

Manuel F.M. Barros, Jorge M.C. Guilherme and Nuno C.G. Horta

Analog Circuits and Systems Optimization Based on Evolutionary
Computation Techniques

Studies in Computational Intelligence,Volume 294

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 268. Johann M.Ph. Schumann and Yan Liu (Eds.)
Applications of Neural Networks in High Assurance Systems,
2009
ISBN 978-3-642-10689-7

Vol. 269. Francisco Fernández de de Vega and
Erick Cantú-Paz (Eds.)
Parallel and Distributed Computational Intelligence, 2009
ISBN 978-3-642-10674-3

Vol. 270. Zong Woo Geem
Recent Advances In Harmony Search Algorithm, 2009
ISBN 978-3-642-04316-1

Vol. 271. Janusz Kacprzyk, Frederick E. Petry, and
Adnan Yazici (Eds.)
Uncertainty Approaches for Spatial Data Modeling and
Processing, 2009
ISBN 978-3-642-10662-0

Vol. 272. Carlos A. Coello Coello, Clarisse Dhaenens, and
Laetitia Jourdan (Eds.)
Advances in Multi-Objective Nature Inspired Computing,
2009
ISBN 978-3-642-11217-1

Vol. 273. Fatos Xhafa, Santi Caballé,Ajith Abraham,
Thanasis Daradoumis, and Angel Alejandro Juan Perez
(Eds.)
Computational Intelligence for Technology Enhanced
Learning, 2010
ISBN 978-3-642-11223-2

Vol. 274. Zbigniew W. Raś and Alicja Wieczorkowska (Eds.)
Advances in Music Information Retrieval, 2010
ISBN 978-3-642-11673-5

Vol. 275. Dilip Kumar Pratihar and Lakhmi C. Jain (Eds.)
Intelligent Autonomous Systems, 2010
ISBN 978-3-642-11675-9

Vol. 276. Jacek Mańdziuk
Knowledge-Free and Learning-Based Methods in Intelligent
Game Playing, 2010
ISBN 978-3-642-11677-3

Vol. 277. Filippo Spagnolo and Benedetto Di Paola (Eds.)
European and Chinese Cognitive Styles and their Impact on
Teaching Mathematics, 2010
ISBN 978-3-642-11679-7

Vol. 278. Radomir S. Stankovic and Jaakko Astola
From Boolean Logic to Switching Circuits and Automata, 2010
ISBN 978-3-642-11681-0

Vol. 279. Manolis Wallace, Ioannis E.Anagnostopoulos,
Phivos Mylonas, and Maria Bielikova (Eds.)
Semantics in Adaptive and Personalized Services, 2010
ISBN 978-3-642-11683-4

Vol. 280. Chang Wen Chen, Zhu Li, and Shiguo Lian (Eds.)
Intelligent Multimedia Communication: Techniques and
Applications, 2010
ISBN 978-3-642-11685-8

Vol. 281. Robert Babuska and Frans C.A. Groen (Eds.)
Interactive Collaborative Information Systems, 2010
ISBN 978-3-642-11687-2

Vol. 282. Husrev Taha Sencar, Sergio Velastin,
Nikolaos Nikolaidis, and Shiguo Lian (Eds.)
Intelligent Multimedia Analysis for Security
Applications, 2010
ISBN 978-3-642-11754-1

Vol. 283. Ngoc Thanh Nguyen, Radoslaw Katarzyniak, and
Shyi-Ming Chen (Eds.)
Advances in Intelligent Information and Database Systems,
2010
ISBN 978-3-642-12089-3

Vol. 284. Juan R. González, David Alejandro Pelta,
Carlos Cruz, Germán Terrazas, and Natalio Krasnogor (Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010), 2010
ISBN 978-3-642-12537-9

Vol. 285. Roberto Cipolla, Sebastiano Battiato, and
Giovanni Maria Farinella (Eds.)
Computer Vision: Recognition, Registration and
Reconstruction, 2010
ISBN xxx

Vol. 286.A. Bolshoy, Z.Volkovich,V. Kirzhner, and
Z. Barzilay (Eds.)
Genome Clustering: From Linguistic Models tO Classification
of Genetic Texts, 2010
ISBN xxx

Vol. 287. Dan Schonfeld, Caifeng Shan, Dacheng Tao, and
Liang Wang (Eds.)
Video Search and Mining , 2010
ISBN xxx

Vol. 288-293. xxx

Vol. 294. Manuel F.M. Barros, Jorge M.C. Guilherme, and
Nuno C.G. Horta
Analog Circuits and Systems Optimization based on
Evolutionary Computation Techniques,2010
ISBN 978-3-642-12345-0

Manuel F.M. Barros, Jorge M.C. Guilherme,
Nuno C.G. Horta

Analog Circuits and Systems
Optimization Based on
Evolutionary Computation
Techniques

123

Manuel F.M. Barros
Instituto de Telecomunicações
Instituto Politécnico de Tomar
Av. Rovisco Pais 1
1049-001 Lisboa
Portugal

E-mail: fmbarros@ipt.pt

Jorge M.C. Guilherme
Instituto de Telecomunicações
Instituto Politécnico de Tomar
Av. Rovisco Pais 1
1049-001 Lisboa
Portugal

E-mail: jorge.guilherme@ipt.pt

Nuno C.G. Horta
Instituto de Telecomunicações
Instituto Superior Técnico
Av. Rovisco Pais 1
1049-001 Lisboa
Portugal

E-mail: n.horta@ieee.org

ISBN 978-3-642-12345-0 e-ISBN 978-3-642-12346-7

DOI 10.1007/978-3-642-12346-7

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2010925142

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Manuel F.M. Barros
To Fatuxa, Catarina, Lucas and Joaquim

Jorge M.C. Guilherme
To Paula, Patricia and Inês

Nuno C. G. Horta
To Carla, João and Tiago

Preface

The microelectronics market, with special emphasis to the production of complex
mixed-signal systems-on-chip (SoC), is driven by three main dynamics, time-to-
market, productivity and managing complexity. Pushed by the progress in nano-
meter technology, the design teams are facing a curve of complexity that grows
exponentially, thereby slowing down the productivity design rate. Analog design
automation tools are not developing at the same pace of technology, once custom
design, characterized by decisions taken at each step of the analog design flow, re-
lies most of the time on designer knowledge and expertise. Actually, the use of de-
sign management platforms, like the Cadences Virtuoso platform, with a set of in-
tegrated CAD tools and database facilities to deal with the design transformations
from the system level to the physical implementation, can significantly speed-up
the design process and enhance the productivity of analog/mixed-signal integrated
circuit (IC) design teams. These design management platforms are a valuable help
in analog IC design but they are still far behind the development stage of design
automation tools already available for digital design. Therefore, the development of
new CAD tools and design methodologies for analog and mixed-signal ICs is essen-
tial to increase the designer’s productivity and reduce design productivitygap.

The work presented in this book describes a new design automation approach
to the problem of sizing analog ICs. The developed design optimization tool,
GENOM, is based on a modified genetic algorithm (GA) kernel and incorporates
heuristic knowledge on the control mechanism allowing a significant reduction on
the required number of generations and, therefore, iterations to reach the optimal
solution. However, the optimization process, employing a simulation-based ap-
proach with a kernel based on stochastic optimization techniques is clearly a com-
putational intensive task typified by high dimension search spaces and high cost
function evaluations. A step forward to enhance the efficiency of the implemented
optimization tool corresponds to the introduction of behavior modeling tech-
niques. The model introduced in this paper follows a supervised learning strategy
based on support vector machines (SVM) which, together with an evolutionary
strategy, is used to create feasibility models in order to efficiently prune the design
search space during the optimization process, thus, reducing the overall number of
required evaluations.

The book is organized in seven chapters. The first one, the introduction,
presents the motivation and outlines the original goals for this research work.

VIII Preface

Chapter 1 provides an overview of the thesis motivations, research goals and
main contributions.

Chapter 2 presents a state-of-the-art review in analog IC design automation
field by analyzing and comparing methods, strategies and tools presented in litera-
ture, including some commercial tools.

Chapter 3 starts with an overview on computation techniques to solve nonlinear
optimization problems with focus on evolutionary optimization algorithms. Then,
it introduces a new optimization kernel based on genetic algorithms applied to
analog circuit optimization. It includes a detailed description of the fitness func-
tion, the genetic operators and design methodology in order to obtain an efficient
and robust analog circuit design.

Chapter 4 explores the main learning techniques used to manage large amount
of information, to discover complex relationships among various factors and ex-
tract meaningful knowledge to improve the efficiency and quality of decision-
making. In particular, it discusses the use and the integration of a learning model
based in support vector machine (SVM) in order to improve the evolutionary op-
timization strategy for analog circuit design applications introduced in chapter 3.

Chapter 5 describes the analog design environment and architecture of
GENOM optimization tool. It discusses the methodology, representation and ar-
chitecture issues, giving details of the analog IC design representation, interfaces
between the synthesizer and evaluation algorithms, and software architecture. The
main options taken in this work approach will be described and justified.

Chapter 6 presents several synthesis experiments, demonstrating the capabili-
ties of the system and providing some insight into factors that affect the synthesis
process. The suite of test circuits is taken from standard text books and technical
papers. The first section describes the performance metrics, the algorithm optimi-
zation strategy and input data of each the experiment. The resulting performances
computed automatically by the optimization tool during the evolutionary process
are delivered to the user in the form of output reports or by dynamic graphics or
reports. Apart from accuracy, mean and standard deviation of execution time and
evaluation cycles are also presented. Additionally, information regarding the cir-
cuit, such as circuit sizing, corner information and performance are also specified.

Finally, chapter 7 presents the conclusions and the research contributions of the
thesis and the improvements that are possible to GENOM.

 Manuel F.M. Barros
Jorge M.C. Guilherme

Nuno C.G. Horta

Contents

1 Introduction…………………………………………………………………..1
 1.1 Microelectronics Market and Technology Evolution1
 1.2 Analog Integrated Circuit Design ...3

 1.2.1 Analog Design Issues..3
 1.2.2 The Hierarchical Decomposition Model4
 1.2.3 Analog IC Design Flow ..5
 1.2.4 Analog Design Flow of a 15-Bit Pipeline CMOS A/D
 Converter...8

 1.3 Analog Design Automation ..10
 1.3.1 CAD Tools for Analog Circuit Design..10
 1.3.2 Automated Analog IC Design ...11

References ...14

2 State-of-the-Art on Analog Design Automation ……………………….....19
 2.1 Trends in Design Automation Methodology ...19

 2.1.1 Automated Topology Selection...20
 2.1.2 Automated Circuit Sizing/Optimization......................................23
 2.1.3 Automated Layout Generation ..23

 2.2 Automated Circuit Synthesis Approaches ..26
 2.2.1 Knowledge-Based Approach...26
 2.2.2 Optimization-Based Approach..27

 2.2.2.1 Equation-Based Methods..28
 2.2.2.2 Simulation-Based Methods...29
 2.2.2.3 Learning-Based Methods..30

 2.2.3 Commercial Tools...31
 2.3 Design Automation Tools: Comparative Analysis31

 2.3.1 Specific Characteristics ...36
 2.3.2 Performance Analysis ...37
 2.3.3 Optimization Techniques ..38
 2.3.4 Other Characteristics ...40
 2.3.5 Summary ...40

 2.4 GENOM Optimization Tool: Implementation Goals..............................42
 2.5 Conclusions ..43
References ...44

Contents

X

3 Evolutionary Analog IC Design Optimization ………………………….49
 3.1 Computation Techniques for Analog IC Design – An Overview49

 3.1.1 Analog IC Design Problem Formulation.....................................49
 3.1.2 Numeric Programming Techniques...51
 3.1.3 The No-Free-Lunch Theorem ...52
 3.1.4 Evolutionary Computation Techniques Overview54

 3.2 Key Issues in Evolutionary Search ...57
 3.3 GENOM - Evolutionary Kernel for Analog IC Design Optimization61

 3.3.1 Fitness Function Study..61
 3.3.1.1 Multi-objective Cost Function62
 3.3.1.2 Cost Function with No Preference Articulation............65

 3.3.2 Individual Encoding, Population Structure and Sampling67
 3.3.3 Selection Strategies ...71

 3.3.3.1 Ranking-Based Scheme ..71
 3.3.3.2 Constraint-Based Selection...72

 3.3.4 Crossover Strategies..73
 3.3.5 Mutation Strategies ...74
 3.3.6 Step Size Control – Dynamic Evolutionary Control76
 3.3.7 A Distributed Algorithm for Time Consuming Fitness
 Functions...77
 3.3.8 GENOM GA Attributes ..80
 3.3.9 GENOM Optimization Methodology..82

 3.3.9.1 Optimization Setup ...82
 3.3.9.2 Coarse Optimization ...83
 3.3.9.3 Fine-Tuning Optimization ..83

 3.4 Conclusions ..84
References ...84

4 Enhanced Techniques for Analog Circuits Design Using SVM

Models ...………………………….……………...……………….........................89

 4.1 Learning Algorithms Overview ..89
 4.1.1 SVM Classification Overview ..95

 4.2 GA-SVM Optimization Approach..96
 4.2.1 Feasibility Region Definition ..96
 4.2.2 Methodology Overview ..98
 4.2.3 The Feasibility Model Formulation...100
 4.2.4 SVM Model Generation and Improvement...............................101
 4.2.5 Handling Unbalanced Data in Circuit Designs102
 4.2.6 GA-SVM Optimization Overview ..104
 4.2.7 Comments on the Methodology ..105

 4.3 Conclusions ..105
References ...106

Contents

XI

5 Analog IC Design Environment Architecture ……………………...…....109
 5.1 AIDA Architecture ...109

 5.1.1 AIDA In-House Design Environment Overview109
 5.1.2 Layout Level Tools ...112

 5.2 GENOM System Overview ..112
 5.2.1 Design Flow ..113
 5.2.2 Input Data..114
 5.2.3 Output Data ...120

 5.2.3.1 Progress Real-Time Reports121
 5.2.3.2 Interactive Design...122

 5.2.4 I/O Interfaces...123
 5.2.5 Evaluation Engine ...125
 5.2.6 Expansion of GENOM Tool ...125
 5.2.7 Optimization Kernel Configuration...127

 5.3 Data Flow Management..128
 5.3.1 Input Data Specification..129
 5.3.2 Evaluation/Simulation Data Hardware......................................131
 5.3.3 Output Data ...133

 5.3.3.1 The Simulation and Equation Based Cost Function
 Parser ..134

 5.4 Conclusions ..136
References ...137

6 Optimization of Analog Circuits and Systems – Applications………...139
 6.1 Testing the Performance of Analog Circuits...139
 6.2 Testing the GENOM – Selected Circuit Topologies141
 6.3 GENOM Convergence Tests ..144

 6.3.1 The Analog IC Design Approach..145
 6.3.2 Testing the Selection Approach ..146

 6.4 Comparing GA-STD, GA-MOD and GA-SVM Performance...............148
 6.4.1 GA-STD versus GA-SVM Performance – Filter Case Study ...149
 6.4.2 Static GA-SVM Performance - OpAmp Case Study151

 6.4.2.1 Evaluation Metric ..153
 6.4.3 Testing the Dynamic GA-SVM Performance154
 6.4.4 Final Comments ..156

 6.5 General Purpose Circuits or High Performance Circuits Design..........156
 6.5.1 Fully Differential OpAmp...157

 6.5.1.1 Performance Specifications, Input Variables
 Ranges and Design Space Size158
 6.5.1.2 Analysis ...160
 6.5.1.3 Design Analysis ...163

 6.5.2 A Common OTA Fully Differential Telescopic OpAmp..........164
 6.5.2.1 Description...164
 6.5.2.2 Problem Specifications and Design Configurations165
 6.5.2.3 Analysis ...167

Contents

XII

 6.5.2.4 Design Analysis ...170
 6.5.3 Folded Cascode OpAmp with AB Output172

 6.5.3.1 Description...172
 6.5.3.2 Problem Specifications and Design Configurations173
 6.5.3.3 Design Analysis ...175

 6.6 Comparison with Other Tools/Approaches...178
 6.6.1 FRIDGE Benchmark Circuit Tests..179
 6.6.2 Optimization Test with FRIDGE Ampop179
 6.6.3 Comparison Results ..182
 6.6.4 Corners Optimization with FRIDGE Circuit.............................183

 6.7 Conclusions ..185
References ...185

 7 Conclusion………...187
 7.1 Conclusions ..187
 7.2 Future Work..188

 Appendixes …………………………………………………………………......191

Appendix A. Terminology...191
Appendix B. General Purpose Optimization Techniques193

 B.1 Random Search Methods..193
 B.2 Unconstrained Gradient-Based Methods..193
 B.3 Constraints Programming...194
 B.4 Direct Stochastic Methods..195
 B.5 Multiple Objectives ..197

Appendix C. The Basic Decisions of Standard GA Algorithms.........................199
 C.1 Standard GA Kernel Optimization ...199

 C.1.1 Evolutionary Kernel Framework ..199
 C.1.2 Algorithm Design Parameters...200
 C.1.3 Single Optimization GA Example ..202

 C.2 Representation and Encoding ...205
 C.3 Fitness Evaluation and Assignment..206
 C.4 Initial Population ..207
 C.5 Selection ...208
 C.6 Crossover Operator...209
 C.7 Mutation Operator ..211
 C.8 Performance Criteria ..212

Appendix D. Support Vector Machine Overview..213
 D.1 The SVM Model Formulation..213
 D.2 Data Setup ..215

 D.2.1 Data Collection ...215
 D.2.2 Pre-processing of the Training Data ...216
 D.2.3 Unbalanced Data Sets ...216

 D.3 SVM Model Building...217
 D.3.1 Training and Testing by Simple Validation Approach218

Contents

XIII

 D.3.2 Bootstrap Method ...218
 D.3.3 Cross-Validation Method...218

 D.4 SVM Model Evaluation ...219
 D.4.1 Kernel Evaluation Metrics ...219
 D.4.2 Model Selection Parameters ..220

References ...222

Index……………………………………………………………………………227

List of Figures

Fig. 1.1 (a) SoCs including analog circuitry by year [3], (b) Digital
 circuit density by process technology ... 1
Fig. 1.2 Digital versus Analog design reality.. 2
Fig. 1.3 Design of an analog frontend ADSL using a typical design flow 4
Fig. 1.4 The design flow in level i of analog IC design [6] 7
Fig. 1.5 Hierarchical analog design flow of a 15-Bit Pipeline CMOS A/D
 converter .. 9
Fig. 1.6 CADENCE - Virtuoso custom design platform diagram 11
Fig. 1.7 Hierarchical top-down bottom-up applied to analog design
 automation ... 12
Fig. 1.8 Top-down design flow developed in this thesis 13
Fig. 1.9 Trends or trade-off in automatic design... 13

Fig. 2.1 Hierarchical level and design tasks of design flow architectures [1]... 19
Fig. 2.2 Topology selection mechanism before (a) and during (b) device
 sizing.. 21
Fig. 2.3 A general description of the topology selection bottom-up
 methodology .. 22
Fig. 2.4 Steps in optimization of circuit design .. 23
Fig. 2.5 Knowledge-based approach... 27
Fig. 2.6 Optimization-based approach.. 28
Fig. 2.7 Overview of analog synthesis tools…………………………………...41

Fig. 3.1 Basic concepts in multi-objective optimization................................... 50
Fig. 3.2 The optimization tree outlines of the major algorithms in each area... 52
Fig. 3.3 The no-free-lunch theorem representation [24] 54
Fig. 3.4 GENOM system overview .. 61
Fig. 3.5 Classification of preferences for each performance metric 63
Fig. 3.6 Tolerance limits of a class function ... 64
Fig. 3.7 Optimization of design objectives and pareto weights management ... 67
Fig. 3.8 Population structure... 67
Fig. 3.9 Chromosome type is a vector of real numbers 68
Fig. 3.10 Sampling strategies... 69

XVI List of Figures

Fig. 3.11 (a) Search space decomposition (b) Search space contour and
 chromosome location.. 70
Fig. 3.12 Deb’s nuclear conditions ... 71
Fig. 3.13 The GENOM tournament with feasibility-based ranking algorithm ... 71
Fig. 3.14 The GENOM Constraint-based Selection scheme............................... 72
Fig. 3.15 Ideal pair using satisfiability constraints (masks genes)...................... 72
Fig. 3.16 The crossover operator with standard mutation................................... 73
Fig. 3.17 Crossover for real chromosomes on a 2-D dimensional problems 74
Fig. 3.18 GA w/ premature convergence prevention flowchart.......................... 74
Fig. 3.19 Heuristics associated to the mutation operator 75
Fig. 3.20 Mutation control flow and code... 75
Fig. 3.21 Decreasing function for calculation of σ' .. 77
Fig. 3.22 Parallel architectures for EAs .. 77
Fig. 3.23 Distributed processing algorithm... 78
Fig. 3.24 Expected distributed processing speed-up tested with GENOM......... 79
Fig. 3.25 Theoretical speedup of GAs with Npop = 100 80
Fig. 3.26 Performance specification violation arouse from operational circuit
 deviations... 82
Fig. 3.27 Circuit/System optimization methodology .. 83

Fig. 4.1 Supervised learning approach.. 90
Fig. 4.2 Data mining technology. ... 91
Fig. 4.3 Linear regression ... 91
Fig. 4.4 Decision tree representation example. ... 92
Fig. 4.5 K-means objective function... 93
Fig. 4.6 Separating the data in a feature space.. 95
Fig. 4.7 Illustration of OSH hyperplane, margin and support vectors
 concept... 96
Fig. 4.8 Functional constraints on a CMOS current mirror 97
Fig. 4.9 Abstraction of analog circuit feasibility region 98
Fig. 4.10 Optimization-Based methods architecture... 99
Fig. 4.11 Block diagram of the GA-SVM algorithm .. 99
Fig. 4.12 Estimated fitness function with SVM performance model................ 100
Fig. 4.13 Ids-Vds characteristic of short channel NMOS transistor 101
Fig. 4.14 Active RC filter ... 101
Fig. 4.15 Expected balance effect in design space.. 102
Fig. 4.16 Stratified vision of the search space by feasibility regions................ 103
Fig. 4.17 Data flow of GA-SVM algorithm.. 104

Fig. 5.1 Conceptual view of AIDA environment architecture 110
Fig. 5.2 AIDA design flow ... 110
Fig. 5.3 GUI facility implemented in AIDA... 111
Fig. 5.4 LAYGEN graphical interface. ... 112
Fig. 5.5 E-Design environment architecture ... 113

List of Figures XVII

Fig. 5.6 Conceptual view of the Input/Output from optimizer tool 114
Fig. 5.7 Performance parameters and measures facilities 115
Fig. 5.8 Topology Selection.. 115
Fig. 5.9 Partial view of “design.cfr” ... 116
Fig. 5.10 Partial view of <design.spc> .. 117
Fig. 5.11 Partial view of <design.par>.. 118
Fig. 5.12 Partial view of <design.cir> .. 118
Fig. 5.13 Partial view of the Corners file.. 119
Fig. 5.14 Partial view of the measures file.. 119
Fig. 5.15 Technological model reference ... 120
Fig. 5.16 Progress reports. .. 120
Fig. 5.17 Performance reports from optimization... 121
Fig. 5.18 Progress reports provided by the automation prototype 122
Fig. 5.19 Local area multi-computer system implemented with LAM-MPI..... 123
Fig. 5.20 Testing GENOM distributed environment. 124
Fig. 5.21 Testing GENOM ‘ssh’ communications ... 124
Fig. 5.22 Invocation of distributed GENOM application 124
Fig. 5.23 Lamhosts with the names of nodes and the pathname to the
 executable. ... 125
Fig. 5.24 Interface between GENOM and AIDA design automation
 environment. .. 126
Fig. 5.25 Example of information delivered by GENOM 127
Fig. 5.26 Optimization kernel configuration file. ... 127
Fig. 5.27 A single kernel configuration and results. ... 128
Fig. 5.28 The circuit and the parameter tables filled with data from an
 elliptic filter ... 129
Fig. 5.29 2nd order Elliptic filter section and performance specs..................... 130
Fig. 5.30 Performance parameters and measures functions table 131
Fig. 5.31 The simulation data management system overview 132
Fig. 5.32 AC analysis in the output node of a filter .. 133
Fig. 5.33 The performance evaluation data flow .. 134
Fig. 5.34 Cost function parser overview... 135
Fig. 5.35 Processing of performance parameters.. 136

Fig. 6.1 Testbenches to measure the performances values 140
Fig. 6.1 Testbenches to measure the performances values (cont.) 141
Fig. 6.2 The suite of circuit schematics used in tests 142
Fig. 6.3 Print screen with statistical data from nominal optimization............. 145
Fig. 6.4 Final Bode plot .. 150
Fig. 6.5 Performance: GA-STD versus GA-SVM kernel 151
Fig. 6.6 Electrical characteristics from final population 152
Fig. 6.7 Output reports from optimization tool (Ckt4) 152
Fig. 6.8 Evolution of the cost function ... 153
Fig. 6.9 Comparative graph for the required number of evaluations 153

XVIII List of Figures

Fig. 6.10 Comparative performance analysis ... 156
Fig. 6.11 Differential amplifier schematic .. 157
Fig. 6.12 Testbench for (a) AC and (b) AC Common mode feedback
 specifications ... 160
Fig. 6.13 Gain magnitudes for corners analysis.. 161
Fig. 6.14 Output from simulation where all corners are satisfied. 162
Fig. 6.15 Gain magnitude and phase for typical conditions.............................. 163
Fig. 6.16 Telecopic OpAmp - Main amplifier and Bias circuitry 165
Fig. 6.17 Telescopic OpAmp - Testbench for DC and AC specifications 168
Fig. 6.18 Gain magnitude and phase for typical conditions.............................. 169
Fig. 6.19 Gain magnitudes for corner analysis ... 171
Fig. 6.20 Output from simulation where all corners are satisfied. 171
Fig. 6.21 Main class AB Amplifier... 172
Fig. 6.22 Bias circuit... 173
Fig. 6.23 OpAmp testbench for DC and AC specifications.............................. 175
Fig. 6.24 Output from simulation where all corners are satisfied. 176
Fig. 6.25 Gain magnitude and phase for typical conditions.............................. 177
Fig. 6.26 Gain magnitudes for corners analysis.. 178
Fig. 6.27 Main Amplifier.. 179
Fig. 6.28 OpAmp testbench for DC and AC specifications.............................. 180
Fig. 6.29 Gain magnitude and phase for typical conditions.............................. 183

Fig. A.1 Conceptual view of design spaces adopt in the terminology 194
Fig. B.1 The Hill-climber Algorithm.. 195
Fig. B.2 Convergence of steepest descent method for the Rosenbrock
 function... 196
Fig. B.3 Constraint optimization problem .. 197
Fig. B.4 General properties of Stochastic Search algorithms 198
Fig. B.5 The basics of Simulated Annealing algorithm. 199
Fig. B.6 Dominance, non-dominance and Pareto Front in MOO problems...... 200
Fig. C.1 Common evolution cycle .. 201
Fig. C.2 Pseudo-code of simple EAs .. 202
Fig. C.3 3D, 2D view and the contour plot of the function under test 206
Fig. C.4 Illustration of the evolutionary process... 207
Fig. C.5 GAs basic structures ... 207
Fig. C.6 Example of full and fractional design for three levels experiments.... 209
Fig. C.7 A Latin Hypercube Sample with two variables and eight even
 intervals .. 210
Fig. D.1 Illustration of the main SVM concepts ... 215
Fig. D.2 Margin and hyperplane - Mathematical expressions 216
Fig. D.3 N-fold cross validation algorithm. .. 220
Fig. D.4 Receiver operating characteristic (ROC) curve 222
Fig. D.5 Influence of the hyperparameters on SV regression [46]. 223

List of Tables

Table 2.1 General characteristics of automated topology selection and
 generation ... 22
Table 2.2 Overview of layout tools .. 25
Table 2.2 Overview of layout tools (cont.). .. 26
Table 2.3 Overview of analog sizing tools (1/4)... 32
Table 2.3 Overview of analog sizing tools (cont. 2/4)...................................... 33
Table 2.3 Overview of analog sizing tools (cont. 3/4)...................................... 34
Table 2.3 Overview of analog sizing tools (cont. 4/4)...................................... 35
Table 2.4 Factors affecting tools performance.. 38
Table 2.5 Optimization-based techniques... 39
Table 2.6 Scope characteristic .. 40

Table 3.1 Properties of general purpose optimization methods for
 nonlinear problems ... 53
Table 3.2 EAs main characteristics... 55
Table 3.3 Milestones in Evolutionary Techniques - Overview......................... 55
Table 3.4 Recent trends in evolutionary computation - Overview 56
Table 3.5 Key issues in EAs ... 58
Table 3.5 Key issues in EAs (cont.).. 59
Table 3.5 Key issues in EAs (cont.).. 60
Table 3.6 Normalization overview ... 66
Table 3.7 Sampling criteria... 69
Table 3.8 GENOM performance measures... 70
Table 3.9 Overview of the common used attributes in GENOM and EAs 81

Table 4.1 Classification of data mining techniques .. 94

Table 6.1 General comparison .. 139
Table 6.2 Class of circuits used in the tests .. 143
Table 6.3 Design parameters range... 143
Table 6.4 Matching and technology constraints details 143
Table 6.5 Specifications/requirements.. 143
Table 6.6 Optimization algorithm parameters .. 144
Table 6.7 Overall performance measures ... 146

XX List of Tables

Table 6.8 Output results for each run - Priority to the performance space 147
Table 6.9 Output results for each run – Priority to the feasibility space......... 147
Table 6.10 Output results for each run – Standard approach............................ 147
Table 6.11 Output results for each run – Priority to the performance space..... 148
Table 6.12 Output results for each run – Standard approach............................ 148
Table 6.13 Performance specifications/requirements 149
Table 6.14 Design parameter specifications (GA-SVM).................................. 149
Table 6.15 Runtime info ... 150
Table 6.16 Comparison among different algorithms for Ckt2.......................... 151
Table 6.17 Comparison among different algorithms for Ckt4.......................... 152
Table 6.18 Experiments cases... 154
Table 6.19 Algorithm specifications under test .. 155
Table 6.20 Comparison among different algorithms .. 155
Table 6.21 Performance parameter specifications .. 158
Table 6.22 Corners analysis data .. 158
Table 6.23 Matching and constraints details... 159
Table 6.24 Optimization algorithm parameters .. 159
Table 6.25 Performance parameter specifications .. 160
Table 6.26 Final transistor dimensions ... 161
Table 6.27 Runtime info* ... 161
Table 6.28 Results for corners analysis .. 162
Table 6.29 Minimum and maximum values for AC corner analysis 162
Table 6.30 First feasible solution performance parameter specifications 163
Table 6.31 Best solution performance parameter specifications....................... 164
Table 6.32 Performance parameter specifications .. 165
Table 6.33 Matching and constraints details... 164
Table 6.34 Matching and constraints details... 165
Table 6.35 Optimization algorithm parameters .. 167
Table 6.36 Corner analysis data.. 167
Table 6.37 Performance parameter specifications .. 168
Table 6.38 Final transistor dimensions ... 168
Table 6.39 Numerical results for corner analysis ... 169
Table 6.40 Minimum and maximum values for AC corner analysis 169
Table 6.41 Runtime info ... 170
Table 6.42 Performance parameter specifications .. 173
Table 6.43 Matching and constraints details... 174
Table 6.44 Corners analysis data .. 174
Table 6.45 Optimization algorithm parameters .. 174
Table 6.46 Performance parameter specifications .. 175
Table 6.47 Final transistor dimensions ... 176
Table 6.48 Runtime info ... 176
Table 6.49 Numerical results for corners analysis .. 177
Table 6.50 Minimum and maximum values for AC corners analysis............... 178
Table 6.51 Optimization algorithm parameters .. 180

List of Tables XXI

Table 6.52 Design performance and final results ... 181
Table 6.53 Ranges and Final Transistor Dimensions 182
Table 6.54 GENOM benchmarks ... 182
Table 6.55 Corners analysis data .. 184
Table 6.56 Design performance and final results for corners analysis 184
Table 6.57 GENOM corner optimization ... 185

Table A.1 Control parameters... 193
Table A.1 Control parameters (cont.) ... 194
Table C.1 Control parameters... 203
Table C.2 Testbench functions for the GA optimization example.................. 204
Table C.3 Optimization control parameter configuration 205
Table C.4 Fitness assignment strategies ... 208
Table C.5 Selection operators... 211
Table C.6 Crossover operator overview ... 212
Table C.7 Mutation operator techniques... 213
Table D.1 Typical SVM kernels. ... 217

List of Abbreviations

AI Artificial Intelligence
AMD Advanced Micro Devices
AMS Austrian Micro Systems
ADC Analog-to-Digital Converter
ADSL Asymmetrical Digital Subscriber Line
AIDA Analog Integrated Circuit Design Automation platform
ASIC Application Specific Integrated Circuits
BiCMOS Bipolar Complementary Metal-Oxide Semiconductor
CAD Computer Aided Design
CMFB Common Mode Feedback Amplifier
CMOS Complementary Metal Oxide Semiconductor
CMR Common-Mode Range
CMRR Common-Mode Rejection Ratio
DA Design Automation
DAC Digital-to-Analog Converter
DSP Digital Signal Processing
EDA Electronic Design Automation
EP Evolutionary Programming
EA Evolutionary Algorithms
GA Genetic Algorithms
GBW Gain-Bandwidth Product
GP Geometrical Programming
MOO Multi-Objective Optimization
NMOS N-channel MOSFET
NN Neural Networks
OPAMPS Operational amplifiers
OR Output Range
OTA Operational Transconductance Amplifier
PMOS P-channel MOSFET
PSRR Power Supply Rejection Ratio
SNR Signal-to-Noise Ratio
GUI Graphical User Interface
IC Integrated Circuit
IP Intellectual Property
OR Output Range

XXIV List of Abbreviations

RF Radio Frequency
SA Simulated Annealing
SoC System-on-Chip
SNR Signal-to-Noise-Ratio
SVM Support Vector Machines
SPICE Simulated Program with Integrated Circuits Emphasis
VLSI Very Large Scale Integration
THD Total Harmonic Distortion
UGBW Unity-Gain Bandwidth
VHDL Very High Speed Integrated Circuits Hardware Description
 Language
VHDL-AMS Analog Mixed Signal VHDL

M.F.M. Barros et al.: Analog Circuits and Systems Optimization, SCI 294, pp. 1–18.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

1 Introduction

Abstract. This chapter presents the motivation to the research work in the area of
analog integrated circuit (IC) design automation, i.e., outlines the market and
technological evolution, characterizes the analog IC design, discusses the avail-
able CAD solutions and, finally, describes goals for the this work.

1.1 Microelectronics Market and Technology Evolution

The microelectronics market trends present an ever-increasing level of integration
with special emphasis on the production of complex mixed-signal systems-on-chip
(SoC), as a consequence of the boom in telecom devices, wireless communications,
electronic consumer products, etc. These devices integrate complex digital cores
with analog and RF functions on a single chip [1]-[2]. Fig. 1.1 illustrates the
relevance of analog circuitry in this renewed invigorating market showing the evo-
lution of SoC percentage that will contain analog parts. According to IBS Corpora-
tion, digital/mixed-signal SoCs accounted for approximately 20% of worldwide
SoCs in 2001[3]. The tendency curve in the left graph shows that the percentage
continues to rise, and it was around 75% in 2006. Driven by the demand to provide
higher performances, i.e., increasing functionalities with less power consumption,
semiconductor manufacturers developed newer technologies allowing an exponen-
tial increase in IC density, described by the well known Moore’s law.

The famous Moore’s law observed for the first time in 1965, which states that
transistor density on integrated circuits doubles about every two years, is still applied
nowadays. It is a measure of the technological progress verified in semiconductor

Fig. 1.1 (a) SoCs including analog circuitry by year [3], (b) Digital circuit density by proc-
ess technology

2 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

fabrication technologies but now, more than ever it has become a source of concerns.
As far as new process technologies evolve, more and more functionalities can be in-
tegrated, increasing as a side effect, the complexity of IC design. A large augment of
parasitics and leakage currents that make chips fail are the first visible sign. Actually,
while the exponential growth in capacity moves on into the nanometer technology
domain, the design teams are facing a curve of complexity that rises exponentially
faster, thereby slowing down the productivity design rate. This phenomenon, referred
as the design productivity gap [3] is illustrated in Fig. 1.1 (right) and represents the
growing difference between the improvement in manufacturing productivity needed
to satisfy the pressures of the market and the progress in productivity achieved by
Computer-Aided-Design (CAD) development teams. The development of new CAD
tools and design methodologies is essential to increase the designer’s productivity and
reduce design productivity gap. However, the development of mixed-signal SoC de-
signs can be very challenging since the design and verification processes for both
digital and analog sections are supported by design automation tools in different
stages of maturity. The analog section, despite of typically occupying a minor frac-
tion of the overall circuit area (20% approximately as illustrated in Fig. 1.2), is the
bottleneck in terms of design time by being far more complex than the digital coun-
terpart. Generally, digital design is based on well-established practices supported by
well-defined automated synthesis methodologies and tools. As a result, digital intel-
lectual property (IP) reuse is a common practice available through different CAD
companies leading to an increase in the design productivity.

Fig. 1.2 Digital versus Analog design reality

Unlike digital circuits, analog/mixed-signal designs are ruled by many different
strategies. There are not a large variety of tools or mature design methodologies
that efficiently support the complexity of analog design flow. The strong sensitiv-
ity of analog design parameters to the fabrication process made the analog IP re-
use expensive when compared with the capacity of acquiring and using digital IPs.
The circuit libraries, as known from the digital world, became easily out-of-
date/obsolete as the technology or the rules of the project changed. For example,
the performance noise of an operational amplifier degenerates with smaller dimen-
sion technologies whereas the gain DC of small signal improves. This way, the

1 Introduction 3

upgrade of new capabilities and functionalities offered by a recent technology be-
came more difficult.

Finally, despite the great progress achieved in the past few years concerning
analog circuit technologies, analog design tools and methods are still far from
reaching a mature stage.

1.2 Analog Integrated Circuit Design

1.2.1 Analog Design Issues

The difficulty of analog circuit design is higher than digital circuit design. The
signals of the digital technology are more tolerant to noise levels, by having only
two possible values each one with a large tolerance range. The Boolean function-
ality of digital systems represented through the use of high level description lan-
guages and mature digital CAD tools facilitates the automation of design tasks.
Analog design, on the other hand, deals with an infinite or continuous range of
values, which force it to exploit the physics of the fabrication process to achieve
high performance designs. Therefore, second-order and third-order effects that are
not so critical for digital design become a major problem for analog designs [1][4].

Due to these problems, the employment of standard cell libraries for analog de-
sign is not widespread since each analog cell is characterized by several continu-
ous parameters (including power dissipation, DC gain, bandwidth, phase mar-gin,
slew rate, noise, power, area, etc.) which produce hundreds or thousands of in-
stances for each cell with different performance measures [1]. Additionally, some
of them will not create functional solutions. Hence, the technology migration and
the retargeting of analog designs usually require substantial redesign of the circuit,
unlike the digital design [4].

Today, one of the major challenges faced by semiconductor companies is how
to increase yield of their circuits. During the layout and production phase, the ap-
pearance of parasitic effects, device mismatch and changes in environment condi-
tions have a negative influence on the behavior of the designed circuit, changing
the performance parameters and leading to undesired performance of the circuit.
One way to minimize the effect of these variations consists in the use of evalua-
tion and compensation techniques during the design phase, combined with a care-
ful layout [5]. Corners analysis in extreme variation points is an example of such
techniques consisting in the circuit simulation for different operational conditions,
for example, different temperatures and process variations.

The above described problems deal with the characteristic of analog circuits,
which makes the analog design a hard task. The performance of analog blocks is a
key factor in the success of an integrated circuit. The time-to-market imposes a
first time right on both digital and analog blocks in integrated circuits and systems
on chip. To create a complete solution and achieve the target of first time right in
analog systems, careful methodologies, tool flows and an appropriate set of tools

4 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

must be used by analog designers. These techniques and tools will be summarized
in the next sections.

1.2.2 The Hierarchical Decomposition Model

The increase in complexity of analog and mixed-signal integrated circuits leads to
the general use of IC design methodologies based on divide-to-conquer strategies,
sustained by a hierarchical decomposition model that define the top-down design
and bottom-up verification flows [4][6][7][8][9][10] and a set of design tasks in
each hierarchical level [4][6][7][8]. In order to illustrate the above concepts of a
typical design flow, Fig. 1.3 shows the design of an Analog Front-end ADSL mo-
dem system [11] using a top-down methodology.

Fig. 1.3 Design of an analog frontend ADSL using a typical design flow

The main analog functions are high speed digital-to-analog (D/A) and analog-
to-digital (A/D) conversion, low pass filtering (LPF) and transmitter and receiver
gain-controlled amplifier (AMP). The design of the above system can follow two
different approaches: design the circuit as a whole (not a recommended practice
considering the systems dimension and complexity) or using a divide-to-conquer
strategy (a common procedure to solve hard problems in different engineering
domains). Applying this strategy, to analog integrated circuit design, results in a
hierarchical subdivision of the system under study, in sub-blocks of different ab-
straction layers. Therefore, in the first level the initial system concept is refined in
a series of steps, which will compose the building blocks of the next level: filters,
data converters, amplifiers, etc, in the third level: amplifiers, comparators, etc.
This decomposition process continues down until the device level. Moreover, the

1 Introduction 5

performance specifications obtained by these sub-blocks must be once more simu-
lated to verify their correctness – this is known as the verification or validation
phase. The validation phase can result in the redesign of the same block or a modi-
fication of the dependent block at the upper level.

One of the main advantages pointed out by the hierarchical methodology is the
possibility of reusing the design knowledge [12][13][14]. Reusability of knowl-
edge and procedures that are acquired by the design and refined for the verifica-
tion of a building block in a hierarchical decomposition of a certain circuit can be
used later when designing another circuit or used as a starting design for the next
generation of the product. Moreover, there is an opportunity to perform system ar-
chitectural exploration in order to improve the overall system optimization (e.g.
finding an architecture that consumes less power) at a higher level before starting
detailed circuit implementations [15]. In conclusion, embracing a top-down design
representation is an important step to decrease the redesign spins and time-to-
market, and to increase the levels of productivity.

1.2.3 Analog IC Design Flow

Besides the benefits of design methodology described in the preceding section, in
the analog domain the hierarchy levels of this design process are not well de-fined
and are not generally accepted [12]. Nevertheless, some approaches have already
been implemented through this concept [16]. A general design flow for ana-
log/mixed-signal systems is illustrated in Fig. 1.4 and is described through the fol-
lowing steps:

(a) System level – On this first stage of development, the required target specifi-
cations, technology process are defined. The overall architecture of the system
is designed and partitioned into a set of high-level building blocks for the next
level. During this phase, specifications for system are mapped into intermedi-
ate-level parameters which become the specifications for the lower level
building blocks. The system-level partitioning and specifications are then
verified using appropriate high-behavioral tools or system simulators such as
Matlab [17], Verilog AMS [18], MMSIM [19], etc.

(b) Block level – In this stage there is an effective translation of the high-level
building blocks into architecture of functional blocks required to realize the
specified behavioral description. Then, all blocks are described individually in
an appropriate hardware description language, like VHDL [20] and VHDL-
AMS [21] and then verified against the specifications using behavioral simula-
tions tools, such as Ultrasim [22], NcSim [22], Hsim [19], Modelsim [23], etc.

(c) Circuit level – For each analog building block an optimization process is pro-
vided, given the inherited specifications from the upper level and the selected
technology process. The optimization is seen as an iterative process to deter-
mine physical dimensions at device-level. This stage covers two nuclear

6 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

activities: the selection of the proper circuit topology and a device sizing
methodology of the circuit parameters. A robust design should be achieved
taking into account the process variations and device tolerances in order to
guarantee a high yield design. The required performance specifications of the
final circuit design are then verified using circuit simulations such as HSPICE
[24] and Spectre [18].

(d) Layout hierarchy - In this stage the optimized building blocks obtained from
the preceding step are mapped into a physical representation of the circuit
schematic taking the form of a multilayer layout. Layout is a set of geometric
shapes obeying design rules specified by the fabrication process. The layout
area generated manually or automatically is optimized for minimum area. Af-
ter the verification phase (verification of design rules (DRC)) layout is fol-
lowed by the extraction of layout parasitics whose effects must be verified
with circuit simulation in order to ensure that the initial performance does not
deviate significantly from the target specifications even with their influence.
Crosstalk, substrate coupling analysis and mismatch are also important sub-
jects under the umbrella of layout techniques.

(e) Fabrication and Testing – In this last stage the masks are generated and the IC
is finally produced. The fabrication process is accompanied by rigorous qual-
ity tests to avoid defective devices. The test and validation are fundamental
steps to verify the correct operation of the circuit and so a good test board and
test setup must be defined.

During the top-down path, each of these hierarchical abstraction levels is com-
bined with a top-down and bottom-up strategy together with redesign or back-
tracking iteration loops [6],[12] as illustrated in Fig. 1.4 (right).

The top-down flow consists of the following steps:

(a) Topology selection – This step is responsible for choosing the best suitable
circuit topology or architecture in order to meet the specification requirements
from the preceding higher levels. There are several ways of solving this prob-
lem, from manual topology selection from a database employing heuristic
rules [25] to the use of deterministic approaches, such as, the one that use the
information from feasible performance space [26][27][28][29] or another one
that combines the topology selection with the device sizing task using optimi-
zation based approach [30]. Section 2.1.1 presents a detailed discussion on
methods applied to automate the topology selection task.

(b) Specification translation/Sizing – An optimized design is searched so that the
complete block meets the required specifications. In higher levels of design
hierarchy this process implements the decomposition of the block under de-
sign in a subset of specifications that are passed down in the hierarchy for
each sub-block in such a way that the actual block meets its specs. For the
lowest levels in the hierarchy, where the sub-blocks are materialized in single
devices (transistors, resistors, etc), circuit sizing is taking place according to

1 Introduction 7

the performance specs and the selected topology received from upper levels.
Here, there are two main approaches, namely, the knowledge-based approach
and an optimization-based approach, relying on different optimization meth-
ods. In section 2.2 a detailed discussion on methods applied to automate this
fundamental task is presented.

(c) Synthesis Verification – The optimized design is simulated and verified to see
if performance meets the original requirements. If the desired performance is
obtained, the design progresses down to sub-blocks of lower level. If not, a
redesign process is initiated inside the same hierarchical level or a backtrack-
ing iteration is started involving other hierarchical level.

Fig. 1.4 The design flow in level i of analog IC design [6]

The bottom-up layout flow implements the next steps:

(a) Layout generation – It generates the optimal geometrical layout of the block
under study taking into account design constraints.

(b) Extraction – After design rule checking (DRC) and layout versus schematic
(LVS), layout is extracted to obtain the layout-induced effects to the circuit
schematic, the layout parasitics.

(c) Layout Verification – The extracted layout is then verified and simulated to
check the impact of the layout parasitics on the overall circuit performance. If
the influence of parasitics produces unacceptable deviations from desired

8 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

performance, the design should be repeated again changing the dependent
blocks in one or several upper levels. Some iteration among the upper levels
in the design hierarchy is likely to occur. These verifications are done using
3rd generation SPICE simulators as HSIM [19] and NANOSIM [19] which
can deal with large circuits in a reasonable period of time.

In order to support the process with adequate evaluation of design alternatives at
different levels of abstraction, CAD (Computer Aided Design) tools have been
developed, which reduce the execution time and allow the identification of prob-
lems at an early stage so that the right decision in the design process can be taken.

1.2.4 Analog Design Flow of a 15-Bit Pipeline CMOS A/D
Converter

To illustrate the methodology of analog design flow, a partial design flow of a 15-
Bit Pipeline CMOS A/D Converter system [11] suitable for ASDL modem is
shown in Fig. 1.5 and, there is the reference to a variety of design tools such as
behavioral level simulators, sizing tools, and physical layout tools. The pipelined
ADC consists of a front-end sample and hold amplifier (S/H) and M pipelined
stages. The S/H amplifier samples and holds analog input signal that will be quan-
tized by the following stages. Each stage samples the signal from a previous stage
and quantizes to Bn-bits using a flash ADC. Then the input is subtracted by the
quantized signal and the residue is amplified by 2Bn before sending it to the next
stage through the inter-stage S/H amplifier.

To begin with, the required target specifications, technology process and an ar-
chitecture approach must be defined. Then, an architectural design phase (System
level) is undertaken where the overall system concept is broken down into a set of
high-level building blocks.

During high-level synthesis, specifications for the pipeline ADC converter are
mapped into intermediate-level parameters which become the specifications for
the S/H, residue amplifier, the current steering DAC and input flash converter.
The low-level synthesis phase uses these specifications as constraints to design the
sub-blocks. These blocks are further decomposed (block level) until they are small
enough in size to be treated as atomic circuit cells. Once all cells are designed at
the circuit level, the system layout is done (layout level). Then, bottom-up verifi-
cation is performed, and changes are made as necessary. During this process some
iteration among the levels in the design hierarchy is likely to occur.

Special emphasis has been put on top-level simulations, to ensure the correct
functionality of the entire converter circuit. Top-level simulations were performed
using Matlab/Simulink [17] models, including all digital and analog blocks. Lower
level sub-block simulations have been carried out using Spectre [18] and HSPICE
[24] to verify circuit performance. Additional simulation with PowerMill [19] was
taken to ensure the correct operation of the combination of digital and analog
blocks.

1 Introduction 9

1.
 S

ys
te

m
 L

ev
el

∑
=

=
M

k
k NB

1

Validation: MatLab/Simulink [17] mod-
els.

High level tools describe the circuit in an
abstract way. Models should be efficient
and accurate. To verify the performance of
the developed architecture, a complete
Matlab model was built using Simulink.
This helped to identify the main sources of
non-linearity in the frontend blocks and to
take the necessary precautions to avoid
their undesired effects. Worst-case simula-
tions were also performed with Matlab
models.

Alternative tools: Nanosim, Verilog-AMS.

2.
 B

lo
ck

 L
ev

el

VDAC

+VR

4

-VR

4 +VR -VR0

D1,D2

S2

S1

Vin

MUX

S3

LA
TC

H

V0

Cf

Cs

A

SUB-ADC DAC 2x GAIN

ADC Validation: SPICE [31], AHDL

The solutions from the high-level optimi-
zation problem are now constraints during
the low-level synthesis phase. All per-
formances are evaluated analytically re-
sulting in a problem easily solved by stan-
dard optimization techniques.

Alternative tools: VHDL, VHDL-AMS.

3.
 C

ir
cu

it
 L

ev
el

Validation: SPICE like simulators.

The requirements for high gain and GBW,
with low output impedance and noise
leads to a special topology based on tele-
scopic cascade amplifiers followed by a
common source stage.

These sizes were verified with SPICE and
by analytic equations to meet the design
constraints.

Alternative tools: HSPICE, SPECTRE.

4.
 S

ys
te

m
 L

ay
ou

t

Validation: Assura, Diva.

Manual layout was required for the S/H
and residue amplifier.

Other alternative tools: Calibre.

Fig. 1.5 Hierarchical analog design flow of a 15-Bit Pipeline CMOS A/D converter

10 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

1.3 Analog Design Automation

1.3.1 CAD Tools for Analog Circuit Design

As analog automation tools are not developing at the same pace of technology,
custom design will inherently require manual guidance and careful tuning. All the
decisions that must be taken in each step of analog design flow rely on designer
knowledge and experience. In the traditional design approach, designers interact
manually with appropriate tools in order to get the best design parameters satisfy-
ing performance specifications, optimize some application specific parameters,
and, at the same time, achieve a robust design. Since the search space of the objec-
tive function, which relates optimization parameters and system specification, is
characterized by high complex multidimensional space, the manual search for the
optimal solution will be difficult to obtain and frequently only a fraction of that
space is explored due to design timing constraints [4],[32].

The manual design flow for analog circuit design, is supported by industrial
CAD tools, like circuit simulators (eg. Synopsys® HSPICE), top level simulators
Nanosim, which solve the critical issue of analyzing circuit behavior while taking
into account the electrical and parasitic effects of nanometer-scale silicon (eg.
Synopsys® HSIM), layout tools (eg. Cadence® Virtuoso Layout) and verification
tools (eg. Cadence® Diva and Mentors® Calibre). They are a valuable help to the
designer but have a low degree of automation. The time needed to manually de-
velop such demanding tasks, usually in order of weeks or months, does not match
the tight agenda due to market pressure to speed up the launching of the new and
high challenging ICs. The key to address these challenging problems lies in the
development of new CAD or EDA tools to speed up the analog design process.

Actually, some specialized computer-aided design methodologies for SoC cir-
cuits are already available to automate some steps of the design methodology. An
improved but yet limited degree of automation is supplied by the use of a CAD
methodology which involves the integration of one or more mature CAD tools
into a flow. One of the most known CAD methodologies is the Cadence® Virtuoso
platform which is composed by a set of integrated circuit tools that cover all the
stages, from the schematic to the layout (see Fig. 1.6).

 Apart from the Composer schematic editor (2), Cadence® Virtuoso includes a
high accuracy circuit simulator, like Virtuoso Spectre (4) that is usually used at the
block level, a layout editor and Layout Verification tools such as Assura and Diva
(5) and (6), that implement the three different phases of layout process: the design
rule checking (DRC), layout versus schematic (LVS) and parasitic extraction
(RCX). Additionally, the system level analog behavioral descriptions may be
simulated with the Verilog®-A simulator (AHDL).

The use of design management platforms, with a set of integrated CAD tools
and database facilities to deal with the design transformations from the conception
to the physical implementation, can significantly speed up the design process and

1 Introduction 11

Fig. 1.6 CADENCE - Virtuoso custom design platform diagram

enhance the productivity of analog/mixed-signal design teams. These design man-
agement platforms are a valuable help in analog integrated circuit design but they
are still far behind the development stage of design automation tools already
available for digital design.

A new class of CAD tools for analog IC design have emerged taking advantage
of the automation of some analog design process tasks. Design Automation (DA)
tools help the automation of particular design tasks (Fig. 1.7), like a decision-
making algorithm for circuit sizing (a system, a module or a cell), topology selec-
tion and layout generation, as well as the automation of retargeting operations and
design flow control. The aim is to free the designer to more creative design tasks
(working out better architectures and topologies) and to develop more efficient
and accurate design automation tools.

1.3.2 Automated Analog IC Design

Today, the development of new analog synthesis tools is accomplished in order to
fulfill the needs of the modern analog IC design. Analog synthesis consists

12 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

R
ed

es
ig

n

Ite
ra

tiv
e

R
ed

es
ig

n

Fig. 1.7 Hierarchical top-down bottom-up applied to analog design automation

essentially of two major steps, circuit synthesis followed by layout synthesis [15].
The majority of the applied techniques for both circuit and layout synthesis are
based on powerful numerical optimization engines (e.g. evolutionary algorithms,
geometric programming) conjugated with evaluation engines (e.g. circuit simula-
tors) which evaluate the merit of some developing analog circuit or layout candi-
date. Fig. 1.8 illustrates a top-down design flow, developed in this thesis, to
produce a sized circuit based on certain circuit specifications.

The lack of an unique and structured design flow definition and, on the other
hand, the mature state reached by the simulation/analysis support tools, led to the
appearance of several simulation environments, including important commercial
solutions, which showed promising results. However, the most relevant ones are
still at very low level of abstraction. These tools focus predominantly the topology
selection, circuit sizing and layout generation tasks since they are the most time-
consuming processes. Examples of these automated EDA tools developed mainly
by the scientific community domain are IDAC [33], ANACONDA [34],
MAELSTROM [35], FRIDGE [36], AMGIE[37], GPCAD [38], [39], TAGUS
[40], [41] and some layout generators like ILAC [42], ANAGRAM [43], [44],
LAYLA [45], ALADIN [46] and LAYGEN [47], [48], among others. However,
only very few examples in analog IC design industry embrace these new para-
digms like Barcelona Design® and NeoLinear (Cadence®), which support both an
automated circuit synthesis and layout generation tools called NeoCircuits [49]
and NeoCell [49], respectively. Nevertheless, many of the used techniques were
not efficient enough or produced the desired performance accuracy to become a
mainstream application. In spite of these limitations, automated EDA tools can be
helpful in increasing design productivity and circuit performances as shown sym-
bolically in Fig. 1.9.

