
S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 268–290, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 14:
Building Search Computing Applications

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Francesco Corcoglioniti,
and Nicola Gatti

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy

{alessandro.bozzon, marco.brambilla, stefano.ceri,
nicola.gatti}@ polimi.it,

francesco.corcoglioniti@gmail.com

Abstract. Search Computing aims at opening the Web to a new class of search
applications, by offering enhanced expressive and computational power. The
success of Search Computing, as of any technical advance, will be measured by
its impact upon the search industry and market, and this in turn will be highly
influenced by reactions of Web users and developers. It is too early to anticipate
such reactions – as the technology is still “under construction” – but this chapter
attempts a first identification of the possible future players in the development
of Search Computing applications, by grossly identifying the roles of “data
source publishers” and of “application developers”, and by discussing how
classical advertising-based models may support the new applications. This
chapter also describes the high-level design of the prototyping environment that
is currently under development and how the design will support the deployment
upon high performance architectures. Finally, we describe advertising as the
prevalent business model of the search engines industry, and briefly discuss the
options for the evolution of such model in the context of Search Computing.

Keywords: Search Computing, software engineering, development process,
advertising models, cloud computing, software architectures.

1 Introduction

The distinguishing feature of Search Computing is the ability of combining, at query
execution time, knowledge extracted from various domain-expert Web sources, thus
yielding to knowledge that is more accurate and complete than the knowledge
available to general-purpose search systems. Such expertise (about cultural events,
medical specializations, popular rock songs, and so on) is contributed through either
social processes (e.g., rating, tagging, commenting) or a long and careful knowledge
construction process by experts. At the current state of the art, multi-domain queries
over such engines can be answered only by patient and expert users, whose strategy is
to interact with specialized engines one at a time, and feed the result of one search in
input to another one, reconstructing answers in their mind.

 Building Search Computing Applications 269

With the advent of service computing and the growing interest for the Web as the
predominant interface for any human activity, we expect such knowledge to become
more and more exposed in the form of search services. But the mere composition of
such services by sequential invocation will not solve multi-domain queries, as their
interplay usually requires a lot of expertise, especially in handing and composing the
search results. This challenged us in thinking to a new technology, built upon five
pillars (ad hoc service definition, query optimization framework, ranking methods for
join results, execution engine, and liquid queries) that collectively resolve the
technical issues of Search Computing.

In this chapter, we analyze Search Computing from a broader, usage- and business-
oriented perspective by addressing Search Computing applications. A Search
Computing application is a vertical Web search application that leverages on the
SeCo framework for enabling multi-domain search capabilities. The application
concretely resides on a SeCo installation and consists of a configuration of one or
more multi-domain queries over the existing service repository.

The chapter is made up with four main contributions. First, Section 2 presents the
roles involved in the development of SeCo applications and the development process;
subsequently, Section 3 describes the SeCo development environment, comprising a
set of tools that support the users in their activities. Section 4 describes the SeCo
reference architecture, which has been designed with the objective of being
extensible, portable, and deployable upon high-performance architectures. Finally,
Section 5 discusses plausible business models that could facilitate the spreading and
sustainability of SeCo applications: these include advertising models and the
possibility of attracting users or developing new user communities.

These contributions provide essential ingredients for building SeCo applications,
but are mutually independent; therefore they are considered in four distinct sections.
Sections 3-5 also include a state-of-the-art in the respective fields.

2 Development of Search Computing Applications

In this section we identify the main roles involved in the development of Search
Computing applications and we describe the development process.

2.1 User Roles

Search Computing applications involve users with several roles and expertise for their
configuration and usage. In this section, we identify the set of user roles involved in
the development of SeCo applications, and we clarify their responsibilities and the
required skills. Some roles fall outside the strict SeCo application development
process, in the sense that they work for preparing the SeCo environment, in terms of
platform deployment and search service development. These roles are:

• SeCo Experts: they are software architects that are able to deploy and configure
SeCo engines over high-performance computing systems and support SeCo
publishers and application developers.

270 A. Bozzon et al.

Fig. 1. Development process for SeCo applications

• Service Developers: they are third party software producers that publish search
services on the Web. They independently produce artifacts that are needed for the
SeCo applications to run correctly, but are not aware of Search services consist of
any kind of REST services, SOAP services, or Web applications that can produce
a ranked list of results.

Some other roles are directly involved in the SeCo application development process:

• Service Publishers: they are in charge of implementing mediators, wrappers, or
data materialization components so as to make service interfaces compatible with
the SeCo framework, and then register them within the SeCo service repository,
thus defining their abstract representations in terms of service marts, access
patterns, and connection patterns. Mediators adapt services that are published on
the Web. Wrapping technologies span from complex wrapping tools that expose
deep Web contents, to simple XSLT transformations for XML documents, to
Java classes that introduce ranking and/or chunking features in services. Data

 Building Search Computing Applications 271

materialization tools are used to transform third party data so as to enable their
publication, e.g. files, Excel sheets, or databases; these can be locally stored or
acquired within the SeCo architecture, because the features of the service are too
poor for granting proper treatment of the data;

• Expert Users (or Application Developers): they configure Search Computing
application, by selecting the service marts of interest, the respective connection
patterns, and associated user interfaces for query and result visualization. They
also choose the complexity of the interaction interface, in terms of controls and
configurability choices to be left to the user. At runtime, they interact with
applications at a high level of sophistication, by composing queries on-the-fly
and by executing them.

• Final Users: they use SeCo engines to navigate query/result interfaces devised
by expert users. They interact by submitting queries, reading results, and
refining/evolving them according to the liquid query philosophy.

The peculiar features of SeCo applications require new roles with respect to
traditional application development. The most prominent ones are service publishers
and expert users. Due to their novelty, no widespread user communities currently
exist for these roles; however, they are crucial for the success of SeCo, and therefore
some actions must be taken to foster the flourishing of such communities, providing
them with suitable methods and tools, as we will discuss in the remainder of the
chapter.

