

Lecture Notes in Computer Science 6032
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Arvind Krishnamurthy
Bernhard Plattner (Eds.)

Passive and Active
Measurement

11th International Conference, PAM 2010
Zurich, Switzerland, April 7-9, 2010
Proceedings

13

Volume Editors

Arvind Krishnamurthy
Department of Computer Science and Engineering
University of Washington
185 Stevens Way
Seattle, WA, 98195, USA
E-mail: arvind@cs.washington.edu

Bernhard Plattner
Computer Engineering and Networks Laboratory (TIK)
Swiss Federal Institute of Technology (ETH)
Gloriastrasse 35 8092 Zurich, Switzerland
E-mail: plattner@tik.ee.ethz.ch

Library of Congress Control Number: 2010923740

CR Subject Classification (1998): C.2, H.4, K.6.5, D.2, D.4.6, E.3

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-642-12333-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12333-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The 2010 edition of the Passive and Active Measurement Conference was the
11th of a series of successful events. Since 2000, the Passive and Active Mea-
surement (PAM) conference has provided a forum for presenting and discussing
innovative and early work in the area of Internet measurements. PAM has a
tradition of being a workshop-like conference with lively discussion and active
participation from all attendees. This event focuses on research and practical
applications of network measurement and analysis techniques. This year’s con-
ference was held at ETH Zurich, Switzerland.

PAM 2010 attracted 79 submissions. Each paper was carefully reviewed by at
least three members of the Technical Program Committee. The reviewing process
led to the acceptance of 23 papers. The papers were arranged in nine sessions cov-
ering the following areas: routing, transport protocols, mobile devices, topology,
measurement infrastructure, characterizing network usage, analysis techniques,
traffic analysis, and the Web.

We are very grateful to Endace Ltd. (New Zealand), Cisco Systems Inc.
(USA), armasuisse (Switzerland) and the COST Action TMA whose sponsoring
allowed us to keep registration costs low and to offer several travel grants to PhD
students. We are also grateful to ETH Zurich for sponsoring PAM as a host.

April 2010 Bernhard Plattner
Arvind Krishnamurthy

Organization

Organizing Committee

General Chair: Bernhard Plattner (ETH Zurich, Switzerland)
Program Chair: Arvind Krishnamurthy (University of

Washington, USA)
Local Arrangements Chair: Xenofontas Dimitropoulos (ETH Zurich,

Switzerland)
Publicity Chair: Marco Mellia (Politecnico di Torino, Italy)
Poster Chair: Alan Mislove (Northeastern University, USA)

Program Committee

Matthew Caesar UIUC, USA
Mark Crovella Boston University, USA
Constantine Dovrolis Georgia Tech, USA
Jaeyeong Jung Intel Research Seattle, USA
Sachin Katti Stanford University, USA
Thomas Karagiannis Microsoft Research, Cambridge, UK
Simon Leinen Switch, Switzerland
Craig Labowitz Arbor Networks, USA
Sridhar Machiraju Google, USA
Bruce Maggs Duke University & Akamai, USA
Morley Mao University of Michigan, Ann Arbor, USA
Alan Mislove Northeastern University, USA
Sue Moon KAIST, Korea
Neil Spring University of Maryland, College Park, USA
Joel Sommers Colgate University, USA
Renata Teixeira CNRS and UPMC Paris Universitas, France
Arun Venkataramani University of Massachusetts, Amherst, USA
Jia Wang AT&T Research, USA
Yinglian Xie Microsoft Research, Silicon Valley, USA
Ming Zhang Microsoft Research, Redmond, USA
Yin Zhang University of Texas, Austin, USA

Steering Committee

Nevil Brownlee University of Auckland, New Zealand
Mark Claypool Worcester Polytechnic Institute, USA
Ian Graham Endace, New Zealand
Arvind Krishnamurthy University of Washington, USA
Sue Moon KAIST, Korea

VIII Organization

Bernhard Plattner ETH Zurich, Switzerland
Renata Teixeira CNRS and UPMC Paris Universitas, France
Michael Rabinovich Case Western Reserve University, USA

Sponsoring Institutions

Endace Ltd.
CISCO Systems Inc.
armasuisse
COST Action TMA

Table of Contents

Characterizing the Global Impact of P2P Overlays on the AS-Level
Underlay . 1

Amir Hassan Rasti, Reza Rejaie, and Walter Willinger

Investigating Occurrence of Duplicate Updates in BGP
Announcements . 11

Jong Han Park, Dan Jen, Mohit Lad, Shane Amante,
Danny McPherson, and Lixia Zhang

A Measurement Study of the Origins of End-to-End Delay Variations . . . 21
Yaron Schwartz, Yuval Shavitt, and Udi Weinsberg

Yes, We LEDBAT: Playing with the New BitTorrent Congestion
Control Algorithm . 31

Dario Rossi, Claudio Testa, and Silvio Valenti

Measuring and Evaluating TCP Splitting for Cloud Services 41
Abhinav Pathak, Y. Angela Wang, Cheng Huang, Albert Greenberg,
Y. Charlie Hu, Randy Kern, Jin Li, and Keith W. Ross

The Myth of Spatial Reuse with Directional Antennas in Indoor
Wireless Networks . 51

Sriram Lakshmanan, Karthikeyan Sundaresan,
Sampath Rangarajan, and Raghupathy Sivakumar

Influence of the Packet Size on the One-Way Delay in 3G Networks 61
Patrik Arlos and Markus Fiedler

An Experimental Performance Comparison of 3G and Wi-Fi 71
Richard Gass and Christophe Diot

Extracting Intra-domain Topology from mrinfo Probing 81
Jean-Jacques Pansiot, Pascal Mérindol, Benoit Donnet, and
Olivier Bonaventure

Quantifying the Pitfalls of Traceroute in AS Connectivity Inference 91
Yu Zhang, Ricardo Oliveira, Hongli Zhang, and Lixia Zhang

Toward Topology Dualism: Improving the Accuracy of AS Annotations
for Routers . 101

Bradley Huffaker, Amogh Dhamdhere, Marina Fomenkov, and
kc claffy

The RIPE NCC Internet Measurement Data Repository 111
Tony McGregor, Shane Alcock, and Daniel Karrenberg

X Table of Contents

Enabling High-Performance Internet-Wide Measurements on
Windows . 121

Matt Smith and Dmitri Loguinov

MOR: Monitoring and Measurements through the Onion Router 131
Demetris Antoniades, Evangelos P. Markatos, and
Constantine Dovrolis

Evaluating IPv6 Adoption in the Internet . 141
Lorenzo Colitti, Steinar H. Gunderson, Erik Kline, and
Tiziana Refice

Internet Usage at Elementary, Middle and High Schools: A First Look
at K-12 Traffic from Two US Georgia Counties . 151

Robert Miller, Warren Matthews, and Constantine Dovrolis

A First Look at Mobile Hand-Held Device Traffic . 161
Gregor Maier, Fabian Schneider, and Anja Feldmann

A Learning-Based Approach for IP Geolocation . 171
Brian Eriksson, Paul Barford, Joel Sommers, and Robert Nowak

A Probabilistic Population Study of the Conficker-C Botnet 181
Rhiannon Weaver

Network DVR: A Programmable Framework for Application-Aware
Trace Collection . 191

Chia-Wei Chang, Alexandre Gerber, Bill Lin, Subhabrata Sen, and
Oliver Spatscheck

OpenTM: Traffic Matrix Estimator for OpenFlow Networks 201
Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali

Web Timeouts and Their Implications . 211
Zakaria Al-Qudah, Michael Rabinovich, and Mark Allman

A Longitudinal View of HTTP Traffic . 222
Tom Callahan, Mark Allman, and Vern Paxson

Author Index . 233

Characterizing the Global Impact of P2P
Overlays on the AS-Level Underlay

Amir Hassan Rasti1, Reza Rejaie1, and Walter Willinger2

1 University of Oregon
{amir,reza}@cs.uoregon.edu

2 AT&T Labs Research
walter@research.att.com

Abstract. This paper examines the problem of characterizing and as-
sessing the global impact of the load imposed by a Peer-to-Peer (P2P)
overlay on the AS-level underlay. In particular, we capture Gnutella snap-
shots for four consecutive years, obtain the corresponding AS-level topol-
ogy snapshots of the Internet and infer the AS-paths associated with
each overlay connection. Assuming a simple model of overlay traffic, we
analyze the observed load imposed by these Gnutella snapshots on the
AS-level underlay using metrics that characterize the load seen on indi-
vidual AS-paths and by the transit ASes, illustrate the churn among the
top transit ASes during this 4-year period, and describe the propagation
of traffic within the AS-level hierarchy.

Keywords: Overlay networks, AS-level topology, BGP simulation.

1 Introduction

The large volume of traffic associated with Peer-to-Peer (P2P) applications has
led to a growing concern among ISPs which need to carry the P2P traffic relayed
by their costumers. This concern has led researchers and practitioners to focus
on the idea of reducing the volume of external P2P traffic for edge ISPs by local-
izing the connectivity of the P2P overlay (for recent work, see for example [1,2]).
However, such an approach only deals with the local effect of an overlay on in-
dividual edge ASes. Even though the volume of P2P traffic on the Internet is
large and growing, assessing the global impact of a P2P overlay on the individual
ASes in the network, which we call the AS-level underlay, remains a challenging
problem and is not well understood. This is in part due to the fact that investi-
gating this problem requires a solid understanding of an array of issues in two
different domains: (i) design and characterization of overlay-based applications,
and (ii) characterization of AS-level underlay topology and BGP routing in this
underlay. Another significant challenge is dealing with inaccurate, missing, or
ambiguous information about the AS-level underlay topology, AS relationships
and tier properties, and BGP routing policies.

This paper investigates the problem of assessing the load imposed by a given
overlay on the AS-level underlay. We show that assessing this impact requires

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A.H. Rasti, R. Rejaie, and W. Willinger

tackling a number of challenging problems, including (i) capturing accurate snap-
shots of the desired overlay, (ii) estimating the load associated with individual
overlay connections, and (iii) determining the AS-path in the underlay that cor-
responds to individual overlay connections. Toward this end, this paper makes
two main contributions. First, we present a methodology for assessing the im-
pact of an overlay on the AS-level underlay. Our methodology incorporates a
collection of the best known practices for capturing accurate snapshots of a P2P
overlay and, more importantly, for determining the AS-path corresponding to
each overlay connection. We rely on snapshots of the AS-level Internet topol-
ogy provided by CAIDA where each link between two ASes is annotated with
the relationship between them. Using a BGP simulator called C-BGP [4], we
perform a detailed simulation of BGP routing over these annotated snapshots
of the AS-level underlay to infer the corresponding AS-path for each overlay
connection and determine the aggregate load crossing individual ASes. To assess
the propagation of overlay traffic through the AS-level hierarchy, we also infer
the tier information for individual ASes using the TierClassify tool [3].

Second, we illustrate our methodology by characterizing the impact of four
snapshots of the Gnutella overlay that were captured over four successive years
on the AS-level underlay snapshots of the Internet taken on the same dates the
Gnutella overlay snapshots were obtained. We characterize the load imposed
by these overlays on the corresponding underlay in a number of different ways:
(i) observed load on individual AS-paths and its diversity, (ii) observed load on
individual transit ASes, (iii) AS-path length, and (iv) the propagation of overlay
traffic through the AS-level hierarchy. Our analysis provides valuable insight into
how changes in overlay connectivity and underlay topology affect the mapping
of load on the AS-level underlay.

The rest of this paper is organized as follows. In Section 2, we further elab-
orate on the problem of mapping an overlay on the AS-level underlay, describe
the challenges involved, and present our methodology. Section 3 describes our
datasets and presents our characterization of the load imposed by the Gnutella
overlay on the corresponding AS-level underlay, spanning a 4-year period. We
conclude the paper and sketch our future plans in Section 4.

2 The Problem and Our Methodology

Our goal is to map the traffic associated with a P2P overlay to the AS-level
underlay. The input to this process is a representation of a P2P overlay structure
consisting of the IP addresses (and port numbers) of the participating peers
together with their neighbor lists. The output is the aggregate load on all affected
ASes and between each pair of affected ASes that have a peering link with one
another (in each direction). Our methodology to tackle this problem consists of
the following intuitive steps:

1. Capturing the topology of a P2P overlay,
2. Estimating the load on individual connections in the overlay,
3. Inferring the AS-paths associated with individual overlay connections,

Characterizing the Global Impact of P2P Overlays 3

4. Determining the aggregate load on each AS and between connected ASes (in
each direction separately).

In this section, we discuss the challenges posed by each step, clarify our assump-
tions, and describe our approach for each step.

2.1 Capturing the Overlay Topology

Capturing a snapshot of the overlay topology for a P2P application is feasible
if the list of neighbors for individual peers can be obtained. For example, in
Gnutella it is possible to query individual peers and retrieve their neighbor lists.
Therefore, a Gnutella-specific crawler can be developed to progressively collect
this information until a complete snapshot of the overlay is captured.

In our earlier work, we have developed a fast P2P crawler that can capture
accurate snapshots of the Gnutella network in a few minutes [5]. Using this
crawler, we have captured tens of thousands of snapshots of the Gnutella over-
lay topology over the past several years. In this study, we use a few of these
snapshots for the top-level overlay of Gnutella (an overlay consisting of Gnutella
Ultrapeers). While other P2P applications such as BitTorrent are responsible for
a significantly larger volume of traffic over the Internet than Gnutella and would
therefore provide a more relevant P2P system for this study, we are not aware of
any reliable technique to capture accurate snapshots of the corresponding over-
lays. Since accuracy of the overlay topology is important in this study, we focus
on Gnutella. However, our methodology is not restricted to this application and
can be used with other P2P systems.

2.2 Estimating the Load of Individual Overlay Connections

The load of individual overlay connections depends on the subtle interactions be-
tween several factors including: (i) the number of peers that generate traffic (i.e.,
sources), the rate and pattern of traffic generation by these peers, and their relative
location in the overlay, (ii) the topology of the overlay, and (iii) the relaying (i.e.,
routing) strategy at individual peers. Capturing these factors in a single model is
a non-trivial task and could be application-specific. For example, the load of indi-
vidual connections for live P2P video streaming is more or less constant, whereas
the load of individual BitTorrent connections may vary significantly over time.

In the absence of any reliable model for per-connection traffic, without loss
of generality, we assume in our analysis that all connections of the overlay ex-
perience the same average load in both directions. This simplifying assumption
allows us to focus on the mapping of the overlay topology on the underlying
AS-level topology. If a more reliable model for the load of individual connections
is available, it can be easily plugged into our methodology by assigning proper
weights (one in each direction) to each connection of the overlay. In this paper,
we simply assume that the weight for all connections in both directions is one.

2.3 Inferring AS-Paths for Individual Overlay Connections

For each connection in the overlay, determining the corresponding AS-path in
the underlay is clearly the most important and most challenging part of our

4 A.H. Rasti, R. Rejaie, and W. Willinger

methodology. We use a popular BGP simulator to determine the AS-path be-
tween any given pair of ASes, but note that carefully-designed measurement-
based approaches may provide viable alternatives. Our simulation-based method
consists of the following steps:

Mapping Peers to ASes: We use archived BGP snapshots from RouteViews [6]
to map the IP addresses of individual peers to their corresponding ASes that we
call edge ASes. Therefore, determining the AS-path for the overlay connection be-
tween two peers translates into determining the path between their corresponding
edge ASes.

Capturing AS-level Topology and Inter-AS Relationships: In this study,
we rely on the AS-level topologies provided by CAIDA [7]. These topologies have
been widely used in the past, even though more recent work has shown that the
provided topologies are missing a significant portion of peering links between lower-
tiered ASes [8,9]. Note that our approach is not tied to using the CAIDA-provided
AS-level topologies, and any more complete AS-level topology can be incorpo-
rated once it becomes available. To properly simulate BGP routing, we need to
determine the AS relationship between connected ASes in the AS-level topology.
Toward this end, we use the fact that CAIDA’s snapshots of the AS-level topol-
ogy [7] are annotated with the inferred relationships between each pair of con-
nected ASes. In these snapshots, AS relationships are inferred using the algorithm
initially proposed by Gao [10] and extended by Dimitropoulos et al. [11]. This al-
gorithm, mainly based on the concept of “valley-free routing” in BGP (along with
some other intuitive assumptions), categorizes the AS relationships into three cat-
egories: (i) Customer-Provider, (ii) Peer-Peer, or (iii) Sibling-Sibling.

Simulating BGP: We determine the AS-path between any pair of edge ASes that
host connected peers in the overlay (i.e., infer the corresponding AS-path) by sim-
ulating BGP over the annotated AS-level topology using the C-BGP simulator [4].
C-BGP abstracts the AS-level topology as a collection of interconnected routers,
where each router represents an AS. It simulates the desired BGP routing policies
for each relation between connected ASes. We use a set of intuitive BGP policies for
each type ofAS relationships that are specified by C-BGP. In particular, these poli-
cies (i) ensure that the routes through one’s customers have the highest preference
and those passing through its providers have the lowest preference, and (ii) prevent
ASes with multiple providers from acting as transit node among their providers.
We noticed that some characteristics of CAIDA’s annotated AS-level topology, in
particular the presence of circular provider-costumer relationships among a group
of ASes, prevent our C-BGP simulations to converge with the above policies. To
resolve these problems, we systematically change a small number of relationships
(e.g., to break a cycle in customer-provider relationships). Further details of this
process are described in our related technical report [12]. We select snapshots of
both the AS-level topology and the overlay topology of the same dates so as to
minimize any potential error due to asynchrony in the snapshots.

Characterizing the Global Impact of P2P Overlays 5

Clearly, representing each AS by a single router results in inferring only one
AS-path between each pair of ASes. This implies that multiple AS-paths that
may exist in practice between two ASes [13] are not accounted for in our simu-
lations. While this assumption simplifies the problem in a way that is not easily
quantifiable, we are not aware of any existing technique that can reliably capture
and account for this subtle behavior of BGP routing.

Assessing AS Tiers: To characterize the propagation of P2P traffic through
the AS-level hierarchy, we first need to assess the location of each AS in this
hierarchy. We use the “TierClassify” tool [3] to identify the tier of each individual
AS. The algorithm used in this tool relies mainly on the assumption that all tier-
1 ASes should be interconnected with one another. Therefore it tries to find a
clique among the ASes with highest degrees. Once the tier-1 clique is identified,
the algorithm simply follows provider-customer relationships and classifies other
ASes such that each tier n AS can reach the tier-1 clique in n − 1 hops.

2.4 Determining Aggregate Load on and between Individual ASes

Given the corresponding AS-path for each overlay connection, we can easily
determine the aggregate load (in terms of the number of connections) that passes
through each AS, as well as the transit load (in each direction) between each
pair of connected ASes in the topology.

3 Effect of Overlays on the Underlay

In this section, we characterize the effect of a P2P overlay on the AS-level un-
derlay using four snapshots of the Gnutella top-level overlay. We broadly divide
ASes into two groups: Edge ASes that host peers in an overlay, and Transit (or
Core) ASes that provide connectivity between edge ASes. We first describe our
datasets (i.e., the snapshots of overlay and the corresponding AS-level underlay
topologies), and then we characterize the imposed load on the underlay using the
following measures: (i) diversity and load on individual AS-paths, (ii) load on
individual transit ASes, (iii) identity and evolution of the top transit ASes, (iv)
AS-path length, and (v) propagation of traffic through the AS-level hierarchy.

Datasets: We use four snapshots of the top-level Gnutella overlay that were
collected in four consecutive years starting in 2004. Examining overlay snapshots
over time enables us to assess some trends that are associated with the evolution
of the AS-level topology.

We use the labels G-xx to refer to the snapshot taken in year 20xx. The
left columns of Table 1 (labeled “Gnutella snapshots”) summarize the capture
date, number of peers and edges for these overlay snapshots. The table shows
that the population of Gnutella peers in the top-level overlay and their pairwise
connections have both increased by ≈ 600% during this four-year period.

We also use daily snapshots of the BGP routing table retrieved from the Route-
Views archive collected at the same dates as our overlay snapshots. The middle

6 A.H. Rasti, R. Rejaie, and W. Willinger

Table 1. Data profile: Gnutella snapshots, BGP snapshots and mapping overlay con-
nections to the underlay. Imp. AS-paths are those with +100 overlay connections.

Gnutella Snapshots BGP Snapshots AS-Paths
Snapshot Date #Peers #Conn. #Prefixes #ASes #Unique %Important

G-04 04-11-20 177k 1.46M 165k 18.7k 192k 2.0
G-05 05-08-30 681k 5.83M 185k 20.6k 384k 2.9
G-06 06-08-25 1.0M 8.64M 210k 23.2k 605k 2.8
G-07 07-03-15 1.2M 9.80M 229k 24.9k 684k 2.7

columns in Table 1 (labeled “BGP snapshots”) give the number of IP prefixes and
the total number of ASes in each BGP snapshot. These numbers show that the
AS-level topology has also grown significantly during this four-year period.

Diversity and Load on Individual AS-Paths: One way to characterize the
impact of an overlay on the underlay is to determine the number of unique AS-
paths that all overlay connections are mapped on as well as distribution of load
among those AS-paths. The right columns of Table 1 (labeled “AS-paths”) show
the number of unique AS-paths for all connections of each overlay along with
the percentage of those paths that carry more than 100 overlay connections. The
number of unique AS-paths is growing over time but at a lower pace compared
to the number of overlay connections. This suggests that there is more similarity
in AS-paths among overlay connections as the overlay grows in size over time.

To examine the mapping of overlay connections to AS-paths more closely,
Figure 1(a) depicts the CCDF of the number of overlay connections that map to
individual AS-paths in log-log scale for all four overlay snapshots. The skewed
shape of these distributions indicates that a small number of AS-paths carry a
large fraction of load. For example, whereas around 10% of paths carry more
than 10 connections, only 1% of the paths carry more than 200 connections.
Interestingly, the distributions of overlay connections that map to AS-paths are
very similar across different snapshots despite significant changes in the identity
of peers and in the topologies of overlay and underlay.

Observed Load on Individual Transit ASes: Since we assumed that all
overlay connections have the same load, we simply quantify the load on each
transit AS by the number of overlay connections crossing that AS. Figure 1(b)
depicts the number of overlay connections that cross each transit AS in log-log
scale, where ASes are ranked (from high to low) based on their overall observed
load. The figure shows that the load on transit ASes is very skewed. A small
number of them carry a large volume of traffic while the load on most transit
ASes is rather small. Again, we observe that the overall shape of the resulting
curves is very similar for all four snapshots, except for the outward shift in the
more recent snapshots caused by the increasing size of the overlay over time. This
similarity in the skewness of the observed load on transit ASes despite significant
changes in the overlay and underlay topologies over time could be due to the
dominance of one the following factors: (i) the stability over time of the top-10

Characterizing the Global Impact of P2P Overlays 7

10-3

10-2

10-1

1

10

100

1 10 102 103 104

Pe
rc

. o
f

Pa
th

s

#Overlay Connections per AS-Path

G-04
G-05
G-06
G-07

(a)

1

102

104

106

1 10 102 103

#O
ve

rl
ay

 C
on

ne
ct

io
ns

AS Rank

G-04
G-05
G-06
G-07

(b)

1

102

104

106

1 10 102 103 104

#O
ve

rl
ay

 C
on

ne
ct

io
ns

#AS-Paths

y=x

(c)

AOL
AT&T
Sprint1

UUNET
Cogent
Level3

Adelphia
Williams

NTT
XO

 2004 2005 2006 2007

AT&T
AOL
Level3
Tiscali
LambdaNet
Cogent
TeliaNet
Sprint2
Rogers
FranceTel

Year
(d)

Fig. 1. (a) Distribution of load across AS-paths, (b) Overlay connections passing
through transit ASes, (c) Scatterplot of number of relevant AS-paths vs. load, (d)
Identity and evolution of top-10 transit ASes carrying the largest number of overlay
connections

ASes that host most peers, and (ii) the constraint imposed by valley-free routing
over the hierarchical structure of the AS-level underlay.

To further investigate the underlying causes for the observed skewed nature
of observed load on transit ASes, we examine the distribution of the number of
unique AS-paths (associated with overlay connections) that pass through each
transit AS. The shape of this distribution is very similar to Figure 1(b) (not
shown), suggesting that the number of crossing connections for individual ASes
is primarily determined by the underlay shape and routing rather than connectiv-
ity and footprint of the overlay. Figure 1(c) validates this observation by showing
a scatterplot of the number of crossing AS-paths (x-axis) and number of over-
lay connections (y-axis) through each transit AS. This figure essentially relates
the previous two distributions and confirms that the observed load on individual
transit ASes depends primarily on the number of unique AS-paths crossing those
ASes. Note that once the number of cross AS-paths exceeds a certain threshold
(a few hundreds), the observed load increases at a much faster pace.

Identity and Evolution of Transit ASes: To investigate the observed load
by transit ASes from a different angle, we examine and present the identity
of the top-10 transit ASes that carry the highest number of crossing overlay

8 A.H. Rasti, R. Rejaie, and W. Willinger

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

Pe
rc

. o
f

A
S

Pa
th

s

Path Length (AS-hops)

G-04
G-05
G-06
G-07

(a)

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

Pe
rc

. o
f

O
ve

rl
ay

 C
on

n.

Path Length (AS-hops)

G-04
G-05
G-06
G-07

(b)

Fig. 2. (a) Distribution of AS-path length between connected edge ASes, (b) Distri-
bution of AS-path length for all overlay connections

connections (and their evolution over time) in Figure 1(d). For each of the four
overlay snapshots, the transit ASes are rank-ordered (highest load first), and the
figure depicts their standings in these rank-ordered lists over time. We observe
that only four transit ASes (i.e., AT&T, AOL, Level3, and Cogent) remain in
the top-10 list across all four snapshots and that the changes in the other transit
ASes is more chaotic. This is due to the fact that ranking of transit ASes is af-
fected by a combination of factors including changes in the topology of AS-level
underlay, in routing policies, and in the location of peers. Disentangling these
different factors and trying to identify the root causes for the observed churn
among the top-10 transit ASes over time remains a challenging open problem.

AS-Path Length: One way to quantify the impact of an overlay on the AS-
level underlay is to characterize the length of AS-paths for individual overlay
connections. Figure 2(a) shows the empirical density of the length of all AS-
paths between edge ASes for each of the four snapshots. We observe that around
40% of the paths are three AS-hops long, while 80% of the paths in each overlay
are at most 4 AS-hops long.

Figure 2(b) depicts the empirical density of AS-path length across all overlay
connections for each of the four snapshots. In essence, this plot can be viewed as
a weighted version of Figure 2(a) described above where the length of each path
is weighted by the number of overlay connections crossing it. The figure shows a
very similar pattern across all overlay snapshots despite the changes in the num-
ber of peers and their connections. The two figures are very similar, however the
average path length across the overlay connections is slightly shorter indicating
that a slightly higher fraction of connections are associated with shorter paths.
(e.g., for G-07, the average length of all AS-paths is 3.2 hops while the average
path length across overlay connections is 3.7 hops.)

Propagation of Traffic through the AS-Level Hierarchy: An interesting
way to quantify the load that an overlay imposes on the AS-level underlay is
to determine the fraction of load that is propagated upward in the AS-level
hierarchy towards the top-tiered ASes. Table 2 gives the percentage of paths

Characterizing the Global Impact of P2P Overlays 9

Table 2. Percentage of paths/connections reaching each tier of AS hierarchy

Tier-1 Tier-2 Tier-3
Snapshot Path Conn Path Conn Path Conn

G-04 51 84 46 16 2.4 0.0
G-05 59 73 38 27 3.0 0.0
G-06 52 64 38 36 10 0.0
G-07 55 63 41 37 3.6 0.1

and percentage of overlay connections whose top AS is a tier-1, tier-2, and tier-3
AS, respectively, in each overlay snapshot. The columns marked “Path” give the
percentage of the relevant AS-paths reaching each tier while the columns marked
“Conn” represent the percentage of the overlay connections (i.e., aggregate load)
reaching each tier. We note that more than half of the paths reach a tier-1 AS,
and roughly 40% of the paths peak at a tier-2 AS across all four snapshots.

The percentage of connections that reach a tier-1 AS is even higher than that
for paths, indicating that a larger fraction of connections are mapped to these
paths. At the same time, a lower percentage of connections reach a tier-2 AS (16%
to 37%) compared to paths that peak in tier-2 ASes. Interestingly, the percentage
of connections that reach a tier-1 AS decreases over time while the percentage of
connections that peak in a tier-2 AS is increasing. A plausible explanation of this
trend is the increasing connectivity over time between ASes in the lower tiers
which reduces the fraction of connections that have to climb the hierarchy up to
tier-1 ASes. A closer examination (not shown here) confirmed that this shift in
traffic towards lower tiers is indeed primarily due to the presence of shortcuts
between lower-tier ASes in the AS topology (e.g., more aggressive peering at
Internet exchange points over time). In particular, the observed shift has little
to do with changes in the overlay topology, mainly because the connectivity of
the Gnutella overlay has not become significantly more localized over time.

4 Conclusion and Future Work

In this paper, we studied the problem of quantifying the load that a particular
overlay imposes on the AS-level underlay. We identified the challenging aspects
of this problem and described existing techniques to address each of these as-
pects. Relying on an existing set of best practices, we presented a methodology
for mapping the load of an application-level overlay onto the AS-level underlay.
We illustrated our methodology with an example of a real-world P2P overlay
(i.e., Gnutella). While our study contributes to a deeper understanding of the
interactions between application-level overlays and the AS-level underlay in to-
day’s Internet, a more detailed analysis of the sensitivity of our results to known
overlay-specific issues, known underlay-related problems (e.g., incomplete AS
graph, ambiguous AS relationships), and known BGP-related difficulties (e.g., ,
limitations of the C-BGP simulator) looms as important next step.

As part of our future work, we plan to investigate how changing the geo-
graphical location of peers and their connectivity affect the load imposed on

10 A.H. Rasti, R. Rejaie, and W. Willinger

the AS-level underlay. Furthermore, we plan to derive realistic traffic models for
different P2P application and incorporate them into our methodology. Finally,
we intend to examine pricing models that are used by ISPs to determine how
structure and workload of an overlay affect the revenues of the various ISPs in
the AS hierarchy of the underlay.

Acknowledgment

We would like to thank Matthew Roughan for helpful discussions, Daniel
Stutzbach for sharing tools and data, and Bruno Quoitin and Wolfgang
Muehlbauer for promptly answering all of our C-BGP-related inquiries. This
work is supported in part by the National Science Foundation (NSF) under Grant
No. Nets-NBD-0627202 and an unrestricted gift from Cisco Systems. Part of this
work was performed while the first author was visiting IPAM (UCLA) in the Fall
of 2008 as a participant of the “Internet Multi-Resolution Analysis” program.

References

1. Aggarwal, V., Feldmann, A., Schneideler, C.: Can ISPs and P2P systems co-
operate for improved performance? ACM SIGCOMM Computer Communication
Review 37(3), 29–40 (2007)

2. Choffnes, D.R., Bustamante, F.E.: Taming the torrent: A practical approach to
reducing cross-ISP traffic in P2P systems. In: ACM SIGCOMM (August 2008)

3. Ge, Z., Figueiredo, D.R., Jaiswal, S., Gao, L.: On the Hierarchical Structure of the
Logical Internet Graph. In: SPIE ITCom (November 2001)

4. Quoitin, B., Uhlig, S.: Modeling the Routing of an Autonomous System with C-
BGP. IEEE Network 19(6) (2005)

5. Stutzbach, D., Rejaie, R., Sen, S.: Characterizing Unstructured Overlay Topologies
in Modern P2P File-Sharing Systems. In: ACM IMC (October 2005)

6. University of Oregon, RouteViews Project, http://routeviews.org
7. CAIDA, Cooperative Association for Internet Data Analysis, http://caida.org
8. Oliveira, R., Pei, D., Willinger, W., Zhang, B., Zhang, L.: In search of the elusive

ground truth: the internet’s as-level connectivity structure. In: ACM SIGMET-
RICS (June 2008)

9. Roughan, M., Tuke, S.J., Maennel, O.: Bigfoot, sasquatch, the yeti and other miss-
ing links: what we don’t know about the as graph (October 2008)

10. Gao, L.: On Inferring Autonomous System Relationships in the Internet.
IEEE/ACM Transactions on Networking 9, 733–745 (2000)

11. Dimitropoulos, X., Krioukov, D., Fomenkov, M., Huffaker, B., Hyun, Y., Claffy, K.,
Riley, G.: AS Relationships: Inference and Validation. ACM SIGCOMM Computer
Communication Review 37(1), 29–40 (2007)

12. Rasti, A.H., Rejaie, R., Willinger, W.: Characterizing the Global Impact of the
P2P Overlay on the AS-level Underlay. University of Oregon, Tech. Rep. CIS-TR-
2010-01 (January 2010), http://mirage.cs.uoregon.edu/pub/tr10-01.pdf

13. Muhlbauer, W., Feldmann, A., Maennel, O., Roughan, M., Uhlig, S.: Building
an AS-topology model that captures route diversity. ACM SIGCOMM Computer
Communication Review 36(4), 195–206 (2006)

http://routeviews.org
http://caida.org
http://mirage.cs.uoregon.edu/pub/tr10-01.pdf

Investigating Occurrence of Duplicate Updates
in BGP Announcements

Jong Han Park1, Dan Jen1, Mohit Lad2, Shane Amante3,
Danny McPherson4, and Lixia Zhang1

1 University of California, Los Angeles
2 ThousandEyes

3 Level-3 Communications Inc.
4 Arbor Networks

Abstract. BGP is a hard-state protocol that uses TCP connections to reliably
exchange routing state updates between neighbor BGP routers. According to the
protocol, only routing changes should trigger a BGP router to generate updates;
updates that do not express any routing changes are superfluous and should not
occur. Nonetheless, such ‘duplicate’ BGP updates have been observed in reports
as early as 1998 and as recently as 2007. To date, no quantitative measurement
has been conducted on how many of these duplicates get sent, who is sending
them, when they are observed, what impact they have on the global health of
the Internet, or why these ‘duplicate’ updates are even being generated. In this
paper, we address all of the above through a systematic assessment on the BGP
duplicate updates. We first show that duplicates can have a negative impact on
router processing loads; routers can receive upto 86.42% duplicates during their
busiest times. We then reveal that there is a significant number of duplicates on the
Internet - about 13% of all BGP routing updates are duplicates. Finally, through
a detailed investigation of duplicate properties, we manage to discover the major
cause behind the generation of pathological duplicate BGP updates.

1 Introduction

BGP is the de facto standard inter-domain routing protocol used to exchange destination
reachability information on the Internet. BGP was designed as a hard-state protocol, so
all BGP updates sent by a router should always communicate some change or addi-
tion to the most current routing information reported by the router [7]. However, actual
observations of BGP dynamics reveal that routers tend to occassionally send BGP up-
dates with absolutely no change to the most current routing information reported by
the router. In fact, there are many cases where routers send exact copies of the most
recent update previously sent. To date, there has been no explanation as to why these
‘duplicate’ routing updates occur in BGP today.

Existence of duplicate updates in BGP was first reported in 1998. Labovitz’s [2]
seminal work on BGP measurements showed that the actual number of BGP updates
observed were an order of a magnitude more than expected. Labovitz revealed that
a large portion of the total updates were in fact duplicates, and he attributed this to
problems with routers from specific vendors. The industry quickly responded with a

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 11–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

12 J.H. Park et al.

software fix to address the duplicate generation problem, and it was believed that the fix
would eliminate the duplicate pathology observed in [2]. However, in 2007 Li et al. [4]
re-examined the health of BGP dynamics and discovered that, despite industry attempts
to stop duplicate generation, duplicates were still seen in BGP. To date, nobody has
been able to determine the cause of these duplicates. There also have never been any
reports on the effects, if any, that duplicates have on Internet health.

In this paper, we make the following contributions.

– We provide a better understanding of the nature of duplicate generation by quan-
tifying the amount of duplicate updates from different points on the Internet. We
also look at duplicates from different moments in time.

– We reveal the impact of duplicates on Internet health. Unlike the common belief
that duplicates are relatively benign, we show that they can negatively impact the
instantaneous router processing load.

– As part of our work towards understanding duplicates, we provide a methodology
for mapping eBGP updates to their corresponding iBGP updates. We believe that
our methodology can be useful toward future studies that require a mapping of
eBGP to iBGP updates, or vice versa.

– Using our observations of duplicate behavior, we manage to finally determine the
exact cause behind duplicate generation.

2 Background

In this section, we review some routing details that are particularly relevant to our study
of duplicates. Specifically, we discuss the definition of ‘duplicate updates’ and BGP
peering topologies.

2.1 Definition of Duplicates

A BGP update for prefix p sent by router r is a ‘duplicate’ if and only if all attributes in
the update are the same as the most recent previous update for prefix p sent by router r,
and both the update and the previous update belong to the same BGP session.

2.2 BGP Peering Topologies

Today, BGP is used for both inter-domain routing (eBGP), as well as intra-domain
routing (iBGP). Here we briefly describe the common peering topologies for both inter
and intra-domain routing.

External BGP: When BGP is used to convey reachability information between two
routers that reside in different domains (inter-domain routing), the session between
these two routers is called an eBGP session. The routing information in each update
is conveyed in the form of BGP attributes. Some of the more relevant attributes to this
paper are Next-hop, MED, Local-pref, and Community.

Internal BGP: iBGP is used to distribute reachability information received from eBGP
peers to routers within one domain. To avoid forming a routing information loop, it

Investigating Occurrence of Duplicate Updates in BGP Announcements 13

was originally required that all iBGP speakers are fully meshed and the reachability
learned from an iBGP speaker is not propagated to another iBGP speaker. In practice,
this approach is not scalable and too expensive to manage. This leads to the use of route
reflection (RR) [1] and AS confederations [8], which relaxes this full-mesh requirement
among all iBGP peers. However, having to traverse more than one hop for an update
from an iBGP peer to another iBGP peer re-introduces the possibility of routing infor-
mation loops under both schemes. To avoid forming a routing loop, route reflection and
AS confederation define new attributes, namely Cluster-list and AS-confed-sequence
respectively, and use them in the similar way that AS-path is used in eBGP.

iBGP and eBGP interaction: A router that peers with both iBGP peers and eBGP
peers changes or even removes certain attributes when it sends reachability information
received from an iBGP peer to its eBGP peer. Some attributes defined both in iBGP and
eBGP such as Next-hop, MED, and Local-pref may have changes in their values before
sent out to eBGP peers. Furthermore, certain attributes that are only defined in iBGP
such as Cluster-list and AS-confed-sequence are removed and not sent out to eBGP
peers.

3 Impact of Duplicates on Routers

We start by measuring the impact that duplicates have on Internet health. Up until now, it
was believed that duplicates do not hinder routing efficiency in any significant way [3].
However, we find that duplicates are responsible for the majority of router processing
loads during their busiest times. Previous studies have shown that higher processing
loads can lead to more session resets, routing loops, and packet losses [9]. Thus, we
measured how much duplicates contribute to the router processing loads during their
busiest times during the month of March 2009. We define ‘busiest times’ as the top
0.01% of seconds within which the largest number of updates were generated. Our data
set consists of a specific subset of all RouteViews/RIPE monitors. The monitors were
carefully chosen such that each monitor was available for the entire month of March
2009 and that there was at most one monitor per AS in our dataset. The number of stub,

(a) Distribution of % duplicates

N
u

m
b

e
r

o
f

u
p

d
a

te
s
 p

e
r

s
e

c
o

n
d

 (
1

0
^
3

)

Busiest 0.01% seconds

during March 2009 (AS1853)

(b) # of duplicates during the busiest seconds

Fig. 1. Impact on processing loads

14 J.H. Park et al.

Table 1. Aggregated number of updates and duplicates

Year 2002 2003 2004 2005 2006 2007 2008 2009

Number of selected monitors 27 37 54 67 79 100 109 90
Number of total updates (106) 129.5 207.3 316.4 426.5 423.7 511.2 652.2 677.4
Number of duplicate updates (106) 12.7 32.0 68.9 74.6 63.8 137.1 111.0 91.3

transit, and tier-1 monitors we ended up with were 27, 55, and 8 respectively, for a total
of 90 monitors. We preprocess all of our data using the minimum collection algorithm
(MCT) [10] to filter out updates due to session resets before performing any of the
measurements presented in this paper.

Figure 1(a) shows the percent of duplicate traffic during busiest times for each of
the 90 ASes we monitored. Notice that for 22% (20 out of 90) of all monitored ASes,
duplicates contribute 50% or more of the update traffic during busiest times. Later in
Section 5, we describe how these duplicate bursts are generated in detail as we reveal
the causes of duplicates. Figure 1(b) is a close-up look at a particularly bad case of
our measurement, AS1853. Overall, 86.42% of total updates during the top 0.01% of
busiest times were duplicates. During the busiest second the router in AS1853 had to
process about 175,000 updates in Figure 1(b).

4 Understanding Duplicates across Time and Space

Now that we understand the negative impact that duplicates can have on Internet health,
we analyze duplicate generation in detail to gain a better understanding of this duplicate
pathology, and maybe even discover the cause of duplicate generation. Not only do we
measure the prevalence of duplicates updates on the Internet today, we also measure
the number of duplicates that we have seen over the past few years. We then explore
whether topological factors (such as size of AS or connectivity) show any correlation
with occurrences of duplicates. Our data set consisted of the same 90 monitors we used
for our measurements in section 3.

Total (95% CI)
Duplicates (95% CI)

(a) During March 2009

2002 2003 2004 2005 2006 2007 2008 2009

Time (March)

(b) From 2002 to 2009 (c) From different AS type

Fig. 2. Amount of duplicate updates

Investigating Occurrence of Duplicate Updates in BGP Announcements 15

4.1 Are Duplicates Observed at All Times?

Figure 2(a) shows the amount of duplicates along with the total number of updates
from all 90 monitors during March 2009. It turns out that duplicate generation is not
just a pathological behavior rarely seen on the Internet. In this month alone, the total
aggregated number of updates was about 677 million. Among those, about 91 million
updates were duplicates. Thus duplicates make up 13.4% of aggregated BGP traffic.

Figure 2(b) shows how long duplicates have existed in BGP by showing the maxi-
mum, minimum, and 95% confidence intervals of % duplicates observed by different
monitors for the month of March from 2002 through 2009. For each year, we selected
monitors based on the criteria described in section 3. Table 1 shows the number of mon-
itors we used from 2002 through 2009. The number of qualified monitors generally in-
crease over time, mainly because more ASes peered with RouteViews and RIPE over
time.1 We performed the same measurement for other months from 2002 through 2009,
and the results were all similar. The amount of duplicates we counted also agree with
the amount observed in previous studies [4].

4.2 Are Duplicates Observed from All Networks?

Our next measurement is aimed at understanding if size or type (e.g. stub, tier-1) of net-
work has any correlation with observed duplicates. We measured the percentage of du-
plicates out of total updates that each network generated for the month of March 2009.

Figure 2(c) summarizes our findings. All three types of networks generate duplicates
with some variation in their percentages. The large confidence interval range for tier-1s
is mainly due to the small number of data points available to us. Minimum % duplicates
were very low in all three cases. At the same time maximum % duplicates were quite
high for all types, showing a large variation in behavior even amongst networks of the
same type. Later in section 6, we discuss why the amount of duplicates observed varies
so widely amongst networks of the same type.

4.3 Where Do Duplicates Originate?

So far, we have observed duplicates from different monitors. However, we do not quite
know where these duplicates originate. By specification, a BGP router should not prop-
agate a duplicate it receives. Thus, when we observe a duplicate at AS X with a path
X-Y-Z, where Z is the origin AS, we hypothesized that the duplicate message must be
generated by X and not by Y or Z. Our next exercise is to verify our hypothesis.

For this, we looked specifically at duplicates for particular prefixes where the fol-
lowing was true. First, the observed duplicate for prefix p from AS X had an AS-path
ending with X-Y. Second, we had to have monitors for both AS X and AS Y. With this,
we can see whether the duplicates actually originate at (or within) AS X, or whether

1 The exception was between 2008 and 2009. This was because some of the collectors in RIPE
had problems during March 2009, and we did not use any monitors that did not have complete
data for the month.

16 J.H. Park et al.

AS3356

AS9002

W P: 85.249.120.0/23

A P: 85.249.120.0/23, ASPATH: 9002

A P: 85.249.120.0/23, ASPATH: 3356 9002

A P: 85.249.120.0/23, ASPATH: 3356 9002

Flaps 21 times

53 duplicates

Fig. 3. External view of duplicate genera-
tion

(eBGP peer)

(iBGP client)

Rs

Re

Ri

Fig. 4. Data collection

they were sent to X from Y. Our case study consisted of prefix 85.249.120.0/23 adver-
tised by AS 9002, a direct customer of AS 3356. We had monitors in both AS 9002 and
AS 3356.

Figure 3 summaries our results. During March 2009, AS 9002 announced and with-
drew prefix 85.249.120.0/23 21 times. Upon receipt of these announcement and with-
drawal pairs, AS 3356 sends out the announcement to the monitor with prepended
AS-path, but AS 3356 never sends the withdrawal. Instead, AS 3356 sends a dupli-
cate announcement to our monitor. In total, AS 3356 generates 53 duplicates on prefix
85.249.120.0/23 after receiving 21 pairs of announcement and withdraw messages. Not
only does this observation back up our hypothesis that the sender of duplicates is the
originator of duplicates, but it also suggests that the cause of duplicates may have some-
thing to do with the way internal topology dynamics interact with eBGP updates.

5 Discovering the Cause of Duplicates

Once we suspected that duplicates may be generated due to some interaction between
iBGP and eBGP, we ran an experiment designed to compare eBGP update+duplicate
pairs, match them with their iBGP counterparts, and compare these iBGP updates to
see what we might learn about duplicate generation.

5.1 Passive Measurement Using iBGP and eBGP Data

Our first step was to obtain the data needed for our investigation. We teamed up with
a tier-1 ISP who provided us with access to both iBGP and eBGP updates generated
by one of their routers. Figure 4 illustrates our data-collection setup. Rs is the router
sending updates to our two collector boxes, Ri and Re. Ri is configured as an iBGP
client of Rs (i.e. route reflector client), collecting iBGP data from Rs. Re is an eBGP
peer of Rs, collecting eBGP updates from Rs. Both the iBGP and eBGP sessions have
their MRAI timers disabled, so that Rs will send updates to our collectors as Rs has
updates to send.

Now that we obtained the necessary data, we needed a way to match up eBGP up-
dates to their corresponding iBGP updates for comparison. There are two challenges
in mapping iBGP update sequence with that of eBGP. First, the time that two updates,

Investigating Occurrence of Duplicate Updates in BGP Announcements 17

triggered by the same event, are sent out from Rs can be different. This is due to the
non-deterministic nature of Rs. Second, Ri and Re’s system clocks may not be synchro-
nized. We resolve these timing issues by introducing the notion of update ‘signatures’,
which we now describe.

sig(u) = peer ‖ asn ‖ prefix ‖ aspath ‖ origin ‖ comm ‖ agg

The signature of an update contains all of BGP’s transitive attributes that should
be the same in Rs’s updates to either Ri or Re. By using the notion of signature, we
calculate the time differences td observed between eBGP updates and their iBGP coun-
terparts. We first generate signatures of all updates received during the tebgp second, and
then search for the second in iBGP, tibgp, that yields the maximum fraction of matched
signatures. In our case, the peak fraction of matched signatures was about 0.7 at a lag
value of 0 (i.e. td = 0). The remaining 0.3 were dispersed within a 10-second range
centered at tebgp. This means that the system times of Ri and Re have synchronized
system clocks to the second precision.

After discovering td, we were able to map eBGP updates to their iBGP counterparts
using a heuristic algorithm involving signature and timestamp comparisons. We col-
lected one day of iBGP and eBGP updates, putting them in sequential order as sent
from Rs. We start with the first eBGP update in the sequence. As we moved down the
sequence, we kept per-prefix history of signatures for every update we encounter for a
time window of 60 seconds. For each eBGP duplicate update for prefix p we found as
we moved forward, we looked at the corresponding iBGP time window to find a match
for the sequence of signatures we recorded in eBGP for this prefix p. We say the se-
quence has a match when there is the exact sequence of update signatures within the
iBGP time window. Using our heuristic, we were able to match 95.61% of eBGP up-
date+duplicate pairs to their iBGP counterparts. 4.39% of eBGP update+duplicate pairs
could not be mapped to any iBGP counterparts. The missing pairs were due to how the
router processed updates.2

After mapping eBGP updates to their iBGP counterparts, we took each eBGP up-
date+duplicate pair and compared the contents of their corresponding iBGP updates.
For 100% of the 176,266 matched ebgp+duplicate pairs, we observed that their iBGP
counterparts had differing non-mandatory attribute values. Table 5 shows our results.
0.15% of pairs were exceptions, only differing in MED values. For the other 99.85% of
eBGP update+duplicate pairs, we observed corresponding iBGP update pairs with ei-
ther Cluster-list and/or Originator-id differences. These attribute differences represent
changes in intra-domain routing path selections.

5.2 The Cause of Duplicates

The results of our experiment allowed us to determine the main cause of eBGP dupli-
cate updates. Our theory proved to be correct; duplicates are caused by an unintended

2 When two or more updates are received on the same prefix in a very short time, the router
sometimes sends out different number of updates to different peers. So, there were cases that
the number of updates sent to iBGP client is different than that of updates sent to eBGP peer,
in which case we declared that there is no match.

18 J.H. Park et al.

eBGP duplicate count % Total Observed iBGP differences

173,594 94.77 Cluster-list only
244 0.13 Cluster-list and others
1,371 0.75 Originator-id and others
1,057 0.58 Cluster-list +

Originator-id + others
269 0.15 MED
6,647 3.63 No match found

Total: 183,182 100.00

Fig. 5. Matched iBGP updates

AS1

RR2

RR1

RRC2

RRC1

P1

P1: CLIST = RR1

P1: NO-CLIST

P1: NO-CLIST

P1: CLIST = RR2

1

2

3

Fig. 6. Inferred cause of duplicates

interaction between eBGP and iBGP. The reason that duplicates are generated is that
routers are receiving updates via iBGP which differ in iBGP attribute values alone, and
thus the router believes the updates to be unique. However, once the router processes
the update, strips the iBGP attribute values, and sends the update to its eBGP peer, the
two updates look identical from the point of view of the eBGP peer.3 Figure 6 illustrates
a case where duplicates are generated due to changes in an iBGP attribute (Cluster-list
in this case).

The main cause of eBGP duplicate updates showed that certain iBGP attribute
changes (Cluster-list and Originator-id) can generate eBGP duplicate updates. We won-
dered if other iBGP attribute changes might also generate eBGP duplicate updates. To
check for this, we performed a simple controlled experiment. We set up two ASes (AS1
and AS2). In AS1, we placed a BGP update injector and a router R1. The injector
maintains an iBGP session with R1 and sends controlled iBGP updates. R1 peers with
a router, R2, in AS2 using an eBGP session.4

After injecting pairs of iBGP updates that only differ in one attribute, we observed
that a pair of iBGP updates differing in either Next-hop, Local-pref, or MED attributes
will generate an eBGP duplicate update.

The experiments we have done so far shed light on how the duplicate bursts, which
we discussed in Section 3, are generated. When a router used to reach a set of prefixes
fails, this failure (or flapping) event generates updates that only differ in Next-hop for
the set of prefixes. All of these updates become duplicates as they are sent to the eBGP
peers. Using the iBGP/eBGP data collected from our tier-1 ISP, we verified that indeed
duplicate bursts are preceded by an iBGP route flapping.

6 Differences in the Amount of Observed Duplicates

As observed in 4.2, ASes of the same type vary in the proportion of duplicates they
generate. One reason may be a difference in MRAI timer settings amongst the networks.

3 In our study, we observed that duplicates are generated due to changes in Cluster-list and
Originator-id oscillations under route reflection. In a similar way, we believe ASes using AS
confederation architectures will also generate duplicates due to the use of a non-mandatory
non-transitive attribute named AS-confed-sequence, which is essentially the AS confederation
version of the Cluster-list attribute under route reflector architectures.

4 Here, R1 is a Cisco 7200 router running IOS v12.2, and R2 is a Quagga router which we use
as a BGP update collector.

Investigating Occurrence of Duplicate Updates in BGP Announcements 19

Fig. 7. Other potential noises

Duplicates are generated during internal routing changes. During the changes, updates
come in bursts, and thus MRAI timers can prevent many updates from being sent.

MRAI timer differences do not fully explain why the amount of observed dupli-
cates varies so much from one AS to another. During our experiments involving eBGP
and iBGP interactions, we noticed that Cluster-list changes were often coupled with
a change in Community or MED attribute values. In these cases, we observed poten-
tially wasteful updates with fluctuating Community/MED values rather than duplicates.
We asked operators at our tier-1 ISP and they confirmed that this was quite deliberate;
routers were configured to make changes in certain transitive attribute values when-
ever there was a change in certain non-mandatory attribute values in accordance with
[5,6]. [5,6] suggests using Community attribute values as a general purpose attribute
to convey informational tags as well as action tags to receiving networks. MED values
were also used for traffic engineering purposes. However, operators admit that not all
peers need or use this Community information, and for those routers that do not use the
Community information, these BGP updates are as useless to them as duplicates. How-
ever, such updates can be more detrimental than duplicates in one significant way; with
duplicates, the negative impact is limited to the direct neighbors. As described earlier,
duplicates do not travel more than one hop. However, if some other (optional) transi-
tive attributes such as Community is changed, then the update is no longer a duplicate
and can potentially be propagated more than one hop.Community value changes are not
useful to networks that are more than one hop away, and yet these networks still must
suffer the same negative impacts of receiving a superfluous BGP update.5

Our discovery of these potentially wasteful BGP updates led us to wonder if other
ASes generated similarly potentially wasteful updates. We looked at all updates from
tier-1s observed by our monitors for the month of March 2009, and classified the up-
dates into 3 types - duplicates, Community/MED change, and remainder. Figure 7
shows our results. While AS3549 and AS2914 generated almost no duplicates, 50%
or more of their total updates were Community/MED change updates. We suspect that
many of these updates could be useless to many networks that receive the update. We
intend on verifying our suspicion in future work.

5 Different router vendors implemented different default behavior in sending Community at-
tribute. For ISPs that use network equipment where the default behavior is to send communi-
ties (e.g. Juniper), then the effect of this problem are likely to be amplified. However, for ISPs
that use network equipment where the default behavior is to not send communities by default
(e.g. Cisco), then the effect of this problem are likely to be less.

20 J.H. Park et al.

7 Conclusion

In this paper, we conducted the first comprehensive measurement study quantifying
the prevalence of duplicates on the Internet across space and time. We discovered that
duplicates make up over 10% of all BGP update traffic. We examined the impact that
duplicates have on the overall health of the Internet, and discovered that routers can
receive upto 86.4% duplicates during their busiest times. We developed a heuristic to
match eBGP updates with their corresponding iBGP counterparts. Finally, we combined
our observations with our heuristic to discover the causes of duplicates on the Internet
- duplicates are caused by an unintended interaction between iBGP and eBGP.

While pure duplicates are clearly unnecessary BGP overhead, our work revealed that
duplicates may not be the only superfluous BGP updates floating around on the Inter-
net. As described in section 6, updates that couple non-transitive attribute changes with
transitive attribute changes may not be useful to all recipients. It would be interesting to
identify all forms of superfluous BGP updates and gain an exact measure of how much
BGP traffic is simply unwanted noise. We hope that our work allows the Internet com-
munity to take a significant step towards a optimal and clean routing communication
system.

References

1. Bates, T., Chen, E., Chandra, R.: RFC 4456. In: BGP Route Reflection: An Alternative to
Full Mesh Internal BGP (April 2006)

2. Labovitz, C., Malan, G.R., Jahanian, F.: Internet routing instability. ACM/IEEE Transactions
on Networking 6(5), 515–528 (1998)

3. Labovitz, C., Malan, G.R., Jahanian, F.: Origins of internet routing instability. ACM/IEEE
Infocom 1, 218–226 (1999)

4. Li, J., Guidero, M., Wu, Z., Purpus, E., Ehrenkranz, T.: BGP Dynamics Revisited. In: ACM
Sigcomm Computer Communications Review (April 2007)

5. Meyer, D.: RFC 4384. BGP Communities for data collection (2006)
6. Steenbergen, R.A., Scholl, T.: BGP Communities: a guide for service provider networks

(2007)
7. Traina, P.: RFC 1774. In: BGP-4 protocol analysis (1995)
8. Traina, P., McPherson, D., Scudder, J.: RFC 5065. In: Autonomous System Confederations

for BGP (August 2007)
9. Wang, L., Zhao, X., Pei, D., Bush, R., Massey, D., Mankin, A., Wu, S.F., Zhang, L.: Observa-

tion and analysis of BGP behavior under stress. In: IMW 2002: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, Marseille, France, pp. 183–195. ACM, New
York (2002)

10. Zhang, B., Kambhampati, V., Lad, M., Massey, D., Zhang, L.: Identifying BGP routing table
transfers. In: MineNet 2005: Proceedings of the 2005 ACM SIGCOMM workshop on Mining
network data, pp. 213–218. ACM Press, New York (2005)

A Measurement Study of the Origins of
End-to-End Delay Variations

Yaron Schwartz, Yuval Shavitt, and Udi Weinsberg

School of Electrical Engineering
Tel-Aviv University, Israel

Abstract. The end-to-end (e2e) stability of Internet routing has been
studied for over a decade, focusing on routes and delays. This paper
presents a novel technique for uncovering the origins of delay variations
by measuring the overlap between delay distribution of probed routes,
and how these are affected by route stability.

Evaluation is performed using two large scale experiments from 2006
and 2009, each measuring between more than 100 broadly distributed
vantage points. Our main finding is that in both years, about 70% of
the measured source-destination pairs and roughly 95% of the academic
pairs, have delay variations mostly within the routes, while only 15-
20% of the pairs and less than 5% of the academic pairs witness a clear
difference between the delays of different routes.

1 Introduction

The Internet has evolved in recent years to become a complex network, with
increasing usage of load-balancing and traffic shaping devices. These devices
change the way packets flow, therefore affecting the observed stability of routes
and delays between hosts. This, in turn, affects various delay and jitter sensitive
applications, such as VoIP and IPTV. On the other hand, load on devices is
not constant and may change the delay packets observe along the same route
significantly. Therefore, it is important to understand both the delay stability
along the path and to identify the source of the delay variability when such
variability exists.

Wang et al. [1] and more recently Pucha et al. [2] studied the impact that
specific routing events have on the overall delay. They showed that although
routing changes can result in significant round trip delay increase, their vari-
ability is small for most of the measured path transitions, therefore allowing
applications to make use of such stability.

Augustin et al. [3] examined the delay between different parallel routes at a
short time epoch. They compared the minimum delay of each route, and found
that only 12% have a delay difference which is larger than 1ms. Using similar
techniques, Pathak et al. [4] studied the delay asymmetry and found that there
is a strong correlation between changes in the one-way delay and corresponding
route changes.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 21–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 Y. Schwartz, Y. Shavitt, and U. Weinsberg

Unlike previous work, we study the RTT delay along longer time periods,
hours and days, and examine how different is the delay distribution between
parallel routes. For this purpose we use delay samples to define an interval in
which the delay of each route resides, and look at the overlapping between in-
tervals of parallel routes. If the two intervals are disjoint we know that the e2e
delay value mostly depends on the route in use and not on the variance in the
route. As the overlap between the intervals increases, the delay variance is mostly
attributed to changes along the route itself, e.g., due to change in load.

Evaluation is performed by conducting two large-scale experiments in 2006
and in 2009. Using DIMES [5], a highly distributed community-based measure-
ments infrastructure, we planned these two 96-hours experiments each utilized
more than 100 actively measuring vantage points (VPs), located in a broad set
of ASes and geographical locations, contributing more than 200k e2e routes.

Our main finding is that in about 70% of the measured source-destination
pairs, in both experiments, the delay variations are mainly explained by changes
within the routes, while only 15-20% of the pairs witness a clear difference be-
tween the delays of different routes. The remaining 10-15% of the pairs witness
a mixture of the above, with a higher tendency for intra-route changes as con-
tributors to the delay variance. Pairs that have their source and destination in
academic ASes exhibit much higher route stability, which further increases the
percentage of delay variations within the routes to 95%.

2 Quantifying Route and Delay Stability

2.1 Definitions

The input data is a collection of traceroute measurements for a set P of ordered
source destination pairs, Pi = {Si, Di}. For each pair, Pi, the set of e2e IP-
level traceroutes, TRi, is partitioned into ki equivalence subsets (i.e., any two
traceroutes in each subset are the same), denoted by Ei. The size of the sub-
set |Ei

j | is the total number of traceroutes it contains. Each equivalence subset
Ei

j , 1 ≤ j ≤ ki has a single representing route R(Ei
j) which is the measured path

between the source and the destination.
For each pair Pi we define the dominant route as the route R(Ei

j) whose subset
size, |Ei

j |, is the largest. It is possible that several equivalence subsets have the
same size, therefore they are all considered dominant routes. For brevity, we
assume for now that each pair has a single dominant route, with index r.

2.2 Measurement Setup

The data used in this paper is obtained from DIMES [5], a community-based In-
ternet measurements system. DIMES performs active measurements using hun-
dreds of software agents installed on users’ PCs. Agents perform roughly two
measurements per minute (either traceroutes or ping using either ICMP or UDP)
by following a script that is sent to them from a central server.

A Measurement Study of the Origins of End-to-End Delay Variations 23

DIMES provides researchers with the ability to run “experiments” by defin-
ing the set of agents, probing protocols and a set of destinations. Since some
agents are installed on end-users machines, the number of measurements may
vary depending on their availability. Usually, more than 80% of the planned
measurements are performed.

For the purpose of this paper we performed two similar experiments that took
place in December 2006 and September 2009. In each experiment, we selected
over 100 globally distributed agents and designed 96-hours experiments in which
each agent executed UDP and ICMP traceroute measurements to all other agents
in a round robin fashion. For each traceroute measurement we take the minimum
delay of at most four probes sent over a period of a few seconds (in case of a
lost probe we do not send another one instead). Since DIMES is a community
based platform not all of the agents are constantly active during the experiments
period. Moreover, since there is a certain churn in users along time, not the same
agents were selected in both experiments. Thus, 120 agents were selected, making
sure that there will be valid results from more than 100 agents. The scripts we
wrote had one UDP and one ICMP measurement to each of the 120 destination
IP addresses. Therefore, an agent probes each IP address twice every two hours.
Agents repeated the same script for four days. In total, each of these experiments
result in over one million traceroute measurements results.

Note that traceroutes probe the forward-path of routes, while the delays are
round-trip. Pathak et al. [4] analyzed the delay asymmetry and showed that one-
way delay can be different than round-trip, meaning that it is possible that our
delay measurements actually capture instability that exists in both the forward
and reverse paths. Following Pucha et al. [2], we analyzed the stability of routes
as measured from opposite directions in our dataset, and found that over 90%
of the pairs have forward and reverse path RouteISM that are different by less
than 0.3 (not shown due to lack of space). This indicates that the stability of
the forward path can serve as an indication to the reverse path. We attribute
this to the observation that even non-symmetric routes share similar hops that
can contribute instability to both directions. Thus, comparing the instability of
RTT delay with the routing instability of the forward route is meaningful.

2.3 Pair and Route Identification

When comparing two routes we seek to answer if they are equal and if not,
quantify their difference. Several difficulties arise in both aims. Since DIMES
is a community-based project, most traceroutes start with several private IP
addresses before reaching the routable Internet. Moreover, some use laptops and
may travel during the time of the experiment. In order to decrease the chance
of over-estimating instability, only the routable section of each traceroute is
considered for the analysis. The identification of a pair is done using the first
and last hops of the routable traceroute. This help us mitigate instability that
might appear in the non-routable networks, which are presumed to have little
affect on the overall delay instability. In the analysis, we only include pairs that
witness at least 20 traceroutes.

24 Y. Schwartz, Y. Shavitt, and U. Weinsberg

Two (routable parts of) traceroutes are considered equal when their ordered
list of IP addresses are exactly the same. To quantify the difference between
two traceroutes we calculate their Edit Distance [6] (ED) value by counting the
minimal number of insert, delete, and modify operations that are needed in order
to make the two routes equal. Obviously, ED is highly correlated with the length
of the compared routes. To be able to compare ED values that are calculated on
routes with various lengths, the ED is normalized by the length of the longest
route of the two input routes. This technique is similar to the one described by
He et al. [7] who used it for quantifying AS-level asymmetry. We extend here
the technique to consider stability instead of symmetry. Since the ED cannot
be greater than the longest route, the normalized ED value is between 0 and
1, where 0 means that the two routes are identical and 1 means that they are
completely different.

2.4 Route Stability

We use two methods for quantifying the stability of a route. The overall appear-
ance ratio (i.e., prevalence [8]) of a route with index j, i.e., R(Ei

j), in pair Pi is
the portion of traceroutes in the set Ei

j . The prevalence of the dominant route
R(Ei

r) is used as the first indication to the stability of routing for each pair,
since having a dominant route with high prevalence suggests that the remaining
paths are relatively rare.

The second estimation of pair Pi stability is calculated by finding the normal-
ized ED between the dominant route, R(Ei

r), to all other non-dominant routes,
R(Ei

j), j �= r. For pairs that have more than a single dominant route, we use the
dominant route that is closest to each route in number of hops. We define the
Route Instability Measure (RouteISM) of a pair as the weighted average of all
normalized ED measures as depicted in Eq. (1). Thus, an ISM value close to 1
indicates high instability.

RouteISMi =
∑
j �=r

(
|Ei

j | · ÊD
i

jr

) /∑
j �=r

|Ei
j | (1)

Two techniques were used in the past to measure distance between routes.
Pucha et al. [2,4] defined the similarity coefficient for calculating AS level route
symmetry as the number of similar elements divided by the total number of dis-
tinct elements in the two routes |Pi∩Pj |

|Pi∪Pj | . He et al. [7] used string matching which
is similar to our ED. We follow the latter and argue that ED better captures
stability since it takes into account the order of elements in each route.

2.5 Delay Stability

We are interested in the expected e2e round trip delay of a route over time
and not in short term congestion. Recall that we take the minimum delay of at
most four probes sent over a period of a few seconds, and repeat each traceroute
roughly twice an hour (UDP and ICMP) over a period of four days.

A Measurement Study of the Origins of End-to-End Delay Variations 25

35 40 45 50

3

3

46

46

88

Delay [msec]

N
um

be
r

of
 s

am
pl

es

(a) 217.0.116.82 → 80.91.184.206

270 280 290 300 310 320 330

3
3
4
5
6
8

17
22
25
32
33
34

Delay [msec]

N
um

be
r

of
 s

am
pl

es

(b) 69.134.208.1 → 134.159.160.58

Fig. 1. Examples of pairs with overlapping and non-overlapping confidence intervals.
The segments show the confidence intervals of a routes, calculated using the delay
samples which are shown as varying sized circles (larger radius means more samples).

For a given pair Pi, each equivalence set Ei
j , has several different e2e RTT

delay samples (henceforward “delays”), denoted by RTT (Ei
j). We wish to quan-

tify the stability of pair delays and whether their variance is the result of delay
dynamics of each route or delay difference between different routes. This analysis
can uncover whether delay instability is mainly the result of traffic anomalies
in a route (e.g., congested routers), or the result of route diversity due to load-
balancers.

For each route Ei
j , we have the group RTT (Ei

j) of delay measurements. To
find the region of expected delay for the route, we treat the measured delays as
samples of some distribution and calculate the average and the 95% confidence
interval [9] around it. This confidence interval, denoted by CI(Ei

j), provides
us with a segment surrounding the measured mean of RTT (Ei

j). Within this
interval we expect to find the route delay. Note that this is an unorthodox
use of confidence interval, but we believe it gives us a good characterization
of the expected route delay (as is nicely shown in Fig. 1). Measurements with
high variance result in larger segments than measurements with small variance,
indicating that they are less stable.

For a source-destination pair, the normalized overlap between two segments
CI(Ei

j) and CI(Ei
k) is defined by

Ôi
jk =

CI(Ei
j)

⋂
CI(Ei

j)
min{|CI(Ei

j)|, |CI(Ei
j)|}

, ∀j �= k (2)

The normalized overlap is equal to 0 when the two segments do not overlap,
meaning that their delays are significantly different. This indicates that changes
in the route delay are mainly the result of having different routes. When it is
equal to 1, the segments completely overlap or one contains the other, meaning
that different routes exhibit similar delay distribution, indicating that instability

26 Y. Schwartz, Y. Shavitt, and U. Weinsberg

is not the result of multiple routes between the source and destination, but due to
changes within the routes. For example, Fig. 1(a) shows the routes from Deutsche
Telekom in Germany to Datagroup in the Ukraine. There are five different routes
with more than 30 measurements (the y-axis label is the number of measurements
per route) but they are all overlapping, namely they have roughly the same
delay average. On the other hand, Fig. 1(b) shows the routes from ParaCom
Technologies in USA to Reach Networks in Australia. While in the previous
figure the delay changes are attributed to variance of delays inside the routes,
this figure clearly shows that the delay changes is the result of multiple routes
with four distinct mean delays.

When the number of measurements in the route is small, the statistical sig-
nificance of the samples is small, and the confidence interval can be very large
and not meaningful. Fig. 4(a) shows that for 80% of the routes the confidence
interval is below 0.2 of the average delay. Since the number of routes with statis-
tical significance change between pairs, we calculated the overlap only between
the two largest equivalence groups (routes) of each pair, providing each has at
least 30 delay measurements.

3 Dataset Analysis

3.1 Distribution of Vantage Points

Using a community based platform, results in a certain churn in the availability of
measuring agents. Therefore, during the planning of the experiments, we selected
measuring agents that hold all of the following criteria: (a) they were active in
the past week, (b) distributed in a large set of ASes, and (c) distributed in a
large set of geographical regions. The first criterion is to maximize the chance
that the selected agent will indeed be active during the experiment period. The
other two criteria were selected to achieve e2e routes with diverse lengths that
traverse through various ASes spread across different countries and continents,
as an attempt to capture an accurate image of the Internet [10].

In the 2006 experiment, 102 agents returned slightly over a million tracer-
outes, providing us with 6861 source-destination directed pairs. Most VPs are
distributed in the USA and Canada (70), followed by Western Europe (14), Aus-
tralia and New Zealand (10), Russia (6) and Israel (2). In the 2009 experiment,
105 agents returned 1.01 million traceroutes, resulting in almost 10950 source-
destination directed pairs. VPs are distributed in numerous countries in Western
Europe (41), followed by USA and Canada (38), Russia and the Ukraine (14),
Australia (4), South America (2), Israel (2), Japan (1), Taiwan(1), Singapore
(1) and the Maldives (1).

Using the list of AS types provided by Dimitropoulos et al. [11], we infer the
type of each VP. In 2006, 18% of the VPs are tier-1, 78% tier-2, 3% smaller
companies and 1% educational (a single agent). In 2009, DIMES agents were
installed in PlanetLab [12], which increased the number of educational VPs to
28% while reducing tier-1 VPs to 14% and tier-2 to 58%. Only 7 VPs appeared

A Measurement Study of the Origins of End-to-End Delay Variations 27

in both experiments. This is due to the change in users that are running DIMES
agents over this time period.

In both experiments, a variety of ASes were traversed. Most of the tier-1 ASes
were traversed and the majority of the traversed ASes are tier-2.

3.2 Dataset Statistics

The cumulative distributions of the dominant route length and dominant route
median delay are shown in Fig. 2 (recall that there can be more than one dom-
inant route per source-destination pair). Fig. 2(a) shows that both experiments
have roughly the same path lengths, with 2009 being slightly shorter. The me-
dian of the dominant route length is 12 for 2006 and 11 for 2009; pairs with
academic source and destination ASes have even shorter routes, with median of
11 hops in 2009; the majority of the routes (97%) traverse less than 20 hops.
Our measured routes are shorter than reported by Paxson [8] in 1995. Paxson
reported mean route length between 15 and 16, using routable (and mostly aca-
demic) source and destination hosts. Since the Internet has been growing at high
rate since 1995, we attribute this reduction to the reacher connectivity among
ASes and increased adoption of layer-2 tunnels, which significantly reduces the
number of IP-level hops.