1 Introduction 13

R
es

iz
in

g

Fig. 1.8 Top-down design flow developed in this thesis

Fig. 1.9 Trends or trade-off in automatic design

In short, there is still a long way to go concerning IC design automation re-
search, until the generalization of automatic analog IC design in industry takes
place. The majority of the available tools do not provide a satisfactory answer to
the complete design process, since they apply only to a specific part of the design
this process. Therefore, there are still many situations, in which high performance
analog IC design must be controlled by manual design rules, hence the research in
design automation continues to be a matter of great importance.

14 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

From the exposed in the previous paragraphs there is a need to increase produc-
tivity, to reduce product development cycle and time-to-market in order to cope
with the ever increasing design complexity. Hence, the main and partial goals of
this work are summarized as:

Main goals [50]
This work aims at developing a new design automation methodology and tool
based on an evolutionary computation kernel, in order to increase the efficiency of
the analog IC circuit design cycle.

Partial goals [51][52][53][54][55][56][57][58][59][60]

1. R&D of new optimization methodologies, particularly, using modified ge-
netic algorithm techniques including additional strategies to increase effi-
ciency on algorithm convergence.

2. R&D of new synthesis methodologies, particularly, using evolutionary com-
putation techniques together with modeling techniques to implement an effi-
cient approach to optimize the performance of integrated analog circuits at
the circuit level.

3. Develop a new multi-objective and multi-constrained optimization method-
ology for circuit sizing of integrated analog circuits, addressing perform-
ance, robustness and efficiency key factors.

4. Demonstrate the effectiveness of the new optimization methodology for well
known analog integrated circuits and systems.

The remainder of the book is organized as follows: Chapter 2 presents an exten-
sive state of the art analysis on Analog IC design Automation. Chapter 3 gives an
overview on computation techniques to solve nonlinear optimization problems and
introduces a new optimization kernel based on genetic algorithms applied to ana-
log circuit optimization. Chapter 4 explores the main learning techniques used to
manage large amount of information and integrates a support vector machine
(SVM) approach with evolutionary optimization strategy for analog circuit design
applications defined in Chapter 3. Chapter 5 describes the analog IC design envi-
ronment and the architecture of GENOM optimization tool. Chapter 6 presents
several synthesis experiments, demonstrating the capabilities of the system and
providing some insight into factors that affect the synthesis process. Finally,
Chapter 7 concludes the book.

References

[1] Leenaerts, D., Gielen, G., Rutenbar, R.A.: CAD solutions and outstanding challenges
for mixed-signal and RF IC design. In: Proc. IEEE/ACM International Conference on
Computer Aided Design, pp. 270–277 (2001)

[2] Gielen, G.: Modeling and analysis techniques for system-level architectural design of
telecom front-ends. IEEE Trans. Microwave Theory and Techniques 50, 360–368
(2002)

1 Introduction 15

[3] Lev, L., Razdan, R., Tice, C.: It’s about time – Charting a course for unified verifica-
tion. EETimes eeDesign News (2000), http://www.eetimes.com (Accessed
March 2009)

[4] Horta, N.C.: Analog and mixed-Signal IC design automation: Synthesis and optimiza-
tion overview. In: Proc. 5th Conference on Telecommunications, Tomar, Portugal
(2005)

[5] Hasting, A.: The Art of Analog Layout. Prentice-Hall, Englewood Cliffs (2001)
[6] Gielen, G., Rutenbar, R.A.: Computer-aided design of analog and mixed-signal inte-

grated circuits. IEEE Proceedings 88(12), 1825–1854 (2000)
[7] Sommer, R., Malcovati, P., Maloberti, F., Schwarz, P., Noessing, G., et al.: From sys-

tem specification to layout: Seamless top-down design methods for analog and
mixed-signal applications. In: Proc. Design Automation and Test in Europe Confer-
ence and Exhibition, pp. 884–891 (2002)

[8] Chang, H., Sangiovanni-Vincentelli, A., et al.: A top-down, constraint-driven design
methodology for analog integrated circuits. In: Proc. IEEE Custom Integrated Circuits
Conference, pp. 841–846 (1992)

[9] Toumazou, C., Makris, C.: Analog IC design automation: Part I - Automated circuit
generation: New concepts and methods. IEEE Trans. Computer-Aided Design 14,
218–238 (1995)

[10] Donnay, S., et al.: Using top–down CAD tools for mixed analog/digital Asics: A
practical design case. Kluwer Int. J. Analog Integrated Circuits Signal Processing 10,
101–117 (1996)

[11] Guilherme, J.: Architectures for high dynamic range CMOS pipelining analog to digi-
tal signal conversion. PhD dissertation, Dept. Electrical and Computer Engineering,
Instituto Superior Técnico, Lisboa, Portugal (2003)

[12] Castro-Lopez, R., Fernandez, F.V., Guerra-Vinuesa, O., Vazquez, A.: Reuse Based
Methodologies and Tools in the Design of Analog and Mixed-Signal Integrated Cir-
cuits. Springer, Heidelberg (2003)

[13] Liu, D.: A Framework for Designing Reusable Analog Circuits. PhD dissertation.
Stanford University, Stanford (2003)

[14] Dastidar, T.R., Chakrabarti, P.P., Ray, P.: A synthesis system for analog circuits
based on evolutionary search and topological reuse. IEEE Trans. Evolutionary Com-
putation 9(2), 211–224 (2005)

[15] Gielen, G.: CAD tools for embedded analogue circuits in mixed signal integrated sys-
tems on chip. In: IEE Proc. Computers and Digital Technique, vol. 152(3), pp. 317–
332 (2005)

[16] Chang, H., Malavasi, E., Sangiovanni-Vincentelli, A., Gray, P.R., et al.: A top-down,
constraint driven design based generation of nbit interpolative current source D/A
converters. In: Proc. IEEE Custom Integrated Circuits Conference, pp. 369–372
(1994)

[17] MATLAB, The language of technical computing. The MathWorks Inc. (1996)
[18] Cadence Inc, SPECTRE simulator and other cadence products (2009),

http://www.cadence.com/products (Accessed March 2009)
[19] Synopsys Inc, Products and solutions-HSIM, PowerMill, NanoSim (2009),

http://www.synopsys.com (Accessed March 2009)
[20] VHDL, IEEE standard VHDL language reference manual. IEEE Std 1076-2000

(2000)
[21] VHDL-ALS: IEEE standard VHDL analog and mixed-signal extensions reference

manual. IEEE Std 1076.1 (2000)

16 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[22] Cadence Inc, Products: Composer, Virtuoso, DIVA, NeoCircuit, NeoCell, UltraSim,
NcSim (2009), http://www.cadence.com (Accessed March 2009)

[23] Mentor Graphics Corp, Products: Calibre (2009),
http://www.mentor.com/products (Accessed March 2009)

[24] Synopsys Inc, HSPICE simulator (2009),
http://www.synopsys.com/products/mixedsignal (Accessed March
2009)

[25] El-Turky, F., Perry, E.: BLADES: An artificial intelligence approach to analog circuit
design. IEEE Trans. Computer Aided Design 8, 680–692 (1989)

[26] Harjani, R., Shao, J.: Feasibility and performance region modeling of analog and digi-
tal circuits. Kluwer Int. J. Analog Integrated Circuits Signal Processing 10, 23–43
(1996)

[27] Stehr, G., Graeb, H., Antreich, K.: Performance trade-off analysis of analog circuits
by normal-boundary intersection. In: Proc. Design Automation Conference, pp. 958–
963 (2003)

[28] Smedt, B., Gielen, G.: WATSON: Design space boundary exploration and model
generation for analog and RFIC design. IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems 22(2), 213–224 (2003)

[29] Smedt, B., Gielen, G.: HOLMES: Capturing the yield-optimized design space
boundaries of analog and RF integrated circuits. In: Proc. of Design Automation and
Test in Europe Conference and Exhibition, pp. 256–261 (2003)

[30] Kruiskamp, W., Leenaerts, D.: DARWIN: CMOS opamp synthesis by means of a ge-
netic algorithm. In: Proc. ACM/IEEE Design Automation Conference, pp. 550–553
(1995)

[31] SPICE3 Berkerley, SPICE3 reference manual. University of Cincinnati (1993)
[32] Hjalmarson, E.: Studies on design automation of analog circuits – the design flow.

PhD dissertation, Institute of Technology, Linköpings University (2003)
[33] Degrauwe, M., et al.: IDAC: An interactive design tool for analog CMOS circuits.

IEEE J. Solid-State Circuits 22, 1106–1115 (1987)
[34] Phelps, R., Krasnicki, M., Rutenbar, R.A., Carley, L.R., Hellums, J.: ANACONDA:

Simulation-based synthesis of analog circuits via stochastic pattern search. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems 19(6), 703–717
(2000)

[35] Krasnicki, M., Phelps, R., Rutenbar, R.A., Carley, L.R.: MAELSTROM: Efficient
simulation-based synthesis for custom analog cells. In: Proc. ACM/IEEE Design
Automation Conference, pp. 945–950 (1999)

[36] Medeiro, F., et al.: A Statistical optimization-based approach for automated sizing of
analog cells. In: Proc. ACM/IEEE Int. Conf. Computer Aided Design, pp. 594–597
(1994)

[37] Gielen, G., et al.: An analog module generator for mixed analog/digital ASIC design.
Wiley Int. J. Circuit Theory Applications 23, 269–283 (1995)

[38] Hershenson, M., Boyd, S., Lee, T.: GPCAD: A tool for CMOS op-amp synthesis. In:
Proc. IEEE/ACM Int. Conf. Computer-Aided Design, pp. 296–303 (1998)

[39] Hershenson, M.M., Boyd, S.P., Lee, T.H.: Optimal design of a CMOS Op-Amp via
geometric programming. IEEE Trans. Computer-Aided Design 20(1), 1–21 (2001)

[40] Horta, N.C., Franca, J.E.: High-Level data conversion synthesis by symbolic meth-
ods. In: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 4, pp. 802–805
(1996)

1 Introduction 17

[41] Horta, N.C.: Analogue and mixed-signal systems topologies exploration using sym-
bolic methods. In: Proc. Analog Integrated Circuits and Signal Processing, vol. 31(2),
pp. 161–176 (2002)

[42] Rijmenants, I., Schwarz, Y.R., Litsios, J.B., Zinszner, R.: ILAC: An automated layout
tool for CMOS circuits. IEEE Journal of Solid-State Circuits 24(2), 417–425 (1989)

[43] Cohn, J., Garrod, D., Rutenbar, R.A., Carley, L.R.: KOAN/ANAGRAM II: New
tools for device-level analog placement and routing. IEEE J. Solid-State Circuits 26,
330–342 (1991)

[44] Carley, L., Georges, G., Rutenbar, R.A., Sansen, W.: Synthesis tools for mixed-signal
ICs: Progress on frontend and backend strategies. In: Proc. Design Automation Con-
ference, vol. 33, pp. 298–303 (1996)

[45] Cory, W.: Layla: A VLSI Layout Language. In: Proc. 22nd ACM/IEEE Conference
on Design Automation, pp. 245–251 (1985)

[46] Zhang, L., Kleine, U.: A novel analog layout synthesis tool. In: Proc. IEEE Int. Sym-
posium on Circuits and Systems, vol. 5, pp. 101–104 (2004)

[47] Lourenço, N., Horta, N.C.: LAYGEN – An evolutionary approach to automatic ana-
log IC layout generation. In: Proc. IEEE Conf. on Electronics, Circuits and System,
Tunisia (2005)

[48] Lourenço, N., Vianello, M., Guilherme, J., Horta, N.C.: LAYGEN – Automatic lay-
out generation of analog ICs from hierarchical template descriptions. In: Proc. IEEE
Ph. D. Research in Microelectronics and Electronics, pp. 213–216 (2006)

[49] Cadence Inc. Products: Composer, Virtuoso, DIVA, NeoCircuit, NeoCell, UltraSim,
NcSim (2009), http://www.cadence.com (Accessed March 2009)

[50] Barros, M., Guilherme, J., Horta, N.C.: Analog circuits optimization based on evolu-
tionary computation techniques. Integration, the VLSI Journal, 136–155 (2010)

[51] Barros, M., Guilherme, J., Horta, N.C.: Analog circuits and systems optimization
based on evolutionary computation techniques. In: Proc. Xth Int. Workshop Symbolic
& Numerical Methods, Modeling and Application to Circuit Design, pp. 68–73
(2008)

[52] Barros, M., Guilherme, J., Horta, N.C.: An evolutionary optimization kernel using a
dynamic GA-SVM model applied to analog IC design. In: Proc. 18th European Con-
ference on Circuit Theory and Design, vol. 1, pp. 33–35 (2007)

[53] Barros, M., Guilherme, J., Horta, N.C.: GA-SVM feasibility model and optimization
kernel applied to analog IC design automation. In: Proc. 17th ACM Great Lakes
Symposium on VLSI, pp. 469–472 (2007)

[54] Barros, M., Guilherme, J., Horta, N.C.: GA-SVM optimization kernel applied to ana-
log IC design automation. In: Proc. 13th IEEE International Conf. on Electronics,
Circuits and Systems, pp. 486–489 (2006)

[55] Barros, M., Neves, G., Horta, N.C.: AIDA: Analog IC design automation based on a
fully configurable design hierarchy and flow. In: Proc. 13th IEEE International Conf.
on Electronics, Circuits and Systems, pp. 490–493 (2006)

[56] Barros, M., Neves, G., Guilherme, J., Horta, N.C.: An evolutionary optimization ap-
proach applied to analog circuit design. Poster presented at the 5th Conference on
Telecommunications, Tomar, Portugal (2005)

[57] Barros, M., Guilherme, J., Horta, N.C.: An evolutionary optimization kernel with
adaptive parameters applied to analog circuit design. In: Proc. International Sympo-
sium on Signals, Circuits and Systems, vol. 2, pp. 545–548 (2005)

18 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[58] Barros, M., Guilherme, J., Horta, N.C.: GENOM2: An enhanced evolutionary ap-
proach to automatic synthesis matching designers methodology. In: 3rd Ph.D. forum
at the Design, Automation and Test in Europe Conference, Munich, Germany (2005)

[59] Barros, M., Neves, G., Guilherme, J., Horta, N.C.: A distributed enhanced genetic al-
gorithm kernel applied to a circuit/level optimization E-Design environment. In: Proc.
Design of Circuits and Integrated Systems, pp. 20–24 (2004)

[60] Barros, M., Neves, G., Guilherme, J., Horta, N.C.: Enhanced genetic algorithm kernel
applied to a circuit-level optimization E-Design environment. In: Proc. 10th IEEE In-
ternational Conference on Electronics, Circuits and Systems, pp. 1046–1049 (2003)

M.F.M. Barros et al.: Analog Circuits and Systems Optimization, SCI 294, pp. 19–47.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

2 State-of-the-Art on Analog Design
Automation

Abstract. This chapter presents the State-of-the-Art (SOA) in analog circuit de-
sign automation. First, the analog design flow is reviewed and the fundamental
trends in design automation are discussed. Then, the existing approaches to circuit
sizing are presented, outlining in each case their advantages and limitations. Next,
a detailed discussion over the existing tools approaches is provided. Finally, con-
clusions concerning the specification and design of a new analog design automa-
tion methodology implementation will be drawn.

2.1 Trends in Design Automation Methodology

A typical design flow for analog and mixed-signal IC circuits (AMS) consists of
a series of design steps repeated from the system level to the device-level, and bot-
tom-up for layout generation and verification. The steps between any two of these
hierarchical levels are: topology selection, circuit sizing, design verification and
layout generation task, illustrated in Fig. 2.1.

Fig. 2.1 Hierarchical level and design tasks of design flow architectures [1]

20 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

In order to handle the increasing complexity of analog and mixed-signal IC de-
sign, a clear definition of a hierarchical design flow is essential. Despite the
advances made during the last decades, the design automation (DA) tools in ana-
log domain cannot support the complete design process, since they either concen-
trate on specific parts of the design flow or require the intervention of an expert
designer. Moreover, they mainly address circuit level design as a whole (tradi-
tional design approach), which makes it difficult to apply to highly complex
circuits and systems. Therefore, as the SoC complexity increases, the design
automation tools must incorporate an hierarchical design decomposition feature in
order to apply the well-known divide-to-conquer strategy already applied by most
analog designers in a manual design approach.

Trends in this area have been running towards a class of design automation
methodology under three aspects, improving:

• Flexibility, allowing the designer to have a higher interaction during the syn-
thesis process and providing a more general approach to deal with multiple ar-
chitectures or circuit types.

• Modularity, allowing the use of different tools and techniques to address differ-
ent design tasks, such as topology selection, circuit sizing and layout.

• Hierarchy, allowing the handling of complex system designs and implementing
strategies involving several abstraction levels.

2.1.1 Automated Topology Selection

The selection of an adequate architecture is fundamental to achieve a high perform-
ance design [2]. The topology selection task receives the performance specifications,
for a particular class of circuits or systems, and delivers the most promising topol-
ogy, traditionally from a predefined library. In IDAC [3] the decision is taken di-
rectly by the designer. Heuristic rules [4] have been used in the first attempts by
TAGUS [5]-[6], OASYS [7], BLADES [8], and OPASYN [9] to automate the to-
pology selection task. The tool FASY [10] uses fuzzy–logic based reasoning to select
one topology among a fixed set of alternatives. The decision rules are introduced by
an expert designer or automatically generated by means of a learning process. An-
other method comprises computing the feasible performance space for each topol-
ogy within the library and, then compare with the desired performance specs, by
AMGIE [2] and [11]. A different method consists of combining the topology selec-
tion with the device sizing task and employing an optimization based approach by
DARWIN [12] using genetic algorithms. This design mechanism illustrated in Fig.
2.2, uses a template rather than an architecture library. This template specifies the
topology in terms of blocks, each one with possible different alternatives. In short,
this last method is more reliable since it treats the problem in a more deterministic
way and at the same time decreases the setup time, as it does not need to rearrange a
new set of rules each time a new topology is added to the library; the computation
time, however, is worse than in all methods described above.

A new step towards the increase of the automation level is given by a new set
of tools where topology selection is performed at a higher abstraction level. In-
stead of selecting the architecture from a library, a high level functionality of the

2 State-of-the-Art on Analog Design Automation 21

system is defined now by a hardware description language. Then, an automatic
translation is carried out, mapping the functional description into an internal repre-
sentation and then into a specific topology. The mapping step is implemented after
or during the device sizing process. This class of tools usually differs from the
type of internal representation used. In the case of [13] the internal representation
is a data flow graph, whereas in TAGUS [5]-[6], [14] and Konczykowska [15] it is
a symbolic signal flow graph and in ARCHGEN [16] a state-space description is
used. Then, a mapping operation is performed, resulting in a connection of lower-
level building blocks whose parameters are optimized, obeying to some design
constraints. The operation flow is executed in a top-down basis.

Fig. 2.2 Topology selection mechanism before (a) and during (b) device sizing

Finally, a design methodology able to create new topologies explores the im-
mense potential from low abstraction level. Small elementary blocks are con-
nected bottom-up to each other to form a new topology. The general description of
this design methodology illustrated in Fig. 2.3 begins by selecting an initial topol-
ogy, having in mind the desired specifications. As the design process takes place,
an optimizer selects a transformation, adding or deleting a basic entity and/or at-
tributing a value to a parameter. Various fundamental entities can be applied, such
as, single transistors, elementary building blocks or node connections. As soon as
the architecture is generated, the performance function is evaluated, providing
some hints to the optimizer who makes a new selection of transformation. Essen-
tially two exploration methods can be applied in topology generation for analog
design. The knowledge-based exploration is based on a systematic or a random
strategy where the circuit elements can be added, replaced or removed by an ex-
perienced designer with the help of standard CAD tools, like SPICE, and a circuit
schematic editor. This method mimics the daily basis design approach supported
mainly by simulation tools, and, therefore, suffers from the same drawbacks, i.e.,
as the number of entities in the system rise, the computational time increases ac-
cordingly. The computation time at the circuit description level can become intol-
erable if no efficient guidance is provided during the exploration step.

22 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Input Specifications

1 2 n

Evaluation
Engine-SPICE

Performance
Evaluation

Initial Architecture

Evolutionary
Kernel

Optimun topology

Redesign?

Components, Terminals Alg.Parameters
Fitness Function

Add Remove

Set Value

Perf

Sized Topology

Fig. 2.3 A general description of the topology selection bottom-up methodology

New automation tools appeared, based on stochastic evolutionary computation
methods, which apply an appropriate representation for standard circuit-level de-
scriptions and recombination operations. Population-based optimizers provide
multiple dimensioned architectures which are then simulated by SPICE-like simu-
lators. In [17] the optimizer is based on a genetic algorithm and in [18]-[19] uses
genetic programming techniques. Table 2.1 summarizes the general characteristics
of automated topology selection and generation mechanisms.

Table 2.1 General characteristics of automated topology selection and generation

 Topology Selection Topology Generation

 Heuristic Rules Feasible Region Top-down* Bottom-up

T
oo

ls
 TAGUS [5]-[6], OASYS [7],

BLADES [8], OPASYN [9]
and FASY [10]

AMGIE [11], and
Gielen [2],
DARWIN [12]

Graeb [13],
TAGUS[5]-[6],
[14], Konc-
zykowska [15]

Colombano[17], Koza[18],
Toumazou [19]

D
ra

w
ba

ck
s

(-) Large set up time in order
to update the selection rules to
a new topology.

(-) Qualitative approach and
sometimes extremely difficult
to codify heuristic rules.

(-) Time
consumption

(-) Less
generalized.

(-) Large time consumption.

(-) No technological param.

(-) No corner validation.

(-) Not in a mature state.

A
dv

an
t.

(+) Reduced execution time.
(+) Quantitative
and general ap-
proach.

(+) Reduced exe-
cution time and
well defined
process

(+) Extremely promising.

(+) Generic Approach.

(+) No expert knowledge.

 * Properties depend on methodology. This column considers knowledge-based approach.

2 State-of-the-Art on Analog Design Automation 23

2.1.2 Automated Circuit Sizing/Optimization

The sizing stage receives a topology description, a set of performance specs and a
technology reference and, based on these inputs, produces a sizing solution for
each block or component depending on the abstraction level. Several solutions
were proposed derived from either knowledge-based methods, using some kind of
knowledge and heuristics, or optimization-based approaches for both topology se-
lection and specification translation or circuit sizing [1],[20]. The knowledge-
based approach requires the expert knowledge of a designer to produce a set of
rules and equations for every new circuit topology or technology. Another alterna-
tive is obtained considering the circuit sizing as an optimization problem. In these
approaches the design problem is first mapped or modeled into an optimization
problem and then solved by an appropriate optimization method, as illustrated in
Fig. 2.4.

Fig. 2.4 Steps in optimization of circuit design

In this approach, there is a strong correlation between the modeling of a design
problem and the way the modeled problem is solved. Since these steps are not in-
dependent and have influence on each other, the optimization method will be de-
cided by the chosen model of the problem. For example, if the design problem is
formulated in a set of posynomial equations the optimization method candidate
could be the geometric programming (GP) algorithm or other computation algo-
rithm able to process the convex optimization problem defined by posynomial
equations [21]. If the design problem is formulated by SPICE models, a simulated
annealing or a stochastic pattern algorithm could be used instead. Section 2.2 will
explore the main optimization methods and alternative models in the area of ana-
log IC design problems.

2.1.3 Automated Layout Generation

The earliest approaches to automate the layout generation followed a procedural
module generation [22]-[23] with the codification of the entire circuit layout and
its generation during the run time for the parameters attained during the sizing
task. The procedural generators define a parametric representation of the geomet-
ric layout developed by the designer, accomplished either through a procedural

24 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

language or a graphical user interface. The disadvantages of this approach are the
lack of flexibility and generality and the high cost of the generation task.

Next, a template-based approach was developed [24] allowing the employ-
ment of geometric templates, which define the relative position and interconnec-
tion of devices. The templates are used to incorporate the designer knowledge
into the optimization task. In spite of the low level of reusability achieved by
procedural generators, the efficiency of this approach can be improved when
user-defined templates are designed to be independent of both technology and
specifications [4]. This approach is also suited when modifications in circuit pa-
rameters end in small adjustments to the global circuit layout structure, like tech-
nology migrations.

Later on the optimization-based approaches emerged, using optimization tech-
niques to determine and predefine the layout solution. Small database of proce-
dural cell generators, ANAGRAM [25]-[26], LAYLA [27] and ALDAC [28]
synthesize an optimized layout configuration, searching the solution space formed
by each cell layout positioning. The ALG [29] approach allows the generation of
“optimal layout” of a circuit either automatically or by designer directives. On one
hand these approaches require more computation time, but, on the other hand, they
are more flexible and general, which compensates largely the weakness mentioned
above. Significant technological solutions have resulted from this method [30]-
[33], ranging from rule driven to performance driven layout generation tasks [27],
reaching a more mature state when compared to what happens in the design auto-
mation tasks concerning circuit sizing [1]. The most frequent used optimization
techniques in analog IC layout generation tools are simulated-annealing (ILAC
[34], KOAN [25]-[26] and LAYLA [27]) and genetic algorithms (LAYGEN [35]-
[36]). Simulated-annealing based approaches attained better results but lately the
evolutionary approach has become a common option in many situations, like the
hybrid solution defined by the genetic approach to simulated-annealing GASA
[37] or the combined GA and Tabu Search (TS) used in [38] to develop a polycell
placement algorithm for analog LSI chips. As both KOAN and LAYLA employ
very simple cells on the database, some highly efficient structures, such as stacked
or interdigited transistors, cannot be generated. Recent approaches, however, are
tending to hybrid solutions employing optimization on blocks derived from
knowledge-based systems. In the case of ALADIN [37],[39], the database usually
relies on a hierarchical model where a cell is built using already defined cells. The
use of compound cells reduces the search space because the number of cells han-
dled during placement is lower and consequently reduces the computation times.
Another knowledge-based approach with optimization is given by IPRAIL [40]
and LAYGEN [35]-[36] in which the information presented in the template is de-
fined manually or automatically and used to guide the layout generator during the
synthesis procedure. The constraints defined in the template reduce the solution
space, and allow the designer a higher control of the layout generation unlike the
general optimization approaches [35]. Table 2.2 resumes the general characteris-
tics of layout tools.

2 State-of-the-Art on Analog Design Automation 25

Table 2.2 Overview of layout tools

Tool Year Description Techniques Obs.

KOAN/ANAGRAM

[25],[26]

1991 Macro-cell Place and Route; uses
pre-defined small module genera-
tors data-base; synthesizes an op-
timized layout configuration from
a given Spice netlist with symme-
try, matching and tech. specs.

 Optimization
based with Simu
lated Annealing.

The chosen library
constitutes a limit of
this method since an
enormous number of
pre-designed layout
blocks is required

Layla

[27]

1995
It takes into account symmetry
constraints, performance degrada-
tion due to interconnect parasitics
and device mismatches and com-
bines this with geometrical opti-
mization techniques (devices
merges, abutment, etc.)

Optimization
based with Simu-
lated Annealing.

A performance-
driven methodology
where all perform-
ance constraints are
satisfied. Optimize
the layout quantifying
the performance deg-
radation.

A SKILLTM-based
Library for Retarge-
table Embedded
Analog Cores

[32]-[33]

2001 Automatic generation and reus-
ability of physical layouts of ana-
log and nixed-signal blocks based
on high-functionality pCells that
are fully independent of technolo-
gies.

Knowledge-based
Parameterized cells
(pCells) are organ-
ized hierarchically.

ALDAC

 [28]

2002 This tool providing means to gen-
erate multiple versions of full-
stacked layout modules for the
same circuit. The differences
come from different MOS transis-
tor splitting and grouping into
stacks that can be performed ei-
ther fully-automatically or user-
controlled

Simulated
Annealing

This approach mini-
mizes parasitic diffu-
sion capacitances of
the circuit and per-
mits economical post-
layout simulation of
multiple layouts for
performance-driven

IPRAIL

[40]

2004 Retargeting is achieved using an
automatically extracted template
and using a circuit optimizer to
size the cells. It uses either a rule
or a performance driven approach.
It uses optimization based with
knowledge-based.

Linear Program-
ming and graph
short path on the
relational tem-
plate extracted
from the source
layout

 (+) General ap-
proach.

 (-) Larger run-time
required.

ALADIN

 [25],[32]

2004 The layout generation is based on
relatively complex sub-circuits.
Designers can construct layouts of
parameterizable modules in a
technological and application in-
dependent way. The placement
and routing of modules are per-
formed automatically under the
constraints defined by designer

Three phase Place
e Route:

1 – GASA e half-
perimeter routing

2 – VFSRA e
global routing
(fine tuning)

3 – Detailed Rout-
ing

Design platform for
analog circuits, based
on a user managed
device generators li-
brary.

26 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 2.2 (continued)

Tool Year Description Techniques Obs.

LAYGEN [35],[36] 2007 Expert knowledge is used to
guide an evolutionary algo-
rithm during the automatic
generation of the layout The
designer provides a high level
layout description where posi-
tion and interconnections are
predefined. This template con-
tains placement and routing
constrains and is independent
from technology. It deals with
hierarchically templates for
more complex circuits.

Knowledge-
based with
Evolutionary
Computation
techniques.
Uses a geometric
template.

(+) Speeds up retar-
geting operations or
technology migra-
tion

(-) Works better
when changes in
circuit parameters
result in small ad-
justments. for the
target technology

ALG [29] 2007 ALG is composed by three
functional blocks: module
generator, placer and router
offering performance oriented
layout generation in some of
these blocks.

Cost function is
a weighted sum
function para-
sitics level, as-
pect ratio and
mismatch, etc.

The user may
choose the level of
automation between
full automation and
user control.

2.2 Automated Circuit Synthesis Approaches

The computer-aided design methodology for AMS circuits foresees in a short-run
the use of design automation tools to accomplish several tasks of the design meth-
odology [41]. This trend began in 80’s when the first automation tools applied to
different tasks of analog design appeared like LAYLA [42] , IDAC [3],[22],
DELIGHT.SPICE [43], BLADES [8] and OASYS [7]. The following sections re-
view some of the most significant approaches for analog IC design including the
knowledge-based, optimization-based approaches as well as the first commercial
tools.

2.2.1 Knowledge-Based Approach

The knowledge-based approach presented, for instance, in programs like
BLADES [8], IDAC [3], OASYS [7] and MDAC/ALSC [44]-[45], was the first to
appear and is characterized by including a complete design plan describing how
the circuit components must be sized to reach the solution for the design problem,
even though, there is no guarantee of finding the optimum solution [2]. For exam-
ple, the IDAC tool [3] takes advantage of the designer experience to manually de-
rive or rearrange design plans to carry out the circuit sizing. OASYS [7] was built

2 State-of-the-Art on Analog Design Automation 27

over a library of design plans defined for each elementary building block allowing
the hierarchical representation of topologies, defined as the interconnection of
several elementary building blocks. This system also implements a back tracking
mechanism in order to recover from a malfunction implementation. The Fig. 2.5
illustrates the general design flow of knowledge-based approach.

Fig. 2.5 Knowledge-based approach

In these methods, the main purpose is to encapsulate the designer’s knowledge,
building a pre-design plan with design equations and a design strategy that pro-
duce the component sizes in order to meet the performance requirements. This ap-
proach presents as major drawbacks the large overhead required to define a new
design plan, the reformulation of the entire design plan when expanding the sys-
tem to new topologies, and, finally, the migration to other technologies. Not only,
it is a very time-consuming process to encode design knowledge for a given set of
specifications, but design knowledge also has a limited lifetime. The rapid pro-
gress in process technologies made the acquired knowledge quickly out-of-date.
Therefore, the application of these tools in industrial environments has been lim-
ited. However, after defining the design plan, the execution speed associated to the
sizing procedure is extremely fast and the solution quality only depends on the
models precision [1]. Naturally, this approach finds its applications restricted to
small circuits or to more complex circuits but using simplified equations with the
goal of achieving the first cut design.

2.2.2 Optimization-Based Approach

The optimization-based approach uses an optimization engine instead of a design
plan to perform the design task. The optimization process is an iterative procedure
where design variables are updated at each iteration until they achieve an equilib-
rium point.

28 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

The optimization-based approaches illustrated in Fig. 2.6, consist of an iterative
loop, including an optimization engine or kernel together with an evaluation
engine.

Fig. 2.6 Optimization-based approach

The optimization algorithm searches through the design space for values for
each circuit component, whereas the performance evaluation tool verifies if the
erformance constraints are met. If the system requirements are satisfied, then a so-
lution is found and the component sizes are associated to the selected topology.
The optimization engine should apply the appropriate techniques to efficiently
guide the search mechanism in order to minimize the number of iterations required
for the optimization process.

Different approaches can be described depending on the type of performance
evaluation and the optimization technique employed. Concerning performance, the
evaluation engine is typically implemented using an equation-based optimization,
a simulation-based optimization or modeling-based optimization approach.

2.2.2.1 Equation-Based Methods

The equation-based methods use analytic design equations to evaluate the circuit
performance. These equations can be derived manually or automatically by sym-
bolic analysis tools. Then, the problem can be formulated as an optimization prob-
lem and normally solved using a numerical algorithm. Some of the most relevant
approaches are OPASYN [9], STAIC [46], MAULIK [47], ASTRX/OBLX [48],
AMGIE [11], GPCAD [49][50], SD-OPT [51]. This approach presents the advan-
tage of allowing a performance evaluation speed-up (short evaluation time). The
main drawback is that analytical models have to be used to derive the design

2 State-of-the-Art on Analog Design Automation 29

equations for each new topology and, despite recent advances in symbolic circuit
analysis [52]-[53], not all design characteristics can be easily captured by analytic
equations. The approximations introduced in the analytic equations yields low ac-
curacy designs especially in complex circuit’s designs.

A promising methodology that has received much attention is related to cir-
cuit problems formulated in posynomial form (expression 2.1) and seen in tools
like GPCAD and [21], [54]. This methodology solves the convex formulated
problem by geometric programming techniques in a very short time. These
techniques take advantage of the development of extremely powerful interior-
point methods for general convex optimization problems [21],[50]. Besides the
extreme efficiency of these methods they have another great advantage, as the
global solution is always found, regardless of the starting point. However, a sig-
nificant drawback still exists due to the difficulty to reformulate high-accuracy
device models as posynomials equations, “performance specifications, and ob-
jectives that can be handled are far more restricted than any of the methods
described above” [50]. Despite the progress presented in [54] the lack of an
automated scheme to generate these equations limit the usage of this tool to a
few, predefined, circuit structures.

ℜ∈≥

=∑
=

ij

t

k
nkn

where

xxxcxxf nkkk

α

ααα

 and 0c ,

),,(

j

1
211

21 "… (2.1)

2.2.2.2 Simulation-Based Methods

The simulation-based approaches such as DELIGHT.SPICE [43], FRIDGE [55],
FASY [10], ANACONDA [56], MAELSTROM [57] and DARWIN [12] consist
of using some form of simulation to evaluate the circuit’s performance. In general,
these types of tools for analog circuits design employ a circuit analysis tool in the
inner loop of the optimization cycle to determine the circuit’s performance. This is
pointed out as a very flexible solution when compared with other methodologies
(equation-based, knowledge-based) once it accommodates to any type of circuit
topology and yields superior accuracy (depends on simulator models). Presently,
the use of SPICE-like simulators are almost generalized and essential to support
the optimization engine with all the feedback related to an accurate circuit evalua-
tion, involving different performance characteristics, technological parameters and
worst case corners analysis. Moreover, within this approach the same circuit can
be optimized several times for different specs as long as the goal function is
adapted, therefore, with this approach virtually all types of circuits can be sized
and optimized with low setup time.

Despite these advantages, automated circuit sizing is not as commonly used as
for example, circuit simulation, since it is computationally too expensive to evalu-
ate electrical simulations. However, with the exponential increase of computer

30 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

power and efficient use of optimization algorithms it has become increasingly
favorable. Nevertheless, a key difficulty is that the analog design problem, with all
the involved design knowledge and heuristics, has to be formulated as an optimi-
zation problem, which often presents a high threshold for using a circuit-sizing
tool.

2.2.2.3 Learning-Based Methods

A step forward to enhance the efficiency of optimization based methods corre-
sponds to the introduction of modeling techniques [58] based in learning strate-
gies, which are clearly more time-efficient, during the optimization cycle. In this
class of methods, the behavior of the circuit to be optimized is modeled by a learn-
ing mechanism based on the distribution of variation parameters, thus allowing a
quick evaluation of the performance for a specific set of design parameters. Nev-
ertheless, these methods require a set of training samples in order to build the
model in the target region. Generally, a high accuracy evaluation engine is used,
such as a circuit simulator to evaluate the performance of the training sample.
The amount of the training data will influence the accuracy of the performance
predictions made by the learning machine. However, an increase on the training
data means that the evaluation of the performance will take more time. Like in
equation-based methods, there will always be a trade-off between accuracy and
efficiency.

Some of the most significant behavioral-based methodologies are described by
Rutenbar [58], Alpaydin [59], Vincentelli [60] and Vemuri [61]. In the basis of
Alpaydin tool is a neural-fuzzy model approach combined with an evolutionary
optimization strategy and simulated annealing where some of the AC performance
metrics are computed using an equation-based approach.

In [60] Sangiovanni-Vincentelli and al. use a learning tool based in support
vectors machines (SVM) to represent the performance space of analog circuits.
Based on the knowledge acquired from a training set, the performance space is
modeled as mathematical relations translating the analog functionality. In this
work two classes of SVM are confronted in an optimization-less strategy where
additionally two improvements of the basic one-class SVM performances, con-
formal mapping and active learning, are proposed by enhancing the resolution in
the support region boundaries. SVMs are trained with simulation data, and false
positives are controlled based on a randomized testing procedure.

The Vemuri approach [61] presents a performance macro-model for use in the
synthesis of analog circuits based in a neural network approach. On the basis of
this mathematical model is a neural network model approach that, once con-
structed, may be used as substitute for full SPICE simulation, in order to obtain an
efficient computation of performance parameter estimates. The training and vali-
dation data set is constructed with discrete points sampling over the design space.
The work explores several sampling methodologies to adaptively improve model

2 State-of-the-Art on Analog Design Automation 31

quality and applies a sizing rules methodology in order to reduce the design space
and ensure the correct operation of analog circuits.

2.2.3 Commercial Tools

Besides the efforts introduced above some commercial EDA tools for circuit siz-
ing have emerged in the past few years, such as the ADA’s [63] Genius product
line now integrated in Synopsis, Barcelona Design [49] which employ convex op-
timization techniques and recently the NeoCircuit from Neolinear Inc. [62], which
implements a simulation-based approach.

The ADA (Analog Design Automation) Genius line of optimization tools, in-
cluding Creative Genius, which automates device sizing and biasing to optimize
circuit performance, and IP Explorer, which graphically provides N-dimensional
circuit performance tradeoffs, were recently acquired [63] and integrated within the
analog design environment from Synopsys [62], Mentor Graphics and other EDA
vendors. The Genius tool builds its database of circuit from a transistor-level net-
list, testbenches, objectives, process and environmental variations and variables.
This system is comparable to NeoCircuit once it implements a simulation-based
approach and interfaces with several industrial circuit simulators using parallel
computation architecture.

The now extinct Barcelona Design was founded in 1999 by Stanford University
researchers that apply advanced optimization techniques based in convex optimi-
zation to develop optimization solutions for a broad spectrum of circuit design
problems including analog, RF and digital circuits. The final product introduces
the synthesizable IP (intellectual property) block, which contains the required
design equations written as posynomial expressions. The particularity of these
products is that in opposition to standard IP blocks, which meet the given specifi-
cations, these blocks, may be synthesized to meet a range of different specifica-
tions. This implementation was reported to be able to increase design speed by
100 times and reduce total design costs by up to 50%.

The Neolinear package, now acquired by CADENCE [65], is composed by the
NeoCircuit package, a simulation-based analog circuit sizing engine and the Neo-
Cell module to automate the layout generation process. Both design packages to-
gether with the optimization engine based on a “genetic annealing” scheme creates
a complete analog design flow. The integration of Neolinear's products in the Vir-
tuoso design environment takes advantages of Cadence's multi-mode simulation
and extensive layout design capabilities.

2.3 Design Automation Tools: Comparative Analysis

The existing design automation approaches are here compared, taking into account
some qualitative and quantitative measures described in subsection 2.3.1.
Table 2.3 presents the analog sizing tools used in this study and the conclusions
are presented in the following subsections.

32 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

T
ab

le
 2

.3
 O

ve
rv

ie
w

 o
f

an
al

og
 s

iz
in

g
to

ol
s

(1
/4

)

Date

Evaluation
Class

Algorithm
Techniques

Equation /
Design
Plan

Implemen.
Language

Robust
Design

Circuit
Complexity

Computa-
tion Time

Effort

Setup
Time

Interactive
Design

Bookkeeping
Encapsula-

tion

Advantages
and Parti-

cular
Properties

2 State-of-the-Art on Analog Design Automation 33

T
ab

le
 2

.3
 O

ve
rv

ie
w

 o
f

an
al

og
 s

iz
in

g
to

ol
s

(c
on

ti
nu

ed
 2

/4
)

Date

Evaluation
Class

Algorithm
Techniques

Equation /
Design
Plan

Implemen.
Language

Robust
Design

Circuit
Complexity

Computa-
tion Time

Effort

Setup
Time

Interactive
Design

Bookkeeping
Encapsula-

tion

Advantages
and Parti-

cular
Properties

34 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

T
ab

le
 2

.3
 O

ve
rv

ie
w

 o
f

an
al

og
 s

iz
in

g
to

ol
s

(c
on

ti
nu

ed
 3

/4
)

Date

Evaluation
Class

Algorithm
Techniques

Equation /
Design
Plan

Implemen.
Language

Robust
Design

Circuit
Complexity

Computa-
tion Time

Effort

Setup
Time

Interactive
Design

Bookkeeping
Encapsula-

tion

Advantages
and Parti-

cular
Properties

2 State-of-the-Art on Analog Design Automation 35

T
ab

le
 2

.3
 O

ve
rv

ie
w

 o
f

an
al

og
 s

iz
in

g
to

ol
s

(c
on

ti
nu

ed
 4

/4
)

Date

Evaluation
Class

Algorithm
Techniques

Equation /
Design
Plan

Implemen.
Language

Robust
Design

Circuit
Complexity

Computa-
tion Time

Effort

Setup
Time

Interactive
Design

Bookkeeping
Encapsula-

tion

Advantages
and Parti-

cular
Properties

Fe
at

ur
es

T
oo

ls

A
M

G
IE

[1
1]

Si
m

pl
ifi

ed

Eq
ua

tio
ns

20
01

Sy
m

bo
lic

 a
na

-
ly

ze
r +

 m
an

ua
l

Co
m

pl
et

e
de

si
gn

flo

w
. D

ev
ic

e
si

zi
ng

is

a
co

m
pi

la
tio

n
of

to

ol
s

14
 P

ar
9

de
vi

ce
s

A
LP

A
Y

D
IN

[5
9]

Fu
zz

y
N

eu
ra

l
N

et
w

or
k

20
03

Th
e

N
-F

 m
od

el
 u

se
s

a
se

t o
f t

ra
in

in
g

da
ta

fro

m
 S

PI
CE

.

M
od

el
 a

cc
ur

ac
y

de
pe

nd
s o

n
tra

in
in

g
po

in
ts

.
C

an
no

t h
an

dl
e

m
is

m
at

ch
.

31

de
vi

ce
s

O
pA

m
p

V
IN

C
EN

TE
LL

I
[6

0]
SV

M
20

03
Pe

rf
or

m
an

ce

m
od

el
 o

f
an

al
og

 c
irc

ui
ts

Im
pr

ov
e

ac
cu

ra
cy

of

 e
st

im
at

or
 u

si
ng

 a
n

A
ct

iv
e

Le
ar

ni
ng

str

at
eg

y

4
op

t.
va

-
ria

bl
es

V
EM

U
R

I
[6

1]
N

N
20

04

It
ta

ke
s

1h
47

m
in

 in
 a

Su

nB
la

de
 1

00

to
 g

en
er

at
e

th
e

m
od

el
 tr

ai
ni

ng

sa
m

pl
es

(3
12

5)
.

5-
33

de

vi
ce

s.
U

p
10

op

t.
va

r.

Ex
pl

or
es

 sa
m

pl
in

g
m

et
ho

do
lo

gi
es

 to

im
pr

ov
e

m
od

el

qu
al

ity
.

Tr
ai

ni
ng

po

in
ts

+
ci

rc
ui

t
si

m
ul

at
or

SA
 +

 se
ve

ra
l

Lo
ca

l M
e-

th
od

s

U
se

LI

BS
V

M
Pa

ck
ag

e.

M
IT

 G
A

lib

Ev
ol

ut
io

na
ry

St
ra

te
gi

es
 +

SA

M
A

T-
LA

B

pe
rf

or
m

an
ce

pa

ra
m

et
er

m

ac
ro

-m
od

el
s

8
ho

ur
s

45
 m

in
. (

12
4

m
in

. w
ith

m

is
m

at
ch

m
od

el
)

51
.9

s o

f
ex

ec
ut

io
n

tim
e

5
m

in

10
's

m
in

 5
0.

00
0

sa
m

pl
es

G
EN

O
M

[6
9]

-[
70

]

C
irc

ui
t

Si
m

ul
at

or
+S

V
M

20
06

G
A

 /
SV

M

En
ca

ps
ul

at
e

in
-

ho
us

e
en

vi
ro

n-
m

en
t (

A
ID

A
).

C
an

 u
se

 d
yn

am
-

ic
 m

od
el

 g
en

-
er

at
io

n.

31
 P

ar
.

21

de
vi

ce
s

41
 c

on
st

.

A
pp

ly
 le

ar
ni

ng

str
at

eg
ie

s.
D

is
tri

-
bu

te
d

pr
oc

es
si

ng
 a

nd

ro
bu

st
 d

es
ig

n.

C

SP
IC

E/
H

SP
IC

E
en

gi
ne

s +

“f
ea

sib
ili

ty

m
od

el
s”

20
 m

in
.

w
ith

 ro
bu

st

de
si

gn
 (I

nt
el

C

or
e2

 C
PU

@

 2
.4

0G
H

z
PC

)

Le
ge

nd
:

=T
he

re
 w

as
 n

o
m

en
tio

n
of

 it

=M
ea

ns
 “n

ot
 im

pl
em

en
te

d
in

 to
ol

”
=

M
ea

ns
 “i

m
pl

em
en

te
d

in
 to

ol
”

36 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

2.3.1 Specific Characteristics

The tools described in Table 2.3 can be evaluated by several metrics that measure
the final solution quality. The first column “date” is performance independent.
There is no correlation between the availability of the design tool and its effi-
ciency or accuracy. On the contrary, the next three characteristics columns
“Evaluation Class”, “Algorithm Techniques” and “Equation/Design Plan”, which
are often used for classification purposes, will have an important influence in the
performance and accuracy as will be shown later in this chapter.

Particularly, the following metrics were considered in order to compare the
characteristics of the presented applications.

(a) Robust Design: As far as sizing is concerned, robust design has to do with the
accuracy and robustness of the solution. Accuracy is a measure of the quality
that shows the difference between the synthesis tool’s performance prediction
mechanisms and the real performance of the obtained solutions, possibly in-
cluding the layout-induced degradation. Robustness can be described as the
capacity of the sizing tool to build and test circuits tolerant to manufacturing
faults and operating point variations.

(b) Automation Level: It can be described as the ratio of time needed to accom-
plish the task of designing a circuit manually to the time spent on designing
the same circuit with the help of a synthesis tool. In this metric two aspects
must be considered:

⎯ Run time response: The period of time taken by the optimization tool to
give the first solution to the problem.

⎯ Setup time: The setup time is a measure of the time spent by the designer
to adequate the problem to the synthesis tool. This time is often longer
than the execution of the synthesis tool. This feature is particularly im-
portant because it is strongly correlated with the success and acceptability
of the tool. What is the advantage of a design tool which has the remark-
able prodigy to output some results in seconds, if it is necessary two
months to setup the complete algorithm of a hypothetic circuit when it is
known it could be designed by hand in one month? Excluding a reused-
based scenario, the answer is obvious “None”.

(c) Scope of the tool: It can be described as a group of analog design problems,
which can be solved by this tool. This is an important feature for analog de-
sign, because these problems usually require several types of optimization
techniques. An analog synthesis tool which aims at solving a wide range of
design problems will be successful in the long run, whereas tools planned to
solve a narrow range of problems will soon be out of date. Although, it is not
shown in Table 2.3, it will be used later for comparative analysis.

(d) Design facilities: It can be described as the set of additional features that can
enrich a synthesis tool.

⎯ Multi-objective Optimization. The DA tool presents the final solution in
terms of a set of designs representing complementary tradeoffs of specific

2 State-of-the-Art on Analog Design Automation 37

objectives (for example, area versus consumption) instead of single de-
sign response.

⎯ Interactive Design. The tool optionally produces intermediate perform-
ance reports (in the form of text or graphics) throughout the design exe-
cution time to inform the IC designer on the optimization progress. At the
same time, the IC designer optionally has the possibility to interact with
the tool in real time manner to tune up some parameters, e.g., the dimen-
sion of a transistor or the redefinition of some design bias.

⎯ Bookkeeping Facilities. The tool should have additional capacities to
help with the introduction and management of all the necessary data in-
cluding the management of different technological files, different classes
of circuits (e.g., operational amplifiers, phase-locked-loops, etc.), differ-
ent performance measurements, different design parameters, different
components, different topologies, and so on.

⎯ Encapsulate Details. Some tools interact with external programs and so
it makes sense that the interface with these additional tools can be made
in an automatically way hiding unused options.

2.3.2 Performance Analysis

Performance results are intrinsically correlated with several factors, like the
evaluation engine, the search mechanism, the technological model precision, the
computer platform used to run the application, etc.

The computation time is highly correlated with the nature of the evaluation en-
gine. All approaches leading with models derived either by numeric equations or
by some artificial learning machine method are able to reach solutions quickly,
however, the quality of results are always estimated approaches and the solution
quality only depends on the models precision [1]. This important trade-off be-
tween accuracy and computation time can be observed in Table 2.4. By contrast,
simulation based methods that play with a high accurate circuit simulator in each
optimization loop cycle are able to produce good quality results, but at the expense
of higher execution times.

In the knowledge-based approaches the execution speed is the highest of all
methods, considering that, the design plan is already defined. In equation-based
approach, this value is normally high and is directly related to precision of the de-
signed equations that need to be additionally introduced. The use of automatic
methods to generate equations, like symbolic analyzers, can significantly reduce
the input overhead and increase automation levels.

The setup time in equation and knowledge-based approaches is normally high
and is directly related to the precision of the designed equations that need to be
considered. The use of tools to generate equations, like symbolic analyzers, can
significantly reduce the input overhead and increase automation levels. In the
simulation based approach the level of interaction is the lowest of all methods.
Only a few configuration parameters are necessary to setup the data for the exter-
nal evaluation tool and the optimization algorithm. The behavioral-based approach

38 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

is compared in performance with the equation based approach once both use fast
evaluation models, but in what concerns to setup time, they behave like the simu-
lation based one, requiring the configuration of only a small number of parame-
ters. However, additional time will be required to configure the tool to produce the
target samples. In this case the time to build the training points will augment the
setup time slightly.

Table 2.4 Factors affecting tools performance

 Knowledge Equation Simulation Behavioral

Computation Time + + - +

Setup Time - - - - M/-A + -

Accuracy - - + -

Robustness - - + -
 M- means “by manual equation” and A-“automatic by symbolic methods”

 Symbols ordered from the best to the worst: ‘+’, ‘-‘, ‘- -‘

With regard to robustness, the most promising classes of tools come from meth-
odologies which are able to produce high accurate solutions like the simulation
based approaches, although they require multiple simulations which adversely af-
fect the run-time of the algorithm in a few orders of magnitude. Theoretically, all
other approaches could reach the desired robustness in case they are able to pro-
duce efficiently accurate models. However, this solution would be impractical due
to the large time spent in the preparatory phase to obtain those models. Besides
that, the equation-based as well as behavioral-based approaches were explored in
order to model the distribution of variation parameters in a form which can be ef-
ficiently optimized. However, the accuracy of these approaches is questionable.

2.3.3 Optimization Techniques

Analog circuit design is considered a hard optimization problem and has been
used by researchers in classical artificial intelligence, classical optimization, and
intelligent systems as a testbench for their methods. Some of the most significant
approaches concerning the optimization-based techniques are presented in
Table 2.5. However, both the classical AI approaches (tree search, expert systems,
etc.) and the classical optimization approaches have some drawbacks. The former
suffer from the lack of flexibility: a lot of effort is needed in order to handle new
processes, topologies, etc., and even when those are in place, the tools tend to fail
whenever slightly different problems are handled. The latter, tend to be gradient-
based approaches, which can only be applied to local parameter optimization
when the objective functions are differentiable and the design space is continuous.

2 State-of-the-Art on Analog Design Automation 39

Nevertheless, complex circuit problems tend to be non-differentiable and may
have continuous or discrete design spaces making these approaches inefficient.
The “Intelligent” systems-based approaches (EA+SA+Stochastic), on the other
hand, offer the potential to meet the target required by an analog cell design in
such complex search spaces. Through the observation of Table 2.5 the predomi-
nance of these methods for implementing the optimization engine is obvious.

Table 2.5 Optimization-based techniques

 EA SA Stochastic SA+Local AI/NN Classical

Simulation
Based

Maelstrom

GENOM
Maelstrom

Delight.Spice

Anaconda
FRIDGE - -

Equation based -
SD-OPT

ASTR/OBLX
Opasyn AMGIE -

Maulik

GPCAD

Learning Based Alpaydin Alpaydin GENOM -
Alpaydin

GENOM
-

A significant part of the tools initially employed simulated annealing but later
SA was used more frequently as a complement to other techniques, i.e.,
ALPAYDIN [59], MAELSTROM [57]. Combinations of two or more different
methods are named hybrid methods (sometimes the hybridization of EA with local
search techniques is also known as Memetic algorithms (see Sect. 3.1.4) and were
developed to take advantage from the potentials of each solution. The idea is to
create a new algorithm with improved capacity to explore the promising regions of
the search space. For example, in MAELSTROM [57] system, Krasnicki et. al.
applied a “parallel recombinative simulated annealing (PRSA) method which
combines multiple simulated annealing algorithms that run concurrently and share
information via a genetic algorithm scheme. The same group of researchers devel-
oped another variation called ANACONDA [56] that introduces constraints varia-
tions in transistor devices which incorporate a genetic algorithm, coupled with a
local “pattern search” technique. The FASY [10] system is a fuzzy-logic based
synthesis tool with simulated annealing for coarse and gradient search for fine op-
timization. The fuzzy logic chooses a topology from a pre-defined library. The
originality of this approach is the use of a NN model, built from data collected in
optimization runs that is employed to update the fuzzy rules. The ALPAYDIN
[59] system is an analog integrated circuit synthesis that computes the device siz-
ing using neural-fuzzy performance models and user defined equations. The neu-
ral-fuzzy model is used to estimate some of the AC performance metrics. The
remainder AC performance metrics are modeled by user specific equations. The
performance model is built from a set of training data collected from SPICE simu-
lations. This system incorporates the effect of process variations but has a draw-
back since new equations must be calculated by the user for each new topology.

40 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

In conclusion, the analog circuit synthesis is really a demanding task, which a
unique optimization algorithm could hardly solve. The development of new meth-
odologies and techniques should be explored to increase the efficiency of analog
circuit design. The trends verified in this area show that the solution for some of
the most important approaches lies on the integration of several methods to com-
bine the best of each one, and on the employing of models to reduce computation
times.

2.3.4 Other Characteristics

In what concerns to the tools scope (see Table 2.6), the simulation-based and arti-
ficial intelligent methods take the high scores because they can be normally ap-
plied to a broad range of analog circuits and, similarly, they modify the design ca-
pabilities of the system without too much overhead. However, their scope depends
on the simulator model. The equation based-approach, when dealing with manual
design equations, has short scope, however, if equations are derived by symbolic
tools, a better incorporation of new design problems is possible, increasing the
scope of the tool. Knowledge based-approaches are generally close tools, because
they are limited to a reduced number of architecture topologies and design
objectives.

