
Chapter 6:

Web Data Extraction for Service Creation

Robert Baumgartner1, Alessandro Campi2,
Georg Gottlob3, and Marcus Herzog1

1 Lixto Software GmbH, Favoritenstrasse 9-11, 1040 Wien, Austria
{robert.baumgartner,marcus.herzog}@lixto.com

2 Politecnico di Milano, DEI, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
campi@elet.polimi.it

3 Computing Laboratory, Oxford University, U.K.
gottlob@comlab.ox.ac.uk

Abstract. Web data extraction is an enabling technique in the search
computing scenario. In this chapter, we first review the state of the art
in wrapper technologies focusing on how wrapper generators can be used
to create unified services that integrate data from Web Applications and
Web services in various domains. Next, we describe the Lixto approach
and we present the Lixto Suite as one example of Web Process Integra-
tion. Finally, application areas and future challenges and the usage of
wrapper technologies in the search computing context is discussed.

1 Introduction

Although in today’s Web much data is available via APIs, light-weight and
heavy-weight Web service techniques, the larger amount of data is still only
available in semi-structured formats such as HTML. In the recent years, Web
pages became more complex and turned into Web Applications, using a lot
of Web 2.0 and Rich Internet Application technologies. As a consequence, new
research and technical challenges emerged, related to automated Web navigation
and data extraction.

To use Web data in Enterprise Applications and service-oriented architectures,
it is crucial to provide means for automatically turning Web Applications and
Web sites into Web Services, allowing structured and unified access to hetero-
geneous sources. This includes to understand the logic of the Web application,
to fill out form values, and to grab relevant data – all these aspects need to be
reflected accordingly in the generated Web Service.

In a number of business areas, Web applications are predominant among busi-
ness partners for communication and business processes. Various types of pro-
cesses are carried out on Web portals, covering activities such as purchase, sales,
or quality management, by manually interacting with Web sites.

Wrapper Generators enable the automation of processes and operations of
Web Applications. They pave the way for Web Process Integration, i.e. the
seamless integration of Web applications into a corporate infrastructure or ser-
vice oriented landscape by generating Web services from given Web sites. Web

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 94–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Web Data Extraction for Service Creation 95

process integration can be understood as front-end integration: integrate cooper-
ative and non-cooperative sources without the need for information provider to
change their backend. Furthermore, regarding light-weight mashup techniques,
wrapper generators offer to extend the range of sources under consideration from
structured Web feeds to include legacy Web applications. In this sense, Web pro-
cess integration and Wrapper Technologies are essential enablers of the Web of
Services.

The rest of the chapter is structured as follows. In Section 2, an overview of
the state-of-the-art in Web data extraction methods and techniques is given. In
Section 3 we give an overview of Lixto and its architecture as an example of
wrapping technology used for search computing and for generating Web Process
Integration scenarios. Section 4 is dedicated to survey the process of turning
Web 2.0 Applications into Web Services, illustrated by describing the Lixto
components and examples. Section 5 gives an overview on sample application
areas as well as a summary of future research issues and the usage of Web data
extraction in search computing context. Finally, some brief concluding remarks
are given in Section 6.

2 Web Data Extraction

Web data extraction is a research field rooted in information extraction from
text, in screen scrapers invented for extracting screen formatted data from main-
frame applications for terminals such as VT100 or IBM 3270, and in ETL (Ex-
tract, Transform, Load) methods defined to extract information from various
business processes and feed it into databases [8].

One of the first attempts to extract information from unstructured sources is
[39] that presents AutoSlog, a system that automatically builds a domain-specific
dictionary of concepts for extracting information from text. A significant step
forward was Crystal [45], a system which allows one to automatically build a
dictionary of entities from a text.

[32] presents a trial to classify wrappers considering in particular their ex-
pressiveness. Laender [34] proposed a taxonomy for data extraction tools based
on the main technique used by each tool to generate a wrapper. [30] is a more
recent survey on wrapper technology.

Wrapper Generation Systems can be classified according to different proper-
ties. One main such distinctive criteria is the mode of wrapper generation. This
spans from manual wrapper writing (using e.g. some special-purpose APIs) to
visual and interactive approaches where the user is guided through the wrapper
generation and fully automated approaches. Fully automated approaches include
on the one hand inductive learning based on positive and negative examples, and
on the other hand unsupervised learning of similar patterns, usually restricted to
a particular domain such as digital cameras. Automatic approaches tend to be
limited in expressive power and robustness, but on the other hand are essential
for large scale extraction scenarios.

One further differentiating criteria is the wrapper language and the objects
a wrapper operates on. This ranges from perceiving wrappers as mapping

96 R. Baumgartner et al.

functions from node sets to node sets, various logical and automata theoretic rep-
resentations, textual pattern matching on string representations of Web pages,
and usage of natural language processing techniques.

