to incorporate the designer knowledge 
into the optimization task. In spite of the low level of reusability achieved by 
procedural generators, the efficiency of this approach can be improved when 
user-defined templates are designed to be independent of both technology and 
specifications [4]. This approach is also suited when modifications in circuit pa-
rameters end in small adjustments to the global circuit layout structure, like tech-
nology migrations.  

Later on the optimization-based approaches emerged, using optimization tech-
niques to determine and predefine the layout solution. Small database of proce-
dural cell generators, ANAGRAM [25]-[26], LAYLA [27] and ALDAC [28]  
synthesize an optimized layout configuration, searching the solution space formed 
by each cell layout positioning. The ALG [29] approach allows the generation of 
“optimal layout” of a circuit either automatically or by designer directives. On one 
hand these approaches require more computation time, but, on the other hand, they 
are more flexible and general, which compensates largely the weakness mentioned 
above. Significant technological solutions have resulted from this method [30]-
[33], ranging from rule driven to performance driven layout generation tasks [27], 
reaching a more mature state when compared to what happens in the design auto-
mation tasks concerning circuit sizing [1]. The most frequent used optimization 
techniques in analog IC layout generation tools are simulated-annealing (ILAC 
[34], KOAN [25]-[26] and LAYLA [27]) and genetic algorithms (LAYGEN [35]-
[36]). Simulated-annealing based approaches attained better results but lately the 
evolutionary approach has become a common option in many situations, like the 
hybrid solution defined by the genetic approach to simulated-annealing GASA 
[37] or the combined GA and Tabu Search (TS) used in [38] to develop a polycell 
placement algorithm for analog LSI chips. As both KOAN and LAYLA employ 
very simple cells on the database, some highly efficient structures, such as stacked 
or interdigited transistors, cannot be generated. Recent approaches, however, are 
tending to hybrid solutions employing optimization on blocks derived from 
knowledge-based systems. In the case of ALADIN [37],[39], the database usually 
relies on a hierarchical model where a cell is built using already defined cells. The 
use of compound cells reduces the search space because the number of cells han-
dled during placement is lower and consequently reduces the computation times. 
Another knowledge-based approach with optimization is given by IPRAIL [40] 
and LAYGEN [35]-[36] in which the information presented in the template is de-
fined manually or automatically and used to guide the layout generator during the 
synthesis procedure. The constraints defined in the template reduce the solution 
space, and allow the designer a higher control of the layout generation unlike the 
general optimization approaches [35]. Table 2.2 resumes the general characteris-
tics of layout tools. 
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Table 2.2 Overview of layout tools 

Tool Year Description Techniques Obs. 

KOAN/ANAGRAM 

[25],[26] 

1991 Macro-cell Place and Route; uses 
pre-defined small module genera-
tors data-base; synthesizes an op-
timized layout configuration from 
a given Spice netlist with symme-
try, matching and tech. specs.  

 Optimization      
based with Simu  
lated Annealing. 

The chosen library 
constitutes a limit of 
this method since an 
enormous number of 
pre-designed layout 
blocks is required 

Layla  

[27] 

1995 
It takes into account symmetry 
constraints, performance degrada-
tion due to interconnect parasitics 
and device mismatches and com-
bines this with geometrical opti-
mization techniques (devices 
merges, abutment, etc.) 

Optimization 
based with Simu-
lated Annealing. 

A performance-
driven methodology 
where all perform-
ance constraints are 
satisfied. Optimize 
the layout quantifying 
the performance deg-
radation. 

A SKILLTM-based 
Library for Retarge-
table Embedded  
Analog Cores  

[32]-[33] 

2001 Automatic generation and reus-
ability of physical layouts of ana-
log and nixed-signal blocks based 
on high-functionality pCells that 
are fully independent of technolo-
gies. 

Knowledge-based
Parameterized cells 
(pCells) are organ-
ized hierarchically. 

ALDAC 

 [28] 

2002 This tool providing means to gen-
erate multiple versions of full-
stacked layout modules for the 
same circuit. The differences 
come from different MOS transis-
tor splitting and grouping into 
stacks that can be performed ei-
ther fully-automatically or user-
controlled 

Simulated  
Annealing 

This approach mini-
mizes parasitic diffu-
sion capacitances of 
the circuit and  per-
mits economical post-
layout simulation of 
multiple layouts for 
performance-driven 

IPRAIL  

[40] 

2004 Retargeting is achieved using an 
automatically extracted template 
and using a circuit optimizer to 
size the cells. It uses either a rule 
or a performance driven approach. 
It uses optimization based with 
knowledge-based. 

Linear Program-
ming and graph 
short path on the 
relational tem-
plate extracted 
from the source 
layout 

 (+) General ap-
proach. 

  

 (-) Larger run-time 
required. 

ALADIN 

 [25],[32] 

2004 The layout generation is based on 
relatively complex sub-circuits. 
Designers can construct layouts of 
parameterizable modules in a 
technological and application in-
dependent way. The placement 
and routing of modules are per-
formed automatically under the 
constraints defined by designer 

Three phase Place 
e Route: 

1 – GASA e half-
perimeter routing 

2 – VFSRA e 
global routing 
(fine tuning) 

3 – Detailed Rout-
ing 

Design platform for 
analog circuits, based 
on a user managed 
device generators li-
brary.  
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Table 2.2 (continued) 

Tool Year Description Techniques Obs. 

LAYGEN [35],[36] 2007 Expert knowledge is used to 
guide an evolutionary algo-
rithm during the automatic 
generation of the layout The 
designer provides a high level 
layout description where posi-
tion and interconnections are 
predefined. This template con-
tains placement and routing 
constrains and is independent 
from technology. It deals with 
hierarchically templates for 
more complex circuits.  

Knowledge-
based with  
Evolutionary 
Computation 
techniques.  
Uses a geometric 
template. 

(+) Speeds up retar-
geting operations or 
technology migra-
tion  
  

(-) Works better 
when changes in 
circuit parameters 
result in small ad-
justments. for the 
target technology 

ALG [29] 2007 ALG is composed by three 
functional blocks: module  
generator, placer and router  
offering performance oriented 
layout generation in some of 
these blocks. 

Cost function is 
a weighted sum 
function para-
sitics level, as-
pect ratio and 
mismatch, etc.  

The user may 
choose the level of 
automation between 
full automation and 
user control.  

2.2   Automated Circuit Synthesis Approaches 

The computer-aided design methodology for AMS circuits foresees in a short-run 
the use of design automation tools to accomplish several tasks of the design meth-
odology [41]. This trend began in 80’s when the first automation tools applied to 
different tasks of analog design appeared like LAYLA [42] , IDAC [3],[22], 
DELIGHT.SPICE [43], BLADES [8] and OASYS [7]. The following sections re-
view some of the most significant approaches for analog IC design including the 
knowledge-based, optimization-based approaches as well as the first commercial 
tools. 

2.2.1   Knowledge-Based Approach 

The knowledge-based approach presented, for instance, in programs like 
BLADES [8], IDAC [3], OASYS [7] and MDAC/ALSC [44]-[45], was the first to 
appear and is characterized by including a complete design plan describing how 
the circuit components must be sized to reach the solution for the design problem, 
even though, there is no guarantee of finding the optimum solution [2]. For exam-
ple, the IDAC tool [3] takes advantage of the designer experience to manually de-
rive or rearrange design plans to carry out the circuit sizing. OASYS [7] was built  
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over a library of design plans defined for each elementary building block allowing 
the hierarchical representation of topologies, defined as the interconnection of 
several elementary building blocks. This system also implements a back tracking  
mechanism in order to recover from a malfunction implementation. The Fig. 2.5 
illustrates the general design flow of knowledge-based approach.  

 

Fig. 2.5 Knowledge-based approach 

In these methods, the main purpose is to encapsulate the designer’s knowledge, 
building a pre-design plan with design equations and a design strategy that pro-
duce the component sizes in order to meet the performance requirements. This ap-
proach presents as major drawbacks the large overhead required to define a new 
design plan, the reformulation of the entire design plan when expanding the sys-
tem to new topologies, and, finally, the migration to other technologies. Not only, 
it is a very time-consuming process to encode design knowledge for a given set of 
specifications, but design knowledge also has a limited lifetime. The rapid pro-
gress in process technologies made the acquired knowledge quickly out-of-date. 
Therefore, the application of these tools in industrial environments has been lim-
ited. However, after defining the design plan, the execution speed associated to the 
sizing procedure is extremely fast and the solution quality only depends on the 
models precision [1]. Naturally, this approach finds its applications restricted to 
small circuits or to more complex circuits but using simplified equations with the 
goal of achieving the first cut design. 

2.2.2   Optimization-Based Approach 

The optimization-based approach uses an optimization engine instead of a design 
plan to perform the design task. The optimization process is an iterative procedure 
where design variables are updated at each iteration until they achieve an equilib-
rium point. 



28 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques
 

The optimization-based approaches illustrated in Fig. 2.6, consist of an iterative 
loop, including an optimization engine or kernel together with an evaluation  
engine.  

 

 

Fig. 2.6 Optimization-based approach 

The optimization algorithm searches through the design space for values for 
each circuit component, whereas the performance evaluation tool verifies if the  
erformance constraints are met. If the system requirements are satisfied, then a so-
lution is found and the component sizes are associated to the selected topology. 
The optimization engine should apply the appropriate techniques to efficiently 
guide the search mechanism in order to minimize the number of iterations required 
for the optimization process.  

Different approaches can be described depending on the type of performance 
evaluation and the optimization technique employed. Concerning performance, the 
evaluation engine is typically implemented using an equation-based optimization, 
a simulation-based optimization or modeling-based optimization approach.  

2.2.2.1   Equation-Based Methods  

The equation-based methods use analytic design equations to evaluate the circuit 
performance. These equations can be derived manually or automatically by sym-
bolic analysis tools. Then, the problem can be formulated as an optimization prob-
lem and normally solved using a numerical algorithm. Some of the most relevant 
approaches are OPASYN [9], STAIC [46], MAULIK [47], ASTRX/OBLX [48], 
AMGIE [11], GPCAD [49][50], SD-OPT [51]. This approach presents the advan-
tage of allowing a performance evaluation speed-up (short evaluation time). The 
main drawback is that analytical models have to be used to derive the design  
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equations for each new topology and, despite recent advances in symbolic circuit 
analysis [52]-[53], not all design characteristics can be easily captured by analytic 
equations. The approximations introduced in the analytic equations yields low ac-
curacy designs especially in complex circuit’s designs. 

A promising methodology that has received much attention is related to cir-
cuit problems formulated in posynomial form (expression 2.1) and seen in tools 
like GPCAD and [21], [54]. This methodology solves the convex formulated 
problem by geometric programming techniques in a very short time. These 
techniques take advantage of the development of extremely powerful interior-
point methods for general convex optimization problems [21],[50]. Besides the 
extreme efficiency of these methods they have another great advantage, as the 
global solution is always found, regardless of the starting point. However, a sig-
nificant drawback still exists due to the difficulty to reformulate high-accuracy 
device models as posynomials equations, “performance specifications, and ob-
jectives that can be handled are far more restricted than any of the methods  
described above” [50]. Despite the progress presented in [54] the lack of an 
automated scheme to generate these equations limit the usage of this tool to a 
few, predefined, circuit structures. 
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2.2.2.2   Simulation-Based Methods 

The simulation-based approaches such as DELIGHT.SPICE [43], FRIDGE [55], 
FASY [10], ANACONDA [56], MAELSTROM [57] and DARWIN [12] consist 
of using some form of simulation to evaluate the circuit’s performance. In general, 
these types of tools for analog circuits design employ a circuit analysis tool in the 
inner loop of the optimization cycle to determine the circuit’s performance. This is 
pointed out as a very flexible solution when compared with other methodologies 
(equation-based, knowledge-based) once it accommodates to any type of circuit 
topology and yields superior accuracy (depends on simulator models). Presently, 
the use of SPICE-like simulators are almost generalized and essential to support 
the optimization engine with all the feedback related to an accurate circuit evalua-
tion, involving different performance characteristics, technological parameters and 
worst case corners analysis. Moreover, within this approach the same circuit can 
be optimized several times for different specs as long as the goal function is 
adapted, therefore, with this approach virtually all types of circuits can be sized 
and optimized with low setup time. 

Despite these advantages, automated circuit sizing is not as commonly used as 
for example, circuit simulation, since it is computationally too expensive to evalu-
ate electrical simulations. However, with the exponential increase of computer 
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power and efficient use of optimization algorithms it has become increasingly  
favorable. Nevertheless, a key difficulty is that the analog design problem, with all 
the involved design knowledge and heuristics, has to be formulated as an optimi-
zation problem, which often presents a high threshold for using a circuit-sizing 
tool.  

2.2.2.3   Learning-Based Methods 

A step forward to enhance the efficiency of optimization based methods corre-
sponds to the introduction of modeling techniques [58] based in learning strate-
gies, which are clearly more time-efficient, during the optimization cycle. In this 
class of methods, the behavior of the circuit to be optimized is modeled by a learn-
ing mechanism based on the distribution of variation parameters, thus allowing a 
quick evaluation of the performance for a specific set of design parameters. Nev-
ertheless, these methods require a set of training samples in order to build the 
model in the target region. Generally, a high accuracy evaluation engine is used, 
such as a circuit simulator to evaluate the performance of the training sample.  
The amount of the training data will influence the accuracy of the performance 
predictions made by the learning machine. However, an increase on the training 
data means that the evaluation of the performance will take more time. Like in 
equation-based methods, there will always be a trade-off between accuracy and  
efficiency.   

Some of the most significant behavioral-based methodologies are described by 
Rutenbar [58], Alpaydin [59], Vincentelli [60] and Vemuri [61]. In the basis of 
Alpaydin tool is a neural-fuzzy model approach combined with an evolutionary 
optimization strategy and simulated annealing where some of the AC performance 
metrics are computed using an equation-based approach.  

In [60] Sangiovanni-Vincentelli and al. use a learning tool based in support 
vectors machines (SVM) to represent the performance space of analog circuits. 
Based on the knowledge acquired from a training set, the performance space is 
modeled as mathematical relations translating the analog functionality. In this 
work two classes of SVM are confronted in an optimization-less strategy where 
additionally two improvements of the basic one-class SVM performances, con-
formal mapping and active learning, are proposed by enhancing the resolution in 
the support region boundaries. SVMs are trained with simulation data, and false 
positives are controlled based on a randomized testing procedure. 

The Vemuri approach [61] presents a performance macro-model for use in the 
synthesis of analog circuits based in a neural network approach. On the basis of 
this mathematical model is a neural network model approach that, once con-
structed, may be used as substitute for full SPICE simulation, in order to obtain an 
efficient computation of performance parameter estimates. The training and vali-
dation data set is constructed with discrete points sampling over the design space. 
The work explores several sampling methodologies to adaptively improve model  
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quality and applies a sizing rules methodology in order to reduce the design space 
and ensure the correct operation of analog circuits. 

2.2.3   Commercial Tools 

Besides the efforts introduced above some commercial EDA tools for circuit siz-
ing have emerged in the past few years, such as the ADA’s [63] Genius product 
line now integrated in Synopsis, Barcelona Design [49] which employ convex op-
timization techniques and recently the NeoCircuit from Neolinear Inc. [62], which 
implements a simulation-based approach.  

The ADA (Analog Design Automation) Genius line of optimization tools, in-
cluding Creative Genius, which automates device sizing and biasing to optimize 
circuit performance, and IP Explorer, which graphically provides N-dimensional 
circuit performance tradeoffs, were recently acquired [63] and integrated within the 
analog design environment from Synopsys [62], Mentor Graphics and other EDA 
vendors. The Genius tool builds its database of circuit from a transistor-level net-
list, testbenches, objectives, process and environmental variations and variables. 
This system is comparable to NeoCircuit once it implements a simulation-based 
approach and interfaces with several industrial circuit simulators using parallel 
computation architecture. 

The now extinct Barcelona Design was founded in 1999 by Stanford University 
researchers that apply advanced optimization techniques based in convex optimi-
zation to develop optimization solutions for a broad spectrum of circuit design 
problems including analog, RF and digital circuits. The final product introduces 
the synthesizable IP (intellectual property) block, which contains the required  
design equations written as posynomial expressions. The particularity of these 
products is that in opposition to standard IP blocks, which meet the given specifi-
cations, these blocks, may be synthesized to meet a range of different specifica-
tions. This implementation was reported to be able to increase design speed by 
100 times and reduce total design costs by up to 50%.  

The Neolinear package, now acquired by CADENCE [65], is composed by the 
NeoCircuit package, a simulation-based analog circuit sizing engine and the Neo-
Cell module to automate the layout generation process. Both design packages to-
gether with the optimization engine based on a “genetic annealing” scheme creates 
a complete analog design flow. The integration of Neolinear's products in the Vir-
tuoso design environment takes advantages of Cadence's multi-mode simulation 
and extensive layout design capabilities.   

2.3   Design Automation Tools: Comparative Analysis  

The existing design automation approaches are here compared, taking into account 
some qualitative and quantitative measures described in subsection 2.3.1.  
Table 2.3 presents the analog sizing tools used in this study and the conclusions 
are presented in the following subsections. 
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2.3.1   Specific Characteristics 

The tools described in Table 2.3 can be evaluated by several metrics that measure 
the final solution quality. The first column “date” is performance independent. 
There is no correlation between the availability of the design tool and its effi-
ciency or accuracy. On the contrary, the next three characteristics columns 
“Evaluation Class”, “Algorithm Techniques” and “Equation/Design Plan”, which 
are often used for classification purposes, will have an important influence in the 
performance and accuracy as will be shown later in this chapter.  

Particularly, the following metrics were considered in order to compare the 
characteristics of the presented applications. 

(a) Robust Design: As far as sizing is concerned, robust design has to do with the 
accuracy and robustness of the solution. Accuracy is a measure of the quality 
that shows the difference between the synthesis tool’s performance prediction 
mechanisms and the real performance of the obtained solutions, possibly in-
cluding the layout-induced degradation. Robustness can be described as the 
capacity of the sizing tool to build and test circuits tolerant to manufacturing 
faults and operating point variations. 

(b) Automation Level: It can be described as the ratio of time needed to accom-
plish the task of designing a circuit manually to the time spent on designing 
the same circuit with the help of a synthesis tool. In this metric two aspects 
must be considered: 

⎯ Run time response: The period of time taken by the optimization tool to 
give the first solution to the problem. 

⎯ Setup time: The setup time is a measure of the time spent by the designer 
to adequate the problem to the synthesis tool. This time is often longer 
than the execution of the synthesis tool. This feature is particularly im-
portant because it is strongly correlated with the success and acceptability 
of the tool. What is the advantage of a design tool which has the remark-
able prodigy to output some results in seconds, if it is necessary two 
months to setup the complete algorithm of a hypothetic circuit when it is 
known it could be designed by hand in one month? Excluding a reused-
based scenario, the answer is obvious “None”.  

(c) Scope of the tool: It can be described as a group of analog design problems, 
which can be solved by this tool. This is an important feature for analog de-
sign, because these problems usually require several types of optimization 
techniques. An analog synthesis tool which aims at solving a wide range of 
design problems will be successful in the long run, whereas tools planned to 
solve a narrow range of problems will soon be out of date. Although, it is not 
shown in Table 2.3, it will be used later for comparative analysis. 

(d)  Design facilities: It can be described as the set of additional features that can 
enrich a synthesis tool. 

⎯ Multi-objective Optimization. The DA tool presents the final solution in 
terms of a set of designs representing complementary tradeoffs of specific 
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objectives (for example, area versus consumption) instead of single de-
sign response. 

⎯ Interactive Design. The tool optionally produces intermediate perform-
ance reports (in the form of text or graphics) throughout the design exe-
cution time to inform the IC designer on the optimization progress. At the 
same time, the IC designer optionally has the possibility to interact with 
the tool in real time manner to tune up some parameters, e.g., the dimen-
sion of a transistor or the redefinition of some design bias.  

⎯ Bookkeeping Facilities. The tool should have additional capacities to 
help with the introduction and management of all the necessary data in-
cluding the management of different technological files, different classes 
of circuits (e.g., operational amplifiers, phase-locked-loops, etc.), differ-
ent performance measurements, different design parameters, different 
components, different topologies, and so on. 

⎯ Encapsulate Details.  Some tools interact with external programs and so 
it makes sense that the interface with these additional tools can be made 
in an automatically way hiding unused options.  

2.3.2   Performance Analysis 

Performance results are intrinsically correlated with several factors, like the 
evaluation engine, the search mechanism, the technological model precision, the 
computer platform used to run the application, etc.  

The computation time is highly correlated with the nature of the evaluation en-
gine. All approaches leading with models derived either by numeric equations or 
by some artificial learning machine method are able to reach solutions quickly, 
however, the quality of results are always estimated approaches and the solution 
quality only depends on the models precision [1]. This important trade-off be-
tween accuracy and computation time can be observed in Table 2.4. By contrast, 
simulation based methods that play with a high accurate circuit simulator in each 
optimization loop cycle are able to produce good quality results, but at the expense 
of higher execution times.  

In the knowledge-based approaches the execution speed is the highest of all 
methods, considering that, the design plan is already defined. In equation-based 
approach, this value is normally high and is directly related to precision of the de-
signed equations that need to be additionally introduced. The use of automatic 
methods to generate equations, like symbolic analyzers, can significantly reduce 
the input overhead and increase automation levels.  

The setup time in equation and knowledge-based approaches is normally high 
and is directly related to the precision of the designed equations that need to be 
considered. The use of tools to generate equations, like symbolic analyzers, can 
significantly reduce the input overhead and increase automation levels. In the 
simulation based approach the level of interaction is the lowest of all methods. 
Only a few configuration parameters are necessary to setup the data for the exter-
nal evaluation tool and the optimization algorithm. The behavioral-based approach 
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is compared in performance with the equation based approach once both use fast 
evaluation models, but in what concerns to setup time, they behave like the simu-
lation based one, requiring the configuration of only a small number of parame-
ters. However, additional time will be required to configure the tool to produce the 
target samples. In this case the time to build the training points will augment the 
setup time slightly. 

Table 2.4 Factors affecting tools performance 

 Knowledge Equation Simulation Behavioral 

Computation Time + + - + 

Setup Time - - - - M/-A + - 

Accuracy - - + - 

Robustness - - + - 
          M- means “by manual equation” and  A-“automatic by symbolic methods” 

          Symbols ordered from the best to the worst: ‘+’, ‘-‘, ‘- -‘ 
 
 

With regard to robustness, the most promising classes of tools come from meth-
odologies which are able to produce high accurate solutions like the simulation 
based approaches, although they require multiple simulations which adversely af-
fect the run-time of the algorithm in a few orders of magnitude. Theoretically, all 
other approaches could reach the desired robustness in case they are able to pro-
duce efficiently accurate models. However, this solution would be impractical due 
to the large time spent in the preparatory phase to obtain those models. Besides 
that, the equation-based as well as behavioral-based approaches were explored in 
order to model the distribution of variation parameters in a form which can be ef-
ficiently optimized. However, the accuracy of these approaches is questionable.   

2.3.3   Optimization Techniques 

Analog circuit design is considered a hard optimization problem and has been 
used by researchers in classical artificial intelligence, classical optimization, and 
intelligent systems as a testbench for their methods. Some of the most significant 
approaches concerning the optimization-based techniques are presented in  
Table 2.5. However, both the classical AI approaches (tree search, expert systems, 
etc.) and the classical optimization approaches have some drawbacks. The former 
suffer from the lack of flexibility: a lot of effort is needed in order to handle new 
processes, topologies, etc., and even when those are in place, the tools tend to fail 
whenever slightly different problems are handled. The latter, tend to be gradient-
based approaches, which can only be applied to local parameter optimization 
when the objective functions are differentiable and the design space is continuous. 
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Nevertheless, complex circuit problems tend to be non-differentiable and may 
have continuous or discrete design spaces making these approaches inefficient. 
The “Intelligent” systems-based approaches (EA+SA+Stochastic), on the other 
hand, offer the potential to meet the target required by an analog cell design in 
such complex search spaces. Through the observation of Table 2.5 the predomi-
nance of these methods for implementing the optimization engine is obvious.  

Table 2.5 Optimization-based techniques 

 EA SA Stochastic SA+Local AI/NN Classical 

Simulation 
Based 

Maelstrom 

GENOM 
Maelstrom 

Delight.Spice

Anaconda 
FRIDGE - - 

Equation based - 
SD-OPT 

ASTR/OBLX
Opasyn AMGIE - 

Maulik 

GPCAD 

Learning Based Alpaydin Alpaydin GENOM - 
Alpaydin 

GENOM 
- 

A significant part of the tools initially employed simulated annealing but later 
SA was used more frequently as a complement to other techniques, i.e., 
ALPAYDIN [59], MAELSTROM [57]. Combinations of two or more different 
methods are named hybrid methods (sometimes the hybridization of EA with local 
search techniques is also known as Memetic algorithms (see Sect. 3.1.4) and were 
developed to take advantage from the potentials of each solution. The idea is to 
create a new algorithm with improved capacity to explore the promising regions of 
the search space. For example, in MAELSTROM [57] system, Krasnicki et. al. 
applied a “parallel recombinative simulated annealing (PRSA) method which 
combines multiple simulated annealing algorithms that run concurrently and share 
information via a genetic algorithm scheme. The same group of researchers devel-
oped another variation called ANACONDA [56] that introduces constraints varia-
tions in transistor devices which incorporate a genetic algorithm, coupled with a 
local “pattern search” technique. The FASY [10] system is a fuzzy-logic based 
synthesis tool with simulated annealing for coarse and gradient search for fine op-
timization. The fuzzy logic chooses a topology from a pre-defined library. The 
originality of this approach is the use of a NN model, built from data collected in 
optimization runs that is employed to update the fuzzy rules. The ALPAYDIN 
[59] system is an analog integrated circuit synthesis that computes the device siz-
ing using neural-fuzzy performance models and user defined equations. The neu-
ral-fuzzy model is used to estimate some of the AC performance metrics. The  
remainder AC performance metrics are modeled by user specific equations. The 
performance model is built from a set of training data collected from SPICE simu-
lations. This system incorporates the effect of process variations but has a draw-
back since new equations must be calculated by the user for each new topology. 
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In conclusion, the analog circuit synthesis is really a demanding task, which a 
unique optimization algorithm could hardly solve. The development of new meth-
odologies and techniques should be explored to increase the efficiency of analog 
circuit design. The trends verified in this area show that the solution for some of 
the most important approaches lies on the integration of several methods to com-
bine the best of each one, and on the employing of models to reduce computation 
times.  

2.3.4    Other Characteristics  

In what concerns to the tools scope (see Table 2.6), the simulation-based and arti-
ficial intelligent methods take the high scores because they can be normally ap-
plied to a broad range of analog circuits and, similarly, they modify the design ca-
pabilities of the system without too much overhead. However, their scope depends 
on the simulator model. The equation based-approach, when dealing with manual 
design equations, has short scope, however, if equations are derived by symbolic 
tools, a better incorporation of new design problems is possible, increasing the 
scope of the tool. Knowledge based-approaches are generally close tools, because 
they are limited to a reduced number of architecture topologies and design  
objectives.  

Table 2.6. Scope characteristic 

 Knowledge Equation Simulation AI/NN 

Scope of the tool - +/- + + 

The “Encapsulate Details”, “Interactive design”, “Bookkeeping Facilities” and 
“Implementation language” issues were not subject to comparative analysis be-
tween methodologies once they do not depend on design methodology but result 
from the merit of each tool in particular.  

2.3.5   Summary  

The first efforts in the development of CAD tools started with low abstraction 
level implementations targeting primarily small systems. Large and complex sys-
tems were decomposed into small building blocks employing the expert knowl-
edge. The variety of existing tools and techniques covering several aspects of  
analog design are summarized in Fig. 2.7. The first generation of design automa-
tion tools was driven to the optimization of design parameters, leaving to the  
designer the task of selecting an appropriate architecture.  

Since then, different types of selection topologies evolved ranging from tem-
plate approaches, to bottom-up and top-down topology generation approaches, 
executing simultaneously or independently from sizing activities.  
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At the lower abstraction level, the knowledge methods based in special heuris-
tic are out of date due to the long setup times involved, in the order of several 
weeks, which do not match the tight agenda of today’s market pressure. In the 
equation based-approach, the run times are short and the setup can also be made 
short, if it uses automatic generation models, like symbolic analysis. The draw-
back is the limited accuracy of models, due to approximations or low-order design 
equations and limited flexibility in designs. The performance models based on po-
synomials and geometric programming foresee a great future if the time to pro-
duce these models is shortened or automatically generated without compromising 
accuracy. The simulation-based approach has high accuracy due to the use of cir-
cuit simulators. The generality is also high, allowing a large range of design prob-
lems to be addressed. However, the approach has longer execution times due to 
the use of a circuit simulator in the optimization loop. The model approach has 
short execution times and large generality. The model can be generated automati-
cally and systematically. The drawback is, however, the large time spent in the 
preparatory phase as well as accuracy problems. 

To conclude this topic, it must be said that effectively all presented methods 
have some points in favor and some against. Despite the broad spectrum of tech-
niques and methodologies presented, there is not any “defacto” implementation 
for this area of applications.  Despite the evolution verified in the high and low ab-
straction levels, both architecture selections, sizing and layout optimization  
remains the focus of research in analog EDA methodologies. The industrial com-
mercial tools follow closely the main trends in academia and R&D workgroups. 
Their tools primarily focus the lower level of abstraction levels dealing with de-
vice sizing and layout description levels. All types of available frameworks as-
sume the existence of a topology before the optimization run. Hence, no topology 
synthesis is available yet in any of the commercial analog EDA tools. 

2.4   GENOM Optimization Tool: Implementation Goals 

A tool aggregating all the best features, reviewed above, imposes hard challenges 
for the design of an automation tool. The set of all best covered features can be 
roughly interpreted as the main specifications of an ideal analog design tool. Natu-
rally, only a subset of the ideal tool specifications is usually implemented in prac-
tice. Several important characteristics, however, can be appointed so that a tool 
can be accepted. They can be seen as the main specifications of a new design 
automation methodology. First, there is an undeniable trends in the use of optimi-
zation-based approaches, in order to, handle the challenges of the analog design. 
Second, the ideal tool should also deal with yield in order to take into account sta-
tistical fluctuations (process variations) inherent to the fabrication process and 
varying operating conditions (supply voltage or temperature variations), to make 
the design as robust as possible. Moreover, the design correctness and accuracy 
should be as close as possible to the industry electric validation tools.  
Furthermore, the overall optimization methodology should be as efficient as pos-
sible. Due to the existing trade-off between accuracy and computation time  
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(section 2.3.2), this important goal can not be treated individually. However, the 
performance achieved by the resulting tool should outperform the traditional 
methods or existing methodologies or tools. In order to have wide acceptance this 
tool should allow the designer to modify the design configuration in a short time. 
A graphical user interface has to be supplied in order to increase the productivity. 
The GUI interface adds reporting information, as the designer is able to evaluate 
some dynamic parameters of the optimization process and carry out some configu-
ration steps (interactive design, and flexibility). As finally, the resulting applica-
tion should be preferentially designed in an independent platform or integrated 
with current EDA design environments. The interaction with externals tools 
should be carried out with open standards, if possible, to make the application in-
tegration in industrial design easier. 

Following the trends presented by several modern tools, GENOM combines 
state-of-the-art modeling and searching techniques to deal with the complexity of 
analog circuit design problem. Since it cannot be granted that derivatives of the 
objective functions are known for the generality of this multiobjective problem, 
we have to trust non-derivative optimization methods, hence this thesis assumes 
these methods as the best choice. To ensure the design correctness and accuracy, 
GENOM employs a standard simulation tool in the loop of a modified genetic al-
gorithm kernel allowing the corner simulations. To increase the efficiency of the 
evolutionary algorithm, a machine learning algorithm based on SVM was intro-
duced. The proposed approach results in a new GA-SVM learning scheme applied 
to analog circuit design composed by the interaction of two machine learning en-
gines. GENOM is primarily designed to increase the automation level and so it 
encapsulates much of intrinsic algorithm parameters from normal users but it per-
mits some algorithm parameter changes to restricted users, through a configura-
tion file. To allow a better use of available resources GENOM allows the execu-
tion either in a single processor machine or in a multiprocessor distributed 
environment. For efficiency reasons the GENOM code was written in C, therefore, 
the default user interface is text file oriented despite it has built-in functions which 
allow it to integrate a graphical in-house design environment.  The following 
chapters will explore the details of this new tool. 

2.5   Conclusions 

Automated design of analog circuits, also referred to as analog circuit synthesis, 
has been the subject of active scientific research for many years now. This chapter 
has covered some of the most significant design automation methodologies ap-
plied to analog IC design automation. Here, a set of general properties, that allow 
the characterization of each approach, was been identified and a better insight re-
lated to advantages and limitations has been presented.  

The characterization of each different approach supports the definition and 
identification of the general specifications for a new design automation methodol-
ogy to be implemented in GENOM, a tool that will be applied to the automation of 
mixed-analog ICs. 
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3   Evolutionary Analog IC Design 
Optimization 

Abstract. This chapter starts with an overview on computation techniques aiming 
to solve nonlinear optimization problems with emphasis on evolutionary optimiza-
tion algorithms and discusses their relevance to analog design problem. The main 
virtues and weaknesses, as well as, the design issues of evolutionary algorithms 
are discussed with a description of the recent developments in this field. This 
chapter also introduces a new optimization kernel based on genetic algorithms ap-
plied to analog circuit optimization. It includes a detailed description of the coding 
schemes, the fitness function, the genetic operators and other design strategy crite-
ria. Finally, a robust IC design methodology supported by the optimization kernel 
is presented in the end of the chapter.  

3.1   Computation Techniques for Analog IC Design – An 
Overview 

During the past decades significant activities have been carried out on the analog 
design automation focusing the problem of automatically sizing the circuit, auto-
mating topology selection and layout generation. The following sections review 
some computation techniques used to solve the analog IC design problem. 

3.1.1   Analog IC Design Problem Formulation 

Analog IC design has been seen as the hard topic of IC design for a long time. As 
discussed in the introductory chapter the main reason for this design effort is that 
analog design is knowledge-intensive, due to the deeply nonlinear behavior of the 
performance measures and the strong sensitivity of these measures to variations in 
the design parameters, having as result design problems with extremely complex 
trade-offs. Mathematically, the analog and mixed design problem (AMDP) can be 
formulated through the following general nonlinear programming (NP) expression 
[1]-[5] of a general multi-objective problem: 
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where, x is multidimensional vector of decision parameters in nℜ delimited by an 
upper and a lower bound given by i

max
i
min xx ≤≤ ix . ( )x F  represents the vector of 

m objectives ( )(),...,(1 xfxf m
) to be minimized or maximized and ( )xG  the vec-

tor of p constraints that must be satisfied to guarantee the feasibility of the solu-
tion. When m equals to one, the expression 3.1 corresponds to a single objective 
problem, when m is greater than one, it stands for a multi-objective problem. 
Normally, the elements of ( )xG are handled explicitly by inequality expressions 

relating the desired value of hard specifications taking form 

kkjjii SpecsxgSpecsxgSpecsxg =≥≤ )(or    )(or    )( with pkji =++ . In the branch 

of operational research (OR), the equality constraints can alternatively be trans-
formed into a pair of inequality constraints taken from 

kk Specsxg ≤−ε|)(| , 

where ε is a small allowed tolerance. From now on, this transformation will be 
implicitly assumed every time inequality constraints are referred in the text. The 

domain space Ω is a nonempty set in nℜ and the objective functions 
are ℜ→ℜn

if : .  

The estimation of each design alternative, concerning one or several different 
objective functions and multiple constraints represent a global, high-dimensional 
optimization problem. The aim of this multi-objective, multi-constraint problem is 
to catch up the best relation between circuit performance (e.g. power dissipation, 
circuit area, gain, gbw, etc.,) and design parameters (e.g. the width W, length L, 
resister values R, capacitor values C,…) subject to some constraints (e.g. geome-
try constraints, designer rules, etc). Specifically, the undertaken design problem 
tries to find the particular values of the design parameters ( **

2
*
1 ,...,, nxxx ) belonging 

to Ω which yield a point or a region in the performance space of the objective 
functions that satisfies the required specifications as illustrated in Fig. 3.1.  

 

Fig. 3.1 Basic concepts in multi-objective optimization 
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From this point forward any abstract task accomplished to solve a problem or to 
look for the best solution can be perceived as a search through a space of potential 
solutions. A number of approaches have been described in the last chapter to find 
the global optimum of the cost surface associated to a high-dimensional optimiza-
tion (AMDP) problem. These approaches can be classified as knowledge-based 
methods, employing design knowledge and heuristics, and optimization-based 
methods, making use of numerical programming techniques. When seeking for the 
decisive objective (ultimate goal) i.e., finding the global optimum solution with a 
minimum number of function evaluations or running time, both approaches pre-
sent some strengths and limitations. The work developed in this research is com-
mitted to explore an optimization-based approach. The next sub-section briefly  
reviews some of the most promising algorithm techniques to solve such a complex 
problem and explains the choice taken to structure the framework presented in this 
book.  

3.1.2   Numeric Programming Techniques 

Both the research community and the industry have been paying extra attention to 
optimization algorithms for the past few years. Optimization algorithms have be-
come an important research area due to their efficiency in achieving approximate 
solutions to NP-hard [3] problems and in solving problems where no analytic 
method applies, for instance, solving nonlinear differential equations. Besides, op-
timization algorithms can be applied to a wide range of situations, as most scien-
tific and industrial design problems may be formulated through an optimization 
task whose aim is to minimize or maximize a given objective function and might 
involve linear or nonlinear constraints, integer and/or continuous variables, sto-
chastic or deterministic inputs, and single or multiple criteria objectives. In the 
field of numeric optimization there is a vast range of optimization methods, the 
most of which can be categorized according to [6] in Fig. 3.2.  