Table 2.6. Scope characteristic

 Knowledge Equation Simulation AI/NN

Scope of the tool - +/- + +

The “Encapsulate Details”, “Interactive design”, “Bookkeeping Facilities” and
“Implementation language” issues were not subject to comparative analysis be-
tween methodologies once they do not depend on design methodology but result
from the merit of each tool in particular.

2.3.5 Summary

The first efforts in the development of CAD tools started with low abstraction
level implementations targeting primarily small systems. Large and complex sys-
tems were decomposed into small building blocks employing the expert knowl-
edge. The variety of existing tools and techniques covering several aspects of
analog design are summarized in Fig. 2.7. The first generation of design automa-
tion tools was driven to the optimization of design parameters, leaving to the
designer the task of selecting an appropriate architecture.

Since then, different types of selection topologies evolved ranging from tem-
plate approaches, to bottom-up and top-down topology generation approaches,
executing simultaneously or independently from sizing activities.

2 State-of-the-Art on Analog Design Automation 41

Optimization-BasedApproaches Knowledge-Based

Le
ge

nd
:

S
iz

in
g

To
ol

To
po

lo
gy

To
ol

La
yo

ut
To

ol

F
ig

. 2
.7

 O
ve

rv
ie

w
 o

f
an

al
og

 s
yn

th
es

is
 to

ol
s

42 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

At the lower abstraction level, the knowledge methods based in special heuris-
tic are out of date due to the long setup times involved, in the order of several
weeks, which do not match the tight agenda of today’s market pressure. In the
equation based-approach, the run times are short and the setup can also be made
short, if it uses automatic generation models, like symbolic analysis. The draw-
back is the limited accuracy of models, due to approximations or low-order design
equations and limited flexibility in designs. The performance models based on po-
synomials and geometric programming foresee a great future if the time to pro-
duce these models is shortened or automatically generated without compromising
accuracy. The simulation-based approach has high accuracy due to the use of cir-
cuit simulators. The generality is also high, allowing a large range of design prob-
lems to be addressed. However, the approach has longer execution times due to
the use of a circuit simulator in the optimization loop. The model approach has
short execution times and large generality. The model can be generated automati-
cally and systematically. The drawback is, however, the large time spent in the
preparatory phase as well as accuracy problems.

To conclude this topic, it must be said that effectively all presented methods
have some points in favor and some against. Despite the broad spectrum of tech-
niques and methodologies presented, there is not any “defacto” implementation
for this area of applications. Despite the evolution verified in the high and low ab-
straction levels, both architecture selections, sizing and layout optimization
remains the focus of research in analog EDA methodologies. The industrial com-
mercial tools follow closely the main trends in academia and R&D workgroups.
Their tools primarily focus the lower level of abstraction levels dealing with de-
vice sizing and layout description levels. All types of available frameworks as-
sume the existence of a topology before the optimization run. Hence, no topology
synthesis is available yet in any of the commercial analog EDA tools.

2.4 GENOM Optimization Tool: Implementation Goals

A tool aggregating all the best features, reviewed above, imposes hard challenges
for the design of an automation tool. The set of all best covered features can be
roughly interpreted as the main specifications of an ideal analog design tool. Natu-
rally, only a subset of the ideal tool specifications is usually implemented in prac-
tice. Several important characteristics, however, can be appointed so that a tool
can be accepted. They can be seen as the main specifications of a new design
automation methodology. First, there is an undeniable trends in the use of optimi-
zation-based approaches, in order to, handle the challenges of the analog design.
Second, the ideal tool should also deal with yield in order to take into account sta-
tistical fluctuations (process variations) inherent to the fabrication process and
varying operating conditions (supply voltage or temperature variations), to make
the design as robust as possible. Moreover, the design correctness and accuracy
should be as close as possible to the industry electric validation tools.
Furthermore, the overall optimization methodology should be as efficient as pos-
sible. Due to the existing trade-off between accuracy and computation time

2 State-of-the-Art on Analog Design Automation 43

(section 2.3.2), this important goal can not be treated individually. However, the
performance achieved by the resulting tool should outperform the traditional
methods or existing methodologies or tools. In order to have wide acceptance this
tool should allow the designer to modify the design configuration in a short time.
A graphical user interface has to be supplied in order to increase the productivity.
The GUI interface adds reporting information, as the designer is able to evaluate
some dynamic parameters of the optimization process and carry out some configu-
ration steps (interactive design, and flexibility). As finally, the resulting applica-
tion should be preferentially designed in an independent platform or integrated
with current EDA design environments. The interaction with externals tools
should be carried out with open standards, if possible, to make the application in-
tegration in industrial design easier.

Following the trends presented by several modern tools, GENOM combines
state-of-the-art modeling and searching techniques to deal with the complexity of
analog circuit design problem. Since it cannot be granted that derivatives of the
objective functions are known for the generality of this multiobjective problem,
we have to trust non-derivative optimization methods, hence this thesis assumes
these methods as the best choice. To ensure the design correctness and accuracy,
GENOM employs a standard simulation tool in the loop of a modified genetic al-
gorithm kernel allowing the corner simulations. To increase the efficiency of the
evolutionary algorithm, a machine learning algorithm based on SVM was intro-
duced. The proposed approach results in a new GA-SVM learning scheme applied
to analog circuit design composed by the interaction of two machine learning en-
gines. GENOM is primarily designed to increase the automation level and so it
encapsulates much of intrinsic algorithm parameters from normal users but it per-
mits some algorithm parameter changes to restricted users, through a configura-
tion file. To allow a better use of available resources GENOM allows the execu-
tion either in a single processor machine or in a multiprocessor distributed
environment. For efficiency reasons the GENOM code was written in C, therefore,
the default user interface is text file oriented despite it has built-in functions which
allow it to integrate a graphical in-house design environment. The following
chapters will explore the details of this new tool.

2.5 Conclusions

Automated design of analog circuits, also referred to as analog circuit synthesis,
has been the subject of active scientific research for many years now. This chapter
has covered some of the most significant design automation methodologies ap-
plied to analog IC design automation. Here, a set of general properties, that allow
the characterization of each approach, was been identified and a better insight re-
lated to advantages and limitations has been presented.

The characterization of each different approach supports the definition and
identification of the general specifications for a new design automation methodol-
ogy to be implemented in GENOM, a tool that will be applied to the automation of
mixed-analog ICs.

44 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

References

[1] Horta, N.C.: Analog and mixed-Signal IC design automation: Synthesis and optimiza-
tion overview. In: Proc. 5th Conference on Telecommunications, Tomar, Portugal
(2005)

[2] Martens, E., Gielen, G.: Classification of analog synthesis tools based on their archi-
tecture selection mechanisms. Integration, the VLSI Journal 41(2), 238–252 (2007)

[3] Degrauwe, M., et al.: IDAC: An interactive design tool for analog CMOS circuits.
IEEE J. Solid-State Circuits 22, 1106–1115 (1987)

[4] Lourenço, N.: LAYGEN: Automatic layout generation of analog ICs, from a system
to device level using both hierarchical template descriptions and intelligent comput-
ing techniques. Master thesis, Dept. Electrical and Computer Engineering, Instituto
Superior Técnico, Portugal (2007)

[5] Horta, N.C., Franca, J.E.: High-Level data conversion synthesis by symbolic meth-
ods. In: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 4, pp. 802–805
(1996)

[6] Horta, N.C.: Analogue and mixed-signal systems topologies exploration using sym-
bolic methods. In: Proc. Analog Integrated Circuits and Signal Processing, vol. 31(2),
pp. 161–176 (2002)

[7] Harjani, R., Rutenbar, R.A., Carley, L.R.: OASYS: A framework for analog circuit
synthesis. IEEE Trans. Computer-Aided Design 8, 1247–1265 (1989)

[8] El-Turky, F., Perry, E.: BLADES: An artificial intelligence approach to analog circuit
design. IEEE Trans. Computer-Aided Design 8, 680–692 (1989)

[9] Koh, H.Y., Sequin, C.H., Gray, P.R.: OPASYN: A compiler for CMOS operational
amplifiers. IEEE Trans. Computer-Aided Design 9(2), 113–125 (1990)

[10] Torralba, A., Chávez, J., Franquelo, L.G.: FASY: A fuzzy-logic based tool for analog
synthesis. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems 15(7), 705–715 (1996)

[11] Gielen, G., et al.: An analog module generator for mixed analog/digital ASIC design.
Wiley Int. J. Circuit Theory Applications 23, 269–283 (1995)

[12] Kruiskamp, W., Leenaerts, D.: DARWIN: CMOS opamp synthesis by means of a ge-
netic algorithm. In: Proc. ACM/IEEE Design Automation Conference, pp. 550–553
(1995)

[13] Stehr, G., Pronath, M., Schenkel, F., Graeb, H., Antreich, K.: Initial sizing of analog
integrated circuits by centering within topology given implicit specifications. In:
Proc. IEEE International Conference on Computer-Aided Design, pp. 241–246 (2003)

[14] Horta, N.C., Franca, J.E.: Algorithm-driven synthesis of data conversion architec-
tures. IEEE Trans. Computer-Aided Design Integrated Circuits 16(10), 1116–1135
(1997)

[15] Konczykowska, A., Bon, M.: Structural synthesis and optimization of analog circuits
symbolic analysis techniques. IEEE, Los Alamitos (1998)

[16] Antoa, B.A., Brodersen, A.J.: ARCHGEN: Automated synthesis of analog systems.
IEEE Trans. VLSI Systems 3(2), 231–244 (1995)

[17] Lohn, J.D., Colombano, S.P.: A circuit representation technique for automated circuit
design. IEEE Trans. Evolutionary Computation 3(3), 205–219 (1999)

[18] Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated synthesis
of analog electrical circuits by means of genetic programming. IEEE Trans. Evolu-
tionary Computation 1(2), 109–128 (1997)

2 State-of-the-Art on Analog Design Automation 45

[19] Sripramong, T., Toumazou, C.: The invention of CMOS amplifiers using genetic
programming and current-flow analysis. IEEE Trans. Comput. Aided Design Inte-
grated Circuits 21(11), 1237–1252 (2002)

[20] Leenaerts, D., Gielen, G., Rutenbar, R.A.: CAD solutions and outstanding challenges
for mixed-signal and RF IC design. In: Proc. IEEE/ACM International Conference on
Computer Aided Design, pp. 270–277 (2001)

[21] Aggarwal, V.: Analog circuit optimization using evolutionary algorithms and convex
optimization. Master thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2007)
http://web.mit.edu/varun_ag/www/msthesis.pdf (Accessed March
2009)

[22] Kuhn, J.: Analog module generators for silicon compilation. In: Proc. VLSI System
Design, pp. 75–80 (1987)

[23] Wolf, M., Kleine, U., Hosticka, B.J.: A novel analog module generator environment.
In: Proc. European Conference on Design and Test, pp. 388–392 (1996)

[24] Beenker, G., Conway, J., Schrooten, G., Slenter, A.: Analog CAD for consumer ICs.
In: Huijsing, J., Plassche, R., Sansen, W. (eds.) Analog Circuit Design, pp. 347–367.
Kluwer Academic Publishers, Norwell (1993)

[25] Cohn, J., Garrod, D., Rutenbar, R.A., Carley, L.R.: KOAN/ANAGRAM II: New
tools for device-level analog placement and routing. IEEE J. Solid-State Circuits 26,
330–342 (1991)

[26] Carley, L., Georges, G., Rutenbar, R.A., Sansen, W.: Synthesis tools for mixed-signal
ICs: Progress on frontend and backend strategies. In: Proc. Design Automation Con-
ference, vol. 33, pp. 298–303 (1996)

[27] Lampaert, K., Gielen, G., Sansen, W.: A performance driven placement tool for ana-
log integrated circuits. IEEE Journal of Solid-State Circuits 30, 773–780 (1995)

[28] Khademsameni, P., Syrzycki, M.: A tool for automated analog CMOS layout module
generation and placement. In: Proc. IEEE Canadian Conference on Electrical and
Computer Engineering, pp. 416–421 (2002)

[29] Yılmaz, E., Dündar, G.: New Layout generator for analog CMOS circuits. In: Proc.
18th European Conference on Circuit Theory and Design, pp. 36–39 (2007)

[30] Hartono, R., Jangkrajarng, N., Bhattacharya, S., Shi, C.: Automatic device layout
generation for analog layout retargeting. In: Proc. International Conference on VLSI
Design, vol. 36, pp. 457–462 (2005)

[31] Lampaert, K., Gielen, G., Sansen, W.: Analog layout generation for performance and
manufacturability. Kluwer Academic Publishers, Dordrecht (1999)

[32] Jingnan, X., Vital, J., Horta, N.C.: A SKILLTM-based library for retargetable em-
bedded analog cores. In: Proc. Design Automation and Test in Europe Conference
and Exhibition, pp. 768–769 (2001)

[33] Jingnan, X., Serras, J., Oliveira, M., Belo, R., Bugalho, M., Vital, J., Horta, N.C.,
Franca, J.: IC design automation from circuit level optimization to retargetable layout.
In: Proc. 8th IEEE International Conference on Electronics, Circuits and Systems,
vol. 1, pp. 95–98 (2001)

[34] Rijmenants, I., Schwarz, Y.R., Litsios, J.B., Zinszner, R.: ILAC: An automated layout
tool for CMOS circuits. IEEE Journal of Solid-State Circuits 24(2), 417–425 (1989)

[35] Lourenço, N., Horta, N.C.: LAYGEN – An evolutionary approach to automatic ana-
log IC layout generation. In: Proc. IEEE Conf. on Electronics, Circuits and System,
Tunisia (2005)

46 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[36] Lourenço, N., Vianello, M., Guilherme, J., Horta, N.C.: LAYGEN – Automatic lay-
out generation of analog ICs from hierarchical template descriptions. In: Proc. IEEE
Ph. D. Research in Microelectronics and Electronics, pp. 213–216 (2006)

[37] Zhang, L., Kleine, U.: A genetic approach to analog module placement with simu-
lated annealing. In: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 1, pp.
345–348 (2002)

[38] Handa, K., Kuga, S.: Polycell placement for analog LSI chip designs by genetic algo-
rithms and tabu search. In: Proc. IEEE Conference on Evolutionary Computation,
vol. 2, pp. 716–721 (1995)

[39] Zhang, L., Kleine, U.: A novel analog layout synthesis tool. In: Proc. IEEE Int. Sym-
posium on Circuits and Systems, vol. 5, pp. 101–104 (2004)

[40] Jangkrajarng, N., Bhattacharya, S., Hartono, R., Shi, C.J.: IPRAIL: Intellectual prop-
erty reuse based analog IC layout automation. Integration, the VLSI Journal 36(4),
237–262 (2003)

[41] Castro-Lopez, R., Fernandez, F.V., Guerra-Vinuesa, O., Vazquez, A.: Reuse Based
Methodologies and Tools in the Design of Analog and Mixed-Signal Integrated Cir-
cuits. Springer, Heidelberg (2003)

[42] Cory, W.: Layla: A VLSI Layout Language. In: Proc. 22nd ACM/IEEE Conference
on Design Automation, pp. 245–251 (1985)

[43] Nye, W., Riley, D.C., Sangiovanni-Vincentelli, A., Tits, A.L.: DELIGHT.SPICE: An
optimization-based system for the design of integrated circuits. IEEE Trans. Com-
puter-Aided Design 7(4), 501–519 (1998)

[44] Leme, C., Horta, N.C., Franca, J.E., Yufera, A., Rueda, A., Huertas, J.L., et al.: Flexi-
ble silicon compilation of charge redistribution data conversion systems. In: Proc.
IEEE Midwest Symposium on Circuits and Systems, pp. 403–406 (1991)

[45] Horta, N.C., Franca, J.E., Leme, C.A.: Framework for architecture synthesis of data
conversion systems employing binary-weighted capacitor arrays. In: Proc. IEEE Int.
Symposium on Circuits and Systems, pp. 1789–1792 (1991)

[46] Harvey, J.P., Elmasry, M.I., Leung, B.: STAIC: An interactive framework for synthe-
sizing CMOS and BICMOS analog circuits. IEEE Trans. Computer-Aided De-
sign 11(11), 1402–1417 (1992)

[47] Maulik, P.C., Carley, L.R.: Automating analog circuit design using constrained opti-
mization techniques. In: Proc. IEEE Int. Conf. Computer-Aided Design, pp. 390–393
(1991)

[48] Ochotta, E.S., Rutenbar, R.A., Carley, L.R.: Synthesis of high-performance analog
circuits in ASTRX/OBLX. IEEE Trans. Computer- Aided Design 15(3), 273–294
(1996)

[49] Hershenson, M., Boyd, S., Lee, T.: GPCAD: A tool for CMOS op-amp synthesis. In:
Proc. IEEE/ACM Int. Conf. Computer-Aided Design, pp. 296–303 (1998)

[50] Hershenson, M.M., Boyd, S.P., Lee, T.H.: Optimal design of a CMOS Op-Amp via
geometric programming. IEEE Trans. Computer-Aided Design 20(1), 1–21 (2001)

[51] Medeiro, F., Verdu, B.P., Vazquez, A.R., Huertas, J.L.: A vertically integrated tool
for automated design of modulators. IEEE Journal of Solid-State Circuits 30(7)
(1995)

[52] Gielen, G., Wambacq, P., Sansen, W.: Symbolic analysis methods and applications
for analog circuits: A tutorial overview. Proc. IEEE 82, 287–304 (1994)

[53] Wambacq, P., Fernandez, F.V., Gielen, G., Sansen, W., Rodriguez-Vazquez, A.: Effi-
cient symbolic computation of approximated small signal characteristics. IEEE J.
Solid-State Circuits 30, 327–330 (1995)

2 State-of-the-Art on Analog Design Automation 47

[54] Daems, W., Gielen, G., Sansen, W.: An efficient optimization–based technique to
generate posynomial performance models for analog integrated circuits. In: Proc. 39th
Design Automation Conference, pp. 431–436 (2002)

[55] Medeiro, F., et al.: A Statistical optimization-based approach for automated sizing of
analog cells. In: Proc. ACM/IEEE Int. Conf. Computer-Aided Design, pp. 594–597
(1994)

[56] Phelps, R., Krasnicki, M., Rutenbar, R.A., Carley, L.R., Hellums, J.: ANACONDA:
Simulation-based synthesis of analog circuits via stochastic pattern search. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems 19(6), 703–717
(2000)

[57] Krasnicki, M., Phelps, R., Rutenbar, R.A., Carley, L.R.: MAELSTROM: Efficient
simulation-based synthesis for custom analog cells. In: Proc. ACM/IEEE Design
Automation Conference, pp. 945–950 (1999)

[58] Liu, H., Singhee, A., Rutenbar, R.A., Carley, L.: Remembrance of circuits past: Mac-
romodeling by data mining in large analog design spaces. In: Proc. Design Automa-
tion Conference, pp. 437–442 (2002)

[59] Alpaydin, G., Balkir, S., Dundar, G.: An evolutionary approach to automatic synthe-
sis of high-performance analog integrated circuits. IEEE Trans on Evol. Computa-
tion 7(3), 240–252 (2003)

[60] Bernardinis, F., Jordan, M.I., Sangiovanni-Vincentelli, A.: Support vector machines
for analog circuit performance representation. In: Proc. Design Automation Confer-
ence, pp. 964–969 (2003)

[61] Wolfe, G.A.: Performance macro-modeling techniques for fast analog circuit synthe-
sis. Ph.D. dissertation, Dept. of Electrical and Computer Engineering and Computer
Science, College of Engineering, University of Cincinnati, USA (1999)

[62] Synopsys Inc.: Products and solutions-HSIM, PowerMill, NanoSim (2009),
http://www.synopsys.com (Accessed March 2009)

[63] EEDesign, Synopsys acquires ADA for analog boost (2009),
http://www.eetimes.com/ (Accessed March 2009)

[64] Synopsys Inc.: Circuit Explorer - analysis, optimization & trade-off (2009),
http://www.synopsys.com (Accessed March 2009)

[65] Cadence Inc, Products: Composer, Virtuoso, DIVA, NeoCircuit, NeoCell, UltraSim,
NcSim (2009), http://www.cadence.com (Accessed March 2009)

[66] Toumazou, C., Makris, C.: Analog IC design automation: Part I - Automated circuit
generation: New concepts and methods. IEEE Trans. Computer-Aided Design 14,
218–238 (1995)

[67] Makris, C., Toumazou, C.: ISAID: Qualitative reasoning and trade-off analysis in
analog IC design automation. In: Proc. IEEE Int. Symposium on Circuits and Sys-
tems, pp. 2364–2367 (1992)

[68] Toumazou, C., Makris, C.A., Berrah, C.M.: ISAID - a methodology for automated
analog IC design. In: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 1, pp.
531–535 (1990)

[69] Barros, M., Neves, G., Guilherme, J., Horta, N.C.: Enhanced genetic algorithm kernel
applied to a circuit-level optimization E-Design environment. In: Proc. 10th IEEE In-
ternational Conference on Electronics, Circuits and Systems, pp. 1046–1049 (2003)

[70] Barros, M., Neves, G., Guilherme, J., Horta, N.C.: Analog Circuits Optimization
based on Evolutionary Computation Techniques. Integration, the VLSI Journal 43(1),
136–155 (2010)

M.F.M. Barros et al.: Analog Circuits and Systems Optimization, SCI 294, pp. 49–88.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

3 Evolutionary Analog IC Design
Optimization

Abstract. This chapter starts with an overview on computation techniques aiming
to solve nonlinear optimization problems with emphasis on evolutionary optimiza-
tion algorithms and discusses their relevance to analog design problem. The main
virtues and weaknesses, as well as, the design issues of evolutionary algorithms
are discussed with a description of the recent developments in this field. This
chapter also introduces a new optimization kernel based on genetic algorithms ap-
plied to analog circuit optimization. It includes a detailed description of the coding
schemes, the fitness function, the genetic operators and other design strategy crite-
ria. Finally, a robust IC design methodology supported by the optimization kernel
is presented in the end of the chapter.

3.1 Computation Techniques for Analog IC Design – An
Overview

During the past decades significant activities have been carried out on the analog
design automation focusing the problem of automatically sizing the circuit, auto-
mating topology selection and layout generation. The following sections review
some computation techniques used to solve the analog IC design problem.

3.1.1 Analog IC Design Problem Formulation

Analog IC design has been seen as the hard topic of IC design for a long time. As
discussed in the introductory chapter the main reason for this design effort is that
analog design is knowledge-intensive, due to the deeply nonlinear behavior of the
performance measures and the strong sensitivity of these measures to variations in
the design parameters, having as result design problems with extremely complex
trade-offs. Mathematically, the analog and mixed design problem (AMDP) can be
formulated through the following general nonlinear programming (NP) expression
[1]-[5] of a general multi-objective problem:

()
(){ }0 G | :

 F ptimize

≤ℜ∈=Ω xxtosubject

xO
n GG
G

 (3.1)

50 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

where, x
G

is multidimensional vector of decision parameters in nℜ delimited by an
upper and a lower bound given by i

max
i
min xx ≤≤ ix . ()x

G
 F represents the vector of

m objectives ()(),...,(1 xfxf m

GG
) to be minimized or maximized and ()x

G
G the vec-

tor of p constraints that must be satisfied to guarantee the feasibility of the solu-
tion. When m equals to one, the expression 3.1 corresponds to a single objective
problem, when m is greater than one, it stands for a multi-objective problem.
Normally, the elements of ()x

G
G are handled explicitly by inequality expressions

relating the desired value of hard specifications taking form

kkjjii SpecsxgSpecsxgSpecsxg =≥≤)(or)(or)(with pkji =++ . In the branch

of operational research (OR), the equality constraints can alternatively be trans-
formed into a pair of inequality constraints taken from

kk Specsxg ≤−ε|)(| ,

where ε is a small allowed tolerance. From now on, this transformation will be
implicitly assumed every time inequality constraints are referred in the text. The

domain space Ω is a nonempty set in nℜ and the objective functions
are ℜ→ℜn

if : .

The estimation of each design alternative, concerning one or several different
objective functions and multiple constraints represent a global, high-dimensional
optimization problem. The aim of this multi-objective, multi-constraint problem is
to catch up the best relation between circuit performance (e.g. power dissipation,
circuit area, gain, gbw, etc.,) and design parameters (e.g. the width W, length L,
resister values R, capacitor values C,…) subject to some constraints (e.g. geome-
try constraints, designer rules, etc). Specifically, the undertaken design problem
tries to find the particular values of the design parameters (**

2
*
1 ,...,, nxxx) belonging

to Ω which yield a point or a region in the performance space of the objective
functions that satisfies the required specifications as illustrated in Fig. 3.1.

Fig. 3.1 Basic concepts in multi-objective optimization

3 Evolutionary Analog IC Design Optimization 51

From this point forward any abstract task accomplished to solve a problem or to
look for the best solution can be perceived as a search through a space of potential
solutions. A number of approaches have been described in the last chapter to find
the global optimum of the cost surface associated to a high-dimensional optimiza-
tion (AMDP) problem. These approaches can be classified as knowledge-based
methods, employing design knowledge and heuristics, and optimization-based
methods, making use of numerical programming techniques. When seeking for the
decisive objective (ultimate goal) i.e., finding the global optimum solution with a
minimum number of function evaluations or running time, both approaches pre-
sent some strengths and limitations. The work developed in this research is com-
mitted to explore an optimization-based approach. The next sub-section briefly
reviews some of the most promising algorithm techniques to solve such a complex
problem and explains the choice taken to structure the framework presented in this
book.

3.1.2 Numeric Programming Techniques

Both the research community and the industry have been paying extra attention to
optimization algorithms for the past few years. Optimization algorithms have be-
come an important research area due to their efficiency in achieving approximate
solutions to NP-hard [3] problems and in solving problems where no analytic
method applies, for instance, solving nonlinear differential equations. Besides, op-
timization algorithms can be applied to a wide range of situations, as most scien-
tific and industrial design problems may be formulated through an optimization
task whose aim is to minimize or maximize a given objective function and might
involve linear or nonlinear constraints, integer and/or continuous variables, sto-
chastic or deterministic inputs, and single or multiple criteria objectives. In the
field of numeric optimization there is a vast range of optimization methods, the
most of which can be categorized according to [6] in Fig. 3.2.

Some of these methods may be better adapted to the nature of the specific prob-
lems pointed out by the intermediate nodes or applied to a wide spectrum of prob-
lems like stochastic programming. Therefore, the knowledge of the problem
nature allows the choice of more suitable optimization algorithms. Picking the cor-
rect optimization algorithm is an essential step to obtain the best trade-off between
accuracy and time efficiency in all optimization problems. For example, when the
problem is exclusively represented by a set of linear equations, linear program-
ming (LP) techniques are more appropriated. The simplex algorithm, developed
by George Dantzig [7]-[8], is one of the most popular methods to solve LP prob-
lems, like the “traveling salesman” which aims to find the minimal traveling dis-
tance. For this kind of problems, equality constraints are welcome, because it is
known that if the optimum exists, it is situated at the surface of the convex set,
whereas inequalities can be manipulated mathematically to equalities by the addi-
tion of slack variables [3].

52 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 3.2 The optimization tree outlines of the major algorithms in each area

However, determining the global optimum to the general nonlinear program-
ming problem can be a challenging task since there is no specific method capable
to do it in a systematic way [3], although it can be found in certain circumstances,
i.e., when the objective functions and the constraints satisfy certain properties.
Appendix B will briefly address the characteristics of some general purpose opti-
mization techniques for nonlinear problems including random search methods
(Appendix B.1), gradient-based methods (Appendix B.2), constraints program-
ming (Appendix B.3), stochastic methods (Appendix B.4), and multiple objective
optimizations (Appendix B.5). The table 3.1 briefly resumes the described optimi-
zation methods as well as their main advantages and limitations.

3.1.3 The No-Free-Lunch Theorem

To look for the best performance algorithm in the field of optimization algorithms
is considered a utopia. A very important theorem generally accepted by the com-
munity, known as the “No Free Lunch Theorem” (NFL) [23] states that it cannot
exist any algorithm which solves all kinds of problems. On average the “perform-
ance of any pair of algorithms across all possible problems is identical”. A possi-
ble illustration of this theorem can be seen in the Fig. 3.3 where on average both
algorithms perform equally well when considering a broad range of different prob-
lems. In particular, if some algorithm A outperforms B over some set of optimiza-
tion problems, then the reverse must be true over the set of all other optimization
problems.

Although there is a long list of available optimization algorithms it is not
known any method tailored to deal directly with the complexity of Analog Design
problem in order to obtain the best trade-off between performance accuracy and
time efficiency. A great part of them are customized to some specific class of

3 Evolutionary Analog IC Design Optimization 53

Table 3.1 Properties of general purpose optimization methods for nonlinear problems

Optimization
method

Type of problems &
description

Advantages Limitations

Random
search

Global unconstrained. Con-
sists in selecting randomly
potential solutions and eva-
luating them.

The easiest form of heuristic
search. Often used as a ref-
erence tool. One known ex-
ample is the Monte Carlo
(MC) method.

Blind search, doesn’t
use any domain-specific
information to guide the
search; search is usually
slow.

Gradient
based

[9]

Local unconstrained nonlin-
ear optimization which ap-
plies the concept of succes-
sive search, based on the
information of gradient or
derivative function.

Used for local search, im-
proved version like Newton
method converges fast.

Requires the derivative
of objective function
and uni-modal spaces.
Only takes into account
local information.

Optimization
method

Type of problems & de-
scription

Advantages Limitations

Constraint
Programming
[10]-[13]

Constraints continuous or
discrete. Penalizes the
solutions that are near or
violate the constraints
boundaries with an amount
proportional to constraint
violation.

Models complex problems
easily.
Increase the efficiency of
the search using the con-
straints to prune the search
space. Mature tools.

Weakness when dealing
with cyclic dependen-
cies.

Stochastic
Search

[14]-[16]

Local and global search
continuous or discrete.
Does not require a continu-
ous, a convex or differenti-
able cost function.

Model Multi-Objective,
multimodal, Multi Con-
straints, Nonlinear Objec-
tives. Encloses a High
spectrum of applications.

Performance efficiency.
Because of their prob-
abilistic nature the global
optima requires many it-
erations to converge.

Multi-
objective Opt.
[17]-[19]

[20]-[22]

Global search continuous or
discrete. Problems requiring
the optimization of more
than one conflicting objec-
tive functions.

Model Multi-Objective,
Multi Constraints, Nonlinear
Objectives, Trade-offs

Performance efficiency.

problems exploiting certain features and accordingly to the NFL theorem they are
able to achieve high performance patterns. In the classical optimization tech-
niques, the majority of the proposed methods are predominately local in scope, re-
lies on derivatives and are not robust enough in discontinuous, vast multimodal or
noisy search spaces [25], so they are more efficient in solving linear, quadratic,
strongly convex, unimodal and many other special problems. On the other hand,
stochastic algorithms and specially the evolutionary algorithms own a set of in-
trinsic properties (reviewed in preceding section) which allow them to deal with
highly complex optimization problems, like the analog IC design – defined as a
non-lineal, high dimensional, high constrained, multi-objective problem. How-
ever, it cannot be expected that an optimizer based on stochastic algorithms could
give good results for all spectrum of applications (no free lunch). Stochastic opti-
mizers are not considered a black box system, hence they must be tailored with

54 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

expertise for each specific problem. This will be the subject of the next section
where an analog design optimization tool matching the analog IC design problems
(for the design of IC circuits) based on a standard stochastic evolutionary algo-
rithm will be presented in detail.

Fig. 3.3 The no-free-lunch theorem representation [24]

3.1.4 Evolutionary Computation Techniques Overview

In the past few years, evolutionary computation (EC) [24]-[27] has gained increas-
ing notability since it is becoming the method of choice for solving complex prob-
lems especially when classic methods cannot be efficiently applied or have a
difficult formalization [28]. Besides the advantages inherited from stochastic algo-
rithms, EAs own several characteristics that make the difference from other opti-
mization and problem solving techniques [29]. Table 3.2 summarizes its main
characteristics. In few words, evolutionary computation constitutes a class of itera-
tive and stochastic optimization techniques inspired by concepts from Darwinian
natural evolution theory, namely the genetic inheritance and the strife for survival.

Evolutionary computation embraces a range of programming techniques such
as genetic algorithms [30] [32][33][34][35], evolution strategies [31], evolutionary
programming [32]-[33] and genetic programming [34]-[35]. Evolution Strategies
(ES) and evolutionary programming (EP) were developed independently at the
same time as genetic algorithms (GA). Although these techniques have the same
aims and use the same basic structure cycle, there are slight differences related to
the representation of candidate solutions and the implementation of selection, re-
combination and mutation operators. The Table 3.3 resumes the described tech-
niques. At present there are no big differences between these approaches. Many of
the algorithms only differ in slight details, because of the constant interchange and
crossing of ideas between the different approaches. As far as representation and
type of operators is concerned, most researchers came to the decision that the best
solution representation should be achieved according to each specific problem.

3 Evolutionary Analog IC Design Optimization 55

Table 3.2 EAs main characteristics

Properties Description

Flexible

They can adapt easily to different types of problems or can be applied in a
problem with little prior knowledge, avoiding in-depth mathematical represen-
tation which is difficult and sometimes impossible to acquire for some complex
problems.

Simple They allow short timings for model setup and easy changes of the problem.

Robust They can be effective in noisy environments.

Adaptive
They can deal with self-adaptation, allowing dynamic changes of process pa-
rameters.

Decentralized
Due to the ability to lead with populations of solutions, they are easily paral-
lelizable [36], [26], taking advantage of the power of distributed and higly par-
allel computing environments.

Table 3.3 Milestones in Evolutionary Techniques - Overview

Evolutionary Tech-
niques

Main Contributions Activity Period

Evolution Strategies by
Ingo Rechenberg and
Hans-Paul Schwefel
[31]

Introduce the continuous parameter optimization and
expand the mutation operator to continuous stochastic
variations. Don’t use crossover operator. A new concept
of breeding based on (μ+λ)-ES and (μ,λ)-ES strategies.
Use self-adaptation to adjust control parameters of the
search.

In the 1960s
and early
1970s

Evolutionary Program-
ming by Fogel

[32],[33]

Applies the FSM concept to represent candidate solu-
tions and use variation and selection strategies adapted
to this environment. Evolves populations of solutions
with mutation and selection.

At the end of
1960s

Genetic Algorithms by
Holland's (Original)

[30]

Use discrete encoding representation, traditionally in bi-
nary as strings of 0s and 1s. Apply the simple evolution-
ary algorithm in optimization problem able to evolve
toward better solutions.

Became popu-
lar in 1970s

Genetic Programming
by Koza [34],[35].

Represents individuals as executable hierarchical trees
of computer programs (code) that can be mutated by
changing or swapping subtrees representing many dif-
ferent kinds of problems.

Begining of the
90’

During the last few years there has been significant progress in evolutionary
computation techniques and the field of applications has expanded considerably.
There are some other approaches which adopt mechanisms from nature. Table 3.4
reviews the most important trends in this domain and summarizes the main advan-
tages and disadvantages of recent EC techniques.

56 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 3.4 Recent trends in evolutionary computation - Overview

Optimization
Algorithms

Main Contributions Drawbacks

Ant Colony Optimiza-
tion (ACO) [37] was in-
troduced in and early
1990s

Deals with the parallel search and use of mem-
ory structures to hold information on the quality
of the historical results. They have an advantage
over other stochastic algorithms like SA and
GA. When the graph changes dynamically; the
ant colony algorithm may adapt to changes in
real time.

Oriented for solving
hard combinatorial
and constraint discrete
optimization prob-
lems. Coding is not
straightforward.

Particle Swarm Optimi-
zation (PSO) [38] was
introduced in middle of
1990s

Is conceptually simple due to a small number of
parameters to adjust and is oriented for paral-
lelization. It does not require many user-defined
parameters. Is flexible because it can be de-
signed for local minimization as well as allows
the incorporation of algorithms or heuristics for
global optimization.

Parameters depend-
ency. Slow conver-
gence in the vicinity
of the global optima.

Estimation of Distribu-
tion Algorithms (EDA)

[39],[41]

Incorporates methods for automated learning be-
tween variables. Uses probabilistic models con-
sidering discrete or continuous, independent or
dependent variables. The crossover and muta-
tion operations were replaced by estimation and
sampling of a probability distribution. In some
application outperforms GAs.

EDAs are not efficient
or applicable to the
continuous optimiza-
tion, real-time optimi-
zation and multi-
objective optimiza-
tion.

Differential Evolution
(DE) [42] was intro-
duced in middle of
1990s

Easy to use method based on EAs. The varia-
tions schemes implemented in DE to create off-
spring, automatically execute a step size adapta-
tion as the search process converges toward
good solutions.

There are a number of
variations (schemes)
and it is unclear
which scheme per-
forms the best under
static conditions.

Cultural Algorithms
(CA) and Immune Sys-
tems [43]

The knowledge is the fundamental key to
achieve the requirements of a decision making
process. Apply techniques in order to acquire
knowledge and save them in the “belief space”
and then use it to bias the search. This technique
was used in GENOCOP tool.

This technique only
deals with linear con-
straints, as the origi-
nal GENOCOP.

There are some other approaches involving hybrid systems. Classical simple
EAs usually cannot compete with other state-of-the-art algorithms that are specifi-
cally adapted to some particular type of problems. On the other hand, the demand
for even more accurate and efficient evolutionary algorithms in a broad range of
applications led to the development of many hybrid approaches, where an evolu-
tionary algorithm can be combined with local search heuristics and problem-
specific variation operators or expert encodings. These hybrid approaches also
known as memetic algorithms [44]-[46], employ several metaheuristics such as
simulated annealing, tabu search and guided local search methods in combination
with EAs, in order to efficiently improve the exploration process of major areas of

3 Evolutionary Analog IC Design Optimization 57

the search space, as well as, the local exploitation related to the fine-tuning of the
most promising candidate solutions [47]. There are other approaches that combine
EAs with exact optimization techniques [48] such as, dynamic programming,
branch-and-bound, and integer linear programming techniques. Very often these
hybrid approaches extended by the problem of specific knowledge, outperform the
standard evolutionary methods, as well as, other standard techniques.

Nowadays, many of the state-of-the-art EA-based techniques are rather com-
plex, problem-specific hybrid systems. EAs can be described as very flexible tools
since they are able to be hybridized with problem specific techniques to improve
performance. In conclusion, combining an EA-framework with other techniques
should be recognized as a contribution of great worth.

3.2 Key Issues in Evolutionary Search

EAs have a rich historical background of experience and research, oriented for
the optimization of the convergence processes that consistently finds an approxi-
mate solution quickly and efficiently, suitable for a broad range of applications.

The basic evolutionary process described in Appendix C.1 and exemplified in
Appendix C.1.3 for the optimization of constrained problems, contains a minimal
set of features that make evolutionary algorithms competitive to solve hard global
optimization problems. They provide a set of unique properties that allow dealing
with a broad range of nonlinear problems where traditional optimization tech-
niques, like gradient descent, hill climbing, and purely random search, are often
inefficient or inadequate. Due to its success and usefulness already proved in en-
gineering applications, the branch of evolutionary computation has been object of
continuous development. Table 3.5 lists of the main ongoing research themes re-
lated to evolutionary optimization found in the most recent literature.

58 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 3.5 Key issues in EAs

Description Advantages and Disadvantages

C
on

st
ra

in
t H

an
dl

in
g

[1
1]

,[
13

]

In the original form, EAs do not define a me-
chanism able to guide efficiently the search
towards the feasible region in constrained
search spaces. A wide variety of techniques
have been adopted to handle all kind of con-
straints such as the use of, penalty functions,
specialized representation and operators, re-
pair mechanisms, separations of objective
and constraints and hybrid methods. From
the universe of EA the most common ap-
proach is the use of penalty functions to
those solutions that violate constraints. The
most common approach uses the amount of
constraint violation to penalize an infeasible
solution, thus promoting the selection of fea-
sible solutions.

In spite of the great variety of methods there
is not a proved method to solve all different
sort of constraint (linear, nonlinear, etc)
problems [44]. This means that the suitable
chosen method when there is no knowledge
about the domain is still an open research
problem. Since the penalty based approaches
are easy to implement and are also quite ef-
ficient, they are often used as the first choice
in spite of their known limitations. Penalty
functions require a precise judgment of the
penalty factors so that the right combination
of penalties is discovered, thus a balance be-
tween feasible and infeasible solutions will
be met. A disadvantage of this approach is
that it is dependent on the problem.

Po
pu

la
ti

on
 D

iv
er

si
ty

[[

49
],

[5
1]

Any evolutionary optimization technique re-
quires a mechanism in order to maintain di-
versity in the population. If there is no diver-
sity, the search will be concentrated only in
one area of the feasible region, in a phe-
nomenon known as genetic drift. There are
several ways to maintain diversity, among
them, niching methods and the use of muta-
tion have become the most popular ones. The
niching methods are the extension of EAs
and make it possible to find more than one
local optimum of a function. Sharing and
crowding are the best known and popular
niching techniques. Both aim to decrease the
fitness of individuals that are located in
crowded regions in order to promote the pro-
liferation of solutions in sparse regions. Shar-
ing uses the concept of distance to its closer
neighbor while crowding is controlled by the
density of solutions in a region or population.

The use of mutation methods to increase di-
versity is one of the main goal in EAs (high-
light in 3.3.5). However, there is not any de-
terministic formula concerning the optimal
settings wherever it is used in static or dy-
namic mutation mode.

When comparing niching approaches, the
sharing method presents several drawbacks.
Sharing has difficulty in distinguishing the
local optima that are much closer to each
other than the niche radius. Thus it is neces-
sary to know a priori the distribution of the
optimum and define the suitable value of
niche radius. Special attention should be
given to evolutionary operators, for exam-
ple, the mating between chromosomes in
different niches may often produce unsuc-
cessful offspring.

3 Evolutionary Analog IC Design Optimization 59

Table 3.5. (continued)

Description Advantages and Disadvantages

Sp
ee

d
of

 C
on

ve
rg

en
ce

[4

4]
-[

46
]

The convergence speed in evolutionary opti-
mization follows three independent branches
of research. One explores the mixture of
complementary optimization techniques to
improve the performance of the overall algo-
rithms. The hybridization of local search
techniques with EAs known as memetic algo-
rithms can also improve the convergence
speed near the optimal. Another approach
explores the multiple solutions available in
distributed computation. A different ap-
proach uses dynamic reduced models or ap-
proximate models (will be focused later) to
accelerate genetic algorithm based on design
optimization.

There is a great variety of hybrid methods
that combine the best of each technique [57-
59]. Although no mature methodology has
been established yet, research has proved the
efficiency of these approaches to increase
the speed and sometimes the accuracy in a
variety of problems. The increase of effi-
ciency using distributed computation tech-
niques is an obvious attractive approach to
take advantage of the increasing capacity of
computation resources available nowadays.
EAs coding structures are relatively simple
to adapt to distributed environment.

M
ul

ti-
ob

je
ct

iv
e

m
ul

ti
-c

on
st

ra
in

t p
ro

bl
em

s
[1

7]
-[

19
],

[4
][

5]
,[

20
]-

[2
2]

,[
55

]-
[5

7]

The area of research known as Evolutionary
Multi-Objective Optimization, or EMOO for
short, is one subject of constant active re-
search in field of evolutionary computation.
EMMOs are designed with regard to two
common goals, obtaining a fast and reliable
convergence to the Pareto front and ensuring
a good distribution of solutions along the
front. The main themes of research are fo-
cused on techniques for handling constraints,
maintain diversity of the solutions, hybridiza-
tion with other local search methods and ar-
chiving for storing non-dominated vectors.
The main influent approaches are MOGA,
NSGA, NPGA and SPEA as highlight in [4]-
[5],[19]-[22].

The main themes of research are similar to
general EAs, however they differ in meth-
odology. MOO is tailored to deal with multi-
objective optimization problems. A great
debate exists around the quality and the vir-
tues of SOO and EMOO approaches. Recent
studies [61] which compare the performance
of a single-objective genetic algorithm with
an EMOO approach indicate that there is no
dominant method when comparing the per-
formance in set of multi-objective problems.
The results obtained demonstrate that
EMOO algorithm outperforms SOO in some
cases but does not work well on problems
with many objective optimization functions.

60 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 3.5 (continued)

Description Advantages and Disadvantages

E
vo

lu
tio

na
ry

 a
lg

or
ith

m
s

w
ith

 h
ig

h
co

m
pu

ta
tio

na
l c

os
t e

va
lu

a-
ti

on
s

[4
7]

, [
58

]

Despite the great success of the use of Evolu-
tionary algorithms in some industrial and en-
gineering design problems, it may become
impractical in the case of high computational
cost evaluations or when an explicit objective
function does not exist. One approach to
overcome this problem is to estimate the ob-
jective function by constructing approximate
(or surrogate) models that are used to replace
exact but expensive evaluations, thus reduc-
ing the design computational cost. Several
models have been used, ranging from re-
sponse surface models (or polynomials), the
krigging model, very popular in design and
analysis of computer experiments (DACE),
neural networks, support vector machines,
etc. The use of approximate models in evolu-
tionary computation can also lead to a reduc-
tion in true objective function calls. A de-
tailed survey of fitness approximation in
evolutionary computation can be found in
[48].

The use of cheap surrogate models to be
used in lieu of exact models makes EAs a
viable tecnology to be applied to computa-
tionaly expensive problems. Aproximate
models are in order of magnitude cheaper to
run. However, the integration of approxi-
mated models with EAs to real-world prob-
lems have met limited success. The main
drawback is that the computational cost
demonstrated specially with response sur-
face models (which involve low-order poly-
nomial regression) as well as with the krig-
ging model becomes unacceptable as the
dimensional of the problem increases. This
effect known as the “curse of dimensional-
ity”, represents the amount of complexity
caused by the exponential increase in the so-
lution space with the addition of a extra di-
mension.

A
da

pt
iv

e
pa

ra
m

et
er

s
[5

9]
[6

0]

Adaptive parameters is the branch in research
of EAs dealing with the control parameter or
strategy parameters that allow the adjustment
of parameter values during the evolutionary
process. Parameters controlled during the run
have gained much attention and their tech-
niques inspired from ESs domain can be
classified in three main groups: deterministic,
adaptive and self-adaptive control mecha-
nisms. In the deterministic control, the strat-
egy parameters are modified by some deter-
ministic rules but without using the feedback
from the search. The adaptive approach uses
the knowledge adquired in evolutionary
process to refine the strategic parameters. In
the self-adaptive approach, no direct feed-
back control is used, the control parameters
are treated as optimization variables encoded
in the chromossome which evolves during
the evolution process using the standard algo-
rithms operators.

In spite of the increase of flexibility when
compared with the static parameter tuning
mechanisms, the deterministic an adaptive
approaches require in both cases, the right
definition of deterministic rules which could
be difficult to obtain. The adaptive with
feedback control has an additional advantage
over the deterministic since the feedback re-
turned from the process may help to decide
if the trend with the new parameter value
should persist or not.

The use of self-adaptive techniques simpli-
fies the problem. In the mutation control pa-
rameter case the optimized parameter is re-
lated with the speed of step size adaptation
rather than the step sizes themselves. Their
default values can be applied with success
for certain types of problems even though it
is not guaranteed the fastest adaptation
scores.

3 Evolutionary Analog IC Design Optimization 61

3.3 GENOM - Evolutionary Kernel for Analog IC Design
Optimization

Here a new approach to multi-objective optimization, GENOM, is introduced.
Fig. 3.4 overviews the main building blocks of GENOM optimization system. The
modified GA kernel which forms the central unit of this system is surrounded by
the evaluation engine unit and other additional units with computation facilities
involving remote communications and data processing. This section discusses the
internal structure of the analog optimization tool, which was extended with new
concepts, from an initial standard genetic algorithm to a modified GA implemen-
tation (GA-MOD) leading to an improvement in both robustness and efficiency.
The proposed methodology corresponds to a simulation based approach, since it
can be applied to all types of design circuits, producing highly accurate results and
providing an extended layer of analysis, concerning the robust design required in
the industrial environment.

Next, the optimization algorithm kernel, as well as, its particular aspects will be
described, such as the multi-objective multi-constraint function formulation, the
structure representation, the evolutionary control strategy, the self-adaptive pa-
rameters, premature convergence, etc.

Fig. 3.4 GENOM system overview

3.3.1 Fitness Function Study

The optimization methods introduced new challenges when solving multiobjective
problems. Designers have to formulate a fitness function that better represents the
objectives of the problem, and need to setup the decision maker (DM) preferences
in the presence of multiple conflicting design metrics. DM preferences, defined
before, during or after the optimization process [13],[58]-[61], express the impor-
tance level of each objective and can take the form ”high”, “medium” or ”low”.

62 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

DM preferences incorporated in the fitness function will assist the selection of the
optimal solution, providing that one exists.

One of the easiest and perhaps most widely used method to carry out perform-
ances trade-offs is the weighted sum approach (3.2). DM preferences are taken
into account by assigning several weightings, for each objective function fi(x). A
weighted sum approach transforms a multi-objective optimization problem in a
single-objective optimization problem.

1 and p1,...,i ,0 S, x..

)(*min

1

1

==∀≥∈ ∑

∑

=

=
p

i

ii

p

i

ii

wwts

xfw

 (3.2)

In spite of the simple formulation, there is no definite articulation between the
weightings and the obtained solution. The determination of the weightings from
the decision makers’ preferences is not an accurate procedure, either. This method
presents another disadvantage, as with convex combination of different objectives,
solutions at non-convex part of the pareto-front cannot be located [61].

Both user preferences and fitness function are the key factors for the effective-
ness of the optimization problem. The fitness function of a multi-objective optimi-
zation problem must reflect the exact needs of the design and the designer. To
accomplish both objectives, the fitness function, in GENOM, is formulated by the
minimization of a cost function which defines the relationship between the opti-
mization parameters and design performances, designed in order to take into
account the trade-offs of different objectives, reflecting the designer needs. The
proposed formulation is presented next.

3.3.1.1 Multi-objective Cost Function

Within GENOM, the designer has three different classes to express the main ob-
jectives with respect to each design metric. Fig. 3.5 outlines the membership func-
tions of each class.

The values of the performance metric under study are on the horizontal axis,
and the class-function to be minimized for that design metric, is on the vertical
axis. Each class, representing a unique desired behavior, is available in two ver-
sions, the soft and the hard constraints. The soft class functions are aggregated in
an objective function whose goal is to find the preferred solution among some pre-
ference criterion and the hard classes become the constraints because they repre-
sent the absolute limitations imposed on the system.

The above framework, derived from the Physical Programming methodology
[62],[63], presents a more flexible and user-friendly solution as it grasps the de-
signer’s physical conception of the aimed design. In this method designers give a
desired value which is employed to form a class function, instead of providing
weights to establish priority on objectives. These class functions aim at the con-
vergence of the algorithm and at the same time provide a complete set of pareto

3 Evolutionary Analog IC Design Optimization 63

Fig. 3.5 Classification of preferences for each performance metric

points. Like in fuzzy logic, the given set of values help quantifying an acceptable
or unacceptable result as they fit within some tolerance into the desired objective.
The tolerance boundaries are automatically determined accordingly to the target
values previously defined for a given performance metric. One advantage of this
method is that the designer does not need to provide information related to weight-
ings and only has to concentrate on data concerned with circuit design. When
compared to strict preferences, fuzzy preferences like the ones depicted in Fig. 3.5
have another advantage. They can improve the quality of solutions in the evolu-
tionary cycle. For example, if an infeasible sample is very close to the feasible
region, missing almost all specs and using a strict preference, it will be, almost
certainly, discarded from the evolutionary cycle due to a hard penalizing factor.
However, the employment of fuzzy preferences together with an appropriate selec-
tion method, as used in this approach, greatly increases the likelihood of the sur-
vival of this sample, and so, its potential schemata will have a chance to evolve.

In GENOM, the fitness function was formulated as the sum of several aggre-
gated cost functions. The aggregated cost function presented in the following
expression (3.3) measures the design specs satisfaction degree.

64 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[]⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

nSpecs

j
jnSpecsS xfFSU

1

1)(*
G

 (3.3)

Where nSpecs is the number of target performances, F represents the class func-
tions that better express the main objective fi with respect to each design metric
and the scale factor, S, accommodates the results for efficient data treatment. In
the same manner, GENOM fitness function also handles with constraints satisfac-
tion, this mean the functional constraints related with designer rules. The new
component is given by (3.4) where nConst is the total number of constraints:

[]⎟
⎠

⎞
⎜
⎝

⎛= ∑
=

nConst

k
knConstC xfFSU

1

1)(*
G (3.4)

 Finally, the aggregate cost function also incorporates the corner analysis. The fi-
nal expression given in (3.5) is then automatically implemented according to the
given information. The nCorners parameter represents the number of corners.

()⎟
⎠

⎞
⎜
⎝

⎛ += ∑
=

nCorners

i
CSnCorners UUSxCost

1

1 *)(
G (3.5)

Fig. 3.6 illustrates the specification of the gain-bandwidth of an amplifier (gbw)
and respective class function F profile.

Fig. 3.6 Tolerance limits of a class function

This example adopts the soft class-1 function that maximizes the gbw criterion.
Between the desirable target specification and the other extreme admissible value,
five regions that characterize the degree of desirability are created such as, the
ideal, tolerable, undesirable, high undesirable and unacceptable. These regions are
defined in the order of decreasing preferences.

3 Evolutionary Analog IC Design Optimization 65

With exception of class-3, four boundary values were necessary to build this
class function. The band class-3 function in general is defined by eight values.
These values translate the designer preferences for each range of each given de-
sign metric. Only the two extreme values introduced by the designer are manda-
tory, the other ones can be automatically calculated. Whatever the case, the value
returned by the specification class-function is the same at each of the region
boundaries, regardless of class-type or criterion. Class functions are built in such
way that the vertical excursion [])(xfF i

G over two distinct criteria will always have

the same vertical magnitude as long as one travels across the same region-type,
even if the location of the boundary values ()(xfi

G) changes from criterion to crite-

rion. This property encapsulates a normalizing function in which every region-
type is conditioned in the same way for different criteria.

3.3.1.2 Cost Function with No Preference Articulation

When it is not known any preference information about performance metrics be-
yond the target performances values, a weighted cost function (3.6) is being used
giving each evaluation a satisfying degree (rank) of a candidate solution related to
the desired specification. It privileges solutions with maximum satisfied specifica-
tions and distinguishes the best solution, as the one that minimizes the difference
between achieved performance values and specified target value.

)()(and)()(

)(*)(*)(

)(*min)(

)(
)(

)(
)(

ºº

º

1

kgoal
kgoalck

kjgoal
jgoalpj

j

Const
N

k

kk

Specif
N

j

jji

Corners
N

i

ii

xCtrxFit

xCtrwcxFitwpxf

xfwcxCost

−−

=

==

+=

=

∑∑

∑

(3.6)

Fitj(x) is a set of normalized objective functions derived from goals and perform-
ance specifications to be optimized and Ctrk(x) is a set of normalized user-defined
functional constraints. Once the user specifies an upper or a lower bound for the
design constraints (goal), these are used to translate the achieved design and con-
straints specifications in cost function profiles accordingly to the Fig. 3.5. The
indices j and k are the number of objective and functional constraint functions, re-
spectively. The aim of these normalized functions is to assign an equal importance
to each competing specification. The designer can now setup the relative impor-
tance for each competing specification adjusting the individual scalar weights wpj
and wck. At the beginning, greater weight values can be assigned to important de-
sign objectives and design constraints. With this formulation the optimized algo-
rithm can further explore the solution space and generate more than one circuit
feasible solution.

66 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 3.6 Normalization overview

n Type SPECs TARGET
Achieved
Performance
 (pj)

Objective
Function

)(xFit j
∑=
SpecifN

j

jji xFitwpxf

º

)(*)(

1 Perf. DC gain Gain > 80 90 dB 0 fi(x) = 0

2 Perf. GBW Gbw > 200 150 MHz -0.25 fi(x) = 0.25

3 Goal Power min (power) Valid spec. (*) (*)

4 Goal Power min (power,0,10) 5 mw 0.5/10 fi(x) = 0.25+0.05

(*) Problem dependent.

Table 3.6 gives an overview of the two different types of normalization applied
in GENOM.

The no.1 performance specification was entirely fulfilled so the respective class
objective function is null and the contribution to the aggregate cost function fi(x) is
zero. The no.2 performance specification is the same type as no.1, however, the
target was not achieved, so the respective class objective function Fitj(x) produces
a value proportional to the missing target value. This type of normalization aims to
balance the intensities of all performances, as well as, all function constraints.