The first studies dedicated to Web extraction [1,18,20,44] led the development
of semi-automated systems, capable of extracting information in an automatic
manner only after a training phase, performed with user intervention. TSIM-
MIS [23] proposes a framework for the manual construction of Web wrappers. In
TSIMMIS a wrapper takes as input a specification made by a sequence of com-
mands given by programmers describing the pages and how the data should be
transformed into objects. Commands take the form (variables, source, pattern),
where source specifies the input text to be considered, pattern specifies how to
find the text of interest within the source, and variables are a list of variables
that hold the extracted results. The generated outputs are represented using
the Object Exchange Model. The output is composed by the target data and
by additional information about the result. NoDoSE (Northwestern Document
Structure Extractor) [1] is an interactive tool for semi-automatically determin-
ing the structure of such documents and then extracting their data. The user
hierarchically outlines the interesting regions of files and describes their seman-
tics. A mining component attempts to infer the grammar of the file from the
information taken from the user. WebOQL [3] synthesizes ideas taken from query
languages for the Web, from query languages for semistructured data and from
languages for website restructuring. WebOQL is based on the usage of hypertrees,
i.e., labeled ordered trees suitable to support collections, nesting, and ordering.

XWRAP [37] is a wrapper generation framework. XWRAP uses a common
library to provide basic building blocks for wrapper programs. In this way, tasks
of building wrappers specific to a Web source are separated from repetitive tasks
for multiple sources. The wrapper building process is divided into two steps:
the encoding of the source-specific metadata knowledge and the combination of
the information extraction rules generated at the first phase. W4F (Wysiwyg
Web Wrapper Factory) [40] is a Java toolkit to generate Web wrappers. The
process is done in three steps: retrieval, extraction, and mapping. The first step
retrieves a document from the Web and builds a DOM using an HTML parser.
The next two steps apply a set of rules expressed in HEL (HTML Extraction
Language) on the parse tree to extract information. Extracted information is
stored using a proprietary format called NSL (Nested String List). Iepad [28]
discovers extraction rules from Web pages. The system defines a data structure,
called PAT tree, useful for the search of repeated patterns. Exploiting repeated
pattern mining the system automatically identifies record boundaries.

RoadRunner [17] is based on a grammar inference techniques. It is based on
an algorithm, called match, that exploits similarities and differences among a
set of sample pages in order to infer a common grammar, which is then used
as a wrapper. Previous results were obtained in Minerva [15], an attempt to
exploit declarative grammar-based approaches and procedural programming in
order to handle heterogeneities and exceptions. The idea is to allow the insertion
of exception-handling mechanism in grammars using a special language called

Web Data Extraction for Service Creation 97

editor. [16] defines a formal theoretical framework in which it is proved that
Match runs in Ptime, whenever pages are compliant with a class of languages
called Prefix Mark-up Languages. As real-life Web pages seldomly fall in this
class of Languages, some studies have recently tackled the problem of improving
Match in order to automatically infer a wrapper for a wider class of languages.

DEByE (Data Extraction By Example) [33] uses a small set of examples
specified by the user that interacts with a tool using nested tables as the visual
paradigm. The user defined examples are used to generate patterns which al-
low extracting data from new documents. For the extraction DEByE adopts a
bottom-up procedure very effective with many different types of Web sources.

WARGO [38] is a system developed to allow non-technical users to generate
complete wrappers for Web sources. Access to the pages containing required
data is described by means of complex Web flows built by simply navigating
with a Web browser. The parsing is made using interactive tool that allow users
to generate complex extraction patterns by simply highlighting relevant data
from very few example pages, and answering some simple questions. The sys-
tem internally relies on NSEQL (Navigation SEQuence Language) for specifying
navigation sequences and DEXTL (Data EXTraction Language) for specifying
extraction patterns.

EXALG [2] is an algorithm capable of extracting structured data from a col-
lection of Web pages generated by encoding data from a database into a common
template. To discover the underlying template that generated the pages, EXALG
uses so called Large and Frequently occurring EQuivalent classes (LFEQ), i.e.
sets of words that have similar occurrence pattern in the input pages. The MGS
framework [24] is based on the intuition that, on the Web, the set of attributes
composing an underlying schema is limited and that there is a strong overlap-
ping between the sources. Most of the selection of the sources and part of the
extraction is done by hand. The work in [31,36] describes wrapper generation
with particular emphasis on their robustness. [35] proposes an approach for the
automatic extraction and segmentation of records from Web tables. The pro-
posed approach relies on a specific pattern that occurs on many Web pages for
presenting lists of items: a index page containing a list of short summaries, one
for each item, which include a link leading to a page about details of the specific
item. Their approach leverages on the redundant information of this pattern
and is based on constraint satisfaction problems and on probabilistic inference
techniques.

[14] describes a system capable to populate a probabilistic database with data
extracted from the Web. Data extraction is performed by TextRunner [19], an
information extraction system. The massive extraction of data from the Web is
the subject of WebTables [13,29]. However, they just concentrate on data that is
published in HTML tables, and do not perform any integration of the extracted
data. The work in [43] is an attempt do demonstrate that developing information
extraction programs using Datalog with embedded procedural extraction pred-
icates is a good way to proceed. Datalog provides a cleaner and more powerful

98 R. Baumgartner et al.

way to compose small extraction modules into larger programs. Second, query
optimization can be applied to Datalog programs.