Fig. 2(b) exhibits an almost identical median delay distribution of 2006 and
2009, with 2009 having slightly shorter delays, which correlates with the shorter
paths witnessed in Fig. 2(a). Over 80% of the routes in both years have a delay
of less than 200msec. However, there are almost 3% of the routes that have a
delay of over 1 second. Pairs that have end-points in the USA are have shorter
delays, with 80% of them having a delay less than 150msec. However, pairs with
academic end-points have significantly shorter delays, with 90% of them having
a delay of less than 100msec.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Length of routes

P
er

ce
nt

ag
e

of
 d

om
in

an
t r

ou
te

s

2006
2009

(a) Route Length

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Median round−trip delay [msec]

P
er

ce
nt

ag
e

of
 d

om
in

an
t r

ou
te

s

2006
2009

(b) Median Delay

Fig. 2. Cumulative distributions of route lengths and median delay

28 Y. Schwartz, Y. Shavitt, and U. Weinsberg

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Number of distinct routes

P
er

ce
nt

ag
e

of
 p

ai
rs

2006
2009

(a) Distinct routes per pair

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Prevalence

P
er

ce
nt

ag
e

of
 d

om
in

an
t r

ou
te

s

2006
2009

(b) Dominant route prevalence

Fig. 3. Cumulative distributions of distinct routes and prevalence, showing (a) the
number of distinct routes per pair, and (b) the prevalence of the dominant route

4 Results

4.1 Route Stability

Fig. 3 shows the cumulative distributions of distinct routes per pair and preva-
lence of dominant routes. The figures show that over 20% of the pairs in 2006
and almost 30% of the pairs in 2009 witness a single route. Fig. 3(b) has a clear
jump at 50% prevalence, which we attribute to load-balanced routes with equal
per-packet balancing. This jump is not visible in routes between academic end-
points, due to their minimal usage of load-balancers. Furthermore, over 55% of
the pairs that have both source and destination in academic ASes, which is the
case when using PlanetLab, have a single route. Pairs that have both end-points
in the USA have slightly higher route stability, with roughly 35% of them having
a single route. These observations stress the need for a diverse set of VPs when
doing e2e Internet analysis.

Analysis of the RouteISM (not shown due to lack of space) supports the
observation of an overall stable e2e routing in the Internet, as over 90% of the
pairs (and 95% of the academic pairs) have RouteISM smaller than 0.2. This
values is used in Sec. 4.2 as a threshold between stable and non-stable pairs.

4.2 Origin of Delay Instability

We first show that our use of confidence interval is meaningful. Fig. 4(a) plots
the cumulative distribution of the ratio between a route’s confidence interval and
its mean delay. The figure shows that, for both years, 90% of the routes have a
ratio of less than 0.25. This indicates that the delay confidence intervals are not
‘too long’ in general, and extend only for routes with large variance (as shown
in the examples in Fig. 1).

Fig. 4(b) shows that for both data sets, over 40% of the pairs have an overlap
of 1 and an additional 30% of the routes have overlap of over 0.8. Namely, in 70%

A Measurement Study of the Origins of End-to-End Delay Variations 29

0 0.5 1 1.5 2
0

20

40

60

80

100

Confidence interval/Mean delay

P
er

ce
nt

ag
e

of
 r

ou
te

s

2006
2009

(a) Confidence interval/mean delay

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Normalized overlap

P
er

ce
nt

ag
e

of
 p

ai
rs

2006
2009

(b) Normalized overlap

Fig. 4. Confidence interval statistics

of the cases changes in route delay cannot be attributed to multiple path routing
but rather to changes between the routes. In 15% of the cases (20% in the 2006
data sets) the change in delay is mainly due to route changes as the overlap is zero
or close to 0. Over 95% of the pairs that have academic source and destination
ASes have an overlap of over 0.7. This is mainly the result of academic networks
having small routes difference (induced by local load-balancing) and little usage
of “spill-over” backup routes. Only 5% of the pairs that have both source and
destination in the USA witnessed overlap of 0.

Finally, we evaluate how the route stability affects the overlap of delays.
Fig. 5(a) shows that routes with high RouteISM (≥ 0.2) have higher percentage
of non-overlap delay intervals. Namely, when the difference between the routes
is larger, there are higher chances that their delay distribution will be different.
Fig. 5(b) shows that, unlike RouteISM, the prevalence of the dominant route
does not significantly affect the level of overlap.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Normalized overlap

P
er

ce
nt

ag
e

of
 p

ai
rs

RouteISM<0.2
RouteISM>=0.2

(a) RouteISM

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Normalized overlap

P
er

ce
nt

ag
e

of
 p

ai
rs

Prevalence < 50
Prevalence >= 50

(b) Prevalence

Fig. 5. Effect of route stability on normalized overlap

30 Y. Schwartz, Y. Shavitt, and U. Weinsberg

5 Conclusion

This work presents a measurement study of the e2e delay variance and its ori-
gins. Given a set of probed RTT delays, we find a confidence interval which
better captures the delay of each observed route. We then compute the overlap
of these intervals for uncovering the origin of these variations. Additionally, we
develop techniques for quantifying route stability and measure its affect on the
origin of delay variance. We find that for roughly 70% of the pairs and for over
95% of the academic pairs, the delay variations are mostly within the routes and
not between different routes.

Acknowledgment. This work was partially funded by the OneLab II and the
MOMENT consortia that are part of the EU FP7; and the Israeli Science Foun-
dation, grant 1685/07.

References

1. Wang, F., Mao, Z.M., Wang, J., Gao, L., Bush, R.: A measurement study on the im-
pact of routing events on end-to-end Internet path performance. ACM SIGCOMM
CCR 36(4), 375–386 (2006)

2. Pucha, H., Zhang, Y., Mao, Z.M., Hu, Y.C.: Understanding network delay changes
caused by routing events. SIGMETRICS 35, 73–84 (2007)

3. Augustin, B., Friedman, T., Teixeira, R.: Measuring load-balanced paths in the
Internet. In: IMC (2007)

4. Pathak, A., Pucha, H., Zhang, Y., Mao, Z.M., Hu, Y.C.: A Measurement Study of
Internet Delay Asymmetry. In: PAM (2008)

5. Shavitt, Y., Shir, E.: DIMES: Let the internet measure itself. ACM SIGCOMM
CCR 35(5), 71–74 (2005)

6. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

7. He, Y., Faloutsos, M., Krishnamurthy, S.: Quantifying routing asymmetry in the
internet at the AS level. In: GLOBECOMM (2004)

8. Paxson, V.: End-to-End Routing Behavior in the Internet. IEEE/ACM Transac-
tions on Networking, 601–615 (1996)

9. Bolle, R.M., Ratha, N.K., Pankanti, S.: An evaluation of error confidence interval
estimation methods. In: International Conference on Pattern Recognition, vol. 3
(2004)

10. Shavitt, Y., Weinsberg, U.: Quantifying the importance of vantage point distribu-
tion in Internet topology measurements. In: Infocom (2009)

11. Dimitropoulos, X., Krioukov, D., Riley, G., Claffy, K.: Revealing the AS taxonomy:
The machine learning approach. In: PAM (2006)

12. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: An overlay testbed for broad-coverage services. ACM SIG-
COMM CCR 33(3) (July 2003)

Yes, We LEDBAT: Playing with the New BitTorrent
Congestion Control Algorithm

Dario Rossi, Claudio Testa, and Silvio Valenti

Telecom ParisTech, Paris, France
first.last@enst.fr

Abstract. Since December 2008, the official BitTorrent client is using a new
congestion-control protocol for data transfer, implemented at the application layer
and built over UDP at the transport-layer: this new protocol undergoes the name
of LEDBAT, for Low Extra Delay Background Transport.

In this paper, we study different flavors of the LEDBAT protocol, correspond-
ing to different milestones in the BitTorrent software evolution, by means of an
active testbed. Focusing on single flow scenario, we investigate emulated artifi-
cial network conditions, such as additional delay and capacity limitation. Then,
in order to better grasp the potential impact of LEDBAT on the current Internet
traffic, we consider a multiple flows scenario, and investigate the performance of
a mixture of TCP and LEDBAT flows, so to better assess what “lower-than best
effort” means in practice. Our results show that LEDBAT has already fulfilled
some of its original design goals, though some issues still need to be addressed.

1 Introduction

Last December 2008, BitTorrent announced in the developer forum [1] that data transfer
would move to UDP: shortly after this announcement, panic started spreading on pop-
ular websites [2], since the announcement directly led to the misbelief that BitTorrent
plus UDP would equate with Internet meltdown. Yet, as already discussed at IETF [3]
and later recognized on the Web [4], the BitTorrent development process embraces
both ISP-friendliness (through AS-aware peer selection process) and TCP-friendliness
(through a novel congestion control protocol for data transfer).

This work focuses precisely on this latter aspect of BitTorrent evolution: BitTorrent
co-chairs an IETF Working Group on Low Extra Delay Background Transport (LED-
BAT), which has very recently released its first draft document. To better understand
the motivations behind LEDBAT, let us recall that the standard TCP congestion control
mechanism needs losses to back off. Under a drop-tail FIFO queuing discipline, this
means that TCP necessarily fills the buffer: as uplink devices of low-capacity home
access networks have very large buffers, this may translate into poor performance of
interactive applications (e.g., slow Web browsing and bad gaming/VoIP quality). LED-
BAT attempts at avoiding this drawback, by implementing a distributed congestion con-
trol mechanism, tailored for the transport of non-interactive traffic with lower than Best
Effort (i.e., TCP) priority. As stated in [5], among the main design goals of LEDBAT
there are the ability (i) to minimize the extra delay it induces in the bottleneck, while (ii)
saturating the available capacity at the same time. To fulfill these goals, LEDBAT has

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 31–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 D. Rossi, C. Testa, and S. Valenti

been designed as a windowed protocol (i) able to infer earlier than TCP the occurrence
of congestion, by estimating the queuing delay variation on the end-to-end path, (ii) to
which it reacts by continuously modulating the congestion window growth/shrink by a
proportional-integral-derivative (PID) controller.

The aim of this work is twofold. On the one hand, we target at understanding the
performance of LEDBAT in a number of simple single flow scenarios, considering mul-
tiple versions of the official client so to better clutch its evolution. On the other hand, by
means of multiple flows scenarios, we aim at gathering a preliminary understanding of
the implication that a widespread adoption of LEDBAT could have on the current Inter-
net landscape. We tackle the above issues with an active-measurement black-box study
of the official BitTorrent client. Since LEDBAT is openly described in a IETF draft, the
performance of the protocol could be assessed by means of simulations as we did indeed
in [6]. Yet we still find active testbed experimentation extremely useful for several rea-
sons. First, the BitTorrent implementation of the LEDBAT protocol may differ from any
draft-compliant implementation by some design choices or parameter setting, that may
have a deep impact on the protocol performance. Second, the most widespread LED-
BAT implementation on the Internet will be the official BitTorrent version, rather than
a legacy implementation, which motivates a direct evaluation of this client. Third, from
our point of view, the analysis of proprietary applications by independent observers has
the benefit of sheding light on the protocol inner workings. Finally real-world dynamics
introduced by network devices are often much more complex than the synthetic ones
that a simulation environment, although accurate, can reproduce.

With such an approach, we conduct a preliminary yet insightful evaluation of the
protocol performance. First, we are able to report on the entire evolution of the protocol
implementation, from the first (immature) version to the last (nearly stable) one. We
point out that LEDBAT is able to, at least partly, fulfill its original design goals: un-
der both controlled testbed and Internet experiments, LEDBAT avoids an uncontrolled
queuing (unlike TCP), and is, under a range of conditions, able to saturate the available
capacity (or, in case capacity is not saturated, this could be done by a simple tweaking
of LEDBAT parameters). At the same time, we identify some open points regarding the
protocol efficiency: for instance, TCP traffic on the “unrelated” backward path is able
to slow down LEDBAT transmission on the forward path, whose capacity may be then
significantly underutilized. Finally, we stress that the precise meaning of “lower-than
best effort” should be carefully specified, as the mutual influence of TCP and LEDBAT
traffic may significantly differ depending on the TCP flavor and settings as well.

2 Methodology and Preliminary Insights

For the investigation of the LEDBAT, we adopt an active-measurements black-box ex-
perimental approach, consisting in the analysis of the traffic generated by the BitTorrent
client on different network scenarios. We run several versions of the new BitTorrent
client on PCs equipped with dual-core processors featuring (i) unless otherwise stated,
native installations of Windows XP or (ii) BitTorrent clients running on Linux using
the wine Windows emulator. PCs are either (i) connected to the Internet through ISPs
offering ADSL access, or (ii) in a local LAN testbed via Ethernet cards. In the first case

Yes, We LEDBAT: Playing with the New BitTorrent Congestion Control Algorithm 33

we leave the default modem settings unchanged, while in the second one we disable
the interrupt coalescing feature and avoid the usage of jumbo frames. Moreover in the
LAN testbed, the traffic is routed through a middlebox running a 2.6.28 Linux kernel,
which acts also as network emulator by means of netem, in order to enforce artificial
network conditions.

As formerly stated, in our experiments we consider both single flow and multiple
flows scenarios. Single flow experiments are useful to understand the protocol perfor-
mance under a range of different network conditions, while multiple flows experiments
are needed to quantify the level of inter-protocol priority (e.g., with respect to TCP
flows) and intra-protocol fairness (e.g., with respect to other LEDBAT flows) achieved
by the distributed control algorithm. Under the classic BitTorrent terminology, every
LEDBAT sender-receiver pair is a seeder-leecher pair, so that data transfer happens in a
single direction. In case of multiple-flows experiments, every pair of actors belongs to
a different torrent, so that no data exchange happens between different leechers.

We start by providing some insights on the BitTorrent evolution with the help of
Fig. 1. Every picture refers to a different experiment, of which we report the first minute,
corresponding to a different BitTorrent flavor. The seeder connects to the middlebox
with a 100 Mbps Ethernet link, while between the middlebox and the leecher there is
a 10 Mbps Ethernet bottleneck link. No other traffic is present on the bottleneck, and
the one-way delay on the forward path is forced to 50 ms, to loosely emulate a scenario
where two faraway peers with high speed Internet access (e.g., ADSL2+, FTTH or
Ethernet) are connected together.

Pictures are arranged so that the macroscopic timescale of BitTorrent evolution also
grows from left to right: Fig. 1-(a) shows, as a reference, the old open-source TCP-based
client, while Fig. 1-(b) refers to the first closed-source version α1, released December
2008. Then, Fig. 1-(c) depicts the α2 version, released roughly at the same time of the
first IETF draft [5] in March 2009. Finally, Fig. 1-(d) refers to the β1 version, released
after the draft was accepted as an official IETF WG item in August 2009.

The comparison of different versions of the protocol yields several interesting obser-
vations. First, notice that all versions analyzed correspond to important milestones in the
development process of the protocol: thus, they provide a valuable perspective which
highlights the flaws as well as the improvements of the subsequent steps of LEDBAT
evolution. In particular, the α1 version (which precedes the draft specification and mo-
tivates a black-box approach) was particularly instable and soon superseded. Moreover,
from this study it emerges that the LEDBAT implementation is constantly evolving: as
such, we believe that picking a single version, such as the most recent one, would limit
the scope of our study.

For each flavor represented in Fig. 1, pictures depict the packet size on the y-axis,
measured at the sender side, with time of the experiment running on the x-axis. As it
can be seen, the application-layer segmentation policy is remarkably variable across
different LEDBAT flavors. In contrast with TCP, which always transmits segments of
maximum size, LEDBAT instead uses variable packet sizes. For instance, the α1 im-
plementation of Fig. 1-(b) mostly used small segments of about 350 bytes, transmit-
ted at very high rate. Although this allows a finer tuning of the congestion window
size, (e.g., likely to be more reactive to network condition), it definitively results in an

34 D. Rossi, C. Testa, and S. Valenti

 0

 250

 500

 750

 1000

 1250

 1500

 0 10 20 30 40 50

Time [s]
(a)

TCP
v5.2.2 (Until Oct’08)

Open Source

Pa
ck

et
 s

iz
e

[B
yt

e]

 0 10 20 30 40 50

Time [s]
(b)

α1
v1.9-13485 (Since Dec’08)

Closed Source

Pa
ck

et
 s

iz
e

[B
yt

e]

 0 10 20 30 40 50

Time [s]
(c)

α2
v1.9-15380 (Since Mar’08)

First LEDBAT draft

Pa
ck

et
 s

iz
e

[B
yt

e]

 0 10 20 30 40 50

Time [s]
(d)

β1
v1.9-16666 (Since Aug’09)
Draft accepted as WG item

Pa
ck

et
 s

iz
e

[B
yt

e]

Fig. 1. The last few months of BitTorrent client evolution: Temporal plot of packet-level traces
for different BitTorrent flavors, reporting packet size during the first minute of the transfer

unnecessary overhead. This segmentation policy is a bad choice for large transfers, and
was indeed soon dropped in favor of larger segment sizes. As can be gathered from
Fig. 1-(c) and Fig. 1-(d), newer BitTorrent flavors start by segmenting data in small-
size segments, and then gradually increase the segment size over time, rarely changing
it once the full-payload segment size is reached. In case of α2 flavor, we observe subse-
quent phases, about 10-seconds long, where only a single segment size is used: it takes
about 40 seconds to the application-layer segmentation policy to settle to full-payload
segment size. The β1 flavor behaves similarly, although a wider range of segment sizes
is employed during the whole experiment, probably to obtain a finer byte-wise control
of the congestion window.

The corresponding time evolution of the achieved throughput, measured over 1 s
time-windows is depicted in Fig. 2-(a), using a longer timeframe of about 4 minutes.
We merely superpose the curves for the sake of comparison, but experiments have
been independently performed. It can be seen that, shortly after achieving a sustained
throughput of about 9 Mbps during about 50 seconds, the sending rate of the α1version
suddenly drops, and about 2 minutes are necessary to recover from this starvation (this
unstable behavior was observed under a wide range of conditions). In contrast, α2 and
β1 achieve a lower but steady throughput, slightly above 4 and 7 Mbps respectively.

As a reference, we also report the throughput of a BitTorrent client using TCP run-
ning on the native Windows and Linux networking stacks under their default settings.
The networking stack implementation and configuration dramatically impacts the pro-
tocol performance also in the TCP case. As reported in [7], in Windows XP, for trans-
mission rates between 10-100 Mbps the default receive window is set to 17520 Bytes,
whereas the default value of the Linux receive window (set in net.ipv4.tcp mem)
is about 6 times larger. Notice that in the Windows XP case, due to the 50 ms delay, the
default value of the maximum window is not large enough to allow full saturation of
the bottleneck pipe. This is an important, though not novel, observation on which we
will come back later on Sec. 3.2.

3 Experimental Results

In this section, we start with simple single flow scenarios so to refine the performance
pictures of the different flavors by testing the impact of varying network conditions.

Yes, We LEDBAT: Playing with the New BitTorrent Congestion Control Algorithm 35

 0

 2

 4

 6

 8

 10

 0 60 120 180 240

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

TCP Windows
(17.5 KB)

α2

β1 α1α1

TCP Linux
(108 KB)

(a)

 0

 0.5

 1

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

C
ap

ac
ity

 P
ro

fi
le

 [
M

bp
s]TCP

α2

β1

 0

 0.5

 1

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

C
ap

ac
ity

 P
ro

fi
le

 [
M

bp
s]TCP

α2

β1

 0

 0.5

 1

 0 120 240 360 480 600

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

C
ap

ac
ity

 P
ro

fi
le

 [
M

bp
s]TCP

α2

β1

(b)

Fig. 2. Throughput for different flavors (a) without and (b) with bottleneck capacity limitations

Among the several experiments conducted, we report the most relevant for our perfor-
mance evaluation. In more detail, we consider (i) bottleneck capacity limitations, (ii)
one-way delay impairment on either the forward or the backward path and (iii) differ-
ent access technologies. We finally consider a scenario in which (iv) a single TCP flow
interferes with LEDBAT on either the forward or the backward path, and (iv) multiple
flows share the same bottleneck link, varying the ratio of LEDBAT and TCP flows so
to better assess the protocols mutual influence.

3.1 Single Flow: Bottleneck Capacity, Delay and Access Impact

Let us start by testing how BitTorrent copes with changing bottleneck capacity. We
use a setup similar to the former experiment, but in this case the capacity of the link
between the middlebox and the leecher is limited by means of the Hierarchical Token
Bucket (HTB), available in netem. In more detail, we start at t=60 s to let LEDBAT
throughput settle to a steady state, and then we turn on the HTB shaper. We initially
tune it to 250 Kbps, increasing then the available capacity in steps of 250 Kbps every 2
minutes, as shown by the solid line capacity profile in Fig. 2-(b). A decreasing capacity
profile yields to similar results and is thus not shown in the figure.

Time evolution of the throughput is reported for the new α2, β1 flavors as well as
for the old TCP client. Flavor α2 proves to be unable to quickly adapt to the chang-
ing link rate: it periodically enters a probing (or slow-start) phase, where it likely tries
to infer network conditions by varying the segment size and sending rate. However,
this phase is apparently unsuccessful and α2 throughput starves (we did not observe
such a starvation phenomenon for bottleneck larger than 1000 Kbps). This bug has been
fixed by later releases: β1 matches the available bandwidth, and moreover LEDBAT
shows a much smoother curve than TCP. In this case, we may say that one of the LED-
BAT design goals, namely, to efficiently exploit the available capacity, seems to be
perfectly achieved.

Then, consider that the LEDBAT congestion control is based on a linear adaptation
(i.e., growth/shrink) of the sender window to variations in the queuing delay on the for-
ward data path (i.e., as inferred by the decrease/increase of the one-way delay, with re-
spect to the minimum measured one as reference): it is thus critical to assess its reaction

36 D. Rossi, C. Testa, and S. Valenti

 0

 5

 10

 0 120 240 360 480 600
 0

 40

 80

 120

T
hr

ou
gh

pu
t [

M
bp

s]

D
el

ay
 [

m
s]

Time [s]

α2 β1

α2 β1

 0

 5

 10

 0

 40

 80

 120

(a)

 6

 7

 8

 9

 10

 0 120 240 360
 0

 40

 80

 120

T
hr

ou
gh

pu
t [

M
bp

s]

D
el

ay
 [

m
s]

Time [s]

α2

β1

α2 β1

 6

 7

 8

 9

 10

 0

 40

 80

 120

(b)

Fig. 3. Throughput evolution for different delay settings on the forward (top) and backward (bot-
tom) path: (a) average delay increases over time, delay is equal for all packets (b) average delay
is constant over time, delay variance increases over time

to the measured one-way (OWD) delay. However, the sender response to queuing delay
variations is nevertheless based on a closed-loop reaction with the receiver: therefore,
we argue that the time instants at which the sender window growth/shrink decisions will
be taken are also affected by the two-way delay, or Round Trip Time (RTT).

Thus, we setup and experiment in which we add an incremental OWD on either the
forward (data) or backward (acknowledgement) paths. As before, after LEDBAT settles
we increase the additional delay in steps of 20 ms every 2 minutes, for an RTT spanning
on the 20–100 ms range as shown by the stepwise profile in Fig. 3-(a). The amount of
OWD delay is added either to the forward path (top) or backward (bottom) path: in
the former case, the delay incrementally adds to the OWD estimation performed by the
sender so that it may directly affect the congestion control loop, while in the latter case
it only delays the acknowledgement and may only indirectly affect the control loop.

As it can be seen from the comparison of the top and bottom plots of Fig. 3-(a), the
overall effect on performance is the same: BitTorrent throughput decreases for increas-
ing RTT, which is due to an upper bound of the receiver window (analogously to what
seen before for TCP). With some back-of-the-envelope calculation based on the exper-
imental results shown in Fig. 3-(a), one can gather that the receiver window limit has
been increased from 20 full-payload segments of α2 to 30 full-payload segment of β1.
While the picture shows that this limit may not be enough to fully utilize the link capac-
ity (e.g., β1 achieves about 4 Mbps throughput on a 10 Mbps link with RTT=100 ms), in
practice it is not a severe constraint, as the capacity will likely be shared across several
flows established with multiple peers of a BitTorrent swarm (or the receiver window
limit could be increased).

In Fig. 3-(b) we instead investigate the effects of a variable OWD delay, that changes
for each packet uniformly at random, with average OWD equal to 20 ms. In this case
we keep the average constant but increase the delay variance every 2 minutes, so that
the profile reports the minimum and maximum delays of the uniform distribution. The
variable delay also implies that packet order is not guaranteed, because packets en-
countering a larger delay will be received later and thus out-of-order. Again, delay vari-
ance is enforced on either the forward (top) or backward (bottom) path. As it can be

Yes, We LEDBAT: Playing with the New BitTorrent Congestion Control Algorithm 37

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Time [s]

T
hr

ou
gh

pu
t [

M
bp

s] TCP β1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500 600
 0

 1

 2

 3

 4

 5

Time [s]

T
hr

ou
gh

pu
t [

M
bp

s]

R
T

T
 [

s]

TCP FWD TCP BWD

β1 RTT

(b)

Fig. 4. Real Internet experiments: (a) different flavors and (b) interfering traffic

expected, LEDBAT is rather robust to a variable jitter on the backward path, where we
observe only a minimal throughput reduction. Conversely, variance in the forward path
has a much more pronounced performance impact: interestingly, α2 throughput signif-
icantly drops, whereas β1 performance is practically unchanged. This probably hints
to the use of a more sophisticated noise filtering algorithm (e.g., that discards delay
samples of out-of-order packets), although a more careful analysis is needed to support
this assertion.

We finally perform an experiment using PCs connected through ADSL modems to
the wild Internet. Thus, in this case we no longer have complete control over the net-
work environment, but we still can assume that no congestion happens in the network
and that the access link constitutes the capacity bottleneck. It can be seen from Fig. 4-(a)
that in a realistic scenario, when the end-hosts only run LEDBAT, β1 achieves a smooth
throughput whose absolute value closely matches the nominal ADSL uplink capacity
(640 Kbps). In contrast, TCP throughput is more fluctuating due to self-induced con-
gestion, which causes fairly large queues before eventual losses occur. This confirms
that the goal of avoiding self-induced congestion at the access is also met.

3.2 Multiple Flows

We now explore scenarios with several concurrent flows, starting with the simple one
where a single LEDBAT flow interacts with a single TCP flow. Considering two PCs
connected through ADSL modems to the wild Internet, Fig. 4-(b) reports an experiment
where, during a single LEDBAT transfer, we alternate periods in which PCs generate
no traffic other than LEDBAT, to periods (i.e., the gray ones) in which we superpose
TCP traffic on either the forward or backward path.

The plot reports the time evolution of the LEDBAT throughput as well as the RTT
delay measured by ICMP (as a rough estimation of the queue size seen by LEDBAT).
During the silence periods (0–120 s and 240–360 s), as bottleneck is placed at the edge
of the network, LEDBAT is able to efficiently exploit the link rate. As soon as a back-
logged TCP transfer is started on the forward path (120–240 s), LEDBAT congestion
control correctly puts the traffic in low priority. Notice that in this case, ICMP reports
that a fairly large queue of TCP data packets builds up in the ADSL line (roughly 4
seconds, corresponding to about 300 KB of buffer space for the nominal ADSL rate).
Conversely, whenever the backlogged TCP transfer is started on the backward path
(360–480 s), LEDBAT transfer on the forward direction should only be minimally

38 D. Rossi, C. Testa, and S. Valenti

Table 1. Efficiency and Fairness between multiple TCP and LEDBAT flows

TCPW , LEDBAT β1 TCPL, LEDBAT β1
TCP LEDBAT %1 %2 %3 %4 η Fairness RTX% %1 %2 %3 %4 η Fairness RTX%

4 0 0.25 0.25 0.25 0.25 0.67 1.00 5e-4 0.25 0.25 0.25 0.25 0.98 1.00 0.06
3 1 0.14 0.14 0.14 0.57 0.94 0.64 - 0.35 0.32 0.32 0.00 0.98 0.75 0.14
2 2 0.10 0.10 0.40 0.40 0.93 0.74 - 0.43 0.51 0.03 0.03 0.98 0.56 4e-3
1 3 0.08 0.31 0.31 0.31 0.92 0.87 - 0.87 0.04 0.04 0.05 0.98 0.33 -
0 4 0.25 0.27 0.24 0.24 0.96 1.00 - 0.25 0.27 0.24 0.24 0.96 1.00 -

affected by the amount of acknowledgement TCP traffic flowing in the forward di-
rection. However, as it can be seen from Fig. 4-(b), the LEDBAT throughput drastically
drops, further exhibiting very wide fluctuations (notice also that the ADSL modem
buffer space of the receiver appears to be smaller, as the RTT is shorter). Notice that in
this case, LEDBAT forward data path shares the link capacity only with TCP acknowl-
edgements, which account for a very low, but likely very bursty, throughput: this may
led LEDBAT into a messy queuing delay estimate, and as a result, the uplink capacity
of the device is heavily underutilized (about 74% of wasted resources).

We finally perform experiments to analyze the interaction of several flows. In this
case, we setup several torrents, one for every different LEDBAT seeder-leecher pair,
so that no data exchange happens between leechers of different pairs. Thus, flows are
independent at the application layer, though their are dependent at the transport layer,
as they share the same physical 10 Mbps RTT=50 ms bottleneck.

We consider a fixed number of F=4 flows, and vary the number of TCP and LEDBAT-
β1 connections to explore their mutual influence. All flows start at time t = 0, exper-
iments last 10 minutes and results refer to the last 9 minutes of the experiment. We
generate TCP traffic using Linux (so that we can reliably gather retransmission statis-
tics using netstat), setting the congestion control flavor to NewReno. We perform
two set of experiments, using either the Windows or Linux defaults values for the max-
imum receiver windows as early stressed in Fig. 2-(a): in our setup, the Windows-like
TCP settings (TCPW) are thus less aggressive than Linux ones (TCPL).

For each experiment, we evaluate user-centric performance by means of the break-
down of the resources acquired by each flow, while we express network-centric per-
formance in terms of the link utilization η. To further quantify the protocol mutual
influence, we use the Jain’s fairness index of the flows throughput and evaluate the
percentage of TCP retransmissions (RTX). Results are reported in Tab. 1, with Win-
dows and Linux settings on the left and right respectively. Comparing the two table
portions, we argue that the exact meaning of “low-priority” may be fuzzy in the real-
world. Indeed, while LEDBAT-β1 is lower priority than an “aggressive” TCP, it may
be competing more fairly against a more gentle set of parameters, thus being at least
as high priority as TCP. In fact while LEDBAT is practically starved by TCPL, LED-
BAT is able to achieve a slightly higher priority than TCPW . Although we recognize
that results may change using more realistic and heterogeneous network scenarios, or
using the real Windows stack instead of simply emulating its settings, we believe that
an important point remains open: i.e., the precise meaning of “lower than best effort”,
as the mutual influence of TCP and LEDBAT traffic may significantly differ depending
on the TCP flavor as well.

Yes, We LEDBAT: Playing with the New BitTorrent Congestion Control Algorithm 39

4 Related Work

Two bodies of work are related to this study. On the one hand, BitTorrent has been stud-
ied by means of theoretical analysis [8], simulation [9,10,6] or measurements [11]. On
the other hand, there is a large literature on Internet congestion control that use either on
fields measurement [12,13,14], or simulation and modeling [15,16,17,18,19,20]. Due
to BitTorrent very recent evolution, with the exception [6], where we study LEDBAT
by means of simulation, previous work on BitTorrent [8, 9, 10, 11] focused on comple-
mentary aspects to those analyzed in this work. In [8] a fluid model is used to determine
the average download time of a single file. Simulation has instead been used in [9] to
propose incentive mechanism to avoid free-riding and in [10] to assess the performance
of a locality-aware peer selection strategy. Finally, measurements study [11] analyzes
the log of a BitTorrent tracker, examining flash-crowd effect, popularity and download
speed of a single file. Congestion control work closer to our adopts a black-box experi-
mental measurements approach to unveil proprietary algorithms of, e.g., Skype [12,13]
or P2P-TV applications [14]. More precisely, [12, 14] analyzes system reaction to em-
ulated network conditions, whereas [13] investigates the bottleneck share of multiple
flows. Finally, relevant work has been devoted to the design of lower-than best effort
protocols similar to LEDBAT, as for instance [17, 18, 19, 20].

5 Conclusions

This paper presented an experimental evaluation of LEDBAT, the novel BitTorrent con-
gestion control protocol. Single-flow experiments in a controlled environment show
some of the fallacies of earlier LEDBAT flavors (e.g., instability, small packets overkill,
starvation at low throughput, tuning of maximum receiver windows, wrong estimate
of one-way delay in case of packet reordering, etc.), that have been addressed by the
latest release. Experiments in a real Internet environment, instead, show that, although
LEDBAT seems a promising protocol (e.g., achieving a much smoother throughput and
keeping thus the delay on the link low), some issues still need to be worked out (e.g.,
performance in case of reverse path traffic). Finally, multiple-flows experiments show
that “low-priority” meaning significantly varies depending on the TCP settings as well.

This work constitutes a first step toward the analysis LEDBAT performance. More
effort is indeed needed to build a full relief picture of the LEDBAT impact on other inter-
active applications (e.g., VoIP, gaming), explicitly taking into account the QoE resulting
from their interaction. Also, the methodology could be refined by, e.g., instrumenting
the Linux kernel to measure the queue size, or by inferring the OWD measured by
LEDBAT by sniffing traffic at both the sender and receiver, etc. Finally, the boundaries
of the investigation could be widened by taking into account the effects of LEDBAT
adoption on the BitTorrent P2P system itself, as for instance LEDBAT interaction with
throughput based peer-selection mechanism, or its impact on files download time.

Acknowledgement

This work has been funded by the Celtic project TRANS.

40 D. Rossi, C. Testa, and S. Valenti

References

1. Morris, S.: μTorrent release 1.9 alpha 13485 (December 2008), http://forum.
utorrent.com/viewtopic.php?pid=379206#p379206

2. Bennett, R.: The next Internet meltdown (December 2008), http://www.
theregister.co.uk/2008/12/01/richard_bennett_utorrent_udp

3. Shalunov, S., Klinker, E.: Users want P2P, we make it work. In: IETF P2P Infrastructure
Workshop (May 2008)

4. BitTorrent Calls UDP Report ”Utter Nonsense” (December 2008),
http://tech.slashdot.org/article.pl?sid=08/12/01/2331257

5. Shalunov, S.: Low extra delay background transport (LEDBAT). IETF Draft (March 2009)
6. Rossi, D., Testa, C., Valenti, S., Veglia, P., Muscariello, L.: News from the internet congestion

control world. Technical Report (August 2009)
7. MS Windows Developer Center: Tcp receive window size and window scaling,

http://msdn.microsoft.com/en-us/library/ms819736.aspx
8. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-to-peer net-

works. In: ACM SIGCOMM 2004, Portland, Oregon, USA (August 2004)
9. Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Analyzing and Improving a BitTorrent

Networks Performance Mechanisms. In: IEEE INFOCOM 2006, Barcelona, Spain (April
2006)

10. Bindal, R., Cao, P., Chan, W., Medved, J., Suwala, G., Bates, T., Zhang, A.: Improving Traf-
fic Locality in BitTorrent via Biased Neighbor Selection. In: IEEE ICDCS 2006, Lisboa,
Portugal (July 2006)

11. Izal, M., Urvoy-Keller, G., Biersack, E.W., Felber, P., Al Hamra, A., Garcés-Erice, L.: Dis-
secting BitTorrent: Five Months in a Torrent’s Lifetime. In: Barakat, C., Pratt, I. (eds.) PAM
2004. LNCS, vol. 3015, pp. 1–11. Springer, Heidelberg (2004)

12. Bonfiglio, D., Mellia, M., Meo, M., Rossi, D.: Detailed Analysis of Skype Traffic. IEEE
Transaction on Multimedia 11(1) (January 2009)

13. De Cicco, L., Mascolo, S., Palmisano, V.: Skype video responsiveness to bandwidth varia-
tions. In: ACM NOSSDAV 2008, Braunschweig, Germany (May 2008)

14. Alessandria, E., Gallo, M., Leonardi, E., Mellia, M., Meo, M.: P2P-TV Systems under Ad-
verse Network Conditions: A Measurement Study. In: IEEE INFOCOM 2009 (April 2009)

15. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model
and its empirical validation. ACM SIGCOMM Comp. Comm. Rev. 24(4) (October 1998)

16. Brakmo, L., O’Malley, S., Peterson, L.: TCP Vegas: New techniques for congestion detection
and avoidance. In: ACM SIGCOMM 1994, London, UK (August 1994)

17. Venkataramani, A., Kokku, R., Dahlin, M.: TCP Nice: a mechanism for background trans-
fers. In: USENIX OSDI 2002, Boston, MA, US (December 2002)

18. Kuzmanovic, A., Knightly, E.: TCP-LP: low-priority service via end-point congestion con-
trol. IEEE/ACM Transaction on Networking 14(4) (August 2006)

19. Liu, S., Vojnovic, M., Gunawardena, D.: Competitive and Considerate Congestion Control
for Bulk Data Transfers. In: IWQoS 2007, Evaston, IL, US (June 2007)

20. Key, P., Massoulié, L., Wang, B.: Emulating low-priority transport at the application layer: a
background transfer service. In: ACM SIGMETRICS 2004, New York, NY, USA (January
2004)

http://forum.utorrent.com/viewtopic.php?pid=379206#p379206
http://forum.utorrent.com/viewtopic.php?pid=379206#p379206
http://www.theregister.co.uk/2008/12/01/richard_bennett_utorrent_udp
http://www.theregister.co.uk/2008/12/01/richard_bennett_utorrent_udp
http://tech.slashdot.org/article.pl?sid=08/12/01/2331257
http://msdn.microsoft.com/en-us/library/ms819736.aspx

Measuring and Evaluating TCP Splitting
for Cloud Services

Abhinav Pathak1, Y. Angela Wang2, Cheng Huang3,
Albert Greenberg3, Y. Charlie Hu1, Randy Kern3, Jin Li3, and Keith W. Ross2

1 Purdue University
2 Polytechnic Institute of NYU, New York

3 Microsoft Corporation, Redmond

Abstract. In this paper, we examine the benefits of split-TCP proxies, deployed
in an operational world-wide network, for accelerating cloud services. We con-
sider a fraction of a network consisting of a large number of satellite datacenters,
which host split-TCP proxies, and a smaller number of mega datacenters, which
ultimately perform computation or provide storage. Using web search as an ex-
emplary case study, our detailed measurements reveal that a vanilla TCP splitting
solution deployed at the satellite DCs reduces the 95th percentile of latency by
as much as 43% when compared to serving queries directly from the mega DCs.
Through careful dissection of the measurement results, we characterize how indi-
vidual components, including proxy stacks, network protocols, packet losses and
network load, can impact the latency. Finally, we shed light on further optimiza-
tions that can fully realize the potential of the TCP splitting solution.

1 Introduction

Cloud Services are delivered with large pools of computational or storage resources that
are concentrated in mega datacenters, being built only in a hand full of remote locations
world-wide. The continued growth of Cloud Services, however, critically depends on
providing a level of responsiveness comparable with what can be obtained directly from
dedicated on-site infrastructures. A key challenge here is to make remote infrastructures
appear to end-users as if they were nearby.

Split-TCP proxies [1][2] can be very effective in improving the responsiveness of
Cloud Services. In particular, Cloud Service providers can deploy satellite datacenters
– within or outside of their own networks – close to the end-users. These satellite DCs
host split-TCP proxies, which maintain persistent connections over long-haul links to
the mega DCs that ultimately perform computation or provide storage. Through by-
passing TCP slow start and avoiding a number of round trips on the long-haul links,
this architecture reduces response time very effectively. Many Cloud Services, whose
computation or storage cannot be easily or cost-effectively geo-distributed and thus
have to remain in the mega DCs, can benefit from this architecture, including Inter-
net search, collaborative online editing, concurrent social gaming, cloud-based storage,
and so on. Although there are existing deployments of split-TCP proxies in commercial
systems (e.g., [3][4]), there are very few published studies on performance gains based

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 41–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 A. Pathak et al.

on real-world Internet measurements. Furthermore, to our knowledge, there is no thor-
ough study that dissects each component of a TCP splitting solution, with the aim at
identifying further optimizations and fully realizing its potential.

In this paper, we deploy an experimental TCP splitting solution on a fraction of a
network of satellite DCs hosted by Microsoft’s global distribution and cloud service
network. We conduct detailed measurements to quantify the gain experienced by real-
world end-users. Using web search as an exemplary case study, we show that, compared
to directly sending queries to the mega DCs, a vanilla TCP splitting solution can reduce
the 95th percentile latency by 43%1. Through careful dissection of the measurement
results, we characterize how individual components – including proxy stacks, network
protocols, packet losses and network load – can impact the latency. Finally, we shed
light on further optimizations that can fully realize the potential of the TCP splitting
solution.

2 A Web Search Case Study

Web search is one of the most important and popular cloud services. Clearly, the rele-
vance of search result is critical to the success of the service. In addition, the speed of
search response is essential. Delay of an extra half a second can affect user satisfaction
and cause a significant drop in traffic [7].

2.1 Search Response: Empirical Results

The amount of data in a search response is typically very small. To measure its size
and time, we identified about 200,000 common search terms from anonymized reports
from real-world users using ‘MSN Toolbar’. For each search term, we issued a query to
obtain a uncompressed HTML result page, against a popular Internet search engine (the
search engine name is anonymized). We issued all the queries from a single client lo-
cated on a university campus network. We measured the response size and the response
time, that is, the time elapsed from TCP SYN is sent until the last packet of the HTML
result page is received. We also extracted the time – taken within the search datacen-
ter to complete the actual search and construct the result – as reported on the resultant
HTML page.

Figure 1 plots the CDF response size of 200K search queries. We see that the size of a
typical uncompressed search response is 20-40KBytes, sometimes exceeding 50KBytes.
With a TCP Maximum Segment Size (MSS) of about 1500 bytes, this corresponds to 15
to 27 TCP data packets utilizing 4 TCP windows of data transfer (as suggested by RFC
3390 [8]). Figure 2 plots the CDF of response time of 200K search queries as observed
by the client and the CDF of search time within the datacenter (denoted “Search Time”)
as reported on the result page. From the figure, we see that a typical response takes be-
tween 0.6 and 1.0 second. The RTT between the client and the datacenter during the
measurement period was around 100 milliseconds. We remark that our measurement

1 In this paper, we focus on optimizing split-TCP solutions under given satellite DCs. We cover
an orthogonal and equally important issue – the choice of satellite DC locations – in separate
studies [5][6].

Measuring and Evaluating TCP Splitting for Cloud Services 43

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
D

F

Search Response Size (KB)

Search Response Size

Fig. 1. CDF of response sizes of 200K
search queries from a popular search en-
gine

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F

Time taken (seconds)

Search Time

Search Time
Total Time

Fig. 2. CDF of response time of 200K
search queries by popular search engine
for search reply

Fig. 3. TCP packet exchange diagram between
an HTTP client and a search server with a
proxy between them

Fig. 4. TCP splitting platform - The [number]
beside each component represents the num-
ber(s) of that component in our measurement
system

client was connected from a well-provisioned network. As we will see later, the re-
sponse time can be a lot worse for clients in the wild. From the figure, we see that the
search time within the datacenter ranges almost uniformly between 50 and 400 msec.
We also note that 5.24% of the search queries took one second or more to finish. The
95th percentile of the response time was roughly one second.

2.2 Simple Model for Response Latency

The total time for a query and response is composed of the time to send the query,
the time to construct the result page and the time to transfer the page (Other factors
that influence the user perceived time includes page rendering speed, speed of scripts
execution on browser, etc. While these are important factors, we only study the network
part of latency in this paper). The client first establishes a TCP connection with the
datacenter server through a three-way TCP handshake. The client then sends an HTTP
request to the server, which includes the search query. The sever performs the search,
incurring search time, and then ships the result page to the client. We assume that four
TCP windows (as discussed earlier) are required to transfer the result page to the client
when there is no packet loss. The total time taken in this case is (5RTT+search time).

44 A. Pathak et al.

Now, consider the potential improvement of TCP splitting, where a proxy is inserted,
close to the client, between the client and the datacenter, as shown in Figure 3. In such
a design, the proxy maintains a persistent TCP connection with the data center server,
where the TCP window size is large, compared to the amount of data in individual
search result pages. A client establishes a TCP connection and sends a search query
to the proxy. The proxy forwards the query to the datacenter server over the persistent
connection with a large TCP window (We ignore the CPU processing overhead incurred
at proxies throughout this paper as this overhead was estimated to be as low as 3.2ms
in userspace split TCP implementation and 0.1ms in kernel level split TCP implemen-
tation [2]). The datacenter server processes the search query, incurring search time,
and transmits the resulting page back to the proxy within one round trip (given the large
TCP window). The proxy then transfers the data to the client, which goes through a
TCP slow-start phase and takes several round trips.

The total time taken in this case is (5x + y + search time), where x is the RTT be-
tween the client and the proxy and y is the RTT between the proxy and the datacenter.
Comparing this with the no-proxy case, we see that TCP splitting can potentially reduce
the response time by (5RTT − (5x + y)). When x + y ≈ RTT (i.e., the proxy detour
overhead is negligible), this reduction becomes 4(RTT−x); when further x << RTT ,
i.e., the client-proxy distance is small when compared to the proxy-datacenter distance,
this reduction becomes approximately 4RTT , which can be quite substantial for inter-
active applications.

3 Experimental TCP Splitting System

To understand the gain of TCP splitting on search queries in the wild, as well as to
characterize individual components in a TCP splitting design, we’ve implemented an
experimental TCP splitting system, deployed it in a global distribution and cloud service
network, and characterized the system with search traffic from real-world users. Our
experimental system has two major components: a client measurement platform and a
TCP splitting platform.

3.1 Measurement System

Client Measurement Platform: Our goal is to measure query latencies for real clients
in the wild - with and without split-TCP proxies. To this end, we exploit AdMeasure,
a measurement platform we recently developed [6]. In a nutshell, AdMeasure deploys
a Flash object (implemented in 300 LOC in ActionScript) on multiple popular web
pages. When a client visits any one of these web pages (as shown in Figure 4), the
AdMeasure Flash object is loaded into the client at the end of the web page (so as
not to affect user-perceived page load time). The Flash object retrieves a workload list
from a central AdMeasure server, performs pre-configured Internet measurements such
as issuing search queries to the IPs contained in the workload list, and submits results
back to the AdMeasure server.

In our TCP splitting experiments, the AdMeasure server uses the client’s geographic
location (from its IP address) and instructs the client to issue search queries to the clos-
est proxy (This step incurs overhead for each query. It is a simplified implementation

Measuring and Evaluating TCP Splitting for Cloud Services 45

and should be replaced by a DNS server in a production system, where the DNS res-
olution overhead is amortized over many queries and thus minimal). The proxy with
minimum geographic distance is a reasonable approximation to the proxy with mini-
mum RTT, as shown in [9]. For simplicity, we use a fixed search query term “Barack
Obama” with/without proxies. We verify that the repetition of the same query term ex-
periences similar “search time” in the mega datacenters - i.e., there is no caching of
search results at the datacenter when same queries are issued repeatedly. We deploy the
AdMeasure Flash object on multiple popular partner websites, including the front page
for Microsoft Research, the front page for Polytechnic Inst. of NYU, the front pages of
three small online gaming websites, as well as a few personal homepages.

TCP Splitting Platform: Our TCP splitting platform consists of two parts: split-TCP
proxies and mega datacenters. We deploy split-TCP proxy (about 2K LOC in C++)
in a fraction of the satellite DCs of Microsoft’s global distribution and cloud service
network (11 locations worldwide - 6 in US, 3 in Europe and 2 in Asia). We choose 2
Live Search mega DCs (both in US). Each proxy forwards search queries to the closer
(in terms of RTT) Live Search datacenter. The proxy does not cache the results of any
search query. The proxy relays the queries on behalf of clients over a persistent HTTP
connection to the datacenter. It stores statistics like response time, content length, query
id, etc. In addition, packet traces in form of tcpdumps are recorded.

Through AdMeasure, each client is instructed to issue 6 back-to-back queries to the
closest of the 11 proxies, which forwards to the closer of the two datacenters; and each
query starts a new TCP connection to the proxy. We ignore the first two queries, which
are meant to warm up the TCP transmission window between the datacenter and the
proxy. This is to emulate production environments, where many queries and responses
are multiplexed over the same datacenter-proxy connection. To understand the degree
to which TCP splitting helps, as a baseline, each client also issues six queries directly
to the datacenter.

3.2 Measurement Results

Through AdMeasure, we collected one week’s worth of data consisting of 5,584 search
queries through proxies from 1,130 unique clients out of which 952 were located in
North America (covering 193 cities). The bias in clients’ location originates from the
fact that the websites, where AdMeasure was deployed, were popular mostly in North
America. Using one week’s worth of data, we now report our experimental results in
this subsection. Since the current deployment of AdMeasure attracts significantly more
users from North America than other continents, we report only clients originating from
North America.

Latency Model Validation: We first validate whether the simple model described in
Figure 3 indeed holds true with the real clients. We separate out the traces with packet
loss in either proxy to client or datacenter to proxy communication (traces with loss will
be re-visited later). We identify packet loss from the proxy-side tcpdump outputs. For
simplicity, we assume that retransmission implies data packet loss. ACK loss is not easy
to identify, but turns out not to be rare. Here, we apply a simple heuristic to infer ACK
loss – the sequence number gap between any two consecutive ACKs is calculated; if the

46 A. Pathak et al.

0 500 1000

0.25

0.50

0.75

1.00

Index

L
at

en
cy

(n

o
rm

al
iz

ed
)

Measured
Estimated

Fig. 5. Latency Model Validation

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F

Query Latency (normalized)

via Proxy
Direct to DC

Fig. 6. Gain of TCP Splitting

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F

Query Latency (normalized)

Loss

Fig. 7. Impact of Packet Loss Fig. 8. Time (*RTT) between first and last re-
sponse packet at proxy from datacenter

gap is bigger than two MSS (taking into account delayed acknowledgment [10]), we as-
sume there is an ACK loss (this simple heuristic might over-estimate, but is nevertheless
conservative for weeding out connections with loss).

Considering all traces without data packet/ACK loss, we now calculate an estimated
latency as: 6 times RTT2 between client and proxy (= 6 ∗ x - notation follows from
Figure 3) + 1 RTT between proxy and datacenter (= y) + datacenter search time (=
search time). Here, (y + search time) is obtained directly from tcpdump, as the time
from when the proxy forwards the query to the datacenter until it gets the first response
packet. We also obtain the true total latency from tcpdump, as the time from when the
proxy receives the SYN until the final ACK from the client.

Figure 5 (best viewed in color) plots the estimated and true (normalized) latency
of minimum of the six search queries per client visit (a few clients visited multiple
times) sorted by measured latency. Using a linear scale, we normalized (and hence
anonymized) all the real latencies with a constant large latency value throughout the
paper. It is clear that, without packet/ACK loss, the simple model nearly approximates
the true latency. Note that towards right in the figure, where the total latency is large,
the RTTs between the clients and the proxies are also large. Larger RTTs show more
variations, which tend to have a larger impact on inaccuracy.

2 As for “Barack Obama” Query, response size is 55KB which is 5 TCP windows of data,
implying, 1 RTT for TCP Handshake + 5 window packet transfer (5*RTT).

Measuring and Evaluating TCP Splitting for Cloud Services 47

Table 1. TCP window comparison, for different OS’s

Linux Win2003 Win2008

Window Size in Bytes

1st 2,920 2,520 2,920
2nd 4,380 3,780 5,840
3rd 5,840 4,980 11,680
4th 8,760 7,560 23,360
5th 11,680 11,340
6th 16,060 16,380

of Windows for 50KB+ data

7 7 5

Impact of Proxy OS: In the course of our experiment, we found that the operating sys-
tems on the proxies have a large impact on the latency, as they exhibit very different TCP
window behavior. Table 1 compares the transmission window for Linux kernel 2.6.20,
Windows Server 2003, and Windows Server 2008, using real data collected from our
proxies. As we can see, both Windows Server 2003 and Linux show a similar window
growth rate of about 1.5, whereas Windows Server 2008 shows a growth rate of 2. We
believe the difference is because Windows Server 2008 implements Appropriate Byte
Counting (ABC) [11], while Linux and Windows Server 2003 do not. ABC increases
the TCP congestion window by the number of bytes acknowledged, compared to by the
number of acknowledgements conventionally. Under delayed ACK (most common), the
difference is exactly 2 vs. 1.5. Using Windows Server 2008 can immediately reduce the
total latency by two round trips between the client and the proxy. Hence, all results
reported in the paper use proxies hosted on Windows Server 2008 machines.

How Much Does TCP Splitting Help? Recall that each client issues six queries
through the proxy and the first two responses are used to warm up the TCP transmission
window between the datacenter and the proxy. The performance of the remaining four
queries should reflect latencies that end-users will experience.

We now include all the cases - with and without data packet or ACK loss and present
the main finding of this section: a comparison of the end-to-end latency with and with-
out TCP splitting. Figure 6 plots the CDF of search latency with and without TCP
splitting. We see that at 95th percentile, TCP splitting reduces latency from 0.93 to 0.53
(both values are normalized) – a savings of 43%!

Impact of Packet Loss: Loss can occur either between the datacenters and the proxies,
or between the proxies and the clients. But, as we will see next, the latter case is much
more common. Indeed, from the packet traces, we observe that 7% of the TCP sessions
between the proxies and the clients have at least one packet retransmission. To examine
the impact of loss, Figure 7 plots the CDF of the response time for these 7% queries.
From the figure, we observe that (1) when compared to all the queries (the “via proxy”
curve in Figure 6), loss significantly impacts the latency – the (normalized) response
time of 76% queries is greater than 1.0; and (2) some of the queries are heavily affected
- the (normalized) response time of 22% queries with packet loss is greater than 2.0.

48 A. Pathak et al.

An implication of the finding is - if loss in the last mile can be handled effectively, the
latency of the 7% queries can be drastically reduced.

Latency in Hauling Data from Datacenter: In our experimental deployment, each
proxy maintains a persistent TCP connection with the datacenter. If packet loss occurs
between the proxy and the datacenter, additional round trips are required to transmit a
response. Using the last four of the total six queries per test, we now examine whether
the datacenter can always transmit the entire response to the proxies in one transmission
window. In particular, we examine the time gap between the proxy receiving the first
and last packet from the datacenter. Ideally, this time should be close to 0, if all packets
arrive in a single window. Figure 8 (private-network bars) shows that this is typically
the case for the proxies within Microsoft’s global distribution network. For comparison
purposes, we have also deployed a split-TCP proxy inside the Abilene network at Pur-
due University (public-network bars in figure 8). For this proxy, in sharp contrast, about
20% of the cases take one RTT (round trip time between this proxy and datacenter),
indicating that at least one packet loss has occurred. An implication of this finding is
- when Cloud Service providers start to deploy satellite DCs beyond their private net-
works, they are more likely to encounter the so-called “middle-mile” problem [3]. In
that case, a customized FEC-based low latency reliable protocol (e.g.,[12]) between the
proxy and the datacenter should be beneficial.

Stress Testing: During our measurements, we were able to attract over 1000 clients
in one week’s time frame. This rate does not give us the opportunity to measure the
performance of our system under load. Specifically, we wanted to measure the response
time between the proxy and the datacenter under load. As nearby queries go through
the same connection between the proxy and the datacenter, they would suffer the same
fate , i.e., if one query experiences a loss, the queries succeeding it would also suffer
due to TCP semantics.

To stress-test our split-TCP platform, we conducted the following experiment in all
the 11 proxy locations. Due to the lack of high client arrival rate, we made each proxy is-
sue back-to-back queries to itself destined to the datacenter. Each query fetches a single
image of about 50KB size from a web server in the datacenter, over a single persistent
HTTP connection. We choose to fetch a single static image since this would incur neg-
ligible time at web server and we would have only the network under the microscope.
The web server was configured with unlimited HTTP requests over the persistent HTTP
connection. The query rate was varied from 1 request/sec to 1000 request/sec. At each
rate, we dispatched 10000 queries and waited for all the responses to be received. For
every query, we measured the response time. Since we were fetching a static image
from the web server, the latency of the web server itself should be negligible. Over the
persistent HTTP connection with a large TCP window, the response time should be a
single RTT.

Figure 9 plots the results of stress testing for 8 of the 11 proxy locations (the rest 3
similar). For every location, we plot one bar for each request rate indicating the percent
of requests that took 2 or more RTT to complete. For example, for the proxy in Ams-
terdam, at 1 request/sec, 0.02% of the requests took 2 or more RTT. We issued a total
of 10,000 requests (1 per second). This means that 2 out of the 10,000 requests took

Measuring and Evaluating TCP Splitting for Cloud Services 49

Fig. 9. Stress Test: Percentage of requests that took more 2 or more RTTs to complete

more than 2 RTT. Those were in fact the first two requests that warmed up the TCP
connection. Even at a high request rate, less than 0.1% of the queries incur more than 2
RTTs. This experiment shows that, in the private network of satellite datacenters, even
high load can be readily handled by persistent HTTP connections.

4 Related Work

Proposals for using persistent-connection HTTP and split-TCP proxy to improve web
transfer performance can be dated back at least to the mid 90’s. Early important work
includes that of Padmanaban [13] and Mogul [14]. Proxies can provide additional ben-
efit through clever techniques, such as using static content to open up TCP window [4].
Furthermore, proxies can provide benefit through adaptations of piggyback mechanisms
[15]. Authors in [1][2] evaluate performance of split-TCP proxies using a very limited
set of clients. Through emulation, [1] evaluated socket-level TCP splice using a single
client and various latency/loss rate. The focus was to estimate the number of CPU cy-
cles that a proxy spends processing requests. [2] estimated the latency penalties incurred
by split-TCP proxies. Authors estimated that a kernel level split-TCP implementation
incurs only 0.1ms. However, none of the studies were deployed and evaluated using a
production environment and through a large number of real-world end-users. Moreover,
none of studies dissects the splitting TCP solution from as many aspects as we do, nor
do they outline the directions for further optimizations.

5 Conclusion and Future Work

In this paper, we investigate the benefits and optimizations of TCP splitting for accel-
erating Cloud Services. Using web search as an exemplary case study and through an
experimental system deployed in a production environment, we show that TCP splitting
can indeed reduce the response time of Cloud Services significantly. We also identify

50 A. Pathak et al.

a number of directions for further optimizations in order to achieve the full benefit of
TCP splitting.

During our experimental deployment, we observe that packet loss is rather common
between the end-users and the proxies, even though the proxies are deployed in a well-
provisioned and well-connected production network. This is a bit surprising, but yet
consistent with observations from other production networks [4]. As an ongoing work,
such reality prompts us to pursue TCP stack modifications on the proxy so as to more
effectively handle packet loss and improve the latency performance.

Furthermore, along with optimizing each component in the TCP splitting system,
expanding the presence of the global distribution network (and thus proxies) will also
help. The holy grail question being – how many locations will be sufficient and where
should these locations be? We are developing new methodologies [6] and conducting
large scale studies in order to answer this question conclusively.

References

1. Ibm, R.U., Rosu, D.: An Evaluation of TCP Splice Benefits in Web Proxy Servers. In: WWW.
ACM Press, New York (2002)

2. Maltz, D.A., Bhagwat, P.: TCP Splicing for Application Layer Proxy Performance. Technical
report, IBM Research Report 21139 (Computer Science/Mathematics) (1998)

3. Akamai: Akamai’s EdgePlatform for Application Acceleration. Akamai, Inc. (2007)
4. Tariq, M., Zeitoun, A., Valancius, V., Feamster, N., Ammar, M.: Answering What-If Deploy-

ment and Configuration Questions with WISE. In: ACM SIGCOMM (August 2008)
5. Huang, C., Wang, Y.A., Li, J., Ross, K.W.: Measuring and Evaluating Large-Scale CDNs.

MSR Technical Report MSR-TR-2008-106 (2008)
6. Wang, Y.A., Huang, C., Li, J., Ross, K.W.: Measuring Network Performance for Cloud Ser-

vices with AdMeasure (2009) (Submitted)
7. Mayer, M.: Web 2.0, http://glinden.blogspot.com/2006/11/

marissa-mayer-at-web-20.html
8. Allman, M., Floyd, S., Partridge, C.: Increasing TCP’s Initial Window. RFC 3390 (October

2002)
9. Krishnan, R., Madhyastha, H.V., Srinivasan, S., Jain, S., Krishnamurthy, A., Anderson, T.,

Gao, J.: Moving Beyond End-to-End Path Information to Optimize CDN Performance. In:
ACM IMC (2009)

10. Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. RFC 2581 (April 1999) (Up-
dated by RFC 3390)

11. Allman, M.: Tcp byte counting refinements. SIGCOMM Comput. Commun. Rev. (1999)
12. Huang, Y., Mehrotra, S., Li, J.: A Hybrid FEC-ARQ Protocol for Low-Delay Lossless Se-

quential Data Streaming. In: ICME (2009)
13. Padmanabhan, V.N., Mogul, J.C.: Improving HTTP Latency. In: WWW Conference (1994)
14. Mogul, J.C.: The Case for Persistent-Connection HTTP. ACM CCR (1995)
15. Cohen, E., Krishnamurthy, B., Rexford, J.: Improving End-to-End Performance of the Web

Using Server Volumes and Proxy Filters. ACM CCR (1998)

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

The Myth of Spatial Reuse with Directional
Antennas in Indoor Wireless Networks

Sriram Lakshmanan1, Karthikeyan Sundaresan2, Sampath Rangarajan2,
and Raghupathy Sivakumar1

1 Georgia Institute of Technology, Atlanta, GA, U.S.A.
2 NEC Labs. America, Princeton, NJ, U.S.A.

Abstract. Interference among co-channel users is a fundamental prob-
lem in wireless networks, which prevents nearby links from operating
concurrently. Directional antennas allow the radiation patterns of wire-
less transmitters to be shaped to form directed beams. Conventionally,
such beams are assumed to improve the spatial reuse (i.e. concurrency) in
indoor wireless networks. In this paper, we use experiments in an indoor
office setting of Wifi Access points equipped with directional antennas,
to study their potential for interference mitigation and spatial reuse. In
contrast to conventional wisdom, we observe that the interference mit-
igation benefits of directional antennas are minimal. On analyzing our
experimental traces we observe that directional links do not reduce in-
terference to nearby links due to the lack of signal confinement due to
indoor multipath fading. We then use the insights derived from our study
to develop an alternative approach that provides better interference re-
duction in indoor networks compared to directional links.

Keywords: Indoor wireless networks, directional antennas, spatial reuse.

1 Introduction

The growing density of wireless deployments and limited spectrum availability
have motivated the need for techniques that provide increased capacity using
the same spectrum. This makes smart antennas a natural solution for improving
wireless network performance. Offered by several commercial vendors [4,5], smart
antennas are an array of multiple antenna elements, available in different form
factors. Depending on the sophistication of signal processing involved, these can
be broadly classified as multiple-input multiple-output (MIMO) and beamforming
antennas. In MIMO, multiple antenna elements at both the transmitter (Tx) and
receiver (Rx) along with the multipath nature of the environment, help create
several virtual pipes between the Tx and Rx, over which multiple independent
data streams (spatial multiplexing) or dependent data streams (space-time cod-
ing) can be sent [7]. On the other hand, beamforming is a process whereby the
Tx forms a beam pattern to reinforce signal reception at the Rx [7]; allowing
for operation even with omni-directional clients. Using a predetermined set of
fixed beam patterns is referred to as switched beamforming; forming arbitrary

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 51–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 S. Lakshmanan et al.

beam patterns on the fly in the signal space is referred to as adaptive beam-
forming, whose sophistication comes at the expense of channel estimation and
large feedback overhead from Rx to Tx. Given the tradeoff between complex-
ity, performance and ease of deployment, switched beamforming provides a nice
balance and is consequently popular in practical WLANs [3,4].

Switched beamforming is realized using an antenna array and a set of beams
each of which typically focuses signal energy in a specific direction. Hence they
are also called directional antennas. In addition to improving the link quality
(SNR), they also enable multiple links to operate concurrently i.e. spatial reuse,
by suppressing energy in unwanted directions. While their benefits are well un-
derstood in outdoor environments [8,9,10], when it comes to indoors, conven-
tional wisdom appears to be that the multipath nature of the environment has
a detrimental effect on their link quality benefits [7]. In our earlier work [2],
through experimental measurements, we showed that although the effectiveness
of directional antennas is reduced indoors, they still hold promise to improve
the link quality. This has prompted researchers to design practical solutions
[3,6] for leveraging their benefits indoors. However, given the growing density
of wireless networks, improving spatial reuse becomes the more critical problem
and existing works [3,6,9] assume the occurrence of spatial reuse when using
directional antennas without establishing how much of it is actually available in
practical indoor scenarios. Thus, it becomes critical to understand and address
the following basic questions. (i) What is the potential of directional antennas
to improve spatial reuse in indoor wireless networks? (ii) Are there simple yet
effective strategies that provide improved spatial reuse in indoor environments?

To understand the potential of directional antennas for interference reduc-
tion, we perform measurements with the help of Wifi APs with eight element
arrays in an indoor office. Our studies reveal the following key inferences. (1)
Directional antennas do not hold much promise for improved spatial reuse (un-
like for link quality) due to multipath scattering in the environment which cause
signal leakage in unwanted directions. (2) Indoor multi-antenna channel exhibits
significant channel gain variation across antennas thereby affecting directional
antennas which typically split the power equally across antenna elements. (3)
Selecting only a subset of the available antenna elements and splitting power
across them helps strike a more efficient balance between improving the desired
link quality and reducing the interference caused to other concurrent links.

The rest of the paper is organized as follows. In Section 2, we present some
background on directional antennas, followed by the experimental setup and
methodology in Section 3. We evaluate the potential of directional antennas for
spatial reuse in Section 4. We analyze the reasons for the observed performance
and propose an alternate reuse strategy in Section 5. We conclude with some
discussions in Section 6.

2 Background

Conventional antennas are referred to as omni-directional antennas since they ra-
diate power equally in all directions. Beamforming is an advancement in antenna

The Myth of Spatial Reuse with Directional Antennas 53

(a) Phocus Array

 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

(b) Directional pattern (c) Low side lobe pattern

Fig. 1. Antenna array and directional beams

technology that adjusts the shape of the radiation pattern using an array of an-
tenna elements as shown in Figure 1(a). It is typically achieved by applying com-
plex weights (containing a magnitude and phase) to each of the antenna elements.
By applying an appropriate set of weights, the signals can be reinforced in a re-
quired direction to cause a high Signal To Noise Ratio (over an omnidirectional
pattern) at the receiver in that direction. The beam patterns with such a high gain
direction (main-lobe) are called directional beam patterns (e.g. Figure 1(b)).Such
beam patterns also incur a spillover of energy in unwanted directions (referred
to as the side-lobes). The weights can be optimized to reduce sidelobes (as illus-
trated in Figure 1(c)) although at the cost of reduced main lobe gain or increased
beamwidth.

3 Measurement Methodology

Setup: Our experimental setup, shown in Figure 2, comprises six access points
and eight clients distributed in an indoor office building. Each of the access
points is a commercial 802.11g device fitted with an eight element antenna array
from Fidelity-Comtech [1]. Each client is a laptop running Ubuntu 8.10 equipped

Fig. 2. Layout of Access Points and Clients

54 S. Lakshmanan et al.

with a D-Link 802.11g card based on the Atheros AR5212 chipset. The nodes run
Linux kernel v2.4.26 and the MadWiFi driver and their WLAN radios connect
to external omnidirectional antennas with a gain of 6dBi.

Methodology: Each access point is pre-loaded with sixteen directional beams
provided by the manufacturer that together span 360 ◦. These have also been
used in related work [3]. For reference, we use a fixed element (element 0) for the
omni-directional pattern. Throughout the experiments, the total power trans-
mitted from each AP is fixed at 10 dBm. All experiments are performed on
channel 6 in the 2.4 GHz band in a building with no external Wifi interfer-
ence. Using a channel scan, it is ensured that there is no extraneous interference
before each measurement. Multiple time-spaced experiments are performed for
increased confidence.We use Iperf to generate traffic from each AP to its client
and the ‘athstats’ madwifi utility on each laptop to obtain fine grained statis-
tics from the card. In each run, 128 Byte UDP packets are sent from the APs
to the intended clients. The antenna pattern at APi is fixed at 1 and that at
APj is consecutively changed from 1 to 16 after which the pattern at APi is
changed to 2 and so on. In all, this yields a total of 256 pattern combinations for
a two AP two client scenario. This is repeated for other AP pairs. The received
signal strength (RSSI) at clients is the metric of interest and is a measure of
the received SNR reported by the card. We compute the aggregate rate of two
concurrent links, using the signal and interference powers received at each client
from the desired and interfering APs respectively, along with the noise floor of
the radio. We consider the default association model that is prevalent in current
WLANs where a client uses the strongest AP for association. We use all unique
AP-client pairs (equal to 60 after taking into account the association) for the
aggregate results and a representative set of two APs, AP1 and AP2 with clients
C1 through C8, for the microscopic results.

Strategies: When considering the operation of multiple links in a single-hop
wireless network, the following four strategies are possible: (1) Omni-Joint: Two
links operate concurrently using omni-directional antennas with potential inter-
ference; (2) Omni-TDMA: Two links operate in a time division manner using
omni antennas without interference; (3) Dir-Joint: Two links operate concur-
rently using one directional beam each from the available set with potential
interference; (4) Dir-TDMA: Two links operate using one directional beam each
in a time division manner without interference.

Metrics: In addition to aggregate rate of the links, we introduce two new metrics
to characterize the spatial reuse.
i. Aggregate rate: We use both the 802.11g SINR table and the Shannon Capacity
expression(C = log2(1 + SINR)) to study the aggregate rate with practical
and ideal rate adaptation. The aggregate rate for joint strategies is the sum
of rates of the concurrent links taking interference into account (SINR). For
TDMA strategies, it is given by the sum of rates on the individual links without
interference (SNR) and scaled by half (due to time multiplexing).

The Myth of Spatial Reuse with Directional Antennas 55

ii. Interference power ratio: It is the factor by which the interference power at
a client from an interfering AP is reduced with a directional beam compared
to Omni and indirectly contributes to spatial reuse. Ideally, a highly directional
beam in one direction at an AP should cause very low interference power in
other beam directions. In practice, the effect of sidelobes and indoor scattering
might result in several directions receiving strong interference from an AP.
iii. Spatial reuse factor: Aggregate rate by itself does not directly capture spatial
reuse since it is impacted by two factors namely, link (array) gain and interference
reduction (spatial reuse) gain. While the link gain improves the signal power S,
spatial reuse gain comes from the reduction of interference I to jointly impact
the SINR of the receiver, making it hard to isolate their contributions. However,
we note that the link gain is common to both TDMA and joint strategies, while
spatial reuse gain is specific to joint strategies, and hence define the following
metric to better capture spatial reuse:

β =
Sum rate of concurrent links
Average rate of isolated links

(1)

Thus, when β > 1, we have throughput benefits that are directly contributed
due to interference reduction and hence spatial reuse.

4 Spatial Reuse with Directional Antennas

4.1 Aggregate Rate of Directional Links

We first study the performance improvement that concurrent directional links
provide over other competing strategies. We perform experiments over all possi-
ble two link pairs (sixty pairs) in our testbed. We plot the aggregate rate CDF
results (using 802.11g SINR-rate table) for each of the four strategies: Omni-
Joint, Omni-TDMA, Dir-Joint, Dir-TDMA in Figure 3 along with the ideal two
link rate. While directional strategies provide good throughput improvements
compared to Omni strategies as expected, there are two important insights that
the figure reveals: (1) Dir-Joint performs worse than Dir-TDMA for around 20%

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

Aggregate Rate (Mbps)

C
D

F

Dir−Joint
Omni−Joint
Dir−TDMA
Omni−TDMA
Ideal two link

Fig. 3. Aggregate rate of directional links

56 S. Lakshmanan et al.

of the link pairs, indicating that joint use of links is not always good. (2) For
around 40% of the cases, Dir-TDMA performs better than Dir-TDMA. How-
ever, only in 10% of the cases does Dir-Joint achieve the ideal two link rate (108
Mbps). This indicates that a only a small fraction of the gains of directional
beams is contributed by interference suppression. This is also confirmed by the
fact that the median gain of both Dir-Joint and Dir-TDMA is the same (54
Mbps).

4.2 Analyzing the Performance Degradation

Interference power reduction: To understand the reasons behind marginal
spatial reuse, we focus on the interference powers at the receivers. We first present
the CDF of the interference power ratio over different two link configurations.
By configuration, we mean each of the two APs communicates simultaneously
with one of its clients using one of 16 directional beams. In the ideal case,
all the beams (except that beam which points from the interfering AP to the
client) should lead to very low interference power at the client. Consequently, one
would expect that most of the configurations yield an interference power ratio
less than 1 (0 dB). Results in Figure 4(a) reveal the surprising observation that
for more than 40 % of the configurations, the use of directional beams increases
the amount of interference caused (compared to omni) rather than decreasing it.
This clearly shows that unlike expected in an ideal free space environment, most
beams cause significant interference powers to be radiated towards unintended
clients. This is shown in greater detail in Figure 4(c) which plots the interference
power reduction for a single two-link pair across beam configurations alone. This
non-ideal interference reduction occurs due to a combination of factors such
as side lobes, scattering, varying channel gains across different elements, etc.
However, the net impact is that directional antennas do not provide the assumed
interference power reduction as expected.