2.2 Development Process

The development process (shown in Fig. 1) is split into four main development steps:

• Deployment Time: this phase consists in the actual development of search
services and the deployment of the SeCo platform on the suitable infrastructure.
The service development and deployment is delegated to external developers and
is conceptually independent from any subsequent step within the SeCo
framework. The deployment of the SeCo platform as well is assigned to SeCo
experts and is performed once and for all, independently on the number of actual
SeCo applications that will run upon it;

• Service Publishing Time: several activities are needed for publishing search
services within the SeCo framework: definition of the service wrappers, possible
specification of materialization design for the retrieved data, normalization of the
data, and registration as service marts in the SeCo service repository;

• Application Configuration Time: this phase, in charge to the Expert User,
consists in selecting the Service marts of interests and the corresponding details,
such as the connection patterns, the parameters of interest, and so on.
Subsequently, the expert user defines a liquid query template for a specific SeCo
application, which entails the specification of the user interface aspects. In
particular, the expert user defines the structure of the liquid queries in terms of
query templates that will be completed at runtime by the end user. A liquid query
template is composed of:

272 A. Bozzon et al.

1. a set of service interfaces;
2. a set of connection patterns for joining the involved service interfaces;
3. a set of additional selection or join predicates;
4. a default ranking function defined over the scores of service interfaces;
5. a set of possible sorting, grouping, and clustering attributes that can be

applied on the extracted result set;
6. a set of positive integer values K that represent the possible sizes for the

result pages;
7. a set of available query expansions, defined next.

• Application Execution Time: in this last phase, the Final User can navigate the
application, i.e., the queries and results, and possibly applies some configuration
details. At runtime, the end user is presented with a Liquid query Template that
he can fill in with the actual query parameter. In addition, several parameters of
the query template, which are initially set to defaults, can be tuned; these include:

1. the projection attributes that define the information visible to the user;
2. the ordering of services and of their attributes within the query;
3. the choice of the weights of the scores of service interfaces involved in the

query;
4. the choice of cluster attributes to be used to initially visualize the query

results;
5. the optional grouping attribute to be used to initially group the query results;
6. the choice about the size and production (e.g., continuous or chunked) of

results in the result page.

Since Liquid Query vision is towards continuous evolution, manipulation, and
extension of queries and results, according to the “search as a process” paradigm, the
query lifecycle consists of iterations of the steps of query submission, when the end
user submits an initial liquid query; query execution, producing a liquid result that is
provided to the user interface; and result browsing, when the result can be read and
manipulated through appropriate interaction primitives, which update either the liquid
result or the liquid query. Depending on the kind of user interaction, the query
execution performed by the engine might be suspended, restarted, or stopped. If the
interaction only involves reshaping of available data, the engine may not be involved
in the needed actions and the information is manipulated at user interface level.

The development process takes into account the trend towards empowerment of the
user, as witnessed in the field of Web mashups (see Chapter 5 and [10]). Indeed, only
the basic tasks that deal with service development (performed by service developers)
require actual programming expertise. All the other design activities are moved to
service registration time and to application configuration time, so that designers only
need a conceptual understanding of services and queries, and do not need to perform
low-level programming.

3 Development Tools

Several peculiar aspects affect the development process and the needed tools for SeCo
applications:

 Building Search Computing Applications 273

• The need for components provided by third parties (in particular: search
services): this implies that the process includes the need of scouting and
investigating about the ecosystem of existing services within the domains of
interest, for publishing and registering the found services.

• The vertical focus of SeCo applications: starting from the repository of available
Search Services, canned interfaces can be devised for implementing verticals
requiring specific domains, whose services are made available in a rich number.

• The need for configurability of the applications: the continuous evolution of
several pieces of the architecture (services, tags and descriptions, interfaces,
results) makes several steps of the development more conveniently located at
query deployment time instead of service registration time.

As highlighted in the development process in Section 2.2, these features push
towards empowerment of the user and ask for specific tools for supporting the
developers. In this section we discuss the features of the existing web development
tools, we highlight which of them can be borrowed for SeCo and we describe our
vision towards instrumentation of the SeCo development process.

3.1 Web Design Tools and Environments

In the context of web application design, developers and designers usually exploit
commercial or open source tools for performing their job. In this section we identify
the classes of tools that are currently in use for Web application design, considering
three main dimensions:

• Target Users: analysts, developers, and visual designers;
• Development Focus: database-oriented, service-oriented, user interface-oriented,

and search-oriented;
• Tool Availability: local or remote.

3.1.1 Target Users
With respect to target users, we identify three main approaches, which correspond to
the respective user roles:

• Analysts and Designers: this user role typically works with Model-driven
design tools. Such tools include BPM (business process modeling) tools, Web
engineering tools based on conceptual models, UML design tools, and
MDD/MDA based techniques. Notable BPM tools that provide good Web
deployment features include Oracle BPM1, WebRatio BPM2, and BillFish BPM3.
The most known representative of Web engineering tools that exploit conceptual
modeling and formalized development process is WebRatio4, while a good choice
of UML modeling and partial code generation (also for the web) exists. Among

1 http://www.oracle.com/us/technologies/bpm/index.htm
2 http://www.webratio.com/
3 http://www.billfishsoftware.com/
4 http://www.webratio.com/

274 A. Bozzon et al.

them, we can mention MagicDraw5, IBM Rational6, and others. These tools
provide a visual design environment that allows drawing conceptual models of
the application, to debug and apply some validation, and to generate running
code. Coverage of the various aspects of the application design and completeness
of code generation depend on the tool. Typically, UML tools generate stub
classes corresponding to the design and then provide hooks to IDEs for
completing the implementation. Some BPM tools provide automatic generation
of the running prototype of the web application, while more sophisticated model-
driven tools like WebRatio provide refined modeling primitives that allow going
for full code generation of the final application. Fig. 1 shows the WebRatio
interface for designing the Web application hypertext and the contextual menu
that allows the user to immediately see the generated Web application page
corresponding to the selected modeling concept. The features that can be
borrowed for SeCo tools include: visual composition of the applications (e.g., at
service registration time for mapping to existing service marts; at application
configuration time for selecting the marts of interest and composing them) and
automatic deployment of the running prototype.