Cimple [41,42] is a system based on the interaction of an expert to provide a set
of relevant sources, to design an entity relationship model describing the domain
of interest, and to compose the operators for the extraction of the data from
the pages. MetaQuerier [25] supports exploration and integration of databases
on the Web and concentrates its contribution on exploration of the deep Web.
It exploits the regularities of web forms and automatically matches interfaces.

Flint [12] automatically searches, collects and indexes Web pages publishing
data representing an instance of a certain conceptual entity. Flint takes as input
a small set of labeled sample pages: it automatically infers a description of the
underlying conceptual entity and then searches the Web for other pages contain-
ing data representing the same entity. Flint automatically extracts data from the
collected pages and stores them into a semi-structured self-describing database.

Finally, as of today, a number of commercial systems emerged, mostly in
the area of interactive wrapper generation. This includes the Denodo ITPilot,
WebQL (using a SQL-like query language for the Web) and KapowTech’s Mashup
Server. Commercial frameworks applying machine learning techniques include
the Dapp Factory from Dapper and the Fetch Agent Plattform.

3 The Lixto Approach

Lixto offers state-of-the-art products for Web data extraction and integration
and services for SOA-Enablement, Mashup Enablement, Market Monitoring, and
Vertical Search. In this setting, we look at Lixto technology from the perspective
of an enabling technology for the creation of Web process integration and search
computing scenarios.

With the Lixto Visual Developer (VD), wrappers are created in an entirely
visual and interactive fashion. Figure 1 sketches the architecture of VD and its
runtime components.

The VD is an Eclipse-based visual integrated development environment (IDE).
It embeds the Mozilla browser and interacts with it on various levels, e.g. for
highlighting Web objects, interpreting mouse clicks, or interacting with the
document object model (DOM). Usually, the application designer creates or
imports a data model as a first step. The data model is an XML schema-based
representation of the application domain.

Figure 2 gives a screenshot of the GUI of the Visual Developer. On the
left-hand side, the project overview and the outline view of the currently ac-
tive wrapper are illustrated. In the center, the embedded browser is shown. At
the bottom, in the Property View, navigation and extraction actions can be
inspected and configured (as shown in Figure 3).

During wrapper creation, the application designer visually creates deep Web
navigations (e.g., form filling), logical elements (e.g., click if exists), and extrac-
tion rules. The system supports this process with automatic recording, immedi-
ate feedback mechanisms, and generalization heuristics. The application designer

Web Data Extraction for Service Creation 99

Lixto TS WPI Server

Application
Designer

Web Sites
Web Applications

Visual Developer

Application
Logic

Wrapper
Creation

Eclipse IDEMozilla

Data Model Wrapper

Wrapper

Runtime
Parameters

Lixto Extraction Server

VD
Runtime

VD
Runtime

VD
Runtime...

SOA Ecosystem

Light-weight Web Services
RSS, REST, ATOM, JSON

Heavy-weight Web Services
SOAP

WS API

Wrapper
Repository

Fig. 1. Environment and Architecture

Fig. 2. Lixto Visual Developer

creates the wrapper based on samples, both in the case of navigation steps, and
in the case of extraction steps. Finally, the designer parameterizes search, filter-
ing and extraction steps of the wrapper. These parameters form the input values
for the exhibited Web Service methods.

The internal extraction language Elog [5,22], the Web object detection based
on XPath2, token grammars, and regular expressions are part of the applica-
tion logic. Moreover, the application logic comprises deep Web navigation and
workflow elements for understanding Web processes.

100 R. Baumgartner et al.

Fig. 3. Visual Filter and Condition Creation

Wrappers and data models are uploaded to the server. In the Web Process
integration scenario, the WPI Edition of the Lixto Transformation Server (TS) is
used (refer to Figure 1 again). In the SOA-oriented architecture of Lixto, servers
such as the TS access the VD Runtimes via Web Service or Java RMI. Lixto
TS exposes a query interface for ad-hoc and scheduled Web queries, and a Web
Service entry-point where each request provides information about the wrapper
to be executed and the runtime parameters (e.g. values for filling forms).

At wrapper execution time, each VD runtime, a.k.a. VD head, runs as in-
dependent process, using its own browser instance (during such executions the
browser GUI is suppressed). Lixto Extraction Server spawns a number of VD
heads and communicates results back to the server. Additionally, since Web ap-
plications can act unreliably, Extraction Server is capable of terminating and
creating new heads to retry the wrapper if necessary. This architecture lever-
ages Web extraction to a very stable and reliable process – browser instances of
parallel executions do not interfere with each other, and in case of any problems
with Web sites, parts of wrapper executions are retried in a new head. Due to
the extraction process, Web data and Web applications can be consumed via the
Lixto WPI Server as conveniently as usual light-weight and heavy-weight Web
services.

4 Transforming Web Pages and Deep Web Sources into
Web Services

In the following we exemplify the usage of Lixto components for turning a Web
application into a Web service. As example we consider the IMDB site (Interna-
tional Movie Database http://www.imdb.com). The site offers information and

Web Data Extraction for Service Creation 101

news about movies, tv shows, and actors. Although some information can be
accessed as structured RSS feed, the majority of the data is primarily intended
for manual browsing. In the following example we will extract information on
particular movies, extract information about the characters and actors in the
movies, and additionally extract available images about the actors. Information
is extracted based on particular parameters, such as giving a movie title, speci-
fying whether to return movies with the exact title only, return more than one
movie, how many of the main characters to extract, and how many photos to
include.