Some of these methods may be better adapted to the nature of the specific prob-
lems pointed out by the intermediate nodes or applied to a wide spectrum of prob-
lems like stochastic programming. Therefore, the knowledge of the problem  
nature allows the choice of more suitable optimization algorithms. Picking the cor-
rect optimization algorithm is an essential step to obtain the best trade-off between 
accuracy and time efficiency in all optimization problems. For example, when the 
problem is exclusively represented by a set of linear equations, linear program-
ming (LP) techniques are more appropriated. The simplex algorithm, developed 
by George Dantzig [7]-[8], is one of the most popular methods to solve LP prob-
lems, like the “traveling salesman” which aims to find the minimal traveling dis-
tance. For this kind of problems, equality constraints are welcome, because it is 
known that if the optimum exists, it is situated at the surface of the convex set, 
whereas inequalities can be manipulated mathematically to equalities by the addi-
tion of slack variables [3]. 
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Fig. 3.2 The optimization tree outlines of the major algorithms in each area 

However, determining the global optimum to the general nonlinear program-
ming problem can be a challenging task since there is no specific method capable 
to do it in a systematic way [3], although it can be found in certain circumstances, 
i.e., when the objective functions and the constraints satisfy certain properties. 
Appendix B will briefly address the characteristics of some general purpose opti-
mization techniques for nonlinear problems including random search methods 
(Appendix B.1), gradient-based methods (Appendix B.2), constraints program-
ming (Appendix B.3), stochastic methods (Appendix B.4), and multiple objective 
optimizations (Appendix B.5). The table 3.1 briefly resumes the described optimi-
zation methods as well as their main advantages and limitations.  

3.1.3   The No-Free-Lunch Theorem 

To look for the best performance algorithm in the field of optimization algorithms 
is considered a utopia. A very important theorem generally accepted by the com-
munity, known as the “No Free Lunch Theorem” (NFL) [23] states that it cannot 
exist any algorithm which solves all kinds of problems. On average the “perform-
ance of any pair of algorithms across all possible problems is identical”. A possi-
ble illustration of this theorem can be seen in the Fig. 3.3 where on average both 
algorithms perform equally well when considering a broad range of different prob-
lems. In particular, if some algorithm A outperforms B over some set of optimiza-
tion problems, then the reverse must be true over the set of all other optimization 
problems. 

Although there is a long list of available optimization algorithms it is not 
known any method tailored to deal directly with the complexity of Analog Design 
problem in order to obtain the best trade-off between performance accuracy and 
time efficiency. A great part of them are customized to some specific class of  
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Table 3.1 Properties of general purpose optimization methods for nonlinear problems 

Optimization 
method 

Type of problems &  
description 

Advantages Limitations 

Random 
search 

Global unconstrained. Con-
sists in selecting randomly 
potential solutions and eva-
luating them.  

The easiest form of heuristic 
search. Often used as a ref-
erence tool. One known ex-
ample is the Monte Carlo 
(MC) method. 

Blind search, doesn’t 
use any domain-specific 
information to guide the 
search; search is usually 
slow. 

Gradient 
based 

[9]  

Local unconstrained nonlin-
ear optimization which ap-
plies the concept of succes-
sive search, based on the 
information of gradient or 
derivative function.  

Used for local search, im-
proved version like Newton 
method converges fast.  

Requires the derivative 
of objective function 
and uni-modal spaces. 
Only takes into account 
local information. 

Optimization 
method 

Type of problems & de-
scription 

Advantages Limitations 

Constraint 
Programming 
[10]-[13] 

Constraints continuous or 
discrete. Penalizes the  
solutions that are near or 
violate the constraints 
boundaries with an amount 
proportional to constraint 
violation. 

Models complex problems 
easily. 
Increase the efficiency of 
the search using the con-
straints to prune the search 
space. Mature tools. 

Weakness when dealing 
with cyclic dependen-
cies. 

Stochastic 
Search 

[14]-[16]  

Local and global search 
continuous or discrete.  
Does not require a continu-
ous, a convex or differenti-
able cost function. 

Model Multi-Objective, 
multimodal, Multi Con-
straints, Nonlinear Objec-
tives. Encloses a High  
spectrum of applications. 

Performance efficiency. 
Because of their prob-
abilistic nature the global 
optima requires many it-
erations to converge. 

Multi-
objective Opt. 
[17]-[19] 

[20]-[22] 

Global search continuous or 
discrete. Problems requiring 
the optimization of more 
than one conflicting objec-
tive functions. 

Model Multi-Objective, 
Multi Constraints, Nonlinear
Objectives, Trade-offs  

Performance efficiency.  

problems exploiting certain features and accordingly to the NFL theorem they are 
able to achieve high performance patterns. In the classical optimization tech-
niques, the majority of the proposed methods are predominately local in scope, re-
lies on derivatives and are not robust enough in discontinuous, vast multimodal or 
noisy search spaces [25], so they are more efficient in solving linear, quadratic, 
strongly convex, unimodal and many other special problems. On the other hand, 
stochastic algorithms and specially the evolutionary algorithms own a set of in-
trinsic properties (reviewed in preceding section) which allow them to deal with 
highly complex optimization problems, like the analog IC design – defined as a 
non-lineal, high dimensional, high constrained, multi-objective problem. How-
ever, it cannot be expected that an optimizer based on stochastic algorithms could 
give good results for all spectrum of applications (no free lunch). Stochastic opti-
mizers are not considered a black box system, hence they must be tailored with  
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expertise for each specific problem. This will be the subject of the next section 
where an analog design optimization tool matching the analog IC design problems 
(for the design of IC circuits) based on a standard stochastic evolutionary algo-
rithm will be presented in detail. 

 

Fig. 3.3 The no-free-lunch theorem representation [24]  

3.1.4   Evolutionary Computation Techniques Overview 

In the past few years, evolutionary computation (EC) [24]-[27] has gained increas-
ing notability since it is becoming the method of choice for solving complex prob-
lems especially when classic methods cannot be efficiently applied or have a  
difficult formalization [28]. Besides the advantages inherited from stochastic algo-
rithms, EAs own several characteristics that make the difference from other opti-
mization and problem solving techniques [29]. Table 3.2 summarizes its main 
characteristics. In few words, evolutionary computation constitutes a class of itera-
tive and stochastic optimization techniques inspired by concepts from Darwinian 
natural evolution theory, namely the genetic inheritance and the strife for survival. 

Evolutionary computation embraces a range of programming techniques such 
as genetic algorithms [30] [32][33][34][35], evolution strategies [31], evolutionary 
programming [32]-[33] and genetic programming [34]-[35]. Evolution Strategies 
(ES) and evolutionary programming (EP) were developed independently at the 
same time as genetic algorithms (GA). Although these techniques have the same 
aims and use the same basic structure cycle, there are slight differences related to 
the representation of candidate solutions and the implementation of selection, re-
combination and mutation operators. The Table 3.3 resumes the described tech-
niques. At present there are no big differences between these approaches. Many of 
the algorithms only differ in slight details, because of the constant interchange and 
crossing of ideas between the different approaches. As far as representation and 
type of operators is concerned, most researchers came to the decision that the best 
solution representation should be achieved according to each specific problem. 
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Table 3.2 EAs main characteristics 

Properties Description 

Flexible  

They can adapt easily to different types of problems or can be applied in a 
problem with little prior knowledge, avoiding in-depth mathematical represen-
tation which is difficult and sometimes impossible to acquire for some complex 
problems. 

Simple  They allow short timings for model setup and easy changes of the problem. 

Robust  They can be effective in noisy environments. 

Adaptive  
They can deal with self-adaptation, allowing dynamic changes of process pa-
rameters. 

Decentralized 
Due to the ability to lead with populations of solutions, they are easily paral-
lelizable [36], [26], taking advantage of the power of distributed and higly par-
allel computing environments. 

Table 3.3 Milestones in Evolutionary Techniques - Overview 

Evolutionary Tech-
niques 

Main Contributions Activity Period 

Evolution Strategies  by 
Ingo Rechenberg and 
Hans-Paul Schwefel 
[31]  

Introduce the continuous parameter optimization and 
expand the mutation operator to continuous stochastic 
variations. Don’t use crossover operator. A new concept 
of breeding based on (μ+λ)-ES and (μ,λ)-ES strategies. 
Use self-adaptation to adjust control parameters of the 
search. 

In the 1960s 
and early 
1970s 

Evolutionary Program-
ming by Fogel  

[32],[33] 

Applies the FSM concept to represent candidate solu-
tions and use variation and selection strategies adapted 
to this environment. Evolves populations of solutions 
with mutation and selection. 

At the end of 
1960s 

Genetic Algorithms by 
Holland's (Original)  

[30] 

Use discrete encoding representation, traditionally in bi-
nary as strings of 0s and 1s. Apply the simple evolution-
ary algorithm in optimization problem able to evolve 
toward better solutions. 

Became popu-
lar in 1970s 

Genetic Programming 
by Koza [34],[35]. 

Represents individuals as executable hierarchical trees 
of computer programs (code) that can be mutated by 
changing or swapping subtrees representing many dif-
ferent kinds of problems. 

Begining of the 
90’  

During the last few years there has been significant progress in evolutionary 
computation techniques and the field of applications has expanded considerably. 
There are some other approaches which adopt mechanisms from nature. Table 3.4 
reviews the most important trends in this domain and summarizes the main advan-
tages and disadvantages of recent EC techniques.  
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Table 3.4 Recent trends in evolutionary computation - Overview 

Optimization  
Algorithms 

Main Contributions Drawbacks 

Ant Colony Optimiza-
tion (ACO) [37] was in-
troduced in and early 
1990s 

Deals with the parallel search and use of mem-
ory structures to hold information on the quality 
of the historical results. They have an advantage 
over other stochastic algorithms like SA and 
GA. When the graph changes dynamically; the 
ant colony algorithm may adapt to changes in 
real time.  

Oriented for solving 
hard combinatorial 
and constraint discrete 
optimization prob-
lems. Coding is not 
straightforward. 

Particle Swarm Optimi-
zation  (PSO) [38] was 
introduced in middle of 
1990s 

Is conceptually simple due to a small number of 
parameters to adjust and is oriented for paral-
lelization. It does not require many user-defined 
parameters. Is flexible because it can be de-
signed for local minimization as well as allows 
the incorporation of algorithms or heuristics for 
global optimization.   

Parameters depend-
ency. Slow conver-
gence in the vicinity 
of the global optima. 

Estimation of Distribu-
tion Algorithms (EDA)  

[39],[41] 

Incorporates methods for automated learning be-
tween variables. Uses probabilistic models con-
sidering discrete or continuous, independent or 
dependent variables. The crossover and muta-
tion operations were replaced by estimation and 
sampling of a probability distribution. In some 
application outperforms GAs.  

EDAs are not efficient 
or applicable to the 
continuous optimiza-
tion, real-time optimi-
zation and multi-
objective optimiza-
tion.  

Differential Evolution 
(DE) [42] was intro-
duced in middle of 
1990s 

Easy to use method based on EAs. The varia-
tions schemes implemented in DE to create off-
spring, automatically execute a step size adapta-
tion as the search process converges toward 
good solutions.  

There are a number of 
variations (schemes) 
and it is unclear 
which scheme per-
forms the best under 
static conditions. 

Cultural Algorithms 
(CA) and Immune Sys-
tems [43] 

The knowledge is the fundamental key to 
achieve the requirements of a decision making 
process. Apply techniques in order to acquire 
knowledge and save them in the “belief space” 
and then use it to bias the search. This technique 
was used in GENOCOP tool. 

This technique only 
deals with linear con-
straints, as the origi-
nal GENOCOP. 

There are some other approaches involving hybrid systems. Classical simple 
EAs usually cannot compete with other state-of-the-art algorithms that are specifi-
cally adapted to some particular type of problems. On the other hand, the demand 
for even more accurate and efficient evolutionary algorithms in a broad range of 
applications led to the development of many hybrid approaches, where an evolu-
tionary algorithm can be combined with local search heuristics and problem-
specific variation operators or expert encodings. These hybrid approaches also 
known as memetic algorithms [44]-[46], employ several metaheuristics such as 
simulated annealing, tabu search and guided local search methods in combination 
with EAs, in order to efficiently improve the exploration process of major areas of 
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the search space, as well as, the local exploitation related to the fine-tuning of the 
most promising candidate solutions [47]. There are other approaches that combine 
EAs with exact optimization techniques [48] such as, dynamic programming, 
branch-and-bound, and integer linear programming techniques. Very often these 
hybrid approaches extended by the problem of specific knowledge, outperform the 
standard evolutionary methods, as well as, other standard techniques.  

Nowadays, many of the state-of-the-art EA-based techniques are rather com-
plex, problem-specific hybrid systems. EAs can be described as very flexible tools 
since they are able to be hybridized with problem specific techniques to improve 
performance. In conclusion, combining an EA-framework with other techniques 
should be recognized as a contribution of great worth.  

3.2 Key Issues in Evolutionary Search 

EAs have a rich historical background of experience and research, oriented for 
the optimization of the convergence processes that consistently finds an approxi-
mate solution quickly and efficiently, suitable for a broad range of applications.  

The basic evolutionary process described in Appendix C.1 and exemplified in 
Appendix C.1.3 for the optimization of constrained problems, contains a minimal 
set of features that make evolutionary algorithms competitive to solve hard global 
optimization problems. They provide a set of unique properties that allow dealing 
with a broad range of nonlinear problems where traditional optimization tech-
niques, like gradient descent, hill climbing, and purely random search, are often 
inefficient or inadequate. Due to its success and usefulness already proved in en-
gineering applications, the branch of evolutionary computation has been object of 
continuous development. Table 3.5 lists of the main ongoing research themes re-
lated to evolutionary optimization found in the most recent literature. 
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Table 3.5 Key issues in EAs 
 

Description Advantages and Disadvantages 
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In the original form, EAs do not define a me-
chanism able to guide efficiently the search 
towards the feasible region in constrained 
search spaces. A wide variety of techniques 
have been adopted to handle all kind of con-
straints such as the use of, penalty functions, 
specialized representation and operators, re-
pair mechanisms, separations of objective 
and constraints and hybrid methods. From 
the universe of EA the most common ap-
proach is the use of penalty functions to  
those solutions that violate constraints. The 
most common approach uses the amount of 
constraint violation to penalize an infeasible 
solution, thus promoting the selection of fea-
sible solutions.  

In spite of the great variety of methods there 
is not a proved method to solve all different 
sort of constraint (linear, nonlinear, etc) 
problems [44]. This means that the suitable 
chosen method when there is no knowledge 
about the domain is still an open research 
problem. Since the penalty based approaches 
are easy to implement and are also quite ef-
ficient, they are often used as the first choice 
in spite of their known limitations. Penalty 
functions require a precise judgment of the 
penalty factors so that the right combination 
of penalties is discovered, thus a balance be-
tween feasible and infeasible solutions will 
be met. A disadvantage of this approach is 
that it is dependent on the problem.  
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Any evolutionary optimization technique re-
quires a mechanism in order to maintain di-
versity in the population. If there is no diver-
sity, the search will be concentrated only in 
one area of the feasible region, in a phe-
nomenon known as genetic drift. There are 
several ways to maintain diversity, among 
them, niching methods and the use of muta-
tion have become the most popular ones. The 
niching methods are the extension of EAs 
and make it possible to find more than one 
local optimum of a function. Sharing and 
crowding are the best known and popular 
niching techniques. Both aim to decrease the 
fitness of individuals that are located in 
crowded regions in order to promote the pro-
liferation of solutions in sparse regions. Shar-
ing uses the concept of distance to its closer 
neighbor while crowding is controlled by the 
density of solutions in a region or population.

The use of mutation methods to increase di-
versity is one of the main goal in EAs (high-
light in 3.3.5). However, there is not any de-
terministic formula concerning the optimal 
settings wherever it is used in static or dy-
namic mutation mode.  

When comparing niching approaches, the 
sharing method presents several drawbacks.  
Sharing has difficulty in distinguishing the 
local optima that are much closer to each 
other than the niche radius. Thus it is neces-
sary to know a priori the distribution of the 
optimum and define the suitable value of 
niche radius. Special attention should be 
given to evolutionary operators, for exam-
ple, the mating between chromosomes in 
different niches may often produce unsuc-
cessful offspring. 
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Table 3.5.  (continued) 
 

Description Advantages and Disadvantages 
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The convergence speed in evolutionary opti-
mization follows three independent branches 
of research. One explores the mixture of 
complementary optimization techniques to 
improve the performance of the overall algo-
rithms. The hybridization of local search 
techniques with EAs known as memetic algo-
rithms can also improve the convergence 
speed near the optimal. Another approach 
explores the multiple solutions available in 
distributed computation. A different ap-
proach uses dynamic reduced models or ap-
proximate models (will be focused later) to 
accelerate genetic algorithm based on design 
optimization.   

There is a great variety of hybrid methods 
that combine the best of each technique [57-
59]. Although no mature methodology has 
been established yet, research has proved the 
efficiency of these approaches to increase 
the speed and sometimes the accuracy in a 
variety of problems. The increase of effi-
ciency using distributed computation tech-
niques is an obvious attractive approach to 
take advantage of the increasing capacity of 
computation resources available nowadays. 
EAs coding structures are relatively simple 
to adapt to distributed environment.  
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The area of research known as Evolutionary 
Multi-Objective Optimization, or EMOO for 
short, is one subject of  constant active re-
search in field of evolutionary computation. 
EMMOs are designed with regard to two 
common goals, obtaining a fast and reliable 
convergence to the Pareto front and ensuring 
a good distribution of solutions along the 
front. The main themes of research are fo-
cused on techniques for handling constraints, 
maintain diversity of the solutions, hybridiza-
tion with other local search methods and ar-
chiving for storing non-dominated vectors. 
The main influent approaches are MOGA, 
NSGA, NPGA and SPEA as highlight in [4]-
[5],[19]-[22]. 

The main themes of research are similar to 
general EAs, however they differ in meth-
odology. MOO is tailored to deal with multi-
objective optimization problems. A great 
debate exists around the quality and the vir-
tues of SOO and EMOO approaches. Recent 
studies [61] which compare the performance 
of a single-objective genetic algorithm with 
an EMOO approach indicate that there is no 
dominant method when comparing the per-
formance in set of multi-objective problems. 
The results obtained demonstrate that 
EMOO algorithm outperforms SOO in some 
cases but does not work well on problems 
with many objective optimization functions.  
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Table 3.5 (continued) 
 

Description Advantages and Disadvantages 
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Despite the great success of the use of Evolu-
tionary algorithms in some industrial and en-
gineering design problems, it may become 
impractical in the case of high computational 
cost evaluations or when an explicit objective 
function does not exist. One approach to 
overcome this problem is to estimate the ob-
jective function by constructing approximate 
(or surrogate) models that are used to replace 
exact but expensive evaluations, thus reduc-
ing the design computational cost. Several 
models have been used, ranging from re-
sponse surface models (or polynomials), the 
krigging model, very popular in design and 
analysis of computer experiments (DACE), 
neural networks, support vector machines, 
etc. The use of approximate models in evolu-
tionary computation can also lead to a reduc-
tion in true objective function calls. A de-
tailed survey of fitness approximation in 
evolutionary computation can be found in 
[48].  

The use of cheap surrogate models to be 
used in lieu of exact models makes EAs a 
viable tecnology to be applied to computa-
tionaly expensive problems.  Aproximate 
models are in order of magnitude cheaper to 
run. However, the integration of approxi-
mated models with EAs to real-world prob-
lems have met limited success. The main 
drawback is that the computational cost 
demonstrated specially with response sur-
face models (which involve low-order poly-
nomial regression) as well as with the krig-
ging model becomes unacceptable as the 
dimensional of the problem increases. This 
effect known as the “curse of dimensional-
ity”, represents the amount of complexity 
caused by the exponential increase in the so-
lution space with the addition of a extra di-
mension.  
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Adaptive parameters is the branch in research 
of EAs dealing with the control parameter or 
strategy parameters that allow the adjustment 
of parameter values during the evolutionary 
process. Parameters controlled during the run 
have gained much attention and their tech-
niques inspired from ESs domain can be 
classified in three main groups: deterministic, 
adaptive and self-adaptive control mecha-
nisms. In the deterministic control, the strat-
egy parameters are modified by some deter-
ministic rules but without using the feedback 
from the search. The adaptive approach uses 
the knowledge adquired in evolutionary 
process to refine the strategic parameters. In 
the self-adaptive approach, no direct feed-
back control is used, the control parameters 
are treated as optimization variables encoded 
in the chromossome which evolves during 
the evolution process using the standard algo-
rithms operators.  

In spite of the increase of flexibility when 
compared with the static parameter tuning 
mechanisms, the deterministic an adaptive 
approaches require in both cases, the right 
definition of deterministic rules which could 
be difficult to obtain. The adaptive with 
feedback control has an additional advantage 
over the deterministic since the feedback re-
turned from the process may help to decide 
if the trend with the new parameter value 
should persist or not. 

The use of self-adaptive techniques simpli-
fies the problem. In the mutation control pa-
rameter case the optimized parameter is re-
lated with the speed of step size adaptation 
rather than the step sizes themselves. Their 
default values can be applied with success 
for certain types of problems even though it 
is not guaranteed the fastest adaptation 
scores.    

 



3   Evolutionary Analog IC Design Optimization 61
 

3.3   GENOM - Evolutionary Kernel for Analog IC Design 
Optimization 

Here a new approach to multi-objective optimization, GENOM, is introduced.  
Fig. 3.4 overviews the main building blocks of GENOM optimization system. The 
modified GA kernel which forms the central unit of this system is surrounded by 
the evaluation engine unit and other additional units with computation facilities 
involving remote communications and data processing. This section discusses the 
internal structure of the analog optimization tool, which was extended with new 
concepts, from an initial standard genetic algorithm to a modified GA implemen-
tation (GA-MOD) leading to an improvement in both robustness and efficiency. 
The proposed methodology corresponds to a simulation based approach, since it 
can be applied to all types of design circuits, producing highly accurate results and 
providing an extended layer of analysis, concerning the robust design required in 
the industrial environment. 

Next, the optimization algorithm kernel, as well as, its particular aspects will be 
described, such as the multi-objective multi-constraint function formulation, the 
structure representation, the evolutionary control strategy, the self-adaptive pa-
rameters, premature convergence, etc. 

 

 

Fig. 3.4 GENOM system overview 

3.3.1   Fitness Function Study 

The optimization methods introduced new challenges when solving multiobjective 
problems. Designers have to formulate a fitness function that better represents the 
objectives of the problem, and need to setup the decision maker (DM) preferences 
in the presence of multiple conflicting design metrics. DM preferences, defined 
before, during or after the optimization process [13],[58]-[61], express the impor-
tance level of each objective and can take the form ”high”, “medium” or ”low”. 
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DM preferences incorporated in the fitness function will assist the selection of the 
optimal solution, providing that one exists. 

One of the easiest and perhaps most widely used method to carry out perform-
ances trade-offs is the weighted sum approach (3.2). DM preferences are taken 
into account by assigning several weightings, for each objective function fi(x). A 
weighted sum approach transforms a multi-objective optimization problem in a 
single-objective optimization problem. 
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In spite of the simple formulation, there is no definite articulation between the 
weightings and the obtained solution. The determination of the weightings from 
the decision makers’ preferences is not an accurate procedure, either. This method 
presents another disadvantage, as with convex combination of different objectives, 
solutions at non-convex part of the pareto-front cannot be located [61].  

Both user preferences and fitness function are the key factors for the effective-
ness of the optimization problem. The fitness function of a multi-objective optimi-
zation problem must reflect the exact needs of the design and the designer. To  
accomplish both objectives, the fitness function, in GENOM, is formulated by the 
minimization of a cost function which defines the relationship between the opti-
mization parameters and design performances, designed in order to take into  
account the trade-offs of different objectives, reflecting the designer needs. The 
proposed formulation is presented next. 

3.3.1.1   Multi-objective Cost Function  

Within GENOM, the designer has three different classes to express the main ob-
jectives with respect to each design metric. Fig. 3.5 outlines the membership func-
tions of each class.  

The values of the performance metric under study are on the horizontal axis, 
and the class-function to be minimized for that design metric, is on the vertical 
axis. Each class, representing a unique desired behavior, is available in two ver-
sions, the soft and the hard constraints. The soft class functions are aggregated in 
an objective function whose goal is to find the preferred solution among some pre-
ference criterion and the hard classes become the constraints because they repre-
sent the absolute limitations imposed on the system.  

The above framework, derived from the Physical Programming methodology 
[62],[63], presents a more flexible and user-friendly solution as it grasps the de-
signer’s physical conception of the aimed design. In this method designers give a 
desired value which is employed to form a class function, instead of providing 
weights to establish priority on objectives. These class functions aim at the con-
vergence of the algorithm and at the same time provide a complete set of pareto  
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Fig. 3.5 Classification of preferences for each performance metric 

points. Like in fuzzy logic, the given set of values help quantifying an acceptable 
or unacceptable result as they fit within some tolerance into the desired objective. 
The tolerance boundaries are automatically determined accordingly to the target 
values previously defined for a given performance metric. One advantage of this 
method is that the designer does not need to provide information related to weight-
ings and only has to concentrate on data concerned with circuit design. When 
compared to strict preferences, fuzzy preferences like the ones depicted in Fig. 3.5 
have another advantage. They can improve the quality of solutions in the evolu-
tionary cycle. For example, if an infeasible sample is very close to the feasible  
region, missing almost all specs and using a strict preference, it will be, almost 
certainly, discarded from the evolutionary cycle due to a hard penalizing factor. 
However, the employment of fuzzy preferences together with an appropriate selec-
tion method, as used in this approach, greatly increases the likelihood of the sur-
vival of this sample, and so, its potential schemata will have a chance to evolve. 

In GENOM, the fitness function was formulated as the sum of several aggre-
gated cost functions. The aggregated cost function presented in the following  
expression (3.3) measures the design specs satisfaction degree.  
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Where nSpecs is the number of target performances, F represents the class func-
tions that better express the main objective fi with respect to each design metric 
and the scale factor, S, accommodates the results for efficient data treatment. In 
the same manner, GENOM fitness function also handles with constraints satisfac-
tion, this mean the functional constraints related with designer rules. The new 
component is given by (3.4) where nConst is the total number of constraints: 
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 Finally, the aggregate cost function also incorporates the corner analysis. The fi-
nal expression given in (3.5) is then automatically implemented according to the 
given information. The nCorners parameter represents the number of corners. 
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Fig. 3.6 illustrates the specification of the gain-bandwidth of an amplifier (gbw) 
and respective class function F profile.  

 

Fig. 3.6 Tolerance limits of a class function 

This example adopts the soft class-1 function that maximizes the gbw criterion. 
Between the desirable target specification and the other extreme admissible value, 
five regions that characterize the degree of desirability are created such as, the 
ideal, tolerable, undesirable, high undesirable and unacceptable. These regions are 
defined in the order of decreasing preferences. 
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With exception of class-3, four boundary values were necessary to build this 
class function. The band class-3 function in general is defined by eight values. 
These values translate the designer preferences for each range of each given de-
sign metric. Only the two extreme values introduced by the designer are manda-
tory, the other ones can be automatically calculated. Whatever the case, the value 
returned by the specification class-function is the same at each of the region 
boundaries, regardless of class-type or criterion. Class functions are built in such 
way that the vertical excursion [ ])(xfF i

 over two distinct criteria will always have 

the same vertical magnitude as long as one travels across the same region-type, 
even if the location of the boundary values ( )(xfi

) changes from criterion to crite-

rion. This property encapsulates a normalizing function in which every region-
type is conditioned in the same way for different criteria.  

3.3.1.2   Cost Function with No Preference Articulation 

When it is not known any preference information about performance metrics be-
yond the target performances values, a weighted cost function (3.6) is being used 
giving each evaluation a satisfying degree (rank) of a candidate solution related to 
the desired specification. It privileges solutions with maximum satisfied specifica-
tions and distinguishes the best solution, as the one that minimizes the difference 
between achieved performance values and specified target value. 
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Fitj(x) is a set of normalized objective functions derived from goals and perform-
ance specifications to be optimized and Ctrk(x) is a set of normalized user-defined 
functional constraints. Once the user specifies an upper or a lower bound for the 
design constraints (goal), these are used to translate the achieved design and con-
straints specifications in cost function profiles accordingly to the Fig. 3.5. The  
indices j and k are the number of objective and functional constraint functions, re-
spectively. The aim of these normalized functions is to assign an equal importance 
to each competing specification. The designer can now setup the relative impor-
tance for each competing specification adjusting the individual scalar weights wpj 
and wck. At the beginning, greater weight values can be assigned to important de-
sign objectives and design constraints. With this formulation the optimized algo-
rithm can further explore the solution space and generate more than one circuit 
feasible solution. 
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Table 3.6 Normalization overview 

n Type SPECs TARGET  
Achieved  
Performance 
    ( pj ) 

Objective 
Function 

)(xFit j  
∑=
SpecifN

j

jji xFitwpxf

º

)(*)(  

1 Perf. DC gain Gain > 80 90 dB 0 fi(x) = 0 

2 Perf. GBW Gbw > 200 150 MHz -0.25 fi(x) = 0.25 

3 Goal Power min (power)  Valid spec. (*) (*) 

4 Goal Power min (power,0,10) 5 mw 0.5/10  fi(x) = 0.25+0.05 

(*) Problem dependent. 

Table 3.6 gives an overview of the two different types of normalization applied 
in GENOM.   

The no.1 performance specification was entirely fulfilled so the respective class 
objective function is null and the contribution to the aggregate cost function fi(x) is 
zero. The no.2 performance specification is the same type as no.1, however, the 
target was not achieved, so the respective class objective function Fitj(x) produces 
a value proportional to the missing target value. This type of normalization aims to 
balance the intensities of all performances, as well as, all function constraints.  

A particular case is devoted to the design objective of the problem. In GENOM 
the design objectives or goals specs can be defined between two intervals (mini-
mum and maximum) as defined with spec no.4. Alternatively spec no.3 can also 
be used however, the maximum and minimum is calculated automatically as de-
scribed in Fig. 3.7. The normalization for design goals specs follows expression 
(3.7). The contribution for the final aggregate cost function is scaled down by a 

factor of 10, 
10

)(
)(

xFit
j

jxFit = , called the residual. This procedure prevents the ap-

pearance of a dominant individual with extremely lower goals that does not fulfill 
one or more regular performance specs. 
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The very first idea behind GENOM fitness formulation is, first, to seek for the fea-
sible solutions (satisfying all Perf. constraints) and after, optimize its goals 
(power, area, etc.). Once a feasible solution is found, the aggregated fitness value 
is composed only by the sum of all goal residuals since the fitness related to per-
formance and functional constraints is zero by definition. The remaining non-zero 
residuals will be used in order to optimize the goals of the problem and at the 
same time, provide a set of pareto points whose weights are automatically ad-
justed accordingly to the goals, as shown in Fig. 3.7. 
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IF (Stop Condition = First Solution) EXIT execution as soon as 1st solution is found,  

ELSEIF (goals type= 3) { 

       - Calculate the mean and standard deviation of the respective goal spec, m and s. 

       - Maximum = m+Bs; Minimum = [0,.., m-Bs]           /*B is integer between 1..5 */ 

(a) IF (PARETO) { 

       - remGen= maxGen-actualGen;                   /* remaining number of generations */ 

       - Share = (remGen/numObjectives);      /* during this period minimize one goal */ 

       FOR (each goal) { 

             Use weights to optimize one goal and relax the others; 

             Each optimization evolves during “Share” generations; 

             /*This promotes the sampling towards the extreme of pareto front*/  

            }  

       }  

(b) OTHERWISE, optimize the design objectives without using weights  
      -  all wpj=1 in cost function until the end of generations.                /*default*/ 

Fig. 3.7 Optimization of design objectives and pareto weights management 

3.3.2   Individual Encoding, Population Structure and Sampling 

The optimization algorithm is built over a single population structure that allows 
the existence of elite individuals, following the (μ+λ) steady-state model 
[31],[33],[64]. In the (μ+λ)-ES, a population of μ  individuals produce λ offspring 
per generation and the selection process reduces all individuals (μ+λ) to just 
μ  individuals again. The present population structure is divided into four main 
specific regions as illustrated in the Fig. 3.8. Only a fraction of the population re-
produces and dies each generation. The proportion of each region is in conformity 
with generally accepted EAs practices [56]-[57],[65]. 
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Fig. 3.8 Population structure 
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Each individual in the population is represented by a chromosome of real-coded 
values, illustrated in Fig. 3.9, because it is considered the representation that best 
matches the primary target related to continuous domain applications. 

  

Fig. 3.9 Chromosome type is a vector of real numbers 

In order to achieve a better coverage of the search space, the initial population 
in GENOM is created by sampling the search with the double of individuals in the 
population size. The estimation of the population size is based on a heuristic rule 
which involves the estimated search space size and is restricted to a value between 
32 and 128 individuals.  

In EAs there is no recommended or imposed initialization method to be fol-
lowed. The default method in GENOM implements a random initialization follow-
ing a uniform distribution as follows: 

 { } { }njuxxxx jjjjji ,...,1,1,...i    )( minmaxmin
)0(

, ∈∈−+= λ      ( 3.8)  

where,  
                uj is a random number uniformly distributed over [0; 1], 
                xi,j denotes the j-th component of a vector xi and λ denotes the 
                population size. 

The aim is to create a population with a good coverage of the search space, in or-
der to find the regions of most promising solutions. Another variation of this  
approach is to impose a regular grid-layout where the sampling points are evenly 
divided all over the space, as illustrated in Fig. 3.10. Another variation of these 
approaches (d) and (e) focuses the sampling in the region of interest when there is 
some specific knowledge about the objective function. It is used by domain ex-
perts who normally have an approximate idea of what the final solution will be. 
The privileged information can be integrated in the search process in the format of 
a solution which is included in the initial population. In constraint problems, this 
knowledge can be useful to avoid the creation of invalid individuals in initializa-
tion phase. 

Apart from these methods GENOM can also handle more sophisticated  
sampling methods, like Latin hypercube (f) [66] and design of experiments (c) 
[67]-[68] (implementation details in Appendix C.4). These methods are used for 
sampling the starting points of initial population and the initial training data sets of 
learning models. Table 3.7 shows the sampling criteria. 
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(a) Random initialization 

 
(b) Grid initialization 

 
(c) DOE initialization 

 
(d) Knowledge-based ran-

dom initialization 

 
(e) Knowledge-based  

initialization 

 
(f) LHS initialization 

Fig. 3.10 Sampling strategies 

Table 3.7 Sampling criteria 

Methods  Description Criteria 

Random Purely random initialization Optional 

Grid Used to build models and display surface plots Optional 

Knowledge-based Grid & random 
There is some specific knowledge about the prob-
lem 

Optional 

DOE (Appendix C.4) Optional. Applied after a feasible region is found. Optional 

LHS  (Appendix C.4) Default  Default 

Besides that, the search space decomposition (SD) was introduced, in order to 
reduce problem complexity and the number of cost function evaluations, therefore 
improving GA efficiency. Basically, it consists of a divide-to-conquer strategy 
which decomposes the search space in subspaces, useful in a distributed environ-
ment. The search space decomposition consists of dividing each variable range or 
a subset of the variables in p parts, thus welding, at most, pn problem subspaces, 
where n is the number of optimization variables, as illustrated in Fig. 3.11.  

Fig. 3.11 (a) illustrates the particular case of three optimization variables, x, y, 
and z, considering a subdivision of each variable range in 2 parts. Fig. 3.11(b) il-
lustrates an example of search space decomposition with non-trivial mathematical 
functions including the initial and final chromosome locations for the test with 
search space decomposition, where each subspace solution is located over a white 
spot, i.e., a low cost area.   



70 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques
 

ymin

ymax

xmin xmax

zmin

zmax

R3

 

Fig. 3.11 (a) Search space decomposition (b) Search space contour and chromosome location 

In a parallel environment, the master processor after decomposing the search 
space in small subspaces assigns to each slave processor the execution of one sub-
space optimization task. The slave task, executes one independent sequential GA 
of a unique search subspace. Then, the best chromosomes, from each slave proc-
essor run, are transferred to the global optimization array in the Master processor. 
Finally, when all the optimization sub-tasks are completed and the global optimi-
zation array is full with the best overall chromosomes from all search space, the 
Master processor executes a final global optimization task having those chromo-
somes as the initial population.  

Table 3.8 illustrates the achieved performance measures, for a test with a  
non-trivial mathematical function presented in [69], executed for 100 runs with a 
maximum of 500 iterations each. This test also includes the algorithm modifica-
tion introduced by premature convergence prevention defined in Sect. 3.3.5. There 
is an increase on efficiency, when using parallel processing, with the asymptotic 
limit of 1/n CPU time compared to the serial processing approach, where n is the 
number of used processors. 

 

Table 3.8 GENOM performance measures 

Type of Runs 
Average no. 

of iterations 

Average no. of 

cost func. evaluations

Average  

Minimum 

Standard GA 383 9265 -1.3377 

w/ space decomposition(sd)* 367 9042 -1.3806 

w/ premature convergence  

prevention (pcp) 
175 4282 -1.4150 

w/ sd and pcp* 174 4342 -1.4196 
              *Approximately 1/n CPU time when using parallel processing. 
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3.3.3   Selection Strategies  

GENOM is based on a steady-state selection approach implementing an elitism (or 
truncation) strategy. The default selection mechanism employs a hybrid method-
ology between linear ranking and the tournament selection. First individuals are 
sorted according to a ranking algorithm with two levels of feasibility defined be-
low, then the tournament selection will select within the current population, the 
parents that will create the next generation of individuals.  

3.3.3.1   Ranking-Based Scheme  

The GENOM selection algorithm uses tournament selection with a tournament 
size of two, preceded with a feasibility-based sort algorithm, inspired in K. Deb 
[11] and C. Coellho [12] settled in the following conditions:  

(a) Both solutions are feasible; 
(b) Both solutions are infeasible, or 
(c) One solution is feasible but the other is infeasible. 