• Software Developers and Debuggers: this roles work with Code-driven
development. This paradigm collects IDEs (Integrated Development
Environment) that are explicitly targeted to web development or that covers
general-purpose development but include some features or plugins addressing
web issues. This class includes a set of diverse products, spanning from Eclipse
WTP project7, which provides a set of Eclipse plugins for Web applications
development, to Microsoft Visual Studio. The main features that can be borrowed
for SeCo tools are: code-level support for building and debugging service
wrappers and the code-level refinement of the application through code
inspection (e.g., for configuration files).

• Visual Designers: this role works with an interface-driven approach,
developing Web interfaces with attention to detailed graphical appearance.
Examples of tools that support this development approach include authoring
tools, solutions like Adobe DreamWeaver8, Aptana Studio9, and a plethora of
commercial and freeware HTML editors. As an example of interface, Fig. 3
shows the command panels of Dreamweaver. Further examples are described in
the next section. The main feature that can be borrowed for SeCo tools is the
support for graphics and interface customization, e.g., for complying with
customers’ visual identities.

A separate category is represented by the mashup development tools, which are of
high relevance for SeCo. This category is not analyzed here because it has been
widely addressed in Chapter 5. The main feature that can be borrowed for SeCo is the
online availability of the design tools.

5 http://www.magicdraw.com/
6 http://www-01.ibm.com/software/awdtools/developer/rose/
 index.html
7 http://www.eclipse.org/webtools/
8 http://www.adobe.com/products/dreamweaver/
9 http://www.aptana.org/

 Building Search Computing Applications 275

Fig. 2. WebRatio modeling interface and link to the generated Web page

Fig. 3. Adobe Dreamweaver CS4, HTML design interface

3.1.2 Development Focus
Most of the development tools for the Web start from a specific perspective to the
problem. Interface- and interaction-oriented tools root into the hypermedia field;
they include tools like Adobe CS410 and Adobe Flex11, which deliver high quality
animations, interfaces, and rich applications.

10 http://www.adobe.com/products/creativesuite/
11 http://www.adobe.com/products/flex/

276 A. Bozzon et al.

Database-oriented tools start from the opposite point of view, by allowing the
design of Web applications upon published data sources. Such tools include Caspio
Bridge12, WyaWorks13, Zoho Creator14, Dabble DB15, Trackvia16, and several other
similar solutions. They all allow to build Web applications made of forms, lists, and
data details starting from a database schema or other data sources (e.g., spreadsheets,
text files, and so on). They typically provide application templates for popular needs
too (e.g., CRM, accounting, project management, and so on). Current trends move
towards full-fledged online database platforms that allow publishing and management
of online data sources. Most of them provide online development interfaces and
Software as a Service business models. The main similarity to SeCo is the schema-
based definition of services and results, as well as the structured specification of
search queries.

Finally, service-oriented tools consider services (instead of data sources) as
first class citizens for the web application. This class comprises Web service
orchestration tools, mashup tools, and service repositories and registration tools.
The former can be classified into two main subcategories: service orchestration
tools, like Oracle SOA17 suite (comprising a BPEL process manager, a service bus,
business rules and code editors), Oracle WebLogic18 suite (an application server
specifically targeted to Web services, formerly owned by BEA), ActiveVos19,
JOpera20, and others, whose aim is to specify executable orchestrations of services
based on BPEL; and more general tools, that can be referred to as BPM tools,
including Oracle BPM (born from the Collaxa BPEL engine, acquired in 2004),
IBM BPM21, BizAgi22, and others. These tools allow the designer to describe
service interactions at a more abstract level through workflow models (for
instance, based on the BPMN notation). In some sense, various SeCo features refer
to this vision: the service-based invocation paradigm, the collaboration between
services for achieving a common result, and the orchestration of the query plans
for producing search results.

We don’t dig into the categories of mashup and service registration tools, since
they have been widely discussed in Chapter 5 and Chapter 9 respectively. An example
of tool at the verge between mashups and BP specifications is JOpera, that supports
quick composition and orchestration of services, as well as monitoring of execution.
Fig. 4 shows a sample screenshot of the tool.

12 http://www.caspio.com/bridge/
13 http://www.wyaworks.com/
14 http://creator.zoho.com/
15 http://www.dabbledb.com/
16 http://www.trackvia.com/
17 http://www.oracle.com/technologies/soa/soa-suite.html
18 http://www.oracle.com/appserver/index.html
19 https://www.activevos.com/
20 http://www.jopera.org/
21 http://www-01.ibm.com/software/info/bpm/
22 http://www.bizagi.com/

 Building Search Computing Applications 277

Fig. 4. JOpera Web service composition screenshot

Another emerging category of tools is related to search-based application
development. With the increase of sophistication and the diversification of
requirements that modern search solutions exhibit, the need arises of unbundling the
functionality of a search system into a set of reusable components, which could be
integrated to produce a variety of solutions based on the paradigm of search. One
example is the Symphony platform by Microsoft, which enables non-developers to
build and deploy search-driven applications that combine their data and domain
expertise with content from search engines and other Web Services [23]. The
similarity to SeCo is quite straightforward, although some basic features (such as join
of results) are still missing in existing tools.