After defining how to extract and clean the information, which parameters can
be specified and publishing it on the WPI Server, the service can be conveniently
consumed by service-oriented applications.

4.1 Wrapper Generation with Lixto Visual Developer

Deep Web and Web Application Traversal. A wrapper project in the
Visual Developer comprises a number of actions. Actions include mouse and
key events occurring during a Web navigation [4]. Such actions are e.g. link
traversing, filling out textboxes, selection from lists, or opening menus. One
special action is the “Data Extractor” action. Inside of this action a declarative
Elog program [6] resides. In the Elog program, exit points to different pages such
as “next” pages, detail pages, or dynamic changes on a page are provided – this
way one can conveniently iterate over entries in selection boxes. Further actions
include procedural flow controls such as if conditions, while conditions, and call
actions to other page classes.

An example of a simple click action is clicking on a link to traverse to a
new Web page. The corresponding action stores a generalized XPath to the
corresponding link element and the information that a single mouse click is
performed on this particular element. The XPath is made as robust as possible
by the system to ensure a stable navigation replay even in case of changes on
the Web page.

Actions are embedded in declarative templates, so-called page classes. In
Figure 2, the wrapper outline view is shown on the left-hand side (the flow
in the first page class is enlarged in Figure 4), illustrating the procedural ac-
tion flow and the Elog extractors in the declarative page class templates. At the
bottom, the actual page class dependencies are given.

Consider the wrapper for IMDB in Figure 2 and especially the page class de-
pendency graph illustrated in higher resolution in Figure 5: In the “start” page
class the search form is filled out and results are extracted. Moreover, based on
given parameters, it is decided which elements are clicked to reach the movie
detail page. For each of these, the page class “movie” is called. In this page
class, the details such as director and year are extracted, as well as the most
important characters and their actors. Since character and cast information is
on different pages with a different structure, different data extractors are used in

102 R. Baumgartner et al.

Fig. 4. A sample Page Class

Fig. 5. IMDB Application Flow

the page class “cast” and “character”, respectively. Finally, photos of the actors
can be reached from the actor page. 48 photos per page are shown, hence the
page class “photo” is iteratively called until there is no next link or the given
limit is reached.

Due to branching and iteration capabilities of the navigation language, com-
plex process flows can be modeled on top of the page class concept such as
e.g. a flight booking process.

Web Data Extraction Language. The internal data extraction language,
Elog, is a datalog-like language especially designed for wrapper generation. The
Elog language operates on Web objects, that are HTML elements, lists of HTML
elements, and strings. Elog rules can be specified fully visually without knowledge
of the Elog language. Web objects can be identified based on internal, contextual,
and range conditions and are extracted as so-called “pattern instances”.

A typical Elog rule in the IMDB wrapper to extract the director of the movie
looks like:

Web Data Extraction for Service Creation 103

director(X0, X1) :-
root(_, X0), subelem(X0,
(./lixto:nearest("body")/lixto:nearest("layer")
/lixto:nearest("div")/lixto:nearest("a"),

[("href", "name", substring)]), X1),
before(X1, ../h5, [("text",
"^Director.*", regexp)]), 0, 1, X2, X3).

The “director” predicate used in the head of the rule evaluates to true for all
assignments X1 where the body holds true. In the “subelem” predicate, for each
assignment of X0 (matches of the “root” pattern) assignments for the result of
the XPath generation are stored in X1. The “before” predicate refers to instances
of X1, its results could be referenced by further predicates. The numerical val-
ues reflect distance settings (based on the node level), in this case immediately
before.

Elog uses different kind of expressions to identify Web objects – this in-
cludes XPath2 statements (and extension functions) for tree nodes and regu-
lar expressions or predefined ontology concepts for textual data, and is open to
be extended to e.g. extract based on the visual representation in the browser.
Figure 3 illustrates how this rule is presented to wrapper designers.

Among the evaluation criteria of a wrapping language, expressiveness and
robustness are the most important ones. Robustness grants that information on
frequently changing Web pages are correctly discovered, even if e.g. a banner or
a new page fragment is introduced. Visual Developer offers robust mechanisms
of data extraction based on the two paradigms of tree and string extraction.
Verification alerts can be imposed that give warnings in case user-defined criteria
are no longer satisfied on a page. [22] shows a kernel fragment of Elog that
captures monadic second order logic, hence if is very expressive while at the
same time easy to use due to visual specification.

Visual Wrapper Generation. The usage of both Elog and of the internal Web
interaction language is completely invisible to the average wrapper designer and
all operations are carried out by visual means. In simple scenarios this is basically
comprised of four steps:

1. First, the modeling phase, where the application designer defines an XML
Schema-based data model to map Web data instances into or imports an
existing one such as RSS.

2. As a second step, the application designer visually records a Web macro fill-
ing forms and traversing to the desired result page. The system protocols
the actions on an action-based level, i.e. it does not rely on the server re-
quest/response, but identifies XPath elements based on user clicks in the
GUI and is capable of replaying all kind of user interactions, even for highly
dynamic pages.