Fig. 3.12 Deb’s nuclear conditions 

The new feasibility-based sort algorithm has the ability to make pair-wise com-
parison following the order rules of Fig. 3.13. The variant implemented in GE-
NOM, begins the ranking process giving priority to individuals that better meet 
the feasibility region.  

This method makes a separation of performance constraints and functional con-
straints, as described in 4.2.1, and compares the feasibility status of each solution 
in order to provide the search direction towards the promising (feasible) region 
based mostly on feasibility information (number of feasibility constraints satis-
fied) rather than in the constraint function value. When both individuals are feasi-
ble (satisfy all mandatory functional constraints), a similar process is followed in 
order to provide the search direction towards the promising performance region. 
This approach promotes infeasible solutions in the surroundings of the feasible re-
gion based in the number of constraints satisfied. 

 (a) IF both individuals k1, k2 are feasible (functional) 
       IF both satisfy the same number of the objective functions, 
             SELECT individual with the better value of the objective function; 
       ELSE select individual with the greatest number of the objective func-

tion satisfied; 
 (b) IF only one individual IS feasible(functional), SELECT it; and  
 (c) IF both individuals are infeasible,  
           SELECT the individual with smaller number of violated constraints,  
           OTHERWISE, IF the number of constraints satisfied IS equal,  
                  SELECT the one with the smallest value of violated constraints. 

Fig. 3.13 The GENOM tournament with feasibility-based ranking algorithm 
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The novelty of this approach is the ability to handle constraint-based problems 
which do not require any penalty parameter, so the problems which require penalty 
terms can be eliminated. Several similar variants were implemented in GENOM, 
like for example a ranking process giving priority to individuals that better meet the 
feasibility function, or another one that first provides the search direction towards 
the performance region and after that, towards the most feasible region. However, 
for analog problems with a higher number of feasibility constraints than design 
constraints the tournament with feasibility-based sort algorithm described above 
works better. The default method, tournament with feasibility-based sort algorithm, 
proves to be more effective in the generality of the experiments; in the same way as 
Deb conclude with his original work [11]. Optionally, the roulette wheel and sto-
chastic universal sampling can be used as alternatives to tournament selection.  

3.3.3.2   Constraint-Based Selection  

A new alternative selection mechanism based on feasibility knowledge constraints 
is also introduced and it can be generalized to all types of problems. This method 
differs from the last selection schemes which were based on a probabilistic 
method, to a new one based on knowledge “satisfiability”. The GENOM evalua-
tion module is able to produce individual constraint information for each specific 
gene, notifying which constraints are satisfied or not and the respective amount of 
constraints violation. This knowledge, returned from the evolutionary process in 
the form of binary vectors called “masks” (see Fig. 3.15), is now available to other 
modules of optimization tools, like the sort and pairing routines responsible for 
selection process. The nuclear steps of the new constraint-selection scheme are 
explained in Fig. 3.14 and Fig. 3.15. The idea is to couple a pair of chromosomes 
with the largest number of genes that complement (or fulfill) the “missing” genes.  
 

1. Sort by Feasibility method from population from  
            0 – popsize  ->  (Rank-based Selection) 
2. Use tournament selection with/out replacement 80% -> 0 - Keep 
3. Use Selection by Matching Masks in 20% 
4. Crowding- clusters similar chromosomes by randomly choosing  
    a small number of chromosomes (3)  and replacing the most similar, 
    in terms of the distance.  Avoid the repetition of pairs. 

Fig. 3.14 The GENOM Constraint-based Selection scheme 

 

Fig. 3.15 Ideal pair using satisfiability constraints (masks genes) 
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In practice, the original pair is looking for the pair that XORed with itself giving 
the largest number of ones (a feasible solution).   

For the pairing strategy, the selection of the potential mate is chosen from the 
list of candidates that better complement the already selected parent in terms of sa-
tisfied constraints. Mating the parent with the one that better fulfills the faulty 
constraints of both parents can potentially increase the probability of achieving a 
child that satisfies more constraints than the parents do.  

3.3.4   Crossover Strategies 

The basic crossover function implemented in GENOM uses the Gaussian muta-
tion together with a uniform crossover to produce offspring solutions. This process 
is a mixture of the standard Gaussian mutation operator with a standard uniform 
crossover, as illustrated in Fig. 3.16. 

 

),0(' σNxx kk +=

 

Fig. 3.16 The crossover operator with standard mutation 

Another option is the use of standard arithmetic crossover with one weight λ as 
defined in Fig. 3.17 (b) as, 
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 The two first approaches of Fig. 3.17 (a) and (b) are used in GENOM for explora-
tory purposes while the arithmetic crossover with n weights is employed in the  
final stage of the evolutionary process or when a significant number of feasible so-
lutions is found.  
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Fig. 3.17 Crossover for real chromosomes on a 2-D dimensional problems 

3.3.5   Mutation Strategies 

Mutation is one of the primary methods of maintaining diversity among feasible 
solutions. The basic mutation functions implemented in GENOM use the standard 
uniform and the Gaussian mutation according to the mutation rate previously de-
fined. Additionally, a premature convergence prevention (PCP) process (Fig. 3.18) 
was introduced to improve algorithm performance in case chromosomes con-
verged to local minima. This process is implemented by dynamically increasing 
the mutation rate, whenever the algorithm is in a little evolution period (the stag-
nated state), and, therefore, forcing chromosomes to jump to other search space 
locations, accounting for solution diversity. Reaching the mutation rate limit 
means either enlarging the search subspace or outputting the best solution found. 
The stagnated state is reached if the last elite element fitness value from popula-
tion does not change within five consecutive generations. 

In addition, a new heuristic approach was developed to transform a static con-
trol of the mutation operator in a dynamic one. The new heuristic approach  
 

 

Fig. 3.18 GA w/ premature convergence prevention flowchart 
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Fig. 3.19 Heuristics associated to the mutation operator 

illustrated in Fig. 3.19, which can be optionally work together with PCP, applies 
an UNDO function to the mutate chromosome after verifying that the modification 
introduced does not get a better result.  

The desired effect is to allow a better exploration of the search space in the be-
ginning of the process and a better exploitation at the end, mimicking the princi-
ples of a Simulated Annealing (SA) algorithm (Appendix C.4). By accepting 
points of higher objective function (lower rank), the algorithm avoids being 
stacked in local minima, allowing a global exploration of the search space.  

The UNDO function is ruled by a SA like algorithm following the acceptance 
function (PAF) and the annealing temperature (Temp) described in Fig. 3.20.  
 

 
UNDO Pseudo-code: 
0. Input 
   Receive a set of mutated chromosomes and  
   related, Last_State, Last_Cost, New_State. 
1. Initialize 
   Initialize (T0=Tmax; Tmax=numMaxIterations) 
2. Construction. For each chromosome: 

}    

Last_State  Last_State              

onelast   thekeeping State, newt    //RejecELSE        

New_State,  Last_State        

yprobabilit with State newAccept         //

Rand(0,1)) (PAF IF       

)(expPAF       

{ ELSE  }    

   //AcceptNew_State;  Last_State       

{ 0Last_Cost) -(New_Cost  IF   

 )(New_State EvaluateNew_Cost    

Temp
_CostLNew_Cost

=

=

>

−=

=
<=

=

− ast

 

3. Update (decrease) the annealing Temperature 
 ationsNumMaxIter1,..,  T0/iter;*0.9  Temp =∀= iter   
4. Terminate condition 
       If (There is more chromosomes) goto step 2 

Fig. 3.20 Mutation control flow and code 
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Briefly, the algorithm accepts all new chromosomes (New_State), modified by 
mutation operation, that lower (improve) the objective function, but also, accepts 
with a certain probability (PAF), chromosomes that raise the objective function 
(larger cost). Accepting lower ranks chromosomes, helps the algorithms to escape 
from local minimum. 

The PAF distribution follows one known annealing schedule which systemati-
cally decreases the temperature as the algorithm proceeds ( T0/iter*0.9  Temp = ). 
The simulation starts with a high temperature. In this case, the PAF is very close 
to 1. Hence, a new mutated chromosome with a larger cost has a high probability 
of being accepted. The probability of accepting a worse state is high at the begin-
ning and decreases at the temperature decreases. When T is high it promotes the 
exploration of search space, when it is low, the exploitation. 

In this work, premature convergence prevention is the default method of main-
taining diversity among the feasible solutions. 

3.3.6   Step Size Control – Dynamic Evolutionary Control  

In order to efficiently control the population diversity and progressively reduce the 
search space to the solution boundary, the optimization kernel implements the 
Gaussian Mutation together with Gaussian Crossover [57] to dynamically control 
the probability distribution applied when generating the offspring solutions. For 
the mutation operator case, each component xi of vector x is replaced by x’i , 

),0(' σNxx ii +=  ( 3.10)  

where, N(0,σ) is a random Gaussian number with mean zero and standard devia-
tions σ. The parameter σ influences deeply the performance of the mutation opera-
tor. When σ is too high the algorithm becomes inefficient to fine-tuning the  
solutions. On the other hand, when σ is too low the population may get stuck in 
local optima. One of the techniques to control σ is the self-adaptation in evolu-
tionary strategies. Defining σ as function of the generation number can be a very 
effective solution because it is expected that the population will converge towards 
a global or a local optima. The algorithm should start with a wide search strategy, 
which becomes narrower as the population converges in order to improve the like-
lihood of finding the global optimum. Therefore σ should be calculated from a de-
creasing function. The approach followed in GENOM is represented in equation 
(3.11) and the simulated effect is illustrated in Fig. 3.21. 

The current implementation transforms the static standard deviation σ by a dy-
namic parameter, given by σ‘: 

 )_/1(1)( sGenerationMaxGenerationrandGeneration −−=′σ  ( 3.11)  

In short, this way, the variance or diversity associated to the population will decrease 
automatically as generations converge to an upper limit (Max_Generations). 
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Fig. 3.21 Decreasing function for calculation of σ' 

3.3.7   A Distributed Algorithm for Time Consuming Fitness 
Functions 

Following the trends in the distributed computing domain we developed a distrib-
uted implementation of GENOM kernel adapting the original sequential enhanced 
GA using a standard message passing protocol, LAM/MPI [70],[71]. Once evolu-
tionary algorithms consider populations of solutions, they are easily parallelizable 
[36],[26].  

One of the most straightforward approaches is to have one global population 
with multiple processor units for evaluating individual solutions, see Fig. 3.22 (a). 
This scenario can be very useful for applications with heavy evaluation functions. 
Another method often used, known as the island model (Fig. 3.22 (b)), divides the 
global population in several subpopulations, each one executing its own evolu-
tionary algorithm. Once in a while, one individual from one subpopulation  
receives permission to migrate to a neighbor subpopulation. Another approach al-
lows the migration of data to a group of neighbors that share areas of interest. This 
 

Normal EA Evaluation
Engine

Machine 1 Machine 2

Evaluation
Engine

Machine 3
Evaluation

Engine

Machine 4

Island EA Island EA

Machine 1 Machine 2

Island EA

Machine 3

Island EA

Machine 4
Migration

Population Population

Population Population

(a) Master-Slave Model (b) Island Model (c) Diffusion Model  

Fig. 3.22 Parallel architectures for EAs 
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method is known as the diffusion model, see Fig. 3.22 (c). The overlapping 
neighborhoods may have different topologies. For example, in the cellular model 
the population is arranged with some type of spherical structure and individuals al-
lowed to mate with, are within a certain radius. 

At the software level, LAM [71] is a parallel processing environment and  
development system for a network of independent computers. It features the Mes-
sage-Passing Interface (MPI) programming standard [70],[72] supported by exten-
sive monitoring and debugging tools. It is composed of more than one hundred 
functions that manage the communications between parallel processes, although 
this implementation uses only a small subset of the basic directives. Recently a 
new upgrade was released with the name of Open MPI Project [73] based on the 
open source MPI-2 implementation. However, the update of MPI is left for future 
work.  

The LAM/MPI from the decomposition algorithm point of view implements a 
new parallelization method which combines the Master-Slave Parallel GA with 
the Coarse-Grain GA methods [74] in a network of independent computers or in a 
single processor with several cores, as illustrated in Fig. 3.23.  

 

Fig. 3.23 Distributed processing algorithm 

In this type of parallel GA, the master processor stores the global population 
and performs the selection, crossover and mutation tasks, while the expensive fit-
ness evaluation task is distributed among the slave processors. If the number of 
available processors is smaller than the number individuals, then the master  
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transfers another evaluation task to the free slaves, as soon as, they finish their 
tasks. The expected speed-up of the proposed parallel method, for expensive fit-
ness evaluations, can increase nearly linear along with the number of used slave 
processors [26],[69],[75]-[76], as depicted in Fig. 3.24. The main advantage of 
this model resides in increasing the algorithm speed without introducing extra 
complexity. The results are in conformance with the expected theoretical model 
given in [26]. The real values are slightly below the linear speed-up reference line 
due to communications costs. 
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Fig. 3.24 Expected distributed processing speed-up tested with GENOM 

The search space decomposition, described in Sect. 3.3.2, is an additional tech-
nique which can raise the algorithm performance when used together with paral-
lelization. Basically, the master processor after decomposing the search space in 
small pn problem subspaces, assigns to each slave processor the execution of one 
subspace optimization task and at the end the Master processor executes a final 
global optimization task having those chromosomes as the initial population. 

The program code was relatively simple to adapt and it can easily keep the load 
balance. The inter-processor data communication overheads produced in this 
model is much less when compared with others. Besides, the method does not 
change the GA search behavior, so the conclusions for the serial GA Kernel can 
still be applied. 

According to Cantu-Paz and Goldberg [26] the total execution time per genera-
tion of a parallel GA can be computed as: 

TcPTp P
TfNpop )1(. −+= ρ  ( 3.12)  

 where, 
  Tp = the the total execution time per generation 
  Npop = the number of chromosomes in the population  
  Tf = the time to evaluate the fitness of one chromosome 
  Tc = the average time to communicate with one processor 



80 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques
 

   P = number of processors 
   ρ = parameter dependent on selection and parallelization method 

It can be seen that the total execution time is composed of two terms, the first, re-
fers to the time required to evaluate the fitness of the chromosomes and, the sec-
ond, involves the total communication time. The speedup for a given number of 
processors can be computed by expression (3.13), where T1 is the time for a single 
processor [36]: 

 
P
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T
T TwhereSpeedup

p
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1 , ==              ( 3.13)  
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Fig. 3.25 Theoretical speedup of GAs with Npop = 100 

That speedup depends on the ratio of the time to compute the fitness relative to 
the communication time (Tf /Tc), the number of processors, the population size, 
and the variable ρ, which depends on the details of the code and the parallelization 
technique. Here we use ρ = 1, which is appropriate for a master–slave GA  
application.  

3.3.8   GENOM GA Attributes  

Table 3.9 provides a description of the most commonly used techniques applied in 
EAs in terms of decisions that must be taken into account during an implementa-
tion of a particular EA and shows how GENOM fits in this domain. It is an ex-
tended variation of the table proposed in [27]. 

The attribute values represent some functionality that a designer wishes to inte-
grate in the optimization framework. From the designer point of view, the set of 
attributes represents the decisions that will characterize a given system. 
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3.3.9   GENOM Optimization Methodology  

One of the major challenges facing semiconductor companies today is how to in-
crease yield. There are many factors that affect yield. Here, this focus is given 
mainly to those related to process, temperature and supply voltage variations in-
herent to any IC design environment and fabrication process. A corner point, as 
seen by an IC designer, is a combination of a particular technological model de-
scribing some process variations with a particular operating context representing 
some combination of operating conditions. The corner analysis represents the cir-
cuit performance analysis for all the combinations of extreme corner points as il-
lustrated in Fig. 3.26.  

 

Fig. 3.26  Performance specification violation arouse from operational circuit deviations 

Corners simulation is perhaps the most widely and less time-consuming method 
used to test process, temperature and voltage variations. Usually, a designer de-
termines the worst case corners, or conditions, under which the circuit or system is 
expected to function and these are the minimum requirements to produce a robust 
design. This important requirement was taken into consideration in the develop-
ment of GENOM optimization methodology.  

The proposed methodology, illustrated in Fig. 3.27, is based on an enhanced 
GA kernel implemented in two optimization moments, a coarse and fine optimiza-
tion. The first one executes a nominal optimization of analog building blocks and, 
in the second one the optimization is extended to deal with operational and proc-
ess variations.  This type of analysis is a mandatory task in any modern analog de-
sign process in order to get realistic solutions or robust designs.  

3.3.9.1   Optimization Setup   

The IC designer inserts the necessary input data in a database system assisted with 
the AIDA/GENOM design front-end [77] (see also Sect. 5.2).  First, the circuit to-
pology and technology files are selected from the IC database. Then, a specifica-
tion page, dynamically generated based on the number and class of optimization 
variables and technological constraints, allows the setup of parameter bounds, etc. 
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Next, the required design goals, the circuit design constraints and the type of op-
timization procedure must be appropriately specified. In case of a circuit design 
optimization with corner analysis, the information like process and operation vari-
ations to be used, and their associated weight, should also be described. Finally, 
the job is executed in a single machine or in a distributed environment using the 
built-in distributed processing capability described in [69] and sub-Sect. 5.2.4.  

 

Fig. 3.27 Circuit/System optimization methodology 

3.3.9.2   Coarse Optimization 

The coarse optimization step executes a nominal optimization of analog building 
blocks considering only typical device models and typical working conditions. 
The purpose of the coarse optimization is to generate, in a fast way, a set of poten-
tial good solutions that will represent the initial population for the fine-tuning op-
timization process. Here, the optimization parameters can be relaxed, for example, 
one can use a multiple of the fine grid value, thus reducing the search space and 
increasing the probability of finding space regions with potentially valid solutions 
for the second optimization run.  

3.3.9.3   Fine-Tuning Optimization  

Here a fine grid optimization is performed taking as the initial population the 
ELITE chromosomes from the preceding step and having into account the given 
corners analysis specifications. This second optimization step is executed using 
the same optimization algorithm and using an expanded version of the algorithm 
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fitness function defined in sub-Sect. 3.3.1. Now, the algorithm merit function as-
signs to each corner a weight proportional to its importance and fitness value. 

The idea beyond this strategy is, on one hand, a common belief according to 
which one solution that verifies all corners must satisfy necessarily all perform-
ance specifications, including the typical case specs and, on the other hand, the in-
fluence of each corner condition will modify the performance measures in the 
boarder around the corner point reached by optimization in typical conditions.  

This two-step coarse-fine strategy is particularly useful for corner analysis be-
cause it reduces the computation time significantly, up to N times the number of 
corners, when compared with a full corner optimization. N is the defined as the 
number of executed coarse evaluations. The final solution results in a more robust 
approach with respect to variations and mismatches. Additionally, the undesired 
sensitivity effects are attenuated automatically by robust design. 

Although not covered yet, an additional improvement in robustness can be 
achieved by Monte Carlo (MC) simulations. Besides the improvement in terms of 
yield, they allow the identification of worst case corners points to be used later in 
the sizing loop. Applying MC between the coarse and fine steps allows the opti-
mization kernel to consider just the critical corner cases. 

3.4   Conclusions 

An overview of the state of the art in computation techniques to solve nonlinear 
optimization problems was introduced in this chapter with special focus on evolu-
tionary optimization algorithms and the recent developments in this field were  
also described. The generality of this approach was also demonstrated in some 
numerical examples. The application of this optimization concept to automate the 
analog IC design flow has introduced a new level of complexity. In this class of 
optimization algorithms, designers can control the setup parameters of the optimi-
zation problem and even some parameters from the optimization algorithm but do 
not have the keys to guarantee that the computed solution is really the optimal 
one. To ensure an efficient resolution of the optimization algorithm, designers 
have to formulate an adequate cost function and define efficient criteria to be used 
by the genetic operators. A new optimization tool called GENOM, based on a GA 
optimization kernel, has been designed to capture the design performance targets 
of an analog multi-objective multi-constrained IC design problem. The system 
was designed to incorporate the effect of process variations, this way the opti-
mized circuit becomes tolerant to process variations increasing the yield. 
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4   Enhanced Techniques for Analog Circuits 
Design Using SVM Models 

Abstract. In order to improve the relatively slow convergence of GA, in the pres-
ence of large search spaces, and reduce the high consuming time of evaluation 
functions in analog circuit design applications, this chapter will discuss the use of 
learning algorithms. These algorithms explore the successive generation of solu-
tions, learn the tendency of the best optimization variables and will use this know-
ledge to predict future values. In other words, these techniques employ data  
mining theory, used to manage large databases and huge amount of internet in-
formation, to discover complex relationships among various factors and extract 
meaningful knowledge to improve the efficiency and quality of decision making. 
In this chapter a new hybrid optimization algorithm is presented together with a 
design methodology, which increases the efficiency on the analog circuit design 
cycle. This new algorithm combines an enhanced GA kernel with an automatic 
learning machine based on SVM model (GA-SVM) which efficiently guides the 
selection operator of the GA algorithm avoiding time-consuming SPICE evalua-
tions of non-promising solutions. The SVM model is here defined as a classifica-
tion model used to predict the feasibility region in the presence of large, non-linear 
and constraints search spaces that characterize analog design problems. The SVM 
modeling attempts to constraint the search space in order to accelerate the search 
towards the feasible region ensuring a proper operation of the circuit.  

4.1   Learning Algorithms Overview 

Data mining consists of exploring data in order to discover unknown patterns and 
meaningful relationships in data, which may be used to make valid predictions. 
Within this technology data play an important role and the knowledge, extracted 
by the use of pattern recognition technologies as well statistical and mathematical 
techniques are the driven force in the new decision support systems. The adoption 
of this technology can increase the productivity in business or in the process 
where it was applied, since the same goals could be achieved or even improved 
with less investment in efforts and resources. 

The technology behind data mining techniques is mostly based on inductive 
learning [1], where a model is constructed by generalizing from an adequate num-
ber of training samples collected from an historical database or coming from an ex-
periment in which the sample is tested. Once built, the trained model can be  
applied to unseen examples to predict future trends and behaviors. This typical 
learning scenario is illustrated in Fig. 4.1 and it is known as a supervised learning 
approach. This differs from other approaches in what concerns to the feedback,  
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received from its process during the learning stage. For example, in the reinforce-
ment learning the feedback signal does not contain the knowledge of the environ-
ment, which is supplied to the learning machine in the supervised learning. Instead, 
the learning machine only receives a rating of its performance, often called rein-
forcement signal. In the unsupervised learning approach, the learning machine does 
not receive any feedback information at all, only the input samples. The learning 
machine is charged to reveal properties or knowledge hidden in the data, e.g. asso-
ciating these data into groups or classes based on correlation of samples. 

 

Fig. 4.1 Supervised learning approach 

The data mining tools were originally developed to answer to specific problems 
in several areas of application and different knowledge domains, and so they in-
herited special characteristics that make each specific technique tailored to some 
type of problem. The most usual of these are: 

− Classification and regression. These classes embrace the largest number 
of problems in the data mining domain [2]. In the classification problems, 
the learning machine creates a model to predict the class membership to 
which an entity belongs to, whereas in the regression case the model aims 
to predict a real-value variable based on the relationship between the 
other variables, assuming a linear or nonlinear relationship.  

− Association and sequencing.  Also known as market basket analysis, these 
techniques create models to discover hidden patterns of behavior, correla-
tions among a set of objects generating an output in the form of descriptive 
rules, e.g., “75% of the customers who buy milk also buy bread and eggs”. 
The sequencing technique is very similar to an association technique, but it 
includes description rules with information of time in the final analysis. 

− Clustering.  This technique seeks to identify a set of groups or clusters 
that defines the given data. Basically, it groups together entities or data 
points with similar behavior or properties, and creates different groups 
for dissimilar entities.  
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Advances in data mining were boosted by the progress in the fields of artificial 
intelligence (AI) and statistics. Fig. 4.2 provides a description of some of the most 
common data mining approaches used nowadays. Below, these techniques are 
briefly described. 

  

Fig. 4.2 Data mining technology 

The regression technique implements a model based on observed data to fore-
cast the output effect of a data item on the modeled system. In the simplest case, 
regression uses standard statistical techniques such as linear regression, which is 
modeled by a strait line that best fits the data and lately uses this line to predict 
values. The optimum model is obtained through the line that minimizes the sum of 
the square error from each data sample. The linear regression equation is de-
scribed in Fig. 4.3.  

However, for many real-world problems, predictions are very difficult to obtain 
because they may depend on complex interactions between multiple predictor  
 

 

Linear regression model formulation: 

ebXaY ++=  

where, 
Y – dependent variable 
X – independent variables 
a – constant term 
b – coefficient of indep. variables 
e – the error term or residual 

The "residual" e is a random variable 
with mean zero.  The coefficients a and b 
are determined by the condition that the 
sum of the square residuals is as small as 
possible.  

Fig. 4.3 Linear regression 
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variables. Therefore, more sophisticated algorithms are used for these cases such 
as, logistic regression, decision trees, neural nets and support vector machines. 

Neural networks (NN) [3-8] are inspired on an early model of human brain 
function, whereas support vector machines (SVM) had their inspiration on the sta-
tistical learning theory [9]. Both have proven great efficiency either in classifica-
tion as in regression type of problems. They require the configuration of model  
parameters in order to be efficient. The input for these models is limited to nu-
merical data and the output is essentially predictive, i.e., they were designed to 
build models to forecast future behaviors but do not have mechanisms to summa-
rize data and highlight their interesting properties. Due to this behavior, they are 
often referred to as "black box" technologies. Generally, the training of these 
models can be time consuming, although the predictions for new values are proc-
essed very fast. A great advantage of these algorithms is their ability to be used as 
an arbitrary function approximation constructed from past observations. This as-
pect is particularly useful in complex and expensive data analysis functions or 
even in situations where there is no defined function, but only a set of samples. 
Although both NN and SVM have common characteristics, they differ radically in 
one important aspect: SVM training always finds a global minimum [9].  

The decision tree is a technique in which the resulting model is represented by 
graphic structure in a form of tree. One overview of this representation is illus-
trated in Fig. 4.4. 

 

 

Fig. 4.4 Decision tree representation example 

The tree representation helps to identify the important factors of the problem 
(the nodes) and how these factors have been affecting the outcomes of the deci-
sion in the past. The final decision is found in one of the leaf nodes at the bottom 
of the tree, after traveling from the root at the top and traversing several sub-nodes 
according to some test execution in each sub-node. The decision trees are mostly 
used for classification. The graphical representation is an attractive characteristic 
because it is easy to understand, which makes this technique become one of the 
most popular tools for data mining problems.  



4   Enhanced Techniques for Analog Circuits Design Using SVM Models 93
 

K-nearest neighbor (KNN) [10] is also a predictive technique suited for classi-
fication models. Unlike the other predictive techniques, it has no training phase 
once the training data represents simultaneously the model, thus models tend to be 
very large. The predictions for a new sample is done by looking for the group of 
similar characteristics and calculate the outcome value based on the most pre-
dominate class (“k” means the number of the nearest points with similar character-
istics). The definition of this model is associated with a metric to measure the  
distances. The choice of metric is an important specification to take into account 
because the performance of the model depends on it.  

K-means [10] is one of the simplest unsupervised learning algorithms tailored 
to solve the clustering problems. It is used to classify data, following a procedure 
that groups a given data set through a certain number of clusters (assume k clus-
ters or subsets) defined by the user. The grouping routine minimizes the sum of 
squares of distances between data and the corresponding cluster centroid. When 
all samples have been assigned to a group which has the closest centroid, the algo-
rithm recalculates the positions of the K centroids and repeats the process until the 
centroids get a stationary phase. Despite the simplicity, the k-means algorithm is 
also significantly sensitive to the initial randomly selected cluster centers and 
sometimes misses to find the most optimal configuration related to the global ob-
jective function minimization expressed in Fig. 4.5. 
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Fig. 4.5 K-means objective function 

The next group of techniques has its origin in the Naïve-Bayes algorithm which 
uses the computation of probabilities as the main tool to make predictions. Naïve-
Bayes is a classification technique that is not only predictive but also owns a de-
scriptive feedback that describes the basic features and the interesting properties 
of the data. This approach assumes the statistically independence of all the inde-
pendent variables which may not be true and is tailored to deal with categorical 
problems. The categorical limitation can be overcome to handle continuous data 
using bracket techniques that determine categories defined by limits of continuous 
data. Although technically simple to implement, the selection of the ranges can 
have a dramatic impact on the quality of the final model. The Naïve-Bayes con-
cept is based on the relationship between dependent and independent variables and 
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produces conditional probabilities derived from observed frequencies in the train-
ing data. Extending the Bayesian technique to capture the interactions between 
pairs of non-independent columns is also possible, although the complexity and 
storage capacity will increase a lot. However, in its simple form (assuming inde-
pendence of variables) Naïve-Bayes is considered an easy and time efficient ex-
ploratory tool.  

The Table 4.1 briefly summarizes some of the major characteristics of the 
learning algorithms presented in Fig. 4.2.  

Table 4.1 Classification of data mining techniques 

Methods Easy of use & 
understand 

Class Problems Notes 

Support Vector  
Machines (SVMs) - Supervised Classification

Regression 

SVMs are considered one of the 
most effective machine learning 
tool with the ability to represent 
non-linear relationships and pro-
duce models that generalize well 
to unseen data. SVM training 
always finds a global minimum. 

Artificial Neural  
Nets (ANNs) - Supervised 

Classification
Regression 
Clustering 

Relation between weights and 
variables is difficult to interpret. 
Dificult to build the network 
structure. Require large amounts 
of time to train. Error decreases 
as a power of the training size. 

Decision Trees 
(DTs) ++ Supervised 

Classification 
Regression 

Clear. A series of nested if/then 
rules. Relatively fast. Easy to 
translate into SQL queries 

Nearest Neighbor  
Methods 
 (e.g., kNN) 

++ Supervised 
Clustering 

Classification

It is fast and easy to use and un-
derstand. Ideal candidate for 
quickly building and testing 
classification models. Drawback: 
Models tend to be very large. 

Splines (e.g. MARS: 
Multivariate Adap-
tive Regression S.) 

+ Supervised Regression 
One of the most widely used sta-
tistical techniques for creating 
predictive models 

Logistic Regression + Supervised Regression 
One of the most widely used sta-
tistical techniques for creating 
predictive models. 

Rule Learning + Supervised 
Unsupervised Classification

Understandable. The computa-
tion of probabilities of all com-
binations can be expensive! 

K-means clustering ++ Unsupervised Clustering 
Classification

Simplicity. Sometimes misses  
the most optimal configuration 
and is sensitive to the initial 
cluster centers. 

Self organized maps 
(SOM) - Unsupervised Classification

Similar to feed-forward neural 
net except that there is one out-
put for every hidden layer node. 

Bayesian networks + Supervised Classification Limits their inputs to categorical 
data. 

 



4   Enhanced Techniques for Analog Circuits Design Using SVM Models 95
 

4.1.1   SVM Classification Overview   

SVMs belong to a class of supervised learning algorithms which are able to ac-
quire knowledge from previous experiences and to apply the knowledge to predict 
future values [1],[9], [11-12]. This process is known as memorization and gener-
alization. The modeling presented here is based on a supervising SVM approach 
to the two-class classification problem, where a set of training data of the form 
S={(xi; yi),…,(xn; yn)} is observed, and the input xi ∈X ⊂ Rd is a d-dimensional 
feature vector and the output yi∈{+1,-1} is the class label of xi. The main goal is 
to train a discriminate function, which will be used to predict the labels for new 
inputs, minimizing the probability of classification errors.  

Generally, the support vector classifier is implemented in a two step process. 
First, it is applied the kernel “trick”, which provides a nonlinear mapping of the 
vectors xi into a higher dimensional feature space. In the second step, a decision 
boundary hyperplane is created based on the maximal-margin principle. This 
process is illustrated in Fig. 4.6 where the input space of two classes originally in-
separable, is mapped into a feature space, making it possible the separation of the 
two classes in a linear way. 
 
 

Data is linearly 
inseparable

Data is separable 
in this new space

x1

x2
Transform the input data 
to a new feature space

  

Fig. 4.6 Separating the data in a feature space 

The SVM learning algorithm finds the optimal separating hyperplane (OSH) 
that maximizes the distance between the decision boundary between the two class 
groups and the closest point to the boundary, known as the margin, as illustrated in 
Fig. 4.7. The decision boundary points overlapping the margins are called support 
vectors. Support vectors are the most relevant in the decision process. The separat-
ing hyperplane in the feature space can correspond to a nonlinear decision bound-
ary in the original input space. A more extended background on SVM concepts, 
issues and formulation, is presented in Appendix D. 
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Fig. 4.7 Illustration of OSH hyperplane, margin and support vectors concept 

4.2   GA-SVM Optimization Approach 

In this book the supervised learning algorithm belonging to the class of machine 
learning algorithm called SVM, was adopted to work together with the selected 
GA approach. The GA-SVM methodology explores the properties of the sizing 
rules method, commonly used in analog circuits, and produces a feasibility model 
of the functional space while the GA search engine is used to explore the design 
space and supply the SVM model with knowledge extracted from previous ex-
periences. The SVM model is here defined as a classification model used to pre-
dict the feasibility region, in this context, the new SVM model will be referred as 
a feasibility model. Despite the strong theoretical foundations and recognized ro-
bust algorithm, the success of SVM implementations greatly depends on several 
intrinsic parameterization values and data preparation routines [13].  

4.2.1   Feasibility Region Definition 

One problem often found with numerical optimization methods is the generation 
of results considered pathological, that is, a result that on the one hand meets all 
specifications but on the other hand fails some basic design requirements (e.g. 
saturation of certain transistors) [14], leading to a malfunction circuit. This incon-
venient behavior is derived from insufficient design specifications, where a circuit 
optimization problem is considered as a black box with a number of design pa-
rameter constraints and performances constraints. Expert IC designers learn how 
to deal with pathological sizing by manually constrain the circuit to ensure proper 
biasing and good behavior of performance metrics. For example, fixing all transis-
tor lengths and applying device matching conditions is a common practice em-
ployed in analog circuit design. The methodology which attempts to automatically 
constrain a circuit in order to ensure proper operation is called the sizing rules  
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method [15]. Applying this methodology not only avoids the pathological designs 
but also improves the behavior of performance metrics and reduces sensitivity to 
operating conditions and process variations [16]. 

A generalized view of the sizing rules methodology points to the use of ine-
quality constraints on electrical parameters (voltages and currents) in order to en-
sure the correct circuit operation. For example, [14],[17] introduces the concept of 
functional constraints and applies this concept to a simple CMOS current mirror. 
Functional constraints are a set of additional specifications defined analytically 
with a strong dependence on the application and the technology as illustrated in 
Fig. 4.8. This approach can be extended to other sub-circuits in order to determine 
a set of functional constraints. DELIGHT.SPICE [18] and the FRIDGE [19] tools 
were the first to take into account these concepts. 

 
 

Simple CMOS current mirror Constraint Type Constraint Expression 
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Fig. 4.8 Functional constraints on a CMOS current mirror 

In summary, the sizing rules methodology imposes some constraints not only in 
the design space, formed by the device sizes, but also in the functional space. In 
this context, the search space is decomposed in design space and functional space 
as illustrated in Fig. 4.9. 

In a traditional optimization approach there is a mapping between a point in de-
sign space d (Fig. 4.9a) and a set of performances in performance space, p (Fig. 
4.9c). In order to find a solution that satisfies the performance and functional con-
straints, usually, it requires the computation of many points from the design space. 
The achieved solution may result in a pathological case, in this condition, the re-
sult is not feasible (I in Fig. 4.9c). In the same way, the subspace of d defined by 
the interception of all functional constraints, the functional space f, may also pro-
duce pathological solutions, this time all functional constraints are satisfied but 
misses some performances specs (II in Fig. 4.9c). The feasible region defines a set  
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of points in design space that satisfies both the performance constraints, as well as, 
the functional constraints. The multidimensional subspace of design parameters 
which fulfills all functional constraints is called in this work, the feasibility space 
(Fig. 4.9b) and the mapping of this space in performance space in called the feasi-
bility region (Fig. 4.9c). If the multidimensional feasible space is known the com-
putation time can be highly reduced. 

Throughout this chapter, a new method which explores the properties of the siz-
ing rules method and learning algorithms is developed in order to build a model 
for the functional feasibility space, the feasibility model. The aim of this approach 
is to accelerate the search towards the performance feasible region ensuring a 
proper operation of the analog circuits.  
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Fig. 4.9 Abstraction of analog circuit feasibility region 

4.2.2   Methodology Overview 

The evolutionary search algorithms in general have a common behavior. They cy-
clically generate new moves from the most fitness samples, evaluate them and 
then discard the less fitness ones. The less fitness offspring information is never 
used to decide what the next move should be or what path should be followed in 
getting to a local optimum. Rather than discarding information about the search, 
this new strategy uses all information from the evolutionary process to help us to 
make predictions about new data and improve the efficiency of the search algo-
rithm. The new GA-SVM approach incorporates a learning model in the GA op-
timization cycle based on SVMs. The original GENOM optimization architecture 
is expanded with modeling capabilities as illustrated by Fig. 4.10.  
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Fig. 4.10 Optimization-Based methods architecture 

The learning scheme of analog circuit design is now composed by the interac-
tion of two computational machines, the GA search optimizer and the SVM learn-
ing engine. Fig. 4.11 illustrates the block diagram for the optimization kernel with 
learning algorithm. The SVM models can influence the overall evolutionary proc-
ess efficiency in two ways.  
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Fig. 4.11 Block diagram of the GA-SVM algorithm 

When used as the performance model, the regression model establishes the 
mapping between the design variables and the performance parameters. This al-
lows their combination to produce an approximation of the fitness function [20], 
as illustrated in Fig. 4.12, which is used to replace the expensive SPICE-like 
evaluations in the GA cycle. Potentially, this approach decreases the number of 
expensive true fitness evaluations and allows a better convergence rate. 
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Fig. 4.12 Estimated fitness function with SVM performance model 

However, the SVM model presented throughout this work is defined as a two 
class classifier model. The objective is to estimate the most promising regions, 
from the design space, to be explored. With this knowledge, the selection method 
will decide those solutions that will be accepted to proceed on the evaluation 
process, and those that will be rejected, because they are out or far from one of the 
most promising regions. The gain in this case is the number of avoided fine evalu-
ations (normally heavy time-consuming electrical simulations) in each generation. 