We further analyze the interference power reduction assuming that an ideal
beam selection algorithm is used. i.e the best combination (pair) of beams that
maximizes the aggregate throughput of the two concurrent links is used. The

−15 −10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Intereference power ratio (dB)

C
D

F

(a) Intf. reduction

0 5 10 15 20

−10

−5

0

5

10

Link Pair #

In
tf
.
p
o
w

e
r

ra
ti
o
 (

D
ir
/O

m
n
i)

Link 1
Link 2
Link 1 mean
Link 2 mean

(b) Intf. - best rate beam

−10 −5 0 5
0

0.2

0.4

0.6

0.8

1

Interference power of Dir to Omni (dB)

C
D

F

(c) Intf. - fixed link

Fig. 4. Interference power reduction of directional beams

The Myth of Spatial Reuse with Directional Antennas 57

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Beta

C
D

F

(a) cdf of β

0 5 10 15

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Link Pair #

M
ax

im
um

 B
et

a

(b) Best β across link pairs

Fig. 5. Spatial reuse factor β

resulting interference power for this case is plotted for link 1 and link 2 for 16
pairs of client locations in Figure 4(b). From the figure, we observe that while
some of the link pairs do indeed have a reduced interference power compared to
omni, most of the pairs have increased (> 0 dB) interference power. The mean
interference is increased by 3 dB and reduced by -3 dB for link 1 and link 2
respectively indicating that the interference suppression is minimal even with
ideal beam adaptation.

Distribution of spatial reuse factor β: For each pair of links, the signal and
interference powers are measured at the clients while changing the beam pat-
tern on the two APs chosen as described in Section 3 for the Joint and TDMA
directional strategies. The CDF of β over all link pairs and beam configurations
is presented in Figure 5(a). The results reveal that: (1) Unlike a free space ideal
environment, where the expected improvement is β = 2, the maximum improve-
ment is much less indoors (i.e around β = 1.45). (2) In an ideal environment
where directionality is preserved, the CDF of β is expected to indicate a sharp
rise near 2. However, in practice, the CDF is distributed from 0.3 to 1.45 indi-
cating that the expected directionality and consequent interference suppression
are not obtained in practice for a majority of link and beam pair configurations.
(3) While the median improvement is expected to be close to β = 2 with good
interference suppression, the actual median improvement is 0.9! Further, more
than 70% of the configurations have β < 1, indicating that for a majority of
scenarios, there is no benefit from spatial reuse with directional antennas, where
TDMA using link gain performs better.

Performance with optimal beam selection: We also fix two APs, AP1 and
AP2, and determine the best beam combination (pair) for concurrent operation
(Dir-Joint) and best directional beams for isolated operation (Dir-TDMA) for
the resulting 16 link pairs, results of which are presented in Figure 5(b). Note
that this Dir-Joint is an exhaustive version of the greedy algorithm in [3] and
thus upperbounds the gains from spatial reuse. The maximum value of β for
the 16 link pairs is plotted in Figure 5(b). The figure indicates that the best

58 S. Lakshmanan et al.

improvement using concurrent directional beams is distributed from 0.6 to 1.45.
Additionally, there are link pairs (namely 2,5,6) for which Dir-Joint performs
worse than Dir-TDMA. More interestingly, the average β across link pairs is just
1.17, meaning that the contribution from spatial reuse improves performance by
only around 17%.

Thus, our experiments highlight that while directional antennas provide gains
over omni in indoor environments, the benefits are contributed largely by link
gain and not by spatial reuse.

5 Alternate Strategy for Spatial Reuse

To gain a deeper understanding, we study the indoor multiple antenna chan-
nel. Our experiments reveal that the channel gain varies drastically (over 10
dB) even for antennas which are closely spaced due to multipath fading. This
drastic variation in channel gain motivates adapting the power transmitted from
each antenna. This unequal gain across antennas also makes directional beams
sub-optimal because directional beams are typically created by splitting the
transmit power equally across the antenna elements. To verify this proposition,
we consider a strategy called antenna selection, where the antenna element with
strongest gain is alone chosen for transmission and allocated all the power.

We experiment with fifty links (each activated in isolation) and measure the
Signal to Noise Ratio at the receiver for both directional and selection of the
best of eight elements. We observe that for more than 80% of the locations, an-
tenna selection outperforms directional beamforming. Given the highly varying
nature of the channel, a strategy that uses the higher gain channels (antennas
at the Tx) would lead to higher SNR at the receiver. However, in a multi-link
scenario, the transmitter must also minimize the interference it causes to other
receivers. Hence, we study how antenna selection performs in a two link config-
uration with AP1 and AP2 in our testbed. We try out all possible combinations
of single element selection. i.e AP1 and AP2 select antenna elements i and j re-
spectively, ∀i, j ∈ [1, 8]. We then compute the pair of antenna elements (one for
each link) which yields the highest aggregate throughput for each link pair. The
corresponding interference powers at the two clients is noted. We then compute
the difference in interference power reduction compared to Dir-Joint for each link
and plot the results in Figure 6(a). It can be seen that, while selection performs
well from a single link standpoint, it’s performance in a multi-link context is
not as significant. i.e it does not provide a large reduction in interference power
compared to Dir-Joint.

Link gain - Interference reduction trade-off: The previous experiments high-
light the fact that the multi-link scenario is more constrained and both the de-
sired and interfered clients must be considered when choosing the transmission
beam pattern. Consequently, from a multiple antenna usage standpoint, there
is a trade-off between the link (diversity gain) and the interference suppression
gain. Using single element selection leverages the link to the desired client best,
because it transmits all the power on the highest gain channel. However, this

The Myth of Spatial Reuse with Directional Antennas 59

2 4 6 8 10 12 14 16

−6

−4

−2

0

2

4

6

8

Link Pair #

In
te

rf
e

re
n

c
e

 p
o

w
e

r
o

f
s
e

l
to

 D
ir
 (

d
B

)

Client 1
Client 2

(a) Selection - two links

0 5 10 15
−10

−5

0

5

10

15

20

25

Link Pair #

T
h

ro
u

g
h

p
u

t
o

v
e

r
D

ir
 (

%
)

(b) 1 element selection

0 5 10 15
−10

0

10

20

30

40

50

60

Link Pair #

T
h

ro
u

g
h

p
u

t
o

v
e

r
D

ir
 (

%
)

(c) 2 element selection

Fig. 6. Antenna selection rate improvements

0 5 10 15
0.5

1

1.5

2

Link Pair #

M
ax

im
um

 B
et

a

Dir
Sel 1

(a) 1 element selection

0 5 10 15
0.5

1

1.5

2

Link Pair #

M
ax

im
um

 B
et

a

Dir
Sel 2

(b) 2 element selection

Fig. 7. Spatial reuse factor β for antenna selection

may not correspond to least interference to other clients. Similarly, selecting all
available elements with equal power split also provides no flexibility in inter-
ference suppression and reduces array gain. On the contrary, selecting a small
subset of elements with equal power split (antenna subset selection), provides
the flexibility to tradeoff some array gain to choose antenna elements that also
provide good interference suppression. To verify whether the trade-off occurs in
practice, we evaluate the aggregate throughput improvements of both one ele-
ment and two element selection. The throughput gain of one element selection
compared to Dir-Joint is plotted in Figure 6(b). The figure reveals that single
element selection provides throughput gains over directional for some link pairs
but not all. We then plot the throughput gains of two element selection in Fig-
ure 6(c). This figure reveals two important facts: (1) The maximum throughput
gain with one element selection is around 23% whereas the gain of two element
selection is 53%. (2) More locations have a positive gain over directional. These
results indicate that antenna subset selection is a promising approach.

Further, we evaluate the spatial reuse factor β for the single element and
two element selection strategies for each of the link pairs. The results plotted in
Figure 7 indicate that the improvements are more pronounced with two element
selection reaching up to a factor of 1.6 (which is closer to the maximum β of 2

60 S. Lakshmanan et al.

for two links). Additionally, the spatial reuse factor averaged over links increases
from 1.19 with directional to 1.26 with single element selection and 1.42 using
two element selection, thus confirming that antenna subset selection is a better
spatial reuse strategy compared to directional.

6 Conclusion

The ability of directional antennas to reduce interference and consequently im-
prove the spatial reuse in indoor wireless networks is impacted significantly
by multipath scattering and fading. Additionally, indoor wireless channels have
large gain variations across multiple antennas which motivates strategies that
adapt the power transmitted on each antenna element. Selection of a subset of
antennas enables such adaptation with low complexity. Intelligent algorithms to
identify the right subset of antenna elements and comparison of its performance
with closed loop MIMO strategies is an interesting avenue for future work.

References

1. Phocus Array, http://www.fidelity-comtech.com
2. Blanco, M., et al.: On the Effectiveness of Switched Beam Antennas in Indoor

Environments. In: Claypool, M., Uhlig, S. (eds.) PAM 2008. LNCS, vol. 4979, pp.
122–131. Springer, Heidelberg (2008)

3. Liu, X., et al.: DIRC: increasing indoor wireless capacity using directional antennas.
In: ACM SIGCOMM 2009 (2009)

4. Ruckus Wireless Inc., http://www.ruckuswireless.com
5. Cisco Inc., http://www.cisco.com
6. Subramanian, A.P., Lundgren, H., Salonidis, T.: Experimental Characterization of

Sectorized Antennas in Dense 802.11 Wireless Mesh Networks. In: ACM Mobihoc
2009 (2009)

7. Paulraj, A., Nabar, R., Gore, D.: Introduction to space-time wireless communica-
tions. Cambridge University Press, Cambridge (2003)

8. Navda, V., et al.: MobiSteer: Using Steerable Beam Directional Antenna for Ve-
hicular Network Access. In: ACM MobiSys 2007 (2007)

9. Choudury, R.R., Yang, X., Ramanathan, R., Vaidya, N.: On designing MAC proto-
cols for wireless networks with directional antennas. IEEE Transactions on Mobile
Computing 5, 477–491 (2006)

10. Das, S.M., et al.: DMesh: Incorporating practical directional antennas in multi-
channel wireless mesh networks. IEEE Journal on Selected Areas in Communica-
tion 24(11), 2028–2039 (2006)

http://www.fidelity-comtech.com
http://www.ruckuswireless.com
http://www.cisco.com

Influence of the Packet Size on the One-Way
Delay in 3G Networks

Patrik Arlos and Markus Fiedler

Blekinge Institute of Technology
Karlskrona, Sweden

{patrik.arlos,markus.fiedler}@bth.se

Abstract. We currently observe a rising interest in mobile broadband,
which users expect to perform in a similar way as its fixed counterpart.
On the other hand, the capacity allocation process on mobile access links
is far less transparent to the user; still, its properties need to be known in
order to minimize the impact of the network on application performance.
This paper investigates the impact of the packet size on the minimal
one-way delay for the uplink in third-generation mobile networks. For
interactive and real-time applications such as VoIP, one-way delays are
of major importance for user perception; however, they are challenging
to measure due to their sensitivity to clock synchronisation. Therefore,
the paper applies a robust and innovative method to assure the quality
of these measurements. Results from measurements from several Swedish
mobile operators show that applications can gain significantly in terms
of one-way delay from choosing optimal packet sizes. We show that, in
certain cases, an increased packet size can improve the one-way delay
performance at best by several hundred milliseconds.

1 Introduction

Increasingly many devices use mobile connectivity for the exchange of data.
Users expect the emerging mobile broadband to perform in a similar way as its
fixed counterpart, no matter to which extent the medium is shared. In the third
generation of mobile communications, represented by WCDMA and HSDPA, the
per-user capacity allocation depends amongst others on the radio conditions,
the user density, the mobility pattern, the offered traffic, etc. It is, however,
not communicated explicitly towards user and the applications that might need
this information for yielding the best performance, given the specific allocation.
This imposes the need for end-to-end measurements with the goal to highlight
network impact on the performance parameters of interest.

Given this background, this paper investigates the impact of the packet size
on the minimal one-way delay (OWD) for the uplink in third-generation mobile
networks, which is an important performance parameter for interactive and real-
time applications. In particular, the minimal OWD provides information about
the best-possible performance with given settings, undisturbed by congestion,
radio problems, etc. However, we should not omit importance for the uplink’s

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 61–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 P. Arlos and M. Fiedler

OWD behaviour as it will affect the TCP performance accross mobile networks,
as the acknowledgement packets utilizes this link. However, in this paper, we will
not investigate the average and maximum OWD values for the uplink, as these
are more likely to exhibit temporal and spactial artifacts, varying from test to
test. As OWD measurements are very sensitive to clock synchronisation issues,
the paper also presents and demonstrates a robust and innovative method to
assure the quality of these measurements. We focus on the minimal OWD as our
goal is to investigate the best-possible system behaviour, instead of the statistical
behaviour of the system. Hence, our results can be seen as best case with regards
to the OWD perceived by an application.

The paper is organized as follows. First, we describe and verify the measure-
ment method in Section 2. Section 3 describes and discusses the experimental
setup and analysis procedure. In Section 4, minimal OWD in several Swedish
networks are evaluated as a function of the packet size. Section 5 concludes the
paper and points out future work.

2 Method

The fundamental problem when evaluating the OWD is how to handle the clock
synchronization. The OWD is, as such, simple to calculate. The OWD of the ith

packet, di, is calculated as:
di = Ti,b − Ti,a (1)

where Ti,a is the arrival time of the ith packet at location a; correspondingly Ti,b

is the arrival time of the same packet at location b. In the general case, the time
stamps (Ti,x) are obtained from two different clocks. To get an unbiased OWD
estimate, these clocks should be synchronized. In [1] the authors investigate
the three main synchronisation methods NTP, GPS and IEEE1588 used for
OWD measurements. Usually the Network Time Protocol (NTP) [2] is used.
This enables the clocks to be synchronized within 10 − 20 ms for WAN, and
< 1 ms for LAN. If the synchronisation needs to be better, then a GPS solution
is needed. Together with NTP, this allows a synchronisation in the order of 1 μs.
The current state of the art is to use Endace [3] DAG cards together with a GPS,
then the theoretical synchronisation is in the range of 60 ns. However, according
to our own experience [6], this is difficult to obtain in practice, as we still have
two independent clocks. In [4] the author described the internal functioning of
the time-keeping in side of the DAG cards, and in [5] the authors describe a
method to synchronize clocks accross the Internet. Regardless of what method
or technique used for synchronisation, the OWD estimations can at the worst
be twice that of the synchronisation level [6].

Our method uses wiretaps and a special wiring in conjunction with DAG cards
to obtain the time stamps from the same clock. In Figure 1 a schematic of the
wiring is shown. When a packet is sent from SRC to DST it will travel across the
upper wire (dashed line). As is passes the first wiretap A, a copy of the packet is
made and is sent to the interface dag00, where it arrives it at time T1,A. At the
same time the original packet makes its way across the network and eventually

Influence of the Packet Size on the One-Way Delay in 3G Networks 63

SRC DST

Wiretap

...

Wiretap

A B

MP

dag00 dag01 dag10 dag11

T1,A T1,B T2,A T2,B

Fig. 1. Wiring method

reaches wiretap B. Here, a copy is sent to interface dag01, where it is received at
T1,B. Similarly, if a packet is sent from DST to SRC the packets are duplicated by
the wiretaps and made available to the dag1x interfaces. The main drawback with
this wiring is that we require close proximity between SRC and DST. The actual
distance is determined by the technology that carries the traffic from the wiretap
to the DAG cards. The main benefit with this wiring, is that the packet will be
time stamped by the same clock, thus subject to the same drift/skew if present.

Let t0 be the time when the packet actually passes wiretap A, and t1 when it
passes wiretap B. Then T1,A = t0 +La/Ps, where La is the cable length between
wiretap A and dag0, and Ps is the propagation speed in that cable. Similarly,
we define T1,B = t1 +Lb/Ps = t0 +L/Ps +Lb/Ps, where Lb is the cable distance
from wiretap B to dag0, and L is the cable distance between wiretap A and B.
The OWD is then obtained as:Δ = T1,B − T1,A = L/Ps + Lb−La

Ps
. So if we select

Lb = La we cancel the second factor and obtain the desired OWD between the
wiretaps.

To verify the method, we conducted two experiments using the setup as shown
in Figure 1. In the first experiment the network in between the wiretaps was
replaced by a 10 m CAT5e cable, in the second a 25 m cable was used instead.
The CAT5e cable has a Ps of 0.59c ∼ 0.64c [7,8], where c = 299 792 458 m/s. The
theoretical propagation time (Pt) is then between 52.1 ns and 56.6 ns for the
first experiment, and 130.3 ns and 141.4 ns for the second. In Table 1 we show
the corresponding results. As we are limited by the DAG 3.6 card resolution of
approximately 60 ns [4,6], our OWD values are multiples of this. Our results are
within the span given by the theoretical results. Obviously, the method allows
us to accurately detect changes in the OWD on the scale of a few nanoseconds.

Table 1. Summary statistics from the verification experiments

Exp Minimum Mean Max Std.dev Theoretical
[ns] [ns] [ns] [ns] [ns]

1 0.0 54.7 119.3 17.4 52.1 ∼ 56.6
2 119.0 139.2 179.0 28.2 130.3 ∼ 141.4

64 P. Arlos and M. Fiedler

3 Setup

To evaluate the mobile networks, we used the setup shown in Figure 2. Here
SRC is sending traffic to DST. This is done via a Gateway (GW) that uses a
Huawei E220 USB modem to connect to the mobile network. In-between the
SRC and GW, we placed wiretap A. The other wiretap B is placed just in front
of DST. The SRC and DST (both are P2-400 MHz with Linux 2.4 kernels) are
connected with 10 Mbps full-duplex Ethernet cards (3Com). The GW is a Dual
AMD Athlon 64 with 2 Gbytes of RAM (Windows XP SP2). The GW was con-
figured for Internet sharing of the mobile network and no firewall was active.
The SRC computer connected directly to the built-in Ethernet card (Broadcom)
of the GW. The wiretaps feed into a Distributed Passive Measurement Infras-
tructure [9] enabled Measurement Point (MP) that stored the packet trace to
file. Furthermore, the DAG cards were synchronised using both NTP and GPS.

GW

Radio tower

Operator
Network

Internet DST

Wiretap
Wiretap

A
B

SRC

MP

Δ1

Δ2 Δ3
Δ4

Fig. 2. Setup used in experiments

3.1 Traffic Generation

To generate data we used a C++ program that sends UDP datagrams and
allows us to control packet sending rate and datagram size. Furthermore, the
progam uses an application layer header with three fields. These fields allow us
to separate experiments (experiment id), experiment run (run id), as well as
packets within a particular experiment run (sequence number). The sequence
number starts at zero and is incremented by one for each transmitted datagram.
Based on these three fields, we can uniquely identify each packet, thus avoiding
any ambiguities associated with hashing.

During the evaluation of the mobile networks we used two streams running
in parallel. The first sends one packet of size K bytes every Ts second, which
is done 200 times. It then waits for a fixed amount of time, and then starts
to send another batch of 200 packets, this time with a larger packet size. The
procedure is then repeated for all the packet sizes we wish to investigate. The
second stream runs continously throughout the evaluation of all the different
packet sizes, sending one 48 byte packet every 10 second. The purpose with
this stream is to detect any time-of-day based variations in the network. As the
purpose is to find the OWD, we do not want to stress the system so that it needs
to queue our traffic. Using the two streams we will at most inject (1468 + 48)
bytes during one second.

Influence of the Packet Size on the One-Way Delay in 3G Networks 65

3.2 Delay Calculation

As we are in control of both sender and receiver, we can easily identify both
sending and receiving IP address as well as UDP port numbers. We then use the
application header for the individual packet identification. Once identified, we
can calculate the OWD for the individual packets. Using the same notation as
before, the delay would be calculated as defined in Equation 1. However, due to
numerical issues [6], this is not recommended. It is better to use the following
equation:

di = T̃i,a − T̃i,b T̃i,x = Ti,x − �T1�, (2)

where T1 is the arrival time of the first packet leaving the sender in that exper-
iment. This will avoid having the time stamps truncated by the precision of the
analysis tool.

3.3 Delay Components

The OWD that we will calculate has four contributors, see Figure 2. Δ1 is the
delay contribution by the GW, Δ2 that of the radio network, Δ3 that of the core
network of the operator, and the last contribution Δ4 comes from the Internet.
Out of these four, we cannot measure or estimate Δ2 and Δ3 alone, as this means
entering the domain of the operator.

We can estimate Δ4 by using ICMP ping to the operator’s Internet exchange.
From our vantage point in the Internet, the operators are between five or six
hops away, and between us and them we have the Swedish University Network
(SUNET) [11] with optical multi-gigabit links. Hence the impact of this will not
be negligble, but it will be quite small and stable, the average RTT between DST
and the operator Internet exchange is 15 ms for all three operators. Hence, as the
links are symetrical, the OWD contribution will be around 7.5 ms. Furthermore,
we can ignore the packet size as the links have such high capacity that the
serialisation delay is neglible [10].

In order to quantify Δ1, we designed a special experiment. Instead of using the
E220 USB, we replaced it with a D-link DUB-E100 FastEthernet USB adaptor
that allows us to connect directly to the destination through Ethernet. As we are
using a USB NIC, the packets travelling across this NIC will receive the same
treatment as those that are sent across the modem.

From the collected data, the second stream did not detect any time-varying
behavior. In fact, 37% of the packets experienced a delay less than 0.11 ms, and
the maximum delay was 1.2 ms. The mean was 0.4855 ms with a standard devia-
tion of 0.3362 ms. Apart from this, the GW seems quite stable in its handling of
the packets. In Figure 3 we show the OWD through the GW for different packet
sizes. We see that the OWD increases linearly, as expected [10]. The peaks noti-
cable for the maximum values, are the result of single packets experiencing larger
delays. Furthermore, the largest minimum OWD is just above 1.3 ms. If we use
the minimum delay as a base, we can construct a rough model for Δ1 given in
ms:

Δ1(L) = 8.354e−5 · L + 0.078 (3)

66 P. Arlos and M. Fiedler

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

IP Packet size [bytes]

O
W

D
 [m

s]

Min
Mean
Max

Fig. 3. Minimal OWD through the GW for different packet sizes

Here L represents the IP packet length in bytes. The 0.078 ms represents the
minimal time through the GW, and the constant (8.354e−5) corresponds roughly
to the capacity of the interface, i.e. 10 Mbps.

As both Δ1 and Δ4 turned out to be significantly smaller than the OWD
measured in the subsequent experiments, they are neglected from now on.

4 Evaluation of Mobile Networks

We conducted experiments on three different Swedish operators, the experiments
were conducted at the end of September and early October 2009. Two of them (A
and B) share the radio access (RA), while the third (C) uses a different RA. The
experiments focus on the OWD of the uplink; furthermore, all experiments were
done while the sender was stationary. We focus on the uplink as this is believed
to be the narrowest part in the end-to-end chain. Furthermore, to minimize the
impact of daily patterns, congestion, radio problems, queueing, etc., we focus our
analysis on the minimum OWD obtained in the experiments. However, just to
give an indication on the environments, mean OWD was in the range of 140 ms
to 700 ms, while the maximum was between 200 and 3870 ms, and the standard
deviation was found between 7 ms and 480 ms.

In the first experiment we investigated IP packet sizes starting at 60 bytes,
and incrementing 16 bytes for each run, up to 1468 bytes, at a sending rate
of one packet per second. We start by looking on the variations over time in
the OWD of individual packets (one 48 byte packet every 10 second), shown in

Influence of the Packet Size on the One-Way Delay in 3G Networks 67

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
Operator A

OW
D

[s]

Hours from start
(2009−09−24, 16:55 GMT)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
Operator B

OW
D

[s]

Hours from start
(2009−09−23, 15:13 GMT)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
Operator C

OW
D

[s]

Hours from start
(2009−09−22, 18:30 GMT)

Fig. 4. Long term evaluation of the operators

200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

350

400

450

500

IP Packet size [bytes]

M
in

im
um

 O
W

D
 [m

s]

A
B
C

Fig. 5. Minimum OWD accross different operators

Figure 4. We see that all graphs look quite similar, and around 1–2 hours into
the experiment, the smallest OWD drops to a new, stable level. The peak values
are typical for mobile networks and originate from the ARQ mechanisms of the
RA.

Now, we turn our attention to the minimum OWD obtained when varying
the packet sizes, which is illustrated in Figure 5. There are two clear regions,
one from 60 to 252 bytes and the other from 252 bytes and above. From the
E220 GUI (MobilePartner), we get an indication of what service the operator

68 P. Arlos and M. Fiedler

100 120 140 160 180 200 220 240 260 280 300
0

100

200

300

400

500

600

IP Packet size [bytes]

M
in

im
um

 O
W

D
 [m

s]

A
B

100 120 140 160 180 200 220 240 260 280 300
0

100

200

300

400

500

600

IP Packet size [bytes]

M
in

im
um

 O
W

D
 [m

s]

C

Fig. 6. Minimal OWD for packet sizes from 100 to 300 bytes

is providing the modem with. However, the GUI only reports WCDMA or HS-
DPA as the service. When the experiments were conducted, all operators started
by giving a WCDMA service. As the packet sizes increased they started to al-
ternate between WCDMA and HSDPA, and eventually changed permanently
to a HSDPA service. The point where the change was made varied a little bit
from operator to operator, but it happened around 236 to 256 bytes, matching
nicely with the drop of the OWD in Figure 4. Looking at the second region,
we clearly see a staircase pattern. The steps are 144 bytes wide, and the step
height is approximately 18 ms for all operators. This indicates that somewhere
in the end-to-end path, some entity sends the data in blocks of approximately
144 bytes. In case of operator A and B, different behaviours were seen for two
packet sizes, 844 bytes for operator A and 1084 bytes for operator B. The reason
for this behaviour merits further investigation. It is also worth noting that both
operators exhibited a very small minimum OWD around 80 ms, which is the
smallest value in the HSDPA region.

In order to gainmore insight into the behaviour of theminimalOWD at the tran-
sition between WCDMA and HSDPA regions, we conducted a second and more
detailed experiment. The packet size was incremented from 100 bytes to 300 bytes
with an increment of 4 bytes. The result is shown in Figure 6. The upper graph
holds operator A and B, while the lower holds operator C. We have separated the
graphs to highlight the patterns for operator A and B. For those operators, the
staircase pattern is present, however not as pronounced as before. The width of
the step is around 36 bytes, and the step height is approximately 60 ms. During
the evaluation of the packets, both operators started by providing WCDMA ser-
vice, then operator A changed (temporarily) to HSDPA for the 116 and 132 byte

Influence of the Packet Size on the One-Way Delay in 3G Networks 69

packets, while operator B didn’t offer HSDPA until we reached a packet size of
196 bytes. But subsequently, both operators tend to offer HSDPA more frequently,
and after 248 bytes both only offered HSDPA service. Looking at the measure-
ments taken from operator C, that pattern is much less clear, the operator had
started switching to HSDPA earlier. Due to this, the same staircase pattern for
packet sizes up to 188 bytes is not as clearly visible as for operators A and B.

5 Conclusions and Outlook

Based on quality-assured measurements from three Swedish mobile operators,
this paper provides insights into the relationship between packet sizes and one-
way delays, revealing the corresponding operator’s resource allocation policy on
the WCDMA/HSDPA uplink. Hereby, the quality of the one-way delay (OWD)
measurements has been assured by a specific set-up and cabling scheme between
Endace DAG cards that avoids common clock synchronisation problems, and by
a quantification of the delay contribution of the gateway feeding the mobile link.

The most surprising result is that short packets might need more time to
reach the receiver than long packets. Short packets experience a rather steep
increase of OWD as their size is growing. For packet sizes in the range of 100 to
250 bytes, the minimal OWD varies heavily. For larger packets, it grows starting
from quite small values (less than 100 ms) with a quite decent gradient. In
both cases, the minimal OWD is increased approximately stepwise as a function
of the packet size, which means that the maximal packet size per step allows
for maximizing the throughput without paying for it in terms of extra delay.
Thus, our method and results deliver guidelines for application programmers
to make the best out of mobile connectivity w.r.t. delay and throughput by
choosing optimal packet sizes. In our case, packet sizes of at least 250 bytes
avoid the potentially large and strongly varying miminal OWDs associated with
smaller packets. Once again, the study shows the necessity to investigate the
characteristics of network connectivities if these are not explicitly known. The
outliers detected for operator A and B also merit further investigation.

Of course, it has to be observed that due to radio and network conditions, the
actual OWD is likely to exceed the minimal value under consideration. Never-
theless, the minimal OWD indicates the best performance that can be expected,
given the chosen packet size. The examination of further OWD statistics is left
for future work.

The results obtained so far motivate the use of the proposed measurement
method on the downlink and comparison of the results with each other and with
measured roundtrip times. The quite significant delay for small packets might
affect the effective throughput of downloads using TCP, as the acknowledgements
are small packets carried on the uplink. Thus, further work will include the study
of the impact of the discovered allocation policy onto TCP performance.

Acknowledgements

Wewould like to thankRavichandraKommalapati for conducting the experiments.

70 P. Arlos and M. Fiedler

References

1. De Vito, L., Rapuano, S., Tomaciello, L.: One-Way Delay Measurement: State of
the Art. IEEE Transactions on Instrumentation and Measurement 57(12), 2742–
2750 (2008)

2. Mills, D.: RFC1305 Network Time Protocol (Version 3), Specification, Implemen-
tation and Analysis

3. Endace Measurement Systems, http://www.endace.com (verified in January 2010)
4. Donnelly, S.: High Precision Timeing in Passive Measurements of Data Networks,

Ph.D. Thesis, The University of Waikato (2002)
5. Veitch, D., Babu, S., Pásztor, A.: Robust Synchronization of Software Clocks

Across the Internet. In: Proc. Internet Measurement Conference (2004)
6. Arlos, P.: On the Quality of Computer Network Measurements, Ph.D. Thesis,

Blekinge Institute of Technology (2005)
7. Draka: SuperCat OUTDOOR CAT 5e U/UTP, http://communications.draka.

com (verified January 2010)
8. Messer, J.: Ethernet FAQ, http://www.networkuptime.com/faqs/ethernet (ver-

ified January 2010)
9. Arlos, P., Fiedler, M., Nilsson, A.: A Distributed Passive Measurement Infrastruc-

ture. In: Proc. Passive and Active Measurement Workshop (2005)
10. Constantinescu, D., Carlsson, P., Popescu, A.: One-way Transit Time Measure-

ments, Research Report, Karlskrona, Sweden (2004)
11. High Level Design Description for Sunet, http://basun.sunet.se/aktuellt/

Opto-sunetDesignv10.pdf (verified 2009-10-09)

http://www.endace.com
http://communications.draka.com
http://communications.draka.com
http://www.networkuptime.com/faqs/ethernet
http://basun.sunet.se/aktuellt/Opto-sunetDesignv10.pdf
http://basun.sunet.se/aktuellt/Opto-sunetDesignv10.pdf

An Experimental Performance Comparison of
3G and Wi-Fi

Richard Gass1 and Christophe Diot2

1 Intel Labs
2 Thomson

Abstract. Mobile Internet users have two options for connectivity: pay
premium fees to utilize 3G or wander around looking for open Wi-Fi
access points. We perform an experimental evaluation of the amount of
data that can be pushed to and pulled from the Internet on 3G and
open Wi-Fi access points while on the move. This side-by-side compar-
ison is carried out at both driving and walking speeds in an urban area
using standard devices. We show that significant amounts of data can be
transferred opportunistically without the need of always being connected
to the network. We also show that Wi-Fi mostly suffers from not being
able to exploit short contacts with access points but performs compa-
rably well against 3G when downloading and even significantly better
while uploading data.

1 Introduction

Wireless communication is an important part of everyday life. It allows people to
stay connected with their jobs, family, and friends from anywhere there is con-
nectivity. The two dominant wireless technologies are Wi-Fi and third generation
cellular (3G) networks.

IEEE 802.11, commonly known as Wi-Fi, refers to a set of standards which
operate in the unregulated ISM band[1]. They are very well known for providing
wireless connectivity in homes, offices, and hot-spots. They provide throughput
of up to 600Mbits/s[2] with a coverage area in the hundreds of meters. Wi-Fi is
easy and inexpensive to deploy, and is ubiquitous in urban areas. Despite access
controls being deployed and newer access points (APs) being configured with
security enabled by default, many Wi-Fi APs remain open[9]. In addition, the
growing popularity of community networks such as FON1 and the growing list of
large cities providing free wireless makes opportunistic communication a realistic
scenario in urban areas.

Due to the sparse and non-coordinated deployment of APs, Wi-Fi is not an
“always connected” technology. It is designed primarily for the mobile user that
accesses the network while relatively stationary. It provides high data rates be-
tween locally connected clients but is limited by the capacity of the link between
the AP and the Internet.
1 www.fon.com

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 71–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

72 R. Gass and C. Diot

3G is based on technology that has evolved to fill the growing need for data in
wireless voice networks. 3G provides seamless connectivity across large coverage
areas with advertised data rates of 2 to 14 Mbits/s, shared among all users
connected to any given base station. 3G network operators charge either based
on consumption or have flat rate monthly plans. These networks are expensive
to deploy and the performance experienced by users is sensitive to the number
of users in a cell due to the large coverage areas.

For data applications, one could argue that persistent connectivity may not
be necessary. Instead, being connected “frequently enough” should be acceptable
if applications and communications protocols could take advantage of short, but
high bandwidth contact opportunities.

We present results of a side by side, Wi-Fi vs 3G face-off. We show that
with default access point selection (greatest signal strength), unmodified network
setup methods (scan, associate, request an IP address with DHCP), and off the
shelf equipment with no modifications or external antennae, opportunistic Wi-Fi
performance is comparable to 3G. Despite only connecting to open or community
access points in a typical urban residential area, Wi-Fi throughput surpasses 3G
at walking and driving speed while uploading data and is nearly equivalent to
3G while downloading.

The remainder of this paper is organized as follows: We first explain how the
experiments were conducted and describe the equipment and software setup in
Section 2. Next, in Section 3, we show the results of the experimental runs with
the comparisons of 3G vs Wi-Fi under driving and walking conditions as well as
look at the effects related to the uploading or downloading of data. Finally, we
discuss related work in Section 4 and conclude the paper in Section 5.

2 Experiment Description

The experiments consist of two mobile clients and a server that is always con-
nected to the Internet. One mobile client uses its Wi-Fi interface to transmit
and receive data to/from the server and the other uses 3G. Experiments are per-
formed both on foot and in a car following the same route. Wi-Fi and 3G tests
are run simultaneously for a true side-by-side comparison. While downloading,
the data originates at the servers and is streamed down to the mobile clients.
Conversely, when uploading, the data originates on the mobile clients and is
streamed to the servers.

We investigated the potential of using the 3G device for collecting both 3G
and Wi-Fi data but discovered that stationary Wi-Fi transfers in the uplink
direction were capped around 6 Mbits/s, well below the advertised rates of an
802.11G enabled interface. We also saw variations in the Wi-Fi throughput while
running simultaneous 3G and Wi-Fi experiments on the same mobile device. Due
to these limitations, we chose to use a separate platform for each technology.

2.1 Server Setup

The servers run the Ubuntu distribution of Linux (version 8.04.1 with a 2.6.24-
19-server kernel) and are publicly accessible machines on the Internet that are the

An Experimental Performance Comparison of 3G and Wi-Fi 73

source or sink for the clients. The servers are virtual machines running on the Open
Cirrus cluster[11] hosted at Intel Labs Pittsburgh (ILP). The dedicated Internet
connection to ILP is a 45Mbit/s fractional T3 and did not pose any restrictions
in these experiments. We ran extensive tests of the code on the virtual machines
and saw no performance related issues with the system or the network.

The 3G server runs the apacheweb server and hosts large, randomly generated
data files that can be downloaded by the client. The Wi-Fi server runs a simple
socket program that generates data with /dev/random and streams it down to
the Wi-Fi client. When data is being uploaded from the client, both the 3G
and Wi-Fi server run our socket program that receives the data and sends it to
/dev/null. The network interfaces for both servers are monitored with tcpdump
and the resulting data traces are stored for off-line analysis.

2.2 Wi-Fi Client

The Wi-Fi client setup consists of an IBM T30 laptop with a default install
of the Ubuntu distribution of Linux (version 8.04 with a 2.6.24-21-server ker-
nel). The internal wireless device is the Intel 2915ABG network card using the
unmodified Intel open source Pro/Wireless 2200/2915 Network Driver (version
1.2.2kmprq with 3.0 firmware). No external antenna is connected to the laptop
for the experiments.

The laptop attempts to connect to the Internet by first scanning the area for
available open or community APs (excluding those with encryption enabled and
those we have marked as unusable2) and chooses the one with the strongest signal
strength. Once the AP is selected, it begins the association process followed by
IP acquisition via DHCP. If the AP allocates an IP address to the client, it
attempts to ping a known server to confirm connection to the Internet. Once
Internet connectivity is verified, the Wi-Fi client begins either downloading or
uploading data from/to the server via our simple socket program. After the client
travels out of range of the AP, it detects the severed connection by monitoring
the amount of data traversing the network interface. Once the client stops seeing
packets for more than a configured time threshold, the current AP is abandoned
and the search for another available AP begins. We choose 5 seconds in our
experiments to allow ample time to make sure we do not attempt to reconnect
to an AP that is at the trailing edge of the wireless range.

All experimental runs utilize a USB global positioning system (GPS) receiver
that is plugged into the laptop capturing speed, location, and time once per
second. The GPS device is also used to synchronize the time on the laptop. The
laptop captures all data that is transmitted or received over the wireless interface
with tcpdump.

2.3 3G Client

The 3G experiments employ an out of the box Apple iPhone 3G with no mod-
ifications to the hardware. The iPhone connects via the AT&T 3G network,
2 An example entry is CMU’s public Wi-Fi that is open but only allows registered

MAC addresses to use the network.

74 R. Gass and C. Diot

(a) (b)

Fig. 1. Maps of an area in Pittsburgh showing (a) all available open access points and
(b) the route followed for the experiments

uses a jail-broken version of the firmware (2.2, 5G77), and its modem baseband
firmware is at version 02.11.07.

The 3G client begins by first synchronizing its clock with NTP. Once the
clock has been synchronized, it launches tcpdump to monitor the 3G wireless
interface. After the monitoring has started, the client begins either downloading
or uploading data. To download data, we use an open source command line
tool for transferring files called curl. The curl program downloads a large file
from the server and writes the output to /dev/null to avoid unnecessary CPU
and battery consumption on the mobile device. This also allows us to isolate
only network related effects. If the client is uploading data, the dd command
continuously reads data out of /dev/zero. The output is piped into netcat and
the data is streamed to the server.

2.4 The Experiment Route

The experiments are performed in a residential area of Pittsburgh, Pennsylvania
near the campus of Carnegie Mellon University (CMU). Figure 1(a) is a map of
the area where we focused our measurement collection. This area lies between
the CMU campus and a nearby business district where many students frequently
travel. Each red tag in the figure represents an open Wi-Fi AP found from our
wireless scans3. The area is also covered by 3G service allowing us to compare
the two access technologies. We believe this area to be representative of typical
Wi-Fi densities found in most European or US urban areas4.

Figure 1(b) shows the route selected in this area for our experiments. The
experiment starts at the leftmost tag at the bottom right hand corner of the fig-
ure and follows the indicated route until the destination (same as start position)
is reached. The total distance of the route is about 3.7 miles. For the walking
experiments, we maintain a constant speed (2.4MPH) throughout the course of

3 Our scan logs reveal 511 APs in the area with 82 that appear open.
4 http://wigle.net

An Experimental Performance Comparison of 3G and Wi-Fi 75

the route. While driving, we obeyed all traffic laws and signs and remained as
close to the speed limit (25MPH) as possible.

3 Results

Table 1 summarizes the results of the experiments which are based on 16 runs
from different days performed in the afternoon and late evening.

3.1 3G vs Wi-Fi Downloads

Figure 2 shows the instantaneous throughput achieved for a single, representa-
tive experiment for 3G and Wi-Fi at driving speeds of up to 30MPH. The 3G

Table 1. 3G vs Opportunistic Wi-Fi

Radio Speed Data-flow Usable contact time Throughput Total transfer
3G driving download 760 seconds 579.4 kbits/s 55MB

Wi-Fi driving download 223 seconds 1220 kbits/s 34MB
3G walking download 3385 seconds 673 kbits/s 285 MB

Wi-Fi walking download 1353 seconds 1243 kbits/s 210 MB

3G driving upload 866 seconds 130 kbits/s 14MB
Wi-Fi driving upload 118 seconds 1345 kbits/s 20MB
3G walking upload 3164 seconds 129 kbits/s 51MB

Wi-Fi walking upload 860 seconds 1523 kbits/s 164 MB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700
 0

 10

 20

 30

 40

 50

 60

 70

M
B

its
/s

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(M
B

)

Time (sec)

3G
3G total

Wi-Fi
Wi-Fi total

Fig. 2. Instantaneous throughput (Mbits/s) for 3G vs Wi-Fi downloads at driving
speeds and total data transferred (MB)

76 R. Gass and C. Diot

device is able to transfer around 55MB of data for the 760 seconds of the exper-
iment duration. During this time, the Wi-Fi client connects opportunistically to
APs along the route and manages to spend 223 seconds connected, transferring
34MB. These “in the wild” results clearly show the potential of this untapped
resource of open Wi-Fi connectivity and have a similar behavior to the isolated
and controlled experiments in [5,6,14].

Deeper investigation of our logs shows that the majority of contacts were
initiated while the client was either stopped, slowing down, or accelerating after
a stop. This meant that the client stayed within the range of a single AP for
longer durations and allowed more time to perform the steps needed to setup a
connection and begin a data transfer. Since our AP selection algorithm was to
always select the AP with the strongest signal, while moving, this was generally
not the optimum choice. When the client approaches a potential AP, it would
be best to select the AP that would be just coming into range to maximize the
usable connection duration. We found that many connection attempts succeeded
but when the data transfer was about to begin, the connection was severed. This
does not mean that opportunistic contacts cannot happen at speeds, but instead
brings to light the need for faster AP association and setup techniques similar
to QuickWiFi[4] and better AP selection algorithms for mobile clients. Both of
these would allow better exploitation of opportunistic transactions for in-motion
scenarios.

Also plotted in Figure 2 is the total amount of data transferred for each
access technology. The 3G connection is always connected throughout the entire
experiment and shows a linear increase in the total bytes received. Wi-Fi, is
represented by a step function which highlights how each connection opportunity
benefits the overall amount of data received. Each point on the “Wi-Fi total” line
represents a successful contact with an AP. Even though Wi-Fi contacts show
large variability due to the intermittent nature of the contact opportunities, there
is still a significant amount of data transferred because of the higher data rates
of the technology. This is more apparent in the walking experiments where the
speeds are much slower and the use of the sidewalks brings the client physically
closer to the APs, allowing the client to remain connected for longer durations.

Figure 3 shows throughput results of a single, representative experiment for 3G
and Wi-Fi at walking speeds. The walking experiments last around 3385 seconds
and 3G is able to transfer around 285MB of data. Wi-Fi, on the other hand,
is only connected for 1353 seconds of the experiment and downloads 210MB.
Again, each Wi-Fi contact is able to exploit the opportunity and take advantage
of very short, high throughput contacts, transferring significant amounts of data.

3.2 3G vs Wi-Fi Uploads

Figure 4 shows the instantaneous throughput of 3G and Wi-Fi uploads at walking
speeds. It has a similar behavior to that of the downloads described previously
but this time, the total data transferred for Wi-Fi exceeds 3G by 2.6 times. This
is due to poor upload performance of 3G on the mobile device.

An Experimental Performance Comparison of 3G and Wi-Fi 77

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000
 0

 50

 100

 150

 200

 250

 300
M

B
its

/s

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(M
B

)

Time (sec)

3G
3G total

Wi-Fi
Wi-Fi total

Fig. 3. Instantaneous throughput (Mbits/s) for 3G vs Wi-Fi downloads at walking
speeds and total data transferred (MB)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000 2500 3000
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

M
B

its
/s

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(M
B

)

Time (sec)

3G
3G total

Wi-Fi
Wi-Fi total

Fig. 4. Instantaneous throughput (Mbits/s) for 3G vs Wi-Fi uploads at walking speeds
and total data transferred (MB)

78 R. Gass and C. Diot

The instantaneous 3G traffic pattern shows transitioning between idle states
and periods of data transfers that result in throughput much less than that of the
downloads (averaging at 130 kbits/s). In order to understand this phenomenon,
we performed additional experiments with a stationary laptop (Lenovo T500
using the iPhone SIM card) and the iPhone with updated software and baseband
firmware, 3.0 (7A341) and 04.26.08 respectively. We found that this periodic
pattern is no longer evident. The new traces exhibit more consistent, albeit lower,
throughput throughout the entire duration of an upload. The total amount of
data transferred for a similar experiment did not change. We conjecture that
these are due to improvements in the iPhone baseband software which allow
more efficient buffering of data, eliminating the burstiness of the traffic egressing
the device. Further upload experiments with the laptop show that it is able to
transfer data at twice the rate of the iPhone. These results suggest hardware
limitations on the iPhone and/or an artificial software limitation placed on the
device5.

One of the side observations from our experiments that impact the mobile
client throughput is that residential Internet service rates are much higher than
shown in [7]. Upon further investigation, we discovered that Verizon FIOS6 has
recently become available in this area and our experiments show that some
homes have upgraded to this higher level of service. This is hopeful for utilizing
opportunistic communications since more data can be transferred during these
very short contact opportunities. It is also important to note that during these
experiments, the full potential of the Wi-Fi AP was not reached and instead
was limited to the rate of the back-haul link the AP was connected to. Even
though the cost of higher throughput links are dropping in price for residential
service plans, affordable service provider rates are still well below the available
wireless rates of 802.11. This will always place the bottleneck for this type of
communication at the back-haul link to the Internet7.

4 Related Work

This work compares two dominant access technologies, namely 3G and Wi-Fi,
in the wild. Despite many works related to the performance of 3G and Wi-Fi
networks, this is the first work to publish a side-by-side comparison while in
motion. This work highlights the potential of Wi-Fi as a contender for high
throughput in-motion communication.

The performance of communicating with stationary access points has been
studied in a variety of different scenarios. There have been experiments on a
high speed Autobahn[14], in the Californian desert[5], and on an infrequently
travelled road in Canada[6] where the environment and test parameters were

5 http://www.networkperformancedaily.com/2008/06/
3g iphone shows bandwidth limi.html

6 http://www22.verizon.com
7 http://www.dslreports.com/shownews/Average-Global-Download-Speed-15Mbps-

101594

An Experimental Performance Comparison of 3G and Wi-Fi 79

carefully controlled. These works showed that a significant amount of data can
be transferred while moving by access points along the road.

The authors of [3] took this idea into the wild and reported on 290 drive-
hours in urban environments and found the median connection duration to be
13 seconds. This finding is very promising for in-motion communications. This
could potentially allow large amounts of data to be transferred over currently
under-utilized links without the use of expensive 3G connections.

Previous work investigating performance of HSDPA (High Speed Data Packet
Access), and CDMA 1x EV-DO (Code Division, Multiple Access, Evolution-
Data Optimized) networks show similar findings with variability in these data
networks[10,12,8]. We also see this behavior in our experiments run on a HSDPA
network.

5 Conclusion

In this paper, we perform a comparison of two popular wireless access tech-
nologies, namely 3G and Wi-Fi. 3G provides continuous connectivity with low
data rates and relatively high cost while Wi-Fi is intermittent with high bursts
of data and comes for free when they are open. We experimentally show that
with default AP selection techniques, off-the-shelf equipment, and no external
antennae, we are able to opportunistically connect to open or community Wi-Fi
APs (incurring no cost to the user) in an urban area and transfer significant
amounts of data at walking and driving speeds. Intermittent Wi-Fi connectivity
in an urban area can yield equivalent or greater throughput than what can be
achieved using an “always-connected” 3G network.

Wi-Fi could be easily modified to increase the number of successful opportu-
nities. (1) Reduce connection setup time with APs, especially with community
networks like FON that have a lengthy authentication process. (2) Clients could
take advantage of Wi-Fi maps and real time location updates in order to choose
which APs will provide the most benefit to the in-motion user[13]. Finally, Wi-
Fi is bottlenecked by the ISP link and (3) caching data on the AP (both for
upload and download) would eliminate the Internet back-haul link bottleneck.
We are currently testing an improved in-motion Wi-Fi architecture that exhibits
significantly higher transfer rates than 3G at all speeds.

References

1. IEEE Standard 802.11: 1999(E), Wireless LAN Medium Access Control (MAC)
and Physical Layer Specifications (August 1999)

2. IEEE 802.11n-2009, Wireless LAN Medium Access Control (MAC) and Physical
Layer Specifications Enhancements for Higher Throughput (June 2009)

3. Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., Madden, S.: A measurement
study of vehicular internet access using in situ wi-fi networks. In: MobiCom 2006:
Proceedings of the 12th annual international conference on Mobile computing and
networking, Los Angeles, CA, USA, pp. 50–61. ACM Press, New York (2006)

80 R. Gass and C. Diot

4. Eriksson, J., Balakrishnan, H., Madden, S.: Cabernet: Vehicular content delivery
using wifi. In: MobiCom 2008: Proceedings of the 14th ACM international confer-
ence on Mobile computing and networking, pp. 199–210 (2008)

5. Gass, R., Scott, J., Diot, C.: Measurements of in-motion 802.11 networking. In:
WMCSA 2006 (HotMobile) Proceedings of the Seventh IEEE Workshop on Mobile
Computing Systems & Applications, Semiahmoo Resort, Washington, USA, pp.
69–74. IEEE Computer Society, Los Alamitos (2006)

6. Hadaller, D., Keshav, S., Brecht, T., Agarwal, S.: Vehicular opportunistic commu-
nication under the microscope. In: MobiSys 2007: Proceedings of the 5th interna-
tional conference on Mobile systems, applications and services, San Juan, Puerto
Rico, pp. 206–219. ACM, New York (2007)

7. Han, D., Agarwala, A., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Seshan,
S.: Mark-and-sweep: Getting the “inside” scoop on neighborhood networks. In:
IMC 2008: Proceedings of the 8th ACM SIGCOMM conference on Internet mea-
surement, Vouliagmeni, Greece. ACM, New York (2008)

8. Jang, K., Han, M., Cho, S., Ryu, H.-K., Lee, J., Lee, Y., Moon, S.: 3G and 3.5G
wireless network performance measured from moving cars and high-speed trains.
In: ACM Workshop on Mobile Internet through Cellular Networks: Operations,
Challenges, and Solutions (MICNET), Beijing, China (October 2009)

9. Jones, K., Liu, L.: What where wi: An analysis of millions of wi-fi access points.
In: Proceedings of 2007 IEEE Portable: International Conference on Portable In-
formation Devices, May 2007, pp. 25–29 (2007)

10. Jurvansuu, M., Prokkola, J., Hanski, M., Perälä, P.H.J.: HSDPA performance in
live networks. In: ICC, pp. 467–471 (2007)

11. Kozuch, M., Ryan, M., Gass, R., Scholsser, S., O’Hallaron, D., Cipar, J., Stroucken,
M., Lopez, J., Ganger, G.: Tashi: Location-Aware Cluster Management. In: First
Workshop on Automated Control for Datacenters and Clouds (ACDC 2009),
Barcelona, Spain (June 2009)

12. Liu, X., Sridharan, A., Machiraju, S., Seshadri, M., Zang, H.: Experiences in a
3G network: Interplay between the wireless channel and applications. In: ACM
MOBICOM, San Francisco, CA (September 2008)

13. Nicholson, A.J., Chawathe, Y., Chen, M.Y., Noble, B.D., Wetherall, D.: Improved
access point selection. In: MobiSys 2006: Proceedings of the 4th international con-
ference on Mobile systems, applications and services, pp. 233–245. ACM Press,
New York (2006)

14. Ott, J., Kutscher, D.: Drive-thru internet: IEEE 802.11b for automobile users. In:
INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer
and Communications Societies, Hong Kong, March 2004, vol. 1, p. 373. IEEE, Los
Alamitos (2004)

Extracting Intra-domain Topology
from mrinfo Probing

Jean-Jacques Pansiot1, Pascal Mérindol2,
Benoit Donnet2, and Olivier Bonaventure2,�

1 Université de Strasbourg, Strasbourg, France
2 Université catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract. Active and passive measurements for topology discovery have
known an impressive growth during the last decade. If a lot of work has
been done regarding inter-domain topology discovery and modeling, only
a few papers raise the question of how to extract intra-domain topologies
from measurements results.

In this paper, based on a large dataset collected with mrinfo, a mul-
ticast tool that silently discovers all interfaces of a router, we provide a
mechanism for retrieving intra-domain topologies. The main challenge is
to assign an AS number to a border router whose IP addresses are not
mapped to the same AS. Our algorithm is based on probabilistic and em-
pirical IP allocation rules. The goal of our pool of rules is to converge to
a consistent router to AS mapping. We show that our router-to-AS algo-
rithm results in a mapping in more than 99% of the cases. Furthermore,
with mrinfo, point-to-point links between routers can be distinguished
from multiple links attached to a switch, providing an accurate view of
the collected topologies. Finally, we provide a set of large intra-domain
topologies in various formats.

1 Introduction

The Internet topology discovery has been an extensive subject of research during
the past decade [1]. While topological information can be retrieved from passive
monitoring (using, for instance, BGP dumps in the case of AS level topology),
router level topology is usually obtained from active measurements based on
traceroute.

Nevertheless, if traceroute has been largely deployed in the last few years, it
comes with some important drawbacks. Traceroute provides a partial view of the
network as it is routing dependent. For instance, backup links (high IGP weighted
links for intra-domain and low BGP local preference links for inter-domain) are
rarely captured by traceroute. Furthermore, the alias resolution problem is a
complex issue to fix [2]. This leads thus to an incomplete and biased view of the

� This work is partially funded by the European Commission funded Trilogy ICT-
216372 project. B. Donnet’s work is supported by the FNRS/FRS (Fonds National
de la Recherche Scientifique, rue d’Egmont 5 – 1000 Bruxelles, Belgium.).

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 81–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 J.-J. Pansiot et al.

network. Obtaining complete intra-domain topologies is further a daunting task,
requiring extensive probing campaigns [3].

Recently, we used mrinfo [4], a management multicast tool, in order to collect
topology information [5]. mrinfo has the advantage of sweeping out many of
traceroute’s limitations as it is able to silently discover all interfaces of a router.
However, it requires multicast being enable within ISPs’ networks and no filtering
policies, limiting so its applicability range. Indeed, only IPv4 multicast enabled
routers reply to mrinfo. Also, some ISPs filter the IGMP messages used by
mrinfo (i.e., they do not propagate them).

In this paper, we take advantage of the mrinfo dataset [6] for extracting intra-
domain router level topologies. Obtaining real data concerning intra-domain
topologies is of the highest importance. Indeed, it allows one to study actual
network characteristics (e.g, degree distribution, network connectivity, . . .) and
to obtain insights on the way operators build their network. Furthermore, real
topologies are crucial inputs for network simulations in order to consider complex
and realistic scenarios. By modeling the collected topologies characteristics, it
can also contribute to building better topology generators.

The contributions of this paper are twofold. We first describe how to extract
intra-domain topologies from raw mrinfo data. While it is pretty easy to map IP
addresses to an autonomous system number (ASN), the challenge is to mark the
boundary of a given autonomous system (AS). Then, it is necessary to assign the
right ASN to an AS border router (ASBR) whose IP addresses are not mapped
to a single AS. In this paper, we provide an efficient algorithm, called router-
to-AS mapping, for fixing this issue. We evaluate our algorithm and show that
it provides a consistent mapping in more than 99.5% of the cases. In addition,
an interesting feature of mrinfo is that point-to-point links between routers
may be distinguished from multiple links attached to a switch. On average,
we discover that roughly 11% of the nodes, in probed networks, are actually
switches. As depicted in Sec. 3, this is a fundamental issue to correctly analyze
network characteristics. Second, based on our router-to-AS mapping, we provide
a set of intra-domain topologies under various formats. Our set of topologies is
composed of three kind of networks: Tier-1 (such as Sprint), Transit networks
(such as TDC), and Stub networks (such as UNINETT).1 An extended version
of this paper provides more results and discussions [7].

The remainder of this paper is organized as follows: Sec. 2 discusses how we
collected topology data using mrinfo; Sec. 3 explains and evaluates our router-
to-AS algorithm; Sec. 4 positions our work regarding the state of the art; Finally,
Sec. 5 concludes this paper by summarizing its main achievements and discussing
further works.

2 Collection Methodology and Dataset

mrinfo messages use the Internet Group Management Protocol (IGMP [8]).
IGMP was initially designed to allow hosts to report their active multicast groups
1 See http://inl.info.ucl.ac.be/content/mrinfo

http://inl.info.ucl.ac.be/content/mrinfo

Extracting Intra-domain Topology from mrinfo Probing 83

AS1

1.1/16
AS2

2.2/16R1

R0

R2

R3

R4switch

2.2.2.1

2.2.2.2

2.2.1.2
2.2.1.1

2.2.3.2

2.2.4
.2

2.2.4
.1

2.2.3.1

1.1.0.2

1.1.
1.1

1.1.
1.2

1.1.0.1

1.1.2.1

1.1.0.2 [version 12.4]
1.1.0.2 → 1.1.0.1 [1/0/pim/querier]
1.1.2.1 → 1.1.2.2 [1/0/pim/querier]
1.1.2.1 → 1.1.2.3 [1/0/pim/querier]
2.2.4.1 → 2.2.4.2 [1/0/pim/querier]
2.2.1.1 → 2.2.1.2 [1/0/pim/querier]

1.1.2.3

R5

R6

1.1.2.2

Fig. 1. mrinfo example with R2 output

to a multicast router on their LAN. Upon reception of an IGMP ASK NEIGHBORS
message, an IPv4 multicast router replies with an IGMP NEIGHBORS REPLY mes-
sage providing the list of all its local interfaces with some information about
their state. Fig. 1 shows an example of the usage of mrinfo to query the router
R2 (1.1.0.2 is the responding interface of R2). mrinfo reports that this router
is directly connected to R0 (through interface 1.1.0.1) and two ASBRs, R3
(through the interface 2.2.4.2) and R4 (through interface 2.2.1.2). We can
also notice that R2 is connected to routers R5 and R6 through a switch because
the interface 1.1.2.1 appears twice in R2’s reply. This information is obtained
by sending a single IGMP message. In practice, mrinfo provides similar infor-
mation to a show command on the router’s command line interface.

Based on mrinfo, we build a recursive probing scheme, mrinfo-rec, to scan
connected components of networks. Initially, mrinfo-rec is fed with a single
IP address corresponding to the first router attached to the mrinfo-rec van-
tage point. mrinfo-rec probes this router and recursively applies its probing
mechanism on all the collected IP addresses. These recursive queries stop at
unresponsive routers or when all known routers have been queried. The same
process is run every day. It is worth noticing that a router not replying to an
mrinfo probe during a given day is not queried again afterwards except if it
appears again in a list of captured addresses.

To illustrate this behavior, let us apply it on the topology depicted in Fig. 1.
mrinfo-rec receives, as input, the IP address of router R0. From R0, mrinfo-rec
collects a set of neighbor IP addresses, i.e., {1.1.1.2, 1.1.0.2}. For all IP ad-
dresses in this set that were not previously probed, mrinfo-rec sends an IGMP
ASK NEIGHBORS message and, if the probed router replies, it again runs through
the set of neighbor IP addresses collected.

Since May 1st, 2004, we have been collecting the mrinfo data from a host lo-
cated in the University of Strasbourg, France. In this paper, we consider the data
collected until the end of December 2008. The entire dataset is publicly avail-
able [6]. During this period, on average, mrinfo-rec was able to daily discover
roughly 10,000 different routers while scanning 100,000 interfaces. Note that we
remove interfaces with non-publicly routable IP addresses, i.e., the special-use
IPv4 addresses described in RFC 3330. We also remove all tunnel and disabled
interfaces. The IP-to-AS mapping is done using the last daily BGP table dump
of the given day from the Routeviews dataset. We remove from our dataset IP

84 J.-J. Pansiot et al.

addresses that cannot be mapped to an AS (0.5% on average) as well as those
that are labeled to multiple origin ASes [9] (between 2 and 3% of IP addresses
discovered each day by mrinfo-rec). We roughly identify between 400 and 650
different ASes every day of mrinfo-rec probing and we capture more than 850
ASes during the whole period of probing. Those ASes are distributed among
Tier-1, Transit, and Stub networks, Transit being the most represented.

3 Router-to-AS Mapping

If it is easy to determine the ASN of a core router (each IP address of such
a router is mapped to the same ASN2), the challenge is to accurately identify
a router as an ASBR and assign it the right ASN. Fig. 2 and 3 illustrate the
basics of our router-to-AS algorithm. The label attached on each link is the
result of the IP-to-AS mapping (we assume that the two IP addresses on each
directed link are necessarily mapped to the same AS). First, there are ASBRs
whose IP addresses do not all belong to the same AS. In such a case, identifying
them as ASBRs4 is straightforward but assigning them an ASN is more difficult.
This situation is illustrated in Fig. 2 where router R1 has two interfaces mapped
to AS1 while the remaining two interfaces are mapped to AS2. This Shared
Addressing Space case must be solved to perform the router-to-AS mapping.
As soon as all routers are mapped to their right ASN, it is possible to extract
intra-domain topologies without falsely cutting between ASes. We denote SAS

the subset of ASBRs falling into the Shared Addressing Space case.
Second, there are ASBRs whose all IP addresses are mapped to the same

ASN. If the router-to-AS mapping is obvious, identifying them as ASBRs is a
different ball game: their detection essentially relies on their relationships with
ASBRs belonging to SAS. This is illustrated in Fig. 2 with routers R4 and R5 as
all their interfaces are mapped to AS2. If R1 is correctly assigned to AS1, then
R4 and R5 are ASBRs mapped to the AS corresponding to the address space
of links R1↔R4 and R1↔R5. This issue is thus trivial if the SAS case has been
previously correctly solved.

At this point, it is already worth noticing (see Sec. 3.2 for further details) that
the vast majority (almost 90%) of routers are directly mapped to the right ASN
because they do not belong to the SAS set. Thus, our router-to-AS algorithm is
applied to only 10% of routers (∼ 1,000 routers on average per day).

3.1 Router-to-AS Algorithm

Our router-to-AS algorithm is based on two families of rules: probabilistic and
empirical rules. The main idea behind our algorithm is to quickly converge to a
single and consistent mapping for each router. For that purpose, our algorithm
verifies the consistency of the results returned by each rule.

We start by assigning a candidate ASN to any router. This is done using our
first probabilistic rule (called global election, or elec). It works as follows: each
2 Note that there exists specific cases more difficult to solve (see [7]).

Extracting Intra-domain Topology from mrinfo Probing 85

AS1 AS2

R1

R2

R3

R4

R5

R6

R7

AS1

AS1

AS2

AS2 AS2

AS2

AS2

Fig. 2. Shared Addressing Space case on R1

AS1 AS2

AS3

AS3

AS2
AS2

AS2

AS1

R1

R2

R3 R4

R5

R6

R7

AS1

Fig. 3. Neighborhood empirical rule, N

router is mapped to the ASN assigned to the largest number of its IP addresses
(with an IP apparition order for tie-breaking equality cases). Let Sr be the set of
the occurrence of each IP-to-AS mapping computed on addresses belonging to
the router r. If r is initially mapped to AS n, it means that n appears max(Sr)
times in the IP-to-AS mapping of r. We attribute a confidence level to the ASN
mapped to r in such a way: c(r) = 1 − max(Sr\{max(Sr)})

max(Sr) . Closer to one, higher
the confidence in the mapping. Note that r ∈ SAS if c(r) < 1. For instance,
regarding the link between R3 and R4 in Fig. 3, it means that IP addresses
involved in both directions of the link R3 ↔ R4 belong to AS2. Then, looking
at Fig. 2, c(R4) = 1 whereas c(R1) = 0, we know that R1 is an ASBR because
it belongs to the set SAS, but we have to figure out whether it belongs to AS1
or to AS2 and respectively whether R2, R3 or R4, R5 are ASBRs. In contrast, in
Fig. 3, c(R3) = 0.5 meaning that R3 seems to belong to AS1. The elec rule is the
primary block of all our analysis: other rules aim at confirming or disproving it
when c < 1.

The second probabilistic rule relies on the detection of LAN interfaces. The
lan rule concerns a subset of x → 0.0.0.0 interfaces. Those 0.0.0.0 interfaces usu-
ally describe leaf LAN without transit and multicast capabilities (more details
are given in [7]). We assume that intra-domain LANs are more frequent than
inter-domain LANs, and considering that a local LAN interface uses the address
space of the internal domain, a router has a higher probability of belonging to
the AS assigned to LAN interfaces. Note that we only consider cases where all
LAN interfaces are mapped to the same AS. Furthermore, we do not take into
account x → 0.0.0.0 interfaces if the AS to which IP x belongs is not multicast
enabled (e.g., an AS where mrinfo-rec does not obtain replies). We observe
that, probabilistically talking and, on average, x → 0.0.0.0 interfaces produce
fewer Shared Addressing Space cases than elec: fewer than 4% compared to the
10% produced by the global elec rule. This observation reinforces our hypothesis
on intra-domain LAN detection.

As already mentioned, we also use empirical rules consisting in a set of usual
rules. The first empirical rule takes into account the loopback interface of a
router (lb rule). When configuring a loopback interface, an ISP uses an address
belonging to its own IP address space. Thus, identifying loopback interfaces using
their DNS name and performing a standard IP-to-AS mapping on this address
resolves the router-to-AS mapping.

86 J.-J. Pansiot et al.

We also use an empirical rule consisting of a neighborhood analysis (N rule):
we assume that inter-domain links are mapped to the address space of one of
the ASes it interconnects. This rule can be applied when a SAS is mapped to
a given AS thanks to another rule. For instance, in Fig. 3, let us assume that
R3 has been mapped to AS1 with the lb rule, then R4 necessarily belongs to
AS2 and iteratively R7 is then mapped to AS3. In practice, we apply this rule
iteratively until no more new AS assignment is recorded and use it at each step
of the router-to-AS algorithm. We also apply this rule iteratively during the last
steps of the router-to-AS algorithm.

As already mentioned by claffy et al. [10], a provider generally allocates IP
addresses from its own address space to its customers links (c2p rule). In a simple
case, this means that if two routers denoted R1 and R2 are connected through
an inter-domain link mapped to ASx, and such that R1 also uses the address
space allocated by another ASy (y �= x) while ASy is a customer of the ASx,
then R1 is mapped to ASy (and R2 to ASx). In Fig 2, if we know that AS1 is a
customer of AS2, the c2p rule allows us to map R1 to AS1. To perform such a
relationship mapping, we use the AS ranking data set provided by Caida [11].
Note that this rule seems relatively consistent with the elec rule: on average,
in more than 70% of the cases, this rule is verified when focusing on routers
with a confidence level superior to 0.5. This is our penultimate rule, so that
it tie-breaks remaining equality cases when the rule can be used (c2p or p2c
relationships between involved ASes).

Finally, to perform the router-to-AS mapping we need a global order between
our pool of rules to characterize the confidence we attribute to each of them.
We use the following order: elec > lb > N0 > lan > N1 > H0.9 > N2 > H0.8 >
N3 > . . . > N10 > c2p > N11 where Hβ stands for a β-confident assignment
rule. According to the confidence threshold 0 < β < 1, if c(r) > β (for a given
router r ∈ SAS mapped to the ASN n with the elec rule), Hβ maps definitively
r to n by attributing to r a confidence level of 1. In order to take advantage
of AS assignments produced by the decreasing level of confidence of our set of
rules, we apply the neighboring rule between each other rules’ application.

Moreover, we use a threshold 0 < α < 1 to decide whether other rules can
overwrite the candidate assignment (the result of elec). For all routers r ∈ SAS,
if a given rule is not in concordance with the elec rule (i.e., the ASN returned
by the given rule differs from the candidate one given by elec), we select the
ASN returned by the tested rule only if c(r) ≤ α. Otherwise we ignore the result
provided by the tested rule. In practice we choose α = 0.53. Sec. 3.2 describes
the consistency of the mapping we obtain using this ordered set of rules.

3.2 Evaluation

From our four years daily dataset, we arbitrarily select the largest mrinfo raw
data file of each month, leading to 56 files. We then evaluate our router-to-AS
algorithm on those files.
3 It means that there are at least two more IP addresses mapped to the candidate

ASN compared to any other ASN.

Extracting Intra-domain Topology from mrinfo Probing 87

Fig. 4. elec rule efficiency Fig. 5. Algorithm convergence time

Fig. 4 provides the cumulative distribution of the confidence level c (the hor-
izontal axis) assigned during the first step (elec) of the router-to-AS mapping.
The first observation is that, on average, 90% of the routers have addresses
mapped to a single AS. We identify roughly that only 1.5% of the routers have a
confidence level equal to 0, whereas more than 95% of routers have a confidence
level superior to 0.5. According to our threshold α = 0.5, only 5% of the router
assignments are really problematic.

Fig. 5 shows the cumulative distribution of the required number of rules (the
horizontal axis) to converge to a positive decision, i.e., c = 1, in the router-to-AS
algorithm. In this figure, we observe that the decision process quickly converges:
more than half of SAS cases are already treated after the lan rule application
(i.e., after the 4th rule). This means that a large subset of the critical cases are
treated at the beginning of our set of rules which are ordered depending on the
confidence we attribute to each of them. At the end of the process, using the
N11 rule, we can notice that fewer than 0.46% of the routers remain unmapped.

Fig. 6 gives a more detailed overview of the actions taken during the con-
vergence of our algorithm. Each point represents the mean over the 56 files we
consider. We determine 95% confidence intervals for the mean but intervals are
typically too tight to appear on Fig. 6.

We can see that in most cases, our pool of rules confirms the candidate assign-
ment of the global election, elec: at the end of the process, 88.9% of the candidate
assignment are confirmed with one or another rule. We also count the number of
contradictions produced by our set of rules against elec, and divide them in two
categories according to the threshold α that we use. We notice that on average,
12% of the AS assignments are concerned, and mainly when c > 0.5 (6.4% com-
pared to 5.6% when c ≤ 0.5). However, using our threshold α = 0.5, we only
effectively record the 5.6% of changes that are not strongly inconsistent (c ≤ 0.5)
to stay consistent with the elec rule. We have also noticed that less than 6% of
routers among the SAS set are subject to real inconsistencies (see [7]).

To summarize, we have seen that 90% of the routers are assigned, directly at
the first step of the algorithm, to an ASN with the highest level of confidence.
The remaining 10% of routers belongs to SAS and represent thus critical cases.

88 J.-J. Pansiot et al.

Fig. 6. A closer look at each step Fig. 7. Switches and routers proportion

Our algorithm is able to quickly solve a large subset of those cases. At the end
of the process, only 0.46% of the routers remain unmapped.

A more detailed discussion on the algorithm evaluation as well as on particular
cases may be found in [7]. In particular, we have empirically verified that the
AS where our probing host is located (AS2259) is correctly and fully discovered
by our algorithm.

3.3 Point to Point Links and Switches

In addition to our router-to-AS algorithm, we also provide a way to distinguish
point-to-point links from switch inter-connections. As previously mentioned (see
Fig. 1), replies collected with mrinfo-rec allow us to easily discover switch
pseudo-nodes and extract them from our raw data.

This point is of the highest importance since it provides accurate information
on the real network connectivity. Using traceroute-like probing, switches are
not easily detectable and this bias leads to produce false interpretations: a set
of nodes may appear to be fully meshed whereas they are actually connected
through a simple switch. Identifying switches in mrinfo output is straightforward
as it is enough to capture outgoing IP addresses appearing several times on the
same router (see interface 1.1.2.1 on router R2 in Fig. 1).

Note that a switch inter-connection discovered with mrinfo-rec can hide a
switch cascade, i.e., several switches might be connected together. It can also
hide some other types of level 2 inter-connections. Moreover, when possible,
we verify that all routers connected through a switch share the same vision
of the inter-connection (e.g., one IP address pointing towards the same set of
addresses).

Fig. 7 provides the distribution of switches and routers over the 56 weeks.
On average, we identify that 11% of inter-connection points discovered in the
networks are switches (or cascade of switches), while the remaining 89% are
actual routers. Note that the same distribution occurs when we distinguish

Extracting Intra-domain Topology from mrinfo Probing 89

inter-domain from intra-domain connections. Only 1% of the whole set of discov-
ered nodes are inter-domain switches (Internet exchange points, IXPs) whereas
9% of them are ASBR. Note that we do not apply the neighboring rule N
for IXPs.

