
Lecture Notes in Computer Science 5950
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefano Ceri Marco Brambilla (Eds.)

Search Computing

Challenges and Directions

13

Volume Editors

Stefano Ceri
Marco Brambilla
Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32, 20133 Milano, Italy
E-mail: {ceri,mbrambil}@elet.polimi.it

Library of Congress Control Number: 2010923485

CR Subject Classification (1998): H.4, H.3, D.4, C.2.4, F.2, D.1.3

LNCS Sublibrary: SL 3 – Information Systems and Applications, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-12309-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12309-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Who are the strongest European competitors on software ideas? Who is the best doc-
tor to cure insomnia in a nearby hospital? Where can I attend an interesting confer-
ence in my field close to a sunny beach? This information is available on the Web, but
no software system can accept such queries nor compute the answer. At most, users
can identify sub-problems that can be addressed by specific search engines and inter-
act with each of them serially, but then they have the responsibility of building global
answers by manually composing results. Search computing is a new multi-disciplinary
discipline which will provide the abstractions, methods, tools and computing systems
required to express these queries and to build their answer.

The emerging paradigm of software services has so far been neutral to search.
Search computing is an evolution of service computing focused on building the an-
swers of complex queries by interacting with a constellation of cooperating search
services, using ranking as the dominant factor for service composition. New language
and description paradigms are required for interconnecting services and for expressing
queries. Semantic domain knowledge helps enrich terminological knowledge about
objects being searched. New protocols help capture ranking preferences and their
refinement; new interfaces present complex results with simple visual descriptions.
Ranking is relative to individuals and context and therefore reflects personal and
social contributions. Financial and legal implications of search computing must be
understood and mastered. In summary, search computing is a multi-disciplinary effort
which requires adding to sound software principles contributions from other sciences
such as knowledge representation, human–computer interfaces, psychology, sociol-
ogy, economics and legal sciences.

The Search Computing (Seco) Project is funded by the European Research Council
(ERC), responding to the 2008 Call for “IDEAS Advanced Grants,” a program dedi-
cated to the support of investigation-driven frontier research. SeCo started on Novem-
ber 1, 2008 and will last until October 31, 2013 (see www.searchcomputing. eu.) This
book describes the outcome of the first SeCo “Workshop on Search Computing Chal-
lenges and Directions,” held in Como during June 17–19, 2009.

The book is divided into three parts. The first part presents visions of the current
evolution in search, which is becoming more and more task-oriented and is now start-
ing to use ontological knowledge in order to manage complex queries; these visions
are marking the new trends in search.

The second part provides some background and related technologies. These can be
considered as parallel fields of research, useful both for setting the theoretical prem-
ises for search computing and for providing a technological framework for building
search computing systems and applications.

 Preface

VI

The third part dwells on the technological problems and issues which arise when
dealing with search computing as a new search paradigm. It provides a unified view of
the results of search computing as achieved exactly one year after its starting date.

The book is the result of a collective effort of all the project participants and has
been reviewed with the help of the project’s advisory board members and of several
other experts. We thank all of them for their effort.

January 2010

Stefano Ceri
Marco Brambilla

Organization

Reviewers

Luciano Baresi Politecnico di Milano
Marco Brambilla Politecnico di Milano
Fabio Casati Università di Trento
Tiziana Catarci Università di Roma “La sapienza”
Stefano Ceri Politecnico di Milano
Georg Gottlob Oxford University
Ihab Ilyas University of Waterloo
Ioana Manolescu INRIA and Université de Paris Sud
Giansalvatore Mecca Università della Basilicata
Roberto Verganti Politecnico di Milano
Gerhard Weikum Max-Planck Institute for Informatics

Sponsoring Institutions

The Search Computing (Seco) Project is funded by the European Research Coun-
cil (ERC), responding to the 2008 Call for “IDEAS Advanced Grants”, a program
dedicated to the support of investigation-driven frontier research. SeCo started
on November 1st, 2008 and will last until October 31, 2013.

Table of Contents

Part I: Visions

Chapter 1: Search Computing . 3
Stefano Ceri

Chapter 2: Next Generation Web Search . 11
Ricardo Baeza-Yates and Prabhakar Raghavan

Chapter 3: Search for Knowledge . 24
Gerhard Weikum

Part II: Technology Watch for Search Computing

Chapter 4: The Search Engine Industry . 45
Tommaso Buganza and Emanuele Della Valle

Chapter 5: From Mashup Technologies to Universal Integration: Search
Computing the Imperative Way . 72

Florian Daniel, Stefano Soi, and Fabio Casati

Chapter 6: Web Data Extraction for Service Creation 94
Robert Baumgartner, Alessandro Campi, Georg Gottlob, and
Marcus Herzog

Chapter 7: Dataspaces . 114
Cornelia Hedeler, Khalid Belhajjame, Norman W. Paton,
Alessandro Campi, Alvaro A.A. Fernandes, and Suzanne M. Embury

Chapter 8: Multimedia and Multimodal Information Retrieval 135
Alessandro Bozzon and Piero Fraternali

Part III: Issues in Search Computing

Chapter 9: Service Marts . 163
Alessandro Campi, Stefano Ceri, Georg Gottlob,
Andrea Maesani, and Stefania Ronchi

Chapter 10: Join Methods and Query Optimization 188
Daniele Braga, Stefano Ceri, and Michael Grossniklaus

Chapter 11: Rank-Join Algorithms for Search Computing 211
Ihab F. Ilyas, Davide Martinenghi, and Marco Tagliasacchi

X Table of Contents

Chapter 12: Panta Rhei: Flexible Execution Engine for Search
Computing Queries . 225

Daniele Braga, Stefano Ceri, Francesco Corcoglioniti, and
Michael Grossniklaus

Chapter 13: Liquid Queries and Liquid Results in Search Computing . . . 244
Alessandro Bozzon, Marco Brambilla, Stefano Ceri,
Piero Fraternali, and Ioana Manolescu

Chapter 14: Building Search Computing Applications 268
Alessandro Bozzon, Marco Brambilla, Stefano Ceri,
Francesco Corcoglioniti, and Nicola Gatti

Chapter 15: Search Computing and the Life Sciences 291
Marco Masseroli, Norman W. Paton, and Irena Spasić

Appendixes

Appendix A: Search Computing Dictionary . 307

Author Index . 321

Part I

Visions

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 3–10, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 1:
Search Computing

Stefano Ceri

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy
stefano.ceri@polimi.it

Abstract. Search Computing is a new paradigm for composing search services.
While state-of-art search systems answer generic or domain-specific queries,
Search Computing enables answering questions via a constellation of
dynamically selected, cooperating search services, which are correlated by
means of join operations. The idea is simple, yet pervasive. New language and
description paradigms are required for expressing queries and for connecting
services. New user interfaces and protocols help capturing ranking preferences
and enabling their refinement.

Keywords: Complex queries, multi-dimensional queries, search services, join
operation, data integration, data visualization, process composition.

1 Beyond Page Search

Throughout the last decade, Internet search has been primarily performed by routing
users towards the specific Web page that best answered their information needs.
Major search engines, such as Google, Yahoo and Bing, crawl the Web and index
Web pages, highlighting worldwide candidate “best” pages with excellent precision
and recall; such ability has proven adequate to fulfill users’ needs, to the point that
Web search is customarily performed by millions of users, both for work and leisure.

However, not all information needs can be satisfied by individual pages on the
surface Web. On one hand, the so-called “deep Web” contains information which is
perhaps more valuable than what can be crawled on the surface Web; on another side,
as the users get confident in the use of search engines, their queries become more and
more complex, to the point that their formulation goes beyond what can be expressed
with a few keywords, their answers require more than a list of Web pages, and
general-purpose search engines perform poorly upon them. According to search
company’s experts, the number of complex queries that are not answered well by
major search engines due to their intrinsic complexity is remarkably high and
increasing. Many search interactions can be considered as part of a more complex
process of expressing goals and achieving tasks, as discussed in the vision paper by
Ricardo Baeza Yates (Chapter 2).

When a query addresses a specific domain (e.g., travels, music, shows, food,
movies, health, and genetic diseases), domain-specific search engines do a better job

4 S. Ceri

than general-purpose ones; but their expertise is focused upon a given domain. Thus,
one can separately find best travel offers and interesting music shows, or conduct
genetic analysis and investigate the related medical literature, but can hardly combine
information from diverse yet related domains. An expert user can perform several
independent searches and then manually combine the findings, but such procedure is
cumbersome and error prone.

Search Computing aims at responding to multi-domain queries, i.e., queries over
multiple semantic fields of interest, by helping users (or by substituting to them) in
their ability to decompose queries and manually assemble complete results from
partial answers; thus, Search Computing aims at filling the gap between generalized
search systems, which are unable to find information spanning multiple topics, and
domain-specific search systems, which cannot go beyond their domain limits.

Paradigmatic examples of Search Computing queries are: “Where can I attend an
interesting scientific conference in my field and at the same time relax on a beautiful
beach nearby?”, “Where is the theatre closest to my hotel, offering a high rank action
movie and a near-by pizzeria?”, “Who are the strongest candidates in Europe for
competing on software ideas?”, “Who is the best doctor who can cure insomnia in a
nearby public hospital?”, “Which are the highest risk factors associated with the most
prevalent diseases among the young population?” These examples show that Search
Computing aims at covering a large and increasing spectrum of user’s queries, which
structurally go beyond the capabilities of general-purpose search engines. These
queries cannot be answered without capturing some of their semantics, which at
minimum consists in understanding their underlying domains, in routing appropriate
query subsets to each domain specific source and in combining answers from each
expert to build a complete answer that is meaningful for the user.

2 State of the Art

Processing queries on multiple search engines is not new; meta-search engines are
capable of routing the same query to multiple search engines and then presenting
composite results. Kosmix is a new-generation meta-search engine connecting to over
a thousand of sources by using their Web services. In Kosmix, the relevant data
sources for a query are determined by matching the user’s keywords with a huge
private concept taxonomy (of about a million nodes), after manually tagging the data
sources with the same taxonomy concepts. Kosmix, then, routes the query to all data
sources, without attempting source integration. Results are collected from Google,
Yahoo, Flicker, YouTube, Twitter, and so on, and presented to users; sources typically
include very popular search engines, but sometime also domain-specific sources, such
as the Day-Life or Slate (in the news domain). While Kosmix has the ability of
showing individual results from many distinct data sources, it doesn’t integrate
multiple domains, and therefore cannot answer complex queries; rather, it can answer
simple queries by retrieving data from a plurality of sources. Yet, Kosmix
demonstrates that Web services are viable methods for getting information from
remote sources.

Vertical search engines are focused upon a single domain, e.g., hotels (Booking)
or flights (Tuifly), which are well-understood in terms of data quality and ranking

 Search Computing 5

criteria (e.g., for hotels and flights ranking depends on price, plus other domain
specific criteria, such as the hotel’s location and stars, or the flight’s duration and
number of intermediate stops). Therefore, vertical search engine systems perform o
the ranking of search results by using a single scoring function and compute “global
best” results for their domain. Compared to Kosmix, these systems are focused upon
one single domain of expertise, but they compute “global” rankings and then order
their results according to such ranking; instead, Kosmix collates results according to
data source relevance, without intermixing items from the various sources. Also
vertical search engines use Web services for connecting to data sources, although the
number of data services available to a given engine is normally small.

Going beyond meta-search and vertical engines, we find extensions of vertical
search engines capable of integrating information from multiple, but “contiguous”,
domains. For instance, Expedia or Lastminute are capable of integrating information
about flights, hotels, car rentals, special events offerings, and so on. The fact that a
user selects a flight with given associated departure/arrival times helps the system in
proposing the proper length of the hotel stay or of the car rental, thus checking
availability and prices and presenting a “best offer”. Users normally are well aware of
their travelling needs, therefore they select the trip first, and then acquire additional
services; however, if they are offered a particularly attractive hotel booking, they can
fix that choice and go back to flights, trying to improve their travel plan. Thus, an
expert user can combine several travel services and work with combinations,
improving each offer separately while maintaining them “connected” to the travel
plan, and thus achieving an optimal “global offer”. The notion of combination, based
upon given destinations, dates and times, is very similar to the notion of composition
that we want to develop in Search Computing; in a sense, Expedia and Lastminute are
examples of Search Computing systems, however with given fixed domains and
composition patterns.

Advancing search by using knowledge is raising a lot of interest, and is the topic of
the vision paper by Gerhard Weikum (Chapter 3). Knowledge-based search systems,
such as Yago, Wolfram-Alpha and True Knowledge, work by first building large
ontologies and then translating user’s queries into requests over such ontologies,
thereby selecting the knowledge relevant to the answer. This method is certainly
superior to conventional search for answering queries over well-structured and
organized knowledge, e.g., Wikipedia (examples of such queries are Napoleon’s year
of birth, or city’s populations and weather conditions, or the height of mountains in
California).

Ontological search deeply differs from conventional search in that the work of
crawlers is substituted by human-driven knowledge compilation; this is at the same
time a virtue and a limitation of the method, as it cannot easily monitor evolving
data - ontology evolution requires expert work, which currently is provided by
humans at limited speed, and will hardly be capable of processing data about,
e.g., daily events occurring worldwide. From our vision’s perspective, ontology-based
search are a new class of search systems, whose expertise is confined within a specific
ontological description; they can be considered wider domain-specific systems, but
they cannot exhaust the scope of complex search. However, these systems can
overcome conventional search engines in their ability of providing answers whose
content goes beyond the scope of an individual Web page.

6 S. Ceri

3 Building Search Computing Systems

The essence of complex queries is their ability of extracting answers from complex
data, rather than from within a single Web page; but complex data require a data
integration process. Then, the fundamental question is whether such data integration
process can be performed independently – and a-priori – from queries, or should
instead be query-specific. In our vision, integration should be query-specific, since
answering queries about travels and food or about genes and medical knowledge
require intrinsically different data sources: building results for such queries does not
require “global data integration”, but just data integration relative to specific domains.
However, data integration is one of the hardest problems in computing, because it
requires full understanding of the semantics of data sources; as such, it cannot be done
without human intervention.

With Search Computing, we rely on the work of human experts too, but we move
from ontology creation and management, a huge task, to data source coupling, a
somewhat more feasible accomplishment. We denote as data source any data
collection accessible on the Web. The Search Computing motto is that each data
source should be focused on its single domain of expertise (e.g., travels, music,
shows, food, movies, health, genetic diseases), but pairs of data sources which share
information (e.g., about locations, people, genes) can be linked to each other, and then
complex queries spanning over more than one data source can use such pairing (that
we call “composition pattern”) to build complex results. An advantage of this
approach is its transitivity: if we can pair source A to source B (e.g. pathologies which
alter body functions), and then source B to source C (e.g. body functions alterations
which are treated by drugs), than we can answer queries that connect A to C
(e.g. pathologies treated by drugs) and so on. Each source is responsible of
monitoring changes within its domain of expertise, e.g., movie offerings or airfares,
through distributed and real-time processing that cannot be performed by knowledge
managers, but should remain responsibility of the specialized data sources.

Then, the next problem to solve is how to build a composition pattern, i.e., a data
source coupling for answering multi-domain queries, recalling that the purpose of
composition is search, and that therefore results should be presented to users
according to some ranking, respectful of the original rank of the elements coming
from the native data sources and of the search intent of the user; indeed, users
normally only look at top results of a search, therefore the composition pattern should
enable a Search Computing system to produce the highest ranked results first. Our
solution is to resort to join, the most popular data management operation, which is
however revisited in the context of Search Computing to become service-based and
ranking-aware. A result item of a multi-domain query is a “combination”, built by
joining two or more elements coming from distinct data sources and returned by
different search engines; in our first query example (“Where can I attend an
interesting scientific conference in my field and at the same time relax on a beautiful
beach nearby?”), combinations are triples made of: database conferences (extracted
from a site specialized in scholar events, e.g., Dblife), inexpensive flights (extracted
from a flight selection site, e.g., Expedia or Edreams), and cities with nice beaches
(extracted from tourism or review sites, e.g., Yahoo! Travel or Tripadvisor).
Connections carry semantics: flights connect pairs of cities at given dates; therefore

 Search Computing 7

connections use “dates” and “cities” as matching properties. We apply joins to the
context of software services, by assuming that every data source is wrapped as a web
service, and that such services, in most cases, expose a query-like interface which
assumes keyword-based input and produces ranked results as output. Services are
then composed by using a ranking-preserving join. We regard such operation as a join
of search services.

Search Computing aims at giving to expert users the capability of building similar
solutions for different choices of domains, which – in the same way as Expedia or
Lastminute – share given properties and therefore can be connected. For such
purpose, Search Computing offers a collection of methods and techniques for
orchestrating the search engines and building global results. Composition patterns are
predefined connections between well-identified Web services, therefore
orchestrations are not built arbitrarily, but rather by selecting nodes (representing
services) and arcs (representing the links in the composition patterns) within a
resource network representing the various knowledge sources and their connections.
This vision is consistent with the emerging idea of moving from an Internet of
(disorganized) pages to an Internet of (semantically coherent) objects.

With Search Computing, sources must be registered, and their composition patterns
be established. This work requires human intervention, because sources can be linked
only by means of join attributes, which must be type-compatible and describe the same
real-world concept. Source registration occurs by describing the source properties and
annotating their role (i.e., representing both input keyword and output result types);
when two sources can be joined, a composition pattern is created and associated with a
semantic description. This process builds a resource network; we envision
communities of users sharing resources in large networks, but also private bodies
(e.g., enterprises) developing their own proprietary network of related resources.

Then, query processing will use a search computing framework, consisting of a
query optimizer – to decide the best order of execution of service calls and the best
strategy for joining their results – and an execution engine – monitoring the
progressive construction of results and achieving an optimal performance by means of
producer-consumer paradigms implementing policies for balancing the frequency of
calls to the various services, as well as various levels of caching. The execution
engine supports joins of search services as the most relevant operation, and is
equipped with mechanisms for regulating join speed to the pace of data production
services. We foresee supporting the framework upon general-purpose distributed
architectures, such as computing clouds, so as to be easily and effectively available to
application providers.

Complex queries are not only hard to answer, but they can be also difficult to
formulate for the user. There, an important stream of work is about capturing the
user’s search intent and directing the user towards the discovery of his true
information need. This process can be done by means of liquid queries, a dynamic
query interface that lets users dynamically extend the scope of queries and then
browse query results. We expect users to look at results both selectively and globally,
possibly asking for more results from given sources, possibly performing grouping
and aggregation operations upon result attributes, and so on. The design of the liquid
query interface is inspired by Google Squared, whose concept is however extended by
the fact that each portion of the result can be traced back to a well-defined data

8 S. Ceri

source, thus offering the notion of “data provenance” within complex results. We use
a variety of data visualization methods which highlight multiple dimensions and
multiple rankings.

The link topology of the resource network also suggests a way to explore the
information space by augmenting query results. Complex queries often imply that
users have in mind a complex information finding task, which is better represented by
an exploration process rather than by a one shot query; the resource network offers a
natural way to expand the initial query or its results, by accessing nodes which are
reachable from the nodes already used by a query (e.g., expanding the results about
action movies by looking at additional information such as its director, actors, and so
on, or expanding the notion of geo-localized theatres by looking at public transports
or at the nearby pizzerias). Similar capabilities are offered by the latest releases of
search systems, such as Bing, which however restricts query and result expansion to
domains selected a priori; instead, the resource network could offer query-specific
choices.

Finally, we consider the possibility of automatically inferring the relevant network
of data sources required to build the answer from keyword-based user queries. This
will require “understanding” query terms and associating them to resources, through
tagging, matching, and clustering techniques; then, the query will be associated to the
“best” network of resources according to matching functions, and dynamically
evaluated upon them. This goal is rather ambitious, but it is similar to supporting
automatic matching of query terms to services within a semantic network of concepts,
currently offered by Kosmix. One step in this direction, that we are already
considering, is to extend join between services to support the notions of partial
linguistic matching between terms (supported by vocabularies such as WordNet) or
dealing with the predicate “near” in specific domains (e.g. distance, time, money).

4 Building Search Computing Applications

We propose Search Computing as a new method for building a class of rank-aware
information finding solutions, accessible to a vast community of Web application
developers - and not necessarily confined to large search engine companies. This
vision requires a vast community of data providers, who should instrument their data
sources so as to become part of broader search environment. Therefore, we are
concerned with finding a system of incentives so as to motivate the creation of
communities of data providers and of application developers.

The trend towards supporting users in publishing data sources on the Web is a
general one. Google, Yahoo and Microsoft are building environments and tools
(Fusion Tables, Yahoo! BOSS, Symphony) for helping Web users to publish their data,
with the goal of capturing the so-called “long tail” of data sources. We also consider
data publishing essential for Search Computing, however with a specific connotation.
Data sources should produce ranked output, organized as lists of items, so that data
extraction can be performed incrementally, by “chunks” (sublists of a given number
of results, e.g., 10 items fitting into a page), and users can suspend a search and then
resume it, possibly guiding the way in which data sources should be inspected. This
data organization, that we call “ranked and chunked”, is typically offered by search

 Search Computing 9

service APIs (because answering a query normally requires the top few items), but it
is not made available by most data sources. However, most data sources can be turned
into “ranked and chunked”. Ranked data extraction is currently supported by query
languages, and chunking can also be programmed on top of tabular data
representations, by using top-k extraction commands. Such provisions apply to data
which are initially materialized and mapped into suitable formats. Therefore, we are
building tools and/or providing best practices, applicable to data sources of various
kinds, for enabling data providers to build “search” service adapters. We design
methods and tools which will take into account the most popular data publishing
environments, provided by the major players in the field (examples are Yahoo! Search
Boss and Google’s Fusion tables), so as to maximally ease the task of writing
adapters.

The “vision” of Search Computing builds upon two new communities of users:

• Content providers, who want to organize their content (now in the format of
data collections, databases, web pages) in order to make it available for search
access by third parties. They will be assisted by the availability of a deployment
environment facilitating at most their task, and will be provided with the
possibility to register their data within a community. In this way, the "long tail"
of content providers will see a concrete possibility of exploitation.

• Application developers and/or expert users, who want to offer new services
built by composing domain-specific content in order to go "beyond" general-
purpose search engines such as Google and the other main players. They will be
assisted as well by the availability of visual tools facilitating at most their task,
and will in addition find a deployment environment, either obtained by installing
run-time components upon their servers, or - most interestingly - by finding
servers already deployed within cloud computing architectures, where they will
run their applications.

In the simplest scenario, the same person or organization may play the role of content
and application provider, and offer to generic users the access to a specific content. In
the most interesting and challenging scenario, application developers would act as the
brokers of new search applications, built by assembling arbitrary resources, accessible
through uniform service interfaces; some of them could be generic, world-wide, and
powerful (e.g., general purpose search engines or geo-localization services), other
resources could be specialized, local, and sophisticated (e.g., the “gourmet
suggestions” about slow-food offers in given geographic regions). Moreover, expert
users might visually compose queries, starting directly from resource networks, thus
covering the gap in expressing a complex semantics to new generation search engine.

Most of the effort in Search Computing will then be dedicated to supporting
content providers, application developers, expert users, and end users. We expect
application developers to be aware of the resource networks and use visual tools for
building applications with a high-level approach, consisting in using visual tools for
selecting resource sub-networks and turn them into parametric query templates. The
boundary between such actors is not completely sharp, as we do expect some users to
be expert to the point of setting up an application themselves. In this vision, new
business options open up for service providers and brokers, with appropriate licensing
agreements regulating the rights to content access and the sharing of profits based

10 S. Ceri

upon accountability of the click-through generated traffic or of actual committed
transactions. This vision is compatible with the current models adopted by the major
search engine companies (e.g., Google or Yahoo), which monitor the click-through
traffic generated by advertising and sponsored links.

Some of the aspects considered in this research plan can be considered futuristic
and difficult to accomplish, but Search Computing is a five-year project. This book
reports the results of the first year of the project and illustrates our first moves to
accomplish our vision. Four more years of investigation and development are ahead
of us; the results of the project are available (now and throughout the project) on the
project’s website: www.search-computing.eu.

Acknowledgement. Search Computing is a collective research effort, and its
ambitious goals cannot be achieved without the essential contribution of many
colleagues who are either working on it or are members of the Search Computing
Advisory Board. At DEI (Politecnico di Milano): Adnan Abid, Davide Barbieri,
Daniele Braga, Marco Brambilla, Alessandro Bozzon, Alessandro Campi, Sofia
Ceppi, Sara Comai, Francesco Corcoglioniti, Emanuele Della Valle, Piero Fraternali,
Nicola Gatti, Michael Grossniklaus, Mamoun Abu Helou, Andrea Maesani, Davide
Martinenghi, Marco Masseroli, Maristella Matera, Davide Mazza, Emanuele Padula,
Stefania Ronchi, and Marco Tagliasacchi; at DIG (Politecnico di Milano), Tommaso
Buganza, and Roberto Verganti; internationally, Ricardo Baeza-Yates (Yahoo!
Research, Barcelona), Fabio Casati and Florian Daniel (University of Trento), Georg
Gottlob (Oxford University), Ihab Ilyas (University of Waterloo), Ioana Manolescu
(INRIA, Paris), Norman Paton (University of Manchester), Gerhard Weikum (Max-
Planck-Institut für Informatik), and Jennifer Widom (Stanford University).

The SeCo Project (Nov. 1st 2008 – October 31th 2013) is funded by an IDEAS
Advanced Grant of the European Research Council.

Chapter 2:
Next Generation Web Search

Ricardo Baeza-Yates and Prabhakar Raghavan

Yahoo! Research
Barcelona, Spain & Sunnyvale, USA

rbaeza@acm.org, pragh@yahoo-inc.com

Abstract. In this chapter we provide our personal vision of what could
be the next generation of Web search engines, outlining the main research
challenges that derive from it. This vision is based on a single premise:
people do not really want to search, they want to get tasks done. We
motivate our work by the current trends in the Web and, in particular,
Web search.

1 Introduction

Web search has become the starting point of many on-line user activities. The
first generation of Web search engines faced two primary challenges: (1) to scale
known information retrieval techniques to millions of documents, far beyond the
capacity of search engines of the time; (2) to contend with document publishers
that were diverse, non-uniform in quality/authority/style, and in some cases
unreliable or even dishonest in their intent (known as Web spammers). The first
of these challenges was addressed by employing coarse-grained parallel hardware
to create robust, high-capacity computing services – these gave rise in time to
what we now think of as cloud computing. The second challenge was addressed
using various approaches from machine learning and link analysis, but the issue
of spammers has never been completely solved. To this date, search engines fight
an interactive battle with spammers using increasingly sophisticated techniques.
As search engines devised better techniques to combat spam, they were able
to adapt many of the same ideas to improve their ranking functions. Almost a
decade ago, Google and other search engines began to perfect their responses to
navigational queries : queries (such as “british airways”) whose goal is to take
the user to a single target page (in this case, the home page of British Airways).

Navigational queries became the genesis of a new way of thinking about Web
search: namely, the goal of the engine is not to retrieve relevant documents (the
classical metaphor for three decades of information retrieval). Rather, the goal
is to identify a user’s intent (navigating to a specific target page being one of
many possible intents), and to synthesize a page that directly addresses the
user’s intent. For instance, the query “Frankfurt temperature” is arguably not
demanding a ranked list of websites any of which could provide the temperature
in Frankfurt; rather, the user is best satisfied by a number that shows the cur-
rent temperature in Frankfurt. Thus, Web search ceases to be about document

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 11–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

12 R. Baeza-Yates and P. Raghavan

retrieval; rather, it is an interface for web-mediated user goals. The promise of
these new engines is that instead of listing the top-ranked documents matching
the user’s query, they provide a new breed of search experiences. In the pro-
cess, the user is saved the burden of culling documents from a results list and
laboriously extracting the information buried within them.

The technical prowess of today’s search engines – crawling, indexing, retrieval
and ranking – will cease to be the differentiators for this next generation of search
engines. Instead, the key to a better experience will come from the combination
of the deeper analysis of content with the detailed inference of user intent. In
Section 5 we explain how this would work in detail but the main ideas are:
(1) in place of the indexing that search engines traditionally perform (mapping
to each keyword those documents containing that keyword), we have a content
analysis phase that spots entities (such as airlines, restaurants, professors and
museums) in documents; (2) at query time we assign an intent to the user based
on the query, the user’s IP address and any other context that may be available
(such as the GPS coordinates of the phone from which the query was launched);
(3) we then retrieve entities matching the intent (say, Italian restaurants in the
user’s vicinity) and assemble a results page not of documents, but of matching
entities and their attributes (for a restaurant these attributes would include
reviews gathered from various websites, the menu and hours of operation from
the restaurant’s website, and location from a mapping service).

The organization of this chapter follows. In Section 2 we present the current
state of the Web as a searchable data repository. In Sections 3 and 4 we present
current Web and Search trends, respectively. In Section 5 we show how next gen-
eration search might work [29]. In Section 6 we outline several research challenges
that are a direct consequence of current trends and our next generation search
vision. We end the chapter with some final remarks in Section 7. During our ex-
position we use Yahoo!s own research results as examples on the topics covered.

2 The Web

In the few years of its existence, the Web has become the largest repository
of data created by the human kind. The number of static Web pages has been
estimated to be in the tens of billions. Further, dynamic pages can be created
in unbounded numbers (e.g. consider a Web calendar). Today, there are more
than 230 million servers1 and there are more than 680 million computers directly
connected to Internet2. Hence, Web servers are nowadays a commodity, one for
every three hosts.

Regarding the characteristics of the content, several studies indicate that to-
day the Web is a reflection of society, and in particular of World economy. Other
studies also show a high fraction of content redundancy (over 20%, see for exam-
ple [9]). Hence, what we can find in the Web will range from popular repeated
pages to many diverse unique pages.
1 According to netcraft.com.
2 According to the Internet Host Survey.

Next Generation Web Search 13

There are three main categories of Web data:

– Web content, mainly natural language text. The Web comprises hundreds of
terabytes of text in several languages, sometimes with parallel translations.
This content has been well described in [25].

– Link structure of the Web: links and anchor text encode semantic information
and due to its large number is frequently used (see for example [17]).

– Usage data in the Web: human actions recorded in Web logs also encode
semantic information and by volume is the largest resource available.

The structured data and semantics behind these (re)sources must be extracted
by different techniques, which we explore later. Let us now describe the main
characteristics of each case.

2.1 Content

Ramakrishnan and Tomkins [30] estimate the volume of content created every
day. Their estimations suggest that the amount of content produced in the Web
per day varies from 2Gb for professional Web content to 10Gb for User Generated
Content (see next Section). They also estimate 3Tb per day for private content
and 700Tb of generated text per day as an upper bound.

Regarding metadata, that is, data about data, they estimate per day rates
ranging from 10Mb for reviews and comments to 100Mb for anchor text, with
tagging in between at 40Mb. Implicit metadata coming from page views is es-
timated at 180Gb per day. Hence, metadata coming from usage is much larger
than metadata coming from context, a fact that we will explore later.

2.2 Structure

The first (and last) study of the link structure of the whole Web was done by
Broder et al [14] in 1999. They showed that the main part of the Web was the
largest strongest connected component (SCC) of the link graph. The SCC had
two attached components: pages with link paths to the SCC and pages connected
to dead end link paths starting at the SCC. In addition there were many islands
(groups of unconnected pages). From a practical point of view this implies that
it is very easy to crawl the SCC and the pages linked from there, while the
rest would need to be registered by the owners in the search engine. In the last
decade, the rich link structure of the Web triggered many measures to evaluate
the quality of Web pages based in links in the last, starting with PageRank and
HITS.

2.3 Usage

Web usage involves any interaction of people with the Web. From a search engine
point of view the most important interactions are querying and browsing. The
frequency distributions of queries and URL clicks follow a power law, as many
other variables that can be measured from the Web. Regarding queries, one
important question is if the power law is (1) due to one group of people requesting

14 R. Baeza-Yates and P. Raghavan

popular queries and other group of people asking unique queries (the long tail)
or (2) due to all people asking both classes of queries. Goel et al have shown
that the later case is what happens in practice [23].

Extracting and deducing information from usage data is one example of what
today is called the wisdom of crowds [33].

3 Web Trends

3.1 User Generated Content

User generated content (UGC) is the content generated by users participating
in experiences collectively referred to as Web 2.0. The Web 2.0 is associated
with Web applications that facilitate interactive information sharing and col-
laboration, such as blogs, wikis, mashups and social networks. As we already
mentioned, Ramakrishnan and Tomkins estimate the volume of UGC per day
to be 10Gb. Although the average quality of UGC is not as good as editorial
content, we believe that at the same level of content quality, the volume of UGC
is larger than editorial content [2].

This trend has two main consequences on the Web:

– With increasing numbers of people creating and owning content each day, we
have growing fragmentation of ownership. This in turn implies a democrati-
zation of Web content. While positive from a societal standpoint, this makes
Web search more challenging due to the growing diversity of ownership of
content.

– More content available means less time to consume content from each Web
site. Hence, we have a fragmentation of access. This is a negative conse-
quence, as the volume of “written-only” (and never read) content increases.

3.2 Social Networks

An important case of UGC that deserves special attention are social networks
like Facebook and MySpace. The first surpassed 300 million members at the end
of 2009 and has seen an impressive growth in the last year in many countries.
The concept of different levels of access rights inside social networks, such as
friends, friends of friends and geographical social sub-networks, contributes to
the fragmentation of the right to access. That is, today we cannot simply talk
about the public and the private Web, as the private Web is now fragmented
and the accessible3 Web depends on the user.

Another trend related to social networks is Twitter. Twitter is a micro-
blogging and social network application that its founders call a real-time infor-
mation network. To this real-time Web we must add data published in real-time
coming from various sensor networks connected to the Internet.

The main question still unresolved is the viability of social networks as the
classical advertising-based business model is not (yet) well established.
3 In the sense of access not accessibility.

Next Generation Web Search 15

3.3 Web of Objects

The Web of Objects (WOO) is a new way of organizing Web content in terms of
entities and relationships between them. The WOO is related to the Semantic
Web initiative and the Open Linking Data project4 is one of the best examples
of what could be this Web in the future. Most linking techniques are based on
content and link analysis, but we will see later that Web usage analysis can be an
additional and powerful technique to improve the state of the art. It is important
to notice that this is different from the Web of Things, which are physical objects
that contain embedded devices connected to Internet that are integrated through
the Web. A related topic is the recently defined Web of Concepts [21].

4 Search Trends

We next outline what we believe are the main current trends in search, in no
specific order. For more information we refer the reader to [11,26].

4.1 Query Intent

As motivated in the introduction, search results have become more than a list of
documents. Search engines are moving towards identifying the intent behind the
query and enabling the user to complete a specific task. The first and most pop-
ular categorization of query intents in the Web was proposed by Broder [15]. He
defined three classes of queries: informational, navigational, and transactional.
Informational queries are those where the main goal is information as in tra-
ditional information retrieval. In navigational queries the goal is to find a Web
site for browsing while in transactional queries, the goal is to execute interactive
tasks such as downloading images or buying a product. Further, notice that the
query intent can be ambiguous. For instance, consider someone seeking informa-
tion on their favorite singer. Are they looking for the biography, the official Web
site or a song? Broder estimated the percentage of the three classes of queries
obtaining between 39%-48% for informational queries, 20%-25% for navigational
queries, and 30%-36% for transactional queries. This taxonomy has been refined
in several ways, but still is the most used one.

4.2 Open Search Ecosystem

Another trend is the open search ecosystem, where Amazon’s OpenSearch and
Yahoo!’s SearchMonkey are two major initiatives. OpenSearch is a suite of tech-
nologies that allow publishing of search results in a format suitable for syndica-
tion and aggregation. In this way, websites and search engines can publish search
results in a standard and accessible format. On the other hand, SearchMonkey
is a Yahoo! service which allows Web publishers to use structured data to make
Yahoo! Search results more useful and visually appealing, and hence drive more
4 URL: http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/Linking-

OpenData

16 R. Baeza-Yates and P. Raghavan

relevant traffic to their sites. Both, OpenSearch and SearchMonkey allow people
to mash up user experiences based on metadata for user results. Microsearch [27]
is an early example of this: you can see the metadata in the search and therefore
are encouraged to add to it. There is a button next to every result called “Up-
date metadata” which gives you instant feedback of what your metadata looks
like.

5 How This Might Work

Our fundamental thesis is that the way to satisfy the user need underlying a
query is to assemble entities – rather than documents – matching that need.
To this end, we must identify specific types of entities that will be presented in
response to user queries – for instance, we may decide that we will present entities
of types restaurant, university, politician and automobile. For each entity type
we may identify a schema that tells us what structured meta-data we associate
with that entity type. For instance, the meta-data associated with the entity
type restaurant could include its name, address, cuisine type, menu, reviews and
opening hours.

Each of these entity types is presented in response to specific classes of queries
relating to the entity type. Next we outline what is needed to accomplish this
and the main research challenges, detailing them in Section 6.

5.1 Pre-processing

This approach demands a series of “pre-processing” steps that go beyond tradi-
tional parsing and inverted indexing of crawled content. There are two significant
pre-processing steps:

1. Entity extraction: Here we extract, from all the documents in the index, all
occurrences of entities of specified types. Thus in our running example, we
may extract every instance of a restaurant, university, politician or automo-
bile from each document in the index. The extraction itself can invoke any
of several methods: identifying entities listed in a catalog (say, a list of all
restaurants known to a publisher such as Zagat’s), regular expressions and
other rules, or methods from machine learning. From this we can create a
dictionary of all entities (of the selected types) present in any document,
together with some meta-data about each occurrence.

2. Entity normalization: The above discussion raises the important issue of
normalization – from all the occurrences of (say) Pizzeria Roma in many
different documents, how many different physical restaurants can we infer?
To put it differently, we must take all references to a single physical Pizzeria
Roma and collate them, even if they occur in different documents.

The first step is performed as each crawled document is parsed. The second
is done in a series of refinements in which we bucket the spotted entities into
a dictionary of likely distinct entities, together with their meta-data. The net

Next Generation Web Search 17

of the two steps is a dictionary of all entities of the required types, together
with our best estimate of the meta-data for each entity. Each of these steps is
fraught with research challenges, covered in the next Section, in particular with
what precision and recall can we cull entities of the various types from the noisy
information on the Web?

5.2 Query Processing

The first goal of query processing is to assign an intent to the query at hand.
Exactly how to specify the universe and language of expression of intents is a
subtle and largely unsolved problem. To a first order, we may view an intent as
a probability distribution over decompositions of the query into distinct entities.

For each combination of entity types recognized in the query (for instance,
restaurant name plus metro area) we would need a templated response that
prescribes the entity types to be presented in the results. Next, we retrieve and
rank entities of the prescribed types; the ranking of entities is a major open
problem.

6 Research Challenges

We now outline several research challenges associated to Web search. Some of
them are related to trends already existing in the Web that will be needed by
any Web search engine, while others are directly related to our next generation
search vision.

6.1 Crawling

Due to the volume, diversity and rapid growth of Web data, recollecting the
data in a timely manner has been always one of the main challenges behind
Web search. In addition, as the link structure of the Web is not fully connected,
that implies that not all Web data can be easily found. To this we have to add
the hidden Web, for example, data behind forms in e-commerce sites. On top of
that, the diversity of the Web poses the extra condition that a crawler must be
tolerant to all possible types of errors.

Hence, crawling is a very hard dynamic scheduling problem. The resultant
software must run in a parallel and distributed platform, which adds other re-
strictions as well as more challenging issues like synchronization and consistency.

6.2 Extracting and Ranking Entities

Entity extraction is one of the simplest natural language processing tasks, al-
though in the context of the Web the problem is harder due to the volume of
Web text and its quality (incompleteness, noise, truth or falsehoods, etc.) In
the case of generic Web text is much more difficult to obtain the same quality,
but this can be partially solved by relating content of other sources by using Web

18 R. Baeza-Yates and P. Raghavan

mining as we mention later. We recognize that the vast majority of members of
a given entity, say restaurant, are unlikely to be known to any publisher, so that
we need rule-based and machine learning methods to discover entities not known
to catalog publishers. Also, note that in general, a query need not be uniquely
decomposed into entities; for instance, consider the query chicago pizza new
york ; is this a search for the restaurant “Chicago Pizza” in New York, or for the
restaurant “Pizza New York” in Chicago? (There is also the third possibility that
the query seeks Chicago-style pizza in New York, but this requires recognizing
food types as entities.)

The problem of entity normalization becomes especially challenging in the face
of noise (misspellings, abbreviations, typographical errors, etc), and the fact that
most entity occurrences will likely be detected by machine learning and/or rules,
rather than from a dictionary. For instance, along with a restaurant we may cull
from a document its menu and two reviews; a different document may give us its
opening hours and address. In other words, not all the available meta-data for
an entity may come from a single Web page and in many cases, different Web
pages might yield contradictory meta-data about an entity. Reconciling these is
a part of entity normalization.

The next step is to rank information units of varying complexity and structure,
in particular entities. Document ranking in today’s search engines is largely
accomplished through machine learning, where document features are combined
to produce scores (for each document on each query) that are close to those
assigned by editors to selected example query-document pairs. In principle the
same methodology could be used for ranking entities; however, the editorial
assignment of scores to examples is much harder. An editor may reasonably
be expected to score a document on its relevance to a query, judging some
documents to be more relevant to a query than others. Ranking (say) pizzerias
in San Francisco’s North Beach area is not a matter of retrospective editorial
judgment, but rather a prognosis of likely user reactions to various pizzerias.
Potentially, user reviews and other user generated content could – if suitably
harnessed and spam-proofed – provide a scalable solution to this issue, at least
for popular entities.

In this problem, our research has been focused in the quality/performance
trade-off. We have shown that entity extraction can be done at state-of-the-art
quality in linear time for good quality text such as Wikipedia [3]. We have also
done work on the ranking of entities [34] or answers [32], based on semantic an-
notations. Some early demos of this research are Correlator, a new way to search
the Wikipedia and find related entities, and Yahoo! Quest, a new way to explore
Yahoo! Answers (see them at {correlator,quest}.sandbox.yahoo.com).

Another line of research has focused in information extraction in general [22],
in particular for the case of evolving content [18]. The result is the PSOX in-
formation extraction system [13], that allows to do entity extraction taking in
account the data source [31]. One additional semantic information to exploit in
the future is time [1].

Next Generation Web Search 19

6.3 Query Intent

A major technique used to predict query intent is the analysis of Web query logs,
or Web query mining, a topic that we explore in the next subsection. Recent
research has focused on the automatic prediction of query intent [5,24]. Most
studies are based on the application of machine learning techniques to different
query attributes such as anchor-text word distribution in queries, click behavior,
and query length, as well as related attributes such as the text of pages clicked
on and the text of snippets associated with the results. Baeza-Yates et al [5]
found that prediction accuracy was much higher for informational queries than
for non-informational queries. In addition, as expected, they concluded that the
intention of ambiguous queries is very hard to predict. Hence, further research
on this problem is still needed.

One important attribute of intent is the physical location associated with
it. For each query intent and its context (for example, location), we wish to
change the result unit returned, improve the ranking of the results or show the
results in a different way. Examples of this trend are structured or faceted results
depending on the query intent.

One important issue when mining queries is privacy [19]. However, by aggre-
gating all users that have the same intent, privacy risks are reduced as we are
dealing with large groups of anonymous users and not specific individuals. In
addition, aggregation helps boost statistical significance, as the intent distribu-
tion follows a heavy-tailed distribution and hence many user intents are rare. By
aggregating people pursuing the same goal, we can personalize the experience of
doing a task for more people.

6.4 Exploiting Web Queries

One of the most powerful sources of information in understanding query intent is
what today is called query mining [4], that is the analysis of search engine query
logs and the associated actions. The user behavior behind queries can relate
content in many ways. Basically, if we can relate queries to each other, and also
relate queries to content, we indirectly relate content, and hence entities. We can
distinguish two types of query usage analysis of this flavor.

The first is based on temporal causality, that is queries are related because
they are issued by the same person in sequence (that is, a logical query session).
The strength of the relation is supported by the task that the person is trying
to solve with a specific goal in mind, and by how many people issued a pair of
queries in sequence. Hence, two pages are related if were clicked by two different
queries that are related.

The second type of analysis is based on behavioral causality. For example,
suppose one user asks the query q and clicks on page P and another user asks
query r and also clicks on P . Then we can infer that queries q and r are related
through the content P . In this case the strength of this relation grows with the
number of people that performed this sequence of actions. Now, we can reverse
the idea to obtain a dual graph: two pages are related if there is at least one
query where one or more users clicked on those two pages.

20 R. Baeza-Yates and P. Raghavan

In both cases we can infer a graph where the nodes are Web pages and two
nodes are linked if some subset of queries related to each node are related. This
graph can then can be used to suggest possible related pages or equivalently,
suggest dynamic hyperlinks while the user is browsing.

In addition, if we intersect the query graphs from both types of analysis, the
result contains high quality signals because it is hard to have Web spam or
noise that affects a given edge in both graphs. Other relations among queries
can be obtained from the content and structure of pages or from the queries
themselves [6].

If we can relate content, we can find semantic relations [7]. These relations can
be used to automatically generate (pseudo)-semantic resources. Coupling them
with open content resources (mainly coming from the Web 2.0), we create a
virtuous feedback circuit to improve the Web and the data available in the Web.
In fact, explicit and implicit folksonomies can be used to do machine learning
without the need of manual intervention (or at least drastically reduce it), to
improve semantic tagging [28].

One example of using query analysis to predict query intent is Yahoo!’s Search-
Pad, where research queries are predicted to trigger a notepad that helps the
user to keep annotations regarding the research topic of interest.

6.5 Results Page Layout

Where there are multiple intents (decompositions into entities) in the query,
we have the additional challenge of laying out on the search results page the
ranked entities for each intent. How do we optimize this presentation? In the
traditional Web search interface, documents (deemed to be) matching the query
are listed by decreasing order of score. A slightly more complex situation occurs
in image (and certain forms of product) search, where the results are laid out
in a two-dimensional “matrix” view; here the challenge is take the scores for
the retrieved images and map them into positions on the matrix. While the
commonest heuristic is to place the images in row-major order on the matrix,
it is unclear whether this placement optimizes the user’s perception. This is
because users do not typically scan the matrix in row-major order. The most
general version of this problem: given ranked lists of entities matching the various
intents in a query, how best can we use the screen area on the results page, to
maximize the user’s utility? This challenging layout optimization problem can
be decomposed in many ways into sub-problems, each of which gives rise to
interesting research challenges.

6.6 Social Networks

From the point of view of Web search UGC and particularly social networks pose
several new challenges, such as more real time content and more content that
cannot be crawled. In addition, depending on the user need, the best answer
may come from a different facet of the Web (static, dynamic, real-time, deep,
semantic, etc.). Even further, we have the paradox that the answer a user may
like to see should come from the facet of the Web that the user may never browse.

Next Generation Web Search 21

In this context several research problems arise: (1) crawling and searching
real-time Web data while combating spam, (2) exploiting the underlying social
networks to rank people and their UGC, and (3) using private data to infer
signals about who may have the answer to a user’s need (e.g. expert search),
without violating privacy restrictions.

6.7 Scalability

Scalability compounds all of these challenging research problems. In many cases
we can improve results by just adding more data (e.g., in a machine learning al-
gorithm related to entity extraction). This in turn leads to the research challenge
of devising algorithms that strike a balance between speed and result quality.
One major scalable programming technique used nowadays is the map-reduce
paradigm through the Hadoop platform and cloud computing [20].

Scalability is also important at the infrastructure level, where data centers
are each day larger [12]. One future alternative would be to transition from the
current replicated centralized systems to truly distributed systems [10].

7 Final Remarks

In summary, the next generation of Web search must better extract meaning
and semantics from all aspects of the Web – from the user’s query, to various
forms of content. To a first approximation, eliciting meaning is a matter of
eliciting structured entities from queries and content. Such extraction must then
be combined with “more traditional” challenges such as spam filtering, ranking
and scale.

Using Web usage to relate content can be thought as implicit crowd com-
puting. That is, by searching the Web and clicking on results, users are helping
computers to find similar content. This idea can be extended to many other ap-
plications and as more users use the Web, the wisdom of crowds becomes more
powerful [33]. However, this effect creates or worsens other problems. An impor-
tant example is: how to evaluate the results of these techniques, when each day
the size of the ground truth data is relatively smaller (e.g. Wikipedia or the Open
Directory Project). One possible solution is to use new sampling techniques that
can assess with high probability the quality of the results.

Possible future next frontiers for search are semantic search and implicit
search. Semantic search implies searching at the semantic and not the syntactic
level. In implicit search, the query is implicit in the actions of the user and we
will have an explicit or implicit information provision mode [16]. That is, instead
of pulling information, information is pushed to us depending on the context.
We can call this problem contextual content delivery and is applicable to any
Web application. The final goal is to deliver the best possible content that a
user would like to have in a given moment.

Acknowledgements. We are grateful for the helpful conversations with
Andrew Tomkins and many Yahoo! colleagues.

22 R. Baeza-Yates and P. Raghavan

References

1. Alonso, O., Gertz, M., Baeza-Yates, R.: On the Value of Temporal Information in
Information Retrieval. ACM SIGIR Forum 41(2), 35–41 (2007)

2. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion (2006)

3. Atserias, J., Zaragoza, H., Ciaramita, M., Attardi, G.: Semantically Annotated
Snapshot of the English Wikipedia. In: Proceedings of the 6th International Con-
ference on Language Resources and Evaluation, LREC (2008)

4. Baeza-Yates, R.: Applications of Web Query Mining. In: Losada, D.E., Fernández-
Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 7–22. Springer, Heidelberg
(2005)

5. Baeza-Yates, R., Calderón-Benavides, L., González-Caro, C.: The intention behind
Web queries. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006.
LNCS, vol. 4209, pp. 98–109. Springer, Heidelberg (2006)

6. Baeza-Yates, R.: Graphs from Search Engine Queries. In: van Leeuwen, J., Italiano,
G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007.
LNCS, vol. 4362, pp. 1–8. Springer, Heidelberg (2007)

7. Baeza-Yates, R., Tiberi, A.: Extracting Semantic Relations from Query Logs. In:
ACM KDD 2007, San Jose, California, USA, August 2007, pp. 76–85 (2007)

8. Baeza-Yates, R., Mika, P., Zaragoza, H.: Search, Web 2.0, and the Semantic Web.
In: Benjamins, R. (ed.) Trends and Controversies: Near-Term Prospects for Seman-
tic Technologies, January-February 2008. IEEE Intelligent Systems, vol. 23 (1), pp.
80–82 (2008)

9. Baeza-Yates, R., Pereira, A., Ziviani, N.: Genealogical trees on the Web: A search
engine user perspective. In: WWW 2008: Proceedings of the 17th international
conference on World Wide Web, Beijing, China, pp. 367–376 (2008)

10. Baeza-Yates, R., Gionis, A., Junqueira, F., Plachouras, V., Telloli, L.: On the
feasibility of multi-site Web search engines. In: ACM CIKM 2009, Hong Kong,
China, November 2009, pp. 425–434 (2009)

11. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn.
Addison-Wesley, Reading (2010)

12. Barroso, L.A., Hölzle, U.: The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Synthesis Lectures on Computer Architec-
ture, vol. 6. Morgan Claypool, San Francisco (2009)

13. Bohannon, P., Merugu, S., Yu, C., Agarwal, V., DeRose, P., Iyer, A., Jain, A.,
Kakade, V., Muralidharan, M., Ramakrishnan, R., Shen, W.: Purple SOX extrac-
tion management system. SIGMOD Record 37(4), 21–27 (2008)

14. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the Web: Experiments and models.
In: Proceedings of the Ninth Conference on World Wide Web, Amsterdam, Nether-
lands, pp. 309–320. ACM Press, New York (2000)

15. Broder, A.: A taxonomy of Web search. SIGIR Forum 36(2) (2002)
16. Broder, A.: The Future of Web Search: From Information Retrieval Information

Supply. In: Etzion, O., Kuflik, T., Motro, A. (eds.) NGITS 2006. LNCS, vol. 4032,
pp. 362–362. Springer, Heidelberg (2006)

17. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco (2002)

18. Chen, F., Doan, A., Yang, J., Ramakrishnan, R.: Efficient Information Extraction
over Evolving Text Data. In: ICDE, pp. 943–952 (2008)

Next Generation Web Search 23

19. Cooper, A.: A survey of query log privacy-enhancing techniques from a policy
perspective. ACM Transactions on the Web (TWeb) 2(4) (2008)

20. Cooper, B., Baldeschwieler, E., Fonseca, R., Kistler, J., Narayan, P., Neerdaels, C.,
Negrin, T., Ramakrishnan, R., Silberstein, A., Srivastava, U., Stata, R.: Building
a Cloud for Yahoo! IEEE Data Eng. Bull. 32(1), 36–43 (2009)

21. Dalvi, N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A., Bohannon, P.,
Keerthi, S., Merugu, S.: A Web of concepts. In: PODS, pp. 1–12 (2009)

22. Doan, A., Naughton, J., Ramakrishnan, R., Baid, A., Chai, X., Chen, F., Chen,
T., Chu, E., DeRose, P., Gao, B., Gokhale, C., Huang, J., Shen, W., Vuong, B.-
Q.: Information extraction challenges in managing unstructured data. SIGMOD
Record 37(4), 14–20 (2008)

23. Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the Long Tail: Ordinary
People with Extraordinary Tastes. In: Third ACM Conference on Web Search and
Data Mining (WSDM), New York (2010)

24. Jansen, B.J., Booth, D.L., Spink, A.: Determining the user intent of Web search
engine queries. In: Proc. of the 16th international conference on World Wide Web,
pp. 1149–1150. ACM Press, New York (2007)

25. Kilgarriff, A., Grefenstette, G.: Introduction to the special issue on the Web as
corpus. Computational Linguistics 29(3), 333–347 (2003)

26. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

27. Mika, P.: Microsearch: An interface for semantic search. In: Proceedings of the
Workshop on Semantic Search at the 5th European Semantic Web Conference,
Tenerife, Spain (June 2008)

28. Mika, P., Ciaramita, M., Zaragoza, H., Atserias, J.: Learning to Tag and Tagging to
Learn: A Case Study on Wikipedia. IEEE Intelligent Systems 23(5), 27–33 (2008)

29. Raghavan, P.: The Future of Search. In: 5th Gilbane Boston Conference: Where
Content Management Meets Social Media, Boston (2008)

30. Ramakrishnan, R., Tomkins, A.: Toward a PeopleWeb. Computer 40(8), 63–72
(2007)

31. Shen, W., De Rose, P., Vu, L., Doan, A., Ramakrishnan, R.: Source-aware Entity
Matching: A Compositional Approach. In: ICDE, pp. 196–205 (2007)

32. Surdeanu, M., Ciaramita, M., Zaragoza, H.: Learning to Rank Answers on Large
Online QA Collections. In: Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies, ACL-HLT
(2008)

33. Surowiecki, J.: The Wisdom of Crowds, Random House (2004)
34. Zaragoza, H., Rode, H., Mika, P., Atserias, J., Ciaramita, M., Attardi, G.: Ranking

Very Many Typed Entities on Wikipedia. In: CIKM 2007: Proceedings of the six-
teenth ACM international conference on Information and Knowledge Management,
Lisbon, Portugal (2007)

Chapter 3:
Search for Knowledge

Gerhard Weikum

Max-Planck Institute for Informatics
Saarbruecken, Germany

weikum@mpi-inf.mpg.de

Abstract. There are major trends to advance the functionality of search engines
to a more expressive semantic level. This is enabled by the advent of knowledge-
sharing communities such as Wikipedia and the progress in automatically ex-
tracting entities and relationships from semistructured as well as natural-language
Web sources. In addition, Semantic-Web-style ontologies, structured Deep-Web
sources, and Social-Web networks and tagging communities can contribute to-
wards a grand vision of turning the Web into a comprehensive knowledge base
that can be efficiently searched with high precision. This vision and position paper
discusses opportunities and challenges along this research avenue. The technical
issues to be looked into include knowledge harvesting to construct large knowl-
edge bases, searching for knowledge in terms of entities and relationships, and
ranking the results of such queries.

1 Trends and Opportunities

It is widely believed that queries posed to Web search engines are very simple: one
or two keywords to express the user’s information need, and millions of matching re-
sults including many excellent hits, so that well-known ranking techniques can easily
achieve high precision for the top-10 Web pages seen by the user. While this may in-
deed be true for the large mass of popular queries, each asked by many thousands of
users, the picture is different for the long tail of individual queries about professional
needs, rare hobbies, local music concerts, or personal health issues. Not only do these
queries contain more keywords and return fewer results, but the user would often ex-
pect a concise answer with relevant facts rather than merely being pointed to potentially
interesting Web pages. The following are examples of such advanced queries (we will
later use some of these to illustrate technical challenges):

1. A student of natural history may want to know about explorers on river expeditions
for some project work. A botanics student may be interested in succulents that grow
in both America and Africa. While perhaps resembling quiz questions, this type of
queries arises in the daily work of millions of university students.

2. As many people like watching TV game shows, true quiz questions may indeed
be a use case as well. Which king was married to Eleanor of Aquitaine? Who was
the last wife of Idi Amin? Who was the wife of the French president when Nicolas
Sarkozy was born? If a search engine could automatically answer all these ques-
tions, a machine could win a million Euros in the popular quiz show “Who Wants
to Be a Millionaire?”.

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 24–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

weikum@mpi-inf.mpg.de

Search for Knowledge 25

3. This type of knowledge “factoid” questions can be extended into “list” questions
that aim to retrieve comprehensive lists of persons with particular properties. Which
Oscar winners are from Europe? Which scientists emigrated from Germany to
America? Which French politicians are married to singers?

4. Sports is a topic with high query traffic by both professionals, such as journalists,
and laymen like fans of particular teams or athletes. What is the highest number
of points that any center player of the Los Angeles Lakers ever scored in the NBA
league? Against which German soccer clubs did Real Madrid play in one of the
European leagues or cups?

5. Finally, health is a topic of great importance in society. Information about diseases
and pharmaceutical drugs becomes increasingly complex, while more and more
(often elderly) people depend on accurate information. Examples of typical search
requests are the following: Which drugs against flu symptoms or flu viruses can be
safely used by children? Which of them can be taken while being pregnant? Could
the H1N1 (swine flu) vaccine Pandemrix interfere with blood-pressure medications
such as Metolazone?

Answering such queries requires a more semantic understanding of Web contents, lift-
ing the interpretation of pages from the popular bag-of-keywords model to a level of
named entities and relationships between entities. As results we expect ranked lists of
entities or entity pairs that satisfy the relational conditions expressed in the query or
question. For example, the sports query about Real Madrid should return clubs like FC
Bayern Munich, Bayer Leverkusen, 1. FC Kaiserslautern, and so on.

We refer to this new level of Web querying as search for knowledge: facts on entities
and relations, and not just Web pages. These kinds of advanced questions arise in the
long tail of individual users’ needs for knowledge. In particular, they are central to the
mission of many types of knowledge workers: scientists, students, journalists, market
and media analysts, and so on. This demand is reflected in recent trends towards more
powerful semantic search engines and knowledge services on the Internet.

Representatives of semantic search engines are wolframalpha.com which computes
knowledge answers from a set of hand-crafted databases, www.google.com/squared
which arranges search results in a tabular form with entities and attributes, entity-
cube.research.microsoft.com which provides dynamically gathered facts about named
entities, or kosmix.com which uses a large ontology for categorizing questions and iden-
tifying entities that are related to the user’s input. Examples of new kinds of knowl-
edge services include freebase.com and trueknowledge.com which are compiling huge
amounts of entity-relationship-oriented facts, the community endeavor dbpedia.org
which is harvesting RDF subject-property-object triples from Wikipedia and similar
sources, the www.cs.washington.edu/research/textrunner/ project which aims to extract
arbitrary relations from natural-language texts, the sig.ma engine which taps on “tripli-
fied” RDF data on the Web, as well as our own project www.mpi-inf.mpg.de/yago-naga/
which integrates relational knowledge from Wikipedia with the WordNet taxonomy.

These services are enabled by the proliferation of knowledge-sharing communities
like Wikipedia and by the advances in information extraction methods that can de-
tect named entities and relational facts in both semistructured Web pages and natural-
language text [17,28]. Harvesting Wikipedia and other high-quality sources has led to

26 G. Weikum

very large knowledge bases with millions of named entities, systematically categorized
into ten thousands of semantic classes, and more than 100 million facts about entities
(with facts being instances of binary relations between entities). Harnessing these very
large knowledge bases for answering knowledge questions and for boosting the seman-
tic quality of Web search is a major opportunity that we see arising now.

Today’s knowledge services and engines (mentioned above) are great steps in the
right direction, but still have fundamental shortcomings. For example, wolframalpha
can correctly answer the question “Who was French president when Nicolas Sarkozy
was born?”, but gives no answer to our full example query about the wife of that former
French president. Likewise, it can compute Europe’s longest river, but would not know
the answer to the question “Which cities are located on Europe’s longest river?”. Similar
limitations exist for all other systems as well. We can observe three major aspects on
which current knowledge search falls short, leading to three technical challenges:

1. Knowledge bases are still too small and lack knowledge. This leads to the challenge
of advancing the process of knowledge harvesting, discussed in Section 2.

2. The knowledge is available in principle, but the search methods are insufficient,
lacking capabilities for multi-join queries and advanced inferencing. This leads to
the challenge of extending query processing to deal with knowledge bases that are
automatically built from Web sources. This issue is addressed in Section 3.

3. Large knowledge bases may contain noisy and incorrect information, producing
many search results of highly varying quality. This leads to the challenge of appro-
priate ranking models for query results, in terms of entities and relationships rather
than Web pages. This issue is the subject of Section 4.

In addition to these challenges, another critical aspect is to understand the question
structure and interpret it as a formal query. The difficulty of this issue depends on the
complexity of the question phrasing, and to what extent natural-language processing
(NLP) can analyze and “understand” the question and map it into predicate-argument
structures. State-of-the-art NLP, for example, dependency parsing, can cope fairly well
with a wide variety of questions as long as the user avoids unnecessarily convoluted
formulations. We thus disregard this aspect in this paper (although it remains an issue
for NLP research for very sophisticated questions).

2 Challenge: Knowledge Harvesting

Knowledge search needs knowledge to start with. This could be given in the form of
an explicit knowledge base, distilled from Web pages and compiled into an integrated
collection of facts, or it could be in the form of semantically rich annotations of enti-
ties and relationships in the Web pages themselves. Both approaches require detection
and extraction of relational facts in pages. The first approach - an explicit knowledge
base - could bootstrap and ease the second method, by providing entities and seed facts
to a broader extraction process. Therefore, we concentrate ourselves in the following
on the construction of an explicit knowledge base, based on Web sources. We refer to
this task as knowledge harvesting.

Comprehensive knowledge bases have been an elusive AI goal for many years. On-
tologies and thesauri such as OpenCyc, SUMO, WordNet, or UMLS (for the biomedical

Search for Knowledge 27

domain) are achievements along this route. But they are typically focused on intensional
knowledge about semantic classes. For example, they would know that mathematicians
are scientists, that scientists are humans (and mammals and vertebrates, etc.); and they
may also know that humans are either male or female, cannot fly (without tools) but
can compose and play music, and so on. However, the currently available ontologies
typically disregard the extensional knowledge about individual entities: instances of
the semantic classes that are captured and interconnected in the ontology. For exam-
ple, none of the above mentioned ontologies knows more than a handful of concrete
mathematicians (or famous biologists etc.). A comprehensive knowledge base should
know all individual entities of this world (e.g., Nicolas Sarkozy), their semantic classes
(e.g., Sarkozy isa Politician), relationships between entities (e.g., Sarkozy presidentOf
France), as well as validity times and confidence values for the correctness of such facts.

Today, the best source for extensional knowledge is probably Wikipedia, providing a
wealth of knowledge about individual entities and their relationships. This knowledge is
latently embedded in the natural-language text of Wikipedia articles, but also exposed,
to a limited extent, in semistructured elements like infoboxes, lists, and the category sys-
tem for Wikipedia articles. The great success of such knowledge-sharing communities
and the advances in automated information extraction (IE) methodology have enabled
new ways of knowledge harvesting at large scale. IE comprises methods from pattern
matching (e.g., regular expressions), linguistic analyses (e.g., part-of-speech tagging or
dependency parsing), and statistical learning.

The DBpedia and YAGO projects [5,33] have pioneered massive fact extraction from
infoboxes and categories in Wikipedia, to build large knowledge bases. DBpedia has
emphasized recall by gathering all infobox attribute name-value pairs, at the risk of
incorporating noise, inconsistent facts, and false results. YAGO, on the other hand, pur-
sued the philosophy of high - near-human-quality - precision by employing database-
style consistency checking on fact candidates. YAGO primarily gathers its knowledge
by rule-based IE on the infoboxes and category system of Wikipedia, and reconciles the
resulting facts with the taxonomical class system of WordNet [34]. Consistency checks
include type constraints (e.g., isMarriedTo has type signature Human × Human,
graduatedFrom has type Human× University) and functional dependencies (e.g.,
for relation isCapitalOf , City → Country is a function). The resulting knowledge
base contains more than 2 million entities and 20 million facts, with at least 95 percent
accuracy. YAGO has been incorporated into DBpedia and other projects. The Link-
ing Open Data (LOD) initiative [9] provides extensive cross-linkage across the various
knowledge bases, at the level of entity references.

For comprehensive knowledge bases, it seems unavoidable to tackle natural-
language texts, in addition to harvesting semistructured data and structured databases.
In Wikipedia, the by far largest fraction of facts is solely stated in the articles’ textual
bodies, and new, valuable knowledge is usually first produced in text form - in news
and scientific publications. We can leverage existing, albeit limited knowledge bases to
bootstrap extended forms of knowledge harvesting. To this end, we have developed the
SOFIE system [35] for further growing the YAGO base in a high-quality, consistency-
preserving manner. SOFIE parses natural-language documents, extracts new relational
facts from them, and integrates the facts with the previously existing knowledge. SOFIE

28 G. Weikum

uses logical reasoning on the existing knowledge and on the new knowledge in order to
disambiguate words to their most probable meaning, to reason on the meaning of text
patterns, and to take prescriptive constraints into account. This allows SOFIE to check
the plausibility of new hypotheses and to avoid inconsistencies. For example, suppose
that the prior knowledge base has seed facts about the isMarriedTo relation, so that we
can automatically find potentially indicative patterns such as “X and her husband Y”,
“X, Y, and their children”, or “X has been dating with Y”, and also new fact hypotheses
such as (V eronica, Silvio), (Carla, Silvio), (Carla, Nicolas), and (Carla, Mick).
By considering that certain fact candidates are mutually exclusive and patterns occur
with different frequencies for different candidates, the statistical assessment of both
patterns and fact hypotheses becomes much stronger.

SOFIE is based on mapping the intertwined tasks of pattern-goodness assessment,
entity disambiguation, and fact-hypotheses selection into a weighted Max-Sat problem
for which it provides a practical solver [35]. Alternative approaches include machine-
learning methods such as Conditional Random Fields and Markov Logic Networks and
also more scalable light-weight techniques, all of which have been successfully applied
in projects at MSR Beijing [24,42], UW Seattle [10,19,40], UW Madison [16], and
elsewhere (see [17,39] and references given there).

While the above approaches testify to the impressive progress that the research com-
munity has made on knowledge harvesting and the great potential for building compre-
hensive knowledge bases, there is still a long way to go. Advancing the state of the art
faces a number of challenges, outlined in the following subsections.

2.1 Temporal Knowledge

So far we have simplified our knowledge-harvesting setting by assuming that facts are
time-invariant. This is appropriate for some relation types, for example, for finding
birthdates of famous people, but inappropriate for evolving facts, e.g., presidents of
countries or CEOs of companies. In fact, time-dependent relations seem to be far more
common than time-invariant ones. For example, finding all spouses of famous people,
current and former ones, involves understanding temporal relations. Extracting the va-
lidity time of facts involves detecting explicit temporal expressions such as dates as
well as implicit expressions in the form of adverbial phrases such as “last Monday”,
“next week”, or “years ago”. Moreover, one often has to deal with incomplete time in-
formation (e.g., the begin of someone holding a political office but no end-of-term date
given, although the person may meanwhile be dead), and with different time resolutions
(e.g., only the year and month for the begin of the term, but the exact date for related
events). In addition to the complexity of extracting temporal knowledge, this also entails
difficult issues of appropriately reasoning about interrelated time points or intervals. For
example, the constraint that each person has at most one legal spouse now becomes a
more complex condition that the validity intervals of the isMarriedTo instances for the
same person must be non-overlapping. Initial work on these issues includes [25,38,41].

2.2 Multilingual Knowledge

The English language represents a constantly decreasing fraction of the Web. China
and the EU each have greatly surpassed the U.S. in the number of Internet users, and

Search for Knowledge 29

other regions are expected to follow. Multilingual knowledge bases would address this
development by providing entity labels in multiple languages and making the semantic
connections between words and names in different languages explicit [1,15]. For this
goal, the most natural approach seems to exploit multilingual labels of the interwiki
links present in Wikipedia. For example, “Roma”, “Rome”, and “Rom” denote the Ital-
ian capital in three different languages (Italian, English, and German), but “Roma” is
used in German with a very different meaning, referring to an Eastern European eth-
nic group. However, these links are noisy and cannot be blindly trusted. For example,
the German article on “Momente (Stochastik)” (moments of a distribution) transitively
leads to the Spanish article on “momento estandar” (standardized moments) which is
related but not equivalent. Thus, establishing multilingual synonyms for entities is all
but straightforward. Moreover, a full-fledged knowledge base should also be multicul-
tural in the sense that it captures concepts that are unique or especially salient in specific
languages while being absent or unremarkable in other cultures.

2.3 Multimodal Knowledge

With the proliferation of photo and video footage on the Web, a knowledge base would
not be complete without multimodal data on individual entities (people, places, etc.)
and important events (concerts, award ceremonies, soccer matches, etc.). While pho-
tos of celebrities are abundant on the Internet, they are much harder to retrieve for less
popular entities such as notable computer scientists or regionally interesting churches.
Querying the entity names in image search engines yields large candidate lists, but they
often have low precision and unsatisfactory recall. Moreover, even for more prominent
targets, it is desirable to have a diverse collection of photos (e.g., from different time
periods), some of which might be rare and difficult to locate using search engines. In
some cases, the ambiguity of the entity name dilutes the search engine results. An ex-
ample is the Berkeley professor and former ACM president David Patterson. None of
the top-20 Google image or Bing image results (as of August 2009) show him; most
show the governor of New York (whose name is actually David Paterson). A first ap-
proach to overcome these problems is presented in [36], based on knowledge-driven
query expansions and weighted ensemble voting on the results.

2.4 Active Knowledge

A knowledge base can never be complete and inevitably exhibits gaps. Suppose a user
finds the biography of a singer interesting and then wants to find all songs and albums
by this singer, including the latest ones. Crawling additional Web sites on music and
extracting the missing data is often infeasible because of site restrictions and because
the site’s information is continuously changing. Moreover, some knowledge is inher-
ently ephemeral: for example, the current rating of a movie (by averaging user reviews)
or the chart rank of a song. The approach to fill these gaps would be to harness the
increasing number of Web services on music, movies, books, business directories, etc.
This would require retrieving data from Web services on the fly, whenever the local
knowledge base does not suffice to answer a user’s knowledge needs. Obviously, such
a federated architecture entails several problems of high complexity: mapping search
requests onto service interfaces, cost/benefit-oriented routing of queries to promising
services, integrating results from different services, and more [12,27].

30 G. Weikum

2.5 Diversity and Provenance

So far we have treated facts in a knowledge base as objective truth. This should indeed
be the case for most facts, but some may be considered controversial. In these cases,
we would like to cover diverse viewpoints, along with provenance information. For
example, does smoking cause lung cancer? Despite strong evidence, there is no hard
proof for a fact like causes(smoking, lungCancer). Here the counter-view is only a
minority. But majorities and minorities change over time. For example, back in the 17th
century, the two competing facts shape(earth, disc) and shape(earth, sphere) were
seen very differently than today. And the same holds for contemporary political affairs,
suicide vs. murder theories, etc. Instead of letting mere statistics and machine learning
decide on the currently most popular view, it would be better to keep diverse views and
make diversity an asset rather than an impediment. But then, we need to capture also
the provenance of conflicting statements (e.g., Catholic Church vs. Galileo Galilei for
the earth-shape example). Of course, for undisputed, more or less universally accepted
statements, noisy alternatives with low evidence should still be treated as incorrect.
One of the challenges here is to tell which parts of a knowledge base require diversity
and which ones are indeed objective. In general, the theme of knowledge diversity is
virtually unexplored; the recently started EU project “Living Knowledge” is addressing
some of the issues [23].

2.6 Scalability

Last but not least, knowledge harvesting also faces a formidable scalability challenge.
Advanced methods for information extraction are computationally expensive, as they
may require deep parsing of natural language and Markov-chain sampling for graphi-
cal learning models or dynamic programming on conditional random fields. Thus, we
cannot easily run extractors on the entire Wikipedia text and expect high-quality re-
sults within a few hours. It is feasible to use more light-weight methods on surface text
and simpler features for direct classifiers, but this is unlikely to yield high precision at
reasonable recall. Recent projects along the lines of [2,19] scale up to high-throughput
extraction with high recall, but they degrade in precision. To illustrate the performance
requirements of a truly large-scale knowledge-harvesting system, consider all people
who have a Wikipedia article, probably a few hundred thousands. We assume that these
are prominent enough so that the Web somewhere, not necessarily in Wikipedia itself,
has information about their spouses including dates of marriages, divorces, or becoming
widowed. As a scalability benchmark, attempt to harvest the complete isMarriedTo re-
lation for these people, complete with temporal information, so that the result has high
precision, say at least 95 percent, and high recall, say at least 80 percent. Would any
existing method be able to accomplish this benchmark task in one day?

3 Challenge: Query Processing

The DBpedia and YAGO knowledge bases represent all facts in the form of unary and
binary relations: classes of individual entities, and pairs of entities connected by specific

Search for Knowledge 31

relationship types. Other knowledge-harvesting projects such as freebase or trueknowl-
edge have a similar flavor. This data model can be seen as a typed graph with entities
and classes corresponding to nodes and relations corresponding to edges. It can also be
interpreted as a collection of RDF triples with two adjacent nodes and their connecting
edge denoting a (subject, predicate, object) triple, SPO triple for short.

3.1 Query Language

For querying such a knowledge base, it thus seems most natural to use the SPARQL lan-
guage, the W3C standard for querying RDF data. For example, the two questions about
Oscar winners from Europe and about French politicans who are married to singers can
be expressed in SPARQL as follows:

Select ?x Where { ?x hasWonAward AcademyAward .
?x isBornIn ?y . ?y locatedIn Europe . }

Select ?x Where { ?x isa Politician . ?x isCitizenOf France .
?x isMarriedTo ?y . ?y isa Singer . }

These queries consist of conjunctions of elementary SPO search conditions, so-called
triple patterns. Each triple pattern has one or two of the SPO components replaced
by variables ?x or ?y, the dots between the triple patterns denote the conjunction, and
using the same variable in different triple patterns denotes join operations. These queries
may also be visualized as graph templates with node and edge labels that can be either
constants (literals, class names, or relation names) to be matched by the result data or
variables to be substituted by bindings to SPO values from the underlying data triples.

3.2 Schema-Free Querying

A salient feature of the RDF data model is that there is not necessarily a database
schema for the SPO triples in a collection. SPARQL can easily process the entire spec-
trum from schematic to schema-less RDF datasets. For example, if the user did not
know the name of the isBornIn property - the RDF counterpart of relation or attribute
names in standard databases -, she could as well specify a wildcard property as follows:

Select ?x Where { ?x hasWonAward AcademyAward .
?x ?r ?y . ?y locatedIn Europe . }

Now the variable ?r can bind to any property name in the dataset that contributes to sat-
isfying the search conditions. For example, ?r could be satisfied by relations isBornIn,
birthPlace, isCitizenOf, hasLivedIn, and so on. These include both semantically equiv-
alent relations with different names, a typical situation when coping with heteroge-
neous data, and relations with different meanings. These forms of schema-relaxation
or schema-ignorance are extremely useful when dealing with large sets of facts from
best-effort knowledge harvesting.

An intriguing extension of SPARQL would be to allow transitive paths as a match
[4]. This is similar to the XPath descendants axis, except that RDF data forms graphs

32 G. Weikum

and not just trees, thus posing higher computational complexity. Even more generally,
property names, or equivalently edge labels, in a query could be full-fledged regular
expressions, which have to be matched by an entire path in the knowledge graph [22].
For example, suppose the isBornIn relation actually refers to cities and the locatedIn
relation captures a city-county-state-country hierarchy. Further suppose that the user
who asked about European Oscar winners does not care whether a candidate is born
in Europe or is a citizen of a European country (and may be born elsewhere). We can
use the triple pattern ?x ((isCitizenOf | isBornIn).(locatedIn)*) Europe to express this
relaxed search condition. The semantics of such queries can be precisely defined, but the
computational complexity of conjunctive queries with regular expressions for predicate
names is challenging.

3.3 Temporal Querying

When dealing with time-variant knowledge, for example, the spouse, president, or CEO
relations, temporal conditions on the validity of the facts of interest need to be express-
ible as well. For example, if we want to retrieve the wife of the person who was French
president when Nicolas Sarkozy was born, we could think of phrasing this as:

Select ?x Where { ?x isMarriedTo ?y .
?f:(?y isPresidentOf France) . NicolasSarkozy bornOn ?d .
?f since ?t1 . ?f until ?t2 . ?d during [t1,t2] . }

Here we refer to fact identifiers like ?f that can be used in other facts or triple patterns (a
kind of reification). ?f should be bound to the identifier of an SPO triple about a former
president. The property names since, until, and during are temporal predicates between
timepoints and time intervals, written as if they were stored properties although they
should actually be functions dynamically evaluated on demand. This example shows
the direction towards developing a query language for temporal knowledge. However,
defining the precise semantics of such a language, characterizing its expressiveness and
complexity, and developing reasonably efficient query processing techniques are open
issues for further research.

3.4 Towards SPARQL Full-Text

Another extension of a SPARQL-style query language could be to combine triple pat-
terns with keyword conditions. Whenever the user is not sure about whether interesting
facts are captured by SPO triples in the knowledge base or merely expressed in tex-
tual form, a search engine should allow combinations of both search paradigms. For
example, suppose we search for Italian Oscar winners who starred in western movies,
perhaps with a story about the railroad and revenge. the user may not know how to
express the condition about westerns in an SPO-based pattern. Is there a genre prop-
erty in the knowledge base? Would it indeed use western as a corresponding object? To
avoid these burdens, one would prefer simply giving keywords - but keywords within
the context of a more precise triple pattern:

Search for Knowledge 33

Select ?x Where { ?x hasWonAward AcademyAward .
?x isCitizenOf Italy .
?x ?r ?m . ?m isa movie {western, railroad, revenge} . }

Suppose that we further want to limit the results to actresses or composers, but prefer-
ably no male actors or directors. We could extend the third triple pattern by appropriate
keywords, asking for matches to ?x ?r ?m {actress, composer}. The entire query would
then have a structural part and five keywords, but note that the five keywords are split
into two groups and that each group refers to a particular triple pattern, not to the query
as a whole. The keyword parts would have to be matched by facts that satisfy the corre-
sponding triple patterns. With facts being automatically gathered from natural-language
text documents and other Web sources, the system could use the text of the fact’s origins
as suitable context.

The outlined approach is close in spirit to languages like XQuery Full-Text [3] -
except, and this is crucial, that we are dealing with RDF-style graph data and not with
XML trees. Compared to keywords-only queries, the structural skeleton imposed by
triple patterns is very helpful, too, as it gives a natural way of grouping keywords. For
example, a query about French politicians who are related to Italian singers, could be
expressed in a very relaxed manner as:

Select ?x1, ?x2 Where { ?x1 ?r ?x2 .
?x1 ?p1 ?o1 {France, politician} .
?x2 ?p2 ?o2 {Italy, singer} . }

This semantic grouping of keywords [20] is impossible with today’s Internet search en-
gines. (Note that having two separate phrase conditions “French politician” and “Italian
singer” are not equivalent as these exact phrases may not occur in the desired matches.)

3.5 Programming and User Interfaces

Query languages of the above kind are suitable interfaces for programmers at the API
level. They are not intended as end-user interfaces. But the API level is crucial to en-
able development of value-added applications on top of the knowledge services. With
Web2.0 mashups and similar applications we already witness this transition into a
search-as-a-service world. Here, advanced features of the query language and the rich-
ness of the underlying knowledge bases can blossom as enabling technology. In fact,
it is conceivable and desirable that there will be many knowledge-search services with
complementary knowledge bases, and that these would have to dynamically coupled in
a search federation to accomplish application missions [12].