3. Finally, the application designer designs the data extractor for the result
page where usually hierarchically defines the elements of interests. Filters are

104 R. Baumgartner et al.

created visually by choosing example instances and then refining the selection
based on system generalizations. Internally, filters are mapped to Elog rules.
Result instances are mapped to the defined data model and verified for their
consistency.

4. Additionally, every action and filter can be parameterized to individual
search and restriction values, which are provided as method parameters to
the Web service requests.

In real-life scenarios such as the IMDB example these steps are close by intermin-
gled, especially when extracting data from various interlinked pages. The IMDB
wrapper comprises a number of data extractors on different kind of pages, and a
complex navigation describing when to apply which extractor and action. After
finishing the example-based wrapper generation, certain actions and steps are
manually parameterized by the designer. First, the value that is inserted into
the search form, and next if one or more movie titles shall be returned based
on a particular query, and how many of its actors and how many photos. In
this way, similar to the output model, an input model is defined comprising all
parameters that can be adjusted in an instance of an IMDB wrapping process
by a request. As a next step, the wrapper is deployed to the WPI server.

4.2 Lixto WPI Server

Transformation Server. Heterogeneous environments such as integration and
mediation systems require a conceptual information flow model. The usual set-
ting for the creation of services based on Web wrappers is that information is
obtained from multiple wrapped sources and has to be integrated; often source
sites have to be monitored for changes, and changed information has to be au-
tomatically extracted and processed. Thus, push-based information systems ar-
chitectures in which wrappers are connected to pipelines of post-processors and
integration engines which process streams of data are a natural scenario, which
is supported by the Lixto Transformation Server [26,7]. The overall task of in-
formation processing is composed into stages that can be used as building blocks
for assembling an information processing pipeline. The stages are to

– acquire the required content from the Web applications
– integrate and transform content from a number of input channels and tasks

such as finding differences,
– interact with external processes,
– format and deliver results in various formats and channels and connectivity

to other systems.

The actual data flow within the Transformation Server is realized by handing
over XML documents. Each stage within the Transformation Server accepts
XML documents (except for the wrapper component, which accepts HTML),
performs its specific task (most components support visual generation of map-
pings), and produces an XML document as result. This result is put to the suc-
cessor components. Boundary components have the ability to activate themselves

Web Data Extraction for Service Creation 105

Fig. 6. Lixto Transformation Server

according to a user-specified strategy and trigger the information processing on
behalf of the user. Figure 6 illustrates a complex example in the news domain.

From an architectural point of view, Lixto Transformation Server may be
conceived as a container-like environment of information processing or as visu-
ally configured agent server. This “service flow” can model very complex uni-
directional information flows. The usage of components also modularizes the
information processing, so the service can be maintained and updated smoothly.
Moreover, information services can be controlled and customized from outside of
the server environment by various types of communication media such as Web
services.

Extraction Server/Cluster. In simple scenarios, the Lixto WPI Server uses a
single Extraction Server, where a number of extraction jobs can run in parallel.
However, WPI scenarios with large number of services and users require a scal-
able extraction environment. It is crucial to be on the one hand very performant
to support ad-hoc requests, and on the other hand to provide means for extreme
scalability, especially in cases with a high peak load at certain times. Hence, data
extractions can be executed via the Extraction Cluster. The WPI Server uses the
Extraction Cluster [9] as directory service, asking for a free VD runtime head
to be used in the next execution. The Extraction Cluster queues the request
and assigns the best suited head, based on given weights. Furthermore, for ad

106 R. Baumgartner et al.

Fig. 7. Lixto Extraction Cluster

hoc requests, a priority queue is supported. Machines can be registered on the
Extraction Cluster and inform it about the number of running VD heads and
the machine parameters.

The Extraction Cluster distributes the load and can invoke Extraction Servers
from Cloud Services such as the Amazon Elastic Cloud if the load gets too high.
A screenshot of a simple status inspection is shown in Figure 7.

Lixto WPI Server Users and Registry. In Web Process Integration scenar-
ios, we mainly distinguish two cases:

– Scheduled Push Approach: A service is configured to regularly push data to
a particular component. The WPI Server handles the schedule and delivers
results e.g. to a database or an e-mail address.

– Ad-Hoc Pull Approach: A service is configured to return data on demand. A
Web Service interface is exposed that drives the service and executes it based
on a given request. Data is returned e.g. as SOAP response or as REST.

Lixto WPI server distinguishes different user roles, the most prominent being the
service designer and the service user. The service designer composes a service,
including the definition of a wrapper, specification of transformation rules, how
to integrate results if multiple wrappers are used, and how to deliver information.
Service Designers publish services that are allowed to be consumed by Service
Users.

Service users use the MyLixto GUI to browse the service registry and pick
interesting services. A service user can choose subscribe to a service, which

Web Data Extraction for Service Creation 107

Fig. 8. Consuming the WPI Service Registry with MyLixto

regularly runs in her name and with her given parameters, and provides the
information e.g. through e-mail. Please refer to Figure 8 as an example. Alterna-
tively, users can choose to receive the data immediately, triggering an execution
on the WPI server. The first approach is primarily used in corporate scenar-
ios where employees need to be informed regularly, whereas the second is usu-
ally used in meta-search scenarios and on-demand mashup applications (refer to
Section 5).