4.2.3   The Feasibility Model Formulation  

The GENOM SVM feasibility model is built as a two class classifier model one 
single time, before evolution cycle, using a set of training samples and the dis-
criminate function given by the basic designer rules formulation of expression 
(4.1). This representative formulation, usually applied in analog circuit design, is 
utilized to define the contour of the feasibility region of the feasibility model of 
SVM. Those solutions satisfying designer rules belong to the class of feasible re-
gion, and the set of other ones form the infeasible region. Solutions are labeled as 
feasible or infeasible solutions accordingly the region they belong to. Thus, the 
feasibility design space is defined by the geometry constrained posed in the  
range of the design sizes and the functional constraints imposed mainly by the cir-
cuit designer rules such as overdrive voltages with some margins, illustrated in 
Fig. 4.13. 

VGS > VT + 50mV   and    VDS > VDSAT + 50mV ( 4.1)  

To illustrate this concept in R2, let us consider a simple Active RC low pass filter 
with gain A0, and frequency f0 illustrated in Fig. 4.14. The feasibility contour is 
drawn with respect to capacitor C1 an R2. 

The feasibility model Mf(x) defines a function that estimates the front-end be-
tween the feasible and infeasible space delimited by the geometry domain. The 
feasible sub-space, normally a small percentage of the total search space, is built  
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Fig. 4.13 Ids-Vds characteristic of short channel NMOS transistor 

by the next sequence of actions. Taking the geometry constraints of the problem, 
each variable range is divided in equidistant points and is then evaluated by the 
circuit simulator. 
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         Gain Ao=-R2/R1 

         Pole=1/R2*C rad/s 

         Rule a)   0.1pF < C1 < 10pF 

         Rule b)  100Ohm < R2 < 200KOhm 

Fig. 4.14 Active RC filter 

Another alternative is to sample a number of points proportional to the size of 
the design space. Next, they are classified in two data sets, the feasible data that 
satisfies all the designer rules and infeasible data, data which does not satisfy the 
design rules or was derived from convergence problems. Then, the samples are 
used as the train sequence to obtain the SVM classification model. The same 
HSPICE simulations used to build the feasibility model were reused to get the per-
formance measures to train and build the SVM performance model for each per-
formance parameter.  

4.2.4   SVM Model Generation and Improvement 

In order to improve the success and performance of the SVM feasibility model 
two enhancements were included in the model, a data sampling with parameter 
normalization preceded by an unbalanced data management mechanism. 
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The training data samples were previously evaluated by electric simulations, 
using a grid search structure which performs data normalization on the design 
variables using the scale [-1…+1] to prevent the formation of biasing models as 
explained in 4.2.5. Then, this process is followed by a pre-processing handling 
phase aiming to balance the data samples from the two main classes, the feasible 
and infeasible region. Due to the high number of constraints in analog design cir-
cuits and large design space available, only a very small region belongs to the in-
teresting class making more difficult the classifier task. The techniques proposed 
to handle the problem include a novel 3-step stratified method to oversample and 
undersample the training data set. The objective is to collect the right subset of da-
ta samples from the pool of evaluated grid samples in order to build an efficient 
and accurate feasibility model. The implementation details are given next.  

4.2.5   Handling Unbalanced Data in Circuit Designs  

Unbalanced data problems impose some difficulties to the classifier task [12],[21-
22]. The main pointed reasons are that most current classifier systems like SVM 
tend to optimize the overall accuracy without considering the weight of relative 
distribution of each class and they are designed to generalize from sample data to 
avoid the noise. The GENOM SVM kernel addresses the unbalanced design prob-
lems by automatically employing a novel 3-step sampling mechanism adjusted to 
analog circuit design. First, it implements an over-sampling in the infeasible re-
gion in order to increase the samples of the minority class, next refine the frontier 
between the feasible and infeasible region and finally in the third step, reduce the 
majority class, by removing those samples far away from the feasibility regions. 
The estimated effect is illustrated in Fig. 4.15. 

 
 

 

Fig. 4.15 Expected balance effect in design space 

To accomplish these tasks, a first sampling strategy based on the classical grid 
search method as described in 3.3.2 is applied in first place. By default, during the 
evaluation phase a lot of statistics information is collected for each sample data 
among which the number of positive and negative samples for each class, the  
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number of constraints satisfied given by the designer rules satisfied for each  
sample, the measure of constraints violation and so on. In addition, three new data 
sets were created: Fs embraces the set of evaluated samples that satisfies all con-
straints (feasible region), Bs appends the subset of sample data in boarder region 
(satisfies all constraints except one, two or three) and finally, Is attaches the re-
maining sample data in the infeasible region and sorts in ascending order of con-
straint violation value. Fig. 4.16, illustrates the idea of the search space subdivi-
sion into feasible and infeasibility regions.  

The design experience acquired during this research, in several case studies, has 
shown that the ratio between positives and negatives samples is in order 0.04 to 
0.07 for a total of 2000 uniform random points. An attempt to build a SVM feasi-
bility model under such unbalanced data should result in low and biased perform-
ance models. To improve the estimation rate of the feasibility regions in new data, 
and to increase the efficiency of the model for more complex problems, two new 
sampling strategies were applied. First, oversampling the data of set Fs and Bs by 
random mutation in vicinity of the original data (“ball” mutation) and second, un-
dersampling the elements of set Is by a factor equal to the unbalanced ratio, dis-
carding always the last samples of the set. 

Then, in the third step, a balanced SVM two class classifier model is finally 
built with the train data set, Ts being the union of the three final sets Fs, Bs and Is 
( IsBsFsTs ∪∪= ) where the set of positive samples is given by Fs+Bs and Is 
is associated with the negative set. After that, the model is used to further generate 
new interior points of the feasibility region and neighborhood. Only the samples 
classified as positives will be evaluated by the true fitness function. In the end, the 
model is updated for the last time and the job is returned to the main process 
where it will be used together with an evolutionary algorithm to find the solution 
to the analog circuit design problem. 

 

 

Fig. 4.16 Stratified vision of the search space by feasibility regions 
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4.2.6   GA-SVM Optimization Overview 

The new GA-SVM approach uses all information acquired from the evolutionary 
process in order to make predictions about new data and improve the efficiency of 
the search algorithm.  

The initialization phase of the GA algorithm is replaced by the sampling mecha-
nism and model generation described in the two earlier sub-sections. Then, the evo-
lutionary algorithm follows the sequential GA optimization algorithm with the  
exception of the evaluation phase. Here, the evaluation phase is preceded by an ac-
tive learning phase, which uses the feasibility information from the model to decide 
which of the new offspring will be accepted, to proceed on the evaluation process 
and those that will be rejected from evaluation because they are out or far away from 
the most promising regions. The present approach uses a heavy time-consuming 
electrical simulator to evaluate the true fitness function for each submitted chromo-
some. Thus, the number of avoided fine evaluations identified by the active learning 
module in each generation represents a gain of efficiency of this approach and justi-
fies one of the requirements of this implementation. The active evaluation process 
also implements an aggressive local search around the best individuals in the popu-
lation, when the number of individuals selected by the active learning module is low. 
The block diagram of GA-SVM algorithm is illustrated in Fig. 4.17.  
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Fig. 4.17 Data flow of GA-SVM algorithm 
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4.2.7   Comments on the Methodology 

This section clarifies the options taken by the presented methodology. To begin 
with, the constraint stratified vision (Fig. 4.16) used to deal with the unbalanced 
data problem of analog circuits design applications was implemented to pursue 
one the SVM fundamental principles, which says that only the support vectors 
contribute to the decision rule. To build a SVM model efficiently, using the con-
straint satisfied approach, it is only needed to manage the minority class set and 
the “best” infeasible samples because that is where the support vectors are present. 
This way, the management of the huge set of infeasible samples (majority class 
set) became simplified. 

The choice of the training samples and the necessary initial grid resolution used 
to generate the SVM model, has a great impact on the quality of the model, and 
will affect the final model performance for unknown data. In the lack of a univer-
sal answer to this question, the approach taken in this research follows a simple 
rule, based on the percentage of the total search space and on the following belief: 
the feasibility model embodies the circuit’s operational zone not in a single but in 
several points, satisfying or not the problem’s specifications. The specs do not af-
fect circuit’s feasibility. In the first global sampling, the grid resolution should be 
chosen in such a way that, at least, one or several feasible points for each opera-
tional region should be detected or at least a reasonable number of positive sample 
points should be collected. If this condition is not met, the following measures can 
be taken: (a) increase the number of samples, by default it has the same effect of 
increasing the sampling resolution; (b) relax the contour of the feasible region, 
that is, accept in the feasible region those infeasible samples close to the feasible 
region; and/or (c) relax the constraints of the problem, this case needs user in-
volvement. 

4.3   Conclusions 

The requirements of modern analog design automation tools are placing an in-
creasing emphasis on analytic capabilities. Data mining technology has become an 
essential instrument in the analysis of large volumes of data in several activity 
domains. This chapter reviewed a SVM learning machine implementation applied 
to analog circuit optimization. SVM is considered one of the most efficient tech-
niques belonging to the class of machine learning algorithm able to infer knowl-
edge from data samples. This knowledge is useful to make predictions about new 
data or to get a better understanding of the system that generated the data. How-
ever, to manipulate an SVM tool with an acceptable level of usability and  
performance, four main tasks should be addressed: data normalization, data bal-
ancing, optimal parameters selection and data validation. The influence of these 
design decisions were illustrated by well known examples. 
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5   Analog IC Design Environment 
Architecture 

Abstract. This chapter describes the implementation of an innovative design au-
tomation tool, GENOM which explores the potentials of evolutionary computation 
techniques and state-of-the-art modeling techniques presented in the previous 
chapters. The main design options of the proposed approach will be here described 
and justified. First, an overview of the design architecture main building blocks 
will be provided. Then, the optimization algorithm kernel, as well as, the imple-
mented functionalities are described. Finally, the design options are described in 
detail using experimental results on a few test cases.  

5.1   AIDA Architecture 

The GENOM optimization tool can be used as a standalone application, although 
it holds some functionality which can only be fully accomplished when it is part of 
the in-house design automation environment called AIDA [1]. AIDA, Analog In-
tegrated Design Automation, is an ongoing project for analog IC design automa-
tion at ICSG group IT/IST. A summary of this application architecture will be  
described next. 

5.1.1   AIDA In-House Design Environment Overview 

The AIDA platform, which includes a design flow core engine responsible for the 
design automation is illustrated in Fig. 5.1. The platform is structured in three lay-
ers: interface, application and data layer and implemented in several technologies, 
such as JAVA® for the design core, MySQL® for the databases and Swing® for 
the graphical user interface (GUI). The AIDA project implements a fully config-
urable design flow which introduces an increased level of flexibility and reusabil-
ity when compared to traditional design approaches. The flexibility is achieved by 
both allowing the designer to define his own hierarchical design organization and, 
simultaneously, the design flow for each design. The reusability is achieved by in-
troducing a highly organized data structure to store the entire design data allowing 
an easy reuse and retargeting of pre-design systems and predefined design flows. 
In addition, AIDA allows the interaction with other CAD tools such as circuit and 
system level optimizers like GENOM and layout generators [2-3].  
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Fig. 5.1 Conceptual view of AIDA environment architecture 

The AIDA platform implements a hierarchical methodology matching design-
ers’ approach by allowing the complete definition of the design flow tasks at each 
hierarchical level, as presented in Fig. 5.2 for a filter design case. The design flow 
definition is based on basic units of work: project specifications, topology selec-
tion, several units for device sizing and optimization and a last unit for characteri-
zation. In this project, GENOM acts as an external circuit and system level  
optimizer tool with well defined interface protocol. 

 

 

Fig. 5.2 AIDA design flow 
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The GUI facility of the AIDA platform, illustrated in Fig. 5.3, plays a key role 
in the definition of project specifications and topology selection required by  
GENOM.  

Through an intuitive user-friendly interface, the user specifies the design specs 
e.g., circuit class, performance specs, design constraints and technology. These 
specs, which may be introduced by the user or result from the synthesis in a higher 
hierarchical level, automatically restrict the set of available topologies. Then, the 
topology selection may be performed manually by the designer or automatically 
by an engine (if available) that evaluates the candidate topologies according to de-
sign specs. Next, the design flow, organized in several design stages, controlling 
the optimization process, as exemplified in Fig. 5.2, is defined and executed. Each 
design stage has the goal of setting a subset of the design parameters (W, L, C, R, 
etc). Therefore, each design stage corresponds to an optimization task submitted to 
the selected optimization engine, in our case the GENOM optimization engine, us-
ing HSPICE, to compute the design objective function. Moreover, the use of other 
design and simulation tools, if available, is also possible and only depends on us-
er’s selection. Although a design stage is considered an atomic operation for  
the user, during the design flow and at each control point between design stages, 
he may evaluate the design and redefine parameters, constraints or even change 
the predefined design flow.  

 

 
 

 

Fig. 5.3 GUI facility implemented in AIDA 
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5.1.2   Layout Level Tools 

The AIDA framework was designed to interact with CAD tools of different hier-
archical levels as described in the preceding section for the case of the analog cir-
cuit optimizer. In the future, this interaction will be expanded to the layout level 
for the layout verification and generation. In particular, the objective is to integrate 
the LAYGEN [2-3] tool illustrated in Fig. 5.4.  

 

Fig. 5.4. LAYGEN graphical interface 

The integration of the layout CAD tool in AIDA framework will allow the inclu-
sion of extracted layout parasitics and circuit reliability design rules, to be taken 
into account during the design process. The design process now supports the com-
pensation of layout parasitics implementing an iterative loop, involving circuit siz-
ing and the layout generation. Hence, the conformity of analog design specification 
will be verified taken into account the parasitics of physical implementation. 

5.2   GENOM System Overview 

The proposed design optimization tool represents an alternative to the traditional 
design flow, automating some steps of the design methodology. It covers some of 
the most time consuming tasks of analog design process at the circuit level, like 
circuit sizing and design trade-offs identification. The main building blocks of 
GENOM architecture depicted in Fig. 5.5 are decomposed into three units, the op-
timization kernel, the evaluation module and the application interface. 
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Fig. 5.5 E-Design environment architecture 

The GENOM optimizer kernel is based on an evolutionary algorithm (EA) ker-
nel with modified operators and an automatic control mechanism which supports 
the interaction with equation and simulation evaluation engines, so that the cost 
function evaluation is made either by behavioral models based on SVM or by 
electrical simulation, in this case, using Spice-like simulators. Additionally, GE-
NOM includes a distributed processing facility with a high degree of portability 
across a variety of machines, allowing the increase in computation efficiency 
when using cost expensive evaluations.  

The GENOM core is written in C, programming language, and implemented in 
a Linux environment, taking advantage of the efficiency and flexibility of C code, 
free development tools and platform. Although it is commonly used for algorithm 
development, C language has not traditionally been used to generate a graphical 
user interface (GUI) for applications. Hence, the front-end was implemented in an 
independent language platform, the Java™ using the Swing components. 

The tool functionality, extended by the addition of an E-Design front-end al-
lowing an incremental growth of the IC design database and an individual man-
agement of each project, will be described in the next sub-sections. 

5.2.1   Design Flow 

In order to support the analog IC design flow methodology and to provide an effi-
cient data management of the inputs and outputs from GENOM, a new design 
automation environment was developed as illustrated in Fig. 5.5. Like in many 
analog design automation environments, before the synthesis there is a preparatory 
stage where the production of user-defined equations (equation-based), training 
the learning machine for performance models, or incorporating design constraints 
take place. The design facilities also include the backtracking of the design proc-
ess, allowing the user to follow the evolution of the design process dynamically or 
just reporting the final solutions at the end of the optimization process. This feed-
back is extremely relevant once it provides the information that the designer needs 
to detect, identify and understand which are the performance bottlenecks for the 
circuit that is being designed. 
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Fig. 5.6 Conceptual view of the Input/Output from optimizer tool 

However, when not integrated in the AIDA environment, i.e., in the standalone 
operation, the user needs to provide and configure manually the necessary input 
files, depicted in Fig. 5.6, in a suitable form for the optimization process.  

 5.2.2   Input Data 

The aim of this phase is to provide and configure the necessary input files in a suit-
able form for the optimization process. In order to manage the complex structure of 
data involved in this project, a graphical interface seems a fairly option to guide all 
the input data process. The GUI interface, using spreadsheet-like data input forms, 
aid the designer to input data more easily, minimizing input errors and the setup time 
to define or redesign a new simulation strategy. In addition, it guides the user 
through a sequence of logic events and avoids the occurrence of compatibility errors. 
Through the graphical input interface the user defines the circuit class (amplifier, fil-
ter, A/D, D/A, etc), the performance specs (dc gain, gain bandwidth product, phase 
margin, slew rate, power dissipation, offset voltages, etc) of the analog cell which 
the designer wants to optimize, as well as the design constraints (corners, matching 
parameters, overdrive voltages and currents, etc) and the technology process.  
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Fig. 5.7 illustrates one stage of design specs introduced by the user; in this case it 
shows the definition of the performance measures required for this project. Accord-
ing to the introduced design specs, a candidate topology is manually selected from 
the circuit database as depicted in Fig. 5.8. If the design specs do not match any of 
the existent topologies, a new one have to be created and introduced into the system.  

 

Fig. 5.7 Performance parameters and measures facilities 

 

Fig. 5.8 Topology Selection 
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  <design_file>.cfr - Configuration file

# A line started by a charater "#" is a comment.
<TITLE>
Differential AmPop  
Version: November 16, 2007 - Author: F.M. Barros
# ---------------------------------------------------------------------------
# 1. Control Parameter Section
# ---------------------------------------------------------------------------
<CONTROL>
ProblemType 0     # 0 - Circuit simulation    1- Numerical optimization
OptimizationType 0     # 0 - Genetic algorithms    1- SVM (SA, ...)
# ---------------------------------------------------------------------------
# 2-Passing Parameter Section 
# ---------------------------------------------------------------------------
<PASSING_PARAMETERS>
Seed 99  # SEED – Integer number representing the SEED value ={1-10000}
Timer 2  # TIMER- Simulation time TIMER={SHORT=0, MEDIUM=1, LONG=2}
Quality 2  # Optimization QUALITY={COARSE=0, MEDIUM=1, FINE=2}
Stop 2  # STOP Criterion. STOP={Time=0, Convergence=1, Max_Generations=2}
Debug 1  # DEBUG    - Output text debugging. DEBUG={none=0, YES=1 }
Cluster 0  # CLUSTERS - Parallel Processing ={SERIE=0, PARALLEL=1}
Reports 0  # REPORTS  - Formats {TEXT=0, GRAPHICS=1, Both=2}
Activity 10  # ACTIVITY - Statistics data sampling frequency (for graphics)
StepAC 10  # STEPAC   - Update frequency of bode plots
inDirectory /home/IT/GENOM/workspace/circuits/00_Differential_Ampop
outDirectory /home/IT/GENOM/workspace/circuits/00_Differential_Ampop/RESULTS
# ---------------------------------------------------------------------------
# 3-Dependent Parameters Section 
# ---------------------------------------------------------------------------
<MEASURES>
9
gain_dc;gbw;phfp;phase_margin;ftcmfb;phfpcmfb;phasecmfb;power_a;iavdd
##
<CONSTRAINTS>
34
vov_m0a;vov_m0b;vov_m16;vov_m1a;vov_m1b;vov_m2a;vov_m2b;vov_m3a;vov_m3b
vov_m4a;vov_m4b;vov_m5a;vov_m5b;vov_m6a;vov_m6b;vov_m7a;vov_m7b
delta_m0a;delta_m0b;delta_m16;delta_m1a;delta_m1b;delta_m2a;delta_m2b
delta_m3a;delta_m3b;delta_m4a;delta_m4b;delta_m5a;delta_m5b
delta_m6a;delta_m6b;delta_m7a;delta_m7b
. . .

 

Fig. 5.9 Partial view of “design.cfr” 

At the end of the preparatory phase, five independent text files are created as il-
lustrated in Fig. 5.6. These constitute the configuration files required by GENOM 
kernel and are briefly described below. 

- “Design.cfr”: This file illustrated in Fig. 5.9 contains the configuration  
parameters used to control the optimization process, such as, the number of 
evaluations, the quality of solutions, the stop criterion, type of reports, etc. All the 
commands used in the configuration file are from the User Guide. This file does 
not include the commands to modify the behavior of the algorithm kernel. This 
task is restricted to authorized computer algorithms specialists. 

- “Design.spc”: This file holds the design specifications written in a familiar 
analog design syntax, using the traditional relational “min”, “max”, “less”, “great”, 
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“equal” operators and additional ones for specific constraints expressions such as 
“verify_bound(a,b,c)” illustrated in Fig. 5.10. 

- “Design.par”: The design parameters file depicted in Fig. 5.11 encloses the 
problem dimension and device names, bounds and step size for each optimization 
variable. 

- “Design.cir”: This is the circuit netlist file that describes the circuit connec-
tivity either in flattened or hierarchical mode. The optimization variables must be 
explicit marked with an underscore before the variable’s name as depicted in  
Fig. 5.12. This name must agree with at least one parameter of the design parame-
ters file. The format of this file should be compatible with the evaluation tool.  

-  “Corners.inc”: This is an optional input file that specifies the corners condi-
tions. This file showed in Fig. 5.13, will be included in the circuit netlist.  

- “Measures.inc”: This is a user-defined set of statements or commands that re-
trieve specific electrical measures from evaluation tool. It is a kind of interface be-
tween optimizer and the evaluation tool to acquire precise information data. This 
file, illustrated in Fig. 5.14, will be included in the circuit netlist.  

- Fabrication model: A fabrication model consists of values for different tran-
sistor characteristics needed by the simulator to develop a small signal model for a 
transistor. In a regular basis, this file is complied with standards and is dependent 
on the fabrication technology. In GENOM, a library of models aggregates some of 
the public technological models available. The technological file must be refer-
enced in <Design.cir> file, as illustrated in Fig. 5.15. 

 

Fig. 5.10 Partial view of  <design.spc> 
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Fig. 5.11 Partial view of <design.par> 

 

Fig. 5.12 Partial view of <design.cir> 
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<Corners>.inc - Corners File (HSPICE style)

* ------------------------
* 1. Corners file
* ------------------------
.ALTER @1 -> lib=slow; temp=-40 +50 +105; 

.protect
     .lib 'cmos035.lib' slow
     .unprotect
     .temp -40 +50 +105

.ALTER @2 -> lib=typ; temp=-40 +50 +105; 
    .protect

     .lib 'cmos035.lib' typ
     .unprotect
     .temp -40 +50 +105 

.ALTER @ -> lib=typ; temp=-40 +50 +105;  ...

 

Fig. 5.13 Partial view of the Corners file 

  

Fig. 5.14 Partial view of the measures file 

- Cost Function: This is a module that implements a parser in Lex and Yacc 
syntax [4] which automatically evaluate the performance of a set of candidate so-
lutions. It is independent from the problem and will be the subject for further dis-
cussion in sub-section 5.3.3.1.  
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  <Fabrication>.inc - Technology Process File (HSPICE style)

**************************
* Libs
**************************
.protect
    .lib '../../library/cmos035/cmos035.lib' typ/slow/fast

or
    .lib '../../library/UMC/HSPICE/telescopic/l18u18v.122' L18U18V_TT

or
    .lib '../../library/AMS/hspiceS/c35/wc49.lib' tm/wp/ws
.unprotect

 

Fig. 5.15 Technological model reference 

5.2.3   Output Data 

The output data provided by the GENOM tool includes the post-processing reports 
and evolutionary real time reports. The activation of each type of outputs is left to 
the designer choice. The post-processing reports include the evaluation of per-
formance parameters coupled with statistical information presented at the end of 
the optimization, using the data in the data structures generated during the optimi-
zation phase. Fig. 5.16 and Fig. 5.17 illustrate the type of documentation provided 
by the design automation environment. The GENOM outputs are divided in two 
great groups related with design data and process info.  

 

Fig. 5.16 Progress reports 
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Fig. 5.17 Performance reports from optimization 

Process info: This is the union of several statistical metrics gathered from opti-
mization (Fig. 5.16). It includes a huge amount of statistics data about runs,  
generations, evaluations and time. This data is spread in several thematic files, in-
cluding the evolution report file, corners file, bode plot file, etc. Optionally, the 
user can dispatch this info to screen reports for “online” validation purpose as it 
will be discussed in the next section. 

Design Data: This corresponds to the final results from the estimation process 
(Fig. 5.17). This includes the optimum values of the optimization variables, the 
performance parameter values and the satisfaction of constraints parameters for 
the best 32 individuals of the population. In addition, it provides information about 
the optimization problem progress. These values are confronted with the initial 
ones to infer about the fulfillment of the synthesis flow objectives. 

5.2.3.1   Progress Real-Time Reports 

GENOM produces and supplies the required data which allows the visualization 
of real-time reports in AIDA framework. The progress real-time reports are a  
set of visual tools available optionally to the user, which indicate the progress sta-
tus of evolutionary process in each generation. They consist of animated graphics 
of bode plot figures, the design space exploration figures and of the evolution 
curve of the cost function. The real-time environment is also represented by a  
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Fig. 5.18 Progress reports provided by the automation prototype 

built-in spec sheet that can display a simple pass/fail status, symbolized by 
green/red colors, of the performance parameters, constraints violations and corners 
satisfaction as illustrated in Fig. 5.18. 

5.2.3.2   Interactive Design 

Interactive design is an extended capability introduced to GENOM framework that 
allows an experienced designer to incorporate some basic knowledge about a cir-
cuit during the search process. With the feedback acquired from real-time progress 
reports, for example, comparing the initial specs against current measured results 
and taking into account the present context status of the optimization process 
(state of design variables, evolution curve, constraints violation and corners satis-
faction, etc.), the designer can use his knowledge or intuition to change the  
dynamic ranges of design parameters, set fixed values to genes of the current 
population (affix some genes of chromosome), etc, which shifts the course of op-
timization. Keeping constant values in some design variables has the effect of re-
ducing the number of search variables. One equivalent variation of this approach 
is done by the matching of some strategic transistors such as, the differential pairs, 
current mirrors, etc., and in some non-sensitive transistors because they do not 
have much impact on the functionality of the circuit. Both measures result in the  
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shrinkage of the design space and shortened run times. The advantage of this ap-
proach is that it is independent from the process, it captures the designer knowl-
edge and since it adapts to each individual’s knowledge, it is more flexible and 
can lead to efficient performances. Interactive design becomes a valuable optional 
tool in the presence of an experienced designer. 

5.2.4   I/O Interfaces 

The MPI interface block illustrated in Fig. 3.24 is composed by two independent 
types of communications. The hierarchical level interface is dedicated to future in-
tegration with LAYGEN tool. The network communication interface implements a 
local area multi-computer LAM-MPI interface (Fig. 5.19) used in the development 
of parallel applications over a network of heterogeneous computers as described in 
sub-Sect. 3.3.7. 
  

 

Fig. 5.19 Local area multi-computer system implemented with LAM-MPI 

As discussed in 3.3.7, the communication between parallel processes is handled 
by the Message Passing Interface (MPI). Therefore, it is necessary to download, 
compile and install the MPI library in the current environment according to in-
structions in “GENOM Users guide”. To make sure that distributed optimization 
environment is correctly configured and installed in a specific processing node, 
execute the “test-GENOM” script of Fig. 5.20:  
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Fig. 5.20  Testing GENOM distributed environment 

The latter script verifies if the optimization tool, as well as, the evaluation en-
gine are available in a specified processing node by trying to execute an applica-
tion, e.g.”genom” and “hspice”, on all nodes. The last test verifies if the secure 
“SSH” communications is configured to avoid passwords. If the test is successful, 
proceed with next sequence of commands to initiate the execution of parallel ap-
plication, the “genom” in the example illustrated in Fig. 5.21.  

 

Fig. 5.21 Testing GENOM ‘ssh’ communications 

In the first step, the user creates a file listing (“lamhosts”) the participating ma-
chines in the cluster and then activates the LAM network with “lamboot” com-
mand. “Lamhosts” is a text file that contains the names of the nodes, one per line, 
with the first one being the machine that the user is currently logged on to.  

The activation of GENOM is given by the “mpirun” command for the case of a 
filter optimization problem. With this invocation the application that is being exe-
cuted has the same pathname on all processor nodes. A more flexible approach is 
able to run different executable pathname on different nodes. This is achieved 
through a variation of the “mpirun” command and a new definition of “lamhosts” 
as described in Fig. 5.22. 

 

Fig. 5.22 Invocation of distributed GENOM application 
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For example, to run “genom” program on machine baltar, malacata and everest 
all Linux machines, and on estrela, a Solaris machine, the <lamhosts> file would 
contain now the following entries depicted in Fig. 5.23:  

 

Fig. 5.23 Lamhosts with the names of nodes and the pathname to the executable 

The second entry per line, here 0, 2, 1 and 1, is the number of additional proc-
esses that can be launched per each machine. Since the MPI run is started from 
baltar the master process runs on it, so it is advisable not to allow the execution of 
another process on it. The other nodes have associated one or two processes per 
machine. This approach presents several advantages because it is possible to apply 
efficient load management of computer power in unbalanced network. An unbal-
anced network occurs when the computer power distribution is not equally dis-
tributed between machines, either due to different machines or to machines with 
different loads. Balancing the number of processes according to the available 
computational resources reduces the overall optimization time.  

5.2.5   Evaluation Engine 

GENOM extends the optimization capabilities to some of the SPICE-like circuit 
simulators including the standard HSPICE and SPICE which share common char-
acteristics. These simulators are capable of reading their inputs and producing re-
sults in text file formats, as well as, being launched from the command line. Other 
simulators can also be supported as long as these characteristics occur. A detailed 
description of the entire mode of operation ranging from the moment a chromo-
some is ready for evaluation until it attains the cost function value is presented in 
section 5.3.3.  

5.2.6   Expansion of GENOM Tool 

The GENOM synthesis tool consists of a set of interconnected software modules 
which comprise the user interface, the evaluation engine, the distributing comput-
ing API and the learning machine beyond the optimization engine itself. These 
modules are called automatically when required by the synthesis flow. Preferen-
tially, AIDA uses a XML text description files to pass information between internal 
modules taking advantage of the intrinsic XML properties. The XML file format 
provides the developer with a clean, robust and human readability documented  
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target, allowing a much easier debugging as well as reading and exporting to other 
file formats. If the necessary software modules are developed, then the presented 
system can also be applied to different design environments or can even be inte-
grated in wider industrial applications. Fig. 5.24 depicts an excerpt of the configu-
ration interface file used by AIDA framework to setup some functionalities of the 
GENOM tool. 

 

/******************************************************************************/
                          interface.c - configuration file
                Copyright (C) 2005 by Manuel Barros, fmbarros@ipt.pt
/******************************************************************************/
#   This file contains the INPUT parameters to GENOM Optimizer- V.2
#   Using the command line:
# Ex: ../genom RcIdeal.cfr -s -hspice
 *******************************************************************************/

<?xml version="1.0"?>
<AIDA>
<GAPAR> # Optimization GA Algorithms under test
<num of runs> 20 #number of runs
<evaluations_max> 10000 #number maximum of evaluations
<initial_seed> 1000 #initial seed
<population_size> 64 #population size
<mut_rate_max> 0.25 #maximum mutation rate
<stop_criteria> 1 #"1=Maximum num_generation 2=1st solution 3=25 STAGNATED generations"
<convergence_lim> 10e-3 #Cost standard deviation limit for the convergence test
<update_report> 1 #1 = each generation 2= logaritmic 3= best changed
<num_of_runs> 20       #number of runs
<update_report> 1        #update reports
<ntotalsamples> 3000     #number of total samples
</GAPAR>
#
<KERNEL> # Optimization Algorithms under test
 ...
 ...
</KERNEL>
</AIDA>

/******************************************************************************/
interface.c - configuration file

                Copyright (C) 2005 by Manuel Barros, fmbarros@ipt.pt
/******************************************************************************/
#   This file contains the INPUT parameters to GENOM Optimizer- V.2
#   Using the command line:
# Ex: ../genom RcIdeal.cfr -s -hspice
 *******************************************************************************/

 

Fig. 5.24 Interface between GENOM and AIDA design automation environment. 

 
The Fig. 5.25 demonstrates a communication interface example resultant from 

the <update_reports> parameter specification defined in Fig. 5.24. At specific time 
intervals pre-defined by the user, it is carried out an update of the reports and the 
refresh of screen information. In the example above, <update_reports> is set to ‘1’ 
meaning an update in each generation (see Fig. 5.24 for other options). The infor-
mation delivered from the optimization tool intended for visualization purposes is 
treated by a parser that identifies pairs of keywords or tags (fSpecs.out, fEvolu-
tion_Curve.out, fCorners.out, fParameters.out). The information between those 
keywords is sent to the interface defined by the client (the entity that initiated the 
optimization order). Fig. 5.25 exemplifies one line of results sent from GENOM. 
The word “fSpec.out” is reserved and identifies the performance parameters and 
the following values have a precise syntax. The first argument specifies the itera-
tion of evolutionary algorithm and the next ones are the optimal values for the per-
formance in the same order of appearance as in the specs file (“design.spc”). 
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Fig. 5.25 Example of information delivered by GENOM 

5.2.7   Optimization Kernel Configuration 

This section presents the implemented approaches that support the optimization 
kernel. GENOM includes a kernel configuration file with commands to modify the 
behavior of the algorithm kernel. This task is limited to authorized computer algo-
rithms specialists. Fig. 5.26 depicts a sample of the configuration interface file 
“AGPAR.h” used to setup some GENOM functionalities.  

 Each line between <KERNEL> tags is represented by a set of attributes that 
defines a particular characteristic of the kernel. The example, depicted in Fig. 5.26 
defines the optimization of three different kernels, “GA-STD”, “GA-MOD” and  
 

 

Fig. 5.26 Optimization kernel configuration file 
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“GA-SVM”. At least one line should be presented for the correct functioning of 
GENOM. The command to execute a single optimization in 5 runs and respective 
simulation result is showed in Fig. 5.27. Each line depicts the run number, #Run, the 
number of evaluations in each run, #nEvals, final fitness value, #Fitness, simulation 
time, #wTIME, existence of feasible solution, #FEAS, and existence of a solution, 
“#SOLUTION”, found at generation, “found_@”. A feasible solution satisfies all de-
signer rules but may miss one performance requirement, on contrary, if a solution is 
found, all designer rules, as well as, all the performance specs are satisfied.  

 

 
RESULTS: 

 

Fig. 5.27 A single kernel configuration and results. 

5.3   Data Flow Management 

In a design automation tool there is a need to handle two types of data structures, 
one, to manage the circuit’s database and the other to manage the simulation data. 
A good definition of the data structure can lead to efficient data management and 
improvements in reusability. For instance, the simulation measures, the perform-
ance parameters database, the sub-circuits blocks, the testbenches and the techno-
logical files are likely to be shared or reused, avoiding the redefinition of circuit’s 
information. In the same way, the data management of simulation data from the 
synthesis process can also be improved due to the need to control and to establish 
relations between the huge amount of simulation data, normally, produced from 
the optimization process, the need to cope with the variety of file formats from 
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different simulators or even a simple access to the simulated data of a specific cir-
cuit simulation.  

In GENOM, the circuit’s database is managed externally by AIDA framework 
but the management of the simulation data is GENOM’s responsibility. When 
used as a standalone application, GENOM requires the input files illustrated ear-
lier in Fig. 5.6.  

The next two sections explain how GENOM manages the data and structures.  

5.3.1   Input Data Specification 

The preferential method to input all the data specification is through a GUI, oth-
erwise the required files have to be manually generated. The GENOM graphical 
user interface presented in Sect. 5.2.2 inherits some methods of AIDA framework, 
and, as a result, takes advantage of its technology, namely the data management 
and data structure used to create and maintain a circuit’s library. A multilayered 
architecture structure organized in tables with relational data, as illustrated in  
Fig. 5.28 and Fig. 5.29, is used to store the information concerning the circuits in-
troduced through the graphical interface and the data provided by the optimization 
tool for data visualization. The next screenshots show the input data specification 
of the filter depicted in Fig. 5.29. 

 

 

Fig. 5.28 The circuit and the parameter tables filled with data from an elliptic filter 
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Fig. 5.29 2nd order Elliptic filter section and performance specs. 

Essentially, the insertion of a new circuit requires the electrical schematic, a 
netlist, a technological file, the device parameters, the sub-circuits, the perform-
ance parameters and the corresponding measure functions. There are a lot of pa-
rameters with different nature associated to a circuit, so all information was  
arranged (split) in a meaningful storage of well-structured information. The first 
layer consists in the insertion of elementary data that defines a circuit. The table, 
at the top of Fig. 5.28, for example, stores the key of circuit identifier (221), the 
name (Elliptic Filter of 2th Order), the category (Filter, OpAmp, etc) of the cir-
cuit, the type of circuit (Circuit, testbench, etc) and the behavior class (Low pass). 
The design parameter table, at the bottom of the Fig. 5.28, represents the parame-
ters table that characterizes each component from the netlist. There is a unique key 
that identifies each parameter (8239) plus the remainder characteristics and it is 
associated to the circuit where it belongs (circuited=221). This table is composed 
by a long list of parameters which includes a field that marks this component for 
optimization, another one indicates if the component is matched with any other or 
not (matchComponent) and the correspondent matching value (matchRelation), 
above others. 