Notwithstanding this emphasis on the service API, better end-user interfaces are
called for as well, as single services already provide a wealth of knowledge and can
satisfy many user needs. Here, a formal language like SPARQL is clearly inappropri-
ate, but the currently prevailing method of keyword queries is unsatisfactory as well.
One avenue to explore is to live with keywords but aim to automatically impose struc-
ture on the keyword query by transforming it into a SPARQL-style representation. This
would require detecting entities and relationships in the keyword query. Internet search
engines already seem to apply such techniques to a small extent. For example, in the

34 G. Weikum

query “Real Madrid soccer European league match German team”. Real Madrid could
be identified as a named entity, and perhaps “German team” could be treated as a se-
mantic class of entities. But the latter is already extremely difficult, and it would lack
the connection to soccer anyway (and users would barely repeat a keyword by say-
ing “German soccer team”). Moreover, these techniques would hardly be able to detect
the relevant relationships between entities that the user is interested in. The cues for
inferring that the query is about the hasPlayedAgainst relationship are way too implicit.

An alternative approach is to revive natural-language questioning [6] - the UI para-
digm that question-answering (QA) services such as answers.com are using. As long as
questions are phrased in a relatively straightforward way, modern NLP is able to parse
them and understand the logical structure of the questions. Moreover, a full-fledged
question contains better cues about the relations that should connect the entities or en-
tity classes of interest, using verbal phrases and prepositions. For example, the question
Against which German clubs did Real Madrid play in one of the European leagues
or cups? makes it easier to map it to query conditions on the hasPlayedAgainst rela-
tion. Finally, natural-language questions are a naturally convenient way of expressing
knowledge needs, especially compared to the alternative of stating a large number of
keywords with carefully chosen order. Keyword queries are only the easier alternative
if they are very short (the mass-user queries with one or two keywords). Last but not
least, the success of smart phones such as iPhone, with built-in speech recognition,
favors natural-language questions, as knowledge workers would want to speak in full
sentences rather than uttering 5 to 10 keywords.

The envisioned change in search UI’s may resemble QA systems, but has a very
different search architecture. Today’s QA systems would not map questions into formal
queries, but rather aim to classifiy questions into fine-grained topics, or map them to the
most similar natural-language question for which the system already has answers. So
the query processing for knowledge search, as discussed in this paper, is different from
current QA technology and would be a major step forward towards better knowledge
answers.

4 Challenge: Ranking Model

Whenever queries return many results, we need ranking. For example, a query about
politicians who are also scientists can easily yield hundreds of persons, solely based
on information from Wikipedia categories. Even the more specific query about French
politicians who are married to singers may overwhelm the users with possible answers.
A meaningful ranking should consider the following two fundamental dimensions:

– Informativeness: Users prefer prominent entities and salient facts as answers. For
example, the first query above should return politicians such as Benjamin Franklin
(who made scientific discoveries), Paul Wolfowitz (a mathematician by training),
or the German chancellor Angela Merkel (who has a doctoral degree in physical
chemistry). The second query should prefer an answer like Nicolas Sarkozy over
the mayor of a small provincial town. This ranking criterion calls for appropriate
statistical models about entities and relationships.

Search for Knowledge 35

– Confidence: We need to consider the strength or certainty in believing that the re-
sult facts are indeed correct. This is largely determined at the time when facts are
harvested and placed in the knowledge base, and it can be based on aggregating
different sub-criteria. First, the extraction methods can assign an accuracy weight
to each fact based on the empirically assessed goodness of the extractor and the
extraction target (e.g., rule-based for birthdates vs. linguistic for spouses) and the
total number of witnesses for the given fact, i.e., the total frequency of observing
the fact in the underlying Web sources. Second, the provenance of the facts should
be assessed by considering the authenticity and authority of the sources from which
facts are derived. PageRank-style link-graph-based models come to mind for au-
thority ranking, but more advanced models of trustworthiness and entity-oriented
rather than page-oriented importance are needed.

A good knowledge search engine should consider both criteria - informativeness and
confidence - and combine them into a single scoring and ranking measure.

State-of-the-art ranking models in IR are based on statistical language models, LM’s
for short. They have been successfully applied to passage retrieval for question answer-
ing, cross-lingual search, ranking elements in semistructured XML data, and other ad-
vanced IR tasks [14]. An LM is a generative model, where a document d is viewed as a
probability distribution over a set of words {t1, ..., tn} (e.g., a multinomial distribution),
and a query q = {q1, ..., qm} with several keywords qi is seen as a sample from this dis-
tribution. The parameters of the d distribution are determined by maximum-likelihood
estimators in combination with advanced smoothing (e.g., Dirichlet smoothing). Now
one can estimate the likelihood of query q for different candidate documents, and the
one document that maximizes this likelihood should be the highest-ranked result.

4.1 Entity Ranking

Recently, extended LMs have been developed for entity ranking in the context of ex-
pert finding in enterprises and Wikipedia-based retrieval and recommendation tasks
[24,26,30,37]. For ranking entity-search results e to a keyword query q, one needs to
compute P [q|e]. As an entity cannot be directly compared to query words, one consid-
ers the words in a Web page d that occur in a proximity window around the position
from which e was extracted (i.e., the passage that contains e). If e was independently
extracted from K different pages, with empirically estimated accuracy αk from the
kth page dk, the generalization of document-level LMs to entities needs to consider an
αk-weighted aggregation of the K word distributions in the windows that contain the
extracted entity e. Additional sophistication is needed for considering also an entity’s
attributes [24].

An alternative paradigm for entity ranking is to generalize PageRank-style link-
analysis methods [13,21,32] to graphs that connect entities rather than Web pages.
Statistical measures on the extraction process can be cast into edge weights for this
purpose. For example, we could have entity-level links from soccer players such as Zi-
dane or Beckham to their clubs such as Real Madrid, derived from hyperlinks between
pages that contain the corresponding entities. This way an important player would trans-
fer authority to his or her club, and vice versa. This line of models is useful, but appears
to be more of an ad-hoc flavor compared to the principled LM approaches.

36 G. Weikum

4.2 RDF Knowledge Ranking

The models discussed above are limited to entities – the nodes in an entity-relationship
graph. In contrast, general knowledge search needs to consider also the role of
relations – the edges in the graph – for answering more expressive classes of queries.
Moreover, the discussed work on entity IR is still based on keyword search and does not
consider structured query languages like SPARQL. Ranking for structured queries has
been intensively investigated for XML [3], and, to a small extent, for restricted forms
of SQL queries [11]. Ranking has also been studied in the context of keyword search
on relational graphs (e.g., [7]). However, these approaches do not carry over to the
graph-structured, largely schema-less RDF data collections and the expressive queries
discussed in Section 3.

What we need for RDF knowledge ranking is a generalization of entity LM’s that
considers relationships (RDF properties) as first-class citizens. We would like to esti-
mate the likelihood that a possible answer generates the structured query. This can be
broken down into likelihoods of SPO triples generating the corresponding triple patterns
in the query. Recent work on the NAGA search engine [18,22] has addressed these is-
sues and developed a full-fledged LM for ranking the results of extended SPARQL
queries.

Here we merely illustrate the flavor and potential of this kind of ranking model by an
example. Consider a question about soccer matches between an Italian and a German
club (in one of the European leagues or cups). In SPARQL notation this may look like:

Select ?x Where { ?x hasPlayedAgainst ?y .
?x isa soccerClub . ?y isa soccerClub .
?x registeredIn Italy . ?y registeredIn Germany . }

Here the results are pairs of individual entities, Italian and German soccer clubs. A
mere entity-ranking model would fail to yield the best results. It would favor important
clubs like AC Milan or Juventus Torino on the Italian side and FC Bayern Munich
or Hamburger SV on the German side. But one of the most spectacular matches ever
was between Internazionale Milano and Borussia Mönchengladbach in the European
Champions Cup in 1971. Borussia won 7:1, but the result was annulled because an
Italian player was hit by a soft-drink can thrown by a spectator. So although both clubs
are not the most prominent entities, the hasPlayedAgainst relationship between them is
much more interesting than those between AC Milan and Bayern Munich, for example.

The example shows the potential but also the open challenges in entity-relationship
ranking models. At this point, even the recent LM’s for RDF queries would not produce
the ideal ranking for this particular example. In addition, efficiently evaluating the LM-
based scores at query run-time in order to return the top-k best answers is an unsolved
issue as well.

4.3 Personalization

The notion of informativeness is, strictly speaking, a subjective measure: an individual
user wants to see an interesting, previously unknown but important, search result. This

Search for Knowledge 37

calls for a personalized ranking model or at least a user-group-specific model. For exam-
ple, we would often give children different answers than adults. For example, a query on
“gravitation black hole” should probably not return the latest publications from physics
journals or Einstein’s original manuscript to a 12-year-old student. As another example,
consider a question about Oscar winners from Europe. In the non-personalized setting,
we would rank people like Bruce Willis, Anthony Hopkins, Roman Polanski, or Ingrid
Bergman as top results. But suppose the user has previously shown significant interest
in music, expressed by her prior search-and-click behavior, e.g., browsing information
on contemporary composers such as Philip Glass or Lisa Gerrard. Then the personal-
ized search result should prefer people like Ennio Morricone, Hans Zimmer, or Javier
Navarrete (all of which won Oscars for film music).

4.4 Diversity

It is often desirable that the top-10 ranks of a search result are diversified. This issue
has recently been investigated for Internet search, where the goal is to maximize the
probability that the user will click on at least one result (or one of the sponsored ads)
under the assumption that it is unlikely that she clicks more than one result. As a conse-
quence, queries with ambiguous words such as “Real” should not be eagerly interpreted
by using the most likely meaning only; instead, different meanings and diverse results
should be reflected in the top results - for example, Real Madrid, Real Zaragoza (another
Spanish soccer club), the Spanish royal family, real numbers, and so on.

For knowledge queries with entity-relationship-structured results, the notion of di-
versity is much less clear and largely unexplored. For example, when asking for im-
portant facts about a composer such as Ennio Morricone, the answer should not just
focus on his popular music for western movies, but should also highlight his classical
compositions, his work as a conductor, his awards, his family, his childhood, and so on.
Query result diversity is a natural requirement for knowledge search, and poses many
difficult issues to be explored.

5 Conclusion

This paper has presented opportunities for and challenges in moving from today’s
keyword queries to a new quality level of semantic search for knowledge. We have
discussed the statistical nature of knowledge harvesting and ranking entity-relationship-
structured query results. Thus, the emphasis was on a Statistical Web setting. But there
are also great assets in the Semantic Web, including hand-crafted, deep ontologies [31],
and the Social Web, including tagging and cross-linking communities [8]. Connecting
these different kinds of implicit and explicit knowledge sources opens up synergies and
great opportunties towards the vision of large-scale knowledge management and search.

In a broad sense, knowledge harvesting may also be seen as an advanced form of
information integration, and searching knowledge then is related to query processing
over federations of data sources and services, as pursued by the “Search Computing”
paradigm [29]. On closer look, however, these two paradigms are complementary:
knowledge harvesting is focused on information around individual entities whereas
search computing is more schema-oriented and focused on mappings and matchings

38 G. Weikum

between the structures and types of entire sources. These two themes can greatly fertil-
ize each other and may, in the long run, converge to a unified notion of semantic and
structured search over arbitrary Web sources.

References

1. Adar, E., Skinner, M., Weld, D.S.: Information Arbitrage across Multi-Lingual Wikipedia.
In: WSDM 2009 (2009)

2. Jain, A., Ipeirotis, P.G., Doan, A., Gravano, L.: Join Optimization of Information Extraction
Output: Quality Matters! In: ICDE 2009 (2009)

3. Amer-Yahia, S., Lalmas, M.: XML Search: Languages, INEX and Scoring. SIGMOD
Record 35(4) (2006)

4. Anyanwu, K., Maduko, A., Sheth, A.P.: SPARQ2L: Towards Support for Subgraph Extrac-
tion Queries in RDF Databases. In: WWW 2007 (2007)

5. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A Nu-
cleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer,
Heidelberg (2007)

6. Baeza-Yates, R.A., Ciaramita, M., Mika, P., Zaragoza, H.: Towards Semantic Search. In:
Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp.
4–11. Springer, Heidelberg (2008)

7. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword Searching and
Browsing in Databases using BANKS. In: ICDE 2002 (2002)

8. Breslin, J.G., Passant, A., Decker, S.: The Social Semantic Web. Springer, Heidelberg (2009)
9. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked Data on the Web (LDOW 2008). In:

WWW 2008 (2008)
10. Cafarella, M.J.: Extracting and Querying a Comprehensive Web Database. In: CIDR 2009

(2009)
11. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic Information Retrieval Ap-

proach for Ranking of Database Query Results. ACM Trans. Database Syst. 31(3), 1134–
1168 (2006)

12. Ceri, S.: Search Computing. In: ICDE 2009 (2009)
13. Chakrabarti, S.: Dynamic Personalized Pagerank in Entity-Relation Graphs. In: WWW 2007

(2007)
14. Croft, W.B., Metzler, D., Strohman, T.: Search Engines - Information Retrieval in Practice.

Addison-Wesley, Reading (2009)
15. G.: Towards a Universal Wordnet by Learning from Combined Evidence. In: CIKM 2009

(2009)
16. De Rose, P., Shen, W., Chen, F., Lee, Y., Burdick, D., Doan, A., Ramakrishnan, R.: DBLife:

A Community Information Management Platform for the Database Research Community.
In: CIDR 2007 (2007)

17. Doan, A., Gravano, L., Ramakrishnan, R., Vaithyanathan, S. (eds.): Special Issue on Infor-
mation Extraction. SIGMOD Record, vol. 37(4) (2008)

18. Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., Weikum, G.: Language-model-
based Ranking for Queries on RDF-Graphs. In: CIKM 2009 (2009)

19. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open Information Extraction from the
Web. CACM 51(12) (2008)

Search for Knowledge 39

20. Graupmann, J., Schenkel, R., Weikum, G.: The SphereSearch Engine for Unified Ranked
Retrieval of Heterogeneous XML and Web Documents. In: VLDB 2005 (2005)

21. Hristidis, V., Hwang, H., Papakonstantinou, Y.: Authority-based Keyword Search in
Databases. TODS 33(1) (2008)

22. Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: NAGA: Searching and
Ranking Knowledge. In: ICDE 2008 (2008)

23. Living Knowledge, http://livingknowledge-project.eu/
24. Nie, Z., Ma, Y., Shi, S., Wen, J.-R., Ma, W.-Y.: Web Object Retrieval. In: WWW 2007 (2007)
25. Pasca, M.: Towards Temporal Web Search. In: SAC 2008 (2008)
26. Petkova, D., Croft, W.B.: Hierarchical Language Models for Expert Finding in Enterprise

Corpora. In: ICTAI 2006, pp. 599–608 (2006)
27. Preda, N., Suchanek, F.M., Kasneci, G., Neumann, T., Ramanath, M., Weikum, G.: ANGIE:

Active Knowledge for Interactive Exploration. PVLDB 2(2) (2009)
28. Sarawagi, S.: Information Extraction. Foundations and Trends in Databases 2(1) (2008)
29. SeCo: Search Computing, http://www.search-computing.it/
30. Serdyukov, P., Hiemstra, D.: Modeling Documents as Mixtures of Persons for Expert Find-

ing. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008.
LNCS, vol. 4956, pp. 309–320. Springer, Heidelberg (2008)

31. Staab, S., Studer, R.: Handbook on Ontologies, 2nd edn. Springer, Heidelberg (2009)
32. Stoyanovich, J., Bedathur, S.J., Berberich, K., Weikum, G.: EntityAuthority: Semantically

Enriched Graph-Based Authority Propagation. In: WebDB 2007 (2007)
33. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a Core of Semantic Knowledge. In:

WWW 2007 (2007)
34. Suchanek, F., Kasneci, G., Weikum, G.: YAGO: A Large Ontology from Wikipedia and

WordNet. Journal of Web Semantics 6(39) (2008)
35. Suchanek, F., Sozio, M., Weikum, G.: SOFIE: a Self-Organizing Framework for Information

Extraction. In: WWW 2009 (2009)
36. Taneva, B., Kacimi, M., Weikum, G.: Gathering and Ranking Photos of Named Entities with

High Precision, High Recall, and Diversity. In: WSDM 2010 (2010)
37. Vallet, D., Zaragoza, H.: Inferring the Most Important Types of a Query: a Semantic Ap-

proach. In: SIGIR 2008 (2008)
38. Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: Harvesting, Querying,

and Visualizing Temporal Knowledge from Wikipedia, Demo Paper. In: EDBT 2010 (2010)
39. Weikum, G., Kasneci, G., Ramanath, M., Suchanek, F.: Database and Information-Retrieval

Methods for Knowledge Discovery. CACM 52(4) (2009)
40. Wu, F., Weld, D.S.: Automatically Refining the Wikipedia Infobox Ontology. In: WWW

2008 (2008)
41. Zhang, Q., Suchanek, F.M., Yue, L., Weikum, G.: TOB: Timely Ontologies for Business

Relations. In: WebDB 2008 (2008)
42. Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.-R.: StatSnowball: a Statistical Approach to

Extracting Entity Relationships. In: WWW 2009(2009)

http://livingknowledge-project.eu/
http://www.search-computing.it/

Part II

Technology Watch for Search Computing

Introduction to Part II
Technology Watch for Search Computing

The second part of the book presents surveys of the technologies providing
foundations to search computing. These chapters offer state-of-the-art and research
trends within strongly related fields of research, useful both for setting the theoretical
premises for search computing, and for providing a technological framework for
building search computing systems and applications.

Chapter 4 includes the analysis and classification of search systems, which are
facing a time of extremely rapid development. The study discusses a methodological
framework for clustering search systems within categories; as a byproduct, the study
detects decision variables and search engine features which are most likely to produce
innovation and value in the search engine industry.

Chapter 5 deals with mashup languages and systems, a new way of describing
computer processes through visual abstractions; mashup interfaces are very relevant
to search computing, given that queries aim at the efficient interconnection of search
engines and are primarily addressing expert users or developers.

Chapter 6 deals with data extraction on the Web, describing mechanisms for
extracting information which is available on Web pages and putting it into
repositories, by capitalizing on the experience of the Lixto project; data extraction
technology is essential for building and exposing data services. This chapter deals
with monitoring Web content and alerting users when information is updated.

Chapter 7 focuses on data spaces as a new concept for gluing loose and flexible
approaches to data management, which give rise to a variety of new services for
exposing data to wider usage; indeed search computing primarily pursues a data-
driven approach to search service compositions and takes advantage of flexible
technologies for exposing data sources.

Chapter 8 presents a review of search technologies for multimedia content, by
showing the processes and tools for augmenting audio and video content with meta-
data, so as to facilitate search upon multimedia content and its integration within
search results.

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 45–71, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 4:
The Search Engine Industry

Tommaso Buganza1 and Emanuele Della Valle2

1 Dipartimento di Ingegneria Gestionale, Politecnico di Milano, 20133 Milano, Italy
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Italy

{tommaso.buganza, emanuele.dellavalle}@polimi.it

Abstract. In this chapter we present the main trends in the search engine indus-
try. Being such industry technology based, its dynamics can be assessed by ap-
plying theories such as (a) dominant design, (b) complementary assets, (c)
product and service architecture and (d) disruptive technologies. We dedicate
the first section of this chapter to reviewing such literature and explaining how
to apply it to identify trends in the search engine industry competition. As pre-
liminary result we position the search engine industry among those that are
probably entering in a new fluid phase. In this industry the Google architecture
already emerged as dominant design, but after 2005 many new players entered
the market (e.g. Cuil, Kosmix, Powerset, Wolfram Alpha, Bing) and most of
them are not following the dominant design but are really trying to propose
something radically new. Then, we present the data gathering tool we build to
use analyze a sample of 26 search engines. In particular, we describe the dimen-
sions, relevant to study the search engine industry, and the metrics for measur-
ing the features of different search engines along those dimensions. We
consider three types of metrics: (a) user based – what the user can perceive and
act upon; (b) machinery related – what the search engine does internally; and
(c) business model oriented – what makes the business profitable. Then we ana-
lyze the data using three methods: principal component analysis, two steps clus-
ter analysis, and post hoc analysis on the business models categorization. We
close the chapter discussing the results of our analysis.

1 Problem Setting

It is commonly recognized that the search engine industry started in 1990 with the
release of the very first tool used for searching on the (pre-web) Internet: Archie.
Since then, many different companies launched their own solutions in order to fulfill
the market need for searching on the web. Search engines have become a usual ser-
vice for the large majority of us to the point that more than 13 billion searches are
made every month just in the US1. As for many Internet related industries, though, the
companies operating on this market found it difficult to transform the value they had
into real cash flows. Still, nowadays the search engine industry is probably one of the
most significant markets in the Internet world. The main revenue streams are related
to marketing activities and, just in the US, the market dimension is around $11 billion

1 http://www.comscore.com/Press_Events/Press_Releases/2009/3/
US_Search_Engine_Ranking

46 T. Buganza and E. Della Valle

 2006 2007 2008 2009 2010 2011
Search 6,799 8,624 11,000 12,935 14,906 16,590
Display ads 3,685 4,687 5,913 6,663 7,500 8,190
Classified 3,059 3,638 4,675 5,493 6,281 6,930
Rich media 1,192 1,755 2,613 3,575 4,463 5,481
Other 2,144 2,696 3,299 3,834 4,350 4,809

Total 16,879 21,400 27,500 32,500 37,500 42,000

Fig. 1. Online advertisement spending in millions by format (source [30])

in 2008 (the estimate is still growing to nearly $13 billion in 2009 and over $16 bil-
lion in 2011) (see Figure 1). In 2008 Google raked in 81% of US paid search advertis-
ing. Number two, Yahoo!, collected a mere 7% share, while everyone else split 12%
of the pie. That’s still a lot. With over $16 billion going to search engine advertising
in 2011, that 12% stake equals nearly $1.9 billion: even a small slice represents
significant revenue.

In just ten years from its birth the search engine industry went through all the
phases that are typical for technology-based markets as described by Abernathy and
Utterback [3,1] since 1978. Those markets characterized by strong technological
discontinuities, like the birth of Internet, normally see an initial phase in which many
different companies try to make their proposal to the market to better fulfill the exist-
ing or latent needs. During this phase, normally called “fluid phase” the market is
characterized by high levels of product innovation and the market doesn’t seem able
to select the “best product”. In many cases some products have some good features
but none is able to encompass all of them. The search engine industry lived this phase
from its birth to the year 2000. In these years many different search engines with
different technologies, services and market approaches struggled to conquer the mar-
ket. Just to give some examples: Infoseek (1994) [33] offered web host pages, HotBot
(1996) claimed to update its search database more often than its competitors,
Webcrawler [34] (1994) was the first search engine to provide full text search, Alta-
vista (1995) which introduced the multi-threaded crawler (Scooter) and an efficient
search back-end running on advanced hardware, Yahoo! (1995) which was powered
by Inktomi [36] and of course Google (1998) which introduced PageRank [31,32].

According to the Abernathy-Utterback model [1], this fluid phase is normally
closed by the affirmation of a Dominant Design (DD), that is the solution winning on
the market. It is important to notice that the dominant design is not always also the
best technology architecture, as the famous case of VHS vs. Betamax [4] clearly
shows. Still, the dominant design involves also the rise of the technological dominant
architecture and the competitors are forced to cope with it as a standard.

Tushman et al. [2] described the main characteristics of a dominant design, among
them we have:

• It is the architecture winning on the market having more than 50% of share.
Looking at current data in terms of market share (see Figure 2), Google has
approximately a share of 80%.

 The Search Engine Industry 47

Fig. 2. Main Players' Market share in 2009 (marketshare.hitslink.com)

• It is the archetype of the product in both the user and the designer imagina-
tion. Before Google, the leading search engines (Yahoo!, Lycos [35], Alta-
vista etc.) were converging towards a portal offering. The search functions
were in bundle with other services in order to provide prepackaged informa-
tion to the final users. Google offered a completely different approach focus-
ing (at least at the beginning) just on the search functions. In other words
they were able to reduce the list of requirements to be satisfied and to defi-
nitely define the set of functions to be offered. This approach turned to be
standard for the industry and since then, the large majority of new search en-
gines shared it (eg. Ask, Cuil, Powerset, ChaCha, and even Bing). Also from
the technical design point of view Google set a new architecture. For exam-
ple Yahoo! provided search services based on Inktomi's search engine until
2000, when it switched to Google's search engine (until 2004).

• It gives an answer to the need of a large number of people. Doubtlessly
Google is able to give an answer to the large majority of queries at the web
level. Still, the addition of more focused services like images, maps, scholar
etc, made it fit with almost all the search needs.

• It normally freezes the socio-economic context. The leading position in the
market was taken by many different companies before the 2000. Lycos was
the most visited site in 1995 and Altavista the year after. Still, after the year
2000 the leading position of Google was not really challenged anymore. In
Figure 3 we can observe that Google has a constant 80% of marketshare, fol-
lowed by Yahoo! with a 7%. The crystallization of the market share, the
concentration of the market (two companies alone have almost 90% of mar-
ket share) and the introduction of several incremental innovations (maps,
scholar, images, news, video etc) on top of the same technological/business
model, are all symptoms of the presence of a strong Dominant Design.

Given the above considerations we can conclude that in the search engine industry the
rise of Google allowed to define a Dominant Design in terms of technology, market
approach ad business model and that the leadership of such a dominant design shows
to be strong even today.

48 T. Buganza and E. Della Valle

Dec,
2007

Mar,
2008

Jun,
2008

Sep,
2008

Dec,
2008

Mar,
2009

Jun,
2009

Sep,
2009

Dec,
2009

Google Global 79,65% 81,29% 81,03% 80,32% 82,72% 81,65% 78,60% 83,13% 84,91%

Yahoo Global 10,68% 10,30% 9,45% 9,04% 8,40% 7,62% 7,15% 6,84% 6,22%

Bing 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 2,96% 3,39% 3,26%

Other 9,67% 8,42% 9,52% 10,65% 8,89% 10,72% 11,29% 6,64% 5,60%

1,00%

10,00%

100,00%

M
ar

ke
t S

ha
re

Fig. 3. Search Engine Market Share 2007-2009 (marketshare.hitslink.com)

Incremental
innovations

Fluid
Phase

Technologic
Discontinuity

Selection
Dominant Design

Fonte: Tushman et al. (1997)

Technology
discontinuity

Selection

Incremental
innovations

Fluid
Phase

Technologic
Discontinuity

Selection
Dominant Design

Fig. 4. Cyclical model for Innovation (source [2])

Still, the innovation management literature showed that no Dominat Design can
last forever. Tushman et al. [2] showed that the market dynamics in technology-based
environments are cyclical. When a solution wins on the market, it opens an era of
incremental innovations, the solution leaders turn to be incumbent on the market and
their leadership is hardly attackable unless something changes the situation dramati-
cally. This dramatic change is often given by a new technological discontinuity. There
are many examples of mature and static markets that were hardly shaken by techno-
logical discontinuities. Normally these discontinuities make the game start again; they
open a fluid phase that ends once again with the emergence of a new dominant design
(see Figure 4).

Examples of such dynamics are the switch from vacuum tubes to transistors, or
from oil based illumination to light bulbs. In more recent times we observed the
switch from analog to digital technologies that heavily shook the tv-set, the cameras
and the music industries.

 The Search Engine Industry 49

1

10

100

1000

‘74 ‘75 ‘76 ‘77 ‘78 ‘79 ‘80 ‘81 ‘82 ‘83 ‘84 ‘85 ‘86 ‘87 ‘88 ‘89 ‘90

H
ar

d-
di

sk
Ca

pa
ci

ty
(M

B)

year

Point at which
hard-disk drives

invaded mini-
computer market

Point at which
hard-disk drives
invaded personal
computer market

Point at which
hard-disk drives
invaded portable
computer market

Fig. 5. Disruptive Technologies (source: Bower and Christensen [5])

In many cases the company that were market incumbents with the old technologies
and that introduced the dominant design, are unable to face the technology switch on
time and they lose their leadership position. It happened to RCA (vacuum tubes) vs.
Motorola Fairchild and Texas Instruments (Transistors) as well as to Sony (Walkman)
vs. Apple (iPod). Still, there are also cases in which the technological change was
surfed by the incumbent companies that went through it without losing their leader-
ship (or even strengthen it) as in the case of Windows in the switch from 3.x to 95/NT
or on the case of Nikon and Canon in the switch from SLR cameras to Digital SLRs.

To define precisely what are the main reasons that distinguish the cases of falling
leaders from those of surviving leaders is very complex and debated task. It is not
clear, indeed, why some leaders are able to see the threat in advance and react to it
while some others don’t. Bower and Christensen [5], studying the disk drive industry
from 1976 to 1992, observed that mainframe computers’ needs where satisfied for a
long time only by 14’’ drives, but starting from 1988 the 8’’ drivers (lighter and
cheaper) matched the mainframe requirements and became the new dominant design.
The same dynamic happened for 5.25’’ Drives vs. 8’’ drives and for 3.5’’ drives vs.
5.25’’ drives respectively for Minicomputers and Desktop PCs.

In all these cases the companies leading the markets with a technology were re-
placed by other companies bringing the new architecture. The strangest thing, though,
is that the replacing technology was not new to the world, it was largely used in simi-
lar and parallel markets with lower performance requirements. For this reason they
are defined Disruptive Technologies. The main explication why incumbents do not
pay enough attention to disruptive innovations is because they are too close to their
customers trying to fulfill their needs and to control their direct competitors. In this

50 T. Buganza and E. Della Valle

1994

1996

1998

2000

2002

2003

2005

2006

2007

2008

2009

Fig. 6. Main new entrants on the market during the last years

way, they are not focused to look outside their markets to intercept in advance those
technologies that are not suitable for their market now but could become it sooner or
later. Nevertheless, some companies competing in high dynamic markets seem to
have learnt how to search for disruptive technologies in advance. It is the case of
Microsoft that, in order not to be surprised by unexpected technologies, is ready to
invest in potentially interesting technologies knowing that many of them will be not
worth of it [6].

Finally we can observe that something is happening in the search industry sector. If
it is true that the Google leadership it is not currently challenged, it is also true that
when a dominant design is strongly in place the number of new entrants is normally
low as well as the number of technological alternatives proposed to the market. On
the contrary we observe that many new players entered the market since 2005 (e.g.
Cuil, Kosmix, Powerset, Wolfram Alpha, Bing) (see Figure 6) and in the recent past
much rumor was done by Bing and Wolfram Alpha. Many of these new players are
not following the dominant design but are really trying to propose something radically
new. This dynamic is typical of the fluid phase more than of a dominant design
one. Moreover important strategic maneuvering are in place, like the rumors about
Microsoft and Yahoo! merging.

All these considerations bring to draw a main question: are we living the disruptive
era of the Google architecture?

2 A Method to Evaluate Search Engine

In order to answer to the previous question we went through a four steps research
process (see Figure 7). The first step was aimed at defining the right sample to be

 The Search Engine Industry 51

Fig. 7. The research process

investigated. As discussed in the next section, there are thousands of search engines
and the industry is characterized by a heavy concentration index (just one company
has more than 80% of the total market). In such an environment the sample selection
will be significant as far as it includes the market leader. For this reason, more than
looking for statistical significance, by increasing the sample numerousness, we tried
to increase the internal and external validity by increasing the sample variance, as it is
described in the Section 2.1.

Once defined the research sample, we conducted some preliminary case analysis,
based on secondary data, and used the empirical observation to draw a simplified
model able to describe the service architecture adopted by different players. In the
same time the model was aimed at becoming the data-gathering tool for the extended
research, thus, considerable effort was put to clearly define the different evaluation
grids for each variable of the model, as it is described in the Section 2.2.

Finally the model and the evaluation grids were used to map all the 26 cases of the
sample. The gathered data allowed to conduct an analysis of positioning identifying
different strategies coexisting on the market, ranging from companies that are clearly
betting on a specific part of the service architecture, to companies trying to excel on
all of them. The results of the data gathering and of the following analyses are
described in Section 3.

2.1 Sampling

The research process started with the selection of a sample of web search engines, used
in the following steps to create and validate the model. The universe of search engines
is difficult to evaluate, because no registry of them exists. Blogs and specialized web
sites2 give an esteem of their number that varies between 1500 and 2000.

The sample analyzed consists of 26 search engines, which represent about 2 or 3%
of the whole universe. This could be seen as reductive, but recent data from market-
share.hitslink.com show that the share of searches is concentrated on few search en-
gines (Google, for example, attracts about the 81% of searches, followed by Yahoo!,
with 7%).

2 See, for instance,
 http://www.boutell.com/newfaq/misc/howmanysearch.html

52 T. Buganza and E. Della Valle

Starting from the above consideration the objective in the sample selection was
twofold. On the one hand, in order to increase the external validity of the research, we
decided to consider in the sample different categories of search engines. In particular
we focused on general web search tools (e.g. Google); content related search tools
(e.g. Midomi); search tools that aggregate results from other major search engines
(e.g. Leapfish) and “innovative” search services difficult to be categorized that are
probably opening new categories (e.g. Wolfram Alpha).

Moreover, in order to increase the internal validity, we also decided to consider
more than one case for each category. The final sample is thus described in Table 1.

Table 1. The search engine we considered in our sampling

Category Search Engine
General Web
search tools

Google [11]
Yahoo! [12]
Bing [13]
Cuil [27]

Ask [14]
Gigablast [40]
Exalead [44]

Content-
related search
tools

Music
- Midomi [15]
Images
- RETRIEVr [16]
- TinEye [17]
Real Time Information
- OneRiot [22]
- Yauba [43]

News
- Daylife [18]
People
- ZoomInfo [19]
- Wink [20]
Question&Answers
- Answers.com [21]
- ChaCha [42]

Meta search
engine

Leapfish [25]
WebCrawler [26]

Zuula [28]
Copernic (formerly Mamma) [45]

Innovative
search service

Powerset [41]
Kosmix [23]
Wolfram Alpha [24]

Evri [29]
TrueKnowledge [46]

2.2 A Search Engine Model Definition

In order to perform a comparative evaluation of the various search engines, we had to
define a search engine model with two characteristics:

1. simple enough to serve as a agile evaluation tool and
2. general enough to describe a wide spectrum of search engine.

For these reasons, we decided to opt for a process model that covers the various
activities the users and the search engines perform (see Figure 8).

The process begins with users looking for something in the rich offering of the
web. The most straight forward step is directly submitting their requests to the search
engine, however search engines often offer a variety of alternative actions to be per-
form before submitting the request. Several search engines, for instance, offer users
the possibility to restrict the search space by choosing a category. Others offer to get
personalized results if the users log-in. We collectively aggregate all these offerings in
the pre-filtering step.

 The Search Engine Industry 53

REQUEST
PROCESSING

PRE-FILTERING

START

REQUEST

SEARCH

RESULTS
PRESENTATION

NAVIGATION

SELECTION

END

USERS

SEARCH
ENGINE

DATA
PREPARATION

Fig. 8. The activities that occur every time a user makes use of a search engine

At this point search engines start their work. A first internal step is processing
request; this can be as simple as breaking the search phrase in key words or as
complex as using natural language processing techniques to guess the user inten-
tion. A second step is searching. When considering a Web search engine like
Google or Yahoo!, this step is realized by matching the keywords against the in-
dexes constructed off-line by crawling web pages. When considering a meta search
engine like WebCrawler, this step is realized by routing the request towards a set
of external Web search engines, that will answer the user request in parallel. In
both cases an off-line step, which we named search preparation, is required either
(a) to crawl the Web, elaborate the crawled content (e.g., annotation step in multi-
media search engines) and construct indexes, or (b) to select external search en-
gines to route the query to. A final internal step consists in presenting the results to
the user. This can vary from compiling a list, as done by most search engines, to
apply sophisticated techniques to aggregate ranking from multiple search engines,
as done by WebCrawler.

Then is time for the user to navigate the result set and select some of the results. In
case of negative results, the process can be iterated several times and eventually the
user leaves the search engine web site.

54 T. Buganza and E. Della Valle

2.3 A Simple Evaluation Method

This model is the result of several iterations over model definition and model testing
on our sample of search engine. In each of the iterations, we identified a set of drivers
in each step of the model and we evaluate the offering of each search engine.

In order to solicit each search engine in a comparable way we identified the follow-
ing simple but challenging set of requests (they are ordered by increasing complexity):

• looking for "activities" (plural) and getting results also matching "activity"
(singular) – it requires the search engine to apply stemming techniques;

• looking for "jaguar" and getting results separated in categories such as ani-
mal, car, band, video games, football team, etc. – it requires the search en-
gine either to hold a taxonomy of the alternative meanings or to cluster
results;

• looking for "Milano" and getting results separated in categories such as city,
actor, etc. – it is similar to the previous one but it introduces a language fla-
vor in the processing being Milano the Italian name of Milan and a surname
of an actress;

• looking for "Milan Berlin" and getting travel results first – it requires the
search engine to guess the possible user intention and act correspondingly;

• looking for "Paris Hilton" and getting news and photo of the VIP vs. looking
for "Hilton Paris" and getting results about the hotels in Paris – it is similar
to the previous request, but it requires much more smart techniques to be put
in practice on a large scale.

In the case of domain o media specific search engines, for which these requests do not
always apply, we made use of requests of similar complexity that such search engines
were able to process.

The content of the following sections is twofold. In each section, we first describe
the final set of drivers identified for each step in the model. And then, we describe
how we were able to evaluate each search engine by rating how much it bets on the
various steps. Ratings vary between 1 star () to 3 stars (), where one star
represents a poor presence of the considered dimension, while 3 stars are usually
linked to those driver hold as strengths of the search engine.

2.3.1 Pre-filtering Step and Its Evaluation Criteria
A search engine can provide users with pre-filtering tools that give them the possibil-
ity to get to the desired results without entering any word or with little effort. The pre-
filtering tools we found in our sample are: topic sections, search trends, recent
answer, automatic suggestions, personalization functions, search memory, homepage
customization, and search options.

Topic Sections are sections dedicated to specific themes or topics (health, shop-
ping, sport, politics, etc.) in which users can find suggestions useful to reach what
they’re looking for before starting the research process. Topic sections are usually
settled in the home page, so they also contribute to the attractiveness of the search
engine. A good example, seeFigura 9.a, is provided by Evri where a box with links on
themes regarding politics, business, entertainment and sport is accessible from the
home page.

 The Search Engine Industry 55

(a) Example of Topic Sections from Evri

(b) Example of Search Trends from KOSMIX (left) and Yahoo! (right)

(c) Example of Automatic Suggestions from Google (left) and Evri (right)

Fig. 9. A set of screen-shot illustrating some of the pre-filtering offering

Search Trends/Recent Answers are helpful suggestions provided with the aim of
guiding users with popular queries and Q&A. They usually show up in the home page
and are typical of social, news and real-time search engines. A good example, see
Figura 9.b, is provided by KOSMIX where the sections - called Hot Search Trends or
Trending Topics - can be considered examples of these functionalities and they are
both present in the home page. Also Yahoo! has a similar box named Today’s top
searches.

56 T. Buganza and E. Della Valle

Automatic Suggestions are keywords or categories automatically suggested to us-
ers during data input. These suggestions usually appear in a dropdown menu under the
input field. Automatic suggestions can based on popular and recent searches – this
is the case of Google shown in Figura 9.c on the left – or on a result of the data
preparation process – this is the case of Evri shown on Figura 9.c on the right.

Personalization functions provide users with specific suggestions after a log-in to
the web site of the search engine (this is possible thanks to implicit and explicit profil-
ing of the same users). For example, results can be shown or ordered in a different
way referring to the user’s search history or it is possible to comment results and to
mark them in order to easily recover them in the future. A good example is provided
by the i-google service.

Search Memory is a tool that give user the possibility to access easily to his past
searches and eventually recall them. Every input is stored and available for a certain
period of time. A good example, is provided by ZOOLA where Recent Searches box
shows all the recent word typed in the search box.

Homepage Customization possibility for the user to create his own customized
home-page by choosing different boxes and sections but also display a different lay-
out and activate different tools. Also this kind of customization is part of the new
“I-google” where users can create their own homepage after logging-in the web site.

Search Options are functions and filters available for the user in order to formu-
late more detailed and specific queries. Search options can be found in the home page,
usually near the input search bar, or in a dedicated section called advanced search. In
the first case, options are evident and can be used easily, while filters available in the
advanced search are more likely to be used only for a really specific query. From our
sample we have identified the filter available are the following: Geographic, Lan-
guage, Output type, Boolean logic, Date, Keyword position, Domain (com, it, org,
net, etc.), Copyright, Safety option, Similar pages, Links, Number of displayed re-
sults/pages, Topic (meta-search), Q&A state (social search), Relevance and Personal
data (people search).

In order to evaluate how much each search engine is betting on the pre-filtering
step, we considered the presence of the tools described above with the exclusion of
the search options and we created four categories:

A. only basic automatic suggestion is available;
B. one tool, but the automatic suggestion, is available;
C. 2 or 3 tools are available; and
D. more than 3 tools are available.

For search options, we created an index α whose values can be 0 if no search option is
present, 1 if one or two search options are present and 2 if more than three options are
present. We assigned the stars using the table illustrated in Table 2.

Table 2. The method used in assessing how much the search engines bet on the pre-filtering step

 Pre-Filtering Categories
 A B C D
α = 0
α = 1

Se
ar

ch

O
pt

io
ns

In

de
x

α = 2

 The Search Engine Industry 57

2.3.2 Request Step and Its Evaluation Criteria
This step highlights how the user makes clear what he’s looking for with regard to the
type of input allowed in the search engine. This is an important step in the research
process and it is strictly connected to the efficacy of pre-filtering tools, because the
more useful are those tools the less used will be this functionality.

In our sample we detected the possibility to submit different media types:

• Text in the form of single or multiple keywords, phrases or even complete
questions in natural langue;

• Image in the form of a sketch to be drawn in ad-hoc spaces (this particular
input tool can be found in RETRIEVr, a search engine that has access to the
vast amount of pictures uploaded on Flicr.com) or a URL of an image pre-
sent on the Web (this is the case of TinEye).

• Audio in the form of sounds recorded, singed or hummed by the user (as in
Midomi).

In evaluating how much the various search engine bet on this step we assigned the
starts as follows:

• means that only textual input is allowed;
• means that image or audio input is allowed; and
• means that more than one kind of input is allowed.

2.3.3 Request Processing Step and Its Evaluation Criteria
Under the term query processing, we group all those technical activities that are put in
place before executing the actual search. These activities can range from simple ones,
such as stemming to the attempt to detect user intention.

An example of such an attempt is provided by Google. Google interprets differ-
ently the search for “Paris Hilton" and the one for “Hilton Paris” (see Fig. 10). More
advanced techniques, such as Natural Langue Processing, are deployed in several
Google’s competitors. For instance, asking “What is the temperature in Boston?” to
Wolfram Alpha results in the most recent temperature measured in Boston (Massa-
chusetts, USA), but the system also asks whether the user means Boston (UK) or
other four towns named Boston around the world.

Fig. 10. The two screenshots above shows the ability of Google to distinguish the user inten-
tion. On the left the user searches for “Paris Hilton” and Google first answers are news about
the VIP. On the right, the user searches for “Hilton Paris” and Google first answer is the posi-
tion of the hotel in Paris.

58 T. Buganza and E. Della Valle

In evaluating how much the various search engine bet on this step we assigned the
starts as follows:

• means that the analyzed search engine does nothing special, for instance it
only applies stop words;

• means that it applies well known techniques such as stemming to avoid
singular/plural mismatch; and

• means that it applies experimental techniques such as NLP, computa-
tion of audio-fingerprint, real time multimedia feature extraction, intention
detection.

2.3.4 Data Preparation Step and Its Evaluation Criteria
Under the term data preparation we group several technical activities. For google-
like search engine data preparation is not performed at query time and indicates:
crawling, analyzing, indexing, and ranking resources as described in [32]. Search
engines tend to differentiate themselves on the basis of which activity they stress
more. For instance, Google has been stressing the usage of PageRank, while CUIL, on
the contrary, puts lot of emphasis on crawling. On the contrary, for meta search en-
gine, data preparation consist in selecting the search engines or the data source to ask
at run time. Other approaches are also possible; for instance Kosmix approaches to
the Deep Web [39] leveraging a huge taxonomy of millions of topics and their
relationships.

In evaluating how much the various search engines bet on this step we assigned the
stars with two different criteria, one for the search engines (e.g., Google, Yahoo!,
Midomi, RETRIEVr) and one for the meta-search engines. For the former the
assignment follows the rules listed hereafter:

• means that the analyzed search engine applies standard crawling and
indexing techniques such as those described in [32];

• means that it applies the previous techniques and other advance once
such as PageRank, acoustic–fingerprints [37] and multimedia feature
extraction [38];

• means that it applies the standard and the advance techniques together
with some more experimental approached such as latent semantic indexing,
NLP, ontologies and taxonomies.

For the meta-search engine we used the following rules instead:

• means that it invokes few well know search engines (e.g., Google, Yahoo!
and Ask) or it access few well know web sites (e.g. LinkedIn, Facebook,
Fliker and YouTube);

• means that it selectsthe external search engine to invoke or the external
web site to access depends on the actual query submitted by the user;

• means that not only it cleverly selects external services and web sites,
but it combines such information with self crawled web pages or access to a
wide range of Deep Web sources.

 The Search Engine Industry 59

2.3.5 Search Step and Its Evaluation Criteria
The search step occurs just after the request processing and operates over the data and
services prepared by the search preparation step. When considering a Web search
engine like Google or Yahoo!, this step is realized by matching the keywords against
the indexes constructed off-line by crawling web pages. When considering a meta
search engine like WebCrawler, this step is realized by routing the request towards a
set of external Web search engines, that will answer the user request in parallel. As
we will discuss in the conclusion, this step is particularly relevant for Kosmix and
Wolfram Alpha.

As in the case previously described of evaluating the search preparation, we as-
signed the stars with two different criteria, one for the search engines (e.g., Google,
Yahoo!, Midomi, RETRIEVr) and one for the meta-search engines. The rules for the
search engines are the following:

• means that the analyzed search engine limits the search to keyword or
multimedia feature matching;

• means that it applies well know techniques of the previous case, but it
also computes facets, clusters, related search and other similar features that
depend on the query issued by the user; and

• means that, in addition to the two previous techniques, it applies also
some experimental techniques such as suggesting alternative interpretation of
the meaning associated to the user request.

For the meta-search engines we used the following rules instead:

• means that it limits the search to broadcasting the same request to all se-
lected search services and data sources;

• means that it does not broadcast the same request to all the selected
search services, but it adapts the request to the peculiarity of the search ser-
vice/data source. In addition to this it also combines the results, e.g., by ap-
plying rank aggregation; and

• means that, in addition to the previous techniques, it tries to aggregate
the retrieved information in an unified view.

2.3.6 Results Presentation Step and Its Evaluation Criteria
This step is strictly related to the previous one: it presents its results. Screenshots of four
different result pages from Google, Cuil, Kosmix, and Wolfram Alpha are show in Fig. 11.

Google presents list of results; having detected that the user is asking for the Lom-
bardy City it puts a map and some photos among the results. Cuil proposed a page
mixing result listing in Google-style with info boxes as it was a magazine. Cuil also
proposes tabs with alternative meanings of the keyword “Milan”; it proposes AC
Milan, Inter Milan, Milan Cundera, and some ten more. Kosmix opts for the magazine
style with several boxes presenting articles about the possible interpretation of the
keyword “Milan”: a Wikipedia article about a French missile named Milan, weather
reports in Milan, shopping places, and so forth. Finally Wolfram Alpha reports facts it
knows about Milan such as the population, the geo-coordinates and the current weath-
er. Notably it tells the user that it was assuming "Milan" is a city but it can use it as a
given name.

60 T. Buganza and E. Della Valle

 (a) Google (b) cuil

 (d) Kosmix (d) WolframAlpha

Fig. 11. The different results presentation of the query “Milan”

To evaluate how the different search engines bet on this step we compiled the
following list of rules:

• means that the analyzed search engine does nothing special, e.g. it
presents result in a plain list such as Google;

• means that it presents of facets, clusters, filtering options, related
searches, reordering button, page thumbnails and similar features; and

• means that it tries to organize the content as if it was prepare by a
person, e.g. the magazine style approach of Kosmix.

2.3.7 Navigation Step and Its Evaluation Criteria
The last step is the navigation one. It encompasses actions for refinement and manipu-
lation of output data. These actions are similar to the navigation of standard website,
but are usually not desirable when dealing with search engines because users want to
get to useful results as soon as possible.

However, most search engines offer several post-search filtering options, which
can be re-arranged and customized on personal needs. These options partially overlap
with search options presented in Section 2.4 when discussing the pre-filtering step.

 The Search Engine Industry 61

Displayed results can normally be arranged (or clustered) along one or more of the
following dimensions: file size, date, relevance, format, topic, language, personal data
(clustering of people by age, job etc., typical of people search), results from a specific
page (this option is available, for example, for registered users on Google and it’s a
default option on Gigablast), search engine used (this last option is typical of meta-
search that relies on external search engines).

We can also find other options such as:

• connections – it offers the user list of links (or even diagrams in the case of
Evri) to related topics which the user may be consider of interest;

• translation service – it allows users to access in their language pages written
in foreign languages;

• results sharing – it offers the possibility to share the results of queries on
social networks; and

• social networking – it allows registered users to interact with other users
interest to the same topics.

In order to evaluate how much each search engine is betting on the navigation step,
adopt the following strategy, we give if zero or one option is present, if two or
three options are present and if more than three options are present.

3 Results

According to the previous model we mapped all the 26 search engines of the sample.
Even though the evaluation grid was developed to make the evaluation as objective as
possible, we decided to have each single site assessed by four different researchers
and then we compared the results converging to the final evaluation table below (see
Table 3). It is important to underline that the score given to each item is an absolute
measure (according to the evaluation grid) and not a relative one. In other words the
three stars on the Navigation item of Google and OneRiot mean that they show
comparable features on this dimension.

The data gathered allowed to conduct an analysis of positioning and to identify the
presence of different strategies coexisting at the same time on the market. First of all a
Factor analysis was conducted to reduce the number of items allowing to reduce the 7
starting items into 33.

• Factor 1: Search Preparation
This factor is composed by Request Processing and Data Preparation. It
represents the effort in preparing the database to be searched.

• Factor 2: Search
This factor is composed by Search and Result Presentation. It represents
the effort in preparing searching the database and proposing the results to
the users.

3 Extraction method: principal component analysis; rotation method: varimax with Kaiser

normalization; all the factor loading are higher than .5 and the Crombach’s Alpha is higher
than .5.

62 T. Buganza and E. Della Valle

Table 3. Results of the mapping process

SEARCH ENGINE PRE-FILTERING REQUEST DATA PREPARATION REQUEST PROCESSING SEARCH RESULTS PRESENTATION NAVIGATION
GOOGLE
YAHOO!
BING
CUIL
ASK
GIGABLAST
EXALEAD
MIDOMI
RETRIEVr
TINEYE
ONERIOT
YAUBA
DAYLIFE
ZOOMINFO
WINK
ANSWERS
CHACHA
LEAPFISH
WEBCRAWLER
COPERNIC
ZUULA
POWERSET
KOSMIX
WOLPHRAM ALPHA
TRUE KNOWLEDGE
EVRI

• Factor 3: Pre-Post Search
This factor is composed by Pre-filtering, Request and Navigation. It
represents extent to which the user can give a contribution before or after
the searching activity.

Once identified the three factors, the value of each search engine on these factors was
calculated as the average values of the starting items.

Afterwards we wanted to identify what search engines are showing a focused strat-
egy, which means they are putting more attention on one factor. Our question was if
there are some companies betting more on one dimension than others. For example it
is easy to see in Table 3 that the image search by similarity of TinEye is focusing its
effort on Search Preparation, while Google seems to have a more balanced approach
showing similar efforts in developing all the three factors. In order to identify what
companies are focusing their strategies (and on what of the factor(s)) we created a
new binary variable called focused strategy. For each search engine this variable
equals to 1 if the variance of the scores of the three factors is higher than the average
variance in the sample (and it equals to zero otherwise). A post hoc analysis on
allowed to identify the following strategies.

1. Bet on everything4: Google, Yahoo, Bing and Exalead
2. Bet on user interaction (pre and post search): Wink
3. Bet on preparing for searching: RETRIEVr, Cuil, TinEye and Midomi

4 In this category we may have both companies showing significant efforts on all the variables

and companies showing poor efforts on all the variables. The companies included in the
second category will not be considered from now on.

 The Search Engine Industry 63

REQUEST
PROCESSING

PRE-FILTERING

START

REQUEST

SEARCH

RESULTS
PRESENTATION

NAVIGATION

END

DATA
PREPARATION

1 2

3

4

5

Fig. 12. The five strategies the search engines are following

4. Bet on searching power: Evri and Yauba
5. Bet on searching excellence: Kosmix, Wolfram Alpha, TrueKnowledge

and Powerset

In the following we explain the five strategies in details and we refer to Fig. 12 for
visualizing a mapping between the five strategies and the search process we
introduced in Section 2.2.

3.1 Strategy 1: Bet on Everything

The big names in the search engines industry, i.e., Google, Yahoo! and Bing all ap-
pear to be betting on everything.

Google and Yahoo! offer powerful pre-filtering support with iGoogle and MyYa-
hoo!. In a different way, Bing Visual Search5, with the possibility to visually select
topics to search, is also an outstanding pre-filtering interface.

Considering the request step, they all stick with the standard solution of offering a
text field in which user can enter the request, but they apply a wide range of request
processing techniques. All three of them support stemming and, in different way they,
try to interpret the users’ queries to get their intentions (example were presented in
Section 2.6).

5 http://www.bing.com/visualsearch

64 T. Buganza and E. Della Valle

results support # results support # results support
"Activities" - it requires stemming 329 yes 1860 yes 232 yes

"jaguar"- it requires taxonomies or clustering 46 no 300 somehow 63 almost
"Milano" - it requires taxonomies or clustering and language detection 95 no 409 no 62 almost

"Milan Berlin" - it requires user intention detection 14 yes 65 somehow 14 somehow
"Paris Hilton" vs. "Hilton Paris" - it requires intention detection on a large scale 46-21 yes 202 no 50 no

Google Yahoo! Bing

Fig. 13. A comparison between Google, Yahoo! and Bing on the evaluation queries proposed in
Section 2.3

It’s difficult to judge whether the three major search engines differ much in data
preparation, search, and result presentation steps. Using the evaluation queries pre-
sented in Section 2.3 we got the results shown in Fig. 13. Yahoo! outperforms both
Google and Bing in terms of number of results; it gives five times more results. This
may indicate that Yahoo! bets a bit more on data preparation. However, Bing and
Yahoo! handle almost correctly the query on Jaguar and Milano. Both of them pro-
pose a “related search” or a “search refinement” box that helps in overcoming the
ambiguities in the query. In this Bing performs slightly better than Yahoo!, for in-
stance, Yahoo! searching for Jaguar retrieves only the car vendor related results and
proposes links to search for specific Jaguar models. Bing, on the contrary, proposes a
mix of results and proposes to search for “Jaguar Animal”, “Jaguars Stadium”, and
some ten more options. Finally, all three search engines handle the Milan-Berlin
query proposing travel related information first. The only search engine that manages
the “Paris Hilton” vs. “Hilton Paris” query correctly is Google (for more info see
discussion in Section 2.6).

Moreover, all three search engines have several experimental features that explore
almost all the steps. Just to cite few of them:

• Yahoo! has been spending a lot of effort on SearchMonkey6, a developer tool
to extract structured data from the Web (i.e, microformat and RDFa) and
build applications to display custom enhanced results.

• Google recently proposed Fusion Tables – a service for managing large col-
lections of tabular data in the cloud –, Google Squared – a service that fetches
facts from the Web and organizes them – and Flu Trends – an experiment in
calculating up-to-date estimates of flu activity using search trends.

3.2 Strategy 2: Bet on User Interaction (Pre and Post Search)

Search engines betting on this strategy invested in state-of-the-art technologies for
data preparation, request processing and search, but they excel in pre-filtering options
and result navigation.

Wink is an emblematic case of search engine that bets on user interaction. The
home page of the people search engine allows users to take several pre-filtering ac-
tions. Users can tell Wink the intention to search for different kinds of people
(e.g., friends, classmate, co-workers) and different types of information (e.g., emails,
phone numbers, online presence in social networks). In Fig. 14, we present a screen
shot of the pre-filtering options offered by Wink.

6 http://developer.yahoo.com/searchmonkey/

 The Search Engine Industry 65

Fig. 14. The pre-filtering options offered by Wink

The results of a search are presented as a list, but each result links to a special page
where all the information about the found person is displayed in a profile. Such a
profile looks like the personal profile a person can manually create on a Social Net-
work, but it is automatically created with the information found on the Web. Naviga-
tion tools are offered to explore the profile and to isolate the information the Wink
user is looking for.

3.3 Strategy 3: Bet on Preparing for Searching

RETRIEVr, TinEye, Midomi and Cuil are very good examples of search engines
whose strategy is to bet on preparing for searching.

RETRIEVr and TinEye are image search engines; they both excel in finding photos
on the Web. To do so, they extensively extract multimedia features of images pub-
lished on the Web (i.e., betting on data preparation) and index them. Moreover, they
both offer the possibility to point to an image on the Web as a way to indicate what
the user is searching for. RETRIEVr also offers a sketch pad where users can draw
what they are looking for. The request processing step consists in extracting multime-
dia features from the users’ input using the same techniques employed in the
data-preparation phase and in matching them against the indexes.

Midomi operates in a similar way, but it concentrates on music. It applies the inno-
vative techniques of acoustic fingerprints to songs and users’ input. Users are invited
to sing or hum a song for 10 seconds and Midomi finds songs in its archive that match
the users’ input.

Cuil, differently from the formers, does not bet on image and song feature extrac-
tion. However, it reached worldwide visibility for having claimed to have crawled
more Web pages that any other Web search engine. It clearly bets on data preparation
as a key ingredient of its strategy.

3.4 Strategy 4: Bet on Searching Power

This fourth strategy is complementary to the previous one. Search engines, which bet
on this strategy, are outstanding in search and result presentation. To do so, they also
have to excel on data preparation, but they don’t bet much on request processing. Evri
and Yauba are two emblematic cases of bet on search power.

Evri tries to replace the need for search engines by suggesting that users explore
how entities are connected to each other. Whenever a user searches on Evri, it gets the

66 T. Buganza and E. Della Valle

Fig. 15. Two distinguishing features of the Evri search engine: a related profiles box (on the
left) and two diagrams showing an entity and its connections (on the right)

list of results found on the Web, but Evri also displays a box which it populates with
known entities and links to Evri’s database. These links point to hundreds of thou-
sands of people, products and things. In Figure 15, we show on the left an example of
the links listed in such a box when searching for “Milan" and on the right two
examples of the entities the users can explore.

Yauba is a different example of betting on search power. It seeks to transform the
way people find information online, while providing maximum protection for their
safety, security and privacy. Yauba does not bet on the size of the index7, it bets on
intelligence. Yauba tries to tell the difference between concepts such as “Milano” the
Italian city, “Milano” the Texas city, “Milano” the actress (and much more). It does
so using word-sense disambiguation extraction technologies. Moreover, Yauba com-
pletely rejects the view that search engines should keep mountains of data on their
own users. Instead, it takes the exact opposite approach. It protects the privacy of its
users. It keeps no record of search terms, browsing habits or any other personally
identifiable information.

3.5 Strategy 5: Bet on Searching Excellence

The search engines, which bet on searching excellence, concentrate their attention to
the four inner blocks of our model: request processing, data preparation, search and
result presentation. Kosmix, Wolfram Alpha, TrueKnowledge and Powerset appear to
be those that adopt this strategy successfully. They differ a lot in terms of results, but
they clearly excel in the four inner blocks. Hereafter we compare the answers of the
four search engines when we ask them the four evaluation queries presented in
Section 2.3.

All of them are able to process the query “activities” that requires stemming. The
answers of the four search engines differ a lot. Kosmix constructs a magazine-style
page in which it collects bits of the Web from multiple sources about the concept
“activity”. Wolfram Alpha tells the user the six meanings of the noun “activity”, its
pronunciation, its synonyms, and a set of narrower and broader terms. TrueKnowl-
edge answers that “activity” is an “intransitive action” and similarly to Wolfram

7 Yauba About page states that: “Most search engines like to brag about the size of their index.

At Yauba, we could not care less. What we care about is intelligence.”

 The Search Engine Industry 67

Alpha it shows links to narrower and broader terms. Powerset presents a set of
Wikipedia pages that match “activities” or “activity” and then tells the user that it
knows several type of activities (e.g., ski, hike, metallurgy, drama, etc.) and that ac-
tivities lead to sounding, award, expansion, demands, and unification.

When answering the second evaluation query – jaguar – Kosmix presents a maga-
zine-style page describing the animal, but it asks whether the user is interested in
Jaguar the car or Jaguar the Atari console, etc. Wolfram Alpha distinguishes between
Jaguar as an English word and Jaguar as a species specification and answers accord-
ingly. TrueKnowledge shows the different possible meanings in separated boxes and
it lists a set of super and sub classes for each meaning. For instance, for Jaguar as cars
it lists all the 40 different Jaguar models it knows. Powerset acts similarly distinguish-
ing between seven possible meanings: the animal, the car vendor, the car models, the
band, the Marvel comics, the rocket and the chemistry software. For each of them it
presents a list of relevant Wikipedia pages.

We obtain a similar result when we evaluate the third and the fifth query: Milan
and “Paris Hilton” vs. “Hilton Paris”. The four search engines are able to pre-process
the request and get the possible meanings or intentions, search for one or more of
these meanings/intentions and prepare a presentation of the results that helps the user
in understanding that the request was ambiguous and different results are available for
different interpretations. The four search engines differ in the number of meanings
and intentions they know and in the presentation of the results.

A query that seriously challenges all the four search engines is the “Milan Berlin”
one. As we explained in Section 2.3, this query requires the search engine to guess the
possible user intention (i.e., getting travel results first) and act correspondingly. Kos-
mix, TrueKnowledge, and Powerset do not detect the intention. The results of Kosmix
and Powerset contain contents from Milan and Berlin, while TrueKnowledge answers
that it does not understand the question. Most likely this behavior is a result of the
design decision to realize a search engine that constructs a result set around a given
topic. As a result Kosmix, TrueKnowledge, and Powerset do not handle multi-topic
queries. Differently from the others, Wolfram Alpha detects the user intention and
provides information such as the distance between the two cities and the path an air-
plane should follow, but it does not point to any relevant service that can help the user
in arranging the travel.

4 Discussion

This research showed that something in the search engine industry is moving. There
are many clues that seem to forerun the end of a static phase and the opening of a new
fluid one.

First of all we can observe that in the last years the number of new players on the
market increased. These players are far from creating market problems to Google, but
it is a fact that large companies like Microsoft (recently with Bing) and new ventures
like Wolfram Alpha are looking for new ways to answer to the market needs. More-
over the existence of Search Computing (SeCo) and the university research is con-
verging on the same market making it clear that something could happen in a short
time. We can also observe that this growth in the number of players is often pushed

68 T. Buganza and E. Della Valle

by new technologies (e.g. vocal recognition or large images dataset). Still it is inter-
esting to observe that also already existing (perhaps disruptive) technologies and
solutions like the metasearch (Webcrawler or Copernic) are receiving new blood.

In other words our analysis of positioning allowed to see that some players are
stressing the current dominant architecture by investing heavily on new technologies.
In some cases their effort for offering something new to the customers is not limited
to some specific components but it implies re-discussing the whole service architec-
ture going back in the design hierarchies [9] (e.g. the Kosmix metasearch architeture
that is different from the current dominant design proposed by Google). In other cases
their effort still fit inside the dominant architecture (e.g. the innovative techniques of
acoustic fingerprints by Midomi), but is not hard to think that the growth of radically
new components will challenge the existing architecture asking for a new one.

Finally we can observe that a clear new way hasn’t emerged yet. The present re-
search shows that many companies are seriously challenging the current dominant
design and that a large set of alternatives is offered to the market, that are clear signals
of a market entering in a new fluid phase [2].

However, these considerations do not imply that we will have a new market leader
soon! Many researchers showed that in rapid moving environments the market leaders
developed the capability to react to new entrants and to maintain their leading
position [10]. This means that it wouldn’t be surprising if the company introducing
the new Dominant Design will be Google again.

Thus this research allows to raise come specific which are relevant to the SeCo
project concerning the next Dominant Design.:

• When will it emerge?
• Which technologies will it be based upon?
• Will this be coherent with SeCo’s vision?

Even though answering to these questions is a difficult and major task, this is not the
only one. The present research focused mainly on the service offer to the market. Still,
the analysis of the service model should be accompanied by the analysis on the busi-
ness model as well. The current service dominant design is connected to a dominant
business model that mainly leverages on the sponsored links. Still, there are many
other possible revenue streams that can be exploited (e.g. charging users for searches
or technology licensing). A short description of the most acknowledged ones in listed
in Table 4.

It is interesting to observe that some of the players that are proposing focused
strategies are not leveraging on sponsored links as main revenue stream. For example
Evri, Exalead, and Copernic seems to bet on selling technologies/technology
licensing, while Midomi seems to bet on selling contents to the final users.

These considerations are worth of a deeper investigation but are already enough to
open some preliminary questions regarding the SeCo business model:

• Who are the SeCo customers? Final users or search companies?
• Is it better to have a close or an open approach to Seco trading?
• How can we adapt the existing revenue sources to a multi-layer architecture?

 The Search Engine Industry 69

Table 4. Main sources of revenues

Sponsored links: some search engines sell keywords. Advertisers buy keywords to
come up first when the corresponding query is submitted. Selling keywords is the most
popular and effective way of making revenues for search engines.
Banners: this spread moneymaking technique, which belongs to that marketing area
called marketing promotion online, is based on direct advertising. Several search en-
gines, as web pages in general, host advertisement (called banners) with the aim of
attracting users to the advertisers’ web pages.
Charging users for searches: Another possibility to earn money is to make users pay a
fee for the access to the search service. The difficulty with such a technique is that
there is a limited base of users that want to pay for search tools, so this strategy is less
attractive for advertisers. Charging users is actually limited to those special value-added
searches or to access relevant articles that generally provide information of higher qual-
ity in comparison to the results displayed by common search engines.
Free search and contents with fee: in this case, the use of search engines is free-of-
charge but all the contents on the web site (songs, videos, documents, etc.) are accessible
only by paying a fee. Search engines help customers in finding the content they intend to
buy and this service is for free.
Search listing: sometimes search engines charge advertisers for listing or for a better
position in the page of results. A strong limit of this business model, from users’ pers-
pective, is that it can jeopardize relevance and pertinence of the results.
Collection of marketing data: search engines have the opportunity to collect informa-
tion about users in different ways. Firstly, it’s usually possible to register a personal
profile (subscription), which is enriched of information every time the user submits a
query. A whole industry has grown up to turn clicks into customization, thanks to the
huge quantity of personal data collected. These data can be used to target advertising on
specific web sites or they can be sold to marketing agencies. Also search habits are
important to turn data into marketing information, in fact every research session helps
the search engine in profiling the user and his interests: this is a major ethical issue for
what concern users’ privacy.
Technology licensing and software as a service: some companies that develop search
engines can license their search technology to third parts, although this business does not
represent usually an important stream of revenue. Search engines can also sell their
search service to other web sites or other portals. In this case customers put on the ho-
mepage a search tool for contents on their web sites (or for the entire web), the manage-
ment of which they entrust to the search engine company.

Acknowledgements

Authors especially thank Silvia Palermo e Claudia Nasuti for the operational support
they provided to this research and the fruitful hours of discussion we spent together.
This research is funded by the ERC project Search Computing.

References

1. Utterback, J.M.: Mastering the dynamics of innovation. Harvard Business School Pr.
(1996)

2. Tushman, M.L., Anderson, P.C., O’Reilly, C.: Technology cycles, innovation streams, and
ambidextrous organizations: organization renewal through innovation streams and strategic
change. Managing strategic innovation and change, 3–23 (1997)

70 T. Buganza and E. Della Valle

3. Abernathy, W.J., Utterback, J.M.: Patterns of industrial innovation. Technology Re-
view 80(7), 40–47 (1978)

4. Cusumano, M.A., Mylonadis, Y., Rosenbloom, R.S.: Strategic maneuvering and mass-
market dynamics: The triumph of VHS over Beta. The Business History Review 66(1),
51–94 (1992)

5. Bower, J.L., Christensen, C.M.: Disruptive technologies: catching the wave. Harvard
Business Review 73, 43 (1995)

6. Gawer, A., Cusumano, M.A.: Platform leadership: How Intel, Microsoft, and Cisco drive
industry innovation. Harvard Business School Pr. (2002)

7. Crowell, G.: Search Engine Watch, December 16, 2003 A special report from the Search
Engine Strategies 2003 Conference, San Jose, CA, August 18-21 (2003)

8. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research Methods
Series, vol. 5, 1(2) , p. 3. Sage, Thousand Oaks (1994)

9. Clark, K.B.: The interaction of design hierarchies and market concepts in technological
evolution* 1. Research Policy 14(5), 235–251 (1985)

10. Bessant, J., Lamming, R., Noke, H., Phillips, W.: Managing innovation beyond the steady
state. Technovation 25 (2005)

11. Google Web search service, http://www.google.com
12. Yahoo! Web search service, http://it.yahoo.com/
13. Bing Web search service, http://www.bing.com
14. Ask Web search service, http://it.ask.com/
15. Midomi music search service, http://www.midomi.com/
16. RETRIEVr flicker image search service,

http://labs.systemone.at/retrievr/
17. TinEye Web image search service, http://tineye.com/
18. Daylife news search service, http://www.daylife.com/
19. ZoomInfo people and company search service, http://www.zoominfo.com/
20. Wink people search service, http://wink.com/
21. Answer.com answer search service, http://www.answers.com/
22. OneRiot real-time Web search engine, http://www.oneriot.com/
23. Kosmix Deep Web search service, http://www.kosmix.com/
24. WolframAlpha computational search service, http://www.wolframalpha.com/
25. Leapfish Web meta search service, http://www.leapfish.com/
26. WebCrawler Web meta search service, http://www.webcrawler.com/
27. Cuil Web search service, http://www.cuil.com/
28. Zuula Web meta search service, http://www.zuula.com/
29. Evri topic search engine, http://www.evri.com/
30. Hallerman, D.: Search Engine Marketing: User and Spending Trends (January 2008),

http://www.emarketer.com/Article.aspx?R=1007415
31. Page, L.: Method for node ranking in a linked database. U.S. Patent 6,285,999,

http://www.google.com/patents?vid=6285999
32. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: Pro-

ceedings of the seventh international conference on World Wide Web 7, Brisbane, Austra-
lia, pp. 107–117 (1998); (Section 2.1.1 Description of PageRank Calculation)

33. Infoseek brief history on Wikipedia,
http://en.wikipedia.org/wiki/Infoseek

34. Altavista Web search service, http://www.altavista.com/
35. Lycos Web search serive, http://www.lycos.com/

 The Search Engine Industry 71

36. Inktomi Corporate description on Wikipedia
http://en.wikipedia.org/wiki/Inktomi_Corporation

37. Cano, P., et al.: A Review of Algorithms for Audio Fingerprinting. In: International Work-
shop on Multimedia Signal Processing, US Virgin Islands (December 2002)

38. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

39. Bergman, M.K.: The deep web: Surfacing hidden value. Journal of Electronic Publish-
ing 7(1) (August 2001)

40. Gigablast Web search service, http://www.gigablast.com/
41. Powerset Wikipedia semantic search service, http://www.powerset.com/
42. ChaCha question & answer search service, http://www.chacha.com/
43. Yauba real time search service, http://www.yauba.com/
44. Exalead demo Web search service, http://www.exalead.com/search/
45. Copernic Meta search service, http://find.copernic.com/
46. TrueKnowledge answer service, http://www.trueknowledge.com/

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 72–93, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 5:
From Mashup Technologies to Universal Integration:

Search Computing the Imperative Way

Florian Daniel, Stefano Soi, and Fabio Casati

University of Trento - Via Sommarive 14, 38123 Trento - Italy
{daniel,soi,casati}@disi.unitn.it

Abstract. Mashups, i.e., web applications that are developed by integrating da-
ta, application logic, and user interfaces sourced from the Web, represent one of
the innovations that characterize Web 2.0. Novel content wrapping technolo-
gies, the availability of so-called web APIs (e.g., web services), and the increas-
ing sophistication of mashup tools allow also the less skilled programmer (or
even the average web user) to compose personal applications on the Web. In
many cases, such applications also feature search capabilities, achieved by ex-
plicitly integrating search services, such as Google or Yahoo!, into the overall
logic of the composite application.

In this chapter, we first overview the state of the art in mashup development
by looking at which technologies a mashup developer should master and which
instruments exist that facilitate the overall development process. Then we spe-
cifically focus on our own mashup platform, mashArt, and discuss its approach
to what we call universal integration, i.e., integration at the data, application,
and user interface layer inside one and the same mashup environment. To better
explain the novel ideas of the platform and its value in the context of search
computing, we discuss an example inspired by the idea of search computing.

1 Introduction

The advent of Web 2.0 led to the participation of the user into the content creation
and application development processes, also thanks to the wealth of social web ap-
plications (e.g., wikis, blogs, photo sharing applications, etc.) that allow users to
become an active contributor of content rather than just a passive consumer, and
thanks to web mashups [1]. Mashup tools enable fairly sophisticated development
tasks inside the web browser. They allow users to develop their own applications
starting from existing content and functionality. Some applications focus on integrat-
ing RSS1 or Atom2 feeds, others on integrating RESTful services [20], others on
simple UI widgets, etc. Mashup approaches are innovative especially in that they
tackle integration at the user interface level and do not “just” focus on data and in
that they aim at simplicity more than robustness or completeness of features (up to
the point to enable also non-professional programmers to develop own mashups).

1 http://cyber.law.harvard.edu/rss/rss.html
2 http://www.ietf.org/rfc/rfc4287.txt

 From Mashup Technologies to Universal Integration 73

Integrating content and services from the Web also means integrating search results
or services, which makes mashups a natural candidate for search computing applica-
tions, but also poses novel requirements in terms of composition features – especial-
ly as for what regards UIs.

Inspired by and building upon research in SOA and capturing the trends of Web
2.0 and mashups, this chapter introduces the concept of universal integration, that is,
the creation of composite web applications that integrate data, application, and user
interface (UI) components, effectively enabling the imperative development of ad-
vanced search computing applications. Our aim is to do what service composition has
done for integrating services, but to do so at all layers, not just at the application layer,
and remove some of the limitations that constrained a wider adoption of work-
flow/service composition technologies. Universal integration can be done (and is
being done) today by joining the capabilities of multiple programming languages and
techniques, but it requires significant efforts and professional programmers. In this
chapter we provide abstractions, models and tools so that the development and dep-
loyment of universal compositions is greatly simplified, up to the extent that even
non-professional programmers can do it in their web browser.

Scenario. As a reference scenario throughout this chapter, we reuse the conference
search scenario described in [18], based on the search query “find all database confe-
rences in the next six months in locations where the average temperature is 28°C
degrees and for which a cheap travel solution including a luxury accommodation
exists”. Answering this request requires (i) finding interesting conferences; (ii) under-
standing whether the conference location is served by low-cost flights; (iii) finding
luxury hotels close to the conference location with available rooms; and (iv) checking
the expected average temperature of the location. Instead of automatically deriving a
query plan to answer the request, in this chapter we focus on how the request can be
answered through a composite application for the Web that interactively involves the
user into the search process.

The screenshot in Figure 1 shows how such a Conference Trip Planner (CTP) ap-
plication could look like. The application is composed of a variety of different compo-
nents: In the upper left corner we have a Conferences Search component that allows
the user of the application to specify a query string and to search for conferences that
satisfy the query; retrieved results are displayed below the search form. This is a so-
called UI component, as – besides supporting the conference search function – it also
comes with its own UI, which is reused as-is by the composite application. Similarly,
in the lower left corner, we have a BBC Weather UI component that shows the average
weather conditions for a selected city, and in the upper right corner we have an Expe-
dia Hotel UI component that provides a list of hotels given the name of a city. Finally,
in the lower right corner, we have an RSS Reader UI component that displays a list of
possible flight connections from Milano to the destination city.

The four UI components are synchronized via the Conferences Search component,
which represents the entry point for the evaluation of the overall “search query”, i.e.,
the content displayed by the UI components. Specifically, by selecting an event of
interest from the retrieved conferences, the user synchronizes the content of the other
UI components in the page, resulting in a re-computation of the weather, hotel and
flight components. By clicking on the proposed hotels or flights, the user is directly
forwarded to the respective booking pages, where he/she can conclude the booking.

74 F. Daniel, S. Soi, and F. Casati

Fig. 1. Reference scenario: the conference trip planner application. Selecting a conference from
the list aligns the content shown by the components in the page.

We assume that the Conferences Search component is implemented via a simple,
generic search component in conjunction with an external conference search service;
in our example, we use a Yahoo! Pipe3 to search for conferences and filter them ac-
cording to the user’s query. Similarly, we use a standard RSS Reader component to
visualize flights that are retrieved via the kayak.com search engine. For the BBC
Weather and the Expedia Hotel components, instead, we assume that they are both
provided as readily usable UI components by the respective companies.

The application in Figure 1 represents only one possible application able to an-
swer the initial query. In fact, other combinations of components and services could
be adopted, e.g., using lufthansa.com instead of kayak.com or switching the position
of the weather and the hotel components, but in this chapter we are not interested in
identifying the best combination of components (i.e., the best “query plan” using the
terminology of [18]). The challenge we address is how to enable the average web
user to compose an application like the one in Figure 1, relying on his/her own
judgment of how components are best glued together.

Approach and Structure of the Chapter. In this chapter we focus on mashups and
universal integration for the Web. We first offer an overview of the state of the art in
traditional composition technologies (Section 2) and then specifically focus on the

3 http://pipes.yahoo.com/pipes

 From Mashup Technologies to Universal Integration 75

recent trend of composition on the Web, i.e., mashups (Section 3). Next, we introduce
the idea and principles of universal integration (Section 4). As an advanced case study
and concrete implementation of the universal integration idea, in Section 5 we focus
on mashArt. Specifically, we describe the conceptual and architectural aspects of
mashArt, which constitute its innovative contributions in terms of component and
composition models as well as development and runtime infrastructure, and show
mashArt at work. Section 6 concludes the chapter.

2 Traditional Composition and Development Approaches

Several areas of research are related to (lightweight) composition and mashups on the
Web. In this section, we briefly survey the areas of service composition, UI composi-
tion, computer-aided web engineering tools, web portals and portlets, all areas we
feel particularly related to universal composition for the Web. In the next section we
then put some more focus on mashups.

2.1 Service Composition Approaches

A representative of service orchestration approaches is BPEL [6], a standard composi-
tion language by OASIS. BPEL is based on WSDL-SOAP web services, and BPEL
processes are themselves exposed as web services. Control flows are expressed by
means of structured activities and may include rather complex exception and transac-
tion support. Data is passed among services via variables (Java style). So far, BPEL is
the most widely accepted service composition language. Although BPEL has produced
promising results that are certainly useful, it is primarily targeted at professional pro-
grammers like business process developers. Its complexity (reference [6] counts 264
pages) makes it hardly applicable for web mashups.

Many variations of BPEL have been developed, e.g., aiming at invocation of REST
services [7] and at exposing BPEL processes as REST services [8]. In [9] the authors
describe Bite, a BPEL-like lightweight composition language specifically developed for
RESTful environments. IBM’s Sharable Code platform [10] follows a different strategy
for the composition of REST or SOAP services: a domain-specific programming lan-
guage from which Ruby on Rails application code is generated, also comprising user
interfaces for the Web. In [11], the authors combine techniques from declarative query
languages and services composition to support multi-domain queries over multiple
(search) services, while in [21] the authors follow a document-centric approach to service
composition and propose the use of AXML for service mashups. All these approaches
focus on the application and data layer; UIs can then be programmed on top of the ser-
vice integration logic. mashArt features instead universal integration as a paradigm for
the simple and seamless composition of UI, data, and application components. We argue
that universal integration will provide benefits that are similar to those that SOA and
process centric integration provided for simplifying the development of enterprise
processes.

76 F. Daniel, S. Soi, and F. Casati

2.2 UI Composition Approaches

In [12] we discussed the problem of integration at the presentation layer and con-
cluded that there are no real UI composition approaches readily available: Desktop UI
component technologies such as .NET CAB [13] or Eclipse RCP [14] are highly
technology-dependent and not ready for the Web. Browser plug-ins such as Java ap-
plets, Microsoft Silverlight, or Macromedia Flash can easily be embedded into HTML
pages; communications among different technologies remain however cumbersome
(e.g., via custom JavaScript). Java portlets [15] or WSRP [2] represent a mature and
Web-friendly solution for the development of portal applications; portlets are howev-
er typically executed in an isolated fashion and communication or synchronization
with other portlets or web services remains hard. Portals do not provide support for
service orchestration logic.

2.3 Computer-Aided Web Engineering Tools

In order to aid the development of complex web applications, the web engineering
community has so far typically focused on model-driven design approaches. Among
the most notable and advanced model-driven web engineering tools we find, for in-
stance, WebRatio [16] and VisualWade [17]. The former is based on a web-specific
visual modeling language (WebML), the latter on an object-oriented modeling nota-
tion (OO-H). Similar, but less advanced, modeling tools are also available for web
modeling languages/methods like Hera, OOHDM, and UWE. All these tools provide
expert web programmers with modeling abstractions and automated code generation
capabilities, which are however far beyond the capabilities of our target audience, i.e.,
advanced web users and not web programmers.