4.3 Web Service Delivery

Figure 9 illustrates the usage of the WPI server service registry. The service
registry shows all available services (company-internal and public, respectively).
During service creation, the service designer chooses which query methods for
a service will be available and how to map wrapper and service parameters to
methods and method parameters [10].

After picking a service, the service user is shown all available methods to a
service. E.g., in the IMDB case, the following methods can be exposed:

– getSingleMovieDescription(String title)
– getAllMovieTitles(String searchtext)
– getActorDataForMovie(String title, boolean photos)
– getActorCharacterRelationForMovie(String title)

As Figure 9 illustrates, there are different ways to use the service registry. Users
can either use the Service User GUI (MyLixto) for triggering or subscribing to a

108 R. Baumgartner et al.

Fig. 9. Consuming the WPI Service Registry

service, or connect with their favorite Web Service client asking for the WSDL
and sending a SOAP request (usually happening when the request is embedded
into a larger SOA ecosystem), or if the service has been made available to the
public, use a simple REST request specifying the parameters in the URL.

5 Application Areas and Future Research Issues

5.1 Sample Application Areas

Web Process Integration in the Automotive Industry. Many business
processes in the automotive industry are carried out by means of Web portal
interaction. Business critical data from various divisions such as quality manage-
ment, marketing and sales, engineering, procurement, supply chain management,
and competitive intelligence has to be manually gathered from Web portals and
Websites. By automation, automotive part suppliers can dramatically reduce
the cost associated with these processes while at the same time improving the
speed and reliability with which these processes are carried out. The Automotive
business case is described in more detail in [11]. In this scenario, wrapper tech-
nologies act as enabling technology for Service Oriented Architectures and are
one crucial puzzle piece in Enterprise Application Integration and B2B process
integration.

End User Mashups. Today, leading software vendors start to provide mashup
platforms (such as Yahoo! Pipes or Lotus Mashups). A mashup is a Website
or Web application that combines a number of Web sites into an integrated

Web Data Extraction for Service Creation 109

view. Usually, the content is taken via APIs, embedding RSS or Atom Feeds
in a REST-like way. Wrapper technology leverages legacy Web applications to
light-weight APIs such as REST that can be integrated in mashups in the same
fashion. Web Mashup Solutions no longer need to rely on APIs offered by the
providers of sites, but can extend the scope to the whole Web. In particular,
the deep Web gets accessible by encapsulating complex form queries and appli-
cation logic steps into the methods of a Web Service. In this scenario, wrapper
technologies help enable the Web of Services, built on legacy Web sites. End
users are put in charge to create their own views of the Web and embed data
into other applications, usually in a light-weight way. This results in “situational
applications”, possibly unreliable and unsecure applications that however help
to solve an urgent problem immediately.

Vertical Flight Search and Booking. Vertical Search is a special-purpose
meta-search scenario for integrating deep Web data behind complex query in-
terfaces and providing intelligent services to customers. Typical application sce-
narios are domain-specific searches with complex Web query interfaces (refer to
[27] for a description how Web forms can be formally modeled), such as find-
ing the cheapest flight over several airlines within a specific date range or the
cheapest computer on various channels. Meta-Search applications have an in-
herent workflow logic, due to the need of querying a number of different portals
and understanding dependencies when to query which Web site; e.g. querying a
weather site for a particular city in a multi-hop flight scenario where first the
multi-hop stops have to be extracted and understood, and next additional data
for such cities is queried. Furthermore, since users do not like to wait more than
a couple of seconds for results, there is the absolute need to provide results as
soon as they are extracted – this logic is encapsulated in a set of Web service
requests and responses. A meta-search process comprises the workflow which
Web sources to query and providing input paramters to them, as well as the un-
derstanding and modeling of the Web application logic. This includes complex
bi-directional processes, e.g. in cases where a booking process is re-packaged in a
Meta-Search application. In such cases, interception points are required during
the wrapping process.

5.2 Future Challenges

Turning Web Applications and Web Sites to Web Services is an important con-
tribution to the search computing paradigm. Due to understanding of deep Web
applications and parameterizing the data extraction, focused search in the Deep
Web can be realized.

Deep Web and Workflow Capabilities. In B2B application areas, key fac-
tors are workflow capabilities for the whole process of data extraction, transfor-
mation and delivery, capabilities to treat all kinds of special cases occurring in
Web interactions, and excellent support of the latest Web standards used during
secure transactions.

110 R. Baumgartner et al.

As Web pages are becoming increasingly dynamic and interactive, efficient
wrapping languages have to make it possible to record, execute and generalize
macros of Web interactions and, hence, model the whole process of workflow
integration. An example of such a Web interaction is a complicated booking
transaction. Future research issues also include the different approach of targeted
deep Web crawling as an alternative to Web application flow modelling.

To query deep Web forms, wrappers have to learn the process of filling out
complex Web search forms and the usage of query interfaces. Such systems have
to learn abstract representation for each search form and map them to a unified
meta form and vice versa, taking into account different form element types,
contents and labels.