Other approaches to search-based development target the skilled software
developer. Google Base API23 relies on APIs for allowing developers to design their
search applications. It allows to combine unstructured (i.e., full-text based) and
structured (i.e., exploiting a data schema) queries and to update contents in the form
of Google Data API feeds. It supports multiple ranking, overcrowding removal (thus
avoiding to provide several similar items in the same result set), adjusted text results,
suggestions on result schema, and much more. For example, the following query
combines full-text search on digital cameras and structured search on brand “Canon”:

snippets?q=digital+camera&bq=[brand:canon]

Google Base API are exposed as REST services invoked through HTTP GET, like in
the following example:

http://www.google.com/base/feeds/snippets?bq=[brand:canon]

23 http://code.google.com/apis/base/

278 A. Bozzon et al.

Yahoo Query Language (YQL)24, instead, allows to query, filter, and combine data
from different sources across the Internet through SQL-like statements. The following
YQL statement, for example, retrieves a list of cat photos from Flickr:

SELECT * FROM flickr.photos.search WHERE text=“cat”.

YQL is also available as a REST Service that can be invoked through HTTP GET,
passing the YQL statement as a URL parameter. For instance:

http://query.yahooapis.com/v1/public/yql?q=SELECT * FROM
flickr.photos.search WHERE text="Cat"

When it processes a query, the YQL service accesses a datasource on the Internet
according to a given access specification, transforms its data, and returns the results in
either XML or JSON format. YQL can access several types of datasources, including
Web services, REST API and Web content in formats such as HTML, XML, and
RSS.

These APIs are extremely useful for SeCo, since they can be wrapped and
exploited as providers of search services.

3.1.3 Tool Availability
A crucial aspect in modern Web application development is how development tools
are made available to developers. Two major categories can be identified: tools that
are available online with SaaS (Software as a Service) model, and tools to be
installed locally on the developer’s machine.

Among the tools available online we can mention: most mashup tools (see
Chapter 5), some recent database-driven (like WyaWorks) and interface-driven design
tools, the large class of CMS (Content Management System) tools, like Drupal25
and Joomla26, and hybrid solutions like App2You27, which stands in between
database-driven and interface-driven tools.

Desktop development tools include heavy weight solutions like Eclipse, Adobe
CS4 suite, Microsoft Visual Studio28, Webratio, and so on.

3.2 SeCo Development Tools

To comply with the SeCo vision, we foresee a set of tools to be provided to
developers for covering the lifecycle phases. For SeCo application development, tools
are crucial for service registration, application configuration, and query plan tuning,
while tools for service development are outside the scope of the framework and
interfaces for application execution are described in the Liquid Query approach
(Chapter 13).

24 http://developer.yahoo.com/yql/
25 http://drupal.org/
26 http://www.joomla.org/
27 http://app2you.com/
28 http://www.microsoft.com/visualstudio/

 Building Search Computing Applications 279

Service registration tools will consist of a set of facilities for allowing
normalization of service interfaces and their registration as Service Marts. Tools
supporting the normalization will help in:

• Defining the Service Mart signature;
• Defining the Access Pattern structures;
• Defining the normalized schema of the underlying data model, structured in terms

of primary table and SeCondary tables as described in Chapter 9;
• Specifying the service interfaces, in terms of ranking, chunk, cache, and cost

descriptors;
• Defining the annotations of the services, in terms of reference domain and

keywords;
• Establishing connection patterns between pairs of service marts and service

interfaces, to describe possible join paths for queries.

The tools will feature mapping-based interfaces that will allow picking elements from
the service input/outputs (and domain descriptions) and populating the conceptual
models.

Application configuration tools will allow composing application structures
consisting of sets of connected service marts. The tools will support the following
activities:

• Exploring the service repository, through visual navigation;
• Selecting the services of interest for the application and the respective connection

patterns, including the ones needed for query expansions;
• Defining the interface of the query submission form and of the resultset, together

with the default settings for the application and the allowed Liquid Query
operations.

Query plan tuning tools will consist of a visual modeling environment that allows
developers to edit query plans specified according to the Panta Rhei notation (as
described in Chapter 12). Such plans are usually automatically generated by the plan
optimizer, but advanced developers may want to manually refine them to take in
consideration domain specific knowledge or customized choices that are not available
to the optimizer.

All the tools will be developed as online applications, at the purpose of increasing
SeCo application design productivity, reducing the time to deployment, and avoiding
the burden of downloading and installing software.

4 Software Architecture

This section describes the architectural issues involved in the development of SeCo
systems. Being SeCo a Web system dealing with a large amount of concurrent end
user requests, sub-second response time and scalability are of primary importance.
Therefore, high-performance architectures and deployment environments able to
satisfy these requirements must be part of the solutions.

280 A. Bozzon et al.

4.1 High-Performance Architectures for Web Applications

Web applications usually adopt a three-tier architecture, comprising presentation,
business logic, and data. The data tier is usually based on a database, while in SeCo
applications it consists of the registered remote services being invoked by the query
engine. Scalability in Web applications can be achieved by using more powerful
server machines (vertical scalability) or by allocating multiple server machines
organized in a cluster (horizontal scalability)[5]. Cluster computing [22] enables the
management of an increased traffic by splitting incoming requests to multiple servers,
exploiting the fact that most user requests can be handled independently, as it happens
with Search Computing queries. Different load balancing techniques have been
devised [8] to achieve an even utilization of computation nodes. By allocating
redundant nodes to replace failing machines, failover clusters can be used to provide
high availability of deployed applications.

A promising deployment environment for Web applications is provided by Cloud
computing [2] [7]. According to this paradigm, Web applications are deployed to a set
of virtualized, interconnected storage and computing resources offered by third-party
providers, globally referred to as a cloud to abstract from their physical location and
characteristics. A cloud deployment environment (such as Amazon EC2 [1]) offers
several benefits to the application provider, among which the possibilities to (1)
dynamically allocate resources to an application, thus being able to dynamically scale
it up to increased workloads, and (2) to eliminate fixed costs related to in-house
provision of the application, paying only based on the usage of offered resources.