2.4 Portals and Portlets

Still in the context of web applications, portals and portlets represent a different approach
to the UI integration problem on the Web. Their approach explicitly distinguishes be-
tween UI components (the portlets) and composite applications (the portals) and it is
probably the most advanced approach to UI composition as of today (We use the term
“portlets” taken from the JSR-168 portlet specification [15], but our considerations also
hold for ASP.NET Web Parts). Portlets are full-fledged, pluggable Web application
components that generate document markup fragments (e.g., (X)HTML) and facilitate
content aggregation in a portal server. Portlets are conceptually very similar to servlets.
The main difference between them consists in the fact that while a servlet generates a
complete web page, portlets generates just a piece of page (commonly called fragment)
that is designed to be included into a portal page. Hence, while a servlet can be reached
through a specific URL, a portlet can only be reached through the URL of the whole
portal page. A portlet has no direct communication with the web browser, but this com-
munications are managed by the portal and the portlet container that allow the request-
response flows and the communication between portlets. A portal server typically allows
users to customize composite pages (e.g., to rearrange or show/hide portlets) and provide
single sign-on and role-based personalization.

 From Mashup Technologies to Universal Integration 77

Today, there are several standards for portlets, JSR-168 being the original specifi-
cation. JSR-286 introduced inter-portlet communication via a portlet container that
manages a publish-subscribe infrastructure that can be used by the portlets. Finally,
WSRP [2] also added support for accessing remote portlets as web services over the
Web. The portlet model is powerful as for what regards the presentation integration
part, yet portals do not naturally support interactions with generic web services or the
specification of orchestration logics.

3 Web Mashups

Web mashups somehow address the above shortcomings. Web mashups are web
applications that are developed by combining content, presentation, and application
functionality from disparate Web sources [1]. The term mashup typically implies easy
and fast integration based on open APIs and data sources, yielding applications that
add value to the individual components of the application and thereby often use com-
ponents in ways that differ from the actual reason that led to the original production of
the raw sources.

Mashups are strongly related with the Web. The Web is the natural environment
for publishing content and services today, and therefore it is the natural environment
where to access and reuse them. Content and services are published in a variety of
different forms and by using a multiplicity of different technologies; we can categor-
ize the means to source content and services from the Web into three basic groups:

− Data services like RSS (Really Simple Syndication) or Atom feeds, JSON (Java-
Script Object Notation) or XML resources, or simple text files. A typical example is
newspapers and magazines that publish their news headers via RSS or Atom feeds
that allow users to easily jump to the respective articles. These simple technologies
are used to publish data on the Web that are meant for consumption by machines,
not humans. In fact, they focus on the efficient distribution of content, rather than
on the effective presentation of such contents to human users. Sourcing data via one
of these technologies is typically very simple: it mostly requires accessing an online
resource and processing the response. Data services to not have complex interaction
patterns to be followed.

− Web services or public APIs accessible over the Web, such as SOAP (Simple Ob-
ject Access Protocol) or RESTful (REpresentational State Transfer) web services
or, to a lower degree, Java classes (accessed via the IIOP protocol) or similar. These
technologies are used to publish application logic on the Web. Their goal is there-
fore not just to provide access to contents or data, but also to computing logic (e.g.,
the processing of an order for a book shop). Typically, the interaction with web ser-
vices or APIs is ruled by so-called interaction protocols, which state which opera-
tions can be invoked, in which order, by which partners, etc. Not following the rules
stated by the protocol may impede the correct functioning of the service or API.

− User interface elements, such as HTML clips or JavaScript APIs with own user
interface (e.g., Google Maps), but also banners or advertisements. Content may also
be represented by already formatted and graphically rendered data (typically in
HTML). In many cases, accessing such kind of content means extracting them from
a web page, as there is no equivalent data service available that can be used to

78 F. Daniel, S. Soi, and F. Casati

source the same data. Typically, this occurs without the provider of the contents ac-
tually knowing that there is someone extracting data from its web pages. In other
cases, e.g., Google Maps, the provider of the contents explicitly publishes its data at
the user interface level only.

The very innovative aspect of web mashups is that they integrate sources also at the
UI layer, not only at the data and application logic layers. Integration at the data and
application logic layers has been extensible studied in the past, while integration at all
three layers is still a goal that put architects and programmers in front of important
conceptual and technical problems.

Mashup development is still an ad-hoc and time-consuming process, requiring ad-
vanced programming skills (e.g., wrapping web services, extracting contents from web
sites, interpreting third-party JavaScript code, etc). There are a variety of mashup tools
available online, but, as we will see, only few of them adequately address the problem
of integration at all its layers. In this section, we give an overview of the state of the art
in the mashup world, spanning from manual development to semi-assisted and fully
assisted development approaches.

3.1 Manual Development

Developing applications that aggregate data, application logic and UIs coming from
diverse sources requires deep knowledge about technologies like: (X)HTML, dynam-
ic HTML, AJAX (Asynchronous JavaScript and XML), RSS, Atom; XML specifica-
tions like DTD, XSD, XSLT; protocols like SOAP or HTTP for SOAP and RESTful
web services; programming languages like JavaScript, PHP, Ruby, Java, C#, and so
on; relational or object-oriented databases, etc. In addition, it might be necessary to
master the business protocols of employed services and to have knowledge about how
to compose services into service orchestrations. This long and not exhaustive list of
technologies highlights how mashing up even a simple application, such as the one in
our reference scenario, is a hard and time-consuming task that can only be completed
by skilled programmers.

The development of our Conference Trip Planner requires, for instance, the follow-
ing skills: First of all, the developer needs to understand well the dynamics behind
and interaction logic of the Yahoo! Pipes and Kayak services and the BBC Weather,
Expedia Hotels and RSS Reader UI components of the application. In the specific
case, Expedia Hotels and BBC Weather expose JavaScript APIs that allow the devel-
oper to use and interact with their services; Pipes and Kayak, instead, return their
output as RSS feeds, which need to be appropriately parsed to extract all the neces-
sary information. While the UI components already come with their own UIs, for the
conference and flight search results an ad-hoc user interface has to be developed in
HTML. Next, the developer needs to implement the necessary synchronization logic
among the Conferences Search component and the others, such that on the selection
of a conference the other components will coherently update their content. In addition
to invoking some JavaScript functions of the UI components, this also implies inte-
racting with the remote search services upon the selection of a conference from the
list. Finally, the developer needs to create a suitable layout for the composite applica-
tion, which is able to accommodate the developed components and to render the final
mashup application.

 From Mashup Technologies to Universal Integration 79

The described situation is already an ideal one: all components provide some kind
of componentization. If, instead, we imagine that the developer also needs to develop
the components to be mashed up, things get even worse. For instance, it could be
necessary to implement a wrapper for the BBC Weather component that is able to
automatically request weather forecasts for the correct city, to extract the HTML code
of the average weather conditions, and to expose a JavaScript interface that allows the
interaction with other components in the application. Similar operation would be
necessary also for the other components of the application.

3.2 Semi-assisted Development

To speed up and simplify the development especially of components to be mashed
up, some useful web tools and frameworks have been recently introduced. Typically,
they address the problem of data extraction from web sites and the provisioning of
such data in form of data services or re-usable user interface elements. In the follow-
ing, we analyze two representative tools, i.e., Dapper4 and Openkapow5, which are
very user-friendly.

Dapper is a free online instrument for the generation of data wrappers that extract
data from well-structured web pages. Dapper is based on a point and click technique
able to assist the user in the selection of the contents to be extracted and to infer suita-
ble extraction rules (e.g., regular expressions). Specifically, data extraction leverages
the structure of the HTML formatting to understand which elements to extract (e.g.,
the first cells of all the rows in a table). Once properly identified, extracted data fields
can be named and structured and then published, for instance, as RSS or XML data
services. Published services can easily be accessed via a unique URL and are
processed each time the respective URL is accessed.

Openkapow is a similar open service platform based on the concept of extraction
robot, that is, user-created wrappers. Users of Openkapow can build their own robots,
expose their results via web services, and run them from openkapow.com for free.
Robots are able to access web sites and support the extraction and reuse of data, func-
tionality and even pieces of user interfaces. Robots are built through a visual devel-
opment environment called RoboMaker. RoboMaker allows the user navigate inside
the target web site and to define a series of simple steps, each one representing an
event in the page, until the target data is reached. The extraction results can be ex-
posed in two main ways: as a RESTful service or as an RSS feed, depending on the
extracted content and on the expected use of it. After their publication on the Openka-
pow servers, robots are accessible through a public URL, which identifies the specific
robot to run. So exposed services may also need some input values (e.g., user-id and
password) that can be used to parameterize the services. Inputs can easily be passed
by appending them to the service URL as name-value pairs, following the standard
URL model.

To better understand how these tools can be used in the mashup context, let’s refer
again to the Conference Trip Planner example. Let us suppose that the Kayak flight
search site does not have an RSS output for its search results. In this case, a data ex-
traction service can be used to automatically extract the flight combinations from the

4 http://www.dapper.net/open/
5 http://openkapow.com

80 F. Daniel, S. Soi, and F. Casati

result page. With Dapper, for instance, a developer needs to load one or more exam-
ple pages into the Dapper environment. The more example pages are loaded, the bet-
ter the inferred rules. Then, the developer needs to identify the individual data items
he/she wants to extract from the page by clicking on the respective HTML elements
(e.g., airline, departure time, arrival time, price, intermediate stops, link to booking),
to label them and to assemble the final output (e.g., an RSS feed). There is no need to
write any own line of code, in order to publish the extraction results on the Web.

While this kind of tools undoubtedly speeds up the development of data extraction
from existing web sites, the development effort regarding the composition of compo-
nents into a new application remain in unchanged. Therefore, the developer still has to
be familiar with the services and APIs to be integrated, to display sourced data in a
suitable way, and to manage the communication and synchronization logic between
the components. Even assuming that data extraction tools can be successfully used by
non-programmers, the final mashup development therefore still remains the hard task
that can be performed only by skilled programmers.

3.3 Fully-Assisted Development

The previous analyses and consideration show that mashup development is typically a
knowledge-intensive work, involving a variety of technologies and components. In
addition to simplifying the creation of data extraction instruments for web pages,
which address the problem of developing components for mashups, it is important to
also aid the actual composition of components into applications, which is as hard and
time-consuming as developing components, if not properly supported. Mashup tools
or mashup platforms address exactly this problem, each of them focusing on different
composition aspects and following different mashup approaches. In the following, we
analyze four of these tools, which we think are most representative for this kind of
assisted mashup development: Yahoo! Pipes, JackBe Presto6, Microsoft Popfly7, and
Intel Mash Maker8. There are also other tools like Google App Engine9 or IBM’s
Lotus Mashups10 and so on, but their discussion exceeds the scope of this chapter.

Yahoo! Pipes provides a simple and intuitive visual editor that allows one to de-
sign data-centric compositions. It takes data as input and provides data as output; the
most important supported formats are RSS/Atom, XML, and JSON. A pipe is a data
processing pipeline in which input data (coming from diverse data sources) are
processed, manipulated and used as input for other processing steps, until the target
transformation is completed. This pipeline-style process is implemented through an
arbitrary number of intermediate operators, which manipulate data items inside the
data feeds or provide features like loops, regular expressions or more advanced fea-
tures like automatic location extraction or connection to external services. The set of
operators are predefined and fixed; new functionality can be included in form of web
services. Also, stored pipes can be reused as sources of another pipe.

6 http://www.jackbe.com/
7 http://popflyteam.spaces.live.com – MS Popfly has been discontinued since

August 24, 2009.
8 http://mashmaker.intel.com/web
9 http://code.google.com/intl/it-IT/appengine/
10 http://www-01.ibm.com/software/lotus/products/mashups/

 From Mashup Technologies to Universal Integration 81

Yahoo! Pipes’ development environment is characterized by a simple and intuitive
development paradigm that is however targeted at advanced web users or program-
mers. In fact, the level of abstraction of its operations (e.g., the regular expression
component) and the characteristic data flow logic is only hardly understandable to
non-programmers. Pipe’s output is not meant for human consumption (RSS, Atom,
JSon, etc.) but rather for integration in other applications. This limits both the variety
of input sources that can be used and the accessibility of its output. In fact, the ab-
sence of any support for UIs prevents the direct use of Pipe’s output by common web
users. However, Pipes is a very popular data-mashup development tool, very likely
due to its efficient and intuitive component placing and connection mechanism.

The development tool does not need any installation or plug-ins; it runs in any
AJAX-enabled web browser. The development environment comes with a very effi-
cient, integrated debugging tool that helps the developer during the design phase.
Pipes are stored online and accessible via an own URL. When invoking a pipe, an
execution process is started on the server side, relieving the client from the execution
overhead. This characteristic could represent a problem under a scalability perspec-
tive: if a large number of simultaneous accesses to a pipe are made, performance and
stability might suffer.

Considering our example application, with Yahoo Pipes it would be unfeasible to
realize the application as described in the reference scenario, as there is no support for
the user interface of the application. However, what we can do, for instance, is using
Pipes to simplify the collection, aggregation and filtering of conferences sourced from
different web sources, such as conference-service.com and allconferences.com. On
top of this pipe, it is then necessary to provide a suitable user interface.

JackBe Presto is a robust and complete mashup platform which provides enter-
prise-level solutions. Presto gives the possibility to easily produce (design, test and
deploy) mashups merging data coming from disparate sources. In particular it can be
also connected to data sources very common in the business world (like Excel spread-
sheets, Oracle data software, etc.), that most of mashup competitor’s solutions cannot
access. Simple mashup composition can be done, also by non-IT users, through the
Presto Wires tool. More advanced composition can be obtained only by professional
developers implementing them in EMML language with the support of the Presto
Mashup Studio plug-in for Eclipse. This language is the main actor of the OMA
(Open Mashup Alliance) project, which aims to define an open language allowing
enterprise mashup interoperability and portability.

The development environment is constituted by several independent tools.
Wires is a visual editor based on a simple and intuitive data pipeline composition
approach. It allows one to merge data coming from disparate internal and external
sources producing a final output that can be graphically displayed as a mashlet.
Mashlets can be plugged into a dash-board like user interface or a portal, or they
can be embedded into a regular web page. Mashlet development is assisted by the
Presto Mashlet tool, while the Mashup Studio is an Eclipse plug-in providing Java
programmers with complete control on the mashup development process. Connec-
tors allow one to hook up Presto to diverse software, such as Microsoft Excel, web
portals, any Oracle technology, and similar. Presto services can be accessed
through APIs, available for main programming languages (Java, JavaScript, C#,
Python, etc.).

82 F. Daniel, S. Soi, and F. Casati

The runtime server provides secure mechanisms to virtualize (abstract the user from
actual implementation details) and normalize (put the service output into standard
formats: JSON or XML) any kind of service or data (SOAP, REST, RSS, DB, Excel)
and expose them in a secure and governed way. Presto is not a hosted service, like
Yahoo! Pipes; it needs to be installed and configured in each company individually.

Let us briefly analyze the possibility to create our Conference Trip Planner applica-
tion with Presto. Just like Yahoo! Pipes, Wires gives the opportunity to easily access,
merge and filter the RSS channels of the conferences search services and the Kayak
flights search service. Retrieved items can be displayed by means of two mashlets.
The development of the other UI components in form of mashlets has to be done
manually in Mashup Studio using a standard programming language like Java. At this
point the produced mashlets can be put together inside one web page. However, this
solution does not provide for the synchronization of the basic components in the ap-
plication (the mashlets), so that the selection of a conference updates the data shown
in the other components. There is not inter-mashlet communication.

Microsoft Popfly gained a great consensus in the mashup community and achieved
good levels of popularity and usage. Although the Popfly project has been discontin-
ued, we analyze this mashup tool because we consider it an interesting example for UI
composition with peculiarities that cannot be found in other tools.

Popfly provides a visual development environment for the realization of mashups
based on the concept of components, or block as they are called in Popfly. A composi-
tion is created by dragging and dropping blocks of interest onto a design canvas and
by graphically connecting them to create the desired application logic. A block can
take the role of connector to external services or it can represent some internal func-
tionality (implemented through a JavaScript function). Each block provides input and
output ports that enable its connection to other blocks. Blocks can also be used to
provide a user interface that can display the result of some processing. Placing mul-
tiple visualization blocks into a same page allows one to define the overall layout of
the page. The internal layout of blocks can be customized by inserting ad-hoc HTML,
CSS or JavaScript code. Popfly has a wide collection of available blocks, offering
functionalities like RSS readers, service connectors, map components based on Vir-
tual Earth, etc. New blocks and compositions can be defined (in JavaScript), saved,
shared and managed in a dedicated section of the platform.

At runtime, the communication flow is event-driven, that is, the activation of a cer-
tain component depends on the raising of some event by another component. There is
no support for exception and transaction handling, but Popfly provides a section dedi-
cated to the test and preview of the composition. Ready compositions are stored on
the Popfly server, but the execution is done on the client – as many of the built-in
blocks are based on the Silverlight platform. The client-side execution of mashups
alleviates the server from heavy loads and limits scalability and performance.

Considering the Conference Trip Planner application, Popfly is the first tool that
can be used to fully implement the application. We assume that skilled programmers
already developed and published all blocks needed for the composition, especially the
UI components Conferences Search, Expedia Hotels and BBC Weather, while the
RSS reader necessary to display the output of the conference and flight search servic-
es already exists. At this point, the developer of the composition can drag and drop
these components onto the modeling canvas and connect the blocks, also providing

 From Mashup Technologies to Universal Integration 83

for the necessary mapping of the data parameters from outputs to inputs. In particular,
the Conferences Search block must be connected to all the other blocks, in order to
provide for the synchronization of the whole composition. Finally, the graphical ap-
pearance of the application’s layout can be set up by including a custom CSS style
sheet into the page. What is missing in Popfly is the possibility to define more com-
plex, process-like service compositions, as could for example be needed to process
the conference search results directly in Popfly.

Intel Mash Maker provides a completely different mashup approach: an environ-
ment for the integration of data from annotated source web pages based on a powerful,
dedicated browser plug-in for the Firefox web browser. Rather than taking input from
structured data sources such as RSS/Atom feeds or web services, Mash Maker allows
users to reuse entire web pages and, if suitably annotated, to extract data from the pag-
es. That is, the “components” that can be used in Mash Maker are standard web pages.
If a page has been annotated in the past, it is possible to extract the annotated data from
the page and share it with other components in the browser. If the page has not been
annotated, it is possible reuse the page as is without however supporting any inter-page
communication.

In order to annotate a page, Mash Maker allows developers and users to annotate
the structure of web pages while browsing and to use such annotations to scrap con-
tents from annotated pages. Advanced users may leverage the integrated Structure
Editor to input XPath expressions with the help from FireBug’s DOM Inspector
(another plug-in for the Firefox web browser). Annotations are linked to target pages
and stored on the Mash Maker server in order to share them with other users.

Composing mashups with Mash Maker occurs via a copy/paste paradigm, based on
two modes of merging contents: whole page merging, where the content of one page is
inserted as a header into another page; and item-wise merging, where contents from two
pages are combined at row level, based on additional user annotations. The two tech-
niques can be used to merge also more than two pages. Data exchange among compo-
nents is achieved by means of a blackboard-like approach, where data of components
integrated into an application are immediately available to all other components. Not
only the development, but also the execution of mashups is entirely performed with the
help from the browser plug-in at the client side; on the server side there are only the
annotations for data extraction and the stored mashup definitions.

To build the Conference Trip Planner with MashMaker, first we need to devise the
necessary components in form of annotated web pages. For instance, instead of using
the RSS interface toward the conference search services or toward the flight search
service, we need to navigate the respective web sites and annotate the data items that
are necessary to answer our reference query. Similarly, we need to annotate the UI
components of our application. Next, all these individual pieces of HTML markup
and annotations must be joined following an item-wise merging strategy. It is possible
to implement the needed synchronization mechanisms to coordinate the components
of the application with each other by means of sophisticated merge operations. The
whole development procedure is a non-trivial and time-consuming, it requires some
non-intuitive skills to annotate, decompose, merge and reconstruct pages and web
applications of arbitrary complexity. Without advanced programming skills it is hard
to implement the synchronization of components upon selection of a conference.

84 F. Daniel, S. Soi, and F. Casati

4 Universal Composition: Guiding Principles

As highlighted above, although existing mashup approaches have produced promising
results, techniques that cater for simple and universal integration of web components
at all the three layers of the application stack are still missing. We think such tech-
niques are necessary to transition Web 2.0 programming from elite types of compu-
ting environments to environments where users leverage simple abstractions to create
composite web applications over potentially rich web components developed and
maintained by professional programmers.

We aim at universal integration, and this has fundamental differences with respect
to traditional composition. In particular, the fact that we aim at also integrating UI
implies that:

(i) Synchronization, and not (only) orchestration a-la BPEL, should be adopted as
interaction paradigm;

(ii) Components must be able to react to both human user input and programmatic
interaction;

(iii) We must be able to design the user interface of the composite application, not
just the behavior and interaction among the components.

This shows the need for a model based on state, events and synchronization more than
on method calls and orchestration. We recognize in particular that events, operations,
a notion of state and configuration properties are all we need to model a universal
component.

On the data side, we realize that data integration on the Web may also require dif-
ferent models: for example RSS feeds are naturally managed via a pipe-oriented data
flow/streaming model (a-la Yahoo Pipes) rather than a variable-based approach as
done in conventional service composition.

Another dimension of universality lies in the interaction protocols. As there might
be a variety of components and component implementations, we must be able to deal
with multiple communication protocols at the same time. For instance, the most used
protocols on the Web are REST/HTTP, SOAP, RSS, Atom, and JSON.

These requirements are often at odds with the other key design goal we have: sim-
plicity. We want to enable advanced web users to create applications (an old dream of
service composition languages which is still somewhat a far reaching objective). This
means that the universal composition paradigm must be fundamentally simpler than
programming languages and current composition languages. As an example, we target
the complexity of creating web pages with a web page editor, or the complexity of
building a pipe with Yahoo Pipes (something that can be learned in a matter of hours
rather than weeks).

5 The mashArt Platform

To achieve simplicity in mashArt, we make three design decisions: First, mashArt
aims at hiding the complexity of the specific protocol or data model supported by
each component. That is, the goal is that from the perspective of the composer all
these specificities are hidden – with the exceptions of the aspects that have a bearing

 From Mashup Technologies to Universal Integration 85

on the composition (e.g., if a component is a feed, then we are aware that it operates,
conceptually, by pushing content periodically or on the occurrence of certain events).

As a second decision, we keep the composition model lightweight: for example,
there are no complex exception or transaction mechanisms, no BPEL-style structured
activities or complex dead-path elimination semantics. This still allows a model that
makes it simple to define fairly sophisticated applications. Complex requirements can
still be implemented but this needs to be done in an “ad hoc” manner (e.g., through
proper combinations of event listeners and component logic) but there are no specia-
lized constructs for this. Such constructs may be added over time if we realize that the
majority of applications need them.

The third decision is to focus on simplicity only from the perspective of the user of
the components, that is, the designer of the composite applications. In complex appli-
cations, complexity must reside somewhere, and we believe that as much as possible
it needs to be inside the components. Components usually provide core functionalities
and are reused over and over (that’s one of the main goals of components).Thus, it
makes sense to have professional programmers develop and maintain components.
We believe this is necessary for the mashup paradigm to really take off. For example,
issues such as interaction protocols (e.g., SOAP vs. REST or others) or initialization
of interactions with components (e.g., message exchanges for client authentication)
must be embedded in the components.

In the following, we describe in more detail the component model and the compo-
sition model enabling universal integration and the implementation of the mashArt
platform with its design-time and runtime support.

5.1 The mashArt Component Model

The first step toward the universal composition model is the definition of a compo-
nent model. MashArt components wrap UI, application, and data services and expose
their features/functionalities according to the mashArt component model. The model
described here extends our initial UI-only component model presented in 3] to cater
for universal components. The model is based on four abstractions: state, events,
operations, and properties:

− The state is represented as a set of name-value pairs. What the state exactly con-
tains and its level of abstraction is decided by the component developer, but in
general it should be such that its change represents something relevant and sig-
nificant for the other components to know. For example, in our Conference
Search component we can change the search string of the query and re-compute
the list of pertaining conferences; this component-internal activity is irrelevant
for the other components who are not interested in such low level of detail. In-
stead, clicking on (selecting) a specific conference expresses an information that
may lead other components to show related information or application services
to perform actions (e.g., query for flights). This is a state change we want to cap-
ture. In our case study, the state for the Conference Search component is the set
of conferences being displayed plus the selected conference.

Modeling state for application components is something debatable as services
are normally used in a stateless fashion. This is also why WSDL does not have a

86 F. Daniel, S. Soi, and F. Casati

notion of state. However, while implementations can be stateless, from a model-
ing perspective it can be useful to model the state, and we believe that its omis-
sion from WSDL and WS-* standards was a mistake (with many partial attempts
to correct it by introducing state machines that can be attached to service mod-
els). Although not discussed here, the state is a natural bridge between applica-
tion services and data-oriented services (services that essentially manipulate a
data object).

− Events communicate state changes and other information to the composition en-
vironment, also as name-value pairs. External notifications by SOAP services,
callbacks from RESTful services, and events from UI components can be mapped
to events. When events represent state changes, initiated either by the user by
clicking on the component’s UI or by programmatic requests (through operations,
discussed below), the event data includes the new state. Other components sub-
scribe to these events so that they can change their state appropriately (i.e., they
synchronize). For instance, when selecting a conference in the Conference Search
component, an event is generated that carries details (e.g., name, city, start/end
date) about the performed selection.

− Operations are the dual of events. They are the methods invoked as a result of
events, and often represent state change requests. For example, the Conference-
Search component has a state change operation ShowConferences that can be
used to display retrieved conferences. In this case, the operation parameters in-
clude the necessary information about the state to which the component must
evolve (the list of conferences). In general, operations consume arbitrary parame-
ters, which, as for events, are expressed as name-value pairs to keep the model
simple. Request-response operations also return a set of name-value pairs – the
same format as the call – and allow the mapping of request-response operations
of SOAP services, Get and Post requests of RESTful services, and Get requests of
feeds. One-way operations allow the mapping of one-way operations of SOAP
services, Put and Delete requests of RESTful services, and operations of UI com-
ponents. The linkage between events and operations, as we will see, is done in the
composition model. We found the combination of (application-specific) states,
events, and operations to be a very convenient and easy to understand program-
ming paradigm for modeling all situations that require synchronization among UI,
application, or data components.

− Finally, configuration properties include arbitrary component setup information.
For example, UI components may include layout parameters, while service com-
ponents may need configuration parameters, such as the username and password
for login. The semantics of these properties is entirely component-specific: no
“standard” is prescribed by the component model.

In addition to the characteristics described above, components have aspects that are in-
ternal, meaning that they are not of concern to the composition designer, but only to the
programmer who creates the component. In particular, a component might need to handle
the invocation of a service, both in terms of mapping between the (possibly complex)
data structure that the service supports and the flat data structure of mashArt (name-value
pairs), and also in terms of invocation protocol (e.g., SOAP over HTTP). There are two
options for this: The first is to develop ad hoc logic in form of a wrapper. The wrapper

 From Mashup Technologies to Universal Integration 87

takes the mashArt component invocation parameters, and with arbitrary logic and using
arbitrary libraries, builds the message and invokes the service as appropriate. The second
is to use the built-in mashArt bindings. In this case, the component description includes
component bindings such as component/http, component/SOAP, component/RSS, or
component/Atom. Given a component binding, the runtime environment is able to me-
diate protocols and formats by means of default mapping semantics. In summary, the
mashArt model accommodates component models such as UI components, SOAP and
RESTful services, RSS and Atom feeds.

In Figure 2(a) we introduce our graphical modeling notation for mashArt compo-
nents that captures the previously discussed characteristics of components, i.e., state,
events, operations, and UI. Stateless components are represented by circles, stateful
components by rectangular boxes. Components with UI are explicitly labeled as such.
We use arrows to model data flows, which in turn allow us to express events and
operations: arrows going out from a component are events; arrows coming in to a
component are operations. There might be multiple events and operations associated
with one component. Depending on the particular type of operation or event of a
stateless service, there might be only one incoming data flow (for one-way opera-
tions), an incoming and an outgoing data flow (for request-response operations), or
only an outgoing data flow (for events). Operations and events are bound to their
component by means of a simple dot-notation: component.(operation|event).

The actual model of a specific component is specified by means of an abstract
component descriptor, formulated in the mashArt Description Language (MDL) a
simple, XML-based interface description language. MDL is for mashArt components
what WSDL is for web services.

5.2 Universal Composition Model

Since we target universal composition with both stateful and stateless components, as
well as UI composition, which requires synchronization, and service composition,
which is more orchestrational in nature, the resulting model combines features from
event-based composition with flow-based composition. As we will see, these can
naturally coexist without making the model overly complex.

In essence, composition is defined by linking events (or operation replies) that
one component emits with operation invocations of another component. In terms of
flow control, the model offers conditions on operations and split/join constructs,
defined by tagging operations as optional or mandatory. Data is transferred be-
tween components following a pipe/data flow approach, rather than the variables-
based approach typical of BPEL or of programming languages. The choice of the
data flow model is motivated by the fact that while variables work very well for
programs and are well understood by programmers, data flows appear to be easier
to understand for non-programmers as they can focus on the communication be-
tween a pair of components. This is also why frameworks such as Yahoo Pipes can
be used by non-programmers.

The universal composition model is defined in the Universal Composition Lan-
guage (UCL), which operates on MDL descriptors only. UCL is for universal
compositions what BPEL is for web service compositions (but again, simpler and
for universal compositions). A universal composition is characterized by:

88 F. Daniel, S. Soi, and F. Casati

− Component declarations: Here we declare the components used in the composi-
tion and provide references to the MDL descriptor of each component and set
possible constructor parameters.

− Listeners: Listeners are the core concept of the universal composition approach.
They associate events with operations, effectively implementing simple publish-
subscribe logics. Events produce parameters; operations consume them (static
parameter values may be specified in the composition). Inside a listener, inputs
and outputs can be arbitrarily connected (by referring to the respective IDs and
parameter names) resulting into the definition of data flows among components.
An optional condition may restrict the execution of operations; conditional
statements are XPath statements expressed over the operation’s input parame-
ters. Only if the condition holds, the operation is executed.

− Type definitions: As for mashArt components, the structures of complex parameter
values can be specified via dedicated data types.

We are now ready to compose our Conference Trip Planner. Composing an applica-
tion means connecting events and operations via data flows, and, if necessary, speci-
fying conditions constraining the execution of operations. The graphical model in
Figure 2(a) represents, for instance, the “implementation” of the reference scenario
described in the introduction. We can see the four UI components Conferences
Search, Expedia Hotels, RSS Reader and BBC Weather and the two stateless service
components ConferencePipe and Kayak. The composition has four listeners:

1. If a user enters a conference search string and starts the search (SearchConference
event), the ConferencePipe service is invoked by processing a Yahoo! pipe that
queries two other services: conference-service.com and allconferences.com. The
internals of the pipe are shown in Figure 3(b). The pipe joins the results coming
from the two services and applies the filter condition provided by the user; the re-
sult is passed back to the mashArt composition by invoking the ShowConferences
operation of the Conferences Search UI component.

Note that similar operators and feed processing logics as shown in Figure 3(b)
could easily be implemented also directly in mashArt, but we prefer reusing Yahoo!
Pipes to show an example of how mashup platforms can interoperate.

2. If a user selects a conference from the list of retrieved conferences (ConferenceSe-
lected event), three listeners reacting to the same event are activated. The first lis-
tener propagates the selected conference location and dates to the Expedia Hotel
service that retrieves a list of available hotels from the Expedia repository.

3. The second listener activated after the selection of a conference searches for
matching flights and visualizes them in the RSS Reader. The flights are retrieved
by invoking a kayak.com flight search service and delivering its results as RSS
feed. Such feed is provided as input to the RSS Reader via the ShowRSS operation.

4. Finally, the last listener activated upon selection of a conference aligns the data
shown in the BBC Weather component by forwarding the name of the city the
conference is located in through the SearchWeather operation. This causes the
component to visualize the average weather conditions for the selected city.

 From Mashup Technologies to Universal Integration 89

(a) The mashArt composition model for the example scenario plus the notation not used in the
example

(b) The internals of the conference search aggregation and filtering pipe

Fig. 2. Composition model for the Conference Trip Planner application

In the model, stateful components handle multiple invocations during their life-
time; stateless components represent single invocations. The ConferencePipe service
is invoked each time a user inputs a new search query, while the Conferences Search
component is instantiated only once and handles multiple events and operations.

Regarding the semantics of the three data flows leaving the Conferences Search
component upon a ConferenceSelected event, it is worth noting that we allow the asso-
ciation of conditions operations. A condition is a Boolean expression over the opera-
tion’s input (e.g., simple expressions over name-value pairs like in SQL where clauses)
that constrains the execution of the operation. The three data flows in Figure 2(a)
represent a parallel branch (conjunctive semantics); if conditions where associated
with either SearchHotel, ShowRSS or SearchWeather the flows would represent a
conditional branch (disjunctive semantics). A similar logic applies to operations with
multiple incoming flows that can be used to model join constructs. Inputs may be op-
tional if they are not required for the execution of the operation. If only mandatory
inputs are used, the semantics is conjunctive; otherwise, the semantics is disjunctive.

Data transformations can be defined via either (i) simple parameter mappings as de-
scribed above; (ii) inline scripting, e.g., for the computation of aggregated or combined
values; (iii) runtime XSLT transformations; or (iv) dedicated data transformation ser-
vices that take a data flow in input and transform it, producing a new output.

Conferences
Search

UI

BBC
Weather

UI

RSS
Reader

UI

Expedia
Hotels

UIConference
Selected

ConferencePipe.
getConferences

Kayak.
searchFlights

SearchHotels

ShowRSS

SearchWeatherUI component with
events and operations

ShowConferences

SearchConferences

Conference
Selected

Conference
Selected

Data flow

Stateless Request-Response
service invocation

Stateful
component

Notation not used in
the example

Stateless.Event

Stateless.OneWay

90 F. Daniel, S. Soi, and F. Casati

5.3 Implementing and Provisioning Universal Compositions

Development Environment. In line with the idea of the Web as integration platform,
the mashArt editor runs inside the client browser; no installation of software is re-
quired. The screenshot in Figure 3 shows how the universal composition of Figure 2(a)
can be modeled in the editor. The modeling formalism of the editor slightly differs
from the one introduced earlier, as in the editor we can also leverage interactive pro-
gram features to enhance user experience (e.g., users can interactively choose events
and operations from respective drop-down panels). But the expressive power of the
editor is the same as discussed above.

The list of available components on the left hand side of the screenshot shows the
components and services the user has access to in the online registry (e.g., the Confe-
rences Search or the BBC Weather component). The modeling canvas at the right
hand side hosts the composition logic represented by UI components (the boxes),
service components (the circles), and listeners (the connectors). A click on a listener
allows the user to map outputs to inputs and to specify optional input parameters.

In the lower part of the screenshot, tabs allow users to switch between different
views on the same composition: visual model vs. textual UCL, interactive layout vs.
textual HTML, and application preview. The layout of an application is based on
standard HTML templates; we provide some default layouts, own templates can easi-
ly by uploaded. The preview panel allows the user to run the composition and test its
correctness. Compositions can be stored on the mashArt server.

Fig. 3. The mashArt editor

Component browser Composition canvas

Events and
operations

UI componentService component Data flow connector

 From Mashup Technologies to Universal Integration 91

Fig. 4. Universal execution framework

The implementation of the editor is based on JavaScript and the Open-jACOB
Draw2D library (http://draw2d.org/draw2d/) for the graphical composition logic and
AJAX for the communication between client and server. The registry on the server
side, used to load components and services and to store compositions, is implemented
as a RESTful web service in Java. The platform runs on Apache Tomcat.

Execution Environment. Developing the mashArt execution environment requires
solving issues like (i) the seamless integration of stateful and stateless components
and of UI and service components, (ii) the conciliation of short-lived and long-lasting
business process logics in one homogeneous environment, (iii) the consistent distribu-
tion of actual execution tasks over client and server, and (iv) the transparent handling
of multiple communication protocols [19].

Figure 4 illustrates the functional architecture of our execution environment. The
environment is divided into a client- and a server-side part, which exchange events
via a synchronization channel. On the client side, the user interacts with the applica-
tion via its UI, i.e., its UI components, and thereby generates events that are inter-
cepted by the client-side event bus. The bus implements the listeners that are executed
on the client side and manage the data and SOAP-HTTP adapters. The data adapter
performs data transformations, the SOAP-HTTP adapters allow the environment to
communicate with external services. Stateful service instances might also use the
SOAP-HTTP adapters for communication purposes.

The server-side part is structured similarly, with the difference that the handling of
external notifications is done via dedicated notification handlers, and long-lasting
process logics that can be isolated from the client-side listeners and executed inde-
pendently can be delegated to a conventional process engine (e.g., a BPEL engine).

The whole framework, i.e., UI components, listeners, data adapters, SOAP-
HTTP adapters, and notification handlers are instantiated when parsing the UCL
composition at application startup. The internal configuration of how to handle the
individual components is achieved by parsing each component’s MDL descriptor

Web user
interface

UI component
instances

UI component
instances

UI component
instance

Process engine

Notification
handler

Long-running
processes

External
services

User

Data
adapter

SOAP
adapter

HTTP
adapter

UI component
instances

UI component
instances

Stateful service
instances

Client-side bus Server-side bus

Data
adapter

HTML
layout MDL UCL

Client Server

SOAP,
HTTP

SOAP,
HTTP

SOAP
adapter

HTTP
adapter

92 F. Daniel, S. Soi, and F. Casati

(e.g., to understand whether a component is a UI or a service component). The
composite layout of the application is instantiated from the HTML template filled
with the rendering of the application’s UI components.

6 Conclusion

In this chapter, we have considered a novel approach to UI and service composition
on the Web, i.e., universal composition. This composition approach is the foundation
of the mashArt project, which aims at enabling even non-professional programmers
(or Web users) to perform complex UI, application, and data integration tasks online
and in a hosted fashion (integration as a service). Accessibility and ease of use of the
composition instruments is facilitated by the simple composition logic and imple-
mented by the intuitive graphical editor and the hosted execution environment. The
platform comes with an online registry for components and compositions and will
provide tools for monitoring and analysis of hosted compositions.

Throughout the chapter, we have constantly kept an eye on the connection between
universal composition and search computing. The Conference Trip Planner tool im-
plemented using the mashArt instruments and languages shows that it is indeed possi-
ble to develop a component-based application that provides answers to the conference
search problem, provided that the necessary basic components are readily available.
The application’s integration logic is achieved by means of an imperative drag-and-
drop composition paradigm that allows the users of the mashArt platform to compose
applications according to their own knowledge about which components are needed
and about how to glue them together. There exist many alternative solutions to the
implementation of the same application; yet, unlike in [18], where an optimal query
plan is identified automatically, in mashArt it is up to the developer to decide which
solution fits best his/her individual needs.

In terms of output of the composition, it is interesting to note that while in the tra-
ditional search scenario the output is a set of result tuples, the output in mashArt is
rather represented by the whole application, i.e., the individual components and their
interconnection. Given the search query introduced in the introduction of this chapter,
its answer is therefore represented by the screenshot in Figure 1, which naturally
combines simple search outputs with sophisticated UI components.

References

[1] Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development and its
Differences with Traditional Integration. Internet Computing 12(5), 44–52 (2008)

[2] OASIS. Web Services for Remote Portlets (August 2003),
 http://www.oasis-open.org/committees/wsrp

[3] Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Framework for
Rapid Integration of Presentation Components. In: WWW 2007, pp. 923–932 (2007)

[4] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures
and Applications. Springer, Heidelberg (2003)

[5] Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Ser-
vices 1(1), 1–30 (2005)

 From Mashup Technologies to Universal Integration 93

[6] OASIS. Web Services Business Process Execution Language Version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[7] Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)

[8] van Lessen, T., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Management
Framework for WS-BPEL. In: ECoWS 2008, Dublin (2008)

[9] Curbera, F., Duftler, M.J., Khalaf, R., Lovell, D.: Bite: Workflow Composition for the
Web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 94–106. Springer, Heidelberg (2007)

[10] Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs and
Service Mashups. Internet Computing 12(5), 32–43 (2008)

[11] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain Queries
on the Web. In: VLDB 2008, Auckland, pp. 562–573 (2008)

[12] Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding
UI Integration - A Survey of Problems, Technologies, and Opportunities. IEEE Internet
Computing, 59–66 (May 2007)

[13] Microsoft Corporation. Smart Client - Composite UI Application Block (December
2005), http://msdn.microsoft.com/en-us/library/aa480450.aspx

[14] The Eclipse Foundation. Rich Client Platform (October 2008),
 http://wiki.eclipse.org/index.php/RCP

[15] Sun Microsystems. JSR-000168 Portlet Specification (October 2003),
 http://jcp.org/aboutJava/communityprocess/final/jsr168/

[16] Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Applica-
tions Design and Development with WebML and WebRatio 5.0. TOOLS (46), 392–411
(2008)

[17] Gómez, J., Bia, A., Parraga, A.: Tool Support for Model-Driven Development of Web
Applications. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 721–730. Springer, Heidelberg (2005)

[18] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain Queries
on the Web. In: VLDB 2008, Auckland, New Zealand, August 2008, pp. 562–573 (2008)

[19] Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. In: Laender, A.H.F., et al. (eds.) ER 2009. LNCS,
vol. 5829, pp. 428–443. Springer, Heidelberg (2009)

[20] Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. University of California, Irvine, Dissertation (2000),

 http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
[21] Abiteboul, S., Manolescu, I., Zoupanos, S.: OptimAX: efficient support for data-intensive

mash-ups. In: ICDE 2008, pp. 1564–1567 (2008)

Chapter 6:
Web Data Extraction for Service Creation

Robert Baumgartner1, Alessandro Campi2,
Georg Gottlob3, and Marcus Herzog1

1 Lixto Software GmbH, Favoritenstrasse 9-11, 1040 Wien, Austria
{robert.baumgartner,marcus.herzog}@lixto.com

2 Politecnico di Milano, DEI, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
campi@elet.polimi.it

3 Computing Laboratory, Oxford University, U.K.
gottlob@comlab.ox.ac.uk

Abstract. Web data extraction is an enabling technique in the search
computing scenario. In this chapter, we first review the state of the art
in wrapper technologies focusing on how wrapper generators can be used
to create unified services that integrate data from Web Applications and
Web services in various domains. Next, we describe the Lixto approach
and we present the Lixto Suite as one example of Web Process Integra-
tion. Finally, application areas and future challenges and the usage of
wrapper technologies in the search computing context is discussed.

1 Introduction

Although in today’s Web much data is available via APIs, light-weight and
heavy-weight Web service techniques, the larger amount of data is still only
available in semi-structured formats such as HTML. In the recent years, Web
pages became more complex and turned into Web Applications, using a lot
of Web 2.0 and Rich Internet Application technologies. As a consequence, new
research and technical challenges emerged, related to automated Web navigation
and data extraction.

To use Web data in Enterprise Applications and service-oriented architectures,
it is crucial to provide means for automatically turning Web Applications and
Web sites into Web Services, allowing structured and unified access to hetero-
geneous sources. This includes to understand the logic of the Web application,
to fill out form values, and to grab relevant data – all these aspects need to be
reflected accordingly in the generated Web Service.

In a number of business areas, Web applications are predominant among busi-
ness partners for communication and business processes. Various types of pro-
cesses are carried out on Web portals, covering activities such as purchase, sales,
or quality management, by manually interacting with Web sites.

Wrapper Generators enable the automation of processes and operations of
Web Applications. They pave the way for Web Process Integration, i.e. the
seamless integration of Web applications into a corporate infrastructure or ser-
vice oriented landscape by generating Web services from given Web sites. Web

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 94–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Web Data Extraction for Service Creation 95

process integration can be understood as front-end integration: integrate cooper-
ative and non-cooperative sources without the need for information provider to
change their backend. Furthermore, regarding light-weight mashup techniques,
wrapper generators offer to extend the range of sources under consideration from
structured Web feeds to include legacy Web applications. In this sense, Web pro-
cess integration and Wrapper Technologies are essential enablers of the Web of
Services.

The rest of the chapter is structured as follows. In Section 2, an overview of
the state-of-the-art in Web data extraction methods and techniques is given. In
Section 3 we give an overview of Lixto and its architecture as an example of
wrapping technology used for search computing and for generating Web Process
Integration scenarios. Section 4 is dedicated to survey the process of turning
Web 2.0 Applications into Web Services, illustrated by describing the Lixto
components and examples. Section 5 gives an overview on sample application
areas as well as a summary of future research issues and the usage of Web data
extraction in search computing context. Finally, some brief concluding remarks
are given in Section 6.

2 Web Data Extraction

Web data extraction is a research field rooted in information extraction from
text, in screen scrapers invented for extracting screen formatted data from main-
frame applications for terminals such as VT100 or IBM 3270, and in ETL (Ex-
tract, Transform, Load) methods defined to extract information from various
business processes and feed it into databases [8].

One of the first attempts to extract information from unstructured sources is
[39] that presents AutoSlog, a system that automatically builds a domain-specific
dictionary of concepts for extracting information from text. A significant step
forward was Crystal [45], a system which allows one to automatically build a
dictionary of entities from a text.

[32] presents a trial to classify wrappers considering in particular their ex-
pressiveness. Laender [34] proposed a taxonomy for data extraction tools based
on the main technique used by each tool to generate a wrapper. [30] is a more
recent survey on wrapper technology.

Wrapper Generation Systems can be classified according to different proper-
ties. One main such distinctive criteria is the mode of wrapper generation. This
spans from manual wrapper writing (using e.g. some special-purpose APIs) to
visual and interactive approaches where the user is guided through the wrapper
generation and fully automated approaches. Fully automated approaches include
on the one hand inductive learning based on positive and negative examples, and
on the other hand unsupervised learning of similar patterns, usually restricted to
a particular domain such as digital cameras. Automatic approaches tend to be
limited in expressive power and robustness, but on the other hand are essential
for large scale extraction scenarios.

One further differentiating criteria is the wrapper language and the objects
a wrapper operates on. This ranges from perceiving wrappers as mapping

96 R. Baumgartner et al.

functions from node sets to node sets, various logical and automata theoretic rep-
resentations, textual pattern matching on string representations of Web pages,
and usage of natural language processing techniques.

The first studies dedicated to Web extraction [1,18,20,44] led the development
of semi-automated systems, capable of extracting information in an automatic
manner only after a training phase, performed with user intervention. TSIM-
MIS [23] proposes a framework for the manual construction of Web wrappers. In
TSIMMIS a wrapper takes as input a specification made by a sequence of com-
mands given by programmers describing the pages and how the data should be
transformed into objects. Commands take the form (variables, source, pattern),
where source specifies the input text to be considered, pattern specifies how to
find the text of interest within the source, and variables are a list of variables
that hold the extracted results. The generated outputs are represented using
the Object Exchange Model. The output is composed by the target data and
by additional information about the result. NoDoSE (Northwestern Document
Structure Extractor) [1] is an interactive tool for semi-automatically determin-
ing the structure of such documents and then extracting their data. The user
hierarchically outlines the interesting regions of files and describes their seman-
tics. A mining component attempts to infer the grammar of the file from the
information taken from the user. WebOQL [3] synthesizes ideas taken from query
languages for the Web, from query languages for semistructured data and from
languages for website restructuring. WebOQL is based on the usage of hypertrees,
i.e., labeled ordered trees suitable to support collections, nesting, and ordering.

XWRAP [37] is a wrapper generation framework. XWRAP uses a common
library to provide basic building blocks for wrapper programs. In this way, tasks
of building wrappers specific to a Web source are separated from repetitive tasks
for multiple sources. The wrapper building process is divided into two steps:
the encoding of the source-specific metadata knowledge and the combination of
the information extraction rules generated at the first phase. W4F (Wysiwyg
Web Wrapper Factory) [40] is a Java toolkit to generate Web wrappers. The
process is done in three steps: retrieval, extraction, and mapping. The first step
retrieves a document from the Web and builds a DOM using an HTML parser.
The next two steps apply a set of rules expressed in HEL (HTML Extraction
Language) on the parse tree to extract information. Extracted information is
stored using a proprietary format called NSL (Nested String List). Iepad [28]
discovers extraction rules from Web pages. The system defines a data structure,
called PAT tree, useful for the search of repeated patterns. Exploiting repeated
pattern mining the system automatically identifies record boundaries.

RoadRunner [17] is based on a grammar inference techniques. It is based on
an algorithm, called match, that exploits similarities and differences among a
set of sample pages in order to infer a common grammar, which is then used
as a wrapper. Previous results were obtained in Minerva [15], an attempt to
exploit declarative grammar-based approaches and procedural programming in
order to handle heterogeneities and exceptions. The idea is to allow the insertion
of exception-handling mechanism in grammars using a special language called

Web Data Extraction for Service Creation 97

editor. [16] defines a formal theoretical framework in which it is proved that
Match runs in Ptime, whenever pages are compliant with a class of languages
called Prefix Mark-up Languages. As real-life Web pages seldomly fall in this
class of Languages, some studies have recently tackled the problem of improving
Match in order to automatically infer a wrapper for a wider class of languages.

DEByE (Data Extraction By Example) [33] uses a small set of examples
specified by the user that interacts with a tool using nested tables as the visual
paradigm. The user defined examples are used to generate patterns which al-
low extracting data from new documents. For the extraction DEByE adopts a
bottom-up procedure very effective with many different types of Web sources.

WARGO [38] is a system developed to allow non-technical users to generate
complete wrappers for Web sources. Access to the pages containing required
data is described by means of complex Web flows built by simply navigating
with a Web browser. The parsing is made using interactive tool that allow users
to generate complex extraction patterns by simply highlighting relevant data
from very few example pages, and answering some simple questions. The sys-
tem internally relies on NSEQL (Navigation SEQuence Language) for specifying
navigation sequences and DEXTL (Data EXTraction Language) for specifying
extraction patterns.

EXALG [2] is an algorithm capable of extracting structured data from a col-
lection of Web pages generated by encoding data from a database into a common
template. To discover the underlying template that generated the pages, EXALG
uses so called Large and Frequently occurring EQuivalent classes (LFEQ), i.e.
sets of words that have similar occurrence pattern in the input pages. The MGS
framework [24] is based on the intuition that, on the Web, the set of attributes
composing an underlying schema is limited and that there is a strong overlap-
ping between the sources. Most of the selection of the sources and part of the
extraction is done by hand. The work in [31,36] describes wrapper generation
with particular emphasis on their robustness. [35] proposes an approach for the
automatic extraction and segmentation of records from Web tables. The pro-
posed approach relies on a specific pattern that occurs on many Web pages for
presenting lists of items: a index page containing a list of short summaries, one
for each item, which include a link leading to a page about details of the specific
item. Their approach leverages on the redundant information of this pattern
and is based on constraint satisfaction problems and on probabilistic inference
techniques.

[14] describes a system capable to populate a probabilistic database with data
extracted from the Web. Data extraction is performed by TextRunner [19], an
information extraction system. The massive extraction of data from the Web is
the subject of WebTables [13,29]. However, they just concentrate on data that is
published in HTML tables, and do not perform any integration of the extracted
data. The work in [43] is an attempt do demonstrate that developing information
extraction programs using Datalog with embedded procedural extraction pred-
icates is a good way to proceed. Datalog provides a cleaner and more powerful

98 R. Baumgartner et al.

way to compose small extraction modules into larger programs. Second, query
optimization can be applied to Datalog programs.

Cimple [41,42] is a system based on the interaction of an expert to provide a set
of relevant sources, to design an entity relationship model describing the domain
of interest, and to compose the operators for the extraction of the data from
the pages. MetaQuerier [25] supports exploration and integration of databases
on the Web and concentrates its contribution on exploration of the deep Web.
It exploits the regularities of web forms and automatically matches interfaces.

Flint [12] automatically searches, collects and indexes Web pages publishing
data representing an instance of a certain conceptual entity. Flint takes as input
a small set of labeled sample pages: it automatically infers a description of the
underlying conceptual entity and then searches the Web for other pages contain-
ing data representing the same entity. Flint automatically extracts data from the
collected pages and stores them into a semi-structured self-describing database.

Finally, as of today, a number of commercial systems emerged, mostly in
the area of interactive wrapper generation. This includes the Denodo ITPilot,
WebQL (using a SQL-like query language for the Web) and KapowTech’s Mashup
Server. Commercial frameworks applying machine learning techniques include
the Dapp Factory from Dapper and the Fetch Agent Plattform.

3 The Lixto Approach

Lixto offers state-of-the-art products for Web data extraction and integration
and services for SOA-Enablement, Mashup Enablement, Market Monitoring, and
Vertical Search. In this setting, we look at Lixto technology from the perspective
of an enabling technology for the creation of Web process integration and search
computing scenarios.

With the Lixto Visual Developer (VD), wrappers are created in an entirely
visual and interactive fashion. Figure 1 sketches the architecture of VD and its
runtime components.

The VD is an Eclipse-based visual integrated development environment (IDE).
It embeds the Mozilla browser and interacts with it on various levels, e.g. for
highlighting Web objects, interpreting mouse clicks, or interacting with the
document object model (DOM). Usually, the application designer creates or
imports a data model as a first step. The data model is an XML schema-based
representation of the application domain.

Figure 2 gives a screenshot of the GUI of the Visual Developer. On the
left-hand side, the project overview and the outline view of the currently ac-
tive wrapper are illustrated. In the center, the embedded browser is shown. At
the bottom, in the Property View, navigation and extraction actions can be
inspected and configured (as shown in Figure 3).

During wrapper creation, the application designer visually creates deep Web
navigations (e.g., form filling), logical elements (e.g., click if exists), and extrac-
tion rules. The system supports this process with automatic recording, immedi-
ate feedback mechanisms, and generalization heuristics. The application designer

Web Data Extraction for Service Creation 99

Lixto TS WPI Server

Application
Designer

Web Sites
Web Applications

Visual Developer

Application
Logic

Wrapper
Creation

Eclipse IDEMozilla

Data Model Wrapper

Wrapper

Runtime
Parameters

Lixto Extraction Server

VD
Runtime

VD
Runtime

VD
Runtime...

SOA Ecosystem

Light-weight Web Services
RSS, REST, ATOM, JSON

Heavy-weight Web Services
SOAP

WS API

Wrapper
Repository

Fig. 1. Environment and Architecture

Fig. 2. Lixto Visual Developer

creates the wrapper based on samples, both in the case of navigation steps, and
in the case of extraction steps. Finally, the designer parameterizes search, filter-
ing and extraction steps of the wrapper. These parameters form the input values
for the exhibited Web Service methods.

The internal extraction language Elog [5,22], the Web object detection based
on XPath2, token grammars, and regular expressions are part of the applica-
tion logic. Moreover, the application logic comprises deep Web navigation and
workflow elements for understanding Web processes.

100 R. Baumgartner et al.

Fig. 3. Visual Filter and Condition Creation

Wrappers and data models are uploaded to the server. In the Web Process
integration scenario, the WPI Edition of the Lixto Transformation Server (TS) is
used (refer to Figure 1 again). In the SOA-oriented architecture of Lixto, servers
such as the TS access the VD Runtimes via Web Service or Java RMI. Lixto
TS exposes a query interface for ad-hoc and scheduled Web queries, and a Web
Service entry-point where each request provides information about the wrapper
to be executed and the runtime parameters (e.g. values for filling forms).

At wrapper execution time, each VD runtime, a.k.a. VD head, runs as in-
dependent process, using its own browser instance (during such executions the
browser GUI is suppressed). Lixto Extraction Server spawns a number of VD
heads and communicates results back to the server. Additionally, since Web ap-
plications can act unreliably, Extraction Server is capable of terminating and
creating new heads to retry the wrapper if necessary. This architecture lever-
ages Web extraction to a very stable and reliable process – browser instances of
parallel executions do not interfere with each other, and in case of any problems
with Web sites, parts of wrapper executions are retried in a new head. Due to
the extraction process, Web data and Web applications can be consumed via the
Lixto WPI Server as conveniently as usual light-weight and heavy-weight Web
services.

4 Transforming Web Pages and Deep Web Sources into
Web Services

In the following we exemplify the usage of Lixto components for turning a Web
application into a Web service. As example we consider the IMDB site (Interna-
tional Movie Database http://www.imdb.com). The site offers information and

Web Data Extraction for Service Creation 101

news about movies, tv shows, and actors. Although some information can be
accessed as structured RSS feed, the majority of the data is primarily intended
for manual browsing. In the following example we will extract information on
particular movies, extract information about the characters and actors in the
movies, and additionally extract available images about the actors. Information
is extracted based on particular parameters, such as giving a movie title, speci-
fying whether to return movies with the exact title only, return more than one
movie, how many of the main characters to extract, and how many photos to
include.

After defining how to extract and clean the information, which parameters can
be specified and publishing it on the WPI Server, the service can be conveniently
consumed by service-oriented applications.

4.1 Wrapper Generation with Lixto Visual Developer

Deep Web and Web Application Traversal. A wrapper project in the
Visual Developer comprises a number of actions. Actions include mouse and
key events occurring during a Web navigation [4]. Such actions are e.g. link
traversing, filling out textboxes, selection from lists, or opening menus. One
special action is the “Data Extractor” action. Inside of this action a declarative
Elog program [6] resides. In the Elog program, exit points to different pages such
as “next” pages, detail pages, or dynamic changes on a page are provided – this
way one can conveniently iterate over entries in selection boxes. Further actions
include procedural flow controls such as if conditions, while conditions, and call
actions to other page classes.

An example of a simple click action is clicking on a link to traverse to a
new Web page. The corresponding action stores a generalized XPath to the
corresponding link element and the information that a single mouse click is
performed on this particular element. The XPath is made as robust as possible
by the system to ensure a stable navigation replay even in case of changes on
the Web page.

Actions are embedded in declarative templates, so-called page classes. In
Figure 2, the wrapper outline view is shown on the left-hand side (the flow
in the first page class is enlarged in Figure 4), illustrating the procedural ac-
tion flow and the Elog extractors in the declarative page class templates. At the
bottom, the actual page class dependencies are given.

Consider the wrapper for IMDB in Figure 2 and especially the page class de-
pendency graph illustrated in higher resolution in Figure 5: In the “start” page
class the search form is filled out and results are extracted. Moreover, based on
given parameters, it is decided which elements are clicked to reach the movie
detail page. For each of these, the page class “movie” is called. In this page
class, the details such as director and year are extracted, as well as the most
important characters and their actors. Since character and cast information is
on different pages with a different structure, different data extractors are used in

102 R. Baumgartner et al.

Fig. 4. A sample Page Class

Fig. 5. IMDB Application Flow

the page class “cast” and “character”, respectively. Finally, photos of the actors
can be reached from the actor page. 48 photos per page are shown, hence the
page class “photo” is iteratively called until there is no next link or the given
limit is reached.

Due to branching and iteration capabilities of the navigation language, com-
plex process flows can be modeled on top of the page class concept such as
e.g. a flight booking process.

Web Data Extraction Language. The internal data extraction language,
Elog, is a datalog-like language especially designed for wrapper generation. The
Elog language operates on Web objects, that are HTML elements, lists of HTML
elements, and strings. Elog rules can be specified fully visually without knowledge
of the Elog language. Web objects can be identified based on internal, contextual,
and range conditions and are extracted as so-called “pattern instances”.

A typical Elog rule in the IMDB wrapper to extract the director of the movie
looks like:

Web Data Extraction for Service Creation 103

director(X0, X1) :-
root(_, X0), subelem(X0,
(./lixto:nearest("body")/lixto:nearest("layer")
/lixto:nearest("div")/lixto:nearest("a"),

[("href", "name", substring)]), X1),
before(X1, ../h5, [("text",
"^Director.*", regexp)]), 0, 1, X2, X3).

The “director” predicate used in the head of the rule evaluates to true for all
assignments X1 where the body holds true. In the “subelem” predicate, for each
assignment of X0 (matches of the “root” pattern) assignments for the result of
the XPath generation are stored in X1. The “before” predicate refers to instances
of X1, its results could be referenced by further predicates. The numerical val-
ues reflect distance settings (based on the node level), in this case immediately
before.

Elog uses different kind of expressions to identify Web objects – this in-
cludes XPath2 statements (and extension functions) for tree nodes and regu-
lar expressions or predefined ontology concepts for textual data, and is open to
be extended to e.g. extract based on the visual representation in the browser.
Figure 3 illustrates how this rule is presented to wrapper designers.

Among the evaluation criteria of a wrapping language, expressiveness and
robustness are the most important ones. Robustness grants that information on
frequently changing Web pages are correctly discovered, even if e.g. a banner or
a new page fragment is introduced. Visual Developer offers robust mechanisms
of data extraction based on the two paradigms of tree and string extraction.
Verification alerts can be imposed that give warnings in case user-defined criteria
are no longer satisfied on a page. [22] shows a kernel fragment of Elog that
captures monadic second order logic, hence if is very expressive while at the
same time easy to use due to visual specification.

Visual Wrapper Generation. The usage of both Elog and of the internal Web
interaction language is completely invisible to the average wrapper designer and
all operations are carried out by visual means. In simple scenarios this is basically
comprised of four steps:

1. First, the modeling phase, where the application designer defines an XML
Schema-based data model to map Web data instances into or imports an
existing one such as RSS.

2. As a second step, the application designer visually records a Web macro fill-
ing forms and traversing to the desired result page. The system protocols
the actions on an action-based level, i.e. it does not rely on the server re-
quest/response, but identifies XPath elements based on user clicks in the
GUI and is capable of replaying all kind of user interactions, even for highly
dynamic pages.

3. Finally, the application designer designs the data extractor for the result
page where usually hierarchically defines the elements of interests. Filters are

104 R. Baumgartner et al.

created visually by choosing example instances and then refining the selection
based on system generalizations. Internally, filters are mapped to Elog rules.
Result instances are mapped to the defined data model and verified for their
consistency.

4. Additionally, every action and filter can be parameterized to individual
search and restriction values, which are provided as method parameters to
the Web service requests.

In real-life scenarios such as the IMDB example these steps are close by intermin-
gled, especially when extracting data from various interlinked pages. The IMDB
wrapper comprises a number of data extractors on different kind of pages, and a
complex navigation describing when to apply which extractor and action. After
finishing the example-based wrapper generation, certain actions and steps are
manually parameterized by the designer. First, the value that is inserted into
the search form, and next if one or more movie titles shall be returned based
on a particular query, and how many of its actors and how many photos. In
this way, similar to the output model, an input model is defined comprising all
parameters that can be adjusted in an instance of an IMDB wrapping process
by a request. As a next step, the wrapper is deployed to the WPI server.

4.2 Lixto WPI Server

Transformation Server. Heterogeneous environments such as integration and
mediation systems require a conceptual information flow model. The usual set-
ting for the creation of services based on Web wrappers is that information is
obtained from multiple wrapped sources and has to be integrated; often source
sites have to be monitored for changes, and changed information has to be au-
tomatically extracted and processed. Thus, push-based information systems ar-
chitectures in which wrappers are connected to pipelines of post-processors and
integration engines which process streams of data are a natural scenario, which
is supported by the Lixto Transformation Server [26,7]. The overall task of in-
formation processing is composed into stages that can be used as building blocks
for assembling an information processing pipeline. The stages are to

– acquire the required content from the Web applications
– integrate and transform content from a number of input channels and tasks

such as finding differences,
– interact with external processes,
– format and deliver results in various formats and channels and connectivity

to other systems.

The actual data flow within the Transformation Server is realized by handing
over XML documents. Each stage within the Transformation Server accepts
XML documents (except for the wrapper component, which accepts HTML),
performs its specific task (most components support visual generation of map-
pings), and produces an XML document as result. This result is put to the suc-
cessor components. Boundary components have the ability to activate themselves

Web Data Extraction for Service Creation 105

Fig. 6. Lixto Transformation Server

according to a user-specified strategy and trigger the information processing on
behalf of the user. Figure 6 illustrates a complex example in the news domain.

From an architectural point of view, Lixto Transformation Server may be
conceived as a container-like environment of information processing or as visu-
ally configured agent server. This “service flow” can model very complex uni-
directional information flows. The usage of components also modularizes the
information processing, so the service can be maintained and updated smoothly.
Moreover, information services can be controlled and customized from outside of
the server environment by various types of communication media such as Web
services.

Extraction Server/Cluster. In simple scenarios, the Lixto WPI Server uses a
single Extraction Server, where a number of extraction jobs can run in parallel.
However, WPI scenarios with large number of services and users require a scal-
able extraction environment. It is crucial to be on the one hand very performant
to support ad-hoc requests, and on the other hand to provide means for extreme
scalability, especially in cases with a high peak load at certain times. Hence, data
extractions can be executed via the Extraction Cluster. The WPI Server uses the
Extraction Cluster [9] as directory service, asking for a free VD runtime head
to be used in the next execution. The Extraction Cluster queues the request
and assigns the best suited head, based on given weights. Furthermore, for ad

106 R. Baumgartner et al.

Fig. 7. Lixto Extraction Cluster

hoc requests, a priority queue is supported. Machines can be registered on the
Extraction Cluster and inform it about the number of running VD heads and
the machine parameters.

The Extraction Cluster distributes the load and can invoke Extraction Servers
from Cloud Services such as the Amazon Elastic Cloud if the load gets too high.
A screenshot of a simple status inspection is shown in Figure 7.

Lixto WPI Server Users and Registry. In Web Process Integration scenar-
ios, we mainly distinguish two cases:

– Scheduled Push Approach: A service is configured to regularly push data to
a particular component. The WPI Server handles the schedule and delivers
results e.g. to a database or an e-mail address.

– Ad-Hoc Pull Approach: A service is configured to return data on demand. A
Web Service interface is exposed that drives the service and executes it based
on a given request. Data is returned e.g. as SOAP response or as REST.

Lixto WPI server distinguishes different user roles, the most prominent being the
service designer and the service user. The service designer composes a service,
including the definition of a wrapper, specification of transformation rules, how
to integrate results if multiple wrappers are used, and how to deliver information.
Service Designers publish services that are allowed to be consumed by Service
Users.

Service users use the MyLixto GUI to browse the service registry and pick
interesting services. A service user can choose subscribe to a service, which

Web Data Extraction for Service Creation 107

Fig. 8. Consuming the WPI Service Registry with MyLixto

regularly runs in her name and with her given parameters, and provides the
information e.g. through e-mail. Please refer to Figure 8 as an example. Alterna-
tively, users can choose to receive the data immediately, triggering an execution
on the WPI server. The first approach is primarily used in corporate scenar-
ios where employees need to be informed regularly, whereas the second is usu-
ally used in meta-search scenarios and on-demand mashup applications (refer to
Section 5).

4.3 Web Service Delivery

Figure 9 illustrates the usage of the WPI server service registry. The service
registry shows all available services (company-internal and public, respectively).
During service creation, the service designer chooses which query methods for
a service will be available and how to map wrapper and service parameters to
methods and method parameters [10].

After picking a service, the service user is shown all available methods to a
service. E.g., in the IMDB case, the following methods can be exposed:

– getSingleMovieDescription(String title)
– getAllMovieTitles(String searchtext)
– getActorDataForMovie(String title, boolean photos)
– getActorCharacterRelationForMovie(String title)

As Figure 9 illustrates, there are different ways to use the service registry. Users
can either use the Service User GUI (MyLixto) for triggering or subscribing to a

108 R. Baumgartner et al.

Fig. 9. Consuming the WPI Service Registry

service, or connect with their favorite Web Service client asking for the WSDL
and sending a SOAP request (usually happening when the request is embedded
into a larger SOA ecosystem), or if the service has been made available to the
public, use a simple REST request specifying the parameters in the URL.

5 Application Areas and Future Research Issues

5.1 Sample Application Areas

Web Process Integration in the Automotive Industry. Many business
processes in the automotive industry are carried out by means of Web portal
interaction. Business critical data from various divisions such as quality manage-
ment, marketing and sales, engineering, procurement, supply chain management,
and competitive intelligence has to be manually gathered from Web portals and
Websites. By automation, automotive part suppliers can dramatically reduce
the cost associated with these processes while at the same time improving the
speed and reliability with which these processes are carried out. The Automotive
business case is described in more detail in [11]. In this scenario, wrapper tech-
nologies act as enabling technology for Service Oriented Architectures and are
one crucial puzzle piece in Enterprise Application Integration and B2B process
integration.

End User Mashups. Today, leading software vendors start to provide mashup
platforms (such as Yahoo! Pipes or Lotus Mashups). A mashup is a Website
or Web application that combines a number of Web sites into an integrated

Web Data Extraction for Service Creation 109

view. Usually, the content is taken via APIs, embedding RSS or Atom Feeds
in a REST-like way. Wrapper technology leverages legacy Web applications to
light-weight APIs such as REST that can be integrated in mashups in the same
fashion. Web Mashup Solutions no longer need to rely on APIs offered by the
providers of sites, but can extend the scope to the whole Web. In particular,
the deep Web gets accessible by encapsulating complex form queries and appli-
cation logic steps into the methods of a Web Service. In this scenario, wrapper
technologies help enable the Web of Services, built on legacy Web sites. End
users are put in charge to create their own views of the Web and embed data
into other applications, usually in a light-weight way. This results in “situational
applications”, possibly unreliable and unsecure applications that however help
to solve an urgent problem immediately.

Vertical Flight Search and Booking. Vertical Search is a special-purpose
meta-search scenario for integrating deep Web data behind complex query in-
terfaces and providing intelligent services to customers. Typical application sce-
narios are domain-specific searches with complex Web query interfaces (refer to
[27] for a description how Web forms can be formally modeled), such as find-
ing the cheapest flight over several airlines within a specific date range or the
cheapest computer on various channels. Meta-Search applications have an in-
herent workflow logic, due to the need of querying a number of different portals
and understanding dependencies when to query which Web site; e.g. querying a
weather site for a particular city in a multi-hop flight scenario where first the
multi-hop stops have to be extracted and understood, and next additional data
for such cities is queried. Furthermore, since users do not like to wait more than
a couple of seconds for results, there is the absolute need to provide results as
soon as they are extracted – this logic is encapsulated in a set of Web service
requests and responses. A meta-search process comprises the workflow which
Web sources to query and providing input paramters to them, as well as the un-
derstanding and modeling of the Web application logic. This includes complex
bi-directional processes, e.g. in cases where a booking process is re-packaged in a
Meta-Search application. In such cases, interception points are required during
the wrapping process.

5.2 Future Challenges

Turning Web Applications and Web Sites to Web Services is an important con-
tribution to the search computing paradigm. Due to understanding of deep Web
applications and parameterizing the data extraction, focused search in the Deep
Web can be realized.

Deep Web and Workflow Capabilities. In B2B application areas, key fac-
tors are workflow capabilities for the whole process of data extraction, transfor-
mation and delivery, capabilities to treat all kinds of special cases occurring in
Web interactions, and excellent support of the latest Web standards used during
secure transactions.

110 R. Baumgartner et al.

As Web pages are becoming increasingly dynamic and interactive, efficient
wrapping languages have to make it possible to record, execute and generalize
macros of Web interactions and, hence, model the whole process of workflow
integration. An example of such a Web interaction is a complicated booking
transaction. Future research issues also include the different approach of targeted
deep Web crawling as an alternative to Web application flow modelling.

To query deep Web forms, wrappers have to learn the process of filling out
complex Web search forms and the usage of query interfaces. Such systems have
to learn abstract representation for each search form and map them to a unified
meta form and vice versa, taking into account different form element types,
contents and labels.

Extraction Capabilities. Whereas Web wrappers today dominantly focus
on either the flat HTML code or the DOM tree representation of Web pages,
recent approaches aim at extracting data from the CSS box model and the
visual representation of Web pages [21]. This method can be particularly useful
in recent times where the DOM tree does not accurately reflect how the user
perceives a Web page.

One other challenge is Generic Web Wrapping. On the one hand this includes
to evolve from site-specific wrappers to domain-specific wrappers by using se-
mantic knowledge in addition to the structural and presentational information
available. On the other hand, however, it is essential that wrappers still are
sufficiently robust to provide meaningful data. Hence, techniques for making
wrappers more robust and automatically adapt wrappers to new situations will
contribute to this challenge.

Key factors in the area of mashup scenarios include efficient real-time
extraction capabilities for a large number of concurrent queries and detailed
understanding of how to map queries to particular Web forms.

6 Conclusions

In this paper we reviewed techniques and tools for Web data extraction. We first
discussed a number of tools and then focused on one particular example, the
Lixto tool which is able to overcome most of these obstacles. We presented the
two main components of Lixto: (1) The Lixto Visual Developer, which allows a
wrapper designer to visually and interactively develop a wrapper for a Website;
and (2) the Lixto Web process Integration Server (WPI Server) that enables one
to quickly design an interface between complex Web processes and corporate
software. In particular, we showed how Lixto can be used to transform Web pages
and deep Web sources into Web services, and how massive amounts of data can
be delivered into applications by means of Web process integration. The latter
aspect of Web data extraction is of particular relevance to the achievements of
service marts, as elaborated in Chapter 9 of this book.

We showed, based on the example of Lixto, how software of a new type can
fill an important gap in information technology. While most current obstacles

Web Data Extraction for Service Creation 111

are addressed and satisfactorily solved by Lixto, the Web is moving on, and
new challenges emerge. Some of these challenges were described in Section 5.
Other important challenges regard the intelligent and efficient querying of Web
services, and the fully automatic generation of wrappers for restricted domains
such as real estate, and so on. The first challenge is currently being tackled by
the SeCo project. The second challenge is tackled by the DIADEM at Oxford
University.

References

1. Adelberg, B.: Nodose - a tool for semi-automatically extracting structured and
semistructured data from text documents. In: SIGMOD Record, pp. 283–294 (1998)

2. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIG-
MOD 2003: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pp. 337–348. ACM, New York (2003)

3. Arocena, G.O., Mendelzon, A.O.: Weboql: restructuring documents, databases,
and webs. Theor. Pract. Object Syst. 5(3), 127–141 (1999)

4. Baumgartner, R., Ceresna, M., Ledermüller, G.: Deep web navigation in web data
extraction. In: Proc. of IAWTIC (2005)

5. Baumgartner, R., Flesca, S., Gottlob, G.: Declarative Information Extraction,
Web Crawling and Recursive Wrapping with Lixto. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 21. Springer,
Heidelberg (2001)

6. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Proc. of VLDB (2001)

7. Baumgartner, R., Herzog, M., Gottlob, G.: Visual programming of web data ag-
gregation applications. In: Proc. of IIWeb 2003 (2003)

8. Baumgartner, R., Gatterbauer, W., Gottlob, G.: Web data extraction system. In:
Encyclopedia of Database Systems (2009)

9. Baumgartner, R., Gottlob, G., Herzog, M.: Scalable web data extraction for online
market intelligence, vol. 2, pp. 1512–1523 (2009)

10. Baumgartner, R., Gottlob, G., Herzog, M., Slany, W.: Interactively Adding Web
Service Interfaces to Existing Web Applications. In: Proc. of SAINT (2004)

11. Baumgartner, R., Herzog, M.: Using Lixto for automating portal-based b2b pro-
cesses in the automotive industry. International Journal of Electronic Business 2(5),
519–530 (2004)

12. Blanco, L., Crescenzi, V., Merialdo, P., Papotti, P.: Flint: Google-basing the web.
In: EDBT 2008: Proceedings of the 11th international conference on Extending
database technology, pp. 720–724. ACM, New York (2008)

13. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. Proc. VLDB Endow. 1(1), 538–549 (2008)

14. Cafarella, M.J., Ré, C., Suciu, D., Etzioni, O., Banko, M.: Structured querying of
web text: A technical challenge. In: CIDR (2007)

15. Crescenzi, V., Mecca, G.: Grammars have exceptions. Inf. Syst. 23(9), 539–565
(1998)

16. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites.
J. ACM 51(5), 731–779 (2004)

112 R. Baumgartner et al.

17. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data ex-
traction from large web sites. In: VLDB 2001: Proceedings of the 27th International
Conference on Very Large Data Bases, pp. 109–118. Morgan Kaufmann Publishers
Inc., San Francisco (2001)

18. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng,
Y.k., Smith, R.D.: Conceptual-model-based data extraction from multiple-record
web pages. Data and Knowledge Engineering 31, 227–251 (1999)

19. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction
from the web. Commun. ACM 51(12), 68–74 (2008)

20. Freitag, D.: Information extraction from html: Application of a general machine
learning approach. In: Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence, pp. 517–523 (1998)

21. Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B., Pollak, B.: Towards domain-
independent information extraction from web tables. In: Proc. of WWW, May 8-12
(2007)

22. Gottlob, G., Koch, C.: Monadic Datalog and the Expressive Power of Web Infor-
mation Extraction Languages. Journal of the ACM 51(1) (2004)

23. Hammer, J., McHugh, J., Garcia-Molina, H.: Semistructured data: The tsimmis
experience. In: Proceedings of the First East-European Workshop on Advances in
Databases and Information Systems, ADBIS 1997, pp. 1–8 (1997)

24. He, B., Chang, K.C.-C.: Statistical schema matching across web query interfaces.
In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD international confer-
ence on Management of data, pp. 217–228. ACM, New York (2003)

25. He, B., Zhang, Z., Chang, K.C.-C.: Towards building a metaquerier: Extracting and
matching web query interfaces. In: International Conference on Data Engineering,
pp. 1098–1099 (2005)

26. Herzog, M., Gottlob, G.: InfoPipes: A flexible framework for M-Commerce appli-
cations. In: Proc. of TES workshop at VLDB (2001)

27. Holzinger, W., Krüpl, B., Baumgartner, R.: Automated ontology-driven
metasearch generation with metamorph. In: Vossen, G., Long, D.D.E., Yu, J.X.
(eds.) WISE 2009. LNCS, vol. 5802, pp. 473–480. Springer, Heidelberg (2009)

28. Chang, C.h., Lui, S.-C.: Iepad: Information extraction based on pattern discovery,
pp. 681–688 (2001)

29. Jurić, D., Banek, M., Skočir, Z.: Uncovering the deep web: Transferring relational
database content and metadata to OWL ontologies. In: Lovrek, I., Howlett, R.J.,
Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 456–463. Springer,
Heidelberg (2008)

30. Kayed, M., Shaalan, K.F.: A survey of web information extraction systems. IEEE
Trans. on Knowl. and Data Eng. 18(10), 1411–1428 (2006); Member-Chang, Chia-
Hui and Member-Girgis, Moheb Ramzy

31. Knoblock, C.A., Lerman, K., Minton, S., Muslea, I.: Accurately and reliably ex-
tracting data from the web: a machine learning approach, pp. 275–287 (2003)

32. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence 118, 2000 (2000)

33. Laender, A.H.F., Ribeiro-Neto, B., da Silva, A.S.: Debye - date extraction by ex-
ample. Data Knowl. Eng. 40(2), 121–154 (2002)

34. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey
of web data extraction tools. SIGMOD Rec. 31(2), 84–93 (2002)

Web Data Extraction for Service Creation 113

35. Lerman, K., Getoor, L., Minton, S., Knoblock, C.: Using the structure of web sites
for automatic segmentation of tables. In: SIGMOD 2004: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pp. 119–130.
ACM, New York (2004)

36. Lerman, K., Minton, S.N., Knoblock, C.A.: Wrapper maintenance: a machine learn-
ing approach. J. Artif. Int. Res. 18(1), 149–181 (2003)

37. Liu, L., Pu, C., Han, W.: Xwrap: An xml-enabled wrapper construction system for
web information sources. In: ICDE, pp. 611–621 (2000)

38. Raposo, J., Pan, A., Alvarez, M., Hidalgo, J., Vina, A.: The Wargo System: Semi-
Automatic Wrapper Generation in Presence of Complex Data Access Modes. In:
Proceedings of DEXA 2002, Aix-en-Provence, France (2002)

39. Riloff, E.: Automatically constructing a dictionary for information extraction tasks.
In: Proceedings of the Eleventh National Conference on Artificial Intelligence, pp.
811–816. MIT Press, Cambridge (1993)

40. Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight
wrappers. Data Knowl. Eng. 36(3), 283–316 (2001)

41. Shen, W., Derose, P., Vu, L., Doan, A., Ramakrishnan, R.: Source-aware entity
matching: A compositional approach. In: IEEE 23rd International Conference on
Data Engineering, ICDE 2007, pp. 196–205 (2007)

42. Shen, W., DeRose, P., McCann, R., Doan, A., Ramakrishnan, R.: Toward best-
effort information extraction. In: SIGMOD 2008: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp. 1031–1042. ACM,
New York (2008)

43. Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative information
extraction using datalog with embedded extraction predicates. In: VLDB 2007:
Proceedings of the 33rd international conference on Very large data bases, pp.
1033–1044. VLDB Endowment (2007)

44. Soderland, S., Cardie, C., Mooney, R.: Learning information extraction rules for
semi-structured and free text. Machine Learning, 233–272 (1999)

45. Soderland, S., Fisher, D., Aseltine, J., Lehnert, W.: Crystal: Inducing a concep-
tual dictionary. In: Mellish, C. (ed.) Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, pp. 1314–1319. Morgan Kaufmann, San
Francisco (1995)

Chapter 7:
Dataspaces

Cornelia Hedeler1, Khalid Belhajjame1, Norman W. Paton1,
Alessandro Campi2, Alvaro A.A. Fernandes1, and Suzanne M. Embury1

1 School of Computer Science, University of Manchester, UK
{chedeler, npaton, alvaro, embury}@cs.manchester.ac.uk

2 Dipartimento di Elettronica e Informatzione, Politecnico di Milano, Italy
campi@elet.polimi.it

Abstract. The vision of dataspaces is to provide various of the benefits of
classical data integration, but with reduced up-front costs, combined with
opportunities for incremental refinement, enabling a “pay as you go” ap-
proach. As such, dataspaces join a long stream of research activities that
aim to build tools that simplify integrated access to distributed data. To
address dataspace challenges, many different techniques may need to be
considered: data integration from multiple sources, machine learning ap-
proaches to resolving schema heterogeneity, integration of structured and
unstructured data, management of uncertainty, and query processing and
optimization. Results that seek to realize the different visions exhibit con-
siderable variety in their contexts, priorities and techniques. This chapter
presents a classification of the key concepts in the area, encouraging the use
of consistent terminology, and enabling a systematic comparison of propos-
als. This chapter also seeks to identify common and complementary ideas
in the dataspace and search computing literatures, in so doing identifying
opportunities for both areas and open issues for further research.