4 Related Work

A tool like Rocketfuel [3] has been used to infer ISP topologies. However, inferring
topologies in a non-cooperative and heterogeneous environment has proven to be
extremely difficult, and results obtained have to be carefully evaluated in terms
of validity [12,13]. The recently introduced DisCarte [14] pushes the accuracy of
collected data a few steps further but it requires the “record route” option being
enable and does not entirely sweep out standard traceroute limitations.

Mao et al. provide mechanisms for improving the IP-to-AS mapping [15,16].
Their techniques are based on several information sources: traceroute, BGP up-
date, BGP table dumps, and reverse DNS lookup. In addition, they propose
heuristics for identifying IXPs, sibling ASes as well as ASes sharing address
space. Their work differs from ours as they focus only on IP-to-AS mapping and
not on router-to-AS mapping.

The recent work done by claffy et al. is probably the most relevant compared to
this paper [10]. For assigning ASes to routers, claffy et al. assume that a provider
always gives IP addresses belonging to its own address space for connections to
their customers [10]. Given that assumption, the router-to-AS mapping becomes
straightforward when focusing on customer-to-provider links (and reciprocally).
Otherwise, the router is assigned to the AS with the smallest outdegree. Note
that no evaluation of this technique has yet been made in [10].

5 Conclusion

We provide a mechanism for extracting intra-domain topologies from raw data col-
lected by mrinfo, a multicast based tool that is able to silently discover all inter-
faces of a router. The main challenge is to mark the boundaries of eachAS. The goal
of our algorithm is to assign an AS number to a router, performing the so called
router-to-AS mapping. We demonstrate that our router-to-AS mapping is able to
efficiently assign an AS number to a router with a high confidence level. In addi-
tion, our AS extraction mechanism is able to discover connections through layer-
2 switches, providing a more accurate view of the topology than with traceroute
probing. Finally, we provide, in various format, several intra-domain topologies for
Tier-1, Transit, and Stub networks all along the four years of collected data.

We believe the technique described in this paper as well as the whole mrinfo
dataset are valuable for the research community. Indeed, the next steps of this
work would be to deeply study intra-domain topologies and improve mrinfo based
probing using complementary topology discovery methods.

90 J.-J. Pansiot et al.

References

1. Donnet, B., Friedman, T.: Internet topology discovery: a survey. IEEE Communi-
cations Surveys and Tutorials 9(4), 2–15 (2007)

2. Gunes, M.H., Sarac, K.: Importance of IP alias resolution in sampling Internet
topologies. In: Proc. IEEE Global Internet Symposium (May 2007)

3. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel.
In: Proc. ACM SIGCOMM (August 2002)

4. Jacobson, V.: Mrinfo (1995), http://cvsweb.netbsd.org/bsdweb.cgi/src/usr.

sbin/mrinfo/?only_with_tag=MAIN

5. Mérindol, P., Van den Schriek, V., Donnet, B., Bonaventure, O., Pansiot, J.J.:
Quantifying ASes multiconnectivity using multicast information. In: Proc. ACM
USENIX Internet Measurement Conference (IMC) (November 2009)

6. Pansiot, J.J.: Mrinfo dataset, http://svnet.u-strasbg.fr/mrinfo/
7. Pansiot, J., Mérindol, P., Donnet, B., Bonaventure, O.: Internet topology discovery

through mrinfo probing. TR 2009-01, Université catholique de Louvain (UCL),
(October 2009), http://inl.info.ucl.ac.be/content/mrinfo

8. Deering, S.: Host extensions for IP multicasting. In: RFC 1112, Internet Engineer-
ing Task Force (August 1989)

9. Zhao, X., Pei, D., Wang, L., Massey, D., Mankin, A., Wu, S.F., Zhang, L.: An
analysis of BGP multiple origin AS (MOAS) conflicts. In: Proc. ACM SIGCOMM
Internet Measurement Workshop (IMW) (October 2001)

10. Claffy, K., Hyun, Y., Keys, K., Fomenkov, M., Krioukov, D.: Internet mapping:
from art to science. In: Proc. IEEE Cybersecurity Applications and Technologies
Conference for Homeland Security CATCH (March 2009)

11. CAIDA: AS relationships (2009), http://www.caida.org/data/active/

as-relationships/index.xml

12. Zhang, M., Ruan, Y., Pai, V., Rexford, J.: How DNS misnaming distorts internet
topology mapping. In: Proc. USENIX Annual Technical Conference (May/June
2006)

13. Teixeira, R., Marzullo, K., Savage, S., Voelker, G.: In search of path diversity in
ISP networks. In: Proc. ACM SIGCOMM Internet Measurement Conference (IMC)
(October 2003)

14. Sherwood, R., Bender, A., Spring, N.: DisCarte: A disjunctive Internet cartogra-
pher. In: Proc. ACM SIGCOMM (August 2008)

15. Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate AS-level tracer-
oute tool. In: Proc. ACM SIGCOMM (August 2003)

16. Mao, Z., Johnson, D., Rexford, J., Wang, J., Katz, R.: Scalable and accurate iden-
tification of AS-level forwarding paths. In: Proc. IEEE INFOCOM (April 2004)

http://cvsweb.netbsd.org/bsdweb.cgi/src/usr.sbin/mrinfo/?only_with_tag=MAIN
http://cvsweb.netbsd.org/bsdweb.cgi/src/usr.sbin/mrinfo/?only_with_tag=MAIN
http://svnet.u-strasbg.fr/mrinfo/
http://inl.info.ucl.ac.be/content/mrinfo
http://www.caida.org/data/active/as-relationships/index.xml
http://www.caida.org/data/active/as-relationships/index.xml

Quantifying the Pitfalls of Traceroute in AS
Connectivity Inference

Yu Zhang1, Ricardo Oliveira2, Hongli Zhang1, and Lixia Zhang2,�

1 Harbin Institute of Technology, Harbin, 150001, China
{yuzhang,zhanghongli}@hit.edu.cn

2 University of California, Los Angels, CA 90024, USA
{rveloso,lixia}@cs.ucla.edu

Abstract. Although traceroute has the potential to discover AS links
that are invisible to existing BGP monitors, it is well known that the
common approach for mapping router IP address to AS number (IP2AS)
based on the longest prefix matching is highly error-prone. In this pa-
per we conduct a systematic investigation into the potential errors of
the IP2AS mapping for AS topology inference. In comparing traceroute-
derived AS paths and BGP AS paths, we take a novel approach of identi-
fying mismatch fragments between each path pair. We then identify the
origin and cause of each mismatch with a systematic set of tests based
on publicly available data sets. Our results show that about 60% of mis-
matches are due to IP address sharing between peering BGP routers in
neighboring ASes, and only about 14% of the mismatches are caused by
the presence of IXPs, siblings, or prefixes with multiple origin ASes. This
result helps clarify an argument that comes from previous work regard-
ing the major cause of errors in converting traceroute paths to AS paths.
Our results also show that between 16% and 47% of AS adjacencies in
two public repositories for traceroute-derived topology are false.

Keywords: AS topology measurement, traceroute, BGP.

1 Introduction

The Internet is a vast distributed system formed by a myriad of networks called
Autonomous Systems (ASes) that exchange routing information using the Border
Gateway Protocol (BGP). There have been two basic approaches to measuring
AS-level connectivity: (1) passive measurement through collecting BGP routing
updates, and (2) active measurement using traceroute. In the BGP-based mea-
surement, AS adjacencies can be directly extracted from the ASPATH attribute
in BGP updates collected from the monitors/routers by Routeviews [4] and
RIPE-RIS [3]. But because of policy filters and best path selection, each BGP
monitor only provides a limited partial view of the topology. Most monitors in
� This work was partially supported by the National Basic Research Program of China

(973 Program) under grant No.2005CB321806 and by the US National Science Foun-
dation under Contract No CNS-0551736.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 91–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 Y. Zhang et al.

traceroute measurement projects, such as CAIDA’s Ark [1] and DIMES [16],
are placed in different ASes than BGP monitors, thus ideally they can comple-
ment the topology inferred from existing BGP sets. It is also easier to deploy a
traceroute monitor than to obtain a new BGP feed [16].

However converting the router IP addresses on traceroute paths to AS num-
bers, termed IP2AS mapping, is a difficult problem. Typically this conversion is
done by finding the origin AS of each IP address in the traceroute path from the
BGP routing table using longest prefix matching (LPM). Unfortunately this ap-
proach is known to generate potentially false AS links, and the following question
emerges: what’s the impact of inference errors of traceroute-derived AS paths on
the AS topology map when using LPM?

Several previous efforts have studied the problem of traceroute-derived
measurement and articulated possible causes for the mismatch between the
traceroute-derived path and the BGP path [7,13,9,10,12]. However, these pre-
vious efforts did not provide answers to our question because of the following
reasons: (1) They quantified mismatch causes in the unit of path, e.g. either
there was a match in the converted path or not, which does not pin down all
individual points on the topology that the two paths differ; and (2) They did
not investigate the accuracy of traceroute-derived topology.

In this paper we conduct a systematic and exhaustive investigation into the
impact of pitfalls of LPM-based traceroute measurement on topology inference.
Our contributions can be summarized as follows. (1) We identify differences in
pairs of traceroute and BGP paths systemically. This allows us to pinpoint mul-
tiple mismatches in the same AS path pair and to identify each mismatch point
shared by multiple path pairs. (2) We collect a comprehensive set of publicly
available data and develop a set of tests to infer the cause of each mismatch
more systematically than before. (3) Our results show that about 60% of mis-
matches occur because of IP address sharing between neighbor routers. This
result is a departure from previous work [13,10] that attributed the causes of
errors mainly to Internet eXchange Points (IXPs), sibling ASes under the same
ownership, and prefixes originated from multiple origin ASes. (4) We find that
between 16% and 47% of the traceroute-derived adjacencies in public data sets
widely used by the community may be bogus.

2 BGP vs. Traceroute

Generally speaking, the data path inferred from traceroute and BGP control
path should match. There are however some scenarios where the two paths differ,
either because the data path is not completely aligned with the control path,
or because of IP2AS shortfalls in converting IP addresses to AS numbers. We
describe different reasons why the BGP AS paths may differ from the AS paths
measured by LPM-based traceroute method.

(1) There may be divergence between data path and control path due to
BGP aggregation, multi-hop sessions, tunneling, layer-2 switching, and abnormal
routing. (2) The traceroute path may be incomplete because of non-responsive

Quantifying the Pitfalls of Traceroute in AS Connectivity Inference 93

hops. In addition, the BGP routing tables may not tell exactly the original ASN
of a given prefix, e.g. (3) an unannounced prefix or (4) a Multiple Origin ASes
(MOAS) prefix.

The IP addresses announced by a given AS X may be used by another AS
Y . We call those addresses the foreign addresses of Y . (5) A typical case is
that one prefix is shared by multiple participants in the IXP, which is a shared
infrastructure where multiple networks peer with each other publicly. (6) ASes
under the same ownership, i.e. siblings, may also share the same IP address
space. (7) Another typical case is IP address sharing between neighbor ASes,
where a border router owned by AS Y replies to a traceroute using one of its
interfaces whose IP address is borrowed from the neighboring AS X to enable
the point-to-point connection. For example, when Y has a private peering with
X , two incident routers’ interfaces are typically numbered from a /30. If the /30
is coming from X , then routers at Y may reply with X ’s address range.

According to our measurements, 63∼88% of path pairs had a match (no extra
links in traceroute path). In the remaining cases, at most 3.7% of mismatch
path pairs are originated by divergence of control path and traceroute path,
and for the rest we provide evidence for their occurrence due to errors in IP2AS
mapping. Therefore, we believe it makes sense to use BGP paths as the reference
by default as [13,10,12]. If in the vast majority of cases the data path would not
be align with the control path (or BGP), there would be a significant number of
mismatch cases we could not explain, which is not the case.

3 Related Work

Measuring Internet AS-level connectivity from traceroute data has attracted
many research efforts over recent years. One of the first such studies was done
by Chang et al. [7], which alerted for possible errors in AS topology inferred from
traceroute data using the LPM approach. They presented a technique to identify
the ownership of border routers based on IP alias resolution, and presented some
heuristics to fill the holes of unmapped hops in traceroute paths. This work was
probably the first that pointed out potential errors in traceroute-derived AS
paths because of IP address sharing between neighbor ASes.

In a later work, aiming at an accurate AS-level traceroute tool, Mao et al. [13]
compared BGP paths with traceroute paths launched from the same AS where
the BGP table was extracted. They investigated a comprehensive set of possible
causes of mismatch and developed heuristics to correct the IP2AS mapping.
In a following work [12], they presented a dynamic programming algorithm to
reassign /24 prefixes to ASes to minimize the number of mismatched path pairs.
The main outcome of this work was a method to correct the mismatches due to
unmapped hops, MOAS prefixes, IXPs and siblings.

At the same time, Hyun et al. [10] presented a path pair comparison and
quantified the mismatched pairs due to IXPs and siblings. They adopted the al-
gorithm for the longest common subsequence (LCS) problem to describe the
pattern of unexplained mismatches. Later[9], they presented the concept of

94 Y. Zhang et al.

third-party addresses, but its definition does not clearly address the issue of
IP address sharing between BGP neighbors.

As far as we can tell, our paper is the first to propose a systematic method
of identifying mismatches between each traceroute-derived path and BGP path
pair. This method allows us to pinpoint multiple mismatch points in the same AS
path pair and align mismatched portions of a pair of paths, giving local context
to the comparison and explaining the cause of the mismatches. Our result asserts
that the main cause of mismatch is the IP address sharing between neighbor ASes
in accordance with [7] and departing from [13,10] that attributed the mismatches
to the presence of IXPs, siblings and MOAS. Note that we do not use the LCS
algorithm to describe the unexplained mismatches (as [10]), but we enhanced it
to identify the mismatches.

4 Data Sets

4.1 AS Path Pair Data

We collect traceroute raw data and the corresponding BGP routing updates from
4 ASes. Table 1 lists the number of destination IP addresses and prefixes probed
by the traceroute vantage points, as well the corresponding BGP information.

UCLA: From a host located at UCLA, we performed probes targeting all
/24 blocks in the BGP routing table, using the traceroute tool scamper
(http://www.wand.net.nz/scamper/) with ICMP-paris [6]. At the same time,
we collected BGP updates and tables from a backbone router at UCLA.

CAIDA Ark: There are 3 CAIDA Ark monitors that happen to be located in
ASes which provide a BGP feed to either RouteViews or RIPE-RIS collectors.
For each /24 block, the latest traceroute result is picked.

The traceroute AS paths are generated by the LPM-based IP2AS mapping on
the BGP routing table of the AS where the traceroute is launched from. Since
there is no guarantee that BGP routers will have consistent tables inside a large
AS (e.g. different routers in same AS can have different tables), we only collect
the path pairs where the next-hop AS is the same in order to reduce ambiguities.
A traceroute path is paired with its corresponding BGP path to the same prefix,
only if there is no change observed in the local BGP route to the destination
prefix during the traceroute probe, otherwise the paths are discarded.

Table 1. Information of AS path pair data sources

Monitor ASN #pair #prefix Collector Orgnization Date
ucla 52 7.6M 272K ucla UCLA 2009-02-22∼03-10

ams-nl 1103 5.2M 218K ris-rrc03 SURFnet 2009-02-01∼03-12
nrl-jp 7660 4.9M 212K rv2-oix APAN 2009-02-01∼03-12
she-cn 4538 5.2M 218K rv-wide CERNET 2009-02-01∼03-12

http://www.wand.net.nz/scamper/

Quantifying the Pitfalls of Traceroute in AS Connectivity Inference 95

4.2 AS Adjacencies

To evaluate the accuracy of traceroute-derived AS adjacencies, we collect data
from CAIDA Ark, DIMES, and UCLA IRL [5]. The data from IRL is also used to
explain the mismatch with the assistance of data from Internet Routing Registry
(IRR) [2] and iPlane [11].

CAIDA Ark: Two traceroute-derived AS topologies are obtained by merging
all snapshots in Feb. 2009 [1]: (1) The topology with only direct links, in which
every consecutive pair of ASes have a pair of contiguous hops in the traceroute
path; and (2) The topology with both direct links and indirect links, in which
two IP addresses in different ASes may be separated by one or more unmapped
or non-responsive hops.

DIMES: We also collect DIMES’ monthly traceroute-derived AS topology in
Feb. 2009 [16]. This graph include the AS links which are observed at least once
in the given month and at least twice considering all period.

BGP: We use the BGP-derived AS adjacencies available at UCLA IRL [5], which
is extracted from RouteViews and RIPE-RIS. For the sake of completeness, the
data is accumulated over a period of 5 months ending at March 2009, following
the methodology in [15].

IRR: The Internet Routing Registry (IRR) [2] is a central repository where ISPs
explicitly insert information such as routing policies and BGP adjacencies. We
are able to extract 28,700 total AS numbers and 156,094 total AS adjacencies
from all available IRR databases as of 2009-03-05.

iPlane: iPlane [11] project provides a list of routers’ alias, i.e. a set of interface
IP addresses belonging to the same router. This information can be used to
explain mismatches due to IP address sharing between BGP neighbors, since we
can look up each interface alias in BGP tables and estimate which ASes have
BGP sessions in a same router. We extracted a total of 286,043 IP interface
addresses on 67,430 routers on 2009-03-05.

4.3 IXP and Sibling Lists

To help identify ASNs used by IXPs and ASes with sibling relationship, we
extracted the name/description of each AS from all WHOIS databases.

IXPs: We compiled a list of 404 /24 prefixes belonging to IXPs by crawling
three websites, peeringDB.com, PCH.net and euro-ix.net, on 2009-03-09. Addi-
tionally, we search a list of ASNs associated with IXP names (from the previous
websites) and the common words “internet exchange”, “exchange point”, “access
point” and “gigapop”, carefully filtering the false IXP records, e.g. a description
“peering at an IXP”. We end up with a total of 323 ASNs belonging to IXPs.

Siblings: We look for similarities in AS names/descriptions of a given pair of
ASes using approximate string matching except in the cases where the name is
a word appearing in an English dictionary. The acquisition history of all Tier-1

96 Y. Zhang et al.

ISPs from wikipedia is also used to group ASes. After computing the transitive
closure of sibling relationships and cleaning up the candidate sibling groups with
size greater than 20 manually, we get 3,490 sibling groups with 13,639 ASes.

5 Mismatch Analysis: Breaking Paths into Fragments

In this section we develop a technique for comparing BGP paths and traceroute-
derived AS paths obtained in Sec. 4.1. We use the classic file comparison com-
mand diff-like method to find the longest common subsequence (LCS) that is
present in both traceroute path and BGP path [8]. The LCS solution is described
as a minimum array of binary operations needed to transform the BGP AS path
into the traceroute AS path: insertion ‘+’, deletion ‘−’, or unmodified ‘=’. The
consecutive ‘=’ operations represent the common segments, while the ‘+’ and ‘-’
operations indicate the difference.

To pinpoint multiple mismatches in the same AS path pair and describe a
mismatch in its local context, we define a mismatch fragment between two AS
paths as a sequence of ‘−’ and/or ‘+’ wrapped around by two ‘=’. For example,
Figure 1(a) shows the solution (F1) and mismatch fragments (F2) of a one-to-
one substitution case. Note that the same mismatch fragment at the AS level
may have the different IP-level fragment. We develop five additional steps to
detect the mismatch fragment systematically:

1. We add 4 special tokens to the traceroute AS path: ‘∗’ representing consec-
utive non-responsive hops, ‘?’ representing consecutive unmapped hops; ‘ ∧’
and ‘$’ represent the beginning and end of a path, respectively. See examples
in Figure 1(b) and (c).

2. When there are multiple alternative solutions with the same number of oper-
ations, the one whose ‘=’ operator appears earlier in the BGP path is picked.
The goal of this tie-break is to concentrate the errors in the least number of
original hops as possible. In Figure 1(d), F1 is picked from two solutions.

3. The mismatch fragment is replaced with its inside loop, since loops describe
differences more properly as shown in Figure 1(e).

4. Among more than one ‘−’ operations in the substitution at the end of path,
only the first is kept, e.g. F1 is replaced with F2 in Figure 1(f).

5. Mismatch fragments whose modifying operations include only ‘+∗’ or ‘+?’,
or only deletions (‘−’) at the end of path are discarded, because our interest
is in extra links brought by traceroute.

We obtained a total of 39K unique mismatch fragments (15∼20K per moni-
tor) including 44% extra (‘+’-only), 20% missing (‘−’-only), and 36% substitute

(a) substitute (b) end-extra (c) non-responsive (d) tie-break (e) loop (f) end-substitute
BGP: A B C D A B A B C A B C D A B A B C

Traceroute: A E C D A B C A * C A C B D A C A B A D

F1: =A -B +E =C =D =B +C =$ =A -B +* =C =A +C =B,=B -C =D =A +C +A =B =A -B -C +D =$

F2: =A -B +E =C =A -B =C,=C +B =D =A +C =A =A -B +D =$

Fig. 1. Examples of AS path pairs and their mismatch fragments

Quantifying the Pitfalls of Traceroute in AS Connectivity Inference 97

(both ‘−’ and ‘+’) patterns. Among the extra mismatch fragments, 39% are
loops. Overall, there are 12∼37% of path pairs containing one or more mismatch
fragments. And we also observe that the appearance frequency of mismatch frag-
ments follows a heavy-tailed distribution, which means that there are a small
number of mismatch fragments shared by a large number of the path pairs.

6 Inferring the Causes of Mismatch

In this section we look into causes of mismatch between BGP paths and tracer-
oute derived paths, and classify them into 7 types as described in Sec. 2. Our
classification algorithm follows an if-then-else process, i.e. it starts by checking
whether the mismatch is of type 1, if yes then the classification stops, otherwise
it continues and checks for type 2, and so on until it’s put in Unknown bin.

1. Divergence: These are cases where the control plane is not aligned with
the traceroute path. We detect these cases whenever the edit distance of the
mismatch fragment (i.e. the number of modifying operations), has a high
value, i.e. greater than 3 for substitute and loop patterns, or greater than 2
for missing and extra patterns. Below are two examples we find in our data:
(a) Tunneling: The Amateur Packet Radio Network (AMPR.org) uses the

prefix 44/8 announced by AS7377 (UCSD) and an overlay network on
the Internet to tunnel traffic (including ICMP) between different parts
of the network. So the BGP path to 44/8 ends at AS7377, while the
traceroute path comes in AS7377, travels cross the overlay network on
other ASes, and then ends in AS7377.

(b) Routing Dynamics: We observed some substitute and extra mismatch
fragments at the end of paths, where AS2512 (CalREN), the provider of
UCLA, is appended. An example is ‘= AS12969, −AS43571, +AS2512,
=$’, where AS12969 is more than 2 AS hops away from AS2152. This
happened because some of our traceroute probes were actually falling in
a routing loop within AS2152 immediately after reaching AS12969.

2. Unannounced Prefixes: In a substitute fragment, only ‘?’ is inserted.
3. Non-responsive Hops: In a substitute fragment, only ‘∗’ is inserted.

For each following cause, given a mismatch fragment M , we conduct the specific
tests on one or more AS pairs which are adjacent operands in M . Once one AS
pair pass the test, the corresponding cause for M is determined. Let the AS pair
be X and Y . For extra pattern, the pair is ‘+X ’ and ‘= Y ’. For missing pattern,
the pair is ‘= X ’ and ‘−Y ’. For substitute pattern, the pair is ‘+X ’ and ‘−Y ’,
or ‘+X ’ and ‘= Y ’.

4. MOAS Prefixes: The matching prefix is announced by both X and Y .
5. IXPs: X is an IXP ASN, or the IP addresses mapped to X are used in

IXPs.
6. Siblings: X and Y belong to the same sibling group.

98 Y. Zhang et al.

Table 2. Taxonomy of causes of mismatch as measured in units of paths and fragments

% Paths Fragments
ucla ams-nl nrt-jp she-cn ucla ams-nl nrt-jp she-cn

1 Divergence 0.58 3.34 0.34 2.00 6.25 4.09 6.11 4.46
2 Unannounced 1.49 0.83 7.22 3.49 2.02 1.81 2.31 2.97
3 Non-responsive 14.88 2.77 22.65 24.60 7.28 4.35 3.66 5.08
4 MOAS 9.22 0.50 0.90 1.12 2.42 2.61 2.09 1.97
5 IXP 32.56 1.77 10.86 34.66 6.45 3.21 3.19 4.22
6 Siblings 8.38 3.43 5.25 7.20 5.61 6.99 6.96 6.83
7 Neighbors 37.85 91.72 63.53 29.64 60.52 62.91 62.84 61.84
8 Unknown 0.63 0.36 0.66 1.12 9.45 14.05 12.84 12.65

7. Neighbors: Three types of tests are conducted: 1) According to the iPlane’s
alias list, the IP address mapped to X belongs to a router that has another
interface mapped to Y . 2) X and Y are neighbors in BGP topology. 3) X
and Y are neighbors in the topology from the IRR. The contributions of
these three tests are 18%, 77% and 5%, respectively.

Table 2 shows the fraction of cases in each class, measured in the percentages of
paths and fragments. The path values are relevant for comparison with previous
work [13,10]. We can see that the majority of mismatch cases are the result of
foreign addresses including IXPs, siblings and BGP neighbors. And over half of
mismatch fragments are due to IP addresses sharing between BGP neighbors,
that supports the view of [7]. The contribution of IXPs, siblings and MOAS only
sum up to nearly 14%, although the previous work [13,10,12] considered them
as the major causes. In addition, 6∼9% of mismatch cases are due to holes, i.e.
unannounced or non-responsive hops, in traceroute paths.

Comparing the results in units of path and fragment side by side, we note
that the fragment-based results is more robust to the monitor location and the
possible flaws in cause inference than the path-based. And there are two types
of bias in path-based counting: (1) Overestimating the influence of some causes,
such as IXPs in ucla and she-cn. This is mainly because multiple paths may
often share a single point of mismatch close to the monitor. (2) Underestimating
the difficulty to infer causes. In Unknown bin, only about 1% of paths contain
9∼14% of fragments. About 93% of fragments in Unknown bin are at the end of
path. Most of these cases may either correspond to BGP sessions not visible in
the current BGP topology or due to misclassified Divergence cases.

7 Accuracy of Traceroute-Derived AS Connectivity

In this section we assess the accuracy of traceroute-derived AS adjacencies. Ac-
cording to our previous work [14], the BGP table of a monitor should reveal
almost all its AS neighbors over time. The BGP AS graph from UCLA IRL is
denoted by Gbgp. There are about 180 monitors providing full tables residing

Quantifying the Pitfalls of Traceroute in AS Connectivity Inference 99

Table 3. Inaccuracy of traceroute-derived AS topology by causes

% Lbgp/L Lbogus/L

ucla ams-nl nrt-jp she-cn ucla ams-nl nrt-jp she-cn
1 Divergence 1.85 2.19 2.61 2.26 0.68 0.65 0.82 0.78
2 Unannounced 0.76 0.78 1.09 1.31 0.42 0.37 0.55 0.29
3 Non-responsive 2.67 1.88 1.67 2.27 1.01 0.84 0.58 1.01
4 MOAS 0.62 0.68 0.50 0.54 0.10 0.09 0.09 0.08
5 IXP 2.29 1.19 1.32 1.51 0.35 0.35 0.27 0.40
6 Siblings 1.08 1.42 1.61 1.47 0.22 0.34 0.39 0.28
7 Neighbors 14.64 13.28 13.92 12.89 5.24 3.95 4.36 4.07
8 Unknown 3.22 5.68 5.63 5.50 0.65 1.05 1.01 0.97
Total 24.96 24.24 25.39 24.94 6.19 4.30 4.22 4.61

Table 4. Inaccuracy of public traceroute AS topology data sets

L L ¯bgp Lbogus L ¯bgp/L Lbogus/L Lbogus/L ¯bgp

DIMES 77358 32159 11204 41.6% 14.5% 34.8%
Arkdirect 56014 14515 4510 25.9% 8.0% 31.1%

Arkindirect 69962 25215 9059 36.0% 12.9% 35.9%
Total 104844 49731 17062 47.4% 16.3% 34.3%

in 112 different ASes connected to 13.6K unique ASes through a total of 43K
links. Let Gtruth denote this set of AS adjacencies. A traceroute-derived AS link
X − Y is bogus, if either X or Y is in our set of 112 ASes but the link X − Y
dose not exist in Gtruth.

To evaluate the inaccuracy of traceroute-derived AS links, we inspect two
values: Lbgp/L and Lbogus/L, where L is the number of links discovered by
traceroute; Lbgp is the number of extra links not in Gbgp; Lbogus is the number
of bogus links. The value Lbgp/L can be considered as a upper bound of the error
rate, while the value Lbogus/L should be seen as a lower bound of inaccuracy.

To understand how the extra links and bogus links were created, we search for
these links in our mismatch fragments and group them in the causes described
in the previous section. Table 3 shows the inaccuracy of traceroute-derived AS
topology by causes. The results from different monitors are similar. We see that
the cause Neighbors are responsible for most of the links not seen in BGP, and
contribute to the highest chunk of bogus links.

We also verify the accuracy of the AS adjacency sets provided by Ark and
DIMES in Table 4. About 47% of AS adjacencies in the traceroute-derived
topologies are not seen in BGP. In addition, we verify that about 16% of the
traceroute AS adjacencies are false. Discarding the indirect links, that is caused
by non-responsive hops or unannounced prefixes, in CAIDA’s data can reduce
the fraction of bogus links from 13% to 8%. However still 31% of the extra links
not seen in BGP are actually bogus (Lbogus/L ¯bgp).

100 Y. Zhang et al.

8 Conclusion

In this paper we develop a systematic approach to identify and classify errors
in AS paths inferred from traceroute using the LPM method. Our results shed
light into the major pitfalls of traceroute-based AS topology measurement and
show the limitations of publicly available AS topologies derived from traceroute.
Since most of the inconsistencies originate from IP address sharing between
BGP neighbors, we believe that building an accurate database of router interface
aliases can bring significant improvement to the accuracy of the router path to
AS path conversion process, and this is part of our future work.

References

1. Archipelago Measurement Infrastructure, http://www.caida.org/projects/ark/
2. Internet Routing Registry, http://www.irr.net/
3. RIPE routing information service project, http://www.ripe.net/
4. RouteViews routing table archive, http://www.routeviews.org/
5. UCLA IRL Internet topology collection, http://irl.cs.ucla.edu/topology/
6. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,

Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with paris traceroute.
In: IMC 2006 (2006)

7. Chang, H., Jamin, S., Willinger, W.: Inferring AS-level Internet topology from
router-level path traces. In: SPIE ITCom (2001)

8. Hunt, J.W., Mcllroy, M.D.: An algorithm for differential file comparison. Tech.
rep., Bell Laboratories (1976)

9. Hyun, Y., Broido, A., Claffy, K.C.: On third-party addresses in traceroute paths.
In: Proc. of Passive and Active Measurement Workshop, PAM (2003)

10. Hyun, Y., Broido, A., Claffy, K.C.: Traceroute and BGP AS path incongruities.
Tech. rep., CAIDA (2003)

11. Madhyastha, H., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: an information plane for distributed services. In:
Proc. of OSDI (2006)

12. Mao, Z.M., Johnson, D., Rexford, J., Wang, J., Katz, R.H.: Scalable and accurate
identification of AS-level forwarding paths. In: INFOCOM 2004 (2004)

13. Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate AS-level tracer-
oute tool. In: Proc. of ACM SIGCOMM (2003)

14. Oliveira, R., Pei, D., Willinger, W., Zhang, B., Zhang, L.: In search of the elu-
sive ground truth: The Internet’s AS-level connectivity structure. In: Proc. ACM
SIGMETRICS (2008)

15. Oliveira, R., Zhang, B., Zhang, L.: Observing the evolution of Internet AS topology.
In: ACM SIGCOMM (2007)

16. Shavitt, Y., Shir, E.: DIMES: Let the Internet measure itself. ACM SIGCOMM
Computer Comm. Review, CCR (2005)

http://www.caida.org/projects/ark/
http://www.irr.net/
http://www.ripe.net/
http://www.routeviews.org/
http://irl.cs.ucla.edu/topology/

Toward Topology Dualism: Improving the Accuracy of
AS Annotations for Routers�

Bradley Huffaker, Amogh Dhamdhere, Marina Fomenkov, and kc claffy

CAIDA, University of California, San Diego
{bradley,amogh,marina,kc}@caida.org

Abstract. To describe, analyze, and model the topological and structural charac-
teristics of the Internet, researchers use Internet maps constructed at the router or
autonomous system (AS) level. Although progress has been made on each front
individually, a dual graph representing connectivity of routers with AS labels
remains an elusive goal. We take steps toward merging the router-level and AS-
level views of the Internet. We start from a collection of traces, i.e. sequences
of IP addresses obtained with large-scale traceroute measurements from a dis-
tributed set of vantage points. We use state-of-the-art alias resolution techniques
to identify interfaces belonging to the same router. We develop novel heuristics
to assign routers to ASes, producing an AS-router dual graph. We validate our
router assignment heuristics using data provided by tier-1 and tier-2 ISPs and
five research networks, and show that we successfully assign 80% of routers with
interfaces from multiple ASes to the correct AS. When we include routers with
interfaces from a single AS, the accuracy drops to 71%, due to the 24% of total
inferred routers for which our measurement or alias resolution fails to find an in-
terface belonging to the correct AS. We use our dual graph construct to estimate
economic properties of the AS-router dual graph, such as the number of internal
and border routers owned by different types of ASes. We also demonstrate how
our techniques can improve IP-AS mapping, including resolving up to 62% of
false loops we observed in AS paths derived from traceroutes.

1 Introduction

There is growing scientific interest in the structure and dynamics of Internet topology,
primarily at the router and Autonomous System (AS) levels. Substantial progress over
the last decade toward understanding and improving the integrity and completeness of
router and AS-level topologies separately (reviewed in Section 4) has inspired us to
seek a graph construction that merges router and AS-level views of the Internet. Such
a view would capture administrative boundaries while providing sufficient detail about
the geography and internal structure of each AS. Inherent limitations and inaccuracies
of existing techniques for alias resolution, IP-to-AS mapping, and router-to-AS assign-
ment (not to mention validation of any of them) render this goal challenging.

In this work we take initial steps toward merging router and AS-level views into a
dual graph representation of the Internet. We start from active measurement (traceroute-
like) datasets collected using CAIDA’s Archipelago distributed measurement infrastruc-
ture (Ark) [17]. We then apply state-of-the art alias resolution techniques [19] to infer
� Support for this work is provided by DHS N66001-08-C-2029 and NSF 05-51542.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 101–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

102 B. Huffaker et al.

which interfaces belong to the same router, creating a router-level Internet map. Finally,
we propose heuristics to assign routers to ASes, using information derived from the
interfaces that we infer belong to a particular router. We evaluate our AS assignment
heuristics by validating against ground truth data from tier-1 and tier-2 ISPs and five re-
search networks. We successfully assigned 80% of multi-AS routers, i.e, routers whose
interfaces map to different ASes. When we include single-AS routers (routers whose
interfaces all map to the same AS), the accuracy drops to drops to 71%, due to the 24%
of total inferred routers for which our measurement or alias resolution fails to find an
interface belonging to the correct AS. We also demonstrate how our techniques can be
used to study the statistical properties of the resulting AS-router dual graph, and can
improve IP-AS mapping of state-of-the-art AS-level traceroute tools.

2 Datasets and Methodology

We briefly describe three components of our methodology: gathering a large set of Inter-
net path data; resolving IP address aliases to create a router-level graph; and designing
heuristics to map annotated routers to ASes. All CAIDA data sets and tools developed
to support this work will be publicly available.

2.1 Datasets

Active Measurements
We collected our active measurements using CAIDA’s Archipelago (Ark) Measurement
infrastructure [17], using 37 monitors in 28 countries. The Ark monitors used Paris
traceroute [6] to randomly probe destinations from each routed /24 seen in BGP dumps
from Routeviews over a 28-day collection period in September and October 2009. We
call the resulting set of 268 million traceroute paths our traceroute dataset, which we
used to infer which IP interfaces belong to the same router (Section 2.2).

BGP Data
To assign IP addresses to ASes, we used publicly available BGP dumps provided
by Routeviews [26] and one of RIPE NCC’s collectors (RCC12) [25]. BGP (Bor-
der Gateway Protocol) is the protocol for exchanging interdomain routing information
among ASes in the Internet. A single origin AS typically announces (“originates”) each
routable prefix via BGP. We perform IP-to-AS mapping by assigning an IP address to
the origin AS of the longest matching prefix for that IP address. We also used this BGP
data to annotate each interdomain link with one of three (over-simplified) business re-
lationships: customer-provider (the customer pays the provider); settlement-free peer
(typically no money is exchanged); and sibling (both ASes belong to the same organi-
zation) – using the classification algorithm in Dimitropolous et al. [10].

Ground Truth Dataset
Our ground truth datasets includes private data from a tier-1 ISP (ISP1) and a tier-
2 ISP (ISP2). In addition we use public data from the following research networks:
CANET (ISPC)[1], GEANT (ISPG)[2], Internet2 (ISPT)[4], I-Light (ISPL)[3], and Na-
tional LambdaRail (ISPN)[5]. ISP1 and the five research networks provided the full list

Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers 103

of interfaces. ISP1 and ISP2 provided their hostname conventions, which allowed us to
identify interfaces in their address space, but not on their routers. We thus have two sets
of interfaces for each network i: Ii (interfaces on routers that belong to network i) and
Īi (interfaces in i’s address space, but on routers that do not belong to network i). For
each network we then generate a list of AS numbers known to belong to that network:
A1, A2, AC , AI , etc., and the set of ASes that are not in each Ai, denoted Āi.

2.2 Alias Resolution

For alias resolution, we rely on CAIDA’s alias resolution tools MIDAR and kapar [19].
MIDAR expands on the IP velocity techniques of RadarGun [8], and kapar expands
on the analytical techniques of APAR [14]. We first use the traceroute dataset as input
to MIDAR, the output of which is fed into kapar. kapar heuristically infers the set of
interfaces that belong to the same router, and the set of two or more routers on the same
“IP link” (which could either be a point-to-point link, or LAN or cloud with multiple
attached IP addresses). kapar produces two datasets corresponding to inferred nodes
(routers) and links. Each node in the router dataset has a set of known interfaces and
inferred interfaces. Known interfaces were measured directly; inferred interfaces result
from kapar determining that a router r1 has a link to interface i2 on router r2, but we
did not see an actual interface on router r1. The interfaces on an IP link are typically
assigned IP addresses from the same prefix, so we assume that router r1 must have an
interface from the same prefix as i2. The link dataset contains, for each link, the set
of routers and router interfaces that we inferred as sharing that link. kapar correctly
identified 66% of the true aliases from among the set of ISP1’s observed interfaces (our
largest set of ground truth data), with a 5% false positive rate.

At least three limitations of our alias resolution techniques may affect the AS as-
signment process. First, a large number of interfaces and links between them are never
observed, either because they do not respond to ICMP, or because none of the tracer-
outes encounter those interfaces. Second, some interfaces that respond to ICMP have
addresses belonging to private address space, which makes them indistinguishable from
other interfaces using the same private address space. Third, even when all of a router’s
interfaces are discovered, we may have insufficient information to infer that they belong
to the same router. For example, we inferred 1390 routers as having interfaces from a
single AS in A1, which our method would infer to mean these routers are in ISP1. But
our ground truth dataset refutes this inference; these routers do not belong to ISP1, and
likely have an interface (which we either did not observe or did not resolve accurately)
from at least one other AS in Ā1.

2.3 AS Assignment Methods

The goal of the AS assignment process is to determine the AS that owns each router. For
each router r, we create an AS frequency matrix that counts the number of interfaces
(known and inferred) from each AS that appears on r. The ASes in this frequency
matrix represent the set of possible owner ASes of r. Next, we describe the heuristics
we designed to determine r’s ownership from among the candidates present in r’s AS
frequency matrix. Figure 1 illustrates the five heuristics examined in this paper.

104 B. Huffaker et al.

Single

Election

Neighbor

Customer

Degree

provider

customer

AS DEGREE

A 1

B 2

C 3

A

A

A

A

AA

A

B

A

A

AA

A

A
A

A

C

C

B

B

A
B

B

B

C
B

C

A

A

A

A

A

C

B A

B

A

D

D

Fig. 1. Depiction of five evaluated
heuristics for assigning AS labels to
routers: Single (only one choice);
Election (assign to AS with largest
number of interfaces); Neighbor
(assign to AS with most neighbors);
Customer (assign to customer AS);
Degree (assign to smallest degree AS).

All Election Neighbor Customer Degree

0

20

40

60

80

100

pr
ec

en
ta

ge

R tie-breaker
R tie-breaker
R primary
R primary

S F S F S F S F S F

Degree Degree Neighbor Neighbor
+ + + +

single AS ------------------multiple AS---------------

Fig. 2. Success (S) and failure (F) rates of AS as-
signment primary heuristics, and the best tie-breaking
heuristics for each primary, for single-AS and multi-
AS routers in R and R̄

Single: This heuristic is used for the case where a single AS is present in r’s AS fre-
quency matrix. In this case, we (trivially) assign r to this AS.

Election: This heuristic assigns a router r to the AS with the highest frequency in r’s AS
frequency matrix, assuming routers tend to have more interfaces in the address space of
their owner. Election produces an ambiguous assignment when multiple ASes have the
same (highest) frequency, which occurred for 14% of the multi-AS routers in our set.

Neighbor: For this heuristic, we first determine the set of single-AS routers to which
r is connected (its single-AS neighbors). We create a new AS frequency matrix that
counts the number of single-AS neighbors of r from each AS. The Neighbor heuristic
assigns r to the AS with the largest frequency (most single-AS neighbors), based on the
intuition that a router is connected to a larger number of single-AS routers in its owner
AS. Neighbor produces an ambiguous assignment when multiple ASes have the same
(highest) frequency.

Customer: This heuristic uses the AS relationship dataset to assign relationships to
each pair of ASes from r’s AS frequency matrix1. Customer assigns r to the AS
inferred to be a customer of every other AS in r’s AS frequency matrix. This heuris-
tic is based on the common practice that customer and provider routers typically in-
terconnect using addresses from the provider’s address space. Consequently, a router
with interfaces from both the customer and provider address spaces is assigned to the
customer.

1 Not every possible AS pair in r’s frequency matrix has a known relationship; many AS pairs
have no link between them in the original BGP AS graph, so no defined relationship.

Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers 105

Degree: For this heuristic, we first generate an AS-level graph by assuming full-mesh
connectivity among ASes from each router’s AS frequency matrix. We then use this
graph to generate an AS degree for each AS. Degree assigns router r to the smallest-
degree AS from r’s AS frequency matrix, i.e., the AS most likely to be the customer
AS, based on similar intuition as the Customer heuristic.

2.4 Evaluation of AS Assignment Heuristics

We next evaluate our AS assignment heuristics by comparing our AS assignment with
our ground truth datasets. We classify each router inferred by kapar into the following
sets. If a router r0 has at least one interface in Ii, then we assign r0 to the set Ri

(the set of routers owned by ISPi). If a router r1 has at least one interface from the
set Īi, then we assign r1 to the set R̄i (inferred routers not owned by ISPi). We found
39 routers (0.6% of the total analyzed) with interfaces in both Ii and Īi or Ii and
Ij , which contradicts the meaning of these data sets (describing mutually exclusive
routers). These discrepancies are due to false positives in our alias resolution process,
so we discard them for the purpose of evaluating our AS assignment heuristics. All but
three routers in Ri have a single AS in Ai (Ai is the set of ASes owned by ISPi), which
means there is a single successful assignment for most routers. For the three routers
with multiple ASes in Ai, successful assignment is ambiguous, and we omitted these
routers from the evaluation, leaving us with |R1| = 3,405 and |R̄1| = 2,254, |R2| = 241
and |R̄2| = 86, |RG| = 37 and |R̄G| = 0, |RL| = 32 and |R̄L| = 0, |RT | = 17 and |R̄T |
= 0, |RN | = 16 and |R̄N | = 0, and |RC | = 8 and |R̄C | = 0. We call the combined set
of all routers R = ∪Ri, those owned by some network in our ground truth dataset,
and the set R̄ = ∪R̄i those we know not to be owned by a specific network in our
ground truth datasets. Using our knowledge of interface ownership, we derive |R| =
3,795 and |R̄| = 2,340 routers on which to test AS assignment heuristics. We consider
H(r), the AS to which a certain heuristic assigns router r, as a successful assignment
if ((r ∈ Ri)&&(H(r) ∈ Ai))||((r ∈ R̄i)&&(H(r) ∈ Āi)), i.e., if the router is in R

and H(r) selects an AS owned by the same ISP as the router, or the router is in R̄ and
H(r) selects an AS not owned by the ISP known to not own router.

Section 2.3 outlined the cases for which each heuristic provides an ambiguous as-
signment. To resolve ambiguous assignments, i.e., break ties, we paired each heuristic
with a second one. We tested all combinations of pairs of heuristics to find the best tie-
breaker2 for each primary heuristic, resulting in the following combinations: Election
+ Degree, Neighbor + Degree, Customer + Neighbor, and Degree + Neighbor.

Figure 2 shows the fraction of routers we assigned successfully (bars labeled “S”),
and the fraction that were failures (bars labeled “F”), determined using the ground truth
datasets. Figure 2 presents these results separately for routers in R and R̄, and for differ-
ent assignment heuristics. We found that for single-AS routers, all heuristics are either
successful for the 67% in R or failures for the 33% in R̄. The explanation is straight-
forward: All routers in Ri or R̄i have at least one interface in ISPi’s address space (not
necessarily being used by ISPi), and by extension an AS in Ai. For single-AS routers in

2 The best tie-breaker is the heuristic that produced the largest number of successful assignments
for routers where the primary heuristic resulted in an ambiguous assignment.

106 B. Huffaker et al.

Ri, the AS must belong to Ai, and the assignment is a success. For single-AS routers
in R̄i, assigning it to that single AS results in failure. For these single-AS routers in R̄i,
we have most likely failed to either see or accurately resolve the alias for the router’s
interface in address space not owned by ISPi.

Figure 2 shows that when a router has interfaces from multiple ASes, the most ef-
fective stand-alone heuristic was Neighbor, which successfully assigned 70% of these
routers. Election + Degree was the most successful combination of heuristics (mainly
due to fewer failures on routers from R̄), with a success rate of 80%.

3 Applications of AS Assignment

In this section, we use the AS assignment heuristics described in Section 2.3 to produce
a dual graph that merges router and AS-level topologies. We then describe two appli-
cations of this dual graph construct – producing representative dual topologies of the
Internet, and improving the accuracy of AS-level traceroute tools.

3.1 Toward Representative Dual Topologies of the Internet

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 1 10 100 1000 10000

nu
m

be
r

of
 in

te
rn

al

ro
ut

er
s

AS degree

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

M
ed

ia
n

nu
m

be
r

of
 in

te
rn

al
 r

ou
te

rs

AS degree

Fig. 3. The number of single-AS routers per AS vs de-
gree (top) and the median number of single-AS routers
per AS vs degree (bottom)

Previous work [11,21] has fo-
cused on generating AS-level
graphs of arbitrary size, while pre-
serving the correlation structure
seen in real Internet topology, e.g.,
correlations between the number
of customers, providers and peers
of an AS, or between degrees of
ASes at each end of an inter-
domain link. We seek to extend
this previous work by designing a
graph generator that can produce
Internet-like dual topologies, i.e.,
AS annotated router-level graphs,
of arbitrary size, preserving the
statistical properties of the Inter-
net’s dual graph. Another applica-
tion is to security-related situational awareness objectives, which require knowledge of
the internal structure of ASes. We focus on two questions: How many inferred single-
AS (internal) and multi-AS (border) routers do ASes own (with the aforementioned
caveat that we may mis-characterize routers as single-AS if we undersample or mis-
resolve interfaces)? Is there a correlation between an AS’s degree and the number of
routers it owns? We use the heuristics from Section 2.3 to assign routers to ASes, and
measure the router ownership properties of resulting ASes. Our results do not represent
the actual number of routers owned by an AS, only the number observed in our data
samples.

We first examine the number of single-AS routers owned by an AS, which does not
depend on the assignment heuristic we used, since every heuristic assigns a single-AS

Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers 107

router to the same AS. The top graph in Figure 3 shows a scatter plot of the number
of single-AS routers inferred per AS versus the AS degree as observed in BGP data
(from Routeviews2 and RIPE’s RRC12). We confirmed the expected positive correla-
tion, where ASes with larger degrees (which typically represent larger transit providers)
tend to have more single-AS routers. Several outliers have many single-AS routers and
relatively low AS degrees (1 or 2). The top 10 such outliers corresponded to ASes that
were either regional networks of a larger transit provider, or smaller administrative do-
mains within a large transit provider. Consequently, these ASes had just one or two
observed AS links, to the backbone AS of the larger transit provider. It is plausible
that such regional transit networks or access provider networks have a large number of
single-AS routers.

The bottom graph in Figure 3 shows the median number of single-AS routers per
AS as a function of the AS degree. We bin ASes according to their degree, ensuring a
minimum bin size of 50 ASes. We see a strong positive correlation between the number
of single-AS routers and the inferred AS degree, which is expected since ASes with
larger AS degrees typically represent transit providers, which need many routers. ASes
with lower degrees are typically stub networks with less internal routing infrastructure.

 1

 10

 100

 1 10 100 1000

M
ed

ia
n

nu
m

be
r

of
 b

or
de

r
ro

ut
er

s

AS degree

Election
Customer
Neighbor

Degree

Fig. 4. Number of multi-AS routers per AS using
Election, Neighbor and Degree heuristics shows
strong correlation with AS degree

Figure 4 shows the number of
multi-AS routers owned by an AS
as a function of AS degree, for dif-
ferent AS assignment heuristics. We
found similar results with the Elec-
tion, Neighbor and Degree assign-
ment heuristics, and a strong positive
correlation between the number of
multi-AS routers of an AS and its de-
gree. The Customer heuristic shows
a much weaker correlation between
the number of multi-AS routers and
AS degree. Customer favors lower
(BGP) degree ASes, since customer
ASes tend to have smaller degrees
than their providers, and Customer
assigns a multi-AS router to the cus-

tomer AS, decreasing the number of multi-AS routers for ASes with larger BGP de-
grees. We found that the Neighbor heuristic favors higher (BGP) degree ASes, inflating
the number of multi-AS routers for higher degree ASes.

3.2 Toward Accurate AS-Traceroute

As a second application of the dual graph construct, we outline an approach to designing
a more accurate AS-traceroute tool, a problem first studied by Mao et al. [23]. Mao et
al. concluded that an accurate router-level map of the Internet would help to resolve
anomalies seen in AS paths derived from traceroutes. Here, we investigate whether our
AS assignment heuristics can improve AS-traceroute accuracy, by resolving anomalies
such as missing AS hops, extra AS hops and AS loops. Identifying missing and extra

108 B. Huffaker et al.

AS hops requires BGP feeds from the vantage points used for traceroute measurements,
which the Ark infrastructure does not yet have. However, we can identify traceroutes
that have AS loops, by performing an IP-to-AS mapping using BGP dumps collected
from Routeviews and RIPE. Mao et al.. [23] noted two possible explanations for false
loops in traceroute paths: the presence of Internet Exchange Point (IXP) infrastructure,
and sibling ASes. We investigated whether our router-to-AS assignment alone can help
to resolve these loops. In future work, we plan to incorporate IXP data collected by
Augustin et al.. [7] to identify false loops due to IXP infrastructure, and WHOIS data
to identify false loops due to sibling ASes.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

Election Customer Neighbor Degree Election+
Degree

fr
ac

tio
n

of
 tr

ac
er

ou
te

 A
S

 p
at

h
lo

op
s

re
so

lv
ed

Fig. 5. Fractions of traceroute loops resolved by
each heuristic

By applying IP-to-AS mapping on
the sequence of interfaces seen in each
traceroute, we found that most Ark mon-
itors yielded fewer than 5% of inferred
AS paths that had loops. However, traces
from one particular monitor yielded 75%
of inferred AS paths with loops, which
we discovered was caused by a single in-
correctly mapped interface traversed by
most traces from that monitor. We re-
moved these traces for the remainder of
our analysis. We then assigned an AS
to each inferred router on the path using
the AS assignment heuristics from Sec-
tion 2.3. We replaced the loop segment in the traceroute AS path with an AS path
segment derived from the router assignment heuristic. We measured the fraction of
paths with traceroute loops resolved, i.e., removed, via this procedure. Figure 5 shows
the fraction of traces with AS path loops that we could resolve using each of the AS
assignment heuristics. We found that the Customer heuristic performed poorly. The
Neighbor heuristic, which was the most accurate stand-alone AS assignment heuris-
tic (Section 2.4) was able to resolve 62% of AS path loops. The combination Elec-
tion+Degree, which was the most accurate combination AS-assignment heuristic, was
able to resolve just over 61% of AS path loops.

4 Related Work

There has been significant interest in studying structural properties of the Internet at the
router and AS-levels for over a decade [12]. Several measurement studies have since
highlighted the incompleteness of topologies inferred from publicly available routing
data [9,16,22,24,32]. Much work has gone toward capturing as much of the Inter-
net’s AS-level topology as possible, most notably Zhang et al. [32] and He et al. [16].
Several large-scale active measurement projects, including Ark [17], iplane [20], and
DIMES [27], use traceroutes from distributed vantage points to a large set of desti-
nations across the IPv4 Internet. The resulting datasets have been used to reconstruct
router and AS-level topologies, but merging the two views has received less attention.

A major challenge in deriving topologies from traceroute measurements is alias res-
olution, i.e., determining which interfaces belong to the same router. Tangmunarunkit et

Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers 109

al. [13] proposed Mercator, a tool that attempted alias resolution by observing response
packets sent from different interfaces than those probed. Spring et al. [29] used Ally to
detect when two candidate interfaces likely shared the IP ID counter. Follow up work
on alias resolution [8,15,28] used techniques such as IP ID counter velocities, DNS
hostname conventions, and bi-directional traceroutes. Keys [19] recently documented
CAIDA’s attempt to expand and combine these techniques into a unified system.

There has been relatively little work on assigning routers (inferred by the previ-
ous alias resolution techniques) to the ASes that own those routers. Tangmunarunkit
et al. [31] used a simple heuristic based on longest prefix matching to assign routers
(inferred using Mercator) to ASes. Due to a lack of ground truth data, they were not
able to validate their router-to-AS assignment heuristic. Tangmunarunkit et al. [30] was
the first to study the properties of ASes in terms of the number of routers per AS.
They found that ASes show high variability in the number of routers, and the number
of routers per AS is highly correlated with BGP AS degree. Our work on improving
AS-traceroute is inspired by the work of Mao et al. [23], who studied the discrepancies
between traceroute-derived AS paths and BGP AS paths, and Hyun et al. [18], who
measured the presence of third-party addresses in traceroute paths.

5 Conclusions

We have presented an approach to merge router and AS-level views of the Internet,
creating a dual graph of the Internet. We proposed new heuristics for assigning routers
from traceroute-derived graphs to ASes. We validated the success rates of our heuris-
tics against ground truth data from a set of commercial ISPs and research networks. For
multi-AS routers, the most successful heuristic was a combination of Election (assign
the router to the AS with the largest number of interfaces) followed by Degree (assign
the router to the AS with the smallest degree), with a success rate of 80%. For 32%
of inferred single-AS routers, we either missed or mis-resolved some interface that be-
longed to the true owning AS, reducing our overall AS assignment accuracy to 71%.
We also showed how our AS assignment techniques could be used to quantify statisti-
cal properties of ASes, as well as to improve on current state-of-the-art AS-traceroute
techniques, resolving up to 62% of false loops observed in traceroute-derived AS paths.

References

1. Canet4 topology data, http://dooka.canet4.net/
2. Geant topology data, http://stats.geant2.net/lg/
3. I-light topology data, http://routerproxy.grnoc.iu.edu/ilight/
4. Internet2 topology data, http://vn.grnoc.iu.edu/Internet2
5. National lambdarail topology data, http://routerproxy.grnoc.iu.edu/nlr2/
6. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.: Avoiding

Traceroute Anonmalies with Paris Traceroute. In: Proc. Internet Measurement Conference,
IMC (2006)

7. Augustin, B., Krishnamurthy, B., Willinger, W.: IXPs: Mapped?. In: Proc. Internet Measure-
ment Conference, IMC (2009)

http://dooka.canet4.net/
http://stats.geant2.net/lg/
http://routerproxy.grnoc.iu.edu/ilight/
http://vn.grnoc.iu.edu/Internet2
http://routerproxy.grnoc.iu.edu/nlr2/

110 B. Huffaker et al.

8. Bender, A., Sherwood, R., Spring, N.: Fixing Ally’s Growing Pains with Velocity Modelling.
In: Proc. Internet Measurement Conference, IMC (2008)

9. Cohen, R., Raz, D.: The Internet Dark Matter - On the Missing Links in the AS Connectivity
Map. In: Proc. IEEE Infocom (2006)

10. Dimitropoulos, X., Krioukov, D., Fomenkov, M., Huffaker, B., Hyun, Y., Claffy, K., Riley,
G.: AS Relationships: Inference and Validation. In: ACM SIGCOMM CCR (2007)

11. Dimitropoulos, X., Krioukov, D., Vahdat, A., Riley, G.: Graph annotations in Modeling Com-
plex Network Topologies. ACM Transactions on Modeling and Computer Simulation 19(4)
(2009)

12. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topol-
ogy. In: Proc. ACM SIGCOMM (1999)

13. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet Map Discovery. In: Proc. IEEE
INFOCOM (2000)

14. Gunes, M.H.: APAR tool, http://itom.utdallas.edu/data/APAR.tar.gz (ac-
cessed 2008-07-02)

15. Gunes, M.H., Sarac, K.: Analytical IP Alias Resolution. In: Proc. IEEE International Con-
ference on Communications, ICC (2006)

16. He, Y., Siganos, G., Faloutsos, M., Krishnamurthy, S.V.: A Systematic Framework for Un-
earthing the Missing Links: Measurements and Impact. In: Proc. USENIX/SIGCOMM NSDI
(2007)

17. Hyun, Y.: Archipelago Infrastructure, http://www.caida.org/projects/ark/
18. Hyun, Y., Broido, A., Claffy, K.: On Third-party Addresses in Traceroute Paths. In: Proc.

Passive and Active Measurement Conference, PAM (2003)
19. Keys, K.: Internet-Scale IP Alias Resolution Techniques. In: ACM SIGCOMM CCR (2010)
20. Madhyastha, H.V., Katz-Bassett, E., Anderson, T., Krishnamurthy, A., Venkataramani, A.:

iPlane: An Information Plane for Distributed Services. In: Proc. USENIX OSDI (2006)
21. Mahadevan, P., Hubble, C., Krioukov, D., Huffaker, B., Vahdat, A.: Orbis: Rescaling Degree

Correlations to Generate Annotated Internet Topologies. In: Proc. ACM SIGCOMM (2007)
22. Mahadevan, P., Krioukov, D., Fomenkov, M., Huffaker, B., Dimitropoulos, X., Claffy, K.,

Vahdat, A.: The Internet AS-Level Topology: Three Data Sources and One Definitive Metric.
In: ACM SIGCOMM CCR (2005)

23. Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an Accurate AS-level Traceroute
Tool. In: Proc. ACM SIGCOMM (2003)

24. Oliveira, R., Pei, D., Willinger, W., Zhang, B., Zhang, L.: In Search of the Elusive Ground
Truth: The Internet’s AS-level Connectivity Structure. In: Proc. ACM SIGMETRICS (2008)

25. RIPE NCC. Rcc12 bgp collector, http://www.ripe.net/projects/ris/
rawdata.html

26. University of Oregon RouteViews Project, http://www.routeviews.org/
27. Shavitt, Y., Shir, E.: DIMES: Let the Internet Measure Itself. In: ACM SIGCOMM CCR

(October 2005)
28. Spring, N., Dontcheva, M., Rodrig, M., Wetherall, D.: How to Resolve IP Aliases. Technical

Report UW-CSE-TR 04-05-04 (2004)
29. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP Topologies with Rocketfuel. In: Proc.

ACM SIGCOMM (2002)
30. Tangmunarunkit, H., Doyle, J., Govindan, R., Willinger, W., Jamin, S., Shenker, S.: Does AS

Size Determine Degree in AS Topology? In: ACM SIGCOMM CCR (2001)
31. Tangmunarunkit, H., Govindan, R., Shenker, S., Estrin, D.: The Impact of Routing Policy on

Internet Paths. In: Proc. IEEE INFOCOM (2001)
32. Zhang, B., Liu, R., Massey, D., Zhang, L.: Collecting the Internet AS-level Topology. In:

ACM SIGCOMM CCR (2005)

http://itom.utdallas.edu/data/APAR.tar.gz
http://www.caida.org/projects/ark/
http://www.ripe.net/projects/ris/rawdata.html
http://www.ripe.net/projects/ris/rawdata.html
http://www.routeviews.org/

The RIPE NCC Internet Measurement
Data Repository

Tony McGregor1,2, Shane Alcock1, and Daniel Karrenberg2

1 University of Waikato, Hamilton, New Zealand
2 RIPE NCC, Amsterdam, The Netherlands

(tonym,salcock)@cs.waikato.ac.nz,
daniel.karrenberg@ripe.net

Abstract. This paper describes datasets that will shortly be made avail-
able to the research community through an Internet measurement data
repository operated by the RIPE NCC. The datasets include measure-
ments collected by RIPE NCC projects, packet trace sets recovered from
the defunct NLANR website and datasets collected and currently hosted
by other research institutions. This work aims to raise awareness of these
datasets amongst researchers and to promote discussion about possible
changes to the data collection processes to ensure that the measurements
are relevant and useful to the community.

1 Introduction

A core requirement of any Internet measurement project is to acquire appro-
priate measurement data. However, privacy and security concerns often prevent
researchers from being able to collect the data themselves. It is very important,
therefore, that organisations that collect useful measurement data are able to
share it with the research community. Time that would otherwise be spent con-
ducting measurements can instead be dedicated to the analysis of existing data.
Shared access to measurement resources also promotes collaboration between
researchers and allows validation studies to be performed.

One common problem when sharing Internet measurement data is cultivating
awareness of data sets amongst the research community. At present, publicly
available data is typically scattered amongst a large number of hosting locations,
meaning that it can be difficult for researchers to locate suitable datasets and
keep informed of new datasets as they are released. DatCat [1] has helped in this
regard, but it is not yet a comprehensive resource.

Maintenance of repositories hosted by research groups that depend on com-
petitive grants for funding is also a significant concern. This was evidenced by
the recent disappearance of the NLANR website which had hosted many passive
trace sets, including the popular Auckland and Abilene traces. In this instance,
it was fortunate that the contents of the site were salvaged by the University of
Waikato with the support of CAIDA before they became inaccessible. However,
the data could easily have been lost to the research community permanently if
that intervention had not taken place.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 111–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

112 T. McGregor, S. Alcock, and D. Karrenberg

As a Regional Internet Registry (RIR), the RIPE Network Coordination Cen-
tre (RIPE NCC) has the ability to collect a large quantity of measurement data
that would be extremely difficult for researchers based in academic institutions
to acquire themselves. Some of the RIPE NCC data is already publicly avail-
able, but each RIPE NCC project shares data independently in a variety of
ways. Therefore, the RIPE NCC is developing a common and consistent plat-
form for hosting and sharing Internet measurement data. While the primary
goal is to streamline the mechanisms by which the RIPE NCC datasets can be
accessed, the data repository will be open to other collectors who wish to share
their measurement data with the research community. By grouping the datasets
into a single repository, finding and accessing appropriate measurement data
will be easier and awareness of the datasets that are available to researchers
will be increased. One advantage of the RIPE NCC founding and operating a
measurement data repository is that the continued existence of the repository
does not depend solely on research grants and the likelihood of the repository
disappearing is much smaller.

One of the most significant issues that arises when sharing Internet measure-
ment data is that of anonymisation. Datasets that are being published for the
first time will need to be anonymised in some fashion and agreements with users
must be developed in order to prevent inappropriate disclosure of personal and
commercial information. Such decisions will need to be made on a case-by-case
basis, as each dataset can contain different types of sensitive information, e.g.
policies for protecting IP addresses will not be applicable to personal information
such as names and contact details.

Similarly, the structure and scope of a system for providing useful metadata
and annotation of the shared datasets is yet to be completely determined. We
expect that entries for datasets shared through the RIPE repository will be
added to existing sites such as DatCat [1] and WITS [2], as well as a site that is
developed and hosted as part of the RIPE repository itself. We hope to elicit ideas
and thoughts from the wider research community with regard to the information
that should be provided through such a system and the best format in which to
present it. The RIPE NCC also plans to identify all users of the repository and
keep contact with them during their research. It is hoped that this will encourage
researchers to engage with the data collectors about how the measurements can
be improved to be more useful and relevant.

The remainder of this paper describes the datasets that are currently under
consideration for sharing through the RIPE repository. For each dataset, a brief
overview of the dataset, its associated research project and the measurement
techniques employed is presented.

2 RIPE Datasets

2.1 K-root

The K-root service is an Internet root name service operated by the RIPE NCC
[3]. The server consists of seventeen nodes located both inside and outside of

The RIPE NCC Internet Measurement Data Repository 113

Europe. Six of the nodes are global instances and are announced with an anycast
23-bit prefix. The remaining eleven nodes are local instances announced with a
24-bit prefix using the Border Gateway Protocol (BGP) no-export community
tag [4]. Each node operates three distinct data collection systems.

Firstly, tcpdump [5] is used to capture passive traces of incoming traffic on
port 53, i.e. Domain Name Server (DNS) queries. The trace files are rotated
hourly and retained on disk for five days. Each node generates between 300
and 500 megabytes of compressed traces per hour. The total amount of data
produced daily through this system is approximately 300 gigabytes.

As part of the “Day in the Life of the Internet” (DITL) project organised
by CAIDA [6], traces for a 50 hour period have been fetched and archived each
year. The 2008 DITL traces contain 1.46 billion packets and are 600 gigabytes
in size [7]. At present, this data is hosted by DNS-OARC [8] and is available
under their terms and conditions. Meta-data about the traces, including query
rates per node and known issues that may affect analysis such as clock skew, has
been documented publicly on DatCat, a measurement data catalogue [1].

Secondly, each node operates a DNS Statistics Collector (DSC) [9] that cap-
tures DNS traffic and summarises it into one minute bins. This data is used to
generate graphs that are shown on the K-root website. In addition, the raw DSC
output is transferred to RIPE NCC and archived indefinitely. The archive ex-
tends back to the beginning of 2008. The amount of data collected is estimated
to be approximately 1 megabyte per day, with the entire 2008 dataset being less
than 200 MB. The raw data has also been exported to DNS-OARC where it can
be accessed by members.

Finally, Simple Network Management Protocol (SNMP) statistics are col-
lected from the last-hop router serving each K-root node. The SNMP queries
originate from RIPE NCC in Amsterdam. If connectivity to a queried router is
lost, data will not be collected and the resulting dataset will not be contiguous.
The statistics are summarised and exported into a round-robin database (RRD)
where they can be queried and analysed using Cacti [10]. The RRD is configured
to retain the SNMP data for a year.

2.2 Reverse DNS

RIPE NCC also hosts reverse DNS (rDNS) services for its delegated address
space. There are four servers providing rDNS and other associated services.
These servers process approximately 50 thousand queries per second which is
more than triple the load of the K-root server. Because of the high query rate,
it is not feasible to regularly collect passive traces directly on these servers.
Occasional tcpdump traces have been collected when there was a specific need,
such as during an attack, but the traces are short and irregular. However, if
there was sufficient need, it may be possible to collect a sample or summary of
the traffic using a dedicated collector on a mirrored switch port.

DSC is used on each of the rDNS servers and the raw data is kept indefinitely.
At present, this data and the DSC graphs are only available internally at RIPE

114 T. McGregor, S. Alcock, and D. Karrenberg

NCC but could be made available to researchers if there was a need amongst
the research community.

2.3 AS112

RIPE NCC hosts an Autonomous System (AS) number 112 [11] reverse DNS and
dynamic DNS update server for the RFC 1918 private address space [12]. The
server processes about 2000 transactions per second. As anyone can announce
the AS112 prefix, there is no definitive list of AS112 servers. There are more
than 50 servers listed at [11] but there are almost certainly others.

A passive tcpdump trace is collected from the RIPE NCC AS112 server an-
nually and contributed to the DITL project [6]. More frequent passive captures
could be scheduled from this server if required. In addition, DSC data is col-
lected and used to generate graphs that are publicly available from the RIPE
NCC AS112 website [13].

2.4 RIS

The Routing Information Service (RIS) is a set of 16 route collectors running
quagga [14] that peer with approximately 600 BGP routers. Most of the collectors
are located within the RIPE region, but there are a few elsewhere including the
United States and South America. The routes learned are not used for routing
traffic but are instead collected and published to provide a resource for under-
standing Internet routing and diagnosing routing problems. Around 100 of the
peers provide a complete routing table and the others provide partial tables. The
BGP sessions include both IPv4 and IPv6.

The collectors export route updates every five minutes and perform a full
table dump every eight hours. It is normal that, at any one time, not all of the
peers are actively peered with a collector. There are many causes explaining
these peering gaps including configuration changes, equipment failure, network
failure and human error. There are also some gaps in the dataset due to system
failures. To reduce the impact of these errors, an automated system detects
results that are much smaller than expected and informs an administrator who
will investigate the fault. Also, it should be noted that some Interior Gateway
Protocol (IGP) routes are leaked to RIS, meaning that there will be some single-
bit prefixes advertised in the data.

The data collected from the RIS is stored in the Multi-threaded Routing
Toolkit (MRT) format [15]. All data collected since the system started in 2000 is
retained indefinitely. A month of data is approximately 22 gigabytes compressed
and the entire dataset is close to one terabyte. The last three months of data
is exported to a MySQL database which is also one terabyte in size. Quagga
logs and a selection of meta-data is supplied with the RIS data. The logs show
when peers have started or ended a BGP session and when timers expired, for
example.

The raw data is currently publicly available through the RIS website. This
is accessed by around 1000 distinct hosts each month, including the BGPmon

The RIPE NCC Internet Measurement Data Repository 115

[16] and Cyclops [17] websites which use the data to offer route announcement
and bogon notification services. In addition, RIPE NCC also publish weekly
statistical reports, have released a variety of tools for querying and visualising
the RIS data and have enabled Looking Glass queries to be sent directly to the
collectors. Users can also subscribe to a notification service that will inform them
of interesting events, such as a change in the advertisement for a particular AS.

2.5 Hostcount

The Hostcount project [18] generates statistics from a monthly DNS scan of
approximately 100 top level domains (TLDs) within the RIPE region. The scan
is performed by conducting a zone transfer on the DNS tree rooted at each TLD.
During the walk, counts of A and PTR records are maintained for both forward
and reverse IPv4 addresses as well as forward AAAA (but not reverse) IPv6
addresses.

As public zone transfers are disabled by most DNS administrators, the scan
is not exhaustive. Some administrators permit the RIPE scan, but this is often
under the condition that only statistics, rather than raw data, are published.
The blocking of zone transfers has increased over time so the data from earlier
years is a better reflection of the total number of hosts at that time.

Currently, the statistics are published via the Hostcount website [18]. These
include the number of distinct hosts found at different levels of the DNS tree for
each TLD, the number of zones discovered and the number of zone transfers that
were permitted and successful. The raw data from between 1990 and 2007 has
been archived and is currently in off-line storage. However, the present policy
is to discard the raw data after statistics have been extracted. This could be
reversed if there was sufficient need amongst the research community.

2.6 TTM

Test Traffic Measurements (TTM) is an active measurement system consisting
of 105 operational probes [19] that has been operating since 1999. The majority
of probes are located at ISPs and academic institutions within the RIPE region.
Other probe locations include the United States, South America, Asia, the Mid-
dle East, Australia and New Zealand. The clocks on the probes are synchronised
using GPS to give a 10 microsecond accuracy to real-time. With the exception
of some probes that are in private meshes, the TTM project conducts full mesh
measurements.

The probes regularly perform a series of active tests including a UDP one-
way delay test, traceroute, a multicast performance test (limited to sites that
have enabled multicast measurements), DNSMON measurements (see Section
2.7 below) and IPv6 pMTU discovery. In addition, the TTM probes support
conducting ad hoc measurements that are initiated by authorised users. The
ad hoc tests include a ping test and an HTTP page fetch. It is also possible
to develop and run arbitrary ad hoc tests. There are limits on the range of
destinations and the probing rate for ad hoc tests and the results are not released

116 T. McGregor, S. Alcock, and D. Karrenberg

to other sites or to the public. To maintain the integrity of the system, the
probes are managed solely by the RIPE NCC. However, it may be possible to
request special tests be performed using the TTM framework, provided there is
no significant impact on the existing measurements.