Short response time and time-to-screen are crucial to guarantee system
responsiveness. These parameters are affected by two main factors in SeCo: internal
query processing time and remote services invocation time. The former can be
reduced by executing a query on multiple nodes in parallel, by exploiting inter-query
and also intra-query parallelism. SeCo queries running on multiple nodes can be
assimilated to distributed queries in a database setting [15], where a single query
plan is divided into a set of sub-plans, scheduled and executed on different database
nodes. However, intra-query scheduling in Search Computing is simpler (because
there is no need of considering allocation of data) and can benefit from existing
scheduling algorithms (e.g., the work stealing algorithm [4]) developed in the field
of grid computing [6]. Another popular paradigm for parallel processing is Map-
Reduce [11], a framework for efficiently distributing and scheduling computations
expressed using map and reduce primitives. While Map-Reduce has proven useful
for batch data processing (e.g., building a search engine index), its programming
paradigm makes the execution of relational joins cumbersome; nonetheless, an
extension – Map-Reduce-Merge [24] – has been proposed to address this issue.

Service invocation time, instead, can be reduced by minimizing and optimizing
communications with services, possibly avoiding them at all. At a physical level,
invocation times can be reduced by efficiently using available communication
protocols. HTTP, in particular, provides facilities for caching Web server responses
and pipelining requests to Web servers [12]. At an higher level, the communication
problem has been addressed in metasearch systems, where a crawl-metasearch hybrid
approach [9] has been proposed to reduce Web search costs, by indexing
low-turnover and small data sources while meta-searching the other ones. A similar
approach can be adopted for Search Computing, by recurring to materialization (see

 Building Search Computing Applications 281

SeCo-Application

SeCo-Service

SeCo-Mart

SeCo-Execution

SeCo-Query

Query Mapper

Query
Analyser

Query Planner

Query
Repository

Service
Materialiser

Service
Environment

Service
Registry Service

Invocator

remote communication

Query
Manager

Mart Registry Mart Invocator

Execution UnitsExecution
Engine

Rest API Application
Repository

Liquid Query
View

User Interface
Builder

Google Gears

Yahoo! User
Interface (YUI)

Communication
Manager

Liquid Query
Model

Liquid Query
Controller

Fig. 5. UML component diagram showing the logical system architecture

Chapter 9) of frequently accessed services that provides access to small amounts of
data changing infrequently. A different approach is represented by distributed
workflow systems [20], where service nodes directly participate to the orchestration
process in a peer-to-peer fashion, thus eliminating the central orchestrator bottleneck.
The latter approach however is not applicable to SeCo, since it would require service
providers to actively support the Search Computing framework.

282 A. Bozzon et al.

4.2 SeCo Architecture

This section describes the reference software architecture designed to support the
runtime execution of Search Computing queries. Fig. 5 shows the logical architecture
of the system, expressed in terms of software component to be deployed (and possibly
replicated) on different execution nodes. As shown in the figure, the architecture is
divided in five layers:

• The lower layer, called SeCo-Service, is used by service developers and offers
facilities to wrap and expose existing services. A Service Registry hold wrapper
and concrete service descriptions, as described in Chapter 9. The Service Engine
handles runtime invocations by means of a Service Invocator component that
abstracts the service physical details.

• The SeCo-Mart level provides the service mart abstraction consisting of the
Service Mart Registry and Invocator components, which respectively store
descriptions of service marts and interfaces, and support the invocation of the
latter according to the standard HTTP+JSON interface described in Chapter 9.

• The core level, called SeCo-Execution, contains the execution engine made of a
core Engine component and of a set of Execution Units realizing the Panta Rhei
model. The latter are programmed, installed, and tuned by SeCo experts.

• The SeCo-Query layer includes all the components required for processing a
query. The Query Mapper decomposes natural language queries into domain-
aware subqueries. The Query Analyzer performs the selection of access patterns
service interfaces, thereby producing a service interface-level query29. The Query
Planner translates the query into an optimized Panta Rhei execution plan.
Queries and optimized plans are stored in a Query Repository for subsequent
reuse, while the Query Manager orchestrates the whole optimization process.

• The SeCo-Application level provides a Rest API to submit queries, an Application
Repository to store application-specific data (such as UIs’ definitions) and liquid
query support. Liquid queries are the client-side front-end of the SeCo architecture,
designed as a Rich Internet Application [3] so as to enable a fluid user interaction
thanks to client-side data management and to asynchronous communications with
the SeCo back-end. A standard Web browser incorporates the liquid query
application shell, which is an application written in JavaScript and based on a
Model-View-Controller design pattern; the application leverages the libraries and
functionalities offered by the Yahoo! User Interface (YUI) libraries30 and by
Google Gears31. The Liquid Query Controller initializes the application, builds the
graphical user interface through the User Interface Builder, manages the user
interactions and the interaction status, and communicates with the SeCo API
through the Communication Manager. The Liquid Query Model is responsible to
store and massage client data after each interaction (e.g., applying filtering sorting,
aggregation of results, synchronization with a client persistent repository to enable

29 In the current prototype, the query mapper and analyzer are not developed, as we assume that

the input query is already described at the level service interfaces.
30 http://developer.yahoo.com/yui/
31 http://gears.google.com/

 Building Search Computing Applications 283

off-line usage, etc.). Finally, the Liquid Query View comprises the graphical objects
and presentation properties specific for the SeCo applications. Client-side user
interactions are associated to either local or global operations; the former can be
executed directly on the client, the latter require the engine’s intervention.

4.3 Deployment

This section describes the deployment of software components on processing nodes.
As shown in Fig. 6, deployment is organized on three tiers:

• The Service Tier consists of the processing nodes providing access to registered
services. A Service Composition and Creation Framework can be deployed to
facilitate the exposing of services, and consists of the component of the
SeCo-Service layer.