The Fig. 5.30 shows the relational tables used to store the performance parame-
ter information. The definition of performance parameters which can be measured 
in a circuit constitutes one critical step in the GENOM development as will be ex-
plored in the next section. Meanwhile, it will be explained how performance pa-
rameters and function measures are treated in GENOM.  

The first step consists in the selection of the desired performance parameters 
(apmin, apmax, asmin and stop band frequency) for the chosen circuit, from the 
library of available performance parameters (see top table of Fig. 5.30). To avoid 
duplication of information, these parameters are stored in the table of design  
parameters composed by a unique identifier (id_designPerformance) and the per-
formance parameter identifier (performanceId), for example, the key 28 corre-
sponds to pass band maximum gain of the circuit in question (circuitId). The next 
fields are accounted for the definition of the global objectives of the circuit. For 
example, to specify that the pass band maximum gain of the filter in question 
should be inferior to 0.5 dB, the introduced values should be defined as the value  
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Fig. 5.30 Performance parameters and measures functions table 

“maximum” in field “relation” and the value 0.5 in the field “value”. The column 
“currentValue” is used to store the value generated by the simulation tool or  
optimization.  

The last step consists in the definition of the measure functions or simply 
measures which allow the determination of the performance parameter values. In 
the example considered above three measures for AC analysis are defined. The 
measures (id_measures) are associated to one circuit (circuitId) 221 and one per-
formance parameter. They are characterized by a specific name and defined (field 
“definition”) in HSPICE format.   

5.3.2   Evaluation/Simulation Data Hardware  

The quest behind GENOM tool is to provide the designer with an easy access to 
most relevant simulated data assent in a model of efficiency and precision of re-
sults. A block level representation of the simulation data flow in GENOM is ex-
hibited in Fig. 5.31.  

The data flow management is explained in three moments of simulation. The 
first three blocks of Fig. 5.31 cover the setup phase using the circuit management 
explained in the preceding section.  
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Fig. 5.31 The simulation data management system overview 

The second moment is achieved during circuit synthesis process. Here, a parser 
was created to interpret the language of a circuit specification file and automati-
cally compute the cost function value giving as input the performance parameters 
of the circuit and the formulations of the cost membership functions. The parser 
implementation was based in the Lex and Yacc [4] generation tools so that it is 
represented by a set of combined grammatical and lexical rules. 

The last moment involve the use of built in functions to filter, process and dis-
play statistical data from the optimization process either in text or in graphical 
mode. The primary advantage of text files is that they are very flexible and easy to 
use. They can be any length, and can accommodate the information to any type of 
layout and allow the use of database techniques to query a text file. 

The principal method of data access involving optimization algorithm and cir-
cuit simulator take advantage of the plotting facilities generally found in most 
electrical simulators. All output variables of interest can be printed in output files 
using the command “.PRINT” or equivalent. The data format of the response is 
generally organized in tabular form as depicted in Fig. 5.32. It shows the AC char-
acteristics of the magnitude of voltage and phase in the output node of a filter for a 
given range of frequencies.  

In order to access the data in a file, a file parser is implemented (file process 
block in Fig. 5.31). The use of file parsing techniques allows the extraction of any 
necessary information and its employment for later processing. GENOM provides 
built in functions to view the data in graphic mode version (bode plot characteris-
tics and the cost function evolution). In command mode version, only the  
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Fig. 5.32 AC analysis in the output node of a filter 

extracted plotting files are created, allowing its final treatment with external 
graphical tools like Avanwaves® [5] or CosmosScope® [5]. The optimization 
with HSPICE simulator has an extra option that can be automatically invoked to 
visualize the waveforms in CosmosScope®. The processing of data employing 
circuit simulators with the purpose of performance estimation employs the same 
general principle but will be explained next. 

5.3.3   Output Data 

The entire mode of operation ranging from the moment a chromosome is ready to 
evaluation until it attains the cost function value will be explained in the following 
steps and supported by Fig. 5.33. 

Step1 - As soon as a new candidate chromosome is submitted to evaluation 
process, a parser algorithm replaces the optimization parameters values in the tar-
get netlist with new ones corresponding to the genes of the chromosome. The 
“target.cir” netlist file is changed. 

Step 2 - The new circuit netlist is submitted to electrical simulator 
(SPICE/HSPICE) producing in the output file (target.out or target.lis) a long list 
of simulation data including the matrix of variables and values of interest, and 
normally the performance parameters resulting from the simulation. This point di-
verges from simulator to simulator. In SPICE the type of variables are within the 
scope of command “.PRINT”. The HSPICE simulator is more flexible because it 
incorporates a new command called measures, which gives the user more freedom 
to print and customize user-defined electrical specifications of a circuit. Actually, 
this is the preferred method to pass information between HSPICE and GENOM, 
since in the output file there is only the answer to the requested measures left, thus 
resulting in a compact file and allowing a more efficient access.  
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Fig. 5.33 The performance evaluation data flow 

Step 3 - Next, a set of built in functions extracts the data information matrix 
stored in one or more output files and sends it to cache memory structures for fast 
manipulation. When the required information is not explicit stored, a new built in 
function is created to compute its value. At the end of this step, all necessary pa-
rameters needed to compute the cost function, are organized in memory by the or-
der they appeared in targets specs file. 

Step 4 - Finally, the cost function value is automatically computed with the 
help of a new cost parser function based on the compiler Lex and Yacc (details in 
sub-Sect. 5.3.3.1). Simultaneously, it collects a set of statistical data that is impor-
tant to control the optimization algorithm, such as, the number of satisfied solu-
tion, the number of violated constraints, the corner’s information, etc.  

5.3.3.1   The Simulation and Equation Based Cost Function Parser 

This section explains the parser implementation behind the cost function computa-
tion. The main purpose of the parser is to create a mechanism able to interpret the 
language of a circuit specification file and automatically compute the cost function 
value giving as input the performance parameters of the circuit and the formula-
tions of the cost membership functions. The parser implementation was based in 
the Lex and Yacc generation tools so that it is represented by a set of combined 
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grammatical and lexical rules as illustrated in Fig. 5.34. The Lex description file 
identifies a series of symbols (logic and arithmetic operators), regular (mathemati-
cal functions and built in functions) and transforms them into tokens (reserved 
word for the language). Once this transformation is done, the YACC syntaxical 
analyzer interprets this stream of tokens and converts it into a meaningful gram-
mar. With this specification, the GENOM’s parser not only is able to interpret 
more traditional circuit specification files (based on logic and arithmetic operators, 
see “target.specs” in Fig. 5.35) but also specification files based on user defined 
equations (equation-based). The user defined equations can be expressed through 
basic mathematical functions (‘Fabs’, ’SIN’, ’SQRT’, ‘POW’, etc) or by more so-
phisticated built in functions such as ‘gain()’, ‘phase()’, ‘get_Value_Cache()’, 
min(), etc. For example, the function “double gain(double freq)”, finds the gain 
corresponding to frequency from the output file of a SPICE simulation. If the per-
formance measures are already in cache memory then the “get_Value_Cache()” 
function can be used instead.  

Fig. 5.35 gives a simplified macro view of the actions taken automatically by 
the parser machine to carry out a single performance parameter. When the 
“cost_Calc()” function triggers the process, the first line of the design specifica-
tion file is ready for parser analysis. The expression “(gain_dc>70)” is evaluated 
and the identifier “gain_dc” must be resolved first. Since “gain_dc” expression 
did not match any of the parser reserved word, it is interpreted as a performance 
parameter whose value should be read from memory with “get_Value_Cache()”. 
Then, the obtained expression ’90 > 70’ is resolved by executing a set of opera-
tions specified by the operator ‘>’. One of these operations performs a call to the 
membership functions that translate the impact of this measure in the overall  
performance. Then the process is repeated line by line until the end of the target 
specification file. 

 

Fig. 5.34 Cost function parser overview 
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Fig. 5.35 Processing of performance parameters 

The parser mechanism allows the implementation of a uniform methodology to 
access and manipulate data from several sources using simple structures, like the 
precedence of the operators, their layout, and other grammatical rules which may 
include built in functions. The use of built in functions allows the integration of 
new simulators maintaining always a common interface to evaluation of perform-
ance parameters. 

5.4   Conclusions 

This chapter discussed the design architecture, methodology and design imple-
mentation of GENOM optimizer tool. The main building blocks included in GE-
NOM are the optimization kernel, the evaluation module and the Graphical User 
Interface.  

The optimization kernel is available with several approaches including the GA 
standard approach, the modified GA-MOD and the hybrid approach GA-SVM in-
corporating a learning model based on SVMs.  

GENOM was designed to integrate SPICE like simulators, deal with equation 
based problems and interact with a learning SVM machine. A flexible parser ma-
chine was developed to maintain a common interface of the evaluation module al-
lowing the access and manipulation of data from different simulators.  

The graphical user interface that controls the inputs and outputs of the system 
allows the visualization of iterative progress reports.  With this feedback an ex-
perienced user can assume an active part in the optimization process because he 
owns some vital information that allows him to twinkle some design parameters 
during the search mechanism. 
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6   Optimization of Analog Circuits and 
Systems – Applications 

Abstract. In the previous chapters there was a description of the optimization  
methodology and the supporting tool that simplifies the design tasks of analog in-
tegrated circuits. The developed design optimization tool, GENOM, based on evo-
lutionary computation techniques and incorporating heuristic knowledge on the 
automatic control mechanism was combined efficiently with a learning strategy 
based on SVM to improve the convergence speed of the optimization algorithm. 
This chapter demonstrates the capabilities and performances of the implemented 
design optimization methodology when applied to several analog synthesis ex-
periments and provides some insight into factors that affect the synthesis process. 
Several state of the art circuit blocks will be introduced and optimized for per-
formance and efficiency. Particularly, the performance and effectiveness of 
GENOM optimizer will be compared with one important reference tool. 

6.1   Testing the Performance of Analog Circuits   

Operational amplifiers (OpAmps) are the fundamental building blocks of many 
analog and mixed-signal systems. OpAmps arranged in structures of different lev-
els of complexity are used to realize functions ranging from dc bias generation to 
high speed amplification or filtering. Table 6.1 presents the general characteristics 
[1] of some of the OpAmps that will be covered in this chapter.  

Table 6.1 General comparison 

 Gain Output Swing Power Dissipation Speed Noise 

Two Stage Medium Medium Low High Low 

Folded Cascode Medium Medium Medium High Low 

Telescopic High Low Medium High Low 

Gain-Boosted High Medium High Medium Medium 

Simulation and testing of CMOS Opamps involve the measure of several per-
formances parameters such as open-loop gain, open-loop frequency response (in-
cluding phase margin), input-offset voltage, common-mode gain, common-mode 
rejection ratio (CMRR), power-supply rejection ratio (PSRR), output resistance, 
noise, output swing, power dissipation and transient response including slew rate. 
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Special configurations and techniques are necessary to acquire these measure-
ments. The testbench configurations supply the environment (stimulus, load, sup-
plies, etc.) in which the circuit is to be tested. Fig. 6.1 presents the testbench  
configurations considered for the selected examples [2]. 

 
 
 

 
(a) Testbench for measuring the gain, unity 
gain frequency and phase margin of differential 
input circuits 

 
(b) Testbench for measuring the gain, unity 
gain frequency and phase margin for single 
input circuits 

 
(c) Open-Loop Characteristics with DC bias 
Stability  

 
(d) Open-Loop Characteristics for moderate 
gains OpAmps 

 
(e) DC - Input Offset Voltage of an Op Amp 

 
(f) Common-Mode Voltage Gain 

 
(g) Testbench for measuring PSRR 

 
(h) Measuring and  Simulation of ICMR 

Fig. 6.1 Testbenches to measure the performances values 
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(i) Testbench circuit used to determine Output 
voltage swing 

 
(j) Measure the Output voltage swing alterna-
tive 

RLCL

Vout

VDD

VSS

vin

IDD

 
(k) Testbench circuit used Slew Rate and Set-
tling Timed 

 
(l) Measure the Slew Rate and Settling Timed 
alternative 

Fig. 6.1 (continued) 

6.2   Testing the GENOM – Selected Circuit Topologies  

Since analog benchmark circuits are still unavailable for synthesis purposes, the 
first testing circuits were collected from the well-known class of CMOS opera-
tional amplifiers and also include a low pass elliptic filter listed in Table 6.2 or-
dered by circuit complexity. OpAmps and filters are fundamental building blocks 
often employed in analog circuit design applications. Each circuit includes appro-
priate testbenches to obtain the desired performances parameters measures. The 
testbench circuit configuration of Fig. 6.2 a), b) and d) were used in these experi-
ments to determine the open loop gain, unity gain frequency, phase margin and 
power consumption for the single ended circuits. The filter specifications are dif-
ferent and will be defined later. All OpAmp circuits examples were designed us-
ing a 0.35-μm AMS (Austria Mikro Systems International AG) CMOS technology 
process with a supply voltage of 3.3V but the optimization process is fully inde-
pendent from technology.  

 The design first step is to determine the design parameters, the functional con-
straints of the problem and the performance objectives for each topology.  
Table 6.2 describes the complexity level for each test circuit. In this study, the  
design parameters are composed by the lengths, widths and/or multiplicity of tran-
sistors and are constrained by the ranges in geometry defined in Table 6.3.  

Once the parameters have been defined, the GA chromosome can be con-
structed representing an individual or a candidate solution. The optimization  
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(a) A CMOS differential OpAmp – Ckt1 

 
(b) Cascode Amplifier – Ckt2 

 
(c) 6th Order Low Pass Elliptic Filter- Ckt3 

 
(d) A CMOS two-stage amplifier – Ckt4 

Fig. 6.2 The suite of circuit schematics used in tests 

design parameters domain and the adopted technological grid define the complex-
ity of the problem. A set of fundamental designer rules as well as the matching 
conditions for each design case is depicted in Table 6.4. This set of rules makes up 
the functional constraints of design optimization. All measures of performance 
and the conformance level for each designer rules (“satisfiability”) are obtained by 
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electrical simulation. In each optimization run, the GA generates and optimizes 
the design parameters according to the fitness function built based on the perform-
ance specifications defined in Table 6.5. The total fitness score for each individual 
was calculated using the fitness function presented in Sect. 3.3.1. 

Table 6.2 Class of circuits used in the tests 

Ident. Name No.Devices  Opt.Var(a) Constr.(b) Refs 

Ckt1 Differential OpAmp 4 4 12 -- 

Ckt2 Cascode Amplifier 7 7 12 [3] Exa. 3.11 

Ckt3 6th Order Low Pass Elliptic Filter 27 9 -- -- 

Ckt4 Two-Stage OpAmp 16 10 30 [3] Exa. 5.2 

(a)  Number of optimization variables (b) Number of constraints 

Table 6.3 Design parameters range 

Id W’s (μm) (a) L’s (μm)(a)  Ibias (μA) Search Space 

Ckt1 [1, 400,1] [0.35,10,0.1] 200 fixed 2.137e+10 

Ckt2  [1, 400,1] [0.35,10,0.1] [10,60,20] 8.905e+14 

Ckt4 [1, 400,1] [0.35,10,0.1] none 8.220e+18 

(a) Note: all parameters ranges means [min, max, grid size] respectively 

Table 6.4 Matching and technology constraints details 

Id 
               Techn. Constraints 
Matching 

VGS - VT 

(a) 
[Min  -  Max] 

VDS - VDSAT

(b) 
Min  /  Max 

Ckt1 

 

M1=M2 

M3=M4 

[50-200] mV 

[100-300] mV 

> 50 mV  

> 50 mV  

Ckt2 M1=M2;  > 50 mV > 50 mV 

Ckt4 

  

 

M3=M4=M5=M6 

M1=M2;  

M3=M4=M7; 

M8=M9; 

M10=M11=M12 =M14 

[100-300] mV  

> 50 mV 

< 200 mV 

< 200 mV 

< 200 mV  

> 50 mV  

> 50 mV 

> 50 mV 

> 50 mV  

> 50 mV  

 (a)  Overdrive voltages  (b) Drain-sources voltages margin 

Table 6.5 Specifications/requirements 

Id Gain GBW Phase Power 

Ckt1 > 50 dB >40 MHz 60º<Ph<90º Min (mW) 

Ckt2  > 70 dB >25 MHz 60º<Ph<90º Min (mW) 

Ckt4 > 65 dB >20 MHz 60º<Ph<90º Min (mW) 
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The optimization algorithms were all initialized with the following default pa-
rameters listed in Table 6.6. In particular, the GA-STD, GA-MOD and GA-SVM 
will be used in the following experiments. GA-STD specifies the configuration of 
a standard GA, whereas, GA-MOD covers the new GENOM kernel, but, only the 
modified evolutionary module is considered, and finally, the proposed GA-SVM 
defines the hybrid method composed by the GA-MOD extended by the SVM 
learning method. 

Table 6.6 Optimization algorithm parameters 

Algorithm Setup GA-STD GA-MOD GA-SVM 

initPOP  64  64  64  

popSize (μ) initPOP/2 initPOP/2 iintPOP/2 

Elite members (λ) initPOP /8 initPOP /8 initPOP /8 

Initial Sampling Random Latin Hyper Sampling Grid 

Selection Random Tournament w/ Feasibility Tournament w/ Feasibility 

Sort Min. cost Priority to Feasibility Priority to Feasibility  

Crossover 1-Point Unif. 2-Point Unif. 2-Point Unif. 

Mut.Rate 5 % fixed 5 % Dynamic 5 % Dynamic 

Kernel type GA-STD GA modified GA+SVM 

Training Set  SVM none none 2000 Unif Sampling points 

Early Stop yes yes yes 

Some of the common parameters include the initial population size population 
size (μ=32), elite size (8), initial mutation rate (5%), a 2-pairs tournament-
crossover probability in 50% of μ and a normal distribution method for generating 
the initial population. The stop criterion was here defined as a maximum number 
of generations or as soon as it reaches the first solution. For this particularly  
experiments, the SVM meta-parameters were found for the first time model gen-
eration and then fixed (regularization parameter C=4, variance σ=1/n). A cross 
validation method [4-6] for optimal parameter selection will execute automatically 
for each model update. 

6.3   GENOM Convergence Tests  

In this section a set of experiments that tests the convergence and performance of 
GENOM GA-MOD algorithm will be presented. In particular, a simple testbench 
OpAmp circuit from Fig. 6.2a) will be used in this study. This circuit has 4 inde-
pendent variables and was synthesized within a 0.35μm, 3.3V technology. Each 
variable has a reasonable range and all were initialized by a random sampling 
methodology. 
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6.3.1   The Analog IC Design Approach  

The GENOM design methodology is ruled by two types of objectives: the goals 
and the constraints. All design goals and all design constraints must be satisfied in 
order to obtain a circuit, which fulfills the aims of the application. As soon as, a 
satisfactory solution is found, the optimizer continues his search for the improve-
ment of each goal, while ensuring that the constraints are still satisfied. During the 
search, it can happen that a candidate solution may satisfy all performance con-
straints and goals but may not meet the functional constraints or vice-versa. The 
space of feasible solutions is given by the candidate solutions that belong simulta-
neously to the performance and feasibility regions. The computation effort spent 
to find the solution space will increase as more and more performance constraints, 
design trade-offs, or even process variation parameters are taken into account 
when designing robust design circuits. Fig. 6.3 and Table 6.7 show the algorithm 
performance result for the simple OpAmps for 5 runs executed on an AMD X64 
2.8 GHz dual core machine and use HSPICE to simulate the circuit and extract 
performance parameters.  

 

 

Fig. 6.3 Print screen with statistical data from nominal optimization 

Each line from Fig. 6.3 depicts the run number, #Run, the number of evalua-
tions in each run, “#nEvals”, the final fitness value, “#Fitness”, simulation time, 
“#wTIME”, then its followed by three binary values indicating whether a solution 
satisfies all performance constraints “#PERF”, all feasibility (designer rules) con-
straints “#FEAS” or both, meaning that a solution was found #STATUS=Y at gen-
eration “found_@”.  

The “Perf. Specs” columns in Table 6.7 mean the fitness, time and evaluation 
number when the circuit meets all design specs of the problem. In the same way, 
the “Specs&Rules” column represents the same features when the circuit meets all 
design specs, as well as, and all functional constraints of the problem, considering 
the nominal optimization with typical working conditions. The “Corners” column 
also represents the same features, in case the circuit meets all design specs and all 
functional constraints in all corner points of the problem. 
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Table 6.7 Overall performance measures 

 #Fitness #TIME (s) #nEVALs 

RUNs Perf. Specs 
Specs & 
Rules 

Corners 
 Perf.  
Specs 

Specs 
& Rules

Corners
 Perf. 
Specs 

Specs & 

 Rules 
 Corners 

Run-1 1.065e-02 1.065e-02 1.059e-02  6.75 8.92 174.98  96 128 2578 

Run-2 1.062e-02 1.062e-02 1.062e-02  4.29 4.29 184.08  <64 <64 2720 

Run-3 1.07e-02 1.07e-02 1.061e-02  4.84 4.84 232.93  <64 <64 3440 

Run-4 1.073e-02 1.082e-02 1.059e-02  8.10 13.47 260.70  112 192 3888 

Run-5 1.079e-02 1.077e-02 1.057e-02  4.22 5.28 232.25  <64 68 3424 

The optimization process considering only typical conditions solved the prob-
lem quickly, and spent only a very few generations (from 0 to 8) as seen in Fig. 
6.3 to achieve the performance specs satisfying all design constraints (rules). 
However, in corner optimization the number of generations increases for around 
15-20 generations. Since each candidate solution for corner analysis requires 9 
SPICE simulations (one simulation for each corner point), a minimum of 2578 and 
a maximum of 3888 HSPICE simulations were performed taking into account all 
runs.   

6.3.2   Testing the Selection Approach  

Considering the search space subdivision in performance and feasibility spaces, 
this experiment tries to answer the question of which selection approach is more 
efficient to handle analog circuit candidates towards the optimum space. When 
two candidate solutions are compared, which one is more efficient, the one satisfy-
ing all performance specs less 50% of constraints or the one satisfying all design 
constraints less the 50% of specs? It will be seen in the following experiments the 
influence of the selection operator materialized in GENOM by the variation of the 
sort algorithm and the tournament selection scheme. 

The following results, depicted in Table 6.8 and Table 6.9, present the effec-
tiveness of the selection operator variants implemented in GENOM optimizer, us-
ing the same circuit of Fig. 6.2a) for the corner optimization case. In particular 
two variants will be tested. The first variant promotes the solutions close to the 
performance space, i.e., in the pathway to the solution space, and its first goal is to 
reach the performance space and then move towards the feasibility space (results 
in Table 6.8). A second variant uses the opposite strategy, the first approach is to 
reach the feasibility space and after that the performance space (Table 6.8). The 
performance of these two approaches will be compared with standard approach 
(Table 6.10). 
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Table 6.8 Output results for each run - Priority to the performance space 

#Run   #nEvals   #Fitness    #wTIME     #PERF   #found_@  #STATUS     #found_@ 

   1         2578      1.060e-02    117.07s          Y          1 (gen)               Y             14 (gen) 

   2         2720      1.061e-02    130.58s          Y          1 (gen)               Y             15 (gen) 

   3         3440      1.061e-02    169.89s          Y          3 (gen)               Y             20 (gen) 

   4         3888      1.060e-02    205.95s          Y          3 (gen)               Y             23 (gen) 

   5         4144      1.060e-02    199.57s          Y          4 (gen)               Y             25 (gen) 

 

Table 6.9 Output results for each run – Priority to the feasibility space 

#Run   #nEvals   #Fitness    #wTIME     #FEAS   #found_@  #STATUS     #found_@ 

   1          6472        1.060e-02    296.48s       Y           1 (gen)        Y                   41 (gen) 

   2          6314        1.059e-02    311.79s       Y           1 (gen)        Y                   40 (gen) 

   3          3024        1.060e-02    158.91s       Y           1 (gen)        Y                   17 (gen) 

   4          4464        1.060e-02    220.19s       Y           1 (gen)        Y                   27 (gen) 

   5          1432        1.060e-02      73.83s       Y           1 (gen)        Y                     6 (gen) 

 

Table 6.10 Output results for each run – Standard approach 

#Run   #nEvals   #Fitness    #wTIME     #FEAS   #found_@  #STATUS     #found_@ 

   1         3448        5.326e-02   190.46s        Y            1 (gen)            Y                20 (gen) 

   2          6608       5.317e-02   318.82s        Y            1 (gen)            Y                42 (gen) 

   3          2160       5.327e-02   125.24s        Y            1 (gen)            Y                11 (gen) 

   4          2736       5.321e-02   121.55s        Y            1 (gen)            Y                15 (gen) 

   5          2008       5.322e-02     89.36s        Y            1 (gen)            Y                10 (gen) 

In the standard approach, the best-ranked individual will always be the one with 
the lowest constraints and specs violation in each generation. From the analysis of 
these results it is verified that the standard ranking approach and the ranking strat-
egy that gives priority to the solutions satisfying performances spaces produces 
the better results in terms of number of generations or computation time. In aver-
age, both strategies have similar performances (e.g., the average number of gen-
erations is 19.4 and 17.8 respectively), although the standard approach presents 
worse variances from run to run (13.1 against and 4.8 for the other strategy). For 
simple circuits like the one used in these experiments there is no apparent benefit 
in these two approaches.  

However, for more complex circuits the great variance of standard approach 
will be amplified and will produce undesirable results, as shown in Table 6.11 and 
Table 6.12 for the fully differential OpAmp with 21 optimization variables and 43 
constraints defined in Sect. 6.5.1.  
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Table 6.11 Output results for each run – Priority to the performance space 

#Run   #nEvals   #Fitness    #wTIME     #FEAS   #found_@  #STATUS     #found_@ 

   1          288         7.542e-02    16.60s        Y             7 (gen)           Y                 14 (gen) 

   2          512         1.162e-01    26.10s        Y             9 (gen)           Y                 28 (gen) 

   3         1088        7.881e-02    54.80s        Y           21 (gen)           Y                 64 (gen) 

   4          608         3.428e-02    31.99s        Y             7 (gen)           Y                 34 (gen) 

   5          640         9.562e-02    33.91s        Y           10 (gen)           Y                 36 (gen) 

   6        1920         7.108e-02    93.19s        Y           12 (gen)           Y               116 (gen) 

   7          640         9.099e-02    51.76s        Y           18 (gen)           Y                 36 (gen) 

   8          832         5.907e-02    64.20s        Y             9 (gen)           Y                 48 (gen) 

   9        1168         3.139e-02    65.11s        Y           20 (gen)           Y                 69 (gen) 

  10         832         1.230e-01    41.25s        Y             7 (gen)           Y                 48 (gen) 

Table 6.12 Output results for each run – Standard approach 

#Run   #nEvals   #Fitness    #wTIME     #FEAS   #found_@  #STATUS     #found_@ 

   1         368         6.846e-02     19.85s          Y         11 (gen)           Y                 19 (gen) 

   2       1328         3.895e-02     64.95s          Y         10 (gen)           Y                 79 (gen) 

   3         448         9.689e-02     23.30s          Y         14 (gen)           Y                 24 (gen) 

   4       1616         3.544e-02     78.14s          Y         17 (gen)           Y                 97 (gen) 

   5         384         1.141e-01     20.08s          Y         14 (gen)           Y                 20 (gen) 

   6         880         1.121e-01     44.30s          Y         22 (gen)           Y                 51 (gen) 

   7       2464         2.413e+00   120.51s         Y           9 (gen)           N             >150 (gen) 

   8       2464         9.955e-01    142.98s         Y           7 (gen)           N             >150 (gen) 

   9         528         5.027e-02      27.67s         Y         18 (gen)           Y                 29 (gen) 

  10      2464         1.443e+01   169.66s         Y         14 (gen)           N             >150 (gen) 

In several runs, the standard ranking approach is not capable of finding a solu-
tion during the specified number of generations (150 in this case) for this nominal 
optimization problem. The ranking strategy with priority to performance space is 
able to find a solution in all cases (as noticed in Table 6.11) and, in general, it is 
more efficient to find a solution in each run.  

6.4   Comparing GA-STD, GA-MOD and GA-SVM Performance  

The objective of these experiments is to compare the performance of the proposed 
learning method GA-SVM against the earlier evolutionary approach GA-MOD, as 
well as, the standard GA-STD. The following case studies do not include the 
search space decomposition feature and the parallelism in the results analysis.   

For all the following examples, the industry HSPICE simulator will be used as 
the evaluation engine, every time an electrical simulation is required. The testbench 
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circuit configuration of Fig. 6.2 b), c) and d) were used in these experiments fol-
lowing the specifications, constraints and models already defined in Sect. 6.2. 

In order to create an accurate SVM Feasibility model the optimization parame-
ter space was uniformly sampled with 2000 points to produce the training set, 20% 
were used to balance the model class samples and 10% more to the validation data 
set. The class balance pre-processing module was achieved in two steps. First, by 
filtering those solutions that belong to regions of the design space that are far from 
fulfill the technological constraints (undersampling the majority class). Then build 
a two class feasibility model considering those samples which are close the feasi-
bility region and the samples that really belong to the feasibility region. Next, use 
it to oversample the feasibility region (increasing the minority class) as well as its 
frontier as explained in Sect. 4.2.5. After that, a final accurate feasibility model is 
built to be use in the optimization process. 

6.4.1   GA-STD versus GA-SVM Performance – Filter Case Study 

The filter circuit shown in Fig. 6.2 c) was optimized according to the performance 
specifications of Table 6.13. The nine design parameters range and the achieved 
results concerning device sizes are presented in Table 6.14 using the HSPICE 
simulator as the evaluation engine.  

Table 6.13 Performance specifications/requirements 

SPECs Initial GA-STD GA-SVM Units 

Maximum P-Band Ripple   < 1  9.13e-01  7.20e-01 dB 

Minimum P-Band Ripple   > -0.5  -1.89e-01 -3.93e-01 dB 

Stop Band Attenuation      < -82  -8.25e+01 -8.30e+01 dB 

Table 6.14 Design parameter specifications (GA-SVM) 

Optimization Parameters Limits Results 

R11 (Ω) in block 1 [1.0e+3, 5.0e+3] 3.70e+03 

C11 (F) in block 1 [250.0e-12, 400.0e-12] 3.15e-10 

C21 (F) in block 1 [1.0e-9, 10.0e-9] 8.00e-09 

R12 (Ω) in block 2 [7.0e+3, 15.0e+3] 1.13e+04 

C12 (F) in block 2 [250.0e-12, 400.0e-12] 3.45e-10 

C22 (F) in block 2 [1.0e-9, 5.0e-9] 3.90e-09 

R13 (Ω) in block 3 [30.0e+3, 40.0e+3] 3.93e+04 

C13 (F) in block 3 [50.0e-12,  100.0e-12] 7.40e-11 

C23 (F) in block 3 [1.0e-9, 10.0e-9] 3.10e-09 



150 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques
 

Table 6.15 Runtime info 

 GA-STD GA-SVM

Optimization Variables  9 9 

Number of evaluations to get first solution 1670 1272 

Time elapse to get 1st solution   75s 64s 

                    * In a dual processor core AMD at 2400 MHz running Linux OS. 

 
The obtained performance specs obtained by the GA-STD and GA-SVM meth-

ods are included in Table 6.13. Finally, the overall computational times are  
presented in Table 6.15 and the first solution is the one which satisfies all the per-
formance specs. 

Both models GA-SVM and GA-STD obtain feasible solutions as outlined in 
Fig. 6.4, but with slight differences in time efficiency, about 15-20% of efficiency 
favorable to GA-SVM, as indicated in Table 6.15. With this optimization method-
ology the GA algorithm may lose some diversity, however the model will improve 
dynamically one step after the other, as it can be observed in Fig. 6.5, exploring 
very well, say aggressively, the performance space.  

 
 
 
 

 
Fig. B - Stop band zoom 

 
Fig. A - Ripple zoom 

   

Fig. 6.4 Final Bode plot 
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Fitness Versus Number of Evaluations 
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Fig. 6.5 Performance: GA-STD versus GA-SVM kernel 

6.4.2   Static GA-SVM Performance - OpAmp Case Study  

In this experiment the Ckt2 and Ckt4 OpAmp circuits shown in Fig. 6.2b) and d) 
were optimized according to the performance specifications of Table 6.5. All  
statistics measures presented in Table 6.16 and Table 6.17 are the mean and stan-
dard deviation obtained over 20 runs. “Cmean” and “Cstd” stand for the mean and 
the standard deviation of the cost function; “EVmean” and “EVstd” stand for the 
mean and the standard deviation of the number of evaluations necessary to get  
the first solution, and finally, the “Tmean” and “Tstd” represent the mean and the 
standard deviation of the time spent in the optimization process, not included  
the setup time to build the model in the case of the GA-SVM algorithm.   

Table 6.16 Comparison among different algorithms for Ckt2 

Cir-1 GA-STD GA-MOD GA-SVM 

Cmean  9.090e-02 7.476e-02 7.181e-02 

Cstd 2.128e-02 6.940e-03 9.646e-03 

EVmean  1.888e+02 1.502e+02 7.285e+01 

EVstd 8.490e+01 7.043e+01 2.377e+01 

Tmean  2.026e+00 1.669e+00 7.275e-01 

Tstd 1.109e+00 7.801e-01 3.246e-01 

Fig. 6.6 and Fig. 6.7 show the electrical characteristics of the final population 
and some of the output reports from the optimization tool, respectively.  
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Table 6.17 Comparison among different algorithms for Ckt4 

Cir-2 GA-STD GA-MOD GA-SVM 

Cmean  2.772e-01 2.787e-01 2.376e-01 

Cstd 7.693e-02 5.066e-02 5.034e-02 

EVmean  7.216e+02 3.863e+02 4.196e+02 

EVstd 3.008e+02 1.300e+02 1.325e+02 

Tmean  1.813e+01 1.216e+01 1.029e+01 

Tstd 1.179e+01 5.771e+00 4.161e+00 
 

 
Gain and phase magnitudes of Cascode Amplifier (Ckt2) Gain and phase magnitudes of TwoStage Opamp (Ckt4) 

  

Fig. 6.6 Electrical characteristics from final population 

  

Fig. 6.7 Output reports from optimization tool (Ckt4) 
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6.4.2.1   Evaluation Metric 

The experiments were executed on AMD X64 2.8 GHz dual core machine and 
used HSPICE to simulate the circuit and extract performance parameters and the 
public domain LIBSVM tool [7] as the learning engine. Each algorithm was exe-
cuted 20 times to acquire the mean and the standard deviation for the evaluation 
performance. The convergence behavior for the “Two-Stage” OpAmp experiment 
in one run is presented as an example in Fig. 6.8. 

 

Fig. 6.8  Evolution of the cost function 

Analyzing this Fig. and the experimental data displayed in Table 6.16 and Ta-
ble 6.17 and Fig. 6.9, it is noticeable the good accuracy and lower variance ob-
tained by the GA-MOD and GA-SVM algorithms.  
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Fig. 6.9 Comparative graph for the required number of evaluations 
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However, the GA-SVM achieved better results in all cases. Although the GA-
STD uses electrical simulation too, the convergence is slower than the others. The 
algorithms using models are clearly more time efficient if it is not included the  
algorithm setup time to build the models. Among all the approaches under test, 
GA-SVM can achieve the lowest cost and the smaller amount of computation time 
followed by the GA-MOD. 

The setup time to build the model, 100 seconds approx. in each of the presented 
cases, can be problematic at first sight. The means and variances for the GA-SVM 
would be very different if they were included in statistics. However some points 
can be clarified in favor of this approach. First, the initial model is build only once 
and can be used many times to test different circuit’s requirements since the pa-
rameters ranges don’t change. Second, much of the time spent with model genera-
tion is due to the time spent in sampling and evaluation of the selected points for 
training and testing the model. The effective time to build the model is negligible 
when compared with circuit model sampling. Thus, the performance and con-
strained information resulting from each training set is stored, it is possible to 
build a model at any time, adapted for each circuit requirements and allowing pos-
terior model upgrading and reusability. In conclusion a good compromise between 
accuracy and efficiency is given by the hybrid GA-SVM approach. 

6.4.3   Testing the Dynamic GA-SVM Performance  

The objective of these experiments is to study the impact of the proposed dynamic 
SVM model in the optimization process. Our purpose is to compare the perform-
ance of several dynamic learning strategies and compare the GA-SVM against the 
static GA-SVM defined in the previous section, as well as, GA-MOD. Specifi-
cally, four experiments defined in Table 6.18 will be performed considering,  
respectively, the SVM model built before the start of the evolutionary process – 
static model, SVM model built dynamically, i.e., during evolutionary process, and 
finally a combination of a static with dynamic SVM model – dynamic model, 
where the static model is here initialized with a subset of samples from the single 
static model. Table 6.19 gives the algorithm specifications details. 

Table 6.18 Experiments cases 

Experiment Model SVM Static Model Dynamic Model 

Exp-1 GA-MOD No No No 

Exp-2 Static-SVM Yes Yes/3000(a) No 

Exp-3 Dyn-SVM Yes No Yes/100 

Exp-4 S+D-SVM Yes Yes/1000 Yes/100 (b) 

(a) Number of uniform sampling points         (b) Regeneration rate 
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Table 6.19 Algorithm specifications under test 

Algorithm  GA-MOD Static-SVM Dynamic-SVM 

Selection 2-Tournament  2-Tournament 2-Tournament 

Crossover 2-Point Unif 2-Point Unif 2-Point Unif 

Mutation Rate 5% Dynamic 5% Dynamic 5% Dynamic 

Kernel type GA modified SVM-RBF SVM-RBF 

Training Set None 3000 Unif Sampling points None 

These experiments use exclusively the two-stage (Ckt4) ampop illustrated in 
Fig. 6.2, updated with appropriate test benches to allow the measures of the de-
sired performances parameters. All experiments used the same computation re-
sources, specifications and constraints as earlier and also used the same number of 
runs to extract the mean and the standard deviation for the evaluation perform-
ance. The convergence behavior for the two-stage OpAmp experiment in one run 
is presented as an example in Fig. 6.10. 