1 Introduction

Data integration, in various guises, has been the focus of ongoing research in
the database community for over 20 years. The objective of this activity has
generally been to provide the illusion that a single database is being accessed,
when in fact data may be stored in a range of different locations and managed
using a diverse collection of technologies. Providing this illusion typically involves
the development of a single central schema to which the schemas of individual
resources are related using some form of mapping. Given a query over the central
schema, the mappings, and information about the capabilities of the resources,
a distributed query processor optimizes and evaluates the query.

Data integration software is impressive when it works; declarative access is
provided over heterogeneous resources, in a setting where the infrastructure takes
responsibility for efficient evaluation of potentially complex requests. However, in
a world in which there are ever more networked data resources, data integration
technologies from the database community are far from ubiquitous. This stems
in significant measure from the fact that the development and maintenance of

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 114–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dataspaces 115

mappings between schemas has proved to be labour intensive. Furthermore, it
is often difficult to get the mappings right, due to the frequent occurrence of
exceptions and special cases as well as autonomous changes in the sources that
require changes in the mappings. As a result, deployments are often most success-
ful when integrating modest numbers of stable resources in carefully managed
environments. That is, classical data integration technology occupies a position
at the high-cost, high-quality end of the data access spectrum, and is less effective
for numerous or rapidly changing resources, or for on-the-fly data integration.

The vision of dataspaces [16,18] is that various of the benefits provided by
planned, resource-intensive data integration should be able to be realised at much
lower cost, thereby supporting integration on demand but with lower quality of
integration. As a result, dataspaces can be expected to make use of techniques
that infer relationships between resources, that refine these relationships in the
light of user or developer feedback, and that manage the fact that the relation-
ships are intrinsically uncertain. As such, a dataspace can be seen as a data
integration system that exhibits the following distinguishing features: (i) low/no
initialisation cost, (ii) support for incremental improvement, and (iii) manage-
ment of uncertainty that is inherent to the automatic integration process, but
could also be present in the integrated data itself.

However, to date, no dominant proposal or reference architecture has emerged.
Indeed, the dataspace vision has given rise to a wide range of proposals either for
specific dataspace components (e.g. [23,35]), or for complete dataspace manage-
ment systems (e.g. [10,27]). These proposals often seem to have little in common,
as technical contributions stem from very different underlying assumptions – for
example, dataspace proposals may target collections of data resources as diverse
as personal file collections, enterprise data resources or the web. It seems unlikely
that similar design decisions will be reached by dataspace developers working
in such diverse contexts. This means that understanding the relationships and
potential synergies between different early results on dataspaces can be chal-
lenging; this paper provides a framework against which different proposals can
be classified and compared, with a view to clarifying the key concepts in datas-
pace management systems (DSMS), enabling systematic comparison of results
to date, and identifying significant gaps. In the context of search computing, the
chapter identifies issues that occur in dataspaces that are also relevant to search
computing, such as uncertainty, and explores how dataspace concepts may be
relevant to multi-domain search and vice versa.

The remainder of the chapter is structured as follows. Section 2 describes the
classification framework by introducing the various dimensions that are used to
characterise data integration and dataspace proposals. For the purpose of instan-
tiating the framework Section 3 describes existing data integration and dataspace
proposals in the context of the classification framework. Section 4 discusses open
issues for dataspaces and search computing, and Section 5 concludes the chapter.
This paper extends Hedeler et al. [19] by extending the dimensions used in the
classification, increasing the number of proposals included in the classification,

116 C. Hedeler et al.

and by including a discussion of the relationship between dataspaces and search
computing.

2 The Classification Framework

Low-cost, on-demand, automatic integration of data with the ability to search
and query the integrated data can be of benefit in a variety of situations, be
it the short-term integration of data from several rescue organisations to help
manage a crisis, the medium-term integration of databases from two companies,
one of which acquired the other until a new database containing all the data
is in place, or the long-term integration of personal data that an individual
collects over time, e.g., emails, papers, or music. Different application contexts
result in different dataspace lifetimes, ranging from short-, medium- to long-term
(Lifetime field in Tables 1 and 2).

Figure 1 shows the conceptual life cycle of a dataspace consisting of phases
that are introduced in the following. Dataspaces in different application contexts
may only need a subset of the conceptual life cycle. The phases addressed are
listed in Life cycle in Tables 1 and 2 with the initialisation, test/evaluation,
deployment, maintenance, use, and improvement phases denoted as init, test,
depl, maint, use, and impr, respectively.

A dataspace, just like any traditional data integration software, is initialised,
which may include the identification of the data resources to be accessed and
the integration of those resources. Initialisation may be followed by an evalua-
tion and testing phase, before deployment. The deployment phase, which may
not be required, for example, in the case of a personal dataspace residing on
a single desktop computer, could include enabling access to the dataspace for
users or moving the dataspace infrastructure onto a server. As the initialisation
of a DSMS should preferably require limited manual effort, the integration may
be improved over time in a pay-as-you-go manner [27] while it is being used to
search and query the integrated data resources. In ever-changing environments,
a DSMS also needs to respond to changes, e.g., in the underlying data resources,

Fig. 1. Conceptual life cycle of a dataspace

Dataspaces 117

Fig. 2. Initialisation of a dataspace

which may require support for incremental integration. The phases Use, Main-
tain and Improve are depicted as coexisting, because carrying out maintenance
and improvement off-line would not be desirable. For clarity, the figure does
not show information flow between the different phases, so the arrows denote
transitions between phases.

In the remainder of this section, the initialisation, usage, maintenance and
improvement phases are discussed in more detail with a view to eliciting the
dimensions over which existing dataspace proposals have varied. The dimensions
are partly based on the dataspace vision [16,18] and partly on the characteristics
of dataspace proposals.

2.1 Initialisation Phase

Figure 2 presents a more detailed overview of the steps that may be part of the
initialisation phase. In the following, each of these steps is discussed in more
detail and the dimensions that are used to classify the existing proposals are
introduced. For each step, the dimensions are either concerned with the process
(e.g., identifying matchings) and its input, or with the output of the process (e.g.,
the matchings identified). As others have proposed (e.g., [30]) we distinguish
between matchings, which we take to be correspondences between elements and
attributes in different schemas, and mappings, which we take to be executable
programs (e.g., view definitions) for translating data between schemas.

Data Sources. A DSMS can either provide support for the integration of data
sources with any kind of content (Cont field in Tables 1 and 2) or it can provide
support for a specific application (app sp), in which case assumptions that apply
to that particular application can be of benefit during the initialisation phase.
Utilising domain knowledge, e.g., in form of a predefined integration schema, or
utilising domain knowledge during matching and mapping generation, to create
domain specific dataspace solutions could result in a higher quality of the initial
integration and may require less improvement. However, those solutions could
be hard to port into different domains. In contrast, general purpose dataspace
solutions can be applied to any domain, but may be burdened by lower quality of
the integration, requiring more user feedback for improvement of the integration.
General support is denoted by gen. Examples of specific applications include the
life sciences, personal information and enterprise data. Furthermore, the data
sources to be integrated can be of different types (Type field in Tables 1 and

118 C. Hedeler et al.

2). Examples include unstructured (unstr), semi-structured (with no explicit
schema) (s str) or structured (with explicit schema) (str). The data sources can
also differ in their location: they can be local (loc) or distributed (distr).

Integration Schema and Its Design/Derivation. The integration schema
can simply be a union schema, in which source-specific concepts are imported
directly into the integration schema, or a schema that merges (e.g. [31]) the
source schemas with the aim of capturing more specifically the semantic as-
pects that relate them. The different types of resulting schemas are denoted as
union and merge in Tables 1 and 2, respectively. Integration schemas can also
vary in their scope. To be able to model a wide variety of data from a variety
of domains, generic models (gen), such as resource-object-value triples, can be
used. In contrast to those, domain-specific models (dom sp) are used in other
proposals. Various data models can be used to represent the integration schema.
Multiple models are used by the dataspace proposals discussed here, ranging
from specific models, such as the relational model, to supermodels that sub-
sume several specific models (e.g., [2]). The Process of obtaining the integration
schema can either be manual (man), i.e., it is designed, or it can be derived
semi-automatically (s aut), e.g., requiring users to select between alternatives,
or automatically (aut) without any manual intervention. A variety of information
can be used as Input for designing or deriving the schema, which is depicted by
the different locations of the Design and Derive steps in Figure 2. The schema
can be designed using schema or instance (inst) information from the sources.
Matchings (match) or mappings (map) can also be used as input.

Matchings and Their Identification. Matchings can vary with respect to
their endpoints: they can either be correspondences between the source schemas
(src-src) or between source schemas and the integration schema (src-int). The
process of identifying the matchings can either be manual (man), semi-automatic
(s aut) or automatic (aut). The identification process may require a variety of
different inputs, e.g., the schemas to be matched, instances (inst) that conform
to the schemas (which may be utilised instead of or in addition to schema in-
formation to infer matches between the schemas), and training data (train),
e.g., when machine learning techniques are applied.

Mappings and Their Identification. Like matchings, mappings can also vary
with respect to their endpoints (src-src or src-int). The process to derive the map-
pings can either be manual (man), semi-automatic (s aut) or automatic (aut).
The inputs to the derivation process may include the schemas to be mapped,
instances that conform to the schemas (inst), matchings (match) and/or train-
ing data (train), for example, when machine learning techniques are used, or a
query.

Resulting Data Resource. The resulting data resources over which queries
are expressed can vary with respect to their materialisation (Materialis.): they
can either be virtual (virt), partially materialised (p mat) or fully materialised

Dataspaces 119

Table 1. Properties of the initialisation, usage, maintenance, and improvement phase
of existing data integration and dataspace proposals

Dimension DB2 II[17] Aladin
[24]

SEMEX
[12,25]

iMeMex[10],
iTrails[34]

PayGo[27]UDI[35,13,14,36]Roomba
[23]

Quarry
[20]

Life time/Life cycle
Lifetime long long long long long long long long
Life cycle init/use/

maint
init/use/
maint

init/use init/use/
maint/impr

init/use/
maint/
impr

init impr init/use

Initialisation
Data sources; identification
Cont gen app sp app sp app sp gen gen gen gen
Type s str/str s str/str unstr/

s str/str
unstr/
s str/str

str str s str

Location distr distr loc/
distr

distr distr loc loc

Integration schema; design/derivation
Type union/merge union merge union union merge union union
Scope dom sp dom sp dom sp gen dom sp dom sp gen gen
Process s aut/man s aut man aut aut aut aut aut
Input schema/

match
schema/
inst

schema/
inst

Matchings; identification
Endpoints src-int src-src src-int src-src src-src src-src,

src-int
src-src

Process man aut aut s aut aut aut aut
Input schema/

inst
schema/
inst

schema/
inst

schema/
inst/train

schema schema/
inst

Mappings; identification
Endpoints src-int src-int src-int src-int/

src-src
src-int src-int,

src-int
src-int src-int

Process man aut man aut
Input match schema/

inst
schema/
match

Resulting data resource; creation
Materialis. virt/p mat mat mat virt virt virt f mat
Reconcil. NA dupl dupl dupl dupl
Usage: Search/query; evaluation
Specification in adv/run run run run run run in adv run
Type SPJ/aggr browse/

key/SPJ
browse/
key SP

browse/
key/SPJ

key SP(J) key/S browse/
SP

Evaluation compl compl compl partial compl compl partial compl
Comb. res. union union merge merge union
Maintenance
Changes add/ src inst add/

src inst
add

Reuse match/
map/
int sch

match/
map/
int sch

Improvement
Approach alg match

/exp user
exp user

Stage feedb match
Stage impr match

120 C. Hedeler et al.

Table 2. Properties of the initialisation, usage, maintenance, and improvement phase
of existing data integration and dataspace proposals (cont.)

Dimension Q [37] Cimple [11,29] CopyCat [22] Octopus [7]
Life time/Life cycle
Lifetime medium/ long long short short
Life cycle init/use/ impr init/use/

maint/impr
init/use/ impr init/ use/ impr

Initialisation
Data sources; identification
Cont app sp (gen) app sp gen gen
Type s str/str str s str/str s str/str
Location distr distr distr distr
Integration schema; design/derivation
Type union merge union merge
Scope gen dom sp dom sp dom sp
Process aut man s aut s aut
Input schema/ match schema/ inst/ match schema/ inst
Matchings; identification
Endpoints src-src src-src/ src-int src-src src-int
Process s aut s aut s aut s aut
Input schema/ inst schema/ inst schema/ inst schema/ inst
Mappings; identification
Endpoints src-src src-int src-int src-int
Process aut man s aut s aut
Input schema/ match/ query schema/ inst schema/ inst
Resulting data resource; creation
Materialis. virt p mat f mat f mat
Reconcil. dupl dupl
Usage: Search/query; evaluation
Specification in adv/ run run in adv in adv
Type key key/ SPJ VQL key
Evaluation compl compl compl compl
Comb. res. union merge union merge
Maintenance
Changes src sch/ src inst add add
Reuse int sch map
Improvement
Approach exp user exp user exp user exp user exp user
Stage feedb map res/ res ran match int sch/ map int sch/ map
Stage impr map map match int sch/ map int sch/ map

(f mat). During the creation of the integrated database, duplicates (dupl) entities
and conflicts (confl) can either be reconciled (Reconciliation) using, e.g., record
linkage approaches, or be allowed to coexist.

2.2 Usage Phase: Search/Query and Their Evaluation

Searches and queries can be specified (Specification) as a workload in advance
(in adv) of data integration taking place, or they can be specified after the inte-
gration, at runtime (run). Specifying queries in advance provides the potential for
optimising the integration specifically for a particular workload. Different types
of searches/queries can be supported by the dataspace: exploratory searches,
e.g, browsing (browse) or visual query languages (VQL), which are useful either
if the user is unfamiliar with the integration schema, or if there is no integra-
tion schema. Other types include keyword search (key), select- (S), project- (P),

Dataspaces 121

join- (J), and aggregation (aggr) queries. A common aim for a dataspace is to
provide some kind of search at all times [16]. Query evaluation can either be
complete (compl) or partial (part), e.g., using top-k evaluation approaches or
approaches that are able to deal with the unavailability of data sources [16].
If multiple sources are queried, the results have to be combined (Combine re-
sults), which may be done by forming the union or merging (merge) the results,
which may include the reconciliation of duplicates entities and/or conflicts using,
e.g., record linkage approaches.

2.3 Maintenance and Improvement Phase

The maintenance phase deals with the fact that the underlying data sources are
autonomous [16], and the improvement phase aims to provide tighter integration
over time [16]. The steps in both phases are comparable to the steps involved in
the initialisation phase, however, additional inputs may need to be considered.
Examples include user feedback, as well as previous matchings and mappings
that may need to be updated after changes in the underlying schemas.

Despite the general awareness that a DSMS needs to be able to cope with
evolving data sources and needs to improve over time, only limited results have
been reported to date, making it hard to consolidate the efforts into coherent
dimensions. In the following we suggest a set of dimensions, that may be used
to characterise future research efforts (see also Tables 1 and 2).

Maintenance: For effective maintenance, a DSMS needs to be able to cope with
a number of different changes, including adding (add) and removing (rem) of
resources. A DSMS also needs to be able to cope with changes in the underlying
sources, e.g. changes to the instances (src inst) or the schemas (src sch), as well
as changes to the integration schema (int sch). Ideally, a DSMS should require
little or no manual effort to respond to those changes. It may also be beneficial to
Reuse the results of previous integration tasks, e.g., previous matchings (match),
mappings (map), integration schemas (int sch), or even user feedback (feedb)
when responding to source changes.

Improvement: Improvement may be achieved in a number of ways (Approach),
including the use of different or additional approaches to those used during ini-
tialisation for deriving matchings (a match), mappings (a map), or the integra-
tion schema (a int). Furthermore, user feedback can be utilised, which could be
implicit (imp user) or explicit (exp user). In cases where user feedback is consid-
ered, this could be requested about a number of different stages (Stage feedb).
This includes requesting feedback on the matchings (match), mappings (map),
integration schema(s) (int sch), reformulated queries (ref query), query results
(res) (e.g., [3]) or the ranking of the results (res ran). The feedback obtained may
not only be used to revise the stage about which it was acquired, but it may also
be propagated for improvement at other stages (Stage impr). The values for this
property are the same as for Stage feedb.

122 C. Hedeler et al.

2.4 Uncertainty

For the purpose of this survey, we use the term uncertainty to cover various
aspects, such as the trustworthiness of sources, or the robustness of algorithms
which, e.g., could be represented as probabilities or scores associated with the
resulting matchings or mappings. When data from a variety of sources is inte-
grated, uncertainty may be introduced at various stages of the initialisation and
maintenance phases, and may have an impact on the usage and improvement
phases. As uncertainty plays a role across all phases of the dataspace life cycle, it
is discussed separately here. Table 3 classifies proposals that handle uncertainty
explicitely in terms of the dimensions.

When the uncertainty that is intrinsic to the integration process is made ex-
plicit, all the concepts that are produced during initialisation can be annotated
with uncertainty information. The concepts include: source data, which in itself
could be of uncertain quality; data sources, which for example could be ranked
with respect to their relevance to a given query; the matchings identified, which
may be computed using algorithms that use partial information; the mappings,
which may be derived from uncertain matchings or, similar to matchings, they
may be derived using incomplete information; the integration schema, which
may be one of many alternative integration schemas that can be derived from
mappings and as such may not model the conceptual world appropriately; and
the resulting data resource, which may have uncertainty associated with its in-
tegrated content due to the uncertainty associated with the integration process
itself. The uncertainty that may be accumulated throughout the various stages
of the intialisation phase may then manifest itself in the usage phase. As such,
query results or their rankings may be annotated with uncertainty information
or quality measures. In addition, certain properties of the query itself may be
uncertain, e.g., it may be uncertain whether a structured query that is derived
from a keyword query [37] is an appropriate representation of the query the user
had in mind.

Uncertainty can be represented by various kinds of annotation, which include:
scores, which, for example, can be used to represent a preference; probabilities,
which can be used to express the probability that a concept is relevant; preci-
sion/recall measures; or by ranking values without providing addition quality
measures. However, the quality measures associated with a concept could have
various meanings, for example, the ranking of query results could mean that the
results ranked higher are more relevant to the query or that they are more likely
to be part of the correct answer as the matchings, mappings, etc. that have been
utilised to obtain the answers have less uncertainty associated with them than
the mappings used to obtain the lower ranked results. As such, we also clarify for
each proposal that represents uncertainty explicitly the meaning of the quality
measures associated with the concepts.

The annotation representing uncertainty can be propagated through various
of the operations of the initialisation phase, such as, identify matchings, derive
mappings, derive integration schema, and create resulting data resource. The
operations utilised during the usage phase, such as answer query and combine

Dataspaces 123

Table 3. Handling of uncertainty by existing data integration and dataspace proposals

Concept Proposal Kind of
annota-
tion

Meaning Propagation Propag.
function

Data
sources

PayGo[27] ranking relevance to query combine results in-built

Octopus [7] score/
ranking

relevance to query

Matchings iMeMex[10,4],
iTrails[34]

prob likelihood that results ob-
tained are correct

derive mappings/ derive
integration schema

in-built

weights relevance of matching to
query

derive mappings/ derive
integration schema

in-built

PayGo[27] weights distance between schemas derive mappings/ derive
integration schema

in-built

UDI[35,13,14,36]prob probability that matching is
correct

derive mappings/ derive
integration schema/ an-
swer query

in-built

Roomba
[23]

score confidence of match being
correct

Q [37] costs bias against using match-
ing for query as it pro-
duces worse answers from
the user’s point of view when
used to answer a query

derive mappings/ an-
swer query

in-built

Cimple
[11,29]

score confidence that match is cor-
rect

answer query in-built

CopyCat
[22]

score relevance to integration op-
eration

derive mappings/ an-
swer query

in-built

Mapping Octopus [7] score relevance to query and table
to be joined with

Query Roomba
[23]

score expected result quality

Query re-
sults

UDI[35,13,14,36]score scores of mappings used

Q [37] score cost of the query that pro-
duced result

Cimple
[11,29]

score scores from matchings used

CopyCat
[22]

score score of query that produced
result

User Cimple
[11,29]

score trustworthiness of user

results, can also propagate uncertainty. The propagation function that deter-
mines how the uncertainty is propagated can either be a predetermined built-in
function, such as the sum or product of all the scores associated with the input
concept, or can be user-defined, e.g., allowing the user to assign different impor-
tance in the form of weights to certain inputs. For example, users may choose
to trust information coming from particular sources more than from others, and
may want to encode their preference in the propagation function.

2.5 Human-Computer Interface

Another aspect that plays a role across the various phases of the dataspaces life
cycle is the Human-Computer Interface that is provided to enable the user to
interact with the system (see Table 4 for properties of proposals that provide a
description of their user interface, and Table 5 for properties of proposals that
describe the query inputs and outputs). As users have varying backgrounds,

124 C. Hedeler et al.

Table 4. Human-Computer Interfaces provided by existing data integration and
dataspace proposals

Concept Proposal Kind of user Input Optional/ Mandatory
Matchings Roomba [23] domain expert annotate optional

Cimple [11,29] domain expert provide/ edit/ annotate mandatory/ optional
Mappings DB2 II [17] database expert provide mandatory

iMeMex[10,4],
iTrails[34]

database expert provide mandatory

Q [37] domain expert edit optional
CopyCat [22] domain expert provide/ edit/ annotate mandatory
Octopus [7] domain expert edit/ annotate mandatory

Integration
schema

SEMEX [12,25] domain expert edit optional

Cimple [11,29] domain expert provide mandatory
CopyCat [22] domain expert provide/ edit/ annotate mandatory
Octopus [7] domain expert edit/ annotate mandatory

Ranked query
results

Q [37] domain expert annotate optional

Table 5. Query Interfaces provided by existing data integration and dataspace
proposals

Proposal Query input Query output
DB2 II [17] structured results
Aladin [24] keywords/ structured ranked results
SEMEX [12,25] keywords/ structured results/ browse
iMeMex[10,4], iTrails[34] keywords/ structured results/ browse/ provenance
PayGo[27] keywords ranked results
UDI[35,13,14,36] structured ranked results
Roomba [23] keywords/ structured results
Quarry [20] structured results/ browse
Q [37] keyword ranked results
Cimple [11,29] keyword/ structured ranked results/ browse
CopyCat [22] visual query language results/ provenance
Octopus [7] keyword results

knowledge and experience, interfaces should be designed for different kinds of
users. For the purpose of the classification framework, we only focus on domain
experts who are familiar with the domain which is described by the information
to be integrated and queried and database experts with a good understanding,
for example, of the source schemas, the integration schema and how they relate
to each other. Throughout the initialisation and improvement phase, users may
want to or may be encouraged to provide information at various stages. The
input provided by users may include providing the concepts in question as input,
editing those suggested by the integration system, or annotating them with qual-
ity measures, for example, by indicating which were expected by the user (true
positives), or which were not expected (false positives). Concepts that users may
provide as input, edit or annotate include matchings, mappings, the integration
schema, query results and ranked query results. Providing the information or
annotation can either be mandatory or optional.

To cater for different kinds of users but also different degrees of integration,
different interfaces for querying the integrated sources as well as viewing and
possibly exploring the results may have to be provided. The query input can be
provided using a visual query language, keywords or structured queries, such as

Dataspaces 125

the select, project and join queries mentioned earlier in the usage phase. The
query output could consist simply of the results or the ranked results, or could in
addition include some provenance information that can be explored by the user
to identify the source of the information returned. In addition, a means may be
provided to browse the results and their associations with other information, for
example by providing links that users can follow.

3 Data Integration Proposals

For the purpose of comparison, this section uses the framework to characterise
and describe a number of dataspaces proposals, and in addition the data integra-
tion facilities of DB2 [17] as an example of a classical data integration approach.
The proposals were classified according to the dimensions in Section 2. Only
published proposals were chosen for which sufficient implementation detail is
available to enable them to be classified according to the framework presented
in Section 2.

DB2 [17] follows a database federation approach. It provides uniform access
to heterogeneous data sources through a relational database that acts as media-
tion middleware. The integration schema could be a union schema, or a merged
schema defined by views which need to be written manually. Data sources are
accessed by wrappers, some of which are provided by DB2 and some of which
may have to be written by the user. A wrapper supports full SQL and trans-
lates (sub)queries of relevance to a source so that they are understood by the
external source. Due to the virtual nature of the resulting data resource, changes
in the underlying data sources may be responded to with limited manual effort.
In summary, DB2 relies on largely manual integration, but can provide tight
semantic integration and powerful query facilities in return.

ALADIN [24] supports semi-automatic data integration in the life sciences,
with the aim of easing the addition of new data sources. To achieve this, ALADIN
makes use of assumptions that apply to this domain, i.e., that each database
tends to be centered around one primary concept with additional annotation
of that concept, and that databases tend to be heavily cross-referenced using
fairly stable identifiers. ALADIN uses a union integration schema, and predomi-
nantly instance-based domain-specific approaches, e.g., utilising cross-referencing
to discover relationships between attributes in entities. The resulting links are
comparable to matchings. Duplicates are discovered during materialisation of the
data resource. Links and duplicate information are utilised for exploratory and
keyword searches and may help life scientists to discover previously unknown re-
lationships. To summarise, ALADIN provides fairly loose integration and mainly
exploratory search facilities that are tailored to the life sciences domain.

SEMEX [12,25] integrates personal information. A domain model, which es-
sentially can be seen as a merged integration schema, is provided manually up-
front, but may be extended manually if required. Data sources are accessed
using wrappers, some provided, but some may have to be written manually. The
schemas of the data sources are matched and mapped automatically to the domain

126 C. Hedeler et al.

model, using a bespoke mapping algorithm that utilises heuristics and reuses ex-
perience from previous matching/mapping tasks. As part of the materialisation
of the resulting data resource, duplicate references are reconciled, making use of
domain knowledge, e.g., exploiting knowledge of the components of email ad-
dresses. SEMEX provides support for adding new data sources and changes in
the underlying data, e.g., people moving jobs and changing their email address
or phone number, which require domain knowledge to be resolved, e.g., to re-
alise that it is still the same person despite the change to the contact details.
SEMEX, therefore, can be seen as a domain-specific dataspace proposal that
relies on domain knowledge to match schemas to the given integration schema
and reconcile references automatically.

iMeMeX [10,4] is a proposal for a dataspace that manages personal infor-
mation; in essence, data from different sources such as email or documents are
accessed from a graph data model over which path-based queries can be evalu-
ated. iMeMeX provides low-cost data integration by initially providing a union
integration schema over diverse data resources, and supports incremental refine-
ment through the manual provision of path-based queries known as iTrails [34].
These trail definitions may be associated with a score that indicates the uncer-
tainty of the author that the values returned by an iTrail is correct. As such,
iMeMeX can be seen as a light weight dataspace proposal, in which uniform data
representation allows queries over diverse resources, but without automation to
support tasks such as the management of relationships between sources.

PayGo [27] aims to model web resources. The schemas of all sources are inte-
grated to form a union schema. The source schemas are then matched automat-
ically using a schema matching approach that utilises results from the matching
of large numbers of schemas [26]. Given the similarity of the schemas determined
by matching, the schemas are then clustered. Keyword searches are reformulated
into structured queries, which are compared to the schema clusters to identify
the relevant data sources. The sources are ranked based on the similarity of
their schemas, and the results obtained from the sources are ranked accordingly.
PayGo [27] advocates the improvement of the semantic integration over time by
utilising techniques that automatically suggest relationships or incorporate user
feedback; however, no details are provided as to how this is done. In summary,
PayGo can be seen as a large-scale, multi-domain dataspace proposal that offers
limited integration and provides keyword-based search facilities.

UDI [35,13,14,36] is a dataspace proposal for integration of a large number
of domain independent data sources automatically. In contrast to the proposals
introduced so far, which either start with a manually defined integration schema
or use the union of all source schemas as integration schema, UDI aims to derive
a merged integration schema automatically, consolidating schema and instance
references. As this is a hard task, various simplifying assumptions are made: the
source schemas are limited to relational schemas with a single relation, and for
the purpose of managing uncertainty, the sources are assumed to be indepen-
dent. Source schemas are matched automatically using existing schema match-
ing techniques [32]. Using the result of the matching and information on which

Dataspaces 127

attributes co-occur in the sources, attributes in the source schemas are clustered.
Depending on the scores from the matching algorithms, matchings are deemed
to be certain or uncertain. Using this information, multiple mediated schemas
are constructed, which are later consolidated into a single merged integration
schema that is presented to the user. Mappings between the source schemas
and the mediated schemas are derived from the matchings and have uncertainty
measures associated with them. Query results are ranked based on the scores
associated with the mappings used. In essence, UDI can be seen as a proposal
for automatic bootstrapping of a dataspace, which takes the uncertainty result-
ing from automation into account, but makes simplifying assumptions that may
limit its applicability.

Even though the majority of proposals acknowledge the necessity to improve
a dataspace over time, Roomba [23] is the first proposal that places a significant
emphasis on the improvement phase. It aims to improve the degree of seman-
tic integration by asking users for feedback on matches and mappings between
schemas and instances. It addresses the problem of choosing which matches
should be confirmed by the user, as it is impossible for a user to confirm all
uncertain matches. Matches are chosen based on their utility with respect to a
query workload that is provided in advance. To demonstrate the applicability of
the approach, a generic triple store has been used and instance-based matching
using string similarity is applied to obtain the matches.

Quarry [20] also uses a generic triple store as its resulting data source, into
which the data is materialised. Using a union schema, the data from the data
sources coexists without any semantic integration in the form of matchings
or mappings. So called signature tables, which contain the properties for each
source, are introduced and it is suggested that signature tables with similar prop-
erties could be combined. Quarry provides an API for browsing the integrated
data and for posing select and project queries.

Q [37], the query system of Orchestra [21], a collaborative data sharing
system, covering the three phases intialisation, usage and improvement, uses
a generic graph structure to store the schemas and matches between schema
elements, which are derived semi-automatically and annotated with costs repre-
senting the bias of the system against using the matches. Mappings in the form of
query templates are derived from keyword queries posed by the user and matched
against the schemas and matches. Multiple mappings are ranked by the sum of
the cost associated with the matches utilised for the mapping, and may be edited
and made persistent by the user for further reuse and parameterisation by him
and other users. Tbe parameterised queries are executed and the results ranked
by the cost associated with the query that produced them and annotated with
provenance information that enables the propagation of user feedback from the
ranked query results to the corresponding mapping. Users may provide feedback
on the results and their ranking, indicating which results should be removed, or
how results should be ranked, which is propagated to the ranking of the produc-
ing mappings and the costs of the matchings utilised. The feedback is used to

128 C. Hedeler et al.

adjust the costs of the matchings and thus the ranking of the mappings used to
answer the query in an attempt to try and learn the model the user has in mind.

Community Information Management systems, such as Cimple [11,29] aim to
reduce the up-front cost of data integration by leveraging user feedback from the
community. An integration schema is provided manually, sources matched in a
semi-automatic manner in which an automatic tool is used as a starting point
and users are asked to answer questions, thus confirming or rejecting matches
suggested by the automatic tool. The uncertainty associated with the matches
is propagated through to the query results, which are annotated with scores and
ranked. As Cimple applies a mass collaboration approach and aims to reduce
the uncertainty by gathering feedback from users, it is aware of trustworthy and
untrustworthy users providing feedback, something not taken into account by
other proposals that gather user feedback. It handles feedback by the different
classes of users by ignoring feedback from untrustworthy users and taking a
majority vote on the feedback from trustworthy users to identify correct matches.

CopyCat [22] follows a more interactive approach to data integration, combin-
ing the integration-, usage- and improvement phases by providing a spreadsheet-
like workspace in which users copy and paste examples of the data they would
like to integrate to answer the queries they have. The user copies data instances
from various sources into the spreadsheet, thus specifying the integration schema
and mappings initially manually. The system then tries to learn the schemas of
the sources and the semantic types of the data from those examples and uses the
learned information to identify matches between sources and to suggest mappings
that reproduce the example tuples provided by the user or that integrate further
data, thus making it a semi-automatic integration process. Users can provide
feedback on those suggestions by either ignoring, accepting, editing , or providing
alternatives. To ease the decision process for the user, provenance information
is provided with the suggested data to be integrated. The user feedback is prop-
agated back through the mappings to the matchings and their scores adjusted
accordingly to reflect the user preference which in turn affects the scores and,
therefore, the rankings of the mappings.

Similar to CopyCat, Octopus [7] provides the means for integrating multiple
sources on the web interactively by providing several operations that can be
utilised to create an integrated data source. Using the Search operator, the
user states a keyword query, for which the system tries to find sources which
are ranked according to their relevance with respect to the query. If multiple
data sources are required to gather the required information, users can use the
Extend operator, providing a column of a table with which to join the new
table and a keyword stating the information desired. With that information
the system tries to find appropriate source tables which are ranked according
to their relevance with respect to the query and their compatibility with the
column provided as input. Throughout the whole integration process, users can
provide feedback by editing or annotating in form or rejecting or accepting the
suggested source tables.

Dataspaces 129

Both, CopyCat and Octopus do not distinguish between the various phases
of the dataspace lifecycle, e.g., initialisation, usage, and improvement. Instead,
they promote a seamless combination of initialisation, usage and improvement
of the dataspace, albeit with a fair amount of user input required.

4 The Interplay between Dataspaces and Search Tasks

In this section, we investigate the interplay between dataspaces and search tasks.
In particular, we show how features that are peculiar to search tasks can be
borrowed and adapted in a dataspace context and vice-versa, and pinpoint open
issues that arise as a result.

4.1 Performing Search Tasks in Dataspaces

One of the defining features of search tasks is that the sources return streams
of ranked results. We refer to sources of this kind using the term search sources.
Although one could imagine dataspaces queries that involve search sources, the
classification and survey presented earlier in this chapter show that existing
dataspace proposals do not support them. This raises the question as to how a
dataspace system can be adapted to support queries over search sources. In what
follows, we discuss issues that have to do with the initialisation and improvement
phases of dataspaces when user queries are answered using search sources.

Usage. To support search sources, the query processor of the dataspace system
needs to be able to produce results by combining streams of sub-results produced
by multiple search sources. Furthermore, the results obtained need to be ranked
in the light of the rankings of the sub-results produced by the search sources. In
this respect, techniques from the search computing field can be borrowed and
adapted for combining and ranking dataspace query results.

Improvement. To perform a search task, the dataspace system needs mappings
from the integration schema, which is used by the user to pose queries, to the
schemas of search sources. In doing so, the system needs to identify the search
sources of relevance to users’ queries. The identification of search sources can be
performed in incremental manner by seeking feedback from users, e.g., the user
can specify whether a result that is obtained from given search sources meets
the expectations.

4.2 Using Dataspaces for Mult-domain Search Tasks

Multi-domain search tasks involve retrieving and combining the results obtained
from multiple search sources. In what follows, we discuss issues that arise in
the context of multi-domain searches, and shows how they can be addressed by
adopting the pay-as-you-go philosophy adopted in dataspaces.

130 C. Hedeler et al.

Query Expression. In a dataspace, the schemas of local data sources are initially
integrated using low cost techniques, in particular, schema matching and schema
merging algorithms are used for mappings the sources schemas and creating the
integration schema (see the integration schema dimensions). The system is then
improved in the light of feedback provided by the user in an incremental manner.
One could envisage adopting a similar approach for easing the specification of
multi-domain searches. In particular, the specification of the connections between
the search services involved can be automatically derived using, e.g., matching
techniques. Because those connections are derived based on heuristics, they may
not meet the designer’s expectations, which gives rise to the following research
issue: How can the connections suggested by inference tools to link search sources
be verified?

Another issue that arises in search tasks is the specification of queries that
capture user’s expectations. In dataspaces, the user can pose a structured query,
e.g., using SQL, or specify a collection of keywords from which the dataspace
system attempts to construct/learn a structured query using as input the source
schemas and the mappings that connect the elements of these schemas [28,38]
(see the query type dimension). Can a similar approach be adopted for specify-
ing queries in the context of search tasks? One could envisage the case in which
the user specifies a form that captures the elements of the search results the
user is after. Using such a form, the system then attempts to construct a query
by identifying the sources that provide the elements specified by the user, and
connects the schemas of the sources selected using previously specified schema
mappings. Of relevance to this problem is the proposal by Blunschi et al. [4],
which considers indexing support for queries that combine keywords and struc-
ture and proposes several extensions to inverted lists to capture structure when
it is present. In particular, it takes into account attribute labels, relationships be-
tween data items, hierarchies of schema elements, and synonyms among schema
elements. We can also foresee the application of techniques taken from differ-
ent areas in which the problem of search in semistructured or non structured
data was already addressed [8,1,6,15]. In general, multiple structured queries are
constructed from a set of keywords. The issue that needs to be addressed is,
therefore, to identify the queries that closely meet user expectations.

Usage and Improvement. The results returned by each of the sources involved
in a multi-domain search task are uncertain; this uncertainty is partly due to
the fact that such results are generally obtained by matching a request with
the content of the source in question using heuristics. The difficulty then lies in
specifying a function whereby the results obtained by combining the sub-results
retrieved from the sources involved in the search task can be ranked; this is a
ranking composition problem [5]. Currently, ranking composition functions are
typically manually specified, a task that can be difficult since it involves defining
the global ranking of the query results taking into consideration the (possibly
different) ranking criteria adopted by the underlying search sources.

A possible solution to the above issue can be borrowed from dataspaces
through pay-as-you-go development of ranking composition. The results returned

Dataspaces 131

by evaluating a user query in dataspaces are also uncertain; this uncertainty is
partly due to the fact that the mappings used for populating the elements of
the integration schema (against which the user queries are posed) are derived
based on the results of matching heuristics [33] (see mappings identification di-
mensions). These mappings may not be manually debugged, but rather may
be verified by seeking feedback from end users (see improvement dimensions).
A similar approach can be adopted for specifying ranking composition in the
context of multi-domain search tasks. For example, the user can specify that a
given result should appear before another one. Using this kind of feedback, the
system can then learn the ranking desired by the user. Which mechanism to use
for leaning the correct ranking is an open issue. Existing ranking methods and
algorithms in the information retrieval literature are potentially relevant for this
purpose [9].

5 Conclusions

Dataspaces represent a vision for incremental refinement in data integration, in
which the effort devoted to refining a dataspace can be balanced against the cost
of obtaining higher quality integration. Comprehensive support for pay-as-you-
go data integration might be expected to support different forms of refinement,
where both the type and quantity of feedback sought are matched to the specific
requirements of an application, user community or individual. Early proposals,
however, provide rather limited exploration of the space of possibilities for in-
cremental improvement. As the large number of dimensions in the classification
shows, the decision space facing the designers of dataspaces has many aspects.
In this context, a common emphasis has been on reducing start-up costs, for
example by supporting a union integration schema; such an approach provides
syntactic consistency, but the extent to which the resulting dataspace can be
said to “integrate” the participating sources is somewhat limited.

Although there is a considerable body of work outside dataspaces to sup-
port activities such as schema matching or merging, early dataspace proposals
have made fairly limited use of such techniques. Furthermore, there are no com-
parable results on automated refinement. As such, there is some way top go
before the full range of dimensions associated with dataspaces are associated
with substantive results, and even where this is the case there will be consider-
able challenges composing these results to provide dataspace deployments that
meet diverse user requirements. However, dataspaces provide an overall vision
that promises to enable the wider application of information integration tech-
niques, by balancing the costs of integration activities with their benefits. The
challenge of providing appropriate data integration at manageable cost seems
to be of widespread relevance in widely different contexts, including personal,
group, enterprise and web scale settings, acting over sources that provide com-
putational services, structured data access and search. This chapter has sought
to characterise the area, with a view to comparing the contributions to date,
identifying topics for further investigation, and clarifying the space of issues of
relevance to pay-as-you-go integration.

132 C. Hedeler et al.

With respect to the interplay between search computing and dataspaces, we
note that techniques from search computing can be borrowed to address issues
that arise within dataspaces, and vice versa. In particular, search computing
techniques can be used in dataspaces when queries need to be evaluated using
search sources. On the other hand, the pay-as-you-go dataspace philosophy can
be used in search computing for incrementally defining ranking functions based
on feedback supplied by end users.

References

1. Amer-Yahia, S., Botev, C., Shanmugasundaram, J.: Texquery: a full-text search
extension to xquery. In: WWW 2004: Proceedings of the 13th international con-
ference on World Wide Web, pp. 583–594. ACM, New York (2004)

2. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB J. 17(6), 1347–1370 (2008)

3. Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A., Hedeler, C.:
Feedback-based annotation, selection and refinement of schema mappings for datas-
paces. In: EDBT (2010)

4. Blunschi, L., Dittrich, J.-P., Girard, O.R., Karakashian, S.K., Salles, M.A.V.: A
dataspace odyssey: The imemex personal dataspace management system (demo).
In: CIDR, pp. 114–119 (2007)

5. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multi-domain
queries on the web. PVLDB 1(1), 562–573 (2008)

6. Cafarella, M.J., Etzioni, O.: A search engine for natural language applications.
In: WWW 2005: Proceedings of the 14th international conference on World Wide
Web, pp. 442–452. ACM, New York (2005)

7. Cafarella, M.J., Halevy, A.Y., Khoussainova, N.: Data integration for the relational
web. PVLDB 2(1), 1090–1101 (2009)

8. Chakrabarti, S., Puniyani, K., Das, S.: Optimizing scoring functions and indexes
for proximity search in type-annotated corpora. In: WWW 2006: Proceedings of
the 15th international conference on World Wide Web, pp. 717–726. ACM, New
York (2006)

9. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic information re-
trieval approach for ranking of database query results. ACM Trans. Database
Syst. 31(3), 1134–1168 (2006)

10. Dittrich, J.-P., Salles, M.A.V.: idm: A unified and versatile data model for personal
dataspace management. In: VLDB 2006: 32nd International Conference on Very
Large Data Bases, pp. 367–378. ACM, New York (2006)

11. Doan, A., Ramakrishnan, R., Chen, F., DeRose, P., Lee, Y., McCann, R., Sayya-
dian, M., Shen, W.: Community information management. IEEE Data Eng.
Bull. 29(1), 64–72 (2006)

12. Dong, X., Halevy, A.Y.: A platform for personal information management and
integration. In: CIDR 2005, pp. 119–130 (2005)

13. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: VLDB 2007:
33rd International Conference on Very Large Data Bases, pp. 687–698 (2007)

14. Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. VLDB
J. 18(2), 469–500 (2009)

Dataspaces 133

15. Florescu, D., Kossmann, D., Manolescu, I.: Integrating keyword search into xml
query processing. In: Proceedings of the 9th international World Wide Web con-
ference on Computer networks: the international journal of computer and telecom-
munications netowrking, pp. 119–135. North-Holland Publishing Co., Amsterdam
(2000)

16. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstrac-
tion for information management. SIGMOD Record 34(4), 27–33 (2005)

17. Haas, L., Lin, E., Roth, M.: Data integration through database federation. IBM
Systems Journal 41(4), 578–596 (2002)

18. Halevy, A., Franklin, M., Maier, D.: Principles of dataspace systems. In: PODS
2006: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, pp. 1–9. ACM, New York (2006)

19. Hedeler, C., Belhajjame, K., Fernandes, A.A.A., Embury, S.M., Paton, N.W.:
Dimensions of dataspaces. In: Sexton, A.P. (ed.) BNCOD 2009. LNCS, vol. 5588,
pp. 55–66. Springer, Heidelberg (2009)

20. Howe, B., Maier, D., Rayner, N., Rucker, J.: Quarrying dataspaces: Schemaless
profiling of unfamiliar information sources. In: ICDE Workshops, pp. 270–277.
IEEE Computer Society, Los Alamitos (2008)

21. Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar,
P.P., Jacob, M., Pereira, F.: The orchestra collaborative data sharing system. SIG-
MOD Record 37(3), 26–32 (2008)

22. Ives, Z.G., Knoblock, C.A., Minton, S., Jacob, M., Talukdar, P.P., Tuchinda, R.,
Ambite, J.L., Muslea, M., Gazen, C.: Interactive data integration through smart
copy & paste. In: CIDR (2009)

23. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for datas-
pace systems. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data, pp. 847–860. ACM, New York (2008)

24. Leser, U., Naumann, F.: (almost) hands-off information integration for the life
sciences. In: Conf. on Innovative Database Research (CIDR), pp. 131–143 (2005)

25. Llu, J., Dong, X., Halevy, A.: Answering structured queries on unstructured data.
In: WebDB 2006, pp. 25–30 (2006)

26. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema match-
ing. In: International Conference on Data Engineering (ICDE 2005), pp. 57–68
(2005)

27. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: CIDR 2007: Third
Biennial Conference on Innovative Data Systems Research, pp. 342–350 (2007)

28. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: CIDR, pp. 342–350
(2007)

29. McCann, R., Shen, W., Doan, A.: Matching schemas in online communities: A web
2.0 approach. In: ICDE, pp. 110–119 (2008)

30. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa,
L.: The clio project: managing heterogeneity. SIGMOD Record 30(1), 78–83 (2001)

31. Pottinger, R., Bernstein, P.A.: Schema merging and mapping creation for relational
sources. In: EDBT, pp. 73–84 (2008)

32. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)

33. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

134 C. Hedeler et al.

34. Salles, M.A.V., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi, L.:
itrails: Pay-as-you-go information integration in dataspaces. In: VLDB 2007: 33rd
International Conference on Very Large Data Bases, pp. 663–674. ACM, New York
(2007)

35. Sarma, A.D., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration
systems. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 861–874. ACM, New York (2008)

36. Sarma, A.D., Dong, X.L., Halevy, A.Y.: Data modeling in dataspace support plat-
forms. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual
Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 122–138. Springer,
Heidelberg (2009)

37. Talukdar, P.P., Jacob, M., Mehmood, M.S., Crammer, K., Ives, Z.G., Pereira, F.,
Guha, S.: Learning to create data-integrating queries. PVLDB 1(1), 785–796 (2008)

38. Tatemura, J., Chen, S., Liao, F., Po, O., Candan, K.S., Agrawal, D.: Uqbe: un-
certain query by example for web service mashup. In: SIGMOD Conference, pp.
1275–1280 (2008)

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 135–155, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 8:
Multimedia and Multimodal Information Retrieval

Alessandro Bozzon and Piero Fraternali

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{alessandro.bozzon, piero.fraternali}@polimi.it

Abstract. The Web is progressively becoming a multimedia content delivery
platform. This trend poses severe challenges to the information retrieval theories,
techniques and tools. This chapter defines the problem of multimedia information
retrieval with its challenges and application areas, overviews its major technical
issues, proposes a reference architecture unifying the aspects of content processing
and querying, exemplifies a next-generation platform for multimedia search, and
concludes by showing the close ties between multi-domain search investigated in
Search Computing and multimodal/multimedia search.

Keywords: multimedia information retrieval, digital signal processing, video
search engines, multi-modal query interfaces.

1 Introduction

The growth of digital content has reached impressive rates in the last decade, fuelled
by the advent of the so-called “Web 2.0” and the emergence of user-generated
content. At the same time, the convergence of the fixed-network Web, mobile access,
and digital television has boosted the production and consumption of audio-visual
materials, making the Web a truly multimedia platform.

This trend challenges search as we know it today, due to the more complex nature
of multimedia with respect to text, in all the phases of the search process: from the
expression of the user’s information need to the indexing of content and the
processing of queries by search engines.

This Chapter gives a concise overview of Multimedia Information Retrieval
(MIR), the long-standing discipline at the base of audio-visual search engines, and
connects the research challenges in this area to the objectives and research goals of
Search Computing.

MIR amplifies many of the research problems at the base of search over textual
data. The grand challenge of MIR is bridging the gap between queries and content:
the former are either expressed by keywords, like in text search engines, or, by
extension, with non-textual samples (e.g., an image or a piece of music). Unlike in
text search engines, where the query has the same format of content and can be
matched almost directly to it, query processing in MIR must fill an enormous gap. To
understand if an image, video or piece of music is relevant to some keyword, it is
necessary to extract the hidden knowledge buried inside the aural and visual

136 A. Bozzon and P. Fraternali

resources, a multi-sensorial recognition problem that in nature living organisms took
quite a long time to solve.

Not surprisingly, MIR research revolves around the problem of extracting,
organizing and making available for querying the knowledge present inside media
assets. This problem is far from being solved in general, but many effective
techniques have been devised for special cases, typically for the extraction of specific
“features” from specific non-textual resources. Applications like music mood
classification and similarity matching, face recognition, video optical character
recognition are examples of these techniques, already deployed in commercial
multimedia search solutions.

Since giving the full account of MIR research goes beyond the limits of this
Chapter, we have organized the illustration so as to give a flavor of the essential
themes. After exemplifying the numerous applications that motivate the growing
interest in MIR (Section 1.1), Section 2 overviews the principal research topics in the
development of a MIR solution: from the acquisition of content (Section 2.1), to its
normalization for the purpose of processing (Section 2.2), to the extraction of the
features useful for searching and their organization by means of suitable indexes
(Section 2.3), to the languages and algorithms for processing queries (Section 2.4), to
the problem of presenting search results (Section 2.5).

The variety of MIR solutions available can be abstracted by a common
architecture, which is the subject of Section 3; a MIR system can be seen as an
infrastructure for governing two main processes: the content process, treated in
Section 3.1, comprises all the steps necessary to extract indexable features (called
metadata) from multimedia elements; the query process, overviewed in Section 3.2,
includes all the steps for executing a user’s query.

The link between the content process and the query process is represented by
metadata, which encode the knowledge that the MIR system is able to extract from
the media assets, index and use for answering queries. Given that no single universal
standard still exists for MIR metadata, Section 4 overviews some of the most popular
formats that have been proposed in different application domains. How to extract such
metadata from audiovisual data is the subject of Section 5, which presents a bird’s
eyes view of some feature extraction approaches for audio, image, and video content.
This is the area where current research is most active, because the problem of
understanding the content of non-textual data is far from being solved in a general
way. In Section 6, we also provide an overview of the different query languages used
in MIR, which go from simple keyword queries to structured languages.

To make the Chapter more concrete, Section 7 mentions a number of research and
commercial MIR systems, where the architecture and techniques described in the
preceding Sections have been put to work.

We conclude the Chapter with an outlook (in Section 8) of what lessons can be
mutually learnt by researchers in MIR and Search Computing. As in MIR, Search
Computing relies on a well balanced mix of offline content preparation (the wrapping
and registration of heterogeneous data sources) and smart query processing;
moreover, the presentation of multimedia search results requires smart solutions for
easing the interpretation of complex results sets, which exhibit sophisticated internal
structure, and a spatial as well as temporal distribution. MIR systems, pioneers of a
search technology that goes beyond textual Web pages, may be an interesting source

 Multimedia and Multimodal Information Retrieval 137

of inspiration for the multi-domain content integration, query processing, and result
presentation challenges that Search Computing is facing.

1.1 Motivations, Requirements and Applications of Multimedia Search

“Finding the title and author of a song recorded with one’s mobile in a crowded
disco”; “Locating news clips containing interviews to President Obama and accessing
the exact point where the Health Insurance Reform is discussed”; “Finding a song
matching in mood the images to be placed in a slideshow”. These are only a few
examples of what multimedia information retrieval is about: satisfying a user’s
information need that spans across multiple media, which can itself be expressed
using more than one medium.

The requirements of a MIR application bring to the extreme or go beyond the
problems faced in classical text information retrieval [37]:

• Opacity of Content: whereas in text IR the query and the content use the same
medium, MIR content is opaque, in the sense that the knowledge necessary to
verify if an item is relevant to a user’s query is deeply embedded in it and must
be extracted by means of a complex pre-processing (e.g., extracting speech
transcriptions from a video).

• Query Formulation Paradigm: as for traditional search engines, keywords
may not be the only way of seeking for information: for instance, queries can be
expressed by analogy, submitting a sample of content “similar” to what the user
is searching for. In MIR, content samples used as queries can be as complex as
an image, a piece of music, or even a video fragment.

• Relevance Computation: in text search, relevance of documents to the user’s
query is computed as the similarity degree between the vectors of words
appearing in the document and in the query (modulo lexical transformations). In
MIR, the comparison must be done on a much wider variety of features,
characteristic not only of the specific medium in which the content and the
query are expressed, but even of the application domain (e.g., two audio files
can be deemed similar in a music similarity search context, but dissimilar in a
topic-based search application).

MIR applications requirements have been extensively addressed in the last three
decades, both in the industrial and academic fields. As a consequence, MIR is now a
consolidated discipline, adopted into a wide variety of domains [41], including:

• Architecture, real estate, and interior design (e.g., searching for ideas).
• Broadcast media selection (e.g., radio channel [58], TV channel).
• Cultural services (history museums [11], art galleries, etc.).
• Digital libraries (e.g., image catalogue [69], musical dictionary, bio-medical

imaging catalogues [4], film, video and radio archives [52]).
• E-Commerce (e.g., personalized advertising, on-line catalogues [53]).
• Education (e.g., repositories of multimedia courses, multimedia search for

support material).
• Home Entertainment (e.g., systems for the management of personal multimedia

collections [27], including manipulation of content, e.g. home video editing [2],
searching a game, karaoke).

138 A. Bozzon and P. Fraternali

• Investigation (e.g., human characteristics recognition [22], forensics [40]).
• Journalism (e.g. searching speeches of a certain politician [25] using his name,

his voice or his face [23]).
• Multimedia directory services (e.g. yellow pages, Tourist information, Geographical

information systems).
• Multimedia editing (e.g., electronic news service [16], media authoring).
• Remote sensing (e.g., cartography, ecology [81], natural resources management).
• Social (e.g. dating services, podcast [54] [56]).
• Surveillance (e.g., traffic control, surface transportation, non-destructive testing

in hostile environments).

2 Challenges of Multimedia Information Retrieval

Multimedia search engines and their applications operate on a very heterogeneous
spectrum of content, ranging from home-made content created by users to high value
premium productions, like feature film video. The quality of content largely
determines the kind of processing that is possible for extracting information and the
kind of queries that can be answered. This Section overviews the main challenges in
the design of a MIR solution, by following the lifecycle of multimedia content, from
its entrance into the system (acquisition), to its preparation for analysis
(normalization), to the extraction of metadata necessary for building the search engine
indexes (indexing), to the processing of a user’s query (querying) and, finally, to the
presentation of results (browsing).

2.1 Challenge 1: Content Acquisition

In text search engines, content comes either from a closed collection (as, e.g., in a
digital library) or is crawled from the open Web. In MIR, multimedia content can be
acquired in a way similar to document acquisition:

• By crawling the Web or local media repositories.
• By user’s contribution or syndicated contribution from content aggregators.

Additionally, multimedia content can also come directly from production devices
directly connected to the system, such as scanners, digital cameras, smartphones, or
broadcast capture devices (e.g., from air/cable/satellite broadcast, IPTV, Internet TV
multicast, etc.).

Besides the heterogeneity of acquisition sources and protocols, also the size of
media files make the content ingestion task more complicated, e.g., because the
probability of download failures increases, the cost of storing duplicates or near
duplicates becomes less affordable, and the presence of DRM issues on the
downloaded content is more frequent.

As for textual data, but even more critical in the case of audiovisual content, is the
capability of the content ingestion subsystem to preserve or event enhance the
intrinsic quality of the downloaded digital assets, e.g., by acquiring them at the best

 Multimedia and Multimodal Information Retrieval 139

resolution possible, given the bandwidth limitations, and preserving all the available
metadata associated with them.

Metadata are textual descriptions that accompany a content element; they can range in
quantity and quality, from no description (e.g., Webcam content) to multilingual data
(e.g., closed captions and production metadata of motion pictures). Metadata can be found:

• Embedded within content (e.g., video close captions or Exchangeable image file
format (EXIF) data embedded in images).

• In surrounding Web pages or links (e.g., HTML content, link anchors, etc).
• In domain-specific databases (e.g., IMDB [72] for feature films).
• In ontologies (e.g., like those listed in the DAML Ontology Library [71]).

The challenge here is building scalable and intelligent content acquisition systems,
which could ingest content exploiting different communication protocols and
acquisition devices, decide the optimal resolution in case alternative representations
are available, detect and discard duplicates as early as possible, respect DRM issues,
and enrich the raw media asset with the maximum amount of metadata that could be
found inside or around it.

2.2 Challenge 2: Content Normalization

In textual search engines, context is subjected to a pipeline of operations for preparing it
to be indexed [3]; such pre-processing includes parsing, tokenization, lemmatization, and
stemming. With text, the elements of the index are of the same nature of the constitutive
elements of content: words. Multimedia content needs a more sophisticated pre-
processing phase, because the elements to be indexed (called “features” or “annotations”)
are numerical and textual metadata that need to be extracted from raw content by means
of complex algorithms.

The processing pipeline for multimedia data is therefore longer than in text search
engines, and can be roughly divided in two macro steps: content normalization
(treated in this Section) and content analysis (treated in the next Section).

Due to the variety of multimedia encoding formats, prior to processing content for
metadata extraction, it is necessary to submit it to a normalization step, with a twofold
purpose: 1) translating the source media items represented in different native formats
into a common representation format (e.g., MPEG4 [49] for video files), for easing
the development and execution of the metadata extraction algorithms; 2) producing
alternative variants of native content items, e.g., to provide freebies (free sample
copies) of copyrighted elements or low resolution copies for distribution on mobile or
low-bandwidth delivery channels (e.g., making a 3GP version [70] of video files for
mobile phone fruition). The challenge here is to devise the best encoding format for
addressing the needs of analysis algorithm and easing the delivery of content at
variable quality, without exploding the number of versions of the same item to be
stored in the search engine.

2.3 Challenge 3: Content Analysis and Indexing

After the normalization step, a multimedia collection has to be processed in order to
make the knowledge embedded in it available for querying, which requires building

140 A. Bozzon and P. Fraternali

the internal indexes of the search engine. Indexes are a concise representation of the
content of an object collection, constructed out of the features extracted from it; the
features used to build the indexes must be both sufficiently representative of
the content and compact to optimize storage and retrieval.

Features are traditionally grouped into two categories:

• Low level features: concisely describe physical or perceptual properties of a
media element (e.g., the colour or edge histogram of an image).

• High level features: domain concepts characterizing the content (e.g., extracted
objects and their properties, geographical references, etc.).

As in text, where the retrieved keywords can be highlighted in the source document,
also in MIR there is the need of locating the occurrences of matches between the
user’s query and the content. Such requirement implies that features must be extracted
from a time continuous medium, and that the coordinates in space and time of their
occurrence must be extracted as well (e.g., the time stamp at which a word occurs in a
speech audio file, the bounding-box where an object is located in an image, or both
pieces of information to denote the occurrence of an object in a video).

Feature detection may even require a change of medium with respect to the original
file, e.g., the speech-to-text transcription.

Content analysis and indexing are the prominent research problem of MIR, as the
quality of the search engine depends on the precision at which the extracted metadata
describe the content of a media asset: after introducing the global scheme of the
content analysis process in Section 3.1, we devote Section 4 to the various ways in
which features (also called metadata) can be represented and Section 5 to the
algorithms for computing them.

2.4 Challenge 4: Content Querying

Text IR starts from a user’s query, formulated as a set of keywords, possibly
connected by logical operators (AND, OR, NOT). The semantics of query processing
is text similarity: both the text files and the query are represented into a common
logical model (e.g., the word vector model [64]), which supports some form of
similarity measure (e.g., cosine similarity between word vectors).

In MIR, the expression of the user’s information need allows for alternative query
representation formats and matching semantics. Examples of queries can be:

• Textual: one or more keywords, to be matched against textual metadata
extracted from multimedia content.

• Mono-media: a content sample in a single media (e.g., an image, a piece of
audio) to be matched against an item of the same kind (e.g., query by music or
image similarity, query by humming) or of a different medium (e.g., finding the
movies whose soundtrack is similar to an input audio file).

• Multi-media: a content sample in a composite medium, e.g., a video file to be
matched using audio similarity, image similarity, or a combination of both.

Accepting in input queries expressed by means of non-textual samples requires real-
time content analysis capability, which poses severe scalability requirements on MIR
architectures. Another implication of non-textual queries is the need for the MIR

 Multimedia and Multimodal Information Retrieval 141

architecture to coordinate query processing across multiple dedicated search engines:
for example, an image similarity query may be responded by coordinating an image
similarity search engine specialized in low-level features matching and a text search
engine, matching high-level concepts extracted from the query (e.g., object names,
music gender, etc).

The grand challenge of MIR query processing is in part the same as for textual IR:
retrieving the media objects more relevant to the user’s query with high precision and
recall. MIR adds the specific problem of content-based queries, which demand
suitable architectures for analysing a query content sample on the fly and matching its
features to those stored in the indexes. We devote Section 3.2 to a brief overview of
the query process.

2.5 Challenge 5: Content Browsing

Unlike data retrieval queries (such as SQL or XPATH queries), IR queries are
approximate and thus results are presented in order of relevance, and often in a
number that exceeds the user’s possibility of selection. Typically, a text search engine
summarizes and pages the ranked results, so that the user can quickly understand the
most relevant items.

In MIR applications, understanding if a content element is relevant poses
additional challenges. On one side, content summarization is still an open problem
[5]: for example, a video may be summarized in several alternative ways: by means of
textual metadata, with a selection of key frames, with a preview (e.g., the first 10

Fig. 1. Visual and aural time bars in the interface of the PHAROS search platform [10]

142 A. Bozzon and P. Fraternali

seconds), or even by means of another correlated item (e.g., the free trailer of a
copyrighted feature film). The interface must also permit users to quickly inspect
continuous media and locate the exact point where a match has occurred. This
can be done in many ways, e.g., by means of annotated time bars that permit
one to jump into a video where a match occurs, with VCR-like commands, and
so on.

Figure 1 shows a portion of the user interface of the PHAROS multimedia search
platform [10] for accessing video results of a query: two time bars (labelled “what we
hear”, “what we see”) allow one to locate the instant where the matches for a query
occur in the video frames and in the audio, inspect the metadata that support the
match, and jump directly to the point of interest.

The challenge of MIR interfaces is devising effective renditions (visual, but also
aural) that could convey both the global characteristics of the result set (e.g., the
similarity distribution across a result collection) and the local features of an individual
result item that justify the query match.

3 The MIR Architecture

The architecture of a MIR system [9] can be described as a platform for
composing, verifying, and executing search processes, defined as complex
workflows made of atomic blocks, called search services, as illustrated in Figure 2.
At the core of the architecture there is a Process Execution Engine which is a
runtime environment, optimized for the scalable enactment of data-intensive and
computation-intensive workflows made of search services. A search service is a
wrapper for any software component that embodies functionality relevant to a MIR
solution.

The most important categories of MIR workflows are Content Processes, which
have the objective of acquiring multimedia content from external sources (e.g. from
the user or a from video portal) and extracting features from it; and the Query
Processes, which have the objective of acquiring a user’s information need and
computing the best possible answer to it. Accordingly, the most important categories
of search services are content services, which embody functionality relevant to
content acquisition, analysis, enrichment, and adaptation; and query services, which
implements all the steps for answering a query and computing the ranked list of
results.

Examples of content services can be: algorithms for extracting knowledge from
media elements, transducers for modifying the encoding format of media files;
examples of query services, instead, are: query disambiguation services for
inferring the meaning of ambiguous information needs, or social network analysis
services for inferring the preferences of a user and personalizing the results of a
user’s query.1

1 In Figure 2 metadata are given in output to the content owner. They enrich the processed

content and thus increase its value, and thus can be used by the content owner for publishing
purposes or for building a separate query processing solution.

 Multimedia and Multimodal Information Retrieval 143

Fig. 2. Reference architecture of a MIR system

3.1 The Content Process

A content process (as the one schematized in Figure 3) aims at gathering multimedia
content and at elaborating it to make it ready for information retrieval. A MIR
platform may host multiple content processes, as required for elaborating content of
different nature, in different domains, for different access devices, for different
business goals, etc.

The input to the process is twofold:

• Multimedia Content (image, audio, video).
• Information about the content, which may include publication metadata

(HTML, podcast [55], RSS [62], MediaRSS [45], MPEG7, etc), quality
information (encoding, user’s rating, owner’s ratings, classification data), access
rights (DRM data, licensing, user’s subscriptions), and network information
(type and capacity of the link between the MIR platform and the content source
site - e.g., access can be local disk-based, remote though a LAN/SAN, a fixed
WAN, a wireless WAN, etc).

The output of the process is the textual representation of the metadata that capture the
knowledge automatically extracted from the multimedia content via content
processing operations. The calculated metadata are integrated with the metadata
gathered by the content acquisition system (shown as an input in Figure 3), which are
typically added to the content manually by the owner or by the Web users (e.g., as
tags, comments, closed captions, and so on). Section 4 and Section 5 respectively
provide a discussion on the state of the art of metadata vocabularies and analysis
techniques for extracting metadata from multimedia assets.

144 A. Bozzon and P. Fraternali

Fig. 3. Example of a MIR Content Process

A content process can be designed so as to dynamically adapt to the external
context, e.g., as follows:

• By analyzing the content metadata (e.g., manual annotations) to dynamically
decide the specific analysis operators to apply to a media element (e.g., if the
collection denotes indoor content, a heuristic rule may decide to skip the
execution of outdoor object detection).

• By analyzing the access rights metadata to decide the derived artefacts to extract
(e.g., if content has limited access, it may be summarized in a freebie version for
preview)

• By analyzing the geographical region where the content comes from
(e.g., inferring the location of the publisher may allow the process to apply
better heuristic rules for detecting the language of the speech and call the proper
speech-to-text transcription module).

• By understanding the content delivery modality (e.g., a real-time stream of a
live event may be indexed with a faster, even if less precise, process for
reducing the time-to-search delay interval).

3.2 The Query Process

A MIR Query process (like the one schematized in Figure 4) accepts in input
information need and formulates the best possible answer from the content indexed in
the MIR platform.

The input of the query process is an information need, which can be a keyword or a
content sample. The output is a result set, which contains information on the objects
(typically content elements) that match the input query. The description of the objects
in the result set can be enriched with metadata coming from sources external to the
MIR platform (e.g., additional metadata on a movie taken from IMDB, or a map
showing the position of the object taken from a Geographical Information System).

 Multimedia and Multimodal Information Retrieval 145

Fig. 4. Example of a MIR Query Process

A collateral source of input is the query context, which expresses additional
circumstances about the information need, often implicit. Well-known examples of
query context are: user preferences, past users’ queries and their responses, access
device, location, access rights, and so on. The query context is used to adapt the query
process: for instance, it can be used to expand the original information need of the
user with additional keywords reflecting her preferences, to disambiguate a query
term based on the application domain where the query process is embedded, or to
provide the best shape of results for the current user.

Queries are classified as mono-modal, if they are represented in a single medium
(e.g., a text keyword, a music fragment, an image) or multi-modal, if they are
represented in more than on medium (e.g., a keyword AND an image). As for Search
Computing, also in MIR queries can be classified as mono-domain, if they are
addressed to a single search engine (e.g., a general purpose image search engine like
Google Images [26] or a special purpose search service as Empora [20] garments
search), or multi-domain, if they target different, independent search services (e.g., a
face search service like Facesaerch [23] and a video search service like Blinkx [7]).
Table 1 exemplifies the domain and mode classification of queries.

Table 1. Examples of Mono/Multi modal, Mono/Multi domain queries in a MIR system

 Mono Domain Multi Domain
Mono Modal Find all the results that match a given

keyword; Find all the images similar
to a given image.

Find theatres playing movies acted
by an actor having the voice similar
to a given one.

Multi Modal Find all videos that contain a given
keyword and that contain a person
with a face similar to a given one.

Find all CDs in Amazon with a cover
similar to a given image.

4 Metadata

The content process produces a description of the knowledge extracted from the
media assets, possibly integrated with information gathered during the content

146 A. Bozzon and P. Fraternali

acquisition phase. This articulated knowledge must be represented by means of a
suitable formalism: the current state of the practice in content management presents a
number of metadata vocabularies dealing with the description of multimedia content
[24]. Many vocabularies allow the description of high-level (e.g., title, description) or
low-level features (e.g., colour histogram, file format), while some enable the
representation of administrative information (e.g., copyright management, authors,
date). In a MIR system, the adoption of a specific metadata vocabulary depends on its
intended usage, especially for what concerns the type of content to describe. In the
following we illustrate a few relevant and diverse examples that cover the main
metadata format categories.

MPEG-7 [42] is an XML vocabulary that represents the attempt from ISO to
standardize a core set of audio-visual features and structures of descriptors and their
(spatial/temporal) relationships. By trying to abstract from all the possible application
domains, MPEG-7 results in an elaborate and complex standard that merges both
high-level and low-level features, with multiple ways of structuring annotations.
MPEG7 is also extensible, so to allow the definition of application-based or
domain-based metadata.

Dublin Core [19] is a 15-element metadata vocabulary (created by domain experts
in the field of digital libraries) intended to facilitate discovery of electronic resources,
with no fundamental restriction on the resource type. Dublin Core holds just a small
set of high-level metadata and relations (e.g. title, creator, language, etc…), but its
simplicity made it a common annotation scheme across different domains. It can be
encoded using different concrete syntaxes, e.g., in plain text, XML or RDF.

MXF (Material Exchange Format) [17] is an open file format that wraps video,
audio, and other bit streams (called "essences"), aimed at the interchange of audio-
visual material, along with associated data and metadata, in devices ranging from
cameras and video recorders to computer systems for various applications used in the
television production chain. MXF metadata address both high-level and
administrative information, like the file structure, key words or titles, subtitles, editing
notes, location, etc. Though it offers a complete vocabulary, MXF has been intended
primarily as an exchange format for audio and video rather than a description format
for metadata storage and retrieval.

Exchangeable Image File Format (EXIF) [31] is a vocabulary adopted by digital
camera manufacturers to encode high-level metadata like date and time information,
the image title and description, the camera settings (e.g., exposure time, flash), the
image data structure (e.g., height, width, resolution), a preview thumbnail, etc. By
being embedded in picture raw contents, EXIF metadata is now a de-facto standard
for image management software; to support extensibility, EXIF enables the definition
of custom, manufacturer-dependent additional terms.

ID3 [32] is a tagging system that enriches audio files by embedding metadata
information. ID3 includes a big set of high-level (such as title, artist, album, genre)
and administrative information (e.g. the license, ownership, recording dates), but a
very small set of low-level information (e.g. BPM). ID3 is a worldwide standard for
audio metadata, adopted in a wide set of applications and hardware devices. However,
ID3 vocabulary is fixed, thus hindering its extensibility and usage as format for
low-level features.

 Multimedia and Multimodal Information Retrieval 147

Other examples of multimedia-specific metadata formats are SMEF [67] for video,
IPTC [34] for images, and MusicXML [61] for music. In addition, several communities
created some domain-specific vocabularies like LSCOM [39] for visual concepts, IEEE
LOM [36] for educational resources, and NewsML [34] for news objects.

5 Techniques for Content Processing

The content process described in Figure 3 aims at creating a representation of the
multimedia collection suitable for indexing and retrieval purposes. The techniques
applied for analysing content are application dependent, and relate both with the
nature of the processed items and with the aim of the applications. The content
process is not exclusive of MIR, but also applies classical text-based IR systems. The
processing of text is a well-understood activity which embodies a standard sequence
of operations (language detection, spell checking, correction and variant resolution,
lemmatization, and stop-word removal), which convert documents into a canonical
format for a more efficient indexation [3].

MIR systems deal with more complex media formats, like audio, video and
images, and therefore require a more articulated analysis process to produce the
metadata needed for indexing. In essence, a MIR content process can be seen as an
acyclic graph of operators, in which each operator extracts different features from a
media item, possibly with the help of the metadata previously extracted by other
already executed operators. The various operators embody diverse algorithms for
content analysis and feature extraction, which are the subjects of the research
challenges briefly introduced in Section 2.3.

The operations that constitute the MIR content process can be roughly classified in
three macro categories: transformation, feature extraction, and classification, based
on the stage at which they occur in the analysis process and on the abstraction level of
the information they extract from the raw content:

• Transformation: this kind of operation converts the format of media items, for
making the subsequent analysis steps more efficient or effective. For instance, a
video transformer can modify an MPEG2 movie file to a format more suitable
for the adopted analysis technologies (e.g., MPEG); likewise, an audio converter
can transform music tracks encoded in MP3 to WAV, to eliminate compression
and make content analysis simpler and more accurate.

• Feature Extraction: calculates low-level representations of media contents, i.e.
feature vectors, in order to derive a compact, yet descriptive, representation of a
pattern of interest [14]. Such representation can be used to enable content based
search, or as input for classification tasks. Examples of visual features for
images are colour, texture, shape, etc. [28]; examples of aural features for music
contents are loudness, pitch, tone (brightness and bandwidth), Mel-filtered
Cepstral Coefficients, etc. [76].

• Classification: assigns conceptual labels to content elements by analyzing their
raw features; the techniques required to perform this operations are commonly
known as machine learning. For instance, an image classifier can assign to
image files annotations expressing the subject of the pictures (e.g., mountains,
city, sky, sea, people, etc.), while an audio file can be analyzed in order to
discriminate segments containing speech from the ones containing music.

148 A. Bozzon and P. Fraternali

Table 2. Content analysis techniques in MIR systems

Audio Analysis Image Analysis Video Analysis
Audio segmentation [44]: to
split audio track according to
the nature of its content. For
instance, a file can be
segment according to the
presence of noise, music,
speech, etc.

Semantic Concept extraction
[38]: the process of
associating high-level
concepts (like sky, ground,
water, buildings, etc.) to
pictures.

Scene detection [59]:
detection of scenes in a video
clip; a scene is one of the
subdivisions of a play in
which the setting is fixed, or
that presents continuous
action in one place [60].

Audio event identification
[57]: to identify the presence
of events like gunshots and
scream in an audio track.

Optical character
recognition [6]: to translate
images of handwritten,
typewritten or printed text
into an editable text.

Video text detection and
segmentation [50]: to detect
and segment text in videos in
order to apply image OCR
techniques.

Music genre (mood)
identification [12] [46]: to
identify the genre (e.g., rock,
pop, jazz, etc.) or the mood
of a song.

Face recognition and
identification [75] [82]: to
recognize the presence of a
human face in an image,
possibly identifying its
owner.

Video summarization [5]: to
create a shorter version of a
video by picking important
segments from the original.

Speech recognition [21]: to
convert words spoken in an
audio file into text. Speech
recognition is often
associated with Speaker
identification [51], that is to
assign an input speech signal
to one person of a known
group

Object detection and
identification [80]: to detect
and possibly identify the
presence of a known object
in the picture.

Shot detection [15]: detection
of transitions between shots.
Often shot detection is
performed by means of
Keyframe segmentation [13]
algorithms that segment a
video track according to the
key frames produced by the
compression algorithm.

Arbitrary combinations of transformation, feature extraction, and classification
operations can result in several analysis algorithms. Table 2 presents a list of 14
typical audio, image, and analysis techniques; the list is not intended to be complete,
but rather to give a glimpse on the analysis capabilities currently available for MIR
systems. To provide the reader with a hook to the recent advancements in the
respective fields, each analysis technique is referenced with a recent survey on the
topic. The techniques shown in Table 2 can be used in isolation, to extract different
features from an item. Since the corresponding algorithms are probabilistic, each
extracted feature is associated with a confidence value that denotes the probability
that item X contain feature Y. To increase the confidence in the detection, different
analysis techniques can be used jointly to reinforce each other. Using the example of
the movie file, the fact that in a single scene both the face and the voice of a person
are identified as belonging to an actor “X” can be considered as a correlated event, so
to describe the scene as “scene where actor X appears” with a high confidence. The
cross reinforcement of analysis techniques is called annotation fusion: multiple
features extracted from media are fused together to yield more robust classification
detection [43]. For instance, multiple content segmentation techniques (e.g., shot
detection and speaker’s turn segmentation) can be combined in order to achieve better

 Multimedia and Multimodal Information Retrieval 149

video splitting; voice identification and face identification techniques can be fused in
order to obtain better person identification. Typically, the use of multiple techniques
simultaneously can be computationally expensive, thus limiting this solution to such
domains where accuracy in the content descriptions is more important than indexing
speed.

6 Examples of MIR Query Languages

In MIR, a user’s query is matched against the representation of content provided by
one (or more) of the metadata formats described in Section 4. Given such a variety of
data representations, there is not a standardized query language for MIR systems, as
every retrieval framework provides its own proprietary solution. For such a reason,
several proposals for a unified MIR query language have emerged in the last years,
and this Section will provide an overview.

Given that multimedia objects are usually described textually, a natural choice for
the query language is exploiting mature text retrieval techniques: for instance, free-
text or keyword-based search, context queries, Boolean queries, pattern queries [3], or
faceted queries [63].

Even if based on a conventional IR query languages, though, a query language for
MIR must comply with additional requirements typical of aural and visual media
types or of specific application domains [29]:

• Schema independence: given the multitude of metadata representation
formats, a query language should not rely on a specific schema.

• Arbitrary search scope granularity: the query language must allow search of
information both in the whole media object and in chunks thereof.

• Media objects as query conditions: a MIR query language should support
content-based queries, in one of two ways: 1) providing a media object to use
as a query condition and the information about the algorithm to use for its
on-the-fly analysis; 2) providing a set of previously calculated low-level
features to use as a query condition.

• Arbitrary similarity measure: the query language should enable the flexible
representation of arbitrary ranking functions, so to suite application-specific
needs.

The last two decades have witnessed to a lot of efforts in the definition of more
expressive and structured query languages, designed specifically for multimedia
retrieval. Among the most recent efforts, POQLMM [30], is a general purpose query
language for object oriented multimedia databases exposing arbitrary data schema.
MuSQL [78] is a music structured query language, composed of a schema definition
sub-language and a data manipulation sub-language. In [35], authors propose a query
language for video retrieval enabling queries at both image and semantic levels, for
retrieving videos with both exact matching and similarity matching.

One of the latest attempts in providing a unified language for MIR is
represented by the MPEG Query Format [1]. MPQF is part of the MPEG-7
standard, and provides a standardized interface for MIR systems based on the
XML metadata representation formats. MP7QF derives from the well-known set of

150 A. Bozzon and P. Fraternali

XML-based query languages (e.g., XPath and XQuery), from which it inherits both
the syntax and the semantics. MP7QF provides a rich set of multimedia query
types (e.g., QueryByMedia, QueryByDescription, QueryByFreeText, SpatialQuery,
TemporalQuery, QueryByXQuery, etc.), and specifies a set of precise output
parameters describing the response of a multimedia query request by allowing the
definition of the content as well as structure of the result set. MP7QF can also be
extended with novel query operators. For instance, in [79] authors introduce the
SpatioTemporalOperator.

7 Examples of Research and Commercial MIR Solutions

In this Section we overview a number of research projects that have prototyped the
architecture and techniques of a MIR solution, as well as a sample of commercial
systems that enable querying multimedia content.

7.1 European and Regional Research Projects

PHAROS [10] is an Integrated Project of the Sixth Framework Program (FP6) of the
European Community. PHAROS has developed an extensible platform for MIR,
based on the automatic annotation of multimedia content of different nature: audio,
images and video. PHAROS content annotation process has a plug-in architecture: the
content process can be defined (with a proprietary tool) and deployed in a distributed
manner, possibly incorporating external components, invoked as web services. On top
of the PHAROS platform two showcase applications, one for fixed Internet and one
for mobile networks, have been prototyped.

VITALAS [18] is an FP6 Research Project which has implemented a prototype
system for the intelligent access to multimedia professional archives. VITALAS was
conceived as a B2B tool to develop and validate technologies applicable to large
consumer-facing MIR search engines. The main objective is to enable scalable cross-
media indexing and retrieval, as well as methods for content aggregation through the
automatic extraction of metadata. VITALAS has produced a prototype implementation
of automatic annotation algorithms, visual interfaces for searching in large audio-visual
archives, and search personalization techniques.