A particular case is devoted to the design objective of the problem. In GENOM
the design objectives or goals specs can be defined between two intervals (mini-
mum and maximum) as defined with spec no.4. Alternatively spec no.3 can also
be used however, the maximum and minimum is calculated automatically as de-
scribed in Fig. 3.7. The normalization for design goals specs follows expression
(3.7). The contribution for the final aggregate cost function is scaled down by a

factor of 10,
10

)(
)(

xFit
j

jxFit = , called the residual. This procedure prevents the ap-

pearance of a dominant individual with extremely lower goals that does not fulfill
one or more regular performance specs.

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

<∨≤≤
=

−
−
−

−

others

min) (pj max)pj(min
xFit

pj

pj

j
,1

,
)(

min)(max
max
min)(max

min

 (3.7)

The very first idea behind GENOM fitness formulation is, first, to seek for the fea-
sible solutions (satisfying all Perf. constraints) and after, optimize its goals
(power, area, etc.). Once a feasible solution is found, the aggregated fitness value
is composed only by the sum of all goal residuals since the fitness related to per-
formance and functional constraints is zero by definition. The remaining non-zero
residuals will be used in order to optimize the goals of the problem and at the
same time, provide a set of pareto points whose weights are automatically ad-
justed accordingly to the goals, as shown in Fig. 3.7.

3 Evolutionary Analog IC Design Optimization 67

IF (Stop Condition = First Solution) EXIT execution as soon as 1st solution is found,

ELSEIF (goals type= 3) {

 - Calculate the mean and standard deviation of the respective goal spec, m and s.

 - Maximum = m+Bs; Minimum = [0,.., m-Bs] /*B is integer between 1..5 */

(a) IF (PARETO) {

 - remGen= maxGen-actualGen; /* remaining number of generations */

 - Share = (remGen/numObjectives); /* during this period minimize one goal */

 FOR (each goal) {

 Use weights to optimize one goal and relax the others;

 Each optimization evolves during “Share” generations;

 /*This promotes the sampling towards the extreme of pareto front*/

 }

 }

(b) OTHERWISE, optimize the design objectives without using weights
 - all wpj=1 in cost function until the end of generations. /*default*/

Fig. 3.7 Optimization of design objectives and pareto weights management

3.3.2 Individual Encoding, Population Structure and Sampling

The optimization algorithm is built over a single population structure that allows
the existence of elite individuals, following the (μ+λ) steady-state model
[31],[33],[64]. In the (μ+λ)-ES, a population of μ individuals produce λ offspring
per generation and the selection process reduces all individuals (μ+λ) to just
μ individuals again. The present population structure is divided into four main
specific regions as illustrated in the Fig. 3.8. Only a fraction of the population re-
produces and dies each generation. The proportion of each region is in conformity
with generally accepted EAs practices [56]-[57],[65].

Ini
tia

l

Pop
ula

tio
n

Fig. 3.8 Population structure

68 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Each individual in the population is represented by a chromosome of real-coded
values, illustrated in Fig. 3.9, because it is considered the representation that best
matches the primary target related to continuous domain applications.

Fig. 3.9 Chromosome type is a vector of real numbers

In order to achieve a better coverage of the search space, the initial population
in GENOM is created by sampling the search with the double of individuals in the
population size. The estimation of the population size is based on a heuristic rule
which involves the estimated search space size and is restricted to a value between
32 and 128 individuals.

In EAs there is no recommended or imposed initialization method to be fol-
lowed. The default method in GENOM implements a random initialization follow-
ing a uniform distribution as follows:

 { } { }njuxxxx jjjjji ,...,1,1,...i)(minmaxmin
)0(

, ∈∈−+= λ (3.8)

where,
 uj is a random number uniformly distributed over [0; 1],
 xi,j denotes the j-th component of a vector xi and λ denotes the
 population size.

The aim is to create a population with a good coverage of the search space, in or-
der to find the regions of most promising solutions. Another variation of this
approach is to impose a regular grid-layout where the sampling points are evenly
divided all over the space, as illustrated in Fig. 3.10. Another variation of these
approaches (d) and (e) focuses the sampling in the region of interest when there is
some specific knowledge about the objective function. It is used by domain ex-
perts who normally have an approximate idea of what the final solution will be.
The privileged information can be integrated in the search process in the format of
a solution which is included in the initial population. In constraint problems, this
knowledge can be useful to avoid the creation of invalid individuals in initializa-
tion phase.

Apart from these methods GENOM can also handle more sophisticated
sampling methods, like Latin hypercube (f) [66] and design of experiments (c)
[67]-[68] (implementation details in Appendix C.4). These methods are used for
sampling the starting points of initial population and the initial training data sets of
learning models. Table 3.7 shows the sampling criteria.

3 Evolutionary Analog IC Design Optimization 69

(a) Random initialization

(b) Grid initialization

(c) DOE initialization

(d) Knowledge-based ran-

dom initialization

(e) Knowledge-based

initialization

(f) LHS initialization

Fig. 3.10 Sampling strategies

Table 3.7 Sampling criteria

Methods Description Criteria

Random Purely random initialization Optional

Grid Used to build models and display surface plots Optional

Knowledge-based Grid & random
There is some specific knowledge about the prob-
lem

Optional

DOE (Appendix C.4) Optional. Applied after a feasible region is found. Optional

LHS (Appendix C.4) Default Default

Besides that, the search space decomposition (SD) was introduced, in order to
reduce problem complexity and the number of cost function evaluations, therefore
improving GA efficiency. Basically, it consists of a divide-to-conquer strategy
which decomposes the search space in subspaces, useful in a distributed environ-
ment. The search space decomposition consists of dividing each variable range or
a subset of the variables in p parts, thus welding, at most, pn problem subspaces,
where n is the number of optimization variables, as illustrated in Fig. 3.11.

Fig. 3.11 (a) illustrates the particular case of three optimization variables, x, y,
and z, considering a subdivision of each variable range in 2 parts. Fig. 3.11(b) il-
lustrates an example of search space decomposition with non-trivial mathematical
functions including the initial and final chromosome locations for the test with
search space decomposition, where each subspace solution is located over a white
spot, i.e., a low cost area.

70 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

ymin

ymax

xmin xmax

zmin

zmax

R3

Fig. 3.11 (a) Search space decomposition (b) Search space contour and chromosome location

In a parallel environment, the master processor after decomposing the search
space in small subspaces assigns to each slave processor the execution of one sub-
space optimization task. The slave task, executes one independent sequential GA
of a unique search subspace. Then, the best chromosomes, from each slave proc-
essor run, are transferred to the global optimization array in the Master processor.
Finally, when all the optimization sub-tasks are completed and the global optimi-
zation array is full with the best overall chromosomes from all search space, the
Master processor executes a final global optimization task having those chromo-
somes as the initial population.

Table 3.8 illustrates the achieved performance measures, for a test with a
non-trivial mathematical function presented in [69], executed for 100 runs with a
maximum of 500 iterations each. This test also includes the algorithm modifica-
tion introduced by premature convergence prevention defined in Sect. 3.3.5. There
is an increase on efficiency, when using parallel processing, with the asymptotic
limit of 1/n CPU time compared to the serial processing approach, where n is the
number of used processors.

Table 3.8 GENOM performance measures

Type of Runs
Average no.

of iterations

Average no. of

cost func. evaluations

Average

Minimum

Standard GA 383 9265 -1.3377

w/ space decomposition(sd)* 367 9042 -1.3806

w/ premature convergence

prevention (pcp)
175 4282 -1.4150

w/ sd and pcp* 174 4342 -1.4196
 *Approximately 1/n CPU time when using parallel processing.

3 Evolutionary Analog IC Design Optimization 71

3.3.3 Selection Strategies

GENOM is based on a steady-state selection approach implementing an elitism (or
truncation) strategy. The default selection mechanism employs a hybrid method-
ology between linear ranking and the tournament selection. First individuals are
sorted according to a ranking algorithm with two levels of feasibility defined be-
low, then the tournament selection will select within the current population, the
parents that will create the next generation of individuals.

3.3.3.1 Ranking-Based Scheme

The GENOM selection algorithm uses tournament selection with a tournament
size of two, preceded with a feasibility-based sort algorithm, inspired in K. Deb
[11] and C. Coellho [12] settled in the following conditions:

(a) Both solutions are feasible;
(b) Both solutions are infeasible, or
(c) One solution is feasible but the other is infeasible.

Fig. 3.12 Deb’s nuclear conditions

The new feasibility-based sort algorithm has the ability to make pair-wise com-
parison following the order rules of Fig. 3.13. The variant implemented in GE-
NOM, begins the ranking process giving priority to individuals that better meet
the feasibility region.

This method makes a separation of performance constraints and functional con-
straints, as described in 4.2.1, and compares the feasibility status of each solution
in order to provide the search direction towards the promising (feasible) region
based mostly on feasibility information (number of feasibility constraints satis-
fied) rather than in the constraint function value. When both individuals are feasi-
ble (satisfy all mandatory functional constraints), a similar process is followed in
order to provide the search direction towards the promising performance region.
This approach promotes infeasible solutions in the surroundings of the feasible re-
gion based in the number of constraints satisfied.

 (a) IF both individuals k1, k2 are feasible (functional)
 IF both satisfy the same number of the objective functions,
 SELECT individual with the better value of the objective function;
 ELSE select individual with the greatest number of the objective func-

tion satisfied;
 (b) IF only one individual IS feasible(functional), SELECT it; and
 (c) IF both individuals are infeasible,
 SELECT the individual with smaller number of violated constraints,
 OTHERWISE, IF the number of constraints satisfied IS equal,
 SELECT the one with the smallest value of violated constraints.

Fig. 3.13 The GENOM tournament with feasibility-based ranking algorithm

72 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

The novelty of this approach is the ability to handle constraint-based problems
which do not require any penalty parameter, so the problems which require penalty
terms can be eliminated. Several similar variants were implemented in GENOM,
like for example a ranking process giving priority to individuals that better meet the
feasibility function, or another one that first provides the search direction towards
the performance region and after that, towards the most feasible region. However,
for analog problems with a higher number of feasibility constraints than design
constraints the tournament with feasibility-based sort algorithm described above
works better. The default method, tournament with feasibility-based sort algorithm,
proves to be more effective in the generality of the experiments; in the same way as
Deb conclude with his original work [11]. Optionally, the roulette wheel and sto-
chastic universal sampling can be used as alternatives to tournament selection.

3.3.3.2 Constraint-Based Selection

A new alternative selection mechanism based on feasibility knowledge constraints
is also introduced and it can be generalized to all types of problems. This method
differs from the last selection schemes which were based on a probabilistic
method, to a new one based on knowledge “satisfiability”. The GENOM evalua-
tion module is able to produce individual constraint information for each specific
gene, notifying which constraints are satisfied or not and the respective amount of
constraints violation. This knowledge, returned from the evolutionary process in
the form of binary vectors called “masks” (see Fig. 3.15), is now available to other
modules of optimization tools, like the sort and pairing routines responsible for
selection process. The nuclear steps of the new constraint-selection scheme are
explained in Fig. 3.14 and Fig. 3.15. The idea is to couple a pair of chromosomes
with the largest number of genes that complement (or fulfill) the “missing” genes.

1. Sort by Feasibility method from population from
 0 – popsize -> (Rank-based Selection)
2. Use tournament selection with/out replacement 80% -> 0 - Keep
3. Use Selection by Matching Masks in 20%
4. Crowding- clusters similar chromosomes by randomly choosing
 a small number of chromosomes (3) and replacing the most similar,
 in terms of the distance. Avoid the repetition of pairs.

Fig. 3.14 The GENOM Constraint-based Selection scheme

Fig. 3.15 Ideal pair using satisfiability constraints (masks genes)

3 Evolutionary Analog IC Design Optimization 73

In practice, the original pair is looking for the pair that XORed with itself giving
the largest number of ones (a feasible solution).

For the pairing strategy, the selection of the potential mate is chosen from the
list of candidates that better complement the already selected parent in terms of sa-
tisfied constraints. Mating the parent with the one that better fulfills the faulty
constraints of both parents can potentially increase the probability of achieving a
child that satisfies more constraints than the parents do.

3.3.4 Crossover Strategies

The basic crossover function implemented in GENOM uses the Gaussian muta-
tion together with a uniform crossover to produce offspring solutions. This process
is a mixture of the standard Gaussian mutation operator with a standard uniform
crossover, as illustrated in Fig. 3.16.

),0(' σNxx kk +=

Fig. 3.16 The crossover operator with standard mutation

Another option is the use of standard arithmetic crossover with one weight λ as
defined in Fig. 3.17 (b) as,

21
'
1).1(. xxx λλ −+= or using a variation with a spe-

cific weight for each gene or in k (k<N) random genes xi in the chromosome
),...,,(21

'
nxxxx = defined as:

[] 1,1,0,

)1(

11

'

21
'

=∈=

−+=

∑∑
==

k

j

jj

k

j

jj

iiiii

 where xx

xxx

λλλ

λλ
 (3.9)

 The two first approaches of Fig. 3.17 (a) and (b) are used in GENOM for explora-
tory purposes while the arithmetic crossover with n weights is employed in the
final stage of the evolutionary process or when a significant number of feasible so-
lutions is found.

74 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 3.17 Crossover for real chromosomes on a 2-D dimensional problems

3.3.5 Mutation Strategies

Mutation is one of the primary methods of maintaining diversity among feasible
solutions. The basic mutation functions implemented in GENOM use the standard
uniform and the Gaussian mutation according to the mutation rate previously de-
fined. Additionally, a premature convergence prevention (PCP) process (Fig. 3.18)
was introduced to improve algorithm performance in case chromosomes con-
verged to local minima. This process is implemented by dynamically increasing
the mutation rate, whenever the algorithm is in a little evolution period (the stag-
nated state), and, therefore, forcing chromosomes to jump to other search space
locations, accounting for solution diversity. Reaching the mutation rate limit
means either enlarging the search subspace or outputting the best solution found.
The stagnated state is reached if the last elite element fitness value from popula-
tion does not change within five consecutive generations.

In addition, a new heuristic approach was developed to transform a static con-
trol of the mutation operator in a dynamic one. The new heuristic approach

Fig. 3.18 GA w/ premature convergence prevention flowchart

3 Evolutionary Analog IC Design Optimization 75

Fig. 3.19 Heuristics associated to the mutation operator

illustrated in Fig. 3.19, which can be optionally work together with PCP, applies
an UNDO function to the mutate chromosome after verifying that the modification
introduced does not get a better result.

The desired effect is to allow a better exploration of the search space in the be-
ginning of the process and a better exploitation at the end, mimicking the princi-
ples of a Simulated Annealing (SA) algorithm (Appendix C.4). By accepting
points of higher objective function (lower rank), the algorithm avoids being
stacked in local minima, allowing a global exploration of the search space.

The UNDO function is ruled by a SA like algorithm following the acceptance
function (PAF) and the annealing temperature (Temp) described in Fig. 3.20.

UNDO Pseudo-code:
0. Input
 Receive a set of mutated chromosomes and
 related, Last_State, Last_Cost, New_State.
1. Initialize
 Initialize (T0=Tmax; Tmax=numMaxIterations)
2. Construction. For each chromosome:

}

Last_State Last_State

onelast thekeeping State, newt //RejecELSE

New_State, Last_State

yprobabilit with State newAccept //

Rand(0,1)) (PAF IF

)(expPAF

{ ELSE }

 //AcceptNew_State; Last_State

{ 0Last_Cost) -(New_Cost IF

)(New_State EvaluateNew_Cost

Temp
_CostLNew_Cost

=

=

>

−=

=
<=

=

− ast

3. Update (decrease) the annealing Temperature
 ationsNumMaxIter1,.., T0/iter;*0.9 Temp =∀= iter
4. Terminate condition
 If (There is more chromosomes) goto step 2

Fig. 3.20 Mutation control flow and code

76 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Briefly, the algorithm accepts all new chromosomes (New_State), modified by
mutation operation, that lower (improve) the objective function, but also, accepts
with a certain probability (PAF), chromosomes that raise the objective function
(larger cost). Accepting lower ranks chromosomes, helps the algorithms to escape
from local minimum.

The PAF distribution follows one known annealing schedule which systemati-
cally decreases the temperature as the algorithm proceeds (T0/iter*0.9 Temp =).
The simulation starts with a high temperature. In this case, the PAF is very close
to 1. Hence, a new mutated chromosome with a larger cost has a high probability
of being accepted. The probability of accepting a worse state is high at the begin-
ning and decreases at the temperature decreases. When T is high it promotes the
exploration of search space, when it is low, the exploitation.

In this work, premature convergence prevention is the default method of main-
taining diversity among the feasible solutions.

3.3.6 Step Size Control – Dynamic Evolutionary Control

In order to efficiently control the population diversity and progressively reduce the
search space to the solution boundary, the optimization kernel implements the
Gaussian Mutation together with Gaussian Crossover [57] to dynamically control
the probability distribution applied when generating the offspring solutions. For
the mutation operator case, each component xi of vector x is replaced by x’i ,

),0(' σNxx ii += (3.10)

where, N(0,σ) is a random Gaussian number with mean zero and standard devia-
tions σ. The parameter σ influences deeply the performance of the mutation opera-
tor. When σ is too high the algorithm becomes inefficient to fine-tuning the
solutions. On the other hand, when σ is too low the population may get stuck in
local optima. One of the techniques to control σ is the self-adaptation in evolu-
tionary strategies. Defining σ as function of the generation number can be a very
effective solution because it is expected that the population will converge towards
a global or a local optima. The algorithm should start with a wide search strategy,
which becomes narrower as the population converges in order to improve the like-
lihood of finding the global optimum. Therefore σ should be calculated from a de-
creasing function. The approach followed in GENOM is represented in equation
(3.11) and the simulated effect is illustrated in Fig. 3.21.

The current implementation transforms the static standard deviation σ by a dy-
namic parameter, given by σ‘:

)_/1(1)(sGenerationMaxGenerationrandGeneration −−=′σ (3.11)

In short, this way, the variance or diversity associated to the population will decrease
automatically as generations converge to an upper limit (Max_Generations).

3 Evolutionary Analog IC Design Optimization 77

Va
ria

nc
e

 Generations

Fig. 3.21 Decreasing function for calculation of σ'

3.3.7 A Distributed Algorithm for Time Consuming Fitness
Functions

Following the trends in the distributed computing domain we developed a distrib-
uted implementation of GENOM kernel adapting the original sequential enhanced
GA using a standard message passing protocol, LAM/MPI [70],[71]. Once evolu-
tionary algorithms consider populations of solutions, they are easily parallelizable
[36],[26].

One of the most straightforward approaches is to have one global population
with multiple processor units for evaluating individual solutions, see Fig. 3.22 (a).
This scenario can be very useful for applications with heavy evaluation functions.
Another method often used, known as the island model (Fig. 3.22 (b)), divides the
global population in several subpopulations, each one executing its own evolu-
tionary algorithm. Once in a while, one individual from one subpopulation
receives permission to migrate to a neighbor subpopulation. Another approach al-
lows the migration of data to a group of neighbors that share areas of interest. This

Normal EA Evaluation
Engine

Machine 1 Machine 2

Evaluation
Engine

Machine 3
Evaluation

Engine

Machine 4

Island EA Island EA

Machine 1 Machine 2

Island EA

Machine 3

Island EA

Machine 4
Migration

Population Population

Population Population

(a) Master-Slave Model (b) Island Model (c) Diffusion Model

Fig. 3.22 Parallel architectures for EAs

500 Random Numbers

78 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

method is known as the diffusion model, see Fig. 3.22 (c). The overlapping
neighborhoods may have different topologies. For example, in the cellular model
the population is arranged with some type of spherical structure and individuals al-
lowed to mate with, are within a certain radius.

At the software level, LAM [71] is a parallel processing environment and
development system for a network of independent computers. It features the Mes-
sage-Passing Interface (MPI) programming standard [70],[72] supported by exten-
sive monitoring and debugging tools. It is composed of more than one hundred
functions that manage the communications between parallel processes, although
this implementation uses only a small subset of the basic directives. Recently a
new upgrade was released with the name of Open MPI Project [73] based on the
open source MPI-2 implementation. However, the update of MPI is left for future
work.

The LAM/MPI from the decomposition algorithm point of view implements a
new parallelization method which combines the Master-Slave Parallel GA with
the Coarse-Grain GA methods [74] in a network of independent computers or in a
single processor with several cores, as illustrated in Fig. 3.23.

Fig. 3.23 Distributed processing algorithm

In this type of parallel GA, the master processor stores the global population
and performs the selection, crossover and mutation tasks, while the expensive fit-
ness evaluation task is distributed among the slave processors. If the number of
available processors is smaller than the number individuals, then the master

3 Evolutionary Analog IC Design Optimization 79

transfers another evaluation task to the free slaves, as soon as, they finish their
tasks. The expected speed-up of the proposed parallel method, for expensive fit-
ness evaluations, can increase nearly linear along with the number of used slave
processors [26],[69],[75]-[76], as depicted in Fig. 3.24. The main advantage of
this model resides in increasing the algorithm speed without introducing extra
complexity. The results are in conformance with the expected theoretical model
given in [26]. The real values are slightly below the linear speed-up reference line
due to communications costs.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Number of Processors

S
pe

ed
up

Expected

Real Data

Fig. 3.24 Expected distributed processing speed-up tested with GENOM

The search space decomposition, described in Sect. 3.3.2, is an additional tech-
nique which can raise the algorithm performance when used together with paral-
lelization. Basically, the master processor after decomposing the search space in
small pn problem subspaces, assigns to each slave processor the execution of one
subspace optimization task and at the end the Master processor executes a final
global optimization task having those chromosomes as the initial population.

The program code was relatively simple to adapt and it can easily keep the load
balance. The inter-processor data communication overheads produced in this
model is much less when compared with others. Besides, the method does not
change the GA search behavior, so the conclusions for the serial GA Kernel can
still be applied.

According to Cantu-Paz and Goldberg [26] the total execution time per genera-
tion of a parallel GA can be computed as:

TcPTp P
TfNpop)1(. −+= ρ (3.12)

 where,
 Tp = the the total execution time per generation
 Npop = the number of chromosomes in the population
 Tf = the time to evaluate the fitness of one chromosome
 Tc = the average time to communicate with one processor

80 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

 P = number of processors
 ρ = parameter dependent on selection and parallelization method

It can be seen that the total execution time is composed of two terms, the first, re-
fers to the time required to evaluate the fitness of the chromosomes and, the sec-
ond, involves the total communication time. The speedup for a given number of
processors can be computed by expression (3.13), where T1 is the time for a single
processor [36]:

P

TfNpop
T
T TwhereSpeedup

p

.
1

1 , == (3.13)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Number of processors

 S
pe

ed
-u

p

Tf/Tc=1
Tf/Tc=10
Tf/Tc=100

Theoretical

Fig. 3.25 Theoretical speedup of GAs with Npop = 100

That speedup depends on the ratio of the time to compute the fitness relative to
the communication time (Tf /Tc), the number of processors, the population size,
and the variable ρ, which depends on the details of the code and the parallelization
technique. Here we use ρ = 1, which is appropriate for a master–slave GA
application.

3.3.8 GENOM GA Attributes

Table 3.9 provides a description of the most commonly used techniques applied in
EAs in terms of decisions that must be taken into account during an implementa-
tion of a particular EA and shows how GENOM fits in this domain. It is an ex-
tended variation of the table proposed in [27].

The attribute values represent some functionality that a designer wishes to inte-
grate in the optimization framework. From the designer point of view, the set of
attributes represents the decisions that will characterize a given system.

3 Evolutionary Analog IC Design Optimization 81

T
ab

le
 3

.9
 O

ve
rv

ie
w

 o
f

th
e

co
m

m
on

 u
se

d
at

tr
ib

ut
es

 in
 G

E
N

O
M

 a
nd

 E
A

s

82 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

3.3.9 GENOM Optimization Methodology

One of the major challenges facing semiconductor companies today is how to in-
crease yield. There are many factors that affect yield. Here, this focus is given
mainly to those related to process, temperature and supply voltage variations in-
herent to any IC design environment and fabrication process. A corner point, as
seen by an IC designer, is a combination of a particular technological model de-
scribing some process variations with a particular operating context representing
some combination of operating conditions. The corner analysis represents the cir-
cuit performance analysis for all the combinations of extreme corner points as il-
lustrated in Fig. 3.26.

Fig. 3.26 Performance specification violation arouse from operational circuit deviations

Corners simulation is perhaps the most widely and less time-consuming method
used to test process, temperature and voltage variations. Usually, a designer de-
termines the worst case corners, or conditions, under which the circuit or system is
expected to function and these are the minimum requirements to produce a robust
design. This important requirement was taken into consideration in the develop-
ment of GENOM optimization methodology.

The proposed methodology, illustrated in Fig. 3.27, is based on an enhanced
GA kernel implemented in two optimization moments, a coarse and fine optimiza-
tion. The first one executes a nominal optimization of analog building blocks and,
in the second one the optimization is extended to deal with operational and proc-
ess variations. This type of analysis is a mandatory task in any modern analog de-
sign process in order to get realistic solutions or robust designs.

3.3.9.1 Optimization Setup

The IC designer inserts the necessary input data in a database system assisted with
the AIDA/GENOM design front-end [77] (see also Sect. 5.2). First, the circuit to-
pology and technology files are selected from the IC database. Then, a specifica-
tion page, dynamically generated based on the number and class of optimization
variables and technological constraints, allows the setup of parameter bounds, etc.

3 Evolutionary Analog IC Design Optimization 83

Next, the required design goals, the circuit design constraints and the type of op-
timization procedure must be appropriately specified. In case of a circuit design
optimization with corner analysis, the information like process and operation vari-
ations to be used, and their associated weight, should also be described. Finally,
the job is executed in a single machine or in a distributed environment using the
built-in distributed processing capability described in [69] and sub-Sect. 5.2.4.

Fig. 3.27 Circuit/System optimization methodology

3.3.9.2 Coarse Optimization

The coarse optimization step executes a nominal optimization of analog building
blocks considering only typical device models and typical working conditions.
The purpose of the coarse optimization is to generate, in a fast way, a set of poten-
tial good solutions that will represent the initial population for the fine-tuning op-
timization process. Here, the optimization parameters can be relaxed, for example,
one can use a multiple of the fine grid value, thus reducing the search space and
increasing the probability of finding space regions with potentially valid solutions
for the second optimization run.

3.3.9.3 Fine-Tuning Optimization

Here a fine grid optimization is performed taking as the initial population the
ELITE chromosomes from the preceding step and having into account the given
corners analysis specifications. This second optimization step is executed using
the same optimization algorithm and using an expanded version of the algorithm

84 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

fitness function defined in sub-Sect. 3.3.1. Now, the algorithm merit function as-
signs to each corner a weight proportional to its importance and fitness value.

The idea beyond this strategy is, on one hand, a common belief according to
which one solution that verifies all corners must satisfy necessarily all perform-
ance specifications, including the typical case specs and, on the other hand, the in-
fluence of each corner condition will modify the performance measures in the
boarder around the corner point reached by optimization in typical conditions.

This two-step coarse-fine strategy is particularly useful for corner analysis be-
cause it reduces the computation time significantly, up to N times the number of
corners, when compared with a full corner optimization. N is the defined as the
number of executed coarse evaluations. The final solution results in a more robust
approach with respect to variations and mismatches. Additionally, the undesired
sensitivity effects are attenuated automatically by robust design.

Although not covered yet, an additional improvement in robustness can be
achieved by Monte Carlo (MC) simulations. Besides the improvement in terms of
yield, they allow the identification of worst case corners points to be used later in
the sizing loop. Applying MC between the coarse and fine steps allows the opti-
mization kernel to consider just the critical corner cases.

3.4 Conclusions

An overview of the state of the art in computation techniques to solve nonlinear
optimization problems was introduced in this chapter with special focus on evolu-
tionary optimization algorithms and the recent developments in this field were
also described. The generality of this approach was also demonstrated in some
numerical examples. The application of this optimization concept to automate the
analog IC design flow has introduced a new level of complexity. In this class of
optimization algorithms, designers can control the setup parameters of the optimi-
zation problem and even some parameters from the optimization algorithm but do
not have the keys to guarantee that the computed solution is really the optimal
one. To ensure an efficient resolution of the optimization algorithm, designers
have to formulate an adequate cost function and define efficient criteria to be used
by the genetic operators. A new optimization tool called GENOM, based on a GA
optimization kernel, has been designed to capture the design performance targets
of an analog multi-objective multi-constrained IC design problem. The system
was designed to incorporate the effect of process variations, this way the opti-
mized circuit becomes tolerant to process variations increasing the yield.

References

[1] Medeiro, F., et al.: A Statistical optimization-based approach for automated sizing of
analog cells. In: Proc. ACM/IEEE Int. Conf. Computer-Aided Design, pp. 594–597
(1994)

[2] Nye, W., Riley, D.C., Sangiovanni-Vincentelli, A., Tits, A.L.: DELIGHT.SPICE: An
optimization-based system for the design of integrated circuits. IEEE Trans. Com-
puter-Aided Design 7(4), 501–519 (1998)

3 Evolutionary Analog IC Design Optimization 85

[3] Michalewicz, Z.: Evolutionary computation techniques for nonlinear programming
problems. International Transactions in Operational Research 1(2), 223–240 (1994)

[4] Zitzler, E.: Evolutionary algorithms for multi-objective optimization: Methods and
applications. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich
(1999)

[5] Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms for multi-
objective optimization. In: Proc. Congress on Evolutionary Computation, vol. 3(1),
pp. 1–16 (1998)

[6] NEOS Guide, Optimization Technology Center, Department of Energy, Northwestern
University (2005), http://www.ece.northwestern.edu/OTC (Accessed
March 2009)

[7] Dantzig, G.B.: Linear programming and extensions. Princeton University Press,
Princeton (1963)

[8] Beasley, J.E.: Advances in linear and integer programming. Oxford Science Publica-
tions, Oxford (1996)

[9] Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific,Belmont (1998)
[10] Constraint programming, Artificial intelligence applications institute. The University

of Edinburgh (2007), http://www.aiai.ed.ac.uk/ (Accessed March 2009)
[11] Deb, K.: An efficient constraint handling method for genetic algorithms. Computer

Methods in Applied Mechanics and Engineering 186, 311–338 (2000)
[12] Coello, C.A.C.: Theoretical and numerical constraint handling techniques used with

evolutionary algorithms: A survey of the state of the art. Computer Methods in Ap-
plied Mechanics and Engineering 191, 1245–1287 (2002)

[13] Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and
multiple offspring incorporated to differential evolution for constrained optimization.
In: Proc. GECCO, pp. 225–232 (2005)

[14] Mahfoud, S.W., Goldberg, D.E.: Parallel recombinative simulated annealing: A ge-
netic algorithm. Parallel Computing 21, 1–28 (1995)

[15] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. Journal of Chemical Phys-
ics 21(6), 1087–1092 (1953)

[16] Kirkpatrick, S., Gerlatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science (1983), doi: 10.1126/science.220.4598.671

[17] Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic
algorithms. Ph.D. dissertation, Vanderbilt University, Nashville, TN (1984)

[18] Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multi-objective optimization:
Formulation. Discussion and Generalization. In: Proc. 5th International Conference
on Genetic Algorithms, pp. 141–153 (1993)

[19] Fonseca, C.M., Fleming, P.J.: Multi-objective optimization and multiple constraints
handling with evolutionary algorithms–Part II: Application example. IEEE Trans.
Systems, Man, and Cybernetics: Part A: Systems and Humans, 38–47 (1998)

[20] Fonseca, C.: Multiobjective genetic algorithm with application to control engineering
problems, Ph.D. Thesis, The University of Sheffield (1995)

[21] Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multi-objective ge-
netic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6, 182–197 (2002)

[22] Horn, J., Nafploitis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multi-
objective optimization. In: Proc. 1st IEEE Conference on Evolutionary Computation,
pp. 82–87 (1994)

86 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[23] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evolutionary Computation 1, 67–82 (1997)

[24] Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading (1989)

[25] Michalewicz, Z.: Genetic algorithms + data structure = evolution programs, 3rd edn.
Springer, Berlin (1996)

[26] Cantu-Paz, E., Goldberg, D.E.: On the scalability of parallel genetic algorithms. IEEE
Trans. Evolutionary Computation 7, 429–449 (1999)

[27] Kicinger, R., Arciszewski, T., De Jong, K.A.: Evolutionary computation and struc-
tural design: A survey of the state of the art. Computers & Structures 83(23), 1943–
1978 (2005)

[28] Zilouchian, A., Jamshidi, M.: Intelligent control systems using soft computing meth-
odologies. CRC Press LLC (2001)

[29] Liang, J., McConaghy, T., Kochlan, A., Pham, T., Hertz, G.: Intelligent systems for
analog circuit design automation: A survey (2001),
http://archived.techonline.com/ (Accessed March 2009)

[30] Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor (1975)

[31] Back, T., Hoffmcister, F., Schwefel, H.P.: A survey of evolution strategies. In: Proc.
4th Int. Conf. on Genetic Algorithms, pp. 2–9 (1991)

[32] Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolu-
tion. Wiley, Chichester (1966)

[33] Fogel, D.B.: Evolutionary computation: Towards a new philosophy of machine intel-
ligence. IEEE Press, New York (2000)

[34] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

[35] Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic
programming IV: Routine human-competitive machine intelligence. Kluwer Aca-
demic Publishers, Dordrecht (2003)

[36] Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. Wiley, New York (1998)
[37] Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of

cooperating agents. IEEE Trans. Systems, Man, and Cybernetics-Part B 26(1), 29–41
(1996)

[38] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. Conf. on
Neural Networks, pp. 1942–1948 (1995)

[39] Ocenasek, J.: Parallel estimation of distribution algorithms. Ph.D. dissertation, Fac-
ulty of Information Technology, Brno University of Technology (2002)

[40] Larrañaga, P., Lozano, J.A.: Optimization by learning and simulation of probabilistic
graphical models. In: Parallel Problem Solving from Nature, PPSN VII (2002),
http://www.sc.ehu.es/ccwbayes/ (Accessed March 2009)

[41] Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms: A new tool for
evolutionary computation. Kluwer Academic Publishers, Norwell (2001)

[42] Price, K., Storn, R.: Differential evolution - a simple and efficient heuristic strategy
for global optimization over continuous spaces. Journal of Global Optimization 11,
341–359 (1997)

[43] Reynolds, R.G.: An introduction to cultural algorithms. In: Sebald, A.V., Fogel, L.J.
(eds.) Proc. 3rd Annual Conference on Evolutionary Programming, pp. 131–139
(1994)

3 Evolutionary Analog IC Design Optimization 87

[44] Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report
826 (1989)

[45] Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: Model, tax-
onomy and design issues. IEEE Trans. Evolutionary Computation 9(5), 474–488
(2005)

[46] Ong, Y.S., Krasnogor, N., Ishibuchi, H.: Special Issue on Memetic Algorithms. IEEE
Trans. Systems, Man and Cybernetics - Part B 37(1) (2007)

[47] Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary op-
timization frameworks for high-fidelity engineering design problems. In: Knowledge
Incorporation in Evolutionary Computation, pp. 307–332. Springer, Heidelberg
(2004)

[48] Bosman, P.A., Thierens, D.: Exploiting gradient information in continuous iterated
density estimation evolutionary algorithms. Tech. Rep. UU-CS-2001-53, Universiteit
Utrecht (2001)

[49] Mezura-Montes, E., Coello, C.A.C.: Adding a diversity mechanism to a simple evolu-
tion strategy to solve constrained optimization problems. In: Proc. Congress on Evo-
lutionary Computation, vol. 1, pp. 6–13 (2003)

[50] Streichert, F., Stein, G., Ulmer, H., Zell, A.: A Clustering based niching EA for mul-
timodal search spaces. In: Proc. 6th International Conference Evolution Artificielle,
pp. 169–180 (2003)

[51] Kim, J.K., Cho, D.H., Jung, H.K., Lee, C.G.: Niching genetic algorithm adopting re-
stricted competition selection combined with pattern search method. IEEE Trans.
Magnetics 38(2), 1001–1004 (2002)

[52] Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algo-
rithm for multi-objective optimization. In: Proc. Congress on Evolutionary Computa-
tion, pp. 98–105. IEEE Service Center, New Jersey (1999)

[53] Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between single-objective and multi-
objective genetic algorithms: Performance comparison and performance measures. In:
Proc. Congress on Evolutionary Computation, pp. 1143–1150 (2006)

[54] Mezura-Montes, E., Coello, C.A.: Multiobjective-Based Concepts to Handle Con-
straints in Evolutionary Algorithms. In: Proc. 4th Mexican International Conference
on Computer Science, pp. 192–199 (2003)

[55] Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computa-
tion. Soft Computing Journal 9(1), 3–12 (2005)

[56] Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of evolutionary computation. Oxford
University Press, Oxford (1997)

[57] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algo-
rithms. IEEE Trans. Evolutionary Computation 3(2), 124–141 (1999)

[58] Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., et al.: open MPI: Goals,
concept, and design of a next generation MPI implementation. In: Proc. 11th Euro-
pean PVM/MPI Users’ Group Meeting, Hungary (2004)

[59] Andersson, J.: A survey of multiobjective optimization in engineering design. Tech.
Rep. No. LiTH-IKP-R-1097, Dept. of Mechanical Engineering, Linköping University
(2000)

[60] Andersson, J.: Multiobjective optimization in engineering design applications to fluid
power systems, Ph.D. Thesis no 675, Linköping University, Linköping (2001)

88 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[61] Messac, A., Sundararaj, G.J., Tappeta, R.V., Renaud, J.E.: The ability of objective
functions to generate non-convex pareto frontiers. American Institute of Aeronautics
and Astronautics Journal 38(3), 1084–1091 (2000)

[62] Messac, A.: Physical programming: Effective optimization for computational design.
American Institute of Aeronautics and Astronautics Journal 34(1), 149–158 (1996)

[63] Messac, A., Wilson, B.: Physical programming for computational control. American
Institute of Aeronautics and Astronautics Journal 36(2), 219–226 (1998)

[64] Michalewicz, Z., Michalewicz, M.: Evolutionary computation techniques and their
applications. In: Proc. IEEE International Conference on Intelligent Processing Sys-
tems, vol. 1, pp. 14–25 (1997)

[65] Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory
analysis of genetic algorithms. IEEE Trans. Evolutionary Computation 8(4), 405–421
(2004)

[66] McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for se-
lecting values of input variables in the analysis of output from a computer code.
Technometrics 21, 239–245 (1979)

[67] Antony, J., Somasundarum, V., Fergusson, C.: Applications of taguchi approach to
statistical design of experiments in Czech Republican industries. International Journal
of Productivity and Performance Management 53(5), 447–457 (2004)

[68] Trygg, J., Wold, S.: Introduction to statistical experimental design. Editorial (2002),
http://www.acc.umu.se/~tnkjtg/Chemometrics/Editorial (Ac-
cessed March 2009)

[69] Barros, M., Neves, G., Guilherme, J., Horta, N.C.: A distributed enhanced genetic al-
gorithm kernel applied to a circuit/level optimization E-Design environment. In: Proc.
Design of Circuits and Integrated Systems, pp. 20–24 (2004)

[70] MPI, The message passing interface (MPI) Standard (1995), http://www-
unix.mcs.anl.gov/mpi/index.htm (Accessed March 2009)

[71] LAM/MPI, LAM/MPI parallel computing (2007), http://www.lam-mpi.org
(Accessed March 2009)

[72] MPI Primer/Developing with LAM, Ohio Supercomputer Center,
http://parallel.ksu.ru/ftp/mpi/LAM/lam61.doc.pdf.gz (Ac-
cessed March 2009)

[73] Open MPI, Open MPI: Open source high performance computing (2007),
http://www.open-mpi.org (Accessed March 2009)

[74] Zhang, L., Kleine, U.: A novel analog layout synthesis tool. In: Proc. IEEE Int. Sym-
posium on Circuits and Systems, vol. 5, pp. 101–104 (2004)

[75] Chang, C., Lin, C.: LIBSVM: A library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm (Accessed March 2009)

[76] Martin, K., Johns, D.: Analog integrated circuit design. John Wiley & Sons Inc.,
Chichester (1996)

[77] Barros, M., Neves, G., Horta, N.C.: AIDA: Analog IC design automation based on a
fully configurable design hierarchy and flow. In: Proc. 13th IEEE International Conf.
on Electronics, Circuits and Systems, pp. 490–493 (2006)

M.F.M. Barros et al.: Analog Circuits and Systems Optimization, SCI 294, pp. 89–107.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

4 Enhanced Techniques for Analog Circuits
Design Using SVM Models

Abstract. In order to improve the relatively slow convergence of GA, in the pres-
ence of large search spaces, and reduce the high consuming time of evaluation
functions in analog circuit design applications, this chapter will discuss the use of
learning algorithms. These algorithms explore the successive generation of solu-
tions, learn the tendency of the best optimization variables and will use this know-
ledge to predict future values. In other words, these techniques employ data
mining theory, used to manage large databases and huge amount of internet in-
formation, to discover complex relationships among various factors and extract
meaningful knowledge to improve the efficiency and quality of decision making.
In this chapter a new hybrid optimization algorithm is presented together with a
design methodology, which increases the efficiency on the analog circuit design
cycle. This new algorithm combines an enhanced GA kernel with an automatic
learning machine based on SVM model (GA-SVM) which efficiently guides the
selection operator of the GA algorithm avoiding time-consuming SPICE evalua-
tions of non-promising solutions. The SVM model is here defined as a classifica-
tion model used to predict the feasibility region in the presence of large, non-linear
and constraints search spaces that characterize analog design problems. The SVM
modeling attempts to constraint the search space in order to accelerate the search
towards the feasible region ensuring a proper operation of the circuit.

4.1 Learning Algorithms Overview

Data mining consists of exploring data in order to discover unknown patterns and
meaningful relationships in data, which may be used to make valid predictions.
Within this technology data play an important role and the knowledge, extracted
by the use of pattern recognition technologies as well statistical and mathematical
techniques are the driven force in the new decision support systems. The adoption
of this technology can increase the productivity in business or in the process
where it was applied, since the same goals could be achieved or even improved
with less investment in efforts and resources.

The technology behind data mining techniques is mostly based on inductive
learning [1], where a model is constructed by generalizing from an adequate num-
ber of training samples collected from an historical database or coming from an ex-
periment in which the sample is tested. Once built, the trained model can be
applied to unseen examples to predict future trends and behaviors. This typical
learning scenario is illustrated in Fig. 4.1 and it is known as a supervised learning
approach. This differs from other approaches in what concerns to the feedback,

90 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

received from its process during the learning stage. For example, in the reinforce-
ment learning the feedback signal does not contain the knowledge of the environ-
ment, which is supplied to the learning machine in the supervised learning. Instead,
the learning machine only receives a rating of its performance, often called rein-
forcement signal. In the unsupervised learning approach, the learning machine does
not receive any feedback information at all, only the input samples. The learning
machine is charged to reveal properties or knowledge hidden in the data, e.g. asso-
ciating these data into groups or classes based on correlation of samples.

Fig. 4.1 Supervised learning approach

The data mining tools were originally developed to answer to specific problems
in several areas of application and different knowledge domains, and so they in-
herited special characteristics that make each specific technique tailored to some
type of problem. The most usual of these are:

− Classification and regression. These classes embrace the largest number
of problems in the data mining domain [2]. In the classification problems,
the learning machine creates a model to predict the class membership to
which an entity belongs to, whereas in the regression case the model aims
to predict a real-value variable based on the relationship between the
other variables, assuming a linear or nonlinear relationship.

− Association and sequencing. Also known as market basket analysis, these
techniques create models to discover hidden patterns of behavior, correla-
tions among a set of objects generating an output in the form of descriptive
rules, e.g., “75% of the customers who buy milk also buy bread and eggs”.
The sequencing technique is very similar to an association technique, but it
includes description rules with information of time in the final analysis.

− Clustering. This technique seeks to identify a set of groups or clusters
that defines the given data. Basically, it groups together entities or data
points with similar behavior or properties, and creates different groups
for dissimilar entities.

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 91

Advances in data mining were boosted by the progress in the fields of artificial
intelligence (AI) and statistics. Fig. 4.2 provides a description of some of the most
common data mining approaches used nowadays. Below, these techniques are
briefly described.

Fig. 4.2 Data mining technology

The regression technique implements a model based on observed data to fore-
cast the output effect of a data item on the modeled system. In the simplest case,
regression uses standard statistical techniques such as linear regression, which is
modeled by a strait line that best fits the data and lately uses this line to predict
values. The optimum model is obtained through the line that minimizes the sum of
the square error from each data sample. The linear regression equation is de-
scribed in Fig. 4.3.

However, for many real-world problems, predictions are very difficult to obtain
because they may depend on complex interactions between multiple predictor

Linear regression model formulation:

ebXaY ++=

where,
Y – dependent variable
X – independent variables
a – constant term
b – coefficient of indep. variables
e – the error term or residual

The "residual" e is a random variable
with mean zero. The coefficients a and b
are determined by the condition that the
sum of the square residuals is as small as
possible.

Fig. 4.3 Linear regression

92 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

variables. Therefore, more sophisticated algorithms are used for these cases such
as, logistic regression, decision trees, neural nets and support vector machines.

Neural networks (NN) [3-8] are inspired on an early model of human brain
function, whereas support vector machines (SVM) had their inspiration on the sta-
tistical learning theory [9]. Both have proven great efficiency either in classifica-
tion as in regression type of problems. They require the configuration of model
parameters in order to be efficient. The input for these models is limited to nu-
merical data and the output is essentially predictive, i.e., they were designed to
build models to forecast future behaviors but do not have mechanisms to summa-
rize data and highlight their interesting properties. Due to this behavior, they are
often referred to as "black box" technologies. Generally, the training of these
models can be time consuming, although the predictions for new values are proc-
essed very fast. A great advantage of these algorithms is their ability to be used as
an arbitrary function approximation constructed from past observations. This as-
pect is particularly useful in complex and expensive data analysis functions or
even in situations where there is no defined function, but only a set of samples.
Although both NN and SVM have common characteristics, they differ radically in
one important aspect: SVM training always finds a global minimum [9].

The decision tree is a technique in which the resulting model is represented by
graphic structure in a form of tree. One overview of this representation is illus-
trated in Fig. 4.4.

Fig. 4.4 Decision tree representation example

The tree representation helps to identify the important factors of the problem
(the nodes) and how these factors have been affecting the outcomes of the deci-
sion in the past. The final decision is found in one of the leaf nodes at the bottom
of the tree, after traveling from the root at the top and traversing several sub-nodes
according to some test execution in each sub-node. The decision trees are mostly
used for classification. The graphical representation is an attractive characteristic
because it is easy to understand, which makes this technique become one of the
most popular tools for data mining problems.

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 93

K-nearest neighbor (KNN) [10] is also a predictive technique suited for classi-
fication models. Unlike the other predictive techniques, it has no training phase
once the training data represents simultaneously the model, thus models tend to be
very large. The predictions for a new sample is done by looking for the group of
similar characteristics and calculate the outcome value based on the most pre-
dominate class (“k” means the number of the nearest points with similar character-
istics). The definition of this model is associated with a metric to measure the
distances. The choice of metric is an important specification to take into account
because the performance of the model depends on it.

K-means [10] is one of the simplest unsupervised learning algorithms tailored
to solve the clustering problems. It is used to classify data, following a procedure
that groups a given data set through a certain number of clusters (assume k clus-
ters or subsets) defined by the user. The grouping routine minimizes the sum of
squares of distances between data and the corresponding cluster centroid. When
all samples have been assigned to a group which has the closest centroid, the algo-
rithm recalculates the positions of the K centroids and repeats the process until the
centroids get a stationary phase. Despite the simplicity, the k-means algorithm is
also significantly sensitive to the initial randomly selected cluster centers and
sometimes misses to find the most optimal configuration related to the global ob-
jective function minimization expressed in Fig. 4.5.

c1

c2

c3

c4

Objective function:
2

1 1

)(

= =

−=
k

j

N

i
j

j
j cxF

 where,

j
j
j cx −)(is the chosen distance metric be-

tween a data point
)(j

jx and the cluster cen-

tre jc .

Fig. 4.5 K-means objective function

The next group of techniques has its origin in the Naïve-Bayes algorithm which
uses the computation of probabilities as the main tool to make predictions. Naïve-
Bayes is a classification technique that is not only predictive but also owns a de-
scriptive feedback that describes the basic features and the interesting properties
of the data. This approach assumes the statistically independence of all the inde-
pendent variables which may not be true and is tailored to deal with categorical
problems. The categorical limitation can be overcome to handle continuous data
using bracket techniques that determine categories defined by limits of continuous
data. Although technically simple to implement, the selection of the ranges can
have a dramatic impact on the quality of the final model. The Naïve-Bayes con-
cept is based on the relationship between dependent and independent variables and

94 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

produces conditional probabilities derived from observed frequencies in the train-
ing data. Extending the Bayesian technique to capture the interactions between
pairs of non-independent columns is also possible, although the complexity and
storage capacity will increase a lot. However, in its simple form (assuming inde-
pendence of variables) Naïve-Bayes is considered an easy and time efficient ex-
ploratory tool.

The Table 4.1 briefly summarizes some of the major characteristics of the
learning algorithms presented in Fig. 4.2.

Table 4.1 Classification of data mining techniques

Methods Easy of use &
understand

Class Problems Notes

Support Vector
Machines (SVMs) - Supervised Classification

Regression

SVMs are considered one of the
most effective machine learning
tool with the ability to represent
non-linear relationships and pro-
duce models that generalize well
to unseen data. SVM training
always finds a global minimum.

Artificial Neural
Nets (ANNs) - Supervised

Classification
Regression
Clustering

Relation between weights and
variables is difficult to interpret.
Dificult to build the network
structure. Require large amounts
of time to train. Error decreases
as a power of the training size.

Decision Trees
(DTs) ++ Supervised

Classification
Regression

Clear. A series of nested if/then
rules. Relatively fast. Easy to
translate into SQL queries

Nearest Neighbor
Methods
 (e.g., kNN)

++ Supervised
Clustering

Classification

It is fast and easy to use and un-
derstand. Ideal candidate for
quickly building and testing
classification models. Drawback:
Models tend to be very large.

Splines (e.g. MARS:
Multivariate Adap-
tive Regression S.)

+ Supervised Regression
One of the most widely used sta-
tistical techniques for creating
predictive models

Logistic Regression + Supervised Regression
One of the most widely used sta-
tistical techniques for creating
predictive models.

Rule Learning + Supervised
Unsupervised Classification

Understandable. The computa-
tion of probabilities of all com-
binations can be expensive!

K-means clustering ++ Unsupervised Clustering
Classification

Simplicity. Sometimes misses
the most optimal configuration
and is sensitive to the initial
cluster centers.

Self organized maps
(SOM) - Unsupervised Classification

Similar to feed-forward neural
net except that there is one out-
put for every hidden layer node.

Bayesian networks + Supervised Classification Limits their inputs to categorical
data.

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 95

4.1.1 SVM Classification Overview

SVMs belong to a class of supervised learning algorithms which are able to ac-
quire knowledge from previous experiences and to apply the knowledge to predict
future values [1],[9], [11-12]. This process is known as memorization and gener-
alization. The modeling presented here is based on a supervising SVM approach
to the two-class classification problem, where a set of training data of the form
S={(xi; yi),…,(xn; yn)} is observed, and the input xi ∈X ⊂ Rd is a d-dimensional
feature vector and the output yi∈{+1,-1} is the class label of xi. The main goal is
to train a discriminate function, which will be used to predict the labels for new
inputs, minimizing the probability of classification errors.

Generally, the support vector classifier is implemented in a two step process.
First, it is applied the kernel “trick”, which provides a nonlinear mapping of the
vectors xi into a higher dimensional feature space. In the second step, a decision
boundary hyperplane is created based on the maximal-margin principle. This
process is illustrated in Fig. 4.6 where the input space of two classes originally in-
separable, is mapped into a feature space, making it possible the separation of the
two classes in a linear way.

Data is linearly
inseparable

Data is separable
in this new space

x1

x2
Transform the input data
to a new feature space

Fig. 4.6 Separating the data in a feature space

The SVM learning algorithm finds the optimal separating hyperplane (OSH)
that maximizes the distance between the decision boundary between the two class
groups and the closest point to the boundary, known as the margin, as illustrated in
Fig. 4.7. The decision boundary points overlapping the margins are called support
vectors. Support vectors are the most relevant in the decision process. The separat-
ing hyperplane in the feature space can correspond to a nonlinear decision bound-
ary in the original input space. A more extended background on SVM concepts,
issues and formulation, is presented in Appendix D.

96 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

iξ−

Fig. 4.7 Illustration of OSH hyperplane, margin and support vectors concept

4.2 GA-SVM Optimization Approach

In this book the supervised learning algorithm belonging to the class of machine
learning algorithm called SVM, was adopted to work together with the selected
GA approach. The GA-SVM methodology explores the properties of the sizing
rules method, commonly used in analog circuits, and produces a feasibility model
of the functional space while the GA search engine is used to explore the design
space and supply the SVM model with knowledge extracted from previous ex-
periences. The SVM model is here defined as a classification model used to pre-
dict the feasibility region, in this context, the new SVM model will be referred as
a feasibility model. Despite the strong theoretical foundations and recognized ro-
bust algorithm, the success of SVM implementations greatly depends on several
intrinsic parameterization values and data preparation routines [13].

4.2.1 Feasibility Region Definition

One problem often found with numerical optimization methods is the generation
of results considered pathological, that is, a result that on the one hand meets all
specifications but on the other hand fails some basic design requirements (e.g.
saturation of certain transistors) [14], leading to a malfunction circuit. This incon-
venient behavior is derived from insufficient design specifications, where a circuit
optimization problem is considered as a black box with a number of design pa-
rameter constraints and performances constraints. Expert IC designers learn how
to deal with pathological sizing by manually constrain the circuit to ensure proper
biasing and good behavior of performance metrics. For example, fixing all transis-
tor lengths and applying device matching conditions is a common practice em-
ployed in analog circuit design. The methodology which attempts to automatically
constrain a circuit in order to ensure proper operation is called the sizing rules

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 97

method [15]. Applying this methodology not only avoids the pathological designs
but also improves the behavior of performance metrics and reduces sensitivity to
operating conditions and process variations [16].

A generalized view of the sizing rules methodology points to the use of ine-
quality constraints on electrical parameters (voltages and currents) in order to en-
sure the correct circuit operation. For example, [14],[17] introduces the concept of
functional constraints and applies this concept to a simple CMOS current mirror.
Functional constraints are a set of additional specifications defined analytically
with a strong dependence on the application and the technology as illustrated in
Fig. 4.8. This approach can be extended to other sub-circuits in order to determine
a set of functional constraints. DELIGHT.SPICE [18] and the FRIDGE [19] tools
were the first to take into account these concepts.

Simple CMOS current mirror Constraint Type Constraint Expression

Iout

agnd

M1

W = _w1
L = _l1

NMOS
M2

W = _w2
L = _l2

NMOS

0

Iin

Saturation

Saturation

Length Matching

Width Macthing

Minimun Width

Minimun Length

Minimun Gate Voltage

Minimun Gate Voltage

VDS1 > VGS1 – VTH1

VDS2 > VGS2 – VTH2

L1=L2

W2=K*W1

W1>Wmin

L1> Lmin

| VGS1 – VTH1| > VGmin

| VGS2 – VTH2| >VGmin

Fig. 4.8 Functional constraints on a CMOS current mirror

In summary, the sizing rules methodology imposes some constraints not only in
the design space, formed by the device sizes, but also in the functional space. In
this context, the search space is decomposed in design space and functional space
as illustrated in Fig. 4.9.

In a traditional optimization approach there is a mapping between a point in de-
sign space d (Fig. 4.9a) and a set of performances in performance space, p (Fig.
4.9c). In order to find a solution that satisfies the performance and functional con-
straints, usually, it requires the computation of many points from the design space.
The achieved solution may result in a pathological case, in this condition, the re-
sult is not feasible (I in Fig. 4.9c). In the same way, the subspace of d defined by
the interception of all functional constraints, the functional space f, may also pro-
duce pathological solutions, this time all functional constraints are satisfied but
misses some performances specs (II in Fig. 4.9c). The feasible region defines a set

98 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

of points in design space that satisfies both the performance constraints, as well as,
the functional constraints. The multidimensional subspace of design parameters
which fulfills all functional constraints is called in this work, the feasibility space
(Fig. 4.9b) and the mapping of this space in performance space in called the feasi-
bility region (Fig. 4.9c). If the multidimensional feasible space is known the com-
putation time can be highly reduced.