At present, performance graphs are available via the TTM website to users
who accept an electronic license agreement. Bulk data is also published using
the CERN ROOT format [20] to researchers who sign a paper license agreement.
The total dataset is approximately 0.7 terabytes in size, with the dataset from
2008 being 110 gigabytes.

2.7 DNSMON

The DNS Monitor project (DNSMON) collects data regarding the reachability
and latency for some of the top levels of the DNS system [21]. The data is
collected using 60 TTM probes that are not located in private meshes. The root
domain, .com, .net, .org, e164.arpa and 24 country code TLDs (mostly from
within the RIPE region) are measured. Performance over both IPv4 and IPv6
is measured for probes that have IPv6 connectivity. Name Server Identifier [22]
information returned in the DNS response is retained and may be used in the
future to generate per anycast instance graphs.

Summary statistics are available dating back to the commencement of the
project in April 2003, although not all servers have been monitored since this
time. Graphs are publicly available to anyone, but only paying subscribers can
access graphs for the last two hours. Raw data is retained for approximately a
year. Each probe collects between 10 and 20 megabytes of uncompressed data
per day and the total dataset is 121 gigabytes in size. The raw data is available
on request to country code TLD administrators and researchers, although non-
subscribers are restricted from accessing the most recent two days of data.

2.8 RIPE DB

The RIPE DB is an open shared database that is maintained by the RIPE
community [23], containing 3.2 million public object records. There are three
classes of data stored in the database: Internet number registration objects,
reverse DNS domain objects and route registry objects.

Internet number registration objects store details about IP addresses and AS
numbers including references to administrative and technical contact informa-
tion. The RIPE DB only contains records for the RIPE region, not the entire
Internet. The vast majority of the 2.6 million registration objects are for IPv4
addresses, but there are also 24,000 IPv6 address and 18,000 AS number objects
in the database.

At present, there are 410,000 reverse DNS objects and eight thousand forward
domain objects in the RIPE DB. Historically, both forward and reverse domain
information was stored but forward domains are no longer encouraged except
as community support for small, emerging domains. It is likely that all forward
domain support will cease in the future. The reverse DNS records are used to
create the zone files for the RIPE NCC reverse DNS service.

The RIPE NCC Internet Measurement Data Repository 117

The route registry objects are used to provide an Internet Routing Registry
(IRR), enabling organisations that participate in Internet routing to store and
publish their routing policy. The RIPE DB contains approximately 100,000 route
registry objects. The structure of the routing data in the database conforms to
the Routing Policy Specification Language [24] and the structure and use of the
route registry conforms to RFC 2650 [25]. Standard tools exist that can be used
to check the policies stored in the IRR data for consistency and to generate
router configurations from the IRR records. Unlike the other classes of object
in the RIPE DB, the route registry is synchronised to other IRRs and copies of
the information from the other IRRs is retained.

Public queries of the RIPE DB are supported through the use of both
command-line and web whois tools. A daily limit is imposed on the number
of queries that include personal information attributes. Bulk data is also avail-
able via FTP. The bulk data files are generated daily, including both a file with
the complete database and files split by object type. Personal details, such as
the person and maintainer objects, are not included in these files. The com-
plete database file is approximately 150MB in size. In addition, it is possible to
subscribe to a near real time mirror feed of the database for an annual fee.

Access to personal data within the RIPE DB is restricted for both legal and
practical (e.g. limiting abuse) reasons. At present, the restrictions are applied at
a very broad level which sometimes results in limitations that are inappropriate.
For example, an ISP that has entered a large number of person objects may not
be able to access all the objects that they have created. This problem will be
resolved as part of the development of the common RIPE data sharing platform.

3 External Datasets

3.1 Auckland

The Auckland dataset consists of a series of trace sets collected by the WAND
group at the University of Waikato. The traces were collected at the University
of Auckland in New Zealand, measuring the link between the University and
the Internet. All of the traces were captured using DAG hardware capture cards
[26], although the card model was upgraded on several occasions. Each of the
Auckland trace sets is briefly described in Table 1, which is based on detailed
summaries provided by the Waikato Internet Trace Storage (WITS) project [2].

There have been some significant variations in the capture configuration be-
tween each trace set. Some of the changes were necessitated by the network
infrastructure being upgraded, meaning that the measurement point was no
longer capable of capturing all of the traffic it had previously. In other cases, the
amount of packet header data that was retained is varied, e.g. the Auckland VI
traces captured the first 64 bytes of every TCP, UDP and ICMP packet whereas
the Auckland VII traces are limited to only the ATM cell header for all packets
regardless of protocol.

Most of the Auckland traces were publicly released by NLANR [27] and fre-
quently feature in measurement literature such as [28] and [29]. With the recent

118 T. McGregor, S. Alcock, and D. Karrenberg

Table 1. The Auckland trace sets

Name Format Year Duration Packets Bytes Size

I ERF 1999 7 days 169 M 8 GB 2 GB

II Legacy ATM 2000 24 days 996 M 359 GB 26 GB

IV Legacy ATM 2001 45 days 3,157 M 1,269 GB 64 GB

V ATM Cell 2001 7.5 hours 2,710 M 133 GB 8 GB

VI Mixed Legacy 2001 4.5 days 844 M 345 GB 17 GB

VII ATM Cell 2001 15.5 hours 6,040 M 297 GB 19 GB

VIII ERF 2003 13 days 1,654 M 698 GB 68 GB

demise of the NLANR site, the traces have become difficult for researchers to ac-
quire. In addition, the RIPE repository will include the Auckland I and Auckland
V trace sets, which were not available from NLANR.

3.2 Waikato

The Waikato dataset is a collection of six very long-duration trace sets captured
at the border of the University of Waikato network by the WAND group. The
capture point is located between the University network infrastructure and the
commodity Internet, allowing access to all traffic entering and exiting the Uni-
versity but excluding any internal traffic. All of the traces were captured using
software that was specifically developed for the Waikato capture point [30] and
a DAG 3 series hardware capture card [26]. All IP addresses within the traces
are anonymised using Crypto-Pan AES encryption [31], with the encryption key
being changed on a weekly basis. A brief description of each of the trace sets is
shown in Table 2.

The location and hardware of the capture point has remained unchanged
since the first capture began in 2003. The software has been upgraded between
each trace set, resulting in some minor variations. For example, in Waikato I
packets are truncated at the end of the transport header but subsequent trace
sets retained four bytes of unanonymised application payload for all packets
except in the case of DNS packets where twelve bytes were kept.

Table 2. The Waikato trace sets

Name Format Years Duration Packets Bytes Size

I ERF 2003-2005 620 days 53,263 M 21,434 GB 1,329 GB

II ERF 2005-2006 301 days 34,712 M 15,789 GB 839 GB

III ERF 2006-2007 160 days 21,984 M 9,144 GB 545 GB

IV ERF 2007 56 days 10,128 M 4,588 GB 255 GB

V ERF 2007 99 days 19,710 M 9,740 GB 491 GB

VI ERF 2007-2008 135 days 20,886 M 11,092 GB 495 GB

The RIPE NCC Internet Measurement Data Repository 119

The Waikato I trace set is currently available for public download from the
WITS archive [2]. The other Waikato trace sets will be made available through
the RIPE data repository.

3.3 NLANR Datasets

The NLANR project [27] collected both active and passive datasets. These data
sets have been the focus of a significant amount of research and many papers have
been published based on them. Although the project is complete, the datasets
collected are still in demand. They have been preserved by the WAND network
research group and are available from the WITS [2] repository. The traces will
also be hosted on the RIPE repository.

4 Conclusion

This paper catalogues and describes the large quantity of Internet measurement
data that will be shared with the research community through a data repository
hosted by the RIPE NCC. While much of the data described here is already
publicly available, it is scattered amongst a variety of hosting organisations or,
in the case of the Auckland traces, is no longer available from the original source.
By creating a common portal for sharing and accessing all of the data, it will
become easier for researchers to locate and download suitable measurement data
for their particular project.

The primary aim of the repository is to bridge the gap between the organ-
isations capable of conducting Internet measurements and the researchers who
analyse the measurement data. This is evidenced by the partnership with the
University of Waikato to enable the Auckland and Waikato datasets to be mir-
rored on the RIPE repository. However, the relationship must function in both
directions to ensure the collected data is relevant and useful. As a result, we
encourage submissions from the community regarding the collection and for-
mat of any of the aforementioned datasets that would improve their utility to
researchers.

References

1. Cooperative Association for Internet Data Analysis (CAIDA): DatCat: Internet
Measurement Data Catalog, http://imdc.datcat.org/

2. WAND Network Research Group: WITS: Waikato Internet Traffic Storage,
http://www.wand.net.nz/wits/

3. RIPE NCC: K-root, http://k.root-servers.org/
4. Chandra, R., Traina, P., Li, T.: RFC 1997 - BGP Communities Attribute (August

1996)
5. Jacobson, V., Leres, C., McCanne, S.: Tcpdump, http://www.tcpdump.org/
6. Cooperative Association for Internet Data Analysis (CAIDA): A Day in the Life

of the Internet, http://www.caida.org/projects/ditl/

http://imdc.datcat.org/
http://www.wand.net.nz/wits/
http://k.root-servers.org/
http://www.tcpdump.org/
http://www.caida.org/projects/ditl/

120 T. McGregor, S. Alcock, and D. Karrenberg

7. Nagele, W., Buddhdev,A., Wessels, D.: K-root DNS traces DITL (2008) (collection),
http://imdc.datcat.org/collection/1-0690-J=K-root+DNS+traces+DITL+2008

8. DNS-OARC: Domain Name System Operations, Analysis and Research Center,
https://www.dns-oarc.net/

9. The Measurement Factory: DSC: A DNS Statistics Collector, http://dns.

measurement-factory.com/tools/dsc/

10. Cacti: http://www.cacti.net/
11. The AS112 Project: http://www.as112.net/
12. Rekhter, Y., Moskowitx, B., Karrenberg, D., de Groot, G.J., Lear, E.: RFC 1918 -

Address Allocation for Private Internets (February 1996)
13. RIPE NCC: RIPE NCC AS112, http://www.ripe.net/as112/
14. Quagga: http://www.quagga.net/web/quagga.html
15. Blunk, L., Karir, M., Labovitz, C.: MRT routing information export format (IETF

Draft), http://tools.ietf.org/html/draft-ietf-grow-mrt-04
16. BGPmon: http://bgpmon.net/
17. Oliveira, R.V., Lad, M., Zhang, L.: Cyclops, http://cyclops.cs.ucla.edu/
18. RIPE NCC: Hostcount, http://www.ripe.net/is/hostcount/stats
19. RIPE NCC: Test Traffic Measurements, http://www.ripe.net/ttm/
20. C.E.R.N.: Root, http://root.cern.ch/drupal/
21. RIPE NCC: RIPE NCC DNS Monitoring Services, http://dnsmon.ripe.net/

dns-servmon/

22. Austein, R.: RFC 5001 - DNS Name Server Identifier (NSID) Option (August 2007)
23. RIPE NCC: RIPE Database, http://www.ripe.net/db/
24. Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D., Meyer, D., Bates, T.,

Karrenberg, D., Terpstra, M.: RFC 2622 - Routing Policy Specification Language,
RPSL (June 1999)

25. Meyer, D., Schmitz, J., Orange, C., Prior, M., Alaettinoglu, C.: RFC 2650 - Using
RPSL in Practice (August 1999)

26. Endace Measurement Systems, Ltd: http://www.endace.com
27. McGregor, A., Braun, H.W., Brown, J.: The NLANR NAI Network Analysis Infras-

tructure. IEEE Communication Magazine: Special Issue on Network Measurement,
122–128 (May 2000)

28. Erman, J., Arlitt, M., Mahanti, A.: Traffic Classification Using Clustering Algo-
rithms. In: MineNet 2006: Proceedings of the 2006 SIGCOMM workshop on Mining
network data, pp. 281–286. ACM, New York (2006)

29. McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow Clustering Using Machine
Learning Techniques. In: Passive and Active Measurement, pp. 205–214 (2004)

30. WAND Network Research Group: WDCap, http://research.wand.net.nz/

software/wdcap.php

31. Fan, J., Xu, J., Ammar, M.H., Moon, S.B.: Prefix-preserving IP address anonymiza-
tion: measurement-based security evaluation and a new cryptography-based
scheme. Computer Networks 46(2), 253–272 (2004)

http://imdc.datcat.org/collection/1-0690-J=K-root+DNS+traces+DITL+2008
https://www.dns-oarc.net/
http://dns.measurement-factory.com/tools/dsc/
http://dns.measurement-factory.com/tools/dsc/
http://www.cacti.net/
http://www.as112.net/
http://www.ripe.net/as112/
http://www.quagga.net/web/quagga.html
http://tools.ietf.org/html/draft-ietf-grow-mrt-04
http://bgpmon.net/
http://cyclops.cs.ucla.edu/
http://www.ripe.net/is/hostcount/stats
http://www.ripe.net/ttm/
http://root.cern.ch/drupal/
http://dnsmon.ripe.net/dns-servmon/
http://dnsmon.ripe.net/dns-servmon/
http://www.ripe.net/db/
http://www.endace.com
http://research.wand.net.nz/software/wdcap.php
http://research.wand.net.nz/software/wdcap.php

Enabling High-Performance
Internet-Wide Measurements on Windows

Matt Smith and Dmitri Loguinov�

Department of Computer Science and Engineering
Texas A&M University, College Station, TX 77843, USA

{matt,dmitri}@cse.tamu.edu

Abstract. This paper presents analysis of the Windows kernel network
stack and designs a novel high-performance NDIS driver platform called
IRLstack whose goal is to enable large-scale Internet measurements that
require sending billions of packets and managing millions of outstand-
ing connections on inexpensive commodity hardware available to any
research lab. Our results show that with just 75% of one modern CPU
core, IRLstack can saturate a gigabit link with SYN packets (i.e., 1.48M
pps) and achieve 3.52 Gbps (i.e., 5.25 Mpps) with a quad-core CPU.
IRLstack’s transmission performance exceeds that of Winsock by a fac-
tor of 92-174, batch-mode WinPcap by a factor of 4.7-6.7, and the latest
optimized PF RING/TNAPI Linux kernel by up to 30%.

1 Introduction

With the expansion in size and popularity of the Internet, many distributed
applications now require high-performance network stacks to sustain the scal-
ability demands of their users. Traditional domains that exhibit a significant
network burden in terms of bitrate and packets per second (pps) are massive
Internet services with hundreds of millions of active users (e.g., Google, Face-
book, Blogspot, root DNS servers, CDNs), whose main approach to solving scal-
ability issues has been to acquire vast server clusters and distribute incoming
requests across multiple geographic datacenters. While scaling the server side of
network applications in commercial applications has a well-established solution,
researchers often face scalability problems from the client side (i.e., issuing rather
than receiving requests) and often do not have the resources to deploy dedicated
clusters to conduct their Internet measurements. To overcome this problem, we
investigate scalability issues arising during Internet-wide experimental studies,
explore network-stack bottlenecks in the most-commonly deployed OS in the In-
ternet (i.e., Microsoft Windows), and propose a solution that enables large-scale
network measurements using a single inexpensive Windows host.

Due to its ever-growing size, diversity, decentralized nature, and enormous
amount of information, the Internet is becoming more of a mystery every day
(e.g., even Google does not know how big the web is [16]). Many Internet studies

� Supported by NSF grant CNS-0720571.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 121–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

122 M. Smith and D. Loguinov

aim to shed light on its structure [2], [13], user behavior [14], [17], host availability
[6], [11], and web content [7], [10]; however, accurately capturing Internet-wide
metrics has long remained a challenging research problem. The main tradeoff
involves the amount of available hardware and the delay the user is willing to
tolerate. In many cases, measurements over a longer period of time are less
desirable as they skew the obtained result, delay the corresponding analysis,
and potentially impede future research. To provide additional motivation for
developing large-scale measurement platforms, we next outline several of our
projects that have experienced network-stack bottlenecks and then present our
solution.

Our first project [17] involves measurement of P2P networks and modeling
of various system properties (e.g., churn, lifetimes, topology) based on the ob-
tained results. This process relies on a Gnutella crawler that contacts all alive
ultra-peers in the system and obtains their neighbors via special requests. In
order for the measurement to be unbiased [15], it is highly beneficial to capture
Gnutella snapshots instantaneously; otherwise, a crawl of duration T samples
a superposition of multiple Gnutella networks that exist during interval [0, T].
Given approximately 1.2M ultra-peers, connection rates on the order of 200K/sec
are needed to guarantee cover times that would approximate an instantaneous
snapshot (i.e., 10 seconds or less). While [17] was over 18 times faster than any
previous P2P crawler, its coverage delay of 3 minutes could use a lot of improve-
ment; however, various bottlenecks inside the Windows kernel leave no room for
much speedup.

Our second project [7] is a high-performance web crawler IRLbot, whose main
requirement has been keeping CPU utilization of the network stack close to 0%
in order to leave room for computationally expensive processing related to spam
control, HTML parsing, page decompression, calculation of domain reputation,
and checking for duplicates. With one CPU core almost entirely dedicated to
networking, IRLbot is usually CPU-limited during its crawls. Since Winsock does
not scale very well to multiple cores (see below), achieving very high download
rates is almost infeasible with a single host.

Our third project studies the DNS infrastructure for Internet-wide delay mea-
surements [8] and various botnet-related anomalies, which requires traversing
the DNS tree with over 650M DNS requests. Sending such a large number of
small packets presents a problem for Winsock and limits the duration of the
measurement to days instead of minutes. A slightly different, but related, mea-
surement goal that requires high pps sending rates is discovery of open services
using horizontal scanning [1], [3], [6], [11], where each IP address in the IANA
(3.3B destinations) or BGP (2.1B) space is probed with a packet on a given
port. Instead of using months to scan the Internet as in prior work [1], [3], [6],
[11], our goal in another ongoing project is to accomplish this activity in several
hours/days.

Other applications that are enabled by a scalable network stack are vari-
ous Intrusion Detection Systems (IDS), firewalls, software routers, and network
monitoring tools, all of which require line-rate capture of incoming packets and

Enabling High-Performance Internet-Wide Measurements on Windows 123

sometimes certain processing on the fly. Leaving as much CPU as possible for
processing and not dropping any packets are both of critical importance.

The novelty of this work lies not only in our approach to designing a high-
performance client-side rather than server-side network stack, but also in our
tackling of this problem in Windows, which has not been attempted before (see
[4], [5], [12] for Linux approaches). The benefit of using just the client side of
TCP is that it requires minimal functionality of performing the SYN handshake
and sending one request packet, without tedious congestion-control functionality,
management of complex timers and buffers, and retransmission overhead. As a
result, a well-designed TCP stack can function at wire speed. The benefit of using
Windows lies in its wide range of powerful APIs, outstanding support (in terms
of software and hardware), and more ubiquitous deployment opportunities (i.e.,
finding a Windows host to conduct measurements is simpler than a Linux host,
especially at remote locations). As there is a general perception that Windows is
too slow for serious high-performance research work, we aim to dispel this myth
and provide researchers with an additional platform option.

2 Overview of Windows and Linux Network Stacks

The structure of the Windows networking stack is illustrated in Fig. 1(a). Ap-
plication packets are transmitted through a Winsock API into the kernel driver
afd.sys whose main purpose is to manage the socket interface and interact with
protocol drivers inside NDIS. Most normal Winsock exchange takes place with
the default TCP/IP protocol driver tcpip.sys. Packet buffers created by TCP/IP
are then sent down the stack to any filter drivers that are registered in the stack,
which may do additional processing and/or filtering. The last step of this chain
are miniport drivers, which are specific to each NIC and whose purpose is to
directly interface with the hardware, set up DMA transfers, process interrupts,
and manage the assigned adapter. Once the miniport has sent the frame (or
queued it internally) and no longer needs the structure it received, it issues a
callback up the stack indicating completion of the request, which causes the cor-
responding protocol driver to notify the user-space caller of the completion of
their request. This process, described in terms of the synchronous send path, is
similar on the receive side and for asynchronous operations.

Besides Winsock, network applications can use WinPcap [9], which is a pop-
ular tool for network capture and transmission on Windows. It is implemented
as a filter driver with an API directly exported to a user-space library. Since
it is located below tcpip.sys inside NDIS, it handles raw link-layer frames and
bypasses most of the Windows network stack, which in theory should enable it
to perform significantly faster than standard Windows sockets. However, as we
will show in Section 3, this is not the case in practice.

The third alternative is a highly optimized Linux network stack such as the
one developed by the ntop project [5] (the default Linux performance is lower
and not studied here). Ntop makes use of a custom Linux kernel and modified
network adapter drivers to exploit the features of the latest NICs. The first

124 M. Smith and D. Loguinov

User Space
Winsock API

Kernel
afd.sys

Protocol

drivers
tcpip.sys

Filter

drivers

NIC driver Miniport

drivers

hardware

NDIS

(a) Winsock

User Space
Winsock API IRLstack API

Kernel
afd.sys

Protocol

drivers

tcpip.sys IRLstackP.sys

Filter

drivers

IRLstackF.sys

NIC driver Miniport

drivers

hardware

NDIS

(b) IRLstack

Fig. 1. Windows network stack, NDIS, and IRLstack

main modification is PF RING, whose primary contribution is using DMA in
combination with technologies such as Intel’s I/OAT to directly expose kernel
memory buffers (into which incoming packets have been transferred) to user-
space processes. The second modification is TNAPI, which deserializes receive
operations by exposing multiple RX (receive) queues as virtual adapters that can
be used concurrently in user-space. This distributes load across several processors
and allows the stack to scale in multi-core systems.

3 Performance of Winsock and WinPcap

Most of the issues discussed in the introduction arise from the poor small-packet
performance of default Windows and Linux kernels. Our goal then is to achieve
wire-rate transmission of arbitrary packets from user-space to many unique des-
tinations, which translates into high rates of outgoing TCP connections/sec, fast
horizontal scanning of the Internet, and low-overhead management of millions
of concurrent connections to numerous remote servers (e.g., using multiple IPs
aliased to the same interface with 64K ports each).

To calculate the target pps rate, we focus on gigabit Ethernet as one common
example. The IEEE 802.3 Ethernet standards define the minimum frame size as
64 bytes, with smaller packets padded by the adapter as necessary. Taking into
account the inter-grame gap (12 bytes), preamble (7 bytes), and the “start of
frame” delimiter (1 byte), 84 bytes (672 bits) must be transmitted per minimum-
size frame including overhead. We thus arrive at 1, 000, 000, 000/672 = 1, 488, 095
frames per second as the absolute upper limit for gigabit Ethernet, which is our
performance goal. Using three handshake packets (SYN, SYN-ACK, ACK) and
one RST for terminating connections, the absolute best performance of any TCP
stack is 371K connections/sec. In applications that require graceful termination
with four FIN packets, this number is 212K/sec.

Enabling High-Performance Internet-Wide Measurements on Windows 125

3.1 Raw Packets

We now examine the performance of the Windows network stack to measure
the maximum send rate of TCP SYN packets on a raw socket (ICMP and UDP
results are nearly identical and thus omitted). All Windows tests in this paper
are run on a dual AMD Opteron 2427 (2.2GHz, six cores per socket) system with
32GB of DDR2-667 RAM. The NIC is an Intel Pro/1000 PT Quad-Port Gigabit
PCI-E NIC, and the OS is Windows Server 2008 SP2. We dedicate a single CPU
core to each gigabit port and restrict the OS kernel, all drivers, and user-space
programs to run on as many cores as there are ports being used during the
test. All reported CPU utilization numbers later in the paper are relative to the
number of active cores.

As shown in the first row of Table 1, Winsock can send packets to a single
destination at rates between 116 Kpps (single core, single port) and 193 Kpps
(quad-core, quad-port) at 100% CPU utilization. Winsock additionally drops
its performance by a factor of 7 when each packet targets a unique IP address
(demonstrated in the next line of the table). In order to alleviate the CPU
overhead, we experimentally found that completely disabling (not just turning
off) certain default Windows services (e.g., firewall and network list service)
allowed Winsock to achieve a 25-80% speedup for a single destination and a
five-fold rate increase for multiple destinations as shown in the next two rows
of the table. However, this performance is still quite poor compared to the line
rate of 1.48 Mpps and far from desirable in practice as no other processing can
be done on the server due to the high CPU utilization. Furthermore, disabling
critical Windows services (such as the firewall) causes installation of certain OS
updates to fail and potentially leaves the host vulnerable to attack, which is
undesirable. Another interesting result, shown in the last two rows of the table,
is that WinPcap performs no better (and sometimes worse) than Winsock with
disabled services.

As CPU usage is extremely high for the number of packets sent for both
approaches above and multi-core scaling is rather poor due to various bottlenecks
in the kernel, one must conclude that Winsock and WinPcap are unsuitable for
truly high-performance applications.

Table 1. Server 2008 SP2 raw SYN transmission performance

Method Destinations Rate in pps (link utilization) CPU
1 port / 1 core 4 ports / 4 cores

Winsock (default) single 116, 037 (7.7%) 193, 142 (3.2%) 100%
all unique 16, 290 (1%) 30, 110 (0.5%) 100%

Winsock (services off) single 207, 041 (14%) 244, 196 (4.1%) 100%
all unique 75, 687 (5%) 153, 232 (2.5%) 100%

WinPcap 4.1 single 49, 349 (3.3%) 152, 467 (2.5%) 75%
all unique 49, 493 (3.3%) 152, 297 (2.5%) 75%

126 M. Smith and D. Loguinov

Table 2. Server 2008 SP2 TCP connection performance to a single destination

Method Rate (conn/sec) CPU
1 port / 1 core 4 ports / 4 cores

connect/closesocket 16, 656 39, 462 100%
connectEx/disconnectEx 20, 801 45, 277 100%
WSK (kernel mode) 31, 389 54, 783 100%

3.2 TCP Connections

TCP connection performance to a single destination is summarized in Ta-
ble 2. The standard approach using the Unix BSD socket interface (i.e., con-
nect/closesocket) achieves between 16K and 39K connections/sec, which is
slightly surpassed by the new Winsock APIs connectEx/disconnectEx with their
20 and 45K connections/sec, respectively. The performance gain is related to the
fact that these APIs keep sockets open between subsequent connections. Finally,
the new (i.e., Vista/Server 2008) kernel-level Winsock interface WSK is measur-
ably faster at 31 and 54K connections/sec, but its multi-core scalability is again
quite poor. Connection rates to multiple unique destinations are much worse and
not shown here due to limited space.

4 IRLstack: Overcoming the Bottlenecks

Kernel stack traces indicate that the performance drop when sending raw packets
to many unique destinations occurs in afd.sys and tcpip.sys in Fig. 1(a). Bypass-
ing them completely and generating raw SYN packets entirely from within the
kernel brings performance up to 289 Kpps (single-core) and 652 Kpps (quad-
core), regardless of firewall settings and how many destinations are used. Never-
theless, this solution is hardly acceptable as it still consumes 100% of the CPU,
stays well below link capacity, and requires writing kernel-level code for each
high-performance application, which is cumbersome and prone to crashing the
system.

Further profiling of NDIS shows that its path from protocol to miniport drivers
in Fig. 1(a) has another major bottleneck in synchronization spinlocks and DMA
transfers to the NIC. To overcome this problem, we developed a general-purpose
suite of network drivers called IRLstack that accepts buffers of packets from
user-space (using standard Windows API calls such as WriteFile) and transmits
them in a single call to the miniport driver. Multiple outstanding asynchronous
requests are supported via overlapped I/O. The buffer consists of multiple raw
link-layer frames, each preceded by an IRLstack-specific header. Link-layer, IP,
and TCP/UDP checksums may be omitted as they are calculated by the NIC
using checksum offloading.

At the kernel level, the protocol driver scans through the buffer creating the
appropriate auxiliary data structures for each encountered packet and proceeds
to send the entire batch in a single call as allowed by NDIS. Batching multiple

Enabling High-Performance Internet-Wide Measurements on Windows 127

packets maximizes useful work between acquisitions of kernel spinlocks, ensures
that the send path remains zero-copy, and allows the NIC to perform large DMA
transfers directly from user-space. In Fig. 1(b), protocol driver IRLstackP.sys
handles raw application-layer packets through a special IRLstack API, while
filter driver IRLstackF.sys intercepts return packets and channels those destined
to IRLstack applications back to IRLstackP.sys. The remaining packets are sent
to tcpip.sys as before. This is accomplished by redirecting any incoming traffic
destined to non-default IP addresses on the NIC (assumed to be allocated for
IRLstack’s use) to our protocol driver.

4.1 Sending

The first issue we investigate is the transmit performance of IRLstack and the
optimal batch size needed to saturate the link. Results of our testing can be seen
in Fig. 2(a). All transmission rates are far from optimal until the burst size starts
to exceed 50 packets, at which point IRLstack achieves 50-66% (depending on
the number of cores) link utilization. For single and dual-core cases, full wire
speed is reached with any batch size between 128 and 1,024 packets, while the
3-core setup has a unique peak at 256 packets and the 4-core case maxes out at
1,024. Interestingly, for very large batch sizes, performance actually drops due
to bottlenecks in the Intel miniport driver, which for some reason is unable to
efficiently handle large bursts of packets.

As seen in Fig. 2(b) at batch sizes 128-512, IRLstack can saturate a 1 Gbps
link with just 75% CPU utilization of a single 2.2GHz core and two gigabit links
using 75% of two cores. With multiple NIC ports, IRLstack scales much better
than Winsock and achieves 5.25 Mpps as shown Table 3. This scaling is less than
linear due to synchronization bottlenecks stemming from the common (single-
threaded) miniport driver controlling all four ports, though the main sublinear
dropoff only occurs when increasing from 3 to 4 ports.

While WinPcap also exports a batch-mode interface to user-space, it does not
fully utilize the interfaces provided in NDIS 5.x and later (e.g., NdisSendNet-
BufferLists in 6.x) for batching within the kernel. This makes its multi-packet

10
0

10
1

10
2

10
3

10
40

1

2

3

4

5

6x 10
6

Batch Size (packets per call)

T
ra

ns
m

it
R

at
e

(p
ps

)

 4 ports
3 ports
2 ports
1 port

(a) TX Performance

10
0

10
1

10
2

10
3

10
40

20

40

60

80

100

Batch Size (packets per call)

C
P

U
 U

til
iz

at
io

n
(%

)

4 ports
3 ports
2 ports
1 port

(b) CPU Utilization

Fig. 2. IRLstack transmission performance and CPU utilization using 40-byte SYN
packets

128 M. Smith and D. Loguinov

Table 3. Send performance with SYN packets using optimal batch size (2.2 GHz
Opteron 2427)

Method Rate in pps (link utilization)
1 port / 1 core 2 ports / 2 cores 3 ports / 3 cores 4 ports / 4 cores

IRLstack 1, 487, 298 (100%) 2, 973, 933 (100%) 4, 379, 999 (98%) 5, 245, 458 (88%)
WinPcap 319,814 (21%) 485,617 (16%) 648,370 (14%) 815,921 (14%)

performance significantly lower than it could be as also seen in Table 3. We
thus note that IRLstack’s in-kernel batching techniques could be easily imple-
mented in WinPcap as well, benefitting those who seek higher pps performance
in WinPcap-based tools on commodity PC platforms.

4.2 Receiving

While most of our projects have required high sending rates, additional research
can be enabled by a network stack that allows high capture rates as well. We
now turn our attention to receive performance in Table 4, where we only focus
on IRLstack, with Linux PF RING/TNAPI numbers [5] provided as a reference.
(Winsock/WinPcap results are again vastly suboptimal and are thus omitted.)
Observe in the table that the receive path in IRLstack is approximately 20-50%
slower than the send path, which can be explained by two factors. First, our
receive path is not zero-copy as it was during transmission, because IRLstack
is able to directly export user-space buffers for DMA transfers into the NIC;
however, no reverse functionality (i.e., from the NIC) is provided by NDIS unless
specialized hardware is used. Second, the interrupt frequency is higher along the
receive path than the send path since the miniport driver controls the former
and IRLstack controls the latter. With the maximum miniport batch size equal
to 64 packets, it is no wonder that it is unable to sustain the wire speed along
the receive path. If future versions of Intel drivers remove this limitation, much
higher receive rates are to be expected.

Nevertheless, IRLstack’s receive performance compares quite favorably to the
latest Linux numbers from a custom PF RING/TNAPI kernel [5]. Specifically,
both solutions achieve close to 3 Mpps with quad-cores and four independent
RX queues (we use four gigabit ports, while [5] uses a single 10 GE adapter
with four hardware queues). This is despite IRLstack’s receive path not be-
ing zero-copy (which it is in [5] using Intel I/OAT), its use of rather frequent

Table 4. Receive performance with SYN packets (IRLstack on a 2.2 GHz Opteron
2427 vs. Linux on a 2.4 GHz Xeon 54xx)

Method Rate (pps)
1 port / 1 core 2 ports / 2 cores 3 ports / 3 cores 4 ports / 4 cores

IRLstack 1, 232, 745 (82%) 1, 526, 460 (51%) 2, 282, 554 (51%) 2, 946, 707 (50%)
Linux [5] ∼ 920, 000 (61%) – – ∼ 3, 000, 000

Enabling High-Performance Internet-Wide Measurements on Windows 129

64-packet interrupts, standard Intel NIC drivers, default NIC settings (e.g.,
adaptive interrupt moderation), and no kernel modifications (i.e., all drivers
are loaded at run-time). Furthermore, while [5] posts the highest throughput
numbers we’ve seen on Linux, it is meant for capture only and does not have a
transmit path for general-purpose traffic.

4.3 TCP Connections

IRLstack implements the client side of TCP in user space, which simultaneously
allows for easy debugging and high-performance management of numerous out-
standing connections – hiding the work of constructing link-layer frames that
would otherwise be required of the user. All supported operations are performed
using batching and include issuing outgoing connections with three handshake
packets, ability to send requests in regular or ACK packets of the handshake
(which is however not always supported by remote servers), and standard SACK
TCP receiver functionality (i.e., selective ACKs, large windows, etc.). To avoid
keeping the server in the time-wait state, the application has an option of ter-
minating connections using RST packets, in which case the useful connection
throughput in Gnutella-like applications is close to 250K/sec (i.e., four control
packets, one request packet, one reply packet).

4.4 Latency

It should be noted that the receive-path interrupt batching provides notification
from the miniport to NDIS every 64 packets and is not under control of IRL-
stack. The batching delay along the send path, however, is user-selectable based
on the batch size passed down to IRLstack. Thus, applications that require ac-
curate timestamps might need to trade off pps performance for lower latency by
changing the miniport interrupt moderation and reducing the batch size during
transmission.

5 Conclusions and Future Work

We have shown that while Windows is often overlooked as a platform on which to
conduct serious networking research, perhaps due to impressions of inefficiency
or low performance, this need not be the case. With a well-designed NDIS 6.x
network stack, it is possible to achieve wire-rate transmission (and near wire-rate
reception) on gigabit Ethernet using inexpensive commodity hardware. IRLstack
achieves a nearly 100-fold increase in transmission performance over Winsock
(when unique destinations are used), with lower CPU usage. Moreover, it can
coexist with the default network stack on a single adapter so that other network
applications may run as usual.

Future work involves expanding IRLstack’s receive performance (e.g., using
DMA remapping, multiple hardware queues) and evaluating its performance on
10 GE hardware.

130 M. Smith and D. Loguinov

References

1. Benoit, D., Trudel, A.: World’s First Web Census. Intl. Journal of Web Information
Systems 3(4), 378–389 (2007)

2. Chang, H., Jamin, S., Willinger, W.: To Peer or not to Peer: Modeling the Evolution
of the Internet’s AS-level Topology. In: Proc. IEEE INFOCOM (April 2006)

3. Dagon, D., Provos, N., Lee, C.P., Lee, W.: Corrupted DNS Resolution Paths: The
Rise of a Malicious Resolution Authority. In: Proc. NDSS (February 2008)

4. Degioanni, L., Varenni, G.: Introducing Scalability in Network Measurement: To-
ward 10 Gbps with Commodity Hardware. In: Proc. ACM IMC, October 2004, pp.
233–238 (2004)

5. Deri, L., Fusco, F.: Exploiting Commodity Multicore Systems for Network Traffic
Analysis (July 2009), http://ethereal.ntop.org/MulticorePacketCapture.pdf

6. Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G., Ban-
nister, J.: Census and Survey of the Visible Internet. In: Proc. ACM IMC, October
2008, pp. 169–182 (2008)

7. Lee, H.-T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: Scaling to 6 Billion
Pages and Beyond. In: Proc. WWW, April 2008, pp. 427–436 (2008)

8. Leonard, D., Loguinov, D.: Turbo King: Framework for Large-Scale Internet Delay
Measurements. In: Proc. IEEE INFOCOM, April 2008, pp. 430–438 (2008)

9. WinPcap: The Windows Packet Capture Library, http://www.winpcap.org/
10. Najork, M., Heydon, A.: High-Performance Web Crawling. Com-

paq Systems Research Center, Tech. Rep. 173 (September 2001),
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-173.pdf.

11. Pryadkin, Y., Lindell, R., Bannister, J., Govindan, R.: An Empirical Evaluation of
IP Address Space Occupancy. USC/ISI, Tech. Rep. ISI-TR-2004-598 (November
2004)

12. Schneider, F., Wallerich, J., Feldmann, A.: Packet Capture in 10-Gigabit Ethernet
Environments Using Contemporary Commodity Hardware. In: Proc. PAM, April
2007, pp. 207–217 (2007)

13. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP Topologies with Rocketfuel.
In: Proc. ACM SIGCOMM (August 2002)

14. Stutzbach, D., Rejaie, R.: Understanding Churn in Peer-to-Peer Networks. In: Proc.
ACM IMC, October 2006, pp. 189–202 (2006)

15. Stutzbach, D., Rejaie, R., Duffield, N., Sen, S., Willinger, W.: On Unbiased Sam-
pling for Unstructured Peer-to-Peer Networks. In: Proc. ACM IMC, April 2006,
pp. 27–40 (2006)

16. The Official Google Blog, We knew the web was big (July 2008),
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

17. Wang, X., Yao, Z., Loguinov, D.: Residual-Based Estimation of Peer and Link
Lifetimes in P2P Networks. IEEE/ACM Trans. Networking 17(3), 726–739 (2009)

http://ethereal.ntop.org/MulticorePacketCapture.pdf
http://www.winpcap.org/
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-173.pdf
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

MOR: Monitoring and Measurements
through the Onion Router

Demetris Antoniades1, Evangelos P. Markatos1, and Constantine Dovrolis2

1 Institute of Computer Science
Foundation for Research & Technology Hellas
{danton,markatos}@ics.forth.gr

2 College of Computing, Georgia Institute of Technology
dovrolis@cc.gatech.edu

Abstract. A free and easy to use distributed monitoring and measurement plat-
form would be valuable in several applications: monitoring network or server in-
frastructures, performing research experiments using many ISPs and test nodes,
or checking for network neutrality violations performed by service providers. In
this paper we present MOR, a technique for performing distributed measurement
and monitoring tasks using the geographically diverse infrastructure of the Tor
anonymizing network. Through several case studies, we show the applicability
and value of MOR in revealing the structure and function of large hosting infras-
tructures and detecting network neutrality violations. Our experiments show that
about 7.5% of the tested organizations block at least one popular application port
and about 5.5% of them modify HTTP headers.

1 Introduction

A common request of researchers, administrators and simple users, is easy access to
a number of geographically distributed machines. Such access would facilitate experi-
mentation and better understanding of several network configurations, or checking for
network neutrality violations. In this extent a freely available, distributed monitoring
and measurement platform would be of great value.

For many years now researchers have been using the Planetlab [10] infrastructure
for conducting distributed experiments. Planetlab offers access to machines located in
many different educational institutions around the world. Through a Unix-like system
it allows its users to run experimental code on these machines. In this way, researchers
are able to run distributed programs in many different locations, and check the network
communication of their applications in real network environments. Being a (mostly)
educational infrastructure, Planetlab omits commercial networks and Internet Service
Providers (ISPs) with very different policies, configurations and infrastructures. Fur-
thermore, access to Planetlab is limited to researchers. Administrators wanting to check
recent configuration changes, and end users aiming at checking the quality of the ser-
vice they pay for, lack a geographically distributed system freely available for this kind
of daily experiments.

In this paper we present MOR, a technique for performing geographically distributed
monitoring and measurement experiments. MOR utilizes the infrastructure of the Tor

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 131–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

132 D. Antoniades, E.P. Markatos, and C. Dovrolis

anonymity network [12]. Tor is a free software aiming to protect the privacy of its users,
by directing users’ traffic through a distributed infrastructure. This infrastructure is built
by voluntarily deployed nodes in organizations, institutions and homes. To support our
idea we provide a proof-of-concept implementation of such a monitoring and measure-
ment technique. Using our technique we examine a number of case studies that show the
applicability and value of MOR. The provided case studies range from examining the
structure and function of large hosting infrastructures and detecting network neutrality
violations. Our main contributions can be summarized as follows:

– We propose a technique for performing large-scale distributed measurements using
the Tor anonymity network.

– We demonstrate the feasibility of our technique by providing a proof-of-concept
implementation, and provide several different use cases.

– We explore the extent of port blocking by various organizations over the Globe.
Our results show that 11 out of 149 tested organizations (7.5%) block outgoing
connections on ports of widely used services such as ftp(21), ssh(22) and telnet(23).

– We explore the extent to which organizations alter HTTP headers, and find that 9
out of 166 tested organizations (5.5%) alter, suppress or add HTTP headers.

– We explore the extent of Skype blocking by organizations. Interestingly enough, we
find one ISP which consistently blocks Skype.

The rest of the paper is organized as follows: Section 2 gives a small introduction to Tor.
Section 3 shows how we can use Tor in order to perform distributed network monitoring.
We provide a number of case studies for our proposed technique in Section 4. Finally,
we place our work in the appropriate context by presenting the related work in Section 5
and we conclude the paper with a discussion on the advantages and disadvantages of
our approach in Section 6.

2 The Tor Network

Tor [12] is currently the most widely deployed anonymous communication system, with
an estimation of more than 100,000 daily users around the globe [16]. These users range
from ISP clients, military and company employees, to journalists and law enforcement
officers [15]. Used mainly for web traffic, Tor is carefully designed in order to provide
anonymity for low latency services.

Tor is based on the idea of Onion Routing [14], with the approach having its roots
in the idea of Mix Networks proposed by Chaum [9] in early 1980s. Onion Routing is
built on the concept that a message from a source to a destination will first travel via a
sequence of arbitrary selected proxies (Onion Routers). In Tor this sequence (circuit) is
selected at random when a connection request is received (stream). The last node in the
circuit, called an Exit node, is the one that will perform the actual communication with
the service of interest on behalf of the user. Before the source node transfers any message
to the system, it will first encrypt it with the public key of all the intermediate proxies,
creating a succession of layers like an “onion”. Any intermediate node will then decrypt
the message, with its private key, and pass it on to the next node of the circuit. When
the Exit node decrypts the message, it will have the actual request data and will be able

MOR: Monitoring and Measurements through the Onion Router 133

ISP

4.

1.

3.

2.

1-3. MOR enabled node creates a
circuit with the selected Exit node
4. Selected Exit node does the
communication with the target

EXIT

MOR

Fig. 1. Basic steps for routing experimental traffic through the Tor network

to proceed by communicating with the requested service. The response will follow the
same procedure (onion creation and “un-peeling”) and reverse path back to the client.

In order for Tor to succeed in providing acceptable and efficient anonymity for its
users, it needs to create an overlay with a large number of proxies. In this way, latency
is minimized due to the even distribution of the load to the proxies, and anonymity is
improved due to the wide combination of nodes for building circuits [11]. From the
information provided by the directory servers of Tor about 1600 nodes were connected
to the overlay in mid September’09. Almost half of the nodes (660) were accepting to
forward traffic to the outer Internet, functioning as Exit nodes. These nodes were located
in 48 different countries all over the word and registered by 312 different Autonomous
Systems (AS). Such a large and geographically diverse overlay implicitly offers free
access to the Internet through a large number of different operational networks in an
easy and publicly available form. The work presented in this paper gives a first, to our
knowledge, approach of using Tor for performing monitoring and measurements tasks.

3 Using Tor as a Monitoring and Measurement Platform

Participation in the Tor network is freely available and minimal effort is needed to
install and configure a proxy. Though, to be able to perform experiments using Tor’s in-
frastructure one needs to properly instrument circuit creation and connection attaching.
Fortunately, the Tor community provides extended documentation for the proxy control
protocol and a python library for instrumenting the proxy [22].

For any given application we want to run through Tor a basic sequence of steps
has to be followed. First we select the “experimental-node-set”, a proper set of Exit
nodes fitting the requirements of the application. Consider a Web-based application,
the experimental-node-set will exclude all Exit nodes blocking outgoing traffic to port
80 in their configuration policy. After we have this experimental-node-set we follow

134 D. Antoniades, E.P. Markatos, and C. Dovrolis

the sequence of steps shown in Figure 1, iterating over each different Exit node in the
set. First we create a circuit with the selected Exit node (steps 1-3). Since Tor does
not allow for single-node circuits, this circuit includes at least one additional proxy.
This intermediate proxy can be arbitrary selected, though we prefer to select a stable
(based on its given status) router, to minimize any interference to our experiment. After
the circuit is properly created, we proceed with creating the data socket for handling
the required communication stream. On the first packet, the stream is attached to the
previously created circuit. After these two steps are successfully completed, all traffic of
the data stream is routed through the selected Exit node and our monitoring application
can proceed as it would in the absence of Tor. Thus, it will send any data and wait for
the response. The target host can be any online host in the Internet able to respond to
our request, or a controlled host in a laboratory that would be instrumented to respond
to our requests and/or log any incoming traffic from the Tor network for post analysis.

4 Case Studies

In this section we present a number of applications, that show the applicability and
value of using Tor as an experimental platform. In our case studies we use MOR to
reveal the structure and function of large hosting infrastructures and to detect network
neutrality violations.

4.1 Examining Content Replication in a One-Click Hosting Service

Our first case of interest comes from the need to understand how files are replicated and
served by www.rapidshare.com: one of the largest One-Click Hosting Services (OCH).
OCH services enable users to upload and download very large (100-200 MBytes) files
for a very low cost. Their low cost, dependable service and very high capacity, make
OCH services very popular within file sharing communities. Thus, recently, OCH ser-
vices have been used as an alternative to peer-to-peer file-sharing systems. From a tech-
nical point of view, OCH services can be considered as Content Distribution Networks
(CDNs). However, OCH services host mostly large files, while CDNs, in addition to
large files, host lots of small files, such as objects in web pages.

Since the files shared by users of rapidshare.com are several MBytes large, our in-
terest is to understand how the service replicates and serves each file to its users. To
explore this, we access the same file from many different locations (Tor Exit nodes) in
order to derive the actual server(s) that provide the file each time. In our experiments,
described in detail in [2], we build a list with more than 20,000 Rapidshare URLs,
available on the Web, and repeatedly requesting them for download, by a group of 421
different Exit nodes. In this way, if server selection is done based on the client’s IP
address the address of the Exit node would be used by the decision algorithm.

Our experiments show that, although we observe more than 5,000 Rapidshare server
IP addresses in total, each file is hosted only by exactly 12 Rapidshare servers. Our
download attempt is always redirected to a single indexing server providing us with
download URLs that point to 12 different servers hosting the actual file. Furthermore,
we observed no ISP specific policy decisions, since all download requests for a specific
URL where (almost) equally distributed among the 12 download servers.

MOR: Monitoring and Measurements through the Onion Router 135

Table 1. Checked port numbers

Description Port Blocked (%) Description Port Blocked (%) Description Port Blocked (%)
Sun-RPC 111 13.16 MS-SQL 1434 7.97 Telnet 23 7.38
IMAP 143 6.70 MySQL 3306 6.52 Unreal-Game 7777 6.52
Netmeet 1503 6.47 Shiva-VPN 2233 6.47 SNMP 161 6.43
FW1-VPN 259 6.43 Netmeet 1720 6.43 Bay-VPN 500 6.38
SSH 22 6.36 Skype 5060 6.34 FTP 21 6.33
DNS-Xfer 53 6.25 IMAPS 993 5.98 HTTP 80 5.83
HTTPS 443 5.73 POP3 110 5.43

4.2 Network Neutrality

An important discussion regarding human rights on network access is the one related
to network neutrality. Internet users expect neutral treatment of their traffic from their
provider, regardless the application protocol, port number or content they aim to access.
In that extent, we use MOR to present a number of use cases able to infer whether a
user is receiving neutral treatment from her network provider. Note, though, that use
of the described experiments is not limited to end users, but an administrator can also
exploit the same setup to test network or firewall configurations.

Port Blocking. Our first case study, regarding network neutrality, explores whether an
organization blocks outgoing traffic from specific port numbers to the global Internet.
We use a MOR client issuing access requests (TCP-SYN) to a controlled machine,
located in our organization, for a number of different TCP ports. The controlled machine
logs all incoming traffic using tcpdump, and is set out of the firewall of our organization,
thus able to receive and respond to any incoming request.

In our experiments we use the port numbers defined as “Ports of Interest” in [7].
These ports span a large number of applications (web, p2p, e-mail, games, chat etc.).
The full list of ports we use, and the description of each port, are depicted in Table 1.
We probe each port 10 times from 236 different Tor Exit nodes. We consider a port to
be blocked by an organization only if no TCP-SYN was received in any of the 10 tries.

Column “Blocked” of Table 1 shows the percentage of nodes that seem to be block-
ing each tested port number. Note that we currently have no indication whether the
blocking is done by the Exit node hosting organization or somewhere in the path be-
tween that organization and our controlled machine. This kind of identification is left
for future work. In all cases at least 5% of the nodes employ port blocking. From the
results, we can see the largest percentage of blocking (more than 7%) to be for ports that
are prone to Internet attacks, like MS-SQL and MySQL default ports (1434 and 3306
respectively) and Sun-RPC (111). Furthermore, it is interesting to see that a number of
the tested organizations (more than 6%) block access to widely used services such as ftp
(21), ssh (22), and telnet (23). We speculate that port blocking is done both for security
considerations (ssh, telnet) and traffic discrimination (skype). Figure 2 plots the number
of organizations (ASNs) exploiting port blocking per country.

As a further step, we examined the same port numbers using the Planetlab infras-
tructure [21, 10]. We use 191 different Planetlab nodes, again sending 10 TCP-SYN

136 D. Antoniades, E.P. Markatos, and C. Dovrolis

Country

of

or

ga
ni

za
tio

ns

0
1
2
3
4

U
S

C
A

D
E

A
T

S
E IT U
K

N
L

M
Y

G
R

R
U

F
R

Fig. 2. Number of port blocking organizations per country

Port

%

0
2
4
6
8

10
12
14

11
1

14
34 23 14
3

33
06

77
77

22
33

15
03

17
20 25
9

16
1

50
0 22

50
60 21 53 99
3 80 44
3

11
0

Tor
Planetlab

Fig. 3. Port blocking comparison between Tor and Planetlab

connection requests for each port. Figure 3 shows the comparison between the two
infrastructures. We can observe a similar percentage of blocking only in three port
numbers (111, 1434 and 161), which are considered prone to Internet attacks. In all
other cases we observe a larger percentage of blocking in the case of the Tor overlay.
Comparing the autonomous system numbers (ASN) hosting Planelab and Tor nodes we
found only 10 common ASNs. Most of the organizations hosting the planetlab node
were universities and research institutions. On the other hand, the percentage of aca-
demic organization in the Tor ASNs was less than 2%. Thus, MOR, by utilizing the Tor
infrastructure, provides access to nodes located in commercial providers.

HTTP Header Suppression. In the next use case, we use MOR to study the suppres-
sion of HTTP Headers performed by different organizations. As shown in [5] most of
the time HTTP Header suppression comes from the network and not the browser, since
some organizations may use intermediate proxies, and add or remove some headers, for
caching, security and privacy reasons.

In our setup, we use a monitored machine, running an Apache HTTP server on port
80. Our MOR client issues HTTP requests for a simple web page hosted in our server.
The initial HTTP Header contained in the request is shown in Figure 4. The HTTP

MOR: Monitoring and Measurements through the Onion Router 137

’Accept-language’: ’en-us’
’Accept-encoding’:

’gzip, deflate, compress;q=0.9’
’Host’: ’139.91.70.22’
’Accept’: ’text/html,

application/xhtml+xml,
appplication/xml;q=0.9,*/*;q=0.8’

’User-agent’: ’Mozilla/5.0 (X11; U;
Linux i686; en-US; rv:1.9.0.3)
Gecko/2008092510 Ubuntu/8.04
(hardy) Firefox/3.0.3’

’Accept-charset’:
’iso-8859-1,utf-8;q=0.7,*;q=0.7’

’Connection’: ’Close’
’Referer’: ’139.91.70.81’
’Cache-control’: ’max-age=0’

Fig. 4. Actual Request HTTP Header

’Content-Length’: ’175’
’Accept-Ranges’: ’bytes’
’Server’: ’Apache/2.2.3 (Debian)

DAV/2 SVN/1.4.2
mod˙python/3.2.10 Python/2.4.4
PHP/5.2.0-8+etch13
mod˙ssl/2.2.3 OpenSSL/0.9.8c
mod˙perl/2.0.2 Perl/v5.8.8’

’Last-Modified’:
’Sat, 11 Apr 2009 10:05:05 GMT’

’Connection’: ’close’
’etag’: ’”44540-9e-9d84b640”’
’Date’:
’Sat, 18 Apr 2009 12:34:24 GMT’

’Content-Type’: ’text/html;
charset=UTF-8’

Fig. 5. Actual Response HTTP Header

server always responds with the header shown in Figure 5.1 We used tcpdump to capture
both the traffic sent and received from our client to the Tor proxy and also the traffic to
and from the Web server.

Our experimental-node-set contains 166 different exit nodes. In the largest percent-
age of Exit Nodes we observed no difference in both request and response headers. In
5.5% of the cases, though, we had suppressed headers, addition of extra header fields
and in some cases responses without even accessing the Web server, probably due to
caching of a previous identical request from another Exit Node in the same network.

In most cases the altered, added or suppressed field reveals the existence of a proxy,
either used as a centralized HTTP access point for an organization or for content caching
purposes. In such cases we observe altering of the “Connection” header field in the
request header, and addition of the “Via” header field in the response header. Further-
more, we observe cases where the organization completely removes the “Referer” or
“User-agent” header, probably due to privacy policies. The organizations for which we
observe alteration in the HTTP header fields are located in several countries, namely
France, Germany, Argentina, USA, Canada and China.

As a further step we run our Web server on an arbitrary port number (20000). This
experiment investigates whether an organization uses Deep Packet Inspection (DPI) to
recognize any HTTP traffic, or whether the identification is based only on well known
port numbers. In our results no altering or suppression was observed when accessing
the server in a different port. Thus we can say that all used organizations do not employ
DPI for HTTP traffic altering. As future work we plan to extend this study to identify
traffic discrimination for file-sharing applications, like BitTorrent, through DPI.

Skype Censorship. Another issue of interest, regarding network neutrality violations,
arises when an organization is restricting access or limiting the performance of an Inter-
net application, based on the port numbers used, employing DPI techniques or specific
host blocking. As an example, in this case study, we explore the extent to which orga-
nizations block access to the Skype IP telephony application.

1 Note that in case of a difference in the HTTP Request the server will also respond differently.

138 D. Antoniades, E.P. Markatos, and C. Dovrolis

Skype utilizes a p2p infrastructure to connect its clients. When the Skype application
starts it first communicates with a centralized login server (ui.skype.com) which will
verify the user’s credentials and allow her to log in to the p2p network. After the log
in phase, the user’s Skype traffic, either chat, voice or video, is transferred through the
application’s p2p overlay [6].

The login phase is done over the HTTP protocol by requesting a URL from the
server. The URL contains the hashed user credentials and information about the running
version of the application. We use this login method in order to identify organizations
that block Skype users from logging into the system. For our experiments we extracted
the URL from the latest version of a Linux Skype client.2 We request the URL from
Skype’s login server through Tor, using 171 different Exit nodes. For every Exit node
we request the URL 10 times and log the response result. We consider the organization
not to be blocking access to Skype if we receive at least one valid response from the
server. Our connection requests were 100% unsuccessful in only one case. This Exit
node is hosted by a Kuwait ISP which has also been reported by others to block Skype.3

4.3 Further Possible Use Cases

Web-Page Censorship: Recent work has shown that a number of web clients receive
altered pages during their browsing sessions [19]. These alterations may include adver-
tisements, extra javascript code and even malware, that are either annoying (in the best
case) or harmful to the user. Using our technique one can compare the page she receives
from a Web server, with the pages received when the server is visited from a different
geographical location and/or ISP.

Network Problems Diagnosis: Using MOR one can easily detect if an administered
or desired service is working properly. For example a user can check if a service is
non responsive also from other organizations or only from it’s own network in order
to report this to her administrators. Also online service administrators can check the
visibility and correct functioning of their service when viewed from external networks.

DNS Update Speed: Using a SOCKS4a proxy one can direct DNS queries through
the Tor network. Combined with our technique one can measure the time needed for a
domain name update to become visible by the rest of the Internet.

5 Related Work

With Tor being increasingly popular during the last years, a number of researchers ex-
amined the network, targeting its performance [20], attacking the system [8, 18]. or
trying to compromise its users’ anonymity through traffic analysis [13, 17].

2 http://ui.skype.com/ui/2/2.0.0.72/en/getlatestversion?
ver=2.0.0.72&uhash=1074a31ab9146cc11ab149c86a32dc920

3 http://www.248am.com/mark/kuwait/skype-blocked-by-qualitynet/

ui.skype.com

MOR: Monitoring and Measurements through the Onion Router 139

The goal of performing a variety of distributed experiments, led a number of re-
searchers to use overlay networks from a different aspect than the one initially intended.
Athanasopoulos et al. in [3] used the Gnutella overlay network to perform Distributed
Denial of Service attacks on third party services. In a subsequent work the same au-
thors illustrated the use of Gnutella in anonymously downloading a Web file [4]. Close
to our work, Beverly et al. in [7] used the Gnutella Network to quantify the preva-
lence of port blocking from ISPs and institutions. In their setup, a super-peer in the
Gnutella network was instrumented to redirect each contacting client to a specific port
of a measurement host controlled by the authors. Recently, Barth et al. in [5] used adver-
tisement networks to study the use and suppress of the HTTP Referer field. They used
two advertisement networks to display custom advertisements to the users for 3 days.
When the advertisement was displayed in the user’s Web browser, it issued a number
of HTTP requests to two servers controlled by the authors. Their observation showed
that most of the times, the Referer HTTP field was suppressed in the network and not in
the browser.

6 Discussion, Limitations and Conclusions

In this paper we propose a new technique for performing measurement and monitoring
tasks. We propose the use of the Tor anonymizing network as a geographically dis-
tributed infrastructure. Using our proof-of-concept implementation, MOR, we present
a number of case studies that demonstrate the applicability and value of our approach.
Our experiments show that about 7.5% of the tested organizations block at least one
popular application port and about 5.5% of them modify HTTP headers.

While our work actually leverages the Tor network, the applications we propose
make careful use of the network adding limited overhead (i.e. single TCP-SYN packets
and small Web requests). We expect MOR to act as a motivation for a number of users,
interested in measurement and monitoring tasks, in adding more relays to the network.
In this case, Tor will benefit from MOR users, since more proxies will increase the
network’s geographic diversity, improve anonymity and Tor’s overall performance [1].

Limitations: Unfortunately, with the current state of the Tor network, a number of
interesting tasks can not be implemented. Two main limitations are the lack of relay-
ing non-TCP traffic and the limited throughput performance. Tor does not, for the time
being, support relaying non-TCP traffic. In this extent a number of programs (i.e. tracer-
oute) that use other IP protocols, can not be relayed through Tor. Due to this, a number
of experiments based on this type of tools are not feasible. Furthermore, though Tor
tries, and succeeds, to provide low latency anonymization, it is still not able to support
high throughput applications. In this case experiments targeting on identifying path de-
lay, loss and average/peak throughput are not guaranteed to provide accurate results. It
is highly possible that the measured metric will be affected by the system itself and will
not correspond to the actual value from the targeted network. Though these are funda-
mental limitations on the number of possible use cases of our technique, we believe that
our work will encourage exploration for integrating the aforementioned metrics.

140 D. Antoniades, E.P. Markatos, and C. Dovrolis

References

1. Acquisti, A., Dingledine, R., Syverson, P.: On the Economics of Anonymity. In: Wright, R.N.
(ed.) FC 2003. LNCS, vol. 2742, pp. 84–102. Springer, Heidelberg (2003)

2. Antoniades, D., et al.: One-Click Hosting Services: A File-Sharing Hideout. In: Proceedings
of the ACM/SIGCOMM conference on Internet Measurements (November 2009)

3. Athanasopoulos, E., Anagnostakis, K., Markatos, E.: Misusing Unstructured P2P Systems to
Perform DoS Attacks: The Network That Never Forgets. In: Proceedings of the 4th Interna-
tional Conference on Applied Cryptography and Network Security (June 2006)

4. Athanasopoulos, E., et al.: GAS: Overloading a File Sharing Network as an Anonymizing
System. In: Proceedings of the 2nd International Workshop on Security (2007)

5. Barth, A., Jackson, C., Mitchell, J.: Robust Defenses for Cross-Site Request Forgery. In:
Proceedings of the 15th ACM conference on Computer and Communications security (2008)

6. Baset, S., Schulzrinne, H.: An Analysis of the Skype Peer-To-Peer Internet Telephony Pro-
tocol. In: IEEE International Conference on Computer Communications (2006)

7. Beverly, R., et al.: The Internet’s Not a Big Truck: Toward Quantifying Network Neutrality.
In: Proceedings of the 8th Passive and Active Measurement Workshop (April 2007)

8. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of Service or Denial of Security?
How Attacks on Reliability can Compromise Anonymity. In: Proceedings of the 14th ACM
Conference on Computer and Communication Security (October 2007)

9. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM 24(2) (1981)

10. Chun, B., et al.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Com-
put. Commun. Rev. 33(3), 3–12 (2003)

11. Dingledine, R., Mathewson, N.: Anonymity Loves Company: Usability and the Network
Effect. In: Proceedings of the Fifth Workshop on the Economics of Information Security
(WEIS 2006) (June 2006)

12. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the Second-Generation Onion Router. In:
Proceedings of the 13th conference on USENIX Security Symposium (2004)

13. Evans, N., Dingledine, R., Grothoff, C.: A Practical Congestion Attack on Tor Using Long
Paths. In: Proceedings of the 18th USENIX Security Symposium (August 2009)

14. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. In: Proceedings
of Information Hiding: First International Workshop (May 1996)

15. K. Loesing. Measuring The Tor Network: Evaluation of Client Requests to the Di-
rectories (2009), http://git.torproject.org/checkout/metrics/master/
report/dirreq/directory-requests-2009-06-26.pdf

16. McCoy, D., et al.: Shining Light in Dark Places: Understanding the Tor Network. In: Pro-
ceedings of the 8th International Symposium on Privacy Enhancing Technologies (July 2008)

17. Murdoch, S.J., Danezis, G.: Low-Cost Traffic Analysis of Tor. In: Proceedings of the 2005
IEEE Symposium on Security and Privacy (May 2005)

18. Pappas, V., et al.: Compromising Anonymity Using Packet Spinning. In: Proceedings of the
11th Information Security Conference (September 2008)

19. Reis, C., et al.: Detecting In-flight Page Changes with Web Tripwires. In: Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation (2008)

20. Snader, R., et al.: A Tune-up for Tor: Improving Security and Performance in the Tor Net-
work. In: Proceedings of the Network and Distributed Security Symposium (February 2008)

21. Spring, N., Peterson, L., Bavier, A., Pai, V.: Using PlanetLab for Network Research: Myths,
Realities, and Best Practices. SIGOPS Oper. Syst. Rev. 40(1), 17–24 (2006)

22. The Tor Project. TorCtl., https://svn.torproject.org/cgi-bin/viewvc.
cgi/torctl/

http://git.torproject.org/checkout/metrics/master/report/dirreq/directory-requests-2009-06-26.pdf
http://git.torproject.org/checkout/metrics/master/report/dirreq/directory-requests-2009-06-26.pdf
https://svn.torproject.org/cgi-bin/viewvc.cgi/torctl/
https://svn.torproject.org/cgi-bin/viewvc.cgi/torctl/

Evaluating IPv6 Adoption in the Internet

Lorenzo Colitti, Steinar H. Gunderson, Erik Kline, and Tiziana Refice

Google, Inc.
{lorenzo,sesse,ek,tiziana}@google.com

Abstract. As IPv4 address space approaches exhaustion, large net-
works are deploying IPv6 or preparing for deployment. However, there is
little data available about the quantity and quality of IPv6 connectivity.
We describe a methodology to measure IPv6 adoption from the perspec-
tive of a Web site operator and to evaluate the impact that adding IPv6
to a Web site will have on its users. We apply our methodology to the
Google Web site and present results collected over the last year. Our data
show that IPv6 adoption, while growing significantly, is still low, varies
considerably by country, and is heavily influenced by a small number of
large deployments. We find that native IPv6 latency is comparable to
IPv4 and provide statistics on IPv6 transition mechanisms used.

1 Introduction

The network protocol that has been used in the Internet since its inception is
IPv4 [1], which provides 232 distinct addresses. Its successor IPv6 [2] provides
2128 addresses, but IPv6 adoption has not proceeded as quickly as its designers
expected [3]. Since IPv6 is not backward-compatible with IPv4 both clients and
servers have to deploy IPv6 to make use of it; since IPv6 provides little immediate
benefit apart from larger address space the operational community has seen little
motivation to deploy it. However, as IPv4 address exhaustion approaches [4], a
number of networks have deployed IPv6 or are preparing for deployment.

One of the problems faced by an organization, especially a Web site operator,
wanting to deploy IPv6 is the lack of information on IPv6 adoption and the
quality of service provided by the IPv6 Internet. Thus, it is difficult to predict
the adoption and impact to existing services of even a small-scale IPv6 roll-
out. Conventional wisdom in the operational community is that low adoption
leads to lower quality of service, since problems are less likely to be noticed, and
lower quality of service leads to low adoption, as a network with lower qual-
ity of service is less desirable. However, little data is available to validate these
assumptions. The situation is further complicated by the wide variety of mecha-
nisms currently used to provide IPv6 connectivity. To work around an initial lack
of IPv6 deployment, various transition mechanisms were developed to provide
IPv6 connectivity on IPv4-only networks, often by encapsulating IPv6 traffic in
IPv4. Examples are configured tunnels [5], 6rd [6] and ISATAP [7], which require
operator-controlled intermediate nodes; and 6to4 [8] and Teredo [9], which can
use third-party relay nodes that may be anywhere on the Internet. An IETF
survey [10] lists over 30 documents covering a multitude of scenarios.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 141–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 L. Colitti et al.

Attempts have been made to quantify IPv6 adoption in various ways. Past
work has counted IPv6 addresses observed at 6to4 relays [11,12] or proxies [13],
though this can only observe the users of the relay examined. Arbor Networks [14]
sampled IPv6 traffic on backbones, but since current routers generally do not
support IPv6 packet sampling, they could only observe tunneled traffic and were
unable to conclude how much native traffic was present. Karpilovsky et al.[15]
compared IPv6 address allocations published by Internet registries to BGP rout-
ing tables, finding that allocations were growing, but that many prefixes were
used either long after allocation or not at all. They found that IPv6 traffic within
an undisclosed tier-1 ISP was negligible, and mostly consisted of DNS and ICMP.
However, tier-1 status in IPv4 does not necessarily imply a substantial IPv6 de-
ployment; in fact, many IPv4 tier-1 ISPs currently only have a handful of IPv6
customers—for example, on 6 October 2009, AT&T (AS7018) only had four
IPv6 BGP customers according to publicly-available BGP tables [16,17]. They
also looked at Teredo traffic, but as we note later, this is prone to undercounting
since many implementations prefer IPv4 over Teredo. Zhou et al. [18] compared
IPv6 and IPv4 one-way delay between 26 measurement points, finding that IPv6
latency exhibited larger variation, and was significantly higher for 36% of paths.
Huston [3] analyzed logs from the RIPE and APNIC Web sites, finding that IPv6
connectivity was available to about 1% of their users. These Web sites are pri-
marily targeted at network operators, who are likely to have more access to IPv6
connectivity than general Internet users. Kevin Day [19] used 1x1 pixel images
on a Web page to track working IPv6, finding growth from 0.014% to 0.084%
between December 2005 and March 2008, and broken IPv6, which varied be-
tween 0.2% and 0.4%. Wikimedia [20] conducted similar measurements between
June 2008 to July 2009. A software package [21] is also available for Web site
operators to measure working and broken IPv6 for their user base. However, to
our knowledge there is no comprehensive study that examines IPv6 deployment
from the perspective of a Web site operator or that can serve to quantify the
impact of adding IPv6 support to a large Web site with a broad user base.

In this paper we present a methodology for characterizing IPv6 adoption,
connectivity, and latency from the perspective of a Web site operator (Section 3).
We apply the methodology to the Google Web site to conduct a large-scale study
of IPv6 deployment. Our data (Section 4) helps answer questions such as: what
percentage of users would use Google’s services over IPv6 if it were enabled?
What would be the impact on reliability and latency? What is the extent of IPv6
deployment in various countries and networks, and which transition mechanisms
are used?

2 Browser Behaviour

Predicting the impact of enabling IPv6 on a Web site requires an understand-
ing of browser behaviour in a multi-protocol environment, as the availability of
two protocols creates a choice as to which protocol to use. Since IP addresses
are inconvenient to remember, network applications such as Web browsers typ-
ically allow users to input names (e.g. www.google.com), and use the Domain

Evaluating IPv6 Adoption in the Internet 143

Name System (DNS) to resolve names to IP addresses. The DNS uses A and
AAAA Resource Records (RRs), respectively, to specify IPv4 addresses (e.g.,
74.125.19.99), and IPv6 addresses (e.g., 2001:4860:b006::68). It also em-
ploys distributed caching of RRs based on the Time-To-Live (TTL) of each RR;
when the TTL expires, a new RR must be requested. Web browsers supporting
both IPv4 and IPv6 generally request both types of RRs; most recent operating
systems allow limiting the requests to only those protocols that are available
at query time. Browsers then typically attempt to connect to all the returned
addresses in order, retrying with the next address if an attempt fails or times
out [22]. The exact order is application and operating-system dependent [23],
but virtually all IPv6-capable browsers will prefer native IPv6 to IPv4; some
implementations will prefer IPv4 to tunneling mechanisms, some will not. Al-
though this fallback behaviour can be used as a crude high-availability solution,
content providers typically use Virtual IP addresses (VIPs), backed by multiple
Web servers, instead of relying on browser behaviour.

3 Measurement Methodology

Our measurement methodology is based on asking Web clients to send HTTP
requests to either an IPv4-only host or a dual-stack host and comparing the
results. For this purpose, we use two hostnames (the ExpHostNames):

• dualstack.ipv6-exp.l.google.com: a dual-stack hostname, i.e. a host-
name with both AAAA and A DNS RRs, (the ExpHostNameD), and

• ipv4.ipv6-exp.l.google.com: an IPv4-only hostname, i.e. a hostname with
an A DNS RR only (the ExpHostName4).

The ExpHostNames correspond to a set of VIPs (the ExpVIPs), which are load-
balanced among a set of Web Servers, (the ExpWSes) in geographically distinct
datacenters. Each datacenter has a pair of ExpVIPs, one IPv4 and one IPv6. To
allow comparison of IPv4 and IPv6 results, we configure the Google DNS servers
so that DNS requests from a given resolver (and thus from a given client) will
return ExpVIPs in the same datacenter. We set a low TTL value (5 seconds)
on the DNS records for both ExpHostNames. This ensures that most requests
require DNS lookups, minimizing latency differences due to caching. In Septem-
ber 2008, we set up ExpVIPs in two datacenters (one in the US, one in Europe).
Between March 2009 and June 2009, we added three more (one in the US, one in
Europe, and one in Asia). In June 2009, the Asian ExpVIPs were turned down
for unrelated reasons. Since then we have been using four datacenters.

To cause Web clients to connect to the ExpVIPs, we modify the results re-
turned for a small, randomly-selected fraction of Google search requests, which
we name SearchRequests. Fig. 1 describes the measurement process. Specifically,
when a SearchRequest is processed by a Web Server (the SearchWS):

1. SearchWS adds to the search results a JavaScript fragment which instructs
the browser to fetch a URL (the ExpURL) containing an ExpHostName.