THESEUS [73] is an ongoing German research program aimed at developing a
new Internet-based infrastructure to better exploit the knowledge available on the
Internet. To this end, application-oriented basic technologies and technical standards
are being developed and tested. For instance, the THESEUS project created and
supports the Open Source project SMILA [66] (Semantic Information Logistics
Architecture), a reliable, standardized industrial strength enterprise framework for
building searches solutions to various kinds of information (i.e. accessing
unstructured information). Since June 2008, SMILA is an official project of the
Eclipse Foundation.

Quaero [74] is a French collaborative research and development program that
aims at developing multimedia and multilingual indexing, processing, and
management tools to build general public search applications on large collections of
multimedia information (multilingual audio, video, text, etc.). The challenge of
Quaero is to integrate search and indexing components with audio/images/video

 Multimedia and Multimodal Information Retrieval 151

processing techniques, semantic annotation methodologies and automatic machine
translation technologies, with a specific focus on improving the quality and relevance
of these later technologies and techniques.

7.2 Examples of Commercial MIR Systems

Midomi [47] is an example of audio processing technologies applied to music search
engine. The interface allows users to upload voice recordings of public songs, and
then to query such music files by humming or whistling. Another similar application
is Shazam [65]. Shazam is a commercial music search engine that enables users to
identify tunes using their mobile phone. The principle consists in using its mobile
phone to record a sample of few seconds of a song from any source (even with bad
sound quality) and the system returns the identified song with the necessary details:
artist, title, album, etc. Similar systems for music search are also provided by BMat
[8]. Voxalead™ [77] is an audio search technology demonstrator implemented by
Exalead to search in TV news, radio news, and VOD programs by content. The
system uses a third-party speech-to-text transcription module transcribe political
speeches in several languages.

The field of image search technologies also appears to be mature. Google Images
[26] and Microsoft Bing [48], for instance, now offer a ”show similar images”
functionality, thus proving the scalability of content-based image search on the Web.
Other notable examples of image MIR engine are Tiltomo [68], which also performs
search according to the image theme, and SAPIR [33], a search engine developed
within the homonymous EU-founded project which also provide geographic and
video search. Blinkx [7] is another example of search engine on videos and audios
streams. Blinkx, like Voxalead™, uses speech recognition to match the text query to
the video or audio speech content. Blinkx represents an example of mature video MIR
solution as they claim to have over 30 million hours of video indexed.

8 Conclusion and Perspectives

In this chapter we presented the problem of Multimedia Information Retrieval,
highlighting its challenges, major technical issues, and application areas, and we
proposed a reference architecture unifying the aspects of content processing and
querying. Then, we provided a survey on the existing research and commercial
solution for multimedia search, showing the existence of several mature MIR
technologies, products, and services.

In a context where the production of content has become massive thanks to the
availability of cheap and high-quality recording devices, MIR solutions represent a
fundamental tool for the access to content collections.

MIR systems could benefit from the Search Computing approach in various ways:

• At the architecture level, a MIR system is often implemented on top of a set of
distributed Web services, each specialized in a different content analysis
and/or query processing technique. In such a distributed scenario, MIR query
processing resembles the computation of a multi-domain query: the query
“find news clips where President Obama discusses the Health Insurance

152 A. Bozzon and P. Fraternali

Reform could be resolved by joining the results, ranked by confidence, of two
metadata sources, one capable of locating the face of President Obama in a
video and one able to process the text transcriptions to identify the topic of a
discussion.

• At the user interface level, the Liquid Query paradigm could be used to enable
the exploration of large multimedia collection. The user could start with a
focused query (e.g., a keyword query on the text transcripts of news clips) and
then expand the query by joining other metadata sources, exposed as service
interfaces: e.g., looking for other videos featuring the same speaker, or
produced by the same media agency.

On the other hand, MIR can also extend the capabilities of Search Computing systems
by enabling new ways of matching and ranking in multi-domain queries. For instance:

• MIR Systems as Domain-Specific Search Engines: MIR systems can be
adopted in Search Computing as a special category of ranked search services:
for instance, in a multi-domain query for a market analysis application, a text
transcription search engine could be wrapped as a service interface for selecting
and ranking news clips according to the probability that they deal with a given
company, provided in input as a keyword.

• MIR Operations as Query Operators: including non-textual content items as
query conditions can enrich the expressive power of Search Computing systems.
For instance, users can express their information need as images or audio files,
leaving to the analysis and annotation operations the task of extracting, in a
textual form, the concept to use as a join condition (e.g., the name of a person
given an image of its face). Even more interestingly, a multi-domain query
could directly exploit content similarity to compute joins: in a trip planning
multi-domain query, the destinations could be joined to the result of the query
based on their similarity to the user’s favourite beach, supplied in input as an
image.

References

[1] Adistambha, K., Döller, M., Tous, R., Gruhne, M., Sano, M., Tsinaraki, C.,
Christodoulakis, S., Yoon, K., Ritz, C., Burnett, I.: The MPEG-7 Query Format: A New
Standard in Progress for Multimedia Query by Content. In: Proceedings of the 7th
International IEEE Symposium on Communications and Information Technologies
(ISCIT 2007), pp. 479–484 (2007)

[2] Adobe Premiere (2009), http://www.adobe.com/products/premiere/
[3] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 1st edn. Addison

Wesley, Reading (1999)
[4] Baldi, A., Murace, R., Dragonetti, E., Manganaro, M., Guerra, O., Bizzi, S., Galli, L.:

Definition of an automated Content-Based Image Retrieval (CBIR) system for the
comparison of dermoscopic images of pigmented skin lesions. Biomed. Eng. Online
(2009)

[5] Barbieri, M., Agnihotri, L., Dimitrova, N.: Internet Multimedia Management Systems IV.
In: Proceedings of the SPIE, vol. 5242, pp. 1–13 (2003)

 Multimedia and Multimodal Information Retrieval 153

[6] Beitzel, S.M., Jensen, E.C., Grossman, D.A.: Retrieving OCR Text: A Survey of Current
Approaches. In: Symposium on Document Image Understanding Technologies, SDUIT
(2003)

[7] Blinkx – Video Search Engine (2009), http://www.blinkx.com/
[8] BMat - 2009 (2009), http://www.bmat.com/
[9] Bozzon, A., Brambilla, M., Fraternali, P.: Model-Driven Design of Audiovisual Indexing

Processes for Search-Based Applications. In: 7th IEEE International Workshop on
Content-Based Multimedia Indexing, pp. 120–125. IEEE Press, New York (2009)

[10] Bozzon, A., Brambilla, M., Fraternali, P., Nucci, F., Debald, S., Moore, E., Neidl, W.,
Plu, M., Aichroth, P., Pihlajamaa, O., Laurier, C., Zagorac, S., Backfried, G., Weinland,
D., Croce, V.: Pharos: an audiovisual search platform. In: Proceedings of the 32nd
international ACM SIGIR Conference on Research and Development in information
Retrieval, SIGIR 2009, Boston, MA, USA, July 19 - 23, p. 841. ACM, New York (2009)

[11] Buchenwald demonstrator, University of Twente (2009),
http://vuurvink.ewi.utwente.nl:8080/Buchenwald/

[12] Caringella, N., Zoia, G., Mlynek, D.: Automatic genre classification of music content: a
survey. IEEE Signal Processing Magazine 23(2), 133–141 (2006)

[13] Carrato, K.S.: Temporal video segmentation: a survey. Signal Processing: Image
Communication 16, 477–500 (2001)

[14] Cees, G.M.: Concept-Based Video Retrieval. Foundations and Trends in Information
Retrieval 4(2), 215–322 (2009)

[15] Cotsaces, C., Nikolaidis, N., Pitas, I.: Video Shot Boundary Detection and Condensed
Representation: A Review. IEEE Signal Processing Magazine (2006)

[16] Delve Networks - Online Video Platform and Content Management (2009),
http://www.delvenetworks.com/

[17] Devlin, B., Wilkinson, J.: The Material Exchange Format. In: Gilmer, B. (Hrsg.) File
Interchange Handbook, pp. 123–176. Elsevier Inc., Focal Press (2004)

[18] Diou, C., Papachristou, C., Panagiotopoulos, P., Stephanopoulos, G., Dimitriou, N.,
Delopoulos, A., Rode, H., Aly, R., de Vries, A.P., Tsikrika, T.: VITALAS at TRECVID
2008. In: Proceedings of the 6th TREC Video Retrieval Evaluation Workshop,
Gaithersburg, USA, November 17-18 (2008)

[19] Dublin Core Metadata Initiative (2009), http://dublincore.org/
[20] Empora Online Shop (2009), http://www.empora.com
[21] Eu, H., Hedge, A.: Survey of continuous speech recognition software usability. Cornell

University, Ithaca, NY (1999),
http://ergo.human.cornell.edu/AHProjects/Hsin99/
Voice%20Recognition%Paper.pdf (retrieved April 5, 2004)

[22] Eyealike platform for facial similarity (2009), http://www.eyealike.com/home
[23] Facesaerch (2009), http://www.facesaerch.com/
[24] Geurts, J., van Ossenbruggen, J., Hardman, L.: Requirements for practical multimedia

annotation. In: Workshop on Multimedia and the Semantic Web Heraklion, Crete, pp. 4–
11 (2005)

[25] Google Election Video Search (2009),
http://googleblog.blogspot.com/2008/07/
in-their-own-words-political-videos.html

[26] Google Images (2009), http://images.google.com
[27] Google Picasa (2009), http://picasa.google.com/
[28] Hanbury, A.: A survey of methods for image annotation. Journal of Visual Languages

and Computing 19(5), 617–627 (2008)

154 A. Bozzon and P. Fraternali

[29] Henrich, A., Robbert, G.: Combining multimedia retrieval and text retrieval to search
structured documents in digital libraries. In: Proc. 1st DELOS Workshop on Information
Seeking, Searching and Querying in Digital Libraries, Zurich, Switzerland, vol. 01/W001
(2000)

[30] Henrich, A., Robbert, G.: POQLMM: A Query Language for Structured Multimedia
Documents. In: Proceedings of the First International Workshop on Multimedia Data and
Document Engineering, Lyon, France, pp. 17–26 (2001)

[31] Japan Electronics and Information Technology Industries Association: Exchangeable
image file format for digital still cameras: EXIF. Version 2.2 (2002)

[32] ID3 (2009), http://www.id3.org/
[33] IST SAPIR Large Scale Multimedia Search and P2P (2009),

http://sapir.isti.cnr.it/index
[34] International Press Telecommunications Council (2009),

http://www.iptc.org/IPTC4XMP/
[35] Le, T.H., Thonnat, M., Boucher, A., Bremond, F.: A Query Language Combining Object

Features and Semantic Events for Surveillance Video Retrieval. In: Proceedings of
Advances in Multimedia Modeling, 14th MMM Conference, Kyoto, Japan, pp. 307–317
(2008)

[36] Learning Object Metadata (2009), http://ltsc.ieee.org/wg12/
[37] Lew, M., et al.: Content-Based Multimedia Information Retrieval: State of the Art and

Challenges. ACM Transactions on Multimedia Computing, Communications, and
Applications 2(1) (2006)

[38] Liu, Y., Zhang, D., Lu, G., Ma, W.: A survey of content-based image retrieval with high-
level semantics. Pattern Recogn. 40(1), 262–282 (2007)

[39] LSCOM Lexicon Definitions and Annotations (2009),
http://www.ee.columbia.edu/ln/dvmm/lscom/

[40] LTU technologies (2009), http://www.ltutech.com/
[41] Martínez, J.M.: MPEG-7 Overview (version 10), ISO/IEC JTC1/SC29/WG11N6828,

Palma de Mallorca (2004)
[42] Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7: Multimedia Content

Description Interface, 396 p. Wiley, Chichester (2002)
[43] Maragos, P., Potamianos, A., Gros, P.: Multimodal Processing and Interaction, Audio,

Video, Text. Multimedia Systems and Applications, vol. 33. Springer, Heidelberg (2008)
[44] Marsden, A., Mackenzie, A., Lindsay, A.: Tools for Searching, Annotation and Analysis

of Speech, Music, Film and Video; A Survey. Literary and Linguistic Computing 22(4),
469–488 (2007)

[45] Media RSS (2009), http://en.wikipedia.org/wiki/Media_RSS
[46] Meyers, O.C.: A Mood-Based Music Classification and. Exploration System, MS Thesis,

Massachusetts Institute of. Technology (MIT), USA (2007)
[47] MiDoMi (2009), http://www.midomi.com/
[48] Microsoft Bing (2009), http://www.bing.com/images
[49] MPEG Industry Forum (2009), http://www.m4if.org/
[50] Ngo, C., Chan, C.: Video text detection and segmentation for optical character

recognition. Multimedia Systems 10(3), 261–272 (2004)
[51] Petrovska-Delacrétaz, D., El Hannani, A., Chollet, G.: Text-Independent Speaker

Verification: State of the Art and Challenges. In: Stylianou, Y., Faundez-Zanuy, M.,
Esposito, A. (eds.) COST 277. LNCS, vol. 4391, pp. 135–169. Springer, Heidelberg
(2007)

[52] Pictron Solutions (2009), http://www.pictron.com/

 Multimedia and Multimodal Information Retrieval 155

[53] Pixta, Visual search technologies (2009), http://www.pixsta.com/
[54] Pluggd Podcast Search Engine (2009), http://www.pluggd.tv/
[55] Podcast (2009), http://en.wikipedia.org/wiki/Podcasting
[56] Podscope Podcast Search Engine (2009), http://www.podscope.com/
[57] Potamitis, I., Ganchev, T.: Generalized recognition of sound events: Approaches and

applications. Studies in Computational Intelligence, vol. 120, pp. 41–79. Springer,
Heidelberg (2008)

[58] Radio Oranje speech search, Univeristy of Twente (2009),
http://hmi.ewi.utwente.nl/choral/radiooranje.html

[59] Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a
systematic survey. IEEE Transactions on Image Processing 14(3), 294 (2005)

[60] Rasheed, Z., Shah, M.: Scene detection in Hollywood movies and TV shows. In:
Proceedings of the IEEE Computer Vision and Pattern Recognition Conference (2003)

[61] Recordare (2009), http://www.recordare.com/xml.html
[62] RSS (2009), http://en.wikipedia.org/wiki/RSS_file_format
[63] Sacco, S.M., Tzitzikas, Y.: Dynamic Taxonomies and Faceted Search, Theory, Practice,

and Experience. The Information Retrieval Series, vol. 25, p. 340. Springer, Heidelberg
(2009)

[64] Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (November1975) (2003)

[65] SHAZAM (2009), http://www.shazam.com/
[66] SMILA (2009), http://www.eclipse.org/smila/
[67] SMEF (2009), http://www.bbc.co.uk/guidelines/smef/
[68] TILTOMO (2009), http://www.tiltomo.com/
[69] Tineye, Image Search Engine (2009), http://tineye.com/
[70] The 3GP video standard (2009), http://www.3gp.com/
[71] The DAML Ontology Library (2009), http://www.daml.org/ontologies
[72] The Internet Movie Database (2009), http://www.imdb.com
[73] The Theseus programme (2009), http://theseus-programm.de
[74] The Quaero Program (2009), http://www.quaero.org
[75] Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human

activities: A survey. IEEE Transactions on Circuits and Systems for Video
Technology 18(11), 1473–1488 (2008)

[76] Typke, R., Wiering, F., Veltkamp, R.C.: A survey of music information retrieval systems.
In: ISMIR 2005, pp. 153–160 (2005)

[77] VoxaleadTM (2009), http://voxalead.labs.exalead.com
[78] Wang, C.C., Wang, J., Li, J., Sun, J.G., Shi, S.: MuSQL: A Music Structured Query

Language. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.)
MMM 2007. LNCS, vol. 4352, pp. 216–225. Springer, Heidelberg (2006)

[79] Wattamwar, S.S., Ghosh, H.: Spatio-temporal query for multimedia databases. In:
Proceeding of the 2nd ACM Workshop on Multimedia Semantics (MS 2008), pp. 48–55.
ACM, New York (2008)

[80] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Survey 38(4)
(2006)

[81] Yu, G., Chen, Y., Shih, K.: A Content-Based Image Retrieval System for Outdoor
Ecology Learning: A Firefly Watching System. In: International Conference on
Advanced Information Networking and Applications, vol. 2, p. 112 (2004)

[82] Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature
survey. ACM Comput. Surv. 35(4), 399–458 (2003)

Part III

Issues in Search Computing

Introduction to Part III:
Search Computing in a Nutshell

Prior to delving into chapters discussing search computing in greater detail, we give a
bird’s eye view of its various phases and components, by providing an architectural
view of the search computing prototyping environment.

Search computing systems support their users in making multi-domain queries;
for instance, “Where can I attend a DB scientific conference close to a beautiful
beach reachable with cheap flights?”. A system decomposes the query into sub-
queries (in this case: “Where can I attend a DB scientific conference?”; “which
place is close to a beautiful beach?”; “which place is reachable from my home
location with cheap flights?”) and maps each sub-query to a domain-expert server
(in this case, calls to servers named “Conference”, “Tourism”, “Low-Cost-
Flights”); it then analyzes the query and translates it into an internal format, which
is then optimized, thereby yielding to an optimal plan for query execution; plan
execution is supported by an execution engine, which submits service calls to
services through a service invocation framework, builds the query results by
combining the outputs produced by service calls, computes the global rankings of
query results, and outputs query results in an order that reflects, although with
some approximation, their global ranking.

These transformation steps are shown in the bottom-left side of Fig. 1; they are
performed by the query mapper, query analyzer, query planner, and execution engine,
under the responsibility of a query orchestrator that starts query execution and
collects query results. The figure shows that each of the four modules directly accepts
user-provided input through suitable interfaces; in this way, prototype implementation
in search computing can take place bottom-up, by starting with the execution engine,
which can execute a given plan, then adding the query planner, which produces the
optimal plan for a given internal query, then adding the query analyzer, which reads
an abstract query, checks that the query is legal, and produces an internal query; and
finally adding a query mapper, capable of decomposing a multi-domain query into
several domain-specific queries. In this book we do not address query mapping, while
we address the other steps. The search computing prototyping architecture is currently
well-defined in terms of interactions and of functionalities; prototypes will be
delivered throughout the course of the SeCo Project.

Services are made available to search computing through a standard format, called
service mart; by this term we mean an abstraction that masks the different
implementation styles of services and is tailored to the specific need of exposing
search services – i.e., services whose primary purpose is to produce ranked lists of
results. Moreover, service marts offer a classification of service properties (that
represent either the call or the result of a service invocation; output results may
represent the ranking values) and a definition of composition patterns allowing the
combination of service marts.

160 Introduction to Part III: Search Computing in a Nutshell

Query Analyser

Query Orchestrator

Query
Interaction

Designer Tool

Service
Repository

Query
Repository

Liquid Queries
UIService

Registration
Tool

User data
repository

Query Mapper

Query Planner

Execution Engine Service Invocation
Framework .

Service Mart Framework

Query Framework

Query
Management

Tool

Application
developer

Service
designer

End userSECO
developer

Control dependencies (uses) Main data flows (queries, results)

Services

High level queries

Logic queries

Low level queries

Execution plans Query
results

Orchestration

By
-p

as
si

ng

Se
rv

ic
e

m
gm

t.

Q
ue

ry
 m

gm
t.

D
at

a
re

tr
ie

va
l

Service calls

Service call results

Queries & results

Read &
write

Read &
write

Cache

Cache

Cache

Cache Cache

Cache

Cache

Client
application

Queries & results

Cache

Internal API

User Framework
Cache

Read &
write

Cache

External API (REST) Application
Repository

Read &
write

U
se

r m
gm

t.

Fig. 1. Overview of the Search Computing framework

Search computing users mainly belong to two categories. End users can only
launch predefined applications and submit input to them through forms; expert users
may also compose queries in the context of repositories of service marts and of their
composition patterns (we say in such cases that users can build liquid queries, where
their liquid nature comes from the fact that queries extend upon service marts more or
less as stains over surfaces). In both cases, however, we expect users to have some
experience in data analysis (similar, e.g., to the basic skills required by spreadsheets)
and we expect them to use such skills in manipulating results, which are shown in
tabular format, and can be dynamically augmented online – we call them liquid
results to highlight the dynamic and plastic nature of such results, which can be
manipulated by means of user controls.

Tools are intended to support three kinds of experts:

• Service designers register data sources in the system through the Service Mart
Framework, by either interacting with existing Web services, or by exposing
existing data sources, or by wrapping existing Web pages. They play the role of
“data providers”.

• Application developers preselect some of the services and configure them so as to
turn them into applications; specifically, they build user interfaces which either
expose service marts and their connections to expert users or simple forms
accepting typed input to end users. They play the role of “data brokers”.

• SeCo developers install, open and configure the SeCo modules on suitable
hardware resources and may perform fine tuning (or creation from scratch) of
query and execution plans.

 Introduction to Part III: Search Computing in a Nutshell 161

The upper part of Figure 1 shows that the tools provided to the designer and developer
communities plug to an internal API, while end-user applications and interfaces in
turn are accessible via an external API and therefore callable from any client
environment. Finally, the right part of Figure 1 shows three kinds of repositories,
called service repositories (i.e., registries of search services registered in the
framework), query repositories (i.e., queries that have been saved by the user for
subsequent restore operations), and user data repositories (i.e., profiles and
administrative information). An additional application repository loads applications
and stores the user’s interactions, so as to be able to remember and re-apply such
interactions to new queries or to new results.

The various architectural elements forming the search computing prototype
architecture defined above are described in different, autonomous chapters.

Chapter 9 deals with service marts, a novel concept for enabling the engineering
and deployment of search services, i.e., of services whose main feature is the ability
to respond to ranked results organized by chunks (so as to enable a fine-grain control
by the execution engine). Such results are produced by interacting with concrete data
sources, which are made available through service interfaces, wrappers, or direct
access to extensional data collections (databases, excel files, and so on). Thus, service
marts are conceptual abstractions providing information hiding, mapped to service
interfaces which directly interact with concrete data sources.

Chapter 10 describes our framework for query execution; specifically it
addresses the description of a query language for search computing, then the mapping
of queries to service interfaces, then the composition methods that have been defined
so far in search computing under the classical format of join methods, suitably
extended to the search and web context. This chapter discusses query formulation and
optimization up to the choice of join methods.

Chapter 11 deals with ranking aggregation in its most general formalization, and
shows how ranking aggregation methods can be adapted to search computing in
generating a join method which is capable of guaranteeing that the top-k results are
selected.

Chapter 12 describes a flexible architecture for search computing (named Panta
Rhei) which includes suitable abstractions for data production, consumption, and
caching, with both data-driven and event-driven synchronization. Operations and
flows of the Panta Rhei model are described at a high level, but they are designed for
supporting the scalable execution of search computing queries in a variety of
deployment architectures.

Chapter 13 shows a paradigm for making search computing queries, called liquid
queries, that can be articulated upon a flexible architecture, where a liquid query is
capable of run-time modification by the addition or dropping of sub-queries and by
drilling down and rolling up information, much in the same way as with a data cube
expressing the results in data analysis environments.

Chapter 14 shows how to build and deploy applications by means of a software
engineering environment involving both “data providers”, who will register service
marts, and “data brokers”, who will assemble applications. SeCo servers can be
deployed upon a variety of computing architectures, hinting to future prototypes
running upon highly scalable architectures and/or cloud computing systems. The

162 Introduction to Part III: Search Computing in a Nutshell

chapter also discusses the business models that may favor the spreading of both data
providers and data brokers.

Chapter 15 discusses ranking opportunities in the context of life sciences, which
are characterized by a wide use of ranked information, thereby anticipating some of
the specific issues featured by an appealing search computing application.

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 163–187, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 9:
Service Marts

Alessandro Campi1, Stefano Ceri1, Georg Gottlob2, Andrea Maesani1,
and Stefania Ronchi1

1 Politecnico di Milano, Italy
{campi,ceri,maesani,ronchi}@elet.polimi.it

2 University of Oxford, United Kingdom
georg.gottlob@comlab.ox.ac.uk

Abstract. The use of patterns in data management is not new: in data
warehousing, data marts are simple conceptual schemas with exactly one core
entity, describing facts, surrounded by multiple entities, describing data analysis
dimensions; data marts support special analysis operations, such as roll up, drill
down, and cube. Similarly, service marts are simple schemas which match
"Web objects" by hiding the underlying data source structures and presenting a
simple interface, consisting of input, output, and rank attributes; attributes may
have multiple values and be clustered within repeating group. Service marts
support Search Computing operations, such as ranked access and joins. When
objects are accessed through service marts, responses are ranked lists of objects,
which are presented subdivided in chunks, so as to avoid receiving too many
irrelevant objects – cutting results and showing only the best ones is typical of
search services. This chapter includes a survey of service definition standards
(discussing the standards for service description and the current state-of-the-art
for service registration and discovery), then introduces a formal definition of
service marts and of connection patterns at the conceptual, logical, and physical
levels. Then, we show how service marts can be implemented, by taking into
account different kinds of data sources, and taking advantage of components
(written in Java and SQL) and tools (such as a materialize specifically
developed to help service mart implementation). We use such components and
tools to build a collection of services used in a running example throughout the
chapters of this part.

1 Introduction

The goal of Search Computing is to support search service integration, but a
prerequisite for setting such goal is the availability of a large number of valuable
search services. With a passive attitude, we could just wait for SOA (Service Oriented
Architecture) to become widespread, and then use available services within our
framework. However, few software services are currently designed to support search,
and moreover a huge number of valuable data sources (the so called “long tail” of
Web information) are not provided with a service interface. In this chapter, we
therefore focus on the important issue of publishing service interfaces suitable for

164 A. Campi et al.

Search Computing on the data sources, so as to facilitate their use on the Web and at
the same time to create the premises for their integration within the Search Computing
framework.

At the basis of our work, we observe the pervasive role of software services and
SOA; a convincing argument is the prominent role given to Software and Services in
Call 5 of the EU-funded Seventh Framework Programme (FP7), whose goal is to
achieve an “Internet of the Future, where organizations and individuals can find
software as services on the Internet, combine them, and easily adapt them to their
specific context [22].” While the SOA principles are becoming widespread, however,
we observe several ways in which principles are turned into standards, languages, and
programming styles. Thus, there is room to orient the SOA vision in a variety of
directions, and this paper emphasizes the relevance of supporting ordered queries
upon data sources. Such emphasis is new and very relevant to our Search Computing
goal.

The key success factor in the building of an abstract model useful to describe
online data sources is the recognition of a simple pattern, supporting a data
publication strategy, which should be “just enough” expressive to support data source
publishing, i.e., neither too simple, nor too complex. The search of patterns for easing
data publication for specific contexts is not new; the most well known data
publication pattern is the so called “data mart”, used in data warehousing as
conceptual schemas for driving data analysis. Data marts [6] are simple schemas
having one core entity, describing facts, surrounded by multiple entities, describing
the dimensions of data analysis. Such subschema allows a number of interesting
operations for data selection and aggregation (e.g. data cubes, rollup, drilldown)
whose semantic definition is much simplified by data characterization as either fact or
dimension and by the regular structure of the schema.

Analogously, a “Web mart” [7] is a pattern introduced in the Web design
community to characterize the role played by data items in data-intensive Web
applications. Web marts have a central entity, the core concept, which describes a
collection of core objects, surrounded by other entities which are classified as “access
entities”, enabling selection of core objects through navigation, and “detail entities”,
describing core objects in greater detail. Thus it is possible to drive a design process
that produces first-cut standard Web applications (e.g. sales, inventories, travels, and
so on).

Following an analogy with these two cases, in the framework of Search Computing
we define a service mart as the data abstraction for data source publication and
composition. The goal of a service mart is to ease the publication of a special class of
software services, called search services, whose responses are ranked lists of objects;
moreover, pairs of service marts are augmented with “connection” patterns, so as to
support queries over several service marts. Every service mart is mapped to one "Web
object" available on Internet; therefore, we may have service marts for “hotels”,
“flights”, “doctors”, and so on. Thus, service marts are consistent with a view of the
"internet of objects" which is gaining popularity as a new way to reinterpret concept
organization in the Web and go beyond the unstructured organization of Web pages.

Service marts support queries, therefore the properties (or attributes) of a service
mart logically belong to two types: those accepting “input” values from queries, and
those providing “output” values (i.e. results) to queries. The distinction is not crisp,

 Service Marts 165

because a given service mart can offer several implementations and therefore an input
attribute in one implementation can be in output in another. However, if we consider a
specific service implementation, then the distinction is clear. Such distinction is useful
for characterizing the role of attributes within queries, hence for composing queries
which consist of multiple service marts. Moreover, the most interesting service marts
are those offering ranked output. Such ranking is either opaque (being known to the
search service but not published in its standard interfaces), or explicitly associated
with given output attributes (either one or more; in such cases, ranking is typically a
linear combination of the values exposed by given output attributes). When ranking is
explicit, some of the output attributes of a service mart contain data which allow
sorting the results of service calls.

Service marts are abstractions; publishing a service mart entails bridging an
abstract description to several concrete implementations of services. Indeed,
implementing the service mart “hotel” may require the mapping to several data
sources, each one configured either as Web service (and accessible through APIs with
somewhat different features) or as a materialized data collection (e.g., data provided
by hotel portals and wrapped as a table by using suitable tools). Thus, the service mart
concept offers an abstraction for giving a “regular” view of the world, together with a
method and associated technology for building such a regular view out of concrete
data sources.

In the rest of this chapter, we survey the state-of-the-art of SOA deployment, with
a specific emphasis on data-intensive (as opposed to process-intensive) uses of SOA;
then Section 3 defines the notion of service marts (at a conceptual, logical, and
physical level) and of composition pattern (also at three levels). Section 4 illustrates
the registration process of service marts and applies such process to service marts of a
running example that will be next used thorough the various chapters; finally,
Section 5 illustrates best practices of service mart development in the context of Web
services, of wrapped data sources, and of materialized data sources.

2 Service-Oriented Architectures for Data Publishing

2.1 Service Description

The software service paradigm addresses the issue of making software systems more
easily composable and interoperating, hence many successful standards for services
have been progressively developed, either de jure (within standardization bodies, such
as W3C) or de facto (promoted by companies). In this section we briefly name the
most popular ones, referring the interested reader to courses and books (e.g. [2]).

Services are the result of a long research stream in software development, rooted in
previous attempts to support interoperability, such as CORBA (Common Object
Request Broker Architecture), DCOM (Distributed Component Object Model) or
RMI (Java/Remote Method Invocation). These standards were associated with
competing computational models for distributed components.

In the end, the most relevant standards are rather agnostic about the underlying
computational model, and describe instead other aspects of Web services, such as
their interfaces or message formats. The most popular interface definition standard is

166 A. Campi et al.

WSDL (Web Service Description Language) [32], a machine-processable format
describing the public interface offered by the Web service (with emphasis on its
operations and their parameters). The most popular message formats for exchanging
information to and from Web services follow the SOAP (initially: Simple Object
Access Protocol) standard [27], based on HTTP and XML. These standards are very
verbose. For this reason a lot of work has been done in the automatic generation of
code that manages web Services. The most interesting frameworks are Spring [28],
Apache Axis [20] and CXF [21]. SOAP services are also enriched by additional
functionalities (e.g. security, transaction, …) thus making SOAP services a mature
platform especially for enterprise applications.

More recently, REpresentational State Transfer (RESTful) Web services [25] have
been regaining popularity, particularly for use on Internet. By using the PUT, GET
and DELETE HTTP methods, alongside POST, these are often better integrated with
HTTP and web browsers than SOAP-based services. They do not require XML
messages or WSDL definitions.

Services act as components which can be put together to form software
applications according to given specifications (or service choreographies and
orchestrations, see chapter 12 and [2]); a software application, at a given time, is built
by a particular service composition, which should be consistent with such
specification. When running composite services on the Web, however, each sub
service is autonomous; if we consider most services which are provided on the Web,
the provider may remove, change or update their services without giving notice, and
this may cause faults during application execution. Therefore, an important aspect of
current research in web services is to guarantee properties of service compositions in
dynamic contexts where individual services can change or fail, but at the same time
the application can react by resorting to alternative compositions and possibly
alternative services. Exception handling and dynamic composition in the context of
web services is still an open research issue [15].

Another important research area is concerned with the exploitation of semantic
Web services [12], i.e. the ability to build applications starting from abstract
descriptions of the user’s goals and then building legal service compositions by means
of reasoning technologies. Standards such as WSDL or REST enable the invocation
of services but do not describe their semantics; therefore, the Semantic Web has
extended description standards so as to add semantics. One such extension is provided
by SAWSDL (Semantic Annotations for WSDL and XML Schema) [26], a
mechanisms for adding semantic annotations to WSDL components. SAWSDL does
not specify a language for representing the semantic models, e.g. ontologies, but it
only requires that the semantic concepts be identifiable via URI references, and
provides mechanisms by which concepts from the semantic models that are defined
either within or outside the WSDL document can be referenced from within WSDL
components as annotations. A different semantic extensions to web service
descriptions is WSFL [16], while DAML-S [3] applies reasoning technologies of the
semantic web to service description.

The Web Service Modeling Framework (WSMF) [11] is a modeling framework
centered around two complementary principles: decoupling and mediation, which
respectively support separation and interaction. WSMO [9] has four main components:
ontologies (providing the terminology used by elements to describe the relevant

 Service Marts 167

aspects of the domains), Web services (the computational entities able to provide
access to services), goals (user desires w.r.t. the requested functionality), and mediators
(that describe elements that handle interoperability problems between different WSMO
elements). Mediators act as the core concept to resolve incompatibilities on the data,
process and protocol level, i.e., in order to resolve mismatches between different used
terminologies (data level), in how to communicate between Web services (protocol
level) and on the level of combining Web services (process level). WSMO uses core
concepts of the Web, such as using URI (Universal Resource Identifier) for unique
identification of resources and Namespaces for denoting consistent information spaces,
supports XML and other W3C Web technology recommendations, as well as the
decentralization of resources.

The positioning of Search Computing relative to the Semantic Web deserves a
discussion. The Semantic Web vision is that of machines that substitute to humans in
the whole chain going from the high-level expression of goals down to the fulfilment
of the goals; it entails steps of discovery, matching, mediation, negotiation, and
delivery of information. Search computing aims at solving a simpler problem, in
which search sources are pre-selected, the most appropriate patterns are defined for
their composition, and queries are initially confined to use such patterns. Moreover,
search computing has a well-defined interaction context: user interfaces support
interactions whose purpose is to make ranking criteria explicit in the presence of
ambiguity. Thus, Search Computing is focusing on a much simpler problem than the
Semantic Web in its overall approach. However, our future work aims at leveraging
query interfaces and making them more and more close to natural language, and in
such cases semantic service annotations will become essential. For easing the
transition to this future goal, we already support optional tagging and annotations in
the service mart registration environment, and we may be able to take advantage of
the Linking Open Data initiative (http://linkeddata.org/), whose aim is to make
information on the Web available to machines (through RDF and URLs). This
information can potentially represent an additional source of data for Search
Computing (many useful sources are already available as linked data, e.g. dbpedia,
geonames, pubmed, citeseer).

2.2 Service Registration

At the heart of service-oriented computing is the possibility to cluster information
about services within so-called “service registries” that list (and sometimes connect
and mediate) service providers. Web service registries allow clients or applications to
access a wide range of Web services that match specific search criteria.

UDDI (Universal Description Discovery and Integration) [30] is a standard for
allowing service providers to share information stored within a registry and then to
discover the most appropriate service based upon its description, which we consider
in this section by focusing on registration aspects only. A UDDI registry offers
services for managing information describing service providers, service
implementations, and service metadata. Three types of information are included
within UDDI registries.

168 A. Campi et al.

• White pages describe basic contact information and identifiers such as
organization name, address, contact information, and other unique
identifiers.

• Yellow pages describe Web Services in terms of categorizations allowing the
classification of a Web Service based upon its category.

• Finally, green pages describe the service in terms of technological
information, such as its behaviours and operations.

UDDI specifications include a SOAP APIs, for supporting the querying and
publishing of information, an XML representation for the registry data model and the
SOAP message formats, and WSDL interface definitions of the services for
interacting with the UDDI registry.

In recent years, several Web service portals or directories have emerged:

• XMethods [34] is probably the oldest reference for looking to publicly
available Web Services. It only provides a simple (long) list of Web Services
and a details page with some basic information for every service.

• RemoteMethod Web Services directories [24] support finding and comparing
Web Services from various providers. Services need to be registered by a
rather lengthy procedure using a sequence of five Web forms and give
detailed information, like the infrastructure where the Web Service is hosted
and uptime guarantees. Catalog management follows a business model where
service providers can buy banners or pay in order to increase their position
within the listings.

• StrikeIron [29] is a marketplace of commercial Web Services and allows
browsing by category as well as keyword search. Its mission is to support
commercialization of Web Services.

• Woogle [31] searches for UDDI nodes in order to extract web services from
them, and focuses on extracting the semantic meaning of web services based
on WSDL descriptions, and then presenting the users a search interface that
exposes as well the semantic relationships between web services.

• Wsoogle [33] is based on a categorization built on top of the Woogle
technology. Similarity evaluation for operations uses operation names and
names and types of their parameters.

URBE [18] proposes an algorithm able to evaluate the similarity degree between two
Web services (or a query and a Web service) by comparing the related WSDL
descriptions. The approach takes into account the relationships between the main
elements composing a WSDL description (i.e., portType, operation, message, and
part) and, if available, the annotations included in a SAWSDL (Semantic Annotated
WSDL) file. The URBE approach has been implemented in a prototype that extends a
UDDI registry.

While these examples are useful first sources for looking for services, many
service directories that can be found on the Web are not stable, fail to adhere to UDDI
and, with time, become unreliable. Moreover, centralized registries suffer from
problems associated with having centralized systems such as a single point of failure,
and bottlenecks.

 Service Marts 169

2.3 Service Discovery

Discovery is [8] “the act of locating a machine-processable description of a Web
service that may have been previously unknown and that meets certain functional
criteria”. Web service discovery mechanisms allow accessing to service repositories
and/or “crawling the Web” in the search for services. Since Web services can be
tagged with a wealth of information, methods to narrow the discovery can be quite
complicated and use such semantic information.

The main obstacle that WS discovery mechanisms face is the heterogeneity
between services. A high level approach is considered by the emerging Web service
architecture project of W3C [4]. Different kinds of heterogeneity are classified
[13,17], such as: technological heterogeneity (different platforms or different data
formats), ontological heterogeneity (difference in terms and concepts describing
services), pragmatic heterogeneity (different underlying processes and different
support to domain-specific tasks).

Search engines such as Google and Yahoo have become a new source for finding
Web services. However, search engines do not easily separate and expose to users the
basic service properties (i.e. binding information, operations, ports, service endpoints,
among others), as they are instrumented or crawling and indexing generic content. In
addition, search engines generally crawl Web pages from accessible Web sites while
publicly accessible WSDL documents reside on Web servers; hence they are not
designed to be fetched and analyzed by normal crawlers. The work in [1] presents a
Web Service Crawler Engine (WSCE), i.e. a crawler whose primary purpose is to
seek within sources to collect business and Web service information.

Another recent service discovery technique is based on the Conceptual Situation
Spaces (CSS) [10], aiming at the discovery of appropriate semantic Web services
representations for a given situational context. In order to achieve such goal, the
methods first represent the specific situation characteristics as vectors within
geometrical vector spaces, according with the idea of Conceptual Spaces, then
they evaluate the semantic similarity between different situations as the Euclidean
distance of the corresponding vectors within the space. In this way they allow a
similarity-based matchmaking.

3 Service Marts

This section gives a top-down view of the definition of service marts, from the
conceptual level through the logical to the physical level. It then describes
composition patterns (at the conceptual and logical level) and service registration.

3.1 Conceptual Level

In a given Search Computing context, every class of Web objects must be represented
by a single service mart. A service mart is an abstraction that induces a normalization
of the attributes describing a class of Web objects. Thus, every service mart definition
includes a name and a collection of exposed attributes. Service marts have atomic
attributes and repeating groups consisting of a non-empty set of sub-attributes that

170 A. Campi et al.

collectively define a property of the service mart. Atomic attributes are single-valued,
while repeating groups are multi-valued.

Thus, a “Concert” service mart may be defined with five single-value attributes
(“Number”, “Theatre”, “City”, “Director”, “Orchestra”), then three multi-valued
repeating groups (“Show”, with “Date” and “Time” sub-attributes; “Program”, with
“Title” and “Composer” sub-attributes; and “Price List”, with “SeatType” and “Price”
sub-attributes). The schema of a repeating group is introduced by one level of
parentheses; therefore the above example can be summarized by the schema:

Concert(Number, Theatre, City, Director, Orchestra, Show(Date, Time),
 Program(Title, Composer), Price-List(SeatType, Price))

As another example, a “Movie” service mart has five single-value attributes (“Title”,
“Director”, “Score, “Year”, and “Language”) and then three repeating groups
“Genres”, “Openings” and “Actor”, each with sub-attributes describing them. The
schema is then:

Movie(Title, Director, Score, Year, Language, Genres(Genre),
 Openings(Country, Date), Actors(Name))

Attributes and sub-attributes are typed and can be tagged when they are defined. Of
course, such a pattern introduces a limitation upon the possible ways of describing
reality, which seems rather coercive if one considers the richness of data modeling
choices offered by top-down design. But in our framework we do not use a top-down
process; rather, we model data sources as they exist, bottom-up, and then we look for
their integration; moreover, most data sources have a simple schema, which can be
well represented by a one-level nesting. Therefore, the expressive power of service
marts seems to be appropriate for its purpose.

Every object instance should be “unique” within its class of reference (since there
is a single instance of each “real object” in the world). Such uniqueness can be
imposed explicitly when the service mart attributes derive their values from
extensional data and one of the properties of such extension is defined as (primary)
key; but we cannot assume in general that a key is explicitly available or known.
Therefore, we do not define the identification of object instance within the conceptual
model, and instead add a system-defined key in the physical model, within a
normalized schema associated to each service mart.

The motivation for repeating groups within service marts descends from the
following goal: we want to associate service marts with properties which can be
composite but not too complex. A repeating group serves the purpose of embedding
many-valued properties (such as the “actors” of a “movie”) within the object
instances of the service mart (the “movie”). In this way, beside adding expressive
power to service mart properties, we also model “real world relationships”, i.e.
conceptual elements whose purpose is bridging real world objects. Concepts such as
“acts-in” between “actor” and “movie” are not mapped to a service mart, they are
instead modeled by repeating groups, by placing actors as a repeating group of movie
or movies as a repeating group of actor (or both). This goal is consistent with keeping
the search computing service infrastructure as simple as possible, and also with

 Service Marts 171

keeping the connection between the two service marts as simple as possible (a single
value-based join, as it will be discussed in Section 3.4). Note that alignment cannot be
guaranteed if a relationship is rendered as different repeating groups within distinct
service marts which are mapped to distinct data sources, one for “movies” and one for
“actors”; service marts do not attempt to reconcile data sources and simply offer a
uniform method for their description. Note also that if “acting” takes the relevance of
a real-world object, e.g. with contractual details or with the schedule of scenes to be
filmed, then it will correspond to a distinct service mart.

3.2 Logical Level

After the conceptual definition of service marts, we need to describe the way in which
we can effectively perform data access. To this purpose, we introduce a second level
of abstraction, the logical level, in which each service mart is associated with one or
more specific access patterns. An access pattern is a specific signature of the service
mart with the characterization of each attribute or sub-attribute (not further
distinguished in this section) as either input (I) or output (O), depending on the role
that the attribute plays in the service call. In the context of logical databases, an
assignment of labels I/O to the attributes of a predicate is called predicate adornment,
and thus access patterns can be considered as adorned service marts. Moreover, an
output attribute is designed as ranked (R) if the service produces its results in an order
which depends on the value of that attribute. To ease service composition, we assume
that all ranked attributes return a normalized value within the interval [0..1]1. For
example, for the service mart “Movie” we can have the following access patterns:

Movie1(TitleO, DirectorO, ScoreR, YearO, Genres.GenreI, LanguageO, Openings.CountryI,
Openings.DateI, Actor.NameO)
Movie2(TitleI, DirectorO, ScoreR, YearO, Genres.GenreO, LanguageO, Openings.CountryI,
Openings.DateI, Actor.NameO)
Movie3(TitleO, DirectorI, ScoreR, YearO, Genres.GenreO, LanguageO, Openings.CountryI,
Openings.DateI, Actor.NameO)
Movie4(TitleO, DirectorO, ScoreR, YearO, Genres.GenreO, LanguageO, Openings.CountryI,
Openings.DateI, Actor.NameI)

In all cases, “Score” is an output attribute (ranging in [0..1]) used for ranking movies,
which are presented in descending order of their score, i.e. with highest score movies
first. The openings “Country” and “Date” are input parameters, which are used in
order to extract movies which are shown in a specific country after a specific opening
date (thus enabling the extraction of the most recent movies for that country). Then,
in the first access pattern, movies are retrieved by providing as input also one of their
genres2. In the second access pattern, movies are retrieved by providing as input also

1 We also consider the possibility of service interfaces providing two or more ranking attributes,

in such case the service definition includes an aggregation function which indicates how to
obtain a score in the [0..1] interval as a function of the ranking attributes; such score is opaque,
whereas the ranking attributes take explicit values within the [0..1] interval.

2 Note that there are many genders for each movie, and the query language introduced in
Chapter 10 supports retrieving a movie if one gender within the movies’ gender set matches
with the input provided to the service.

172 A. Campi et al.

the title (thus modeling request “search recent films by title”). In the third access
pattern, movies are retrieved by providing as input the movie’s director. Finally, the
last access pattern allows retrieving all those movies in which a specific actor has
played.

Access patterns provide predetermined ways in which users can interact with a
service mart and combine service marts in a given search process; they must cover the
needs of recurrent user’s queries, guaranteeing that these queries will be efficiently
answered. The choice of access patterns represents a limitation on the way in which
one can obtain data from the service mart; this limitation is in many times imposed by
the existing implementations of the service mart, or necessary in order to guarantee
good performance of the retrieval processes. Therefore, defining access patterns
requires both a top-down process (from query requirements) and a bottom-up process
(from concrete service implementations). In general, this tension between top-down
and bottom-up processes is typical of Web service design.

3.3 Physical Level

At the physical level of service marts we model service interfaces, where each
service interface is mapped to concrete data sources; a service interface is a triple
including a name, a given access pattern, and an endpoint. For instance, two service
interfaces can share the access pattern Movie1 and describe international and Italian
movies, respectively, being available at two different endpoints of the same host
machine:

Movie11 (“International Movies”, Movie1, http://www.host.endpoint1)
Movie12 (“Italian Movies”, Movie1, http://www.host.endpoint2)

A service interface may not support some of the attributes of the service mart, e.g.,
because one source could miss the properties “director” and “source”; this provision
allows for a minimal amount of inconsistency between service interfaces, that reflect
data availability in sources, and service marts, which must mediate among query
requirements and data availability at multiple sources. Unsupported properties are
indicated when the service interface is registered.

At a physical level, every service mart is mapped to a normalized schema, which
is adopted for the relational storage of service mart tuples. The normalized schema
includes one primary table for each service mart, storing one row for every real-
world object, and then one auxiliary table for each repeating group of the service
mart, storing one row for each value of such group. One artificial key is created for
each service mart row and used as foreign key in every auxiliary table, whose key
includes as well a progressive index. Normalized tables for the service mart Concert
are:

CONCERT (Key, ConcertNumber, Theatre, City, Director, Orchestra)
SHOW (Key, Num, Date, Time)
PROGRAM (Key, Num, Composer)
PRICE-LIST (Key, Num, SeatType, Price))

 Service Marts 173

Normalized tables for the service mart Movie are:

MOVIE (Key, Title, Director, Score, Year, Language)
GENRE (Key, Num, Genre)
OPENING (Key, Num, Country, Date)
ACTOR (Key, Num, Name)

Results returned by a call to a service interface expose an interchange format written
in JSON (JavaScript Object Notation) [23], a lightweight data-interchange format
easy to read and write by humans and easy to parse and generate by machines. The
format descends directly from the conceptual description of the service mart. Below is
a JSON Movie instance:

{
 "title": "Highlander",
 "director": "Russell Mulcahy",
 "score": "0.7",
 "year": "1986",
 "genres": [
 {
 "genre": "action"
 }
],
 "openings": [
 {
 "country": "US",
 "date": "31-10-1986"
 }
],
 "actors": [
 {
 "name": "Christopher Lambert"
 },
 {
 "name": "Sean Connery"
 }
]
}

Note that both the normalized schema and the exchange format depend just on the
service mart definition; therefore, all service implementations of the same service
mart share the same normalized schema and interchange format.

A service interface is a unit of invocation and as such must be described not only
by its conceptual schema or logical adornment, but also by its physical properties.
There are a huge number of options for characterizing data-intensive services, both in
terms of performance and quality. In this chapter (and in the first implementations of
service marts) we have focused upon few properties, which can effectively be used

174 A. Campi et al.

for compile-time optimization (see Chapter 10) and run-time adaptation (see
Chapter 12). Service interfaces are described by four kinds of parameters:

• Ranking descriptors classify the service interface as a search service (i.e.,
one producing ranked result) or an exact service, i.e., services producing
objects which are not ranked. Exact services are associated with a selectivity,
which is a positive number expressing the average number of tuples
produced by each call; if the selectivity is within [0..1] the service is denoted
as selective, otherwise it is called prolific. When a search service is
associated with an access pattern having one or more output attributes tagged
as R, then the ranking is said explicit, else it is said opaque. Explicit ranking
over a single attribute can be denoted as ascending or descending. Note that
search services may not be present a result with ranked attributes; e.g., most
commercial search engines can be characterized as service marts accepting
input keywords and producing semi-structured output information which is
mapped to a schematic representation, but they normally do not expose
rankings in output.

• Chunk descriptors deal with output production by a service interface. The
service is chunked when it can be repeatedly invoked and at each invocation
a new set of objects are returned, typically in a fixed number, so as to enable
the progressive retrieval of all the objects in the result; in such case, it
exposes a chunk size (number of tuples in the chunk). Search Computing is
focused on the efficient data-intensive computation and therefore most
service interfaces are chunked.3 Of course, if the service is ranked, then the
first chunk contains the objects with highest ranking, and subsequent chunks
yields the next objects in the ranking; normally, with exact services a query
should examine all chunks, while with search services a query can examine
just the top chunks.

• Cache descriptors deal with repeated invocations of the service. A very
efficient way to speed up service invocations consists in caching at the
requester side the responses returned for given inputs, and then use such
stored answers instead of invoking the service. But such policy is not
acceptable with many services, e.g. those offering real-time answers. Hence,
parameters indicate if a service interface is cacheable and in such case what
is the cache decay, i.e. the elapsed time between two calls at the source that
make the use of stored answers tolerable.

• Cost descriptors deal with associating each service call with a cost
characterization; this in turn can be expressed as the response time (time
required in order to complete a request-response cycle), and/or as the
monetary cost associated with making a specific query (for those systems
who charge their answers). Normally, the response time is the most relevant
cost factor, because a rapid production of results is crucial.

As a summary of the conceptual, logical, and physical representation of service marts,
consider Figure 1, where the service mart about hotels is initially provided with three

3 Chunks enable iterative processing which is similar, in the context of SOA, to cursor-based

data retrieval in data management.

 Service Marts 175

Fig. 1. Service mart at the conceptual, logical, and physical levels of abstraction

access patterns, and then two of such access patterns are provided with service
interfaces, which are then named after the specific Web applications used for
implementing the interface. Note that two service interfaces are offered for the first
access pattern. In general, each service mart presents several patterns and these in turn
present several interfaces, all interfaces share the same schema, and all interfaces for
the same access pattern share the same schema adornment.

3.4 Connection Patterns

Connection patterns introduce a pair-wise coupling of service marts (at the
conceptual level) and of service interfaces (at the physical level). Every pattern has a
conceptual name and then a logical specification, consisting of a sequence of simple
comparison predicates between pairs of attributes or sub-attributes of the two
services, which are interpreted as a conjunctive Boolean expression, and therefore can
be implemented by joining the results returned by calling service implementations.

For exemplifying connections, let us assume that two service marts are available
and denote hotels and roundtrip selections of pairs of flights, with the schema:

Hotel(Name, City, Stars, Score, PriceList(RoomType, Period, Cost),
Availability(RoomType,StartDay,EndDay))

RoundTrip(HomeCity, DestinationCity, FlightNum1, Date1, TimeDep1,
TimeArr1, FlightNum2, Date2, TimeDep2, TimeArr2, PriceList(Fare,Cost))

Assume that services are ranked, e.g. by price in the case of hotels and by fare in the
case of roundtrip flights (scoring functions for queries are described in the next
chapter). Let us assume that the Availability repeating group gives, for each room
type, time intervals when a room is available and therefore can be booked.

These service marts can be linked by several connections, each one with a different
semantic meaning. The most useful ones are a time-independent connection, checking
just the existence of hotels with certain properties in the destination city, or a time-
dependent connection, checking also for room availability. The former is easier to
compute and can be used to have a first idea of possible travel compositions, the

176 A. Campi et al.

second one is more time consuming and can be used when the travel options are better
defined. The two connections are specified as follows:

ExistsHotel(Hotel,RoundTrip): [(City=DestinationCity)]

ExistsRoom(Hotel,RoundTrip): [(City=DestinationCity) and (Date1>StartDay)
 and (Date2<EndDay)]

Connection pattern have conceptual, logical, and physical properties.

• Conceptually, the two service marts expressing the concepts “Hotel” and
“RoundTrip” are therefore connected by two connection patterns, one
labelled “ExistsHotel” and the other one labelled “ExistsRoom”.

• Logically, the connections are further specified as a sequence of predicate
expressions.

• Physically, some predicates may not be supported by specific service
interfaces, e.g. because they do not implement the join attributes.

Visually, service marts and connection patterns can be presented as resource graphs,
where nodes represent marts and undirected arcs represents connection patterns. Thus,
the Search Computing model of the Web is based upon a simplification of reality,
which is seen through potentially very large resource graphs. Such representation
enables the selection of interconnected concepts that support the creation and dynamic
extension of multi-domain queries.

User interfaces for Search Computing allow building queries from resource graphs,
thereby specifying only those queries which can be supported. Logical connections
completely specify the connection semantics and give users the possibility to build
queries, which become supported by a well-defined query language (formally defined
in the next chapter).

4 Service Implementation

Every service interface must be coupled to a service implementation, which extracts
information from the data sources and transforms their format so as to adhere to a
standard description in JSON, used to communicate the results of the call. We
distinguish three typical scenarios:

• Data can be queried by means of a Web service.
• Data are available on the Web but must be extracted from Web sites through

wrappers.
• Data are not directly accessible and must first be materialized.

4.1 Web Service Registration

The typical service implementation is a real Web service registered in the platform.
Web services return their output in arbitrary format, including but not limited to
HTML, XML and JSON. Given that the service mart interchange format is a well-
defined JSON structure, the service implementation developer must define a series of

 Service Marts 177

transformations on the results, and bundle them into a remote service implementation
that hides the peculiar features of each remote source.

In the case of REST services the transformation is immediate, since the service
already return JSON fragment. The typical transformation we need to apply is a
selection of the data returned by the service and eventually a transformation in the
JSON structure. Also in the case of WSDL services, we have only to define the
binding between the service mart and the operation we want to invoke, connecting
the appropriate parameters returned by the service to the service mart. Moreover, the
service output has to be transformed into an appropriate JSON fragment.

Once the services are transformed to return JSON, another step can be necessary in
order to adapt the cardinality of the results returned in each service, which can be not
appropriate (a search service could return too many results with each call, or even all
the results together). In this case, a chunker module supports changing the chunk size:
every call to the actual service is translated into the appropriate number of calls to the
service implementation, which buffers results and produces chunks of the desired
size. Chunker modules are also available in the execution engine (see Chapter 13).

4.2 Web Page Wrapping

The second types of sources we want to use are HTML pages. The Web is rich of
good quality information stored in HTML Web sites. Wrappers are particular
programs that can make available data published in the Web. In the context of service
marts, wrappers can be used to capture data which is published by Web servers in
HTML format, because in such case a data conversion is needed in order to support
data source integration – data must be rearranged according to the service mart
normalized schema. Another typical use of wrappers in Search Computing occurs
when services respond with HTML documents which must be translated in the normal
schema and encoded in JSON.

For building wrappers, several systems are available; in particular we use Lixto
[5,14], which is extensively described in Chapter 6. The wrapping process in Lixto
relies on one main operation performed by users: by marking a region of an example
Web document displayed on screen, using an input device such as a mouse, the user
helps the tool to build a set of rules describing the structure of the pages of the Web
site. These rules are used by Lixto to generate a wrapper that can be used both to
materialize as structured data the entire content of the Web site and to build a
dynamic program capable to "query" Web site in real time. Fig. 2 shows the
relationships between the data extracted by a query on the Web and a tabular view on
these data.

4.3 Data Materialization

Even if most service implementations require a call to a remote service, in some cases
summarized and materialized data may need to be stored at the engine site. In this
section, we describe the process that leads to producing service results in a format
which is coherent with the service mart organization. Data materialization is a general
process, which can be applied to sources in order to transform their format, to
eliminate redundancy, to improve their quality, and so on; thus, data materialization

178 A. Campi et al.

Fig. 2. Data extraction from query results published in HTML

can be performed both on the local (engine) and remote (provider) sites; in the latter
case, data is kept at the provider’s site, and retrieved through a dynamic service
implementation at query execution. In both cases, data materialization moves data
preparation from query execution to source registration time, together with a data
materialization schedules setting the times when materialization should be repeated;
therefore, data materialization is very useful for supporting efficient query execution.
Intrinsic to the normalization process, however, is the capturing of a given snapshot of
the data, which is not current; therefore the approach can be used only with data
which rarely changes.

We developed a materializer specifically for use in Search Computing. The
materializer is a software component whose objective is to read arbitrary data sources
and organize data in a normalized format, suitable for data export according to a
service mart definition. A materializer is organized with two logical layers, shown in
Fig. 3.

• The data extraction layer operates directly upon the data sources, that can be
of arbitrary formats (e.g., tables, XSL files, XML trees, and so on); its
purpose is to transform the input data into relational tables of arbitrary
format, called primary materialization; such table are temporary, used only in
the materializer, and invisible to the outside environment. The
transformation primitives of the data extraction layer are implemented as
Java components and arranged as a dataflow, which progressively apply to
input data; the last primitive stores java objects as table rows.

• The data formatting layer uses a series of SQL procedures, applied to the
primary materialization, to produce the normalized schema of the service
mart, as defined in Section 3.3.

 Service Marts 179

Fig. 3. Process description within the Materializer

Note that data providers need not use the materializer, as long as they build tables
according to the normalized schema. These data are published (either locally or
remote) and exposed to simple query modules, described in the next section, which
execute at query time, performing data selection (according to query input), chunking,
and linearization in JSON format.

There are two types of processing units: data conversion processing unit and data
extraction processing units (specific to the data extraction layer).

The data conversion processing unit of the data extraction layer accepts one tuple
in input, perform transformations on it, and return a list of output tuples. This unit is
programmed by the designer of each service interface and it is specific of each
concrete task. This unit is concerned with removing or reordering tuple attributes,
with composing new values from existing values (e.g. by extracting different
attributes driven by separator characters, or by inserting separation characters when
multiple attributes are merged into one), with string manipulation and substitutions. A
data conversion processing unit can also be built for building service interfaces,
e.g. when data are natively extracted by invoking remote services and then must be
transformed so as to fit the standard JSON format.

The processing units of the data extraction layer are:

• Tuple Reader, with no input, specialized by data source type, reads a list of
data items from the data source and writes them on an output connection;

• Tuple Writer, with no output, writes data items as rows in a database table;
• Tuple Cloner, with one input and two or more outputs, replicates the data

item in input to all its outputs.
• Tuple Extractor, with exactly one input and output, invokes a remote data

source; every call result generates, from an input item, a list of output items.

180 A. Campi et al.

The extractor unit enables inserting in the data materialization flow calls to external
services, including data wrappers (discussed next). In order to synchronize the
components, it is possible to define wait-for relationships, when some components
have to wait the production of all the items of a predecessor component before
starting their execution.

When data materializations are stored according to the normalized schema, the
service implementation can be automatically built by using SQL-based queries whose
code depends only on the service interface description (in particular, from its access
pattern, i.e. the characterization of fields as input, output, and ranking).

Specifically, queries over stored normalized tables perform selection based upon
user input and ranking using the ORDER BY clause. Nested content from the various
secondary tables is extracted by using nested queries. While selection, ranking and
nesting are supported by standard SQL, chunking requires returning at each call the
“top k” tuples, and unfortunately “top k” queries are not supported in standard SQL.
Thus, the SQL-based implementation must use a vendor-specific SQL dialect. The
general technique is to extract the first key result using the dialect specific feature and
build the JSON fragment for these k results.

All commercial DBMS offer “top-k” queries; some of them offer as well “interval”
queries, enabling the extraction not only of the “best k”, but also of the “subsequent
k” (defined within the interval [k+1..2k]), and so on; we show this case. MySQL
offers an “interval” query through a LIMIT clause, which returns at each query
evaluation the values within an ordered table included between its first and second
parameter. Results are then linearized and parsed into JSON. If we use such feature, a
simple query pattern for extracting the first k tuples (where k is the chunk size) is:

SELECT *
FROM Table
WHERE condition
ORDER BY rank DESC
LIMIT k

In order to extract the N-th chunks we have to modify the limit condition using the
clause LIMIT p, q, where p=k(N-1) and q=kN.

If data contains repeating groups the scenario is a slightly more complicated. We
first extract into RESULT-P the tuples of the Primary table which satisfy conditions
on either the Primary or the Secondary tables.

SELECT *
FROM Primary
WHERE conditionOnPrimary
AND Key IN
 (SELECT KEY
 FROM Secondary1
 WHERE ConditionOnSecondary1)
 UNION ...
 (SELECT KEY
 FROM SecondaryN
 WHERE ConditionOnSecondaryN)

 Service Marts 181

ORDER BY rank DESC
LIMIT k

We then extract into RESULT-I the tuples from the i-th Secondary tables with
matching keys with the table RESULT.

SELECT *
FROM Secondary-i
WHERE Key IN SELECT Key
 FROM R

The tables in RESULT and RESULT-S are then used for building the JSON
interchange format; the parser uses the key to combine tables. Such process is iterated
for the various chunks, by changing the LIMIT clause in the RESULT-P query.

In most cases, queries require interacting with remote services. In this case we use
the modules capable to manage direct service calls inside the materialize. Two
additional modules can be very useful for manipulating the results retrieved from
remote services: a group-by module supporting the construction of rows for auxiliary
tables by grouping the distinct values of rows which have certain values in common
and the chunker module already described.

5 Running Example

In this section we describe the service marts supporting a running example in
common to the chapters of this part: find a good recent adventure movie in a theatre
not too far from home and then find a good restaurant in walking distance. This query
initially requires the integration of three domains: movies, theatres, and restaurants.
Given that the services we use are focused on movies in English, we then formulate
the query in US, e.g. “Marina in San Francisco”, “University Avenue in Palo Alto”, or
“Washington Square in New York”.

5.1 Service Mart: “Movie”

The running example requires a search service capable of filtering movies by time
(e.g., whose opening date in US is recent enough) and genre (e.g. action movies) and
then extracting them ranked by their quality score. For such purpose, we use the
IMDB archive (http://www.imdb.com), which stores information about thousands of
movies and enriches their description with a “score” attribute computed as the
average of the scores assigned by community users worldwide to movies.

IMDB allows two different interaction modes: direct access to Web pages, or
usage of Web services. One of them (http://www.trynt.com/trynt-movie-imdb-api)
provides a programmatic access to a sub-set of IMDB data, featuring multiple export
formats (including JSON), and returning several data fields including actors, titles,
evaluators, and their comments. Unfortunately, the web service lacks a method that
allows one to query the service to obtain the movies filtered by genre and ordered by
their quality. Therefore, IMDB is managed by building an ad-hoc wrapper and using
it to materialize all movie descriptions and putting them into the “Movie” normal
schema. This requires periodic downloads to maintain such data materialization

182 A. Campi et al.

up-to-date; weekly updates to capture new openings seem adequate. For the running
example, we use the service interface Movie11,

Movie11 (“International Movies”, Movie1, http://www.host.endpoint1)

with access pattern Movie1 having inputs on the “Genre” of the movie and on the
“Country” and “Date” of opening, and ranking on the “Score”:

Movie1(TitleO, DirectorO, ScoreR, YearO, Genres.GenreI, LanguageO, Openings.CountryI,
Openings.DateI, Actor.NameO)

Data extraction, in turn, requires materializing four tables, as discussed in Section 3:

MOVIE (Key, Title, Director, Score, Year, Language)
GENRES (Key, Num, Genre)
OPENINGS(Key, Num, Country, Date)
ACTOR (Key, Num, Name)

In order to return the first ten results we use the MySQL query below, which fills the
RESULT table:

SELECT *
FROM Movie
WHERE Date > 2008 AND key IN
 (SELECT key
 FROM Genres
 WHERE Genre=INPUT1)
 AND Key IN
 (SELECT key
 FROM Openings
 WHERE Country=INPUT2 and Date>INPUT3)
ORDER BY Score DESC
LIMIT 0,10

Three additional queries are used to extract genres, actors and openings:

SELECT *
FROM Actors
WHERE Key IN SELECT Key
 FROM Result

SELECT *
FROM Genres
WHERE Key IN SELECT Key
 FROM Result

SELECT *
FROM Openings
WHERE Key IN SELECT Key
 FROM Result

 Service Marts 183

Results returned by this query are used by a parser which builds one JSON fragment
for each film, within all its openings, genres, and actors.

If we want instead to retrieve Italian movies, we can use an Italian Web site,
http://www.hyperreview.com, which lists movies with Italian titles; therefore, a
second service interface is developed for the same service mart, which extracts the
data using the same materialization mechanism.

5.2 Service Mart: “Theatre”

The next step in our example is the registration of a service capable to offer a list of
movie theatres, with the related films, ordered w.r.t. the distance from a given
location. We define a service mart Theatre:

Theatre(Name, UAddress, UCity, UCountry, TAddress, TCity, TCountry,
TPhone, Distance, Movie(Title, StartTimes, Duration))

U versions of attributes “Address”, “City” and “Country” denote the user’s location,
while T versions of the same attributes represent the theatre location; Theatre is
connected to Movie via a connection pattern “Shows” using a join on titles:

Shows(Movie,Theatre): [(Title=Title)]

For the service implementation, we use “Movie Showtimes - Google Search”
(http://www.google.com/movies), a service allowing the retrieval of all the cinemas
nearby an input location that is expressed as a complete address (address, city,
country) or as a city. We select the second case and therefore the service interface:

Theatre1(NameO, UAddressI, UCityI, UCountryI, TAddressO, TCityO,
TCountryO, TPhoneO, DistanceR, Movie.TitleO, Movie.StartTimesO,
Movie.DurationO)

The service returns results sorted by theatre distance from the input location, but it does
not return the actual distance (therefore, ranking is opaque, and the implementation does
not expose “Distance”). Moreover, we have noticed that the sorting is approximate,
probably because theatres are selected by Google based on their importance (number of
parallel shows). Therefore, we have developed a second service interfaces which
integrates the Yahoo! Maps Web Service, that allows one to find the specific latitude and
longitude for an address, and then computes the exact distance between two points (home
and theatre) so as to compute explicitly the distances of theatres, expose them in the
output, and then re-rank outputs based upon the exact distance. The second service
implementation demands more resources and requires longer computations (but it
exposes “Distance”). Then, the two service interfaces are registered and mapped to their
endpoints:

Theatre11 (“Google Service”, Theatre1, http://www.host.endpoint1)
Theatre12 (“Exact Google Service”, Theatre1, http://www.host.endpoint2)

184 A. Campi et al.

An example of instance extracted from Theatre11 is:

{
 "Name" : "Pacific Culver Stadium 12",
 "TAddress" : "9500 Culver Boulevard",
 "TCity" : " Culver City",
 "TCountry" : " CA, USA ",
 "TPhone" : " (310) 360-9565 ",
 "Movies" : [
 {
 "Title" : "Law Abiding Citizen",
 "Duration" : "1hr 48min ",
 "StartTimes" : "12:05am"
 },
 {
 "Title" : "Paranormal Activity",
 "Duration" : "1hr 39min ",
 "StartTimes" : "12:05am"
 }
]
 }

In order to retrieve Italian theatres, we use http://www.paginegialle.it/, a Web site
listing the commercial activities belonging to a specific category (such as restaurant,
bar, theatres etc) that are located in or nearby a specific geographical place. Therefore
we build a third service interface Theatre13 covering the Italian theatres over “Pagine
Gialle”. Since this service does not provide a set of API for the data extraction, it is
wrapped by using Lixto.

5.3 Service Mart: “Restaurant”

In our running example, once we decide about the theatre, we then look for a
walking-distance restaurant. We introduce the service mart:

Restaurant(Name, UAddress, UCity, UCountry, RAddress, RCity, RCountry,
Phone, Url, MapUrl, Rating, Distance, Category(Name))

Then we qualify attributes “UAddress”, “UCity”, “UCountry”, and “Category.Name”
as I (corresponding to the starting location and the kind of restaurant we look for),
“RAddress”, “RCity”, “RCountry”, “Location”, “Phone”, “Url” and “MapURL” as O
(for locating and inspecting the restaurant) , “Distance” and “Ranking” as R (for
ranking a combination of quality and distance), yielding to the following access
pattern:

Restaurant1 (NameO, UAddressI, UCityI, UCountryI, RAddessO, RCityO,
RCountryO, PhoneO, UrlO, MapUrlO, DistanceR, RatingR, Category.NameI)

The service marts Theatre and Restaurant have a connection pattern “Dinner Place”
specified as:

 Service Marts 185

DinnerPlace(Theatre, Restaurant): [(TAddress=UAddress),
 (TCity=UCity), (TCountry=UCountry)]

For the implementation of the service interface, we use the Yahoo Local source
(http://local.yahoo.com/), a service that allow the users to find Businesses &
Commercial Services (e.g. restaurants) that are in or nearby a requested address, city
and state, or a specific zip code. In order to access to the Yahoo Local data, we use
the Yahoo! Query Language (YQL) Web Service, which enables the access of
Internet data with SQL-like commands and report the results in XML or JSON output
format.

YQL statements can be executed upon Yahoo Local as REST services. Yahoo
Local provides commercial exercises located in Australia, Canada, Germany, France,
India, Korea, US, and UK, but not in Italy. Therefore, we also consider a service
interface of the same service covering Italy, which uses as physical service Yahoo
Travel (http://travel.yahoo.com/); this service is not included in the YQL Web
Services suite, but it has available APIs on the Web.

6 Conclusions

This chapter has provided the definition of service marts as an interoperability
concept for building Search Computing applications. The Web world is described as a
resource graph with service marts linked by and connection patterns, and then service
marts are associated with service interfaces and implementations. Service delivery
uses well-defined formats and rules so as to enable the execution of queries and the
composition of tuples so as to build query results. Services of the running example
show that content already exists on the Web, and that data extraction requires
selecting sources and designing service mart, with a mix of top-down and bottom-up
attitude; however, setting up these services is not too difficult.

References

1. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In:
Proceeding of the 17th international Conference on World Wide Web, WWW 2008,
Beijing, China, April 21-25, pp. 795–804. ACM, New York (2008)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architecture and
Applications. Springer, Heidelberg (2004)

3. Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D., McDermott, D.,
McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.: DAML-S: Semantic
Markup for Web Services. In: The First International Semantic Web Conference (ISWC),
Sardinia (Italy)

4. Austin, D., Barbir, A., Ferris, C., Garg, S. (eds.): Web Service Architecture Requirements.
W3C Working Group Notes (2004),

 http://www.w3.org/TR/wsa-reqs
5. Baumgartner, Flesca, S., Gottlob, G.: Visual Web Information Extraction with Lixto.

In: Proceedings of the 27th Very Large Data Bases Conference, September 11-14, pp.
119–128 (2001)

186 A. Campi et al.

6. Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data marts for
data warehouses. ACM Trans. Softw. Eng. Methodol. 10(4), 452–483 (2001)

7. Ceri, S., Matera, M., Rizzo, F., Demaldè, V.: Designing data-intensive web applications
for content accessibility using web marts. Commun. ACM 50(4), 55–61 (2007)

8. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.
(eds.): Web Services Architecture, http://www.w3.org/TR/ws-arch/

9. de Bruijn, J., Fensel, D., Keller, U., Lara, R.: Using the web service modelling ontology to
enable semantic eBusiness. Communications of the ACM (CACM), Special Issue on
Semantic eBusiness (2005)

10. Dietze, S., Gugliotta, A., Domingue, J.: Towards context-aware semantic web service
discovery through conceptual situation spaces. In: Sheng, Q.Z., Nambiar, U., Sheth, A.P.,
Srivastava, B., Maamar, Z., Elnaffar, S. (eds.) Proceedings of the 2008 international
Workshop on Context Enabled Source and Service Selection, integration and Adaptation:
Organized with the 17th international World Wide Web Conference (WWW 2008),
CSSSIA 2008, Beijing, China, April 22, vol. 292, pp. 1–8. ACM, New York (2008)

11. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce: Research and Applications 1(2), 113–137 (2002)

12. Fensel, D., Kerrigan, M., Zaremba, M.: Implementing Semantic Web Services. Springer,
Heidelberg (2008)

13. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Web Service Discovery
Mechanisms: Looking for a Needle in a Haystack? In: International Workshop on Web
Engineering (2004)

14. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data extraction
project: back and forth between theory and practice. In: Proceedings of the Twenty-Third
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2004, Paris, France, June 14 - 16, pp. 1–12. ACM, New York (2004)

15. Laliwala, Z.: Event-driven Dynamic Web Services Composition and Automation of
Business Processes. Services Computing. In: IEEE International Conference on Services
Computing (SCC 2006), pp. 527–528 (2006)

16. Leymann, F.: Web Services Flow Language (WSFL 1.0), IBM (May 2001)
17. Overhage, S.: On Specifying Web Services Using UDDI Improvements. In: 3rd Annual

International Conference on Object-Oriented and Internet-based Technologies, Concepts,
and Applications for a Networked World Net.ObjectDays, Germany (2002)

18. Plebani, P., Pernici, B.: URBE: Web Service Retrieval Based on Similarity Evaluation.
IEEE Transactions on Knowledge and Data Engineering 21(11), 1629–1642 (2009)

19. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

20. AXIS, http://ws.apache.org/axis/
21. CXF, http://cxf.apache.org/
22. CORDIS, http://cordis.europa.eu/fp7/ict/ssai/ (September 17, 2009)
23. JSON, http://JSON.org/
24. REMOTEMETHOD, http://www.remotemethods.com/
25. RESTFUL,

http://java.sun.com/developer/technicalArticles/WebServices/
restful/

26. SAWSDL, http://www.w3.org/2002/ws/sawsdl/
27. SOAP, http://www.w3.org/TR/soap/
28. SPRING, http://www.springsource.org/

 Service Marts 187

29. StrikeIron, http://www.strikeiron.com
30. UDDI,

 http://www.oasis-open.org/committees/
 tc_home.php?wg_abbrev=uddi-spec

31. Woogle, http://db.cs.washington.edu/webService/
32. WSDL, http://www.w3.org/TR/wsdl
33. Wsoogle, http://wsoogle.com
34. XMethods, http://www.xmethods.com

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 188–210, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 10:
Join Methods and Query Optimization

Daniele Braga, Stefano Ceri, and Michael Grossniklaus

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{braga,ceri,grossniklaus}@elet.polimi.it

Abstract. Joins between data sources are an essential ingredient of multi-
domain queries, as they exploit connection patterns defined between service
marts or between service interfaces. This chapter moves from the definition of a
query language over service interfaces, sketching how queries can be directly
expressed over service marts and how these can be translated over service
interfaces. The fundamental operation discussed in this chapter is the binary
join between two sources, which is influenced by the type (search vs. exact) of
services and by the management (parallel vs. sequential) of service calls. Then,
this chapter presents an optimization framework for queries over several service
interfaces, which considers several cost metrics for mapping queries into query
plans, consisting of specific operations over services, and includes a branch and
bound approach to the exploration of the combinatorial search space of all
possible query plans.

1 Introduction

This chapter delves into the issues of formulating and optimizing multi-domain
queries over several services, focusing on the specific problems that arise due to the
presence of search services in the queries. The distinguishing feature of a search
service is to return answers in relevance order. In general, although the answers
produced by a search service can be very numerous, users are only concerned with the
answers provided within the first pages of results. Thus, a query strategy that retrieves
all the answers from a search service is rarely appropriate. On the other hand, only the
user can correctly evaluate the relevance of answers produced by search engines.
Therefore, if a query involves several searches, all answers produced by the involved
search engines should be composed in the query output and presented to the user for a
correct evaluation. Moreover, the user expects answers in ranking order. Thus, while
composing results from multiple services, answers should be presented according to a
global ranking that is obtained either as an exact composition function of the rankings
(then, we can talk about “top-k” results) or an approximation of that function.

In this chapter, we define a formal model for the optimization and the execution of
multi-domain queries over services which expose heterogeneous information sources.
Such model serves as a unifying perspective for several diverse possible application
settings, ranging from providing expert users with service mash-up tools to providing
the foundations for vertical service integration frameworks. The originality of the
model stems from the way in which data sources are classified, distinguishing

 Join Methods and Query Optimization 189

between exact services, that have a “relational” behavior and return either a single
answer or a set of unranked answers, and search services, that return a list of answers
in ranking order, according to some measure of relevance.

We also formally define query plans, playing the same role within our context as
physical access plans in relational databases. A plan is defined as the orchestration of
service invocations, possibly in parallel, which takes into account some significant
features of the service, including its ability to return results in chunks. Query plans
schedule the invocations of Web services and the composition of their inputs and
outputs. Within plans, the main operations are joins between results, whose execution
can take place according to several join strategies.

Then, we define an optimization method for choosing the “best” access plan, i.e.
the one that optimizes an objective function, resorting to a classical and well-
grounded approach such as branch and bound in order to efficiently explore the
solution space. Cost minimization is performed against one of several alternative cost
metrics, capturing different scenarios and different optimization goals.

The organization of this chapter is as follows. Section 2 presents the state-of-the-
art of query optimization, with a specific emphasis upon systems that integrate data
collected through Web services. Section 3 presents the query language, offering its
syntax, semantics, and exemplification on the running example. It then presents a
graph model for query plans in which nodes denote operations and arcs denote the
dataflow between them. The most important operation is the join of two services, and
Section 4 focuses on join methods. Finally, Section 5 shows the optimization steps
and heuristics leading to the selection of an optimal plan.

2 State of the Art

The background for this chapter ranges over several disciplines. In this Section we
move from the classical foundations of query processing and optimization, in order of
increasing specificity, to Web service composition, query answering under access
limitation, and the study of systems dedicated to query optimization over Web
services (Web Service Management Systems).

2.1 Query Processing Foundations

Query processing is perhaps the fundamental technology offered by database
management systems, in the sense that they provide means for translating declarative
SQL queries into highly efficient access plans. The main merit of query processing is
the ability of producing high performance plans. Work in query processing can be
traced back to foundational papers such as [7]. Dedicated books, such as [30], focus
just on query processing. In most approaches, query processing consists first in giving
an abstract representation of the query (typically in the form of a directed acyclic
graph having data resources as leaves and data extraction and transformation
operations as intermediate nodes [7], and then using equivalence transformations
upon such graphs in order to use the best possible operations and settings of
operations’ parameters, so as to minimize an objective function. Such processing
is called query optimization and typically uses methods of operations research

190 D. Braga, S. Ceri, and M. Grossniklaus

(e.g., [15]). Extensible query processors are obtained by describing equivalence
transformations as rules, and then varying the rule set by adding or dropping rules or
by varying their priority [17]. Other well-known query optimization techniques exist,
such as transformation-based approaches [21] or randomized approaches [13].

Branch-and-bound algorithms are, e.g., adopted in [24], which considers a query
optimization problem with characteristics that are similar to our problem.
Specifically, the authors focus on ranked queries in the context of classical databases,
where the “ranking” is expressed by means of an explicit preference function over the
values of a tuple’s attributes, to be taken into account when computing top-k answers.
However, service characteristics and implicit ranking orders are not dealt with, which
instead are a distinguishing feature of the work presented in this chapter. We propose
a branch-and-bound query construction method driven by a set of heuristics that allow
us to take into account the peculiarities of search services and to converge to an
optimal solution with respect to a given cost metric. Like in [12], in our case we
cannot easily resort to transformation-based techniques, as the presence of access
patterns and ranking orders does not guarantee properties like associativity and
commutativity for joins. Randomized approaches, on the other hand, are not
efficiently applicable with explicit access patterns, as this would typically lead to
uselessly consider a large number of infeasible plans during query optimization.