Engine Tier

Load Balancer
Storage Node
<<Replicable>>

Client Tier - Browser

Processing Node
<<Replicable>>

Service Tier

Service Wrapper Framework

Query
Mapper

Query
Analyser

Query
Planner

Query
Repository

Query
Manager

Mart
Registry

Mart
Invocator

Execution
Engine

Execution
Units

Application
Repository

Rest API

Service
Materialiser

Service
Environment

Service
Registry

Service
Invocator

Service 1

HTTP+JSON

System Bus

HTTP + (X)HTML/JSON

Service 2

Liquid Query
View

Liquid Query
Model

Liquid Query
Controller

User Interface
Builder

Communication
Manager

Fig. 6. Deployment of software components

284 A. Bozzon et al.

• The Client Tier consists of client machines locally running the liquid query UI,
which is offered as a JavaScript component running inside Web browsers.

• The Engine Tier represents the query engine, which is invoked by clients and
executes Search Computing queries over registered services. Engine components
can be simply deployed on a single-machine or distributed and replicated across
multiple machines to achieve massive scalability. In the latter case, components
can be grouped in two types of nodes, namely (1) processing nodes, responsible
of query execution and (2) storage nodes, containing service and query
definitions. If deployed on a cloud infrastructure, these two types of nodes can be
dynamically replicated with the assistance of a load balancer, in order to cope
with increasing workloads. Inter-component communication and coordination are
guaranteed by a System Bus.

In the prototyping of the Engine Tier, besides testing functionalities, we will soon
address crucial aspects such as robustness and scalability. For the second generation
of prototypes, we plan to use a space-based middleware, such as GigaSpaces XAP32,
which represents a promising solution: by decoupling state (stored in space entries)
from computation (provided by stateless components) it automatically supports
component replication, load balancing and fail-over.

5 Business Models in Search Applications

This section discusses plausible business models that could facilitate the spreading
and sustainability of SeCo applications. We start with an overview of the advertising
strategies in the search field, and then we provide some hints on the possible SeCo
advertising models and strategies for attracting users or developing new user
communities.

The rapid growth of the Internet is transforming the way information being
accessed and used. Newer and innovative models for distributing, sharing, linking,
and marketing the information are appearing. As with all communication media,
the major source of financial support is advertising [12]. Several Internet
advertising formats are commonly used: banners, rich media, email, classifieds,
referrals [21]. In today’s Internet advertising industry, the so-called search format
is the most relevant revenue-generating context: advertisers pay search engine
companies to list their links (commonly called sponsored links) in response to
specific search word or phrases. The revenue generated by the search format of
advertising constitutes more than 90% of the whole revenues of search engine
companies33.

In the following three subsections, we describe the economic principles of the
search format and subsequently the tools provided by the main search engine
companies that can be exploited by advertisers and third parties.

32 http://www.gigaspaces.com/xap
33 About 97% of the income of Google (about 10 billion dollars per year) comes from advertising,

the remaining 3% from sales of products [21].

 Building Search Computing Applications 285

5.1 Principles of Advertising in Search Engines

The economic principles of the web advertising search format are simple. The search
engine chooses a list of sponsored links, each one composed of a head title, a brief
description, and the link, to be shown (impressed) alongside the results of the search
and, whenever a user clicks on a sponsored link, the corresponding advertiser [24].
This pricing scheme is commonly called pay-per-click (PPC) and is considered the
fairest for search engine and advertisers. It has been shown [21] that the other two
schemes, pay-per-impression (PPI) and pay-per-transaction (PPT), advantage the
publisher (in this case the search engine) and the advertiser, respectively.

The idea behind the impression of sponsored links alongside search results is
that a user could be interested in visiting commercial links that are strictly related
to her search; this happens indeed very frequently, and therefore the revenues
generated by the search format is very impressive. The choices of the list of the
sponsored links to be shown and of the amount of money that a clicked advertiser
must pay are accomplished by the search engine in the attempt to maximize its
expected revenues, which depend on the probability that a user will click on a link
and the amount of money that the corresponding advertiser would pay for that
click. Obviously, the larger are such two factors, the larger the expected revenues.
This problem is essentially an auction problem and is commonly studied by
resorting to microeconomic tools [18].

We focus on how a search engine chooses the list of sponsored links to be shown.
Given a search accomplished by a user, the first task that the search engine must
address is to determine the most interesting advertisers for the user. This task is
accomplished by estimating the click probabilities for each sponsored link. In doing
so, the search engine exploits context information (e.g., keywords searched by the
user, user's language, country, and IP) and historical data. Essentially, the click
probabilities are produced by considering the last (e.g., one thousand) impressions of
a sponsored link in the presence of the given context and counting the number of
times it has been clicked. These probabilities are commonly called click-through-rates
(CTR) and range from 0.5% to 20% with an average around 3% in practical
applications.

The basic context information concerns the keywords searched by the user. An
advertiser can register for one keyword or for a list of keywords, e.g., “car”, “sport
car”, and “luxury sport car”; the more specific is the list of keywords, the easier and
the more precise is the targeting of the advertisement to the most interested users. The
advertiser can provide additional information, such as the language of the audience,
the country, the region, and the city. For example, a bakery in Paris will likely target
just the city of Paris, while a nationwide bank in Australia will likely want to target
the entire country. The search engine will then determine whom to show a given
sponsored link on the basis of several factors, including user's domain, search terms,
computer's IP address (estimates its geographical location), and language preference
set for the search engine.

The registration of an advertiser for a keyword (or a list) with specific language
and location information is concluded by setting the maximum amount of money that
the advertiser would pay when the sponsored link is clicked. This value is usually
called the advertiser's bid. Note that such amount of money is not generally the

286 A. Bozzon et al.

amount the advertiser will pay if clicked; rather, it is the largest amount that would be
paid. In practical applications, the values are in the range from 0.05 Euros
(minimum value acceptable by the search engine) to 15 Euros. In addition to setting
such value, the advertiser can choose a maximum budget per day or a maximum
number of impressions per day.