144 L. Colitti et al.

Fig. 1. Measurement Request Flow

2. If the browser executes the Javascript code, it will:
(a) Execute a DNS lookup for the ExpHostName (either A or AAAA+A)
(b) Receive an IPv4 and/or an IPv6 ExpVIP (depending on which ExpHost-

Name and which DNS records were requested)
(c) Send an HTTP request (the ExpRequest) to the ExpVIP

3. If ExpWS receives the ExpRequest, it logs it and returns to the browser a
HTTP 204 No Content response.

The URL loaded by the JavaScript contains the following elements:

ExpHostName. 10% of the SearchRequests are sent to ExpHostName4, while
90% are sent to ExpHostNameD. We arbitrarily chose the 90/10 split because
we expected the vast majority of hosts to connect over IPv4, and wanted to
collect as much IPv6 data as possible.

SearchClientIP. The IPv4 or IPv6 address of the client, as seen by SearchWS.
SearchTS. The timestamp of the SearchRequest, as measured by SearchWS.
HashCode. A cryptographic hash of the other elements which can be used to

verify that the ExpRequest is genuine.

The ExpURL is constructed as follows:
http://ExpHostName/gen 204?ip=SearchClientIP&ts=SearchTS&auth=HashCode

4 Data Analysis

Data collection started in September 2008 and is still ongoing. In this paper
we present data collected up to September 2009. Each ExpRequest logged by an
ExpWS is termed a hit. We receive order of millions of hits per day. Hits received
on ExpHostNameD are termed dual-stack hits; of these, hits received over IPv6
are termed IPv6 hits. In every hit, we examine the following fields in addition
to the fields in the ExpURL:

Evaluating IPv6 Adoption in the Internet 145

ExpClientIP. The IP address which sent the ExpRequest.
ExpTS. The timestamp of when ExpWS processed the ExpRequest.
UserAgent. The User-Agent header in the ExpRequest; identifies the browser.

Logs are processed once per day, using MapReduce [24] and Sawzall [25] for
efficiency. Before performing data analysis, we exclude hits from Google’s own
networks as well as invalid and duplicate hits, as follows. First, in order to
reduce the likelihood of users altering their or others’ requests (e.g., by arbitrarily
delaying IPv6 requests, or by sending IPv6 and IPv4 requests through different
hosts), we exclude all hits with an invalid HashCode. The number of such hits
is negligible. Second, to avoid duplicate hits due, for example, to replay attacks
or users clicking on the browser’s back button and causing a second ExpRequest
to be issued, we exclude all but the first hit with a given HashCode in a given
day. To avoid duplicates across days, we discard all hits which are logged more
than MaxResponseTime = 5 minutes after the corresponding SearchRequests.
If a request does not succeed within 5 minutes, we consider that client not to
have working IPv6, as we consider this is not an acceptable response time for a
Web page. This does not significantly bias our data, because – as can be seen in
Fig. 8 – about 94% of all hits are received in the first 3.5 seconds.

By analyzing the hits in our dataset, we infer various statistics such as the
clients that can or cannot connect to dual-stack Web servers and their request
latency. The remainder of this section describes these statistics.

IPv6 Connectivity Ratio. To measure the availability of IPv6 connectivity
among Google users, we count the number of IPv6 hits. Every IPv6 hit implies
that the client that sent it has working IPv6. A SearchRequest will not result in
a hit in at least the following cases:

1. The browser has JavaScript disabled or does not accept third-party images.
2. The user navigates away from the result page, loses connectivity, or closes

the browser before the ExpURL has been loaded.
3. The browser attempts to contact the dual-stack host ExpHostNameD, but

cannot reach it within MaxResponseTime. In this case, we say that the client
has broken IPv6. Since our measurement methodology does not allow us to
distinguish this case from the others, we do not present data on broken IPv6.

We define the working IPv6 ratio W as the number of IPv6 hits divided by the
total number of hits to the dual-stack host: W = nD6

nD4 + nD6
= nD6

nD
, where

nD4 and nD6 are, respectively, the number of IPv4 and IPv6 hits to the dual-
stack host and nD is their total. Since W is computed by sampling a constant
value (the percentage of IPv6 connectivity) using a fixed number of independent
trials, we treat it as being binomially distributed. Also, as shown by Fig. 2,
nD is very large compared to nD6. Thus, we can approximate the binomial
as a normal distribution and calculate the standard deviation of W as: σW =√

W (1 − W)/nD.
As an example, during the week of 2009-09-20, about 0.252% of all dual-stack

hits were IPv6, and σW = 0.001%. σW is of the same order of magnitude for

146 L. Colitti et al.

every week in our dataset. In the following, we use weekly numbers (i.e. we
aggregate all the hits for one week) unless otherwise noted. If we assume the
average number of searches per day made by a given user does not depend on
whether the user has IPv6 connectivity or not, we can use W as an estimator of
the ratio of Google users with working IPv6.

Connectivity Over Time. Fig. 2 plots the value of W over time since we
started collecting data. Although the percentage is still low, it has grown sig-
nificantly in the last 12 months. For example, for the week of 14 September,
year-over-year growth is approximately 35%. We attribute the dip in IPv6 con-
nectivity in August to seasonal variations: since – as we see in Fig. 6 – IPv6
deployment is heavily influenced by a small number of countries, IPv6 traffic is
more prone to the effects of holiday seasons than IPv4 traffic. W varies during
the course of a week and is substantially higher during the weekends. An ex-
ample is Fig. 3, which shows September 2009. This suggests that IPv6 is more
available to users at home than in their workplace.

Connectivity by Type. To infer the type of IPv6 connectivity used by clients,
we examine the ExpClientIP address of each IPv6 hit, as described in [13,15].
This allows us to distinguish 6to4, Teredo, and ISATAP hits. Other hits, which
include both native traffic and other transition mechanisms such as configured
tunnels, cannot be distinguished based on IP address alone. As shown in Fig. 4,
6to4 is the most common connectivity type, while ISATAP and Teredo are com-
paratively rare. Note that this is not an indication of what type of connectivity
is available to users, but what type of connectivity would be used to connect
to dual-stack Web sites. For example, implementations such as Windows Vista
prefer IPv4 over Teredo and 6to4, and thus we will not observe them (Section 2).

Connectivity by Operating System. We infer the operating system of the
client based on the HTTP User-Agent header of each IPv6 hit. We only take into
account OSes that, during September 2009, had a significant number of IPv6 hits
(i.e. W os ≥ 1% of all IPv6 hits). As shown in Fig. 5, most IPv6 hits are from
MacOS and Windows Vista clients. This highlights the importance of operating
system defaults. In fact, the number of IPv6 hits from Windows XP (which is
not IPv6-enabled by default) is approximately three times lower than those from
Windows Vista (which is IPv6-enabled by default), even though Windows XP’s
market share is approximately three times higher [26]. Further analysis of the
data shows that most MacOS IPv6 hits use 6to4 (� 90%, while all the other
OSes have < 50%). We do not know the reason for this. We are unable to infer
the operating system for 0.082% of IPv6 hits.

Connectivity by Country. To determine IPv6 availability and connectivity
types in different countries, we geolocate the ExpClientIP using internal geolo-
cation databases. We then consider the ratio W cc

ct = ncc
6ct/ncc

D between IPv6 hits
using connectivity type ct from country cc and all dual-stack hits from cc. We
only take into account countries accounting for at least 1% of all IPv6 hits in
September 2009. As shown in Fig. 6, there are both significant differences in IPv6

Evaluating IPv6 Adoption in the Internet 147

0 %

0.05 %

0.1 %

0.15 %

0.2 %

0.25 %

0.3 %

0.35 %

Sep08 Nov08 Jan09 Mar09 May09 Jul09 Sep09

Fig. 2. Working IPv6 over time

0 %

0.05 %

0.1 %

0.15 %

0.2 %

0.25 %

0.3 %

0.35 %

Sat-05Sep Sat-12Sep Sat-19Sep Sat-26Sep

Fig. 3. Daily working IPv6 in Sep 2009

0 %

0.05 %

0.1 %

0.15 %

0.2 %

0.25 %

0.3 %

0.35 %

Sep08 Nov08 Jan09 Mar09 May09 Jul09 Sep09

6to4
Native/tunnel/unknown

Teredo
ISATAP

Fig. 4. Working IPv6 by connectivity type

0 %

0.05 %

0.1 %

0.15 %

0.2 %

0.25 %

0.3 %

0.35 %

Sep08 Nov08 Jan09 Mar09 May09 Jul09 Sep09

MacOS
Vista

XP
Linux

OtherWindows

Fig. 5. Working IPv6 by operating system

adoption (almost an order of magnitude) and in connectivity types between coun-
tries. We note that availability of IPv6 connectivity in a given country does not
necessarily correlate with IPv6 deployment, since relayed transition mechanisms
such as 6to4 and Teredo can be enabled by users in the absence of IPv6 network
infrastructure. A better measure of the deployment of IPv6 in a given country
can be obtained by removing relay mechanisms. Fig. 7 shows that the most sig-
nificant deployments of IPv6 are in France and China. The high proportion of
6to4 in Russia and Ukraine may be due to the Opera browser, which prefers
6to4 over IPv4; our internal data shows that it is popular in those countries.

Connectivity by AS. We then determine the Autonomous Systems which
originate IPv6 hits by looking up the ExpClientIP in the BGP routing tables
of Google’s routers. Then, for each AS, we compute the working IPv6 ratio
WAS = nAS

D6/nAS
D , where nAS

D and nAS
D6 are, respectively, the number of dual-

stack hits and IPv6 hits (excluding 6to4 and Teredo) coming from IP addresses
originated by that AS. Table 1 presents the top ASes with higher WAS (during
September 2009). We filter out ASes that contribute only marginally to the
experiment, i.e. with nAS

D6 < 1% of all the IPv6 hits in the same period. Only

148 L. Colitti et al.

0 %
0.2 %
0.4 %
0.6 %
0.8 %

1 %
1.2 %
1.4 %
1.6 %

Russia

France

Ukraine

China

UnitedStates

Poland

Sweden

Canada

Netherlands

Japan

ISATAP
Teredo

6to4
Native/tunnel/unknown

Fig. 6. Working IPv6 ratio for top-10
countries by connectivity type

0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

France

China

Sweden

Netherlands

UnitedStates

Japan

Poland

Russia

Canada

Ukraine

ISATAP
Native/tunnel/unknown

Fig. 7. Working IPv6 ratio for top-10
countries, non-relayed only

Table 1. IPv6 connectivity per origin AS
vs dual-stack connectivity for the same AS

ASN AS Name Country W AS

37944 CSTNET CN 100.000%
23910 CERNET2 CN 99.962%
19782 Indiana Uni. US 89.325%
1312 Virginia Tech US 51.743%
6122 ICN US 13.449%

12322 Free FR 5.131%
4538 CERNET-BKB CN 2.650%

Table 2. IPv6 connectivity per origin AS
versus overall IPv6 connectivity

ASN AS name Country W AS
D6

12322 Free FR 54.956%
23910 CERNET2 CN 7.160%
1312 Virginia Tech US 2.472%
4538 CERNET-BKB CN 2.001%

19782 Indiana Uni. US 1.428%
6122 ICN US 1.178%

37944 CSTNET CN 1.038%

7 ASes match this criterion. Moreover, in order to identify ASes with higher
impact on overall IPv6 traffic, we also compute WAS

D6 = nAS
D6/nD6, where nD6 is

the total number of IPv6 hits (excluding 6to4 and Teredo) in September 2009.
Table 2 shows the top ASes with higher WAS

D6 (during September 2009). Note
the ASes in both tables are the same. 6 out of 7 ASes shown in Table 1 and 2
are universities or research institutions. The only exception - Free (AS12322) -
contributes to most of the French IPv6 native hits (presented in Fig. 7).

IPv6 vs IPv4 Latency. In order to compare the latency of HTTP queries
performed over IPv4 and IPv6, we consider the latency of an ExpRequest (the
ExpLatency) as Δt = ExpTS − SearchTS and we aggregate hits into 50 ms
buckets. Fig. 8 plots latency computed since 18th June 2009. The graphs in
Fig. 8 account for approximately 94% of all hits (the rest are received after the
3.5 second cut-off). As we can see, ExpRequests sent to ExpHostName4 and to
ExpHostNameD on IPv4 have almost identical latency. Either these clients did
not attempt to request an IPv6 record or any added latency of doing so was
insignificant. Thus, assigning a Web site an IPv6 address in addition to an IPv4
address did not affect the latency of IPv4-only clients in any measureable way.

We also see that IPv6 latency (i.e. latency of requests to ExpHostNameD over
IPv6) is in general slightly higher than IPv4 latency. However, if we exclude

Evaluating IPv6 Adoption in the Internet 149

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

8 %

 0 0.5 1 1.5 2 2.5 3 3.5

sec

IPv4-only
IPv4-dualstack
IPv6-dualstack

IPv6-norelay

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

sec

IPv4-only
IPv4-dualstack
IPv6-dualstack

IPv6-norelay

Fig. 8. PDF and CDF of hit latency. Time granularity of 50 ms. The IPv4-only and
IPv4-dualstack plots are indistinguishable. The latency data are not indicative of or-
dinary Google service latency.

relayed IPv6 connectivity (i.e., 6to4 and Teredo), IPv6 latency is actually lower
than IPv4 latency. This is likely due to the fact that, as shown in Table 2, IPv6
deployment is heavily dominated by research and education networks and one
large broadband ISP. We would expect these networks to have higher-bandwidth,
lower-latency connections than average.

5 Conclusions and Future Work

We have presented methodologies that allow us to characterize several aspects of
IPv6 adoption, connectivity, and quality. We have applied them to a large data
set, and shown that IPv6 deployment is small but growing steadily, and that
adoption is still heavily influenced by a small numer of large deployments. While
we see IPv6 adoption in research and education networks, IPv6 deployment is,
with one notable exception, largely absent from consumer access networks. We
find that native IPv6 latency is not significantly worse than IPv4, but transition
mechanisms such as 6to4 and Teredo can add noticeable latency, perhaps because
relays can be very far away from the users they serve. Finally, we have shown
that the default settings of operating systems and applications factor strongly
in the level of IPv6 adoption seen on those platforms.

We believe that our methodology usefully characterizes properties of connec-
tivity in the IPv6 Internet and intend to continue our measurements to provide
a baseline as adoption grows. We also plan to conduct further measurements to
quantify the incidence of broken IPv6 and its causes.

References

1. Information Sciences Institute: Internet Protocol. RFC 791 (1981)
2. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6). RFC 2460 (1998)

150 L. Colitti et al.

3. Huston, G.: IPv6 Transition, http://www.potaroo.net/presentations/

2009-09-01-ipv6-transition.pdf

4. Huston, G.: IPv4 Address Report, http://www.potaroo.net/tools/ipv4/
5. Nordmark, E., Gilligan, R.: Basic Transition Mechanisms for IPv6 Hosts and

Routers. RFC 4213 (2005)
6. Després, R.: IPv6 Rapid Deployment on IPv4 infrastructures (6rd), http://tools.

ietf.org/html/draft-despres-6rd

7. Templin, F., Gleeson, T., Thaler, D.: Intra-Site Automatic Tunnel Addressing Pro-
tocol (ISATAP). RFC 5214 (2008)

8. Carpenter, B., Moore, K.: Connection of IPv6 Domains via IPv4 Clouds. RFC 3056
(2001)

9. Huitema, C.: Teredo: Tunneling IPv6 over UDP through Network Address Trans-
lations (NATs). RFC 4380 (2006)

10. IPv6 Operations Working Group charter, http://ietf.org/dyn/wg/charter/

v6ops-charter.html

11. Savola, P.: Observations of IPv6 Traffic on a 6to4 Relay. In: SIGCOMM CCR
(2005)

12. Hei, Y., Yamazaki, K.: Traffic Analysis and Worldwide Operation of Open 6to4
Relays for IPv6 Deployment. In: Symposium on Applications and the Internet
(2004)

13. Malone, D.: Observations of IPv6 Addresses. In: Claypool, M., Uhlig, S. (eds.)
PAM 2008. LNCS, vol. 4979, pp. 21–30. Springer, Heidelberg (2008)

14. Arbor Networks: Tracking the IPv6 migration. Technical report (2008)
15. Karpilovsky, E., Gerber, A., Pei, D., Rexford, J., Shaikh, A.: Quantifying the Ex-

tent of IPv6 Deployment. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) Passive and
Active Network Measurement. LNCS, vol. 5448, pp. 13–22. Springer, Heidelberg
(2009)

16. RIPE NCC: Routing Information Service, http://www.ris.ripe.net/
17. Hurricane Electric: IPv6 BGP table, http://ipv6.he.net/bgpview/

bgp-table-snapshot.txt

18. Zhou, X., Mieghem, P.V.: Hopcount and E2E Delay: IPv6 Versus IPv4. In: Dovrolis,
C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 345–348. Springer, Heidelberg (2005)

19. Day, K.: Working vs. Broken IPv6 Clients (2008), http://your.org/v6clients.
png

20. Wikimedia: IPv6 Deployment Status, http://wikitech.wikimedia.org/view/

IPv6_deployment

21. Ward, N.: IPv6 WWW Test, http://www.braintrust.co.nz/ipv6wwwtest/
22. Hagino, J.: Implementing AF-Independent Application (1998), http://www.kame.

net/newsletter/19980604/

23. Draves, R.: Default Address Selection for Internet Protocol version 6 (IPv6). RFC
3484 (2003)

24. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI (2004)

25. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the Data: Parallel
Analysis with Sawzall. Scientific Programming Journal (2005)

26. Wikipedia: Usage Share of Desktop Operating Systems Retrieved on 2009-10-02

http://www.potaroo.net/presentations/2009-09-01-ipv6-transition.pdf
http://www.potaroo.net/presentations/2009-09-01-ipv6-transition.pdf
http://www.potaroo.net/tools/ipv4/
http://tools.ietf.org/html/draft-despres-6rd
http://tools.ietf.org/html/draft-despres-6rd
http://ietf.org/dyn/wg/charter/v6ops-charter.html
http://ietf.org/dyn/wg/charter/v6ops-charter.html
http://www.ris.ripe.net/
http://ipv6.he.net/bgpview/bgp-table-snapshot.txt
http://ipv6.he.net/bgpview/bgp-table-snapshot.txt
http://your.org/v6clients.png
http://your.org/v6clients.png
http://wikitech.wikimedia.org/view/IPv6_deployment
http://wikitech.wikimedia.org/view/IPv6_deployment
http://www.braintrust.co.nz/ipv6wwwtest/
http://www.kame.net/newsletter/19980604/
http://www.kame.net/newsletter/19980604/

Internet Usage at Elementary, Middle and High
Schools: A First Look at K-12 Traffic from Two

US Georgia Counties

Robert Miller1, Warren Matthews2, and Constantine Dovrolis1

1 Georgia Institute of Technology
robert.miller@gatech.edu,dovrolis@cc.gatech.edu

2 JANET
warren.matthews@ja.net

Abstract. Earlier Internet traffic analysis studies have focused on en-
terprises [1,6], backbone networks [2,3], universities [5,7], or residential
traffic [4]. However, much less is known about Internet usage in the K-12
educational system (elementary, middle and high schools). In this pa-
per, we present a first analysis of network traffic captured at two K-12
districts in the US state of Georgia, also comparing with similar traces
collected at our university (Georgia Tech). An interesting point is that
one of the two K-12 counties has limited Internet access capacity and it
is congested during most of the workday. Further, both K-12 networks
are heavily firewalled, using both port-based and content-based filters.
The paper focuses on the host activity, utilization trends, user activity,
application mix, flow characteristics and communication dispersion in
these two K-12 networks.

1 Introduction

K-12 networks are unique for several reasons. First, they are used primarily by a
very specific part of the population: children and adolescents. Second, these net-
works are mostly used for educational purposes, as opposed to business, research
or entertainment. Third, the conventional wisdom at least is that K-12 networks
are often under-provisioned in terms of Internet access capacity, experiencing
congestion during most of the working day. Fourth, again based on conventional
wisdom, K-12 networks are tightly controlled in terms of allowable applications
and downloadable content.

Our objective in this paper is to analyze K-12 Internet traffic so that we can
better understand how the Internet is used in these unique networks. Which
are the dominant applications? What is the diurnal utilization pattern? Are
there significant differences between say elementary schools and high schools?
How does congestion affect usage, and in particular, the flow size distribution
or the per-flow throughput? Further, we would like to examine the previously
mentioned conventional wisdoms and understand the differences between K-12
traffic and the more often studied university traffic.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 151–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

152 R. Miller, W. Matthews, and C. Dovrolis

The Schools: We have collected data from two K-12 districts (counties) in
the state of US Georgia: Barrow and Walton. These districts are geographically
close and of similar size but they have very different Internet access capacities.
Barrow is connected through a 150Mbps link to PeachNet (the education network
of the state of Georgia), while Walton has a 20Mbps connection to a commercial
provider. Barrow’s access link has plenty of available capacity, while Walton is
heavily congested during the school day.

The Barrow network is used by approximately 12,000 students and teachers
at 16 schools (3 high, 4 middle and 9 elementary schools). Barrow also has 3
administrative facilities that use its network. The Walton network is used by
approximately 13,000 students and teachers at 13 schools (2 high, 3 middle
and 8 elementary schools). In both counties, the networks are subnetted based
on schools and as such we can identify the school that each IP flow belongs to.
Both networks are NAT-ted. In Barrow, our monitor is located inside the private
network, and so we can identify individual hosts. In Walton, on the other hand,
our monitor is located after the NAT and so we cannot identify individual hosts
(even though we can still identify individual schools because each school uses a
different public IP address).

To compare K-12 traffic with the more often studied university traffic, we have
also collected network traces at Georgia Tech. The Georgia Tech network has
several 1Gbps access links, and it is used by approximately 20,300 students and
faculty. Further, Georgia Tech, as most US universities, does minimal filtering
of application ports or content. While we are able to compare the K-12 traffic
to the Georgia Tech data in some instances, in others we could not do so. This
is mostly due to limitations on our data collection at Georgia Tech.

The Data: Data was captured using port-mirroring at the central switch of both
K-12 networks. The data was stored in nfdump files rotated every 5 minutes.1 In
this paper, we only present nfdump data from the week of April 14-20 2008, which
was a typical week for both counties in terms of usage and school operation. For
Georgia Tech, we analyzed netflow data from the access router collected on
September 8, 2008.

We also used a packet sniffer to extract various HTTP headers and the DNS-
query field of DNS requests. That data was collected on September 8, 10 and
21, 2008 only at Walton county.

The structure of the paper is as follows. In section 2 we describe the broad
characteristics of each network. In section 3 we give the breakdown of captured
traffic in terms of protocols and applications. In section 4 we compare flow-level
characteristics between the schools. We conclude in section 5.

2 Network Characteristics

Host Count and Activity: We first estimate the number of network-connected
hosts at Barrow County. We cannot do the same for Walton because of the
1 nfdump is a tool that collects and processes netflow data via the command line. It

is part of the NfSen project: http://nfsen.sourceforge.net/

Internet Usage at Elementary, Middle and High Schools 153

Table 1. Maximum number of hosts seen at each subnet. ES stands for elementary
school, MS for middle school and HS for high school.

School Max Hosts Seen School Max Hosts Seen

Barrow County 2970 ELC 38

Auburn ES 108 Russell MS 481

Bethlehem ES 143 Westside MS 205

Bramlett ES 139 Window Barrow MS 201

County Line ES 186 Apalachee HS 583

Holsenbeck ES 159 Winder Barrow HS 465

Kennedy ES 172 PLC 143

Statham ES 209 Others 32

Yargo ES 162

 0

 50

 100

 150

 200

 250

 300

 350

 400

04/14 04/15 04/16 04/17 04/18 04/19 04/20 04/21

H
os

ts
 S

ee
n

Date

Holsenbeck ES
Westside MS

Winder Barrow HS

(a) Number of active hosts

 0

 50

 100

 150

 200

 250

 300

 350

04/14 04/15 04/16 04/17 04/18 04/19 04/20 04/21

H
os

ts
 S

ee
n

Date

Holsenbeck ES
Westside MS

Winder Barrow HS

(b) Hosts with HTTP/S activity

Fig. 1. Hourly activity of Barrow hosts during a week

previously mentioned NAT issue. Table 1 shows the maximum number of distinct
hosts seen at each subnet (school) in a single day.2 Note that the two high school
networks tend to be larger in terms of hosts than middle and elementary schools.

Next, we focus on the diurnal pattern of the number of hosts that are turned-
on. We assume that such hosts will be generating/receiving some traffic (e.g., for
network management reasons) if they are connected to the network. Figure 1(a)
shows the hourly progression of hosts over the course of the week for three
representative schools. We chose to display one school of each type (ES, MS,
HS). As expected, the number of active hosts increases during school days, from
about 7am to about 5pm. What is also interesting, however, is that a significant
fraction of hosts (20% to 40%) are turned-on during evenings and weekends. Most
likely, not all of these machines are servers. This indicates that these machines
have been left on during off hours and weekends, probably without reason.

We are also interested in the number of visible hosts due to user-initiated ac-
tivity. It is not easy to infer whether a machine is currently used by a human or

2 Russell Middle School has a few special machines (mostly servers) assigned to its
subnet, causing some unusual results. The “Others” category represents machines
that do not belong to any school in particular.

154 R. Miller, W. Matthews, and C. Dovrolis

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 5 10 15 20 25

H
os

ts
 S

ee
n

Hour of Day

(a) Barrow County Apr/16/08

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 0 5 10 15 20 25

H
os

ts
 S

ee
n

Hour of Day

(b) Georgia Tech Sep/08/08

Fig. 2. Number of active hosts

not. The heuristic that we use is to detect whether a host generates or receives any
HTTP or HTTPS (denoted as HTTP/S) traffic during that time period, assuming
that most (but clearly not all) HTTP traffic is due to user-initiated web browsing.
Figure 1(b) shows the number of HTTP/S-active hosts during a week, in hourly
intervals. Note that the activity at Holsenbeck ES and Westside MS is close to zero
during the evening hours, but the same is not true for Winder Barrow HS. This
may be due to hosts running Web sessions with periodic page-refreshes.

It is interesting to compare host activity between a K-12 and a university
network. Figures 2(a) and 2(b) show the number of hosts seen at Barrow county
and at the Georgia Tech network in hourly intervals over the course of a day.
We see a very different pattern. At Georgia Tech, the number of active hosts
remains at high levels during the evening hours, until midnight or so, as many
students and faculty work during after-hours at the school or from home. Also,
we see again that a large fraction of hosts (about 65%) remains turned-on and
network-active during the evenings. This is an issue that large organizations will
have to address if we are to reduce power dissipation and energy demands.

Network Utilization: Figure 3 shows how the utilization varies over the course
of a weekday at Walton, Barrow and Georgia Tech, in five-minute intervals. We
show two curves in each graph, for incoming and outgoing traffic. Walton is
congested, with over 90% utilization of its access link, from about 8am until
about 3-4pm. Further evidence of Walton’s congestion is evident in the RTTs
(not shown here) between Georgia Tech and the monitoring machine at Walton.
During peak hours, the RTT reaches 300ms, up from around 8ms during off
hours. The peak load at Barrow is about 45Mbps, much below the 150Mbps
capacity. During peak hours in Barrow county we do not see significant RTT
fluctuation, with the RTT staying around 2ms over the course of the day. Also,
the two counties are mostly consumers of Internet traffic; the outgoing traffic
rate (mostly DNS and HTTP requests as well as outgoing email) is only 11% of
the incoming rate.

Georgia Tech’s diurnal usage pattern, on the other hand, is very different. It
generates an almost symmetric traffic load between the incoming and outgoing
directions. As we will see in the next section, this is probably because Georgia

Internet Usage at Elementary, Middle and High Schools 155

Fig. 3. Network load variations during a working day

Tech acts as a significant HTTP content provider (through multiple research and
software distribution servers) and because it allows the activity of peer-to-peer
(p2p) applications. Further, the load variations at Georgia Tech during the day
are much smaller than in K-12 networks: the minimum traffic load (200Mbps
at about 6am) is 20% of the maximum traffic load (1Gbps in afternoons and
evenings)3. On the other hand, the traffic load at K-12 networks is almost zero
in the late evening hours.

3 Traffic Characteristics

Protocol and Application Breakdown: We first examine the breakdown of
traffic in terms of transport protocol. The main protocols in both K-12 networks
are TCP and UDP covering together more than 99% of the bytes. TCP dominates
the transport layer, with almost 95-96% of the packets and 97-100% of the bytes
at Walton county. The UDP percentages are much higher at Barrow, but this is
due to a single IP address at Russell MS that multicasts a CNN video stream
using UDP. If we exclude Russell from the analysis, Barrow is also dominated by
TCP traffic, with similar numbers as Walton. On the other hand, the data from
Georgia Tech shows a significantly larger fraction of UDP traffic, about 11-13%
of packets and 4-5% of bytes.
3 Georgia Tech’s true capacity was undisclosed. Therefore we present only the mea-

sured bps instead of utilization.

156 R. Miller, W. Matthews, and C. Dovrolis

Table 2. Application layer breakdown (outgoing data/incoming data)

HTTP HTTPS RTMP SMTP RTSP Unknown

Barrow Packets 74.1%/79.5% 8.1%/6.9% 5.0%/5.4% 6.5%/3.2% 2.4%/2.5% 2.4%/1.7%

Barrow Bytes 66.5%/82.9% 12.2%/4.6% 1.6%/6.7% 11.4%/0.9% 0.8%/2.7% 3.4%/1.4%

Walton Packets 75.2%/79.6% 6.8%/6.1% 2.7%/1.9% 6.7%/4.2% 1.4%/1.9% 6.6%/5.6%

Walton Bytes 74.2%/85.9% 10.9%/5.3% 1.0%/4.2% 8.9%/0.3% 0.5%/2.2% 4.1%/1.9%

Unknown HTTP rsync DNS NNTP RTMP

Georgia Tech Packets 42.8%/37.5% 36.2%/37.3% 5.8%/3.6% 3.1%/4.9% 1.0%/1.8% 1.0%/2.0%

Georgia Tech Bytes 43.9%/33.2% 36.4%/49.3% 10.5%/0.6% 0.5%/0.7% 0.1%/3.9% 0.1%/3.82%

We next examine the application breakdown. We use a simple port-based clas-
sifier. It is well-known that this classifier is inaccurate because it fails to detect
p2p or other applications that do not use well-known port numbers [5]. However,
as will be shown next, this is not an issue for these K-12 networks because they
block most traffic, excluding traffic from well-recognized port numbers such as
HTTP or HTTPS.

Table 2 shows the application breakdown at the two K-12 networks, as well as
at Georgia Tech, both for outgoing and incoming traffic. The major application-
layer protocols at Barrow and Walton are HTTP/S, SMTP (email), RTMP
(Real-Time Messaging Protocol, a proprietary Adobe protocol for media stream-
ing using a Flash player) and RTSP (Real-Time Streaming Protocol, used by me-
dia clients to control remote media servers with VCR-like capabilities). HTTP/S
dominates, with about 80-90% of the packets and bytes in both directions. Of
course we should be aware that some applications use the HTTP/S port numbers
today to “disguise” as Web browsing. Unfortunately, we have no way to detect
such applications. It is interesting that the RTMP/RTSP percentages are higher
for Barrow than Walton. This may be due to the heavy congestion at Walton.
Streaming is more sensitive to congestion, and if streaming applications do not
perform well, people would use them less frequently. Finally, note that the per-
centage of unidentified traffic is quite low, typically less than 5% of the bytes.
This is not surprising, given that the administrators at the two K-12 networks
block all ports except those that are explicitly white-listed.

The application breakdown is very different at Georgia Tech. In that case,
the percentage of “Unknown” traffic is significant, 35-45% of the packets/bytes
in both directions, with slightly more outgoing traffic. Although we cannot be
certain using port-based classification, we expect that most of that traffic is
generated by p2p applications such as BitTorrent. HTTP/S generates roughly
the same traffic volume as “Unknown” even though the fraction of incoming
traffic in bytes is significantly higher than outgoing traffic. Other significant
protocols at Georgia Tech are rsync (synchronization of remote file systems),
DNS, NNTP and RTMP.

DNS Requests: We have also captured DNS-requests (only at Walton county)
in order to characterize the domains that K-12 hosts request most frequently.
Two domains were the most popular by far: walton.k12.ga.us (about 43% of

Internet Usage at Elementary, Middle and High Schools 157

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy
 o

f Q
ue

ry

Rank Order of DNS Queries

(a) Requested DNS domains

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy
 o

f H
T

T
P

 H
os

t

Rank Order of HTTP Hosts

(b) Requested HTTP HOST fields

Fig. 4. Rank-order distributions on log-log scale with the associated regression curves

the requests) and akamai.net (about 12%). This is not surprising. The Walton
domain is so popular because it is probably the default web page at many hosts
in that network. Akamai is the largest CDN and the web pages of their cus-
tomers includes objects with Akamai DNS names. Other popular DNS domains
are Google, Yahoo, AOL, MSN, Photobucket, the advertising domains llnwd.net
and doubleclick.net, and nsatc.com, a domain that powers many of Microsoft’s
services. The top-10 domains requested capture 61% of the total requests, while
the top-100 domains capture 72% of the requests. This implies that a significant
fraction of the requested domains are at the tail of the distribution. Indeed, Fig-
ure 4(a) shows the frequency-versus-rank plot, in log-log scale, for the requested
DNS domains. The linear trend indicates a Zipf distribution, with exponent -0.88
and R2=96%.

HTTP Headers: We also collected HTTP headers at Walton, focusing on the
Host, Content-Length and Content-type fields of the HTTP header. When we
examined the median content length downloaded at Walton over the course of
a day, we noticed a significant increase in the size of downloaded HTTP objects
shortly after midnight. This may be due to automated software updates. In
terms of Content-type, the most popular types are gif and jpeg images, followed
by html, javascript and flash. We plan to compare these measurements with
Barrow, when we become able to collect HTTP headers from that network.

The HTTP Host field allows us to measure the most popular Web servers the
users of these K-12 networks request. The three most popular servers are Win-
dows updates, Trend Micro, and Google. Trend Micro is an anti-virus company.
The top-10 servers in the list make up 25% of all the HTTP requests, while the
top-100 hosts make up 52%. We have also examined how these distributions dif-
fer between elementary schools and high schools. In the former, we see a strong
presence on websites hosting educational games. In high schools, Google and its
various services dominate. We have also examined the popularity distribution of
HTTP servers (see Figure 4(b)) and it also follows a Zipf distribution, but with
a truncated tail. If we only consider the top 2000 HTTP servers, we get a much
better fit to the Zipf model (exponent=-1.09, R2=99%).

158 R. Miller, W. Matthews, and C. Dovrolis

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000 1e+06

C
D

F
 %

Flow Size (bytes)

Barrow County
Walton County

(a) Flow size distribution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000 1e+06 1e+07

C
D

F
 %

Throughput (bps)

Barrow County
Walton County

(b) Per-flow throughput distribution

Fig. 5. Flow size and throughput distributions at Barrow and Walton

4 Flow Characteristics

In this section, we focus on the flow size distribution and the per-flow throughput
in the two K-12 networks. In particular, we are interested in examining how
congestion at Walton affects these two important flow characteristics.

Flow Sizes and Throughputs: Figure 5(a) shows the flow size distribution
for Barrow and Walton during a working day. It is interesting that the two
distributions are very similar, especially for larger flow sizes (more than 10KB)
despite the fact that Walton experiences severe congestion. This observation
implies that users do not react to congestion by downloading smaller files, as
one may expect. Instead, it seems that they download the same files that they
would download if they had more capacity.

The difference between the two distributions in smaller flow sizes, however,
may be a result of congestion. In detail, we observe that the fraction of small
flows (less than 10KB) is higher at Walton. This may be due to aborted flows:
users often abort a transfer when it takes too long to start (due to packet losses
in the TCP connection establishment or slow-start phase, for instance). The
increased frequency of very small flows, compared to Barrow, is an interesting
difference that we plan to further investigate.

We also examined how Walton’s flow size distribution varies during the busy
hours of a 9-hour working day (from 7am till 4pm). However, this distribution
showed that Walton had very similar flow sizes over the course of the work day,
which is not surprising given that the network is congested during this entire
9-hour period.

Another interesting characteristic is the per-flow throughput distribution. Of
course we expect much lower throughput at Walton than Barrow. Indeed, Fig-
ure 5(b) shows the corresponding distribution functions. Note that the median
throughput is 33.8 kbps at Barrow and 9.5 kbps at Walton. The 90-th percentile
of the throughput distribution, which may be more indicative of large-transfers,
is 665.8 kbps at Barrow and only 97.7 kbps at Walton. Looking at Walton’s
throughput variation over the course of a day again showed us that the distri-
bution changes very little over the course of a school day.

Internet Usage at Elementary, Middle and High Schools 159

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

C
D

F
 %

Communication Dispersion

Elementary Schools
Middle Schools

High Schools

(a) Fan-in distributions at Barrow

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

M
ed

ia
n

C
om

m
un

ic
at

io
n

D
is

pe
rs

io
n

Hour of Day

Winder Barrow HS
Westside MS

Holsenbeck ES

(b) Median fan-in at three Barrow
schools on April 16, 2008

Fig. 6. Communication dispersion measured based on HTTP fan-in

In summary, the results of this section indicate that congestion affects the per-
flow throughput but not the size distribution of downloaded files. It is possible
that users adapt to congestion by downloading files in the background, or by
simply being more patient as they browse the Web. We plan to investigate this
issue in more depth in the future.

Communication Dispersion: Another interesting aspect of traffic analysis
is the number of outside hosts that each internal host at these K-12 networks
communicates with. Here, we are primarily interested in HTTP traffic and in
the incoming direction of traffic (mostly downloads). Specifically, for each host
at Barrow we count the number of external HTTP servers that send traffic to
that host. We refer to that number as the “fan-in” of that host. We cannot do
the same for Walton due to the previously discussed NAT issue.

Figure 6(a) shows the fan-in distribution for each school within Barrow county.
We label the curves based on the type of school. It is interesting that high
schools have significantly higher fan-in than middle or elementary schools. This
difference may be indicative of the larger diversity of content and sites that high
school students (mostly adolescents) prefer, compared to the younger students
(mostly children) at elementary and middle schools. This difference is further
illustrated in Figure 6(b), where the median fan-in of three representative schools
is shown as function of time. Note that there are no statistically significant
differences between the ES and the MS, but the HS fan-in is 5-6 times larger.

5 Ongoing Work

We have recently started collecting data from more Georgia counties. We plan
to expand our analysis in terms of the number of schools and the duration of
the study. We are also trying to further understand the effects of congestion on
user behavior and application performance.

160 R. Miller, W. Matthews, and C. Dovrolis

Acknowledgments

The authors would like to thank Ed Morrison, John St.Clair and Kevin McCage
at Barrow County Schools and Todd Antwine and Jon Graves at Walton County
Schools for hosting the monitoring servers. We’d also like to thank Claudia Huff
and the F3 group for their ongoing support and assistance. The Georgia Tech
data used en this work were made available by the Georgia Tech Research Net-
work Operations Center (www.rnoc.gatech.edu).

References

1. Aiello, W., Kalmanek, C., McDaniel, P., Sen, S., Spatscheck, O., Van der Merwe,
J.: Analysis of communities of interest in data networks. In: Passive and Active
Network Measurement (2005)

2. Fomenkov, M., Keys, K., Moore, D., Claffy, K.: Longitudinal study of Internet traffic
in 1998-2003. In: ACM International Conference Proceeding Series (2004)

3. Fraleigh, C., Moon, S., Lyles, B.: Packet-level traffic measurements from the Sprint
IP backbone. IEEE Network (2003)

4. Fukuda, K., Cho, K., Esaki, H.: The impact of residential broadband traffic on
Japanese ISP backbones. In: ACM SIGCOMM (2005)

5. Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.C.: Transport layer identifica-
tion of P2P traffic. In: ACM SIGCOMM (2004)

6. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A first look at
modern enterprise traffic. In: Internet Measurement Conference (2005)

7. Smith, F.D., Campos, F.H., Jeffay, K., Ott, D.: What TCP/IP protocol headers can
tell us about the web. In: ACM SIGMETRICS (2001)

A First Look at Mobile Hand-Held Device Traffic

Gregor Maier, Fabian Schneider, and Anja Feldmann

TU Berlin / Deutsche Telekom Laboratories
Ernst-Reuter-Platz 7, 10589 Berlin, Germany

{gregor,fabian,anja}@net.t-labs.tu-berlin.de

Abstract. Although mobile hand-held devices (MHDs) are ubiquitous today, lit-
tle is know about how they are used—especially at home. In this paper, we cast a
first look on mobile hand-held device usage from a network perspective. We base
our study on anonymized packet level data representing more than 20,000 resi-
dential DSL customers. Our characterization of the traffic shows that MHDs are
active on up to 3 % of the monitored DSL lines. Mobile devices from Apple (i. e.,
iPhones and iPods) are, by a huge margin, the most commonly used MHDs and
account for most of the traffic. We find that MHD traffic is dominated by multi-
media content and downloads of mobile applications.

Keywords: Mobile Devices, iPhone, Traffic Characterization.

1 Introduction

Today advanced mobile hand-held devices (MHDs, e. g., iPhones and BlackBerrys) are
very popular. MHDs have evolved rapidly over the years—from pure offline devices, to
cell phones with GSM data connectivity, to 3G devices, and universal devices with both
cellular as well as WiFi capabilities. Their increased graphics and processing power
makes these devices all-in-one PDAs and media centers. Today’s MHDs can be used
to surf the Web, check email, access weather forecast and stock quotes, and navigate
using GPS based maps—to just name some of the prominent features. This increase in
flexibility has caused an increase in network traffic. Indeed, cellular IP traffic volume is
growing rapidly and significantly faster than classic broadband volume [15].

We, in this paper, cast a first look at Internet traffic caused by mobile hand-held
devices. We use anonymized residential DSL broadband traces, spanning a period of
11 month, to study MHD behavior and their impact on network usage. We are thus able
to observe the behavior of MHDs when they are connected via WiFi at home and com-
pare their traffic patterns to the overall residential traffic characteristics. Some devices
(most notably iPod touch and iPhone) require WiFi connectivity rather than cellular
connectivity for some services. Other services are more likely to be used via cellular
connectivity due to user mobility, e. g., looking up directions on Google Maps, while
walking around town or driving. Although, we in this paper only focus on residential
MHD usage and not MHD usage in cellular networks, our analysis gives first insights
into what kind of services users are interested in when they are at home and have access
to all services. This information is crucial for 3G cellular providers to anticipate usage
patterns and future traffic growths.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 161–170, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 G. Maier, F. Schneider, and A. Feldmann

The remainder of this paper is structured as follows. In Sec. 2 we present our data
sets and methodology, Sec. 3 presents our results. In Sec. 4 we discuss related work
before we conclude our paper in Sec. 5.

2 Data and Methodology

In this section we describe the anonymized data sets of residential DSL connections
and our methodology for analyzing them.

2.1 Data Sets

We base our study on multiple sets of anonymized packet-level observations of resi-
dential DSL connections collected at aggregation points within a large European ISP.
The monitor, using Endace monitoring cards, operates at the broadband access router
connecting customers to the ISP’s backbone. Our vantage point allows us to observe
more than 20,000 DSL lines. The anonymized packet-level traces are annotated with
the anonymized DSL line card port id. This enables us to uniquely distinguish DSL
lines since IP addresses are subject to churn and as such cannot be used to identify
DSL lines [7]. While we typically do not experience any packet loss, there are sev-
eral multi-second periods (less than 5 minutes overall per trace) with no packets due to
OS/file-system interactions.

We use several 24 h traces collected over a period of 11 months which gives us the
the opportunity to track changes in mobile device usage over time. Table 1 summarizes
characteristics of the traces, including their start, duration, size, and number of observed
MHDs. We note that while the number of observed DSL lines remains about the same
in each trace, the number of observed MHDs has increased significantly.

The data anonymization, classification, as well as application protocol specific hea-
der extraction is performed immediately on the secured measurement infrastructure us-
ing the Bro NIDS with dynamic protocol detection [3].

2.2 Identifying MHDs

To understand how MHDs are utilized we need to identify not only their presence in
our traces but also their contributions. This is non-trivial as MHD users commonly do
not just operate the MHD over their DSL-line but also/mainly computers or set-top
boxes. Note, that all devices active via one DSL-line usually share a single IP address.

Table 1. Overview of anonymized packet traces

MHD HTTP Traffic
Name Start date Duration Size # MHDs Volume % of HTTP
SEP08 Thu 18 Sep’08 4am 24 h >4 TB >200 >2 GB 0.1 %
APR09 Wed 01 Apr’09 2am 24 h >4 TB >400 >9 GB 0.4 %
AUG09a Fri 21 Aug’09 2am 24 h >6 TB >500 >15 GB 0.6 %
AUG09b Sat 22 Aug’09 2am 24 h >5 TB >500 >15 GB 0.7 %

A First Look at Mobile Hand-Held Device Traffic 163

Therefore, we rely on network signatures which we gather by observing and recording
MHD behavior in a controlled environment.

Among the currently popular MHD devices are Symbian based phones, BlackBerrys,
iPhones and iPods, Windows Mobile based phones, and Google Android phones [12].
We collected manual traces using tcpdump for all device types except BlackBerrys1.
With each device we performed the following set of actions using a wireless access-
point for data collection: connecting to the access-point, accessing several Web sites,
watching videos on YouTube, using other mobile applications like Weather and Stocks,
checking and sending emails, using Facebook, and updating/installing mobile applica-
tions on the MHD.

Analyzing these manual traces reveals that HTTP dominates the protocol mix and that
most mobile applications, including Weather, Stock quotes, AppStore, and YouTube,
use HTTP. From our manual traces we extract a list of HTTP user-agent strings for
each device and OS combination.2 We further augment this list by well-known strings
from other mobile devices, e.g., BlackBerrys. This captures the strings of the standard
applications. However, it is not possible to compile a list of all user-agent strings that
MHD application writers may use. However, since most rely on standard libraries, we
can add patterns for these. For example, most applications for Apple devices use the
Apple CFNetwork library for communication and CFNetwork usually adds its name
and version number to the end of user-agent strings. While Mac OS X also uses CFNet-
work, the version numbers used by the iPhone and Mac OS X are disjoint and we can
distinguish them. Based on this collection of user-agent strings we create patterns for
(i) identifying DSL lines that “host” MHDs and (ii) identifying and classifying MHD
usage of HTTP.

2.3 Application Protocol Mix

Finding signatures for identifying non-HTTP traffic caused by MHDs is more difficult
since most other application protocols, e. g., POP, do not add device related information
to their user-agent strings. Furthermore, they may use encryption.

One obvious approach for overcoming this limitation is to assume that MHDs and
regular computers are used consecutively, i. e., not used at the same time at the same
DSL line. Based upon this assumption one can classify all traffic after a HTTP request
from a MHD on a DSL line as MHD traffic (relying on a timeout). However, we show
in Sec. 3.1 that the underlying assumption is incorrect. A majority of the lines shows
contemporaneous activity from MHDs and regular computers.

Therefore, we take advantage of another characteristic of network devices—their IP
TTLs. The default IP TTLs of popular MHDs differ from those of the most commonly
used home OSs. The default TTL of iPhones/iPods and Macs is 64, Symbian uses 69,
while Windows uses 128. This enables us to separate MHD usage from regular PC
usage for some combinations of OSs. While we cannot distinguish iPhones/iPods from

1 Manual trace collection was performed with Google’s G1 (Android 1.5), Apple’s iPod touch
(iPhone OS 2 & iPhone OS 3), HP’s iPaq (Windows Mobile), HTC Touch 3G (Windows
Mobile), Nokia 810 (Maemo Linux), and Nokia E61 (Symbian). Thanks to all device owners.

2 We note that these MHD user-agent strings differ from user-agent strings used by PCs/Macs.

164 G. Maier, F. Schneider, and A. Feldmann

SEP08 APR09 AUG09a AUG09b

0
10

0
20

0
30

0
40

0
50

0

M

H
D

 d
ev

ic
es

 b
y

ty
pe

Android
SonyEricsson
Blackberry
HTC
WinMobile
Nokia
iPod
iPhone

Fig. 1. Popularity of MHD device types

Macs or Windows Mobile from Windows we can use IP TTLs to separate the other
combinations. Our observations show that the majority of home OSs is Windows while
the majority of MHDs are iPods or iPhones. In order separate those, we first select all
DSL lines for which every HTTP request with a TTL3 of 64 or 69 is originated by a
MHD (as identified via the user-agent). The assumption is that all traffic on these lines
with TTL 64/69 is then caused by a MHD. Thus, we can then use Bro’s DPD [3] on
this traffic to get a first impression of the application protocol mix of MHDs. Since this
approach excludes lines with certain combinations of MHDs and regular computers we
are left with 54–59 % of the lines with MHDs. In addition, if the activity of the regular
computer does not include HTTP we might misclassify its traffic. We note that we use
this heuristic only for analyzing the application protocol mix, we use user-agent strings
for all other analyses.

3 Results

After reporting on the pervasiveness of MHDs we focus on their protocol mix. Then
we characterize MHDs’ HTTP traffic, analyze mobile application usage, and present
results on iTunes and AppStore usage.

3.1 MHD Pervasiveness

On a significant number of the DSL lines we observe traffic from MHDs (see Table 1).
Indeed, in the most recent trace, AUG09, 3 % of active lines have MHD activity. More-
over, the contribution of MHDs to the observed HTTP traffic is also substantial (up to
0.7 % of HTTP bytes). This indicates that some MHD users may find it more convenient
to use their mobile devices at home even if they have a regular computer as well. Note,
HTTP’s share of overall traffic volume is 50–60 % [4,7].

There is a strong temporal trend underlined by the rapid growth in the number of
lines with MHDs’ activity and in the MHDs’ HTTP traffic volume. The number of lines
with MHDs almost doubled between SEP08 and AUG09. The HTTP traffic volume

3 We take NAT devices and our hop distance to the end system into account.

A First Look at Mobile Hand-Held Device Traffic 165

%
 o

f M
H

D
 li

ne
s

0
10

20

02 05 08 11 14 17 20 23 02

DSL lines with active MHDs [APR09]

Time of day [hours]

%
 o

f H
T

T
P

 li
ne

s
0

20
50

02 05 08 11 14 17 20 23 02

DSL lines with active HTTP users [APR09]

(a) APR09

%
 o

f M
H

D
 li

ne
s

0
10

20

02 05 08 11 14 17 20 23 02

DSL lines with active MHDs [AUG09b]

Time of day [hours]

%
 o

f H
T

T
P

 li
ne

s
0

20

02 05 08 11 14 17 20 23 02

DSL lines with active HTTP users [AUG09b]

(b) AUG09b

Fig. 2. Number of lines with MHD activity (top) vs. Number of lines with HTTP activity (bottom)

from MHD grew sixfold while the overall traffic volume increased only slightly and the
overall HTTP volume increased by 22 % at our vantage point.

Fig. 1 shows the distribution of active devices types for all traces. We observe that
Apple devices (iPhone and iPod touch) clearly dominate, both in terms of number of
lines and traffic volume (not shown). They account for 86–97 % of MHDs’ HTTP traffic
and 71–87 % of the devices. This is in contrast to the market shares of the devices [12].
Possible explanations are that Apple users (i) find their device very convenient even for
home use and/or (ii) are looking for a multimedia device that “also works as a phone”.
Indeed, the iPod Touch is an iPhone without phone capability. We note that starting
from APR09 the number of lines with iPods outnumber the number of lines with all
non-Apple MHDs combined.

We already pointed out that we have a substantial number of DSL lines “hosting”
MHDs. Now we want to illustrate how the use of MHDs is distributed over the course
of a day. To determine how the use of MHDs is distributed across time we plot the
relative number of lines with active MHDs per hour (top) and the percentage of lines
with HTTP traffic per hour for APR09 and AUG09b in Fig. 2. We see that MHDs are
used throughout the day. While we see a similar behavior when looking at overall HTTP
traffic, we see that MHD usage has a stronger pick-up in the morning (AUG09b even
shows a peak). Overall HTTP traffic on the other hand slowly ramps up during the day.
Again the convenience of using the mobile device may be a possible explanation. Users
can use them to check their emails or the weather when “starting their day”. The low
byte contribution of mobile devices in the morning hours supports this claim (figure
not shown).

Next, we examine if MHDs and regular computers are used consecutively or whether
they are used contemporaneously. To asses this, we compute for each DSL line and for
any two subsequent HTTP requests their inter-request-times (IRTs) and label them as
(i) both from MHDs, (ii) both from non-MHDs, or (iii) from MHD and non-MHD.
Using this information and timeouts of one second, one minute, and five minutes we
compute the number of DSL lines with mixed activity (MHD and non-MHD). We find

166 G. Maier, F. Schneider, and A. Feldmann

Sep08
allHTTP

Sep08 Apr09 Aug09a Aug09b Aug09b
allHTTP

0
20

40
60

80
10

0

pe
rc

en
t other

unknown
RAR
xml
browsing
apps
multimedia

Fig. 3. HTTP content type categories by volume. Comparing MHD traffic all HTTP traffic.

that 33–39 % of MHD lines exhibit mixed MHD/non-MHD activity with IRTs of less
than one second. For IRTs of less than one minute (five minutes) up to 62 % (72 %) of
the lines have mixed activity.

3.2 Application Protocol Mix

While our approach for analyzing the application protocol mix of MHDs is limited
(see Sec. 2.3), it still gives us a first impression of MHDs’ traffic composition. We find
that HTTP clearly dominates across all of our traces. HTTP contributes 80–97 % of all
MHD bytes. Email related protocols account for more than 9 % of the bytes in SEP08,
2.3–2.5 % in APR09 and AUG09a. However, it drops to 0.2 % in AUG09b most likely
due to a different usage patterns on weekends. In general, no other protocol has a traffic
share of more than 1.5 % with the exception of 13 % unclassified traffic in APR09, and
15 % RTMP streaming in AUG09a, caused by only a handful of MHDs.

3.3 MHD Web Traffic

Given that HTTP traffic accounts for the vast majority of MHD traffic we now examine
it more closely to characterize its usage and how it differs from overall HTTP usage.
We use anonymized HTTP headers and identify HTTP requests from MHDs using user-
agents strings as discussed in Sec. 2.2.

To identify the content-type of each transfered HTTP object we join information
from the Content-Type HTTP header field and an analysis of the initial part of the HTTP
body using libmagic, see [7]. We then group these into a handful of categories. We clas-
sify downloads of mobile applications as apps, video and audio content as multimedia,
and images as web-browsing since the latter are usually an integral part of Web pages.

Fig. 3 shows the HTTP content type categories for MHDs and compares them with
all HTTP traffic. We find that multimedia content is the most voluminous MHD content-
type across all traces followed by application downloads. Interestingly, XML objects are
also common. They account for 2–5 % of the transfered HTTP bytes. XML is used by
many applications for status and data updates, e.g., weather forecasts, stock quotes, and
sport results. Surprisingly, Web surfing itself (text based content-types and images) is

A First Look at Mobile Hand-Held Device Traffic 167

u

lo
g1

0(
P

[s
iz

e
 >

 u
])

−
6

−
5

−
4

−
3

−
2

−
1

0

1B 10B 1KB 100KB 10MB 1GB

All HTTP sizes
MHD HTTP sizes

(a) CCDF
size

pr
ob

ab
ili

ty
 d

en
si

ty

All HTTP sizes
MHD HTTP sizes

0.
0

0.
05

0.
10

0.
15

0.
20

1B 10B 1KB 100KB 10MB 1GB

2.6KB 5.5KB

(b) PDF (logarithmic scale)

Fig. 4. Size of HTTP objects for all traffic and MHD traffic for trace APR09

only the third largest category contributing less than 14 % in the 2009 traces (23 %
in SEP08).

Comparing these results to all HTTP traffic [7] we find that downloads of mobile ap-
plications and XML contribute a significantly smaller fraction to the content type mix.
In contrast the volume contributed by RAR archives to all HTTP traffic is significantly
larger. Browsing is a bit more prevalent in all HTTP traffic (18–22 %). Multimedia con-
tent is the biggest contributor for both. However, for all HTTP traffic flash-video is the
most popular video codec, while MHDs use MPEG coding.

The volume share per DNS domain reflects the distribution of MHD content-types.
Apple’s apple.com is responsible for most of the traffic due to application downloads.
Note, only the AUG09a trace shows a significant number of iPhone application down-
loads from third-party sites rather than the Apple’s AppStore. YouTube and Stream.fm
are the next most popular domains. For overall HTTP traffic One-Click-Hosters and
video portals are among the top domains by volume.

To answer the question if MHD HTTP traffic characteristics differ from overall
HTTP traffic we compare the distribution of HTTP object sizes. See Fig. 4 for a plot
of the Cumulative Complementary Distribution Function (CCDF) and Probability Den-
sity Function (PDF) for APR094. The results for the other traces are similar. We find that
both distributions are consistent with a heavy-tailed distribution (see Fig. 4(a)). While
the dominating mode of objects sizes downloaded by MHDs is larger (see support lines
in Fig. 4(b)) the tail is heavier for all HTTP traffic.

3.4 Mobile Applications

Fig. 5 shows the popularity of the top MHDs’ applications. The most popular applica-
tion is Apple’s browser Safari. Up to 62 % of all devices are using it. This is followed
by iTunes (up to 37 %) and Weather (up to 32 %). For non-Apple MHDs we observe

4 Coupled with a logarithmic scale on the x-axis, plotting the density of the logarithm of the data
facilitates direct comparisons between different parts of the graphs based on the area under the
curve.

apple.com

168 G. Maier, F. Schneider, and A. Feldmann

Facebook

Stocks

YouTube

Maps

CoreMedia

locationd

Weather

iTunes

Safari

0 10 20 30 40 50 60
Percentage of MHD devices using the application [%]

AUG09b
AUG09a
APR09
SEP08

Fig. 5. Application popularity by number of MHD devices using this application

that the browser is also the most popular application. Overall we find that Apple’s de-
fault applications clearly dominate. Surprisingly, given our own usage, the popularity
of Maps is relatively low. One possible explanation is that one rarely needs directions
while at home. CoreMedia, the media player of iPhones and iPods, is also quite preva-
lent. This application is e. g., responsible for playing videos accessed via the YouTube
application or the browser. The YouTube application itself is only used for searching
videos, tagging, and navigating within YouTube. Locationd is the wireless positioning
system used on Apple devices.

To understand if users take advantage of specialized applications available for popu-
lar Web services we select two Online Social Networks that are popular in our user base:
Facebook and StudiVZ. For both OSNs there are specialized applications available for
the iPhone/iPod MHDs. We find that roughly half of the users (50 % ± 10 %) use the
specialized applications while the other half continues to use the built-in browser. This
relationship is stable throughout our 11 month observation period.

3.5 Application and Media Downloads

Given that we are observing traffic from residential DSL lines we have the ability to
evaluate if users use their mobile devices or their regular computer to download mobile
applications and/or multimedia content. Due to the prevalence of Apple devices in our
dataset we now focus on Apple iTunes store and Apple AppStore.

We find that applications are predominantly downloaded directly to the MHD (see
Table 2), e.g., more than 70 % of downloads for the 2009 traces. Surprisingly, we see
that for AUG09a and AUG09b the volume of application downloads in terms of bytes
is almost the same for regular computers and MHD, i. e., the mean application size is
larger for applications downloaded by PC/Macs. A detailed analysis reveals that this is
caused by outliers; the median application size is the same for both.

We see a vastly different behavior for media downloads or purchases from Apple’s
iTunes store. Downloads are almost exclusively done via the regular computers. We see

A First Look at Mobile Hand-Held Device Traffic 169

Table 2. Downloads from AppStore

Apps by PC/Mac by MHD
Trace available Volume # Req Volume # Req
SEP08 3,000 <1 GB <100 <1 GB <100
APR09 7,500 <1 GB >100 >2 GB >250
AUG09a 70,000 >2 GB >150 >3 GB >450
AUG09b 70,000 >3 GB >150 >3 GB >400

several thousand media files being accessed in the 2009 traces. However, only a handful
of downloads are via MHDs which results in a small byte contribution.

4 Related Work

Only a small number of studies have focused on Internet traffic in 3G mobile or cel-
lular networks. Svoboda et al. [8] analyze various aspects of GPRS and UMTS traffic
using anonymized header traces from 2004 and 2005. They study traffic volume per
user and protocol mix. In terms of protocol mix, they find that HTTP is the dominant
protocol with 40–60 % of traffic. Heikkinen et al. [5] analyze P2P usage from passive
UMTS header traces in Finland from 2005–2007. Web traffic accounts for 57–79 % of
bytes from mobile hand-held devices, email for 10–24 %, and P2P is not noticeable.
Williamson et al. [13] analyze packet/data call event traces from a CDMA2000 net-
work from 2004. They focus their analysis on link-layer behavior, session properties,
and user mobility.

Several studies have analyzed TCP performance and low-level traffic characteris-
tics in GPRS and CDMA data networks [2,6,14]. Other studies analyze the content
requested or available for mobile devices. Using data from 2000, Adya et al. [1] ana-
lyze the Web server logs of a major commercial site and study the requests of mobile
clients. They find that stock quotes, news, and yellow pages were the most commonly
accessed content in their traces. Timmins et al. [9] use active measurements to crawl
the Web for sites offering specialized content for mobile devices. Verkasalo [11] stud-
ies how Symbian phone features are used by instrumenting the handset. He finds that
the camera feature and games are the most common multimedia applications.

Trestian et al. [10] analyzes mobility and web-application usage in a 3G network
from a metropolitan area. We on the other hand, focus on stationary usage when MHDs
are connected at home via WiFi. Trestian et al. characterize web-application usage by
counting the number of HTTP request and find that social networking, music, and e-
mail are the most common web. They do not asses who many users utilize a particular
application, which is the approach we use to characterize application usage.

5 Conclusion

Our analysis of residential broadband DSL lines of a large European ISP shows that
there is a significant and increasing number of active MHDs. We find that iPhones
and iPods are by far the most commonly observed MHDs. This has an impact on the

170 G. Maier, F. Schneider, and A. Feldmann

most popular mobile applications: Safari (Apple’s browser), iTunes, and Weather. The
largest fraction by volume of MHD HTTP content is multimedia. Comparing HTTP
object sizes of overall and MHD traffic we find that MHD HTTP objects are on average
larger. The contribution of MHDs to the overall traffic volume is still small, but rapidly
growing, especially compared to the overall traffic growth. In future work we plan a
more detailed analysis of non-HTTP protocols and refine our methodology for protocol
classification. In addition, we plan to extend our analysis to traces from cellular data
networks.

References

1. Adya, A., Bahl, P., Qiu, L.: Characterizing alert and browse services of mobile clients. In:
Proc. Usenix Annual Technical Conference (2002)

2. Benko, P., Malicsko, G., Veres, A.: A large-scale, passive analysis of end-to-end TCP perfor-
mance over GPRS. In: Proc. IEEE INFOCOM, vol. 3 (2004)

3. Dreger, H., Feldmann, A., Mai, M., Paxson, V., Sommer, R.: Dynamic application-layer pro-
tocol analysis for network intrusion detection. In: Proc. Usenix Security Symposium (2006)

4. Erman, J., Gerber, A., Hajiaghayi, M.T., Pei, D., Spatscheck, O.: Network-aware forward
caching. In: Proc. World Wide Web Conference (2009)

5. Heikkinen, M., Kivi, A., Verkasalo, H.: Measuring mobile peer-to-peer usage: Case Finland
2007. In: Proc. Passive and Active Measurement Conference (2009)

6. Lee, Y.: Measured TCP performance in CDMA 1x EV-DO network. In: Proc. Passive and
Active Measurement Conference (2006)

7. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of residential
broadband internet traffic. In: Proc. Internet Measurement Conference (2009)

8. Svoboda, P., Ricciato, F., Pilz, R., Hasenleithner, E.: Composition of GPRS, UMTS traffic:
snapshots from a live network. In: IPS-MOME: Workshop on Internet Performance, Salzburg
Research Forschungsgesellschaft (2006)

9. Timmins, P., McCormick, S., Agu, E., Wills, C.: Characteristics of mobile web content. Hot
Topics in Web Systems and Technologies (2006)

10. Trestian, I., Ranjan, S., Kuzmanovic, A., Nucci, A.: Measuring serendipity: connecting peo-
ple, locations and interests in a mobile 3g network. In: Proc. Internet Measurement Confer-
ence (2009)

11. Verkasalo, H.: Empirical observations on the emergence of mobile multimedia services and
applications in the U.S. and Europe. In: Proc. Conference on Mobile and ubiquitous multi-
media (2006)

12. Wikipedia. Smartphone: Operating systems (September 2009), http://en.wikipedia.
org/w/index.php?title=Smartphone&oldid=315621107#Operating_systems

13. Williamson, C., Halepovic, E., Sun, H., Wu, Y.: Characterization of CDMA2000 cellular data
network traffic. In: Proc. IEEE Conference Local Computer Networks (2005)

14. Won, Y.J., Park, B.-C., Hong, S.-C., Jung, K.B., Ju, H.-T., Hong, J.W.: Measurement analysis
of mobile data networks. In: Proc. Passive and Active Measurement Conference (2007)

15. Wood, N.: Mobile data traffic growth 10 times faster than fixed over next five years. Total
Telecom (September 2009), http://www.totaltele.com/view.aspx?ID=448681

http://en.wikipedia.org/w/index.php?title=Smartphone&oldid=315621107#Operating_systems
http://en.wikipedia.org/w/index.php?title=Smartphone&oldid=315621107#Operating_systems
http://www.totaltele.com/view.aspx?ID=448681

A Learning-Based Approach for IP Geolocation

Brian Eriksson1, Paul Barford1, Joel Sommers2, and Robert Nowak1,�

1 University of Wisconsin - Madison
2 Colgate University

bceriksson@wisc.edu, pb@cs.wisc.edu, jsommers@colgate.edu,
nowak@ece.wisc.edu

Abstract. The ability to pinpoint the geographic location of IP hosts is
compelling for applications such as on-line advertising and network at-
tack diagnosis. While prior methods can accurately identify the location
of hosts in some regions of the Internet, they produce erroneous results
when the delay or topology measurement on which they are based is lim-
ited. The hypothesis of our work is that the accuracy of IP geolocation
can be improved through the creation of a flexible analytic framework
that accommodates different types of geolocation information. In this
paper, we describe a new framework for IP geolocation that reduces to
a machine-learning classification problem. Our methodology considers a
set of lightweight measurements from a set of known monitors to a tar-
get, and then classifies the location of that target based on the most
probable geographic region given probability densities learned from a
training set. For this study, we employ a Naive Bayes framework that
has low computational complexity and enables additional environmen-
tal information to be easily added to enhance the classification process.
To demonstrate the feasibility and accuracy of our approach, we test
IP geolocation on over 16,000 routers given ping measurements from 78
monitors with known geographic placement. Our results show that the
simple application of our method improves geolocation accuracy for over
96% of the nodes identified in our data set, with on average accuracy
70 miles closer to the true geographic location versus prior constraint-
based geolocation. These results highlight the promise of our method
and indicate how future expansion of the classifier can lead to further
improvements in geolocation accuracy.

1 Introduction

There are many ways in which the structural and topological characteristics of
the Internet can be considered. One way that has significant implications for
advertisers, application developers, network operators and network security an-
alysts is to identify the geographic location of Internet devices (e.g., routers or
� This work was supported in part by the National Science Foundation (NSF) grants

CCR-0325653, CCF-0353079, CNS-0716460 and CNS-0905186, and AFOSR grant
FA9550-09-1-0140. Any opinions, findings, conclusions or other recommendations
expressed in this material are those of the authors and do not necessarily reflect the
view of the NSF or the AFOSR.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 171–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

172 B. Eriksson et al.

end hosts). Geographic location can mean the precise latitude/longitude coordi-
nates of a device or a somewhat more coarse-grained location such as within a
zip code, city, county or country.

There are a number of challenges in finding the geographic location of a given
Internet device. The most obvious is that there is no standard protocol that pro-
vides the position of any device on the globe (although DNS entries can include
a location record). Furthermore, Internet devices are not typically equipped with
location identification capability (e.g., GPS, although this may change in the fu-
ture), and even if they did, some would consider this information private. Prior
methods have focused on identifying the geographic location of an Internet device
based on its position relative to a set of active measurements from landmarks
with known positions. While these methods have been shown to be capable of
producing relatively accurate geographic estimates in some areas, inaccuracies
remain for a variety of reasons. Principal among these is the fact of inconsistent
density of specific measurements across the globe.

The goal of our work is to broadly improve IP geolocation accuracy over prior
methods. Our hypothesis is that the large estimation errors caused by imperfect
measurements, sparse measurement availability, and irregular Internet paths can
be addressed by expanding the scope of information considered in IP geolocation.
The estimation framework that we develop to test this hypothesis is to cast IP
geolocation as a machine learning-based classification problem. This extensible
approach enables information from multiple datasets to be fused such that areas
that have low information content from one measurement can be compensated
with better information content from other measurements.

To flesh out this framework in order to test our hypothesis, we must select
both a classification method and a set of measurements that can be used to
estimate IP geolocation. We develop a Naive Bayes estimation method that as-
signs a given IP target to a geographic partition based on a set of measurements
associated with that IP target. Given the potentially large number of measure-
ments to an IP target, probability likelihood estimation is simplified by a Naive
Bayes approach. The network measurement data considered in this framework
includes latency and hop count from a set of landmarks to an IP target. We
also include population density in the framework as a demonstration of a non-
network measurement that can help refine the estimates. The selection of this
classifier/measurement combination was made to demonstrate the potential of
this new approach, but is not meant to be definitive nor comprehensive.

To test and evaluate the capabilities of this initial instance of our learning-
based approach, we consider geographic partitioning at the level of counties in
the continental United States1. While considerable Internet topology lies out-
side the continental United States, the initial validation on this dataset will
motivate future work on end hosts located outside the United States. We iden-
tified a target set of 114,815 spatially diverse nodes in the Internet through full

1 Finer-grained partitioning on the order of zip codes or city blocks is certainly feasible
in our framework, but county-level was selected due to the availability of data for
test and evaluation.

A Learning-Based Approach for IP Geolocation 173

mesh traceroute probing from Planetlab nodes, supplemental data from the
iPlane [1] project, and careful alias resolution. For ground truth on the geo-
graphic location of these target nodes, we used the Maxmind database [2] as
a validation set for our methodology. Of the 114,815 IP target nodes identified
in our measurements, 16,874 were identified in the Maxmind database as being
within the United States with known city locations. Due to its use as a com-
mercial product, the exact underlying methodology for the Maxmind database
is not available, although extensive use of user-survey geolocation information
is known to be used.2 For that set of 16K target nodes, we then gathered hop
count and latency measurements from 78 PlanetLab nodes located in the United
States, which were the starting point for our assessment.

We selected a subset of target nodes3 for training our classifier, with the
training set nodes having both known measurements to the monitors and known
geolocation. With the remaining nodes, we compare the geolocation estimates of
both our learning-based approach and Constraint-Based Geolocation (CBG) [3]
(the current state-of-the-art geolocation algorithm using ping measurements)
validated against the locations found using the Maxmind database. We find
that our estimator is able to provide better location estimates than CBG for
96% of the nodes and on average provide an estimate that is 70 miles closer to
the true location. We believe that these results make a compelling case for future
development of learning-based methods for IP geolocation.

2 Learning-Based IP Geolocation

Given a single target IP address, can we determine the geographic location of the
target IP? Consider a single target IP address with a set of measurements from
a set of monitors with known geolocation to this target IP address. For the pur-
poses of this work, the measurement set M (= {m1, m2, ..., mM}) is the collection
of both latency and hop count values going from the monitor set. Without loss of
generality, now consider a set of possible counties in the continental United States
(C), such that the target is located in some county c ∈ C. This changes the under-
lying problem to, Given the measurement set M, can we estimate which county
c ∈ C the target IP is located in? The best classifier would choose the county
(ĉ) that the target is most probably located in given the measurement set, ĉ =
argmax

c∈C
P (c | M). Using Bayes Theorem [4] (P (A|B) = P (B|A)P (A)

P (B)), therefore

we can restate the classifier as ĉ = arg max
c∈C

P (c | M) = arg max
c∈C

P (M| c) P (c).

Where the value P (M), the probability of observing the set of measurements,
can be ignored due to this value being constant across any choice of county c.

2 Due to its dependence on user generated data, updating the Maxmind database re-
quires extensive user surveying that is not needed with our learning-based method-
ology.

3 We consider IP addresses and nodes to be equivalent in this paper since even if alias
resolution on routers is imperfect, it should not affect our empirical results.

174 B. Eriksson et al.

Next, we expand our estimation framework to consider features other than
measurements from monitors to IP targets. Given that the targets in this paper
are routers, we can use the work in [5] to inform where these routers should be
geographically located. Specifically, the value P (c), the probability of classifying
a target in county c, will be chosen using the results showing that the number
of routers in a specific geographic location is strongly correlated with the pop-
ulation of that geographic location. Therefore, we can estimate the probability
of classifying into a given county to be the population of that county divided by
the total population in all the counties under consideration.