Throughout this chapter, a new method which explores the properties of the siz-
ing rules method and learning algorithms is developed in order to build a model
for the functional feasibility space, the feasibility model. The aim of this approach
is to accelerate the search towards the performance feasible region ensuring a
proper operation of the analog circuits.

d1

DESIGN Space

d2

d1

d2

p1

p2

FUNCTIONAL

Space

PERFORMANCE
Region

FEASIBILITY
Region

Fig. 4.9 Abstraction of analog circuit feasibility region

4.2.2 Methodology Overview

The evolutionary search algorithms in general have a common behavior. They cy-
clically generate new moves from the most fitness samples, evaluate them and
then discard the less fitness ones. The less fitness offspring information is never
used to decide what the next move should be or what path should be followed in
getting to a local optimum. Rather than discarding information about the search,
this new strategy uses all information from the evolutionary process to help us to
make predictions about new data and improve the efficiency of the search algo-
rithm. The new GA-SVM approach incorporates a learning model in the GA op-
timization cycle based on SVMs. The original GENOM optimization architecture
is expanded with modeling capabilities as illustrated by Fig. 4.10.

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 99

Fig. 4.10 Optimization-Based methods architecture

The learning scheme of analog circuit design is now composed by the interac-
tion of two computational machines, the GA search optimizer and the SVM learn-
ing engine. Fig. 4.11 illustrates the block diagram for the optimization kernel with
learning algorithm. The SVM models can influence the overall evolutionary proc-
ess efficiency in two ways.

Circuit/System
Description

SVM

Update
Model?

Eval
Type? Store

Simulation
Data

Output
GA

KERNEL

Design
Goal ?

Fig. 4.11 Block diagram of the GA-SVM algorithm

When used as the performance model, the regression model establishes the
mapping between the design variables and the performance parameters. This al-
lows their combination to produce an approximation of the fitness function [20],
as illustrated in Fig. 4.12, which is used to replace the expensive SPICE-like
evaluations in the GA cycle. Potentially, this approach decreases the number of
expensive true fitness evaluations and allows a better convergence rate.

100 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

R3

Gbw

Gain

PowerL’
s

W's
L’

s

W's

L’
s

X € Rn

Xi = Transistor

Design Variables
Fest

i

SVM
Performance Models

Estimated
Fitness Function

Estimated
FITNESS

Value

W's

Fig. 4.12 Estimated fitness function with SVM performance model

However, the SVM model presented throughout this work is defined as a two
class classifier model. The objective is to estimate the most promising regions,
from the design space, to be explored. With this knowledge, the selection method
will decide those solutions that will be accepted to proceed on the evaluation
process, and those that will be rejected, because they are out or far from one of the
most promising regions. The gain in this case is the number of avoided fine evalu-
ations (normally heavy time-consuming electrical simulations) in each generation.

4.2.3 The Feasibility Model Formulation

The GENOM SVM feasibility model is built as a two class classifier model one
single time, before evolution cycle, using a set of training samples and the dis-
criminate function given by the basic designer rules formulation of expression
(4.1). This representative formulation, usually applied in analog circuit design, is
utilized to define the contour of the feasibility region of the feasibility model of
SVM. Those solutions satisfying designer rules belong to the class of feasible re-
gion, and the set of other ones form the infeasible region. Solutions are labeled as
feasible or infeasible solutions accordingly the region they belong to. Thus, the
feasibility design space is defined by the geometry constrained posed in the
range of the design sizes and the functional constraints imposed mainly by the cir-
cuit designer rules such as overdrive voltages with some margins, illustrated in
Fig. 4.13.

VGS > VT + 50mV and VDS > VDSAT + 50mV (4.1)

To illustrate this concept in R2, let us consider a simple Active RC low pass filter
with gain A0, and frequency f0 illustrated in Fig. 4.14. The feasibility contour is
drawn with respect to capacitor C1 an R2.

The feasibility model Mf(x) defines a function that estimates the front-end be-
tween the feasible and infeasible space delimited by the geometry domain. The
feasible sub-space, normally a small percentage of the total search space, is built

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 101

Fig. 4.13 Ids-Vds characteristic of short channel NMOS transistor

by the next sequence of actions. Taking the geometry constraints of the problem,
each variable range is divided in equidistant points and is then evaluated by the
circuit simulator.

2
0

2

0

0

00
0

00 ,
ωω

ω
ω
ω

++ == AVi
V

s
A

Vi
V

 Gain Ao=-R2/R1

 Pole=1/R2*C rad/s

 Rule a) 0.1pF < C1 < 10pF

 Rule b) 100Ohm < R2 < 200KOhm

Fig. 4.14 Active RC filter

Another alternative is to sample a number of points proportional to the size of
the design space. Next, they are classified in two data sets, the feasible data that
satisfies all the designer rules and infeasible data, data which does not satisfy the
design rules or was derived from convergence problems. Then, the samples are
used as the train sequence to obtain the SVM classification model. The same
HSPICE simulations used to build the feasibility model were reused to get the per-
formance measures to train and build the SVM performance model for each per-
formance parameter.

4.2.4 SVM Model Generation and Improvement

In order to improve the success and performance of the SVM feasibility model
two enhancements were included in the model, a data sampling with parameter
normalization preceded by an unbalanced data management mechanism.

102 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

The training data samples were previously evaluated by electric simulations,
using a grid search structure which performs data normalization on the design
variables using the scale [-1…+1] to prevent the formation of biasing models as
explained in 4.2.5. Then, this process is followed by a pre-processing handling
phase aiming to balance the data samples from the two main classes, the feasible
and infeasible region. Due to the high number of constraints in analog design cir-
cuits and large design space available, only a very small region belongs to the in-
teresting class making more difficult the classifier task. The techniques proposed
to handle the problem include a novel 3-step stratified method to oversample and
undersample the training data set. The objective is to collect the right subset of da-
ta samples from the pool of evaluated grid samples in order to build an efficient
and accurate feasibility model. The implementation details are given next.

4.2.5 Handling Unbalanced Data in Circuit Designs

Unbalanced data problems impose some difficulties to the classifier task [12],[21-
22]. The main pointed reasons are that most current classifier systems like SVM
tend to optimize the overall accuracy without considering the weight of relative
distribution of each class and they are designed to generalize from sample data to
avoid the noise. The GENOM SVM kernel addresses the unbalanced design prob-
lems by automatically employing a novel 3-step sampling mechanism adjusted to
analog circuit design. First, it implements an over-sampling in the infeasible re-
gion in order to increase the samples of the minority class, next refine the frontier
between the feasible and infeasible region and finally in the third step, reduce the
majority class, by removing those samples far away from the feasibility regions.
The estimated effect is illustrated in Fig. 4.15.

Fig. 4.15 Expected balance effect in design space

To accomplish these tasks, a first sampling strategy based on the classical grid
search method as described in 3.3.2 is applied in first place. By default, during the
evaluation phase a lot of statistics information is collected for each sample data
among which the number of positive and negative samples for each class, the

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 103

number of constraints satisfied given by the designer rules satisfied for each
sample, the measure of constraints violation and so on. In addition, three new data
sets were created: Fs embraces the set of evaluated samples that satisfies all con-
straints (feasible region), Bs appends the subset of sample data in boarder region
(satisfies all constraints except one, two or three) and finally, Is attaches the re-
maining sample data in the infeasible region and sorts in ascending order of con-
straint violation value. Fig. 4.16, illustrates the idea of the search space subdivi-
sion into feasible and infeasibility regions.

The design experience acquired during this research, in several case studies, has
shown that the ratio between positives and negatives samples is in order 0.04 to
0.07 for a total of 2000 uniform random points. An attempt to build a SVM feasi-
bility model under such unbalanced data should result in low and biased perform-
ance models. To improve the estimation rate of the feasibility regions in new data,
and to increase the efficiency of the model for more complex problems, two new
sampling strategies were applied. First, oversampling the data of set Fs and Bs by
random mutation in vicinity of the original data (“ball” mutation) and second, un-
dersampling the elements of set Is by a factor equal to the unbalanced ratio, dis-
carding always the last samples of the set.

Then, in the third step, a balanced SVM two class classifier model is finally
built with the train data set, Ts being the union of the three final sets Fs, Bs and Is
(IsBsFsTs ∪∪=) where the set of positive samples is given by Fs+Bs and Is
is associated with the negative set. After that, the model is used to further generate
new interior points of the feasibility region and neighborhood. Only the samples
classified as positives will be evaluated by the true fitness function. In the end, the
model is updated for the last time and the job is returned to the main process
where it will be used together with an evolutionary algorithm to find the solution
to the analog circuit design problem.

Fig. 4.16 Stratified vision of the search space by feasibility regions

104 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

4.2.6 GA-SVM Optimization Overview

The new GA-SVM approach uses all information acquired from the evolutionary
process in order to make predictions about new data and improve the efficiency of
the search algorithm.

The initialization phase of the GA algorithm is replaced by the sampling mecha-
nism and model generation described in the two earlier sub-sections. Then, the evo-
lutionary algorithm follows the sequential GA optimization algorithm with the
exception of the evaluation phase. Here, the evaluation phase is preceded by an ac-
tive learning phase, which uses the feasibility information from the model to decide
which of the new offspring will be accepted, to proceed on the evaluation process
and those that will be rejected from evaluation because they are out or far away from
the most promising regions. The present approach uses a heavy time-consuming
electrical simulator to evaluate the true fitness function for each submitted chromo-
some. Thus, the number of avoided fine evaluations identified by the active learning
module in each generation represents a gain of efficiency of this approach and justi-
fies one of the requirements of this implementation. The active evaluation process
also implements an aggressive local search around the best individuals in the popu-
lation, when the number of individuals selected by the active learning module is low.
The block diagram of GA-SVM algorithm is illustrated in Fig. 4.17.

Grid Samples

Evaluate
Samples

Sort/Selection
Pairing/Mating

Expanded
Crossover

No

Active
Learning

Good
Prediction?

Agressive
Search

X
Yes

Update
DataBase

Eval
True Fitness

Train
Set

Test
Set

Update
Feasibility
Model

Update
Model

Yes

No

Fig. 4.17 Data flow of GA-SVM algorithm

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 105

4.2.7 Comments on the Methodology

This section clarifies the options taken by the presented methodology. To begin
with, the constraint stratified vision (Fig. 4.16) used to deal with the unbalanced
data problem of analog circuits design applications was implemented to pursue
one the SVM fundamental principles, which says that only the support vectors
contribute to the decision rule. To build a SVM model efficiently, using the con-
straint satisfied approach, it is only needed to manage the minority class set and
the “best” infeasible samples because that is where the support vectors are present.
This way, the management of the huge set of infeasible samples (majority class
set) became simplified.

The choice of the training samples and the necessary initial grid resolution used
to generate the SVM model, has a great impact on the quality of the model, and
will affect the final model performance for unknown data. In the lack of a univer-
sal answer to this question, the approach taken in this research follows a simple
rule, based on the percentage of the total search space and on the following belief:
the feasibility model embodies the circuit’s operational zone not in a single but in
several points, satisfying or not the problem’s specifications. The specs do not af-
fect circuit’s feasibility. In the first global sampling, the grid resolution should be
chosen in such a way that, at least, one or several feasible points for each opera-
tional region should be detected or at least a reasonable number of positive sample
points should be collected. If this condition is not met, the following measures can
be taken: (a) increase the number of samples, by default it has the same effect of
increasing the sampling resolution; (b) relax the contour of the feasible region,
that is, accept in the feasible region those infeasible samples close to the feasible
region; and/or (c) relax the constraints of the problem, this case needs user in-
volvement.

4.3 Conclusions

The requirements of modern analog design automation tools are placing an in-
creasing emphasis on analytic capabilities. Data mining technology has become an
essential instrument in the analysis of large volumes of data in several activity
domains. This chapter reviewed a SVM learning machine implementation applied
to analog circuit optimization. SVM is considered one of the most efficient tech-
niques belonging to the class of machine learning algorithm able to infer knowl-
edge from data samples. This knowledge is useful to make predictions about new
data or to get a better understanding of the system that generated the data. How-
ever, to manipulate an SVM tool with an acceptable level of usability and
performance, four main tasks should be addressed: data normalization, data bal-
ancing, optimal parameters selection and data validation. The influence of these
design decisions were illustrated by well known examples.

106 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

References

[1] Mitchell, T.: Machine learning. McGraw-Hill, New York (1997)
[2] Edelstein, H.A.: Introduction to data mining and knowledge discovery. In: Two

Crows Corporation, 3rd edn. (2003), http://www.twocrows.com/intro-
dm.pdf (Accessed March 2009)

[3] Anderson, D., Neil, G.M.: Artificial neural networks technology - A DACS state-of-
the-art report. Tech Rep. Data and Analysis Centre for Software (1992)

[4] Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: A tutorial. IEEE
Computer, 31–44 (1996)

[5] Kroose, B.J., Smagt, P.V.: An introduction to neural networks. University of Amster-
dam (1993),
http://citeseer.ist.psu.edu/kroose93introduction.html (Ac-
cessed March 2009)

[6] Moore, A.W.: Regression and classification with neural networks. School of Com-
puter Science Carnegie Mellon University (2006),
http://www.cs.cmu.edu/~awm (Accessed March 2009)

[7] Farina, M.: A neural network based generalized response surface multiobjective evo-
lutionary algorithm. In: Proc. Congress on Evolutionary Computation, vol. 1, pp.
956–961 (2002)

[8] Gaspar-Cunha, A., Vieira, A.: A Multi-Objective Evolutionary Algorithm Using Neu-
ral Networks To Approximate Fitness Evaluations. International Journal of Com-
puters, Systems and Signals 6(1), 18–36 (2005)

[9] Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min-
ing and Knowledge Discovery 2(2), 121–167 (1998)
http://www.umiacs.umd.edu/~joseph/ (Accessed March 2009)

[10] Moore, A.: K-means and hierarchical clustering - tutorial slides. School of Computer
Science Carnegie Mellon University (2006),
http://www.autonlab.org/tutorials/kmeans.html (Accessed March
2009)

[11] Nilsson, N.J.: Introduction to machine learning - an early draft of a proposed text-
book. Department of Computer Science. Stanford University, Stanford (1996)
http://robotics.stanford.edu/~nilsson/ (Accessed March 2009)

[12] Milenova, B.L., Yarmus, J.S., Campos, M.M.: SVM in oracle database 10g: Remov-
ing the barriers to widespread adoption of support vector machines. In: Proc. 31st In-
ternational Conference on Very Large Data Bases, pp. 1152–1163 (2005)

[13] Smedt, B., Gielen, G.: WATSON: Design space boundary exploration and model
generation for analog and RFIC design. IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems 22(2), 213–224 (2003)

[14] Zizala, S., Eckmuller, J., Graeb, H.: Fast calculation of analog circuits feasibility re-
gions by low level functional measures. In: Proc. Int. Conf. on Electronics, Circuits
and Systems, pp. 85–88 (1998)

[15] Gräb, H., Zizala, S., Eckmüller, J., Antreich, K.: The sizing rules method for analog
inte-grated circuit design. In: IEEE/ACM International Conference on Computer-
Aided Design, pp. 343–349 (2001) doi:10.1109/ICCAD.2001.968645

[16] Wolfe, G.A.: Performance macro-modeling techniques for fast analog circuit synthe-
sis. Ph.D. dissertation, Dept. of Electrical and Computer Engineering and Computer
Science, College of Engineering, University of Cincinnati, USA (1999)

4 Enhanced Techniques for Analog Circuits Design Using SVM Models 107

[17] Schwencker, R., Eckmueller, J., Graeb, H., Antreich, K.: Automating the sizing of
analog CMOS circuits by consideration of structural constraints. In: Proc. Design,
Automation and Test in Europe Conference and Exhibition, pp. 323–327 (1999)

[18] Nye, W., Riley, D.C., Sangiovanni-Vincentelli, A., Tits, A.L.: DELIGHT.SPICE: An
optimization-based system for the design of integrated circuits. IEEE Trans. Com-
puter-Aided Design 7(4), 501–519 (1998)

[19] Medeiro, F., et al.: A Statistical optimization-based approach for automated sizing of
analog cells. In: Proc. ACM/IEEE Int. Conf. Computer-Aided Design, pp. 594–597
(1994)

[20] Kiely, T., Gielen, G.: Performance modeling of analog integrated circuits using least-
squares support vector machines. In: Proc. Design, Automation and Test in Europe
Conference and Exhibition, vol. 1, pp. 448–453 (2004)

[21] Liu, A.: The effect of oversampling and undersampling on classifying imbalanced
text datasets, Master thesis, University of Texas, USA (2004)

[22] Romano, R.A., Aragon, C.R., Ding, C.: Supernova recognition using support vector
machines. In: Proc. 5th International Conference on Machine Learning and Applica-
tions, pp. 77–82 (2006)

M.F.M. Barros et al.: Analog Circuits and Systems Optimization, SCI 294, pp. 109–137.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

5 Analog IC Design Environment
Architecture

Abstract. This chapter describes the implementation of an innovative design au-
tomation tool, GENOM which explores the potentials of evolutionary computation
techniques and state-of-the-art modeling techniques presented in the previous
chapters. The main design options of the proposed approach will be here described
and justified. First, an overview of the design architecture main building blocks
will be provided. Then, the optimization algorithm kernel, as well as, the imple-
mented functionalities are described. Finally, the design options are described in
detail using experimental results on a few test cases.

5.1 AIDA Architecture

The GENOM optimization tool can be used as a standalone application, although
it holds some functionality which can only be fully accomplished when it is part of
the in-house design automation environment called AIDA [1]. AIDA, Analog In-
tegrated Design Automation, is an ongoing project for analog IC design automa-
tion at ICSG group IT/IST. A summary of this application architecture will be
described next.

5.1.1 AIDA In-House Design Environment Overview

The AIDA platform, which includes a design flow core engine responsible for the
design automation is illustrated in Fig. 5.1. The platform is structured in three lay-
ers: interface, application and data layer and implemented in several technologies,
such as JAVA® for the design core, MySQL® for the databases and Swing® for
the graphical user interface (GUI). The AIDA project implements a fully config-
urable design flow which introduces an increased level of flexibility and reusabil-
ity when compared to traditional design approaches. The flexibility is achieved by
both allowing the designer to define his own hierarchical design organization and,
simultaneously, the design flow for each design. The reusability is achieved by in-
troducing a highly organized data structure to store the entire design data allowing
an easy reuse and retargeting of pre-design systems and predefined design flows.
In addition, AIDA allows the interaction with other CAD tools such as circuit and
system level optimizers like GENOM and layout generators [2-3].

110 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 5.1 Conceptual view of AIDA environment architecture

The AIDA platform implements a hierarchical methodology matching design-
ers’ approach by allowing the complete definition of the design flow tasks at each
hierarchical level, as presented in Fig. 5.2 for a filter design case. The design flow
definition is based on basic units of work: project specifications, topology selec-
tion, several units for device sizing and optimization and a last unit for characteri-
zation. In this project, GENOM acts as an external circuit and system level
optimizer tool with well defined interface protocol.

Fig. 5.2 AIDA design flow

5 Analog IC Design Environment Architecture 111

The GUI facility of the AIDA platform, illustrated in Fig. 5.3, plays a key role
in the definition of project specifications and topology selection required by
GENOM.

Through an intuitive user-friendly interface, the user specifies the design specs
e.g., circuit class, performance specs, design constraints and technology. These
specs, which may be introduced by the user or result from the synthesis in a higher
hierarchical level, automatically restrict the set of available topologies. Then, the
topology selection may be performed manually by the designer or automatically
by an engine (if available) that evaluates the candidate topologies according to de-
sign specs. Next, the design flow, organized in several design stages, controlling
the optimization process, as exemplified in Fig. 5.2, is defined and executed. Each
design stage has the goal of setting a subset of the design parameters (W, L, C, R,
etc). Therefore, each design stage corresponds to an optimization task submitted to
the selected optimization engine, in our case the GENOM optimization engine, us-
ing HSPICE, to compute the design objective function. Moreover, the use of other
design and simulation tools, if available, is also possible and only depends on us-
er’s selection. Although a design stage is considered an atomic operation for
the user, during the design flow and at each control point between design stages,
he may evaluate the design and redefine parameters, constraints or even change
the predefined design flow.

Fig. 5.3 GUI facility implemented in AIDA

112 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

5.1.2 Layout Level Tools

The AIDA framework was designed to interact with CAD tools of different hier-
archical levels as described in the preceding section for the case of the analog cir-
cuit optimizer. In the future, this interaction will be expanded to the layout level
for the layout verification and generation. In particular, the objective is to integrate
the LAYGEN [2-3] tool illustrated in Fig. 5.4.

Fig. 5.4. LAYGEN graphical interface

The integration of the layout CAD tool in AIDA framework will allow the inclu-
sion of extracted layout parasitics and circuit reliability design rules, to be taken
into account during the design process. The design process now supports the com-
pensation of layout parasitics implementing an iterative loop, involving circuit siz-
ing and the layout generation. Hence, the conformity of analog design specification
will be verified taken into account the parasitics of physical implementation.

5.2 GENOM System Overview

The proposed design optimization tool represents an alternative to the traditional
design flow, automating some steps of the design methodology. It covers some of
the most time consuming tasks of analog design process at the circuit level, like
circuit sizing and design trade-offs identification. The main building blocks of
GENOM architecture depicted in Fig. 5.5 are decomposed into three units, the op-
timization kernel, the evaluation module and the application interface.

5 Analog IC Design Environment Architecture 113

Fig. 5.5 E-Design environment architecture

The GENOM optimizer kernel is based on an evolutionary algorithm (EA) ker-
nel with modified operators and an automatic control mechanism which supports
the interaction with equation and simulation evaluation engines, so that the cost
function evaluation is made either by behavioral models based on SVM or by
electrical simulation, in this case, using Spice-like simulators. Additionally, GE-
NOM includes a distributed processing facility with a high degree of portability
across a variety of machines, allowing the increase in computation efficiency
when using cost expensive evaluations.

The GENOM core is written in C, programming language, and implemented in
a Linux environment, taking advantage of the efficiency and flexibility of C code,
free development tools and platform. Although it is commonly used for algorithm
development, C language has not traditionally been used to generate a graphical
user interface (GUI) for applications. Hence, the front-end was implemented in an
independent language platform, the Java™ using the Swing components.

The tool functionality, extended by the addition of an E-Design front-end al-
lowing an incremental growth of the IC design database and an individual man-
agement of each project, will be described in the next sub-sections.

5.2.1 Design Flow

In order to support the analog IC design flow methodology and to provide an effi-
cient data management of the inputs and outputs from GENOM, a new design
automation environment was developed as illustrated in Fig. 5.5. Like in many
analog design automation environments, before the synthesis there is a preparatory
stage where the production of user-defined equations (equation-based), training
the learning machine for performance models, or incorporating design constraints
take place. The design facilities also include the backtracking of the design proc-
ess, allowing the user to follow the evolution of the design process dynamically or
just reporting the final solutions at the end of the optimization process. This feed-
back is extremely relevant once it provides the information that the designer needs
to detect, identify and understand which are the performance bottlenecks for the
circuit that is being designed.

114 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Statistics info

Design.plt

Topology Library

User Selection

Configuration

MPI
Distributed Computation Interface

Network Interface

Corners.inc

Iteractive
Data

Design Space
Exploration

Optimizer
Configuration

User Inputs

Design.cir

Design.spc

Measures.inc

Design.par

Electrical
simulation

Equation

Model

Function
Evaluation

Optimization
Kernel

Modified
GA Kernel

Evaluation
Module

Output
Application Interface

Fig. 5.6 Conceptual view of the Input/Output from optimizer tool

However, when not integrated in the AIDA environment, i.e., in the standalone
operation, the user needs to provide and configure manually the necessary input
files, depicted in Fig. 5.6, in a suitable form for the optimization process.

 5.2.2 Input Data

The aim of this phase is to provide and configure the necessary input files in a suit-
able form for the optimization process. In order to manage the complex structure of
data involved in this project, a graphical interface seems a fairly option to guide all
the input data process. The GUI interface, using spreadsheet-like data input forms,
aid the designer to input data more easily, minimizing input errors and the setup time
to define or redesign a new simulation strategy. In addition, it guides the user
through a sequence of logic events and avoids the occurrence of compatibility errors.
Through the graphical input interface the user defines the circuit class (amplifier, fil-
ter, A/D, D/A, etc), the performance specs (dc gain, gain bandwidth product, phase
margin, slew rate, power dissipation, offset voltages, etc) of the analog cell which
the designer wants to optimize, as well as the design constraints (corners, matching
parameters, overdrive voltages and currents, etc) and the technology process.

5 Analog IC Design Environment Architecture 115

Fig. 5.7 illustrates one stage of design specs introduced by the user; in this case it
shows the definition of the performance measures required for this project. Accord-
ing to the introduced design specs, a candidate topology is manually selected from
the circuit database as depicted in Fig. 5.8. If the design specs do not match any of
the existent topologies, a new one have to be created and introduced into the system.

Fig. 5.7 Performance parameters and measures facilities

Fig. 5.8 Topology Selection

116 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

 <design_file>.cfr - Configuration file

A line started by a charater "#" is a comment.
<TITLE>
Differential AmPop
Version: November 16, 2007 - Author: F.M. Barros

1. Control Parameter Section

<CONTROL>
ProblemType 0 # 0 - Circuit simulation 1- Numerical optimization
OptimizationType 0 # 0 - Genetic algorithms 1- SVM (SA, ...)

2-Passing Parameter Section

<PASSING_PARAMETERS>
Seed 99 # SEED – Integer number representing the SEED value ={1-10000}
Timer 2 # TIMER- Simulation time TIMER={SHORT=0, MEDIUM=1, LONG=2}
Quality 2 # Optimization QUALITY={COARSE=0, MEDIUM=1, FINE=2}
Stop 2 # STOP Criterion. STOP={Time=0, Convergence=1, Max_Generations=2}
Debug 1 # DEBUG - Output text debugging. DEBUG={none=0, YES=1 }
Cluster 0 # CLUSTERS - Parallel Processing ={SERIE=0, PARALLEL=1}
Reports 0 # REPORTS - Formats {TEXT=0, GRAPHICS=1, Both=2}
Activity 10 # ACTIVITY - Statistics data sampling frequency (for graphics)
StepAC 10 # STEPAC - Update frequency of bode plots
inDirectory /home/IT/GENOM/workspace/circuits/00_Differential_Ampop
outDirectory /home/IT/GENOM/workspace/circuits/00_Differential_Ampop/RESULTS

3-Dependent Parameters Section

<MEASURES>
9
gain_dc;gbw;phfp;phase_margin;ftcmfb;phfpcmfb;phasecmfb;power_a;iavdd
##
<CONSTRAINTS>
34
vov_m0a;vov_m0b;vov_m16;vov_m1a;vov_m1b;vov_m2a;vov_m2b;vov_m3a;vov_m3b
vov_m4a;vov_m4b;vov_m5a;vov_m5b;vov_m6a;vov_m6b;vov_m7a;vov_m7b
delta_m0a;delta_m0b;delta_m16;delta_m1a;delta_m1b;delta_m2a;delta_m2b
delta_m3a;delta_m3b;delta_m4a;delta_m4b;delta_m5a;delta_m5b
delta_m6a;delta_m6b;delta_m7a;delta_m7b
. . .

Fig. 5.9 Partial view of “design.cfr”

At the end of the preparatory phase, five independent text files are created as il-
lustrated in Fig. 5.6. These constitute the configuration files required by GENOM
kernel and are briefly described below.

- “Design.cfr”: This file illustrated in Fig. 5.9 contains the configuration
parameters used to control the optimization process, such as, the number of
evaluations, the quality of solutions, the stop criterion, type of reports, etc. All the
commands used in the configuration file are from the User Guide. This file does
not include the commands to modify the behavior of the algorithm kernel. This
task is restricted to authorized computer algorithms specialists.

- “Design.spc”: This file holds the design specifications written in a familiar
analog design syntax, using the traditional relational “min”, “max”, “less”, “great”,

5 Analog IC Design Environment Architecture 117

“equal” operators and additional ones for specific constraints expressions such as
“verify_bound(a,b,c)” illustrated in Fig. 5.10.

- “Design.par”: The design parameters file depicted in Fig. 5.11 encloses the
problem dimension and device names, bounds and step size for each optimization
variable.

- “Design.cir”: This is the circuit netlist file that describes the circuit connec-
tivity either in flattened or hierarchical mode. The optimization variables must be
explicit marked with an underscore before the variable’s name as depicted in
Fig. 5.12. This name must agree with at least one parameter of the design parame-
ters file. The format of this file should be compatible with the evaluation tool.

- “Corners.inc”: This is an optional input file that specifies the corners condi-
tions. This file showed in Fig. 5.13, will be included in the circuit netlist.

- “Measures.inc”: This is a user-defined set of statements or commands that re-
trieve specific electrical measures from evaluation tool. It is a kind of interface be-
tween optimizer and the evaluation tool to acquire precise information data. This
file, illustrated in Fig. 5.14, will be included in the circuit netlist.

- Fabrication model: A fabrication model consists of values for different tran-
sistor characteristics needed by the simulator to develop a small signal model for a
transistor. In a regular basis, this file is complied with standards and is dependent
on the fabrication technology. In GENOM, a library of models aggregates some of
the public technological models available. The technological file must be refer-
enced in <Design.cir> file, as illustrated in Fig. 5.15.

Fig. 5.10 Partial view of <design.spc>

118 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 5.11 Partial view of <design.par>

Fig. 5.12 Partial view of <design.cir>

5 Analog IC Design Environment Architecture 119

<Corners>.inc - Corners File (HSPICE style)

* ------------------------
* 1. Corners file
* ------------------------
.ALTER @1 -> lib=slow; temp=-40 +50 +105;

.protect
 .lib 'cmos035.lib' slow
 .unprotect
 .temp -40 +50 +105

.ALTER @2 -> lib=typ; temp=-40 +50 +105;
 .protect

 .lib 'cmos035.lib' typ
 .unprotect
 .temp -40 +50 +105

.ALTER @ -> lib=typ; temp=-40 +50 +105; ...

Fig. 5.13 Partial view of the Corners file

Fig. 5.14 Partial view of the measures file

- Cost Function: This is a module that implements a parser in Lex and Yacc
syntax [4] which automatically evaluate the performance of a set of candidate so-
lutions. It is independent from the problem and will be the subject for further dis-
cussion in sub-section 5.3.3.1.

120 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

 <Fabrication>.inc - Technology Process File (HSPICE style)

* Libs

.protect
 .lib '../../library/cmos035/cmos035.lib' typ/slow/fast

or
 .lib '../../library/UMC/HSPICE/telescopic/l18u18v.122' L18U18V_TT

or
 .lib '../../library/AMS/hspiceS/c35/wc49.lib' tm/wp/ws
.unprotect

Fig. 5.15 Technological model reference

5.2.3 Output Data

The output data provided by the GENOM tool includes the post-processing reports
and evolutionary real time reports. The activation of each type of outputs is left to
the designer choice. The post-processing reports include the evaluation of per-
formance parameters coupled with statistical information presented at the end of
the optimization, using the data in the data structures generated during the optimi-
zation phase. Fig. 5.16 and Fig. 5.17 illustrate the type of documentation provided
by the design automation environment. The GENOM outputs are divided in two
great groups related with design data and process info.

Fig. 5.16 Progress reports

5 Analog IC Design Environment Architecture 121

Fig. 5.17 Performance reports from optimization

Process info: This is the union of several statistical metrics gathered from opti-
mization (Fig. 5.16). It includes a huge amount of statistics data about runs,
generations, evaluations and time. This data is spread in several thematic files, in-
cluding the evolution report file, corners file, bode plot file, etc. Optionally, the
user can dispatch this info to screen reports for “online” validation purpose as it
will be discussed in the next section.

Design Data: This corresponds to the final results from the estimation process
(Fig. 5.17). This includes the optimum values of the optimization variables, the
performance parameter values and the satisfaction of constraints parameters for
the best 32 individuals of the population. In addition, it provides information about
the optimization problem progress. These values are confronted with the initial
ones to infer about the fulfillment of the synthesis flow objectives.

5.2.3.1 Progress Real-Time Reports

GENOM produces and supplies the required data which allows the visualization
of real-time reports in AIDA framework. The progress real-time reports are a
set of visual tools available optionally to the user, which indicate the progress sta-
tus of evolutionary process in each generation. They consist of animated graphics
of bode plot figures, the design space exploration figures and of the evolution
curve of the cost function. The real-time environment is also represented by a

122 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 5.18 Progress reports provided by the automation prototype

built-in spec sheet that can display a simple pass/fail status, symbolized by
green/red colors, of the performance parameters, constraints violations and corners
satisfaction as illustrated in Fig. 5.18.

5.2.3.2 Interactive Design

Interactive design is an extended capability introduced to GENOM framework that
allows an experienced designer to incorporate some basic knowledge about a cir-
cuit during the search process. With the feedback acquired from real-time progress
reports, for example, comparing the initial specs against current measured results
and taking into account the present context status of the optimization process
(state of design variables, evolution curve, constraints violation and corners satis-
faction, etc.), the designer can use his knowledge or intuition to change the
dynamic ranges of design parameters, set fixed values to genes of the current
population (affix some genes of chromosome), etc, which shifts the course of op-
timization. Keeping constant values in some design variables has the effect of re-
ducing the number of search variables. One equivalent variation of this approach
is done by the matching of some strategic transistors such as, the differential pairs,
current mirrors, etc., and in some non-sensitive transistors because they do not
have much impact on the functionality of the circuit. Both measures result in the

5 Analog IC Design Environment Architecture 123

shrinkage of the design space and shortened run times. The advantage of this ap-
proach is that it is independent from the process, it captures the designer knowl-
edge and since it adapts to each individual’s knowledge, it is more flexible and
can lead to efficient performances. Interactive design becomes a valuable optional
tool in the presence of an experienced designer.

5.2.4 I/O Interfaces

The MPI interface block illustrated in Fig. 3.24 is composed by two independent
types of communications. The hierarchical level interface is dedicated to future in-
tegration with LAYGEN tool. The network communication interface implements a
local area multi-computer LAM-MPI interface (Fig. 5.19) used in the development
of parallel applications over a network of heterogeneous computers as described in
sub-Sect. 3.3.7.

Fig. 5.19 Local area multi-computer system implemented with LAM-MPI

As discussed in 3.3.7, the communication between parallel processes is handled
by the Message Passing Interface (MPI). Therefore, it is necessary to download,
compile and install the MPI library in the current environment according to in-
structions in “GENOM Users guide”. To make sure that distributed optimization
environment is correctly configured and installed in a specific processing node,
execute the “test-GENOM” script of Fig. 5.20:

124 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 5.20 Testing GENOM distributed environment

The latter script verifies if the optimization tool, as well as, the evaluation en-
gine are available in a specified processing node by trying to execute an applica-
tion, e.g.”genom” and “hspice”, on all nodes. The last test verifies if the secure
“SSH” communications is configured to avoid passwords. If the test is successful,
proceed with next sequence of commands to initiate the execution of parallel ap-
plication, the “genom” in the example illustrated in Fig. 5.21.

Fig. 5.21 Testing GENOM ‘ssh’ communications

In the first step, the user creates a file listing (“lamhosts”) the participating ma-
chines in the cluster and then activates the LAM network with “lamboot” com-
mand. “Lamhosts” is a text file that contains the names of the nodes, one per line,
with the first one being the machine that the user is currently logged on to.

The activation of GENOM is given by the “mpirun” command for the case of a
filter optimization problem. With this invocation the application that is being exe-
cuted has the same pathname on all processor nodes. A more flexible approach is
able to run different executable pathname on different nodes. This is achieved
through a variation of the “mpirun” command and a new definition of “lamhosts”
as described in Fig. 5.22.

Fig. 5.22 Invocation of distributed GENOM application

5 Analog IC Design Environment Architecture 125

For example, to run “genom” program on machine baltar, malacata and everest
all Linux machines, and on estrela, a Solaris machine, the <lamhosts> file would
contain now the following entries depicted in Fig. 5.23:

Fig. 5.23 Lamhosts with the names of nodes and the pathname to the executable

The second entry per line, here 0, 2, 1 and 1, is the number of additional proc-
esses that can be launched per each machine. Since the MPI run is started from
baltar the master process runs on it, so it is advisable not to allow the execution of
another process on it. The other nodes have associated one or two processes per
machine. This approach presents several advantages because it is possible to apply
efficient load management of computer power in unbalanced network. An unbal-
anced network occurs when the computer power distribution is not equally dis-
tributed between machines, either due to different machines or to machines with
different loads. Balancing the number of processes according to the available
computational resources reduces the overall optimization time.

5.2.5 Evaluation Engine

GENOM extends the optimization capabilities to some of the SPICE-like circuit
simulators including the standard HSPICE and SPICE which share common char-
acteristics. These simulators are capable of reading their inputs and producing re-
sults in text file formats, as well as, being launched from the command line. Other
simulators can also be supported as long as these characteristics occur. A detailed
description of the entire mode of operation ranging from the moment a chromo-
some is ready for evaluation until it attains the cost function value is presented in
section 5.3.3.

5.2.6 Expansion of GENOM Tool

The GENOM synthesis tool consists of a set of interconnected software modules
which comprise the user interface, the evaluation engine, the distributing comput-
ing API and the learning machine beyond the optimization engine itself. These
modules are called automatically when required by the synthesis flow. Preferen-
tially, AIDA uses a XML text description files to pass information between internal
modules taking advantage of the intrinsic XML properties. The XML file format
provides the developer with a clean, robust and human readability documented

126 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

target, allowing a much easier debugging as well as reading and exporting to other
file formats. If the necessary software modules are developed, then the presented
system can also be applied to different design environments or can even be inte-
grated in wider industrial applications. Fig. 5.24 depicts an excerpt of the configu-
ration interface file used by AIDA framework to setup some functionalities of the
GENOM tool.

/**/
 interface.c - configuration file
 Copyright (C) 2005 by Manuel Barros, fmbarros@ipt.pt
/**/
This file contains the INPUT parameters to GENOM Optimizer- V.2
Using the command line:
Ex: ../genom RcIdeal.cfr -s -hspice
 ***/

<?xml version="1.0"?>
<AIDA>
<GAPAR> # Optimization GA Algorithms under test
<num of runs> 20 #number of runs
<evaluations_max> 10000 #number maximum of evaluations
<initial_seed> 1000 #initial seed
<population_size> 64 #population size
<mut_rate_max> 0.25 #maximum mutation rate
<stop_criteria> 1 #"1=Maximum num_generation 2=1st solution 3=25 STAGNATED generations"
<convergence_lim> 10e-3 #Cost standard deviation limit for the convergence test
<update_report> 1 #1 = each generation 2= logaritmic 3= best changed
<num_of_runs> 20 #number of runs
<update_report> 1 #update reports
<ntotalsamples> 3000 #number of total samples
</GAPAR>
#
<KERNEL> # Optimization Algorithms under test
 ...
 ...
</KERNEL>
</AIDA>

/**/
interface.c - configuration file

 Copyright (C) 2005 by Manuel Barros, fmbarros@ipt.pt
/**/
This file contains the INPUT parameters to GENOM Optimizer- V.2
Using the command line:
Ex: ../genom RcIdeal.cfr -s -hspice
 ***/

Fig. 5.24 Interface between GENOM and AIDA design automation environment.

The Fig. 5.25 demonstrates a communication interface example resultant from

the <update_reports> parameter specification defined in Fig. 5.24. At specific time
intervals pre-defined by the user, it is carried out an update of the reports and the
refresh of screen information. In the example above, <update_reports> is set to ‘1’
meaning an update in each generation (see Fig. 5.24 for other options). The infor-
mation delivered from the optimization tool intended for visualization purposes is
treated by a parser that identifies pairs of keywords or tags (fSpecs.out, fEvolu-
tion_Curve.out, fCorners.out, fParameters.out). The information between those
keywords is sent to the interface defined by the client (the entity that initiated the
optimization order). Fig. 5.25 exemplifies one line of results sent from GENOM.
The word “fSpec.out” is reserved and identifies the performance parameters and
the following values have a precise syntax. The first argument specifies the itera-
tion of evolutionary algorithm and the next ones are the optimal values for the per-
formance in the same order of appearance as in the specs file (“design.spc”).

5 Analog IC Design Environment Architecture 127

Fig. 5.25 Example of information delivered by GENOM

5.2.7 Optimization Kernel Configuration

This section presents the implemented approaches that support the optimization
kernel. GENOM includes a kernel configuration file with commands to modify the
behavior of the algorithm kernel. This task is limited to authorized computer algo-
rithms specialists. Fig. 5.26 depicts a sample of the configuration interface file
“AGPAR.h” used to setup some GENOM functionalities.

 Each line between <KERNEL> tags is represented by a set of attributes that
defines a particular characteristic of the kernel. The example, depicted in Fig. 5.26
defines the optimization of three different kernels, “GA-STD”, “GA-MOD” and

Fig. 5.26 Optimization kernel configuration file

128 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

“GA-SVM”. At least one line should be presented for the correct functioning of
GENOM. The command to execute a single optimization in 5 runs and respective
simulation result is showed in Fig. 5.27. Each line depicts the run number, #Run, the
number of evaluations in each run, #nEvals, final fitness value, #Fitness, simulation
time, #wTIME, existence of feasible solution, #FEAS, and existence of a solution,
“#SOLUTION”, found at generation, “found_@”. A feasible solution satisfies all de-
signer rules but may miss one performance requirement, on contrary, if a solution is
found, all designer rules, as well as, all the performance specs are satisfied.

RESULTS:

Fig. 5.27 A single kernel configuration and results.

5.3 Data Flow Management

In a design automation tool there is a need to handle two types of data structures,
one, to manage the circuit’s database and the other to manage the simulation data.
A good definition of the data structure can lead to efficient data management and
improvements in reusability. For instance, the simulation measures, the perform-
ance parameters database, the sub-circuits blocks, the testbenches and the techno-
logical files are likely to be shared or reused, avoiding the redefinition of circuit’s
information. In the same way, the data management of simulation data from the
synthesis process can also be improved due to the need to control and to establish
relations between the huge amount of simulation data, normally, produced from
the optimization process, the need to cope with the variety of file formats from

5 Analog IC Design Environment Architecture 129

different simulators or even a simple access to the simulated data of a specific cir-
cuit simulation.

In GENOM, the circuit’s database is managed externally by AIDA framework
but the management of the simulation data is GENOM’s responsibility. When
used as a standalone application, GENOM requires the input files illustrated ear-
lier in Fig. 5.6.

The next two sections explain how GENOM manages the data and structures.

5.3.1 Input Data Specification

The preferential method to input all the data specification is through a GUI, oth-
erwise the required files have to be manually generated. The GENOM graphical
user interface presented in Sect. 5.2.2 inherits some methods of AIDA framework,
and, as a result, takes advantage of its technology, namely the data management
and data structure used to create and maintain a circuit’s library. A multilayered
architecture structure organized in tables with relational data, as illustrated in
Fig. 5.28 and Fig. 5.29, is used to store the information concerning the circuits in-
troduced through the graphical interface and the data provided by the optimization
tool for data visualization. The next screenshots show the input data specification
of the filter depicted in Fig. 5.29.

Fig. 5.28 The circuit and the parameter tables filled with data from an elliptic filter

130 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 5.29 2nd order Elliptic filter section and performance specs.

Essentially, the insertion of a new circuit requires the electrical schematic, a
netlist, a technological file, the device parameters, the sub-circuits, the perform-
ance parameters and the corresponding measure functions. There are a lot of pa-
rameters with different nature associated to a circuit, so all information was
arranged (split) in a meaningful storage of well-structured information. The first
layer consists in the insertion of elementary data that defines a circuit. The table,
at the top of Fig. 5.28, for example, stores the key of circuit identifier (221), the
name (Elliptic Filter of 2th Order), the category (Filter, OpAmp, etc) of the cir-
cuit, the type of circuit (Circuit, testbench, etc) and the behavior class (Low pass).
The design parameter table, at the bottom of the Fig. 5.28, represents the parame-
ters table that characterizes each component from the netlist. There is a unique key
that identifies each parameter (8239) plus the remainder characteristics and it is
associated to the circuit where it belongs (circuited=221). This table is composed
by a long list of parameters which includes a field that marks this component for
optimization, another one indicates if the component is matched with any other or
not (matchComponent) and the correspondent matching value (matchRelation),
above others.

The Fig. 5.30 shows the relational tables used to store the performance parame-
ter information. The definition of performance parameters which can be measured
in a circuit constitutes one critical step in the GENOM development as will be ex-
plored in the next section. Meanwhile, it will be explained how performance pa-
rameters and function measures are treated in GENOM.

The first step consists in the selection of the desired performance parameters
(apmin, apmax, asmin and stop band frequency) for the chosen circuit, from the
library of available performance parameters (see top table of Fig. 5.30). To avoid
duplication of information, these parameters are stored in the table of design
parameters composed by a unique identifier (id_designPerformance) and the per-
formance parameter identifier (performanceId), for example, the key 28 corre-
sponds to pass band maximum gain of the circuit in question (circuitId). The next
fields are accounted for the definition of the global objectives of the circuit. For
example, to specify that the pass band maximum gain of the filter in question
should be inferior to 0.5 dB, the introduced values should be defined as the value

5 Analog IC Design Environment Architecture 131

Fig. 5.30 Performance parameters and measures functions table

“maximum” in field “relation” and the value 0.5 in the field “value”. The column
“currentValue” is used to store the value generated by the simulation tool or
optimization.

The last step consists in the definition of the measure functions or simply
measures which allow the determination of the performance parameter values. In
the example considered above three measures for AC analysis are defined. The
measures (id_measures) are associated to one circuit (circuitId) 221 and one per-
formance parameter. They are characterized by a specific name and defined (field
“definition”) in HSPICE format.

5.3.2 Evaluation/Simulation Data Hardware

The quest behind GENOM tool is to provide the designer with an easy access to
most relevant simulated data assent in a model of efficiency and precision of re-
sults. A block level representation of the simulation data flow in GENOM is ex-
hibited in Fig. 5.31.

The data flow management is explained in three moments of simulation. The
first three blocks of Fig. 5.31 cover the setup phase using the circuit management
explained in the preceding section.

132 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 5.31 The simulation data management system overview

The second moment is achieved during circuit synthesis process. Here, a parser
was created to interpret the language of a circuit specification file and automati-
cally compute the cost function value giving as input the performance parameters
of the circuit and the formulations of the cost membership functions. The parser
implementation was based in the Lex and Yacc [4] generation tools so that it is
represented by a set of combined grammatical and lexical rules.

The last moment involve the use of built in functions to filter, process and dis-
play statistical data from the optimization process either in text or in graphical
mode. The primary advantage of text files is that they are very flexible and easy to
use. They can be any length, and can accommodate the information to any type of
layout and allow the use of database techniques to query a text file.

The principal method of data access involving optimization algorithm and cir-
cuit simulator take advantage of the plotting facilities generally found in most
electrical simulators. All output variables of interest can be printed in output files
using the command “.PRINT” or equivalent. The data format of the response is
generally organized in tabular form as depicted in Fig. 5.32. It shows the AC char-
acteristics of the magnitude of voltage and phase in the output node of a filter for a
given range of frequencies.

In order to access the data in a file, a file parser is implemented (file process
block in Fig. 5.31). The use of file parsing techniques allows the extraction of any
necessary information and its employment for later processing. GENOM provides
built in functions to view the data in graphic mode version (bode plot characteris-
tics and the cost function evolution). In command mode version, only the

5 Analog IC Design Environment Architecture 133

Fig. 5.32 AC analysis in the output node of a filter

extracted plotting files are created, allowing its final treatment with external
graphical tools like Avanwaves® [5] or CosmosScope® [5]. The optimization
with HSPICE simulator has an extra option that can be automatically invoked to
visualize the waveforms in CosmosScope®. The processing of data employing
circuit simulators with the purpose of performance estimation employs the same
general principle but will be explained next.

5.3.3 Output Data

The entire mode of operation ranging from the moment a chromosome is ready to
evaluation until it attains the cost function value will be explained in the following
steps and supported by Fig. 5.33.

Step1 - As soon as a new candidate chromosome is submitted to evaluation
process, a parser algorithm replaces the optimization parameters values in the tar-
get netlist with new ones corresponding to the genes of the chromosome. The
“target.cir” netlist file is changed.

Step 2 - The new circuit netlist is submitted to electrical simulator
(SPICE/HSPICE) producing in the output file (target.out or target.lis) a long list
of simulation data including the matrix of variables and values of interest, and
normally the performance parameters resulting from the simulation. This point di-
verges from simulator to simulator. In SPICE the type of variables are within the
scope of command “.PRINT”. The HSPICE simulator is more flexible because it
incorporates a new command called measures, which gives the user more freedom
to print and customize user-defined electrical specifications of a circuit. Actually,
this is the preferred method to pass information between HSPICE and GENOM,
since in the output file there is only the answer to the requested measures left, thus
resulting in a compact file and allowing a more efficient access.

134 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 5.33 The performance evaluation data flow

Step 3 - Next, a set of built in functions extracts the data information matrix
stored in one or more output files and sends it to cache memory structures for fast
manipulation. When the required information is not explicit stored, a new built in
function is created to compute its value. At the end of this step, all necessary pa-
rameters needed to compute the cost function, are organized in memory by the or-
der they appeared in targets specs file.

Step 4 - Finally, the cost function value is automatically computed with the
help of a new cost parser function based on the compiler Lex and Yacc (details in
sub-Sect. 5.3.3.1). Simultaneously, it collects a set of statistical data that is impor-
tant to control the optimization algorithm, such as, the number of satisfied solu-
tion, the number of violated constraints, the corner’s information, etc.

5.3.3.1 The Simulation and Equation Based Cost Function Parser

This section explains the parser implementation behind the cost function computa-
tion. The main purpose of the parser is to create a mechanism able to interpret the
language of a circuit specification file and automatically compute the cost function
value giving as input the performance parameters of the circuit and the formula-
tions of the cost membership functions. The parser implementation was based in
the Lex and Yacc generation tools so that it is represented by a set of combined

5 Analog IC Design Environment Architecture 135

grammatical and lexical rules as illustrated in Fig. 5.34. The Lex description file
identifies a series of symbols (logic and arithmetic operators), regular (mathemati-
cal functions and built in functions) and transforms them into tokens (reserved
word for the language). Once this transformation is done, the YACC syntaxical
analyzer interprets this stream of tokens and converts it into a meaningful gram-
mar. With this specification, the GENOM’s parser not only is able to interpret
more traditional circuit specification files (based on logic and arithmetic operators,
see “target.specs” in Fig. 5.35) but also specification files based on user defined
equations (equation-based). The user defined equations can be expressed through
basic mathematical functions (‘Fabs’, ’SIN’, ’SQRT’, ‘POW’, etc) or by more so-
phisticated built in functions such as ‘gain()’, ‘phase()’, ‘get_Value_Cache()’,
min(), etc. For example, the function “double gain(double freq)”, finds the gain
corresponding to frequency from the output file of a SPICE simulation. If the per-
formance measures are already in cache memory then the “get_Value_Cache()”
function can be used instead.

Fig. 5.35 gives a simplified macro view of the actions taken automatically by
the parser machine to carry out a single performance parameter. When the
“cost_Calc()” function triggers the process, the first line of the design specifica-
tion file is ready for parser analysis. The expression “(gain_dc>70)” is evaluated
and the identifier “gain_dc” must be resolved first. Since “gain_dc” expression
did not match any of the parser reserved word, it is interpreted as a performance
parameter whose value should be read from memory with “get_Value_Cache()”.
Then, the obtained expression ’90 > 70’ is resolved by executing a set of opera-
tions specified by the operator ‘>’. One of these operations performs a call to the
membership functions that translate the impact of this measure in the overall
performance. Then the process is repeated line by line until the end of the target
specification file.

Fig. 5.34 Cost function parser overview

136 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[]
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

np

i
iinp xfFU

1

1)(*log
G

Fig. 5.35 Processing of performance parameters

The parser mechanism allows the implementation of a uniform methodology to
access and manipulate data from several sources using simple structures, like the
precedence of the operators, their layout, and other grammatical rules which may
include built in functions. The use of built in functions allows the integration of
new simulators maintaining always a common interface to evaluation of perform-
ance parameters.

5.4 Conclusions

This chapter discussed the design architecture, methodology and design imple-
mentation of GENOM optimizer tool. The main building blocks included in GE-
NOM are the optimization kernel, the evaluation module and the Graphical User
Interface.

The optimization kernel is available with several approaches including the GA
standard approach, the modified GA-MOD and the hybrid approach GA-SVM in-
corporating a learning model based on SVMs.

GENOM was designed to integrate SPICE like simulators, deal with equation
based problems and interact with a learning SVM machine. A flexible parser ma-
chine was developed to maintain a common interface of the evaluation module al-
lowing the access and manipulation of data from different simulators.

The graphical user interface that controls the inputs and outputs of the system
allows the visualization of iterative progress reports. With this feedback an ex-
perienced user can assume an active part in the optimization process because he
owns some vital information that allows him to twinkle some design parameters
during the search mechanism.

5 Analog IC Design Environment Architecture 137

References

[1] Barros, M., Neves, G., Horta, N.C.: AIDA: Analog IC design automation based on a
fully configurable design hierarchy and flow. In: Proc. 13th IEEE International Conf.
on Electronics, Circuits and Systems, pp. 490–493 (2006)

[2] Lourenço, N., Horta, N.C.: LAYGEN – An evolutionary approach to automatic analog
IC layout generation. In: Proc. IEEE Conf. on Electronics, Circuits and System,
Tunisia (2005)

[3] Lourenço, N., Vianello, M., Guilherme, J., Horta, N.C.: LAYGEN – Automatic layout
generation of analog ICs from hierarchical template descriptions. In: Proc. IEEE Ph.
D. Research in Microelectronics and Electronics, pp. 213–216 (2006)

[4] Niemann, T.: A compact guide to Lex & Yacc (2004),
http://epaperpress.com/lexandyacc/ (Accessed March 2009)

[5] Synopsys Inc, CosmosScope-Waveform analysis (2009),
http://www.synopsys.com (Accessed March 2009)

M.F.M. Barros et al.: Analog Circuits and Systems Optimization, SCI 294, pp. 139–186.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

6 Optimization of Analog Circuits and
Systems – Applications

Abstract. In the previous chapters there was a description of the optimization
methodology and the supporting tool that simplifies the design tasks of analog in-
tegrated circuits. The developed design optimization tool, GENOM, based on evo-
lutionary computation techniques and incorporating heuristic knowledge on the
automatic control mechanism was combined efficiently with a learning strategy
based on SVM to improve the convergence speed of the optimization algorithm.
This chapter demonstrates the capabilities and performances of the implemented
design optimization methodology when applied to several analog synthesis ex-
periments and provides some insight into factors that affect the synthesis process.
Several state of the art circuit blocks will be introduced and optimized for per-
formance and efficiency. Particularly, the performance and effectiveness of
GENOM optimizer will be compared with one important reference tool.

6.1 Testing the Performance of Analog Circuits

Operational amplifiers (OpAmps) are the fundamental building blocks of many
analog and mixed-signal systems. OpAmps arranged in structures of different lev-
els of complexity are used to realize functions ranging from dc bias generation to
high speed amplification or filtering. Table 6.1 presents the general characteristics
[1] of some of the OpAmps that will be covered in this chapter.

Table 6.1 General comparison

 Gain Output Swing Power Dissipation Speed Noise

Two Stage Medium Medium Low High Low

Folded Cascode Medium Medium Medium High Low

Telescopic High Low Medium High Low

Gain-Boosted High Medium High Medium Medium

Simulation and testing of CMOS Opamps involve the measure of several per-
formances parameters such as open-loop gain, open-loop frequency response (in-
cluding phase margin), input-offset voltage, common-mode gain, common-mode
rejection ratio (CMRR), power-supply rejection ratio (PSRR), output resistance,
noise, output swing, power dissipation and transient response including slew rate.

140 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Special configurations and techniques are necessary to acquire these measure-
ments. The testbench configurations supply the environment (stimulus, load, sup-
plies, etc.) in which the circuit is to be tested. Fig. 6.1 presents the testbench
configurations considered for the selected examples [2].