Extraction Capabilities. Whereas Web wrappers today dominantly focus
on either the flat HTML code or the DOM tree representation of Web pages,
recent approaches aim at extracting data from the CSS box model and the
visual representation of Web pages [21]. This method can be particularly useful
in recent times where the DOM tree does not accurately reflect how the user
perceives a Web page.

One other challenge is Generic Web Wrapping. On the one hand this includes
to evolve from site-specific wrappers to domain-specific wrappers by using se-
mantic knowledge in addition to the structural and presentational information
available. On the other hand, however, it is essential that wrappers still are
sufficiently robust to provide meaningful data. Hence, techniques for making
wrappers more robust and automatically adapt wrappers to new situations will
contribute to this challenge.

Key factors in the area of mashup scenarios include efficient real-time
extraction capabilities for a large number of concurrent queries and detailed
understanding of how to map queries to particular Web forms.

6 Conclusions

In this paper we reviewed techniques and tools for Web data extraction. We first
discussed a number of tools and then focused on one particular example, the
Lixto tool which is able to overcome most of these obstacles. We presented the
two main components of Lixto: (1) The Lixto Visual Developer, which allows a
wrapper designer to visually and interactively develop a wrapper for a Website;
and (2) the Lixto Web process Integration Server (WPI Server) that enables one
to quickly design an interface between complex Web processes and corporate
software. In particular, we showed how Lixto can be used to transform Web pages
and deep Web sources into Web services, and how massive amounts of data can
be delivered into applications by means of Web process integration. The latter
aspect of Web data extraction is of particular relevance to the achievements of
service marts, as elaborated in Chapter 9 of this book.

We showed, based on the example of Lixto, how software of a new type can
fill an important gap in information technology. While most current obstacles

Web Data Extraction for Service Creation 111

are addressed and satisfactorily solved by Lixto, the Web is moving on, and
new challenges emerge. Some of these challenges were described in Section 5.
Other important challenges regard the intelligent and efficient querying of Web
services, and the fully automatic generation of wrappers for restricted domains
such as real estate, and so on. The first challenge is currently being tackled by
the SeCo project. The second challenge is tackled by the DIADEM at Oxford
University.

References

1. Adelberg, B.: Nodose - a tool for semi-automatically extracting structured and
semistructured data from text documents. In: SIGMOD Record, pp. 283–294 (1998)

2. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIG-
MOD 2003: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pp. 337–348. ACM, New York (2003)

3. Arocena, G.O., Mendelzon, A.O.: Weboql: restructuring documents, databases,
and webs. Theor. Pract. Object Syst. 5(3), 127–141 (1999)

4. Baumgartner, R., Ceresna, M., Ledermüller, G.: Deep web navigation in web data
extraction. In: Proc. of IAWTIC (2005)

5. Baumgartner, R., Flesca, S., Gottlob, G.: Declarative Information Extraction,
Web Crawling and Recursive Wrapping with Lixto. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 21. Springer,
Heidelberg (2001)

6. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Proc. of VLDB (2001)

7. Baumgartner, R., Herzog, M., Gottlob, G.: Visual programming of web data ag-
gregation applications. In: Proc. of IIWeb 2003 (2003)

8. Baumgartner, R., Gatterbauer, W., Gottlob, G.: Web data extraction system. In:
Encyclopedia of Database Systems (2009)

9. Baumgartner, R., Gottlob, G., Herzog, M.: Scalable web data extraction for online
market intelligence, vol. 2, pp. 1512–1523 (2009)

10. Baumgartner, R., Gottlob, G., Herzog, M., Slany, W.: Interactively Adding Web
Service Interfaces to Existing Web Applications. In: Proc. of SAINT (2004)

11. Baumgartner, R., Herzog, M.: Using Lixto for automating portal-based b2b pro-
cesses in the automotive industry. International Journal of Electronic Business 2(5),
519–530 (2004)

12. Blanco, L., Crescenzi, V., Merialdo, P., Papotti, P.: Flint: Google-basing the web.
In: EDBT 2008: Proceedings of the 11th international conference on Extending
database technology, pp. 720–724. ACM, New York (2008)

13. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. Proc. VLDB Endow. 1(1), 538–549 (2008)

14. Cafarella, M.J., Ré, C., Suciu, D., Etzioni, O., Banko, M.: Structured querying of
web text: A technical challenge. In: CIDR (2007)

15. Crescenzi, V., Mecca, G.: Grammars have exceptions. Inf. Syst. 23(9), 539–565
(1998)

16. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites.
J. ACM 51(5), 731–779 (2004)

112 R. Baumgartner et al.

17. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data ex-
traction from large web sites. In: VLDB 2001: Proceedings of the 27th International
Conference on Very Large Data Bases, pp. 109–118. Morgan Kaufmann Publishers
Inc., San Francisco (2001)

18. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng,
Y.k., Smith, R.D.: Conceptual-model-based data extraction from multiple-record
web pages. Data and Knowledge Engineering 31, 227–251 (1999)

19. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction
from the web. Commun. ACM 51(12), 68–74 (2008)

20. Freitag, D.: Information extraction from html: Application of a general machine
learning approach. In: Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence, pp. 517–523 (1998)

21. Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B., Pollak, B.: Towards domain-
independent information extraction from web tables. In: Proc. of WWW, May 8-12
(2007)

22. Gottlob, G., Koch, C.: Monadic Datalog and the Expressive Power of Web Infor-
mation Extraction Languages. Journal of the ACM 51(1) (2004)

23. Hammer, J., McHugh, J., Garcia-Molina, H.: Semistructured data: The tsimmis
experience. In: Proceedings of the First East-European Workshop on Advances in
Databases and Information Systems, ADBIS 1997, pp. 1–8 (1997)

24. He, B., Chang, K.C.-C.: Statistical schema matching across web query interfaces.
In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD international confer-
ence on Management of data, pp. 217–228. ACM, New York (2003)

25. He, B., Zhang, Z., Chang, K.C.-C.: Towards building a metaquerier: Extracting and
matching web query interfaces. In: International Conference on Data Engineering,
pp. 1098–1099 (2005)

26. Herzog, M., Gottlob, G.: InfoPipes: A flexible framework for M-Commerce appli-
cations. In: Proc. of TES workshop at VLDB (2001)

27. Holzinger, W., Krüpl, B., Baumgartner, R.: Automated ontology-driven
metasearch generation with metamorph. In: Vossen, G., Long, D.D.E., Yu, J.X.
(eds.) WISE 2009. LNCS, vol. 5802, pp. 473–480. Springer, Heidelberg (2009)

28. Chang, C.h., Lui, S.-C.: Iepad: Information extraction based on pattern discovery,
pp. 681–688 (2001)

29. Jurić, D., Banek, M., Skočir, Z.: Uncovering the deep web: Transferring relational
database content and metadata to OWL ontologies. In: Lovrek, I., Howlett, R.J.,
Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 456–463. Springer,
Heidelberg (2008)

30. Kayed, M., Shaalan, K.F.: A survey of web information extraction systems. IEEE
Trans. on Knowl. and Data Eng. 18(10), 1411–1428 (2006); Member-Chang, Chia-
Hui and Member-Girgis, Moheb Ramzy

31. Knoblock, C.A., Lerman, K., Minton, S., Muslea, I.: Accurately and reliably ex-
tracting data from the web: a machine learning approach, pp. 275–287 (2003)

32. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence 118, 2000 (2000)

33. Laender, A.H.F., Ribeiro-Neto, B., da Silva, A.S.: Debye - date extraction by ex-
ample. Data Knowl. Eng. 40(2), 121–154 (2002)

34. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey
of web data extraction tools. SIGMOD Rec. 31(2), 84–93 (2002)

Web Data Extraction for Service Creation 113

35. Lerman, K., Getoor, L., Minton, S., Knoblock, C.: Using the structure of web sites
for automatic segmentation of tables. In: SIGMOD 2004: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pp. 119–130.
ACM, New York (2004)

36. Lerman, K., Minton, S.N., Knoblock, C.A.: Wrapper maintenance: a machine learn-
ing approach. J. Artif. Int. Res. 18(1), 149–181 (2003)

37. Liu, L., Pu, C., Han, W.: Xwrap: An xml-enabled wrapper construction system for
web information sources. In: ICDE, pp. 611–621 (2000)

38. Raposo, J., Pan, A., Alvarez, M., Hidalgo, J., Vina, A.: The Wargo System: Semi-
Automatic Wrapper Generation in Presence of Complex Data Access Modes. In:
Proceedings of DEXA 2002, Aix-en-Provence, France (2002)

39. Riloff, E.: Automatically constructing a dictionary for information extraction tasks.
In: Proceedings of the Eleventh National Conference on Artificial Intelligence, pp.
811–816. MIT Press, Cambridge (1993)

40. Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight
wrappers. Data Knowl. Eng. 36(3), 283–316 (2001)

41. Shen, W., Derose, P., Vu, L., Doan, A., Ramakrishnan, R.: Source-aware entity
matching: A compositional approach. In: IEEE 23rd International Conference on
Data Engineering, ICDE 2007, pp. 196–205 (2007)

42. Shen, W., DeRose, P., McCann, R., Doan, A., Ramakrishnan, R.: Toward best-
effort information extraction. In: SIGMOD 2008: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp. 1031–1042. ACM,
New York (2008)

43. Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative information
extraction using datalog with embedded extraction predicates. In: VLDB 2007:
Proceedings of the 33rd international conference on Very large data bases, pp.
1033–1044. VLDB Endowment (2007)

44. Soderland, S., Cardie, C., Mooney, R.: Learning information extraction rules for
semi-structured and free text. Machine Learning, 233–272 (1999)

45. Soderland, S., Fisher, D., Aseltine, J., Lehnert, W.: Crystal: Inducing a concep-
tual dictionary. In: Mellish, C. (ed.) Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, pp. 1314–1319. Morgan Kaufmann, San
Francisco (1995)

	Chapter 6: Web Data Extraction for Service Creation
	Introduction
	Web Data Extraction
	The Lixto Approach
	Transforming Web Pages and Deep Web Sources into Web Services
	Wrapper Generation with Lixto Visual Developer
	Lixto WPI Server
	Web Service Delivery

	Application Areas and Future Research Issues
	Sample Application Areas
	Future Challenges

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