On the basis of the context, click probabilities, and advertisers' bids, the search
engine chooses the list of sponsored links to be shown. Generally speaking, the search
engine maximizes the cumulative revenue expected from each sponsored link. The
choice of the amount of money that the clicked sponsored link must pay is an intricate
technical issue, and therefore we provide only the general concepts, omitting details.
On one hand, the search engine should maximize its revenue by maximizing the
payments; on the other hand, it must avoid strategic behaviors of the advertisers that
could decrease the search engine's profit. The aim is to produce payment rules that
provide the right incentives to the advertisers to bid their true evaluations. In this way,
strategic behaviors can be avoided and the economic mechanism behind the auction is
said to be incentive compatible. The design of the most effective economic
mechanism for sponsored search auction is currently an open issue in the
microeconomic literature [21].

5.2 Advertising Tools in Search Engines

We review the tools provided by the three main search engines: Google, Yahoo!, and
Microsoft. For reasons of space, we describe in detail the tools provided by Google
and we briefly report the differences between these tools and those provided by
Yahoo! and Microsoft.

Google provides several tools for Internet advertising. The basic tool for search
format is AdWords [16]. This tool allows an advertiser to register for keywords,
specifying language, location information for targeting audience, and upper bounds
over budget and impressions. AdWords exploits GoogleMaps for the location
information and can add maps to the sponsored links, as the impression of images and
maps has been shown to increase the interest of users and consequently the click
probability. An advertiser can also select the screen area where the sponsored link
will be shown, either on the top of the search results or on the right of them, which are
managed by two different auctions.

Auctions are based on the generalized SeCond price (GSP) [21], where the amount
of money paid by the sponsored link in position i-th is the bid of the advertiser whose
sponsored link appears in position i+1-th. In the version implemented by AdWords
the price is increased by 0.01 Euro. Although this kind of auction does not produce
the right incentives for advertisers to bid their true evaluations (i.e., it is not incentive
compatible), it is shown to produce large revenues for the search engine and to avoid
price instability in the market. Currently, Google is not interested in employing
alternative economic mechanisms that in theory outperform GPS.

Google AdWords provides an advertiser with additional features: advertisers can
select the devices and the content networks where her sponsored links will appear.
Relative to the first feature, the advertiser can target either desktop and laptop
computers, or iPhones and other mobile devices with full Internet browsers, or both.
The Google Content Network [15] allows AdWords to show sponsored links also on

 Building Search Computing Applications 287

sites that are not search engines, including products like Google Groups and Gmail, as
well as other important search sites like AOL and Ask.com, or content sites like
NYtimes.com and About.com.

The tool AdSense [15] is used by website owners who wish to make money by
displaying sponsored links on their websites. Website owners can use Google
AdSense with two different modalities:

• The website owner can publish a Google search frame where a user can search
contents through keywords. In addition to the search results, the website owner
can then publish on such frame the list of sponsored links, produced by Google
AdWords.

• The website owner can publish a frame wherein some sponsored links will be
impressed, letting to Google AdSense the choice of best links on the basis of the
content reported in the site. More precisely, AdSense analyzes the site by
extracting the main keywords and subsequently submits such keywords to
AdWords to produce the list of sponsored links.

With both modalities, the revenue received from the advertisements published by
website owners is shared with Google. The exact ratio of the money that Google gives
to the website owners depends on the specific website and is private information;
usually it ranges from 40% to 50%.

Yahoo! and Microsoft provide tools very close to the ones provided by Google.
Specifically, Yahoo! Search Marketing [24] is analogous to Google’s AdWords and
Yahoo! APT [24] is analogous to Google’s AdSense. Yahoo! tools exploit the same
auction model (GSP), but – differently from Google’s tools - they allow advertisers to
make their bids in real time. Microsoft Advertising [17] combines the services
provided by Google’s AdWords and AdSense. The advantages of Microsoft
Advertising lay on the media network on which the advertisement can be impressed
(in addition to the search engine), which contains high-traffic sites such as Facebook,
Digg, Zune, and Windows Live Sharing.

All the main players (Google, Yahoo!, and Microsoft) provide sophisticated
strategic tools to advertisers in order to optimize their campaigns. They allow an
advertiser to monitor the number of impressions and clicks, to simulate the effects of
increments ad reductions of the value of the bids, to monitor information about the
users, and so on.

5.3 Business Models for Search Computing

In this section, we sketch some ideas about business models for SeCo, by explaining
some scenarios for profit sharing among all players within the SeCo environment, and
specifically showing the aspects of the advertising though the search format could be
extended due to the new aspects of Search Computing.

A Search Computing application relies on the existence of underlying sources. A
SeCo developer could decide to act independently from source owners, e.g. by using
publicly available sources; then, he should play also the role of SeCo publisher and
guarantee the access to the data which are needed for the application. In such a case,
the business model of a SeCo application is simple, as there is only one player, the
SeCo developer, whose incentive is to build an application as attractive as possible for

288 A. Bozzon et al.

its perspective users. SeCo will provide to such player a new application development
environment supporting a new class of Web applications, to be compared to the many
environments already available.

However, the most interesting scenario for source computing is one where the
SeCo developer acts as a “broker of information”, by attracting content owners to
participate to applications. In such a case, the business model must provide scenarios
that yield to advantages both to the publisher and to the broker. Two cases are then
possible:

• If the publisher gets an advantage because the traffic to the publisher’s
application can generate revenues for the publisher, then the model should
recognize an advantage to the broker for every click to the publisher’s
application.

• If instead the publisher provides essential information in order for the application
to become possible while having no advantage due to generated traffic, then the
situation is opposite, and the model should recognize an advantage to the
publisher for every click to the publisher’s application.

Note that a given application might include publishers belonging to both classes. A
fair model should then recognize, for every publisher/broker relationship, one of the
above cases, and support it through simple contractual conditions. Advertising
models can provide the underlying theory for computing the pay-per-click dues.

An interesting aspect is that SeCo applications present as results combinations of
individual entries extracted from multiple services, therefore, while clicking on one
link, users are choosing a “global solution” which is contributed by all other links
offered within the combination. This gives rights to interesting profit sharing schemes
that may give advantages also to links that, even if not clicked, contribute to a
solution.