P̂ (ci) =
Population of ci∑

j∈C Population of cj
(1)

How can we estimate the value P (M| c), the probability likelihood of a mea-
surement set M being observed given the target is located in county c? Given
a set of training data, a set of IP addresses with known measurement sets M
and locations c, we could use off-the-shelf techniques (kernel density estimators,
histograms, etc.) to estimate the multivariate likelihood density P (M| c). A
problem is that the set M is most likely of high dimensions (with dimensional-
ity equal to the number of hop count and latency measurements observed to this
target, in this case, on the order of 100), and most density estimator techniques
have an error rate that increases quickly with the dimension of the problem [4].

If all of the values of M were statistically independent from each
other, then the likelihood density could be restated as: P (M| c) =
P ({m1, m2, ..., mM} | c) ≈ P (m1 | c) P (m2 | c) ...P (mM | c) This converts the
problem from estimating one M -dimensional density to estimating M one-
dimensional densities. However, it should be assumed that there is a large degree
of correlation between measurements, with prior work in [6] showing correlation
between hop count measurements, and work in [7] showing correlation between
latency measurements. The risk of assuming statistical independence between
measurements is informed by empirical studies on highly dependent data in
[8]. That work shows that for classification, there is little penalty for assuming
statistical independence even when the measurements are highly statistically de-
pendent. This is due to classification performance depending only on the most-
probable class (in this case, county region) likelihood probability being greater
than other class likelihood probabilities, not the goodness-of-fit of our estimated
likelihood probability to the true likelihood probability.

The next step in our learning-based framework is to estimate the one-
dimensional densities, P (mi | c), the probability of the measurement value mi be-
ing observed given that the target is located in county c. Consider a set of training
data, where for each training target, both the measurement set M and the ge-
olocation county c is known. Given the known monitor placement, for the entire
training set we can determine the distance vector d = {d1, d2, ..., dM}, where di is
the distance between the monitor associated with measurement mi and county c.
These measurements with distance ground truth can then be used to learn the

A Learning-Based Approach for IP Geolocation 175

density (the probability of observing measurement mi given that the target is lo-
cated di distance away from the monitor associated with measurement mi).

Simple density estimators, such as histograms, can be used and will assure that
measurement outliers do not significantly contribute to the density estimation.
One drawback to histogram estimators is that the lack of smoothness in the
estimated density can hurt performance. Instead, we will look to use Kernel
Density Estimators [4], which use the summation of smooth kernel functions to
estimate the density. This smoothness in the estimated density allows improved
estimation of the true density given the limited size of our training set.

For hop count measurements, a one-dimensional density will be estimated at
each hop count value ranging from one hop away from a monitor to ten hops away
(it is assumed that any distance longer than ten hops will not help in estimating
distance). For latency measurements, due to the limited amount of training data,
the measurements are aggregated together separated by 10ms, with a single es-
timated one-dimensional density for 0-9ms, a separate one-dimensional density
for 10-19 ms, 20-29ms, etc. An example of a kernel estimated density for latency
measurements can be seen in Figure 1 along with the resulting probability dis-
tribution across the US counties for observing this latency measurement to a
monitor with known geolocation.

Fig. 1. (Left) - Probability for latency measurements between 10-19ms being observed
given a target’s distance from a monitor. Stem plot - Histogram density estimation,
Solid line - Kernel density estimation. (Right) - The kernel estimated probability of
placement in each county given latency observation between 10-19ms from a single
monitor marked by ’x’.

The amount of location information from latency measurements is likely to
be of more use than the location information derived from hop count measure-
ments or population data. Therefore we introduce two weights λhop and λpop

as the weights on the hop count measurements and the population density data
respectively. Informed by the geolocation improvement by using measurement
weights in the Octant framework [9], the ordering of the measurements should
also imply some degree of importance, as the location of the monitor with the
shortest latency measurement to the target should inform the classifier more
than the monitor with the 30-th closest latency measurement. Therefore, we will
also weight the ordering of measurement values by an exponential, such that

176 B. Eriksson et al.

the i-th latency measurement is weighted by exp (−i · γlat) and the j-th hop
count measurement is weighted by exp (−j · γhop). The weight parameter values
(λhop, λpop, γlat, γhop) will be found by the weight values that minimize the sum
of squared distance errors between the training set of IPs known locations and
the Naive Bayes estimated locations.

2.1 Methodology Summary

Dividing the measurement set M into the set of latency measurements
{l1, l2, ..., lm} and the set of hop count measurements {h1, h2, ..., hm} (where
the total number of measurements M = 2m), our learning-based classifier using
the independence assumption can be restated using the kernel density estima-
tors (where instead of the true likelihood P (mi | c) we have the kernel estimated
P̂ (mi | c)), the weight terms, and the monotonic properties of the logarithm
function as

ĉi = arg max
c∈C

(
λpop log P̂ (c) + fhop + flat

)
(2)

Where fhop = λhop

∑m
j=1 exp (−j · γhop) log P̂ (hj | c), and flat =∑m

j=1 exp (−j · γlat) log P̂ (lj | c), and the term P̂ (c) for the 3,107 counties
in the continental United States is found using Equation 1.

Algorithm 1. Naive Bayes IP Geolocation Algorithm

Initialize:

– Measure the hop-count and latency from every monitor to a training set with known geographic
locations.

– Using a population density database, find P̂ (c) for all c ∈ C using Equation 1.
– Using kernel density estimators, estimate the one-dimensional distribution P̂ (m|c) for every

measurement m ∈ M.

– Find the optimal values for λhop, λpop, γlat, γhop that minimize the sum of squared distance

errors over the training set.

Main Body

1. For each target IP with unknown geography, estimate the location ĉi using Equation 2.

A summary of the complete methodology is seen in Algorithm 1. Note that
all the computational complexity of this algorithm is on training the parameters
(λhop, λpop, γlat, γhop). Each target is geolocated using only O (M |C|) number of
multiplications, where |C| is the total number of location classes under considera-
tion (in this paper, the number of counties in the continental United States), and
M is the total number of measurements to the current target IP. The computa-
tional complexity being linear in both the number of locations and the number of
monitors demonstrates the feasibility of future large-scale Internet studies using
this method.

A Learning-Based Approach for IP Geolocation 177

3 Experiments

To assess our geolocation algorithm, we sought a large set of IP addresses of
routers with as much spatial diversity as possible within the continental United
States. Starting with the spatially diverse set of Planetlab [10] node locations,
the full mesh traceroute probing between these nodes will find a very large set
of router IP addresses with high spatial diversity. Existing data were provided
by the iPlane project [1], which performs a traceroute from all available Plan-
etlab hosting sites to a set of target prefixes obtained through the Routeviews
project [11]. We used four weeks of iPlane data collected over the period of 12
December 2008 to 8 January 2009. In addition to the iPlane data, we collected
traceroute data between a full mesh of Planetlab hosting sites, of which there
were 375 at the time we collected these data. For performing traceroutes, we used
the Paris traceroute tool [12], using it once in UDP mode and a second time in
ICMP mode in order to discover as many routers as possible [13]. Options were
set in the Paris traceroute tool so that it produced a low level of probes while
taking somewhat longer to complete a given traceroute. We collected a full mesh
of Planetlab traceroute measurements three separate times between December
11, 2008 and January 6, 2009. For these measurements, we were able to use
about 225 Planetlab sites due to maintenance and other issues.

Using these two data sets, we were able to discover 125,146 unique router IPv4
addresses. A standard problem with traceroute-based studies is IP interface dis-
ambiguation, also known as alias resolution. Interfaces on a given Internet router
are typically assigned separate IP addresses; identifying which addresses corre-
spond to the same physical router is the challenge in alias resolution. To de-alias
our data set, we used the alias database published by the iPlane project. This
database builds on prior work in alias resolution, including the methods used by
the Rocketfuel project [14]. Upon de-aliasing our set of router IP addresses, we
identified 114,815 routers.

To construct the measurements used in our analysis (as described below),
we required the hop counts and latency measurements to each identified router
from all available Planetlab sites. In order to limit the overhead of probing for
this hop count and latency data, we used the following approach. For each IP
address, we sent a direct ICMP echo request packet (i.e., a ping). In other work,
it was observed that a majority of Internet hosts respond to ICMP echo request
packets [15]; we also found this to be true. Indeed, more than 95% of all router
IP addresses we identified responded. This should not be surprising considering
the fact that these addresses were initially identified through active probing.
For computing the hop count, we use the methodology of [16] on the echo
response (note that this is the hop count of the reverse path). For geolocation
ground truth, we use the Maxmind database [2], which is rated to be 82%
accurate within 25 miles for IPs located within the US. From our dataset of
114,815 disambiguated routers, Maxmind identified 16,874 routers located in
the continental United States with known county location. Using 5-Fold Cross
Validation [4], we test the performance of the methodology five times using 20%

178 B. Eriksson et al.

of the routers as our training set, leaving the remaining 80% of the routers to
test the accuracy of our methodology.

We compare the geolocation results from our learning-based method to
Constraint-Based Geolocation (CBG). To generate CBG geolocation estimates,
we implemented the algorithm described in [3]. CBG is the current state-of-the-
art IP geolocation methodology using only ping-based measurements. The basic
intuition behind CBG is that each latency measurement to a set of monitors with
known location can be considered a series of constraints, where given speed-of-
light in fiber assumptions and self-calibration using a set of training data, we can
determine a feasible geographic region given each latency measurement. Given a
series of latency measurements, the possible geographic placement is considered
the intersection of many constraint regions, with the estimated location behind
the centroid of this intersection region.

To assess performance of both geolocation algorithms, we will consider the
error distance to be the distance in miles between the centroid of our estimated
classified county and the centroid of the ground truth (Maxmind) county. Perfor-
mance of our learning-based Naive Bayes framework and the CBG method with
respect to the empirical cumulative probability can be seen in Figure 2-(left).
As seen in the figure, the geolocation estimates produced by our learning-based
framework are more accurate than CBG for 96% of the routers. On average the
Naive Bayes location estimates are 70 miles closer to the true location than the
CBG estimates.

Fig. 2. (Left) - Empirical cumulative probability of error distance. (Right) - Breakdown
of each quintile empirical cumulative probability error distance for our learning-based
methodology.

To analyze the impact of using multiple features in our learning-based frame-
work, we generate geolocation estimates when both population density informa-
tion is removed (setting the weight of using the population density to zero, λpop =
0) and when hop count information is removed (setting the weight of using the
hop count data to zero, λhop = 0). These two conditions resulted in an aver-
age error distance of 261.89 and 277.29 miles, for missing population data and
missing hop count data respectively. These results indicate that both the hop
count data and the population density information significantly contribute to the
improved performance of the methodology. Using only latency information, the
Naive Bayes methodology still outperforms the CBG method (278.96 mile average

A Learning-Based Approach for IP Geolocation 179

error vs. 322.49 mile average error) due to the more accurate multiple latency den-
sity estimates used to classify the location of each end host instead of simply using
the intersection of feasible latency regions as in the CBG methodology.

Using Equation 2, the Naive Bayes framework can find P̂ (ĉ | M), the esti-
mated probability of each target being classified correctly by our learning-based
framework given the set of measurements. This can be considered a level of con-
fidence in the classification of each target IP. Using this confidence level, we
can sort into quintiles and form quintile sets containing the 20% of the target
IPs with the largest P̂ (ĉ | M) values (e.g., the targets we are most confident in
accurately geolocating), to a quintile set containing the 20% of target IPs with
the smallest P̂ (ĉ | M) values (e.g., the targets we are least confident in). Fig-
ure 2-(right) shows how this confidence level accurately predicts the quality of
our classification, with the most confident 20% of the targets being classified far
more accurately than any other quintile set. Therefore, in addition to estimating
the geolocation of each target IP, we also have a level of confidence that directly
corresponds to the accuracy of our prediction.

4 Related Work

The main prior work in IP geolocation that we compared and contrasted our
learning-based methodology with is Constraint-Based Geolocation [3]. More re-
cent geolocation work in [9],[17] has found improvements over Constraint-Based
Geolocation, but both methodologies require Traceroute-basedmeasurements to
the targets along with location hints acquired by unDNS [14] probes. One poten-
tial disadvantage of these methodologies is the dependency on DNS naming con-
ventions, which have been shown to not always be reliable [18]. This requires so-
phisticated location validation and reweighting mechanisms to be developed and
maintained. The focus of this work was to introduce our elegant learning-based
geolocation framework and validate its performance using simple ping-based mea-
surements. We leave the extension of our learning-based framework to these newer
Traceroute-based methodologies as future work. To the best of our knowledge,
this is the first work to frame IP geolocation as a machine learning problem.

5 Conclusions and Future Work

The goal of our work is to improve the accuracy of estimates of the geographic
location of nodes in the Internet. Our work is based on the hypothesis that
the ability to zero in on the geolocation of nodes is improved by considering a
potentially broad set of features including both active measurements and more
static characteristics associated with locations. To consider this hypothesis, we
introduce a learning-based framework that enables geolocation estimates to be
generated efficiently, and is flexible in the feature space that can be considered. In
this initial study, we employ a Naive Bayes classifier and generate estimates from
two types of empirical measurements in our framework (latency and hop counts)
and one societal characteristic (population density). We then test the feasibility

180 B. Eriksson et al.

of our learning-based approach using an empirical dataset of over 16K target
routers, and latency and hop count data to 78 monitors with known geographic
locations. We show that our geolocation estimates are more accurate for 96%
of the routers in our test set versus the estimates generated by a current state-
of-the-art constraint-based geolocation method. We also show how the use of
multiple features does indeed enhance the overall estimation accuracy. In future
work, we plan to investigate additional features that improve the accuracy of
our estimates, and the possible use of a multi-scale classification framework that
narrows the classification region given classification confidence levels.

References

1. Madhyastha, H., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: An Information Plane for Distributed Services. In:
USENIX OSDI 2006 (November 2006)

2. Maxmind geolocation database, http://www.maxmind.com
3. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of

internet hosts. IEEE/ACM Transactions on Networking (December 2006)
4. Wasserman, L.: All of Nonparametric Statistics (May 2007)
5. Lakhina, A., Byers, J., Crovella, M., Matta, I.: On the Geographic Location of Inter-

net Resources. IEEE Journal on Selected Areas in Communications (August 2003)
6. Eriksson, B., Barford, P., Nowak, R.: Network Discovery from Passive Measure-

ments. In: ACM SIGCOMM 2008 (August 2008)
7. Ng, E., Zhang, H.: Predicting Internet Network Distance with Coordinate-baseed

Approaches. In: IEEE INFOCOM (April 2002)
8. Rish, I.: An Empirical Study of the Naive Bayes Classifier. In: Workshop on Em-

pirical Methods in Artificial Intelligence (2001)
9. Wong, B., Stoyanov, I., Sirer, E.G.: Octant: A comprehensive framework for the

geolocation of internet hosts. In: USENIX NSDI 2007 (April 2007)
10. Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L.,

Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating System Support for Planetary-
Scale Network Services. In: USENIX NSDI 2004 (March 2004)

11. Oregon Route Views Project, http://www.routeviews.org/
12. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,

Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: ACM IMC 2006 (October 2006)

13. Luckie, M., Hyun, Y., Huffaker, B.: Traceroute Probe Method and Forward IP
Path Inference. In: ACM IMC 2008 (October 2008)

14. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP Topologies with Rocketfuel.
In: ACM SIGCOMM 2002 (August 2002)

15. Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G., Ban-
nister, J.: Census and Survey of the Visible Internet. In: ACM IMC 2008 (October
2008)

16. Wang, H., Jin, C., Shin, K.: Defense against spoofed IP traffic using hop-count
filtering. IEEE/ACM Transactions on Networking 15(1), 40–53 (2007)

17. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T.,
Chawathe, Y.: Towards IP Geolocation Using Delay and Topology Measurements.
In: ACM IMC 2006 (October 2006)

18. Zhang, M., Ruan, Y., Pai, V., Rexford, J.: How DNS Misnaming Distorts Internet
Topology Mapping. In: USENIX Annual Technical Conference (2006)

http://www.maxmind.com
http://www.routeviews.org/

A Probabilistic Population Study of the
Conficker-C Botnet

Rhiannon Weaver

CERT, Software Engineering Institute
rweaver@cert.org

Abstract. We estimate the number of active machines per hour infected
with the Conficker-C worm, using a probability model of Conficker-C’s
UDP P2P scanning behavior. For an observer with access to a propor-
tion δ of monitored IPv4 space, we derive the distribution of the number
of times a single infected host is observed scanning the monitored space,
based on a study of the P2P protocol, and on network and behavioral
variability by relative hour of the day. We use these distributional re-
sults in conjunction with the Lévy form of the Central Limit Theorem
to estimate the total number of active hosts in a single hour. We apply
the model to observed data from Conficker-C scans sent over a 51-day
period (March 5th through April 24th, 2009) to a large private network.

Keywords: Botnets, Conficker, Population Estimation, Probability
Models, Central Limit Theorem.

1 Introduction

When new botnets emerge, the classic question is, ”How big is it?” In the sta-
tistical literature, population estimation is based on mark-recapture models and
their extensions to a wide class of generalized linear models [6]. In network anal-
ysis, simple mark-recapture techniques, which reduce to counting intersections
among overlapping sets, have been applied to study botnet populations [3,8,9],
as well as to other phenomena such as peer-to-peer file sharing networks [10,16].
But the “overlapping sets” method is valid only for closed populations with di-
rect observation of individuals of interest, and equal probability of capture for
all individuals. Internet phenomena often violate these assumptions, resulting in
the need for more sophisticated modeling techniques.

Extending mark-recapture models to open populations is widely addressed in
the literature (eg. [17]), but network phenomena often admit a specific compli-
cation of direct observation: we would like to express population sizes in terms
of the number of infected machines, but we view botnets through a filter of IP
space. The existence of NAT, proxies and DHCP leases complicates the ”one IP
address, one host” model.

Applying mark-recapture models to machines, as opposed to IP addresses,
requires averaging aggregations and distributions of activity across possible con-
figurations of disambiguated hosts. On the other hand, applying mark-recapture

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 181–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

182 R. Weaver

models directly to IP addresses introduces heterogeneity among individuals; for
example, a NAT is observed if at least one of its underlying hosts is observed,
whereas a DHCP address is observed only if the single host to which it is allo-
cated is observed. [4] present a solution for the case when heterogeneity can be
modeled as a series of observable, nominal classes. But heterogeneity in botnet
behavior often arises from variations in underlying rates of observed counts.

This leads us to consider a method for measuring the active size of a botnet,
based on the observable behavior of a single infected host. Our dynamic mea-
surement of active machines per hour cannot be used to track a botnet’s overall
“footprint” size [1] across days or weeks. But it is simpler to implement than
a fully specified heterogeneous mark-recapture model. A single-host behavioral
model is also a necessary component of the generalized mark-recapture method-
ology, so this work provides a stepping stone toward applying more complicated
models.

As an example, the Conficker-C variant that emerged within the Conficker
botnet in March 2009 introduced a specific pattern of peer-to-peer (P2P) activ-
ity. When a host infected with Conficker-C comes online, it searches for peers
by randomly generating a set of destination IP addresses across most of IPv4
space, and attempting UDP connections to these hosts. Connection ports use an
algorithm based on the source IP address and date, which was cracked by sev-
eral independent researchers [5,13]. As a result, Conficker-C P2P traffic can be
observed with high reliability in the large-scale summary information contained
in network flow data, making it a good candidate for behavioral modeling.

We model the hourly number of UDP P2P connection attempts that an ob-
server monitoring a proportion δ of IP space would see from a single infected
host. Rather than inferring a time series of UDP scan activity for each machine,
disambiguated from NAT or DHCP addresses, our model represents the “typical
host” by averaging across reasonable probability distributions for many unob-
servable parameters. This marginal model is used in conjunction with the Central
Limit Theorem to estimate the total number of active hosts per hour, with con-
fidence intervals that account for measurement uncertainty, stochastic elements
in the Conficker-C protocol, and random variation across network activity.

Section 2 discusses the stochastic components of the Conficker-C P2P protocol
and network behavior that inform the marginal model, and formalizes this in-
formation into a probability model. Section 3 introduces a version of the Central
Limit Theorem that lets us describe the distribution of aggregate scan attempts
of all active hosts per hour. Section 4 presents results of applying the method to
data collected over a 51-day period from a large network. Section 5 summarizes.

2 Modeling Conficker-C

We develop our model in two steps. First, we use information from published
reports and studies of the Conficker-C P2P protocol to specify the distribution
of the number Mh of hourly UDP connection attempts made by an infected host.
Next, we specify the conditional distribution of the number yh of observed hits

A Probabilistic Population Study of the Conficker-C Botnet 183

in the monitored space given Mh. We use π(a) to denote the prior distribution
of quantity a, and π(a | b) to denote the conditional distribution of a given b.
We use μa or E(a) to denote the mean of quantity a, and σ2

a or Var(a) to denote
the variance of a.

Protocol and Network Behavior. In September 2009, [15] provided a de-obfuscated
reverse engineering of the image of the Conficker-C P2P binary image as it ap-
peared on March 5, 2009. We use this information to determine the protocol-
specific variations in the distribution of UDP scan attempts per hour for an active,
infected host.

When initiated, the P2P module spawns a global UDP scanning thread for
each valid network connection discovered, in order to bootstrap a peer list of up
to 2048 peers. Up to 32 threads can run simultaneously. Each thread alternates
between a 5-second sleep cycle and a scan phase where it randomly generates a
list of up to 100 IP addresses to contact. At each selection, the host chooses an
IP address from its list of n peers with probability equal to

γn =
(

1000−
⌊

950n

2048

⌋)−1

. (1)

This expression is taken directly from the C code in Conficker-C’s P2P module.
If the choice is not to select a peer, the host pseudo-randomly generates an IP
address, which is added to the list only if it satisfies the following connection
criteria:

1. the IP address is not a DHCP or broadcast address;
2. the IP address is not a private (RFC1918) subnet address;
3. the IP address is not on a Conficker-C filtered address range.

When a generated IP address fails to meet these criteria, the value for the contact
list is not updated. The host will try to fill its list slots in order, using up to 100
attempts.

The speed at which UDP packets are sent out over the wire depends on the
hardware and network capabilities of the infected host, as well as the amount of
bandwidth, drop percentage, etc. of the network. The P2P protocol has a max-
imum of 1200 scanning connection attempts per minute, but observed accounts
of Conficker-C P2P scan activity cite lower numbers. McAfee [11] reported seeing
“roughly 2-3 UDP queries per second” (≈ 130 per minute) during the 24 hours
leading up to April 1, 2009. A Sophos technical report [7] notes that batches of
100 probes are generated on the wire, and that “probes in each batch are sepa-
rated by small fixed intervals (2-5 seconds)”. [14] performed a sandbox test of an
infected Conficker-C host with a single network interface and observed scanning
rates that start at approximately 1000 to 2000 IP addresses per 5 minute interval,
and decrease over the first two hours of activity to a steady rate of approximately
200 IP addresses per 5 minutes. We base our model roughly on the SRI results, as
they most thoroughly explain the time-dependence in scanning rate.

184 R. Weaver

UDP connections. We model Mh as a Poisson process, which is a reasonable
model for small-packet scanning activity programmed at regular intervals. [12]
note that self-similarity is more common in packet inter-arrival times once con-
nections have been established. Also, in their sandbox experiment, [14] show
relatively smooth scanning rates, within both 30-minute and 6-hour time frames.

The marginal model is constructed to minimize dependencies between pa-
rameters from hour to hour, so that each population estimate can be calculated
using an aggregated count from that hour alone. The goal for this model is not
to track individual hosts, but to average over a wide range of possible behaviors
in each hour. To that end, we take a simplified approach to the time-dependency
of the UDP scanning rate, by defining a latent class ηh as one of three states
that an active, infected host can be in for a particular hour h:

1. ηh =“Start-up” (S): The host comes online and initiates P2P scanning in
this hour. This state is characterized by a high scan rate per minute and a
small peer list, with activity commencing at some point t within the hour.

2. ηh =“Running” (R): The host has initiated start-up and is actively scanning
for the entire hour. This state is characterized by a low scan rate per minute,
a middle-sized to large peer list, and scans occurring throughout the hour.

3. ηh =“Shut-down” (D): The host has been actively scanning and goes offline
during this hour. This state is characterized by a low scan rate per minute,
a large peer list, and scans terminating at some point t within the hour.

Each of these states depends on three quantities: scan rate (φ), active minutes
(t), and number of peers (n), that vary from hour to hour. We describe this
variability mathematically using the prior distributions in Table 1. We suppress
the index h for ease of notation.

Table 1. Prior distributions by active state

s π(φ) π(t) π(n)

Start-Up Γ (μφS = 130, σφS = 20) Unif(1, 60) TrGeo(2048, αS = 0.950)
Running Γ (μφR = 40, σφR = 15) t = 60 w.p. 1 TrGeo(2048, αR = 0.999)
Shut-Down Γ (μφD = 40, σφD = 10) Unif(1, 60) TrGeo∗(2048, αD = 0.999)

(∗) this prior is defined as π(2048 − n)

Figure 2 shows the Gamma prior π(φ) for each state. Gamma distributions
are often used to model the mean of a Poisson process, as they have strictly
positive ranges. The mean rates μφs decrease from Start-Up through Shut-Down,
and the standard deviations σφs decrease to account for less stable behavior in
Start-Up that gradually settles down to the more stable Running and Shut-
Down states. Discrete Uniform priors on t represent the total number of active
minutes in the Start-Up or Shut-Down states. Truncated Geometric distributions
(geometric distribution restricted to a minimum and maximum value) are used
for peer list counts. For the shut-down state, the (∗) indicates that the truncated
geometric distribution is defined on the range 2048 − n. The hyperparameters

A Probabilistic Population Study of the Conficker-C Botnet 185

Fig. 1. Prior distributions for UDP
scan rates by active state

Fig. 2. Prior probabilities πks by rela-
tive hour of the day

π(n) correspond to mean peer list sizes of approximately 20, 700, and 1350 for
Start-Up, Running, and Shut-Down states.

We assume that the number of network connections (w) for an infected host
does not change between states; based on elicitation from experts we choose a
truncated geometric distribution between 1 and 32 connections, with a mean
value μw = 1.67 network connections per active host. When these quantities are
fixed or known, it follows that M has a Poisson distribution with conditional
mean μM equal to φtw.

Again to minimize dependencies between hours, temporal trends in the scan
rates are not instituted by a time series component in the single-host model, but
by the prior probability of the active state, πks = π(ηk = s), s ∈ {S, R, D}, k ∈
[0, 1, · · · , 23], which varies with the time-zone corrected hour of the day. Intu-
itively, πks is an estimate of the proportion of active hosts in the population that
are in each state at each time-zone corrected hour. There are 48 free parame-
ters in this distribution, arising from two free parameters per relative hour to
estimate the probability of {S, R, D} under its sum-to-one constraint. Figure 2
summarizes the values used for πks. We describe the empirical method used to
set these values in Section 4.

Observed Connections. Each of the M connection attempts either hits the mon-
itored proportion δ of IP space, or it does not. Since scan connections are inde-
pendent, identical events, the distribution π(y | M) is Binomial with parameters
Mand p, where p is the probability a connection attempt falls within the moni-
tored space.

To determine p, we assume that the monitored space resides completely within
the connection criteria from Section 2, and that it does not contain any infected
peers listening on Conficker-C’s designated ports. The monitored space must be
free of infected machines to ensure that the only way of reaching the monitored
space is through a completely random selection of an IP from all of IPv4 space;
infected hosts may also reside on peer lists, which we do not choose to model.

186 R. Weaver

With a set of n existing peers, the probability that each connection attempt is
generated randomly is 1− γn. If the connection attempt is generated randomly,
the probability that it falls in the monitored region is equal to δ/C, where
C = 0.995 is the approximate proportion of IP space covered by Conficker-
C’s connection criteria, under the assumption of 1 broadcast address per 256
addresses in the space outside of Conficker-C’s internal blacklist and ignored
space. From these calculations p is equal to:

pnδ =
(1 − γn)δ

C
, (2)

where δ is the proportion of monitored IP space.
From a well-known distributional result (see e.g. [18], ch 5, thm 1.2), the

marginal distribution of y over all values of M , holding other unknown quantities
fixed, is Poisson:

π(y | t, φ, w, pnδ) = e−φtwpnδ
(φtwpnδ)y

y!
. (3)

Though we have described the model in hierarchical stages, in practice we
are interested only in the unconditional distribution of y, which is difficult to
express analytically. But, the hierarchical structure of the model makes it easy
to obtain a large sample (y)1, · · · (y)B from this distribution, using simulation.
For b = 1 to B, we do the following:

1. Draw a state ηb from {S, R, D} using the prior probabilities πks, and draw
a network connection wb from π(w).

2. Draw φb, nb, and tb using the prior distributions for ηb.
3. Draw yb from the Poisson distribution with rate equal to φbtbnbwb.

We then use the observed proportions in y1, ..., yB as Monte Carlo estimates of
the marginal probability of y, accounting for prior uncertainty in the underlying
parameters. This simulation can be performed easily using statistical packages
for languages such as R, C, or Python.

3 Lévy’s Central Limit Estimator Ĥ

Suppose y1, ..., yH are independent with distribution π(y | πks, μφs, σφs, αw,
αn, δ, k) as defined in Section 2. We will suppress the dependence on hyper-
parameters in notation for this section. The population size H is unknown, and
only Y =

∑H
i=1 yi is observed. We define the population estimator:

Ĥ =
Y

μy
. (4)

We call Ĥ the Central Limit Estimator of H . This estimator has the following
properties:

A Probabilistic Population Study of the Conficker-C Botnet 187

1. E(Ĥ) = 1
μy

E(
∑H

i=1 yi) = 1
μy

Hμy = H ;

2. Var(Ĥ) = 1
μ2

y
Var(

∑H
i=1 yi) = H

(
σy

μy

)2
;

3. (Lévy result): The distribution of Ĥ is approximately Normal when H is
sufficiently large.

The Lévy form of the Central Limit Theorem (see e.g. [2], Ch. 5, p 243) out-
lines conditions under which the sum of independent and identically distributed
variables converges to a Normal distribution. Using this result, an approximate
95% confidence interval for H is:

Ĥ ± 1.96
√

Ĥ
σy

μy
(5)

When yk1, ..., ykHk
are identically distributed when grouped within relative hour

of the day, k ∈ [0, ..., 23], then an approximate 95% confidence interval of Ĥ =∑23
k=0 Ĥk is:

Ĥ ± 1.96

√√√√ 23∑
k=0

Ĥk

(
σyk

μyk

)2

. (6)

We estimate μy and σy from simulations y1, · · · yB for B = 1, 000, 000, with
the formulas:

μy ≈ 1
B

B∑
b=1

yb, σ2
y ≈ 1

B−1

∑B
b=1(yb − μy)2 . (7)

In practice, B can be set large enough that the Monte Carlo sampling error in
these estimates has little effect on the variance of Ĥ . Alternatively, an approxi-
mation method such as the Delta method ([2], ch 7) can be used to account for
this variability.

4 Analysis and Results

Data Collection. The monitored space in our experiment consists of a large
private network comprising approximately 21000 /24 net blocks. To account for
uncertainty in this size estimate as well as network availability, we also set an
additional prior for δ, π(δ) = Beta(15, 13000), and add an extra simulation step
in the calculation of π(y | πks, μφs, σφs, αw, αn, δ, k). This corresponds to a mean
μδ of 0.0012.

Using the SiLK Conficker.C Plug-In [5], we obtained historical records of
UDP connection requests with the Conficker-C signature sent into the monitored
network space from external hosts over the period from March 5th through April
24th, 2009. We recorded the total number of incoming UDP connection attempts
for each external IP address per hour, and aggregated these counts to the /24
level to attempt to account for ephemeral DHCP leases within subnets. A total

188 R. Weaver

Fig. 3. Ĥ per hour over the 2-month span

of 1091013 external /24 net blocks were observed performing Conficker-C UDP
scans.. Each net block was assigned roughly to a time zone based on the country
code associated with that block, with 1% of blocks remaining unassigned due to
satellite locations or unavailable country codes.

Population Estimates. Figure 3 shows the estimates of Hh for the two-month
span starting on March 5th, and ending April 2 4th. 95% confidence bands for the
hourly counts, calculated using equation 6, are on the order of under ±10000
and are too tight to be seen on the figure. The large jump occurs on March
17th and corresponds to a binary update released into the Conficker-C botnet.
The largest host count associated with the botnet is 1.06 million active hosts.
Numbers decline steadily through the month of April, but appear to stabilize
toward the end of the month. The overall decline occurs because Conficker-C
infections spread only among previously infected machines, with had no means
of infecting new hosts.

The heavy lines correspond to a smoothed plot of both host count estimates
(solid line), and observed unique IP address counts (dotted line). These lines
show a trend that as the botnet ages, it “spreads out” among IP space. The
ratio of hosts per IP–observable as the space between the two lines– is large
prior to the update in mid-March, but declines steadily afterward. This decline
makes sense; large infected networks (often behind proxies) would propagate
local infections quickly, while isolated hosts would take longer to reach with P2P
bootstrapping. The effect would also appear as larger corporate networks work
to clean up enclaves of local infections, suggesting that the persistent infections
of Conficker-C are among more isolated machines in IPv4 space.

A Probabilistic Population Study of the Conficker-C Botnet 189

Hyperparameters and Prior Sensitivity. The prior values πsk can be estimated
empirically using a random sample of infected hosts from the Conficker-C pop-
ulation. To approximate such a sample, we sampled a set of 1000 /24 blocks
from the observed set of 1.09 million, each with probability proportional to the
observed average scan rate. In 71% of the sample, the activity behind the sam-
pled net block was sparse enough to roughly equate one block with one active
host, and to estimate active from non-active hours. An active hour following
two inactive hours, or an active hour preceded and followed by two inactive
hours, was classified as “Start-Up”. An active hour preceded by at least one
active hour in the past two, and followed by two inactive hours was classified as
“Shut-Down”. All other active hours were classified as “Running”. The counts
of observed blocks in each state, normalized over hour by time zone, were used
as the values for πsk. This method used simple heuristics as opposed to formal
models for estimating an active state, but the resulting prior probabilities display
a reasonable and intuitive pattern in Figure 2.

The scaling factor σy

μy
was close to 1 for all hours, with the highest value

of 1.08 occurring at 8am, relative time. This result indicates that the
√

H term
dominates the confidence interval for Ĥ. The value 1.96

√
H is a very tight bound

relative to the size of the population estimate, but its precision is predicated on
an unbiased model for π(y | πks, μφs, σφs, αw, αn, δ, k). Small shifts in the hyper-
parameters may have a large influence on Ĥ . This suggests that measurement of
the uncertainties and behavioral quantities making up a single-host model should
be well-informed and precise to take advantage of this simple estimator. We used
a reasonable and informed set of 67 hyperparameters (πks, μφs, σφs, αw, αn, δ, k)
in this model, and we opted not to model any further levels of uncertainty with
probability distributions. In the future, the model can be easily adapted to in-
clude another hierarchical level of priors for these hyperparameters, allowing us
examine the sensitivity of population estimates to the choice of hyperparameters.

5 Summary and Discussion

A marginal probability model of single-host behavior provides a way of measur-
ing populations based on the number of active infected machines, as opposed
to counting net blocks or IP addresses. The model is based on a set of hyper-
parameters that can be independently measured or assessed based on protocol
and network activity profiles. By characterizing this distribution precisely, and
applying the Central Limit Theorem, we obtain both a point estimate of the
population, and a confidence interval that accounts for variability arising from
both the stochastic elements of the protocol and from uncertainty across multi-
ple measurements. In the future we hope to expand the estimation methodology
to a fully Bayesian scheme that incorporates priors for the chosen hyperparam-
eters and that allows for the calculation of posterior distributions of the current
model hyperparameters given observed data y, making the model more robust
to parameter misspecification. We also hope to develop a full mark-recapture
model for comparison with the expanded marginal model.

190 R. Weaver

References

1. Abu Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: My botnet is bigger than yours
(maybe, better than yours): Why size estimates remain challenging. In: Proceedings
of the First Annual Workshop on Hot Topics in Botnets (March 2007)

2. Casella, G., Berger, R.: Statistical Inference. Duxbury Press, Boston (1990)
3. Chan, M., Hamdi, M.: An active queue management scheme based on a capture-

recapture model. IEEE Journal on Selected Areas in Communications 21(4), 572–
583 (2003)

4. Dupuis, J., Schwarz, C.: A Bayesian approach to the multistate Jolly-Seber capture-
recapture model. Biometrics 63, 1015–1022 (2007)

5. Faber, S.: Silk Conficker. C Plug-in (2009), CERT Code release, http://tools.
netsa.cert.org/wiki/display/tt/SiLK+Conficker.C+Plugin

6. Fienberg, S., Johnson, M., Junker, B.: Classical multilevel and bayesian approaches
to population size estimation using multiple lists. Journal of the Royal Statistical
Society: Series A 162(3), 383–405 (1999)

7. Fitzgibbon, N., Wood, M.: Conficker.C: A technical analysis (March 2009), Sophos
white paper, http://www.sophos.com/sophos/docs/eng/marketing_material/

conficker-analysis.pdf

8. Horowitz, K., Malkhi, D.: Estimating network size from local information. Infor-
mation Processing Letters 88, 237–243 (2003)

9. Li, Z., Goyal, A., Chen, Y., Paxson, V.: Automating analysis of large-scale botnet
probing events. In: ASAICCS 2009 (March 2009)

10. Mane, S., Mopuru, S., Mehra, K., Srivastava, J.: Network size estimation in a peer-
to-peer network. Tech. Rep. TR 05-030, University of Minnesota Department of
Computer Science and Engineering (2005)

11. McAfee: Conficker.C over the wire. McAfee Network Security blog publication
(March 2009), http://www.avertlabs.com/research/blog/index.php/2009/04/
01/confickerc-on-the-wire-2

12. Paxson, V., Floyd, S.: Wide-area traffic: The failure of poisson modeling.
IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)

13. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C Actived P2P scanner. SRI in-
ternational Code release/document (2009), http://www.mtc.sri.com/Conficker/
contrib/scanner.html

14. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C analysis. Tech. rep., SRI Inter-
national (2009)

15. Porras, P., Saidi, H., Yegneswaran, V.: Conficker C P2P protocol and implemen-
tation. Tech. rep., SRI International (2009)

16. Psaltoulis, D., Kostoulas, D., Gupta, I., Briman, K., Demers, A.: Decentralized
schemes for size estimation in large and dynamic groups. Tech. Rep. UIUCDCS-
R-2005-2524, University of Illinois Department of Computer Science (2005)

17. Schwarz, C., Arnason, A.: A general methodology for the analysis of capture-
recapture experiments in open populations. Biometrics 52(3), 860–873 (1996)

18. Taylor, H., Karlin, S.: An Introduction to Stochastic Modeling. Academic Press,
London (1998)

http://tools.netsa.cert.org/wiki/display/tt/SiLK+Conficker.C+Plugin
http://tools.netsa.cert.org/wiki/display/tt/SiLK+Conficker.C+Plugin
http://www.sophos.com/sophos/docs/eng/marketing_material/conficker-analysis.pdf
http://www.sophos.com/sophos/docs/eng/marketing_material/conficker-analysis.pdf
http://www.avertlabs.com/research/blog/index.php/2009/04/01/confickerc-on-the-wire-2
http://www.avertlabs.com/research/blog/index.php/2009/04/01/confickerc-on-the-wire-2
http://www.mtc.sri.com/Conficker/contrib/scanner.html
http://www.mtc.sri.com/Conficker/contrib/scanner.html

Network DVR: A Programmable Framework for
Application-Aware Trace Collection

Chia-Wei Chang1, Alexandre Gerber2, Bill Lin1,
Subhabrata Sen2, and Oliver Spatscheck2

1 University of California, San Diego, La Jolla, CA
2 AT&T Labs-Research, Florham Park, NJ

Abstract. Network traces are essential for a wide range of network applications,
including traffic analysis, network measurement, performance monitoring, and
security analysis. Existing capture tools do not have sufficient built-in intelligence
to understand these application requirements. Consequently, they are forced to
collect all packet traces that might be useful at the finest granularity to meet a
certain level of accuracy requirement. It is up to the network applications to pro-
cess the per-flow traffic statistics and extract meaningful information. But for a
number of applications, it is much more efficient to record packet sequences for
flows that match some application-specific signatures, specified using for exam-
ple regular expressions. A basic approach is to begin memory-copy (recording)
when the first character of a regular expression is matched. However, often times,
a matching eventually fails, thus consuming unnecessary memory resources dur-
ing the interim. In this paper, we present a programmable application-aware trig-
gered trace collection system called Network DVR that performs precisely the
function of packet content recording based on user-specified trigger signatures.
This in turn significantly reduces the number of memory copies that the system
has to consume for valid trace collection, which has been shown previously as
a key indicator of system performance [8]. We evaluated our Network DVR im-
plementation on a practical application using 10 real datasets that were gathered
from a large enterprise Internet gateway. In comparison to the basic approach in
which the memory-copy starts immediately upon the first character match without
triggered-recording, Network DVR was able to reduce the amount of memory-
copies by a factor of over 500x on average across the 10 datasets and over 800x
in the best case.

1 Introduction

Accurate trace collection of network traffic is the foundation of a wide range of network
monitoring tasks. Traditionally, packet capture tools (e.g., TCPdump [1], Ethereal [2],
Libpcap [3], and WinPcap [4]) are primarily focused on collecting and reconstructing
packet sequences for flows by matching packets against simple packet header rules,
such as the source/destination IP addresses, the port numbers, or the transmission pro-
tocol. The collected packets are often delivered to remote servers where monitoring and
management applications can perform post-processing, as depicted in Fig. 1. Although
the traditional network monitoring architecture has had some success in offering com-
prehensive insights about network traffic, the scalability of this architecture is limited

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 191–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 C.-W. Chang et al.

arriving
packets

Filtered packet

Logged packet
intercepting &

logging
data parser

Monitoring
Applications

Packet
Capture

Database

Given IP- rulesIP-layer
Filtering

Post-Processing

Fig. 1. Simplified traditional network monitoring architecture

analysis
result

arriving
packets

Trigger Action
Controller

Stream-based
Data collection

Design
Trigger Rules

selector

Database

Flow Table
Controller

Packet
Capture

Matching
process

Monitoring
Applications

Given Regex
Signatures

content recording

Fig. 2. Programmable network monitoring architecture

in practice. In today’s high-speed network, especially in core networks, the amount of
traffic can be immense, with possibly millions of flows. Therefore, recording all packet
traces in details is prohibitive in most cases.

In this paper, we present a programmable application-aware trace collection archi-
tecture called Network DVR that can perform the recording of packet contents highly
selectively by matching captured packets against application-specific signatures. This
is depicted in Fig. 2. The name Network DVR is loosely analogous to a digital video
recorder for television that can be intelligently programmed to record discriminately.
Our design of Network DVR is based on a novel concept of triggered-recording that
allows a user to flexibly define rules for triggering the start and termination of packet
content recordings. In particular, Network DVR can be programmed to only begin
recording when some start rule has been matched, which can significantly reduce
the likelihood of recording matchings that will eventually fail. We have applied our
Network DVR approach on a practical example application by using 10 real datasets
that were gathered from a large enterprise Internet gateway. Our evaluations show that

Network DVR: A Programmable Framework for Application-Aware Trace Collection 193

Network DVR can dramatically reduce the amount of memory-copies by a factor of
over 500x on average across the 10 datasets and over 800x in the best case.

The rest of the paper is organized as follows. Section 2 presents a high-level overview
of our proposed triggered trace collection approach called Network DVR. Section 3
presents evaluation results. Section 4 discusses related work. Finally, Section 5
concludes the paper.

2 Proposed Triggered Trace Collection Concept

In this section, we present the concept of application-aware triggered trace collection,
which aims to record packet contents based on application-specific signatures that con-
trol when the recordings should start and abort. These signatures are captured as regular
expressions. Although regular expression matching has been widely used for intrusion
detection, regular expression matching is used differently in our context to trigger the
start and termination of packet content recordings. Specifically, we define three trig-
ger rulesets, one that defines when the recording module should start recording, one
that defines when the recording should abort, and one that defines if a recording is a
valid final match. These three regular expression rulesets are respectively called the
start ruleset (Ωα), the abort ruleset (Ωβ), and the final match ruleset (Ωγ)). Incoming
traffic can be matched against these trigger rulesets by means of a deterministic finite
automaton (DFA). In particular, each accept state will correspond to one or more rules
matched from these three rulesets. Accordingly, the corresponding start, abort, and/or
finalized messages would be triggered to control the recording behavior, depending to
which rulesets the matching rules belong. To simplify the presentation, we will assume
a conventional DFA representation for these rules. However, in general, our framework
can make use of any state-of-the-art DFA variants [21, 11, 20, 10, 7, 16, 9] for efficient
representation and matching.

In the following, Section 2.1 describes how trigger rulesets are constructed, Sec-
tion 2.2 presents the high-level triggered trace collection procedure, and Section 2.3
presents our memory management scheme.

2.1 Trigger Rulesets Construction

An essential part of trigger trace collection is the trigger ruleset construction (i.e., to
build the start (α), abort (β) and final match (γ) rules, which control when to acti-
vate, abort, or finalize the trace collection). Naturally, these trigger rules can be defined
directly by the monitoring applications, but these rules can also conceivably be auto-
matically generated in a systematical way from a set of application signatures.

Consider the examples shown in Fig. 3. The first monitoring application is for track-
ing valid URLs in the form of “http://.*\.edu” to find say the “top 100” sites of educa-
tional institutions on the web, excluding non-educational “.com” and “.org” sites. The
second monitoring application aims to identify the characters except carriage returns
or new line characters between the two sub-patterns “Del” and “ATT” (this example
is truncated from a Snort ftp rule). Each monitoring application signature generates its
individual trigger rule set and each signature is mainly split into two parts, a prefix part
and a suffix part. Generally, the prefix part serves as a start condition for the recording

194 C.-W. Chang et al.

Application-Specific Signatures Design Trigger Rules Corresponding Rulesets
Monitor Application 1 Monitor Application 1 Ruleset Rules
Match http://.*\.edu MA1 = { α1, β11, β12, γ1 } Start α1 = http://
Don’t match http://.*\.com α1 = http:// Ωα α2 = Del
or http://.*\.org β11 = \.com Abort β11 = \.com

β12 = \.org Ωβ β12 = \.org
γ1 = \.edu β21 = \r

Monitor Application 2 Monitor Application 2 β22 = \n
Match Del[∧ \ r \ n]*ATT MA2 = { α2, β21, β22, γ2 } Final γ1 = \.edu

α2 = Del Ωγ γ2 = ATT
β21 = \r
β22 = \n
γ2 = ATT

Fig. 3. Construction of trigger rulesets

while the suffix part serves as a finish condition for the recording. In addition, there
may be conditions that will allow us to abort a recording. For example, the complement
syntax, “[∧]”, is used to indicate the characters that should be excluded from a match.
In such cases, these exclusive characters can serve as abort conditions for the record-
ing (e.g., “\r” and “\n” in application 2). In other cases, the abort conditions may be
explicitly specified (e.g., “\.com” and “\.org” in application 1).

2.2 Triggered Trace Collection Procedure

Given the trigger rulesets, we construct a DFA to perform the matching. The DFA for
the example depicted in Fig. 3 is shown in Fig. 4. The accepting states are shown in the
shaded ovals (i.e., States 7, 11, 14, 17, 20, 23, 24, 25) with the corresponding matching
rules specified. In order to implement cross-packet inspection, the matching module
needs to remember for each flow the last state that the matching module visited in the
DFA to serve as the starting state for the next packet for the same flow. To remember the
last state visited for each flow, we use a flow state table where each entry corresponds to
a flow, and the value of the entry is the “last visited” state of the flow in DFA. The flow
state table can be implemented as a hash table and a new hashed flow can be initialized
to the initial state (e.g., State 0).

With every incoming packet, the matching module will find its corresponding last
visited state in the flow state table and adjust the matching procedure to start at the
right position of the packet payload based on the header information. Each symbol is
read sequentially from the packet payload and transferred to the next state by following
the DFA structure. If it matches a start rule, the symbol-copy/recording behavior will
be activated, also the matching index and the recording-begin memory position will
be logged. If this flow is under the recording process, for each symbol, the memory
allocator will unlink one memory cell from the free memory cell list, copy the symbol,
link it to the temporary recording strings. After a corresponding abort rule is matched,
this temporary recording string will be recycled and connected back to the free list

Network DVR: A Programmable Framework for Application-Aware Trace Collection 195

1
h

2
t

3
t

4
p

5
:

6
/ /

9e 10
d u

\.
12

c
13

o m

15
o

16
r g

18
D

19
e l

21
A

22
T T

\r

\n

8

0

\.

from any state

\r
from any state

A
from any state

\n
from any state

remaining
transitions

D
from any state

h
from any state

7: 1

11: 11

14: 11

17: 12

20: 2

23: 2

24: 21

25: 22

Fig. 4. Compiled DFA

of memory cells. On the other hand, if a corresponding final match rule is matched, the
temporary recording string will be appended to a flush queue for writing to disk, and
its recording-end memory position will be logged. Here, “corresponding” means for
the trigger rules either in start, abort, or final match ruleset that come from the same
application-specific signature (e.g., have the same matching index).

In particular, for each application-specific signature MAi = {αi, βi1 ... βij , γi1 ...
γik}, there is a corresponding variable vi that gets set where its corresponding start rule
has been matched. This is depicted in Fig. 5. Upon encountering an abort or a final match
rule, we check if there is an active recording for this rule by testing vi. If it is set, then
the corresponding actions for abort or final match are to reset vi, and the recording is
either aborted or flushed, respectively. Since we support recordings on a per-flow basis,
we must keep track of a separate set of these vi variables for each flow. This can be
dynamically managed using a hash table. In particular, to test if vi is set for flow f , we
can perform a hash lookup on the key f :vi, where the key is constructed by combining
the flow ID and the variable name. To set vi for flow f , we can perform a hash insert (or
lookup-then-insert) with the key f :vi. Finally, to reset vi for flow f , we can perform a
hash delete with the same key f :vi. Since we are not storing a value in this hash table,
this hash table can as well be efficiently using a counting Bloom filter [22].

Note that multiple recordings may be triggered for a single flow if multiple start rules
have been matched. Therefore, the worst-case bound on memory bandwidth/processing
time is O(N), where N is the number of given total application-specific signatures1.
Fortunately, instead of having multiple recording strings for each matched pattern
in the start ruleset, we use a single aggregated recording string for each flow to
guarantee there is always one memory copy for each incoming symbol. By logging the

1 Here the memory bandwidth requirement is expressed in terms of the number of memory
operations (e.g., copies) to be performed for each input character processed.

196 C.-W. Chang et al.

DFA

Matching Index: MA2

Matching Index: MA1

1 = http://

21 = \r

1 = \.edu
22 = \n

2 = Del

2 = ATT

11 = \.org

12 = \.com

Flow State Table Design Trigger Rules

1
h

2
t

3
t

4
p

5
:

6
/ /

9e 10
d u

\.
12

c
13

o m

15
o

16
r g

18
D

19
e l

21
A

22
T T

\r

\n

8

\.
from any state

A from any state

remaining
transitions

D
from any state

h
from any state

0

\rfrom any state

\nfrom any state

Fid 1

Fid 5

Fid 108

6

2

10

set v1; start recording

if (v1): reset v1; flush recording

if (v1): reset v1; abort recording

if (v1): reset v1; abort recording

set v2; start recording

if (v2): reset v2; flush recording

if (v2): reset v2; abort recording

if (v2): reset v2; abort recording

Fig. 5. Flow state table, DFA, and actions

recording-begin/end memory positions of each valid matching result in the aggre-
gated recording string, the system can output all recorded matching strings for each
application-specific signature.

2.3 Constant Time Memory Allocation Structure

Initially, the memory allocator maintains a free-list of memory cells as a linked list, and
each unit of memory cell can hold one byte (for a character) and a pointer. Depending
on the implementation, it may be more memory efficient to have the memory allocation
granularity be multiple bytes for each memory cell instead of one. For simplicity of
presentation, we will assume each memory cell holds one symbol. For recording, the
recording module stores the string being recorded as a linked list of symbols as well.
When the recording string needs more memory, the memory allocator unlinks cells at
the front of the free list sequentially and puts them to the tail of the linked list corre-
sponding to the recording string (constant time memory allocation). It can connect the
entry of the bitmap table to the recording string by setting a pointer at the bitmap table
entry to the head of the corresponding linked list.

Network DVR: A Programmable Framework for Application-Aware Trace Collection 197

Null Free list

Memory Allocator

Fid 1

Fid 5

Fid 108

Flows

n

n

.

c

o

c

m
…

c

s

u

…
l

g

o

g

o

Fig. 6. Trace collection module

Suppose this recording string is confirmed as a valid recording. The memory alloca-
tor can simply put the head of this linked list to an output queue for flushing to disk and
reset the flow state entry pointer to NULL. After written to disk, it can be linked back
to the tail of the free-list (constant time recovery of the memory cells). If a recording
is aborted (e.g. Fid 1 records “cnn.com” which is not ended by “.edu” in Fig. 6), the
memory allocator will directly set the flow state entry pointer to NULL, and link this
linked list to the tail of the free-list, which again is a constant time operation.

3 Evaluation

In this section, we evaluate the proposed Network DVR framework. We show the scala-
bility of the modified regular expression extraction module, which uses an application-
aware trigger mechanism to control the recording process. We then demonstrate the per-
formance that Network DVR can achieve by measuring the number of memory copies
consumed during the recording process. Indeed, for an initial evaluation, the number of
memory copies is a good proxy for the future performance of a real time system.

3.1 Simulation Setup

We gathered real data traces from a couple of servers for a day by using Gigascope [8].
These traces were collected on a trunk with four 1-Gigabit Ethernet links at a large
enterprise Internet gateway by using IP-filtering for specific IP-groups in which we are
interested, and we used these traces to verify our application-aware data collection ap-
proach. The collected traces were then partitioned into 10 datasets based on the packets
collected every 60 minutes. Each of these datasets has approximately 3,500 flows. For
each dataset, given the application-specific signatures, we replay the complete trace

198 C.-W. Chang et al.

Table 1. Evaluate the number of memory copies needed for Snort rules

data basic netDVR actual reduction overhead

Set 1 7.00×108 3.13×107 7.06×104 4.69×104 444.04 1.51
Set 2 6.50×108 2.89×107 6.39×104 4.38×104 451.64 1.46
Set 3 6.60×108 3.09×107 7.22×104 4.63×104 427.74 1.56
Set 4 6.30×108 2.84×107 6.96×104 4.68×104 407.39 1.49
Set 5 6.10×108 2.74×107 6.83×104 4.50×104 401.05 1.52
Set 6 7.90×108 3.60×107 5.07×104 3.16×104 709.49 1.60
Set 7 7.60×108 3.53×107 7.77×104 5.12×104 453.73 1.52
Set 8 7.60×108 3.25×107 8.24×104 6.44×104 394.35 1.28
Set 9 8.20×108 3.44×107 5.66×104 4.08×104 607.21 1.39
Set 10 9.00×108 3.77×107 4.66×104 3.09×104 808.92 1.51

average 510.56 1.48
max 808.92 1.60

and calculate the number of memory copies that Network DVR needs and compare the
result to a basic approach in which the recording starts when the first character of a reg-
ular expression is matched. We have employed an efficient public domain DFA variant
provided by Becchi and Crowley [7] to serve as the matching module in Network DVR,
but we note that other efficient DFA variants [21, 11, 20, 10, 16, 9] may be used in our
framework as well.

For our evaluation, we considered a practical application in which Network DVR is
used to record the details of matched results for an intrusion detection system (IDS). To
perform this recording task without our trigger concept, current IDSs would be forced
to begin copying symbols to memory when the first symbol of a regular expression
is matched. Here, we chose one category of signatures from the Snort 2007 signature
set [12] for our evaluation. In particular, we considered the ftp signatures (consisting
of 58 regular expressions) for our experiment to evaluate the amount of unnecessary
memory copies that Network DVR can reduce by using the proposed triggered-recording
concept. For each signature, we manually decomposed the signature into start, abort, and
final match rules. Specifically, we used the prefix of each signature as a start rule, the
suffix of each signature as a final match rule, and any exclusion characters as abort rules.

3.2 System Performance Comparison on Memory Copy Times

Table 1 summarizes the results for the 10 datasets considered in terms of memory
copies. The column labeled data shows the size of the total incoming symbols which
is replayed by using the real traces collected by Gigascope [8] using IP-filtering only
(unaware of the application). The column labeled basic shows the results for a basic
approach that begins copying symbols to memory when the first character of a regu-
lar expression is matched. The column labeled netDVR shows the results using our
triggered-recording approach. The column labeled actual shows the total number of
times actual memory copies were needed for successful matches. The column labeled
reduction shows the reduction factor in memory copies that netDVR can achieve
relative to the basic approach (i.e., reduction = basic / netDVR). The last

Network DVR: A Programmable Framework for Application-Aware Trace Collection 199

column labeled overhead shows the overhead factor in memory copies that netDVR
incurs relative to the actual memory copies for successful matches (i.e., overhead
= netDVR / actual).

As can be seen in Table 1, our Network-DVR approach can achieve a reduction
factor of over 500x across the 10 datasets and over 800x in the best case (i.e., for Set
10). This reduction is achieved by only activating the recording when a start rule has
been matched. However, even with this start ruleset pre-filtering, it may still be possible
that a matching eventually fails. This accounts for the difference in results between the
netDVR column and the actual column. However, this overhead is only a factor of
1.48x on average with 1.6x in the worst case.

4 Related Work

Packet recordings gathered by core routers provide valuable coarse-granularity traffic
information for a variety of measurement-related applications. However, because of the
large volumes of traffic, filtering unnecessary data becomes an important issue. Packet
filtering at the IP-header level is among the first techniques applied to solve this is-
sue [13, 14]. BLINC [15], which observes and identifies patterns of host behavior at the
transport layer, is designed for traffic classification. Deep packet inspection (DPI) [7, 9]
methods, which identify and classify traffic based on a signature database that includes
information extracted from the data part of a packet, allows for finer control than clas-
sification based only on header information. These approaches are what we describe
as the “basic” implementations, which start copying symbols to memory when the first
symbol of a regular expression is matched in order to output the details of the matching
results. Our approach performs much better by triggering the memory copies later.

ProgME [17] introduces flowsets based on packet headers for defining aggregates in
the context of network measurements (specifying counting). ATMEN, a triggered mea-
surement infrastructure to communicate and coordinate across various administrative
entities, is proposed in [18] to reduce wasted measurements by judiciously reusing mea-
surements along three axes: spatial, temporal, and application. Another approach, in
which any particular application can express the classes of traffic of its interest, is pro-
posed in [19] for application-specific flow sampling in many monitoring applications,
such as SNORT [12], BLINC [15]. Although the above methods make flow recording fea-
sible by using traffic classification, faster deep packet inspection, hardware pre-matching,
concept of flowsets or application-aware packet sampling, none of them perform content-
state-aware filtering of packet content for a given monitoring application.

5 Conclusion

In this paper, we presented Network DVR, a framework for a programmable content-
aware packet trace collection system. Our main contribution is programmable recording
framework that can be programmed to record packet traces that are relevant to a given
monitoring application. Our framework employs a trigger recording concept that defers
recording until some start conditions have been matched, which significantly minimizes
the number of memory copies that the system consumes for valid trace collection (a
key indicator of performance). Modules with knowledge about application requirements

200 C.-W. Chang et al.

enable Network DVR to collect traffic data in accordance to the application at hand. Our
evaluation using real datasets from a large enterprise Internet gateway shows that Net-
work DVR can collect relevant packet traces effectively in a concise manner and also
reduce the amount of memory copies dramatically. Given these encouraging results, we
plan to develop a real-time implementation of Network DVR with larger sets of applica-
tion signatures to better quantify the actual performance improvement of our proposed
approach.

References

[1] Jacobson, V., Leres, V.C., Mccanne, S.: The TCPdump Manual Page. Lawrence Berkeley
Laboratory, Berkeley (1989)

[2] Orebaugh, A.D., Ramirez, G.: Ethereal Packet Sniffing. Syngress Publishing (2004)
[3] Libpcap, http://www.tcpdump.org/#documentation
[4] WinPcap: The Windows Packet Capture Library, http://www.winpcap.org/
[5] Estan, C., Varghese, G.: New directions in traffic measurement and accounting: Focusing

on the elephants, ignoring the mice. ACM Trans. Computer Systems (2003)
[6] PCRE: Perl Compatible Regular Expressions, http://www.pcre.org/
[7] Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet inspection.

CoNEXT (2007)
[8] Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream database for

network applications. ACM SIGMOD (2003)
[9] Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the big bang: fast and scalable deep packet

inspection with extended finite automata. ACM SIGCOMM (2008)
[10] Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-efficient regular

expression matching for deep packet inspection. ACM ANCS (2006)
[11] Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to accelerate

multiple regular expressions matching for deep packet inspection. ACM SIGCOMM (2006)
[12] Snort., http://www.snort.org
[13] Moore, A.W., Zuev, D.: Traffic classification using bayesian analysis techniques. SIGMET-

RICS (2005)
[14] Kundu, S., Pal, S., Basu, K., Das, S.: Fast classification and estimation of Internet traffic

flows. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427,
pp. 155–164. Springer, Heidelberg (2007)

[15] Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification
in the dark. ACM SIGCOMM (2005)

[16] Becchi, M., Cadambi, S.: Memory-efficient regular expression search using state merging.
INFOCOM (2007)

[17] Yuan, L., Chuah, C.N., Mohapatra, P.: ProgME: towards programmable network measure-
ment. ACM SIGCOMM (2007)

[18] Krishnamurthy, B., Madhyastha, H.V., Spatscheck, O.: ATMEN: a triggered network mea-
surement infrastructure. ACM WWW (2005)

[19] Madhyastha, H.V., Krishnamurthy, B.: A generic language for application-specific flow
sampling. ACM CCR (2008)

[20] Kumar, S., Turner, J., Williams, J.: Advanced Algorithms for Fast and Scalable Deep Packet
Inspection. ACM ANCS (2006)

[21] Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient string
matching algorithms for intrusion detection. INFOCOM (2004)

[22] Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved con-
struction for counting Bloom filters. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 684–695. Springer, Heidelberg (2006)

http://www.tcpdump.org/#documentation
http://www.winpcap.org/
http://www.pcre.org/
http://www.snort.org

OpenTM: Traffic Matrix Estimator for
OpenFlow Networks

Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali

Department of Computer Science
University of Toronto, Toronto, ON, Canada
{amin,monia,yganjali}@cs.toronto.edu

Abstract. In this paper we present OpenTM, a traffic matrix estima-
tion system for OpenFlow networks. OpenTM uses built-in features pro-
vided in OpenFlow switches to directly and accurately measure the traffic
matrix with a low overhead. Additionally, OpenTM uses the routing in-
formation learned from the OpenFlow controller to intelligently choose
the switches from which to obtain flow statistics, thus reducing the load
on switching elements. We explore several algorithms for choosing which
switches to query, and demonstrate that there is a trade-off between
accuracy of measurements, and the worst case maximum load on indi-
vidual switches, i.e., the perfect load balancing scheme sometimes results
in the worst estimate, and the best estimation can lead to worst case load
distribution among switches. We show that a non-uniform distribution
querying strategy that tends to query switches closer to the destina-
tion with a higher probability has a better performance compared to the
uniform schemes. Our test-bed experiments show that for a stationary
traffic matrix OpenTM normally converges within ten queries which is
considerably faster than existing traffic matrix estimation techniques for
traditional IP networks.

1 Introduction

A traffic matrix (TM) represents the volume of traffic between origin-destination
(OD) pairs in a network. Estimating the point-to-point TM in a network is an
essential part of many network design and operation tasks such as capacity
planning, routing protocol configuration, network provisioning, load balancing,
and anomaly detection.

Direct and precise measurement of TM in large IP networks is extremely
difficult, if not infeasible, due to the large number of OD pairs, the high volume
of traffic at each link, and the lack of measurement infrastructure [1]. Previous
works infer the TM (a) indirectly from link loads [2,3], (b) directly from sampled
flow statistics (e.g., using Cisco NetFlow) [4, 5], or (c) using a combination of
both [1]. Indirect methods are sensitive to the statistical assumptions made in
their models and are shown to have large errors [6]. Direct methods can be
quite attractive due to their high accuracy levels. However, the lack of required
measurement infrastructure and the prohibitively large overhead imposed on the
network components are two main drawbacks of direct measurements.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 201–210, 2010.
© Springer-Verlag Berlin Heidelberg 2010

202 A. Tootoonchian, M. Ghobadi, and Y. Ganjali

In this paper, we revisit the TM estimation problem using direct measure-
ments in the context of OpenFlow-based networks [7]. OpenFlow is an open
standard that makes any changes to the network control plane very easy by sep-
arating the data and control planes. An OpenFlow network consists of OpenFlow
switches (data plane) managed by a logically centralized OpenFlow controller
(control plane) which has a network-wide view. OpenFlow’s unique features re-
move the prohibitive cost of direct measurements for TM estimation. Unlike com-
modity switches, flow level operations are streamlined into OpenFlow switches
which lets us query for flow statistics, enabling access to accurate flow statistics.

Taking advantage of these features, we have designed OpenTM, a TM esti-
mator for OpenFlow networks. OpenTM reads byte and packet counters kept by
OpenFlow switches for active flows and therefore incurs a minimal overhead on
network elements. At the same time the highest level of accuracy is preserved, be-
cause the TM is derived directly without making any simplifying mathematical
and statistical assumptions. Our work shows the possibility of direct measure-
ment of TM with the least overhead as long as the infrastructure (OpenFlow
here) provides the appropriate feature set for measurements. We note that the
scope of our work is limited to the networks where OpenFlow can be deployed,
i.e., where maintaining per-flow counters is likely tractable.

For different flows, OpenTM can query any switch along the flow path. This
choice, however, can affect the accuracy of the measurement as well as the load
on individual switches. We present several strategies for choosing which switch
to query at any point of time. Even though all these schemes result in TM
estimations with very small errors, our analysis and experiments show that there
is a trade-off between the accuracy of the TM measurements and the maximum
query load on individual switches, i.e., the perfect query distribution sometimes
results in the worst estimate, and the best estimation can lead to the worst query
distribution amongst switches.

We have implemented OpenTM as an application for NOX [8], an open-source
OpenFlow controller. We study OpenTM’s performance on a small testbed of
OpenFlow switches. Even though using a small testbed for evaluation has its own
shortcomings, we believe that most results would not be significantly different
in larger networks. Our results show that in a system with a stationary traffic
matrix, OpenTM normally converges within 10 queries to a value within 3% of
the average rate which is notably faster than existing techniques for traditional
IP networks.

The contributions of this work are two-fold. First, we present the design and
implementation of OpenTM for OpenFlow-based networks. Based on the eval-
uation, we argue that low-overhead accurate TM estimation is feasible using
direct measurements in a setting where the switches keep track of flow statistics.
Second, we explore the idea of constructing the TMs from switch-level measure-
ments, where the choice of which switch to query can be decided at runtime. To
the best of our knowledge, this is in contrast to the existing techniques that usu-
ally instrument all ingress/egress links leading to an very uneven measurement

OpenTM: Traffic Matrix Estimator for OpenFlow Networks 203

load on the boundary switches or routers (switches internal to the network have
a very little measurement load).

2 Design

Direct measurements in large traditional IP networks is prohibitively costly due
to the processing required to handle the large volume of traffic at each inter-
face [1]. On the other hand, OpenFlow switches keep track of active flows in
the network and update per flow counters. The measurement infrastructure that
OpenFlow provides enables direct and precise flow measurements without packet
sampling or incurring any prohibitive overhead on switches. We take advantage
of these features to present OpenTM’s design in this section.

OpenTM’s logic is quite simple. It keeps track of all the active flows in the
network, gets the routing information from the OpenFlow controller’s routing
application, discovers flow paths, and periodically polls flow byte and packet-
count counters from switches on the flow path. Using the routing information,
OpenTM constructs the TM by adding up statistics for flows originated from
the same source and destined to the same destination1. Using the information
available to an OpenFlow controller, OpenTM can create different types of TMs
with different aggregation levels for sources and destinations. Our implementa-
tion of OpenTM computes the TM for switches, but the implementation can be
easily augmented to derive other TM types described in [9].

The total number of queries generated by OpenTM during each querying in-
terval is bounded by the number of active flows in the network. It is commonly
believed that the number of concurrently active flows in large enterprise IP net-
works is small. According to the data from the 8000-host network at LBNL,
the total number of active flows in their network never exceeds 1200 in any
second [10]. The data from the Stanford Computer Science and Electrical Engi-
neering network with 5500 active hosts shows that their number of active flows
stays well below 10000 [11]. Currently, our system generates a single query for
a single source-destination IP pair. As an improvement, a single query can be
generated for all flows sharing the same path, as long as the IP addresses could
be aggregated.

Different switches on the path may observe different rates for a given flow due
to packet loss. We consider the last switch on the flow path to be the point of
reference since this is what is seen by the receiver. Consequently, we query the
last switch on the path for the most accurate TM. However, this strategy im-
poses an uneven and substantially high amounts of load on the first/last switches
and does not scale well. We expect to get close statistics if other switches on the
flow path are queried since packet loss is negligible in enterprise networks (where
OpenFlow is designed for). Based on this observation, we propose different switch
querying strategies: (a) querying the last switch, (b) querying switches on the
1 Multipath routing, routing changes or hot potato routing do not affect the correct-

ness of OpenTM, because OpenTM coordinates with the controller routing applica-
tion to discover any change in flow paths.

204 A. Tootoonchian, M. Ghobadi, and Y. Ganjali

flow path uniformly at random, (c) round-robin querying, (d) non-uniform ran-
dom querying that tends to query switches closer to the destination with a higher
probability, and (e) querying the least loaded switch.

Querying the last switch results in the most accurate TM, but imposes a sub-
stantial load on edge switches. Uniform random querying of switching elements
of a given flow’s path evenly distributes the load amongst switches as long as all
switches are equally capable. The price, however, is losing some accuracy. Round-
robin querying deterministically queries switches on a round-robin fashion. On
average, we expect both uniform random querying and round-robin querying
to behave similarly, but round-robin querying may result in synchronization in
querying, because the same switch might be queried by several flows simulta-
neously. Using a non-uniform distribution for querying switches gives us control
over the accuracy and the load of OpenTM. A distribution which chooses last
switches in the path with a higher probability, results in a more accurate TM but
imposes more load on those switches. In our experiments, for non-uniform query-
ing, we randomly select two switch along the flow path and query the one closer
to the destination. Querying the least loaded switch evenly distributes queries
among all switches in the network, contrary to the uniform random querying
method which only distributes queries among switches on individual flow paths.
In Section 5, we compare these methods with each other.

The frequency at which OpenTM queries switches for statistics is another fac-
tor that directly affects the accuracy and overhead of TM estimation. Querying
more frequently results in a more accurate TM but with the cost of added over-
head. Here we only consider fixed length intervals for querying different switches
for all the flows. Switch querying interval can be adaptively adjusted for each
source-destination IP pair based on the flow and network dynamics (e.g., round
trip time, available bandwidth). The relation between an efficient querying fre-
quency and flow and network dynamics is outside the scope of this work.

3 Implementation

We implemented OpenTM as a C++ application for NOX [8], an open-source
OpenFlow controller designed to simplify developing network applications. A
NOX application can get notified of all network events (e.g., flow initiation and
termination), has access to the routing information, and can interact with the
switches in the network. NOX also lets applications interact with each other2.

In each querying interval, OpenTM queries the network for the statistics of
all active IP pairs. Element (i, j) in the TM is then computed by summing up
the flow rates that are originated from switch i and are destined to switch j. We
note that the flow statistic queries do not hit switches at the same time, because
flow initiation among OD-pairs are not synchronized.

OpenTM starts querying for statistics periodically once it sees the first flow
between an OD-pair and stops querying once all the flows between an OD-pair
are expired. To keep track of the number of active IP pairs in the network,
2 For instance, OpenTM exposes the real-time traffic matrix to other applications.

OpenTM: Traffic Matrix Estimator for OpenFlow Networks 205

OpenTM counts the number of TCP/UDP flows between IP pairs. OpenTM in-
crements the mentioned counter upon receiving a Flow in event and decrements
it upon receiving the corresponding Flow expired event3.