(a) Testbench for measuring the gain, unity
gain frequency and phase margin of differential
input circuits

(b) Testbench for measuring the gain, unity
gain frequency and phase margin for single
input circuits

(c) Open-Loop Characteristics with DC bias
Stability

(d) Open-Loop Characteristics for moderate
gains OpAmps

(e) DC - Input Offset Voltage of an Op Amp

(f) Common-Mode Voltage Gain

(g) Testbench for measuring PSRR

(h) Measuring and Simulation of ICMR

Fig. 6.1 Testbenches to measure the performances values

6 Optimization of Analog Circuits and Systems – Applications 141

(i) Testbench circuit used to determine Output
voltage swing

(j) Measure the Output voltage swing alterna-
tive

RLCL

Vout

VDD

VSS

vin

IDD

(k) Testbench circuit used Slew Rate and Set-
tling Timed

(l) Measure the Slew Rate and Settling Timed
alternative

Fig. 6.1 (continued)

6.2 Testing the GENOM – Selected Circuit Topologies

Since analog benchmark circuits are still unavailable for synthesis purposes, the
first testing circuits were collected from the well-known class of CMOS opera-
tional amplifiers and also include a low pass elliptic filter listed in Table 6.2 or-
dered by circuit complexity. OpAmps and filters are fundamental building blocks
often employed in analog circuit design applications. Each circuit includes appro-
priate testbenches to obtain the desired performances parameters measures. The
testbench circuit configuration of Fig. 6.2 a), b) and d) were used in these experi-
ments to determine the open loop gain, unity gain frequency, phase margin and
power consumption for the single ended circuits. The filter specifications are dif-
ferent and will be defined later. All OpAmp circuits examples were designed us-
ing a 0.35-μm AMS (Austria Mikro Systems International AG) CMOS technology
process with a supply voltage of 3.3V but the optimization process is fully inde-
pendent from technology.

 The design first step is to determine the design parameters, the functional con-
straints of the problem and the performance objectives for each topology.
Table 6.2 describes the complexity level for each test circuit. In this study, the
design parameters are composed by the lengths, widths and/or multiplicity of tran-
sistors and are constrained by the ranges in geometry defined in Table 6.3.

Once the parameters have been defined, the GA chromosome can be con-
structed representing an individual or a candidate solution. The optimization

142 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

(a) A CMOS differential OpAmp – Ckt1

(b) Cascode Amplifier – Ckt2

(c) 6th Order Low Pass Elliptic Filter- Ckt3

(d) A CMOS two-stage amplifier – Ckt4

Fig. 6.2 The suite of circuit schematics used in tests

design parameters domain and the adopted technological grid define the complex-
ity of the problem. A set of fundamental designer rules as well as the matching
conditions for each design case is depicted in Table 6.4. This set of rules makes up
the functional constraints of design optimization. All measures of performance
and the conformance level for each designer rules (“satisfiability”) are obtained by

6 Optimization of Analog Circuits and Systems – Applications 143

electrical simulation. In each optimization run, the GA generates and optimizes
the design parameters according to the fitness function built based on the perform-
ance specifications defined in Table 6.5. The total fitness score for each individual
was calculated using the fitness function presented in Sect. 3.3.1.

Table 6.2 Class of circuits used in the tests

Ident. Name No.Devices Opt.Var(a) Constr.(b) Refs

Ckt1 Differential OpAmp 4 4 12 --

Ckt2 Cascode Amplifier 7 7 12 [3] Exa. 3.11

Ckt3 6th Order Low Pass Elliptic Filter 27 9 -- --

Ckt4 Two-Stage OpAmp 16 10 30 [3] Exa. 5.2

(a) Number of optimization variables (b) Number of constraints

Table 6.3 Design parameters range

Id W’s (μm) (a) L’s (μm)(a) Ibias (μA) Search Space

Ckt1 [1, 400,1] [0.35,10,0.1] 200 fixed 2.137e+10

Ckt2 [1, 400,1] [0.35,10,0.1] [10,60,20] 8.905e+14

Ckt4 [1, 400,1] [0.35,10,0.1] none 8.220e+18

(a) Note: all parameters ranges means [min, max, grid size] respectively

Table 6.4 Matching and technology constraints details

Id
 Techn. Constraints
Matching

VGS - VT

(a)
[Min - Max]

VDS - VDSAT

(b)
Min / Max

Ckt1

M1=M2

M3=M4

[50-200] mV

[100-300] mV

> 50 mV

> 50 mV

Ckt2 M1=M2; > 50 mV > 50 mV

Ckt4

M3=M4=M5=M6

M1=M2;

M3=M4=M7;

M8=M9;

M10=M11=M12 =M14

[100-300] mV

> 50 mV

< 200 mV

< 200 mV

< 200 mV

> 50 mV

> 50 mV

> 50 mV

> 50 mV

> 50 mV

 (a) Overdrive voltages (b) Drain-sources voltages margin

Table 6.5 Specifications/requirements

Id Gain GBW Phase Power

Ckt1 > 50 dB >40 MHz 60º<Ph<90º Min (mW)

Ckt2 > 70 dB >25 MHz 60º<Ph<90º Min (mW)

Ckt4 > 65 dB >20 MHz 60º<Ph<90º Min (mW)

144 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

The optimization algorithms were all initialized with the following default pa-
rameters listed in Table 6.6. In particular, the GA-STD, GA-MOD and GA-SVM
will be used in the following experiments. GA-STD specifies the configuration of
a standard GA, whereas, GA-MOD covers the new GENOM kernel, but, only the
modified evolutionary module is considered, and finally, the proposed GA-SVM
defines the hybrid method composed by the GA-MOD extended by the SVM
learning method.

Table 6.6 Optimization algorithm parameters

Algorithm Setup GA-STD GA-MOD GA-SVM

initPOP 64 64 64

popSize (μ) initPOP/2 initPOP/2 iintPOP/2

Elite members (λ) initPOP /8 initPOP /8 initPOP /8

Initial Sampling Random Latin Hyper Sampling Grid

Selection Random Tournament w/ Feasibility Tournament w/ Feasibility

Sort Min. cost Priority to Feasibility Priority to Feasibility

Crossover 1-Point Unif. 2-Point Unif. 2-Point Unif.

Mut.Rate 5 % fixed 5 % Dynamic 5 % Dynamic

Kernel type GA-STD GA modified GA+SVM

Training Set SVM none none 2000 Unif Sampling points

Early Stop yes yes yes

Some of the common parameters include the initial population size population
size (μ=32), elite size (8), initial mutation rate (5%), a 2-pairs tournament-
crossover probability in 50% of μ and a normal distribution method for generating
the initial population. The stop criterion was here defined as a maximum number
of generations or as soon as it reaches the first solution. For this particularly
experiments, the SVM meta-parameters were found for the first time model gen-
eration and then fixed (regularization parameter C=4, variance σ=1/n). A cross
validation method [4-6] for optimal parameter selection will execute automatically
for each model update.

6.3 GENOM Convergence Tests

In this section a set of experiments that tests the convergence and performance of
GENOM GA-MOD algorithm will be presented. In particular, a simple testbench
OpAmp circuit from Fig. 6.2a) will be used in this study. This circuit has 4 inde-
pendent variables and was synthesized within a 0.35μm, 3.3V technology. Each
variable has a reasonable range and all were initialized by a random sampling
methodology.

6 Optimization of Analog Circuits and Systems – Applications 145

6.3.1 The Analog IC Design Approach

The GENOM design methodology is ruled by two types of objectives: the goals
and the constraints. All design goals and all design constraints must be satisfied in
order to obtain a circuit, which fulfills the aims of the application. As soon as, a
satisfactory solution is found, the optimizer continues his search for the improve-
ment of each goal, while ensuring that the constraints are still satisfied. During the
search, it can happen that a candidate solution may satisfy all performance con-
straints and goals but may not meet the functional constraints or vice-versa. The
space of feasible solutions is given by the candidate solutions that belong simulta-
neously to the performance and feasibility regions. The computation effort spent
to find the solution space will increase as more and more performance constraints,
design trade-offs, or even process variation parameters are taken into account
when designing robust design circuits. Fig. 6.3 and Table 6.7 show the algorithm
performance result for the simple OpAmps for 5 runs executed on an AMD X64
2.8 GHz dual core machine and use HSPICE to simulate the circuit and extract
performance parameters.

Fig. 6.3 Print screen with statistical data from nominal optimization

Each line from Fig. 6.3 depicts the run number, #Run, the number of evalua-
tions in each run, “#nEvals”, the final fitness value, “#Fitness”, simulation time,
“#wTIME”, then its followed by three binary values indicating whether a solution
satisfies all performance constraints “#PERF”, all feasibility (designer rules) con-
straints “#FEAS” or both, meaning that a solution was found #STATUS=Y at gen-
eration “found_@”.

The “Perf. Specs” columns in Table 6.7 mean the fitness, time and evaluation
number when the circuit meets all design specs of the problem. In the same way,
the “Specs&Rules” column represents the same features when the circuit meets all
design specs, as well as, and all functional constraints of the problem, considering
the nominal optimization with typical working conditions. The “Corners” column
also represents the same features, in case the circuit meets all design specs and all
functional constraints in all corner points of the problem.

146 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.7 Overall performance measures

 #Fitness #TIME (s) #nEVALs

RUNs Perf. Specs
Specs &
Rules

Corners
 Perf.
Specs

Specs
& Rules

Corners
 Perf.
Specs

Specs &

 Rules
 Corners

Run-1 1.065e-02 1.065e-02 1.059e-02 6.75 8.92 174.98 96 128 2578

Run-2 1.062e-02 1.062e-02 1.062e-02 4.29 4.29 184.08 <64 <64 2720

Run-3 1.07e-02 1.07e-02 1.061e-02 4.84 4.84 232.93 <64 <64 3440

Run-4 1.073e-02 1.082e-02 1.059e-02 8.10 13.47 260.70 112 192 3888

Run-5 1.079e-02 1.077e-02 1.057e-02 4.22 5.28 232.25 <64 68 3424

The optimization process considering only typical conditions solved the prob-
lem quickly, and spent only a very few generations (from 0 to 8) as seen in Fig.
6.3 to achieve the performance specs satisfying all design constraints (rules).
However, in corner optimization the number of generations increases for around
15-20 generations. Since each candidate solution for corner analysis requires 9
SPICE simulations (one simulation for each corner point), a minimum of 2578 and
a maximum of 3888 HSPICE simulations were performed taking into account all
runs.

6.3.2 Testing the Selection Approach

Considering the search space subdivision in performance and feasibility spaces,
this experiment tries to answer the question of which selection approach is more
efficient to handle analog circuit candidates towards the optimum space. When
two candidate solutions are compared, which one is more efficient, the one satisfy-
ing all performance specs less 50% of constraints or the one satisfying all design
constraints less the 50% of specs? It will be seen in the following experiments the
influence of the selection operator materialized in GENOM by the variation of the
sort algorithm and the tournament selection scheme.

The following results, depicted in Table 6.8 and Table 6.9, present the effec-
tiveness of the selection operator variants implemented in GENOM optimizer, us-
ing the same circuit of Fig. 6.2a) for the corner optimization case. In particular
two variants will be tested. The first variant promotes the solutions close to the
performance space, i.e., in the pathway to the solution space, and its first goal is to
reach the performance space and then move towards the feasibility space (results
in Table 6.8). A second variant uses the opposite strategy, the first approach is to
reach the feasibility space and after that the performance space (Table 6.8). The
performance of these two approaches will be compared with standard approach
(Table 6.10).

6 Optimization of Analog Circuits and Systems – Applications 147

Table 6.8 Output results for each run - Priority to the performance space

#Run #nEvals #Fitness #wTIME #PERF #found_@ #STATUS #found_@

 1 2578 1.060e-02 117.07s Y 1 (gen) Y 14 (gen)

 2 2720 1.061e-02 130.58s Y 1 (gen) Y 15 (gen)

 3 3440 1.061e-02 169.89s Y 3 (gen) Y 20 (gen)

 4 3888 1.060e-02 205.95s Y 3 (gen) Y 23 (gen)

 5 4144 1.060e-02 199.57s Y 4 (gen) Y 25 (gen)

Table 6.9 Output results for each run – Priority to the feasibility space

#Run #nEvals #Fitness #wTIME #FEAS #found_@ #STATUS #found_@

 1 6472 1.060e-02 296.48s Y 1 (gen) Y 41 (gen)

 2 6314 1.059e-02 311.79s Y 1 (gen) Y 40 (gen)

 3 3024 1.060e-02 158.91s Y 1 (gen) Y 17 (gen)

 4 4464 1.060e-02 220.19s Y 1 (gen) Y 27 (gen)

 5 1432 1.060e-02 73.83s Y 1 (gen) Y 6 (gen)

Table 6.10 Output results for each run – Standard approach

#Run #nEvals #Fitness #wTIME #FEAS #found_@ #STATUS #found_@

 1 3448 5.326e-02 190.46s Y 1 (gen) Y 20 (gen)

 2 6608 5.317e-02 318.82s Y 1 (gen) Y 42 (gen)

 3 2160 5.327e-02 125.24s Y 1 (gen) Y 11 (gen)

 4 2736 5.321e-02 121.55s Y 1 (gen) Y 15 (gen)

 5 2008 5.322e-02 89.36s Y 1 (gen) Y 10 (gen)

In the standard approach, the best-ranked individual will always be the one with
the lowest constraints and specs violation in each generation. From the analysis of
these results it is verified that the standard ranking approach and the ranking strat-
egy that gives priority to the solutions satisfying performances spaces produces
the better results in terms of number of generations or computation time. In aver-
age, both strategies have similar performances (e.g., the average number of gen-
erations is 19.4 and 17.8 respectively), although the standard approach presents
worse variances from run to run (13.1 against and 4.8 for the other strategy). For
simple circuits like the one used in these experiments there is no apparent benefit
in these two approaches.

However, for more complex circuits the great variance of standard approach
will be amplified and will produce undesirable results, as shown in Table 6.11 and
Table 6.12 for the fully differential OpAmp with 21 optimization variables and 43
constraints defined in Sect. 6.5.1.

148 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.11 Output results for each run – Priority to the performance space

#Run #nEvals #Fitness #wTIME #FEAS #found_@ #STATUS #found_@

 1 288 7.542e-02 16.60s Y 7 (gen) Y 14 (gen)

 2 512 1.162e-01 26.10s Y 9 (gen) Y 28 (gen)

 3 1088 7.881e-02 54.80s Y 21 (gen) Y 64 (gen)

 4 608 3.428e-02 31.99s Y 7 (gen) Y 34 (gen)

 5 640 9.562e-02 33.91s Y 10 (gen) Y 36 (gen)

 6 1920 7.108e-02 93.19s Y 12 (gen) Y 116 (gen)

 7 640 9.099e-02 51.76s Y 18 (gen) Y 36 (gen)

 8 832 5.907e-02 64.20s Y 9 (gen) Y 48 (gen)

 9 1168 3.139e-02 65.11s Y 20 (gen) Y 69 (gen)

 10 832 1.230e-01 41.25s Y 7 (gen) Y 48 (gen)

Table 6.12 Output results for each run – Standard approach

#Run #nEvals #Fitness #wTIME #FEAS #found_@ #STATUS #found_@

 1 368 6.846e-02 19.85s Y 11 (gen) Y 19 (gen)

 2 1328 3.895e-02 64.95s Y 10 (gen) Y 79 (gen)

 3 448 9.689e-02 23.30s Y 14 (gen) Y 24 (gen)

 4 1616 3.544e-02 78.14s Y 17 (gen) Y 97 (gen)

 5 384 1.141e-01 20.08s Y 14 (gen) Y 20 (gen)

 6 880 1.121e-01 44.30s Y 22 (gen) Y 51 (gen)

 7 2464 2.413e+00 120.51s Y 9 (gen) N >150 (gen)

 8 2464 9.955e-01 142.98s Y 7 (gen) N >150 (gen)

 9 528 5.027e-02 27.67s Y 18 (gen) Y 29 (gen)

 10 2464 1.443e+01 169.66s Y 14 (gen) N >150 (gen)

In several runs, the standard ranking approach is not capable of finding a solu-
tion during the specified number of generations (150 in this case) for this nominal
optimization problem. The ranking strategy with priority to performance space is
able to find a solution in all cases (as noticed in Table 6.11) and, in general, it is
more efficient to find a solution in each run.

6.4 Comparing GA-STD, GA-MOD and GA-SVM Performance

The objective of these experiments is to compare the performance of the proposed
learning method GA-SVM against the earlier evolutionary approach GA-MOD, as
well as, the standard GA-STD. The following case studies do not include the
search space decomposition feature and the parallelism in the results analysis.

For all the following examples, the industry HSPICE simulator will be used as
the evaluation engine, every time an electrical simulation is required. The testbench

6 Optimization of Analog Circuits and Systems – Applications 149

circuit configuration of Fig. 6.2 b), c) and d) were used in these experiments fol-
lowing the specifications, constraints and models already defined in Sect. 6.2.

In order to create an accurate SVM Feasibility model the optimization parame-
ter space was uniformly sampled with 2000 points to produce the training set, 20%
were used to balance the model class samples and 10% more to the validation data
set. The class balance pre-processing module was achieved in two steps. First, by
filtering those solutions that belong to regions of the design space that are far from
fulfill the technological constraints (undersampling the majority class). Then build
a two class feasibility model considering those samples which are close the feasi-
bility region and the samples that really belong to the feasibility region. Next, use
it to oversample the feasibility region (increasing the minority class) as well as its
frontier as explained in Sect. 4.2.5. After that, a final accurate feasibility model is
built to be use in the optimization process.

6.4.1 GA-STD versus GA-SVM Performance – Filter Case Study

The filter circuit shown in Fig. 6.2 c) was optimized according to the performance
specifications of Table 6.13. The nine design parameters range and the achieved
results concerning device sizes are presented in Table 6.14 using the HSPICE
simulator as the evaluation engine.

Table 6.13 Performance specifications/requirements

SPECs Initial GA-STD GA-SVM Units

Maximum P-Band Ripple < 1 9.13e-01 7.20e-01 dB

Minimum P-Band Ripple > -0.5 -1.89e-01 -3.93e-01 dB

Stop Band Attenuation < -82 -8.25e+01 -8.30e+01 dB

Table 6.14 Design parameter specifications (GA-SVM)

Optimization Parameters Limits Results

R11 (Ω) in block 1 [1.0e+3, 5.0e+3] 3.70e+03

C11 (F) in block 1 [250.0e-12, 400.0e-12] 3.15e-10

C21 (F) in block 1 [1.0e-9, 10.0e-9] 8.00e-09

R12 (Ω) in block 2 [7.0e+3, 15.0e+3] 1.13e+04

C12 (F) in block 2 [250.0e-12, 400.0e-12] 3.45e-10

C22 (F) in block 2 [1.0e-9, 5.0e-9] 3.90e-09

R13 (Ω) in block 3 [30.0e+3, 40.0e+3] 3.93e+04

C13 (F) in block 3 [50.0e-12, 100.0e-12] 7.40e-11

C23 (F) in block 3 [1.0e-9, 10.0e-9] 3.10e-09

150 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.15 Runtime info

 GA-STD GA-SVM

Optimization Variables 9 9

Number of evaluations to get first solution 1670 1272

Time elapse to get 1st solution 75s 64s

 * In a dual processor core AMD at 2400 MHz running Linux OS.

The obtained performance specs obtained by the GA-STD and GA-SVM meth-

ods are included in Table 6.13. Finally, the overall computational times are
presented in Table 6.15 and the first solution is the one which satisfies all the per-
formance specs.

Both models GA-SVM and GA-STD obtain feasible solutions as outlined in
Fig. 6.4, but with slight differences in time efficiency, about 15-20% of efficiency
favorable to GA-SVM, as indicated in Table 6.15. With this optimization method-
ology the GA algorithm may lose some diversity, however the model will improve
dynamically one step after the other, as it can be observed in Fig. 6.5, exploring
very well, say aggressively, the performance space.

Fig. B - Stop band zoom

Fig. A - Ripple zoom

Fig. 6.4 Final Bode plot

6 Optimization of Analog Circuits and Systems – Applications 151

Fitness Versus Number of Evaluations

0,00

20,00

40,00

60,00

80,00

100,00

120,00

85 20
6

33
1

45
6

57
9

70
3

82
6

95
0

10
80

12
12

13
38

14
65

15
89

17
16

Nº of Evaluations

F
it

n
es

s
AG+SVM GA

Fig. 6.5 Performance: GA-STD versus GA-SVM kernel

6.4.2 Static GA-SVM Performance - OpAmp Case Study

In this experiment the Ckt2 and Ckt4 OpAmp circuits shown in Fig. 6.2b) and d)
were optimized according to the performance specifications of Table 6.5. All
statistics measures presented in Table 6.16 and Table 6.17 are the mean and stan-
dard deviation obtained over 20 runs. “Cmean” and “Cstd” stand for the mean and
the standard deviation of the cost function; “EVmean” and “EVstd” stand for the
mean and the standard deviation of the number of evaluations necessary to get
the first solution, and finally, the “Tmean” and “Tstd” represent the mean and the
standard deviation of the time spent in the optimization process, not included
the setup time to build the model in the case of the GA-SVM algorithm.

Table 6.16 Comparison among different algorithms for Ckt2

Cir-1 GA-STD GA-MOD GA-SVM

Cmean 9.090e-02 7.476e-02 7.181e-02

Cstd 2.128e-02 6.940e-03 9.646e-03

EVmean 1.888e+02 1.502e+02 7.285e+01

EVstd 8.490e+01 7.043e+01 2.377e+01

Tmean 2.026e+00 1.669e+00 7.275e-01

Tstd 1.109e+00 7.801e-01 3.246e-01

Fig. 6.6 and Fig. 6.7 show the electrical characteristics of the final population
and some of the output reports from the optimization tool, respectively.

152 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.17 Comparison among different algorithms for Ckt4

Cir-2 GA-STD GA-MOD GA-SVM

Cmean 2.772e-01 2.787e-01 2.376e-01

Cstd 7.693e-02 5.066e-02 5.034e-02

EVmean 7.216e+02 3.863e+02 4.196e+02

EVstd 3.008e+02 1.300e+02 1.325e+02

Tmean 1.813e+01 1.216e+01 1.029e+01

Tstd 1.179e+01 5.771e+00 4.161e+00

Gain and phase magnitudes of Cascode Amplifier (Ckt2) Gain and phase magnitudes of TwoStage Opamp (Ckt4)

Fig. 6.6 Electrical characteristics from final population

Fig. 6.7 Output reports from optimization tool (Ckt4)

6 Optimization of Analog Circuits and Systems – Applications 153

6.4.2.1 Evaluation Metric

The experiments were executed on AMD X64 2.8 GHz dual core machine and
used HSPICE to simulate the circuit and extract performance parameters and the
public domain LIBSVM tool [7] as the learning engine. Each algorithm was exe-
cuted 20 times to acquire the mean and the standard deviation for the evaluation
performance. The convergence behavior for the “Two-Stage” OpAmp experiment
in one run is presented as an example in Fig. 6.8.

Fig. 6.8 Evolution of the cost function

Analyzing this Fig. and the experimental data displayed in Table 6.16 and Ta-
ble 6.17 and Fig. 6.9, it is noticeable the good accuracy and lower variance ob-
tained by the GA-MOD and GA-SVM algorithms.

Mean number of iterations

0,0E+00

1,0E+02

2,0E+02

3,0E+02

4,0E+02

5,0E+02

6,0E+02

7,0E+02

8,0E+02

1 2

Circuits

N
u

m
b

er
 o

f
E

va
lu

at
io

n

GA-STD

GA-MOD

GA-SVM

Fig. 6.9 Comparative graph for the required number of evaluations

154 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

However, the GA-SVM achieved better results in all cases. Although the GA-
STD uses electrical simulation too, the convergence is slower than the others. The
algorithms using models are clearly more time efficient if it is not included the
algorithm setup time to build the models. Among all the approaches under test,
GA-SVM can achieve the lowest cost and the smaller amount of computation time
followed by the GA-MOD.

The setup time to build the model, 100 seconds approx. in each of the presented
cases, can be problematic at first sight. The means and variances for the GA-SVM
would be very different if they were included in statistics. However some points
can be clarified in favor of this approach. First, the initial model is build only once
and can be used many times to test different circuit’s requirements since the pa-
rameters ranges don’t change. Second, much of the time spent with model genera-
tion is due to the time spent in sampling and evaluation of the selected points for
training and testing the model. The effective time to build the model is negligible
when compared with circuit model sampling. Thus, the performance and con-
strained information resulting from each training set is stored, it is possible to
build a model at any time, adapted for each circuit requirements and allowing pos-
terior model upgrading and reusability. In conclusion a good compromise between
accuracy and efficiency is given by the hybrid GA-SVM approach.

6.4.3 Testing the Dynamic GA-SVM Performance

The objective of these experiments is to study the impact of the proposed dynamic
SVM model in the optimization process. Our purpose is to compare the perform-
ance of several dynamic learning strategies and compare the GA-SVM against the
static GA-SVM defined in the previous section, as well as, GA-MOD. Specifi-
cally, four experiments defined in Table 6.18 will be performed considering,
respectively, the SVM model built before the start of the evolutionary process –
static model, SVM model built dynamically, i.e., during evolutionary process, and
finally a combination of a static with dynamic SVM model – dynamic model,
where the static model is here initialized with a subset of samples from the single
static model. Table 6.19 gives the algorithm specifications details.

Table 6.18 Experiments cases

Experiment Model SVM Static Model Dynamic Model

Exp-1 GA-MOD No No No

Exp-2 Static-SVM Yes Yes/3000(a) No

Exp-3 Dyn-SVM Yes No Yes/100

Exp-4 S+D-SVM Yes Yes/1000 Yes/100 (b)

(a) Number of uniform sampling points (b) Regeneration rate

6 Optimization of Analog Circuits and Systems – Applications 155

Table 6.19 Algorithm specifications under test

Algorithm GA-MOD Static-SVM Dynamic-SVM

Selection 2-Tournament 2-Tournament 2-Tournament

Crossover 2-Point Unif 2-Point Unif 2-Point Unif

Mutation Rate 5% Dynamic 5% Dynamic 5% Dynamic

Kernel type GA modified SVM-RBF SVM-RBF

Training Set None 3000 Unif Sampling points None

These experiments use exclusively the two-stage (Ckt4) ampop illustrated in
Fig. 6.2, updated with appropriate test benches to allow the measures of the de-
sired performances parameters. All experiments used the same computation re-
sources, specifications and constraints as earlier and also used the same number of
runs to extract the mean and the standard deviation for the evaluation perform-
ance. The convergence behavior for the two-stage OpAmp experiment in one run
is presented as an example in Fig. 6.10.

From the experimental data, displayed from Table 6.20 and Fig. 6.10, it is clear
the good accuracy and time efficiency obtained with strategies embedded with
SVM models built in offline mode. However, the overhead time to build the static
model can be problematic for more complex circuits. Here, the static algorithm
takes about 90 seconds approx. to evaluate 3000 uniform samples but in more
complex circuits, this number rises considerably. The means and variances to se-
tup the models using static modeling were not included in the final statistics given
at Table 6.20.

Table 6.20 Comparison among different algorithms

 Algorit. Cmean Cstd EVmean EVstd Tmean Tstd

 Exp-1 2.55e-01 4.47e-02 3.95e+02 1.07e+02 1.14e+01 4.04e+00

 Exp-2 2.61e-01 4.93e-02 1.48e+02 1.08e+02 3.91e+00 2.28e+00

 Exp-3 2.19e-01 4.74e-02 2.74e+02 2.24e+02 6.93e+00 6.58e+00

 Exp-4 2.19e-01 5.29e-02 6.22e+02 1.73e+02 1.42e+01 4.31e+00

A different strategy has been taken towards a dynamic building model with da-
ta gathered during the early generations. Some configurations were tested as
shown in the Fig. 6.10 (b).

This approach can be very sensitive to the value of the regeneration rate value.
Using a lower value for the regeneration rate, e.g., 200, originates long processing
times because it takes more training samples however a better accuracy model is
obtained. A higher sampling rate at early generations causes better convergence
but with a slightly increase in execution times. An automatic and dynamic control

156 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

of the regeneration rate can be added using the information of the quality of SVM
model. A good compromise between these two approaches is given by the test
case joining the static and dynamic training model behavior (S+D-SVM).

Evolution Fitness Function

0,0E+00

2,0E-01

4,0E-01

6,0E-01

8,0E-01

1,0E+00

1,2E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Generations

F
it

n
es

s

Dyn-SVM

Static-SVM

GA-MOD

S+D-SVM

(a) Cost function evolution

Dynamic SVM

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Generations
E

vo
lu

ti
o

n
 t

im
e

D-SVM-50

D-SVM 100

D-SVM 150

D-SVM 200

GA-MOD

(b) Dynamic SVM model behavior with regen-
eration rate

Fig. 6.10 Comparative performance analysis

6.4.4 Final Comments

The proposed approach is a step forward when compared with the simple GA
kernel, as it now incorporates performance modeling facilities, allowing an effec-
tive pruning of the candidate solutions before being submitted to the heavy time-
consumption task of electrical evaluation. The achieved results show significant
gains in efficiency and this approach also allows the reuse of the model generated
during one optimization process in subsequent optimizations, which is again an-
other significant advantage when compared with traditional approaches, espe-
cially in the areas of architecture exploration and synthesis of complex analog
blocks.

6.5 General Purpose Circuits or High Performance Circuits
Design

In this section, a case study for several high performance circuit designs will be
presented passing by the following phases: full schematic, design specifications
and constraints, variable ranges, optimization results such as variables size and
achieved performance and time statistics. This set of circuits shows GENOM’s
ability to design high-performance and novel circuit topologies. The design com-
plexity decomposition was optionally not taken into account because the primarily
objective is to test the algorithm not the design process.

6 Optimization of Analog Circuits and Systems – Applications 157

6.5.1 Fully Differential OpAmp

Fig. 6.11 illustrates the differential amplifier schematics considered to evaluate the
performance of the presented optimization technique.

(a) Bias circuitry

cmfb

1

M7a M7b

avdd

0 0

M6a M6b

M2c

vcm

out+

out-

(b) CMFB amplifier

(c) Main amplifier

Fig. 6.11 Differential amplifier schematic

The topology, defining the connectivity of device-level components, consists of
25 transistors devices grouped in 3 main functional blocks: the main amplifier
with differential input and output, the bias circuit and the common mode feedback
circuitry. By looking at the circuit schematic, some groups of transistors like M3a
and M3b, for instance, must be matched. Some dependent relations like, the mul-
tiplicity factor, m7, of transistors M7a and M7b is equal to m5/2 (this implies that
m5 must be pair) must also be verified.

158 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

6.5.1.1 Performance Specifications, Input Variables Ranges and Design
Space Size

The main objective was to synthesize the presented differential amplifier using the
ALCATEL 0.35µm, 3.3V CMOS technology according to the performance speci-
fications, listed in Table 6.21, and always respecting the fundamental designer
rules related to overdrive voltages and drain-sources voltages. The 7 performance
constraints derived from Table 6.21 (excluding CL) and the 34 constraints derived
from designer’s rules depicted in Table 6.23, result in 41 optimizations constraints
that must be satisfied by the optimization process. The 34 constraints are due to
the 17 overdrive voltage and 17 drain source voltages considered on transistors
m0a, m0b, m16, m1a, m1b, m2a, m2b, m3a, m3b, m4a, m4b, m5a, m5b, m6a, m6b,
m7a and m7b.

A total of 21 independent variables (column “Design Variables” in Table
6.23) corresponding to widths, lengths and multiplicity factor of transistors repre-
sent the number of genes on each genetic algorithm chromosome. All the solu-
tions were examined for each one of the 9 corner points resulting from the cross
combination of process and operational variation listed on Table 6.22. For exam-
ple, the combination (CSlow,-40º) means a circuit analysis at temperature -40º
using NMOS and PMOS slow models. Then, it is followed by (CSlow,+50º)
analysis, etc. Finally, Table 6.24 lists the main optimization parameters used on
the genetic algorithm.

Table 6.21 Performance parameter specifications

 Specifications Target Units Description

Electrical GBW > 100 MHz Unit-gain frequency

 Phase margin > 60 º Phase margin

 DC gain > 55 dB DC gain

 CMF GBW > 50 MHz CMFB unit-gain frequency

 CMF Phase margin > 60 º CMFB phase margin

Environmental CL (fixed value) 0.2 pF Capacitive Load

Optimization Power Consumption Minimum mW Objective

 Current Consumption Minimum μA Objective

Table 6.22 Corners analysis data

Conditions Variation points

MOS worst case parameters CSlow CTyp CFast

Temperature Range (º C) -40º C +50º C +120ºC

6 Optimization of Analog Circuits and Systems – Applications 159

Table 6.23 Matching and constraints details

Matching Constraints
Dependent
Variable

Design
Variable

Range
[Min;Max;Step]

Unit
VGS - VT

(a)

[Min - Max]
VDS - VDSAT

(b)

Min / Max
Unit

M0 (_w00, _l00, m02) _w00 [1; 20; 1] μm
M0a=M0b=M0c
 (_w02, _l00, 1)

_w01 [1; 20; 1] μm [100 - 300] >100 mV

M1 (_w02, _l06, m06) _w02 [1; 20; 1] μm
M2a = M2b=M2c
 (_w02, _l02, m02)

_w04 [1; 20; 1] μm [100 - 300] >100 mV

M20 (_w04, _l04, 1) _w10 [1; 20; 1] μm

M21 (_w11, _l11, 1) _w11 [1; 20; 1] μm
M3a = M3b
 (_w02, _l03, m03)

_l00 [0.35; 10; 0.05] μm [100 - 300] >100 mV

M5a = M5b
 (_w04, _l05, m05)

_l01 [0.35; 10; 0.05] μm [100 - 300] >100 mV

M6a = M6b
 (_w02, _l06, m06)

_l02 [0.35; 10; 0.05] μm [50 - 300] >100 mV

 _l03 [0.35; 10; 0.05] μm

Bias Circuit _l04 [0.35; 10; 0.05] μm

M16=M17 (_w02, _l02, 1) _l05 [0.35; 10; 0.05] unit [100 - 300] >100 mV

M18 (_w10, _l10, 1) _l06 [0.35; 10; 0.05] μm

M19 (_w02, _l03, 1) _l10 [0.35; 10; 0.05] μm
M4a=M4b
 (_w04, _l04, m04)

_l11 [0.35; 10; 0.05] μm [100 - 300] >100 mV

M7a=M7b
 (_w04, _l05, m05/2)

_m01 [1; 80;1] unit [100 - 300] >100 mV

M1a=M1b
 (_w01, _l01, m01)

_m02 [1; 80;1] unit [50 - 300] >100 mV

 _m03 [1; 80;1] unit

 _m04 [1; 80;1] unit

 _m05 [1; 80;1] unit

 _m06 [1; 80;1] unit

(a) Technology Constraints - overdrive voltages (b) Drain-sources voltages

Table 6.24 Optimization algorithm parameters

Parameter value Parameter value Parameter value

Kernel GA-MOD Selection Tournament Popsize 64

Strategy Corner Optimization Crossover Two point Init Pop 2*Popsize

Sampling LHS Mutation Dynamic Generations 150

Adaptive No
Stop condi-
tion

End of gen-
erations Sort

Priority to perform-
ance fitness then perf.
constraints. Elite 25% of populat. Search Space 2,370e+37

160 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

6.5.1.2 Analysis

The attached test benches used for DC and AC simulations are illustrated in
Fig. 6.12. The unusual values for the resistance (1T Ohm) and for the capacitance
(1F) ensure the same voltage in DC Analysis for nodes Vin-, Vin+, Voutp and
Voutn, it is also possible to analyze the amplifier open loop gain. A dependent
source voltage is used to transform a differential output (voutp, voutn) into a single
ended one (voutd).

The simulation results for the main amplifier and cmfb circuit sizing achieved
with the optimization module, and using the HSPICE simulator as the evaluation
engine are presented in Table 6.25 and satisfy all the design requirements. The fi-
nal transistor dimensions are displayed in Table 6.26. The proper biasing of all
CMOS transistors are guaranteed once the final solution satisfies all the design
specs and functional constraints for each of the corner points. The computational
times were included, in Table 6.27, to illustrate the effectiveness of the proposed
system.

Fig. 6.12 Testbench for (a) AC and (b) AC Common mode feedback specifications

Table 6.25 Performance parameter specifications

 Specifications Target Sizing Result Units

Electrical GBW > 100 158.0 MHz

 Phase margin > 60 65.0 º

 DC gain > 55 66.6 dB

 CMF GBW > 50 64.1 MHz

 CMF Phase margin > 60 75.6 º

Optimization Power Consumption Minimum 4.2 mW

 Current Consumption Minimum 1.2 mA

6 Optimization of Analog Circuits and Systems – Applications 161

Table 6.26 Final transistor dimensions

Main
Amplifier

W/L
(μm/μm)

Bias W/L
(μm/μm)

Common
Mode

W/L
(μm/μm)

M0 54/0.40 M0a, b, c 1/0.40 M6a, b 170/0.95

M1a, M1b 41/0.95 M16,17 10/0.40 M7a, b 45/1.75

M2a, M2b 90/0.40 M18 3/0.95 M2c 90/0.40

M3a, M3b 170/0.90 M19 10/0.90

M4a, M4b 441/7.80 M20 9/7.80

M5a, M5b 54/0.95 M21 6/4.40

Table 6.27 Runtime info*

Design Problem

Opt. Variables / Constraints (Specs + Design Const.) 21 7 + 34 = 41

(1 -Step) Corners Optimization Time #Generation #Evaluations

Overall Optimization time 17m05s 150 2496

First Feasible Solution 10m56s 79 1329

Best feasible solution 12m45s 92 1616

* In a single processor Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz PC running Linux.

The next pages show all graphical and numerical results for the AC corner

analysis. Fig. 6.13 shows all the gain magnitudes, it is interesting to observe the
range of DC gain and GBW; all corner numerical results are reported in
Table 6.28 while Table 6.29 shows minimum and maximum values.

Fig. 6.13 Gain magnitudes for corners analysis

162 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Fig. 6.14 displays the output from corner simulation.

CORNER MODEL TEMP WEIGHT SATISFY FITNESS(i) VIOL(i) SUM_FIT[10150]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

CSLOW

CSLOW

CSLOW

CTYP

CTYP

CTYP

CFAST

CFAST

CFAST

-40º

+50º

+120º

-40º

+50º

+120º

-40º

+50º

+120º

1

1

1

1

1

1

1

1

1

7 / 34=41

7 / 34=41

7 / 34=41

7 / 34=41

7 / 34=41

7 / 34=41

7 / 34=41

7 / 34=41

7/ 34=41

6.779e-03

1.333e-02

 1.980e-02

3.438e-02

 4.830e-02

6.199e-02

 7.012e-02

7.774e-02

 8.518e-02

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

6.779e-03

1.333e-02

1.980e-02

3.438e-02

4.830e-02

6.199e-02

7.012e-02

7.774e-02

8.518e-02

****** EUREKA ******

Byebye. AIDA - IC_DESIGN Terminate ...

Job done on a Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

Fig. 6.14 Output from simulation where all corners are satisfied

Table 6.28 Results for corners analysis

Corner 1 2 3 4 5 6 7 8 9

Process slow typical fast

Temperature -40° 50° 125° -40° 50° 125° -40° 50° 125°

Specs Values

 DC Gain (dB) > 55 58.3 56.5 55.5 57.9 56.3 55.4 57.2 55.9 55.3

f (A=0dB) (MHz) > 100 188 138 116 215 158 133 243 178 150

Phase (A=0dB) (°) >-120 -117 -116 -115 -116 -115 -115 -114 -114 -114

PM (grade) > 60 63 64 65 64 65 65 66 66 66

Table 6.29 Minimum and maximum values for AC corner analysis

Specs Range

DC Gain (dB) Min: 55.3 dB Max: 58.3 dB

GBW (MHz) Min: 116 MHz Max: 243 MHz

PM (grade) Min: 63º Max: 66º

Two critical corner points are pointed in Fig. 6.13. The corner in the bottom
(magnitude 0) is achieved by Corner Slow, @125º and in the top by Corner Fast,
@125º. To calculate the phase margin is not useful to plot all phases in the same
graphic; Fig. 6.15 shows the gain magnitude and phase only for typical mean
process and 50° conditions. The dot line depicts the gain magnitude and phase at
the common mode output.

6 Optimization of Analog Circuits and Systems – Applications 163

Fig. 6.15 Gain magnitude and phase for typical conditions

6.5.1.3 Design Analysis

The GENOM optimization algorithm solves the circuit sizing problem with effi-
ciency considering the type of optimization evolved in this experiment, the corner
optimization and taking also in consideration the number of optimization variables
and constraints. The first and the final solutions produced are presented in
Table 6.30 and Table 6.31.

Table 6.30 First feasible solution performance parameter specifications

Specifications Target Sizing Result Units

GBW (MHz) > 100 MHz 110.6 MHz

Phase margin (deg) > 60º 74.0 º

DC gain (dB) > 55 dB +61.1 dB

CMF GBW (MHz) > 50 MHz 60.7 MHz

CMF Phase margin (deg) > 60º +82.4 º

Power Consumption (mW) Minimum 2.8 mW

Current Consumption (μA) Minimum 8.7e-01 mA

Nº Eval = 1329 RealTime: 10min

164 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.31 Best solution performance parameter specifications

Specifications Target Sizing Result Units

GBW (MHz) > 100 MHz 189.38 MHz

Phase margin (deg) > 60º 64.1 º

DC gain (dB) > 55 dB 58.1 dB

CMF GBW (MHz) > 50 MHz 75.6 MHz

CMF Phase margin (deg) > 60º 84.8 º

Power Consumption (mW) Minimum 2.1 mW

Current Consumption (μA) Minimum +8.8e-01 mA

Nº Eval = 1626 RealTime: 12min

The power consumption is the power provided by the power supply (vdd)

as defined in the HSPICE expression (6.1). The current consumption is defined
by the expression (6.2), where avddpar is the supply voltage (3.3V). Both ex-
pressions are divided by two in order to reflect the differential status of this
topology.

 .MEASURE AC 'power' PARAM('-P(vdd)/2') (6.1)

 .MEASURE AC 'iavdd' PARAM('-P(vdd)/avddpar/2') (6.2)

6.5.2 A Common OTA Fully Differential Telescopic OpAmp

6.5.2.1 Description

A common OTA (Operational Transconductance Amplifier) is the telescopic am-
plifier. The major drawback of this amplifier’s topology is the reduced output
swing when compared with other solutions, such as the folded cascade or two
stage amplifiers, which becomes relevant in low voltage applications. On the other
hand, its good speed performance associated with its low power consumption
turns this topology into a competitive implementation. The schematic represented
in Fig. 6.16 is an in-house fully differential version of this topology.

 The topology consists in 24 transistors grouped in 2 main functional blocks:
the main amplifier with differential input and the bias circuit. A quick inspection
to circuit schematic highlights the potential matching of some groups of transistors
like M0 and M19, M40 and M43, M17 and M18, M34 and M36. Some dependent
relations like for instance, the multiplicity factor of transistors M18, M17, M24
and M5 and others listed in Table 6.33 should also be checked.

6 Optimization of Analog Circuits and Systems – Applications 165

ibias

v innv inp

agnd

av dd

agnd
agnd

av dd

M24

W = wx
L = l18
M = 1

NMOS M5

W = wx
L = l18
M = 1

NMOS

M25

W = wx
L = l4
M = 1

NMOS M15

W = wx
L = l15
M = 1

NMOS

M26

W = wx
L = l9
M = 1

PMOS
M9

W = wx
L = l9
M = 1

PMOS

M27

W = wx
L = l2
M = 1

NMOS M2

W = wx
L = l2
M = 1

NMOS

v b

M14

W = wx
L = l40
M = 1

PMOS

M11

W = wx
L = l40
M = 1

PMOS

M12

W = wx
L = l12
M = 1

PMOS
M13

W = wx
L = l0
M = 1

PMOS

v bn

v bnc

v on

cm

v op

v b

M35

W = wx
L = l35
M = m4

NMOS

M36

W = wx
L = l34
M = m3

NMOS

M34

W = wx
L = l34
M = m3

NMOS

M18

W = wx
L = l18
M = m2

NMOS

M43

W = wx
L = l40
M = m1

PMOS

v bpc

M19

W = wx
L = l0
M = m0

PMOS

M17

W = wx
L = l18
M = m2

NMOS

M0

W = wx
L = l0
M = m0

PMOS

M40

W = wx
L = l40
M = m1

PMOS

agnd

v bp

v bpc

v bnc agndagnd

Main Amplifier # The Bias Circuit

agnd

M58

W = wx
L = l58
M = 1

NMOS

M57

W = wx
L = l9
M = 1

PMOS

v bp

av dd

M59

W = wx
L = l58
M = 1

NMOS

Fig. 6.16 Telecopic OpAmp - Main amplifier and Bias circuitry

6.5.2.2 Problem Specifications and Design Configurations

The main objective was to synthesize the presented telescopic amplifier, using the
UMC 0.18µm logic 1.8V Generic II process, according to the performance speci-
fications listed in Table 6.32, and designed to follow the fundamental designer
rules and optimization design constraints of Table 6.33. The total number of con-
straints, performance constraints and the constraints derived from designer’s rules
are composed by 23 optimizations constraints that must be satisfied for the opti-
mization process described in Table 6.35. The specifications must be satisfied for
the corners points of Table 6.36.

Table 6.32 Performance parameter specifications

 Specifications Target Units Description

Electrical DC gain > 75 dB DC gain

 GBW > 100 MHz Unit-gain frequency

 Phase Margin [60-90] º Phase margin

Environmental Capacitive Load 1.1 pF Capacitive Load

 Wi – fixed widths 2 μm Fixed all widths

Optimization Power Consumption Minimum mW Objective

 Current Consumption Minimum μA Objective

166 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.33 Matching and constraints details

Matching Constraints

Dependent

Variable

Design

Variable

Range

[Min Max;Step]
Unit

VGS - VT

(a)

[Min - Max]

VDS - VDSAT

(b)

Min / Max
Unit

M19 – M0 _m0 [1; 100; 2] unit [100 - 200] [50 - 150] mV

M19 – M0 _l0 [0.18; 10; 0.05] μm

M40 – M43 _m1 [1; 100; 2] unit [100 - 200] >50 mV

M40 – M43 _l40 [0.18; 10; 0.05] μm

M18 – M17 _m2 [1; 100; 2] unit [100 - 200] >50 mV

M18 – M17 _l18 [0.18; 10; 0.05] μm

M34 – M36 _m3 [1; 100; 2] unit [50 - 200] [50 - 150] mV

M34 – M36 _l34 [0.18; 10; 0.05] μm

M35 _m4 [1; 100; 2] unit [100 - 200] >50 mV

M35 _l35 [0.18; 10; 0.05] μm

Bias Circuit

M24 – M5 _l18 [0.18; 10; 0.05] μm

M59 – M58 _l58 [0.18; 10; 0.05] μm

M9 – M57 – M26 _l19 [0.18; 10; 0.05] μm

M11 – M14 _l40 [0.18; 10; 0.05] μm

M13 _l0 [0.18; 10; 0.05] μm

M12 _l12 [0.18; 10; 0.05] μm

M27 – M2 _l2 [0.18; 10; 0.05] μm

M15 _l15 [0.18; 10; 0.05] μm

M25 _l25 [0.18; 10; 0.05] μm

(a) Technology Constraints - overdrive voltages (b) Drain-sources voltages

Table 6.34 explains the rationale behind the achieved constraints values used in

this experiment. In a fully differential amplifier, as the one shown in Fig. 6.16, the
amplifier can be designed in two symmetrical parts. When one transistor changes
value, its mirror also changes. This principle is used for the input differential pair,
the cascode and load transistors. As for the overdrive voltage and margin, the con-
straints are as follows:

Table 6.34 Matching and constraints details

 Overdrive voltage

Vgs-Vt = Vov

Margin

Vds-VDsat

differential pair 50mV> Vov >200mV > 50mV

current sources 50mV>Vov>200mV > 50mV

cascodes 50mV>Vov>200mV > 50mV

current sources with cascodes 50mV>Vov>200mV 50mV> Margin > 200mV

6 Optimization of Analog Circuits and Systems – Applications 167

Table 6.35 Optimization algorithm parameters

Parameter Value Parameter value Parameter value

Kernel GA-MOD Selection
Tournament by
“feasibility”

Popsize 64

Strategy
Typical + Corner
Optimization

 Crossover Two point Init Pop 2*Popsize

Sampling LHS Mutation Dynamic Generations 150

 Adaptive No Stop
End of gen-
erations

Sort

Priority to perform-
ance fitness then
performance con-
straints. Elite

25% of popula-
tion

Search Space
domain

2.344e+35

Table 6.36 Corner analysis data

Conditions Variation points

MOS worst case parameters SF-Slow TT-Typ FS-Fast

Temperature Range (º C) -40º C +50º C +120ºC

Where, SF, TT and FS means the Slow/Fast, Typical/Typical and Fast/Slow

process, respectively. Instead of using the typical fast and slow device models
sets, where all devices are supposed to be fast or slow, a mixture of slow nMOS
devices and fast pMOS is here considered, for example purposes, namely the
SF, TT and FS meaning the Slow/Fast, Typical/Typical and Fast/Slow process,
respectively.

6.5.2.3 Analysis

The attached test bench circuit used for DC and AC simulations is illustrated in
Fig. 6.17. A dependent source voltage is used to transform a differential output
(out1, out2) into a single ended one (outd).

This experiment was executed on a single Intel(R) Core(TM)2 Quad CPU
Q6600 @ 2.40GHz dual core machine and use HSPICE to simulate the circuit and
extract performance parameters. The simulation results of the main amplifier and
bias circuit sizing are shown in Table 6.37. The final transistor dimensions for all
the devices and biasing conditions resulting from the sizing process are displayed
in Table 6.38.

Fig. 6.18 shows the gain magnitude and phase for typical process and 50°C
conditions.

168 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

R8

1e12

v cm

R9

1e12

v cm

v cm

v cm

v cm

v cm

0

V4

0.0

V3

0.0

amp

v inp

v inn

ib
ia

s

av
dd

ag
nd

v on

v op

fa
se

1

fa
se

1n

fa
se

2n

vc
m

fa
se

2

0

C7
1.1P

C0

800e-15

I1
ibiaspar

ibias

V2
av ddpar

av dd

0

out2

R0

1e12C3

400e-15

R2

1e12

V1
180

500e-3

C1

800e-15

R3

1e12

v in

R1

1e12C2

400e-15

0

C6
1.1P

C4
1

V0
1

500e-3

C5
1

out1

fa
se

2

vc
m

fa
se

1

fa
se

1n

fa
se

2n

Fig. 6.17 Telescopic OpAmp - Testbench for DC and AC specifications

Table 6.37 Performance parameter specifications

 Specifications Target Sizing Result Units

Electrical DC gain > 75 77.6 dB

 GBW > 100 123.0 MHz

 Phase margin > 60 65.0 º

Optimization Power Consumption Minimum 5.6e-01 mW

 Current Consumption Minimum 3.1e-01 mA

Table 6.38 Final transistor dimensions

Main

Amplifier
W/L (μm/μm) Bias W/L (μm/μm)

M19 – M0 202 / 1.080e-06 M24 – M5 2 / 1.33e-06

M40 – M43 152 / 1.58e-06 M59 – M58 2 / 1.38e-06

M18 – M17 126 / 1.33e-06 M9 – M57 – M26 2 / 4.03e-06

M34 – M36 60 / 0.73e-06 M11 – M14 2 / 1.58e-06

M35 10 / 0.18e-06 M13 2 / 1.08e-06

 M12 2 / 8.53e-06

 M27 – M2 2 / 8.63-06

 M15 2 / 1.73e-06

 M25 2 / 9.68e-06

 Note: M0c belongs to Bias and have the same value that M0a and M0b.

6 Optimization of Analog Circuits and Systems – Applications 169

Fig. 6.18 Gain magnitude and phase for typical conditions

 As it can be noticed, this simulation design meets the required specs related to
DC gain, gain bandwidth and phase margin satisfying all corners points as re-
ported in Table 6.39, while Table 6.40 shows the minimum and maximum values.
Obviously the amplifier was designed in order to obtain a worst case DC gain big-
ger than 75dB and a GBW bigger than 110MHz.

Table 6.39 Numerical results for corner analysis

Corner 1 2 3 4 5 6 7 8 9

Process Slow-Fast Typical Fast-Slow

Temperature -40° 50° 125° -40° 50° 125° -40° 50° 125°

Specs Values

 DC Gain (dB) > 55 78.3 76.5 75.5 78.9 77.6 76.4 77.2 75.9 75.1

f (A=0dB) (MHz) > 100 178 128 110 205 123 133 223 146 140

Phase (A=0dB) (°) >-120 -117 -116 -115 -116 -115 -115 -114 -114 -114

PM (grade) > 60 63 64 65 64 65 65 66 66 66

Table 6.40 Minimum and maximum values for AC corner analysis

Specs Range

 DC Gain (dB) Min: 75.1 dB Max: 78.9 dB

GBW (MHz) Min: 110 MHz Max: 223 MHz

PM (grade) Min: 63º Max: 66º

170 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

6.5.2.4 Design Analysis

Taking into consideration the type of optimization evolved in this experiment,
the corner optimization of 16 optimization variables and 24 constraints, the op-
timization algorithm solves the problem with efficiency. In this experiment the
two step evolutionary algorithm was used, which increases the computation effi-
ciency as shown in Table 6.41, once the optimization algorithm achieves a
promising solution using the typical optimization. After that, the optimization
follows the corner analysis process. The switch between these two steps is when
five solutions are found by the typical process, in such a way that the population
is moderately populated with promising samples. This approach increases the
computation efficiency once the same problem was not able to produce a feasi-
ble solution, within the same time constraint, when a single corner optimization
was considered. The first feasible solution satisfying all corners was achieved in
generation 102.

Table 6.41 Runtime info

Design Problem

Opt. Variables / Constraints (Specs + Design Const.) 16 5 + 18 = 24

(1-Step) Typical Optimization Time #Generation #Evaluations

Overall Optimization time 2m12s 53 944

First Feasible Solution 1m00s 22 427

Best feasible solution 1m48s 37 661

(2 -Step) Corners Optimization Time #Generation #Evaluations

Overall Optimization time 14m09s 150 3184

First Feasible Solution 10m06s 102 1664

Best feasible solution 12m07s 120 1937

* In a single processor Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz PC running Linux.

The resolution for this problem was achieved using an iterative process very
similar to the traditional analog design. In a first attempt to solve the problem, it
was observed that one of the corners in particular was very difficult to satisfy.
This corner was identified by the inspection of the run-time information returned
from simulation and provided by the tool. This critical corner point (corner nº3)
is pointed in Fig. 6.19. The simulation was interrupted and the static weight for
that corner was changed as shown in Fig. 6.20, and the simulation was rerun
again. Finally it was possible to obtain several solutions within the original time
constraint.

6 Optimization of Analog Circuits and Systems – Applications 171

Fig. 6.19 Gain magnitudes for corner analysis

CORNER MODEL TEMP WEIGHT SATISFY FITNESS(i) VIOL(i) SUM_FIT[23104]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

SF-SLOW

SF-SLOW

SF-SLOW

TT-TYP

TT-TYP

TT-TYP

FS-FAST

FS-FAST

FS-FAST

-40º

+50º

+120º

-40º

+50º

+120º

-40º

+50º

+120º

1

1

2

1

1

1

1

1

1

5 / 18=23

5 / 18=23

5 / 18=23

5 / 18=23

5 / 18=23

5 / 18=23

5 / 18=23

5 / 18=23

5 / 18=23

1.196e-03

2.343e-03

3.592e-02

5.782e-03

3.923e-03

2.040e-02

2.224e-02

4.035e-02

5.146e-02

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

1.196e-03

3.540e-03

3.946e-02

4.524e-02

4.916e-02

6.957e-02

1.418e-01

1.821e-01

2.336e-01

****** EUREKA ******

Byebye. AIDA - IC_DESIGN Terminate ...