From the experimental data, displayed from Table 6.20 and Fig. 6.10, it is clear 
the good accuracy and time efficiency obtained with strategies embedded with 
SVM models built in offline mode. However, the overhead time to build the static 
model can be problematic for more complex circuits. Here, the static algorithm 
takes about 90 seconds approx. to evaluate 3000 uniform samples but in more 
complex circuits, this number rises considerably. The means and variances to se-
tup the models using static modeling were not included in the final statistics given 
at Table 6.20.  

Table 6.20 Comparison among different algorithms 

  Algorit. Cmean Cstd EVmean EVstd Tmean Tstd 

  Exp-1 2.55e-01 4.47e-02 3.95e+02 1.07e+02 1.14e+01 4.04e+00 

  Exp-2 2.61e-01 4.93e-02 1.48e+02 1.08e+02 3.91e+00 2.28e+00 

  Exp-3 2.19e-01 4.74e-02 2.74e+02 2.24e+02 6.93e+00 6.58e+00 

  Exp-4 2.19e-01 5.29e-02 6.22e+02 1.73e+02 1.42e+01 4.31e+00 

A different strategy has been taken towards a dynamic building model with da-
ta gathered during the early generations. Some configurations were tested as 
shown in the Fig. 6.10 (b). 

This approach can be very sensitive to the value of the regeneration rate value. 
Using a lower value for the regeneration rate, e.g., 200, originates long processing 
times because it takes more training samples however a better accuracy model is 
obtained. A higher sampling rate at early generations causes better convergence 
but with a slightly increase in execution times. An automatic and dynamic control  
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of the regeneration rate can be added using the information of the quality of SVM 
model. A good compromise between these two approaches is given by the test 
case joining the static and dynamic training model behavior (S+D-SVM). 
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(b) Dynamic SVM model behavior with regen-
eration rate 

Fig. 6.10 Comparative performance analysis 

6.4.4   Final Comments   

The proposed approach is a step forward when compared with the simple GA 
kernel, as it now incorporates performance modeling facilities, allowing an effec-
tive pruning of the candidate solutions before being submitted to the heavy time-
consumption task of electrical evaluation. The achieved results show significant 
gains in efficiency and this approach also allows the reuse of the model generated 
during one optimization process in subsequent optimizations, which is again an-
other significant advantage when compared with traditional approaches, espe-
cially in the areas of architecture exploration and synthesis of complex analog 
blocks. 

6.5   General Purpose Circuits or High Performance Circuits 
Design 

In this section, a case study for several high performance circuit designs will be 
presented passing by the following phases: full schematic, design specifications 
and constraints, variable ranges, optimization results such as variables size and 
achieved performance and time statistics. This set of circuits shows GENOM’s 
ability to design high-performance and novel circuit topologies. The design com-
plexity decomposition was optionally not taken into account because the primarily 
objective is to test the algorithm not the design process.  
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6.5.1   Fully Differential OpAmp 

Fig. 6.11 illustrates the differential amplifier schematics considered to evaluate the 
performance of the presented optimization technique.    
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(b) CMFB amplifier 

  

 

 

 

 

 

(c) Main amplifier  

 

 

 

 

Fig. 6.11 Differential amplifier schematic 

The topology, defining the connectivity of device-level components, consists of 
25 transistors devices grouped in 3 main functional blocks: the main amplifier 
with differential input and output, the bias circuit and the common mode feedback 
circuitry. By looking at the circuit schematic, some groups of transistors like M3a 
and M3b, for instance, must be matched. Some dependent relations like, the mul-
tiplicity factor, m7, of transistors M7a and M7b is equal to m5/2 (this implies that 
m5 must be pair) must also be verified. 
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6.5.1.1   Performance Specifications, Input Variables Ranges and Design 
Space Size 

The main objective was to synthesize the presented differential amplifier using the 
ALCATEL 0.35µm, 3.3V CMOS technology according to the performance speci-
fications, listed in Table 6.21, and always respecting the fundamental designer 
rules related to overdrive voltages and drain-sources voltages. The 7 performance 
constraints derived from Table 6.21 (excluding CL) and the 34 constraints derived 
from designer’s rules depicted in Table 6.23, result in 41 optimizations constraints 
that must be satisfied by the optimization process. The 34 constraints are due to 
the 17 overdrive voltage and 17 drain source voltages considered on transistors 
m0a, m0b, m16, m1a, m1b, m2a, m2b, m3a, m3b, m4a, m4b, m5a, m5b, m6a, m6b, 
m7a and m7b.  

A total of 21 independent variables (column “Design Variables” in Table 
6.23) corresponding to widths, lengths and multiplicity factor of transistors repre-
sent the number of genes on each genetic algorithm chromosome. All the solu-
tions were examined for each one of the 9 corner points resulting from the cross 
combination of process and operational variation listed on Table 6.22. For exam-
ple, the combination (CSlow,-40º) means a circuit analysis at temperature -40º 
using NMOS and PMOS slow models. Then, it is followed by (CSlow,+50º) 
analysis, etc. Finally, Table 6.24 lists the main optimization parameters used on 
the genetic algorithm. 

Table 6.21  Performance parameter specifications 

 Specifications Target Units Description 

Electrical GBW  > 100  MHz  Unit-gain frequency 

 Phase margin  > 60 º  Phase margin 

 DC gain  > 55  dB  DC gain 

 CMF GBW  > 50  MHz  CMFB unit-gain frequency 

 CMF Phase margin  > 60 º  CMFB phase margin 

Environmental CL (fixed value) 0.2 pF Capacitive Load 

Optimization Power Consumption  Minimum  mW Objective 

 Current Consumption  Minimum μA  Objective 

 

Table 6.22 Corners analysis data 

Conditions Variation points  

MOS worst case parameters CSlow CTyp CFast 

Temperature Range (º C) -40º C +50º C +120ºC 
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Table 6.23 Matching and constraints details 

Matching    Constraints  
Dependent 
Variable 

Design 
Variable 

Range 
[Min;Max;Step] 

Unit 
VGS - VT 

(a)

 

[Min - Max]
VDS - VDSAT 

(b)

 

Min  /  Max 
Unit 

M0      (_w00, _l00, m02) _w00 [1;  20; 1] μm    
M0a=M0b=M0c  
                 (_w02, _l00, 1) 

_w01 [1;  20; 1] μm [100 - 300] >100 mV 

M1      (_w02, _l06, m06) _w02 [1;  20; 1] μm    
M2a = M2b=M2c 
 (_w02, _l02, m02)  

_w04 [1;  20; 1] μm [100 - 300]  >100 mV 

M20         (_w04, _l04, 1) _w10 [1;  20; 1] μm    

M21         (_w11, _l11, 1)  _w11 [1;  20; 1] μm    
M3a = M3b 
            (_w02, _l03, m03) 

_l00 [0.35; 10; 0.05] μm [100 - 300] >100 mV 

M5a = M5b 
            (_w04, _l05, m05) 

_l01 [0.35; 10; 0.05] μm [100 - 300] >100 mV 

M6a = M6b  
            (_w02, _l06, m06)  

_l02 [0.35; 10; 0.05] μm [50 - 300] >100 mV 

 _l03 [0.35; 10; 0.05] μm    

Bias Circuit _l04 [0.35; 10; 0.05] μm    

M16=M17  (_w02, _l02, 1)  _l05 [0.35; 10; 0.05] unit [100 - 300] >100 mV 

M18           (_w10, _l10, 1) _l06 [0.35; 10; 0.05] μm    

M19           (_w02, _l03, 1) _l10 [0.35; 10; 0.05] μm    
M4a=M4b  
              (_w04, _l04, m04)  

_l11 [0.35; 10; 0.05] μm [100 - 300] >100 mV 

M7a=M7b 
           (_w04, _l05, m05/2) 

_m01 [1; 80;1] unit [100 - 300]  >100 mV 

M1a=M1b 
              (_w01, _l01, m01)  

_m02 [1; 80;1] unit [50 - 300]  >100 mV 

 _m03 [1; 80;1] unit    

 _m04 [1; 80;1] unit    

 _m05 [1; 80;1] unit    

 _m06 [1; 80;1] unit    

(a) Technology Constraints - overdrive voltages    (b) Drain-sources voltages 

Table 6.24 Optimization algorithm parameters 

Parameter  value Parameter value Parameter value 

Kernel GA-MOD Selection Tournament Popsize 64 

Strategy Corner Optimization Crossover Two point Init Pop 2*Popsize 

Sampling LHS Mutation Dynamic Generations 150 

Adaptive No 
Stop condi-
tion 

End of gen-
erations Sort 

Priority to perform-
ance fitness then perf.
constraints. Elite 25% of populat. Search Space 2,370e+37 
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6.5.1.2   Analysis 

The attached test benches used for DC and AC simulations are illustrated in  
Fig. 6.12. The unusual values for the resistance (1T Ohm) and for the capacitance 
(1F) ensure the same voltage in DC Analysis for nodes Vin-, Vin+, Voutp and 
Voutn, it is also possible to analyze the amplifier open loop gain. A dependent 
source voltage is used to transform a differential output (voutp, voutn) into a single 
ended one (voutd).  

The simulation results for the main amplifier and cmfb circuit sizing achieved 
with the optimization module, and using the HSPICE simulator as the evaluation 
engine are presented in Table 6.25 and satisfy all the design requirements. The fi-
nal transistor dimensions are displayed in Table 6.26. The proper biasing of all 
CMOS transistors are guaranteed once the final solution satisfies all the design 
specs and functional constraints for each of the corner points. The computational 
times were included, in Table 6.27, to illustrate the effectiveness of the proposed 
system. 

 

Fig. 6.12 Testbench for (a) AC and (b) AC Common mode feedback specifications 

Table 6.25 Performance parameter specifications 

 Specifications Target Sizing Result Units 

Electrical GBW  > 100 158.0 MHz  

 Phase margin  > 60 65.0 º  

 DC gain  > 55 66.6 dB  

 CMF GBW  > 50 64.1 MHz  

 CMF Phase margin  > 60 75.6 º  

Optimization Power Consumption  Minimum  4.2  mW 

 Current Consumption Minimum 1.2 mA  
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Table 6.26  Final transistor dimensions 

Main 
Amplifier 

W/L  
(μm/μm) 

Bias W/L 
(μm/μm) 

Common  
Mode 

W/L 
(μm/μm) 

M0 54/0.40 M0a, b, c 1/0.40 M6a, b 170/0.95 

M1a, M1b 41/0.95 M16,17 10/0.40 M7a, b 45/1.75 

M2a, M2b 90/0.40 M18 3/0.95 M2c 90/0.40 

M3a, M3b 170/0.90 M19 10/0.90   

M4a, M4b 441/7.80 M20 9/7.80   

M5a, M5b 54/0.95 M21 6/4.40   

Table 6.27 Runtime info* 

Design Problem    

Opt. Variables / Constraints (Specs + Design Const.) 21 7 + 34 = 41  
    

(1 -Step) Corners Optimization Time #Generation #Evaluations 

Overall Optimization time 17m05s 150 2496 

First Feasible Solution 10m56s 79 1329 

Best feasible solution 12m45s 92 1616 

* In a single processor Intel(R) Core(TM)2 Quad CPU Q6600  @ 2.40GHz PC running Linux. 
 
The next pages show all graphical and numerical results for the AC corner 

analysis. Fig. 6.13 shows all the gain magnitudes, it is interesting to observe the 
range of DC gain and GBW; all corner numerical results are reported in  
Table 6.28 while Table 6.29 shows minimum and maximum values.  

 

  

Fig. 6.13 Gain magnitudes for corners analysis 
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Fig. 6.14 displays the output from corner simulation. 
  

CORNER   MODEL TEMP WEIGHT SATISFY FITNESS(i) VIOL(i) SUM_FIT[10150]

[ 1 ] 

[ 2 ] 

[ 3 ] 

[ 4 ] 

[ 5 ] 

[ 6 ] 

[ 7 ] 

[ 8 ] 

[ 9 ] 

CSLOW 

CSLOW 

CSLOW 

CTYP 

CTYP 

CTYP 

CFAST 

CFAST 

CFAST  

-40º 

+50º 

+120º 

-40º 

+50º 

+120º 

-40º 

+50º 

+120º  

1 

1 

1 

1 

1 

1 

1 

1 

1 

7 / 34=41 

7 / 34=41 

7 / 34=41 

7 / 34=41 

7 / 34=41 

7 / 34=41 

7 / 34=41 

7 / 34=41 

7/ 34=41 

6.779e-03  

1.333e-02 

 1.980e-02  

3.438e-02 

 4.830e-02  

6.199e-02 

 7.012e-02  

7.774e-02 

 8.518e-02 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00

6.779e-03 

1.333e-02 

1.980e-02 

3.438e-02 

4.830e-02 

6.199e-02 

7.012e-02 

7.774e-02 

8.518e-02 

****** EUREKA ******  

Byebye. AIDA - IC_DESIGN Terminate ... 

Job done on a  Intel(R) Core(TM)2 Quad CPU Q6600  @ 2.40GHz 

Fig. 6.14 Output from simulation where all corners are satisfied 

Table 6.28 Results for corners analysis 

Corner  1 2 3 4 5 6 7 8 9 

Process  slow   typical   fast   

Temperature  -40° 50° 125° -40° 50° 125° -40° 50° 125° 

Specs Values          

 DC Gain  (dB) > 55 58.3 56.5 55.5 57.9 56.3 55.4 57.2 55.9 55.3 

f (A=0dB) (MHz) > 100 188 138 116 215 158 133 243 178 150 

Phase (A=0dB)  (°) >-120 -117 -116 -115 -116 -115 -115 -114 -114 -114 

PM    (grade) > 60 63 64 65 64 65 65 66 66 66 

Table 6.29 Minimum and maximum values for AC corner analysis 

Specs Range     

DC Gain   (dB) Min: 55.3 dB Max: 58.3 dB 

GBW     (MHz) Min: 116 MHz Max: 243 MHz 

PM     (grade) Min: 63º Max: 66º 
 

Two critical corner points are pointed in Fig. 6.13. The corner in the bottom 
(magnitude 0) is achieved by Corner Slow, @125º and in the top by Corner Fast, 
@125º. To calculate the phase margin is not useful to plot all phases in the same 
graphic; Fig. 6.15 shows the gain magnitude and phase only for typical mean 
process and 50° conditions. The dot line depicts the gain magnitude and phase at 
the common mode output. 
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Fig. 6.15 Gain magnitude and phase for typical conditions 

6.5.1.3   Design Analysis 

The GENOM optimization algorithm solves the circuit sizing problem with effi-
ciency considering the type of optimization evolved in this experiment, the corner 
optimization and taking also in consideration the number of optimization variables 
and constraints. The first and the final solutions produced are presented in  
Table 6.30 and Table 6.31.  

Table 6.30 First feasible solution performance parameter specifications 

Specifications Target Sizing Result Units 

GBW (MHz) > 100 MHz 110.6 MHz 

Phase margin (deg) > 60º 74.0 º 

DC gain (dB) > 55 dB +61.1 dB 

CMF GBW (MHz) > 50 MHz 60.7 MHz 

CMF Phase margin (deg) > 60º +82.4 º 

Power Consumption (mW) Minimum  2.8 mW 

Current Consumption (μA) Minimum 8.7e-01 mA 

Nº Eval = 1329   RealTime:  10min 
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Table 6.31 Best solution performance parameter specifications 

Specifications Target Sizing Result Units 

GBW (MHz) > 100 MHz 189.38 MHz 

Phase margin (deg) > 60º 64.1 º 

DC gain (dB) > 55 dB 58.1 dB 

CMF GBW (MHz) > 50 MHz 75.6 MHz 

CMF Phase margin (deg) > 60º 84.8 º 

Power Consumption (mW) Minimum  2.1 mW 

Current Consumption (μA) Minimum +8.8e-01 mA 

Nº Eval = 1626  RealTime:  12min 
 
 
The power consumption is the power provided by the power supply (vdd)  

as defined in the HSPICE expression (6.1). The current consumption is defined 
by the expression (6.2), where avddpar is the supply voltage (3.3V). Both ex-
pressions are divided by two in order to reflect the differential status of this  
topology. 

 

   .MEASURE  AC 'power'  PARAM('-P(vdd)/2') (6.1)  

   .MEASURE AC 'iavdd'  PARAM('-P(vdd)/avddpar/2') (6.2)  

6.5.2   A Common OTA Fully Differential Telescopic OpAmp 

6.5.2.1   Description  

A common OTA (Operational Transconductance Amplifier) is the telescopic am-
plifier. The major drawback of this amplifier’s topology is the reduced output 
swing when compared with other solutions, such as the folded cascade or two 
stage amplifiers, which becomes relevant in low voltage applications. On the other 
hand, its good speed performance associated with its low power consumption 
turns this topology into a competitive implementation. The schematic represented 
in Fig. 6.16 is an in-house fully differential version of this topology.  

 The topology consists in 24 transistors grouped in 2 main functional blocks: 
the main amplifier with differential input and the bias circuit. A quick inspection 
to circuit schematic highlights the potential matching of some groups of transistors 
like M0 and M19, M40 and M43, M17 and M18, M34 and M36.  Some dependent 
relations like for instance, the multiplicity factor of transistors M18, M17, M24 
and M5 and others listed in Table 6.33 should also be checked. 
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Fig. 6.16 Telecopic OpAmp - Main amplifier and Bias circuitry 

6.5.2.2   Problem Specifications and Design Configurations 

The main objective was to synthesize the presented telescopic amplifier, using the 
UMC 0.18µm logic 1.8V Generic II process, according to the performance speci-
fications listed in Table 6.32, and designed to follow the fundamental designer 
rules and optimization design constraints of Table 6.33. The total number of con-
straints, performance constraints and the constraints derived from designer’s rules 
are composed by 23 optimizations constraints that must be satisfied for the opti-
mization process described in Table 6.35. The specifications must be satisfied for 
the corners points of Table 6.36.  

Table 6.32 Performance parameter specifications 

 Specifications Target Units Description 

Electrical DC gain > 75  dB DC gain 

 GBW > 100 MHz  Unit-gain frequency 

 Phase Margin [ 60-90] º Phase margin 

Environmental Capacitive Load 1.1 pF Capacitive Load 

 Wi – fixed widths 2  μm Fixed all widths  

Optimization Power Consumption  Minimum   mW Objective 

 Current Consumption  Minimum μA  Objective 
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Table 6.33 Matching and constraints details 

Matching    Constraints   

Dependent 

Variable 

Design 

Variable 

Range 

[Min Max;Step] 
Unit 

VGS - VT 

(a)

 

[Min - Max] 

VDS - VDSAT 

(b)

 

Min  /  Max 
Unit 

M19 – M0 _m0 [1; 100; 2] unit [100 - 200] [50 - 150] mV 

M19 – M0 _l0 [0.18; 10; 0.05] μm    

M40 – M43 _m1 [1; 100; 2] unit [100 - 200] >50 mV 

M40 – M43 _l40 [0.18; 10; 0.05] μm    

M18 – M17 _m2 [1; 100; 2] unit [100 - 200] >50 mV 

M18 – M17  _l18 [0.18; 10; 0.05] μm    

M34 – M36 _m3 [1; 100; 2] unit [50 - 200] [50 - 150] mV 

M34 – M36 _l34 [0.18; 10; 0.05] μm    

M35 _m4 [1; 100; 2] unit [100 - 200] >50 mV 

M35 _l35 [0.18; 10; 0.05] μm    

Bias Circuit       

M24 – M5 _l18 [0.18; 10; 0.05] μm    

M59 – M58 _l58 [0.18; 10; 0.05] μm    

M9 – M57 – M26 _l19 [0.18; 10; 0.05] μm    

M11 – M14 _l40 [0.18; 10; 0.05] μm    

M13 _l0 [0.18; 10; 0.05] μm    

M12 _l12 [0.18; 10; 0.05] μm    

M27 – M2 _l2 [0.18; 10; 0.05] μm    

M15 _l15 [0.18; 10; 0.05] μm    

M25 _l25 [0.18; 10; 0.05] μm    

(a) Technology Constraints - overdrive voltages    (b) Drain-sources voltages 

 
Table 6.34 explains the rationale behind the achieved constraints values used in 

this experiment. In a fully differential amplifier, as the one shown in Fig. 6.16, the 
amplifier can be designed in two symmetrical parts. When one transistor changes 
value, its mirror also changes. This principle is used for the input differential pair, 
the cascode and load transistors. As for the overdrive voltage and margin, the con-
straints are as follows:   

Table 6.34 Matching and constraints details 

 Overdrive voltage  

Vgs-Vt = Vov 

Margin 

Vds-VDsat 

differential pair 50mV> Vov >200mV > 50mV 

current sources 50mV>Vov>200mV > 50mV 

cascodes 50mV>Vov>200mV > 50mV 

current sources with cascodes 50mV>Vov>200mV 50mV> Margin > 200mV 
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Table 6.35 Optimization algorithm parameters 

Parameter   Value  Parameter   value Parameter value 

Kernel GA-MOD  Selection 
Tournament by 
“feasibility” 

Popsize 64 

Strategy 
Typical + Corner 
Optimization 

 Crossover Two point Init Pop 2*Popsize 

Sampling LHS  Mutation Dynamic Generations 150 

 Adaptive No Stop 
End of gen-
erations 

Sort 

Priority to perform-
ance fitness then 
performance con-
straints.  Elite 

25% of popula-
tion 

Search Space 
domain 

2.344e+35 

 

Table 6.36 Corner analysis data 

Conditions Variation points  

MOS worst case parameters SF-Slow TT-Typ FS-Fast 

Temperature Range (º C) -40º C +50º C +120ºC 

 
 
Where, SF, TT and FS means the Slow/Fast, Typical/Typical and Fast/Slow 

process, respectively. Instead of using the typical fast and slow device models 
sets, where all devices are supposed to be fast or slow, a mixture of slow nMOS 
devices and fast pMOS is here considered, for example purposes, namely the 
SF, TT and FS meaning the Slow/Fast, Typical/Typical and Fast/Slow process, 
respectively.   

6.5.2.3   Analysis 

The attached test bench circuit used for DC and AC simulations is illustrated in 
Fig. 6.17. A dependent source voltage is used to transform a differential output 
(out1, out2) into a single ended one (outd).  

This experiment was executed on a single Intel(R) Core(TM)2 Quad CPU 
Q6600 @ 2.40GHz dual core machine and use HSPICE to simulate the circuit and 
extract performance parameters. The simulation results of the main amplifier and 
bias circuit sizing are shown in Table 6.37. The final transistor dimensions for all 
the devices and biasing conditions resulting from the sizing process are displayed 
in Table 6.38.  

Fig. 6.18 shows the gain magnitude and phase for typical process and 50°C 
conditions.  
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Fig. 6.17 Telescopic OpAmp - Testbench for DC and AC specifications 

Table 6.37 Performance parameter specifications 

 Specifications Target Sizing Result Units 

Electrical DC gain  > 75  77.6 dB  

 GBW  > 100  123.0 MHz  

 Phase margin  > 60 65.0 º  

Optimization Power Consumption  Minimum  5.6e-01  mW 

 Current Consumption  Minimum 3.1e-01 mA  

Table 6.38  Final transistor dimensions 

Main  

Amplifier 
W/L (μm/μm) Bias  W/L (μm/μm) 

M19 – M0 202 / 1.080e-06 M24 – M5 2 / 1.33e-06 

M40 – M43 152 / 1.58e-06 M59 – M58 2 / 1.38e-06 

M18 – M17 126 / 1.33e-06  M9 – M57 – M26 2 / 4.03e-06 

M34 – M36 60 / 0.73e-06 M11 – M14 2 / 1.58e-06 

M35 10 / 0.18e-06 M13 2 / 1.08e-06 

  M12 2 / 8.53e-06 

  M27 – M2 2 / 8.63-06 

  M15 2 / 1.73e-06 

  M25 2 / 9.68e-06 

               Note: M0c belongs to Bias and have the same value that M0a and M0b. 
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Fig. 6.18 Gain magnitude and phase for typical conditions 

 As it can be noticed, this simulation design meets the required specs related to 
DC gain, gain bandwidth and phase margin satisfying all corners points as re-
ported in Table 6.39, while Table 6.40 shows the minimum and maximum values. 
Obviously the amplifier was designed in order to obtain a worst case DC gain big-
ger than 75dB and a GBW bigger than 110MHz. 

Table 6.39 Numerical results for corner analysis 

Corner  1 2 3 4 5 6 7 8 9 

Process  Slow-Fast Typical  Fast-Slow 

Temperature  -40° 50° 125° -40° 50° 125° -40° 50° 125° 

Specs Values          

 DC Gain  (dB) > 55 78.3 76.5 75.5 78.9 77.6 76.4 77.2 75.9 75.1 

f (A=0dB) (MHz) > 100 178 128 110 205 123 133 223 146 140 

Phase (A=0dB)  (°) >-120 -117 -116 -115 -116 -115 -115 -114 -114 -114 

PM    (grade) > 60 63 64 65 64 65 65 66 66 66 

Table 6.40 Minimum and maximum values for AC corner analysis 

Specs Range     

 DC Gain   (dB) Min: 75.1 dB Max: 78.9 dB 

GBW     (MHz) Min: 110 MHz Max: 223 MHz 

PM     (grade) Min: 63º Max: 66º 
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6.5.2.4   Design Analysis 

Taking into consideration the type of optimization evolved in this experiment, 
the corner optimization of 16 optimization variables and 24 constraints, the op-
timization algorithm solves the problem with efficiency. In this experiment the 
two step evolutionary algorithm was used, which increases the computation effi-
ciency as shown in Table 6.41, once the optimization algorithm achieves a 
promising solution using the typical optimization. After that, the optimization 
follows the corner analysis process. The switch between these two steps is when 
five solutions are found by the typical process, in such a way that the population 
is moderately populated with promising samples. This approach increases the 
computation efficiency once the same problem was not able to produce a feasi-
ble solution, within the same time constraint, when a single corner optimization 
was considered. The first feasible solution satisfying all corners was achieved in 
generation 102.  

Table 6.41 Runtime info 

Design Problem    

Opt. Variables / Constraints (Specs + Design Const.) 16 5 + 18 = 24  

(1-Step) Typical Optimization Time #Generation #Evaluations 

Overall Optimization time 2m12s 53 944 

First Feasible Solution 1m00s 22 427 

Best feasible solution 1m48s 37 661 

(2 -Step) Corners Optimization Time #Generation #Evaluations 

Overall Optimization time 14m09s 150 3184 

First Feasible Solution 10m06s 102 1664 

Best feasible solution 12m07s 120 1937 

* In a single processor Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz PC running Linux. 
 
 
 

The resolution for this problem was achieved using an iterative process very 
similar to the traditional analog design. In a first attempt to solve the problem, it 
was observed that one of the corners in particular was very difficult to satisfy. 
This corner was identified by the inspection of the run-time information returned 
from simulation and provided by the tool. This critical corner point (corner nº3) 
is pointed in Fig. 6.19. The simulation was interrupted and the static weight for 
that corner was changed as shown in Fig. 6.20, and the simulation was rerun 
again. Finally it was possible to obtain several solutions within the original time 
constraint. 
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Fig. 6.19 Gain magnitudes for corner analysis 
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****** EUREKA ******  

Byebye. AIDA - IC_DESIGN Terminate ... 

Job done on a  Intel(R) Core(TM)2 Quad CPU Q6600  @ 2.40GHz 

Fig. 6.20 Output from simulation where all corners are satisfied 

All parameters from column “VIOL” have null values indicating the con-
straints related to designer’s rules (18) were totally satisfied. Additionally, the 
column “SATISFY” confirms that all constraints including the performances 
(5+18) were satisfied in all corner points. The column “FITNESS” represents the  
 

Critical corner point: 
Corner Slow, @120º 
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cost function values for each corner point. Generally, the sum of the fitness is not  
zero due to computation reasons. This amount is used to rank feasible solutions 
satisfying the main goals of the problem, i.e., minimization of power and current 
consumption. 

6.5.3   Folded Cascode OpAmp with AB Output 

6.5.3.1   Description 

Class AB amplifiers are typically used when there is a need to drive resistive or 
high capacitive loads. They provide a large output current during output voltage 
transients, while keeping a low current consumption when in quiet state. The ar-
chitecture shown in Fig. 6.21 and Fig. 6.22 is a two stage topology, with the first 
stage being a typical folded cascade architecture, followed by a class AB output 
stage. Capacitor C1 and resistor R1 provide the necessary miller compensation 
with a pole zero solution to increase the phase margin.  

Transistors M6 together with transistors M22 to M27 provide the control of the 
class AB operation by controlling the maximum output current of M7 and M8. 
This control is performed by keeping control of the Vgs voltage of M6a and M8 so 
that Vgs6a + Vgs8 = Vgs24 + Vgs27. Therefore the maximum output current sup-
plied by M8 is controlled by the current in M24 and M27.  For positive currents 
the same principle is applied to M6b, M7, M23 and M25. 
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Fig. 6.21 Main class AB Amplifier 
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Fig. 6.22 Bias circuit 

6.5.3.2   Problem Specifications and Design Configurations 

The main objective was to synthesize the presented folded cascode amplifier using 
the AMS (Austria Mikro Systeme Intl. AG) 0.35 µm, 3.3 V CMOS technology  
according to the performance specifications listed in Table 6.42, and designed to 
follow the fundamental designer rules and optimization design constraints of  
Table 6.43. The specifications must be satisfied for the corner points of  
Table 6.44. The total of constraints (performance constraints and the constraints 
derived from designer’s rules) results in 33 optimizations constraints that must be 
satisfied in the optimization process described in Table 6.45.  

Table 6.42 Performance parameter specifications 

 Specifications Target Units Description 

Electrical gain_dc > 70 dB Unit-gain frequency 

 gbw > 75 MHz  Phase margin 

 phase [ 60-90] º DC gain 

Environmental CL 1 pF Capacitive Load 

 Ibiaspar 10 μA Ibias  

 Wi fixed 5  μm Fixed all widths  

Optimization Power Consumption  Minimum   mW Objective 

 Current Consumption  Minimum μA  Objective 
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Table 6.43 Matching and constraints details 

Matching  Constraints   Design Variable 

Dependent  

Variable 

Optimization  

Variable 

VGS - VT 

(a)

 

[Min - Max] 

VDS - VDSAT 

(b)

 

 Min / Max 
Unit Name 

Range 

[Min Max;Step] 
Unit 

M0  (_wx, _l0, _m0) [100 - 250] >50 mV _l0 [0.35; 10; 0.05] μm 

M1a = M1b (_wx, _l1, _m1) [50 - 250] >50 mV _l1 [1;  20; 1] μm 

M2a = M2b (_wx, _l16, _m0) [100 - 250] [50, 250] mV _l3 [0.35; 10; 0.05] μm 

M3a = M3b (_wx, _l3, _m3) [100 - 250] >50 mV _l4 [0.35; 10; 0.05] μm 

M4a = M4b (_wx, _l4, _m4) [100 - 250] >50 mV _l5 [1;  20; 1] μm 
M5a = M5b (_wx, _l5, _m5) [100 - 250] [50, 250] mV _l16 [0.35; 10; 0.05] μm 

M6a  (_wx, _l24, _m6) [100 - 300] >50 mV _l18 [0.35; 10; 0.05] μm 

M6b (_wx, _l25, _m6) [100 - 300] >50 mV _l21 [0.35; 10; 0.05] μm 

M7  (_wx, _l25, _m7) [100 - 250] >50 mV _l24 [0.35; 10; 0.05] μm 

M8  (_wx, _l24, _m7) [100 - 250] >50 mV  _l25 [0.35; 10; 0.05] μm 

R1=R2 _r1    _m0 [1; 100;1] unit 
C1=C2 _c1    _m1 [1; 100;1] unit 

Bias Circuit:    _m3 [1; 100;1] unit 
Dep.Variable   Opt.Variable Dep.Variable        Opt.Variable _m4 [1; 100;1] unit 

M20 (_wx, _l4, 1)  _m5 [1; 100;1] unit 
M21 (_wx, _l21, 1) _m6 [1; 100;1] unit 
M23 =M25  (_wx, _l25, 1) _m7 [1; 100;1] unit 
M24 =M27 (_wx, _l24, 1) _r1 [100;1000;50] Ω 
M26 (_wx, _l0, 1) 

M16 =M17            (_wx, _l16, 1) 

M18                       (_wx, _l18, 1) 

M19                         (_wx, _l3, 1) 

M0a=M0b== M0c  (_wx, _l0, 1) 

 _c1 [1;5;0.05] tF 

(a) Technology Constraints - overdrive voltages    (b) Drain-sources voltages 

Table 6.44 Corners analysis data 

Conditions Variation points  

MOS worst case parameters Ws-Slow Tm-Typ Wp-Fast 

Temperature Range (º C) -40º C +50º C +120ºC 

Table 6.45 Optimization algorithm parameters 

Parameter     value  Parameter value  Parameter value 

Kernel GA-MOD  Selection Tourn. by feas.  Popsize 64 

Strategy Corner Optim.  Crossover Two point  Init Pop 2*Popsize 

Sampling LHS  Mutation Dynamic  Generations 250 

 Adaptive Yes  Stop 
End of gen-
erations 

Sort 

Priority to perform-
ance fitness then 
performance con-
straints.  Elite 25% of pop.  

Search Space 
domain 

6.417e+39 

Note: Evaluation Engine by HSPICE simulator. 
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6.5.3.3   Design Analysis 

The attached testbench circuit used for DC and AC simulations is illustrated in 
Fig. 6.23.  
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Fig. 6.23 OpAmp testbench for DC and AC specifications 

The simulation results of the main amplifier and bias circuit sizing are shown in 
Table 6.46. The final transistor dimensions are displayed in Table 6.47, while, Ta-
ble 6.48 summarizes the runtime information for this one step corner optimization.  

Fig. 6.24 gives an outline of the text simulation data produced by the optimiza-
tion tool of one feasible solution.  

All parameters from column “VIOL” have null values indicating the constraints 
related to designer’s rules (28) were totally satisfied. Additionally, the column 
“SATISFY” confirms that all constraints (5+28) were satisfied in all corner points. 
The column “FITNESS” represents the fitness values for each corner point. Gen-
erally, the sum of the fitness is not zero due to computation reasons. This amount 
is used to rank feasible solutions satisfying the goals of the problem. 

Table 6.46 - Performance parameter specifications 

 Specifications Target Sizing Result Units 

Electrical DC gain  > 70  94.7 dB  

 GBW  > 75  115.1 MHz  

 Phase margin  [ 60-90]  69.0 º  

Optimization Power Consumption  Minimum  6.1  mW 

 Current Consumption  Minimum 1.8 mA  



176 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques
 

Table 6.47 Final transistor dimensions 

Main  

Amplifier 

W/L 

(μm/μm) 
Bias  

W/L 

(μm/μm) 

M0  280 / 1.05 M20 5 / 1.60 

M1a = M1b 95 / 0.45 M21 5 / 3.55 

M2a = M2b 280 / 0.50 M23 =M25  5 / 0.45  

M3a = M3b 165 / 0.45 M24 =M27 5 / 1.15 

M4a = M4b 220 / 1.60 M26 5 / 1.05 

M5a = M5b 85 / 0.75 M16 =M17  5 /  0.50 

M6a  55 / 1.15 M18 5 / 3.05 

M6b 55 / 0.45 M19 5 / 0.45 

M7  430 / 0.45 M0a=M0b=M0c 5 / 1.05 

M8  430 / 1.15   

Table 6.48 Runtime info 

Design Problem    

Opt. Variables / Constraints (Specs + Design Const.) 19 5 + 28 = 33  

    

(1 -Step) Corners Optimization Time #Generation #Evaluations 

Overall Optimization time 23m04s 250 4061 

First Feasible Solution 20m03s 227 3702 

* In a single processor Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz PC running Linux. 
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****** EUREKA ******  

Byebye. AIDA - IC_DESIGN Terminate ... 

Job done on a  Intel(R) Core(TM)2 Quad CPU Q6600  @ 2.40GHz 

Fig. 6.24 Output from simulation where all corners are satisfied 
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Fig. 6.26 shows the gain magnitude and phase only for typical mean process 
and 50° C conditions. Fig. 6.26 shows the graphical results for the AC corner 
analysis. As it can be noticed, this simulation design meets the required specs re-
lated to DC gain, gain bandwidth and phase margin satisfying all corner points as 
reported in Table 6.49. Table 6.50 shows the maximum and minimum of the cor-
ner points.  

 

  

Fig. 6.25 Gain magnitude and phase for typical conditions 

Table 6.49 Numerical results for corners analysis 

Corner  1 2 3 4 5 6 7 8 9 

Process   Slow   Typical  Fast  

Temperature  -40° 50° 125° -40° 50° 125° -40° 50° 125° 

Specs Values         

 DC Gain  (dB) > 70 102.1 98.9 97.6 96 94.6 92.7 89.1 87.3 84.4

f (A=0dB) (MHz) > 75 131 101.7 100.5 173.4 115.1 104.5 246 158 109

Phase (A=0dB)  (°) ------ -115 -118 -119 -112 -111 -112 -110 -102 -101

PM    (grade) [60-90] 64 61 60 67 68 67 69 77 76
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Table 6.50 Minimum and maximum values for AC corners analysis 

Specs Range     

DC Gain   (dB) Min: 84,4 dB Max: 102.1 dB 

GBW     (MHz) Min: 100.5 MHz Max: 246 MHz 

PM     (grade) Min: 60º Max: 77º 

 

 

Fig. 6.26 Gain magnitudes for corners analysis 

6.6   Comparison with Other Tools/Approaches 

The lack of a known open reference tool for IC design automation makes it diffi-
cult to the evaluation task of comparing objectively different implementations,  
although, the analog design automation community is developing efforts to cir-
cumvent this situation. Comparing the performance and effectiveness of the final 
GENOM optimizer with published reference tools is not always possible because 
the information contained in most of the publications omit some detail of the im-
plementation, maybe imposed by logistics limitations or by author intentionality 
focusing only the most important piece of interest. Some common ignored items 
are related with incomplete definition of testbench circuitry, range of optimization 
variables, used device models and insufficient output data exposed. An exception 
is made for the first benchmark circuit presented above that was gently provided 
by Prof. Francisco Fernandez, IMSE-CNM-CSIC/University of Seville which al-
lows the comparison between GENOM and one important reference tool for ana-
log design, the FRIDGE optimizer [8]. 