Once the IP pair’s flow count becomes one, OpenTM fetches the flow path
(a list of switches) from the routing application and sends an aggregate statis-
tics query to a switch in the flow path according the desired querying strategy.
OpenTM updates the TM when it gets the aggregate query statistics reply back
from the network. At this time, if the IP pair flow count is non-zero, OpenTM
registers a callback function to query the network for the flow statistics again
after a certain period of time4. An implicit assumption here is that all packets
flowing from the same source to the same destination take the same path. This
enables us to query the same set of routers to get statistics for all flows between
an IP pair.

OpenTM keeps track of switch loads, so it can choose the least loaded one
and optimally balance the queries among all of them. We use the number of
outstanding queries on each switch as the load metric. When a switch is queried,
a counter that keeps track of the number of outstanding requests on each switch
is incremented. Upon receiving the reply back, that counter is decremented.
This simple method captures the difference in the processing power of switches.
More capable switches can handle more requests and should get more queries
compared to the less capable ones. In the following section, we present the results
of our empirical evaluation based on our implementation.

4 Experiments and Results

In this section, we present real-time traffic measurements in a testbed to evaluate
OpenTM. We study the performance and convergence time of OpenTM. We also
compare different switch querying schemes introduced in Section 2.

For our experiments, we use HP DL320 G5p servers equipped with an
HP NC326i PCIe dual-port gigabit network card running Debian Lenny and
OpenFlow-enabled NEC IP8800/S3640 switches. In all our experiments, we use
TCP cubic with the maximum advertised TCP window size set to 20MB. The
path MTU is 1500 bytes and the servers send maximum-sized packets. We use
the NetEm [12] to emulate network delay and loss, and use Iperf to generate
the input traffic.

Our testbed topology is illustrated in Figure 1(a), where Hi, 1 ≤ i ≤ 10, are
host machines, Sj , 1 ≤ j ≤ 10 are OpenFlow switches, and Lk, 1 ≤ k ≤ 3 are
loss emulator machines. Five OD pairs Hi-Hj are created in which host Hi sends
TCP traffic to host Hj . Specifically, we create 10 TCP flows between each OD
pair H1-H10, H2-H9, H3-H4, H5-H6, and H7-H8. We add 100ms of delay on
the forward path of each flow. The delay emulators are also configured to each
3 Both Flow in and Flow expired events are fired by the NOX’s authenticator appli-

cation upon flow initiation and termination, respectively. A flow expires when the
switch does not see any packets belong to that flow after a specific timeout.

4 The querying interval which is set to five seconds in our current implementation.

206 A. Tootoonchian, M. Ghobadi, and Y. Ganjali

0 1000 2000 3000 4000 5000 6000
80

90

100

110

120

130

140

150

160

170

↑

↑

↑

↑

↑

time(s)

ra
te

(M
bp

s)

H
1
-H

10

H
2
-H

9

H
3
-H

4

H
5
-H

6

H
7
-H

8

(a) (b)

Fig. 1. (a) Testbed topology consisting of Hi: host machines, Si: OpenFlow switches,
and Li: loss emulators. (b) Measured average flow rate for each of the five OD pairs in
the network.

emulate 1% packet loss. For the purpose of evaluation, OpenTM logs the flow
statistics of all switches every five seconds for a duration of two hours; we then
analyze the data offline. Note that this is not the case in the real application
where the switches are queried according to the querying scheme chosen by the
network operator. Since we are interested in studying the system in equilibrium,
we remove the first 15 minutes of our data as the warm up period.

We start with a very basic question: How fast does OpenTM rate measure-
ments converge? For an element f in the TM, let us assume we have t queries.
The i-th query, ri, is the average rate from the beginning of the measurement
up to that point in time. We define the convergence point c as the first query for
which all the proceeding queries are within 3% of the overall mean rate. We note
that since the rate is assumed to be stationary in this system5, such an average
exists. Also, by a simple application of the Central Limit Theorem, we can show
that the queries will converge to the real average as we increase the number
of queries. Roughly speaking, the convergence point is when the estimated rate
becomes and remains very close to the overall average rate that we are trying to
estimate.

Figure 1(b) shows the average rate over time for each of the five OD pairs. The
measurement is performed at the last switch in each path with a querying interval
of only five seconds. We can see that in all cases convergence point, marked by
vertical arrows in the graph, is within 50 seconds, or just 10 queries. Note that
OD pairs H1-H10 and H2-H9 receive the least rate as they are traversing the
longest path in the topology through three loss emulators hence experiencing

5 This assumption does not break the generality of our results. We make the stationar-
ity assumption in order to have a well-defined notion of convergence time. However,
as long as the changes in system are slower than our convergence rate, OpenTM
gives a close estimate of the TM.

OpenTM: Traffic Matrix Estimator for OpenFlow Networks 207

2300 2320 2340 2360 2380 2400
86

86.2

86.4

86.6

86.8

87

87.2

87.4

87.6

87.8

88

time(s)

ra
te

(M
bp

s)

Last Switch
Uniform Random
Non-uniform Random
Round Robin
Least Loaded

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference in rate(Mbps)

C
D

F

Last Switch
Uniform Random
Non-uniform Random
Round Robin
Least Loaded

(a) (b)

Fig. 2. (a) Comparing the querying strategies methods for traffic between H1 and H10

with a querying interval of 5 seconds. (b) CDF of difference between querying strategies
and the last switch’s traffic.

3% drop rate. On the other hand, H3-H4, H5-H6, and H7-H8 only experience
1% drop rate and thus have higher rates.

In the next set of experiments, we compare different querying strategies pro-
posed in Section 2. Figure 2(a) shows the measured average throughput versus
time for traffic between H1 and H10 when each of the querying strategies are
used and the querying interval is five seconds. To make it more visible, the plot
is zoomed in and only shows 100 seconds of the measurement. From the figure,
it appears that the least loaded method is almost always reporting a rate higher
than the last switch method and having the largest estimation error. This is
because in our setup, the least loaded switches are mostly the first switch in a
flow’s path which is before all three drop emulators and hence this method suf-
fers from the most inaccuracy. This is not necessarily the case in other network
topologies and it is dependent on the traffic load over the switches.

To better illustrate the difference between querying strategies, Figure 2(b)
shows the CDF of differences between each querying strategy and the last
switch’s rate for traffic between H1 and H10 when each of the querying strate-
gies are used and the querying interval is five seconds. The ideal case is to
always measure the last switch’s rate and hence having zero difference and it
is shown by a vertical line at zero in the graph. As expected from the analysis
presented in Section 5, the figure shows that the non-uniform random querying
method has the best performance, as it tends to query switches closer to the
destination with higher probability. Both the round-robin and uniform random
querying methods are performing very close to each other, and worse than the
non-uniform querying method. As mentioned above, the least loaded method is
performing the worse in this case, since in our setup the first switch on the path
is almost always the least loaded switch.

208 A. Tootoonchian, M. Ghobadi, and Y. Ganjali

Finally, we note that the overall difference between all these schemes is rela-
tively small. In fact, the maximum difference between the best and worst query-
ing schemes is about 2 Mbps, which is about 2.3% of the actual rate (86 Mbps)
between H1 and H10. This observation suggests that when we do not need ex-
tremely accurate TM, any of these querying schemes can be used. Clearly, in
this case the least loaded scheme might be the preferred scheme as it minimizes
the maximum load among switches. For higher-accuracy requirements, however,
one might want to use schemes which favor the last few switches on the path.

5 Analysis

In this section we analytically compare the querying strategies proposed in Sec-
tion 2 in terms of their accuracy in estimating the flow rates between source and
destination. Intuitively, as long as there are no packet drops in the network, all
measurements from switches should be the same6, and thus all querying strate-
gies should be very close to each other; our experiments confirm this. However,
when there are packet drops in the system, we expect to see differences in the
various querying schemes proposed before.

Let us consider a topology similar to Figure 1(a). We are interested in finding
the expected value of rate of a given flow f . We denote the link between switches
Si and Si+1 by ei and the measured rate corresponding to f over ei by ri. If
ei has a drop rate d, then the rate measured at ei+1 will be ≤ ri × (1 − d).
Assuming there are M uniform randomly distributed congestion points in the
network, each with a drop rate of d, we can find the expected rate for each
querying strategy as follows. Note that here for simplicity we assume that all
links have equal drop probability of d.

Querying the last switch before the destination. We define the rate be-
tween an OD pair as the rate seen by the destination. Assuming negligible packet
drops on the link connecting the last switch to the destination node, querying
the last switch must give us the rate as seen by the destination regardless of net-
work conditions. We use this rate as the baseline for comparing with randomized
querying techniques presented below.

Uniform random querying. We first consider the simple case where there is
only one congested link in the network and call the measured rate by this method
at a time slot i as Rr(i) and the rate at the last switch by Rt(i). There are two
possible cases: (1) if the randomly selected switch is between the congested link
and the last switch before the destination, then rate scene by the selected switch
is same as the rate at the last switch; Rr(i) = Rt(i) (2) if the selected switch
is between the source and the congested link, then rate at the selected switch is
higher than the rate at the last hop switch before the destination. In particular,
Rr(i) = Rt(i)

1−d . Hence, Rt(i) ≤ Rr(i) ≤ Rt(i)
1−d . Assuming that the congested link

is placed uniformly random over the path then each of the above cases has an

6 We ignore the difference caused by the delay between switches.

OpenTM: Traffic Matrix Estimator for OpenFlow Networks 209

equal probability of one half. If we take the average rate over N queries, the
expected rate Rr =

∑N
i=1 Rr(i)/N , will lie exactly in between the two cases;

i.e., Rr = 0.5 × (Rt + Rt/(1 − d)).
Similarly, if there are M congestion points in the network then we have

Rt(i) ≤ Rr(i) ≤ Rt(i)/(1− d)M and if we assume that the congestion points are
distributed uniformly over the path, then the probability of Rr(i) = Rt(i)

(1−d)m is
1

M+1 , where 0 ≤ m ≤ M is the number of congestion points that the flow has
traversed before reaching the querying switch. Hence,

Rur =
Rt

M + 1

M∑
m=0

1

(1 − d)m
=

Rt

M + 1
× 1 − (1 − d)M+1

d(1 − d)M
(1)

Non-uniform random querying. In this method, we generate two random
numbers i and j, 1 ≤ i, j ≤ N , where N is the number of switches in a flow’s
path and query the switch with ID equal to max(i, j), assuming the switch with
larger ID is the one closer to the destination. With same assumptions as the
above and in the case that there are M congestion points in the network we
have (M + 1)2 cases and if we take the average over N queries for large N , the
expected average rate will be:

Rnr =
Rt

(M + 1)2

(
1 + 2

M−1∑
m=0

M − m

(1 − d)m
+

1

(1 − d)M

)
(2)

Round-Robin querying. The expected value of average rate for the round-
robin querying method, Rrr, is similar to the uniform random method since on
average 1

M+1 of queries will have rate Rt(i), 1
M+1 of queries will have rate Rt(i)

1−d
and so on.

Least-loaded switch querying. The performance of least-loaded switch query-
ing highly depends on packet processing power of network switches, as well as
how network load is distributed amongst them. If switches have equal processing
power and load this scheme will perform very similar to uniform random query-
ing. However, in the worst case, the least loaded switch might be the first switch
on the path in which case it will lead to the worst case estimation of the rate.

6 Conclusion

This paper presents OpenTM, a traffic matrix estimator for OpenFlow net-
works. OpenTM derives the TM of an OpenFlow network in real-time with high
accuracy using direct measurements without packet sampling. OpenTM evenly
distributes the statistic queries among all the switches in the network and thus
imposes the least overhead on the network. Our evaluation in a testbed using
OpenTM implemented as a NOX application shows that OpenTM derives an
accurate TM within 10 switch querying intervals, which is extremely faster than
existing TM estimation techniques. Despite the limitations of our evaluation
and the need for more comprehensive evaluation, we believe OpenTM can be
deployed in OpenFlow networks with a very negligible overhead.

210 A. Tootoonchian, M. Ghobadi, and Y. Ganjali

Acknowledgments

This work was partly supported by Cisco Systems and a grant from NSERC.
NEC Corporation kindly provided us with the OpenFlow switches. We would
also like to thank Bianca Schroeder and the anonymous reviewers for the their
valuable feedback.

References

1. Zhao, Q., Ge, Z., Wang, J., Xu, J.: Robust traffic matrix estimation with imper-
fect information: Making use of multiple data sources. SIGMETRICS Performance
Evaluation Review 34(1), 133–144 (2006)

2. Vardi, Y.: Network tomography: Estimating source-destination traffic intensities
from link data. Journal of the American Statistical Association 91(433), 365–377
(1996)

3. Nucci, A., Diot, C.: Design of IGP link weight changes for estimation of traffic
matrices. In: Proceedings of the 2004 Conference on Computer Communications
(2004)

4. Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True, F.: De-
riving traffic demands for operational IP networks: Methodology and experience.
IEEE/ACM Transactions on Networking 9(3), 265–280 (2001)

5. Papagiannaki, K., Taft, N., Lakhina, A.: A distributed approach to measure IP
traffic matrices. In: Proceedings of the 4th ACM SIGCOMM Conference on Inter-
net Measurement (2004)

6. Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix
estimation: Existing techniques and new directions. SIGCOMM Computer Com-
munication Review 32(4), 161–174 (2002)

7. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: Enabling innovation in campus networks.
SIGCOMM Computer Communication Review 38(2), 69–74 (2008)

8. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker,
S.: NOX: Towards an operating system for networks. SIGCOMM Computer Com-
munication Review 38(3), 105–110 (2008)

9. Medina, A., Fraleigh, C., Taft, N., Bhattacharrya, S., Diot, C.: A taxonomy of IP
traffic matrices. In: SPIE ITCOM: Scalability and Traffic Control in IP Networks
II, Boston (August 2002)

10. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A first look at
modern enterprise traffic. In: Proceedings of the 5th ACM SIGCOMM Conference
on Internet Measurement, Berkeley, CA, USA, p. 2 (2005)

11. Naous, J., Erickson, D., Covington, G.A., Appenzeller, G., McKeown, N.: Im-
plementing an OpenFlow switch on the NetFPGA platform. In: Franklin, M.A.,
Panda, D.K., Stiliadis, D. (eds.) ANCS, pp. 1–9. ACM, New York (2008)

12. Hemminger, S.: Network emulation with NetEm. In: Linux Conference, Australia
(April 2005)

Web Timeouts and Their Implications�

Zakaria Al-Qudah1, Michael Rabinovich1, and Mark Allman2

1 Case Western Reserve University, Cleveland, Ohio 44106
2 International Computer Science Institute, Berkeley, CA 94704

Abstract. Timeouts play a fundamental role in network protocols, con-
trolling numerous aspects of host behavior at different layers of the pro-
tocol stack. Previous work has documented a class of Denial of Service
(DoS) attacks that leverage timeouts to force a host to preserve state
with a bare minimum level of interactivity with the attacker. This paper
considers the vulnerability of operational Web servers to such attacks
by comparing timeouts implemented in servers with the normal Web
activity that informs our understanding as to the necessary length of
timeouts. We then use these two results—which generally show that the
timeouts in wide use are long relative to normal Web transactions—to
devise a framework to augment static timeouts with both measurements
of the system and particular policy decisions in times of high load.

1 Introduction

One of the historic tenets of networking that has served the Internet well over
the past 30 years is that components of the system should be both conservative
and liberal at the same time. That is, actions should only be taken as they are
strictly necessary—therefore acting conservatively. Furthermore, wide tolerance
for a range of behavior from other components in the system is also desirable—or
acting liberally. Another fundamental notion within the Internet is that the only
thing we can absolutely count on is the passage of time. This notion naturally
led to timeouts as a fundamental fallback mechanism to ensure robust operation.
Adhering to the above stated principles tends to make timeouts long such that we
can tolerate a range of behavior and the timer only expires when a gross anomaly
occurs as opposed to when some task simply happens slower than expected.

Unfortunately, the above narrative becomes muddled in the presence of ma-
licious actors as it creates an opening for the so-called claim-and-hold denial of
service attacks [13], where an attacker can claim server resources without us-
ing them thus preventing the server from utilizing these resources on legitimate
activities.

In this paper, we consider the issue of timeouts in the modern Internet within
the context of the Web. We conduct an empirical investigation that seeks to
understand (i) how timeouts are currently set on Web servers and (ii) how
those settings relate to normal user-driven Web traffic. Our key finding is that

� This work is supported in part by NSF grants CNS-0615190 and CNS-0433702.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 211–221, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

212 Z. Al-Qudah, M. Rabinovich, and M. Allman

timeout settings are extremely conservative relative to actual traffic patterns and
expose Web servers to easy DoS attacks. While this suggests that servers could
take a more aggressive posture with respect to timeouts, doing so would run
counter to the general tenet mentioned earlier (i.e., would result into dropping
legitimate anomalies even at times when enough resources are available to serve
them). Instead, we propose an adaptive approach whereby the timeouts are only
reduced at times of measured stress. In fact, we observed a small number of Web
sites that exhibit a behavior which indicates that they might be already varying
their timeouts dynamically. We believe other sites, large or small, would benefit
from similar reactions in the face of claim-and-hold attacks. Unfortunately, such
timeout adaption is not available out-of-the-box in popular Web servers. As part
of this project we have implemented and make available a simplified adaptive
mechanism as a modification of the Linux kernel and Apache Web server [1].

2 Related Work

Qie, et.al. [13] studied, verified, and classified DoS attacks into busy attacks
and claim-and-hold attacks. Web server administrators have reported encoun-
tering claim-and-hold attacks [7,6] and server software vendors seem cognizant
of these attacks and typically recommend tuning Web server timeouts [4,8]. How-
ever, as we show in this paper, a large number of Web sites use default timeout
values. Barford et. al. observed the negative effect of excessive persistent con-
nections on busy Web servers and recommended an early close policy whereby
Web clients close persistent connections after downloading a page and all its
embedded objects [5]. Rabinovich et. al. suggested adaptive management of per-
sistent connections at Web servers, where a server closes idle connections once
it runs out of the connection slots [14]. We argue for a similar but more general
approach in Section 4. Park, et.al. also point out the danger of inactive or slow
Web clients and propose an independent component to filter and condition ex-
ternal connections for the Web server [12]. In contrast, we suggest an adaptive
timeout strategy on the Web server itself.

3 Timeout Measurements

In this section, we assess timeout periods in operational Web servers and com-
pare them with the time needed by Web clients to perform the corresponding
activities that these timeout periods control. To this end, we probe two groups
of Web servers: (i) Alexa’s top 500 sites [3] denoted as “high volume” sites and
(ii) 15,445 sites collected using the Link Harvester tool [15] denoted as “regu-
lar” sites. The list of these sites is available from [1]. In the high volume group,
53% of sites reported some version of Apache Web server in the “Server:” re-
sponse header, 12% Microsoft-IIS, 10% GWS (Google), and the rest reported
some other server or nothing at all. Among the regular sites, 68% were Apache,
19% Microsoft-IIS, and the rest other/unknown. As described below, we actively
probe these sites for various timeouts. Inevitably for each experiment a small

Web Timeouts and Their Implications 213

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000 10000

C
D

F

timeout (sec)

1: Implicit
2: FIN

3: RST

(a) TCP timeout

 1

 0.8

 0.6

 0.4

 0.2

 0
 0 100 200 300 400 500 600 700

C
D

F

timeout (sec)

regular sites
top 500 sites

(b) Application timeout

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

timeout (sec)

 regular sites
top 500 sites

(c) Request timeout

 1

 0.8

 0.6

 0.4

 0.2

 0
103102101 110-110-210-310-4

C
D

F

timeout (sec)

regular sites
top 500 sites

(d) Keep-Alive timeout

Fig. 1. Distribution of Web server timeouts

number of sites are unavailable and so the precise number of sites used varies
and is reported for each experiment.

To assess the time consumed by Web clients to perform various normal activ-
ities, we analyze a week long packet trace of Web traffic collected at the border
of International Computer Science Institute (ICSI) captured between August
11–18 2009. The trace contains nearly 1.6M HTTP connections involving nearly
14K servers and 25K clients. We note that Web clients in our trace are generally
well-connected. While it would be desirable to verify our results directly in a
qualitatively different environment, we do not expect dial-up clients to affect
our findings (as discussed later).

TCP Timeout: The TCP timeout represents the length of time a TCP imple-
mentation will attempt to retransmit data before giving up on an unresponsive
host. We assess this timeout by opening a TCP connection to a given server,
sending an HTTP request and disappearing—i.e., sending no further data, ACK,
FIN or RST packets. Some sites respond with an HTTP redirection and a FIN
(either with the data or closely thereafter). We exclude these sites from fur-
ther analysis because the timeout we experience in this case is the FIN WAIT
state timeout, not the retransmission timeout. This reduces the number of sites—
437 high volume and 13,142 regular sites—involved in this experiment compared
to other experiments.

214 Z. Al-Qudah, M. Rabinovich, and M. Allman

We monitor the server’s retransmissions and find three distinct ways for con-
nections to end: (i) implicitly with the retransmissions eventually ceasing, (ii)
explicitly with the server sending a FIN or (iii) explicitly with a server sending a
RST. We measure the TCP timeout as the interval between the arrival of the first
data transmission and the arrival of either the last retransmission or a packet
with a FIN or RST bit set (note, this FIN case is distinct from the redirection
case discussed above). Figure 1(a) shows the distribution of timeouts measured
for each termination method for the high volume sites (the regular sites are
omitted due to space constraints but show the same general behavior). In case
(i)—encompassing 61% of the servers in both sets—the observed timeout is over
100 seconds for two-thirds of the servers. Note that in this case there is no wire
event indicating the server has dropped a connection, and we expect that the
server waits for some time for an ACK after the last retransmission. Therefore,
the measurements represent a lower bound. In case (ii)—encompassing 9% of
the servers in each set—we believe the FIN transmission is generally triggered by
the overall application giving up on the connection rather than TCP terminat-
ing the connection itself. Therefore, at best these measurements also represent a
lower bound on the length of the TCP timeout, which is illustrated by the order
of magnitude difference between cases (i) and (ii) in Figure 1(a). In case (iii)—
encompassing 30% of the servers in each set—we observe that servers that send
a RST show the longest timeouts by a small margin over servers that silently
terminate. We believe this is likely the best representation of the TCP timeout as
it encompasses both the entire retransmission process and the additional waiting
time that goes unseen in case (i).

We contrast the above determined lower bounds with data from our previous
work [2]. In that work, we set up two servers: one configured with a normal
TCP timeout (default Linux timeout of 15 retransmissions, or ≈13–30 minutes)
and one with a quick TCP timeout (3 retransmissions or roughly 600 msec). We
then used 59 Keynote [9] clients around the world to download a 2 MB file from
each server every 15 minutes for over a week. Reduced retransmissions increased
dropped connections due to timeouts by 0.16%, suggesting that continuing to
retransmit for long periods of time is often futile.

In summary, while Figure 1(a) shows that—excluding cases where we do not
believe TCP terminated the connection—80% of the surveyed servers have TCP
timeouts exceeding 57 seconds, and nearly two-thirds of the servers have TCP
timeouts exceeding 100 seconds, our preliminary data indicates that most Web
interactions would succeed with a sub-second TCP timeout.

Application Timeout: The application timeout is the time a server allows
between completing the TCP connection establishment and the arrival of the
first byte of an HTTP request. To measure the application timeout in opera-
tional Web sites, we open a TCP connection to a server without sending an
HTTP request using nc6 [11]. We then measure the time from the completion of
the TCP connection establishment until the connection is closed by the server
(giving up after 20min). We use 492 high volume sites and 14,985 regular sites
in this experiment. We find that just under 36% of sites in both groups do

Web Timeouts and Their Implications 215

not end the connection after 20min. Potential reasons for this behavior include
sites using the TCP DEFER ACCEPT Linux TCP option [16] (or like option
on other systems). With this option, TCP does not promote a connection from
the SYN RCVD state to ESTABLISHED state—and thus hand it over to the
application—until data arrives on the connection. Therefore, the notion of ap-
plication timeout is not applicable for these sites. (Note however that these sites
can still accumulate pending connections in the SYN RCVD state, which may
present a different attack vector.) Another explanation is these sites have an
application timeout which is longer than 20min.

Figure 1(b) shows the distribution of measured application timeouts for the
remaining ≈64% of sites in the two groups. The figure shows significant modes in
both groups around 120s and 300s—the well-known defaults for IIS and Apache
respectively. We also observe that high volume sites generally have shorter appli-
cation timeouts than regular sites. Presumably these sites have determined that
shorter timeouts are better for resource management without disrupting users.
The figure also has a mode around 240s for the high volume sites which is mostly
due to Google’s sites (e.g., google.com, google.fr, google.co.uk, gmail.com, etc.).
Similarly, we find that the high volume sites responsible for the mode around
30s to be mostly Akamai-accelerated sites. Finally, we find a mode around 60s
which we cannot readily explain. Overall, around 54% of high-volume sites and
74% of regular sites have application timeouts of over 100s.

We now turn to our packet trace and measure the time between the last ACK
in TCP’s three-way handshake and the first packet with the client’s HTTP
request. We find that 99% of the requests were sent within one second of com-
pleting the TCP connection establishment. However, the longest time a client in
our trace took to start sending the request after completing the TCP connection
establishment is 586 seconds.

Request Timeout: The request timeout is the time a Web server allots to a
request to completely arrive at the server after the first byte of the request has
arrived. To measure the request timeout we drip a 1000 byte request over the
network at a rate of one byte/sec and note when (or if) the server terminates the
connection. Transmitting the request at a byte/sec factors out a possible effect
of another timeout commonly applied to poll()/select() calls—which is usually
greater than one second. This experiment involves 492 high-volume and 15,033
regular sites.

Figure 1(c) shows the distribution of the measured request timeouts. The plot
indicates that 58% of the regular sites and 51% of the high volume sites keep
the connection open for the entire 1,000 seconds it took our client to send its
request, suggesting that the server does not impose a request timeout. Among
the sites that do set a smaller request timeout, high volume sites have generally
shorter timeouts than regular sites. Overall, 93% of the high volume sites and
96% of the regular sites have a request timeout period of over 30 seconds.

To assess how long Web clients normally take to transmit their requests, we
measure the time between the first and last packets of HTTP requests in our
trace. When the entire request fits in one packet, we report the time as zero.

216 Z. Al-Qudah, M. Rabinovich, and M. Allman

Group Impose IIS with IIS without
Limit limit limit

Top 500 24.1% 32.7% 5.1%
Regular 23.5% 59.0% 7.2%

Fig. 2. Response timeout

 0

 0.2

 0.4

 0.6

 0.8

 1

104103102101

C
D

F

Throughput (Kbps)

 Response transfer rate

Fig. 3. Response rate

We concentrate on HTTP GET requests in this experiment as they are typically
small. HTTP POST requests on the other hand could be arbitrarily large and
take longer to send. This suggests that these two request types should be handled
with different timeouts. We find that 85% of the requests fit into one packet.
Further, 99.9% of the requests are completed within 1 second. Still, the longest
time taken by a client in the trace is 592 seconds.

Response Timeout: The response timeout is the amount of time the server
allocates to delivering an HTTP response. This timeout guards against a client
that is alive (i.e., responds with TCP ACKs) but consumes data at a slow rate,
by either acknowledging few bytes at a time or advertising a small (or at the
extreme, zero) window. Since the client is responding the connection can only
be closed by the application and not by TCP.

We are aware of only one major Web server that enforces a response timeout—
alternatively presented as a minimum transfer rate—which is Microsoft’s IIS.
The default minimum transfer rate in IIS is 240 bytes/sec. Even though IIS
notationally imposes a minimum rate-based limit, internally this is converted to
a time-based limit. Specifically, IIS divides the response size by the minimum
transfer rate with the result used to arm a timer. If the timer fires and the
client has not fully consumed the response, IIS will close the connection [8].
This mechanism is efficient in that progress is checked only once. However, an
attacker can leverage this mechanism by finding a large object and retrieving it
at a low rate—which IIS will only detect after a long time.

To measure the response timeout, we open a connection to a Web server, send
a request for the home page, and consume the response at a low rate. Given the
IIS’s default rate limit of 240 bytes/sec, in our experiments we consume the re-
sponse at a lower rate of 100 bytes/sec. A site that delivers the entire response
at this rate is assumed to not impose a limit, otherwise a limit is in place. This
experiment involves 494 high volume sites and 15,034 regular sites. The table in
Figure 2 shows our results. We find that less than 25% of sites—regardless of
group—impose a limit on the transfer rate. Furthermore, 59% of the regular sites
that impose limits identify themselves as IIS, as expected. However, only 33% of
the high-volume sites that impose response time limits identify themselves as IIS

Web Timeouts and Their Implications 217

servers. There could be a myriad reasons that can explain the remaining sites,
including IIS servers obscuring their identities, servers behind transparent TCP
proxies that keep their own timers, custom built servers, intrusion prevention
systems impacting communication, etc. Interestingly, as shown in the last column
of the table, there is a small percentage of sites that identify themselves as IIS
servers and yet do not impose any response timeout. This could be caused by
site administrators disabling the response timeout or transparent TCP proxies
that obscure the actual Web server behavior.

We now consider the time needed by normal Web clients to consume responses.
This time is determined mainly by the round trip time for small responses and
by the available end-to-end bandwidth for large responses. Therefore, while a low
limit on the transfer rate such as IIS’s 240 byte/sec might be appropriate for
small responses (although whether one could tighten this limit at times of stress
is an interesting question for future work), we aim at assessing whether such a
low limit is appropriate for large responses, especially that attacks against this
timeout are particularly dangerous for large responses. To assess that, we con-
sider responses in the ICSI trace with size of at least 50 KB. We approximate the
end-to-end transfer rate as the response size divided by the time between the first
and last packet of the response. Figure 3 presents the distribution of response
transfer rates. The figure shows that nearly 99% of the responses (whether the
response was originated from an ISCI server or an external server) were trans-
ferred at over 10 Kbps (that is 1,250 bytes/second compared to the default of
240 bytes/second of IIS).

HTTP Keep-Alive: We next turn to persistent HTTP, which attempts to
make Web transfers efficient by keeping TCP connections open for more than one
HTTP request. The HTTP keep-alive timeout is defined as the time the server
will keep an idle connection open after successfully satisfying all requests. We
start by issuing requests for the home pages of the Web sites using nc6. We then
measure the time between receiving the last packet of the response and receiving
a FIN or RST from the server. This experiment involves 490 high volume and
14,928 regular sites Figure 1(d) shows the distribution of these times. The
problem of finding a cut-off point before which we assume servers do not maintain
persistent connections is relatively easy in this figure. Indeed, selecting the cut-
off point at 100ms or at 1 second produces similar results. Roughly, 65% of the
high volume sites and 76% of the regular sites maintain persistent connections.
These numbers indicate that the overall support of persistent connections has
not changed appreciably since Fall of 2000 [10]. Surprisingly, regular sites seem
to have shorter keep-alive timeouts than high volume sites. For instance, nearly
61% of the high volume sites that use persistent connections use a timeout over
30s while it is roughly 32% for the regular sites. We speculate that this is due
to the higher incidence of Apache with default configuration of 15s keep-alive
timeout among regular sites than it is among high volume sites.

Timeout Adaption: To get a preliminary intuition as to whether Web sites
currently vary their timeouts over time, we performed periodic probing of the

218 Z. Al-Qudah, M. Rabinovich, and M. Allman

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e

of
 s

ite
s

Variability level (%)

Potentially adapting sites (%)

Fig. 4. Variability of request timeouts

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f r
eq

ue
st

s
de

ni
ed

Attempt number

without adaptive timeout
with adaptive timeout

Fig. 5. Performance of adaptive timeouts

request timeout for the high volume sites. Specifically, we probed each site every
12 minutes for a week. We define a site as having an adaptive timeout if at least
m% of the measurements to the server are at least m% different from the mean
timeout to the given site (i.e., m is an experimental parameter). This procedure
is clearly not conclusive given that we may simply not have observed adaption
for a particular site because there was no reason for the site to adapt during
our measurements. Further, a timeout change could be caused by reasons other
than adaptability such as different requests arriving at different servers with
various timeout configurations or a server crash during a connection lifetime.
The percentage of sites found to be using an adaptive timeout as a function
of m is shown in Figure 4. We find that roughly 3% of the sites tested exhibit
behavior suggestive of timer adaption, as shown by the range of m values for
which this finding holds.

Summary: our measurements indicate that normal web clients perform their
activities quickly as compared to the time allowed by Web servers.1 Long time-
outs leave a server vulnerable to claim-and-hold attacks. These attacks have
been reported in practice [7,6], and we will demonstrate a simple attack uti-
lizing these timeouts in the next section. Short of complex external intrusion
detection mechanisms, a naive way to counter these attacks would be to in-
crease the number of allowable concurrent connection slots at the server. But
this may cause performance degradation in case the slots are consumed by legit-
imate connections, since the number of concurrent connections is driven by the
server capacity. Furthermore, although our measurements show that current long
timeouts are generally unneeded by normal Web clients, slashing them blindly
would run counter to the general networking tenet of allowing liberal client
behaviors. Therefore, we suggest slashing these timeouts only at the time of

1 While clients in our trace are generally well-connected, the characteristics of dial-
up connections should not affect this finding. Indeed, dial-up connections offer a
last-mile bandwidth of 30-40 Kbps—well within the 99th percentile we observe in
our trace and also well above the 240 bytes/sec IIS requires. Furthermore, the few
hundreds of milliseconds these connections add still leave the time needed by these
connections to perform activities much shorter than allowed by Web servers.

Web Timeouts and Their Implications 219

stress.2 While our measurements suggest that a small fraction of sites might
already be varying their timeouts, popular Web servers such as Apache and
IIS do not offer such mechanisms—which would limit the spread use of these
mechanisms.

4 Adaptive Timeouts

We now present our implementation of an adaptive timeout mechanism and
demonstrate its usefulness. Our implementation involves changes to the Linux
TCP stack and Apache web server (version 2.2.11). The kernel extension allows
an application to specify a target response transfer rate and to toggle the kernel
between a conservative (current behavior) and aggressive (close any connection
below the target transfer rate) modes. The kernel monitors the transfer rate of
connections only during periods of non-empty TCP send queue to avoid penal-
izing a client for the time the server has no data to send. Our modified Apache
sets the target transfer rate parameter (500 bytes/second in our experiments)
and monitors the connection slots. Once allocated slots reach a certain level
(90% of all slots in our experiments), it (a) reduces its application timeout from
its current default of 300s to 3s and (b) toggles the kernel into the aggressive
mode. While a complete implementation of our framework would consider all
timeouts, our current implementation covers application timeout, TCP timeout,
and response timeout.

To demonstrate how such a simple mechanism can protect sites from claim-
and-hold attacks, we set up a Web site with Linux OS and Apache Web server,
both using out-of-the box configurations except with Apache configured to allow
a higher number of concurrent connections (256 vs. default 150). We then set up
a machine that launches an attack targeting the response timeout. In particular,
it attempts to keep 300 concurrent connections by requesting a 100 KB file and
consuming it at a rate of 200–300 bytes/second on each of these connections.
Another machine simulates legitimate traffic by probing the server once every
10 seconds by opening 100 connections to the server with a 5 second timeout
period (i.e., a request fails if not satisfied within 5 seconds). This process repeats
100 times. The solid line on Figure 5 shows the results. The attack starts around
probe number five. After a short delay (due to Apache’s gradual forking of
new processes) the attacking host is able to hold all the connection slots and
thus completely deny the service to legitimate connections. Further, the attacker
accomplishes this at the cost of consuming less than 1Mbps (300 connections with
at most 300 bytes/s each) of its own bandwidth—available to a single average
residential DSL user let alone a botnet. The dashed line in Figure 5 shows the
2 One can imagine applications, as possible with AJAX, where HTTP connections

could have long idle periods. Our trace accounts for all HTTP interactions including
AJAX, and as discussed, did not encounter such connections in large numbers. We
note that the content provider controls both ends of the connection in these applica-
tions. Therefore, these connections could either be treated differently by the server
or the applications can be written to handle possible interruptions gracefully.

220 Z. Al-Qudah, M. Rabinovich, and M. Allman

results of repeating the attack on our modified platform. As seen, our simple
mechanism allows the server to cope with the attack load without impinging on
legitimate connections by quickly terminating attack connections which leaves
open slots for legitimate traffic. Our intent in this experiment is to show that a
simple system can perform well. We consider a full study of a range of decision
heuristics out of scope for this paper. Further, such decisions can be a policy
matter and therefore cannot be entirely evaluated on purely technical grounds.

5 Conclusions

In this paper we study Internet timeouts from two perspectives. We first probe
the timeout settings in two sets of operational Web sites (high volume and regular
sites). We then study the characteristics of normal Web activity by analyzing
passively captured Web traffic. The major finding from these two measurements
is that there is a significant mismatch between the time normal Web transactions
take and that which Web servers allow for these transactions. While this reflects a
conservativeness on the Web server’s part it also opens a window of vulnerability
to claim-and-hold DoS attacks whereby an attacker claims a large fraction of
connection slots from the server and prevents their usage for legitimate clients.

Rather than reducing servers’ timeouts to match normal Web activity—a
solution that could reduce the tolerance of the server to legitimate activity—we
suggest a dynamic mechanism that is based on continuous measurements of both
connection progress and resource contention on the server. A decision to reduce
the timeouts and drop connections accomplishing little or no useful work is only
taken when the server becomes resource constrained. We demonstrate how this
simple mechanism can protect Web servers. Our mechanism is implemented in
a popular open source Web server and is available for download [1].

References

1. Project Downloads, http://vorlon.case.edu/~zma/timeout_downloads/
2. Al-Qudah, Z., Lee, S., Rabinovich, M., Spatscheck, O., der Merwe, J.V.: Anycast-

aware transport for content delivery networks. In: 18th International World Wide
Web Conference, April 2009, p. 301(2009)

3. Alexa The Web Information Company, http://www.alexa.com/
4. Apache HTTP server - Security tips, http://httpd.apache.org/docs/trunk/

misc/security_tips.html

5. Barford, P., Crovella, M.: A performance evaluation of hyper text transfer proto-
cols. SIGMETRICS, 188–197 (1999)

6. objectmix.com/apache/672969-re-need-help-fighting-dos-attack-apache.

html

7. http://www.webhostingtalk.com/showthread.php?t=645132

8. Microsoft TechNet Library, http://technet.microsoft.com/en-us/library/

cc775498.aspx

9. Keynote, http://www.keynote.com/

http://vorlon.case.edu/~zma/timeout_downloads/
http://www.alexa.com/
http://httpd.apache.org/docs/trunk/misc/security_tips.html
http://httpd.apache.org/docs/trunk/misc/security_tips.html
objectmix.com/apache/672969-re-need-help-fighting-dos-attack-apache.html
objectmix.com/apache/672969-re-need-help-fighting-dos-attack-apache.html
http://www.webhostingtalk.com/showthread.php?t=645132
http://technet.microsoft.com/en-us/library/cc775498.aspx
http://technet.microsoft.com/en-us/library/cc775498.aspx
http://www.keynote.com/

Web Timeouts and Their Implications 221

10. Krishnamurthy, B., Arlitt, M.: PRO-COW: Protocol compliance on the web: A
longitudinal study. In: USENIX Symp. on Internet Technologies and Sys. (2001)

11. nc6 - network swiss army knife, http://linux.die.net/man/1/nc6
12. Park, K., Pai, V.S.: Connection conditioning: architecture-independent support for

simple, robust servers. In: USENIX NSDI (2006)
13. Qie, X., Pang, R., Peterson, L.: Defensive programming: using an annotation toolkit

to build DoS-resistant software. SIGOPS Oper. Syst. Rev. 36(SI) (2002)
14. Rabinovich, M., Wang, H.: DHTTP: An efficient and cache-friendly transfer pro-

tocol for web traffic. In: INFOCOM, pp. 1597–1606 (2001)
15. SEOBOOK.com, http://tools.seobook.com/link-harvester/
16. TCP protocol - Linux man page, http://linux.die.net/man/7/tcp

http://linux.die.net/man/1/nc6
http://tools.seobook.com/link-harvester/
http://linux.die.net/man/7/tcp

A Longitudinal View of HTTP Traffic�

Tom Callahan1, Mark Allman2, and Vern Paxson2,3

1 Case Western Reserve University
2 International Computer Science Institute

3 University of California, Berkeley

Abstract. In this paper we analyze three and a half years of HTTP traffic ob-
served at a small research institute to characterize the evolution of various facets
of web operation. While our dataset is modest in terms of user population, it is
unique in its temporal breadth. We leverage the longitudinal data to study var-
ious characteristics of the traffic, from client and server behavior to object and
connection characteristics. In addition, we assess how the delivery of content is
structured across our datasets, including the use of browser caches, the efficacy
of network-based proxy caches, and the use of content delivery networks. While
each of the aspects we study has been investigated to some extent in prior work,
our contribution is a unique long-term characterization.

1 Introduction

In this paper we study logs of web traffic collected at the border of a small research
institute over a three and a half year period (2006–mid-2009). There are an average of
160 active users per month in our dataset. While this is a relatively small population,
we gain insight into the evolution of web traffic by taking a longitudinal view of the
traffic. This investigation serves to re-appraise and update previous results. We believe
our contribution has utility in informing the community’s mental models about myriad
aspects of how the modern web works—including things like transaction types and
sizes, as well as how web content delivery is accomplished through content delivery
networks, browser caches and the like. In addition, a multi-faceted view of web content
delivery is useful in setting up realistic testbeds and simulations to accurately reflect the
make-up and structure of today’s web.

Our methodology employs web traffic logs from our intrusion detection system col-
lected over three and a half years to study various aspects of the web. We describe
our data collection and analysis methodology in § 2. We then characterize a number of
facets of the traffic at the transaction-level in § 3. We next consider various aspects of
user-driven behavior, such as object popularity and the impact of caching in § 4. Finally,
we consider the structure of the web page delivery process, including the use of CDNs
in § 5. We briefly touch on related work in § 6 and summarize in § 7.

2 Data and Methodology

For this work we use logs of web traffic taken at the border connecting the Inter-
national Computer Science Institute (ICSI) with its ISP. We use the Bro intrusion
� This work is supported in part by NSF grants CNS-0831535 and CNS-0831780.

A. Krishnamurthy and B. Plattner (Eds.): PAM 2010, LNCS 6032, pp. 222–231, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Longitudinal View of HTTP Traffic 223

100

1K

10K

100K

1M

10M

2006 2007 2008 2009

Year

Unique Server IPs
Unique Server Hostnames

Connections
Requests

HTTPS connections

Fig. 1. Dataset Summary

1K

10K

100K

1M

10M

2006 2007 2008 2009

T
ra

ns
ac

tio
ns

Year

GET
POST
Other

Fig. 2. HTTP Transaction Types

detection system [12] to reconstruct HTTP [7] sessions from the observed packet
stream. These sessions are then logged using Bro’s standard HTTP logging policy
(found in http.bro in the Bro package). The logs include timestamps, involved IP
addresses, URLs, HTTP transaction types and sizes, hostnames and HTTP response
codes. The dataset used in this paper runs from January 2006 through July 2009. Due
to the size of the dataset we analyze only the first seven days of each month for lo-
gistical reasons. We do not believe this biases our results. The original logs include
all incoming and outgoing HTTP traffic. However, we winnowed to only the outgoing
connections (i.e., ICSI clients) as we do not wish to bias our results by the particular
characteristics of the few server instances at ICSI. Of the 28.8 million total connections
from the first seven days of each month in our dataset we retain 16.9 million as initiated
by ICSI clients. In figure 1 we show the high-order characteristics of the dataset. The
overall number of web object requests, HTTP connections, HTTPS connections, server
hostnames and server IP addresses show general stability over time.1 Since the HTTPS
connections are encrypted we cannot further analyze them in this work. We identify
“web servers” in two different ways: by IP address and by hostname. Due to the use of
content delivery networks (CDNs) a particular IP address may host content for multi-
ple distinct hostnames. In fact, in the figure we see this effect as there are more server
hostnames than server IP addresses (this is studied in more detail in § 5). However, note
that the opposite is also true: that a given hostname could have multiple IP addresses
(e.g., to serve content from a close source or for load balancing). Finally, we note that
the number of users is modest—an average of 160 per month with a standard deviation
of 13—our contribution is the longitudinal tracking of this user population.

Finally, we note that there are two versions of Bro HTTP policy scripts used in
gathering the data we employ in this study with one crucial difference. For the first ten
months of 2006 the scripts gathered logical web sessions together as one logical entity
under one identifier regardless of the number of underlying TCP connections used to
obtain the components of the web pages. In these log files this process obscures the
number of TCP connections used to transfer the data. Due to the onerous amount of
state required to stitch together a web session from disparate TCP connections, starting

1 The number of connections has a dramatic increase in December 2007. We delve into this in
detail in § 5.

224 T. Callahan, M. Allman, and V. Paxson

in mid-October 2006 the scripts were changed to simply gather together all activity on
a per-TCP connection basis. For most of our analysis the difference in logging is not
important, but for analysis that requires an understanding of the number of underlying
TCP connections we start our analysis in November 2006 instead of January 2006. In
figure 1 the reported number of connections for the first 10 months of the dataset is
actually the number of web sessions (which is reported to give the reader context even
though the precise number of connections is unknown).

3 HTTP Transaction Characterization

We first focus on characterizing client HTTP transactions. First, figure 2 shows the
transaction type breakdown over time. Over the course of our dataset the majority of
observed transactions—approaching 90% in most months—are requests for data (GET
transactions). Most of the remainder of the transactions—around 10%—involve the user
uploading data to the web server (POST transactions). A small number of additional
transaction types are also observed (HEAD, PROPFIND, etc.). Together these additional
types account for less than 1% of the transactions in most months. We note that in
absolute terms the number of GETs and POSTs have a slight increasing trend over our
observation period (note, the figure is plotted on a log scale and therefore the increase is
less readily apparent). Further, the number of POSTs observed increases quickly at the
beginning of our dataset. This is caused by a dramatic uptick in the use of GMail during
early 2006. Non-GMail POST requests are more steady and only slowly increasing
during this period.

Figures 3 and 4 show the average and median size of GET and POST transactions
over time. Both transaction types show a generally increasing average transaction size
over time which is likely explained by users both increasingly downloading richer con-
tent and participating in so-called web 2.0 sites that host user-provided content. The
median results for POST transactions are interesting as they remain small and fairly
constant over the study period. This indicates that simple form input that only results in
the transmission of a small amount of data is prevalent throughout. For the GET requests
we find the medians are generally an order of magnitude less than the averages. This is
expected due to many previous studies that show most responses are short and a few re-
sponses carry most of the bytes—i.e., web traffic is heavy-tailed [5]. Figure 5 shows the
distribution of GET response sizes for July 2 2007 as a typical example of the per-day
distribution (this date was chosen arbitrarily as a weekday roughly in the middle of the
study period). Finally, we note that the average GET response size in December 2006 is
four times the size of the surrounding months. This anomaly is caused by a single client
fetching a large series of big files. We removed this client from our analysis and plot
a point on the graph to show the average size of GET responses without this particular
client. Without the energetic client the average is similar to the surrounding months.

Figure 6 shows the median duration of HTTP connections, as well as the median
time between establishing a connection and the client issuing an HTTP request. We
note that the median connection duration is reduced between November and December
2007 which is explained by a reduction in the use of persistent HTTP connections

A Longitudinal View of HTTP Traffic 225

0

10K

20K

30K

40K

50K

60K

70K

80K

90K

100K

2006 2007 2008 2009

M
ea

n
T

ra
ns

ac
tio

n
Si

ze

Year

POST Request sizes
GET Response sizes

Fig. 3. Average transaction sizes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2006 2007 2008 2009

M
ed

ia
n

T
ra

ns
ac

tio
n

Si
ze

s

Year

POST Request sizes
GET Response sizes

Fig. 4. Median transaction sizes

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

10 1KB 100KB 10MB 1GB

C
C

D
F

Object Size (Bytes)

Fig. 5. CCDF of GET sizes for July 2 2007

 0.01

 0.1

 1

 10

2007 2008 2009

Se
co

nd
s

Year

Median Connection Duration
Median Time to First Request

Fig. 6. Connection duration and request time

(see § 5). As connections are used for fewer objects their duration drops. Before De-
cember 2007 the median connection duration was around 1 second and after this point
the median duration falls to 100–200 msec. The short duration of connections suggests
that seemingly small changes to the delivery process that save modest amounts of wall-
clock time may ultimately benefit the user experience more than one might think at first
blush—e.g., Early Retransmit [2] and reducing TCP’s traditional exponential backoff
between retransmissions [10].

Figure 6 also illustrates the time between establishing a connection and sending an
HTTP request. In related work [1] we study claim-and-hold attacks on web servers
whereby a malicious client opens a connection and does not send an HTTP request to
force the server to allocate resources that can then not be used for legitimate traffic.
In figure 6 we show that the median time before an HTTP request is issued is roughly
constant—at just under 100 msec—in our dataset, which agrees with the results in [1].
However, we also note that we find successful transactions whereby the time between
connection establishment and transmission of the HTTP request is quite a bit longer. In
particular, we find this with GMail. The 99th percentile interval is roughly 246 seconds
for GMail in each year, while the interval ranges from 14 seconds in 2006 to 55 seconds
in 2009 for non-GMail traffic. This indicates that expecting short intervals may not be
the right model for newer web application-driven web pages.

226 T. Callahan, M. Allman, and V. Paxson

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1 10 100 1K 10K 100K 1M

C
C

D
F

Requests

2006
2007
2008
2009

Fig. 7. Requests per hostname

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1 10 100 1K 10K

C
C

D
F

Requests

2006
2007
2008
2009

Fig. 8. Requests per object

4 User Behavior

Figure 7 shows the distribution of requests per server hostname. As discussed in § 5 all
requests to a server name such as “www.cnn.com” are grouped together in this plot no
matter what IP address handles the request. We see that across the years in our study the
distribution of requests per hostname is similar. Many server hostnames are accessed
infrequently—with the median being less than 10 requests per year. However, a small
number of server hostnames are quite popular—with the maximum number of requests
per hostname exceeding one million per year. We also observe that there is change in
the top hostnames over time. We determined the top ten hostnames per year and find
that four hostnames are within the top ten for all four years of our survey, one hostname
is in the top ten in three of the years, two hosts appear in the list for two years and
17 hostnames appear only once across the four years.

Next we turn to object popularity. Figure 8 shows the distribution of the number of
requests per object. The distributions are similar across the years. As seen in the plot,
request popularity fits exceedingly well to a Zipf-like distribution. Across more than
3 orders of magnitude, the fall-off in the distribution matches closely to a Pareto dis-
tribution with α = 1. Around 90% of the objects are accessed only one time.2 Further,
only a small number of objects are fetched more than 10 times. That said, there are
some popular objects that are requested thousands of times over the course of a year.

Next, figure 9 shows the distribution of the unique number of objects (determined by
URL) per hostname over time. We again observe stability across the years of our study.
This plot shows that one-third of the hostnames we encounter (regardless of year) serve
only a single unique object. Further, two-thirds of the hostnames serve ten or fewer
objects. Similar to many other aspects of web traffic a small number of hostnames
serve many web objects. For instance, roughly 5% of the hostnames provide more than
100 objects and hostnames top out at providing over one million objects.

Object popularity has a direct bearing on the usefulness of caching. We use our data
to investigate both visible end-host caching and also potential savings from a network-
based cache with our results illustrated in figure 10. First, we look at the number of

2 As unique sets of parameters at the end of a URL generally yield distinct outputs, we consider
the entire URL, including parameters, as a distinct object.

A Longitudinal View of HTTP Traffic 227

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1 10 100 1K 10K 100K 1M

C
C

D
F

Objects

2006
2007
2008
2009

Fig. 9. Unique objects per hostname

100MB

1GB

10GB

100GB

2006 2007 2008 2009

B
yt

es

Year

Total Bytes/month from GET Responses
Total Cacheable Bytes/month (GET)

Total Bytes Saved from HTTP 304s (GET)

Fig. 10. Cond. GET and caching savings

bytes visibly saved by end-host caches using conditional GET requests. These requests
call for a client re-requesting an object in the browser cache to include the timestamp of
this cached object in the GET request. If the object has been updated the server will re-
send it and otherwise will send a 304 (“not modified”) response to the client, signaling
that the version the client has is correct. As shown in the figure the number of bytes
fetched would increase by roughly 10% without these conditional GET requests. The
use of conditional GETs across the dataset increases in roughly the same manner as the
overall number of bytes downloaded.

We next investigate the number of additional bytes that could benefit from caching
at the institute-level—i.e., with some shared proxy cache at the border shared by all
users. We first identify unique objects using the URL (including hostname) and object
size. Ideally we would include a stronger notion such as a hash of the content itself, but
our logs do not contain such information. We crunched 5.75 days worth of full-payload
packet traces from January 2010 to assess the accuracy of our heuristic. We form tuples
of URLs and sizes, (u, s), from the packet traces. In addition, for each we compute an
MD5 hash of the object. For each (u, s) we record the number of MD5s observed. We
find that 1.4% of the 846K (u, s) pairs in the trace have multiple MD5s. Further, we
find this represents 6.7% of the bytes fetched over the course of the trace. Therefore,
while we assume that if the object size stays the same the object has not changed this
is wrong in a small number of cases. In addition, we calculate the amount of cachable
data for each month in isolation and without any notion of timing out the objects or
imposing a limit on the number or size of objects held in the cache. Therefore, our
results are an upper bound on how an actual institute-wide cache would work with real-
world constraints and a better understanding of the uniqueness of objects. As shown
in figure 10 the percentage of bytes that could be cached by a network-wide proxy
is 10–20% across most of our study. The number of cachable bytes does increase in
2009—when generally more than 25% of the GET requests could plausibly be handled
by a cache. In 2009 to get the caching benefit suggested in the plot would require over
10 GB of storage space—which is quite modest in modern servers. We note that our
caching results may be quite different if the population of users was larger.

228 T. Callahan, M. Allman, and V. Paxson

5 Server Structure

Web traffic is composed of a series of HTTP transactions that in turn utilize TCP for
reliable data transfer. HTTP uses one transaction per web object. Early HTTP used a
separate TCP connection for each HTTP transaction, however with persistent HTTP
connections an arbitrary number of HTTP transactions can be conducted over a single
TCP connection. Figure 11 shows the total number of TCP connections we observe for
the sampled week of each month of our dataset, as well as the average number of HTTP
transactions per TCP connection. (Note, since these results depend on a solid under-
standing of connections, we do not include data before November 2006 as discussed
in § 2.) The plot shows a fairly stable number of connections and average transactions
per connection rate except for one impulse between November and December 2007. At
that point we observe the re-use of TCP connections dropped by an order of magnitude.
This results in a dramatic increase in the number of web connections observed. Note,
figure 1 shows that the overall number of HTTP requests does not differ greatly across
this event. That is, the same amount of content is being transferred, but the particulars
of the underlying delivery has changed.

We believe this change in delivery pattern is due to a software change on the web
clients. To verify this we determined the top 100 servers in each month by the overall
number of requests (regardless of number of connections). For each server we then
calculate the average number of transactions per connection. We find 66 servers to be
common across the top 100 lists from the two months. We then calculate the difference
in the average number of requests per connection for each of these 66 servers and find
that in all but one instance the average drops in December. And, in over 70% of the
cases the average requests per connection drops by at least 10 requests. This indicates
that the use of persistent connections has dropped across the board and is not caused
by some popular server curtailing support for persistent connections or some heavy-
hitter client. We therefore conclude that this is a client policy change that is quite likely
caused by a institute-wide web browser upgrade.3

We next turn our attention to how web sites are structured to serve content. Figure 12
shows the distribution of the number of hostnames each server IP address takes on over
the course of each year in our study. CDN hosts can accommodate a wide range of
logical hostnames using a server with a single IP address. The distributions are similar
across the years with around 80% of the server IP addresses we encounter mapping to a
single server hostname. While roughly 10% of the server IPs map to two hostnames we
observe a small percentage (≈5%) of server IPs accommodating three or more IP ad-
dresses. Further, there are a handful of IP addresses that serve traffic for a large number
of hostnames. Our data shows that the maximum number of hostnames observed for a
single IP address is 477, 878, 1784 and 1353 for the years 2006–2009 respectively. This
shows a definite increase over time. (Note, since the data only covers half of 2009 the
number may well increase when the entire year is considered.)

3 The ICSI system administrators report a minor version upgrade of Firefox (from 2.0.0.8 to
2.0.0.10) during this timeframe. While we find nothing in the Firefox change-log that indicates
a difference in the use of persistent HTTP connections we believe the defaults more than likely
changed in 2.0.0.10 given the observed behavior so dramatically changes at the time of the
upgrade.

A Longitudinal View of HTTP Traffic 229

1

10

100

1K

10K

100K

1M

10M

2007 2008 2009

Year

Average Requests per Connection
Total Number of Connections

Fig. 11. Conns. / week and requests / conn

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1 10 100 1K

C
C

D
F

Hostnames

2006
2007
2008
2009

Fig. 12. Unique hostnames per IP

In addition to using one IP address to serve content from multiple server hostnames
CDNs also use multiple IP addresses to serve content from a common server hostname.
Generally this is done to transmit content from a server that is close to the requesting
client and/or for load balancing purposes. Figure 13 shows the distribution of the num-
ber of IP addresses used for each hostname observed for each year in our dataset. The
figure shows that 80–90% of the hostnames are served by one IP address. Another 5–
10% of the server hostnames are handled by two IP addresses. Approximately 5% of the
server hostnames are associated with three or more IP addresses over the course of the
year. While relatively rare we find many hostnames that have dozens to hundreds of IP
addresses over the course of a year. In particular, we note that we observe a maximum
of 144, 183, 340 and 388 IP addresses for a single hostname in 2006–2009 respectively.
This shows an increase in the number of hosts brought to bear to deliver content over
the course of our study for some hostnames. While this trend is not general across all
hostnames we believe it may indicate larger and more dynamic CDN behavior.

We next wanted to assess the degree to which content providers are relying on the
content delivery networks (CDNs) to deliver their data. In this initial exploration we
focus on the Akamai CDN but intend to broaden our consideration as part of our fu-
ture work. A colleague provided us with a list of partial Akamai hostnames manually
gathered for another project [15]. The partial hostnames in this set were determined
from downloading known Akamai-based web pages from 300-400 locations around the
world. The hostnames represent 12K Akamai IP addresses [15] which represents an
undercount of Akamai’s footprint (e.g., Akamai is cited as having 40K servers in [13]).
Therefore, our accounting of Akamai traffic is highly likely to be an underestimate. We
correlate the Akamai hostnames and the DNS logs produced in conjunction with the
web logs by Bro. For each web log we use the corresponding DNS log to find resolu-
tions for the Akamai names and record the associated IP addresses. We can then easily
assign web traffic as Akamai traffic or non-Akamai traffic.

Figure 14 shows the percentage of the bytes fetched in response to GET requests
that are handled by Akamai servers. Across the time period of our study we find that
in general 15–30% of the bytes are delivered by Akamai.4 However, recall that this is

4 While we see a dip to 3% at the end of 2006, this is caused by the traffic spike at the same
time—as shown in figure 3—which represents traffic caused by a single client to a non-Akamai
server. This client excluded, 13% of the traffic involves Akamai.

230 T. Callahan, M. Allman, and V. Paxson

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1 10 100

C
C

D
F

Unique IPs

2006
2007
2008
2009

Fig. 13. Unique IPs per hostname

0

5

10

15

20

25

30

35

40

45

50

2006 2007 2008 2009

G
E

T
 b

yt
es

 f
ro

m
 A

ka
m

ai
 (

%
)

Year

Fig. 14. Traffic using Akamai CDN servers

a lower bound due to our classification methodology. Also note that over the years of
our study ICSI users accessed Akamai served content from over 9K distinct Akamai
servers. The number of Akamai servers observed in a each year in our dataset is: 2.5K,
3.4K, 4.5K and 3K for 2006–2009 respectively. (Note, the 2009 count is for only half
the year and so may well increase if the entire year is considered.)

6 Related Work

The large body of literature dedicated to empirical evaluations of web traffic is too vast
to catalog in the space available here. A good overview, including pointers to much of
the literature, appears in [9]. The topics that have been studied are diverse and numer-
ous, with some examples being: characterization and modeling work [5,3], performance
analysis [6], analysis of web applications [17], analysis of web technologies [14], as-
sessments of web caching [16,4] and studies of the HTTP protocol itself [11,8]. Our
work is quite similar, but serves to add additional longitudinal data to the community’s
body of work.

7 Summary

In this paper we have employed a three and a half year longitudinal dataset of web
activity to assess web operations from numerous angles. This study represents both a
reappraisal of previous work and a broadening of the viewpoint in the temporal dimen-
sion. We find that some aspects of web traffic have been fairly static over time (e.g.,
distribution of transaction types) while others have changed (e.g., average size of GET
and POST transactions). We also develop a view of the structure of the web, including
an initial understanding of the behavior of browser caches and the impact of content
distribution networks, which we find to be more prominent as time progresses. While
there are obviously more aspects of web operations to assess than could be fit in this
initial paper, we believe our contribution will be useful in grounding the community’s
mental models and experiments in long-term empirical observation.

A Longitudinal View of HTTP Traffic 231

References

1. Al-Qudah, Z., Rabinovich, M., Allman, M.: Web Timeouts and Their Implications. In: Pas-
sive and Active Measurement Conference (April 2010)

2. Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., Hurtig, P.: Early Retransmit for
TCP and SCTP, Internet-Draft draft-ietf-tcpm-early-rexmt-01.txt (work in progress) (January
2009)

3. Arlitt, M., Williamson, C.: Internet Web Servers: Workload Characterization and Implica-
tions. IEEE/ACM Transactions on Networking (October 1997)

4. Barford, P., Bestavros, A., Bradley, A., Crovella, M.: Changes in Web Client Access Patterns:
Characteristics and Caching Implications. In: Proc. WWW, vol. 2 (1999)

5. Barford, P., Crovella, M.: Generating Representative Web Workloads for Network and Server
Performance Evaluation. In: ACM SIGMETRICS, July 1998, pp. 151–160 (1998)

6. Barford, P., Crovella, M.: Measuring Web Performance in the Wide Area. In: Performance
Evaluation Review: Special Issue on Network Traffic Measurement and Workload Charac-
terization (August 1999)

7. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Berners-Lee, T.: Hypertext Transfer Proto-
col – HTTP/1.1. RFC 2068 (January 1997)

8. Krishnamurthy, B., Arlitt, M.: PRO-COW: Protocol compliance on the web: A longitudinal
study. In: USENIX Symp. on Internet Technologies and Sys. (2001)

9. Krishnamurthy, B., Rexford, J.: Web Protocols and Practice. Addison-Wesley, Reading
(2001)

10. Mondal, A., Kuzmanovic, A.: Removing Exponential Backoff from TCP. ACM Computer
Communication Review 38(5) (October 2008)

11. Nielsen, H., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H., Lilley, C.: Network
Performance Effects of HTTP/1.1, CSS1, and PNG. In: ACM SIGCOMM (September 1997)

12. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works 31(23–24) (1999)

13. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the Electric Bill for
Internet-Scale Systems. In: ACM SIGCOMM (August 2009)

14. Schneider, F., Agarwal, S., Alpcan, T., Feldmann, A.: The New Web: Characterizing AJAX
Traffic. In: Passive and Active Measurement Conf. (2008)

15. Triukose, S., Wen, Z., Rabinovich, M.: Content Delivery Networks: How Big is Big Enough?
In: ACM SIGMETRICS poster (2009)

16. Wills, C., Mikhailov, M.: Studying the impact of more complete server information on Web
caching. In: Proc. of the 5th Intl. Web Caching and Content Delivery Workshop (2000)

17. Zink, M., Suh, K., Gu, Y., Kurose, J.: Watch Global, Cache Local: YouTube Network Traces
at a Campus Network - Measurements and Implications. In: Proc. Fifteenth Annual Multi-
media Computing and Networking, ACMMCN (2008)

Author Index

Alcock, Shane 111
Allman, Mark 211, 222
Al-Qudah, Zakaria 211
Amante, Shane 11
Antoniades, Demetris 131
Arlos, Patrik 61

Barford, Paul 171
Bonaventure, Olivier 81

Callahan, Tom 222
Chang, Chia-Wei 191
claffy, kc 101
Colitti, Lorenzo 141

Dhamdhere, Amogh 101
Diot, Christophe 71
Donnet, Benoit 81
Dovrolis, Constantine 131, 151

Eriksson, Brian 171

Feldmann, Anja 161
Fiedler, Markus 61
Fomenkov, Marina 101

Ganjali, Yashar 201
Gass, Richard 71
Gerber, Alexandre 191
Ghobadi, Monia 201
Greenberg, Albert 41
Gunderson, Steinar H. 141

Huang, Cheng 41
Huffaker, Bradley 101
Hu, Y. Charlie 41

Jen, Dan 11

Karrenberg, Daniel 111
Kern, Randy 41
Kline, Erik 141

Lad, Mohit 11
Lakshmanan, Sriram 51
Li, Jin 41
Lin, Bill 191
Loguinov, Dmitri 121

Maier, Gregor 161
Markatos, Evangelos P. 131

Matthews, Warren 151
McGregor, Tony 111
McPherson, Danny 11
Mérindol, Pascal 81
Miller, Robert 151

Nowak, Robert 171

Oliveira, Ricardo 91

Pansiot, Jean-Jacques 81
Park, Jong Han 11
Pathak, Abhinav 41
Paxson, Vern 222

Rabinovich, Michael 211
Rangarajan, Sampath 51
Rasti, Amir Hassan 1
Refice, Tiziana 141
Rejaie, Reza 1
Rossi, Dario 31
Ross, Keith W. 41

Schneider, Fabian 161
Schwartz, Yaron 21
Sen, Subhabrata 191
Shavitt, Yuval 21
Sivakumar, Raghupathy 51
Smith, Matt 121
Sommers, Joel 171
Spatscheck, Oliver 191
Sundaresan, Karthikeyan 51

Testa, Claudio 31
Tootoonchian, Amin 201

Valenti, Silvio 31

Wang, Y. Angela 41
Weaver, Rhiannon 181
Weinsberg, Udi 21
Willinger, Walter 1

Zhang, Hongli 91
Zhang, Lixia 11, 91
Zhang, Yu 91

	Title Page
	Preface
	Organization
	Table of Contents
	Characterizing the Global Impact of P2P Overlays on the AS-Level Underlay
	Introduction
	The Problem and Our Methodology
	Capturing the Overlay Topology
	Estimating the Load of Individual Overlay Connections
	Inferring AS-Paths for Individual Overlay Connections
	Determining Aggregate Load on and between Individual ASes

	Effect of Overlays on the Underlay
	Conclusion and Future Work
	References

	Investigating Occurrence of Duplicate Updates in BGP Announcements
	Introduction
	Background
	Definition of Duplicates
	BGP Peering Topologies

	Impact of Duplicates on Routers
	Understanding Duplicates across Time and Space
	Are Duplicates Observed at All Times?
	Are Duplicates Observed from All Networks?
	Where Do Duplicates Originate?

	Discovering the Cause of Duplicates
	Passive Measurement Using iBGP and eBGP Data
	The Cause of Duplicates

	Differences in the Amount of Observed Duplicates
	Conclusion
	References

	A Measurement Study of the Origins of End-to-End Delay Variations
	Introduction
	Quantifying Route and Delay Stability
	Definitions
	Measurement Setup
	Pair and Route Identification
	Route Stability
	Delay Stability

	Dataset Analysis
	Distribution of Vantage Points
	Dataset Statistics

	Results
	Route Stability
	Origin of Delay Instability

	Conclusion
	References

	Yes, We LEDBAT: Playing with the New BitTorrent Congestion Control Algorithm
	Introduction
	Methodology and Preliminary Insights
	Experimental Results
	Single Flow: Bottleneck Capacity, Delay and Access Impact
	Multiple Flows

	Related Work
	Conclusions
	References

	Measuring and Evaluating TCP Splitting for Cloud Services
	Introduction
	AWebSearchCaseStudy
	Search Response: Empirical Results
	Simple Model for Response Latency

	Experimental TCP Splitting System
	Measurement System
	Measurement Results

	Related Work
	Conclusion and Future Work
	References

	The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks
	Introduction
	Background
	Measurement Methodology
	Spatial Reuse with Directional Antennas
	Aggregate Rate of Directional Links
	Analyzing the Performance Degradation

	Alternate Strategy for Spatial Reuse
	Conclusion
	References

	Influence of the Packet Size on the One-Way Delay in 3G Networks
	Introduction
	Method
	Setup
	Traffic Generation
	Delay Calculation
	Delay Components

	Evaluation of Mobile Networks
	Conclusions and Outlook
	References

	An Experimental Performance Comparison of 3G and Wi-Fi
	Introduction
	Experiment Description
	Server Setup
	Wi-Fi Client
	3G Client
	The Experiment Route

	Results
	3G vs Wi-Fi Downloads
	3G vs Wi-Fi Uploads

	Related Work
	Conclusion
	References

	Extracting Intra-domain Topology from mrinfo Probing
	Introduction
	Collection Methodology and Dataset
	Router-to-AS Mapping
	Router-to-AS Algorithm
	Evaluation
	Point to Point Links and Switches

	Related Work
	Conclusion
	References

	Quantifying the Pitfalls of Traceroute in AS Connectivity Inference
	Introduction
	BGP vs. Traceroute
	Related Work
	DataSets
	AS Path Pair Data
	AS Adjacencies
	IXP and Sibling Lists

	Mismatch Analysis: Breaking Paths into Fragments
	Inferring the Causes of Mismatch
	Accuracy of Traceroute-Derived AS Connectivity
	Conclusion
	References

	Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers*
	Introduction
	Datasets and Methodology
	Datasets
	Alias Resolution
	AS Assignment Methods
	Evaluation of AS Assignment Heuristics

	Applications of AS Assignment
	Toward Representative Dual Topologies of the Internet
	Toward Accurate AS-Traceroute

	Related Work
	Conclusions
	References

	The RIPE NCC Internet Measurement Data Repository
	Introduction
	RIPE Datasets
	K-root
	Reverse DNS
	AS112
	RIS
	Hostcount
	TTM
	DNSMON
	RIPE DB

	External Datasets
	Auckland
	Waikato
	NLANR Datasets

	Conclusion
	References

	Enabling High-Performance Internet-Wide Measurements on Windows
	Introduction
	Overview of Windows and Linux Network Stacks
	Performance of Winsock and WinPcap
	Raw Packets
	TCP Connections

	IRLstack: Overcoming the Bottlenecks
	Sending
	Receiving
	TCP Connections
	Latency

	Conclusions and Future Work
	References

	MOR: Monitoring and Measurements through the Onion Router
	Introduction
	The Tor Network
	Using Tor as a Monitoring and Measurement Platform
	Case Studies
	Examining Content Replication in a One-Click Hosting Service
	Network Neutrality
	Further Possible Use Cases

	Related Work
	Discussion, Limitations and Conclusions
	References

	Evaluating IPv6 Adoption in the Internet
	Introduction
	BrowserBehaviour
	Measurement Methodology
	DataAnalysis
	Conclusions and Future Work
	References

	Internet Usage at Elementary, Middle and High Schools: A First Look at K-12 Traffic from Two US Georgia Counties
	Introduction
	Network Characteristics
	Traffic Characteristics
	Flow Characteristics
	Ongoing Work
	References

	A First Look at Mobile Hand-Held Device Traffic
	Introduction
	Data and Methodology
	Data Sets
	Identifying MHDs
	Application ProtocolMix

	Results
	MHD Pervasiveness
	Application ProtocolMix
	MHDWeb Traffic
	Mobile Applications
	Application and Media Downloads

	Related Work
	Conclusion
	References

	A Learning-Based Approach for IP Geolocation
	Introduction
	Learning-Based IP Geolocation
	Methodology Summary

	Experiments
	Related Work
	Conclusions and Future Work
	References

	A Probabilistic Population Study of the Conficker-C Botnet
	Introduction
	Modeling Conficker-C
	L\'{e}vy’s Central Limit Estimator \^{H}
	Analysis and Results
	Summary and Discussion
	References

	Network DVR: A Programmable Framework for Application-Aware Trace Collection
	Introduction
	Proposed Triggered Trace Collection Concept
	Trigger Rulesets Construction
	Triggered Trace Collection Procedure
	Constant Time Memory Allocation Structure

	Evaluation
	Simulation Setup
	System Performance Comparison on Memory Copy Times

	Related Work
	Conclusion
	References

	OpenTM: Traffic Matrix Estimator for OpenFlow Networks
	Introduction
	Design
	Implementation
	Experiments and Results
	Analysis
	Conclusion
	References

	Web Timeouts and Their Implications*
	Introduction
	Related Work
	Timeout Measurements
	Adaptive Timeouts
	Conclusions
	References

	A Longitudinal View of HTTP Traffic*
	Introduction
	Data and Methodology
	HTTP Transaction Characterization
	UserBehavior
	Server Structure
	Related Work
	Summary
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