Job done on a Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

Fig. 6.20 Output from simulation where all corners are satisfied

All parameters from column “VIOL” have null values indicating the con-
straints related to designer’s rules (18) were totally satisfied. Additionally, the
column “SATISFY” confirms that all constraints including the performances
(5+18) were satisfied in all corner points. The column “FITNESS” represents the

Critical corner point:
Corner Slow, @120º

172 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

cost function values for each corner point. Generally, the sum of the fitness is not
zero due to computation reasons. This amount is used to rank feasible solutions
satisfying the main goals of the problem, i.e., minimization of power and current
consumption.

6.5.3 Folded Cascode OpAmp with AB Output

6.5.3.1 Description

Class AB amplifiers are typically used when there is a need to drive resistive or
high capacitive loads. They provide a large output current during output voltage
transients, while keeping a low current consumption when in quiet state. The ar-
chitecture shown in Fig. 6.21 and Fig. 6.22 is a two stage topology, with the first
stage being a typical folded cascade architecture, followed by a class AB output
stage. Capacitor C1 and resistor R1 provide the necessary miller compensation
with a pole zero solution to increase the phase margin.

Transistors M6 together with transistors M22 to M27 provide the control of the
class AB operation by controlling the maximum output current of M7 and M8.
This control is performed by keeping control of the Vgs voltage of M6a and M8 so
that Vgs6a + Vgs8 = Vgs24 + Vgs27. Therefore the maximum output current sup-
plied by M8 is controlled by the current in M24 and M27. For positive currents
the same principle is applied to M6b, M7, M23 and M25.

vb

R1

r1

M4a

W = w4
L = l4
M = m4

NMOS

M1a

W = w1
L = l1
M = m1

NMOS

R2

r1

M3b

W = w3
L = l3
M = m3

PMOS

M2a

W = w16
L = l16
M = m2

PMOS

M8

W = w24
L = l24
M = m7

NMOS

C1

c1

M4b

W = w4
L = l4
M = m4

NMOS

M2b

W = w16
L = l16
M = m2

PMOS

M6a

W = w24
L = l24
M = m6

NMOS

M5a

W = w5
L = l5
M = m5

NMOS

M5b

W = w5
L = l5
M = m5

NMOS

M6b

W = w25
L = l25
M = m6

PMOS

C2

c1

M3a

W = w3
L = l3
M = m3

PMOS

M0

W = w0
L = l0
M = m0

NMOS

M1b

W = w1
L = l1
M = m1

NMOS

M7

W = w25
L = l25
M = m7

PMOS

out

v innv inp
agnd

agnd

ibias

av dd

v b1

ibias

v b2

av dd

v b3

Main Amplifier

v a agnd

Fig. 6.21 Main class AB Amplifier

6 Optimization of Analog Circuits and Systems – Applications 173

ibias

v b1

agnd

M27

W = w24
L = l24
M = 1

NMOS

M16

W = w16
L = l16
M = 1

PMOS

M25

W = w25
L = l25
M = 1

PMOS

M0a

W = w0
L = l0
M = 1

NMOS

M19

W = w19
L = l19
M = 1

PMOS
M20

W = w20
L = l20
M = 1

NMOS
M24

W = w24
L = l24
M = 1

NMOS

M22

W = w16
L = l16
M = 1

PMOS

M26

W = w0
L = l0
M = 1

NMOS

M23

W = w25
L = l25
M = 1

PMOS

M0c

W = w0
L = l0
M = 1

NMOS

M17

W = w16
L = l16
M = 1

PMOS
M18

W = w18
L = l18
M = 1

PMOS

M21

W = w21
L = l21
M = 1

NMOS
M0b

W = w0
L = l0
M = 1

NMOS

ibias

ibias

vb2

v b1

v a

v b2

v b3

ibias

av ddav dd

The Bias Circuit

agnd

Fig. 6.22 Bias circuit

6.5.3.2 Problem Specifications and Design Configurations

The main objective was to synthesize the presented folded cascode amplifier using
the AMS (Austria Mikro Systeme Intl. AG) 0.35 µm, 3.3 V CMOS technology
according to the performance specifications listed in Table 6.42, and designed to
follow the fundamental designer rules and optimization design constraints of
Table 6.43. The specifications must be satisfied for the corner points of
Table 6.44. The total of constraints (performance constraints and the constraints
derived from designer’s rules) results in 33 optimizations constraints that must be
satisfied in the optimization process described in Table 6.45.

Table 6.42 Performance parameter specifications

 Specifications Target Units Description

Electrical gain_dc > 70 dB Unit-gain frequency

 gbw > 75 MHz Phase margin

 phase [60-90] º DC gain

Environmental CL 1 pF Capacitive Load

 Ibiaspar 10 μA Ibias

 Wi fixed 5 μm Fixed all widths

Optimization Power Consumption Minimum mW Objective

 Current Consumption Minimum μA Objective

174 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.43 Matching and constraints details

Matching Constraints Design Variable

Dependent

Variable

Optimization

Variable

VGS - VT

(a)

[Min - Max]

VDS - VDSAT

(b)

 Min / Max
Unit Name

Range

[Min Max;Step]
Unit

M0 (_wx, _l0, _m0) [100 - 250] >50 mV _l0 [0.35; 10; 0.05] μm

M1a = M1b (_wx, _l1, _m1) [50 - 250] >50 mV _l1 [1; 20; 1] μm

M2a = M2b (_wx, _l16, _m0) [100 - 250] [50, 250] mV _l3 [0.35; 10; 0.05] μm

M3a = M3b (_wx, _l3, _m3) [100 - 250] >50 mV _l4 [0.35; 10; 0.05] μm

M4a = M4b (_wx, _l4, _m4) [100 - 250] >50 mV _l5 [1; 20; 1] μm
M5a = M5b (_wx, _l5, _m5) [100 - 250] [50, 250] mV _l16 [0.35; 10; 0.05] μm

M6a (_wx, _l24, _m6) [100 - 300] >50 mV _l18 [0.35; 10; 0.05] μm

M6b (_wx, _l25, _m6) [100 - 300] >50 mV _l21 [0.35; 10; 0.05] μm

M7 (_wx, _l25, _m7) [100 - 250] >50 mV _l24 [0.35; 10; 0.05] μm

M8 (_wx, _l24, _m7) [100 - 250] >50 mV _l25 [0.35; 10; 0.05] μm

R1=R2 _r1 _m0 [1; 100;1] unit
C1=C2 _c1 _m1 [1; 100;1] unit

Bias Circuit: _m3 [1; 100;1] unit
Dep.Variable Opt.Variable Dep.Variable Opt.Variable _m4 [1; 100;1] unit

M20 (_wx, _l4, 1) _m5 [1; 100;1] unit
M21 (_wx, _l21, 1) _m6 [1; 100;1] unit
M23 =M25 (_wx, _l25, 1) _m7 [1; 100;1] unit
M24 =M27 (_wx, _l24, 1) _r1 [100;1000;50] Ω
M26 (_wx, _l0, 1)

M16 =M17 (_wx, _l16, 1)

M18 (_wx, _l18, 1)

M19 (_wx, _l3, 1)

M0a=M0b== M0c (_wx, _l0, 1)

 _c1 [1;5;0.05] tF

(a) Technology Constraints - overdrive voltages (b) Drain-sources voltages

Table 6.44 Corners analysis data

Conditions Variation points

MOS worst case parameters Ws-Slow Tm-Typ Wp-Fast

Temperature Range (º C) -40º C +50º C +120ºC

Table 6.45 Optimization algorithm parameters

Parameter value Parameter value Parameter value

Kernel GA-MOD Selection Tourn. by feas. Popsize 64

Strategy Corner Optim. Crossover Two point Init Pop 2*Popsize

Sampling LHS Mutation Dynamic Generations 250

 Adaptive Yes Stop
End of gen-
erations

Sort

Priority to perform-
ance fitness then
performance con-
straints. Elite 25% of pop.

Search Space
domain

6.417e+39

Note: Evaluation Engine by HSPICE simulator.

6 Optimization of Analog Circuits and Systems – Applications 175

6.5.3.3 Design Analysis

The attached testbench circuit used for DC and AC simulations is illustrated in
Fig. 6.23.

amp

amp

v inp

v inn

v out
ib

ia
s

av
dd

ag
nd

00

C3

1P

0

C4

1

R3

1e12

v out

0

I1
ibiaspar

ibias

V1
av ddpar

av dd

0

V2
1

v cmpar

v in

Fig. 6.23 OpAmp testbench for DC and AC specifications

The simulation results of the main amplifier and bias circuit sizing are shown in
Table 6.46. The final transistor dimensions are displayed in Table 6.47, while, Ta-
ble 6.48 summarizes the runtime information for this one step corner optimization.

Fig. 6.24 gives an outline of the text simulation data produced by the optimiza-
tion tool of one feasible solution.

All parameters from column “VIOL” have null values indicating the constraints
related to designer’s rules (28) were totally satisfied. Additionally, the column
“SATISFY” confirms that all constraints (5+28) were satisfied in all corner points.
The column “FITNESS” represents the fitness values for each corner point. Gen-
erally, the sum of the fitness is not zero due to computation reasons. This amount
is used to rank feasible solutions satisfying the goals of the problem.

Table 6.46 - Performance parameter specifications

 Specifications Target Sizing Result Units

Electrical DC gain > 70 94.7 dB

 GBW > 75 115.1 MHz

 Phase margin [60-90] 69.0 º

Optimization Power Consumption Minimum 6.1 mW

 Current Consumption Minimum 1.8 mA

176 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.47 Final transistor dimensions

Main

Amplifier

W/L

(μm/μm)
Bias

W/L

(μm/μm)

M0 280 / 1.05 M20 5 / 1.60

M1a = M1b 95 / 0.45 M21 5 / 3.55

M2a = M2b 280 / 0.50 M23 =M25 5 / 0.45

M3a = M3b 165 / 0.45 M24 =M27 5 / 1.15

M4a = M4b 220 / 1.60 M26 5 / 1.05

M5a = M5b 85 / 0.75 M16 =M17 5 / 0.50

M6a 55 / 1.15 M18 5 / 3.05

M6b 55 / 0.45 M19 5 / 0.45

M7 430 / 0.45 M0a=M0b=M0c 5 / 1.05

M8 430 / 1.15

Table 6.48 Runtime info

Design Problem

Opt. Variables / Constraints (Specs + Design Const.) 19 5 + 28 = 33

(1 -Step) Corners Optimization Time #Generation #Evaluations

Overall Optimization time 23m04s 250 4061

First Feasible Solution 20m03s 227 3702

* In a single processor Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz PC running Linux.

CORNER MODEL TEMP WEIGHT SATISFY FITNESS(i) VIOL(i) SUM_FIT[1130]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

WS-SLOW

WS-SLOW

WS-SLOW

Tm-TYP

Tm-TYP

Tm-TYP

Wp-FAST

Wp-FAST

Wp-FAST

-40º

+50º

+120º

-40º

+50º

+120º

-40º

+50º

+120º

1

1

1

1

1

1

1

1

1

5 / 28=33

5 / 28=33

5 / 28=33

5 / 28=33

5 / 28=33

5 / 28=33

5 / 28=33

5 / 28=33

5 / 28=33

3.845e-03

6.113e-03

8.628e-03

1.570e-02

3.238e-02

4.600e-02

5.720e-02

7.653e-02

8.840e-02

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

0.000e+00

3.845e-03

6.113e-03

8.628e-03

1.570e-02

3.238e-02

4.600e-02

5.720e-02

7.653e-02

8.840e-02

****** EUREKA ******

Byebye. AIDA - IC_DESIGN Terminate ...

Job done on a Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

Fig. 6.24 Output from simulation where all corners are satisfied

6 Optimization of Analog Circuits and Systems – Applications 177

Fig. 6.26 shows the gain magnitude and phase only for typical mean process
and 50° C conditions. Fig. 6.26 shows the graphical results for the AC corner
analysis. As it can be noticed, this simulation design meets the required specs re-
lated to DC gain, gain bandwidth and phase margin satisfying all corner points as
reported in Table 6.49. Table 6.50 shows the maximum and minimum of the cor-
ner points.

Fig. 6.25 Gain magnitude and phase for typical conditions

Table 6.49 Numerical results for corners analysis

Corner 1 2 3 4 5 6 7 8 9

Process Slow Typical Fast

Temperature -40° 50° 125° -40° 50° 125° -40° 50° 125°

Specs Values

 DC Gain (dB) > 70 102.1 98.9 97.6 96 94.6 92.7 89.1 87.3 84.4

f (A=0dB) (MHz) > 75 131 101.7 100.5 173.4 115.1 104.5 246 158 109

Phase (A=0dB) (°) ------ -115 -118 -119 -112 -111 -112 -110 -102 -101

PM (grade) [60-90] 64 61 60 67 68 67 69 77 76

178 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.50 Minimum and maximum values for AC corners analysis

Specs Range

DC Gain (dB) Min: 84,4 dB Max: 102.1 dB

GBW (MHz) Min: 100.5 MHz Max: 246 MHz

PM (grade) Min: 60º Max: 77º

Fig. 6.26 Gain magnitudes for corners analysis

6.6 Comparison with Other Tools/Approaches

The lack of a known open reference tool for IC design automation makes it diffi-
cult to the evaluation task of comparing objectively different implementations,
although, the analog design automation community is developing efforts to cir-
cumvent this situation. Comparing the performance and effectiveness of the final
GENOM optimizer with published reference tools is not always possible because
the information contained in most of the publications omit some detail of the im-
plementation, maybe imposed by logistics limitations or by author intentionality
focusing only the most important piece of interest. Some common ignored items
are related with incomplete definition of testbench circuitry, range of optimization
variables, used device models and insufficient output data exposed. An exception
is made for the first benchmark circuit presented above that was gently provided
by Prof. Francisco Fernandez, IMSE-CNM-CSIC/University of Seville which al-
lows the comparison between GENOM and one important reference tool for ana-
log design, the FRIDGE optimizer [8].

6 Optimization of Analog Circuits and Systems – Applications 179

6.6.1 FRIDGE Benchmark Circuit Tests

The benchmark circuit of reference is a novel single ended folded cascode OpAmp
tested with FRIDGE synthesis tool [8], whose results are used to compare the per-
formance and effectiveness of the final GENOM optimizer. This benchmark cir-
cuit includes all items necessary to the implementation and test, including the
original netlist, testbenchs, device models, performance measures, constraints,
range of variables and performance results obtained by the FRIDGE optimization
tool. With this data, GENOM is able to test exactly in the same conditions as the
FRIDGE tool. The schematic of the circuit is shown in Fig. 6.27 and testbench de-
fined in Fig. 6.28.

M8

W = _w8
L = _l8
M = _m8

PMOS
v bpc

M7

W = _w8
L = _l8
M = _m8

PMOS

d1

#Main Amplifier

M6

W = _w3
L = _l3
M = _m3

PMOS
M5

W = _w3
L = _l3
M = _m3

PMOS
v bp

M2

W = _w1
L = _l1
M = _m1

NMOS
M1

W = _w1
L = _l1
M = _m1

NMOS

op

v ss

M10

W = _w10
L = _l10
M = _m10

NMOS
v bnc

M9

W = _w10
L = _l10
M = _m10

NMOS

on
op

v ss

v dd

M4

W = _w14
L = _l14
M = _m14

NMOS

on

M12

W = _w10
L = _l10

M = _m10

NMOS
on

M11

W = _w10
L = _l10
M = _m10

NMOS

d9 d10

v dd

v b

d2

inip

d5

Fig. 6.27 Main Amplifier

6.6.2 Optimization Test with FRIDGE Ampop

Following the original FRIDGE approach, this experiment does not optimize the
bias circuit, only the main circuit. The experiments were synthesized with the
UMC 0.18um Regular Vt 1.8V Mixed Mode process Spice Model and were

180 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

v b

v ss

v ipp0

0

v ip

0

ib

_ib

v di
1Vac
0Vdc

Cdum

1e10

v in

v dd

Ldum

1e10
1 2

out

0

0

v bnc

_cn

Mbp

W = _wbp
L = _lbp
M = 1

PMOSv bpc_cp v dd
0.9

0

v bpc

v bnc

v inn

0

amp

in

ip

op

vb vb
nc

vb
pc vb

p

vd
d

vs
s

clp
3p

ibp

_ibp

v ss
0.9

Mb

W = _wb
L = _lb
M = 1

NMOS

Fig. 6.28 OpAmp testbench for DC and AC specifications

executed on an AMD X64 2.8 GHz dual core machine and use HSPICE [9] to
simulate the circuit and extract performance parameters. The performance con-
straints and the constraints derived from designer’s rules result in 20 optimizations
constraints that must be satisfied by the optimization process described in
Table 6.51. The design performances and final results achieved with both tools are
depicted in Table 6.52. Optimization process uses 15 independent variables whose
ranges and respective final transistor dimensions are given in Table 6.53.

Table 6.51 Optimization algorithm parameters

Parameter value Parameter value

Kernel GA-MOD Crossover Two point

Strategy Typical + Corner Optimization Mutation Dynamic

Sampling LHS Adaptive No

Sort method
Priority to constraints then performance
fitness

Elite 25% of population

Selection Tournament by ”feasibility” Generations 150

Popsize 32 Search Space 4.716883e+53

6 Optimization of Analog Circuits and Systems – Applications 181

Table 6.52 Design performance and final results

Target FRIDGE GENOM GENOM Test specification

gbw > 1.20e+07

gain > 7.00e+01

pm > 5.50e+01

sr > 1.00e+07

dm2 > 1.20e+00

dm4 > 1.20e+00

dm5 > 1.20e+00

dm7 > 1.20e+00

dm9 > 1.20e+00

dm11 > 1.20e+00

onm2 > 1.00e-01

onm4 > 3.00e-02

onm5 > 3.00e-02

onm7 > 3.00e-02

onm9 > 3.00e-02

onm11 > 3.00e-02

osp > 5.00e-01

osn < -5.00e-01

1.603e+07

7.000e+01

8.064e+01

1.533e+07

9.785e+00

5.200e+00

2.214e+00

1.055e+01

3.055e+00

1.9594+00

1.004e-01

3.023e-02

5.662e-02

4.255e-02

4.919e-02

1.782e-01

6.253e-01

-5.022e-01

1.535e+07

 7.061e+01

 7.960e+01

 1.536e+07

9.245e+00

 1.568e+00

 1.836e+00

 8.171e+00

 2.807e+00

 1.653e+00

 1.098e-01

 3.240e-01

 9.866e-02

 8.761e-02

 3.802e-02

2.451e-01

 5.660e-01

 -5.057e-01

 (gbw > 1.2e+07)

+ (gain > 70.0)

+ (verify_bound(pm,55,90))

+ (sr > 1.0e+7)

+ (check_bound(dm2, 1.2,1000))

+ (check_bound(dm4, 1.2,1000))

+ (check_bound(dm5, 1.2,1000))

+ (check_bound(dm7, 1.2,1000))

+ (check_bound(dm9, 1.2,1000))

+ (check_bound(dm11,1.2,1000))

+ (check_bound(onm2, 0.100,1000))

+ (check_bound(onm4, 0.030,1000))

+ (check_bound(onm5, 0.030,1000))

+ (check_bound(onm7, 0.030,1000))

+ (check_bound(onm9, 0.030,1000))

+ (check_bound(onm11,0.030,1000))

+ (check_bound(osp, 0.5, 1000))

+ (check_bound(osn,1000, -0.5))

Area (min)

Power (min)

2.371e+01

2.333e-04

1.6873e+01

2.446e-04

+ (min(area, 0, 30))

+ (min(rmspow, 0, 0.001))

Cost value

Iter 1st/ (last) solution

Time (s) 1st/(last) sol.

-0.292589

---- / 2497

n.a.

8.0704e-02

1110/ (2464)

 25.08/(53.68)

The main performance spec gbw stands for gainbandwidth, gain means the dc
gain, pm is the phase margin, sr is the slew rate and the optimization goal is to mi-
nimize both the area (Area) and power dissipation (power). Both, the optimization
goals and constraints used in the experiments were defined by the original bench-
mark circuit. The electrical constraints, as defined by the original benchmark cir-
cuit, are illustrated in HPSICE style in expression (6.3):

.m10)))'abs(vth(x1-($cn'param osn ac .meas
.m8)))'abs(vth(x1($cp'param osp ac .meas

' vth(x1.m1)-vgs(x1.m1)' param onm2 ac .meas
x1.m1))'.m1)/lv10(abs(lx3(x1' param dm2 ac .meas

=
+=

=
=

(6.3)

182 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Table 6.53 Ranges and Final Transistor Dimensions

Optimization Var. FRIDGE GENOM

$cn = [-0.4,0];

$cp = [0.0,0.4];

$l1 = [0.18u,5u];

$l4 = [0.18u,5u];

$l5 = [0.18u,5u];

$l7 = [0.18u,5u];

$l9 = [0.18u,5u];

$l11 = [0.18u,5u];

$ib = log[30u,400u];

$w1 = log[0.24u,200u];

$w4 = log[0.24u,200u];

$w5 = log[0.24u,200u];

$w7 = log[0.24u,200u];

$w9 = log[0.24u,200u];

$w11 = log[0.24u,200u];

$cn = -8.755479e-02

$cp = 6.247103e-02

$l1 = 1.560000e-06

$l4 = 4.700000e-07

$l5 = 3.800000e-07

$l7 = 7.600000e-07

$l9 = 2.060000e-06

$l11 = 6.000000e-07

$ib = 4.842000e-05

$w1 = 1.951000e-05

$w4 = 3.034000e-05

$w5 = 7.131000e-05

$w7 = 1.045300e-04

$w9 = 6.562000e-05

$w11 = 3.080000e-06

_cn = -4.490000e-02

 _cp = 1.000000e-03

 _l1 = 1.380000e-06

 _l4 = 1.940000e-06

 _l5 = 3.700000e-07

 _l7 = 9.100000e-07

 _l9 = 8.900000e-07

_l11 = 2.190000e-06

 _ib = 4.851000e-05

 _w1 = 1.491000e-05

 _w4 = 6.990000e-06

 _w5 = 3.678000e-05

 _w7 = 6.304000e-05

 _w9 = 3.145000e-05

_w11 = 7.320000e-06

6.6.3 Comparison Results

Table 6.54 shows the GENOM and FRIDGE performance side by side and also
depicts the GENOM run-time information in several optimizations points. In order
to achieve a computing independent comparison between the tools, the following
analysis is based, exclusively, on the number of evaluations “nEval” and the main
goals, related to the minimization of power and area. Anyway, the time informa-
tion was not provided with the actual benchmark circuit. GENOM achieved the
first solution in 25s approx. using 1110 evaluations and reached a similar per-
formance to FRIDGE in 1461 evaluations, corresponding to an efficiency increase
of 41%. One of the best solutions improves simultaneously the power in 17% and
15% in the area as described in Table 6.54 with 2064 evaluations. The GENOM
optimization was able to produce 183 new feasible solutions. Fig. 6.29 shows the
gain magnitude and phase for typical mean process and 50° C conditions.

Table 6.54 GENOM benchmarks

Target nEval Power (min) Area (min) Time (s)

FRIDGE
Final results

2497 2.333e-04 2.371e+01 ---------

GENOM

1st Feasible Solution 1110 4.0590e-04 2.9727e+01 25.08

GENOM similar to FRIDGE 1461 2.284e-04 2.377e+01 32.47

GENOM better than FRIDGE 2064 1.918e-04 2.009e+01 43.33

Final Results 2464 2.446e-04 1.6873e+01 53.68

6 Optimization of Analog Circuits and Systems – Applications 183

Fig. 6.29 Gain magnitude and phase for typical conditions

6.6.4 Corners Optimization with FRIDGE Circuit

Although there is no available benchmark information about the corner optimiza-
tion for the FRIDGE benchmark circuit, the next experiment tests the GENOM
performance for this type of optimization. However, there was the need to relax
one specification, maintaining the others intact, in order to allow the corner opti-
mization. This situation may occur when the performance specification is defined
with a value that will not meet the worst-case corner point. The identification of
this problematic specification was relatively easy to detect. First, it was verified
that after several runs, the final solution always fulfils all constraints except one in
a particular corner point. After identifying the problematic constraint, a new opti-
mization was executed, assigning a high weight to this corner. However, the final
solution did not improve, so this is probably the case where a specification was
defined with a value that is not able to satisfy all corner points at the same time.

184 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

Expression (6.4) reflects the small modification introduced to the original
FRIDGE specs.

Before:

(a0 > 70.0 dB) → New value: (a0 > 67.0 dB) (6.4)

The specifications must be satisfied for the corner points of Table 6.55. Table 6.56
shows the GENOM performance and depicts the run-time information for the first

Table 6.55 Corners analysis data

Conditions Variation points

MOS worst case parameters SNFP TT FNSP

Temperature Range (º C) -40º C +50º C +120ºC

Table 6.56 Design performance and final results for corners analysis

Target GENOM Results Optimization Var. GENOM Results

Gb > 1.20e+07

a0 > 6.70e+01

pm > 5.50e+01

sr > 1.00e+07

dm2 > 1.20e+00

dm4 > 1.20e+00

dm5 > 1.20e+00

dm7 > 1.20e+00

dm9 > 1.20e+00

dm11 > 1.20e+00

onm2 > 1.00e-01

onm4 > 3.00e-02

onm5 > 3.00e-02

onm7 > 3.00e-02

onm9 > 3.00e-02

onm11 > 3.00e-02

osp > 5.00e-01

osn < -5.00e-01

Areas (min)

Power (min)

gb = 1.845000e+07

 a0 = 6.871930e+01

 pm = 7.435350e+01

 sr = 2.103000e+07

dm2 = 8.352600e+00

 dm4 = 2.588000e+00

 dm5 = 1.803000e+00

 dm7 = 1.008620e+01

 dm9 = 2.828500e+00

 dm11 = 1.695600e+00

 onm2 = 1.311000e-01

 onm4 = 1.695000e-01

 onm5 = 1.129000e-01

 onm7 = 6.762000e-02

 onm9 = 4.708000e-02

onm11 = 1.362000e-01

 osp = 5.752000e-01

 osn = -6.185000e-01

2.450920e+01

3.286000e-04

Cost

Iteration

Time (s)

1.145283e-01

20281

411.18

$cn = [-0.4,0]

$cp = [0.0,0.4]

$l1 = [0.18u,5u]

$l4 = [0.18u,5u]

$l5 = [0.18u,5u]

$l7 = [0.18u,5u]

$l9 = [0.18u,5u]

$l11 = [0.18u,5u]

$ib = log[30u,400u]

$w1 = log[0.24u,200u]

$w4 = log[0.24u,200u]

$w5 = log[0.24u,200u]

$w7 = log[0.24u,200u]

$w9 = log[0.24u,200u]

$w11 = log[0.24u,200u]

_cn = -1.971000e-01

 _cp = 6.300000e-03

 _l1 = 2.110000e-06

 _l4 = 1.270000e-06

 _l5 = 4.100000e-07

 _l7 = 8.100000e-07

 _l9 = 1.150000e-06

_l11 = 2.420000e-06

 _ib = 6.644000e-05

 _w1 = 2.496000e-05

 _w4 = 1.935000e-05

 _w5 = 4.813000e-05

 _w7 = 1.022000e-04

 _w9 = 4.983000e-05

_w11 = 3.123000e-05

6 Optimization of Analog Circuits and Systems – Applications 185

and final solution. This optimization produces 135 generations and executes
20281 electrical evaluations and creates 165 new solutions satisfying all design
specs and functional constraints in all corners points.

Where, SNFP, TT and FNSP mean the Slow/Fast, Typical/Typical and Fast/
Slow process, respectively.

Table 6.57 presents the final results for the present optimization problem.

Table 6.57 GENOM corner optimization

Performance Constr. nEval Power (min) Area (min) Time (s)

1st Solution in GENOM 9193 3.68E-004 3.31E+001 186.98

Final evaluation 20281 3.29E-004 2.45E+001 411.18

6.7 Conclusions

This chapter presented a set of experiments which test the GENOM’s performance
to design high-performance and novel circuit topologies. The above simulations
have shown that the circuits designed by the GENOM tool conform to the synthe-
sis objectives with efficiency and accuracy. Particularly, GENOM was able to
achieve an efficiency increase of about 40% and a significant increase in perform-
ance when compared with one of the synthesis tool of reference.

The use of corners analysis and embedded designer rules methodology in every
optimization run increases the value and trust in the final product, although the in-
clusion of corners analysis in the optimization scheme slows down the execution
times considerably. This option produces a more robust design to parameter and
process variations and in a certain way avoids the undesired circuits with high
sensibility which causes big variations at the output in response to a small devia-
tion in one of the parameters.

The great majority of the presented results are based on a 0.35μm CMOS tech-
nology because of the good availability of these models, although the GENOM
tool has also been tested with success for a 0.18μm technology models in the tele-
scopic and the FRIDGE OpAmp case studies. Since the technological process is
independent from the optimization algorithm, virtually any technological process,
including the more recent ones, can be supported by this tool.

With a proper configuration, the present optimization tool is able to synthesize
a broad range of analog ICs beyond the class of circuits presented in this research.

References

[1] Wu, C.: Analog integrated circuits – lecture notes. IEE 6703, National Chiao Tung
University (2006), http://www.cc.nctu.edu.tw (Accessed March 2009)

[2] Baker, R.J.: CMOS, circuit design, layout and simulation, 2nd edn. IEEE Press, John
Wiley & Sons, Inc., (2005)

186 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

[3] Martin, K., Johns, D.: Analog integrated circuit design. John Wiley & Sons Inc.,
Chichester (1996)

[4] Milenova, B.L., Yarmus, J.S., Campos, M.M.: SVM in oracle database 10g: Removing
the barriers to widespread adoption of support vector machines. In: Proc. 31st Interna-
tional Conference on Very Large Data Bases, pp. 1152–1163 (2005)

[5] Boardman, M., Trappenberg, T.: A heuristic for free parameter optimization with sup-
port vector machines. In: Proc. International Joint Conference on Neural Networks, pp.
610–617 (2006)

[6] Imbault, F., Lebart, K.: A stochastic optimization approach for parameter tuning of
support vector machines. In: Proc. 17th International Conference on Pattern Recogni-
tion, vol. 4, pp. 597–600 (2004)

[7] Chang, C., Lin, C.: LIBSVM: A library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm (Accessed March 2009)

[8] Medeiro, F., et al.: A Statistical optimization-based approach for automated sizing of
analog cells. In: Proc. ACM/IEEE Int. Conf. Computer-Aided Design, pp. 594–597
(1994)

[9] Horta, N.C.: Analogue and mixed-signal systems topologies exploration using sym-
bolic methods. In: Proc. Analog Integrated Circuits and Signal Processing, vol. 31(2),
pp. 161–176 (2002)

M.F.M. Barros et al.: Analog Circuits and Systems Optimization, SCI 294, pp. 187–189.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

7 Conclusions

Abstract. This last chapter presents the work conclusions and discusses the future
work issues.

7.1 Conclusions

In this dissertation the application of evolutionary strategies to analog IC optimi-
zation problem has been discussed. It was developed a new approach to multi-
objective and multi-constrained optimization technique for circuit sizing of analog
circuits, which combines a robust optimization with corners and sensitivity analy-
sis, machine learning and distributing processing capability. Particularly, a new
hybrid optimization algorithm has been developed combined with a design meth-
odology, which increases the efficiency on the analog circuit and system design
cycle. This new algorithm combines an enhanced GA kernel with an automatic
learning machine based on SVM model, which efficiently guides the selection op-
erator of the GA algorithm avoiding time-consuming SPICE evaluations of non-
promising solutions. The SVM model can be used as a feasibility or performance
model. Whenever the model is built before optimization (offline) and the topology
remains the same, it can be reused for other optimization runs with different per-
formance requirements. Although the optimization tool is able to deal with equa-
tion based optimization, (as long as design equation has already been defined by
an expert designer), the primarily decision is oriented to a simulation based
approach, since it can be applied to all types of design circuits, producing more
accurate results and providing an extended layer of analysis, concerning the robust
design required in the industrial environment. Parameter variation effects due to
manufacturing tolerances or environment conditions have also been included in
the optimization loop implemented as a two step optimization methodology. The
final solution results in a more robust approach with respect to variations and
mismatches. Additionally, the undesired sensitivity effects are attenuated auto-
matically by robust design.

The result of design methodology and optimization strategy is materialized in a
tool, GENOM. The proposed design optimization tool represents an automated al-
ternative to the traditional design flow, automating some steps of the design me-
thodology. It covers some of the most time consuming tasks of the analog design
process at the circuit or transistor level, like circuit sizing and design trade-offs
identification. Like in many analog design environments, some time is spent in the
optimization setup prior to synthesis runs. This includes the conformance test to
the format of input files, configuration of optimization, definition of design and
independent variables, definition of performances and respective measures, incor-
poration of technology models, corners, mismatches, designer rules and finally,

188 Analog Cir. and Sys. Optimization based on Evolutionary Computation Techniques

the training of the learning model in case of optimization with offline model gen-
eration. All these tasks take advantage of the GUI interface developed in AIDA.

This computational tool allows a designer to examine regions of feasibility with
differing uncertainty models available to approximate multi-objective problems
like uniform distribution, latin hyper sampling and design of experiments. This
tool also permits combining different algorithm approaches, like variations of
standard operators and including several model approaches. A designer can quick-
ly access promising design space regions by entering the historical database used
to build the SVM model or consulting the database of non-dominated solutions
where all the detailed information associated with the current problem is main-
tained. The graphical representation of the evolution process updated on the fly
depends on the specifications provided by the designer. A summary of statistics in
the form of post-processing text reports completes the feedback of the process.
The information gained in one experiment was useful to the understanding of the
overall problem. Further optimizations could be followed after the changing of
some design or optimization parameters. Embodying this tool in a design platform
or using it as a standalone application can lead to the increase of design efficiency
and the improvement of the circuit performance, as it is demonstrated on several
examples where the convergence to the desired performance criteria has been at-
tained. The computation cost for several experiments have shown that circuits of
moderate complexity can be synthesized in a reasonable amount of time using au-
tomatic learning models. This has been made possible by employing fast SVM
models in the evolutionary cycle avoiding expensive simulation iterations. The
synthesized designs have also been simulated and verified with HSPICE using the
industry standard transistor models, such as the Alcatel and AMS. The simulations
have shown that the circuits designed using GENOM conform to the synthesis
specifications.

7.2 Future Work

In the domain of analog design automation, the research is always present and dy-
namic. There is yet, a definitely long way to end with the design gap between the
improvement in manufacturing productivity and the progress in productivity
achieved by CAD tools and design methodologies. Based on this work and in-
volving the application field, some suggestions for future research are here pro-
vided:

General Topics

1. One of the major challenges related to this field of application is concerned
with the development of a complete analog design automation environment in-
volving the presented system with automatic topology selection and chip layout
generation modules. The incorporation of layout information, for example, in
optimization sizing process improves the robustness and reliability of the de-
sign solutions.

7 Conclusions 189

2. An alternative approach to the last item would be the integration of the present
system within an industrial design environment, such as CADENCE frame-
work. By developing the appropriated software interface modules, the
presented optimizer tool can be incorporated as an external module to this com-
mercial framework. The interface module and customized work environment
may be implemented with the SKILL programming language.

3. Another area of potential research is related with topology generation. The pre-
sent evolutionary computation technique with modeling technique can be used
to implement an automatic search for new circuits and system topologies. The
exploration methodology can be constrained to data structures from a specific
design knowledge base or can be based on a random strategy aimed to explore
new type of circuits.

Specific Topics

1. Develop an improved version of the GUI interface in order to reduce the setup
effort to add a new circuit to database and improve the graphic information es-
pecially for online optimization.

2. Improve the GENOM Application Programming Interface (API) to allow an
easy integration not only with AIDA design automation environment but with
other CAD tools such as LAYGEN, etc.

3. Explore new methods of parallel processing offered by the “Open MPI”, the
new release of the “open source high performance computing” message passing
library, implemented in GENOM. The actual implementation architecture uses
a master-slave parallel architecture but other architectures could be investi-
gated.

4. Use the information achieved by the design space exploration and respective
trade-offs for all circuits from the library in order to perform an accurate topol-
ogy selection.

5. The experiments developed in this thesis were driven essentially for the design
of continuous-time class of amplifiers. An extension of this tool should support
other types of circuits.

Appendixes

Appendix A. Terminology

Table A.1 Control parameters

Term Definition

Design Objectives or

Design Goals

Corresponds to the minimization or maximization of one or several
objectives, for example: min,max (power, area,...)

Performance Specs A set of values which indicate levels of performance in order to en-
sure a certain functionality of the circuit. They are design objectives
usually defined in the form of inequality constraints, such as, gain >
70 dB; gbw > 100MHz, etc.

Design constraints (i) Parameter constraints – Formed by device sizes range, e.g., W=
[min,max] = [0.18, 100]μm, L=[0.18, 10]μm, etc.

(ii) Functional constraints – Corresponds to the requirements of
some basic electric design requirements, e.g., saturation of certain
transistors, etc., in order to ensure the correct circuit operation, e.g.,
the overdrive voltage, (VGS – VTh) is defined in [50-200] mV.

(iii) Performance constraints – Design objectives usually in the
form of inequality constraints, such as, e.g., gain >70 dB; gbw > 100
MHz.

Optimization parameter A set of independent decision variables of an optimization problem.
In circuit sizing problems usually they correspond to the design pa-
rameter constraints, e.g., the widths (w) and lengths (l) of transistors.

Fitness function A fitness function is a particular type of objective function that quan-
tifies the optimality of a solution. Used to rank a particular solution.

Cost function A particular type of fitness function which assigns a better rank to so-
lutions with lower fitness.

Merit function A particular type of fitness function which assigns a better rank to so-
lutions with higher fitness.

Optimal solution A solution to an optimization problem which minimizes (or maxi-
mizes) the objective function.

Design Space (a) Design Space (DS) – A multidimensional space delimited by the
ranges of parameter constraints.

(b) Goal Space - A subset of the multidimensional DS that satisfies
all design objectives and performance constraints.

(c) Functional Space – A subset of the multidimensional DS formed
by the interception of all functional constraints. In this thesis, it is de-
fined as feasibility space.

(d) Solution Space – A portion of the design space that satisfies si-
multaneously the performance and feasibility region.

192 Appendixes

Table A.1 (continued)

Term Definition

Performance Space (e) Performance Space (PS) – It is the space of all possible performance
values based on the evaluation of all points from the design space. The map-
ping between design parameters (D) and the performance space, D P(D), is
usually done by circuit simulation with spice-like analog simulators.

 (f) Performance Region – It is the region in the PS achieved by a subset of
all individuals in the DS that satisfies all the performance inequality con-
straints.

(g) Feasibility Region – It is the region in the PS achieved by a subset of
points in the DS that satisfies all the functional constraints.

(h) Feasible Region – It is the region in the PS achieved by a set of points in
the DS that satisfies both the performance constraints, as well as, the func-
tional constraints. It is the region of all possible solutions of an optimization
problem.

(i) Infeasible Region – Set of points outside the feasible region.

Fig. A.1 is a 2D sketch for the conceptual terms introduced above. The multi-
dimensional axis d1, d2 represents the parameter constraints, Ws, Ls and Ms of
transistors. The multidimensional axis p1, p2 represents the design specs, e.g.,
gain, gbw, power, etc.

Fig. A.1 Conceptual view of design spaces adopt in the terminology

Appendix B. General Purpose Optimization Techniques

B.1 Random Search Methods

In essence, they simply consist of selecting randomly potential solutions and
evaluating them. They do not use any heuristics (or meta-heuristics) to guide the
next potential solution, so the search is very slow. The best solution over a number
of samples is the result of “pure” random search, p.e., the Monte Carlo (MC) me-
thod. In spite of being considered the weakest of all optimization methods, random
search methods have some visibility once they are often used as a reference tool.
One of the first improvements to random search is given by the simple Hill
Climber algorithm (Fig. B.1) and is applied to non-linear unconstrained problems.

 ALGORITHM Simple Hill-Climber:

[1] Choose a random solution

[2] Evaluate its neighbors (red circles)

[3] Move to the best neighbor. Go to step 2

 ALGORITHM Stochastic Hill-Climber:

[1] Choose a random solution

[2] Evaluate its neighbors

[3] Move to the best neighbor. Go to step 2.

[4] If not improve - stop, memorize best
found (green squares), and go to step 1.

Fig. B.1 The Hill-climber Algorithm

B.2 Unconstrained Gradient-Based Methods

Gradient based methods belong to the class of unconstrained non-linear optimiza-
tion algorithms (Fig. B.2) which apply the concept of successive search within the
optimization space, based on the information of gradient or derivative function
[1]. To be efficient the cost function should be unimodal (single local optimum),
continuous and differentiable. The iterative process perturbs the current vector po-
sition to obtain the next value

1kX +

G
. Normally, this iteration is given by

kkd
GGG

λ+=+ k1k XX where
kd
G

¸ indicates the direction of the next move and the step

size
kλ controls the evolution and the precision of the solution. Golden section,

cubic interpolation and Fibonacci techniques can be used to determine the value

194 Appendixes

of
kλ and the direction

kd
G

 can be determined by the Newton method as well as

other methods. Each point in the generated sequence has a lower cost than its
predecessor. The weakness of this method is that line minimization may be expen-
sive and convergence can be too slow for ill-conditioned problems. Also, when the
derivative (or an approximation to the derivative) can-not be determined these
methods cannot be used.

ALGORITHM Gradient algorithm:

[1] Given
nx ℜ∈0

[2] For k = 0,1, …

[3] Determine kp such that

 0)(<∇ kk pxf

[4] Evaluate 0>kλ such that,

[5])()(kk
k

k xfpxf <+ λ

[6] Update, k
k

kk pxx λ+=+1

[7] Until 0)(1 ≅∇ +kxf

Fig. B.2 Convergence of steepest descent method for the Rosenbrock function

B.3 Constraints Programming

Many optimization problems, especially those in the area of engineering design,
are highly constrained by some means. Constraints can be seen as simple logical
or numeric relations among several variables that restrict a given domain, i.e., re-
duce the range of the possible values that each variable can take. Constraints can
usually be expressed in terms of function in-equalities, strict inequalities or equal-
ity constraints as exemplified in Fig. B.3. There are several ways of dealing with
constraints. The classes of problems modeled by integer linear programming tech-
niques are usually solved by two mature tools like the simplex algorithm and the
Constraint Satisfaction Problem (CSP) techniques [2]. The most common ap-
proach to manage infeasible solutions uses the concept of penalty functions which
transform the original constraint problem in an artificial unconstrained optimiza-
tion problem. This alternative penalizes the solutions that are near or violate the
constraints boundaries with an amount proportional to constraint violation. In this
way the constrained problem can be solved using a sequence of unconstrained op-
timizations, which in the limit is expected to converge to the solution of con-
strained problem. This approach is generally associated with fitness assignment in
some global optimization algorithms like evolutionary algorithms. A comprehen-
sive survey of the most popular constraint handling techniques used for EAs can
be found in [3]-[5].

Appendix B. General Purpose Optimization Techniques 195

Constraint optimization example:

 1020 and 1010

0x2x1x2)g2(x1,

07-x2x1x2)g1(x1,

46)-x2(3)-x1(x2)h2(x1,

8x22x1x2)h1(x1,

: to

2)-(x23)-(x1x2)f(x1,

2
4
1

22

22

≤≤≤≤

≤+=

≤+=
=+=

=+=

+=

xx

and

subject

Min

Constraints can take non-linear values using
equality (h1 and h2) or inequality (g1 and
g2) terminology.

Fig. B.3 Constraint optimization problem

Briefly, these methods increase the efficiency of the search using the con-
straints to prune the search space. Constraint-based systems derived from OR
field, normally use a declarative way of programming which makes easier the
modeling of complex problems, their modification and maintenance.

B.4 Direct Stochastic Methods

This stochastic programming class encloses a broad range of distinct algorithms that
do not require a continuous, a convex or differentiable cost function. Therefore it
does not need to derive or compute gradients or take care of discontinuities. Stochas-
tic algorithms outperform one of the major drawbacks of simple deterministic algo-
rithms, i.e. they are particularly effective when the goal is to find an approximate
global optimum for multimodal functions (Fig. B.4). They own some other intrinsic
advantages, allowing simple implementations and flexible formalization of the prob-
lem, handling multimodal and noise functions, solving discrete and combinatorial
problems, as well as, being in some cases well suitable for parallel computing [6]-[7].

Stochastic search algorithms is an umbrella set of methods that include the
Nelder-Mead simplex-based methods [8], the simulated annealing (SA) [9]-[10],
Tabu search (TS) and evolutionary algorithms where the Genetic Algorithms ap-
pear as one of the most notorious in this class. The first one inherited its name
from the n+1 geometric figure in n-dimensional space called a simplex; the second
is based on the physical process of annealing the materials; the third one applies
the concept of memory maintaining a "tabu list" of solutions already vi-sited,
while the last ones emulate some kind of nature’s evolutionary behavior. They dif-
fer in some implementation details but all share a common approach, the search
for the optimal value which follows some probabilistic rules in order to make the
new generation of solutions better than the previous one.

196 Appendixes

 General Properties of
Stochastic Search:

[1] Find solutions without
exhaustive search.

[2] The better solutions
may be found in the most
promising regions with
optimal solutions

[3] Iterative Process, t,
t+1, … t+n

Obs: Progress follows
some probabilistic rules

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-5

0

5

10

-2

0

2

V
ariable Y

Multimodal Griewank Function

Variable X

*

Global Minimun

o

o

Initial Point

Final Point
Local Minimun

Fig. B.4 General properties of Stochastic Search algorithms

The simulated annealing (SA) approach [9], for example, is a numerical

optimization technique based on the principles of the cooling process of some ma-
terials. Unlike EAs, the progress in the search space is supported by a single indi-
vidual. The algorithm starts from a valid solution and randomly generates a new
state (point in the search space) which is immediately evaluated, as described in
Fig. B.5. If a better solution is found (New_Cost- Current_Cost<=0), the new so-
lution has lower cost and so it is immediately accepted (k1 point), if not (k2 point),
that solution can only be accepted with some probability that depends on the envi-
ronment temperature T. In the beginning of the process, T starts with high virtual
temperature and progressively slows down its values. The interesting effect pro-
duced by this changing in temperature is to allow a better exploration of the search
space in the beginning of the process and less exploration, i.e., better exploitation
at the end of the process. In other words, the probability of accepting a worse
state, given by the expression)(Prob Temp

stCurrent_CoNew_Cost −−= exp , is high at the be-
ginning and decreases as the temperature decreases. This phenomenon known as
the Metropolis criterion is expressed by computation code of Fig. B.5.

Whereas some of the algorithms like SA and TS are guided solely by random
rules with no sense of the appropriate direction or size of step to take, other meth-
ods like GA and ES correct this conduct by means of heuristic operators. Because
of their probabilistic nature, the convergence to the global optima usually requires
many iterations. But with the recent progress in computer systems and distributing
computing techniques, the stochastic methods have gained great popularity. These
myriad of characteristics make them appropriate for a wide variety of optimization

Appendix B. General Purpose Optimization Techniques 197

ALGORITHM SA Pseudo-code:

[1] Initialize

 Current_State;

 Temperature=Tmax;

Current_Cost=Evaluate (Current_State)

[2] Construction

}

onelast theng //keepiateCurrent_St ateCurrent_St

State newt //RejecELSE

New_State, ateCurrent_St

yprobabilit with State new //AcceptRand(0,1)) (Prob IF

)(expProb

{ ELSE }

 New_State, ateCurrent_St

{ 0st)Current_Co -(New_Cost IF

)(New_State EvaluateNew_Cost

tate)Rand(New_S

Temp

stCurrent_CoNew_Cost

=

=
>

−=

=
<=

=

−

 [3] Update Temperature
 Decrease the Temperature

 [4] Terminate condition

 If not (Termination condition) goto2.

 END.

Fig. B.5 The basics of Simulated Annealing algorithm

problems, covering a broad field of applications, including the analog design prob-
lem. A trade-off between a large spectrum of applications and performance effi-
ciency is explained by the free lunch theorem described in section 3.1.3.

B.5 Multiple Objectives

In engineering and control applications it is common to deal with problems requir-
ing the optimization of more than one objective function instead of just one. A
typical example is car engine design, where the task may be to maximize the per-
formance while minimizing the fuel consumption. A multi-objective optimization
problem (MOO) usually involves a number of conflicting objectives that have to
be handled simultaneously. It is rarely the case where a single point simultane-
ously optimizes all the objective functions of a multi-objective problem. There-
fore, the solution of this type of problem is supported by illustrative trade-offs of
objec-tive functions rather than in a single solution allowing a final human deci-
sion among the solutions. The objectives do not necessarily have to be conflicting,

198 Appendixes

but they are, in most problems. In some cases, it may be unclear from the begin-
ning whether or not objectives are in conflict with each other. Contributions in this
area have grown a lot in the last years VEGA [11], MOGA [12]-[13], PAES [14],
NSGA [15], NPGA [16], SPEA [17] and [18]. The idea of optimality has changed
to cope with this situation but, in general, it follows the concept of optimality
known as Pareto optimum. It is based on two accepted terms called dominated and
non-dominated solutions. The set of all non-dominated solutions is known as Pare-
to-optimal set and is illustrated in Fig. B.6.

Pareto optimality is defined by the following definitions. A vector
),...,(u 1 kuu=G is said to dominate),...,(v 1 kvv=G also denoted by vu

GG ≤ if and on-

ly if u is partially less than v, i.e. { } { } iiii vu: k1,...,i vu ,k1,...,i <∈∃∧≤∈∀ . If a

solution is in all aspects worse than others, then it is considered a dominated solu-
tion. Otherwise, if one solution is better than others in some aspects and worse in
others, it is identified as a non-dominated solution. The comparison between two
or more non-dominated solutions is not possible because there are features in one
solution better than in the other one and vice-versa.

The Pareto optimal set is defined as [17]:

{ })x()x(:Fx |Fx:P *** GGGG
ff ≤∈¬∃∈= (B.1)

Thus, a vector of decision variables is Pareto optimal if there does not exist an-
other Fx ∈G such that)x()x(*GG

ii ff ≤ for all i=1,…,k and)x()x(*GG
jj ff ≤ for at

least one j.
The main themes of research in multi-objective optimization (MOO) domain

are focused in techniques for handling constraints, maintaining diversity of the so-
lutions, hybridization with other local search methods and archiving for storing
non-dominated vectors.

f2

Neither dominating
or dominated

Solutions
dominating P

Neither dominating
or dominated

Solutions
dominated by P

F(p)

Fitness values for objective 1 (minimization)

f1

Fi
tn

es
s

va
lu

es
fo

ro
bj

ec
tiv

e
2

(m
in

im
iz

at
io

n)

f2

Non dominated
solutions

Fitness values for objective 1 (minimization)

f1

Fi
tn

es
s

va
lu

es
fo

ro
bj

ec
tiv

e
2

(m
in

im
iz

at
io

n)

Dominated solutions
True Pareto Front

Fig. B.6 Dominance, non-dominance and Pareto Front in MOO problems

Appendix C. The Basic Decisions of Standard GA Algorithms

C.1 Standard GA Kernel Optimization

C.1.1 Evolutionary Kernel Framework

The major task of EC techniques and in GA in particular is to compute artificial
models simulating an evolutionary process. They differ from more traditional
search algorithms in that they work with a population of candidate solutions that
will evolve progressively towards a certain goal. Meanwhile the algorithm itera-
tively applies probabilistic transformations to the population and uses a selection
scheme to obtain an improved population. This goal is to find the best possible
approximate solution of a given complex optimization and design problem. The
artificial models mimic natural evolution in a simplified way. The three main me-
chanisms used to drive evolution forward are depicted in Fig. C.1.

Fig. C.1 Common evolution cycle

Fig. C.1 illustrates a typical iterative cycle of evolutionary algorithms and the
three main mechanisms used to drive evolution forward, namely, reproduction,
mutation, and selection. The fundamentals of EAs are based on the existence of a
population of individuals that will change dynamically in each generation (each
loop cycle) through the influence of operators mimicking the biology cycle of life.

200 Appendixes

As a matter of fact all the EAs terminology was inherited from biology life. In
spite of this, an individual is a compound structure forming a chromosome, fit-
ness, and possibly a number of other attributes. The chromosome encapsulates a
sequence of genes representing a solution of the problem. The chromosome de-
fines the interface between the problem and the optimization algorithm. The
fitness function is a measure of the quality of an individual represented by the
chromosome.

Fig. C.2 illustrates the classic structure of a simple evolutionary algorithm in-
troduced by Holland [19] and known as the basic genetic algorithm flow.

EA Main Procedure:
t=0
initialize (Pop(0))
evaluate (Pop(0))
while (! (Termination condition)) {
 t=t+1;
 P’(t) = select (Pop(t-1))
 P’’(t) = Recombine (P’(t))
 P(t) = Mutate (P’’(t))
 Evaluate (P(t))
}

Fig. C.2 Pseudo-code of simple EAs

In EA, the population is made up of individuals created at random, which are
evaluated with regard to the fitness function. Each individual represents a potential
solution of the problem quantified by the fitness value. Then, an iterative process
is applied until a stop criterion is verified. This condition can be the achievement
of the desired fitness, a maximal number of generations or a maximal number of
fitness evaluations. There are three stages in the loop. At first, the population at
generation t is built based on the previous population t-1, selecting the fittest indi-
viduals with some criterion. After that, the recombination and mutation operators
are applied to the individuals in the selected population P0(t) creating a new popu-
lation. In the recombination process one or two new solutions are created, crossing
over two or more parents chromosomes. The mutation operator creates a new in-
dividual by modifying its own genome. The basic scheme adds to chromosomes
some type of stochastic noise. At last, in the final stage, the evaluation of the new
population is carried out and the whole process is repeated.

C.1.2 Algorithm Design Parameters

In order to guide a population of candidate’s solution towards an optimum, many
decisions have to be taken, which have a deep influence on the effectiveness and
efficiency (see definition in Appendix C.8) of the algorithm. The basic decisions
of standard GA algorithms include the choice of the most suitable structure and

Appendix C. The Basic Decisions of Standard GA Algorithms 201

genetic representation, the selection and replacement strategy, the crossover and
mutation parameters and other algorithm control parameters. The operation of
simple GAs is managed by a set of control parameters that have great impact on
the performance of the algorithm. These control parameters include, the prob-
ability of mutation and crossover, the tournament size of selection or the popula-
tion size (number of individuals in the population), which will be explained in the
Table C.1.

Table C.1 Control parameters

Control Parameter Impact

The population size

[20]

The population size is the number of individual organisms in a population
participating in the evolutionary process and it has great impact on the
computation time per iteration; if the population size is too large, the algo-
rithm tends to take longer time to converge, but if the population size is too
small, the GA is in risk of premature convergence because there may not be
enough diversity in the population to let the GA escape from local optima.
Common values observed in literature adopt values between 30 and 200.

The crossover rate

[20]-[22]

The crossover rate defines the frequency of the crossover operation which
enables the evolutionary process to move towards the most promising re-
gions of solution space. The crossover probability px has the function of
controlling the rate/frequency at which individuals are submitted to cross-
over. If the value of px is high, the new solutions will be quickly applied
into the population, but if the value is too high, individuals may be dis-
rupted faster than selection can exploit them. For this reason the px usually
takes the values from 0.5 to 1.0.

The mutation rate

[20]-[22]

The mutation rate is expressed by a probability and has influence on the di-
versity in the population. Both a high and a low mutation rate have disad-
vantages: a high rate causes high diversity in the population, transforming
the GA into a random search algorithm whereas a low mutation rate makes
it hard to achieve a global optimum solution because convergence may oc-
cur too early, producing premature convergence to a local optimum. The
typical values for mutation rate are chosen in the range 0.001 to 0.05.

The estimation parameters presented in Table C.1 result from study cases found

in literature, normally applying standard GA settings or configurations. There is
also no magic number or deterministic formula concerning the optimal settings or
optimal control of these parameters over the time, or when changing the dimen-
sion of search space, the length or coding representation. Under different configu-
rations, e.g., a different problem codification, these parameters can achieve higher
values. The study of ideal control parameters configuration for a given problem is
a time consuming task mostly based on experiments. This approach, however, has
several disadvantages. As the control parameter behaviors are not independent,
systematic trials executed for all possible combinations are almost impossible.

202 Appendixes

Procedures to control parameters consume a lot of computation time and the
achieved control parameters may not be necessarily the optimal values.