6   Optimization of Analog Circuits and Systems – Applications 179
 

6.6.1   FRIDGE Benchmark Circuit Tests 

The benchmark circuit of reference is a novel single ended folded cascode OpAmp 
tested with FRIDGE synthesis tool [8], whose results are used to compare the per-
formance and effectiveness of the final GENOM optimizer. This benchmark cir-
cuit includes all items necessary to the implementation and test, including the 
original netlist, testbenchs, device models, performance measures, constraints, 
range of variables and performance results obtained by the FRIDGE optimization 
tool. With this data, GENOM is able to test exactly in the same conditions as the 
FRIDGE tool. The schematic of the circuit is shown in Fig. 6.27 and testbench de-
fined in Fig. 6.28.  
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Fig. 6.27 Main Amplifier 

6.6.2   Optimization Test with FRIDGE Ampop  

Following the original FRIDGE approach, this experiment does not optimize the 
bias circuit, only the main circuit. The experiments were synthesized with the 
UMC 0.18um Regular Vt 1.8V Mixed Mode process Spice Model and were  
 



180 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques
 

v b

v ss

v ipp0

0

v ip

0

ib

_ib

v di
1Vac
0Vdc

Cdum

1e10

v in

v dd

Ldum

1e10
1 2

out

0

0

v bnc

_cn

Mbp

W = _wbp
L = _lbp
M = 1

PMOSv bpc_cp v dd
0.9

0

v bpc

v bnc

v inn

0

amp

in

ip

op

vb vb
nc

vb
pc vb

p

vd
d

vs
s

clp
3p

ibp

_ibp

v ss
0.9

Mb

W = _wb
L = _lb
M = 1

NMOS

 

Fig. 6.28 OpAmp testbench for DC and AC specifications 

 
executed on an AMD X64 2.8 GHz dual core machine and use HSPICE [9] to 
simulate the circuit and extract performance parameters. The performance con-
straints and the constraints derived from designer’s rules result in 20 optimizations 
constraints that must be satisfied by the optimization process described in  
Table 6.51. The design performances and final results achieved with both tools are 
depicted in Table 6.52. Optimization process uses 15 independent variables whose 
ranges and respective final transistor dimensions are given in Table 6.53. 

Table 6.51 Optimization algorithm parameters 

Parameter value Parameter value 

Kernel GA-MOD Crossover Two point 

Strategy Typical + Corner Optimization Mutation Dynamic 

Sampling LHS Adaptive No 

Sort method
Priority to constraints then performance 
fitness 

Elite 25% of  population 

Selection Tournament by ”feasibility” Generations 150 

Popsize 32 Search Space 4.716883e+53 
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Table 6.52 Design performance and final results 

Target FRIDGE    GENOM GENOM Test specification 

gbw     >  1.20e+07 

gain     >  7.00e+01 

pm      >  5.50e+01 

sr        >  1.00e+07 

dm2    >  1.20e+00 

dm4    >  1.20e+00 

dm5    >  1.20e+00 

dm7    >  1.20e+00 

dm9    >  1.20e+00 

dm11  >  1.20e+00 

onm2   >  1.00e-01 

onm4   >  3.00e-02 

onm5   >  3.00e-02 

onm7   >  3.00e-02 

onm9   >  3.00e-02 

onm11 >  3.00e-02 

osp      >  5.00e-01 

osn     <  -5.00e-01 

1.603e+07 

7.000e+01 

8.064e+01 

1.533e+07 

9.785e+00 

5.200e+00 

2.214e+00 

1.055e+01 

3.055e+00 

1.9594+00 

1.004e-01 

3.023e-02 

5.662e-02 

4.255e-02 

4.919e-02 

1.782e-01 

6.253e-01 

-5.022e-01 

1.535e+07  

  7.061e+01  

  7.960e+01  

  1.536e+07  

9.245e+00  

  1.568e+00  

  1.836e+00  

  8.171e+00  

  2.807e+00  

 1.653e+00  

  1.098e-01  

 3.240e-01  

 9.866e-02  

 8.761e-02  

 3.802e-02  

2.451e-01  

  5.660e-01  

  -5.057e-01 

  (gbw > 1.2e+07) 

+ (gain > 70.0) 

+ (verify_bound(pm,55,90)) 

+ (sr > 1.0e+7) 

+ (check_bound(dm2, 1.2,1000)) 

+ (check_bound(dm4, 1.2,1000)) 

+ (check_bound(dm5, 1.2,1000)) 

+ (check_bound(dm7, 1.2,1000)) 

+ (check_bound(dm9, 1.2,1000)) 

+ (check_bound(dm11,1.2,1000)) 

+ (check_bound(onm2, 0.100,1000)) 

+ (check_bound(onm4, 0.030,1000)) 

+ (check_bound(onm5, 0.030,1000)) 

+ (check_bound(onm7, 0.030,1000)) 

+ (check_bound(onm9, 0.030,1000)) 

+ (check_bound(onm11,0.030,1000)) 

+ (check_bound(osp, 0.5, 1000)) 

+ (check_bound(osn,1000, -0.5)) 

Area    (min) 

Power   (min) 

2.371e+01 

2.333e-04 

1.6873e+01 

2.446e-04 

+ (min( area, 0, 30)) 

+ (min( rmspow, 0, 0.001)) 

Cost value 

Iter 1st/ (last) solution 

Time (s)  1st/(last) sol. 

-0.292589 

---- / 2497 

n.a. 

8.0704e-02 

1110/ (2464) 

 25.08/(53.68) 

--- 

--- 

--- 

 
 

The main performance spec gbw stands for gainbandwidth, gain means the dc 
gain, pm is the phase margin, sr is the slew rate and the optimization goal is to mi-
nimize both the area (Area) and power dissipation (power). Both, the optimization 
goals and constraints used in the experiments were defined by the original bench-
mark circuit. The electrical constraints, as defined by the original benchmark cir-
cuit, are illustrated in HPSICE style in expression (6.3): 
 

.m10)))'abs(vth(x1-($cn'param  osn  ac  .meas 
.m8)))'abs(vth(x1($cp'param  osp  ac  .meas 

' vth(x1.m1)-vgs(x1.m1)'  param  onm2  ac  .meas 
x1.m1))'.m1)/lv10(abs(lx3(x1'  param  dm2  ac  .meas 

=
+=

=
=

 
( 6.3)  
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Table 6.53 Ranges and Final Transistor Dimensions 

Optimization Var. FRIDGE     GENOM 

$cn = [-0.4,0]; 

$cp = [0.0,0.4]; 

$l1 = [0.18u,5u]; 

$l4 = [0.18u,5u]; 

$l5 = [0.18u,5u]; 

$l7 = [0.18u,5u]; 

$l9 = [0.18u,5u]; 

$l11 = [0.18u,5u]; 

$ib = log[30u,400u]; 

$w1 = log[0.24u,200u]; 

$w4 = log[0.24u,200u]; 

$w5 = log[0.24u,200u]; 

$w7 = log[0.24u,200u]; 

$w9 = log[0.24u,200u]; 

$w11 = log[0.24u,200u]; 

$cn = -8.755479e-02 

$cp =  6.247103e-02 

$l1 =  1.560000e-06 

$l4 =  4.700000e-07 

$l5 =  3.800000e-07 

$l7 =  7.600000e-07 

$l9 =  2.060000e-06 

$l11 =  6.000000e-07 

$ib =  4.842000e-05 

$w1 =  1.951000e-05 

$w4 =  3.034000e-05 

$w5 =  7.131000e-05 

$w7 =  1.045300e-04 

$w9 =  6.562000e-05 

$w11 =  3.080000e-06 

_cn = -4.490000e-02 

 _cp = 1.000000e-03 

 _l1 = 1.380000e-06 

 _l4 = 1.940000e-06 

 _l5 = 3.700000e-07 

 _l7 = 9.100000e-07 

 _l9 = 8.900000e-07 

_l11 = 2.190000e-06 

 _ib = 4.851000e-05 

 _w1 = 1.491000e-05 

 _w4 = 6.990000e-06 

 _w5 = 3.678000e-05 

 _w7 = 6.304000e-05 

 _w9 = 3.145000e-05 

_w11 = 7.320000e-06 

6.6.3   Comparison Results  

Table 6.54 shows the GENOM and FRIDGE performance side by side and also 
depicts the GENOM run-time information in several optimizations points. In order 
to achieve a computing independent comparison between the tools, the following 
analysis is based, exclusively, on the number of evaluations “nEval” and the main 
goals, related to the minimization of power and area. Anyway, the time informa-
tion was not provided with the actual benchmark circuit. GENOM achieved the 
first solution in 25s approx. using 1110 evaluations and reached a similar per-
formance to FRIDGE in 1461 evaluations, corresponding to an efficiency increase 
of 41%. One of the best solutions improves simultaneously the power in 17% and 
15% in the area as described in Table 6.54 with 2064 evaluations. The GENOM 
optimization was able to produce 183 new feasible solutions. Fig. 6.29 shows the 
gain magnitude and phase for typical mean process and 50° C conditions. 

Table 6.54 GENOM benchmarks 

Target nEval Power (min) Area (min) Time (s) 

FRIDGE 
Final results 

2497 2.333e-04 2.371e+01 --------- 

GENOM     

1st Feasible Solution  1110 4.0590e-04 2.9727e+01 25.08 

GENOM similar to FRIDGE 1461 2.284e-04 2.377e+01 32.47 

GENOM better than FRIDGE 2064 1.918e-04 2.009e+01 43.33 

Final Results 2464 2.446e-04 1.6873e+01 53.68 
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Fig. 6.29 Gain magnitude and phase for typical conditions 

6.6.4   Corners Optimization with FRIDGE Circuit  

Although there is no available benchmark information about the corner optimiza-
tion for the FRIDGE benchmark circuit, the next experiment tests the GENOM 
performance for this type of optimization. However, there was the need to relax 
one specification, maintaining the others intact, in order to allow the corner opti-
mization. This situation may occur when the performance specification is defined 
with a value that will not meet the worst-case corner point. The identification of 
this problematic specification was relatively easy to detect. First, it was verified 
that after several runs, the final solution always fulfils all constraints except one in 
a particular corner point. After identifying the problematic constraint, a new opti-
mization was executed, assigning a high weight to this corner. However, the final 
solution did not improve, so this is probably the case where a specification was 
defined with a value that is not able to satisfy all  corner points at the same time. 
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Expression (6.4) reflects the small modification introduced to the original 
FRIDGE specs. 

Before: 

(a0 > 70.0 dB)    →  New value: (a0 > 67.0 dB) ( 6.4)  

The specifications must be satisfied for the corner points of Table 6.55. Table 6.56 
shows the GENOM performance and depicts the run-time information for the first  
 

Table 6.55 Corners analysis data 

Conditions Variation points  

MOS worst case parameters SNFP TT FNSP 

Temperature Range (º C) -40º C +50º C +120ºC 
 

Table 6.56 Design performance and final results for corners analysis 

Target GENOM Results Optimization Var. GENOM Results 

Gb      >  1.20e+07 

a0       >  6.70e+01 

pm      >  5.50e+01 

sr        >  1.00e+07 

dm2    >  1.20e+00 

dm4    >  1.20e+00 

dm5    >  1.20e+00 

dm7    >  1.20e+00 

dm9    >  1.20e+00 

dm11  >  1.20e+00 

onm2   >  1.00e-01 

onm4   >  3.00e-02 

onm5   >  3.00e-02 

onm7   >  3.00e-02 

onm9   >  3.00e-02 

onm11 >  3.00e-02 

osp      >  5.00e-01 

osn     <  -5.00e-01 

Areas    (min) 

Power   (min) 

gb = 1.845000e+07

    a0 = 6.871930e+01

    pm = 7.435350e+01

    sr = 2.103000e+07

dm2 = 8.352600e+00

  dm4 = 2.588000e+00

  dm5 = 1.803000e+00

  dm7 = 1.008620e+01

  dm9 = 2.828500e+00

 dm11 = 1.695600e+00

 onm2 = 1.311000e-01

 onm4 = 1.695000e-01

 onm5 = 1.129000e-01

 onm7 = 6.762000e-02

 onm9 = 4.708000e-02

onm11 = 1.362000e-01

  osp = 5.752000e-01

  osn = -6.185000e-01

2.450920e+01

3.286000e-04 

Cost  

Iteration  

Time (s) 

1.145283e-01

20281

411.18

$cn = [-0.4,0]

$cp = [0.0,0.4]

$l1 = [0.18u,5u]

$l4 = [0.18u,5u]

$l5 = [0.18u,5u]

$l7 = [0.18u,5u]

$l9 = [0.18u,5u]

$l11 = [0.18u,5u]

$ib = log[30u,400u]

$w1 = log[0.24u,200u]

$w4 = log[0.24u,200u]

$w5 = log[0.24u,200u]

$w7 = log[0.24u,200u]

$w9 = log[0.24u,200u]

$w11 = log[0.24u,200u]

_cn = -1.971000e-01 

 _cp = 6.300000e-03 

 _l1 = 2.110000e-06 

 _l4 = 1.270000e-06 

 _l5 = 4.100000e-07 

 _l7 = 8.100000e-07 

 _l9 = 1.150000e-06 

_l11 = 2.420000e-06 

 _ib = 6.644000e-05 

 _w1 = 2.496000e-05 

 _w4 = 1.935000e-05 

 _w5 = 4.813000e-05 

 _w7 = 1.022000e-04 

 _w9 = 4.983000e-05 

_w11 = 3.123000e-05 
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and final solution. This optimization produces 135 generations and executes 
20281 electrical evaluations and creates 165 new solutions satisfying all design 
specs and functional constraints in all corners points.  

Where, SNFP, TT and FNSP mean the Slow/Fast, Typical/Typical and Fast/ 
Slow process, respectively. 

Table 6.57 presents the final results for the present optimization problem. 

Table 6.57  GENOM corner optimization 

Performance Constr. nEval Power (min) Area (min) Time (s) 

1st Solution in GENOM 9193 3.68E-004 3.31E+001 186.98 

Final evaluation 20281 3.29E-004 2.45E+001 411.18 

6.7   Conclusions 

This chapter presented a set of experiments which test the GENOM’s performance 
to design high-performance and novel circuit topologies. The above simulations 
have shown that the circuits designed by the GENOM tool conform to the synthe-
sis objectives with efficiency and accuracy. Particularly, GENOM was able to 
achieve an efficiency increase of about 40% and a significant increase in perform-
ance when compared with one of the synthesis tool of reference.  

The use of corners analysis and embedded designer rules methodology in every 
optimization run increases the value and trust in the final product, although the in-
clusion of corners analysis in the optimization scheme slows down the execution 
times considerably. This option produces a more robust design to parameter and 
process variations and in a certain way avoids the undesired circuits with high 
sensibility which causes big variations at the output in response to a small devia-
tion in one of the parameters. 

The great majority of the presented results are based on a 0.35μm CMOS tech-
nology because of the good availability of these models, although the GENOM 
tool has also been tested with success for a 0.18μm technology models in the tele-
scopic and the FRIDGE OpAmp case studies. Since the technological process is 
independent from the optimization algorithm, virtually any technological process, 
including the more recent ones, can be supported by this tool.  

With a proper configuration, the present optimization tool is able to synthesize 
a broad range of analog ICs beyond the class of circuits presented in this research.  
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7   Conclusions 

Abstract. This last chapter presents the work conclusions and discusses the future 
work issues. 

7.1   Conclusions 

In this dissertation the application of evolutionary strategies to analog IC optimi-
zation problem has been discussed. It was developed a new approach to multi-
objective and multi-constrained optimization technique for circuit sizing of analog 
circuits, which combines a robust optimization with corners and sensitivity analy-
sis, machine learning and distributing processing capability. Particularly, a new 
hybrid optimization algorithm has been developed combined with a design meth-
odology, which increases the efficiency on the analog circuit and system design 
cycle. This new algorithm combines an enhanced GA kernel with an automatic 
learning machine based on SVM model, which efficiently guides the selection op-
erator of the GA algorithm avoiding time-consuming SPICE evaluations of non-
promising solutions. The SVM model can be used as a feasibility or performance 
model. Whenever the model is built before optimization (offline) and the topology 
remains the same, it can be reused for other optimization runs with different per-
formance requirements. Although the optimization tool is able to deal with equa-
tion based optimization, (as long as design equation has already been defined by 
an expert designer), the primarily decision is oriented to a simulation based  
approach, since it can be applied to all types of design circuits, producing more 
accurate results and providing an extended layer of analysis, concerning the robust 
design required in the industrial environment. Parameter variation effects due to 
manufacturing tolerances or environment conditions have also been included in 
the optimization loop implemented as a two step optimization methodology. The 
final solution results in a more robust approach with respect to variations and 
mismatches. Additionally, the undesired sensitivity effects are attenuated auto-
matically by robust design. 

The result of design methodology and optimization strategy is materialized in a 
tool, GENOM. The proposed design optimization tool represents an automated al-
ternative to the traditional design flow, automating some steps of the design me-
thodology. It covers some of the most time consuming tasks of the analog design 
process at the circuit or transistor level, like circuit sizing and design trade-offs 
identification. Like in many analog design environments, some time is spent in the 
optimization setup prior to synthesis runs. This includes the conformance test to 
the format of input files, configuration of optimization, definition of design and 
independent variables, definition of performances and respective measures, incor-
poration of technology models, corners, mismatches, designer rules and finally, 
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the training of the learning model in case of optimization with offline model gen-
eration. All these tasks take advantage of the GUI interface developed in AIDA. 

This computational tool allows a designer to examine regions of feasibility with 
differing uncertainty models available to approximate multi-objective problems 
like uniform distribution, latin hyper sampling and design of experiments. This 
tool also permits combining different algorithm approaches, like variations of 
standard operators and including several model approaches. A designer can quick-
ly access promising design space regions by entering the historical database used 
to build the SVM model or consulting the database of non-dominated solutions 
where all the detailed information associated with the current problem is main-
tained. The graphical representation of the evolution process updated on the fly 
depends on the specifications provided by the designer. A summary of statistics in 
the form of post-processing text reports completes the feedback of the process. 
The information gained in one experiment was useful to the understanding of the 
overall problem. Further optimizations could be followed after the changing of 
some design or optimization parameters. Embodying this tool in a design platform 
or using it as a standalone application can lead to the increase of design efficiency 
and the improvement of the circuit performance, as it is demonstrated on several 
examples where the convergence to the desired performance criteria has been at-
tained. The computation cost for several experiments have shown that circuits of 
moderate complexity can be synthesized in a reasonable amount of time using au-
tomatic learning models. This has been made possible by employing fast SVM 
models in the evolutionary cycle avoiding expensive simulation iterations. The 
synthesized designs have also been simulated and verified with HSPICE using the 
industry standard transistor models, such as the Alcatel and AMS. The simulations 
have shown that the circuits designed using GENOM conform to the synthesis 
specifications. 

7.2   Future Work 

In the domain of analog design automation, the research is always present and dy-
namic. There is yet, a definitely long way to end with the design gap between the 
improvement in manufacturing productivity and the progress in productivity 
achieved by CAD tools and design methodologies. Based on this work and in-
volving the application field, some suggestions for future research are here pro-
vided: 

General Topics 

1. One of the major challenges related to this field of application is concerned 
with the development of a complete analog design automation environment in-
volving the presented system with automatic topology selection and chip layout 
generation modules. The incorporation of layout information, for example, in 
optimization sizing process improves the robustness and reliability of the de-
sign solutions. 
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2. An alternative approach to the last item would be the integration of the present 
system within an industrial design environment, such as CADENCE frame-
work. By developing the appropriated software interface modules, the  
presented optimizer tool can be incorporated as an external module to this com-
mercial framework. The interface module and customized work environment 
may be implemented with the SKILL programming language. 

3. Another area of potential research is related with topology generation. The pre-
sent evolutionary computation technique with modeling technique can be used 
to implement an automatic search for new circuits and system topologies. The 
exploration methodology can be constrained to data structures from a specific 
design knowledge base or can be based on a random strategy aimed to explore 
new type of circuits. 

Specific Topics 

1. Develop an improved version of the GUI interface in order to reduce the setup 
effort to add a new circuit to database and improve the graphic information es-
pecially for online optimization. 

2. Improve the GENOM Application Programming Interface (API) to allow an 
easy integration not only with AIDA design automation environment but with 
other CAD tools such as LAYGEN, etc. 

3. Explore new methods of parallel processing offered by the “Open MPI”, the 
new release of the “open source high performance computing” message passing 
library, implemented in GENOM. The actual implementation architecture uses 
a master-slave parallel architecture but other architectures could be investi-
gated. 

4. Use the information achieved by the design space exploration and respective 
trade-offs for all circuits from the library in order to perform an accurate topol-
ogy selection.  

5. The experiments developed in this thesis were driven essentially for the design 
of continuous-time class of amplifiers. An extension of this tool should support 
other types of circuits. 
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Appendix A. Terminology 

Table A.1 Control parameters 

Term Definition 

Design Objectives or  

Design Goals 

Corresponds to the minimization or maximization of one or several
objectives, for example:  min,max (power, area,...) 

Performance Specs A set of values which indicate levels of performance in order to en-
sure a certain functionality of the circuit. They are design objectives 
usually defined in the form of inequality constraints, such as, gain > 
70 dB; gbw > 100MHz, etc. 

Design constraints (i) Parameter constraints – Formed by device sizes range, e.g., W= 
[min,max] = [0.18, 100]μm,  L=[0.18, 10]μm, etc. 

(ii) Functional constraints – Corresponds to the requirements of 
some basic electric design requirements, e.g., saturation of certain 
transistors, etc., in order to ensure the correct circuit operation, e.g.,
the overdrive voltage, (VGS – VTh) is defined in [50-200] mV. 

(iii) Performance constraints – Design objectives usually in the 
form of inequality constraints, such as, e.g., gain >70 dB;  gbw > 100 
MHz. 

Optimization parameter A set of independent decision variables of an optimization problem.
In circuit sizing problems usually they correspond to the design pa-
rameter constraints, e.g., the widths (w) and lengths (l) of transistors. 

Fitness function A fitness function is a particular type of objective function that quan-
tifies the optimality of a solution. Used to rank a particular solution.  

Cost function A particular type of fitness function which assigns a better rank to so-
lutions with lower fitness.  

Merit function A particular type of fitness function which assigns a better rank to so-
lutions with higher fitness.  

Optimal solution A solution to an optimization problem which minimizes (or maxi-
mizes) the objective function. 

Design Space (a) Design Space (DS) – A multidimensional space delimited by the 
ranges of parameter constraints. 

(b) Goal Space - A subset of the multidimensional DS that satisfies 
all design objectives and performance constraints.  

(c) Functional Space – A subset of the multidimensional DS formed 
by the interception of all functional constraints. In this thesis, it is de-
fined as feasibility space. 

(d) Solution Space – A portion of the design space that satisfies si-
multaneously the performance and feasibility region. 
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Table A.1 (continued) 

Term Definition 

Performance Space  (e) Performance Space (PS) – It is the space of all possible performance 
values based on the evaluation of all points from the design space. The map-
ping between design parameters (D) and the performance space, D P(D), is 
usually done by circuit simulation with spice-like analog simulators. 

 (f) Performance Region – It is the region in the PS achieved by a subset of 
all individuals in the DS that satisfies all the performance inequality con-
straints.  

(g) Feasibility Region – It is the region in the PS achieved by a subset of 
points in the DS that satisfies all the functional constraints.  

(h) Feasible Region – It is the region in the PS achieved by a set of points in 
the DS that satisfies both the performance constraints, as well as, the func-
tional constraints. It is the region of all possible solutions of an optimization 
problem.  

(i) Infeasible Region – Set of points outside the feasible region. 

  

Fig. A.1 is a 2D sketch for the conceptual terms introduced above. The multi-
dimensional axis d1, d2 represents the parameter constraints, Ws, Ls and Ms of 
transistors. The multidimensional axis p1, p2 represents the design specs, e.g., 
gain, gbw, power, etc. 

 

 

Fig. A.1 Conceptual view of design spaces adopt in the terminology 
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B.1   Random Search Methods 

In essence, they simply consist of selecting randomly potential solutions and 
evaluating them. They do not use any heuristics (or meta-heuristics) to guide the 
next potential solution, so the search is very slow. The best solution over a number 
of samples is the result of “pure” random search, p.e., the Monte Carlo (MC) me-
thod. In spite of being considered the weakest of all optimization methods, random 
search methods have some visibility once they are often used as a reference tool. 
One of the first improvements to random search is given by the simple Hill 
Climber algorithm (Fig. B.1) and is applied to non-linear unconstrained problems. 
 

 

 ALGORITHM Simple Hill-Climber:  

[1]  Choose a random solution 

[2]  Evaluate its neighbors (red circles) 

[3]  Move to the best neighbor. Go to step 2 

 ALGORITHM Stochastic Hill-Climber:  

[1]  Choose a random solution 

[2]  Evaluate its neighbors  

[3] Move to the best neighbor. Go to step 2. 

[4] If not improve - stop, memorize best 
found (green squares), and go to step 1. 

Fig. B.1 The Hill-climber Algorithm 

B.2   Unconstrained Gradient-Based Methods 

Gradient based methods belong to the class of unconstrained non-linear optimiza-
tion algorithms (Fig. B.2) which apply the concept of successive search within the 
optimization space, based on the information of gradient or derivative function 
[1]. To be efficient the cost function should be unimodal (single local optimum), 
continuous and differentiable. The iterative process perturbs the current vector po-
sition to obtain the next value 

1kX +
.  Normally, this iteration is given by   

kkdλ+=+ k1k XX  where 
kd ¸ indicates the direction of the next move and the step 

size 
kλ  controls the evolution and the precision of the solution. Golden section, 

cubic interpolation and Fibonacci techniques can be used to determine the value 
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of 
kλ  and the direction 

kd  can be determined by the Newton method as well as 

other methods. Each point in the generated sequence has a lower cost than its  
predecessor. The weakness of this method is that line minimization may be expen-
sive and convergence can be too slow for ill-conditioned problems. Also, when the 
derivative (or an approximation to the derivative) can-not be determined these 
methods cannot be used. 

 
 

ALGORITHM Gradient algorithm:  

[1]  Given  
nx ℜ∈0

 

[2]  For k = 0,1, … 

[3]       Determine  kp such that  

                  0)( <∇ kk pxf   

[4]       Evaluate 0>kλ   such that, 

[5]      )()( kk
k

k xfpxf <+ λ       

[6]       Update,  k
k

kk pxx λ+=+1  

[7]  Until  0)( 1 ≅∇ +kxf  
 

Fig. B.2 Convergence of steepest descent method for the Rosenbrock function 

B.3 Constraints Programming 

Many optimization problems, especially those in the area of engineering design, 
are highly constrained by some means. Constraints can be seen as simple logical 
or numeric relations among several variables that restrict a given domain, i.e., re-
duce the range of the possible values that each variable can take. Constraints can 
usually be expressed in terms of function in-equalities, strict inequalities or equal-
ity constraints as exemplified in Fig. B.3. There are several ways of dealing with 
constraints. The classes of problems modeled by integer linear programming tech-
niques are usually solved by two mature tools like the simplex algorithm and the 
Constraint Satisfaction Problem (CSP) techniques [2]. The most common ap-
proach to manage infeasible solutions uses the concept of penalty functions which 
transform the original constraint problem in an artificial unconstrained optimiza-
tion problem. This alternative penalizes the solutions that are near or violate the 
constraints boundaries with an amount proportional to constraint violation. In this 
way the constrained problem can be solved using a sequence of unconstrained op-
timizations, which in the limit is expected to converge to the solution of con-
strained problem. This approach is generally associated with fitness assignment in 
some global optimization algorithms like evolutionary algorithms. A comprehen-
sive survey of the most popular constraint handling techniques used for EAs can 
be found in [3]-[5]. 
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Constraint optimization example:  
 

 1020  and 1010       

0x2x1x2)g2(x1,        

07-x2x1x2)g1(x1,        

46)-x2(3)-x1(x2)h2(x1,        

8x22x1x2)h1(x1,        

: to

2)-(x23)-(x1x2)f(x1,  

2
4
1

22

22

≤≤≤≤

≤+=

≤+=
=+=

=+=

+=

xx

and

subject

Min

Constraints can take non-linear values using 
equality (h1 and h2) or inequality (g1 and 
g2) terminology.  

Fig. B.3 Constraint optimization problem 

Briefly, these methods increase the efficiency of the search using the con-
straints to prune the search space. Constraint-based systems derived from OR 
field, normally use a declarative way of programming which makes easier the 
modeling of complex problems, their modification and maintenance.  

B.4   Direct Stochastic Methods 

This stochastic programming class encloses a broad range of distinct algorithms that 
do not require a continuous, a convex or differentiable cost function. Therefore it 
does not need to derive or compute gradients or take care of discontinuities. Stochas-
tic algorithms outperform one of the major drawbacks of simple deterministic algo-
rithms, i.e. they are particularly effective when the goal is to find an approximate 
global optimum for multimodal functions (Fig. B.4). They own some other intrinsic 
advantages, allowing simple implementations and flexible formalization of the prob-
lem, handling multimodal and noise functions, solving discrete and combinatorial 
problems, as well as, being in some cases well suitable for parallel computing [6]-[7].  

Stochastic search algorithms is an umbrella set of methods that include the 
Nelder-Mead simplex-based methods [8], the simulated annealing (SA) [9]-[10], 
Tabu search (TS) and evolutionary algorithms where the Genetic Algorithms ap-
pear as one of the most notorious in this class.  The first one inherited its name 
from the n+1 geometric figure in n-dimensional space called a simplex; the second 
is based on the physical process of annealing the materials; the third one applies 
the concept of memory maintaining a "tabu list" of solutions already vi-sited, 
while the last ones emulate some kind of nature’s evolutionary behavior. They dif-
fer in some implementation details but all share a common approach, the search 
for the optimal value which follows some probabilistic rules in order to make the 
new generation of solutions better than the previous one.  
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 General Properties of 
Stochastic Search:  
 

 

[1] Find solutions without 
exhaustive search. 

[2] The better solutions 
may be found in the most 
promising regions with 
optimal solutions 

[3] Iterative Process, t, 
t+1, … t+n  

 

Obs: Progress follows 
some probabilistic rules 
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Fig. B.4 General properties of Stochastic Search algorithms 

 
The simulated annealing (SA) approach [9], for example, is a numerical  

optimization technique based on the principles of the cooling process of some ma-
terials. Unlike EAs, the progress in the search space is supported by a single indi-
vidual. The algorithm starts from a valid solution and randomly generates a new 
state (point in the search space) which is immediately evaluated, as described in 
Fig. B.5. If a better solution is found (New_Cost- Current_Cost<=0), the new so-
lution has lower cost and so it is immediately accepted (k1 point), if not (k2 point), 
that solution can only be accepted with some probability that depends on the envi-
ronment temperature T. In the beginning of the process, T starts with high virtual 
temperature and progressively slows down its values. The interesting effect pro-
duced by this changing in temperature is to allow a better exploration of the search 
space in the beginning of the process and less exploration, i.e., better exploitation 
at the end of the process. In other words, the probability of accepting a worse 
state, given by the expression )(Prob Temp

stCurrent_CoNew_Cost −−= exp , is high at the be-
ginning and decreases as the temperature decreases. This phenomenon known as 
the Metropolis criterion is expressed by computation code of Fig. B.5. 

Whereas some of the algorithms like SA and TS are guided solely by random 
rules with no sense of the appropriate direction or size of step to take, other meth-
ods like GA and ES correct this conduct by means of heuristic operators. Because 
of their probabilistic nature, the convergence to the global optima usually requires 
many iterations. But with the recent progress in computer systems and distributing 
computing techniques, the stochastic methods have gained great popularity. These 
myriad of characteristics make them appropriate for a wide variety of optimization  
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ALGORITHM SA Pseudo-code:  
 
 
 
 
 
 
[1] Initialize 

    Current_State;  

    Temperature=Tmax; 

Current_Cost=Evaluate (Current_State)  

[2] Construction     

}  

onelast   theng   //keepiateCurrent_St  ateCurrent_St           

State newt    //RejecELSE      

New_State,  ateCurrent_St     

yprobabilit with State new   //AcceptRand(0,1)) (Prob IF     

)(expProb     

{ ELSE  }  

 New_State,  ateCurrent_St     

{ 0st)Current_Co -(New_Cost  IF 

 )(New_State EvaluateNew_Cost  

tate)Rand(New_S 

Temp

stCurrent_CoNew_Cost

=

=
>

−=

=
<=

=

−

 
    [3] Update Temperature 
        Decrease the Temperature 

 

    [4] Terminate condition 

      If not (Termination condition) goto2. 

     END. 

Fig. B.5 The basics of Simulated Annealing algorithm 

problems, covering a broad field of applications, including the analog design prob-
lem. A trade-off between a large spectrum of applications and performance effi-
ciency is explained by the free lunch theorem described in section 3.1.3.  

B.5   Multiple Objectives 

In engineering and control applications it is common to deal with problems requir-
ing the optimization of more than one objective function instead of just one. A 
typical example is car engine design, where the task may be to maximize the per-
formance while minimizing the fuel consumption. A multi-objective optimization 
problem (MOO) usually involves a number of conflicting objectives that have to 
be handled simultaneously. It is rarely the case where a single point simultane-
ously optimizes all the objective functions of a multi-objective problem.  There-
fore, the solution of this type of problem is supported by illustrative trade-offs of 
objec-tive functions rather than in a single solution allowing a final human deci-
sion among the solutions. The objectives do not necessarily have to be conflicting,  
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but they are, in most problems. In some cases, it may be unclear from the begin-
ning whether or not objectives are in conflict with each other. Contributions in this 
area have grown a lot in the last years VEGA [11], MOGA [12]-[13], PAES [14], 
NSGA [15], NPGA [16], SPEA [17] and [18]. The idea of optimality has changed 
to cope with this situation but, in general, it follows the concept of optimality 
known as Pareto optimum. It is based on two accepted terms called dominated and 
non-dominated solutions. The set of all non-dominated solutions is known as Pare-
to-optimal set and is illustrated in Fig. B.6.  

Pareto optimality is defined by the following definitions. A vector  
),...,(u 1 kuu=  is said to dominate ),...,(v 1 kvv=  also denoted by  vu ≤  if and on-

ly if u is partially less than v, i.e. { } { } iiii vu: k1,...,i vu ,k1,...,i <∈∃∧≤∈∀ . If a 

solution is in all aspects worse than others, then it is considered a dominated solu-
tion. Otherwise, if one solution is better than others in some aspects and worse in 
others, it is identified as a non-dominated solution. The comparison between two 
or more non-dominated solutions is not possible because there are features in one 
solution better than in the other one and vice-versa. 

The Pareto optimal set is defined as [17]: 
  

{ })x()x( :Fx   |Fx:P *** ff ≤∈¬∃∈=                          (B.1) 

 
Thus, a vector of decision variables  is Pareto optimal if there does not exist an-
other Fx ∈   such that )x()x( *

ii ff ≤   for all i=1,…,k and )x()x( *
jj ff ≤  for at 

least one j. 
The main themes of research in multi-objective optimization (MOO) domain 

are focused in techniques for handling constraints, maintaining diversity of the so-
lutions, hybridization with other local search methods and archiving for storing 
non-dominated vectors.   
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Fig. B.6 Dominance, non-dominance and Pareto Front in MOO problems 



Appendix C.  The Basic Decisions of Standard GA Algorithms 

C.1   Standard GA Kernel Optimization 

C.1.1 Evolutionary Kernel Framework 

The major task of EC techniques and in GA in particular is to compute artificial 
models simulating an evolutionary process. They differ from more traditional 
search algorithms in that they work with a population of candidate solutions that 
will evolve progressively towards a certain goal. Meanwhile the algorithm itera-
tively applies probabilistic transformations to the population and uses a selection 
scheme to obtain an improved population. This goal is to find the best possible 
approximate solution of a given complex optimization and design problem.  The 
artificial models mimic natural evolution in a simplified way. The three main me-
chanisms used to drive evolution forward are depicted in Fig. C.1.  

 

Fig. C.1 Common evolution cycle 

Fig. C.1 illustrates a typical iterative cycle of evolutionary algorithms and the 
three main mechanisms used to drive evolution forward, namely, reproduction, 
mutation, and selection. The fundamentals of EAs are based on the existence of a 
population of individuals that will change dynamically in each generation (each 
loop cycle) through the influence of operators mimicking the biology cycle of life. 
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As a matter of fact all the EAs terminology was inherited from biology life. In 
spite of this, an individual is a compound structure forming a chromosome, fit-
ness, and possibly a number of other attributes. The chromosome encapsulates a 
sequence of genes representing a solution of the problem. The chromosome de-
fines the interface between the problem and the optimization algorithm. The  
fitness function is a measure of the quality of an individual represented by the 
chromosome. 

Fig. C.2 illustrates the classic structure of a simple evolutionary algorithm in-
troduced by Holland [19] and known as the basic genetic algorithm flow.  