2.2 Answering Queries over Web Services

Historically, answering queries over independent data sources has been the research
object of parallel or distributed query processing [14][23][11]. Two main techniques
have emerged in this research field: code shipping and data shipping. While code
shipping to Web services is not feasible, data shipping is feasible and allows the
feeding of results coming from one service in the access plan to another service in the
plan. The latter technique is heavily leveraged in our work, as data are shipped in
pipelines from one service to another, so as to maximize parallelism.

The coordinated execution of distributed Web services is the subject of Web
services composition, which comes in two different flavors: orchestration and
choreography [9]. The distributed approach of choreographed services (e.g., using
WS-CDL [26] or WSCI [27]) does not suit our query processing problem, because
choreographies are not executable and require the awareness of and compliance with
the choreography by all the involved services. The centralized approach of
orchestrated services (e.g., using BPEL [19]) suits better the research problem
addressed in this paper, as orchestrations are executable service compositions
(i.e., query plans, in our terminology) and services need not be aware of being the
object of query optimization and execution. In the specific case of BPEL, however, its
workflow-based approach does not provide the necessary flexibility when the
invocation order of services needs to be computed at runtime, as is our case
(e.g., dynamically fixing a number of fetches to be issued to a service remains hard).
There is a growing amount of semantic approaches to the runtime composition of
Web services (e.g., [28] or [8]), but their focus is typically on functional requirements
or quality of service [2] and less on data.

Inspired by the work presented in [22], Tatemura et al. [25] introduce the idea of
continuous query over service-provided data feeds (e.g., through RSS or Atom). The

 Join Methods and Query Optimization 191

goal is to mash up and monitor the evolution of third-party feeds and to query the
obtained result. Their mash-up query model is articulated into collections of data
items and collection-based streams of data (streams also track the temporal aspect of
collections and allow the querying of the history of collections). Suitable select, join,
map, and sort operators are provided for the two constructs. The described system
consists of a visual mash-up composer, an execution engine, and interfaces for users
to subscribe to mash-up feeds equipped with personalized queries.

Finally, Yahoo Pipes1 and IBM Damia2 [1] enable a Web 2.0 approach to compose
(“mash up”) queries over distributed data sources like RSS/Atom feeds, comma-
separated values, XML files, and similar. Both approaches come with user-friendly
and intuitive Web interfaces, which allow users to draw workflow-like data feed
logics based on nodes representing data sources, data transformations, operations, or
calls to external Web services. Both Pipes and Damia require the user to explicitly
specify the query processing logic procedurally, which is generally not a trivial task
for unskilled users, especially for the case of joins, which have to be explicitly
programmed by the user. Instead, with our approach we automatically derive a plan
from a declarative query formulation.

It is worth noting that the previous service querying approaches effectively enable
users to distribute a query over multiple Web services, but they do not specifically
focus on the peculiarities of search services, such as ranking and chunking.
Characteristics like the ranking order of results or advanced querying techniques are
not considered.

2.3 Answering Queries under Access Limitations

Web sources are not freely accessible as in the traditional relational setting, because
they typically expose a limited number of interfaces, in which certain fields must be
mandatorily filled in order to obtain a result. These fields may be the input fields of a
form on a data-intensive Web site or the input parameters of a Web Service
invocation. Such access limitations are crucial to the optimization problem, and
modeled by characterizing service parameters as binding patterns, i.e., classifying
them as input or output parameters, thereby clarifying the different ways in which it
can be invoked. The issue of processing queries under access limitations, by some
authors studied under the headline of binding patterns, has been widely investigated
in the literature [20][16][18][29][10].

In our work, we have assumed that queries are always designed so as to admit at
least one choice of access patterns. However, for some queries, it may happen that no
permissible choice of access patterns exists. Although, in this case, the original user
query cannot be answered, it may still be possible to obtain a subset of the answers to
the original user query by invoking services that are not necessarily mentioned in the
query, but that are available in the schema. In particular, such “off-query” services
may be invoked so that their output fields provide useful bindings for the input fields
of the services in the query with the same abstract domain. A query “augmentation”
of this kind, however, can only provide an approximation of the original query that, in

1 http://pipes.yahoo.com/pipes/
2 http://services.alphaworks.ibm.com/damia/

192 D. Braga, S. Ceri, and M. Grossniklaus

general, requires the evaluation of a recursive query plan even if the initial query was
non-recursive.

The problem of finding all obtainable answers to a query posed over data sources
with access limitations has been studied in [18] and later works. It has been shown
that, even though a query is conjunctive, finding all obtainable answers in general
requires a recursive query plan. Also, since accessing data sources over the Web is
typically a costly task, later works have addressed the issue of reducing the accesses
to the sources, while still returning all obtainable answers. For instance, some
optimizations to be made during query plan generation to minimize the accesses to
data sources are discussed in [16] for a subset of conjunctive queries, named
connection queries. More expressive classes of queries, including conjunctive queries,
are covered in [6].

2.4 Web Service Management Systems

The paper in which Srivastava et al. [22] introduced the notion of Web Service
Management System can be considered as one of the main inspiration sources of the
query optimization framework in SeCo. The authors propose a Web service
management system (WSMS) that enables querying multiple Web services in a
transparent and integrated fashion, similarly to the problem approached in this paper.
The authors propose an algorithm for arranging a query’s Web service calls into a
pipelined execution plan that exploits parallelism among Web services to minimize
the query’s total running time under a bottleneck cost metric (i.e., by choosing to
optimize the execution of the slowest service). They assume all services to be exact
and with no chunking of results, and model them by means of their per-tuple response
time and selectivity. They focus upon simple queries where all input attributes get
their values from either exactly one other Web service or from the user’s input, and
did not consider the peculiarity of search services, with ranked results.

Inspired by [22], Braga et al. developed in [4] the foundations of the optimization
framework for Search Computing that is here addressed in Section 5.

3 Query Formulation and Translation into an Executable Plan

The optimization of a query over a set of service marts starts from a formulation of
the query in a conjunctive query language and ends with a fully instantiated
invocation schedule. The execution environment to which the invocation schedule is
addressed is a system capable of executing query plans (as they will be formally
defined in the sequel). This means that the system can execute requests, collect their
results, and integrate them progressively, forming the answers as combinations of
partial invocation results.

3.1 Query Formulation

We consider select-join queries on service marts and connection patterns. Our
formalism abstracts away from the details of any underlying representation, and for
each information source resorts to simple service definitions as illustrated in
Chapter 9. No projection is performed, as all the data of a service implementation are

 Join Methods and Query Optimization 193

presented to the liquid query interface, where the format of results includes projecting
over some of the service mart attributes. The user interface may also present one copy
of all attributes which are set equal by a query. Queries can be expressed, with exactly
the same syntax and semantics, either over service marts or over service interfaces. In
the former case, the query processor must select suitable service interfaces so as to
make the query feasible, according to the definition given below. In this chapter (and
in our first conceptualization of Search Computing) we assume that users operate
directly over service interfaces. Hence, the interface selection process, though
mentioned later on with respect to query optimization, is not part of the query
processing chain.

More formally, a query consists of a set of services s1, …, sn (the same service can
occur several times with a different renaming for each different use), a set of selection
predicates, and a set of join predicates.

We recall from the previous chapter that an attribute of a service can be either an
atomic attribute or a repeating group. A repeating group consists of a non-empty set
of atomic sub-attributes that collectively define one property of an object. Atomic
attributes are single-valued, while repeating groups are multi-valued. We indicate an
attribute A of a service s as s.A. A sub-attribute A of a repeating group s.R is indicated
as s.R.A. If no ambiguity arises, the prefixes s or s.R may be omitted.

A selection predicate is an expression of the form A op const, where A is an atomic
attribute or sub-attribute, const is a type-compatible constant, and op is a comparator
among {=, <, <=, >, >=, like}. A join predicate is an expression of the form A op B,
where A and B are type-compatible attributes or sub-attributes, and op is a comparator
among {=, <, <=, >, >=, like}.

A service s from a query is reachable if, for every input (sub-)attribute A of s, the
query contains a selection predicate of the form A=const, or a join predicate of the
form A = B where B is a (sub-)attribute of a reachable service. A query is feasible if
all its services are reachable.

A tuple of a service is a mapping that sends each attribute s.A into a value of the
domain of A. For a tuple t of s, we use the notation t.A to indicate the value of t for
attribute s.A. Note that, if s.R is a repeating group, the value t.R is a set of tuples over
the sub-attributes of s.R.

The semantics of a feasible query over s1, …, sn with a set P of (selection and join)
predicates is defined as the largest set of composite tuples of the form t1 ⋅ … ⋅ tn such
that the following two conditions hold:

1. ti ∈ si for 1 ≤ i ≤ n; and
2. there is a mapping M from each repeating group of the form si.R occurring in

P into a tuple M(si.R) in ti.R such that each expression in the set obtained
from P by

• replacing each occurrence of si.R with M(si.R) and, after that,

• replacing each occurrence of si with ti

is satisfied according to the natural interpretation of comparators.

Consider two services S1 and S2 over the repeating group R with sub-attributes A
and B. Assume that S1 provides two objects t1=({<1,x>,<2,x>}), t2=({<2,x>,<1,y>})

194 D. Braga, S. Ceri, and M. Grossniklaus

and that S2 provides two objects t3=({<1,x>,<2,y>}), t4=({<2,x>}). Thanks to the
above choice of semantics, the query Q1: select S1 where S1.R.A=1 and S1.R.B=x
produces the result {t1}, and the query Q2: select S1, S2 where S1.R.A=S2.R.A and
S1.R.B=S2.R.B produces the result {t1⋅t3, t1⋅t4, t2⋅t4}. Note that t1 belongs to Q1’s result
because S1.R can be replaced by the tuple <1,x> of t1.R and the resulting expressions
1=1 and x=x are trivially satisfied. Informally, t1 is selected because one of its
repeating groups satisfies the selection condition. Conversely, t2 does not belong to
Q1’s result because, although its sub-attributes separately satisfy the selection, this
occurs in different tuples of the repeating group. Therefore no individual tuple of the
repeating group satisfies the selection condition. Similarly, note that the tuple t2⋅t3
does not belong to Q2’s result because, although its sub-attributes satisfy the join
condition, this occurs in different tuples of the repeating group.

Instead of constants in the query we may also use variables prefixed as INPUT,
whose value is provided by users at query execution time. Using the above syntax and
semantics, the example query can be expressed as follows:

RunningExample:

Select Movie11 As M, Theatre11 as T, Restaurant11 as R
where

(selection conditions)
M.Genres.Genre=INPUT1 and M.Openings.Country=INPUT2 and
M.Openings.Date>INPUT3 and T.UAddress=INPUT4 and T.UCity=INPUT5
and T.TCountry=INPUT2 and T.Category.Name=INPUT6 and

(join conditions)
M.Title=T.Title and T.TAddress=R.RAddress and T.TCity=R.RCity

 and T.TCountry=R.RCountry.

Note that the condition M.Openings.Country=INPUT2 and M.Openings.Date>INPUT3
extracts movies such that a single opening tuple satisfies both the conditions on
country and date.

Join predicates used by a query are normally establishing join condition over
connection patterns. Therefore, join conditions can be expressed in a more compact
way by mentioning connection patterns, yielding to the formulation below:

RunningExample:

Select Movie11 As M, Theatre11 as T, Restaurant11 as R
where Shows(M,T) and DinnerPlace(T,R) and
 M.Genres.Genre=INPUT1 and M.Openings.Country=INPUT2 and
 M.Openings.Date>INPUT3 and T.UAddress=INPUT4 and T.UCity=INPUT5
 and T.TCountry=INPUT2 and T.Category.Name=INPUT6

Checking the feasibility of this query is immediate by considering that all input places
of Movie11 and Restaurant11 are associated with INPUT variables, hence they are
reachable, and that by virtue of the join variables linking Theatre to Restaurant also
Restaurant is reachable. If all services are properly designed and registered, queries
over service interfaces whose join conditions include the connection patterns and
whose selection conditions include an equality predicate with either a constant or an
input variable are feasible queries. Tools for drawing queries upon the graph
representation of service marts and connection patterns can help query designers, so
as to enable the drawing only of feasible queries [5].

 Join Methods and Query Optimization 195

We finally turn to expressing rankings, an important aspect of Search Computing
queries. We assume that each service interface si is associated with a scoring
function SFi. If si is ranked, SFi indicates how to obtain a score in the [0,1] interval as
a function of the attributes of si

3; if it is unranked, the SFi is a fixed constant. Then,
the query is associated with a ranking function f expressed as a sequence (w1, …, wn)
of non-negative weights for the scores used in the query. If tuples t1, …, tn from,
respectively, s1, …, sn are used to form a combination, the ranking function of the
formed combination t1 ⋅ … ⋅ tn is given as w1S1 + …+ wnSn, where Si is the score of ti
for 1 ≤ i ≤ n; the weight of unranked services is set equal to 0. In the above query,
with 3 ranked service interfaces, a possible ranking function is (0.3, 0.5, 0.2).

Ranking functions may be assigned prior to query execution, either at query
definition time or at query presentation time. They can also be altered dynamically
through the query interface, yielding to changes in the query execution strategy. Only
ranking functions defined at query definition time can be used for query optimization.

3.2 Query Plans

A query plan indicates the sequence of invocations of services and their conjunctive
composition through joins. The specification of a query plan allows the execution of a
query as a dataflow computation, from the user’s input to the production of k tuples,
where k is a parameter of the optimization. Every tuple includes contributions from
the various service calls which are progressively composed according to the dataflow.
Result tuples can be guaranteed to be the top-k tuples according to the ranking
function, or instead be just k good tuples, emitted with an approximation of the total
order expressed by the ranking function. Top-k tuples are generated by query plans
which use top-k join methods, described in the next chapter. All other plans use the
join methods described in Section 4, which do not guarantee top-k results, but are
normally faster than top-k join methods.

We represent plans as directed acyclic graphs (DAGs) where:

─ Every node represents either an atom in the conjunctive query (i.e., a service
invocation), or a join, or a selection operation.

─ Every arc indicates data flow and parameter passing from outputs of one service
to inputs of another service.

─ Atoms are partitioned into exact and search services. Exact services are
distinguished between proliferative and selective and may be chunked, while
search services are always proliferative and chunked. An exact service is
selective if it produces in average less than one tuple per invocation (and
therefore, in average, fewer output tuples than input tuples). An exact service
that is not selective “per se” is said to be selective in the context of a query when
the query includes a selection predicate over the output attributes of the service
and the combined execution of the exact service call and of the selection
produces fewer output tuples than input tuples.

─ Joins are either performed as pipe joins or as parallel joins. Pipe joins occur
when the query in the plan is made feasible through a strategy which induces an

3 The case of opaque rankings can be dealt with by associating the position of tuples in the

result with a new attribute and then translating the position into a score in the [0..1] interval.

196 D. Braga, S. Ceri, and M. Grossniklaus

I/O dependency between two services, whereas parallel joins occur when there
is no such dependency. Parallel joins are represented by explicit nodes, marked
with an indication of the join strategy to be employed, while pipe joins are
represented simply by cascading two service invocations.

─ Selection nodes express selection or join predicates which cannot be performed
either by calling services or by using connection patterns.4 Each predicate is
independently evaluated on tuples representing intermediate or final query
results, immediately after the service call that makes the selection or join
predicates evaluable.

─ Two explicit nodes represent the query input (i.e., the process of reading INPUT
variables, mapping onto the arguments of services and joins, and starting query
execution) and output (i.e., returning tuples to the query interface).

The graphical syntax for representing query plans is represented in Fig. 1.

Fig. 1. Elements of query plans

We assume that services are independent of each other and that at each service call
the values are uniformly distributed over the domains associated to their input and
output fields. These assumptions allow us to obtain estimates for predicate selectivity
and sizes of results returned by each service call. Cost models use estimates of the
average result size of exact services and of chunk sizes.

An example of query plan representing the access to four services is shown in
Fig. 2. The plan consists first in accessing two exact services named Conference
and Weather. Conference is proliferative and produces 20 conferences on average,
while Weather is selective in the context of the query, because extracted tuples are
checked against the condition that the average temperature at the time of the
conference must be above 26°C, and thus many of them can be discarded. Then,
services describing flights to the conference city and hotels within that city are
called, and their results are joined according to a given strategy, called merge-scan
(MS), to be discussed later. Results of the join are transmitted to the user interface
by the output node.

4 These are expressed in the query and have the form: Si.atti op const or Si.atti op Sj.attj where

op is any comparison operation and attributes can be either single or multi-valued.

 Join Methods and Query Optimization 197

Fig. 2. Example of query plan

In our framework, we retrieve only the fraction of tuples of proliferative search
services that are sufficient to obtain the first k tuples as query answers. We set k as
optimization parameter so that the answered tuples should normally satisfy the user’s
needs (e.g. k=10), but a plan execution can be continued, after an explicit user
request, thereby producing more tuples. Therefore, a user can either be satisfied with
the first k answers, or ask for more results of the same query, or change the choice of
input keywords and resubmit the same query, or turn to a different query or Web
activity. Moreover, if the strategy does not guarantee top-k results, a query interface
can be set so as to retrieve continuously tuples from the execution engine, without
waiting for the extraction of k tuples. More details about user interaction are delayed
to Chapter 13.

Also, for each node N in the plan we shall estimate the number of tuples in output,
denoted as tout

N. We assume that the user always injects one single input tuple in the
plan, represented by the start node. For exact services, tout

N is given by the product of
tin

N (the number of input tuples) with the service’s average cardinality. For selection
nodes, tout

N is equal to tin
N multiplied with the selectivity of the predicate. In both

cases, numbers descend from the static properties of the query and can be computed
from service interface statistics, under suitable independence and value distribution
assumptions. Instead, if node n represents a join, tout

N depends on the join selectivity
and on the join method used; and if a node represents a search service, tout

N is given
by the product of the chunk size with the total number FS of fetches determined by the
plan, which may in turn depend on the input tin

N. Therefore, the main decisions to be
taken are join methods and access to search services. An annotated plan whose nodes
are associated with tin

N, tout
N, and FS (if appropriate) is denoted as a fully instantiated

query plans and can be associated with an execution cost. Fig. 3 shows an example of
fully instantiated query plan obtained by annotating the plan of Fig. 2.

Fig. 3. Fully instantiated query plan, with annotations

198 D. Braga, S. Ceri, and M. Grossniklaus

4 Join Methods for Search Computing

In this section, we explore different join methods for search computing. We start by
outlining the problem space and then continue to discuss three orthogonal
characteristics of join methods, topology, invocation, and completion strategy.
Finally, we discuss a number of concrete join methods that serve as a basis for
upcoming chapters.

4.1 Problem Statement

Consider the join of two search services SX and SY, and let R be the result of the join.
R is a sequence of tuples rk each obtained by joining two tuples xi, produced by SX,
and yj, produced by SY; rk is associated with a ranking function ρR

k, producing values
within the [0..1] interval, obtained as the weighted sum of two scoring function ρX

i

computed over ti and ρY
j computed over tj. We can represent the chunks extracted

from two services SX and SY over the axes of a Cartesian plan, such that on each
axis the ranking order of the chunks decreases from the origin down to the end of the
list (see Fig. 4). Each point P in the plan represents a couple (xi, yj) which must be
joined. If the join predicate holds, the point P belongs to the result. Services SX and SY
produce at each call a new chunk, named cXi and cYj respectively, where cXi is a chunk
returned by SX in response to its i-th call and cYj is a chunk returned by SY in response
to its j-th call. The Cartesian plan is thus divided into rectangles with nX⋅nY points,
where nX and nY represent the chunk size of each service. We call tile tij the
rectangular region that contains the points relative to chunks bXi and bYj. Two tiles are
said to be adjacent if they have one edge in common.

The plan is a model of the search space to be explored by a join operation. Each
rectangular region of size m⋅n represents the part of the search space that can be
inspected after performing m request-responses to SX and n request-responses to SY.
Therefore, achieving extraction-optimality requires a suitable exploration strategy for
such search space, which guides a “careful scan” of the result lists.

Fig. 4. Search Space for join operations

 Join Methods and Query Optimization 199

A join strategy is optimal if it produces, with the minimum cost, k tuples with the
top-k highest ranking. The cost of a strategy depends on the adoption of a specific
cost model, whose factors include the cost of interacting with services and the cost of
computing the join between service results. Cost-based optimal strategies for joining
search services are the focus of the next chapter.

However, top-k optimality is neither precise enough nor practically desired. First,
rankings are sometimes approximate and the ranking function is rather arbitrary, thus
reducing the practical relevance of producing top-k results. Second, it may be
inappropriate to produce results in strictly decreasing ρR values, because achieving
such result normally requires halting the output production of result tuples until the
system decides that all top-k tuples are produced. So we introduce a revised notion of
optimality, which only an approximate ranking of results.

If we assume that services return results in decreasing ranking order, we say that a
join strategy is extraction-optimal if it produces elements rk in decreasing order of
the product of the two rankings ρX ⋅ ρY and with the minimum cost. Such notion
extends from tuples to tiles by using the ranking of the first tuple of the tile as
representative for the entire tile. Extraction-optimality enables the presentation of
results which satisfy the join condition in the order in which they are computed, tile
by tile. Therefore, the dataflow of results produced to the user is not “blocking” (by
abusing of the terminology which is typical of query streams), and results can be
presented to users while they are extracted from the search engines, typically arranged
in chunks. The notion of extraction optimality can be further refined to be interpreted
in global sense, i.e. relative to all the tiles in the search space, or in local sense,
i.e. relative to the tiles already loaded in the search space and available to the join
operation. If two tiles are adjacent, then the one with smaller index sum is extracted
first by extraction-optimal methods.

Concerning the cost model, we consider the scenario in which the cost of join
execution is dominated by request-response execution. We assume that once a chunk
is retrieved as the effect of a request-response to services, then join requires simple
main-memory comparison operations and can be neglected5. We further characterize
the way in which ranking decreases (from top values close to 1 down to bottom values
close to 0), by subdividing search services in the following two classes:

1. Search Services with Step Scoring Function. We assume that, by performing a
limited number h of request-responses, most of the relevant entries will be
retrieved, because the entry scores decrease with a deep step after h request-
responses. We assume h to be a parameter associated with the service.

2. Search Services with Progressive Scoring Function. We assume that the scoring
function decreases progressively, with no step. This case accommodates all
regularly decreasing functions, e.g. linear or square value distributions.

5
 In previous work [3] we considered also the scenario where the cost of request-response execution
is dominated by join execution. Such scenario considers more expensive “join” operations, e.g.
the matching of terms which are extracted from a taxonomy or an ontology, where matching is
expensive, e.g. because each element comparison requires itself a call to a semantic Web service.

200 D. Braga, S. Ceri, and M. Grossniklaus

Note that the unavailability of the ranking function does not affect our basic
assumption that the search services return results in ranking order, but simply captures
the situation in which this function is opaque. However, if the function is opaque, then
classifying services and determining h in the former case is more difficult.

4.2 Topology

The first characteristic of a join method is its topology. When joining two search
services, there are basically two possible ways of invoking the services. Either the
services are invoked sequentially or in parallel. In the context of this book, the former
case is referred to as a pipe join, while we will call the latter a parallel join.

4.2.1 Pipe Joins
Pipe joins use the fact that the access patterns of certain search services accept input
parameters. In a sequence of services, the first service returns chunks of tuples that
are passed down the sequence. A subset of the attributes of these tuples is the set of
join attributes of a pipe join, whose values are passed, or “piped”, to another service
that appears later in the sequence. These values are used as input values of the latter
service’s calls, so as to produce a set of result tuples, obtained by composing the input
tuple with the service call results. Note that in order to perform a pipe join, the two
search services do not need to follow one another directly in the sequence of services.
Also, multiple pipe joins can be performed within a sequence of search services. As
shown in Fig. 1, pipe joins are not represented by any dedicated symbol in query
plans. Rather they are just a sequence of service invocations that are chained by
passing the output of one invocation as input to the next.

4.2.2 Parallel Joins
Parallel joins enable parallelizing the invocation of Web services and are fundamental
operations of query plans, where they are represented by means of dedicated nodes,
shaped as a join symbol. Binary parallel joins have been studied in [3].

4.3 Invocation Strategy

Apart from the topology, a join method is characterized by the order and frequency in
which the services involved in a join are invoked. We refer to this property as the
invocation strategy. The choice of invocation strategy depends on the distribution of
the ranking of the results and the cost of service invocation. We consider two cases
named nested-loop and merge-scan, for their analogy to well-known join methods. In
addition, other specific invocation strategies can be arbitrarily defined.

4.3.1 Nested-Loop
The nested loop strategy is suitable when the results of one search engine,
conventionally the first service, exhibits a clear “step” (as defined in Section 4.1). In
such case, we assume that the ranking of that service suddenly drops from a high
value to a very low value. The corresponding best exploration strategy of the search
space reminds of the “nested-loop” method for relational joins. The exploration
consists of extracting all the h chunks corresponding to the high ranking values of the

 Join Methods and Query Optimization 201

Fig. 5. Nested Loop (a) and Merge-Scan (b) strategies

“step” engine, and then extracting the chunks of the other service in ranking order,
thereby producing join results. This strategy is represented in Fig. 5a.

4.3.2 Merge-Scan
The merge-scan strategy is indicated in the absence of information about a clear
“step” in the ranking of results. Then, one should assume that rankings decrease
progressively. The corresponding best exploration strategy of the search space
reminds of the “merge-scan” method for relational joins. The exploration consists in
moving “diagonally” in the Cartesian plan, as shown in Fig. 5b, where the arrows
indicate the order in which the tiles are chosen starting from the first tile. The method
could evenly alternate service calls in the lack of better estimates of the score
functions, or else it could use an inter-service ratio r between calls to services, and
such ratio could be fixed (e.g. r=3/5) or variable. Chapter 11 presents top-k optimal
join methods whose invocation strategy is merge-scan with variable inter-service
ratios, based upon service costs. In Chapter 12 we show units for controlling the
execution strategy, called clocks, whose function is to regulate service calls based
upon the inter-service ratio.

4.4 Completion Strategy

Orthogonal to the invocation strategy that controls in which order and how often
services are invoked, the completion strategy governs the order in which the tiles are
considered by the join operation. Taken together, invocation and completion strategy
thus control the exploration of the search space.

4.4.1 Rectangular
A rectangular strategy processes all the tiles as soon as the corresponding tuples are
available. This completion strategy applies both to nested-loop and merge-scan. The
rectangular strategy is locally extraction-optimal. With the nested loop method, if the
step scoring function of the first service drops from 1 to 0 exactly in correspondence
to the h-th chunk, then the method is globally extraction-optimal. A rectangular
strategy matched to a particular sequence of requests is shown in Fig. 6.

202 D. Braga, S. Ceri, and M. Grossniklaus

Fig. 6. Examples of rectangular completion strategies

It should be noted that a strong asymmetry in the ranking of the two services may
lead to a “long and thin” rectangular completion strategy, composed of the already
explored tiles. This degenerates, in the worst case, to addressing all the calls to one
service only (except for the first two calls, which are always alternated so as to have
at least one tile for starting the exploration). This particular case, shown in Fig. 6, has
the disadvantage that each I/O only adds one tile.

4.4.2 Triangular
A triangular strategy processes all the tiles by moving “diagonally” in the Cartesian
plan, as in the case of merge-scan, where a diagonal is expressed as ratio r=r1/r2
between numbers of blocks in the search space. Thus, the method processes tiles txy
such that the sum of indexes of two consecutive tiles extracted by the strategy cannot
increase by more than one and that x r2 + y r1 < c, where c are constant values which
are progressively increased by the method, starting with c= r1 r2. The triangular
extraction strategy is locally extraction-optimal. When matched with the merge-join
invocation strategy, it approximates an extraction-optimal strategy.

4.5 Join Methods

This classification—topology, invocation and completion strategy—gives rise to eight
possible methods for the join of two services. Note that not all combinations that
would be theoretically possible also make sense in practice.

As a very simple example of a method that makes sense, Fig. 7 shows a
rectangular completion applied to a merge scan in which the inter-service ratio is
fixed to 1, resulting in the exploration of squares of increasing size. This method
typically makes sense for parallel joins in which chunks are fetched alternatively from
the two joined services. Pipe joins are better performed via nested loops with
rectangular completion, which corresponds to retrieving the same number of fetches
from the second service for each invocation originating from each tuple in output
from the first service.

An example of method that makes little sense in practice is a rectangular
completion applied to nested loop.

 Join Methods and Query Optimization 203

 (1) (2) (3) (4)

Fig. 7. Merge-scan, rectangular join strategy

5 Query Optimization for Search Computing

The optimization problem considered in this Section is: given a query over a set of
services, find the query plan that minimizes the expected execution cost according to
a given cost metric in order to obtain the best k answers. The process of generating an
optimal plan starts from the conjunctive query over services (either service marts or
service implementations) and ends with a fully instantiated invocation schedule.

5.1 Cost Metrics

A cost metric is a function that associates a cost to each query plan. We mainly
consider the following two cost metrics:

Execution time metric, which measures the (expected) time elapsed from the
query submission time to the production of the k-th answer. The time required for
producing k tuples takes into account the number of invocations of each unit and the
expected elapsed time for the execution of that unit in order to obtain a given number
of results. The cost must account for the slowest path flowing tuples from the input to
the output of the plan.

Sum cost metric, which computes the cost of a plan for producing k answers as
the sum of the costs of each operator used in the plan. Examples of costs for a service
invocation are the cost of computing joins or the cost charged by the service. A
special case of the sum cost metric is the request-response cost metric, which consists
of considering only the cost of service invocations required to execute the plan,
omitting to consider operation execution costs. A further simplification is to assume
that every service invocation has the same cost, and in such case the metric simply
counts the number of calls. This metric is particularly relevant when the transfer of
data over the network is the dominating cost factor.

There are other cost metrics of interest, though not considered in detail in the rest
of the chapter:

Bottleneck cost metric, which gives the execution time of the slowest service in
the plan, and is relevant in contexts of pipelined execution of continuous queries. This
metric, extensively studied in [22], is suitable to contexts with homogeneous services
(resembling a distributed DBMS) but it is not advised in our context, where search
services rarely produce all their tuples and the execution is normally limited to
reaching k answers.

Time-to-screen cost metric, which measures the time required to present the user
with the first output tuple. This metric is suitable for settings in which the user
expects a prompt interaction.

204 D. Braga, S. Ceri, and M. Grossniklaus

5.2 Branch and Bound Approach to Query Optimization

After characterizing services, query plans, and cost metrics, we now introduce our
optimization method, summarized in Fig. 8. The method explores the combinatorial
solution space of all possible translations of the conjunctive query into fully instantiated
invocation schedules. The exploration is organized by means of an incremental
construction of the query plans, which takes place in three phases, imposing a discipline
in the order in which alternative plans are generated and considered.

The first phase is the selection of specific access patterns and service interfaces
for each service si occurring in the conjunctive query, so that the resulting query is
proven as feasible6. This phase is required when the query is formulated at the highest
level of abstraction, over service marts, and includes the selection of the “best”
service interfaces. In the context of this chapter, service interfaces are already selected
by the query, but feasibility has to be proven. If no feasible plan can be generated for
a given query, the translation fails. Otherwise, the chosen service interfaces are passed
to the second phase to set up the query topology.

The second phase is the selection of a query topology for the given choice of
service interfaces. This phase fixes the order of invocation of the services, as well as
the data flow and the details of join operations. Indeed, it is worth reminding that even
when all access patterns have been determined, there may still be several alternative
DAGs compatible with the precedence constraints they enforce.

The third phase is the choice of the number of fetches to be performed over the
chunked services. This phase allows to fully determine the execution schedule and the
join strategies, and therefore to compute its cost according to a given metric.

Fig. 8. Branch and bound

6 Queries may also be formulated by means of syntax-aware user interfaces, such as the mashup

environment described in [5]; in such cases, the query is guaranteed to be feasible by
construction, as the tools do not allow users to compile unfeasible queries.

 Join Methods and Query Optimization 205

Each phase is combinatorial and the considered problem is hardly tractable by
exact methods, even with queries involving few services. However, all considered
cost metrics are monotonic, which allows for an exploration of the whole search space
with a branch and bound strategy.

The incremental construction of query plans starts from an empty plan. Each
choice in any of the three phases determines a subdivision of the search space into
non-overlapping subsets, which is an ideal branching. Then, thanks to the mentioned
monotonicity, each subset can be assigned a lower bound for the cost by calculating
the cost on the partially constructed plan. To complete the bounding step, we can
obtain an upper bound for a class of plans by fully constructing one plan in the class
and calculating its cost. With this, we may apply the pruning step: if the lower bound
for some class A is greater than the upper bound for some other class B, then A (and,
implicitly, all solutions derivable from the elements of A) may be safely discarded
from the search. In this way, the method converges to a local optimum, which under
restrictive assumptions coincides with the global optimum.

This approach is traditionally used within database optimizers; e.g., the analogous
phases in join optimization consist first in determining the join order, then the join
method, then its parameterization according to the supported join execution
procedures. Our problem has a similar combinatorial explosion, and we have evidence
(thorough prototype implementations, e.g., in [4]) that the optimization can find
reasonably good solutions in acceptable execution time.

In the following, for each of the three phases we (i) define the branching and
bounding steps to be used for examining the solution space, and (ii) describe
heuristics for choosing the branches so as to build efficient plans quickly. The search
for the optimal plan can be stopped at any time, and it will nevertheless return a valid
solution. If let run up to exhaustion of the search space, the returned plan is the
optimal one, otherwise the returned plan is the one representing the current upper
bound, whose “distance” from the optimal one depends on the effectiveness of
heuristic choices and the running time of the algorithm.

5.3 Phase 1: Access Pattern Selection

Query plans are to be constructed taking feasibility into account. Initially, all atoms in
the query are considered. At least one atom must be reachable based on available
access patterns for that atom, or else the query is not feasible. Selected atoms are
associated to a service interface, which is either chosen by the system or by the user
within all service interfaces with that access pattern. The association of the first atom
to an access pattern corresponds to a family of access plans, obtained by setting all the
first atom’s attributes as bound, and therefore turning some other atoms as reachable.
The process continues with branches driven by heuristics and bounds given by the
cost of complete plans, unless some atom cannot be reached and the query is declared
unfeasible. Lower bounds can be computed, e.g., by isolating the services that have
fewer bound input attributes than some services in an already computed solution, and
then by computing the cost associated to those services under the most favorable
assumptions. The bound is effective if such cost exceeds the complete cost of the
considered solution. The choice of the next atom can be done according to one of the
following heuristics:

206 D. Braga, S. Ceri, and M. Grossniklaus

─ Bound is better: a good heuristics for the choice of access patterns consists in
preferring those with many input attributes. The intuition behind this heuristics
is that the more attributes are bound to a given input, the smaller is the answer
set, and therefore the service is faster in producing results, and less memory is
required to cache the data.

─ Unbound is easier: the shortcoming of the previous heuristics is that with many
input attributes it is more difficult to find an assignment that makes the query
feasible. Therefore, in contrast to the previous heuristics, an initialization with
the minimum number of input attributes may make it easier to build a feasible
solution.

5.4 Phase 2: Selection of a Query Topology

The construction of all possible DAGs for a query plan can be done incrementally. It
starts by placing after the initial node some node corresponding to a reachable service,
and then by progressively adding nodes corresponding to services that are reachable
by virtue of the user input variables and the services already included in the query.
Nodes can be added in series or in parallel with respect to already included nodes,
compatibly with the constraints enforced by I/O dependencies. Clearly, the space of
constructible DAGs may grow very quickly, due to the exponential number of
choices, multiplied at each step of the construction. Yet, the number of choices also
depends on the degrees of freedom on the partial order induced by the access patterns.
indeed, if the access patterns determine a total order, then there is only one possible
DAG. The choice of the next node in the query plan can be done according to one of
the following heuristics.

─ Selective first: having long linear paths in the DAG, ordered by decreasing
selectivity, wherever possible (ideally, one chain from input to output).

─ Parallel is better: always making the choice that maximizes parallelism. Of
course, this does not necessarily minimize the cost. Generally speaking,
incrementing the parallelism plays in favor of those metrics that take time into
account, while sequencing selective services plays in favor of metrics that
minimize the overall number of invocations. In absence of access limitations,
this gives the optimal solution, as proved in [22].

5.5 Phase 3: Choice of the Number of Fetches

Whenever a query includes chunked services, say cs1, … , csM, we need to provide an
estimate of the number of chunks that will be fetched per input tuple at each csi. We
call this numbers the fetching factors of the services, represented as a n-uple
〈F1,…,FM〉. Initially, all fetching factors are set to 1, which is the lowest admissible
value for such parameters, as all services must contribute to the result. Clearly, if the
n-tuple 〈1,1,…,1〉 already determines h ≥ k results, then it is also the optimal solution.
otherwise, the fetching factors have to be incremented, until h ≥ k. This can be done
incrementally, according to one of the following heuristics.

─ Greedy: at each iteration, the Fi to be incremented is the one that corresponds to
the node in the plan with the highest sensitivity with respect to the increase in
the number of tuples in the query result per cost unit. Computing such

 Join Methods and Query Optimization 207

sensitivity parameter is rather complex as it takes into account the query
topology, as the increase of tuples in output in one node causes more tuples to
be processed (and hence costs) in all the successors of that node.

─ Square is better: at each iteration, each Fi is incremented by a value that is
proportional to its chunk size. This implies that, in average, after query
execution, all chunked services will have explored about the same number of
tuples. The name of the heuristics originates from the fact that the fetching
factors are incremented in such a way that the explored parts of the search space
of all binary joins are kept square and of the same size.

5.6 Optimization Applied to the Running Example

We now briefly show how optimization can be applied to the query of the running
example. The query is already formulated over service interfaces, whose adornments
are as follows:

Theatre1 (NameO, UAddressI, UCityI, UCountryI, TAddressO, TCityO, TCountryO,
TPhoneO, DistanceR, Movie.TitleO, Movie.StartTimesO, Movie.DurationO)

Movie1 (TitleO, DirectorO, ScoreR, YearO, Genres.GenreI, LanguageO,

Openings.CountryI, Openings.DateI, Actor.NameO)

Restaurant1 (NameO, UAddressI, UCityI, UCountryI, RAddessO, RCityO,
 RCountryO, PhoneO, UrlO, MapUrlO, DistanceR, RatingR, Category.NameI)

With this choice of access patterns the query is feasible. referring back to the
conjunctive formulation of Section 3.1, we note that all input attributes of Theatre and
Movie are covered by INPUT variables, and the three input attributes of Restaurant
are joined with the homonymous ones that are in output in Theatre. This test ends the
first phase, identifying the I/O dependency that holds from Theatre to Restaurant. As
for the second phase, four topologies are to be considered, shown in Fig. 9.

In all configurations Theatre precedes Restaurant, so as to implement with a pipe
join the corresponding I/O dependency. Among the alternatives, we choose to
continue our example with (d), which also contains a parallel join (as it would be
chosen by the heuristics “parallel is better”).

We then set K = 10 as the number of desired output combinations, and estimate the
values of some basic parameters. Selectivity of the join predicates and chunk sizes are
essential to calculate tin and tout for all the nodes in the plan. We estimate the
selectivity of Shows() and DinnerPlace() as 2% and 40% respectively – namely, the
probability that a given movie is being shown in a given theatre and the probability
that a given theatre is placed close to a good restaurant. The value of K can be “back-
propagated” through the nodes of the plan, as follows: K = 10 implies tRestaurant

out = 10.

 (a) (b) (c) (d)

Fig. 9. Alternative topologies for the running example

208 D. Braga, S. Ceri, and M. Grossniklaus

Fig. 10. Fully instantiated query plan for the running example

We choose to only keep and include in the result the first (and presumably best!)
restaurant found for each location, therefore tRestaurant

in = 25, by virtue of the selectivity
of the pipe join. This in turn implies tMS

out = 25, and therefore that the parallel join has
to process 1250 candidate combinations overall. Here the space of possible solutions
opens up quite widely, as different numbers of invocations and numbers of fetches per
invocation can be assigned in order for 1250 combinations to be generated. Assuming
that we restrict to the first 100 movies, corresponding to 5 fetches of chunks of 20
movies and to the first 25 theatres in order of distance from the user’s address,
corresponding to 5 chunks of size 5, we can consider the fully instantiated query plan
obtained by annotating the plan of Fig. 10. Note that multiplying tMovie

out = 100 by
tTheatre

out = 25 we obtain 2500, but choosing a triangular completion strategy assures
that only the half of the “most promising” combinations (either close theatre or very
good movies) are considered, thus obtaining tMS

out = 1250.
We have only considered one possible instantiation of the query. It would be the

branch and bound’s responsibility to apply the cost metric to this “initial” plan,
consider it as an upper bound, and explore the search space for less costly solutions.

6 Conclusions

This chapter has presented a formal model for the optimization and the execution of
multi-domain queries over services. We have turned a high-level formulation of queries
over services into executable query plans, describing the invocations of Web services and
the composition of their inputs and outputs, and then we have presented a method for
optimizing the selection of access plans according to cost metrics. Access plans include
as its main ingredient the join between service results, and in this chapter we have
reviewed efficient methods for join execution, which however do not guarantee that
results are the top-k according to a global ranking. This chapter has therefore created the
premises for the next two chapters, where we describe methods for rank aggregation
which guarantee top-k results, and an engine for query plan execution.

References

1. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng, Y.-H.,
Simmen, D., Singh, A.: Damia - A Data Mashup Fabric for Intranet Applications. In:
VLDB 2007, pp. 1370–1373 (2007)

 Join Methods and Query Optimization 209

2. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based Methodology for
e-Service Discovery. Inf. Syst. 31(4-5), 361–380 (2006)

3. Braga, D., Campi, A., Ceri, S., Raffio, A.: Joining the Results of Heterogeneous Search
Engines. Inf. Syst. 33(7-8), 658–680 (2008)

4. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain Queries on
the Web. PVLDB 1(1), 562–573 (2008)

5. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Mashing Up Search Services. Internet
Computing 12(5), 16–23 (2008)

6. Calì, A., Martinenghi, D.: Querying Data under Access Limitations. In: ICDE 2008,
Cancún, Mexico, pp. 50–59 (2008)

7. Chamberlin, D.D., Astrahan, M.M., King, W.F., Lorie, R.A., Mehl, J.W., Price, T.G.,
Schkolnick, M., Selinger, P.G., Slutz, D.R., Wade, B.W., Yost, R.A.: Support for
Repetitive Transactions and Ad Hoc Queries in System R. ACM-TODS 6(1), 70–94
(1981)

8. Confalonieri, R., Domingue, J., Motta, E.: Orchestration of Semantic Web Services in
IRS-III. In: AKT-SWS 2004. The Open University, Milton Keynes (2004)

9. Daniel, F., Pernici, B.: Insights into Web Service Orchestration and Choreography.
International Journal of E-Business Research 2(1), 58–77 (2006)

10. Deutsch, A., Ludäscher, B., Nash, A.: Rewriting Queries using Views with Access
Patterns under Integrity Constraints. Theoretical Computer Science 371(3), 200–226
(2007)

11. DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A., Hsiao, H.-I., Rasmussen,
R.: The Gamma Database Machine Project. IEEE Trans. on Knowledge and Data
Engineering 2(1), 44–62 (1990)

12. Florescu, D., Levy, A.Y., Manolescu, I., Suciu, D.: Query Optimization in the presence of
Limited Access Patterns. In: SIGMOD 1999, Philadelphia, Pennsylvania, USA, pp. 311–
322 (1999)

13. Ioannidis, Y.E., Kang, Y.: Randomized Algorithms for Optimizing Large Join Queries.
SIGMOD Rec. 19(2), 312–321 (1990)

14. Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Processing Data
Integration Queries. In: SIGMOD 2004, Paris, France, pp. 395–406 (2004)

15. Kossmann, D., Stocker, K.: Iterative Dynamic Programming: a New Class of Query
Optimization Algorithms. ACM-TODS 25(1), 43–82 (2000)

16. Li, C., Chang, E.: Answering Queries with Useful Bindings. ACM-TODS 26(3), 313–343
(2001)

17. Lohman, G.M.: Grammar-like Functional Rules for Representing Query Optimization
Alternatives. In: SIGMOD 1988, Chicago, Illinois, USA, pp. 18–27 (1988)

18. Millstein, T.D., Levy, A.Y., Friedman, M.: Query Containment for Data Integration
Systems. In: PODS 2000, Dallas, Texas, USA, pp. 67–75 (2000)

19. OASIS: Web Services Business Process Execution Language. Technical report (2007),
http://www.oasis-open.org/committees/wsbpel/

20. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering Queries using Templates with Binding
Patterns. In: PODS 1995, San José, California, USA, pp. 105–112 (1995)

21. Seshadri, P., Hellerstein, J.M., Pirahesh, H., Cliff Leung, T.Y., Ramakrishnan, R.,
Srivastava, D., Stuckey, P.J., Sudarshan, S.: Cost-based Optimization for Magic: Algebra
and Implementation. SIGMOD Rec. 25(2), 435–446 (1996)

22. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query Optimization over Web
Services. In: VLDB 2006, Seoul, Korea, pp. 355–366 (2006)

210 D. Braga, S. Ceri, and M. Grossniklaus

23. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice-Hall, Inc.,
Upper Saddle River (1991)

24. Tao, Y., Hristidis, V., Papadias, D., Papakonstantinou, Y.: Branch-and-Bound Processing
of Ranked Queries. Inf. Syst. 32(3), 424–445 (2007)

25. Tatemura, J., Sawires, A., Po, O., Chen, S., Candan, K.S., Agrawal, D., Goveas, M.:
Mashup Feeds: Continuous Queries over Web Services. In: SIGMOD 2007, New York,
NY, USA, pp. 1128–1130 (2007)

26. W3C: Web Services Choreography Description Language, Version 1.0. W3C Candidate
Recommendation (2005), http://www.w3.org/TR/ws-cdl-10/

27. W3C: Web Service Choreography Interface (WSCI), Version 1.0. W3C Note (2002),
http://www.w3.org/TR/wsci/

28. WSMO: Web Service Modeling Ontology, http://www.wsmo.org
29. Yang, G., Kifer, M., Chaudhri, V.K.: Efficiently Ordering Subgoals with Access

Constraints. In: PODS 2006, Chicago, Illinois, USA, pp. 183–192 (2006)
30. Yu, C.T., Meng, W.: Principles of Database Query Processing for Advanced Applications.

Morgan Kaufmann, San Francisco (2005)

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 211–224, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 11:
Rank-Join Algorithms for Search Computing

Ihab F. Ilyas1, Davide Martinenghi2, and Marco Tagliasacchi2

1 University of Waterloo, Canada
2 Politecnico di Milano

ilyas@uwaterloo.ca, martinen@elet.polimi.it,
tagliasa@elet.polimi.it

Abstract. Joins represent the basic functional operations of complex query
plans in a Search Computing system, as discussed in the previous chapter. In
this chapter we provide further insight on this matter, by focusing on algorithms
that deal with joining ranked results produced by search services. We cast this
problem as a generalization of the traditional rank aggregation problem, i.e.,
combining several ranked lists of objects to produce a single consensus ranking.
Rank-join algorithms, also called top-k join algorithms, aim at determining the
best overall results without accessing all the objects. The rank-join problem has
been dealt with in the literature by extending rank aggregation algorithms to the
case of join in the setting of relational databases. However, previous approaches
to top-k queries did not consider some of the distinctive features of search
engines on the Web. Indeed, as pointed out in the previous chapter, joins in this
context differ from the traditional relational setting for a number of aspects:
services can be accessed according to limited patterns, i.e. some inputs need to
be provided; accessing services is costly, since they are typically remote; the
output is returned in pages of results and typically according to some ranking
criterion; multiple search services can be used to answer the same query; users
can interact with the system in order to refine their search criteria. This chapter
analyzes the challenges that need to be tackled in the design of rank-join
algorithms within the context of Search Computing.

Keywords: rank-join, top-k, query optimization.

1 Introduction

Information systems of different types use various techniques to rank query answers.
In many application domains, end-users are more interested in the most important
(top-k) query answers in the potentially huge answer space. Different emerging
applications warrant efficient support for top-k queries. For instance, in the context of
the Web, the effectiveness and efficiency of meta-search engines are highly related to
efficient methods for rank aggregation. The latter is the problem of combining several
ranked lists of items in a robust way to produce a single consensus ranking of the
items. Most of these applications execute queries that involve joining and aggregating
multiple inputs to provide the top-k results.

212 I.F. Ilyas, D. Martinenghi, and M. Tagliasacchi

We focus here on a specific class of top-k processing techniques, known as rank
join algorithms, that retrieve the top-k combinations among a set resulting from
joining multiple sources. Such techniques are crucial for answering multi-domain
queries. This requires extracting and combining the answers of domain-specific
search systems. Then, a global ranking needs to be established for each combined
answer by means of an aggregation function, so as to present to the user the answers
having the top combined scores.

The data sources we consider in this chapter, which are typical of search
computing scenarios, may be asked to output data tuples sorted by score, where the
score is an explicit field of the tuples. For example, a data source can consist of the
output of a Web service or a wrapped Web site. The ranked lists may contain a large
number of objects, usually presented in pages, and accessing such pages typically
comes at a non-negligible cost. Moreover, objects can be accessed according to
various methods, that can be broadly classified as sorted, producing a possibly long
ranked list of objects (whose tail is typically uninteresting), or random, producing a
narrower set of objects, normally not ranked, which satisfy a selection condition over
the attributes.

This chapter is organized as follows. In Section 2, we introduce the rank-join
problem and identify the specific needs and challenges it poses in the context of
search computing. In Section 3, we review existing methods and algorithms, while in
Section 4 we outline optimization opportunities for rank-join in search computing.

2 New Rank-Join Challenges in Search Computing

Answering complex queries such as those given in Chapter 1 requires combining
information from different, heterogeneous search services. Typically, these sorts of
services produce results ranked by score, which need to be joined in order to form
combinations. Each combination is given a score, which is computed by aggregating
the scores of the data items that have been used to form the combination. In this
context, users are interested in exploring only a subset of the result, i.e. only the top
combinations ordered by aggregated score. A naïve, yet inefficient, solution consists
of: 1) retrieving all the data items from the data sources involved; 2) joining the
results to form combinations; 3) computing their scores; and, finally, 4) sorting
the combinations based on their scores. The inefficiency of such approach stems
from the fact that most of the fetched data are not used to produce the result presented
to the user. A similar problem has been addressed in the past literature in the context
of database systems, where a family of solutions, known under the name of rank-join
(or top-k join) algorithms, has been thoroughly explored. The underlying idea of rank-
join algorithms, further detailed in Section 3, is to leverage the fact that input data
sources, i.e. relational tables, are already sorted by score. Therefore, an early-out
strategy can be defined, in such a way to stop fetching tuples as soon as it is possible
to guarantee that the top-k combinations can already be formed. The goal of
traditional rank-join algorithms is then to minimize the I/O cost with respect to the
naïve join-then-sort approach.

While rank-join algorithms can be relevant in the context of search computing,
there are several peculiarities that need to be addressed when data sources are search

 Rank-Join Algorithms for Search Computing 213

services rather than relational tables. In the following we provide an overview of the
distinct aspects that characterize the domain of search computing, which motivate the
need for revisiting off-the-shelf rank-join algorithms.

Access Patterns. Unlike data in the relational setting, search services typically expose
a limited number of access interfaces, in which certain fields must be mandatorily
filled in, in order to obtain a result. These fields may be the input fields of a form on a
data-intensive Web site or the input parameters of a Web Service invocation. In order
to model such access limitations, we assume that each service is characterized by a
given number of combinations of input and output parameters, called access patterns,
corresponding to the different ways in which it can be invoked. Note that availability
of access patterns is out of the control of the search computing system, which must
therefore always determine an access strategy that complies with their requirements.

Access Costs. In a conventional relational setting, rank-join algorithms operate on
local data that reside in a centralized database system. Conversely, we are concerned
in joining the results of search services, which typically operate on remote servers.
Fetch operations are costly and shall be explicitly taken into account by rank-join
algorithms, i.e., they must become cost-aware. Moreover, access costs might depend
on the specific services to be invoked as well as on the available access methods. In
the past literature on rank-join, two access methods prevail: sorted access and random
access.

Sorted access returns tuples sorted by score and is typically available for all search
services, with the notable difference that each new invocation produces a page of data
items instead of a single tuple. In some cases, there might be only one available
ranking criterion for sorted access to a search service, while in other cases there might
be several possibilities; for example, a search service may allow retrieving movies
sorted either by user rating or by box office income, possibly with different access
costs depending on the ranking criterion. Note that the query formulation might
require sorted access to the service with a ranking criterion that is not available. For
example, consider a query that wants to retrieve movies sorted by user rating, but the
selected service can only be invoked in such a way that results are returned sorted by
box office income. In such a case, if the correlation between stars and prices can be
somehow modeled, rank-join algorithms can be adapted to answer such queries as
well.

Random access returns tuples that refer to a given object, e.g. all the movie theatres
in a given district of the city of Paris, and allows an earlier termination of rank-join
algorithms when it is available, thus minimizing the number of I/O operations. In a
relational setting, random access can be provided by building an index on top of one
of the attributes of a table. This is not a viable option in the context of search
computing. However, when a search service, say s1,only provides sorted access, it is
to some extent possible to obtain random access by invoking another search service,
say s2, returning data items of the same kind, although s2 might be characterized by a
different access cost and contain only a subset (or a superset) of the data items of s1.
Moreover, random accesses in the search computing context, do not necessarily return
all the data items referring to a given object, but, instead, only a subset might be
retrieved, sometimes organized in pages and sorted by score.

214 I.F. Ilyas, D. Martinenghi, and M. Tagliasacchi

Redundancy of Data Sources. In several domains, there might be different search
services which can be potentially invoked to answer identical or similar queries.
Consider, for example, the plethora of partially overlapping services that search for
movies. Such a redundant availability of data sources comes at no additional cost in
the context of search computing. If properly managed, it can be exploited as an asset
in two ways: improving the system response time and the robustness to service
failures or time-varying access costs. With respect to the first goal, parallel invocation
of two or more services can be put in place in a rather straightforward way.
Conversely, properly combining their results can be far from trivial due to the
different underlying data populations, naming conventions, etc. Instead, with respect
to the second goal, robustness can be achieved by adaptively switching to a different
search service. At the same time, it is possible to re-use the results of the
computations already performed, by carefully handling potential duplicates that might
arise. In addition, the availability of multiple search services, each characterized by its
access cost, might provide random access when no single service is able to do so. For
example, different country-specific search services can be used to find movie theatres
in a given European city, when there is none of them that cover exhaustively the
whole territory.

Users in the Loop. The queries submitted by users of a search computing system can
be dynamically shaped in order to help satisfying the user’s information needs. The
liquid queries paradigm further explored in Chapter 13 envisions a set of operations
that can be performed at the client side. Some of these operations do not require
interaction with the remote search services, since they only affect the visualization of
data already available at the client side. Others, instead, require fetching additional
data from remote services. For example, the user might want to dynamically adjust
the aggregation function. In a weighted sum, this is accomplished by changing the
weights assigned to the different search services. In order to preserve the guarantee of
displaying the top results, further data might need to be fetched. If a statistical model
describing the user interaction with the weights can be provided, then rank-join
algorithms can be adapted to pre-fetch the data items that are more likely to be used
and store them in a cache at the client side. Additional examples of non-trivial user
interactions involve asking for results from other search services, either covering the
same objects or complementing the information about already retrieved objects. In
both cases re-use of already available information is mandatory to enable fast
response times as required by the liquid query paradigm.

The visualization of the results of such complex queries might also affect the
underlying rank-join algorithms. Consider a query that retrieves combinations of
movies and movie theatres in the same district of the city of Paris, sorted by the
combined user ratings. To some extent, the user might prefer to see only the first few
combinations for each district, perhaps grouped by district, where the ordering among
groups might depend on the leading (or average) combination score. The traditional
rank-join problem needs to be revisited, since the goal has changed from retrieving
top-k combinations to top-k groups. A related problem is that of result diversification
addressed, e.g., in [17, 18, 19].

 Rank-Join Algorithms for Search Computing 215

3 Rank-Join Algorithms: State of the Art

In this section, we review the main algorithms that were developed for the rank join
problem. We also discuss related top-k processing techniques that inspired many of
the rank join algorithms. In the following, we introduce a taxonomy to classify top-k
techniques based on two design dimensions.

• Data Access Methods: Top-k processing techniques are classified according to
the data access methods they assume to be available in the underlying data
sources. For example, some techniques assume the availability of random
access, while others are restricted to only sorted access.

• Implementation Level: Top-k processing techniques are classified according to
their level of integration with database systems. For example, some techniques
are implemented in an application layer on top of the database system, while
others are implemented as query operators.

In the following sections, we discuss the design dimensions in details.

3.1 Data Access

Many top-k processing techniques involve accessing multiple data sources with
different valuations of the underlying data objects. The manner in which these sources
are accessed largely affects the design of the underlying top-k processing techniques.
For example, ranked lists could be scanned sequentially in score order. We refer to
this access method as sorted access. On the other hand, the score of some object
might be required directly without traversing the objects with higher/smaller scores.
We refer to this access method as random access. Random access could be provided
through index lookup operations if an index is built on object keys.

We classify top-k processing techniques, based on the assumptions they make
about available data access methods in the underlying data sources, as follows:

• Both Sorted and Random Access: In this category, top-k processing techniques
assume the availability of both sorted and random access in all the underlying
data sources.

• No Random Access: In this category, top-k processing techniques assume that
data sources provide only sorted access to objects based on their scores.

• Sorted Access with Controlled Random Probes: In this category, top-k
processing techniques assume the availability of at least one sorted access
source. Random accesses are used in a controlled manner to reveal the overall
scores of candidate answers.

Next, we discuss the three categories.

3.1.1 Both Sorted and Random Access
Top-k processing techniques in this category assume data sources that support both
access methods, sorted and random. The Threshold Algorithm (TA) and Combined
Algorithm (CA) [3] belong to this category.

Algorithm 1 describes the details of TA. The algorithm scans multiple lists,
representing different rankings of the same set of objects. An upper bound T is

216 I.F. Ilyas, D. Martinenghi, and M. Tagliasacchi

maintained for the overall score of unseen objects. The upper bound is computed by
applying the scoring function to the partial scores of the last seen objects in different
lists. Each newly seen object in one of the lists is looked up in all other lists, and its
scores are aggregated using the scoring function to obtain the overall score. All
objects with total scores that are greater than or equal to T can be reported. The
algorithm terminates after returning the kth output.

ALGORITHM 1: TA – (Threshold Algorithm) [3]

1. Do sorted access in parallel to each of the m sorted lists iL . As a new

object o is seen under sorted access in some list, do random access to the

other lists to find)(opi in every other list iL . Compute the score

),,(=)(1 mppFoF … of object o . If this score is among the k

highest scores seen so far, then remember object o and its score)(oF

(ties are broken arbitrarily, so that only k objects and their scores are
remembered at any time).

2. For each list iL , let ip be the score of the last object seen under sorted

access. Define the threshold value T to be),,(1 mppF … . As soon as

at least k objects have been seen with scores at least equal to T , halt.

3. Let kA be a set containing the k seen objects with the highest scores.

The output is the sorted set }|))(,{(kAooFo ∈ .

While TA assumes that the costs of different access methods are the same, the CA

algorithm [3] alternatively assumes that the costs of different access methods are
different. The CA algorithm defines a ratio between the costs of the two access
methods to control the number of random accesses, since they usually have higher
costs than sorted accesses. The CA algorithm periodically performs random accesses
to collect unknown partial scores for objects with the highest score lower bounds (ties
are broken using score upper bounds). A score lower bound is computed by applying
the scoring function to object's known partial scores, and the worst possible unknown
partial scores. On the other hand, a score upper bound is computed by applying the
scoring function to object's known partial scores, and the best possible unknown
partial scores. One random access is performed periodically every Δ sorted accesses,
where Δ is the floor of the ratio between random access cost and sorted access cost.

3.1.2 No Random Access
The techniques we discuss in this section assume random access is not supported by
the underlying sources. The Rank-Join algorithm [6] and the J* algorithm [11] are
examples of the techniques that belong to this category.

The Rank-Join algorithm [6] integrates the joining and ranking tasks in one
efficient operator. Algorithm 2.2 describes the main Rank-Join procedure. The Rank-
Join algorithm scans input lists (the joined relations) in the order of their scoring

 Rank-Join Algorithms for Search Computing 217

predicates. Join results are discovered incrementally as the algorithm moves down the
ranked input relations. For each join result j , the algorithm computes a score for j

using a score aggregation function F. The algorithm maintains a threshold T bounding
the scores of join results that are not discovered yet. The top-k join results are
obtained when the minimum score of the k join results with the maximum F() values
is not below the threshold T.

ALGORITHM 2: Rank join [2]

1. Retrieve tuples from input relations in descending order of their individual scores
pi's. For each new retrieved tuple t:

a. Generate new valid join combinations between t and seen tuples in other
relations.

b. For each resulting join combination j, compute F(j).

c. Let)(max
ip be the top score in relation i, i.e., the score of the first tuple

retrieved from relation i. Let ip be the last seen score in relation i. Let

T be the maximum of the following m values:

),,,(,),,,,(),,,,(212121 m
maxmaxmax

m
maxmax

m
max pppFpppFpppF ………… .

d. Let Ak be a set of k join results with the maximum F() values, and Mk be

the lowest score in Ak. Halt when TM k ≥ .

2. Report the join results in Ak ordered on their F() values.

A two-way hash join implementation of the Rank-Join algorithm, called Hash

Rank Join Operator (HRJN), is introduced in [6]. HRJN is based on symmetrical hash
join. The operator maintains a hash table for each relation involved in the join
process, and a priority queue to buffer the join results in the order of their scores. The
hash tables hold input tuples seen so far and are used to compute the valid join results.
The HRJN operator implements the traditional iterator interface of query operators,
which include two methods: Open and GetNext. The Open method is responsible for
initializing the necessary data structure; the priority queue Q, and the left and right
hash tables. It also sets T, the score upper bound of unseen join results, to the
maximum possible value.

The GetNext method remembers the two top scores, maxp1 and maxp2 , and the last

seen scores, 1p and 2p of its left and right inputs. At any time during query

execution, the threshold T is computed as the maximum of),(21 ppF max and

),(21
maxppF . At each step, the algorithm reads tuples from either the left or right

inputs, and probes the hash table of the other input to generate join results. The
algorithm decides which input to poll at each step, which gives flexibility to optimize
the operator for fast generation of join results based on the joined data. A simplistic
strategy is accessing the inputs in a round-robin fashion. A join result is reported if its
score is not below the scores of all discovered join results, and the threshold T.

In [12], an enhancement of HRJN algorithm is provided where a different
bounding scheme is used to compute the threshold T. This is achieved by computing a

218 I.F. Ilyas, D. Martinenghi, and M. Tagliasacchi

feasible region in which unseen objects may exist. Feasible region is computed based
on the objects seen so far, and knowing the possible range of score predicates. The
authors proved that the feasible region is tight, and thus the rank join algorithm that
exploits such bounding scheme is instance optimal.

Another example of no random access top-k algorithms is the J* algorithm [11].
The idea is to maintain a priority queue of partial and complete join combinations,
ordered on the upper bounds of their total scores. At each step, the algorithm tries to
complete the join combination at queue top by selecting the next input stream to join
with the partial join result, and retrieving the next object from that stream. The
algorithm reports the next top join result as soon as the join result at queue top
includes an object from each ranked input.

3.1.3 Sorted Access with Controlled Random Probes
Top-k processing methods in this category assume that at least one source provides
sorted access, while random accesses are performed only when needed. The Upper
and Pick algorithms [2, 10] are examples of these methods.

Upper and Pick assume that each source can provide a sorted and/or random access
to its ranked input, and that at least one source supports sorted access. The main
purpose of having at least one sorted-access source is to obtain an initial set of
candidate objects. In the Upper algorithm, candidate objects are retrieved first from
sorted sources, and inserted into a priority queue based on their score upper bounds.
The upper bound of unseen objects is updated when new objects are retrieved from
sorted sources. An object is reported and removed from the queue when its exact
score is higher than the score upper bound of unseen objects. The algorithm
repeatedly selects the best source to probe next to obtain additional information for
candidate objects. The selection is performed by a function, named SelectBestSource.
This function could have several implementations. For example, the source to be
probed next can be the one which contributes the most in decreasing the uncertainty
about the top candidates.

In the Pick algorithm, the next object to be probed is selected so that it minimizes a
distance function the most. Such distance function represents the sum of the
differences between the upper and lower bounds of all objects. The source to be
probed next is selected at random from all sources that need to be probed to complete
the score of the selected object.

3.2 Implementation Level

Integrating top-k processing with database systems is addressed in different ways by
current techniques. One approach is to embed top-k processing in an outer layer on-
top of the database engine. This approach allows for easy extensibility of top-k
techniques, since they are decoupled from query engines. The capabilities of database
engines (e.g., storage, indexing and query processing) are leveraged to allow for
efficient top-k processing.

Another approach is to modify the core of query engines to recognize the ranking
requirements of top-k queries during query planning and execution. This approach has
a direct impact on query processing and optimization. Specifically, query operators
are modified to be rank-aware. For example, a join operator is required to produce

 Rank-Join Algorithms for Search Computing 219

ranked join results to support pipelining top-k query answers. In this section, we
discuss top-k processing methods based on the two design choices.

3.2.1 Application Level
Top-k query processing techniques that are implemented at the application level
provide a ranked retrieval of database objects, without major modification to the
underlying database system. We classify application level top-k techniques into
Filter-Restart methods and Indexes/Materialized Views methods.

Filter-Restart techniques formulate top-k queries as range selection queries to limit
the number of retrieved objects. That is, a top-k query that ranks objects based on a
scoring function F, defined on a set of scoring predicates p1,... ,pm, is formulated as a
range query of the form “find objects with p1 > T1, and,... , pm > Tm”, where Ti is an
estimated cutoff threshold for predicate pi. Using a range query aims at limiting the
retrieved set of objects to the necessary objects to answer the top-k query. Incorrect
estimation of cutoff threshold yields one of two possibilities: (1) if the cutoff is over-
estimated, the retrieved objects may not be sufficient to answer the top-k query and
the range query has to be restarted with looser thresholds, or (2) if the cutoff is under-
estimated, the number of retrieved objects will be more than necessary to answer the
top-k query.

One proposed method to estimate the cutoff threshold is using the available
statistics such as histograms [1], where the scoring function is taken as the distance
between database objects and a given query point q. Multidimensional histograms on
objects' attributes (dimensions) are used to identify the cutoff distance from q to the
potential top-k set. To find the optimal search distance, query workload is used as a
training set to determine the number of returned objects for different search
predicates.

Another group of Application Level top-k processing techniques use specialized
indexes and materialized views to improve the query response time at the expense of
additional storage space.

One example of specialized top-k indexes is Ranked Join Indices [13]. Ranked Join
Indices is a top-k index structure, based on the observation that the projection of a
vector representing a tuple t on the normalized scoring function vector w reveals t's
rank based on w. This observation applies to any scoring function that is defined as a
linear combination of the scoring predicates. For example, consider a scoring function
F=w1p1+w2p2, where p1 and p2 are scoring predicates, and w1 and w2 are their
corresponding weights. In this case, we have w=[w1, w2]. Without loss of generality,
assume that ||w||=1. We can obtain the score of t=[p1, p2] by computing the length of
its projection on w, which is equivalent to the inner product between w and t, i.e.
w1p1+w2p2. By changing the values of w1 and w2, we can sweep the space using a
vector of increasing angle to represent any possible linear scoring function. The tuple
scores given by an arbitrary linear scoring function can thus be materialized.

Before materialization, tuples that are dominated by more than k tuples are
discarded because they do not belong to the top-k query answer of any linear scoring
function. The remaining tuples, denoted as the dominating set Dk, include all possible
top-k answers for any possible linear scoring function.

Materialized views have been studied in the context of top-k processing as a means
to provide efficient access to scoring and ordering information that is expensive to

220 I.F. Ilyas, D. Martinenghi, and M. Tagliasacchi

gather during query execution. Using materialized views for top-k processing has
been studied in the PREFER system [4, 5]. The score of a certain tuple is captured by
an arbitrary weighted summation of the scoring predicates. The proposed method
keeps a number of materialized views based on different weight assignments of the
scoring predicates. Specifically, each view v ranks the entire set of underlying tuples
based on a scoring function Fv defined as a weighted summation of the scoring
predicates using some weight vector v. For a top-k query with an arbitrary weight
vector q, the materialized view that best matches q is selected to find query answer.
Such view is found by computing a position marker for each view to determine the
number of tuples that need to be fetched from that view to find query answer. The
best view is the one with the least number of tuples to be fetched.

3.2.2 Engine Level
The main theme of the techniques discussed in this section is their tight coupling with
the query engine. This tight coupling has been realized through multiple approaches.
Some approaches focus on the design of efficient specialized rank-aware query
operators. Other approaches introduce an algebra to formalize the interaction between
ranking and other relational operations (e.g., joins and selections). A third category
addresses modifying query optimizers, e.g., changing optimizers' plan enumeration
and cost estimation procedures, to recognize the ranking requirements of top-k
queries.

Query optimizers need to be able to enumerate and cost plans with rank-aware
operators as well as conventional query operators. Costing a rank-aware operator is
quite different from costing other traditional query operators because a rank-aware
operator is expected to consume only part of its input. Furthermore, the size of the
consumed input depends on the operator implementation rather than the input itself. A
probabilistic model has been proposed in [8] to estimate the Rank-Join inputs' depths,
i.e., how many tuples are consumed from each input to produce the top-k join results.
A related approach has been further pursued in [14].

4 Optimization of Rank-Join Algorithms

In this section we discuss several optimization requirements and opportunities in the
context of rank-join algorithms for search computing. First, in Section 4.1, we
reconsider some of the challenges described in Section 2 and propose corresponding
approaches. Then, in Section 4.2, we revisit cost models used for optimization and,
finally, in Section 4.3, we discuss possible adjustments of strategies when the actual
statistics extracted during the execution of rank join differ from those estimated
beforehand.

4.1 The Need for Query Optimization in Search Computing

Among the main challenges for rank-join in Search Computing, we mentioned the
need to obtain query answers quickly by limiting the number of requests sent to
services to retrieve data and compose combinations, yet guaranteeing that the top k
combinations are formed. We can characterize such a successful execution of a

 Rank-Join Algorithms for Search Computing 221

rank-join between two services, say s1 and s2, with a “descent” retrieving n1 and,
respectively, n2 tuples. In this respect, we can express the expected number of formed
combinations K(n1, n2) and the expected cost C(n1, n2) incurred by such a descent as
functions over n1 and n2. In particular, K(n1, n2) will relate the numbers of tuples
retrieved with available information about the join selectivity, the distribution of
values in the data returned by s1 and s2, and, possibly, the score distributions in s1 and
s2 as well as the aggregation function used to compose the individual scores;
similarly, C(n1, n2) will take into account the costs of accessing s1 and s2.
Consequently, the optimization problem at hand may be formulated as follows:

minimize C(n1, n2)
subject to K(n1, n2) ≥ k (1)

n1 ∈ Ν ∩ [0, N1], n2 ∈ Ν ∩ [0, N2]

where N is the set of natural numbers, k is the desired number of top combinations,
and Ni is the maximum number of tuples that can be output by si for i=1,2. A solution
to the above optimization problem will provide estimates for n1 and n2 and, as a result,
an estimate of the cost incurred by the rank-join operation.

Another challenge posed in Section 2 regarded the ability to quickly respond, by
updating the results, to changes in user’s requirements and needs, as will be further
discussed in Chapter 13 about “liquid queries”. The notion of liquid queries includes
user’s feedback and the ability to adjust several parameters concerning the query.
Among the available operations, the user can request a “query re-ranking”, i.e., an
update of the results of the query by modifying the aggregation function, e.g., by
changing the weights of the individual scores when the aggregated score is expressed
as a weighted sum thereof. Such an operation is not equivalent to a simple
rearrangement of the combinations obtained with the previous aggregation function,
but generally requires computing a new and different set of combinations, possibly by
deepening the previous descent to the services. A possible approach to query re-
ranking consists then in computing, from the beginning, a set of combinations that is
comprehensive enough to be “robust” with respect to changes in the aggregation
function. In other words, instead of limiting ourselves to computing a set of
combinations that includes the top k ones with respect to a given aggregation
function, it might be preferable to compute a larger set that includes the top k
combinations no matter what the aggregation function is. This allows one to simply
sort the combinations within the set according to the new aggregation function,
without the need to access the services again after a change in the aggregation
function. When both sorted and random accesses are available, this behavior may be
obtained, e.g., by adapting to the rank-join case the original rank aggregation
algorithm by Fagin (called A0 and better known as Fagin’s algorithm [16]).

4.2 Cost Models for Query Optimization

In order to solve the query optimization problem formulated above, which refers to a
single rank-join operator on two services, we need to define a cost model that
characterizes the cost function C(n1, n2). Most of the previous literature on rank-join

222 I.F. Ilyas, D. Martinenghi, and M. Tagliasacchi

adopts a simple additive model, whereby the cost is defined as the sum of the costs of
all I/O operations. Both sorted and random access (whenever available) costs need to
be taken into account, since they are possibly characterized by heterogeneous costs,
due to the fact that random accesses might potentially refer to data that is stored in
other external data sources. While this approach is still applicable in the context of
search computing, we want to take advantage of the fact that services are typically
available at remote servers. Therefore, more flexibility is given in the way services
can be invoked, i.e. by exploiting parallel invocation. Nevertheless, parallelism affects
both the actual execution strategy and the cost model that drives the query
optimization, and needs to be carefully addressed.

So far, we have discussed rank-join operations involving two services. Answering
complex queries might require combining multiple operations (both rank-join and
other operations) into a query plan. Thus, query plan optimization entails determining
the sequence of execution among the operations, as well as, in the case of rank-join,
the number of tuples that presumably have to be fetched in order to match a target
number of combinations. Global query optimization in the context of search
computing is addressed in Chapter 10.

4.3 Need for Adaptive Algorithms

Before query execution starts, the optimizer uses the available information collected
about the search services to be joined, in order to devise: i) a cost model, as explained
above, which determines the number of tuples to be fetched; ii) the rank-join
execution strategy, also called pulling strategy, which determines the optimal order of
service invocations during the “descent” in the two services. It might be the case that
statistics collected beforehand, e.g. join selectivity, score distributions, etc., do not
match the actual fetched data. This is particularly relevant in the context of search
computing, where the actual statistics depends not only on the query prototype, but
also on the specific user provided keywords. Consider, for example, the different
score distribution (e.g. when scores are indicated by prices) when querying for movie
theatres in a large city as opposed to a small town. In this case, the query execution
might be adaptively adjusted in such a way to take this into account. In concrete
terms, this entails adapting the pulling strategy at execution time. We refer to this
feature as intra-operator adaptive execution, as it involves only the internal machinery
of an individual rank-join operator.

A different kind of adaptive execution might arise when considering complex
queries in the large, i.e. in the context of a global query optimization framework. We
refer to this feature as inter-operator adaptive execution. In this scenario, adaptive
execution might be necessary in order to cope with time-varying availability of search
services. During query execution, search services might stop responding to
invocations and alternative execution strategies might be devised on-the-fly, possibly
preserving the data already fetched up to that point in time. Similar issues arise when
the response time, e.g. the cost of accessing a service, is highly non-stationary. Again,
the query execution should be modified accordingly.

 Rank-Join Algorithms for Search Computing 223

5 Conclusion

In this chapter we have introduced the rank-join problem and highlighted its role in
search computing. We have described new challenges for rank-join regarding
adaptivity, use of feedback, and new cost models. We have also given hints at the
integration of rank-join in a global query optimization framework, as the one that was
described in the previous chapter.

References

[1] Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM Transactions on Database
Systems 27(2), 153–187 (2002)

[2] Bruno, N., Gravano, L., Marian, A.: Evaluating Top-k Queries over Web-Accessible
Databases. In: Proceedings of ICDE 2002, pp. 369–378 (2002)

[3] Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. Journal
of Computer and System Science 1(1), 614–656 (2001)

[4] Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A System for the Efficient
Execution of Multi-parametric Ranked Queries. In: Proceedings of ACM SIGMOD 2001,
pp. 259–270 (2001)

[5] Hristidis, V., Papakonstantinou, Y.: Algorithms and applications for answering ranked
queries using ranked views. VLDB Journal 13(1), 49–70 (2004)

[6] Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational
databases. VLDB Journal 13(3), 207–221 (2004)

[7] Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.:
Adaptive rank-aware query optimization in relational databases. ACM Transactions on
Database Systems 31(4), 1257–1304 (2006)

[8] Ilyas, I.F., Shah, R., Aref, W.G., Vitter, J.S., Elmagarmid, A.K.: Rank-aware query
optimization. In: Proceedings of ACM SIGMOD 2004, pp. 203–214 (2004)

[9] Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimization
for relational top-k queries. In: Proceedings of ACM SIGMOD 2005, pp. 131–142 (2005)

[10] Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible
databases. ACM Transactions on Database Systems 29(2), 319–362 (2004)

[11] Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting Incremental Join
Queries on Ranked Inputs. In: Proceedings of VLDB 2001, pp. 281–290 (2001)

[12] Schnaitter, K., Polyzotis, N.: Evaluating rank joins with optimal cost. In: Proceedings of
PODS 2008, pp. 43–52 (2008)

[13] Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N., Srivastava, D.: Ranked Join Indices.
In: Proceedings of ICDE 2003, pp. 277–286 (2003)

[14] Schnaitter, K., Spiegel, J., Polyzotis, N.: Depth estimation for ranking query optimization.
In: Proceedings of VLDB 2007, pp. 902–913 (2007)

[15] Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-query processing techniques in
relational database systems. ACM Comput. Surv. 40(4) (2008)

[16] Fagin, R.: Combining Fuzzy Information from Multiple Systems. J. Comput. Syst.
Sci. 58(1), 83–99 (1999)

224 I.F. Ilyas, D. Martinenghi, and M. Tagliasacchi

[17] Clough, P., Sanderson, M., Abouammoh, M., Navarro, S., Lestari Paramita, M.: Multiple
approaches to analysing query diversity. In: Proceedings of ACM SIGIR 2009, pp. 734–
735 (2009)

[18] Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In:
Proceedings of WWW 2009, pp. 381–390 (2009)

[19] Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In:
Proceedings of WSDM 2009, pp. 5–14 (2009)

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 225–243, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 12:
Panta Rhei: Flexible Execution Engine for

Search Computing Queries

Daniele Braga, Stefano Ceri, Francesco Corcoglioniti, and Michael Grossniklaus

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{braga, ceri, corcoglioniti, grossniklaus}@polimi.it

Abstract. The efficient execution of data-intensive computations over services
is a challenging task: data are retrieved from remote sources and therefore are
not available in the query engine until after the execution of these calls, but the
system must be inherently efficient thereafter, by guaranteeing that data is
immediately cached and processed efficiently, according to the best query plan.
In this chapter, we present a flexible execution model for search computing
queries, named Panta Rhei. The proposed execution engine paradigm adopts the
producer/consumer model and supports both data-driven and event-driven
synchronization, and their interplay. Query plans are modeled as directed
graphs, whose nodes are processing units and whose edges are either control or
data flows. While control flows synchronize service calls and unit execution,
data flows transfer data between units that process data flows to produce query
results. We present the specification of Panta Rhei by formally defining the
units for data production, consumption, manipulation, and caching, as well as
the control and data flows. Finally, we discuss how a query plan is expressed in
terms of a query execution plan.

1 Introduction

Query execution in Search Computing is a data-intensive process. The computations
required for answering a query, although performed upon the data resulting from
service calls, are very similar to those performed by database management systems
working on physically optimized tables. Therefore, a query execution engine
supporting Search Computing must be able to efficiently support dynamic data
extraction, storage and caching, as well as efficiently route data flows between
special-purpose computational units, whose design has been optimized so as to
guarantee the fast production of query results.

Due to the very nature of many of these tasks and their embedding within Web-
based contexts, which are subject to continuous change, performances of data-
intensive service interactions are very hard to predict. Moreover, the execution engine
must be strongly connected to the query user interface, so as to adapt to user requests
that dynamically alter the query requirements, either by specializing current requests
or by adding new requirements. For these reasons, the design of the query execution
engine for Search Computing has required several architectural solutions for
supporting dynamic adaptation which are quite original, especially for what concerns
the synchronization aspects.

226 D. Braga et al.

The main operation in Search Computing is the join of search services and,
therefore, the execution engine is optimized to support joins, under the constraint that
join data operands are not immediately available to the execution engine, but are
produced by interacting with services, ranked and separated in chunks. Join
processing, as explained in the previous chapter, aims at exploring given
compositions of chunks returned by the services. In this setting, optimization consists
in minimizing the number of service calls and, at the same time, in efficiently
exploring the search space so as to rapidly produce results.

Supporting join executions requires synchronizing pairs of services. To effect this
synchronization, we introduce particular units, called clocks, whose effect is to give
pulses to services so as to synchronize them according to certain mutual relationships
that can be dynamically adapted. In order to respond to variability, synchronization is
subject to feedbacks which are generated within the execution environment. The
explicit (and user controllable) synchronization and adaptation of join computations
through clock units is the most significant (and original) aspect of the execution
engine, being used both for pipelined and parallel execution with a uniform style.