Tuning these parameters by using a direct control mechanism before the run-
ning of the algorithm is a typical practice applied in genetic algorithms and their
derivates but it is not efficient because it is known that no generally valid best pa-
rameter value exists. The use of adaptive techniques inspired from ES community
is one alternative to get around with optimal settings of parameters. Instead of us-
ing rigid parameters that do not change during the evolutionary process, the idea is
to control them during the run. Several techniques inherited from ES community
are applied to change the mutation step size control such as, the 1/5th-success
rule, cumulative path length control and self-adaptation [21]. From these type of
techniques it is verified a frequent supremacy of mechanisms depending on the
distance to the optimum.

C.1.3 Single Optimization GA Example

In this section, the Genetic Algorithm will be applied to simple optimization prob-
lems. The numerical examples of constrained optimization problem are given in
Table C.2 as follows:

Table C.2 Testbench functions for the GA optimization example

Minimization of Function 1

1y1- 1;x1- :int

4)4cos(3.0)3cos(2),(22

≤≤≤≤
+++−−=

sConstra

yxyxyxF ππ

Minimization of Function 2

5y5- 5;x5- :int

)sin()sin()sin()sin()sin(5),(

)1()1(15

)1()1(14)1()1(13

)1()1(12 ;11

5
5*4

4
4*2

3
3*3

2
2*5.2

1
1*4

22

2222

2222

≤≤≤≤
−−−−−=

−+++=

−+−+=++++=

++−+=++=

sConstra

yxF

yxZ

yxZyxZ

yxZyxZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

A three-dimensional plot of objective functions is shown in Fig. C.3 (a). For
these continuous functions, the chromosome is encoded as a vector of two real
values x and y. When a new population is created, the next step is to calculate the
fitness value of each member in the population. The evaluation of the fitness for
each chromosome is performed by Eval(F(x,y)). After the evaluation of the last
chromosome a new population is created. The two most fitted individuals are re-
produced directly in the next population while the remaining ones will be submit-
ted to the standard process variations, crossover and mutations. The chromosomes
selected to crossover will be chosen according to the roulette wheel strategy. The

Appendix C. The Basic Decisions of Standard GA Algorithms 203

roulette wheel cumulative probability for each individual is calculated with ex-
pression C.1:

 ∑
=

=
i

k
ki PQ

0

 (C.1)

Where, the selection probability Pi and the total fitness expression are given by:

totalF

yxfEval
iP _

)),((= ; ∑
=

=
iPop

k

yxfEvaltotalF
0

)),((_ (C.2)

Table C.3 gives the configuration parameters of this single optimization problem.

Table C.3 Optimization control parameter configuration

Algorithm Name Function 1 Function 2

Initial Population / Population Size iPOP/Pop 64 /32 32/16

Initial Sampling Method sAMP random random

Elite population (survive to next gen.) Elite 2 2

Selection type sType Roulette wheel Roulette wheel

Crossover rate / type cRate/cXover 50% / One point 50% / One point

Mutation rate / type mRate/mtype 5% Fixed/random 5% Fixed/random

Number of generations nGEN 10 10

Independent Variables iVar x, y x, y

Kernel Type Kernel GA GA

The results illustrated in Fig. C.3 b) and c) plots a two dimension view and the

contour plot of the function under test with the initial population locations denoted
by circles and the final solutions with red stars. Fig. C.4 shows the evolution curve
of the best and average fitness across 64 generations for 10 runs of the algorithm.
In a typical application the best curve presents a monotonically decreasing shape
with respect to generation numbers.

At the end of each generation the fitness of the best individual is expected to
improve whereas there is a tendency to stagnate to the end of the run (see
Fig. C.4). The stagnation may be the consequence of several events. The more op-
timistic is the successful discovery of the global solution of the problem. In that
case the algorithm cannot evolve any further while stop condition, perhaps the
maximum number of iterations have not exhausted yet. However, the discovery of
the global optimum does not always happen.

204 Appendixes

 Function 1 Function 2

(a)

Initial Population = 32 random samples

Number generation =10 iterations

Initial Population = 16 random samples

Number generation = 10 iterations

(b)

(c)

Fig. C.3 3D, 2D view and the contour plot of the function under test

Appendix C. The Basic Decisions of Standard GA Algorithms 205

Function 1 Function 2

Fig. C.4 Illustration of the evolutionary process

Stagnation may occur because of the influence of a local optimum, an insuffi-
cient number of iterations cycles or wrong parameterization and/or bad choice of
the search methods. These are the main common issues in EAs algorithms, as well
as, in other iterative search methods.

C.2 Representation and Encoding

GAs are population-based searching algorithms whose individuals are represented by
chromosomes with several genes encoded in binary or real coded form. The binary
method used by the classical GA encoding system has some weak points, whenever it
is used in multidimensional, high-resolution numerical problems [23]. The real-coded
representation has more advantages as it is faster and more accurate in solving opti-
mization problems whose parameters are represented in continuous domain.

Besides, the real-coded representation allows the creation of more sophisticated op-
erators, thus it is the representation adopted in this thesis. Whichever the type of repre-
sentation used, the chromosomes are usually implemented in the form of vector lists of
attributes where each attribute, known as gene, is a representation of one optimization
variable. Fig. C.5 illustrates the chromosome structure for some objective functions.

Fig. C.5 GAs basic structures

206 Appendixes

C.3 Fitness Evaluation and Assignment

The objective fitness function evaluates and quantifies the optimality of a solution
by assigning to each individual a certain cost or merit, based on its performance.
The fitness function measures how well the individual has achieved the perform-
ance objectives of the problem. In the case of a minimization problem the lowest
numerical value will be assigned to the fittest individuals. Whatever the fitness
strategy used, the objective is to assign to each individual a quantitative measure
which will be interpreted in the selection phase as the equivalent survival rate of
an individual into the next generation. For computational reasons, fitness functions
can be normalized to appropriate intervals, converting the real performance prob-
lem into a relative fitness (expression C.3). A common approach is to divide the
fitness of an individual by the average fitness of the population, this way the rela-
tive fitness measures how far or how close the fitness is from the average of the
population.

∑
==

=

Nind

i
i

i

xf

xf
ii xfgxFitness

1

)(

)())(()((C.3)

There are many methods to evaluate fitness and assign a real number to each
chromosome. The fitness assignment strategies can be summarized in two essen-
tial types: Scaling Fitness and Ranking. Table C.4 presents two methods for trans-
forming the objective function in a relative fitness, where N is the population size,
r represents the rank and s the relative fitness for best individual such that, 1<s<2.

When scaling, some precautions should be taken against the formation of very
large relative fitness in some stronger individuals to get around with early prema-
ture convergence. In the same way, if there is not a clear differentiation between
the performance of the best individuals and the rest of the population, the search
will not be worthwhile. Both situations are not effective so the relative fitness
scheme assigned by scaling should be carefully chosen. Rank-based fitness, on the
other hand, is less sensitive to these unwanted scale effects since the appearance of
super individuals responsible for early premature convergence is weakened be-
cause the best individual in the population is always assigned the same fitness, and
in a population of similar performance values, the best one is still preferred to the
rest.

Table C.4 Fitness assignment strategies

Strategy Relative Fitness formulation Description

Scaling

[21] k
i

i

xfxFitnesslawPower

bxafxFitness

)()(:scaling

)()(:nsnsformatioLinear tra

=

+= The original fitness value (raw fitness)
is changed into a different scale using
linear or nonlinear offset function

Ranking

[21] srFitnesslawPower

ssrFitness

r

N
r

.)(:ranking

).1()(:Linear
1

2

ρ=

−−= −
Orders the individuals according to their
raw fitness giving them a value equiva-
lent to their position in the ranking.

Appendix C. The Basic Decisions of Standard GA Algorithms 207

C.4 Initial Population

In evolutionary algorithms the initialization of the population specifies the starting
points of the search. Traditionally, the initial population is created randomly but
several other initialization techniques can also be adopted. The next paragraphs in-
troduce two sampling techniques that will be used in this thesis, design of experi-
ments (DoE) [24]-[25] and latin hyper sampling (LHS) [26].

DoE is a statistical experimental design methodology used to perform multi-
variate design experiments in order to extract the maximum amount of informa-
tion of the system in the fewest number of runs. Design of experiments study the
influence of several factors in order to optimize processes and learn the relation-
ships between the factors over a wide range of values and how they affect the re-
sponse of the process environment. The most important stage in DoE process is
the screening experiments. They consist in the realization of only a few experi-
ments to find out the most relevant information about the process. There are
several different types of screening designs but the common one is the fractional
factorials design. The screening approach based on two-level designs is the most
basic approach but it is sufficient to estimate linear and interaction models. Then,
the full factorial design executes a set of experiments where every level of the fac-
tor is observed at both levels of all the other factors (see Fig. C.6). For example,
with n factors and L levels it is executed Ln experiments. As an alternative, a frac-
tional factorial design approach runs a subset of the full experiments without the
loss of too much information. With fractional factorial design, 3-way and higher
interactions are neglected. One popular method to produce fractional factorial de-
sign in industrial experiments is given by orthogonal arrays often referred to as
Taguchi Methods [24].

Fig. C.6 Example of full and fractional design for three levels experiments

Latin hypercube sampling (LHS) [26] is a form of stratified sampling that gen-
erates a more even distribution of parameter values in the multidimensional space
than typically occurs with pure Monte Carlo (MC) sampling. Variables are

208 Appendixes

sampled using a square grid symmetrically arranged allowing only one sample in
each row and each column. In two dimension variables this structure is called a
Latin square, as illustrated in Fig. C.7. When extrapolated for multi-dimension
spaces, it is called a Latin hypercube where only one sample is admitted in each
axis, aligned with the hyper plane containing it.

Fig. C.7 A Latin Hypercube Sample with two variables and eight even intervals

When sampling the space of N variables (X1,..,Xn), the range of each variable is
divided into K equally intervals. Then, one value from each interval is selected at
random with respect to the probability density in the interval. The n values
achieved by X1 are paired randomly with the n values of X2, X3 and so on, until n
k-tuplets are formed.

One of the advantages of this sampling scheme is that the number of sample
points is independent of dimension of problem. It is not necessary to take more
sampling points when the dimension of the problem increases. Moreover, the par-
ticular grid structure allows the remembrance of the last random samples.

C.5 Selection

Selection can also be compared to natural selection in biological system, where
weaker individuals have less chance of surviving than stronger ones. Therefore,
the most promising individuals are more likely to give their genetic legacy to next
generation individuals. In optimization, selection aims at the reproduction of better
and better individuals, i.e. the ones with the best fitness values, so the search is
targeted towards promising areas finding good solutions in shorter time. Neverthe-
less, it is important to preserve the diversity (enough individuals with below aver-
age fitness) of the population in order to prevent premature convergence and at the
same time provide enough selective pressure (rate of individuals with above aver-
age fitness) to allow the population convergence to the global optimal solution.

Several selection algorithms were developed to provide the harmony between
these two antagonistic activities, selective pressure and diversity. Table C.5 de-
scribes the most common selection methods.

Appendix C. The Basic Decisions of Standard GA Algorithms 209

Table C.5 Selection operators

Methods Description Advantages/Disadvantages

Roulette
wheel

[21]

Resembles the functioning of a real roulette wheel,
where fitness values of individuals correspond to
the widths of slots on the wheel machine. Higher
fitness values represented in wider slots are more
likely to be chosen to next generation when a ran-
dom selection is initialized

As soon as the population
converges upon solution,
selective pressure de-
creases severely affecting
the search of better solu-
tions.

Stochastic
universal
sampling
(SUS) [21]

A small variation of roullete wheel method. SUS
provides a fitness-proportionate selection with mi-
nimal use of a stochastic process. Instead of spin-
ning a roulette wheel one time for each n number
of offsprings, the roulette wheel is spinned with n
equallyspaced pointers just once.

SUS is optimally more ef-
ficient than roulette wheel.

Tournament
Selection

[27]-[28]

One parent is selected randomly, comparing the
fitness of n individuals in the actual population and
selecting the fittest. The second parent is selected
by repeating the same process. The binary tourna-
ment selects the parents using two (n is equal to
two) competitors.

This type of selection al-
lows the control of the se-
lection pressure rate. And
is easy to implement. Is
convenient to compare the
performance of individu-
als.

The selection criteria are very general and different methodologies of selection

schemes can be applied:

1. In a generational selection, the entire population can be replaced by the new
offspring. This method does not guarantee that that best individual will be part
of the next generation.

2. The elitism selection, on the contrary, implements a mechanism that copies the
best individual to the next generation unconditionally. Here, only a subset of
the original population is replaced, in this case, the algorithm is called a steady-
state EA.

3. The last general scheme is the sharing or crowding selection that was proposed
for the optimization of multimodal functions. Here, the objective is to maintain
a population distributed over all or many of the optima regions. This behavior
is normally achieved by reducing the fitness value of an individual in dense re-
gions (crowd) according to some “similarity” metric. This encourages the
search in unexplored regions and causes the appearance of subpopulations. A
problem with sharing methods is the introduction of two new parameters: a
new sharing criterion and the need to define the “similarity” metric.

C.6 Crossover Operator

The recombination or crossover operator is the main search operator in the GAs.
The aim of the crossover operation is to produce offspring that have large fitness
values, satisfying the problem’s constraints. The most common techniques to

210 Appendixes

Table C.6 Crossover operator overview

Crossover
Methods

Description Advantages/Disadvantages

N-point

[29]
Defines N random crossing points to exchange gene in-
formation, with N=(1,..n)

Classical approach. Can be
used with categorical data.

Uniform

[27]

Each gene in the offspring chromosome decides (with
probability p) which of the two parents will contribute
with its genetic information to form the mutated gene in
that position.

It is possible to combine
different characteristics
independently of the rela-
tive position in the chro-
mosome.

Arithmetic

[23]

This operator is a linear combination of two vectors
(chromosomes): let x1 and x2 be the parents selected to
breed, then the resultant offsprings will be given by

21
'
1).1(. xxx λλ −+= and

21
'
2 .).1(xaxax +−= where λ

is a random number between [0,1].

This operator is particu-
larly suitable for numeric
problems with constraints
where the feasible region
is convex.

Heuristic

[23]

Produces a single offspring through linear extrapolation
between two individuals. Let x and y be the two parents
selected to breed then final offspring will be given by the
expression yxyz +−=).(λ . If the generated solution

is not feasible a new random number is created.

Exploit the "quasi-
gradient" of the evaluation
function as a means of di-
recting the search process.

Mean Cen-
tric

[33]

The mean-centric recombination groups a class of opera-
tors that produce offspring near the centroid of the in-
volved parents. Examples of these techniques include, un-
imodal normal distribution crossover (UNDX), simplex
crossover (SPX) and blend crossover (BLX).

Can be useful for explora-
tion purposes.

Parent Cen-
tric

[33]

In parent-centric recombination, offspring are created in
the vicinity of the parents. It is given to each parent an
equal probability of creating offspring in its neighbour-
hood such as parent-centric recombination operator
(PCX)

Can be useful for exploita-
tion purposes.

implement the crossover operations are those derived from classical evolution the-
ory like the one-point crossover, N-point crossover [29], the uniform crossover
[27], the arithmetic and the heuristic crossover [23], etc. Table C.6 reviews a few
generic (problem independent) crossover operators found in literature.

The crossover operator generates new individuals (offspring) through the re-
combination of two or more parents. Crossover can be compared to sexual repro-
duction in natural organisms as it permits the swapping of information between
individuals.

A different approach is given by the EDAs (section 3.2.3) algorithms which
employ probabilistic models of the search distribution that model crossover opera-
tors. These methods introduce the idea of correlated exploration to the field of
recombination algorithms. However, EDAs are not efficient to the continuous
optimization [30]-[32].

Appendix C. The Basic Decisions of Standard GA Algorithms 211

C.7 Mutation Operator

The mutation operator is the primary variation/search operator in ESs while in
GAs it is often considered a useful complement of crossover, usually performed
with a low probability [21]. The main role of mutation in GA is to assure the di-
versity of genetic information in the population in order to prevent the premature
convergence of GA to sub-optimal solutions. In practice, mutation changes the
value of individual genes at random with a certain probability and assures that all
the points in the search space are likely to be examined. The probability of occur-
ring a mutation in a gene is called the mutation rate.

The GAs typically employ only one mutation rate pm for the population.
Generally, the mutation rate value is fixed, not allowing any change or self-
adaptation during evolution. Table C.7 describes some of commonly used muta-
tion techniques.

The mutation operator plays an important role in applications of adaptive pa-
rameter control or self-adaptation principles in evolutionary algorithms. In adap-
tive parameter control, the parameter settings (involving mutation and sometime
crossover) attain different values according to a deterministic or probabilistic
schedule defined by the user, for example, varying the mutation rate over the
number of generations of the algorithm.

Table C.7 Mutation operator techniques

Mutation

Methods
Description Advantages/Disadvantages

Standard

[21]
This type of operator just complements the binary
value of the gene selected for mutation.

Limited to binary operators

Uniform

[21]

Choose the component to mutate, and then change this
component value by a random number sampling inside
the limits of parameter x=[lb,ub] where lb and ub
means the lower and upper bound.

The admissible values applied
to real valued genes can take
any statistical pattern

Gaussian

[21]

Now the (real) component value of individual xk is
changed to),0(' σNxx kk += by a random value ob-

tained from a gaussian distribution),0(σN of mean

zero and standard deviation σ.

The parameter σ is user de-
fined and should be carefully
chosen. This approach can be
used with adaptively mecha-
nisms.

The self-adaptation concept, which evolved from evolution strategies and evo-

lutionary programming techniques, changes the value of mutation online, during
the search, by applying the search operator(s) mutation (and recombination, in
case of evolution strategies) to the optimization parameters. This method incorpo-
rates the control parameters into the chromosome.

212 Appendixes

C.8 Performance Criteria

The two most used metrics to measure the performance of an algorithm are the
effectiveness and efficiency [35]. Effectiveness measures the capacity of the algo-
rithm to accomplish the objectives. This value can be calculated by empirical ob-
servation in bunch of tests functions measuring the number of times the optimum
has been reached by a certain algorithm. In case of algorithms with stochastic
ground, the performance criterion is measured as the average of repetition trials.
Efficiency is the effort needed by the algorithm to reach the optimum. In evolu-
tionary algorithms, it is the number of function evaluations or number of genera-
tions consumed to reach the target. Other aspects that could be relevant in certain
cases can include a metric to trace down the performance of the algorithm in terms
of the number of feasible solutions found or even the convergence rate as well.

The classic way used to study the performance of an algorithm is through a per-
formance graph showing the trade-off between the two main criteria or making
use of tables comparing the performance of one or several algorithms against sev-
eral parameter settings and running over some test functions during a predefined
number of function evaluations.

Appendix D. Support Vector Machine Overview

D.1 The SVM Model Formulation

The classical two class classification case defined by a set of training data of the
form S={(xi; yi);…;(xn; yn)}, where the input xi∈ X ⊂ Rd is a d-dimensional fea-
ture vector and the output yi∈ {+1,-1} is the class label of xi.

In the first implementation step, SVM applies the kernel “trick”, which pro-
vides a nonlinear mapping of the vectors xi into a higher dimensional feature
space. Mathematically, it can be described as a nonlinear mapping φ, Η→ℜn:φ ,

where Η is a high dimension dot metrics space entitled Hilbert space or feature
space, and φ(x) the feature mapping. For nonlinear problems, the two classes are
more easily separated in Η than in Rd. φ must be chosen so that the kernel operator
K(x, x') = <φ(x), φ(x')>H is positive definite. This allows us to compute inner
products in Η without explicitly evaluating φ [35].

In the second step, a decision boundary hyperplane is created based on the
maximal-margin principle as illustrated in Fig. D.1.

Fig. D.1 Illustration of the main SVM concepts

The decision boundary points overlapping the margins are called support vec-
tors. Between them, an infinite number of separating hyperplanes are admissible
(Fig. D.1, left) including the optimal separating hyperplane (OSH) [36] of two se-
parable classes (Fig. D.1, right).

 The distance from the origin to the optimal separating hyperplane is given by
(-b/||w||), where w is the normal vector of the hyperplane whose norm is held con-
stant and b a real number offset parameter often called the bias.

214 Appendixes

The margin M is given by the following quantity:

M = mini yi {<w, φ (xi)> + b} (D.1)

where < , > denotes an inner product, the hyperplane is defined by w and b and
the expression given by (<w, φ (xi)> + b) corresponds to distance between the
point xi and the decision boundary (see Fig. D.2).

0)(. =+
→→

bxw iφ

1)(. −=+
→→

bxw iφ

1)(. +=+
→→

bxw iφ

→
w

φ

Fig. D.2 Margin and hyperplane - Mathematical expressions

The product of this quantity by the label yi (D.1) gives a positive value if there
is a correct classification and a negative one in opposite case. So, the minimum of
this quantity over all the data is positive if the data is linearly separable. Then the
future incoming classifications will be assigned accordingly to the next decision
rule:

f(x) = sign (<w, φ (xi)> + b) (D.2)

When the classes cannot be separated by a hyperplane, the SVM introduces new
constraints known by the slack variables εi. If εi >0, xi lies inside the margin and is
called a margin error. The distance between the hyperplane and misclassification
is given by (-ξi/||w||) [36].

Finally, the SVM can be formulated as the following quadratic program:

 ∑
=

+
n

i
i

bw
Cw

1

2

2
1

,,
min ε

ε
 (D.3)

Subject to,

0

1)),((

≥
−≥+

i

iii bxwky

ε
ε

; for i=1,…,n

Appendix D. Support Vector Machine Overview 215

and, 0≥C is a parameter that controls the tradeoff between minimizing the
margin errors and maximizing the margin.

For computational reasons, it is often easier to solve the equivalent dual prob-
lem using the Lagrangian formulation (αi is the Lagrange multipliers):

∑∑
==

−
n

i
i

n

ji
jijiji xxkyy

11,
2
1),(min ααα

α

 Subject to,
 (D.4)

0

0

1

=

≤≤

∑
=

n

i
ii

i

y

C

α

α
 for i=1,…,n

The primal and the dual are related through ∑
=

=
n

i
iii xyw

1

)(φα . Usually αi =0 for

most of the xi. The points xi that have non-zero Lagrange multipliers αi are termed
the Support Vectors (SV). If the data are linearly separable, all the SVs will lie on
the margin and hence the number of SVs can be very small (Fig. D.1).

The kernel function performs the non-linear mapping into the feature space.
The choice of kernel to fit non-linear data into a linear feature space depends on
the structure of the data [36]. Some of the most popular kernels which are used in
most SVM packages are presented in Table D.1.

Table D.1 Typical SVM kernels.

1. Linear kernel: yxyxK T=),(

2. The Radial Basic Function kernel where, the kernel
width is user-defined.

)2/exp(),(22 σyxyxK −−=

The polynomial kernel where, the degree of the poly-
nomial, d, is also user-defined.

dT yxyxK)1(),(+=

4. Sigmoid with parameter κ and θ)tanh(),(θκ += yxyxK T

D.2 Data Setup

This is the data preparation step before building the model. This step involves the
identification and normalization of data samples.

D.2.1 Data Collection

The data samples needed to build the model are collected in a database. This is
considered the most time consuming task of the overall process, since data sam-
pling usually evolves the collection of large number of expensive process samples.
The use of database management systems (DBMS) may help the exploration and
extraction of information in order to understand this data process. However, in

216 Appendixes

other situations (depending on the amount and the complexity of the data) a flat
file or even a spreadsheet may be adequate [37].

D.2.2 Pre-processing of the Training Data

The SVM algorithm operates on numeric attributes and it is applied in a variety of
domains. The relationship between the object under study and its attributes can
take multiple representations, be stored in several data structures even using dif-
ferent data types formats. Therefore, a common normalization is desired to
achieve the data representation required by the SVM. For example, in applica-
tions where categorical data (non real data) is available, a transformation of the
categorical in binary format is required. These early stage normalizations are ap-
plication specific so a couple of these were implemented within GENOM, as de-
scribed. First of all, the source of I/O SVM data is done in text data files, allowing
the efficient sparse data representation and storing a single object-attribute pair in
each line. Second, a normalization procedure (placed on similar scale) is submit-
ted to each individual data attributes. This step prevents attributes with a large
original scale from biasing the solution preventing eventual computational over-
flows and underflows. This is achieved by scaling the training data to a predefined
range normally between [0, -1] or [-1, -1]. The scaling routine reads through the
training data file to determine the maximum and minimum for each component of
the training vector. Then, values for the same component of all examples are lin-
ear scaled according to the following equation:

ueMinimumValueMaximunVal
ueMinimumVallueOriginalVaLowerUpperLowerScaleValue −

−−+= *)((D.5)

The maximum and minimum values of each component are saved in a SVM de-
scription file to avoid referring the training data again when scaling the testing
data. The description file makes the management and update of the extreme values
for scaling in streaming events easy. Moreover, during the scaling phase the exis-
tence of unwanted outliers and long tailed distributions can produce bad resolution
scale intervals and should also be prevented.

D.2.3 Unbalanced Data Sets

Real world applications are often characterized by highly unbalanced data distri-
butions. The ratio of positive to negative examples is small, meaning that one
class is under-represented compared to the other. Frequently, the class with more
interest to the user (the positive training samples) is represented by the minority
class. This scenario improperly biases the classifier and can significantly reduce
the accuracy of a classifier. The SVM models trained in such conditions will tend
to predict the majority class [38]-[39].

The main activities for handling unbalanced data problems are focusing in two
main methods that alter the class distribution of data sets: the under-sampling,
which shrink the size of samples in the majority class, and over-sampling, which
increase the number of samples in the minority class. The basic methods employ a
random sampling for reducing the majority samples and the replication of samples

Appendix D. Support Vector Machine Overview 217

in the case of over-sampling. The overall effect is to diminish the high class
asymmetries in the training set.

Whether it is used individually or simultaneously, both methods have some
drawbacks. For example, the under-sampling method can throws away potentially
useful samples near the decision boundary. Those samples could be potentials
support vectors responsible for the accuracy of the model. On the other hand, rep-
licating the majority class examples increases the size of the training set increasing
the cost to build the model (method used alone) and may also lead to overfitting
models. Recent studies have emerged which tries to optimize the efficiency and
accuracy of the model [40]-[41] and [42].

Other methods exist to improve the accuracy and performance of the learning
model without changing the class distributions for unbalanced problems. They are
based in the principle that the error introduced by a wrong estimation or classifica-
tion have different significance for different classes. The cost introduced by a
wrong classification of the interesting class sample (a minority) has greater impact
than the cost introduced by a wrong classification of the majority class sample,
that’s why they are called cost-sensitive methods. Thus, the cost-sensitive learning
methods, belongs to the class of classifiers that minimize cost as well as the tradi-
tional error rate whose impact of the costs weights can be parameterized by the
user in a class basis. Assign a higher weight factor or cost C to the minority sam-
ples in detriment of less cost values for majority classes, assures a biasing model
that gives more “representation” to small classes. Now, the SVM formulation pre-
sented in expression D.3 suffer a slight modification and became:

 ∑∑
==

++
positive

i
i

negative

i
i

bw
CCw

#

1
2

#

1
1

2

2
1

,,
min εε

ε
 (D.6)

One example to accomplish this is defined in [43], and assigns the costs values to
C1 and C2 to each class as below:

CC M
m2

1 = and CC M
m1

2 = (D.7)

Where, m1 and m2 denote the size of class 1 and class 2 data sets, respectively,
with m1>>m2 and M=m1+m2. Given a higher cost term to the minority class C2
will produce a model that can better predict new data.

D.3 SVM Model Building

A well defined training and validation procedure is required in order to insure ac-
curate and robust predictions. However, the limited availability of data resources
in some cases or the high cost of data collecting process may impose difficult
challenges to obtain the true accuracy. An accurate estimation of the true accuracy
should be put into practice for small data set cases. The quality of the estimation
also depends on the methods to measure the performance of the clas-sifier. The
most common used methods described next are the training and testing, the boot-
strap and cross-validation approach.

218 Appendixes

D.3.1 Training and Testing by Simple Validation Approach

In the simple validation method, the search space S is randomly partitioned into
two subsets S1 and S2 with asymmetrical loads, generally S1 with 2/3 of the total
data and S2 with the rest 1/3. A model is built, using as training set S1 and the ac-
curacy tested with the S2 subset. This process is repeated N times with different
random partitions, then the true accuracy is obtained averaging the results of each
iteration. It provides a way of evaluating the performance of a model trained with
the given training parameters. This method behaves well for large data sets. Small
data sets usually lead to inaccurate estimation with large bias because a significant
portion of data (S2) was spent to represent the test data. Another weakness of this
technique is that it violates the requirements for independence of test sets because
the partition of the test sets is not disjointed [44].

D.3.2 Bootstrap Method

The bootstrap method is a technique for estimating the error of a model. The boot-
strap method generates N subsets (S1, S2, …, SN) from the original set S using a
sampling technique usually based on a random with replacement strategy. The ba-
sic process chooses randomly one element of the entire set S, adds it to Si and puts
a copy back into S (replacement). This process is repeated T times equal to size of
elements of S. As a result, the total number of elements of subsets Si is equal to T.
There is also a probability that several elements of S can be copied several times
to Si while some may have none. In this case the classifier is built using Si as the
training set while the test set is formed by all elements of S not included in Si. The
final accuracy model is obtained by averaging the accuracy in each subset.

D.3.3 Cross-Validation Method

Considered as one of the most reliable but also most expensive in terms of compu-
tational cost, N-fold cross-validation randomly divides the training data into N sets
[44]-[46]. Then it builds N models, each time leaving one of the set out as the test-
ing set. Again, the average accuracy rate is calculated for each fold. A particular
feature of this method is that all the test set is disjoint and thus each training set is
tested only once. Briefly, the N-fold cross validation algorithm is described in
three main steps (Fig. D.3):

1. Divide the training set (of size m) into n disjoint sets

 S1;S2;...;Sn of equal size n/m.

2. For each Si:

 - Train a classifier on S\Si

 - Test it on Si −−> error(i)

3. Output the average error

Fig. D.3 N-fold cross validation algorithm

Appendix D. Support Vector Machine Overview 219

This gives an estimate of the generalization error of the classifier when trained on n-
n/m data. Usually n is equal to 10. When applied to model selection parameter, a
leave-10-out cross-validation is often used applying the following sequence of actions:

• For each set of values of the parameters, leave-10-out cross-validation on the
training set is performed to estimate the models accuracy.

• Select the set of values from each parameter that produced the model, which
gave the smallest prediction error (optimal parameter settings).

• Once a good set of parameter values is found, train the model with the optimal
parameter settings for whole training set and test it with a test set (test is not
used for training).

D.4 SVM Model Evaluation

After the building process, the performance of the predictive model is normally
measured with a set of evaluations metrics. Based on these results, the model may
need to be rebuilt again using a different technique or the same technique with a
different set of samples in order to increase the model accuracy.

D.4.1 Kernel Evaluation Metrics

The performance of a classifier is achieved mainly by the measure of the true ac-
curacy obtained with the original data set S. There are several performance meas-
ures used to estimate the accuracy or quality of the model.

1. The Root-Mean-Square-Error (RMSE) is often used as a performance criterion
in cross-validation and also for predicting the test set. The RMSE value is de-
fined by:

n

yy
n

i
ii

RMSE
∑

= =

−
1

2)ˆ(

 (D.8)

where, ŷi and yi are the predicted and real values of sample i of the n samples
respectively.

2. The Receiver Operating Characteristic (ROC) curve, illustrated in Fig. D.4, is a
graphical technique used to visualize the relation between true and false posi-
tives. The axes of a ROC curve are the number of true positives divided by the
total positives in the test set and the false positives divided by the total number
of negatives. The Area Under the Curve (AUC) gives a scalar measurement for
the performance. An AUC value of ‘1’ represents a perfect test; an area of ‘0.5’
represents a worthless test. Fig. D.4 illustrates the ROC concept.

3. The precision and recall metrics are two useful measures for evaluating the
quality of results in statistical classification problems. The Precision is the per-
centage of the outcome of a statistical task matching the desire results. In the
classification task, precision is the number of true positives (i.e. the number of
items correctly labeled as belonging to the class) divided by the total number of

220 Appendixes

elements labeled as belonging to the class (i.e. the sum of true positives and
false positives, which are items incorrectly labeled as belonging to the class). In
the same context, Recall is defined as the number of true positives divided by
the total number of elements that actually belong to the class (i.e. the sum of
true positives and false negatives).

FNTP
TP

FPTP
TP callP ++ == Re ; recision (D.9)

Fig. D.4 Receiver operating characteristic (ROC) curve

D.4.2 Model Selection Parameters

Model selection also known as parameter tuning is one of the most critical steps in
the process of building SVM models. It is well known that SVM generalization
performance depends on a good set of parameters C, ε and the kernel setting (σ in
case of RBF or d in case of polynomial kernels), which must be defined by the
user. An inappropriate choice of these parameters may lead to underfitting (e.g.,
for classification, the model always predicts the dominant class), overfitting (i.e.,
the model memorizes the training data) or slow and inefficient models. Fig. D.5 il-
lustrates the influence of these parameters in SVM modeling.

There are several methods found in the literature for tuning the SVM parame-
ters [36], [44] and [47]-[52]. The aim of these techniques is to find the optimal
parameters that minimize the prediction error of the SVM model. A common prac-
tice is to use a grid search approach to find the optimum values. In this case, a grid
is span all over the search space of the parameters models. The grid resolution has
great impact on the quality of the model and the time consumed in this process. To
alleviate some of these drawbacks, sometimes the tuning process implements a
coarse grid search followed by a fine grid approach in the regions of the most
promising regions identified in the first step. Several other methods were proposed
to speed up the grid search approach, including the use of optimization methods.
Some approaches employ the design of experiments techniques [48], pattern
search algorithms and stochastic algorithms [51]-[52].

Appendix D. Support Vector Machine Overview 221

 Small C(=0.01) Large C(=106)

Small ε(=0.0) Large ε(=0.25)

Small σ(=0.005) Large σ(=0.2)
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 10.1 0.2 0.3 0.6 0.80.4 0.5 0.7 0.9

Fig. D.5 Influence of the hyperparameters on SV regression [46]

Whichever the process used, a measure of the model quality should be adopted

to measure the overall generalization performance. N-fold cross-validation is con-
sidered one of the most confident methods for this purpose. However, it is also a
time consuming process because it is coupled with the generation of N+1 model

222 Appendixes

for each parameter value combination (details in the next section). Once again
several alternatives were proposed to alleviate this undesirable behavior. One of
them is to consider a single model evaluation instead of the N model evaluations
related with cross-validation. For datasets of reasonable size, some strategies re-
duce the complexity using simply a representative subset of the entire dataset.
Both approaches sacrifice the quality of the final solution favoring the efficiency
of the process.

While some authors calculate the real model generalization performance fol-
lowing one of the methods of build train-test process described above, others fo-
cus their attention on theoretical work that leads to the estimation of the generali-
zation performance. Generally, the solution is given in intervals or bounds of the
parameters models. Knowing such bounds, model evaluation can be more time ef-
ficient [35]. Besides, it can also be used as an alternative to the coarse grid ap-
proach if used within a classical grid search. Another practical example presented
in [36], [47]-[48], calculates the values of σ and C directly from the training data
but with the need of building the model. In this approach, the value of C is chosen
as:

|)3||,3max(| yy yyC σσ −+= (D.10)

Where, y is the mean and σ is the standard deviation of the training set.

The value of ε is calculated as:

⎪⎩

⎪
⎨
⎧

≥=

≤=

30 n sets data smallfor ,

30 n sets data smallfor ,

)lg(
n
n

n

τσε

ε σ

 (D.11)

where, σ is the standard deviation of the training set, n is the number of samples in
the training set and τ is a constant that also has to be defined by the user.

References

[1] Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific, Belmont (1998)
[2] Constraint programming, Artificial intelligence applications institute. The University

of Edinburgh (2007), http://www.aiai.ed.ac.uk/ (accessed, March 2009)
[3] Deb, K.: An efficient constraint handling method for genetic algorithms. Computer

Methods in Applied Mechanics and Engineering, vol. 186, pp. 311–338. Elsevier,
Amsterdam (2000)

[4] Coello, C.A.C.: Theoretical and numerical constraint handling techniques used with
evolutionary algorithms: A survey of the state of the art. Computer Methods in Ap-
plied Mechanics and Engineering, vol. 191, pp. 1245–1287. Elsevier, Amsterdam
(2002)

References 223

[5] Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and
multiple offspring incorporated to differential evolution for constrained optimization.
In: Proc. GECCO, pp. 225–232 (2005)

[6] Mahfoud, S.W., Goldberg, D.E.: Parallel recombinative simulated annealing: A ge-
netic algorithm. Parallel Computing 21, 1–28 (1995)

[7] Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading (1989)

[8] Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer
Journal 7, 308–313 (1965)

[9] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. Journal of Chemical Phys-
ics 21(6), 1087–1092 (1953)

[10] Kirkpatrick, S., Gerlatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science (1983), doi:10.1126/science.220.4598.671

[11] Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic
algorithms. Ph.D. dissertation, Vanderbilt University, Nashville, TN (1984)

[12] Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multi-objective optimization:
Formulation. Discussion and Generalization. In: Proc. 5th International Conference on
Genetic Algorithms, pp. 141–153 (1993)

[13] Fonseca, C.M., Fleming, P.J.: Multi-objective optimization and multiple constraints
handling with evolutionary algorithms–Part II: Application example. IEEE Trans.
Systems, Man, and Cybernetics: Part A: Systems and Humans, 38–47 (1998)

[14] Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algo-
rithm for multi-objective optimization. In: Proc. Congress on Evolutionary Computa-
tion, pp. 98–105. IEEE Service Center, Piscataway (1999)

[15] Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multi-objective ge-
netic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6, 182–197 (2002)

[16] Horn, J., Nafploitis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multi-
objective optimization. In: Proc. 1st IEEE Conference on Evolutionary Computation,
pp. 82–87 (1994)

[17] Zitzler, E.: Evolutionary algorithms for multi-objective optimization: Methods and
applications. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich
(1999)

[18] Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms for multi-
objective optimization. In: Proc. Congress on Evolutionary Computation, vol. 3(1),
pp. 1–16 (1998)

[19] Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michi-
gan Press, Ann Arbor (1975)

[20] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algo-
rithms. IEEE Trans. Evolutionary Computation 3(2), 124–141 (1999)

[21] Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of evolutionary computation. Oxford
Univ. Press, Oxford (1997)

[22] Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory
analysis of genetic algorithms. IEEE Trans. Evolutionary Computation 8(4), 405–421
(2004)

[23] Michalewicz, Z.: Genetic algorithms + data structure = evolution programs, 3rd edn.
Springer, Berlin (1996)

224 Appendixes

[24] Antony, J., Somasundarum, V., Fergusson, C.: Applications of taguchi approach to
statistical design of experiments in Czech Republican industries. International Journal
of Productivity and Performance Management 53(5), 447–457 (2004)

[25] Trygg, J., Wold, S.: Introduction to statistical experimental design. Editorial (2002),
http://www.acc.umu.se/~tnkjtg/Chemometrics/Editorial
(accessed, March 2009)

[26] McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for se-
lecting values of input variables in the analysis of output from a computer code.
Technometrics 21, 239–245 (1979)

[27] Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the ef-
fects of noise. Illinois Genetic Algorithms Laboratory, Tech. Rep. TR No: 95006
(1995)

[28] Legg, S., Hutter, M., Kumar, A.: Tournament versus fitness uniform selection. In:
Proc. Congress on Evolutionary Computation, vol. 2, pp. 2144–2151 (2004)

[29] Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. Wiley, New York (1998)
[30] Ocenasek, J.: Parallel estimation of distribution algorithms. Ph.D. dissertation, Faculty

of Information Technology, Brno University of Technology (2002)
[31] Larrañaga, P., Lozano, J.A.: Optimization by learning and simulation of probabilistic

graphical models. In: Parallel Problem Solving from Nature, PPSN VII (2002),
http://www.sc.ehu.es/ccwbayes/ (accessed, March 2009)

[32] Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms: A new tool for
evolutionary computation. Kluwer Academic Publishers, Norwell (2001)

[33] Raghuwanshi, M., Kakde, O.: Survey on multiobjective evolutionary and real coded
genetic algorithms. In: Proc. 8th Asia Pacific Symposium on Intelligent and Evolu-
tionary Systems, pp. 6–10 (2004)

[34] Baritompa, W.P., Hendrix, E.M.T.: On the investigation of stochastic global optimiza-
tion algorithms. Journal of Global Optimization 31, 567–578 (2005)

[35] Milenova, B.L., Yarmus, J.S., Campos, M.M.: SVM in oracle database 10g: Remov-
ing the barriers to widespread adoption of support vector machines. In: Proc. 31st
International Conference on Very Large Data Bases, pp. 1152–1163 (2005)

[36] Üstün, B.: A comparison of support vector machines and partial least squares regres-
sion on spectral data. Master thesis, University of Nijmegen, The Netherlands (2003),
http://www.cac.science.ru.nl/people/ustun (accessed, March 2009)

[37] Edelstein, H.A.: Introduction to data mining and knowledge discovery, 3rd edn. Two
Crows Corporation (2003),
http://www.twocrows.com/intro-dm.pdf (accessed, March 2009)

[38] Liu, Y., An, A., Huang, X.: Boosting prediction accuracy on imbalanced datasets with
SVM ensembles. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD
2006. LNCS (LNAI), vol. 3918, pp. 107–118. Springer, Heidelberg (2006),
doi:10.1007/11731139

[39] Liu, A.: The effect of oversampling and undersampling on classifying imbalanced text
datasets. Master thesis, University of Texas, USA (2004)

[40] Romano, R.A., Aragon, C.R., Ding, C.: Supernova recognition using support vector
machines. In: Proc. 5th International Conference on Machine Learning and Applica-
tions, pp. 77–82 (2006)

[41] Brank, J., Grobelnik, M., Milic-Frayling, N., Mladenic, D.: Training text classifiers
with SVM on very few positive examples. Tech. Rep. MSR-TR-2003-34 (2003)

 225

[42] Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbal-
anced datasets. In: Proc. European Conference on Machine Learning, pp. 39–50
(2004)

[43] Shina, H., Cho, S.: Response modeling with support vector machines. Elsevier - Ex-
pert Systems with Applications 30(4), 746–760 (2006)

[44] Zeng, X., Martinez, T.R.: Distribution-balanced stratified cross-validation for accu-
racy estimation. J. Experimental & Theoretical Artificial Intelligence 12(1), 1–12
(2000)

[45] Duan, K., Keerthi, S., Poo, A.: Evaluation of simple performance measures for tuning
SVM hyperparameters. Neurocomputing 51, 41–59 (2003)

[46] Ito, K., Nakano, R.: Optimizing support vector regression hyperparameters based on
cross-validation. In: Proc. International Joint Conference on Neural Networks, vol. 3,
pp. 2077–2082 (2003)

[47] Kiely, T., Gielen, G.: Performance modeling of analog integrated circuits using least-
squares support vector machines. In: Proc. Design, Automation and Test in Europe
Conference and Exhibition, vol. 1, pp. 448–453 (2004)

[48] Cherkassky, V.L., Ma, Y.: Practical selection of SVM parameters and noise estima-
tion for svm regression. Neural Networks 17(1), 113–126 (2004)

[49] Frohlich, H., Zell, A.: Efficient parameter selection for support vector machines in
classification and regression via model-based global optimization. In: Proc. IEEE In-
ternational Joint Conference on Neural Networks, vol. 3, pp. 1431–1436 (2005)

[50] Staelin, C.: Parameter selection for support vector machines. Technical Reports,
HP Labs (2002)

[51] Boardman, M., Trappenberg, T.: A heuristic for free parameter optimization with sup-
port vector machines. In: Proc. International Joint Conference on Neural Networks,
pp. 610–617 (2006)

[52] Imbault, F., Lebart, K.: A stochastic optimization approach for parameter tuning of
support vector machines. In: Proc. 17th International Conference on Pattern Recogni-
tion, vol. 4, pp. 597–600 (2004)

Index

A
Accuracy 38
Active RC filter 101
ADA 31
Adaptive parameters 60
AIDA

architecture, 109
design flow, 110
GUI, 111
platform, 110
project, 109
topology selection, 115

ALADIN 12, 24, 25
ALDAC 24, 25
AMGIE 12, 20, 22, 28, 39
AMS 19
ANACONDA 12, 29, 39
ANAGRAM, 12, 24, 25
Analog Design Issues 3
Analog IC Design 11
Analog IC Design Flow 5
Analog Integrated Circuits

optimization, 139
Analog sizing tools

metrics, 36
Performance analysis, 37

Ant Colony Optimization 56
Artificial Neural Nets 94
ASTRX/OBLX 28
Automated Circuit Sizing 23
Automated circuit synthesis

Commercial Tools, 31
Equation-based methods, 28
Knowledge-based approach, 26
Learning-based Methods, 30
Optimization-based approach, 27
Simulation-based methods, 29

Automated EDA tools 12

Automated Layout Generation
optimization-based approaches, 24
procedural module generation, 23
template-based approach, 24

Automation Level 36

B
Barcelona Design 12, 31
Bayesian Networks 94
BLADES 20, 22, 26
Block level 5
Bottom-up 4, 6, 7, 8, 12

C
CAD 2
CAD methodologies 10
CAD tools 3, 10, 11, 112
Circuit class 114
Circuit level 5
CMOS

current mirror, 97
Coarse optimization 83
Computation time 37
Constraint Handling 58
Constraint-based Selection 72
Constraints programming 52
Corner analysis 82
Corners analysis 158, 161
Cost function

parser, 134
Cost Function 119
Cultural Algorithms 56

D
DARWIN 20, 22, 29
Data Mining 89, 91

association and sequencing, 90
classification and regression, 90
clustering, 90

228 Index

Decision Trees 92, 94
DELIGHT.SPICE 26, 29, 97
Design automation tools 31
Design constraints 114
Design facilities 36
design parameters 111
Design Space 97
Design stage 111
Differential Evolution 56

E
EAs main characteristics 55
E-Design 113
Estimation of Distribution Algorithms 56
Evolution strategies 54
Evolutionary Analog IC design

Computation Techniques, 49
Problem Formulation, 49

Evolutionary Analog IC design 49
Evolutionary computation techniques 54
Evolutionary process 99
Evolutionary programming 54
Evolutionary search 98

F

FASY 20, 22, 29, 39
Feasibility Model

formulation, 100
Feasibility Region

definition, 96
Feasibility space 147
Feasibility-based sort 71
Fine-Tuning optimization 83
Folded cascode OpAmp with AB Output

172
FRIDGE 12, 29, 39, 97, 178

benchmark circuit, 179
Fully Differential OpAmp 157
Fully Differential Telescopic OpAmp 164
Functional Constraints 97
Functional Space 97
Fuzzy logic 20, 63

G
GA

Control parameters, 201
convergence, 89
Crossover Operators, 209
Fitness evaluation and assignment, 206
Initial population and sampling, 207
Iterative cycle, 199
Mutation Operators, 211

Optimization GA Example, 202
Performance criteria, 212
Pseudo-code of simple EAs, 200
Representation and Encoding, 205
search optimizer, 99
search space, 89
Selection methods, 208

GA-MOD 127, 148
GA-STD 127, 148, 149
GA-SVM 128, 148, 149

algorithm, 99, 104
dynamic, 154
methodology, 96
optimization, 96, 104
static, 151

General multi-objective problem 49
Genetic algorithms 54
Genetic programming 54
GENOM 109

attributes, 80
class functions, 62
code, 113
crossover strategies, 73
design flow, 113
design methodology, 145
distrubuted algorithm, 77
dynamic evolutionary control, 76
encoding and samplig, 67
evaluation engine, 125
Fitness Function, 61
fuzzy preferences, 63
GA-MOD, 144
I/O, 113
input data, 114
interactive design, 122
MPI interface, 123
mutation strategies, 74
optimization architecture, 98
optimization kernel config, 127
optimization methodology, 82
optimization parameters, 144
optimizer, 110, 113
output data, 120
overview, 112
performance evaluation, 133
population structure, 67
selection strategies, 71
simulation data, 131
system overview, 61
testing, 141

Geometric programming 29
GPCAD 12, 28, 29, 39

Index 229

Gradient-based methods 52
GUI 111

H

HDL 21
Heuristic rules 20
Hierarchical Decomposition Model 4
High Performance Circuits Design 156
HSPICE 101, 111, 133, 145, 148, 149
Hyperplane 214

I

IDAC 20, 26
ILAC 12, 24
Inductive Learning 89
IPRAIL 24, 25
Issues in evolutionary search 57

J

JAVA 109

K
K-Means Clustering 94
K-Nearest Neighbor 93
KOAN 24, 25

L

Latin hypercube 68
LAYGEN 12, 24, 26, 112
LAYLA 12, 24, 26
layout generators 109
Layout hierarchy 6
Layout tools 25
Learning Algorithms 89
Learning-based methods

Alpaydin, 30
Rutenbar, 30
Vemuri, 30
Vincentelli, 30

LEX 132
LIBSVM 153
Linear programming 51
Logistic Regression 94

M

MAELSTROM 12, 29, 39
Manual design flow 10
MAULIK 28
Measures 115
MOGA 198
Monte Carlo 53, 84

Monte Carlo sampling 193, 207
Moore’s law 1
Multi-objective multi-constraint problems

50, 59
multiple objective optimizations 52
Mysql 109

N
Naïve-Bayes

algorithm, 93
Nearest Neighbor Methods 94
Nelder-Mead simplex-based methods 195
NeoCell 12
NeoCircuits 12
Neural Networks 92
NPGA 198
NSGA 198
Numeric Programming Techniques 51

O

OASYS 20, 22, 26
Objective Function 93
OPASYN 20, 22, 28
Operational amplifiers 139

CMRR, 139
folded cascode, 139
gain boosted, 139
noise, 139
output resistance, 139
output swing, 139
power dissipation, 139
PSRR, 139
slew rate, 139
telescopic, 139
testbench configurations, 140
transient response, 139
two stage, 139

Optimal Separating Hyperplane 95
Optimization Setup 82
Optimization techniques

Constraints Programming, 194
Direct Stochastic Methods, 195
Gradient-based Methods, 193
Multiple Objectives, 197
Random Search Methods, 193

Optimization Techniques 38
Optimization-based techniques 39
Overdrive voltages 100
Overfitting 217, 220
over-sampling 216

230 Index

P
PAES 198
Particle Swarm Optimization 56
Performance Feasible Region 98
Performance measures 145
Performance report 121
Performance Space 97, 147
Performance specs 114
Population Diversity 58
posynomials equations 29
Premature convergence prevention 70, 74, 76
Productivity gap 2
Progress report 120
project specifications 111

R
random search methods 52
Redesign 3
Regression

linear, 91
Robust design 36
robust designs 82
Robustness 38
Rule Learning 94

S
Scope of the tool 36
SD-OPT 28, 39
Self Organized Maps 94
Setup time 37
Simplex algorithm 51
Simulated annealing 195, 196
Simulation and testing 139
Sizing rules method 98
SoC 1, 2, 20
SPEA 198
Specification translation 6
Speed of Convergence 59
SPICE 99
Splines 94
STAIC 28
Standard GA Kernel Optimization 199
Stochastic methods 52
Stochastic programming 51
Supervised Learning 90
Support Vector Machines 94
SVM
 bootstrap method, 218

Classification, 95
cross-validation method, 218
decision boundary, 213

feasibility model, 149
feasibility region, 96
hyperplane, 95
kernel, 102
kernel “trick”, 213
kernels, 215
Learning Algorithm, 95
learning engine, 99
meta-parameters, 144
model building, 217
model evaluation, 219
Model formulation, 213
model generation, 101
performance model, 100
support vectors, 213
Training and Testing, 218
training data, 216
Unbalanced Data, 102

 with unbalanced data, 216
Swing 109
Synthesis Verification 7
System level 5, 8

T

Tabu search 195
TAGUS 12, 20, 21, 22
Terminology 191
The No-Free-Lunch Theorem 52
Time-to-market 3
Top-down design 4, 5, 12
Topology generation

Bottom-up, 22
Topology Generation

Top-down, 22
Topology Selection 6, 20, 111

Feasible Region, 22
Heuristic Rules, 22

Tournament with feasibility 72
Trends in evolutionary computation 56
typical design flow 19

U
Underfitting 220
under-sampling 216, 217
Unsupervised Learning 90

V
VEGA 198

Y
YACC 132
Yield 82

	Title Page
	Preface
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Microelectronics Market and Technology Evolution
	Analog Integrated Circuit Design
	Analog Design Issues
	The Hierarchical Decomposition Model
	Analog IC Design Flow
	Analog Design Flow of a 15-Bit Pipeline CMOS A/D Converter

	Analog Design Automation
	CAD Tools for Analog Circuit Design
	Automated Analog IC Design

	References

	State-of-the-Art on Analog Design Automation
	Trends in Design Automation Methodology
	Automated Topology Selection
	Automated Circuit Sizing/Optimization
	Automated Layout Generation

	Automated Circuit Synthesis Approaches
	Knowledge-Based Approach
	Optimization-Based Approach
	Commercial Tools

	Design Automation Tools: Comparative Analysis
	Specific Characteristics
	Performance Analysis
	Optimization Techniques
	Other Characteristics
	Summary

	GENOM Optimization Tool: Implementation Goals
	Conclusions
	References

	Evolutionary Analog IC Design Optimization
	Computation Techniques for Analog IC Design – An Overview
	Analog IC Design Problem Formulation
	Numeric Programming Techniques
	The No-Free-Lunch Theorem
	Evolutionary Computation Techniques Overview

	Key Issues in Evolutionary Search
	GENOM - Evolutionary Kernel for Analog IC Design Optimization
	Fitness Function Study
	Individual Encoding, Population Structure and Sampling
	Selection Strategies
	Crossover Strategies
	Mutation Strategies
	Step Size Control – Dynamic Evolutionary Control
	A Distributed Algorithm for Time Consuming Fitness Functions
	GENOM GA Attributes
	GENOM Optimization Methodology

	Conclusions
	References

	Enhanced Techniques for Analog Circuits Design Using SVM Models
	Learning Algorithms Overview
	SVM Classification Overview

	GA-SVM Optimization Approach
	Feasibility Region Definition
	Methodology Overview
	The Feasibility Model Formulation
	SVM Model Generation and Improvement
	Handling Unbalanced Data in Circuit Designs
	GA-SVM Optimization Overview
	Comments on the Methodology

	Conclusions
	References

	Analog IC Design Environment Architecture
	AIDA Architecture
	AIDA In-House Design Environment Overview
	Layout Level Tools

	GENOM System Overview
	Design Flow
	Input Data
	Output Data
	I/O Interfaces
	Evaluation Engine
	Expansion of GENOM Tool
	Optimization Kernel Configuration

	Data Flow Management
	Input Data Specification
	Evaluation/Simulation Data Hardware
	Output Data

	Conclusions
	References

	Optimization of Analog Circuits and Systems – Applications
	Testing the Performance of Analog Circuits
	Testing the GENOM – Selected Circuit Topologies
	GENOM Convergence Tests
	The Analog IC Design Approach
	Testing the Selection Approach

	Comparing GA-STD, GA-MOD and GA-SVM Performance
	GA-STD versus GA-SVM Performance – Filter Case Study
	Static GA-SVM Performance - OpAmp Case Study
	Testing the Dynamic GA-SVM Performance
	Final Comments

	General Purpose Circuits or High Performance Circuits Design
	Fully Differential OpAmp
	A Common OTA Fully Differential Telescopic OpAmp
	Folded Cascode OpAmp with AB Output

	Comparison with Other Tools/Approaches
	FRIDGE Benchmark Circuit Tests
	Optimization Test with FRIDGE Ampop
	Comparison Results
	Corners Optimization with FRIDGE Circuit

	Conclusions
	References

	Conclusions
	Conclusions
	Future Work

	Appendixes
	Terminology
	General Purpose Optimization Techniques
	Random Search Methods
	Unconstrained Gradient-Based Methods
	Constraints Programming
	Direct Stochastic Methods
	Multiple Objectives

	The Basic Decisions of Standard GA Algorithms
	Standard GA Kernel Optimization
	Representation and Encoding
	Fitness Evaluation and Assignment
	Initial Population
	Selection
	Crossover Operator
	Mutation Operator
	Performance Criteria

	Support Vector Machine Overview
	The SVM Model Formulation
	Data Setup
	SVM Model Building
	SVM Model Evaluation

	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