 
 

EA Main Procedure: 
t=0 
initialize (Pop(0)) 
evaluate (Pop(0)) 
while (! (Termination condition)) { 
        t=t+1; 
        P’(t)  = select (Pop(t-1)) 
        P’’(t) = Recombine (P’(t)) 
        P(t)   = Mutate (P’’(t)) 
       Evaluate (P(t)) 
}  

Fig. C.2 Pseudo-code of simple EAs 

In EA, the population is made up of individuals created at random, which are 
evaluated with regard to the fitness function. Each individual represents a potential 
solution of the problem quantified by the fitness value. Then, an iterative process 
is applied until a stop criterion is verified. This condition can be the achievement 
of the desired fitness, a maximal number of generations or a maximal number of 
fitness evaluations. There are three stages in the loop. At first, the population at 
generation t is built based on the previous population t-1, selecting the fittest indi-
viduals with some criterion. After that, the recombination and mutation operators 
are applied to the individuals in the selected population P0(t) creating a new popu-
lation. In the recombination process one or two new solutions are created, crossing 
over two or more parents chromosomes. The mutation operator creates a new in-
dividual by modifying its own genome. The basic scheme adds to chromosomes 
some type of stochastic noise. At last, in the final stage, the evaluation of the new 
population is carried out and the whole process is repeated.  

C.1.2   Algorithm Design Parameters 

In order to guide a population of candidate’s solution towards an optimum, many 
decisions have to be taken, which have a deep influence on the effectiveness and 
efficiency (see definition in Appendix C.8) of the algorithm. The basic decisions 
of standard GA algorithms include the choice of the most suitable structure and  
 



Appendix C.  The Basic Decisions of Standard GA Algorithms 201
 

genetic representation, the selection and replacement strategy, the crossover and 
mutation parameters and other algorithm control parameters. The operation of 
simple GAs is managed by a set of control parameters that have great impact on 
the performance of the algorithm. These control parameters include, the prob-
ability of mutation and crossover, the tournament size of selection or the popula-
tion size (number of individuals in the population), which will be explained in the 
Table C.1.  

Table C.1 Control parameters 

Control Parameter Impact 

The population size 

[20] 

 

The population size is the number of individual organisms in a population 
participating in the evolutionary process and it has great impact on the 
computation time per iteration; if the population size is too large, the algo-
rithm tends to take longer time to converge, but if the population size is too 
small, the GA is in risk of premature convergence because there may not be 
enough diversity in the population to let the GA escape from local optima. 
Common values observed in literature adopt values between 30 and 200. 

The crossover rate 

[20]-[22] 

The crossover rate defines the frequency of the crossover operation which 
enables the evolutionary process to move towards the most promising re-
gions of solution space. The crossover probability px has the function of 
controlling the rate/frequency at which individuals are submitted to cross-
over. If the value of px is high, the new solutions will be quickly applied 
into the population, but if the value is too high, individuals may be dis-
rupted faster than selection can exploit them. For this reason the px usually 
takes the values from 0.5 to 1.0. 

The mutation rate 

[20]-[22] 

The mutation rate is expressed by a probability and has influence on the di-
versity in the population. Both a high and a low mutation rate have disad-
vantages: a high rate causes high diversity in the population, transforming 
the GA into a random search algorithm whereas a low mutation rate makes 
it hard to achieve a global optimum solution because convergence may oc-
cur too early, producing premature convergence to a local optimum. The 
typical values for mutation rate are chosen in the range 0.001 to 0.05. 

 
 
The estimation parameters presented in Table C.1 result from study cases found 

in literature, normally applying standard GA settings or configurations. There is 
also no magic number or deterministic formula concerning the optimal settings or 
optimal control of these parameters over the time, or when changing the dimen-
sion of search space, the length or coding representation. Under different configu-
rations, e.g., a different problem codification, these parameters can achieve higher 
values. The study of ideal control parameters configuration for a given problem is 
a time consuming task mostly based on experiments. This approach, however, has 
several disadvantages. As the control parameter behaviors are not independent, 
systematic trials executed for all possible combinations are almost impossible. 
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Procedures to control parameters consume a lot of computation time and the 
achieved control parameters may not be necessarily the optimal values.  

Tuning these parameters by using a direct control mechanism before the run-
ning of the algorithm is a typical practice applied in genetic algorithms and their 
derivates but it is not efficient because it is known that no generally valid best pa-
rameter value exists. The use of adaptive techniques inspired from ES community 
is one alternative to get around with optimal settings of parameters. Instead of us-
ing rigid parameters that do not change during the evolutionary process, the idea is 
to control them during the run. Several techniques inherited from ES community 
are applied to change the mutation step size control such as, the 1/5th-success 
rule, cumulative path length control and self-adaptation [21]. From these type of 
techniques it is verified a frequent supremacy of mechanisms depending on the 
distance to the optimum.  

C.1.3   Single Optimization GA Example  

In this section, the Genetic Algorithm will be applied to simple optimization prob-
lems. The numerical examples of constrained optimization problem are given in 
Table C.2 as follows:  

Table C.2 Testbench functions for the GA optimization example 

Minimization of Function 1 
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A three-dimensional plot of objective functions is shown in Fig. C.3 (a). For 
these continuous functions, the chromosome is encoded as a vector of two real 
values x and y. When a new population is created, the next step is to calculate the 
fitness value of each member in the population. The evaluation of the fitness for 
each chromosome is performed by Eval(F(x,y)). After the evaluation of the last 
chromosome a new population is created. The two most fitted individuals are re-
produced directly in the next population while the remaining ones will be submit-
ted to the standard process variations, crossover and mutations. The chromosomes 
selected to crossover will be chosen according to the roulette wheel strategy. The  
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roulette wheel cumulative probability for each individual is calculated with ex-
pression C.1: 

 ∑
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k
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              ( C.1) 

Where, the selection probability Pi and the total fitness expression are given by: 
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Table C.3 gives the configuration parameters of this single optimization problem.  

Table C.3 Optimization control parameter configuration 

Algorithm Name Function 1 Function 2 

Initial Population / Population Size iPOP/Pop 64 /32  32/16 

Initial Sampling Method sAMP random random  

Elite population (survive to next gen.) Elite 2 2 

Selection type sType Roulette wheel  Roulette wheel  

Crossover rate / type cRate/cXover 50% / One point 50% / One point 

Mutation rate / type mRate/mtype 5% Fixed/random 5% Fixed/random  

Number of generations nGEN 10 10 

Independent Variables iVar x, y x, y 

Kernel Type  Kernel GA GA 

 
 
The results illustrated in Fig. C.3 b) and c) plots a two dimension view and the 

contour plot of the function under test with the initial population locations denoted 
by circles and the final solutions with red stars. Fig. C.4 shows the evolution curve 
of the best and average fitness across 64 generations for 10 runs of the algorithm. 
In a typical application the best curve presents a monotonically decreasing shape 
with respect to generation numbers. 

At the end of each generation the fitness of the best individual is expected to 
improve whereas there is a tendency to stagnate to the end of the run (see  
Fig. C.4). The stagnation may be the consequence of several events. The more op-
timistic is the successful discovery of the global solution of the problem. In that 
case the algorithm cannot evolve any further while stop condition, perhaps the 
maximum number of iterations have not exhausted yet. However, the discovery of 
the global optimum does not always happen. 
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 Function 1 Function 2 

(a) 

Initial Population  = 32 random samples 

Number generation =10 iterations 

Initial Population  =  16 random samples 

Number generation = 10 iterations 

(b)

 

(c) 

 

Fig. C.3 3D, 2D view and the contour plot of the function under test 
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Function 1 Function 2 

Fig. C.4 Illustration of the evolutionary process 

Stagnation may occur because of the influence of a local optimum, an insuffi-
cient number of iterations cycles or wrong parameterization and/or bad choice of 
the search methods. These are the main common issues in EAs algorithms, as well 
as, in other iterative search methods.  

C.2   Representation and Encoding  

GAs are population-based searching algorithms whose individuals are represented by 
chromosomes with several genes encoded in binary or real coded form. The binary 
method used by the classical GA encoding system has some weak points, whenever it 
is used in multidimensional, high-resolution numerical problems [23]. The real-coded 
representation has more advantages as it is faster and more accurate in solving opti-
mization problems whose parameters are represented in continuous domain.  

Besides, the real-coded representation allows the creation of more sophisticated op-
erators, thus it is the representation adopted in this thesis. Whichever the type of repre-
sentation used, the chromosomes are usually implemented in the form of vector lists of 
attributes where each attribute, known as gene, is a representation of one optimization 
variable. Fig. C.5 illustrates the chromosome structure for some objective functions. 

  

 
Fig. C.5 GAs basic structures 
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C.3   Fitness Evaluation and Assignment 

The objective fitness function evaluates and quantifies the optimality of a solution 
by assigning to each individual a certain cost or merit, based on its performance. 
The fitness function measures how well the individual has achieved the perform-
ance objectives of the problem. In the case of a minimization problem the lowest 
numerical value will be assigned to the fittest individuals. Whatever the fitness 
strategy used, the objective is to assign to each individual a quantitative measure 
which will be interpreted in the selection phase as the equivalent survival rate of 
an individual into the next generation. For computational reasons, fitness functions 
can be normalized to appropriate intervals, converting the real performance prob-
lem into a relative fitness (expression C.3). A common approach is to divide the 
fitness of an individual by the average fitness of the population, this way the rela-
tive fitness measures how far or how close the fitness is from the average of the 
population. 
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There are many methods to evaluate fitness and assign a real number to each 
chromosome. The fitness assignment strategies can be summarized in two essen-
tial types: Scaling Fitness and Ranking. Table C.4 presents two methods for trans-
forming the objective function in a relative fitness, where N is the population size, 
r represents the rank and s the relative fitness for best individual such that, 1<s<2.  

When scaling, some precautions should be taken against the formation of very 
large relative fitness in some stronger individuals to get around with early prema-
ture convergence. In the same way, if there is not a clear differentiation between 
the performance of the best individuals and the rest of the population, the search 
will not be worthwhile. Both situations are not effective so the relative fitness 
scheme assigned by scaling should be carefully chosen. Rank-based fitness, on the 
other hand, is less sensitive to these unwanted scale effects since the appearance of 
super individuals responsible for early premature convergence is weakened be-
cause the best individual in the population is always assigned the same fitness, and 
in a population of similar performance values, the best one is still preferred to the 
rest.  

Table C.4 Fitness assignment strategies 

Strategy  Relative Fitness formulation  Description 

Scaling 

[21] k
i

i

xfxFitnesslawPower

bxafxFitness

)()(       :scaling  

)()(  :nsnsformatioLinear tra

=

+= The original fitness value (raw fitness) 
is changed into a different scale using 
linear or nonlinear offset function 

Ranking 

[21] srFitnesslawPower

ssrFitness

r

N
r

.)(       :ranking  

).1()(  :Linear 
1

2

ρ=

−−= −  
Orders the individuals according to their 
raw fitness giving them a value equiva-
lent to their position in the ranking. 
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C.4 Initial Population 

In evolutionary algorithms the initialization of the population specifies the starting 
points of the search. Traditionally, the initial population is created randomly but 
several other initialization techniques can also be adopted. The next paragraphs in-
troduce two sampling techniques that will be used in this thesis, design of experi-
ments (DoE) [24]-[25] and latin hyper sampling (LHS) [26].  

DoE  is a statistical experimental design methodology used to perform multi-
variate design experiments in order to extract the maximum amount of informa-
tion of the system in the fewest number of runs. Design of experiments study the 
influence of several factors in order to optimize processes and learn the relation-
ships between the factors over a wide range of values and how they affect the re-
sponse of the process environment. The most important stage in DoE process is 
the screening experiments. They consist in the realization of only a few experi-
ments to find out the most relevant information about the process. There are  
several different types of screening designs but the common one is the fractional 
factorials design. The screening approach based on two-level designs is the most 
basic approach but it is sufficient to estimate linear and interaction models. Then, 
the full factorial design executes a set of experiments where every level of the fac-
tor is observed at both levels of all the other factors (see Fig. C.6). For example, 
with n factors and L levels it is executed Ln experiments. As an alternative, a frac-
tional factorial design approach runs a subset of the full experiments without the 
loss of too much information. With fractional factorial design, 3-way and higher 
interactions are neglected. One popular method to produce fractional factorial de-
sign in industrial experiments is given by orthogonal arrays often referred to as 
Taguchi Methods [24]. 

 

 

Fig. C.6 Example of full and fractional design for three levels experiments 

Latin hypercube sampling (LHS) [26] is a form of stratified sampling that gen-
erates a more even distribution of parameter values in the multidimensional space 
than typically occurs with pure Monte Carlo (MC) sampling. Variables are  
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sampled using a square grid symmetrically arranged allowing only one sample in 
each row and each column. In two dimension variables this structure is called a 
Latin square, as illustrated in Fig. C.7. When extrapolated for multi-dimension 
spaces, it is called a Latin hypercube where only one sample is admitted in each 
axis, aligned with the hyper plane containing it.  

 

Fig. C.7 A Latin Hypercube Sample with two variables and eight even intervals 

When sampling the space of N variables (X1,..,Xn), the range of each variable is 
divided into K equally intervals. Then, one value from each interval is selected at 
random with respect to the probability density in the interval. The n values 
achieved by X1 are paired randomly with the n values of X2, X3 and so on, until n 
k-tuplets are formed. 

One of the advantages of this sampling scheme is that the number of sample 
points is independent of dimension of problem. It is not necessary to take more 
sampling points when the dimension of the problem increases. Moreover, the par-
ticular grid structure allows the remembrance of the last random samples. 

C.5 Selection 

Selection can also be compared to natural selection in biological system, where 
weaker individuals have less chance of surviving than stronger ones. Therefore, 
the most promising individuals are more likely to give their genetic legacy to next 
generation individuals. In optimization, selection aims at the reproduction of better 
and better individuals, i.e. the ones with the best fitness values, so the search is 
targeted towards promising areas finding good solutions in shorter time. Neverthe-
less, it is important to preserve the diversity (enough individuals with below aver-
age fitness) of the population in order to prevent premature convergence and at the 
same time provide enough selective pressure (rate of individuals with above aver-
age fitness) to allow the population convergence to the global optimal solution.  

Several selection algorithms were developed to provide the harmony between 
these two antagonistic activities, selective pressure and diversity. Table C.5 de-
scribes the most common selection methods. 
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Table C.5 Selection operators 

Methods  Description Advantages/Disadvantages

Roulette 
wheel 

[21] 

Resembles the functioning of a real roulette wheel, 
where fitness values of individuals correspond to 
the widths of slots on the wheel machine. Higher 
fitness values represented in wider slots are more 
likely to be chosen to next generation when a ran-
dom selection is initialized 

As soon as the population 
converges upon solution, 
selective pressure de-
creases severely affecting 
the search of better solu-
tions. 

Stochastic 
universal 
sampling 
(SUS) [21] 

A small variation of roullete wheel method. SUS 
provides a fitness-proportionate selection with mi-
nimal use of a stochastic process. Instead of spin-
ning a roulette wheel one time for each n number 
of offsprings, the roulette wheel is spinned with n 
equallyspaced pointers just once. 

SUS is optimally more ef-
ficient than roulette wheel. 

Tournament 
Selection 

[27]-[28] 

One parent is selected randomly, comparing the 
fitness of n individuals in the actual population and 
selecting the fittest. The second parent is selected 
by repeating the same process. The binary tourna-
ment selects the parents using two (n is equal to 
two) competitors. 

This type of selection al-
lows the control of the se-
lection pressure rate. And 
is easy to implement. Is 
convenient to compare the 
performance of individu-
als. 

 
 
The selection criteria are very general and different methodologies of selection 

schemes can be applied: 

1. In a generational selection, the entire population can be replaced by the new 
offspring.  This method does not guarantee that that best individual will be part 
of the next generation.  

2. The elitism selection, on the contrary, implements a mechanism that copies the 
best individual to the next generation unconditionally. Here, only a subset of 
the original population is replaced, in this case, the algorithm is called a steady-
state EA. 

3. The last general scheme is the sharing or crowding selection that was proposed 
for the optimization of multimodal functions. Here, the objective is to maintain 
a population distributed over all or many of the optima regions. This behavior 
is normally achieved by reducing the fitness value of an individual in dense re-
gions (crowd) according to some “similarity” metric. This encourages the 
search in unexplored regions and causes the appearance of subpopulations. A 
problem with sharing methods is the introduction of two new parameters: a 
new sharing criterion and the need to define the “similarity” metric. 

C.6   Crossover Operator 

The recombination or crossover operator is the main search operator in the GAs. 
The aim of the crossover operation is to produce offspring that have large fitness 
values, satisfying the problem’s constraints. The most common techniques to  
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Table C.6 Crossover operator overview 

Crossover 
Methods 

Description Advantages/Disadvantages

N-point 

[29]  
Defines N random crossing points to exchange gene in-
formation, with N=(1,..n) 

Classical approach. Can be 
used with categorical data. 

Uniform 

[27] 

Each gene in the offspring chromosome decides (with 
probability p) which of the two parents will contribute 
with its genetic information to form the mutated gene in 
that position. 

It is possible to combine 
different characteristics 
independently of the rela-
tive position in the chro-
mosome. 

Arithmetic 

[23] 

This operator is a linear combination of two vectors 
(chromosomes): let x1 and x2 be the parents selected to 
breed, then the resultant offsprings will be given by 

21
'
1 ).1(. xxx λλ −+=   and  

21
'
2 .).1( xaxax +−=  where λ

is a random number between [0,1].  

This operator is particu-
larly suitable for numeric 
problems with constraints 
where the feasible region 
is convex. 

Heuristic 

[23] 

Produces a single offspring through linear extrapolation 
between two individuals.  Let x and y be the two parents 
selected to breed then final offspring will be given by the 
expression yxyz +−= ).(λ . If the generated solution 

is not feasible a new random number is created.   

Exploit the "quasi-
gradient" of the evaluation 
function as a means of di-
recting the search process. 

Mean Cen-
tric  

[33] 

The mean-centric recombination groups a class of opera-
tors that produce offspring near the centroid of the in-
volved parents. Examples of these techniques include, un-
imodal normal distribution crossover (UNDX), simplex 
crossover (SPX) and blend crossover (BLX). 

Can be useful for explora-
tion purposes. 

Parent Cen-
tric  

[33] 

In parent-centric recombination, offspring are created in 
the vicinity of the parents. It is given to each parent an 
equal probability of creating offspring in its neighbour-
hood such as parent-centric recombination operator 
(PCX) 

Can be useful for exploita-
tion purposes. 

 
 
implement the crossover operations are those derived from classical evolution the-
ory like the one-point crossover, N-point crossover [29], the uniform crossover 
[27], the arithmetic and the heuristic crossover [23], etc. Table C.6 reviews a few 
generic (problem independent) crossover operators found in literature. 

The crossover operator generates new individuals (offspring) through the re-
combination of two or more parents. Crossover can be compared to sexual repro-
duction in natural organisms as it permits the swapping of information between 
individuals.  

A different approach is given by the EDAs (section 3.2.3) algorithms which 
employ probabilistic models of the search distribution that model crossover opera-
tors. These methods introduce the idea of correlated exploration to the field of  
recombination algorithms. However, EDAs are not efficient to the continuous  
optimization [30]-[32]. 
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C.7   Mutation Operator 

The mutation operator is the primary variation/search operator in ESs while in 
GAs it is often considered a useful complement of crossover, usually performed 
with a low probability [21]. The main role of mutation in GA is to assure the di-
versity of genetic information in the population in order to prevent the premature 
convergence of GA to sub-optimal solutions. In practice, mutation changes the 
value of individual genes at random with a certain probability and assures that all 
the points in the search space are likely to be examined. The probability of occur-
ring a mutation in a gene is called the mutation rate. 

The GAs typically employ only one mutation rate pm for the population.  
Generally, the mutation rate value is fixed, not allowing any change or self-
adaptation during evolution. Table C.7 describes some of commonly used muta-
tion techniques.  

The mutation operator plays an important role in applications of adaptive pa-
rameter control or self-adaptation principles in evolutionary algorithms. In adap-
tive parameter control, the parameter settings (involving mutation and sometime 
crossover) attain different values according to a deterministic or probabilistic 
schedule defined by the user, for example, varying the mutation rate over the 
number of generations of the algorithm. 

 

Table C.7 Mutation operator techniques 

Mutation 

Methods 
Description Advantages/Disadvantages 

Standard 

[21] 
This type of operator just complements the binary 
value of the gene selected for mutation. 

Limited to binary operators 

Uniform 

[21] 

Choose the component to mutate, and then change this 
component value by a random number sampling inside 
the limits of parameter x=[lb,ub] where lb and ub  
means the lower and upper bound. 

The admissible values applied 
to real valued genes can take 
any statistical pattern 

Gaussian 

[21] 

Now the (real) component value of  individual xk is 
changed to ),0(' σNxx kk +=  by a random value ob-

tained from a gaussian distribution ),0( σN  of mean 

zero and standard deviation σ.  

The parameter σ is user de-
fined and should be carefully 
chosen. This approach can be 
used with adaptively mecha-
nisms.  

 
 
The self-adaptation concept, which evolved from evolution strategies and evo-

lutionary programming techniques, changes the value of mutation online, during 
the search, by applying the search operator(s) mutation (and recombination, in 
case of evolution strategies) to the optimization parameters. This method incorpo-
rates the control parameters into the chromosome.  
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C.8   Performance Criteria 

The two most used metrics to measure the performance of an algorithm are the  
effectiveness and efficiency [35]. Effectiveness measures the capacity of the algo-
rithm to accomplish the objectives. This value can be calculated by empirical ob-
servation in bunch of tests functions measuring the number of times the optimum 
has been reached by a certain algorithm. In case of algorithms with stochastic 
ground, the performance criterion is measured as the average of repetition trials. 
Efficiency is the effort needed by the algorithm to reach the optimum. In evolu-
tionary algorithms, it is the number of function evaluations or number of genera-
tions consumed to reach the target. Other aspects that could be relevant in certain 
cases can include a metric to trace down the performance of the algorithm in terms 
of the number of feasible solutions found or even the convergence rate as well.  

The classic way used to study the performance of an algorithm is through a per-
formance graph showing the trade-off between the two main criteria or making 
use of tables comparing the performance of one or several algorithms against sev-
eral parameter settings and running over some test functions during a predefined 
number of function evaluations. 



Appendix D. Support Vector Machine Overview 

D.1 The SVM Model Formulation 

The classical two class classification case defined by a set of training data of the 
form S={(xi; yi);…;(xn; yn)}, where the input xi∈ X ⊂  Rd is a d-dimensional fea-
ture vector and the output yi∈ {+1,-1} is the class label of xi.  

In the first implementation step, SVM applies the kernel “trick”, which pro-
vides a nonlinear mapping of the vectors xi into a higher dimensional feature 
space. Mathematically, it can be described as a nonlinear mapping φ, Η→ℜn:φ , 

where Η is a high dimension dot metrics space entitled Hilbert space or feature 
space, and φ(x) the feature mapping. For nonlinear problems, the two classes are 
more easily separated in Η than in Rd. φ must be chosen so that the kernel operator 
K(x, x') = <φ(x), φ(x')>H is positive definite. This allows us to compute inner 
products in Η without explicitly evaluating φ [35].  

In the second step, a decision boundary hyperplane is created based on the 
maximal-margin principle as illustrated in Fig. D.1.  

 

 

Fig. D.1 Illustration of the main SVM concepts 

The decision boundary points overlapping the margins are called support vec-
tors. Between them, an infinite number of separating hyperplanes are admissible 
(Fig. D.1, left) including the optimal separating hyperplane (OSH) [36] of two se-
parable classes (Fig. D.1, right).  

 The distance from the origin to the optimal separating hyperplane is given by 
(-b/||w||), where w is the normal vector of the hyperplane whose norm is held con-
stant and b a real number offset parameter often called the bias.  
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The margin M is given by the following quantity: 
 

M = mini yi {<w, φ (xi)> + b}    ( D.1) 
 

where < , > denotes an inner product, the hyperplane is defined by w and b and 
the expression given by (<w, φ (xi)> + b) corresponds to distance between the 
point xi and the decision boundary (see Fig. D.2).  
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Fig. D.2 Margin and hyperplane - Mathematical expressions 

The product of this quantity by the label yi (D.1) gives a positive value if there 
is a correct classification and a negative one in opposite case. So, the minimum of 
this quantity over all the data is positive if the data is linearly separable. Then the 
future incoming classifications will be assigned accordingly to the next decision 
rule: 

 
f(x) = sign (<w, φ (xi)> + b)     ( D.2) 

 
When the classes cannot be separated by a hyperplane, the SVM introduces new 
constraints known by the slack variables εi. If εi >0, xi lies inside the margin and is 
called a margin error. The distance between the hyperplane and misclassification 
is given by (-ξi/||w||) [36].   

Finally, the SVM can be formulated as the following quadratic program:  
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and, 0≥C  is a parameter that controls the tradeoff between minimizing the 
margin errors and maximizing the margin.  

For computational reasons, it is often easier to solve the equivalent dual prob-
lem using the Lagrangian formulation (αi is the Lagrange multipliers): 
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most of the xi. The points xi  that have non-zero Lagrange multipliers αi are termed 
the Support Vectors (SV). If the data are linearly separable, all the SVs will lie on 
the margin and hence the number of SVs can be very small (Fig. D.1). 

The kernel function performs the non-linear mapping into the feature space. 
The choice of kernel to fit non-linear data into a linear feature space depends on 
the structure of the data [36]. Some of the most popular kernels which are used in 
most SVM packages are presented in Table D.1. 

Table D.1 Typical SVM  kernels. 

1. Linear kernel:   yxyxK T=),(  

2. The Radial Basic Function kernel  where, the kernel 
width  is user-defined. 

)2/exp(),( 22 σyxyxK −−=  

The polynomial kernel where, the degree of the poly-
nomial, d, is also user-defined. 

dT yxyxK )1(),( +=  

4. Sigmoid with parameter κ and θ )tanh(),( θκ += yxyxK T  

D.2 Data Setup 

This is the data preparation step before building the model. This step involves the 
identification and normalization of data samples.  

D.2.1   Data Collection 

The data samples needed to build the model are collected in a database. This is 
considered the most time consuming task of the overall process, since data sam-
pling usually evolves the collection of large number of expensive process samples. 
The use of database management systems (DBMS) may help the exploration and 
extraction of information in order to understand this data process. However, in 
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other situations (depending on the amount and the complexity of the data) a flat 
file or even a spreadsheet may be adequate [37].  

D.2.2   Pre-processing of the Training Data 

The SVM algorithm operates on numeric attributes and it is applied in a variety of 
domains. The relationship between the object under study and its attributes can 
take multiple representations, be stored in several data structures even using dif-
ferent data types formats. Therefore, a common normalization is desired to 
achieve the data representation required by the SVM. For example, in applica-
tions where categorical data (non real data) is available, a transformation of the  
categorical in binary format is required. These early stage normalizations are ap-
plication specific so a couple of these were implemented within GENOM, as de-
scribed. First of all, the source of I/O SVM data is done in text data files, allowing 
the efficient sparse data representation and storing a single object-attribute pair in 
each line. Second, a normalization procedure (placed on similar scale) is submit-
ted to each individual data attributes. This step prevents attributes with a large 
original scale from biasing the solution preventing eventual computational over-
flows and underflows. This is achieved by scaling the training data to a predefined 
range normally between [0, -1] or [-1, -1]. The scaling routine reads through the 
training data file to determine the maximum and minimum for each component of 
the training vector. Then, values for the same component of all examples are lin-
ear scaled according to the following equation: 

 
 

ueMinimumValueMaximunVal
ueMinimumVallueOriginalVaLowerUpperLowerScaleValue −

−−+= *)(    ( D.5) 

 
The maximum and minimum values of each component are saved in a SVM de-
scription file to avoid referring the training data again when scaling the testing 
data. The description file makes the management and update of the extreme values 
for scaling in streaming events easy. Moreover, during the scaling phase the exis-
tence of unwanted outliers and long tailed distributions can produce bad resolution 
scale intervals and should also be prevented.  

D.2.3   Unbalanced Data Sets 

Real world applications are often characterized by highly unbalanced data distri-
butions. The ratio of positive to negative examples is small, meaning that one 
class is under-represented compared to the other. Frequently, the class with more 
interest to the user (the positive training samples) is represented by the minority 
class. This scenario improperly biases the classifier and can significantly reduce 
the accuracy of a classifier. The SVM models trained in such conditions will tend 
to predict the majority class [38]-[39].  

The main activities for handling unbalanced data problems are focusing in two 
main methods that alter the class distribution of data sets: the under-sampling, 
which shrink the size of samples in the majority class, and over-sampling, which 
increase the number of samples in the minority class. The basic methods employ a 
random sampling for reducing the majority samples and the replication of samples 
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in the case of over-sampling. The overall effect is to diminish the high class 
asymmetries in the training set.  

Whether it is used individually or simultaneously, both methods have some 
drawbacks. For example, the under-sampling method can throws away potentially 
useful samples near the decision boundary. Those samples could be potentials 
support vectors responsible for the accuracy of the model. On the other hand, rep-
licating the majority class examples increases the size of the training set increasing 
the cost to build the model (method used alone) and may also lead to overfitting 
models. Recent studies have emerged which tries to optimize the efficiency and 
accuracy of the model [40]-[41] and [42].  

Other methods exist to improve the accuracy and performance of the learning 
model without changing the class distributions for unbalanced problems. They are 
based in the principle that the error introduced by a wrong estimation or classifica-
tion have different significance for different classes. The cost introduced by a 
wrong classification of the interesting class sample (a minority) has greater impact 
than the cost introduced by a wrong classification of the majority class sample, 
that’s why they are called cost-sensitive methods. Thus, the cost-sensitive learning 
methods, belongs to the class of classifiers that minimize cost as well as the tradi-
tional error rate whose impact of the costs weights can be parameterized by the 
user in a class basis. Assign a higher weight factor or cost C to the minority sam-
ples in detriment of less cost values for majority classes, assures a biasing model 
that gives more “representation” to small classes. Now, the SVM formulation pre-
sented in expression D.3 suffer a slight modification and became: 

 ∑∑
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One example to accomplish this is defined in [43], and assigns the costs values to 
C1 and C2 to each class as below:       

CC M
m2

1 =  and CC M
m1

2 =                  ( D.7) 

Where, m1 and m2 denote the size of class 1 and class 2 data sets, respectively, 
with m1>>m2 and M=m1+m2. Given a higher cost term to the minority class C2 
will produce a model that can better predict new data. 

D.3   SVM Model Building 

A well defined training and validation procedure is required in order to insure ac-
curate and robust predictions. However, the limited availability of data resources 
in some cases or the high cost of data collecting process may impose difficult 
challenges to obtain the true accuracy. An accurate estimation of the true accuracy 
should be put into practice for small data set cases. The quality of the estimation 
also depends on the methods to measure the performance of the clas-sifier. The 
most common used methods described next are the training and testing, the boot-
strap and cross-validation approach.  



218 Appendixes
 

D.3.1   Training and Testing by Simple Validation Approach 

In the simple validation method, the search space S is randomly partitioned into 
two subsets S1 and S2 with asymmetrical loads, generally S1 with 2/3 of the total 
data and S2 with the rest 1/3. A model is built, using as training set S1 and the ac-
curacy tested with the S2 subset. This process is repeated N times with different 
random partitions, then the true accuracy is obtained averaging the results of each 
iteration. It provides a way of evaluating the performance of a model trained with 
the given training parameters. This method behaves well for large data sets. Small 
data sets usually lead to inaccurate estimation with large bias because a significant 
portion of data (S2) was spent to represent the test data. Another weakness of this 
technique is that it violates the requirements for independence of test sets because 
the partition of the test sets is not disjointed [44].  

D.3.2   Bootstrap Method 

The bootstrap method is a technique for estimating the error of a model. The boot-
strap method generates N subsets (S1, S2, …, SN) from the original set S using a 
sampling technique usually based on a random with replacement strategy. The ba-
sic process chooses randomly one element of the entire set S, adds it to Si and puts 
a copy back into S (replacement). This process is repeated T times equal to size of 
elements of S. As a result, the total number of elements of subsets Si is equal to T. 
There is also a probability that several elements of S can be copied several times 
to Si while some may have none. In this case the classifier is built using Si as the 
training set while the test set is formed by all elements of S not included in Si. The 
final accuracy model is obtained by averaging the accuracy in each subset.   

D.3.3   Cross-Validation Method 

Considered as one of the most reliable but also most expensive in terms of compu-
tational cost, N-fold cross-validation randomly divides the training data into N sets 
[44]-[46]. Then it builds N models, each time leaving one of the set out as the test-
ing set. Again, the average accuracy rate is calculated for each fold. A particular 
feature of this method is that all the test set is disjoint and thus each training set is 
tested only once. Briefly, the N-fold cross validation algorithm is described in 
three main steps (Fig. D.3): 
 

 

1. Divide the training set (of size m) into n disjoint sets  

   S1;S2;...;Sn of equal size n/m. 

2. For each Si:  

       - Train a classifier on S\Si  

       - Test it on Si −−> error(i)  

3. Output the average error  

 

Fig. D.3 N-fold cross validation algorithm 



Appendix D. Support Vector Machine Overview 219
 

This gives an estimate of the generalization error of the classifier when trained on n-
n/m data. Usually n is equal to 10. When applied to model selection parameter, a 
leave-10-out cross-validation is often used applying the following sequence of actions: 

• For each set of values of the parameters, leave-10-out cross-validation on the 
training set is performed to estimate the models accuracy. 

• Select the set of values from each parameter that produced the model, which 
gave the smallest prediction error (optimal parameter settings). 

• Once a good set of parameter values is found, train the model with the optimal 
parameter settings for whole training set and test it with a test set (test is not 
used for training). 

D.4   SVM Model Evaluation 

After the building process, the performance of the predictive model is normally 
measured with a set of evaluations metrics. Based on these results, the model may 
need to be rebuilt again using a different technique or the same technique with a 
different set of samples in order to increase the model accuracy. 

D.4.1   Kernel Evaluation Metrics 

The performance of a classifier is achieved mainly by the measure of the true ac-
curacy obtained with the original data set S. There are several performance meas-
ures used to estimate the accuracy or quality of the model.  

1. The Root-Mean-Square-Error (RMSE) is often used as a performance criterion 
in cross-validation and also for predicting the test set. The RMSE value is de-
fined by: 
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where, ŷi and yi are the predicted and real values of sample i of the n samples 
respectively. 

2. The Receiver Operating Characteristic (ROC) curve, illustrated in Fig. D.4, is a 
graphical technique used to visualize the relation between true and false posi-
tives. The axes of a ROC curve are the number of true positives divided by the 
total positives in the test set and the false positives divided by the total number 
of negatives. The Area Under the Curve (AUC) gives a scalar measurement for 
the performance. An AUC value of ‘1’ represents a perfect test; an area of ‘0.5’ 
represents a worthless test. Fig. D.4 illustrates the ROC concept. 

3. The precision and recall metrics are two useful measures for evaluating the 
quality of results in statistical classification problems. The Precision is the per-
centage of the outcome of a statistical task matching the desire results. In the 
classification task, precision is the number of true positives (i.e. the number of 
items correctly labeled as belonging to the class) divided by the total number of 
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elements labeled as belonging to the class (i.e. the sum of true positives and 
false positives, which are items incorrectly labeled as belonging to the class). In 
the same context, Recall is defined as the number of true positives divided by 
the total number of elements that actually belong to the class (i.e. the sum of 
true positives and false negatives). 
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Fig. D.4 Receiver operating characteristic (ROC) curve 

D.4.2   Model Selection Parameters 

Model selection also known as parameter tuning is one of the most critical steps in 
the process of building SVM models. It is well known that SVM generalization 
performance depends on a good set of parameters C, ε and the kernel setting (σ in 
case of RBF or d in case of polynomial kernels), which must be defined by the 
user. An inappropriate choice of these parameters may lead to underfitting (e.g., 
for classification, the model always predicts the dominant class), overfitting (i.e., 
the model memorizes the training data) or slow and inefficient models. Fig. D.5 il-
lustrates the influence of these parameters in SVM modeling. 

There are several methods found in the literature for tuning the SVM parame-
ters [36], [44] and [47]-[52]. The aim of these techniques is to find the optimal  
parameters that minimize the prediction error of the SVM model. A common prac-
tice is to use a grid search approach to find the optimum values. In this case, a grid 
is span all over the search space of the parameters models. The grid resolution has 
great impact on the quality of the model and the time consumed in this process. To 
alleviate some of these drawbacks, sometimes the tuning process implements a 
coarse grid search followed by a fine grid approach in the regions of the most 
promising regions identified in the first step. Several other methods were proposed 
to speed up the grid search approach, including the use of optimization methods. 
Some approaches employ the design of experiments techniques [48], pattern 
search algorithms and stochastic algorithms [51]-[52]. 
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Fig. D.5 Influence of the hyperparameters on SV regression [46] 

 
Whichever the process used, a measure of the model quality should be adopted 

to measure the overall generalization performance. N-fold cross-validation is con-
sidered one of the most confident methods for this purpose. However, it is also a 
time consuming process because it is coupled with the generation of N+1 model 
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for each parameter value combination (details in the next section). Once again 
several alternatives were proposed to alleviate this undesirable behavior.  One of 
them is to consider a single model evaluation instead of the N model evaluations 
related with cross-validation. For datasets of reasonable size, some strategies re-
duce the complexity using simply a representative subset of the entire dataset. 
Both approaches sacrifice the quality of the final solution favoring the efficiency 
of the process.  

While some authors calculate the real model generalization performance fol-
lowing one of the methods of build train-test process described above, others fo-
cus their attention on theoretical work that leads to the estimation of the generali-
zation performance. Generally, the solution is given in intervals or bounds of the 
parameters models. Knowing such bounds, model evaluation can be more time ef-
ficient [35]. Besides, it can also be used as an alternative to the coarse grid ap-
proach if used within a classical grid search. Another practical example presented 
in [36], [47]-[48], calculates the values of σ and C directly from the training data 
but with the need of building the model. In this approach, the value of C is chosen 
as:  

  
|)3||,3max(| yy yyC σσ −+=     ( D.10) 

 
Where, y is the mean and σ is the standard deviation of the training set.  

The value of ε is calculated as: 
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where, σ is the standard deviation of the training set, n is the number of samples in 
the training set and τ is a constant that also has to be defined by the user. 
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