Original aspects of the execution engine concerns the explicit management of
chunks within the data flow, which is at the basis of the design of both the chunker
units (capable of changing the size of chunks along the data flow) and the cache units
(which store the results of service calls by chunks). In SeCo joins, a given chunk of a
service’s results can be involved in many chunk combinations, performed after its
initial loading, and cannot be discarded until query processing is completed. Chunk
support allows for an intermediary granularity level, which is a good compromise
between tuple-level (each tuple flows individually) and table-level (each data
collection or table flows as a unit) granularity. We believe that this solution yields to a
good trade-off between flexibility, adaptability, and performance.

While clocks and chunks are, therefore, the main ingredients of the flexible
execution engine, many other features characterize its design. The system must, of
course, support sorting (i.e. ranking of results) which is a critical operation, because it
is “blocking” (in order for the sort to be applicable to a given collection, all the items
of the collection must be available) and data flow machines must try to minimize
blocking operations. In addition, the system should support the early evaluation of
selection predicates in order to reduce the size of data flows.

The organization of this chapter is as follows. In Section 2 we present the state-of-
art of data-driven execution engines, first by highlighting the issues which arise in
interpreted environments (such as ours) and then by focusing on adaptability of
computations, the main quality offered by Panta Rhei. Section 3 presents the model,
with its nodes representing units and edges representing data and control flows. Then,
Section 4 sketches the translation of query plans into query engine execution plans,
and Section 5 shows the typical translations of parallel, pipe, and top-k joins into
schedules.

2 State of the Art

This section gives an overview of the state of the art of query execution with a focus
towards the domain of Search Computing. First, we discuss different query processing

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 227

paradigms that serve to position the proposed query execution environment for Search
Computing. A distinguishing feature of a query evaluation paradigm is the degree of
query plan adaptation that is supported by an execution environment. In the second
part of this section, we motivate the need for query plan adaptation at run-time and
give an overview of related work on adaptation in other application domains.

2.1 Query Processing Paradigms

An important criterion in the design of a query execution engine for Search
Computing is its query processing paradigm. In the past, several types of query
execution engines have been proposed in the scope of traditional DBMS, such as
interpreted or compiled [19] execution engines. On the one hand, interpreted
approaches translate queries into query plans that are optimized and evaluated
leveraging a general-purpose set of operators provided by a virtual machine such as
the query evaluator of a database management system. Compiled approaches, on the
other hand, use code generation to translate each query into a static program that is
compiled and executed natively, i.e. directly on the operating system. The main
strength of compiled engines is their performance as all meta-information required for
evaluating a query is directly hardwired into the program code. The gain in
performance comes, however, at the price of flexibility. While compiled engines are
fast, it is more difficult to cater for run-time adaptation of query plans as this would
require a recompilation of the program while it is executing. Due to the requirements
of Search Computing, we have, therefore, chosen to build an execution environment
that follows the approach of an interpreted engine, and therefore we focus this
state-of-the-art on interpreted query engines.

Interpreted engines can be further classified according to the query evaluation
model that they use. Within interpreted engines, query execution plans require both
control flow, which dynamically defines how engine modules are synchronized, and
the data flows, which dynamically define data exchanges. From the viewpoint of data
flows, components are characterized as producers and consumers and a query
computation may involve several modules. At its beginning, a query plan involves
producer modules, later intermediate components play both roles, and eventually
query interfaces present their results to the user who is the “final consumer” of the
system. Execution plan components, or “nodes”, have four possible behaviors relative
to control and data flows, presented by Graefe (see [12], p.149ff) and shown in Fig. 1.

− Standard iterators. In most query processing systems, the data flow is demand-
driven and controlled by the consumer. In this case, control and data flow point
into opposite directions. According to [17], most state of the art approaches for
distributed query processing use the iterator model [13] in which all operators
exhibit an open()-next()-close() interface.

− Data-driven operators. There are however systems such as real-time or data
stream systems where the data flow is paced by the producer as it needs to unload
the data as it arrives, e.g. sensor data. In a data-driven operator, control and data
flow point into the same direction.

To combine demand-driven and data-driven operators, it is necessary to introduce
flow translation nodes [12] that mediate between the two types of operators.

228 D. Braga et al.

Standard
Iterator

Data-driven
Operator

Active
Scheduler

Passive
Scheduler

Fig. 1. Nodes of an execution plan with control and data flow [12]; control flows are dashed
arrows and data flows are solid arrows

− Active scheduler. A data flow translation node that can be used to schedule a
demand-driven operator (iterator) as producer and a data-driven operator as
consumer. This node actively requests data from a demand-driven producer and a
passes it on to the data-driven consumer.

− Passive scheduler. A data flow translation node that can be used to schedule a
data-driven operator as producer and a demand-driven operator as consumer. As
soon as the data-driven producer delivers data, this node accepts and buffers it
until the data is requested from the eventually resumed demand-driven consumer.

Another important characteristic of the query processing paradigm is whether the
execution is governed centrally by a global scheduler that has complete knowledge or
in a distributed setup where the nodes of the execution engine make local scheduling
decisions based on incomplete knowledge. For example, data flow systems [25] and
stream processing systems, e.g. Aurora/Borealis [1], have addressed the problem of
scheduling data-intensive computations. More recently, scheduling algorithms have
been proposed that control the execution of a computation in peer-to-peer networks,
such as the economic model [2] or approaches based on reinforced learning [20].
While data flow systems are designed for the execution of fine-grained computations,
workflow systems [27] address coarser-grained processes executed over Web
services. While these two families of systems are similar in terms of goals, the latter
tends to use central scheduling that operates on global information.

2.2 Adaptation

The capability of adapting software systems to internal or external requirements is
often referred to as adaptation. Adaptation can be effected at design or compile-time
of a system as well as at run-time. The need for adaptation is present in many
application domains and adaptation can be supported at very different levels of
granularity. Therefore, the entire body of research on adaptation is very vast and its
complete review out of the scope of this chapter. Instead we will limit the discussion
to work that is relevant in the context of query execution in Search Computing and
structure them according to the scope of their application, from coarse-grained to fine-
grained. We will start with adaptation at the level of the architecture, then discuss the
adaptation of applications and conclude by presenting solutions to adapt processes in
particular data-driven computations.

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 229

On an architectural level, the focus on adapting processes lies on leveraging the
resources that are at disposition best. To that end, load-balancing schemes or the
dynamic reassignment of resources to computation nodes are techniques that are often
employed in the area of distributed computing, such as grid or cloud computing. On a
level of finer granularity, we note that the adaptation of applications is a requirement
that frequently arises in mobile and ubiquitous computing as well as in Web
engineering. Context-awareness is a solution often proposed to adapt applications to
limited device resources, environmental factors or multiple output channels. In the
area of context-awareness, work has also been done on context-aware data
management and querying [14]. Finally, it is also possible to perform adaptation on
the level of individual computations that can be both process-driven and data-driven.
In the following, we will focus entirely on adaptation of data-driven computations
such as query plan adaptation since this is most closely related to the query execution
engine presented in this chapter.

Generally, query plan adaptation can be classified according to when it is taking
place into compile-time and run-time adaptation. On a finer level, query plan
adaptation can be refined further according to the information that is used as input to
effect the optimization. We distinguish the types of input information given below
and, in the following, discuss how each one of them can be used for adaptation.

− Data statistics such as the cardinality of tables and the selectivity of predicates.
− Usage statistics obtained through profiling of query execution or mining of query

execution history to get dynamic statistics (self-tuning databases).
− User control that determines the adaptation of the query plan.

Clearly, some of these types of information are mostly used for compile-time
adaptation, while others only make sense for run-time optimization. For example, data
statistics are usually leveraged at compile-time by the optimizer to plan the execution
of the query in the best possible way. While usage statistics are typically gathered at
run-time, either using “pay-as-you-go” frameworks [5] or in separate mining
processes, this information is also applied to the adaptation of the query plan at
compile-time. As a consequence, the queries that are profiled or mined do themselves
not profit from this information as only later executions of the same or similar queries
are adapted accordingly.

Nevertheless, approaches that use data and usage statistics for supporting the
dynamic reoptimization [16] and adaptation of query plans exist. Among those
approaches are adaptive operators, query scrambling, the interleaving of query
planning and execution, and opening up the query optimizer to application input.
Adaptive operators, such as e.g. choose nodes [6], XJoin [23], or BindJoin [18], are
query plan nodes that defer certain decisions until execution. In the former case,
choose nodes select at run-time from a set of query sub-plans that was defined at
compile-time. In the latter cases, the join implementations themselves are capable of
adapting to delays at run-time. Another more dynamic approach for dealing with
unexpected delays is query scrambling [24] that modifies the query execution plan on
the fly based on heuristics. In approaches that use interleaving, e.g. [26] or [8], the
optimizer only produces a partial plan for the execution engine and decides how to
proceed once that partial plan has been evaluated. Finally, the author of [4] argues
that future query optimizers should also benefit from rich usage data and application

230 D. Braga et al.

input. Adaptive query execution systems for data integration over the Web address
the problems of absence of statistics and unpredictable data arrival characteristics.
Most of these systems combine novel approaches, e.g. incomplete query plans that are
completed and (re)optimized incrementally [15] with existing concepts such as the
previously discussed interleaving of query planning and execution as well as adaptive
operators. Adaptive query processing approaches that leverage information captured
through self-monitoring of the query execution have also been proposed for Grid
computing [11].

Finally, user control as an input for process adaptation has been addressed in
systems that allow performance and query execution to be expressed through
interactive dashboards [7]. As most work on dashboards has been done by the HCI
community, it largely addressed the interface level in terms of visualizing complex
and large sets of information in a comprehensive and graspable way. Nevertheless,
there are also approaches that focus on the evaluation of queries in the presence of a
visual and interactive interface. For example, [22] shows how dynamic query
interfaces can be supported in large databases through the use of incremental data
structures and algorithms. The approach introduces the notion of an active subset of
the database that is enhanced with auxiliary data structures designed to support
continuous querying. These auxiliary data structures are directly coupled to the
interface and are only reprocessed in the event of user interaction. Results are
visualized incrementally by computing and displaying the delta resulting from the
user input. In [3], a classification and survey of visual query systems for databases is
presented.

3 Panta Rhei Specifications

While classic execution engines operate upon databases which are initially stored
within the memory (possibly distributed and replicated), query execution in Search
Computing requires the efficient execution of joins between results of service
invocations and, hence, the main flows of data production fall outside of the engine’s
control. The need of combining service invocations with data-intensive operations is
the main architectural challenge, approached by a modular decomposition of the
process into processing units and by an explicit description not only of the data flow,
as it is typical of many run-time architectures, but also of the control flow, through
dedicated units and signals. Control flow modeling enables to explicitly tune
execution, adapting it to unexpected behaviors of the components.

This concept is illustrated in Fig. 2. In the plan, the input unit, after its activation at
query start, sends a control pulse to a search service unit, which executes a call. The
call’s result is a data flow which is sent to the output unit and, hence, returned to the
query interface.

S

Fig. 2. Simple execution plan

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 231

In the following, control flows, data flows, and processing units are described in
detail.

3.1 Structure of Execution Plans

Panta Rhei is a dedicated environment for the processing of execution plans. Every
execution plan represents the physical evaluation of a query plan, and consists of a
directed graph of nodes (units) and edges (data and control flows), where

− The data flow is a directed acyclic graph connecting processing units and whose
closure defines a precedence relationship between units (the “flow of execution”).
The data flow itself consist of chunks of combinations (tuples) which are
progressively created by joining pairs of services, therefore in the end the flow of
executions produces the result tuples. Search computing results are duplicate-free,
and therefore once a tuple is formed along the dataflow, another identical tuple
can be removed from the computation.

− The control flow includes pulse signals which are propagated “forward” (i.e.
along the flow of execution) in order to time and synchronize service calls, and
suspend/resume signals which are propagated “backward” in order to re-
synchronize execution when anomalies are detected. Therefore, the forward
controls determine producer-consumer relationships according to the query plan,
and the backward controls optionally conditions those producer-consumer
relationships that deviate too much from the optimal plan determined at query
optimization time. A control edge may start from a data producer and, in this
case, every new chunk of data produced by the unit also produces a new pulse
signal.

− The behavior of each node is completely determined by its input and state. Some
units accept at most one input pulse, if the pulse is omitted then the unit responds
just to data flows. All nodes receive their data input from one predecessor, with
the exception of parallel joins and cache units, that can have more than one data
flow edges as input, as they implement binary operations (join and union).

Query plans include parallel and/or pipe joins (as presented in Chapter 10) which are
translated into nodes of the execution plan. While a pipe join is represented as a
sequence of service calls in which the second call implements the join, a parallel join
requires an explicit join unit which has two service units as predecessors. The
parameter setting of nodes involved in join computation is optimized according to the
service interface specifications (particularly, their chunk sizes and service costs).
The translation of an optimal query plan into its execution plan is rather
straightforward, as the topology of the execution plan can be immediately drawn from
the query plan. Instead, the initialization of node parameters dictating the
specification of the operations implemented by them is not covered in the book. At
the moment, we use simple heuristics to initialize the parameters, but we expect to
fine-tune the heuristics after experimentation.

Conceptually (the implementation may be different), each node is mapped to a
thread which is activated at query start, waits for input, and produces output. Queries
can be suspended and resumed by users according to the liquid query interface
controls, described in the next chapter. At query start (or resume), some user-controlled

232 D. Braga et al.

parameters may be fetched into appropriate “slots” of units to fully specify their
behavior. Most of these parameters are defined by the query optimization process.
Then, the start node of the execution plan is activated, which triggers the start of its
successor nodes. Nodes either act as data producers or consumers, or play both roles.
During the execution, data producers can send “EOF” data along one data flow link,
with the semantics that there will be no more data along the link. The “EOF” data is
propagated by consumers until it reaches the output node, causing query termination
and then the output to be produced.

The liquid query interface communicates with the execution engine by various
controls, and the effect of controls may suspend or terminate a query execution. Users
may also change the content of some of the query “slots” which are exposed to the
user interface (through user-friendly formats). Threads are eliminated only when the
user “changes” the query. Memory caches, however, might be emptied if the user
“repeats” a query with a different input.

3.2 Scheduling Units in Panta Rhei

The semantics of execution plans is rather complex, as it requires introducing a
number of ingredients (concerning units and their control) which interact with each
other. We have decided to first present all ingredients and then to show their interplay
through examples. The types of flows offered by the execution engine have already
been introduced above and we recall that control flows are signals carrying no
information other than their intrinsic nature (pulse, suspend, resume), while data
flows carry chunks of tuple combinations, made up by matching results of the
previous service calls in the flows, and emitted by units in chunks, according to the
unit’s execution semantics. In the following, we therefore focus on an in-depth
presentation of the various kinds of units, which are shown in Fig. 3.

Input and Output Units. The input unit injects user-provided input into suitable slots
of given units, and then starts the execution. Each execution plan must have exactly
one input node, which has one or more successor nodes.

The output unit is a consumer node collecting query results. Each plan must have
exactly one output node. Its execution activates the liquid interface showing the query
results.

Clock Unit. A clock unit plays the role of coordinating service calls to perform pipe
and parallel joins – thus, it is neither a producer nor a consumer. Topologically, every
clock unit has in its children at least two service calls. Every clock in a plan controls a
sequence of joins, where each join in the sequence is either a pipe or a parallel join,
and the topology of the execution plan indicates the operands of each join1.

Every clock is activated by a start pulse signal (a control edge connects the input
node to the clock) or by a data-producer unit which produces its first data (in this
case, a control edge connects the data producer unit to the clock). Clocks emit pulse

1 Currently, we associate every query with exactly one clock unit controlling all of its joins, but

we plan to experiment with more general settings. As clocks can be activated during the
execution flow, the semantics of clocks, service, and join units in the context of scheduling
plans does not force plans to have a single clock.

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 233

S,C
[stop: X]

S,C
[stop: X]

S[,C]<clock function>
period : X

S

A
Z

<sort expression>
[C|B]

σ
<selection predicate>Size: X

[stop: Y]

C
[stop: X]

[excess:(Y,Z,..)]

C
[stop: X]

[excess: (Y,Z,…)]

Clock Exact service Search service
No pipe join

Search service
Rectangular strategy

Search service
Triangular strategy

Join
Rectangular strategy

Join
Triangular strategy

SelectionChunker Sort Cache

Input

Output

Fig. 3. Nodes of execution plans

signals to two or more service invocation units, ordered from 1 to n (the order of
controlled units is given by the numbers labeling the pulse edges).

Every clock has a parameter, called clock function, defined by a regular expression
that describes the maximum number of calls that the service unit can perform during
the clock cycle, for each service unit controlled by the clock and for each clock cycle.
To do so, the regular expression defines a sequence of clock values which each
correspond to one clock cycle. Clock values are denoted as n-tuples of integer
numbers, where n is the number of service invocation units controlled by the clock
unit. Enumerable repetitions of sequences are indicated by a superscript, while infinite
repetitions of the last parenthesis are denoted by an “n” superscript. As an example,
(1,1)(2,2)n represents a sequence in which two services are invoked once in the first
clock cycle, and then can be invoked at most twice in any subsequent clock cycle. An
example of clock function for controlling three service units is: (3,1,2)(4,0,3)2(5,1,4)n.
The clock function can be replaced at runtime, e.g. based on user input.

Every clock has a given clock frequency (cycles per second), which determines the
time interval between two consecutive pulses to the descendent units. The clock
frequency should be related to the average response time of the search services
controlled by the clock. A reasonable recommendation is to set the frequency to cater
for the execution of the largest of Nij × ARTi, where Nij is the number of calls that unit
i is enabled to perform during cycle j and ARTi is the average execution time of

234 D. Braga et al.

service Si. This number represents an estimate of the execution time due to the slower
service which is controlled by the clock. Otherwise the clock would “enforce” a speed
greater than the speed of one controlled service (and as such it can hardly impose any
synchronization)2.

A clock can be suspended by any service that it schedules. Services may be slower
or faster in producing tuples relative to the plan, and thus the joiner could deviate
from the configured ratio. The rationale of suspend/resume is that triangular or
rectangular strategies of joins should be faithfully implemented, as they were decided
by an optimizer at compilation time by taking into account the features of the services
(and attempting a minimization of their access costs), and thus deviations from plans
occurring at run-time should be limited. A given amount of permitted deviation
(ranging between zero and infinite deviation) is defined as a join parameter. If the
allowed deviation is overcome, then the clock is suspended. As a consequence, the
clock will not issue any more pulses until it will receive a resume signal, which in
turn is sent by the same join unit when the deviation is reduced to an acceptable
amount.

Exact and Search Service Units. Exact service units produce a finite set of tuples
that represent the exact (and thus complete) response to the service call query given
the input parameters. The output tuples are neither ranked nor chunked. Nevertheless,
exact services produce sequences of chunks, where each chunk corresponds to one
service invocation. In the context of pipe joins, these sequences may be ordered in the
data flow due to their composition with previous calls to search services. Exact
services are triggered by a single input, either a pulse or a data chunk.

− In the first case, denoted as pulse input, the pulse produces a single exact service
call, performed as soon as the pulse is received. Therefore, a well formed graph
should only allow pulse signals to an exact service with the “number of
invocations” parameter set to one, which is assumed as default. If an exact service
is called only once and independently of data flows, normally its input is filled by
“slots” extracted from the query. This situation occurs when the exact service call
does not depend on other services. Note that further pulse signals, in this case,
should not be allowed by a correct graph, and anyway will have no effect on the
unit (i.e. the service call will not be repeated). An EOF marker indicates the end
of tuples in the result.

− In the second case, denoted as chunk input, the service triggering produces as
many calls as there are tuples in the data chunk, performed as soon as the chunk
tuples become available and continued until all tuples are consumed. In this
situation, the exact service unit implements a pipe join, whose strategy is however
rather simple, because it consists in a simple call iteration. The input parameters
of each iteration are extracted from the input tuple, and the corresponding result
tuples are combined (joined) with the input tuple, thereby producing an output
chunk. If the input dataflow is ordered, then the chunks are produced by the
service according to the input order.

2 Setting the clocks’ frequency is a delicate service time vs. optimization time trade-off.

Currently, we use as default solution setting the frequency exactly to the largest Nij × ARTi
computed on all the clock’s edges.

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 235

Search Services exhibit a behavior similar to Web search engines: results are
unbound, ranked and chunked, and normally there is no interest in obtaining a
complete result, but only in obtaining the first chunks. They are triggered by either a
pulse or a pair of data chunk and pulse.

− In the first case, denoted as pulse input, every pulse corresponds to a given
number of service calls, progressively extracting new chunks at each call; Nij
denotes the number of allowed calls for service i in a clock cycle j. Normally,
input fields for the call are filled by “slots” extracted from the query. This
situation occurs when the search service call does not depend on other services.

− In the second case, denoted as pulse and chunk input, the same number Nij of
service calls is allowed as in the first case, but these calls can either use a new
tuple from the input flow to match it with the “first” chunk of results for that
tuple, or instead continue with another input tuple Ti that was already used in
previous calls (thereby producing a given number Ci of chunks) and produce one
or more subsequent chunks for that tuple (i.e. chunks starting with Ci+1). This is
the most complex case of pipe join strategy, which iterates over either new or
already considered input tuples (which may be unordered or ordered by the first
service call) and produces chunks (which, for each input tuple, are relatively
ordered by the second service call). A pipe join strategy is used for choosing at
each step, which follows either a rectangular or triangular strategy which will be
discussed below. In any case, results are produced by chunks (whose size is given
by the number of matching tuples produced at each call of the service) and the
chunks are ordered.

Pipe joins occur when a dataflow input edge comes into a service call unit of arbitrary
nature (either exact or search). A pipe join implements the join between services
when the join attributes of the first service are bound and the join attributes of the
second one are free. If the input data consists of the concatenation of N tuples, then
the output data will consist of concatenation of N+1 tuples, possibly represented
through their keys. If either the input is ordered or the service being called is a search
service, then the join output will be ordered.

When the second service being called is a search service, a pipe join strategy is
needed to control the allocation of service calls to input tuples (as each input tuple is
used to provide parameters for a service call, and the same tuple may induce several
calls to the service, to find “better” combined results). The join strategy is imposed by
performing a pipe join strategy on the downstream service unit, controlled by a clock,
called the pipe join’s clock controller, whose clock function regulates the behavior of
the two services. The input pulse parameters, sent by the clock controller to both
services, indicate the number of calls allowed within a given clock cycle, and
therefore also of chunks produced in output during a cycle. The pipe join strategy can
be either rectangular or triangular, as informally represented in Fig. 4.

− In a rectangular strategy, the calls are performed considering every available
input tuple in a round robin fashion: chunks are progressively extracted (the first
chunk for tuples T1, T2, T3… and then the second chunk for tuples T1, T2, T3…).
This strategy is well suited when the first service is an exact service, producing
unordered input. A rectangular strategy can be imposed by setting a parameter in

236 D. Braga et al.

the second service (to R) and timed by the join’s clock controller, by setting the
clock’s function to (1,N)M(0,N)n, where N is the chunk size of the first service,
and after the first M calls the first service produces an EOF. Then, calls have to
be addressed just to the second service, producing the various layers of the
rectangle, by iterating on the result tuples of the first service.

− In a triangular strategy, calls are performed in an alternate fashion: the first
chunk is extracted for T1, then the first chunk is extracted for T2 and the second
chunk is extracted for T1, and so on, as described in the right side of Fig. 4 (same
as merge-scan parallel join). This strategy is well suited when the first service is a
search service, producing ordered input. A triangular strategy can be imposed by
setting a parameter in the second service (to T) and timed by the join’s clock
controller, by setting the clock’s function to the sequence (1,N)(1,2N)(1,3N)…,
where N is the chunk size of the first service, thereby offering to the second
service the option to get new chunks both for new tuples and for already available
tuples of the first service.3

Join Units. Join units support the parallel join between two services, i.e. a join when
neither of the join attributes is bound. A join unit joins the available information “by
chunks”. Each chunk combination gives rise to a “tile” of results (i.e. tile (1,1), (1,2),
(2,1), (2,2)…), as discussed in the previous chapter. Therefore, it has as predecessor
(at least) a pair of search services (producing chunked data). A join strategy specifies
the order of exploration of tiles, with the aim to process tiles with higher rankings and
more matches as fast as possible. A merge-scan strategy is obtained by setting the
clock’s function to (N,M)n where N/M is the optimal ratio between chunks of the two
services. A nested-loop strategy is obtained by setting the clock’s function to
(1,N)(1,0)n, where N calls are required to exhaust the second service and then calls are

Input
tuples

Output chunks
(per input tuple)

...

Input
tuples

Output chunks
(per input tuple)

...

(a) (b)

...

Fig. 4. Rectangular (a) vs. triangular (b) pipe join strategies

3 A pure triangular strategy can be modified by defining “triangles” more properly, e.g. with an

arbitrary proportional alternation. This extension is left for future work.

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 237

only addressed to the first service. In both cases, the choice of rectangular or
triangular strategy is specified by setting a parameter in the join unit (to R/T). If either
of the join input is not chunked, then the strategy is not needed and the parallel join
degenerates to a unit which has a simple implementation, consisting in producing tiles
in the only possible order (e.g. (1,1), (1,2), (1,3)…).

A join unit can have a stop parameter, which indicates the maximum number of
tuples that should be produced by the join before suspending its execution (and
producing an EOF marker)4.

In addition, a join unit has a pair of local parameters describing the amount of
deviation allowed from the planned strategy. Deviation only occurs if the join
greedily attempts to produce more chunks than the number allowed by available input
and planned strategy. These numbers count how many additional input chunks can be
joined from either services, ranging from (0,0) – no deviation for either services – to a
given pair (2,3), to unspecified – no deviation control. When the maximum allowed
deviation on one input (corresponding to a service running “too fast”) is overcome,
the clock controlling the join unit is suspended. At that point, the service running “too
slow” has some pulses available, and the join unit can concentrate upon the “tiles”
which were left behind due to the slowest service, in order to bring the proportion of
service calls back within the specified limits. Finally, at that point, the clock is
resumed.

Selection Unit. A selection unit receives a (chunked) dataflow in input and produces
a (chunked) data flow in output, consisting of all the tuples which satisfy a selection
condition (an arbitrary Boolean expression of selection predicates). The selection unit
does not re-chunk the output to a given chunk size and, thus, possibly changes the size
of the chunks according to the selectivity of the predicate. Equality predicates
matching input attributes to constants are used for building service calls, while a
selection unit computes additional selections (e.g. comparison operations between
attributes). Classical methods are used (by the query optimizer) in order to place the
selection unit immediately after the join operation (either pipe or parallel join) which
constructs the tuple with the attributes required for computing the predicate.

Sort, Chunker and Cache Units. A sort unit gets in input chunks of tuples and
produces re-ranked result tuples in output, according to a sort expression. Sort units
can be “continuous” (they sort the input chunks one by one, as they are available) or
“blocking” (they wait for an EOF marker, and then process the whole input
accumulated so far and emit the reordered tuples as a single output chunk). The sort
function is a weighted sum of normalized expression (in the [0..1] range) over input
tuple attributes, with a sort direction (either ascending or descending).

A chunker unit constructs new chunks from input tuples, by ignoring any already
existing chunk structure thereupon. It is configured with a desired output chunk size.
A chunker emits a new chunk as soon as there are exactly as many tuples as the chunk
size. It has a “stop” parameter indicating the number of chunks it should produce
before placing an EOF on its output dataflow, which can be interpreted by the output
unit as the signal for producing output to the interface. A chunker is normally the last

4 An EOF marker can be overridden by the user to resume the query plan and produce more

results.

238 D. Braga et al.

unit before the output unit and therefore the suspension stops the computations
returning the control to the user, who in turn can resume computations and ask for
more outputs.

A cache unit stores, within temporary memory, chunks of tuples, retrieved from
services, or tuples of their keys forming combinations produced by joins.
Conceptually, a cache unit is present after every service or join unit in order to store
the service call or join results. However, in order not to overload the representation of
an execution plan, we may omit cache units unless they have more than one incoming
edge. In this case, all incoming tuples share the same schema and the cache
implements the union of these tuples. The cache can also change the order of
combinations when used as a union and, hence, its edges are labeled accordingly (e.g.
S1/S2). The cache memory uses the normalized schema of the services in order to
store service call results, and stores combinations as tuples of keys of the primary
table of each service. The keys are system-generated and the tuples are indexed by
chunk number and by key.

4 Examples

This section presents examples of execution plan models in increasing complexity.
The purpose of the examples is to show, although on a limited sample, that execution
plans can support various join strategies, including parallel join, pipe joins, and the
Fagin join method which gives top-k guarantees.

We start with a parallel join of search services (Fig. 5), which is discussed at length
in Chapter 10. The execution of a merge scan join between two services S1 and S2
using a connection pattern C1 requires a triangular join strategy. If the optimizer
determines that the optimal ratio between calls to service S1 and S2 is 1/2, it is
sufficient to set the clock function to (1,2)n which means that at each cycle S1
performs (at most) one call while S2 performs (at most) two calls. The clock
frequency is set so that the slowest call sequence (e.g. the time required for
completing either one call of S1 or two calls of S2) takes place within about one cycle.
The join at each new iteration builds tiles in triangular fashion, e.g. first tiles (1,1),
(1,2), then tiles (2,1), (2,2), (1,3), (1,4), and so on. The joiner is allowed to produce

S1

S2

(1,2)n

period : 150
C1

stop: 10
excess: (1,1)

(1)

(2)

Fig. 5. Parallel join of two search services

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 239

S1
chunks

S2
chunks

permitted by strategy
allowed excess

forbidden

Fig. 6. Join space permitted by the strategy and allowed excess for the parallel join of the
example in Fig. 5, in case S1 returned 3 chunks and S2 returned 4 chunks

more tiles, e.g. if at a given point of time S1 has already produced 3 chunks and S2
has produced only 4 chunks, thus going beyond the 1/2 ratio, the joiner can
proceed with the tile (3,1), (3,2) and then (2,3), (2,4), still keeping a triangular
strategy. By doing so, it reaches its “allowed excess”, which is 1 extra-chunk
(see Fig. 6).

In this case, if S1 produces one more chunk, the joiner signals the clock, and the
clock in turn stops sending pulses until S2 produces 8 chunks, re-establishing the 1/2
ratio. Then, the joiner resumes the clock, and the execution of service calls and joins
continues according to the joiner’s triangular strategy. The joiner is set to stop its
execution, producing an EOF, when 10 result tuples are built. When the EOF is
received by the output node, it presents 10 result tuples to the liquid query user
interface.

We next illustrate a pipe join on the same services and connection pattern
(Fig. 7). We implement a nested loop join, in which we assume that S1 produces
chunks of size 10 and that after 5 calls it produces all relevant results. Then, the
ratio between calls to S1 and S2 is 1/10 (every tuple of S1 is an input to S2) and the
number of times this ratio must be iterated is 5. This enables building tiles
(1,1)...(50,1), where each tile is obtained for a different tuple in input. At that
point, no more calls to S1 are needed (all 50 tuples are cached) and therefore calls
to S2 must be performed. S2 then performs the joins, thus producing the second,
third, …, and i-th chunk for the 50 cached tuples. The execution is terminated as
soon as 20 result tuples are produced and an EOF is produced to transmit the result
to the query interface through the output unit.

240 D. Braga et al.

(1,10)5(0,1)n

period : 500 ms
S1 S2

(1)

(2)

size 20
stop 1

Fig. 7. Pipe Join of two search services

(1,1)n

period : T

S221S111

S211

C
stop: K

A
Z

<sort function>
B

size: K
stop: 1

S121

(2)

S1|S2

S1|S2

(1)

Fig. 8. Execution plan for a Fagin Join

The next example is the Fagin join [9] (Fig. 8). We recall that the method is
applicable when both sequential (rank-based) and random (key-based) accesses are
available for both of the services involved, and the method guarantees the extraction
of top-K combination tuples, i.e. the tuples which are the best K according to any
monotonic function of their relative rankings. We regard the Fagin method very
suitable to Search Computing for this generality and for the method’s full definability
at compile time, although it is suboptimal if compared with the threshold method, as
discussed in Chapter 11.

Fig. 8 shows an execution plan for the parallel join of two search services S1 and S2
(supporting sequential access) followed by the pipe join of different service interfaces
of services S1 and S2, supporting direct access (e.g. access by an identifying property).
A parallel join serves the purpose of halting the pulses to the search services as soon
as K tuples are built. Then, by making a direct access for all join result values
respectively on S2 – if the join value comes from S1 – and on S1 – if the join value
comes from S2. Results are then reordered and stored into a cache unit which performs
their union. Eventually, results are sorted according to the sort function to obtain the
single chunk of K resulting tuples, which are guaranteed to be top-K.

Finally, Fig. 9 shows an execution plan for the running example which queries for
a good and recent adventure movie with screenings in a theatre not too far from the
user’s home and good restaurants nearby. The clock controls in this case a parallel
join which is followed by a pipe join. The parallel join combines Movies with

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 241

Movie31

CloseTheatre11

(1,1,10)n

period:
250 ms

(2)

(1)

Shows
stop: 10

excess: (1,2)

CloseRestaurant11 /
DinnerPlace

(3)

Fig. 9. Running Example

CloseTheatres according to the Shows combination pattern. The join combines one
chunk of Movie with two chunks of CloseTheatre, using a triangular strategy, and
with allowed excesses also set to (1,2). The join stops after producing 10
combinations of movies and theatres. Meanwhile, the data flow of the join results are
sent to the CloseRestaurant service through the DinnerPlace connection pattern. For
each pulse to Movie, 10 pulses are sent to CloseRestaurant, thereby enabling a tuple-
based with 10 input tuples on from the first iteration, so that every matching movie-
theatre pair is associated with close-by restaurant of the desired kind. Once 10 pairs
are produced with a variable number of matching restaurants, execution is completed
and results are transferred, through the output unit, to the user interface.

5 Conclusion

The execution engine described in this chapter supports operations such as service calls,
join processing, caching, sorts, and chunking in order to support the efficient execution of
the optimal plan selected by the optimizer. The execution engine prototype is a running
platform which fosters the experimentation with new ideas and novel join strategies. Its
extensible organization allows us to easily introduce new nodes or to change their
parameters. The execution engine model is rather preliminary and will be improved
while new releases of the environment will be deployed, yet the model resolves most of
the technical challenges that are set by Search Computing queries.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H.,
Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The
Design of the Borealis Stream Processing Engine. In: Proceedings of Second Biennial
Conference on Innovative Data Systems Research (CIDR 2005), Asilomar, CA, USA
(January 2005)

242 D. Braga et al.

2. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource
Management and Scheduling in Grid Computing. Concurrency and Computation:
Practice and Experience 14(13-15), 1507–1542 (2002)

3. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual Query Systems for
Databases: A survey. Journal of Visual Languages and Computing 8(2), 215–260 (1997)

4. Chaudhuri, S.: Query Optimizers: Time to Rethink the Contract? In: SIGMOD 2009:
Proceedings of the 35th SIGMOD international conference on Management of Data, pp.
961–968. ACM, New York (2009)

5. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: A Pay-As-You-Go Framework for
Query Execution Feedback. Proc. VLDB Endow. 1(1), 1141–1152 (2008)

6. Cole, R.L., Graefe, G.: Optimization of Dynamic Query Evaluation Plans. In: Snodgrass,
R.T., Winslett, M. (eds.) Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, May 24-27, pp. 150–160.
ACM Press, New York (1994)

7. Eckerson, W.W.: Performance Dashboards: Measuring, Monitoring, and Managing Your
Business. John Wiley & Sons, Chichester (2006)

8. Evrendilek, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase Query Optimization.
Distrib. Parallel Databases 5(1), 77–114 (1997)

9. Fagin, R.: Combining Fuzzy Information from Multiple Systems. J. Comput. Syst.
Sci. 58(1), 83–99 (1999)

10. Goodenough, J.B.: Exception Handling: Issues and a Proposed Notation. Commun.
ACM 18(12), 683–696 (1975)

11. Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Self-Monitoring Query
Execution for Adaptive Query Processing. Data Knowl. Eng. 51(3), 325–348 (2004)

12. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Comput.
Surv. 25(2), 73–169 (1993)

13. Graefe, G.: Iterators, Schedulers, and Distributed-Memory Parallelism. Softw. Pract.
Exper. 26(4), 427–452 (1996)

14. Grossniklaus, M., Norrie, M.C.: An Object-Oriented Version Model for Context-Aware
Data Management. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C.,
Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 398–409. Springer,
Heidelberg (2007)

15. Ives, Z.G., Florescu, D., Friedman, M., Levy, A., Weld, D.S.: An Adaptive Query
Execution System for Data Integration. SIGMOD Rec. 28(2), 299–310 (1999)

16. Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans. SIGMOD Rec. 27(2), 106–117 (1998)

17. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

18. Manolescu, I., Bouganim, L., Fabret, F., Simon, E.: Efficient Querying of Distributed
Resources in Mediator Systems. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA
2002, and ODBASE 2002. LNCS, vol. 2519, pp. 468–485. Springer, Heidelberg (2002)

19. Rao, J., Pirahesh, H., Mohan, C., Lohman, G.: Compiled Query Execution Engine Using
JVM. In: ICDE 2006: Proceedings of the 22nd International Conference on Data
Engineering, p. 23. IEEE Computer Society, Washington (2006)

20. van Reeuwijk, C.: Maestro: A Self-Organizing Peer-to-Peer Dataflow Framework Using
Reinforcement Learning. In: HPDC 2009: Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing, pp. 187–196. ACM, New
York (2009)

 Panta Rhei: Flexible Execution Engine for Search Computing Queries 243

21. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query Optimization Over Web
Services. In: Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten,
M.L., Cha, S.K., Kim, Y.K. (eds.) VLDB, pp. 355–366. ACM, New York (2006)

22. Tanin, E., Beigel, R., Shneiderman, B.: Incremental Data Structures and Algorithms for
Dynamic Query Interfaces. SIGMOD Rec. 25(4), 21–24 (1996)

23. Urhan, T., Franklin, M.J.: XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE
Data Eng. Bull. 23(2), 27–33 (2000)

24. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost-Based Query Scrambling for Initial Delays.
SIGMOD Rec. 27(2), 130–141 (1998)

25. Whiting, P.G., Pascoe, R.S.V.: A History of Data-Flow Languages. IEEE Ann. Hist.
Comput. 16(4), 38–59 (1994)

26. Wong, E., Youssefi, K.: Decomposition—A Strategy for Query Processing. ACM Trans.
Database Syst. 1(3), 223–241 (1976)

27. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing.
SIGMOD Rec. 34(3), 44–49 (2005)

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 244–267, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 13:
Liquid Queries and Liquid Results in Search Computing

Alessandro Bozzon1, Marco Brambilla1, Stefano Ceri1, Piero Fraternali1,
and Ioana Manolescu2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{alessandro.bozzon,marco.brambilla,stefano.ceri,
piero.fraternali}@polimi.it

2 INRIA, Saclay-Ile-de-France and LRI, Université de Paris Sud-11, France
ioana.manolescu@inria.fr

Abstract. Liquid queries are a flexible tool for information seeking, based on
the progressive exploration of the search space; they produce “fluid” results
which dynamically adapt to the shape of the query, as a liquid adapts to its
container. The liquid query paradigm relies on the SeCo service mart and multi-
domain query execution concepts: an expert user selects a priori the service
marts relevant to the information seeking task at hand and the connections
necessary to join them, and publishes such a definition in the SeCo back-end.
The Liquid Query client-side interface consumes the application definition
created by the expert and dynamically builds a query interface for the end-user.
Such interface allows one to supply keywords to query the pre-configured
service marts and offers controls for exploring the combinations computed by
the SeCo execution engine. The interaction commands are based on a tabular
representation of results and comprise: reordering, clustering, addition or
deletion of attributes, addition of extra service marts to the query for specific
items in the result set or for the entire result set, request of more results from all
services or from selected ones, expansion of details on selected items, and
more. The Liquid Query is equipped with multiple data visualization options
suited to render multi-domain results and can be instrumented with indicators
showing the quality of the result set.

Keywords: user interfaces, exploratory search, search computing.

1 Introduction

As users get more and more acquainted with the use of the Web for addressing their
information needs, the role played by search engines in both professional and
everyday life grows. A recent study by Yahoo confirms the centrality of search in
Web usage: one out of every five page views of the analyzed data set is related to
some search task [21]. Initially, search engine interfaces were primarily exploited for
locating specific documents. The “Google-style” user interface is the perfect example
of this paradigm; it offers only essential commands: an input textbox for inserting
keywords, producing a ranked result list. When users have more sophisticated

 Liquid Queries and Liquid Results in Search Computing 245

information needs, they are left with the burden of alternating the necessary queries
and result look-ups for locating the content of interest.

However, finding documents is no longer the only and primary way of using the
Web. The same survey on online search behavior [21] found that search sessions tend
to become longer (involving 6.3 page views on average) and focus not only on
documents but also on structured objects (over half of the analyzed queries referred to
a well identified object, which played a central role in the information seeking
behavior of the user). As the expectations of users change, the user interfaces we offer
them for searching must evolve too. This evolution must take into account the
expected search behavior and skills of the user, the kind of content targeted by the
queries, and the context where the interaction takes place (user’s intention, device,
situation, and so on).

The anatomy of user’s search behaviors is a well investigated research topic,
starting from a seminal paper by Andrei Broder at IBM [6], who distinguished
information seeking needs into three main categories:

• Navigational: where the intent is to reach a particular site.
• Informational: where the intent is to acquire information.
• Transactional: where the intent is to perform some web-mediated activity.

More recently, Gary Marchionini [23] analyzed the evolution of search systems for
exploratory search, defined as the situation in which the user starts from a not-so-
well-defined information need and progressively discovers more on his need and on
the information available to address it, with a mix of look-up, browsing, analysis and
exploration. Exploratory search is showcased by several last-generation search
systems, using a variety of different tools: dynamic faceted taxonomies (as used e.g.,
in DBLP Faceted Search and Clusty.com [8] [9] [10][29], topic exploration engines
(e.g., the Kosmix topical search engine [27]), Web applications aggregating
community feedback and social wisdom (e.g., as in the Hunch problem solving engine
[16]) are only a few examples.

In parallel to the evolution of the user’s behavior, search solutions have evolved
also in the data they can collect and present in response to a query. In the realm of
textual data, the focus has shifted from document crawling and indexing to the
integration of heterogeneous data sources, where documents are integrated with
semi-structured or structured data coming from the deep Web [3] and enriched with
semantics, extracted either manually or automatically. This impacts both the way in
which queries are formulated (e.g., the Wolfram Alpha search engine [34] accepts in
input structured expressions with a domain specific syntax and semantics, like
mathematical formulas and stock comparison sequences) and the way in which results
are presented (e.g., in the Google Squared™ system [12] the user may perform a plain
keyword search, and the system responds with data organized in tabular format,
which can be extended both vertically, by adding further “objects”, and horizontally
by inspecting more attributes of the tabbed objects).

The SeCo liquid query interface sits at the intersection of the abovementioned
trends. On one side, it is based on the structured information collected by the SeCo
back-end architecture from both Web documents and deep Web data sources,
wrapped by means of a uniform notion of search service. On the other, it addresses
also exploratory search: the user may start from an initial combination of data

246 A. Bozzon et al.

sources relevant to his information need and then explore the content of these
services, or explore the service universe by following novel trails based on other
“joinable” services.

Another influence on the design of the liquid query layer comes from the
emergence of search-based application development as a distinctive field of online
application development [4]. The functionality of a search system is unbundled into a
set of reusable components, which can be integrated to assemble tailor-made search
solutions (as an example, see the Microsoft Symphony platform [30]). Expert users,
although not necessarily trained in computer programming and code-based
application development, are offered sophisticated interfaces for assembling or
configuring ad hoc search solutions from existing resources, possibly using a mashup
approach (see, for example, the Yahoo Pipes platform which allows the mashup of
data extracted from the Web with the Yahoo Query Language [36][37]). In SeCo, the
“expert users” will exploit the graph of service marts and prepare queries for a
specific application, thanks to a mashup interface over service marts and their
connections; conventional “end users” will use such preconfigured queries, by
supplying their actual search parameters and perusing the results with variety of
commands for personalizing their search experience and data visualization.

This chapter is organized as follows. Section 2 discusses the state of the art in
interfaces for Web search. Section 3 describes the approach offered to expert users for
building queries while introducing the functionalities offered to end users for
interacting with liquid results. Section 4 shows the liquid result interface at work on a
running example; and Section 5 illustrates the current state and future work.

2 State of the Art

The design of the liquid query interface draws from the achievements in a number of
fields related to the development of interactive systems for information seeking. In
this Section we review the most prominent studies, systems and solutions that are at
the base of new generation search interfaces.

2.1 Behavioral Studies of Information Seeking and Exploratory Search

The design of novel search systems and interfaces is backed by several studies aimed
at understanding how users behave when satisfying their information needs on the
Web. After the seminal work of Broder [6], other studies have investigated search
behaviours by analysing search engine logs. For example, the study performed on
queries selected from the Altavista logs by Rose and Levinson highlighted a
taxonomy of search goals comprising informational, resource and navigational
queries [28], with a prevalence of informational queries aimed at learning more about
a topic of interest. These first studies, where queries were identified and classified
manually by inspecting the logs, have been followed by several attempts to automate
the classification process, to cater for larger scale inference of the intent behind user’s
searches (examples are [21], [22], and [33]). A review of approaches to search log
data mining and Web search investigation is contained in [2] and [18][19].

 Liquid Queries and Liquid Results in Search Computing 247

A specific class of studies is devoted to exploratory search, a close relative of
informational queries where the user’s intent is primarily to learn more on a topic of
interest [23]. Such information seeking behaviour challenges the search engine
interface, because it requires support to all the stages of information acquisition, from
the initial formulation of the area of interest, to the discovery of the most relevant and
authoritative sources, to the establishment of relationships among the relevant
information elements.

A good definition and analysis of the problem are given in [33] and an interesting
distinction between complex and exploratory search is made in [1], where complex
search is characterized by:

• multiple searches, possible over multiple sessions and spanning multiple sources
of information,

• combination of exploration and more directed information finding activities,
• need of note-taking,
• variation of the search goal during the search process.

A number of techniques (some of which are reviewed in Section 2.2) have been
proposed to support exploratory search, and user studies have been conducted to
understand the effectiveness of the various approaches (e.g., [20]).

Besides field studies, a model-theoretic approach to the analysis of the information
seeking behaviour is afforded by the theory of Information Foraging [26], which
applies evolutionary ecological models of foraging to knowledge acquisition tasks.
The theory relies on information patch models, which explain how a user decides
between moving from an information patch (e.g., a search engine result list or a topic
page) to another one or stopping to exploit the content of a patch (e.g., navigating to
an item in the result list or exploring a topic); and on information diet models, which
convey the policy used by users to select a profitable mix of heterogeneous
information sources. The theory has been embodied in a production system, which
simulates the information foraging strategies for a knowledge acquisition task and
derives predictions of the actual decisions occurring in real tasks observed during
field studies. It also provided practical hints on how to make the interface for
accessing information more efficient, e.g., by enriching the productivity of
information patches by means of filters that eliminate non-profitable information, or
by strengthening the information scent, i.e., the clues that the user exploits to decide if
an item is worth exploring.

2.2 Topic Exploration Systems

Topic exploration is a case of complex and exploratory search, centred around the
goal of collecting information on a subject matter of interest, from multiple sources.
The key challenge in topic exploration on the Web is the massive amount of disparate
information available on each topic, which demands novel systems capable of
constructing effective entry points for quickly grasping the essence of a topic and the
possible directions for its exploration.

Topic exploration has been traditionally served by vertical search engines
(e.g., WebMD, Mobissimo, Google News, CareerBuilder, MP3.com), which restrict

248 A. Bozzon et al.

the scope of the available topics to a specific domain. Horizontal, i.e., cross-domain,
topic exploration is a recent development.

2.2.1 Kosmix
Kosmix [27] is a general-purpose topic discovery engine, which responds to keyword
search by means of a topic page that summarizes the most relevant information on
the subject associated to the search.

Each topic page is constructed by evaluating a set of modules, which are software
components that wrap calls to Web services to extract information from deep Web
data sources. Topic pages are defined manually and may contain different modules:
e.g., images from Flickr and Google, topic descriptions from Wikipedia, reviews and
guides from domain-specific data sources, news from magazines and aggregators,
product offerings from eBay or Amazon, and more.

Internally, Kosmix uses a mix of crawling and federated search: part of the data are
crawled and indexed statically, part are fetched by calls to external web services at
query time. Query processing exploits a taxonomy of topics, comprising millions of
nodes connected in a direct acyclic graph, and a Categorization Service, which
computes the nodes of the taxonomy that are most closely related to the user’s query
and the data sources in the system that can provide information about the query topic.

When the relevant sources of information have been identified, the Kosmix engine
performs the necessary data source queries and assembles the result in the topic page,
which has a bi-dimensional layout similar to that of a magazine (see Fig. 1 for the
topic page associated to the “Leonardo da Vinci” keyword search).

The topic page may also contain a “Related in the Kosmos” module (see Fig. 2),
which highlights the related topics found in the taxonomy, grouped by categories.

Fig. 1. The Kosmix topic page for the “Leonardo da Vinci” keyword search. The system
proposes a summary page.

 Liquid Queries and Liquid Results in Search Computing 249

Fig. 2. The “Related in the Kosmos” module of the topic page for “Leonardo da Vinci”

Fig. 3. The facts extracted from Wikipedia about Leonardo da Vinci; each fact (e.g., “Leonardo
designed aircraft” is supported by a reference to the information source)

2.2.2 Other Topic-Based Systems
The organization of topical information is the goal of a variety of systems that employ
different approaches and technologies to collect and layout the relevant information
on a subject matter related to the user’s search.

Powerset (now incorporated into Microsoft’s Bing [24]) specializes in extracting
and organizing information from Wikipedia. A summary page is produced for each
topic associated to a keyword search, which contains the essential facts and articles
(e.g., biographical data for an historical figure). Wikipedia articles are summarized
and augmented with reading aids (e.g., an outline browsing panel) and facts are
extracted from them (e.g., the facts discovered about “Leonardo da Vinci” in Fig. 3).

Hakia [15] is another search engine capable of producing summary pages for
topics associated with user’s queries. Hakia exploits natural language processing
techniques, specifically Ontological Semantics, for building a large ontology of
concepts and correlations and for parsing text content into an ontological
representation. Web pages are indexed with the Query Detection and Extraction
(QDEX) System, which analyses the page content in order to determine all the
possible queries that can be responded with that content. Such meaningful queries are
represented internally by means of a concise ontological model, which replaces the

250 A. Bozzon et al.

Fig. 4. The resume page for the query “Leonardo da Vinci”

standard inverted index of a classic text-based search engine. QDEX data for a given
query are then used to rank the query results, by semantically matching the query
terms and the QDEX sentences, so to determine the index entries most meaningful for
answering to the query. A topical query is answered by means of resume page, which
organizes the relevant pieces of content categorically, as shown in Fig. 4.

Parallax [14] is an interface for browsing Freebase, a large collaborative
knowledge base, where structured, linked data are harvested from several sources,
including Wikipedia, ChefMoz, NNDB, and MusicBrainz, and enriched with user
generated content. Freebase data are organized into topics and stored according to
ontologies that can be updated by users. Parallax queries are sets of keywords, which
are disambiguated in order to identify the relevant topics. Topic information is
presented to the user and faceted navigation can be used to move from the current
data set to a related data set, exploiting the Freebase connections. Moreover, Parallax
enables the navigation along topics, leveraging the semantic associations recorded in
the Freebase ontologies.

2.2.3 Hybrid Search
A somehow hybrid position between vertical search engines and topic exploration
systems is taken also by the latest versions of the mainstream, general-purpose search
engines interfaces, which are enriching results lists with extra elements derived from
vertical or topical searches.

Examples of these extensions are Google Universal Search, Ask 3D and Microsoft
Live Search. For example, Fig. 5 shows the results of the keyword search “Leonardo
da Vinci” in Ask.

 Liquid Queries and Liquid Results in Search Computing 251

Fig. 5. Ask 3D search result page for the query “Leonardo da Vinci”. The page mixes results
from traditional horizontal search and from vertical searches in news, blogs, topical Web sites,
image repositories, and more.

Yahoo SearchMonkey [35] brings result page enhancement into the hands of
developers, by allowing them to add their own structured data to Yahoo result lists, to
make them appear more informative. Extensions can be defined either by completely
rewriting the standard result list or by adding information bars to result elements.

2.3 Tabular Search Systems

Recently, a number of experimental systems have been investigated with the purpose
of merging the popular keyword search paradigm with the tabular representation
typical of structured data in such applications as information systems, relational data
interfaces, spreadsheets, and data warehouses. The novelty of these approaches
resides in the capability to extract approximate schema information directly from web
documents and the idea of enriching structured data (e.g., spreadsheets contributed by
the user) with related data mined from the web.

2.3.1 Google Squared
Google Squared [12] is an application from Google Labs demonstrating the interplay
between Web data and schemas overlaid on top of it [7]. Fig. 6 depicts a screenshot of
the Google Squared interface: the interaction can be started by an ordinary keyword

252 A. Bozzon et al.

Fig. 6. The interface of Google Squared. A square has been constructed starting from the
keyword search for “Italy” and manually extended with the term “Greece”. The system
suggests correlated columns to expand the square horizontally.

search, but the results are collected in a table (called a square) featuring all the
attributes relevant to the result items as columns headers. The initial square can be
extended horizontally, by adding columns suggested by the system or by providing
tentative column names. If a new column is added to the square, the system tries to
locate data matching the supposed semantics of the column and extends the square
with the retrieved data. Similarly, the square can be extended vertically; the user can
provide new items of the same type of those already listed in the table, or the system
can provide suggestions of new items that have attribute values similar to those of the
items already listed in the square.

2.3.2 Fusion Tables
Google Fusion Table [11] is an application developed at Google labs. The interface,
shown in Fig. 7, allows one to upload a data table (e.g., a spreadsheet file) and join (or
“fuse”) the data in some column with other tables, either supplied by other uses or
mined from the Web. Spreadsheet-like views of the base or joined tables can be
defined, saved, shared with others, and commented collaboratively. Alternative
visualizations are possible, depending of the type of data contained in a table, e.g.,
timelines and maps.

2.4 Summary and Discussion

The Liquid Query system can be considered as an interface for the exploration of
ranked combinations of objects, extracted from deep Web data sources. As such, it
shares aspects with exploratory search solutions and with tabular search systems. The
nature of the result set (combinations of objects with given properties) suggests the
use of the tabular format as the primary, but not the unique, result presentation
metaphor. However, differently from Google Squared and Fusion Tables, the
presence of service mart signatures allows recognizing the boundaries of objects of
different types and thus structuring each row in the result set into the individual
objects used to build it.

 Liquid Queries and Liquid Results in Search Computing 253

Fig. 7. The interface of Google Fusion Table, showing the table of endangered species by
country and group. Each column can be annotated and metadata can be displayed (e.g., the map
location of a country)

As in the case of topical search engines, the approach to the exploration of the
search space is structured in two steps: a configuration phase and a usage phase. In
the configuration phase (discussed in Chapter 14), an expert user defines the universe
of exploration, by selecting the service marts relevant to the envisioned information
seeking task and their connections; this is analogous to the offline preparation of a
topic page, in which the appropriate data sources for the topic are preselected.
Differently from topical search, which focuses on a single type of object, on its
properties, and on one step of relationships to other objects, the Liquid Query
interface addresses the combinations of objects of different types, with their
attributes; each object type in the combination is the source of further exploration
steps, represented by multi-hop outgoing paths along service mart connections
preselected by the expert user.

In the usage phase, the end-user exploits a form based interface to provide the
constants of his specific query over the preselected service marts. The retrieved top-k
combinations are then displayed and make the initial scenario for exploration. The
user can filter and reshape the result set, explore the vicinity of the search space by
following new trails from the currently visualized items, or “change the information
patch”, by asking for further results of the same query from one or more services
(which may alter the combinations appearing in the top-k list) or posing a novel query
with different parameters.

3 Liquid Query Paradigm

The Liquid Query interface offers a set of interaction options to ease information
exploration by end users. In this section we describe the essential interface concepts,
the flow of the user interaction, and the main primitives composing such flow.

254 A. Bozzon et al.

3.1 Liquid Query Concepts

The main objects involved in the query lifecycle are:

• Liquid Query: a concrete query upon service interfaces specified by inputting the
constant terms to use in the selection operators, equivalent to the queries formally
introduced in Chapter 10;

• Liquid Result: a list of tuples, representing object combinations, conforming to a
liquid result schema; the liquid result schema is established a priori by the expert
user at application design time, but can be changed by the end user during
interaction, for example by projecting away attributes or extending it with
additional service interfaces not present in the schema of the initial query.

• Interaction Primitive: a specific user command that produces a side effect either
on the liquid result (e.g. grouping by given attributes, selecting or re-ordering
tuples) or on the liquid query (e.g. requesting more tuples, or expanding the result
by joining in new service interfaces).

The liquid result schema defines the format of the result set, in terms of displayed
attributes, ordering attributes, clustering attributes, grouping attributes, and available
expansions. A liquid result instance is a tuple that represents a combination of
objects extracted by the SeCo engine in response to the query, graphically shown as a
row in the tabular representation of the liquid result set. A liquid result page is a set
of liquid result instances displayed simultaneously in the user interface. The number
of instances per page is the same as the number k of results returned by the SeCo
engine in the computation of the top-k combinations, which is pre-configurable by the
expert user at application development time.

A query expansion is an operation that allows users to select some tuples in the
result set and join them with objects provided by another service interface, called the
expansion target. The join operation exploits pre-selected connections, taken from
the service mart repository; and the join attributes of the selected tuples provide the
values necessary to execute the join operation required for the expansion. Visually,
the objects retrieved from the expansion target service interface are joined with the
tuples that provided input values for their extraction, and displayed alongside the
results of the query; in this way, a new service is dynamically added to the liquid
result. The tuples originated from an expansion can be further used for more
expansions, allowing a stepwise exploration of the search space vicinity of the initial
result set.

3.2 Liquid Query Interaction Process

The first step of the user interaction consists in the query submission, whereby the
end user specifies the actual parameters of the liquid query. The query is created by
an expert user or application developer by using the available service interfaces and
connection patterns (see Chapter 14 for further details).

The query execution step produces on the server side a result set of k tuples,
which satisfy the query predicates and are ordered. Depending on the query and
execution plan, the k result tuples are either guaranteed to be exactly the top-k tuples,
ordered according to the ranking function, or instead they are k tuples extracted by an

 Liquid Queries and Liquid Results in Search Computing 255

approximation of that ranking; the latter method is faster. The result set is then passed
to the client, where it is displayed in a personalized manner according to the user’s
visualization choices (e.g., attribute projection, sorting, grouping, etc). More
precisely, the following actions can be locally performed on the result set stored on
the client side:

• The client-side result set can be restricted by applying local selection conditions, if
the user has set local filters to the query result;

• Instances can be grouped, if the end user has defined a grouping attribute, and
sorted with respect to the chosen ordering attributes, if these have been provided
by the user. A local ordering specification overrides the ranking function used at
the server side for computing the top-k results;

• The result set can be expanded, by invoking the SeCo back-end, and by placing
the expansion result visually to the right of the service results that used as input
values for the expansion;

• Finally, items can be clustered according to the clustering attributes, if these have
been specified by the user.

Results are then displayed to the user, who can then start the result browsing and
query refinement phase, in which the user can examine and manipulate the results
through appropriate interaction primitives, which update either the liquid result or the
refine the liquid query. When browsing the result set, the interaction primitives may
access the server-side (Remote Query Interaction Primitives), or affect only the client-
side result set (Local Result Interaction Primitives). Depending on the kind of remote
query interaction primitive, the query execution performed by the SeCo engine might
be suspended, restarted, or stopped.

Besides the basic query and result interactions, we envision other classes of
interactions: Manipulation Primitives for defining calculated data; Visualization
Primitives for changing the result set visualization; Query Management Primitives for
storing/retrieving, exporting, and sharing queries; and Result Quality Primitives, for
understanding quality parameters of the result set, such as relevance and diversity,
and for capturing user’s preferences. In the following, we describe in detail the
Remote and Local query interaction primitives, and preview the other classes of
interactions, which are part of our future work.

3.3 Remote Query Interaction Primitives

Remote interaction primitives require the client to ask the server for some
computation, in order to produce new results. Remote interaction primitives include:

• MoreAll: the operation loads additional tuples from all the selected services in the
currently specified query (excluding extensions); this command is typically
executed when the user has not found the combination he is looking for in the top-
k results and cannot estimate the service more likely to provide profitable
information. This operation increases the cardinality of the result set, without
altering the ranking function associated with the query.

• MoreOne (Service): the operation asks for additional tuples from a specific
service interface in the currently defined query. This command is typically

256 A. Bozzon et al.

executed when the user has not found what he is looking for in the top-k results
and can identify the service that returned unsatisfactory information. Notice that
this operation does not preserve the ranking of the result set as computed
according the ranking function of the query, because new objects (and thus new
combinations) may be computed for a single service, which does not guarantee to
form the best combinations possible.

• Expand (Target Service, Selected Tuples): the operation expands the result
schema by adding one new target service and joining it with selected tuples. The
expansion causes a set of exact queries to the expanded service interface, with
input derived from the join attributes of the tuples selected by the user. If the
expansion target service interface requires additional inputs, a dialog box is shown
to the user for submitting the needed parameters.

• ChangeRank (Weights): the operation modifies the ranking function by updating
one or more weights of the linear combination. This operation is performed upon
results that are cached on the server, without re-computing the query, but causing
their reload on the client in a different order. Notice that if the query uses the FA
algorithm yielding top-k optimal results (discussed in Chapter 11) then a change
rank operation still produces the top-k results, because the method does not
depend on the choice of the rank function.

3.4 Local Query Interaction Primitives

Local interaction primitives permit the user to personalize the presentation of the
result set cached at the client side, without requiring the invocation of the server tier
of the SeCo architecture. They comprise:

• Group (Attribute): the operation collects results having common values for the
specified attribute in a group. The group assumes as a title the attribute value at
hand. Notice that this operation can be performed only on one attribute at time. By
applying this operation, all the clustering and sorting options possibly defined by
the user are applied separately to each group.

• Ungroup: the operation removes the existing grouping option.
• Cluster (Attribute/Service): the operation changes the visual appearance of the

result list by clustering adjacent tuples on a specific attribute and hiding duplicate
values. Notice that sorting and grouping are not modified. If clustering is defined
on multiple columns, it will be actually applied following the horizontal order of
the columns, i.e., leftmost columns will be clustered first. The operation can also
be applied to all the columns of a service interface in one shot.

• Uncluster (Attribute/Service): the operation undoes any preceding cluster
operation at attribute or service level; sorting and grouping are not modified.

• Sort (Attribute): the operation sorts the currently displayed results w.r.t. the
values of an attribute. Notice that the clustering definition is not modified.
However, clusters may recombine because instances that were adjacent in the
previous order may no longer be contiguous, and vice versa. Notice that if
grouping is applied, ordering is applied on items within each group.

• Unsort (Attribute): the operation undoes a sort operation.

 Liquid Queries and Liquid Results in Search Computing 257

• Roll-up (Attribute): the operation hides a currently visible attribute from the
result schema. If the attribute removal introduces duplicated elements in the result
list, duplicates are eliminated too. Notice that if the attribute was used for
ordering, grouping, or clustering, it is removed also from the respective criteria.

• Drill-down (Attribute): the operation adds a new service interface attribute to the
results, taken from the list of available attributes not yet displayed. Notice that
new instances (rows) could appear in the result list, due to the splitting of elements
that previously appeared as duplicates.

• Filter (Condition): the operation reduces the number of instances shown in the
result list by locally apply a filtering condition on one of the displayed attribute.

• RemoveFilter (Condition): the operation undoes a preceding filter operation.
• DeleteInstance (Tuple): the operation locally deletes one instance from the

currently displayed items, thus reducing the population of the current result list.
This can be seen as a particular case of filter operation, based on the condition:
TupleID ≠ SelectedID.

• Pivoting (MultivaluedAttribute): a multi-valued attribute or repeating group is
selected, and then all instances with the same attribute value or repeating group
value are clustered together, thereby rendering the other attributes as repeating
groups. Notice that pivoting is disruptive with respect to the result schema and
therefore resets all the settings specified by the user up to that moment.

• ChangeProvider (ServiceInterface, ServiceImplementation): the provider of a
specific service interface is changed; the new service interface must have exactly
the same access pattern as the old one. This feature allows the user changing some
qualitative aspects of the objects forming the result set, e.g., switching from a
service providing standard hotels with one offering family style hotels.

3.5 Local Manipulation Primitives

Local manipulation primitives include a set of options for applying calculations on the
data, to enrich the interpretation of the information by the user. The applicable
operators are computed at client side and depend on the type of the attribute:

• Math (Attributes): a new attribute can be derived by applying an arithmetic
expression (with the usual operators) upon numeric attributes.

• Temporal (Attributes): For date/time attributes, allowed operations are only
Subtraction, Maximum, and Minimum.

• String (Attributes): For text attributes, only concatenation (+) is allowed.

The calculated attributes can be used for sorting, grouping, clustering, and join
operations.

3.6 Data Visualization Primitives

Data visualization primitives support different visual representations of the extracted
data, giving a more immediate intuition of the results. In the future, we will study how
the multi-domain paradigm can benefit from existing data visualization techniques
and, vice versa, how the multi-domain structure of the results and the exploratory

258 A. Bozzon et al.

approach can impact on data visualization. Examples of useful data visualization
primitives include:

• Value Bar/Pie Chart (Numeric Attribute): the user can select one (numeric)
attribute and get a bar/pie chart of the results. Bars and slices become browsable
objects, e.g. for navigate to instance details.

• Aggregate Bar/Pie Chart (Attribute): the user can get a bar/pie chart of the
distribution of results over attribute values. Bars and slices become browsable
objects, e.g. for navigate to instance details.

• Correlation (Attribute1, Attribute2): the user can select two attributes (possibly
from different service results) and get a 2D X-Y graph representation of the
positions of the results.

• GeoMap (Geo Attribute(s)): the user can select one or more geo-location
attributes and get a map with the locations of all the instances. When selecting one
pinpoint, he can navigate to the respective instance details.

• Tag Cloud (Services): various commands of this kind generate visual clouds of
the concepts available in the result set, with an indication of the respective weights
and relationships. Clicking on a concept restricts the result set to the instances that
relate to that concept. The cloud can be built on one or more services.

• Parallel Coordinates (Attributes): by selecting a set of attributes (with numeric
or finite domain), the user can see a set of tuples in a parallel coordinates diagram
[17], that allows him to have a quick overview of the set, and to easily select a
subset of instances for further exploration.

3.7 Query Management Primitives

The search as a process approach will be afforded by the Liquid Query system by
enabling long-lived search session. To do so, the user must be able to manage his
queries and result sets, suspending and resuming the search process. A search process
can also be turned into a notification system, to alert the user when new relevant data
arrive at a data source. The following primitives will provide these functionalities:

• Export of the current dataset in various formats (textual, spreadsheet, XML,
HTML, PDF, RTF);

• Save the current query status; this command saves not only the data retrieved by
the query but also the personalization applied to the result schema.

• Open a previously saved query;
• Define a public permanent link to the current result set view, that can be

emailed, linked from web sites, or shared with friends;
• Define an RSS/ATOM syndication feed on the query, which informs the user

when new results are available;
• Store the query as preferred bookmark on social bookmarking systems

(Delicious, Digg, and others);
• Navigate the query history through the buttons Previous, Next, First, and Last,

which allow the user to rollback and/or repeat the interaction history. These
features will be based on application state modeling, which grants correct
application behavior with respect to the navigation history even in case of heavy
involvement of client-side scripting [5].

 Liquid Queries and Liquid Results in Search Computing 259

3.8 Result Quality Primitives

The Liquid Query interface will also be used to experiment with different heuristics
for enhancing the quality of the result set as perceived by the user. In top-k search
systems the quality of the result set is determined by a trade-off between relevance,
which expresses how well a combination matches the user query, and other quality
factors. Among these, diversity has been studied extensively [25], as a means of
introducing variety into the result set and make it more attractive. For instance, given
a query that comprises hotels, relevance can be measured by the parameters explicitly
provided in the query or ranking functions (e.g., number of stars or distance from a
location), whereas diversity could be introduced by considering hotels of different
classes (design, family-stay, etc). Diversity normally clashes with relevance, because
making the result set more diverse may exclude some highly relevant combination.
The Liquid Query interface will incorporate suitable commands for tuning the trade-
off between relevance and diversity, like:

• Edit Object Diversity Metric: a command for defining a function over the
attributes of the result instances so to quantify the diversity between two instances
(e.g., quantifying the diversity of hotel types).

• Edit Combination Diversity Metric: a command for quantifying the diversity of
two objects combinations; the measure may be purely set-theoretic (e.g., a Jaccard
measure based on the number of objects in common) or take into account the
diversity metrics defined on objects (e.g., the diversity between two combinations
is a function of the diversity of the constituent objects).

• Set Relevance-Diversity Trade-Off: the command lets the user regulate the
amount of relevance he is willing to give up to obtain a more diversified result set.
This could be done in several way, e.g., by specifying an absolute or percentage
loss of combination score, limiting the minimum relevance score of the instances
in the result set, and so on.

4 Running Example

This section describes a typical user interaction scenario based on the running
example presented in the previous chapters; we assume that suitable search services
concerning Movies, Theatres, Restaurants, and Subway Stations have been registered
and that the SeCo application has been already configured properly for an end user
wishing to go out for a movie and dinner. In this setting, we describe a user search
interaction comprising the submission of the initial query concerning movies,
theatres, and restaurants, and the refinement and exploration of results through
application of additional local filters, expansion of the query, calculation of some
derived information, as well as selection of clustering and visualization options for
improving the readability of results. The steps are described in detail through
mockups in the following subsections.

4.1 Initial Query Submission and Result Visualization

The Liquid Query client application exploits the application configuration created by
the expert user to build the query submission interface shown in Fig. 8, comprising the
input parameters needed to execute the query (e.g., action movies whose US opening is after

260 A. Bozzon et al.

Googlehttp://www.search-computing.com/liquidQueryDemo.html

Search Computing - Liquid Query Demo

Search Computing
Liquid Query Demonstrator

SeCo Project @2009 All rights reserved

ActionGenre Unites StatesCountry

Movie

MarinaAddress Unites StatesCountry

Theatre

San FranciscoCity

VegetarianCategory

Restaurant RatingRanking

Shown at
(on Title)

Closeby Dinner Place
(on Address, City, Country)

DistanceRanking

ScoreRanking

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 27 28

29 30 31 1 2 3 4

5 6 7 8 9 10 11

26

Su Mo Tu We Th Fr Sa

March 2009

Search

14/03/09Date

Fig. 8. Mockup of the initial query submission

Search Computing
Liquid Query Demonstrator

SeCo Project @2009 All rights reserved

Movie ScoreRanking

+ Title

IMDBSearch service

Actors

More Movies

Shown at

Theatre DistanceRanking

+ Name

GoogleSearch service

Address

More Theatres

Restaurant RatingRanking

Yahoo!Search service

More Restaurants

G CF G CF PF
Score

G CF G CFG CF
Dist. + Name Addr.

G CF G CF
Rating

Same Actor MoviesExpand Close-by Subway S.Expand TripAdvisor ReviewsExpand

Calculate Data

Visualization Pie CloudBars

Calculate Data

Visualization Pie CloudBars Visualization Pie CloudBars

Visualization Map Cloud

More Combinations

Calculate Data

Calculate Data

ResultSet Operations

Shown at Close-by Dinner

G CF
D.

CF

Cluster Cluster Cluster

1 2 3

7

8

9

10

11

12

1314

18

17

16
15

19

A serious man

A serious man

A serious man

Where the wild t ...

Where the wild t ...

Where the wild t ...

Where the wild t ...

Where the wild t ...

An education

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

An education
xxx
yyy
zzz

xxx
yyy
zzz

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Marina Theatre 0.4Mi

Marina Theatre 0.4Mi

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Vogue Theatre 1.8Mi

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

1881 Post St.

1881 Post St.

1881 Post St.

2149 Chestnut St.
2149 Chestnut St.

1881 Post St.

1881 Post St.

3290 Sacramento S

1881 Post St.
1881 Post St.

Aux Delices V..

Millennium

Greens Rest...

Lucky Creation

Aux Delices V..

ThaiChi deliver

Osteria

Aux Delices V..

ThaiChi deliver

2327 Polk St.

2031 Polk St.

580 Geary St.

204 Bay St.
854 Washingt.

2327 Polk St.

2031 Polk St.

3277 Sacram.

2327 Polk St.
2031 Polk St.

0.9Mi

1.1Mi

1.1Mi

1.5Mi

1.7Mi

1.1Mi

0.9Mi

0.2Mi

1.1Mi

0.9Mi

ThaiChi deliver

4 56

Parallel C.

Fig. 9. Mockup of the liquid result interface

March 14, 2009, theatres close to the San Francisco Marina, and vegetarian restaurants
close to the theatre). Notice that the user interface highlights the existence of service marts
and of connection patterns, thus making the user aware of the searched data sources.

Once the user submits the search parameters, the query is performed and results are
calculated and displayed in the result table, as illustrated in Fig. 9. The result page is
enriched with the liquid interaction options that the user can choose.

 Liquid Queries and Liquid Results in Search Computing 261

Table 1. Summary of Liquid Query primitives and respective visual representations

Provider

Level

More ...

G

C

F

Calculate Data

Pie CloudBars

Map CloudParallel C.

More Combinations

Calculate Data

Cluster

Symbol Description
Attribute level

P

G

Service level
Shown atJoin path

ScoreRanking

Other serviceExpand

Resultset level

Filter results with condition on this attribute
Hide this attribute
Group by this attribute
Cluster results on this attribute
Order by (asc/desc/none) and ordered attr .
Move attribute position in the table
Pivot on this multi-value attribute
Show this attribute on a map

Change join path between services

Change ranking attribute

Move service position in the table

Change result provider for this service

Get more results from this service

Cluster results on all the attributes

Add a calculated column from existing ones

Expand results to other services

Data visualization options

Data visualization

Get more results from all the services

Add a calculated column from existing ones

Table 1 presents a summary of the main primitives available at the various levels
(that are also highlighted by numbered dots in Fig. 9):

• At column level, a set of buttons is shown on the column header for performing
operations on the respective attribute. The available buttons depend on the type
of the column: “F”, “G”, “C” buttons (1) respectively apply filters, grouping, and
clustering on that attribute; “P” (2) apply pivoting to the corresponding multi-
valued attribute; the “Map” symbol (3) shows column of a geo-referenced type
on a map; the sorting button (represented by two vertical arrows) (4) changes the
sort status of the column (Ascending, Descending, None); the move button
(represented by two horizontal arrows) (5) moves horizontally the entire column
within the boundary of the service; the “X” button (6) performs a roll-up on that
attribute (i.e., hides the respective column) and removes duplicates.

• At service level, the available operations are displayed as a set of dropdown lists
for changing the rank attribute (7), changing the search results provider (8),
changing the connection path that joins the services (9), expanding with a new

262 A. Bozzon et al.

service (10); the “+” button for applying a drill-down on hidden attributes (11);
the move button (represented by two horizontal arrows) (12) moves the entire
column set of the service horizontally; the “Calculate Data” button (13) creates
new columns starting from available ones; the “Cluster” button (14) applies
clustering to all the columns of the service; the “More” button (15) asks for more
results from the specific service; and a set of visualization buttons (Pie, Bar,
Cloud) (16) show the service results with different renditions.

• At combination level, the “Calculate Data” button (17) creates calculated
columns from the ones available within the whole combination (the new column
will not belong to any service); the “More” button (18) asks for more result
instances; visualization buttons (Map, Parallel Coordinates, Cloud) (19) show the
combinations in the result set in different ways.

Once the results are shown, the user can interact with them through the available
commands. Some operations (i.e., visualization options and expansion to new
services) require the user to select a subset of result instances; selection is performed
by means of checkboxes. When needed, a popup window asks for additional
parameters or details on the operation to be performed.

4.2 Application of Local Filters

Let’s suppose now that the user wants to select only the restaurants having rating
higher than three stars. Local filters on column values can be applied by clicking the
“F” button on the column header of interest. The button triggers a dialog window
(Filter results) with a simple interface for editing conditions, as shown in Fig. 10. The
form supports Boolean expressions of simple predicates.

Restaurant RatingRanking

Yahoo!Search service

+ Name Addr.
G CF G CF

Rating

Close-by Dinner

G CF
D.

CF

Aux Delices V.. 2327 Polk St.

2031 Polk St.

0.9Mi

1.1MiThaiChi deliver

Filter results
Attribute Restaurant .Rating

3>

=

Value=

Value

Value
} AND

Apply filter

Fig. 10. Mockup of the result filtering form

4.3 Query Expansion

Subsequently, if the user is interested in the list of subway stations close to the
listed theatres, he can select a subset of theatres of interest and ask for the needed
expansion from the dropdown list. This produces a new service result, with the
values of the subway stations for the selected theaters, as shown in Fig. 11. In the
example, we suppose that the new information is produced by invoking the BART
Web Service.

 Liquid Queries and Liquid Results in Search Computing 263

Search Computing
Liquid Query Demonstrator

SeCo Project @2009 All rights reserved

Movie ScoreRanking

+ Title

IMDBSearch service

Actors

Shown at

Theatre DistanceRanking

+ Name

GoogleSearch service

Address

More Theatres

Subway DistanceRanking

Powell St.

Powell St.

Powell St.

Civic Center

Civic Center

Powell St.

Powell St.

Civic Center

Powell St.

BARTwsSearch service

Powell St.

899 Market St

899 Market St

899 Market St

1150 Market ..
1150 Market ..

899 Market St

899 Market St

1150 Market ..

899 Market St
899 Market St

G CF G CF PF
Score

G CF G CFG CF
Dist. + Name Addr.

G CF

Visualization Pie CloudBars Visualization Pie CloudBars Vis. Pie CloudBars

Visualization Map Cloud

More Combinations

Calculate Data

ResultSet Operations

Shown at Close-by Subway S.

1.7Mi

1.7Mi

1.7Mi

1.9Mi

1.9Mi

1.7Mi

1.7Mi

2.6Mi

1.7Mi

1.7Mi

G CF
D.

CF

Restaura

+ Name
GF

Visual.

Close-by Dinner

More Movies More Subway Stations

Same Actor MoviesExpand Close-by Subway S .Expand

Calculate Data Calculate Data Calculate DataCluster Cluster Cluster

A serious man

A serious man

A serious man

Where the wild t ...

Where the wild t ...

Where the wild t ...

Where the wild t ...

Where the wild t ...

An education

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

An education
xxx
yyy
zzz

xxx
yyy
zzz

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Marina Theatre 0.4Mi

Marina Theatre 0.4Mi

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Vogue Theatre 1.8Mi

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

1881 Post St.

1881 Post St.

1881 Post St.

2149 Chestnut St.
2149 Chestnut St.

1881 Post St.

1881 Post St.

3290 Sacramento S

1881 Post St.
1881 Post St.

Aux Delice

Millennium

Greens Re

Lucky Cre.

Aux Delice

ThaiChi de

Osteria

Aux Delice

ThaiChi de

ThaiChi de

Parallel C.

Fig. 11. Mockup of the liquid result expanded with the Subway Stations information

Visualization Map Cloud

More Combinations

Calculate Data

Parallel C.
Calculate new data
Data Type

Expression builder

+

Value
Value

Value

Numeric

Theater.Distance

+Restaurant.Distance

+Subway.Distance

Calculate

Fig. 12. Mockup of the calculate data popup window

4.4 Adding Calculated Attributes

Let’s suppose the user wants to calculate the total walking distance for the planned
night. This will consists in a simple sum of the distances between the locations
mentioned in the result set. The user can add new calculated columns at service level
(i.e., only involving attributes from a single service) or at combination level. Fig. 12
shows a popup window for defining a new calculated column at combination level.
The user objective can be reached simply by selecting the attributes in the form,
together with the sum operator (+). If more sophisticated calculations are needed, the
user can click on the Expression builder link and be redirected to an appropriate
expression editor. Since the new calculated data is at combination level, the
corresponding column will appear as the last one in the table and will not belong to
any services.

264 A. Bozzon et al.

4.5 Visualization of the Results on a Map and on Parallel Coordinates

Finally, the user may want to change the visualization options for the results. For
instance, all the geo-referenced values of the result set can be visualized in a Map.
The effect is shown in Fig. 13. In the example, three attributes of type address were
identified (address of theatres, address of restaurants, and address of subway stations)
and positioned in the map together with a legend.

The user can also select an alternative visualization option, e.g., parallel
coordinates [17] (see Fig. 14), in which all the instances in the result set are organized
by different dimensions (e.g., score of the movie, distance of the theatre, duration of
the movie, distance and score of the restaurant). The diagram allows the user to
interact with the results, by graphically selecting a dimension and restricting the
associated values. For instance, if the user selects the distance of the restaurant
between 1.1 and 1.75 miles, the corresponding results will be highlighted in the graph.
Selecting one result instance displays the detailed information about the chosen
combination.