Of course, a Search Computing broker publishes a Web application, thus, as any
other application, it can host search frames or frames wherein some sponsored links
will be impressed, thus using the tools provided by major search companies reviewed
in the previous section. Similarly, providers may open frames within their
applications, and take advantage of the same mechanisms with the traffic that is
carried to it through SeCo applications.

Search computing could then develop its own advertising models, and these
models provide interesting problems that we plan to study, initially at a more
theoretical level. Two options seem most promising:

• Multi-domain queries in SeCo may offer an important dimension for bidding, by
associating bids to keywords only when other specific domains are present in a
solution, e.g. a bid for the keyword “movie” only when the user is searching for
“renting” in a specific “city”, or instead only when the user is searching for
“cinema”. This option could contribute to the current development of flexible
auction mechanisms within the scientific community, by adding a relevant
dimension.

• A SeCo application could also act as a “broker” for sponsored links, by offering
combinations which use them, and by merging the lists of sponsored links
returned by multiple service providers in the attempt to rank in high position the

 Building Search Computing Applications 289

links that are the most appropriate for the users. In such context, the SeCo
application could use a model of click probability that takes into account all the
click probabilities upon the domains of the query. For instance, the SeCo
application could prefer to impress links that are present in the list of all
providers, rather than a link that has higher probability in one list but does not
appear in the other lists.

These options are currently considered in our research so as to prepare a suitable
business and advertising model for Search Computing.

6 Conclusions

This chapter aimed at broadening our perspective on Search Computing, from its
enabling technologies to its architectural, usage, and business-oriented perspectives.
We introduced the roles and tasks of SeCo developers and discussed how design tools
can help them. We provided an overview of a reference architecture and deployment
strategy, and finally we reviewed advertising models for search industry and thereby
introduced the first elements of a business model for SeCo application development.

References

[1] Amazon. Elastic Compute Cloud, EC2 (2009), http://aws.amazon.com/ec2/
[2] Hayes, B.: Cloud computing. Communications of the ACM 51(7), 9–11 (2008)
[3] Farrell, J., Nezlek, G.S.: Rich Internet Applications The Next Stage of Application

Development. In: 29th International Conference on Information Technology Interfaces,
ITI 2007, June 25-28, pp. 413–418 (2007)

[4] Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

[5] Bondi, A.B.: Characteristics of scalability and their impact on performance. In: WOSP
2000: Proceedings of the 2nd international workshop on Software and performance, pp.
195–203. ACM, New York (2000)

[6] Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. Concurrency and Computation: Practice
and Experience 14(13-15), 1507–1542 (2002)

[7] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

[8] Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally
distributed web-server systems. ACM Comput. Surv. 34(2), 263–311 (2002)

[9] Craswell, N., Crimmins, F., Hawking, D., Moffat, A.: Performance and cost trade-offs in
web search. In: ADC 2004: Proceedings of the 15th Australasian database conference, pp.
161–169. Australian Computer Society, Inc., Darlinghurst (2004)

[10] Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding
UI Integration: A Survey of Problems, Technologies, and Opportunities. IEEE Internet
Computing 11(3), 59–66 (2007)

290 A. Bozzon et al.

[11] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In:
OSDI 2004: Proceedings of the 6th conference on Symposium on Opearting Systems
Design & Implementation, pp. 10–10. USENIX Association, Berkeley (2004)

[12] Even-Dar, E., Kearns, M., Wortman, J.: Sponsored Search with Contexts. In: Deng, X.,
Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 312–317. Springer, Heidelberg
(2007)

[13] Feng, J., Bhargava, H.K., Pennock, D.: Implementing Sponsored Search in Web Search
Engines: Computational Evaluation of Alternative Mechanisms. Informs Journal on
Computing (forthcoming), http://ssrn.com/abstract=721262

[14] Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol (1998), http:/1.1.Tech.rep.

[15] Google. AdSense (2009), https://www.google.com/adsense/
[16] Google. AdWords (2009), https://www.google.com/adwords/
[17] Kossmann, D.: The state of the art in distributed query processing. ACM Comput.

Surv. 32(4), 422–469 (2000)
[18] Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University

Press, Oxford (1995)
[19] Microsoft. Microsoft Advertising (2009),

http://advertising.microsoft.com/
[20] Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A.K., Weikum, G.: From centralized

workflow specification to distributed workflow execution. J. Intell. Inf. Syst. 10(2), 159–
184 (1998)

[21] Narahari, Y., Garg, D., Narayanam, R., Prakash, H.: Game theoretic problems in network
economics and mechanism design solutions. Springer, Berlin (2009)

[22] Pfister, G.F.: In search of clusters, 2nd edn. Prentice-Hall, Inc., Upper Saddle River
(1998)

[23] Shafer, J.C., Agrawal, R., Lauw, H.W.: Symphony: Enabling Search-Driven
Applications. In: USETIM (Using Search Engine Technology for Information
Management) Workshop, VLDB Lyon (2009)

[24] Weber, T.A., Zheng, Z.E.: A model of search intermediaries and paid referrals. Tech.
rep., 02-12-01, The Wharton School, University of Pennsylvania (2003),
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=601903

[25] Yahoo! APT from Yahoo! (2009), http://apt.yahoo.com/
[26] Yahoo! SearchMarketing (2009), http://searchmarketing.yahoo.com/
[27] Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified

relational data processing on large clusters. In: SIGMOD 2007, pp. 1029–1040. ACM,
New York (2007)

	Chapter 14: Building Search Computing Applications
	Introduction
	Development of Search Computing Applications
	User Roles
	Development Process

	Development Tools
	Web Design Tools and Environments
	SeCo Development Tools

	Software Architecture
	High-Performance Architectures for Web Applications
	SeCo Architecture
	Deployment

	Business Models in Search Applications
	Principles of Advertising in Search Engines
	Advertising Tools in Search Engines
	Business Models for Search Computing

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