4.6 Query Management Operations

The user can manage the query and the result set through the Query Management
panel, that allows him to export the current dataset in various formats, store and
reload the current query status, define a public permanent link, define an RSS/ATOM
syndication feed, store the query as preferred link on social bookmarking systems
(Delicious and others), and so on. Moreover the user can navigate the query and
browsing history through the query history navigator panel. Fig. 15 shows the
mockup of the panel that the user can open at any time during his search task.

Search Computing
Liquid Query Demonstrator

SeCo Project @2009 All rights reserved

Movie ScoreRanking

+ Title

IMDBSearch service

Actors

Shown at

Theatre DistanceRanking

+ Name

GoogleSearch service

Address

Subway DistanceRanking

Powell St.

Powell St.

Powell St.

Civic Center

Civic Center

Powell St.

Powell St.

Civic Center

Powell St.

BARTwsSearch service

Powell St.

899 Market St

899 Market St

899 Market St

1150 Market ..
1150 Market ..

899 Market St

899 Market St

1150 Market ..

899 Market St
899 Market St

G CF G CF PF
Score

G CF G CFG CF
Dist. + Name Addr.

G CF

Visualization Pie CloudBars Vis. Pie CloudBars

Visualization Map Cloud

More Combinations

Calculate Data

ResultSet Operations

Shown at Close-by Subway S.

1.7Mi

1.7Mi

1.7Mi

1.9Mi

1.9Mi

1.7Mi

1.7Mi

2.6Mi

1.7Mi

1.7Mi

G CF
D.

CF

Restaura

+ Name
GF

Visual.

Close-by Dinner

More Movies More Subway Stations

Same Actor MoviesExpand

Calculate Data Calculate DataCluster Cluster

A serious man

A serious man

A serious man

Where the wild t ...

Where the wild t ...

Where the wild t ...

Where the wild t ...

Where the wild t ...

An education

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

xxx
yyy
zzz

An education
xxx
yyy
zzz

xxx
yyy
zzz

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Sundance Kabuki... 1.6Mi

Marina Theatre 0.4Mi

1881 Post St.

1881 Post St.

1881 Post St.

2149 Chestnut St.

Aux Delice

Millennium

Greens Re

Lucky Cre.

Aux Delice

ThaiChi de

Osteria

Aux Delice

ThaiChi de

ThaiChi de

Map search results

Subway StationRestaurant Theatre

Parallel C.

Fig. 13. Mockup of the Map visualization option

 Liquid Queries and Liquid Results in Search Computing 265

Fig. 14. Mockup of the Parallel Coordinates visualization option

Fig. 15. Mockup of the query management panel

5 Conclusions and Future Work

In this chapter we described liquid queries, a user interaction paradigm that exploits
the power of SeCo for providing the user with a multi-domain exploratory search
environment. During the writing of this chapter, a prototype of liquid queries has been
developed for accessing Yahoo Services supported by the Yahoo Query Language
interface; the prototype can be accessed from the SeCo project website and shows a
preliminary implementation of several features described in this chapter. A second
prototype will soon become available, directly connected to the execution engine, and
will demonstrate the running example of Section 4.

Future work includes several directions:

• The implementation of a fully functional prototype, and the integration of
advanced data visualization components (e.g., Elastic Lists [13]), to experiment
with non-tabular result presentation metaphors. The parallel coordinate system
shown in Fig. 14 has already been implemented and is a first result in this
direction.

266 A. Bozzon et al.

• The investigation of different heuristics for improving the quality of the result
set; the interface will be instrumented with metrics fields showing the different
quality measures associated with the current result set (e.g., relevance loss, result
set diversity, diversity between combinations, etc.). The user will be able to play
with the different forms of trade-offs and the interface will immediately reflect
the impact of a choice on the quality of the result set.

• The analysis of the user’s interaction with the interface to automatically infer
preferences that could be applied to the personalization and optimization of both
the query and the result set: e.g., automatically expanding a query (e.g., adding a
specific category to the hotel selection criterion if the past interaction reveals a
preference for a specific class of accommodation); automatically selecting a
service interface among alternative ones based on past user’s choices; and
automatically configuring the result set presentation (e.g., by automatically
charting geo-referenced values if the user normally does so).

• The testing of the user interface, to assess its effectiveness in supporting
information seeking and exploratory tasks. The testing will necessarily use a mix
of techniques used for top-k query and exploratory systems; the former case
require building a set of benchmark queries for which the most relevant results
are known a priori, e.g., from expert’s evaluation; the latter necessarily rely on
user’s studies, conducted both in laboratory and on the real scale [31].

References

[1] Aula, A., Russell, D.M.: Complex and Exploratory Web Search. In: Information Seeking
Support Systems Workshop (ISSS 2008), Chapel Hill, NC, USA, June 26-27 (2008)

[2] Baeza-Yates, R.: Applications of Web Query Mining. In: Losada, D.E., Fernández-Luna,
J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 7–22. Springer, Heidelberg (2005)

[3] Barbosa, L., Freire, J.: Siphoning hidden-web data through keyword-based interfaces. In:
SBBD 2004 (XIX Simpósio Brasileiro de Bancos de Dados, 18-20 de Outubro, Brasília,
Distrito Federal, Brasil, pp. 309–321 (2004)

[4] Bozzon, A., Brambilla, M., Fraternali, F.: Conceptual Modelling of Multimedia Search
Applications Using Rich Process Models. In: ICWE 2009, pp. 315–329 (2009)

[5] Brambilla, M., Cabot, J., Grossniklaus, M.: Modelling safe interface interactions in web
applications. In: Laender, A.H.F. (ed.) ER 2009. LNCS, ch. 29, vol. 5829, pp. 387–400.
Springer, Heidelberg (2009)

[6] Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
[7] Cafarella, M.J., Halevy, A., Zhang, Y., Wang, D.Z., Wu, E.: WebTables: Exploring the

Power of Tables on the Web. In: Proceedings of the VLDB Endowment, August 2008,
vol. 1(1), pp. 538–549 (2008)

[8] Clusty (2009), http://www.clusty.com
[9] Dash, D., Rao, J., Megiddo, N., Ailamaki, A., Lohman, G.: Dynamic faceted search for

discovery-driven analysis. In: Proceeding of the 17th ACM Conference on information
and Knowledge Management, CIKM 2008, Napa Valley, California, USA, October 26-
30, pp. 3–12. ACM, New York (2008)

[10] DBPL Faceted Search (2009), http://dblp.l3s.de
[11] Google Fusion Tables (2009), http://tables.googlelabs.com/
[12] Google Squared (2009), http://www.google.com/squared

 Liquid Queries and Liquid Results in Search Computing 267

[13] Elastic Lists (2009),
http://well-formed-data.net/experiments/elastic_lists/

[14] Freebase Parallax (2009), http://www.freebase.com/labs/parallax/
[15] HAKIA (2009), http://hakia.com/
[16] Hunch (2009), http://www.hunch.com/
[17] Inselberg, A.: The Plane with Parallel Coordinates. Visual Computer 1(4), 69–91 (1985)
[18] Jansen, B.J., Booth, D.L., Spink, A.: Determining the user intent of web search engine

queries. In: WWW 2007, pp. 1149–1150 (2007)
[19] Jansen, B.J., Pooch, U.W.: A review of Web searching studies and a framework for future

research. JASIST 52(3), 235–246 (2001)
[20] Kules, B., Capra, R., Banta, M., Sierra, S.: What do exploratory searchers look at in a

faceted search interface? In: JCDL 2009, pp. 313–322 (2009)
[21] Kumar, R., Tomkins, A.: A Characterization of Online Search Behaviour. Data

Engineering Bullettin 32(2) (June 2009)
[22] Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in Web search. In: WWW

2005, pp. 391–400 (2005)
[23] Marchionini, G.: Exploratory search: from finding to understanding. Commun.

ACM 49(4), 41–46 (2006)
[24] Microsoft Bing (2009), http://www.bing.com/
[25] Minack, E., Demartini, G., Nejdl, W.: Current Approaches to Search Result

Diversification, L3S Techical Report,
http://www.l3s.de/web/upload/documents/1/paper-camera.pdf

[26] Pirolli, P., Stuart, K.C.: Information Foraging. Psychological Review 106(4), 643–675
(1999)

[27] Rajaraman, A.: Kosmix: High Performance Topic Exploration using the Deep Web. In:
Proceedings of the VLDB Endowment, August 2008, vol. 2(1), pp. 1524–1529 (2009)

[28] Rose, D.E., Levinson, D.: Understanding user goals in Web search. In: WWW 2004_
Proceedings of the 13th international conference on World Wide Web, New York, NY,
USA, pp. 13–19 (2004)

[29] Sacco, S.M., Tzitzikas, Y.: Dynamic Taxonomies and Faceted Search, Theory, Practice,
and Experience. The Information Retrieval Series, vol. 25, p. 340. Springer, Heidelberg
(2009)

[30] Shafer, J.C., Agrawal, R., Lauw, H.W.: Symphony: Enabling Search-Driven
Applications. In: USETIM (Using Search Engine Technology for Information
Management) Workshop, VLDB Lyon (2009)

[31] White, R.W., Muresan, G., Gary, M.: ACM SIGIR Workshop on Evaluating Exploratory
Search Systems, Seattle (2006)

[32] White, R.W., Drucker, S.M.: Investigating behavioural variability in web search. In: 16th
WWW Conf., Banff, Canada, pp. 21–30 (2007)

[33] White, R.W., Roth, R.A.: Exploratory Search. Beyond the Query–Response Paradigm. In:
Marchionini, G. (ed.) Synthesis Lectures on Information Concepts, Retrieval, and
Services Series, vol. 3. Morgan & Claypool, San Francisco (2009)

[34] Wolfram Alpha (2009), http://www.wolframalpha.com/
[35] Yahoo! SearchMonkey (2009),

http://developer.yahoo.com/searchmonkey/
[36] Yahoo! Pipes (2009), http://pipes.yahoo.com/pipes/
[37] YQL: Yahoo! Query Language (2009), http://developer.yahoo.com/yql/

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 268–290, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 14:
Building Search Computing Applications

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Francesco Corcoglioniti,
and Nicola Gatti

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy

{alessandro.bozzon, marco.brambilla, stefano.ceri,
nicola.gatti}@ polimi.it,

francesco.corcoglioniti@gmail.com

Abstract. Search Computing aims at opening the Web to a new class of search
applications, by offering enhanced expressive and computational power. The
success of Search Computing, as of any technical advance, will be measured by
its impact upon the search industry and market, and this in turn will be highly
influenced by reactions of Web users and developers. It is too early to anticipate
such reactions – as the technology is still “under construction” – but this chapter
attempts a first identification of the possible future players in the development
of Search Computing applications, by grossly identifying the roles of “data
source publishers” and of “application developers”, and by discussing how
classical advertising-based models may support the new applications. This
chapter also describes the high-level design of the prototyping environment that
is currently under development and how the design will support the deployment
upon high performance architectures. Finally, we describe advertising as the
prevalent business model of the search engines industry, and briefly discuss the
options for the evolution of such model in the context of Search Computing.

Keywords: Search Computing, software engineering, development process,
advertising models, cloud computing, software architectures.

1 Introduction

The distinguishing feature of Search Computing is the ability of combining, at query
execution time, knowledge extracted from various domain-expert Web sources, thus
yielding to knowledge that is more accurate and complete than the knowledge
available to general-purpose search systems. Such expertise (about cultural events,
medical specializations, popular rock songs, and so on) is contributed through either
social processes (e.g., rating, tagging, commenting) or a long and careful knowledge
construction process by experts. At the current state of the art, multi-domain queries
over such engines can be answered only by patient and expert users, whose strategy is
to interact with specialized engines one at a time, and feed the result of one search in
input to another one, reconstructing answers in their mind.

 Building Search Computing Applications 269

With the advent of service computing and the growing interest for the Web as the
predominant interface for any human activity, we expect such knowledge to become
more and more exposed in the form of search services. But the mere composition of
such services by sequential invocation will not solve multi-domain queries, as their
interplay usually requires a lot of expertise, especially in handing and composing the
search results. This challenged us in thinking to a new technology, built upon five
pillars (ad hoc service definition, query optimization framework, ranking methods for
join results, execution engine, and liquid queries) that collectively resolve the
technical issues of Search Computing.

In this chapter, we analyze Search Computing from a broader, usage- and business-
oriented perspective by addressing Search Computing applications. A Search
Computing application is a vertical Web search application that leverages on the
SeCo framework for enabling multi-domain search capabilities. The application
concretely resides on a SeCo installation and consists of a configuration of one or
more multi-domain queries over the existing service repository.

The chapter is made up with four main contributions. First, Section 2 presents the
roles involved in the development of SeCo applications and the development process;
subsequently, Section 3 describes the SeCo development environment, comprising a
set of tools that support the users in their activities. Section 4 describes the SeCo
reference architecture, which has been designed with the objective of being
extensible, portable, and deployable upon high-performance architectures. Finally,
Section 5 discusses plausible business models that could facilitate the spreading and
sustainability of SeCo applications: these include advertising models and the
possibility of attracting users or developing new user communities.

These contributions provide essential ingredients for building SeCo applications,
but are mutually independent; therefore they are considered in four distinct sections.
Sections 3-5 also include a state-of-the-art in the respective fields.

2 Development of Search Computing Applications

In this section we identify the main roles involved in the development of Search
Computing applications and we describe the development process.

2.1 User Roles

Search Computing applications involve users with several roles and expertise for their
configuration and usage. In this section, we identify the set of user roles involved in
the development of SeCo applications, and we clarify their responsibilities and the
required skills. Some roles fall outside the strict SeCo application development
process, in the sense that they work for preparing the SeCo environment, in terms of
platform deployment and search service development. These roles are:

• SeCo Experts: they are software architects that are able to deploy and configure
SeCo engines over high-performance computing systems and support SeCo
publishers and application developers.

270 A. Bozzon et al.

Fig. 1. Development process for SeCo applications

• Service Developers: they are third party software producers that publish search
services on the Web. They independently produce artifacts that are needed for the
SeCo applications to run correctly, but are not aware of Search services consist of
any kind of REST services, SOAP services, or Web applications that can produce
a ranked list of results.

Some other roles are directly involved in the SeCo application development process:

• Service Publishers: they are in charge of implementing mediators, wrappers, or
data materialization components so as to make service interfaces compatible with
the SeCo framework, and then register them within the SeCo service repository,
thus defining their abstract representations in terms of service marts, access
patterns, and connection patterns. Mediators adapt services that are published on
the Web. Wrapping technologies span from complex wrapping tools that expose
deep Web contents, to simple XSLT transformations for XML documents, to
Java classes that introduce ranking and/or chunking features in services. Data

 Building Search Computing Applications 271

materialization tools are used to transform third party data so as to enable their
publication, e.g. files, Excel sheets, or databases; these can be locally stored or
acquired within the SeCo architecture, because the features of the service are too
poor for granting proper treatment of the data;

• Expert Users (or Application Developers): they configure Search Computing
application, by selecting the service marts of interest, the respective connection
patterns, and associated user interfaces for query and result visualization. They
also choose the complexity of the interaction interface, in terms of controls and
configurability choices to be left to the user. At runtime, they interact with
applications at a high level of sophistication, by composing queries on-the-fly
and by executing them.

• Final Users: they use SeCo engines to navigate query/result interfaces devised
by expert users. They interact by submitting queries, reading results, and
refining/evolving them according to the liquid query philosophy.

The peculiar features of SeCo applications require new roles with respect to
traditional application development. The most prominent ones are service publishers
and expert users. Due to their novelty, no widespread user communities currently
exist for these roles; however, they are crucial for the success of SeCo, and therefore
some actions must be taken to foster the flourishing of such communities, providing
them with suitable methods and tools, as we will discuss in the remainder of the
chapter.

2.2 Development Process

The development process (shown in Fig. 1) is split into four main development steps:

• Deployment Time: this phase consists in the actual development of search
services and the deployment of the SeCo platform on the suitable infrastructure.
The service development and deployment is delegated to external developers and
is conceptually independent from any subsequent step within the SeCo
framework. The deployment of the SeCo platform as well is assigned to SeCo
experts and is performed once and for all, independently on the number of actual
SeCo applications that will run upon it;

• Service Publishing Time: several activities are needed for publishing search
services within the SeCo framework: definition of the service wrappers, possible
specification of materialization design for the retrieved data, normalization of the
data, and registration as service marts in the SeCo service repository;

• Application Configuration Time: this phase, in charge to the Expert User,
consists in selecting the Service marts of interests and the corresponding details,
such as the connection patterns, the parameters of interest, and so on.
Subsequently, the expert user defines a liquid query template for a specific SeCo
application, which entails the specification of the user interface aspects. In
particular, the expert user defines the structure of the liquid queries in terms of
query templates that will be completed at runtime by the end user. A liquid query
template is composed of:

272 A. Bozzon et al.

1. a set of service interfaces;
2. a set of connection patterns for joining the involved service interfaces;
3. a set of additional selection or join predicates;
4. a default ranking function defined over the scores of service interfaces;
5. a set of possible sorting, grouping, and clustering attributes that can be

applied on the extracted result set;
6. a set of positive integer values K that represent the possible sizes for the

result pages;
7. a set of available query expansions, defined next.

• Application Execution Time: in this last phase, the Final User can navigate the
application, i.e., the queries and results, and possibly applies some configuration
details. At runtime, the end user is presented with a Liquid query Template that
he can fill in with the actual query parameter. In addition, several parameters of
the query template, which are initially set to defaults, can be tuned; these include:

1. the projection attributes that define the information visible to the user;
2. the ordering of services and of their attributes within the query;
3. the choice of the weights of the scores of service interfaces involved in the

query;
4. the choice of cluster attributes to be used to initially visualize the query

results;
5. the optional grouping attribute to be used to initially group the query results;
6. the choice about the size and production (e.g., continuous or chunked) of

results in the result page.

Since Liquid Query vision is towards continuous evolution, manipulation, and
extension of queries and results, according to the “search as a process” paradigm, the
query lifecycle consists of iterations of the steps of query submission, when the end
user submits an initial liquid query; query execution, producing a liquid result that is
provided to the user interface; and result browsing, when the result can be read and
manipulated through appropriate interaction primitives, which update either the liquid
result or the liquid query. Depending on the kind of user interaction, the query
execution performed by the engine might be suspended, restarted, or stopped. If the
interaction only involves reshaping of available data, the engine may not be involved
in the needed actions and the information is manipulated at user interface level.

The development process takes into account the trend towards empowerment of the
user, as witnessed in the field of Web mashups (see Chapter 5 and [10]). Indeed, only
the basic tasks that deal with service development (performed by service developers)
require actual programming expertise. All the other design activities are moved to
service registration time and to application configuration time, so that designers only
need a conceptual understanding of services and queries, and do not need to perform
low-level programming.

3 Development Tools

Several peculiar aspects affect the development process and the needed tools for SeCo
applications:

 Building Search Computing Applications 273

• The need for components provided by third parties (in particular: search
services): this implies that the process includes the need of scouting and
investigating about the ecosystem of existing services within the domains of
interest, for publishing and registering the found services.

• The vertical focus of SeCo applications: starting from the repository of available
Search Services, canned interfaces can be devised for implementing verticals
requiring specific domains, whose services are made available in a rich number.

• The need for configurability of the applications: the continuous evolution of
several pieces of the architecture (services, tags and descriptions, interfaces,
results) makes several steps of the development more conveniently located at
query deployment time instead of service registration time.

As highlighted in the development process in Section 2.2, these features push
towards empowerment of the user and ask for specific tools for supporting the
developers. In this section we discuss the features of the existing web development
tools, we highlight which of them can be borrowed for SeCo and we describe our
vision towards instrumentation of the SeCo development process.

3.1 Web Design Tools and Environments

In the context of web application design, developers and designers usually exploit
commercial or open source tools for performing their job. In this section we identify
the classes of tools that are currently in use for Web application design, considering
three main dimensions:

• Target Users: analysts, developers, and visual designers;
• Development Focus: database-oriented, service-oriented, user interface-oriented,

and search-oriented;
• Tool Availability: local or remote.

3.1.1 Target Users
With respect to target users, we identify three main approaches, which correspond to
the respective user roles:

• Analysts and Designers: this user role typically works with Model-driven
design tools. Such tools include BPM (business process modeling) tools, Web
engineering tools based on conceptual models, UML design tools, and
MDD/MDA based techniques. Notable BPM tools that provide good Web
deployment features include Oracle BPM1, WebRatio BPM2, and BillFish BPM3.
The most known representative of Web engineering tools that exploit conceptual
modeling and formalized development process is WebRatio4, while a good choice
of UML modeling and partial code generation (also for the web) exists. Among

1 http://www.oracle.com/us/technologies/bpm/index.htm
2 http://www.webratio.com/
3 http://www.billfishsoftware.com/
4 http://www.webratio.com/

274 A. Bozzon et al.

them, we can mention MagicDraw5, IBM Rational6, and others. These tools
provide a visual design environment that allows drawing conceptual models of
the application, to debug and apply some validation, and to generate running
code. Coverage of the various aspects of the application design and completeness
of code generation depend on the tool. Typically, UML tools generate stub
classes corresponding to the design and then provide hooks to IDEs for
completing the implementation. Some BPM tools provide automatic generation
of the running prototype of the web application, while more sophisticated model-
driven tools like WebRatio provide refined modeling primitives that allow going
for full code generation of the final application. Fig. 1 shows the WebRatio
interface for designing the Web application hypertext and the contextual menu
that allows the user to immediately see the generated Web application page
corresponding to the selected modeling concept. The features that can be
borrowed for SeCo tools include: visual composition of the applications (e.g., at
service registration time for mapping to existing service marts; at application
configuration time for selecting the marts of interest and composing them) and
automatic deployment of the running prototype.

• Software Developers and Debuggers: this roles work with Code-driven
development. This paradigm collects IDEs (Integrated Development
Environment) that are explicitly targeted to web development or that covers
general-purpose development but include some features or plugins addressing
web issues. This class includes a set of diverse products, spanning from Eclipse
WTP project7, which provides a set of Eclipse plugins for Web applications
development, to Microsoft Visual Studio. The main features that can be borrowed
for SeCo tools are: code-level support for building and debugging service
wrappers and the code-level refinement of the application through code
inspection (e.g., for configuration files).

• Visual Designers: this role works with an interface-driven approach,
developing Web interfaces with attention to detailed graphical appearance.
Examples of tools that support this development approach include authoring
tools, solutions like Adobe DreamWeaver8, Aptana Studio9, and a plethora of
commercial and freeware HTML editors. As an example of interface, Fig. 3
shows the command panels of Dreamweaver. Further examples are described in
the next section. The main feature that can be borrowed for SeCo tools is the
support for graphics and interface customization, e.g., for complying with
customers’ visual identities.

A separate category is represented by the mashup development tools, which are of
high relevance for SeCo. This category is not analyzed here because it has been
widely addressed in Chapter 5. The main feature that can be borrowed for SeCo is the
online availability of the design tools.

5 http://www.magicdraw.com/
6 http://www-01.ibm.com/software/awdtools/developer/rose/
 index.html
7 http://www.eclipse.org/webtools/
8 http://www.adobe.com/products/dreamweaver/
9 http://www.aptana.org/

 Building Search Computing Applications 275

Fig. 2. WebRatio modeling interface and link to the generated Web page

Fig. 3. Adobe Dreamweaver CS4, HTML design interface

3.1.2 Development Focus
Most of the development tools for the Web start from a specific perspective to the
problem. Interface- and interaction-oriented tools root into the hypermedia field;
they include tools like Adobe CS410 and Adobe Flex11, which deliver high quality
animations, interfaces, and rich applications.

10 http://www.adobe.com/products/creativesuite/
11 http://www.adobe.com/products/flex/

276 A. Bozzon et al.

Database-oriented tools start from the opposite point of view, by allowing the
design of Web applications upon published data sources. Such tools include Caspio
Bridge12, WyaWorks13, Zoho Creator14, Dabble DB15, Trackvia16, and several other
similar solutions. They all allow to build Web applications made of forms, lists, and
data details starting from a database schema or other data sources (e.g., spreadsheets,
text files, and so on). They typically provide application templates for popular needs
too (e.g., CRM, accounting, project management, and so on). Current trends move
towards full-fledged online database platforms that allow publishing and management
of online data sources. Most of them provide online development interfaces and
Software as a Service business models. The main similarity to SeCo is the schema-
based definition of services and results, as well as the structured specification of
search queries.

Finally, service-oriented tools consider services (instead of data sources) as
first class citizens for the web application. This class comprises Web service
orchestration tools, mashup tools, and service repositories and registration tools.
The former can be classified into two main subcategories: service orchestration
tools, like Oracle SOA17 suite (comprising a BPEL process manager, a service bus,
business rules and code editors), Oracle WebLogic18 suite (an application server
specifically targeted to Web services, formerly owned by BEA), ActiveVos19,
JOpera20, and others, whose aim is to specify executable orchestrations of services
based on BPEL; and more general tools, that can be referred to as BPM tools,
including Oracle BPM (born from the Collaxa BPEL engine, acquired in 2004),
IBM BPM21, BizAgi22, and others. These tools allow the designer to describe
service interactions at a more abstract level through workflow models (for
instance, based on the BPMN notation). In some sense, various SeCo features refer
to this vision: the service-based invocation paradigm, the collaboration between
services for achieving a common result, and the orchestration of the query plans
for producing search results.

We don’t dig into the categories of mashup and service registration tools, since
they have been widely discussed in Chapter 5 and Chapter 9 respectively. An example
of tool at the verge between mashups and BP specifications is JOpera, that supports
quick composition and orchestration of services, as well as monitoring of execution.
Fig. 4 shows a sample screenshot of the tool.

12 http://www.caspio.com/bridge/
13 http://www.wyaworks.com/
14 http://creator.zoho.com/
15 http://www.dabbledb.com/
16 http://www.trackvia.com/
17 http://www.oracle.com/technologies/soa/soa-suite.html
18 http://www.oracle.com/appserver/index.html
19 https://www.activevos.com/
20 http://www.jopera.org/
21 http://www-01.ibm.com/software/info/bpm/
22 http://www.bizagi.com/

 Building Search Computing Applications 277

Fig. 4. JOpera Web service composition screenshot

Another emerging category of tools is related to search-based application
development. With the increase of sophistication and the diversification of
requirements that modern search solutions exhibit, the need arises of unbundling the
functionality of a search system into a set of reusable components, which could be
integrated to produce a variety of solutions based on the paradigm of search. One
example is the Symphony platform by Microsoft, which enables non-developers to
build and deploy search-driven applications that combine their data and domain
expertise with content from search engines and other Web Services [23]. The
similarity to SeCo is quite straightforward, although some basic features (such as join
of results) are still missing in existing tools.

Other approaches to search-based development target the skilled software
developer. Google Base API23 relies on APIs for allowing developers to design their
search applications. It allows to combine unstructured (i.e., full-text based) and
structured (i.e., exploiting a data schema) queries and to update contents in the form
of Google Data API feeds. It supports multiple ranking, overcrowding removal (thus
avoiding to provide several similar items in the same result set), adjusted text results,
suggestions on result schema, and much more. For example, the following query
combines full-text search on digital cameras and structured search on brand “Canon”:

snippets?q=digital+camera&bq=[brand:canon]

Google Base API are exposed as REST services invoked through HTTP GET, like in
the following example:

http://www.google.com/base/feeds/snippets?bq=[brand:canon]

23 http://code.google.com/apis/base/

278 A. Bozzon et al.

Yahoo Query Language (YQL)24, instead, allows to query, filter, and combine data
from different sources across the Internet through SQL-like statements. The following
YQL statement, for example, retrieves a list of cat photos from Flickr:

SELECT * FROM flickr.photos.search WHERE text=“cat”.

YQL is also available as a REST Service that can be invoked through HTTP GET,
passing the YQL statement as a URL parameter. For instance:

http://query.yahooapis.com/v1/public/yql?q=SELECT * FROM
flickr.photos.search WHERE text="Cat"

When it processes a query, the YQL service accesses a datasource on the Internet
according to a given access specification, transforms its data, and returns the results in
either XML or JSON format. YQL can access several types of datasources, including
Web services, REST API and Web content in formats such as HTML, XML, and
RSS.

These APIs are extremely useful for SeCo, since they can be wrapped and
exploited as providers of search services.

3.1.3 Tool Availability
A crucial aspect in modern Web application development is how development tools
are made available to developers. Two major categories can be identified: tools that
are available online with SaaS (Software as a Service) model, and tools to be
installed locally on the developer’s machine.

Among the tools available online we can mention: most mashup tools (see
Chapter 5), some recent database-driven (like WyaWorks) and interface-driven design
tools, the large class of CMS (Content Management System) tools, like Drupal25
and Joomla26, and hybrid solutions like App2You27, which stands in between
database-driven and interface-driven tools.

Desktop development tools include heavy weight solutions like Eclipse, Adobe
CS4 suite, Microsoft Visual Studio28, Webratio, and so on.

3.2 SeCo Development Tools

To comply with the SeCo vision, we foresee a set of tools to be provided to
developers for covering the lifecycle phases. For SeCo application development, tools
are crucial for service registration, application configuration, and query plan tuning,
while tools for service development are outside the scope of the framework and
interfaces for application execution are described in the Liquid Query approach
(Chapter 13).

24 http://developer.yahoo.com/yql/
25 http://drupal.org/
26 http://www.joomla.org/
27 http://app2you.com/
28 http://www.microsoft.com/visualstudio/

 Building Search Computing Applications 279

Service registration tools will consist of a set of facilities for allowing
normalization of service interfaces and their registration as Service Marts. Tools
supporting the normalization will help in:

• Defining the Service Mart signature;
• Defining the Access Pattern structures;
• Defining the normalized schema of the underlying data model, structured in terms

of primary table and SeCondary tables as described in Chapter 9;
• Specifying the service interfaces, in terms of ranking, chunk, cache, and cost

descriptors;
• Defining the annotations of the services, in terms of reference domain and

keywords;
• Establishing connection patterns between pairs of service marts and service

interfaces, to describe possible join paths for queries.

The tools will feature mapping-based interfaces that will allow picking elements from
the service input/outputs (and domain descriptions) and populating the conceptual
models.

Application configuration tools will allow composing application structures
consisting of sets of connected service marts. The tools will support the following
activities:

• Exploring the service repository, through visual navigation;
• Selecting the services of interest for the application and the respective connection

patterns, including the ones needed for query expansions;
• Defining the interface of the query submission form and of the resultset, together

with the default settings for the application and the allowed Liquid Query
operations.

Query plan tuning tools will consist of a visual modeling environment that allows
developers to edit query plans specified according to the Panta Rhei notation (as
described in Chapter 12). Such plans are usually automatically generated by the plan
optimizer, but advanced developers may want to manually refine them to take in
consideration domain specific knowledge or customized choices that are not available
to the optimizer.

All the tools will be developed as online applications, at the purpose of increasing
SeCo application design productivity, reducing the time to deployment, and avoiding
the burden of downloading and installing software.

4 Software Architecture

This section describes the architectural issues involved in the development of SeCo
systems. Being SeCo a Web system dealing with a large amount of concurrent end
user requests, sub-second response time and scalability are of primary importance.
Therefore, high-performance architectures and deployment environments able to
satisfy these requirements must be part of the solutions.

280 A. Bozzon et al.

4.1 High-Performance Architectures for Web Applications

Web applications usually adopt a three-tier architecture, comprising presentation,
business logic, and data. The data tier is usually based on a database, while in SeCo
applications it consists of the registered remote services being invoked by the query
engine. Scalability in Web applications can be achieved by using more powerful
server machines (vertical scalability) or by allocating multiple server machines
organized in a cluster (horizontal scalability)[5]. Cluster computing [22] enables the
management of an increased traffic by splitting incoming requests to multiple servers,
exploiting the fact that most user requests can be handled independently, as it happens
with Search Computing queries. Different load balancing techniques have been
devised [8] to achieve an even utilization of computation nodes. By allocating
redundant nodes to replace failing machines, failover clusters can be used to provide
high availability of deployed applications.

A promising deployment environment for Web applications is provided by Cloud
computing [2] [7]. According to this paradigm, Web applications are deployed to a set
of virtualized, interconnected storage and computing resources offered by third-party
providers, globally referred to as a cloud to abstract from their physical location and
characteristics. A cloud deployment environment (such as Amazon EC2 [1]) offers
several benefits to the application provider, among which the possibilities to (1)
dynamically allocate resources to an application, thus being able to dynamically scale
it up to increased workloads, and (2) to eliminate fixed costs related to in-house
provision of the application, paying only based on the usage of offered resources.

Short response time and time-to-screen are crucial to guarantee system
responsiveness. These parameters are affected by two main factors in SeCo: internal
query processing time and remote services invocation time. The former can be
reduced by executing a query on multiple nodes in parallel, by exploiting inter-query
and also intra-query parallelism. SeCo queries running on multiple nodes can be
assimilated to distributed queries in a database setting [15], where a single query
plan is divided into a set of sub-plans, scheduled and executed on different database
nodes. However, intra-query scheduling in Search Computing is simpler (because
there is no need of considering allocation of data) and can benefit from existing
scheduling algorithms (e.g., the work stealing algorithm [4]) developed in the field
of grid computing [6]. Another popular paradigm for parallel processing is Map-
Reduce [11], a framework for efficiently distributing and scheduling computations
expressed using map and reduce primitives. While Map-Reduce has proven useful
for batch data processing (e.g., building a search engine index), its programming
paradigm makes the execution of relational joins cumbersome; nonetheless, an
extension – Map-Reduce-Merge [24] – has been proposed to address this issue.

Service invocation time, instead, can be reduced by minimizing and optimizing
communications with services, possibly avoiding them at all. At a physical level,
invocation times can be reduced by efficiently using available communication
protocols. HTTP, in particular, provides facilities for caching Web server responses
and pipelining requests to Web servers [12]. At an higher level, the communication
problem has been addressed in metasearch systems, where a crawl-metasearch hybrid
approach [9] has been proposed to reduce Web search costs, by indexing
low-turnover and small data sources while meta-searching the other ones. A similar
approach can be adopted for Search Computing, by recurring to materialization (see

 Building Search Computing Applications 281

SeCo-Application

SeCo-Service

SeCo-Mart

SeCo-Execution

SeCo-Query

Query Mapper

Query
Analyser

Query Planner

Query
Repository

Service
Materialiser

Service
Environment

Service
Registry Service

Invocator

remote communication

Query
Manager

Mart Registry Mart Invocator

Execution UnitsExecution
Engine

Rest API Application
Repository

Liquid Query
View

User Interface
Builder

Google Gears

Yahoo! User
Interface (YUI)

Communication
Manager

Liquid Query
Model

Liquid Query
Controller

Fig. 5. UML component diagram showing the logical system architecture

Chapter 9) of frequently accessed services that provides access to small amounts of
data changing infrequently. A different approach is represented by distributed
workflow systems [20], where service nodes directly participate to the orchestration
process in a peer-to-peer fashion, thus eliminating the central orchestrator bottleneck.
The latter approach however is not applicable to SeCo, since it would require service
providers to actively support the Search Computing framework.

282 A. Bozzon et al.

4.2 SeCo Architecture

This section describes the reference software architecture designed to support the
runtime execution of Search Computing queries. Fig. 5 shows the logical architecture
of the system, expressed in terms of software component to be deployed (and possibly
replicated) on different execution nodes. As shown in the figure, the architecture is
divided in five layers:

• The lower layer, called SeCo-Service, is used by service developers and offers
facilities to wrap and expose existing services. A Service Registry hold wrapper
and concrete service descriptions, as described in Chapter 9. The Service Engine
handles runtime invocations by means of a Service Invocator component that
abstracts the service physical details.

• The SeCo-Mart level provides the service mart abstraction consisting of the
Service Mart Registry and Invocator components, which respectively store
descriptions of service marts and interfaces, and support the invocation of the
latter according to the standard HTTP+JSON interface described in Chapter 9.

• The core level, called SeCo-Execution, contains the execution engine made of a
core Engine component and of a set of Execution Units realizing the Panta Rhei
model. The latter are programmed, installed, and tuned by SeCo experts.

• The SeCo-Query layer includes all the components required for processing a
query. The Query Mapper decomposes natural language queries into domain-
aware subqueries. The Query Analyzer performs the selection of access patterns
service interfaces, thereby producing a service interface-level query29. The Query
Planner translates the query into an optimized Panta Rhei execution plan.
Queries and optimized plans are stored in a Query Repository for subsequent
reuse, while the Query Manager orchestrates the whole optimization process.

• The SeCo-Application level provides a Rest API to submit queries, an Application
Repository to store application-specific data (such as UIs’ definitions) and liquid
query support. Liquid queries are the client-side front-end of the SeCo architecture,
designed as a Rich Internet Application [3] so as to enable a fluid user interaction
thanks to client-side data management and to asynchronous communications with
the SeCo back-end. A standard Web browser incorporates the liquid query
application shell, which is an application written in JavaScript and based on a
Model-View-Controller design pattern; the application leverages the libraries and
functionalities offered by the Yahoo! User Interface (YUI) libraries30 and by
Google Gears31. The Liquid Query Controller initializes the application, builds the
graphical user interface through the User Interface Builder, manages the user
interactions and the interaction status, and communicates with the SeCo API
through the Communication Manager. The Liquid Query Model is responsible to
store and massage client data after each interaction (e.g., applying filtering sorting,
aggregation of results, synchronization with a client persistent repository to enable

29 In the current prototype, the query mapper and analyzer are not developed, as we assume that

the input query is already described at the level service interfaces.
30 http://developer.yahoo.com/yui/
31 http://gears.google.com/

 Building Search Computing Applications 283

off-line usage, etc.). Finally, the Liquid Query View comprises the graphical objects
and presentation properties specific for the SeCo applications. Client-side user
interactions are associated to either local or global operations; the former can be
executed directly on the client, the latter require the engine’s intervention.

4.3 Deployment

This section describes the deployment of software components on processing nodes.
As shown in Fig. 6, deployment is organized on three tiers:

• The Service Tier consists of the processing nodes providing access to registered
services. A Service Composition and Creation Framework can be deployed to
facilitate the exposing of services, and consists of the component of the
SeCo-Service layer.

Engine Tier

Load Balancer
Storage Node
<<Replicable>>

Client Tier - Browser

Processing Node
<<Replicable>>

Service Tier

Service Wrapper Framework

Query
Mapper

Query
Analyser

Query
Planner

Query
Repository

Query
Manager

Mart
Registry

Mart
Invocator

Execution
Engine

Execution
Units

Application
Repository

Rest API

Service
Materialiser

Service
Environment

Service
Registry

Service
Invocator

Service 1

HTTP+JSON

System Bus

HTTP + (X)HTML/JSON

Service 2

Liquid Query
View

Liquid Query
Model

Liquid Query
Controller

User Interface
Builder

Communication
Manager

Fig. 6. Deployment of software components

284 A. Bozzon et al.

• The Client Tier consists of client machines locally running the liquid query UI,
which is offered as a JavaScript component running inside Web browsers.

• The Engine Tier represents the query engine, which is invoked by clients and
executes Search Computing queries over registered services. Engine components
can be simply deployed on a single-machine or distributed and replicated across
multiple machines to achieve massive scalability. In the latter case, components
can be grouped in two types of nodes, namely (1) processing nodes, responsible
of query execution and (2) storage nodes, containing service and query
definitions. If deployed on a cloud infrastructure, these two types of nodes can be
dynamically replicated with the assistance of a load balancer, in order to cope
with increasing workloads. Inter-component communication and coordination are
guaranteed by a System Bus.

In the prototyping of the Engine Tier, besides testing functionalities, we will soon
address crucial aspects such as robustness and scalability. For the second generation
of prototypes, we plan to use a space-based middleware, such as GigaSpaces XAP32,
which represents a promising solution: by decoupling state (stored in space entries)
from computation (provided by stateless components) it automatically supports
component replication, load balancing and fail-over.

5 Business Models in Search Applications

This section discusses plausible business models that could facilitate the spreading
and sustainability of SeCo applications. We start with an overview of the advertising
strategies in the search field, and then we provide some hints on the possible SeCo
advertising models and strategies for attracting users or developing new user
communities.

The rapid growth of the Internet is transforming the way information being
accessed and used. Newer and innovative models for distributing, sharing, linking,
and marketing the information are appearing. As with all communication media,
the major source of financial support is advertising [12]. Several Internet
advertising formats are commonly used: banners, rich media, email, classifieds,
referrals [21]. In today’s Internet advertising industry, the so-called search format
is the most relevant revenue-generating context: advertisers pay search engine
companies to list their links (commonly called sponsored links) in response to
specific search word or phrases. The revenue generated by the search format of
advertising constitutes more than 90% of the whole revenues of search engine
companies33.

In the following three subsections, we describe the economic principles of the
search format and subsequently the tools provided by the main search engine
companies that can be exploited by advertisers and third parties.

32 http://www.gigaspaces.com/xap
33 About 97% of the income of Google (about 10 billion dollars per year) comes from advertising,

the remaining 3% from sales of products [21].

 Building Search Computing Applications 285

5.1 Principles of Advertising in Search Engines

The economic principles of the web advertising search format are simple. The search
engine chooses a list of sponsored links, each one composed of a head title, a brief
description, and the link, to be shown (impressed) alongside the results of the search
and, whenever a user clicks on a sponsored link, the corresponding advertiser [24].
This pricing scheme is commonly called pay-per-click (PPC) and is considered the
fairest for search engine and advertisers. It has been shown [21] that the other two
schemes, pay-per-impression (PPI) and pay-per-transaction (PPT), advantage the
publisher (in this case the search engine) and the advertiser, respectively.

The idea behind the impression of sponsored links alongside search results is
that a user could be interested in visiting commercial links that are strictly related
to her search; this happens indeed very frequently, and therefore the revenues
generated by the search format is very impressive. The choices of the list of the
sponsored links to be shown and of the amount of money that a clicked advertiser
must pay are accomplished by the search engine in the attempt to maximize its
expected revenues, which depend on the probability that a user will click on a link
and the amount of money that the corresponding advertiser would pay for that
click. Obviously, the larger are such two factors, the larger the expected revenues.
This problem is essentially an auction problem and is commonly studied by
resorting to microeconomic tools [18].

We focus on how a search engine chooses the list of sponsored links to be shown.
Given a search accomplished by a user, the first task that the search engine must
address is to determine the most interesting advertisers for the user. This task is
accomplished by estimating the click probabilities for each sponsored link. In doing
so, the search engine exploits context information (e.g., keywords searched by the
user, user's language, country, and IP) and historical data. Essentially, the click
probabilities are produced by considering the last (e.g., one thousand) impressions of
a sponsored link in the presence of the given context and counting the number of
times it has been clicked. These probabilities are commonly called click-through-rates
(CTR) and range from 0.5% to 20% with an average around 3% in practical
applications.

The basic context information concerns the keywords searched by the user. An
advertiser can register for one keyword or for a list of keywords, e.g., “car”, “sport
car”, and “luxury sport car”; the more specific is the list of keywords, the easier and
the more precise is the targeting of the advertisement to the most interested users. The
advertiser can provide additional information, such as the language of the audience,
the country, the region, and the city. For example, a bakery in Paris will likely target
just the city of Paris, while a nationwide bank in Australia will likely want to target
the entire country. The search engine will then determine whom to show a given
sponsored link on the basis of several factors, including user's domain, search terms,
computer's IP address (estimates its geographical location), and language preference
set for the search engine.

The registration of an advertiser for a keyword (or a list) with specific language
and location information is concluded by setting the maximum amount of money that
the advertiser would pay when the sponsored link is clicked. This value is usually
called the advertiser's bid. Note that such amount of money is not generally the

286 A. Bozzon et al.

amount the advertiser will pay if clicked; rather, it is the largest amount that would be
paid. In practical applications, the values are in the range from 0.05 Euros
(minimum value acceptable by the search engine) to 15 Euros. In addition to setting
such value, the advertiser can choose a maximum budget per day or a maximum
number of impressions per day.

On the basis of the context, click probabilities, and advertisers' bids, the search
engine chooses the list of sponsored links to be shown. Generally speaking, the search
engine maximizes the cumulative revenue expected from each sponsored link. The
choice of the amount of money that the clicked sponsored link must pay is an intricate
technical issue, and therefore we provide only the general concepts, omitting details.
On one hand, the search engine should maximize its revenue by maximizing the
payments; on the other hand, it must avoid strategic behaviors of the advertisers that
could decrease the search engine's profit. The aim is to produce payment rules that
provide the right incentives to the advertisers to bid their true evaluations. In this way,
strategic behaviors can be avoided and the economic mechanism behind the auction is
said to be incentive compatible. The design of the most effective economic
mechanism for sponsored search auction is currently an open issue in the
microeconomic literature [21].

5.2 Advertising Tools in Search Engines

We review the tools provided by the three main search engines: Google, Yahoo!, and
Microsoft. For reasons of space, we describe in detail the tools provided by Google
and we briefly report the differences between these tools and those provided by
Yahoo! and Microsoft.

Google provides several tools for Internet advertising. The basic tool for search
format is AdWords [16]. This tool allows an advertiser to register for keywords,
specifying language, location information for targeting audience, and upper bounds
over budget and impressions. AdWords exploits GoogleMaps for the location
information and can add maps to the sponsored links, as the impression of images and
maps has been shown to increase the interest of users and consequently the click
probability. An advertiser can also select the screen area where the sponsored link
will be shown, either on the top of the search results or on the right of them, which are
managed by two different auctions.

Auctions are based on the generalized SeCond price (GSP) [21], where the amount
of money paid by the sponsored link in position i-th is the bid of the advertiser whose
sponsored link appears in position i+1-th. In the version implemented by AdWords
the price is increased by 0.01 Euro. Although this kind of auction does not produce
the right incentives for advertisers to bid their true evaluations (i.e., it is not incentive
compatible), it is shown to produce large revenues for the search engine and to avoid
price instability in the market. Currently, Google is not interested in employing
alternative economic mechanisms that in theory outperform GPS.

Google AdWords provides an advertiser with additional features: advertisers can
select the devices and the content networks where her sponsored links will appear.
Relative to the first feature, the advertiser can target either desktop and laptop
computers, or iPhones and other mobile devices with full Internet browsers, or both.
The Google Content Network [15] allows AdWords to show sponsored links also on

 Building Search Computing Applications 287

sites that are not search engines, including products like Google Groups and Gmail, as
well as other important search sites like AOL and Ask.com, or content sites like
NYtimes.com and About.com.

The tool AdSense [15] is used by website owners who wish to make money by
displaying sponsored links on their websites. Website owners can use Google
AdSense with two different modalities:

• The website owner can publish a Google search frame where a user can search
contents through keywords. In addition to the search results, the website owner
can then publish on such frame the list of sponsored links, produced by Google
AdWords.

• The website owner can publish a frame wherein some sponsored links will be
impressed, letting to Google AdSense the choice of best links on the basis of the
content reported in the site. More precisely, AdSense analyzes the site by
extracting the main keywords and subsequently submits such keywords to
AdWords to produce the list of sponsored links.

With both modalities, the revenue received from the advertisements published by
website owners is shared with Google. The exact ratio of the money that Google gives
to the website owners depends on the specific website and is private information;
usually it ranges from 40% to 50%.

Yahoo! and Microsoft provide tools very close to the ones provided by Google.
Specifically, Yahoo! Search Marketing [24] is analogous to Google’s AdWords and
Yahoo! APT [24] is analogous to Google’s AdSense. Yahoo! tools exploit the same
auction model (GSP), but – differently from Google’s tools - they allow advertisers to
make their bids in real time. Microsoft Advertising [17] combines the services
provided by Google’s AdWords and AdSense. The advantages of Microsoft
Advertising lay on the media network on which the advertisement can be impressed
(in addition to the search engine), which contains high-traffic sites such as Facebook,
Digg, Zune, and Windows Live Sharing.

All the main players (Google, Yahoo!, and Microsoft) provide sophisticated
strategic tools to advertisers in order to optimize their campaigns. They allow an
advertiser to monitor the number of impressions and clicks, to simulate the effects of
increments ad reductions of the value of the bids, to monitor information about the
users, and so on.

5.3 Business Models for Search Computing

In this section, we sketch some ideas about business models for SeCo, by explaining
some scenarios for profit sharing among all players within the SeCo environment, and
specifically showing the aspects of the advertising though the search format could be
extended due to the new aspects of Search Computing.

A Search Computing application relies on the existence of underlying sources. A
SeCo developer could decide to act independently from source owners, e.g. by using
publicly available sources; then, he should play also the role of SeCo publisher and
guarantee the access to the data which are needed for the application. In such a case,
the business model of a SeCo application is simple, as there is only one player, the
SeCo developer, whose incentive is to build an application as attractive as possible for

288 A. Bozzon et al.

its perspective users. SeCo will provide to such player a new application development
environment supporting a new class of Web applications, to be compared to the many
environments already available.

However, the most interesting scenario for source computing is one where the
SeCo developer acts as a “broker of information”, by attracting content owners to
participate to applications. In such a case, the business model must provide scenarios
that yield to advantages both to the publisher and to the broker. Two cases are then
possible:

• If the publisher gets an advantage because the traffic to the publisher’s
application can generate revenues for the publisher, then the model should
recognize an advantage to the broker for every click to the publisher’s
application.

• If instead the publisher provides essential information in order for the application
to become possible while having no advantage due to generated traffic, then the
situation is opposite, and the model should recognize an advantage to the
publisher for every click to the publisher’s application.

Note that a given application might include publishers belonging to both classes. A
fair model should then recognize, for every publisher/broker relationship, one of the
above cases, and support it through simple contractual conditions. Advertising
models can provide the underlying theory for computing the pay-per-click dues.

An interesting aspect is that SeCo applications present as results combinations of
individual entries extracted from multiple services, therefore, while clicking on one
link, users are choosing a “global solution” which is contributed by all other links
offered within the combination. This gives rights to interesting profit sharing schemes
that may give advantages also to links that, even if not clicked, contribute to a
solution.

Of course, a Search Computing broker publishes a Web application, thus, as any
other application, it can host search frames or frames wherein some sponsored links
will be impressed, thus using the tools provided by major search companies reviewed
in the previous section. Similarly, providers may open frames within their
applications, and take advantage of the same mechanisms with the traffic that is
carried to it through SeCo applications.

Search computing could then develop its own advertising models, and these
models provide interesting problems that we plan to study, initially at a more
theoretical level. Two options seem most promising:

• Multi-domain queries in SeCo may offer an important dimension for bidding, by
associating bids to keywords only when other specific domains are present in a
solution, e.g. a bid for the keyword “movie” only when the user is searching for
“renting” in a specific “city”, or instead only when the user is searching for
“cinema”. This option could contribute to the current development of flexible
auction mechanisms within the scientific community, by adding a relevant
dimension.

• A SeCo application could also act as a “broker” for sponsored links, by offering
combinations which use them, and by merging the lists of sponsored links
returned by multiple service providers in the attempt to rank in high position the

 Building Search Computing Applications 289

links that are the most appropriate for the users. In such context, the SeCo
application could use a model of click probability that takes into account all the
click probabilities upon the domains of the query. For instance, the SeCo
application could prefer to impress links that are present in the list of all
providers, rather than a link that has higher probability in one list but does not
appear in the other lists.

These options are currently considered in our research so as to prepare a suitable
business and advertising model for Search Computing.

6 Conclusions

This chapter aimed at broadening our perspective on Search Computing, from its
enabling technologies to its architectural, usage, and business-oriented perspectives.
We introduced the roles and tasks of SeCo developers and discussed how design tools
can help them. We provided an overview of a reference architecture and deployment
strategy, and finally we reviewed advertising models for search industry and thereby
introduced the first elements of a business model for SeCo application development.

References

[1] Amazon. Elastic Compute Cloud, EC2 (2009), http://aws.amazon.com/ec2/
[2] Hayes, B.: Cloud computing. Communications of the ACM 51(7), 9–11 (2008)
[3] Farrell, J., Nezlek, G.S.: Rich Internet Applications The Next Stage of Application

Development. In: 29th International Conference on Information Technology Interfaces,
ITI 2007, June 25-28, pp. 413–418 (2007)

[4] Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

[5] Bondi, A.B.: Characteristics of scalability and their impact on performance. In: WOSP
2000: Proceedings of the 2nd international workshop on Software and performance, pp.
195–203. ACM, New York (2000)

[6] Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. Concurrency and Computation: Practice
and Experience 14(13-15), 1507–1542 (2002)

[7] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

[8] Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally
distributed web-server systems. ACM Comput. Surv. 34(2), 263–311 (2002)

[9] Craswell, N., Crimmins, F., Hawking, D., Moffat, A.: Performance and cost trade-offs in
web search. In: ADC 2004: Proceedings of the 15th Australasian database conference, pp.
161–169. Australian Computer Society, Inc., Darlinghurst (2004)

[10] Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding
UI Integration: A Survey of Problems, Technologies, and Opportunities. IEEE Internet
Computing 11(3), 59–66 (2007)

290 A. Bozzon et al.

[11] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In:
OSDI 2004: Proceedings of the 6th conference on Symposium on Opearting Systems
Design & Implementation, pp. 10–10. USENIX Association, Berkeley (2004)

[12] Even-Dar, E., Kearns, M., Wortman, J.: Sponsored Search with Contexts. In: Deng, X.,
Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 312–317. Springer, Heidelberg
(2007)

[13] Feng, J., Bhargava, H.K., Pennock, D.: Implementing Sponsored Search in Web Search
Engines: Computational Evaluation of Alternative Mechanisms. Informs Journal on
Computing (forthcoming), http://ssrn.com/abstract=721262

[14] Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol (1998), http:/1.1.Tech.rep.

[15] Google. AdSense (2009), https://www.google.com/adsense/
[16] Google. AdWords (2009), https://www.google.com/adwords/
[17] Kossmann, D.: The state of the art in distributed query processing. ACM Comput.

Surv. 32(4), 422–469 (2000)
[18] Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University

Press, Oxford (1995)
[19] Microsoft. Microsoft Advertising (2009),

http://advertising.microsoft.com/
[20] Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A.K., Weikum, G.: From centralized

workflow specification to distributed workflow execution. J. Intell. Inf. Syst. 10(2), 159–
184 (1998)

[21] Narahari, Y., Garg, D., Narayanam, R., Prakash, H.: Game theoretic problems in network
economics and mechanism design solutions. Springer, Berlin (2009)

[22] Pfister, G.F.: In search of clusters, 2nd edn. Prentice-Hall, Inc., Upper Saddle River
(1998)

[23] Shafer, J.C., Agrawal, R., Lauw, H.W.: Symphony: Enabling Search-Driven
Applications. In: USETIM (Using Search Engine Technology for Information
Management) Workshop, VLDB Lyon (2009)

[24] Weber, T.A., Zheng, Z.E.: A model of search intermediaries and paid referrals. Tech.
rep., 02-12-01, The Wharton School, University of Pennsylvania (2003),
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=601903

[25] Yahoo! APT from Yahoo! (2009), http://apt.yahoo.com/
[26] Yahoo! SearchMarketing (2009), http://searchmarketing.yahoo.com/
[27] Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified

relational data processing on large clusters. In: SIGMOD 2007, pp. 1029–1040. ACM,
New York (2007)

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 291–306, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 15:
Search Computing and the Life Sciences

Marco Masseroli1, Norman W. Paton2, and Irena Spasić2

1 Dipartimento di Elettronica e Informatzione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

masseroli@elet.polimi.it
2 School of Computer Science, University of Manchester,

Oxford Road, Manchester M13 9PL, UK
{npaton, i.spasic}@manchester.ac.uk

Abstract. Search Computing has been proposed to support the integration of
the results of search engines with other data and computational resources. A key
feature of the resulting integration platform is direct support for multi-domain
ordered data, reflecting the fact that search engines produce ranked outputs,
which should be taken into account when the results of several requests are
combined. In the life sciences, there are many different types of ranked data.
For example, ranked data may represent many different phenomena, including
physical ordering within a genome, algorithmically assigned scores that
represent levels of sequence similarity, and experimentally measured values
such as expression levels. This chapter explores the extent to which the search
computing functionalities designed for use with search engine results may be
applicable for different forms of ranked data that are encountered when carrying
out data integration in the life sciences. This is done by classifying different
types of ranked data in the life sciences, providing examples of different types
of ranking and ranking integration needs in the life sciences, identifying issues
in the integration of such ranked data, and discussing techniques for drawing
conclusions from diverse rankings.

Keywords: search computing, bioinformatics, data integration, ranked data.

1 Introduction and Motivation

Experimental studies in the life sciences give rise to large quantities of diverse,
complex data. Taking genomics as an example, initial sequencing work gives rise to
a raw genome sequence, which in turn is annotated with the predicted locations of
genes. In essence, every cell in an organism contains the same genome sequence, but
biological processes cause the products described by the genome to be created
differently in different cells. For example, different cells contain different collections
of proteins, and over time the quantities of different proteins within a cell vary. As a
result, to understand the dynamic behavior of a cell, it is necessary to measure
quantities of different types of molecules within the cell. Functional genomics
encompasses a collection of experimental techniques, including transcriptomics,
proteomics and metabolomics, which are used to measure the quantities of mRNA,

292 M. Masseroli, N.W. Paton, and I. Spasić

Fig. 1. Gene expression data result from ArrayExpress

protein and small molecules associated with a cell at runtime. In all forms of
functional genomics, initial experimental readings are processed by software to
produce derived results, which represent the conclusions of the experiment. All
experimental methods involve some level of uncertainty in the results produced, and
in functional genomics the uncertainty may result either from the experimental
method used or from the analyses performed on the raw data (e.g. [1]). Both
numerical experimental results and the uncertainties associated with measurements
may give rise to rankings in experimental data sets. An example is given in Figure 1
from the ArrayExpress microarray database [2], which indicates the number of
experiments carried out on Saccharomyces cerevisiae (yeast) where the growth
condition is rehydration, in which specific genes have been found to be up or down
regulated, along with an associated P-value. This data set could usefully be ordered
either by the number of examples of up/down regulation or the associated P-value.

The diversity of organisms studied and types of experimental data have given rise
to a proliferation of data resources, and as a result, data management and
integration are high profile activities in the life sciences. The resources are also
diverse in their nature; in addition to sequence and functional genomics data
resources available in structured or semi-structured repositories (generally
heterogeneous and distributed) [3], much of the accrued scientific knowledge has
been published in the scientific literature. So it is often important either to be able to

 Search Computing and the Life Sciences 293

retrieve documents that describe some experimentally identified phenomenon, or to
be able to extract specific values from the literature using information extraction
techniques [4] and [5]. As such, multi-domain data integration is central to the life
sciences, and may involve the combination of search with other data access and
analysis tasks, as envisaged in Search Computing [6]. In essence, search computing
seeks to support declarative expression of requests over multiple search and data
services, where the search services can be applied to multiple domains and are
characterized by incremental production of potentially huge, ranked answers. The
presence of search services as part of the integration process means that ranking, and
the combination of multiple rankings, also coming from different domains or being of
different nature, needs to be accommodated during data integration. In practice, data
integration in the life sciences has used many different techniques [7], including
warehousing (e.g. [8]), workflows (e.g. [9]) and distributed query processing
(e.g. [10]). However, the infrastructures that support such integration rarely provide
direct and/or transparent support for ordered data, which means that where ordering is
considered, this must either form part of the integration application, or result from the
use of analysis techniques that take ordering into account. Thus, ordering is rarely
supported as a first class citizen either for individual data resources, or in information
integration platforms that act over multiple domains.

As ordered data may originate from several sources, it may be appropriate for a
final ordering of an integration task to be computed based on properties of the
contributing results. In the web context, rank aggregation [11] has been investigated
with a view to developing algorithms that combine multiple search engine rankings
while remaining computationally tractable. However, different sorts of evidence
may be available in different sources. For example, in addition to the gene expression
data from ArrayExpress illustrated in Figure 1, there may be further gene expression
evidence from GEO [12] and information on protein expression from PRIDE [13],
and it may be appropriate to rank the overall result of a multi-domain search for up-
regulated genes based on evidence from all three sources. However, most proteomics
experiments captured in PRIDE are qualitative, and thus principally provide
presence/absence information, whereas gene expression experiments typically provide
quantitative information. Interpreting this quantitative information is complicated,
however, by the fact that, although some gene expression experiments provide
absolute measures, most provide relative measures. As a result, computing an
appropriate overall ranking from information derived from a collection of
heterogeneous sources may not be straightforward.

The following sections in this chapter explore the origin, nature and role of ordered
data in the life sciences, and in particular its relevance to information integration.
Section 2 focuses on ordered data in the life sciences, characterizing its properties,
and providing examples of such data. Section 3 discusses the integration of ordered
data sets, where the integration takes account of the different forms of order.
Section 4 considers the different approaches existing to manage the integration of
different types of ordered data, and the lack of explicit support to manage rankings in
current integration platforms. Section 5 presents some examples of life-science
specific case studies where ranking of the data to be integrated matters. Some
conclusions on the relationship between search computing and the life sciences are
presented in Section 6. In so doing, we hope both to present some new challenges to

294 M. Masseroli, N.W. Paton, and I. Spasić

search computing where the initial emphasis has been on ranked data produced by
multi-domain search engines, and to encourage wider exploration of middleware
support for ordered data in the life sciences.

2 Ordered Data in the Life Sciences

In this section we describe the basic concepts related to the notion of ordering and
demonstrate how they apply to data in the life sciences.

A basic concept upon which the notion of order is founded is a binary relation,
which can be intuitively interpreted as “less than”, and consequently can be used to
say that one object precedes another one, hence the intuitive notion of ordering. We
differentiate between different types of order depending on the properties of the
underlying binary relation R over a set S, i.e. R ⊆ S × S. A relation R is reflexive if (x,
x) ∈ R for all x ∈ S. It is antisymmetric if (x, y) ∈ R and (y, x) ∈ R implies that x = y
for all x, y ∈ S. Finally, a relation R is transitive if (x, z) ∈ R whenever (x, y) ∈ R and
(y, z) ∈ R given any x, y, z ∈ S. A binary relation that is both reflexive and transitive
defines a quasi-order. A quasi-order relation that is also antisymmetric defines a
partial order, and is usually denoted with ‘≤’. Thus, a partial order implies that all the
following conditions are true for all elements x, y, z of a set S: (i) x ≤ x; (ii) if x ≤ y
and y ≤ x, then x = y; and (iii) if x ≤ y and y ≤ z, then x ≤ z. In a set with a partial order
(a partially ordered set, or poset) it may not always be possible to say which of two
elements “precedes” the other. This gives rise to a total order, i.e. a partial order that
satisfies the totality condition, in which any two elements x and y can be related to
each other as x ≤ y or y ≤ x. A set with a total order is a totally ordered set.

In addition to partially and totally ordered sets, it is important to formalize the
sense of an object being “strictly less than” another. This gives rise to a strict partial
order, a binary relation that is irreflexive and transitive. It is usually denoted with ‘<’.
A strict partial order is called a strict total order if it satisfies the trichotomy
condition, i.e. for all elements x and y it is x < y or y < x or x = y. It is important to
emphasize that a strict partial order is not a type of partial order. Indeed it cannot be a
partial order, since it is not reflexive. Finally, an order may be induced on a set S with
a real-valued function f: S → R that satisfies the following condition for all elements
x, y ∈ S: x ≤ y if and only if f(x) ≤ f(y).

An important data structure related to partial orders is that of a directed acyclic
graph (or DAG), which is a directed graph with no directed cycles, i.e. no node in
such a graph can be returned to by following the links between the nodes. The
reachability relation in a DAG is a partial order on the set of its nodes, and conversely
any finite partial order may be represented by a DAG. In the life sciences, DAGs
together with trees and sequences as their special cases are used to represent
taxonomies of proteins, chemical compounds and organisms, partonomies, data
provenance, multiple sequence alignments, gene clustering, sequence data (e.g. DNA
sequences), etc. [14]. However, the nature of some life science phenomena is
intrinsically cyclic and their representation requires more complex structures such as a
directed cyclic graph, a natural extension of a DAG, in which cycles are allowed.
They can be used to model a wide range of biochemical processes in which materials

 Search Computing and the Life Sciences 295

or signals flow through a network of nodes, e.g. metabolic pathways, signaling
pathways, gene regulatory networks, etc.

Apart from the examples of order found in nature, much of the data produced or
used in life science experiments can be related by way of partial orders. More
precisely, such an order is often induced by measuring certain physical properties.
The ordering may be used both as input and/or output of biochemical experiments.
Take for an example a study of the effects of growth rate on the levels of gene
expression, proteins and metabolites in the yeast, Saccharomyces cerevisiae [15].
Each data set was generated by analysing yeast grown under different limiting
conditions involving different nutrients, each used for three sub-experiments with a
different dilution rate (0.07, 0.10 and 0.20) for the given nutrient. Therefore, samples
can be partially ordered by the input dilution rate. Similarly, the experimental results
can be ordered using the output values such as metabolite concentrations obtained by
analysing the samples using gas chromatography–mass spectrometry.

In addition to using the measurements of physical properties, the objects of life
science experiments can be ordered by using scores produced by statistical and/or
computational analysis of the associated data. The similarities between either
nucleotide or protein sequences are used to infer gene function, new members of gene
families and evolutionary relationships. Basic Local Alignment Search Tool (BLAST)
is frequently used to estimate sequence similarity [16]. BLAST combines a bit score,
which takes into account the alignment of similar or identical residues, as well as any
gaps introduced to align the sequences, with expected value (E-value) as an indication
of the statistical significance of a given pairwise alignment. The BLAST score is used
to order similar biomolecular sequences, ideally in a way that represents the closeness
of their evolutionary history.

Another important source of order in the life sciences is the literature, which is the
prevalent medium for information exchange among experts in the field. The rapidly
expanding volume of the life science literature makes it difficult to efficiently locate,
retrieve and manage relevant information. One of the basic concepts used to facilitate
access to documents relevant for the given search terms is that of TF–IDF (term
frequency – inverse document frequency), a statistical measure that estimates the
importance of a word relative to a document [17]. Its value is directly proportional to
the frequency of a word within the document and indirectly proportional to its
frequency within the considered collection of documents. Given a search term, TF–
IDF is used to induce an order over a set of documents (see Figure 2 for an example).
Text annotations (e.g. genes, species, protein-protein interactions, etc.) provided
automatically by different information extraction systems together with their
confidence scores represent another source of ordering documents based on their
semantic relevance [18].

To sum up, order – in particular a partial order – is an intrinsic characteristic of
many phenomena researched in life sciences, as well as a useful way of organizing
our knowledge about them. The phenomena themselves can typically be ordered in
two basic ways: spatial and temporal. For example, genes are ordered in spatial terms
within the genome, whereas metabolic reactions occur in a given temporal order,
which is reflected in the graph structures used to represent metabolic pathways. When
biological objects cannot be ordered directly in such a manner, their quantitative
properties can often be used as a basis to induce their ordering. These properties can

296 M. Masseroli, N.W. Paton, and I. Spasić

Fig. 2. PubMed search result for “Saccharomyces cerevisiae”

be the measurements of conditions applied in an experimental protocol used to
produce the physical objects researched (e.g. dilution rates in the growth medium), or
they can be the actual values measured by the experiment (e.g. metabolite
concentrations). In addition, the scores calculated by bioinformatics algorithms can be
used as a source of order in the same way. Finally, order is often used in modeling the
knowledge accumulated in the life sciences, and these structures usually reflect the
intrinsic ordering among the phenomena being modeled. For example, phylogenetic
trees are the main tool for representing evolutionary relationship among species,
which itself is a partial order.

3 Combining Multi-domain Ordered Data in the Life Sciences

In recent years, a lot of work has been done to ease management and access to the
ever increasing amount of genomic and proteomic data and knowledge available. A
significant number of web interfaces and services [19] are publicly available for
exploring and searching repositories containing information about biomolecular
entities (i.e. DNA sequences, genes, transcripts and proteins) or structural, functional
and phenotypic biological features (e.g. sequence polymorphisms, biological
processes, biochemical pathways or genetic disorders), preferably expressed through
controlled terminologies and ontologies, as well as the associations of the former with
the latter (Figure 3). Much effort has also been devoted to the interlinking and

 Search Computing and the Life Sciences 297

Fig. 3. Search result from Entrez Gene databank. All genes associated with “histidine metabolic
process” in “cytosol” are retrieved.

integration of such data, mainly to support navigation through the many repositories
in which data relevant to a search may be sparsely stored, or to aggregate data for
further analysis [20]. In both cases, the focus has mainly been on coverage, with the
aim of aggregating as much data as possible, usually without considering possible
rankings of the data to be integrated. This approach is adequate when the data to be
integrated are limited in quantity, or a holistic result is required. Yet, when the data
are voluminous and their low partial ranking indicates low relevance or even possibly
erroneous data, considering only the top-k data items may improve integration
performance and quality of global results.

Search computing techniques have as a key feature the ability to compose multi-
domain ranked partial results from single-domain searches. Thus, it appears
interesting to consider their application in searching for answers to life science
questions, which can be addressed only by comprehensively analyzing different types
of data that are inherently ordered, or are associated with ranked confidence values.
Examples of life science questions that may be answered with such searches are:
“Which are the proteins in different organisms that are more structurally and
functionally similar to a given protein?”, “Which are the genes that have the highest
sequence similarity in different model organisms and are highly co-expressed in the
same biological conditions?”, “Which are the proteins encoded by co-expressed genes
that are more likely to interact?”, “Which are the drugs available to treat the diseases
known to be more likely associated with a given genetic mutation?”, or “Which are
the highest risk factors associated with the most prevalent diseases among young

298 M. Masseroli, N.W. Paton, and I. Spasić

people?”. By using available web services for searching biomolecular data, and taking
advantage of the attributes they define for providing a ranking, search computing
techniques should prove applicable in the life sciences. That is, they may offer
support for the goal of providing online integrated and prioritized results of
complex multi-domain searches, e.g. aiming to search for evidence of correlations
between information of different domains (e.g. genotype-phenotype correlations).

Difficulties, however, may arise from the nature of the life science data and from
the different features of order of the diverse domains to be integrated. For example,
when ranking of the data to be integrated is defined by probability values
(representing data confidence, evidence, or correctness), it is reasonable to evaluate
whether ranking composition might be the best option, or if the probabilistic
combination of their probability values could provide better overall ordered
integration. Furthermore, ranking composition strategies currently proposed in search
computing penalize the global ranking of items with missing values in any of the
integrated domains. This aspect may have a negative impact on the final results when
several domain data subsets are integrated and missing values do not necessarily have
a negative connotation. Both aspects hold for some life science data. In particular,
missing values may merely indicate “unavailable” information, and in some cases
may imply items of particular interest, which may require more in depth analyses.
Specific heuristics, or configuration parameters, could therefore be required for search
computing methods to deal with such issues effectively.

4 Managing Domain Ranking in Integrated Data

In current integration platforms, usually no explicit support is available to manage
rankings encountered in the different domains of the data to be integrated, which at best
is reflected as additional data attribute(s) available for further processing. Thus, domain
ranking needs to be handled in the applications built on top of the integrated data.

A range of approaches exists to manage the integration of different types of ranked
data. Among them, rank aggregation techniques are the most general ones. Rank
aggregation, broadly discussed in Chapter 11 of this book, has the ability to combine
ordered lists coming from different sources and platforms as one of its major
strengths. In the life science context, it has been proposed for data clustering [21] and
for the meta-analysis of different microarray gene expression studies from
heterogeneous platforms, which may not necessarily be directly comparable
otherwise. For example in [22] a meta-analysis of 20 studies on multiple cancers
performed with different microarray chips has been carried out using rank aggregation
algorithms. Since the final results of microarray studies are typically expressed as lists
of genes rank-ordered by a measure of the strength of evidence that they are
functionally involved in the biological process under investigation, this approach
allows the rank-order to abstract from the actual expression levels, which may not be
comparable across experiments.

Lately, a specific package for weighted rank aggregation [23] has been developed for
R, an open source statistical program widely used in bioinformatics and computational
biology. It implements and makes easily usable some rank aggregation algorithms,
including Borda count, Cross-Entropy Monte Carlo algorithm, Genetic algorithm, and a
brute-force algorithm (for small problems). In particular, the Cross-Entropy Monte Carlo

 Search Computing and the Life Sciences 299

algorithm is an iterative procedure for solving difficult combinatorial problems in which
it is not computationally feasible to find the solution directly.

As illustrated in Chapter 11 of this book, other approaches to handling the
integration of diverse ranked data exist. They include Top-k and Skyline techniques
[24] and [25], and also probabilistic rank aggregation methods [26] and [27]. Top-k
ranks the top k tuples in terms of a user-defined score function, while Skyline
identifies non-dominated tuples, i.e. the tuples such that no other tuple is better
against all user criteria. Probabilistic rank aggregation methods use Machine Learning
and Information Retrieval approaches to estimate the posterior distribution of the
target rank. However, Top-k, Skyline and probabilistic rank aggregation approaches
are not especially prevalent in the life sciences, possibly because some of them
require restrictive assumptions that are rarely satisfied in practical life science cases
that, for example, frequently involve incomplete data.

Taking into account different domain rankings simultaneously is also equivalent to
considering the levels of evidence during their integration in support of some global
evaluation of the data. This is a typical multi-optimization problem in the presence of
possibly conflicting objectives. To approach and solve such problems, some
computational techniques exist. The main one is multi-objective optimization, also
known as multi-criteria or multi-attribute optimization, which allows simultaneous
optimizing of multiple objectives that are subject to certain constraints [28] and [28].
Examples of multi-objective optimization problems in the life sciences include
finding proteins with the highest confidence of interaction coded for by genes with the
highest co-regulation, or finding in different model organisms genes with the highest
sequence similarity and the highest expression levels in the same biological
conditions. For well formed multi-objective problems, no single solution exists that
simultaneously optimizes each single objective to its fullest. The solution is the one
for which each objective is optimized to the extent that optimizing it any further
causes the other objective(s) to worsen. Finding such a solution, and quantifying how
much better it is than other such solutions (that are generally numerous) is the goal
when setting up and solving a multi-objective optimization problem.

The solution of a multi-objective problem is a (possibly infinite) set of Pareto
points. Pareto solutions are those for which improvement in one objective can only
occur with the worsening of at least one other objective. The most intuitive approach
to solving the multi-objective problem is constructing a single aggregate objective
function. The basic idea is to combine all objective functions into a single functional
form. A well-known combination is the weighted linear sum of the objectives. It
consists of specifying scalar weights for each objective to be optimized, and then
combining them into a single function that can be solved by any single-objective
optimizer. Yet, the solution obtained will depend on the values (more precisely, the
relative values) of the weights specified. Thus, the weighted sum method is
essentially subjective, in that often there is no objective way to define weights
univocally. Moreover, this approach cannot identify all Pareto solutions.

The objective way of solving multi-objective problems requires a Pareto-compliant
ranking method, favoring Pareto solutions, as in current multi-objective evolutionary
approaches [30]. They do not require weights, and thus no a priori information on the
problem is needed. Furthermore, most evolutionary optimizers apply Pareto-based
ranking schemes. Genetic algorithms such as the Non-dominated Sorting Genetic

300 M. Masseroli, N.W. Paton, and I. Spasić

Algorithm-II (NSGA-II) [31] and Strength Pareto Evolutionary Approach 2 (SPEA-2)
[32] have become standard approaches in multi-objective optimization, although some
schemes based on particle swarm optimization and simulated annealing are significant.

Some examples of genetic algorithm optimization in the life sciences can be found
in [33]. The most significant applications are for classification and inverse problems.
The latter ones arise where the data generated by a biological process or system can
be measured and the aim is to reconstruct the original system from the observed data,
which can be noisy and of several types. Many such cases exist in the life sciences,
e.g. in evolutionary biology the inference of phylogenetic trees from biological
sequence alignment data, or in functional genomics the inference of gene regulatory
networks (GRN) from gene expression data. GRN are networks of inhibitory and
stimulatory interactions between genes that model the complex interplay mechanisms
of interactions between DNA, RNA, proteins and metabolites, which determine
different patterns of gene expression. The optimization of classification problems
regards the performance optimization of classifiers (e.g. for the distinction between
tumor and healthy patients) by optimizing the trade-off between their conflicting
performance measures of sensitivity and specificity (i.e. by minimizing both false
negatives and false positives). It also addresses feature selection, by identifying the
minimum set of features that give the best classification accuracy, mainly using
unsupervised classification (i.e. clustering), in particular for gene expression raw data
analysis. In clustering, the multi-objective approach has been used for direct
optimization of the clustering partitioning with respect to a number of complementary
clustering criteria giving different clustering results, and for the selection of the best
number of clusters.

Other life science applications in which multi-objective optimization has been
investigated include inference of protein networks and metabolic pathways from
experimental data; assessment of sequential and structural similarities of DNA and
RNA macromolecules, as well as proteins; identification of motifs; protein structure
prediction; and selection of single-nucleotide polymorphisms. In most cases,
however, multi-objective optimization is applied on single source data, or on
homogenous data from multiple sources. Rare examples of multi-domain data
integration exist for multi-objective approaches, whose full potential in comparison to
the current state-of-the-art techniques remains to be explored.

5 Data Integration Case Studies in Which Order Matters

In the life sciences several data integration examples exist in which the order of the
data to be integrated is relevant. Some case studies are presented below.

5.1 Identifying Genes Relevant to a Disease

Genetically inherited diseases are linked to a region of a human genome, but the
association between a disease known to be genetically inherited and a particular gene
remains unknown for hundreds of such diseases. The online availability of the
information about the human genome, both in a structured form (e.g. biomolecular
sequence databases) and described in the literature, has prompted the development of
computational approaches to generating hypothesis about possible gene-disease links.

 Search Computing and the Life Sciences 301

However, no single source would suffice to provide enough evidence for such
associations. Therefore, this area of biomedical research requires integration of
different types of data ranked using different criteria. We can imagine one plausible
scenario for the application of search computing for this particular problem.

Perez-Iratxeta, et al. [34] developed a data-mining system, based on fuzzy set
theory, which performs the prioritization of candidate genes for genetically inherited
diseases for which no underlying gene has yet been assigned. Their approach
evaluates and scores associations between gene functions and disease phenotypes by
combining the information from MEDLINE and a protein sequence database. Given a
disease, this score induces a partial order on the set of potentially related genes.
Further, one may wish to explore relationships between the genes themselves. This
can be done by using BLAST to estimate their sequence similarity [16]. Alternatively,
one could also use the literature to retrieve biological relationships between genes
according to co-occurrence based meta-analysis of scientific literature [35]. The
associative concept space (ACS) has been developed for the representation of
information extracted from biomedical literature as a Euclidean space in which
thesaurus concepts are positioned and the distances between concepts indicates their
relatedness. Given a gene, the distance in this space can be used to rank other
potentially related genes. Finally, genes can be explored using high-density
microarray technology. A great variety of statistical approaches have been applied to
identify clusters of genes that share common expression characteristics [36]. For
example, in case of partitive clustering where the data are divided using a similarity
measure, this measure can be used to order the genes based on their estimated
similarity. When it comes to agglomerative techniques, the hierarchical cluster
structure again provides a partial order between the genes based on the reachability
relation between the nodes in the hierarchy.

Obviously, answering the questions in this important area of genetic research
requires careful integration of data originating from different sources and ranked
using different criteria. Automating the searches over these sources, together with the
integration of the ranked search results, can provide valuable clues about the links
between diseases and the genes related to them. Therefore, this would be a natural
application area for search computing within the life sciences.

5.2 Identifying Genes Associated with Traits in Quantitative Trait Loci

Quantitative Trait Loci (QTLs) are regions of DNA associated with a complex
phenotype that varies by degree, such as height or susceptibility to polygenic diseases
such as diabetes or cancer [37]. A QTL region may contain many genes, so, given a
collection of QTL regions associated with some traits, an important question is which
genes contribute directly to a trait. One approach to identifying genes of relevance to
a trait is to carry out microarray experiments to establish which genes are
differentially expressed for individuals with different phenotypes. For example, Datta
et al., [38] use microarrays to identify genes that are expressed differently in strains of
mice that vary in their abilities to expel a parasite. In this setting, there are several
different potential sources of partially ordered data. For example, different genes may
be more central to a QTL region than others, and some genes may have different
levels of expression change or different probabilities that their expression has changed

302 M. Masseroli, N.W. Paton, and I. Spasić

in a significant way. In this context, it is certainly of interest to identify genes for
which there is the greatest evidence that they are associated with a given trait, but the
rank orders of the contributing data sets are unlikely to be the most informative
criteria to use for identifying a globally partial order.

5.3 Comparative Genomic Analysis

Comparative genomics is the study of the relationship of genome structure and
function across different biological species. It attempts to take advantage of both
similarities and differences in proteins, RNA, and regulatory regions of different
organisms to understand the function and evolutionary processes that act on genomes.
The main analysis performed in comparative genomic studies is the alignment of
biomolecular sequences (nucleotide or amino acidic) of different organisms to search
for their degree of similarity (i.e. homology). Although several different algorithms
exist to perform such analysis, BLAST [16] is the most widely used. BLAST searches
for the nucleotide or amino acidic sequences most similar to a given query sequence
by comparing it with a database of sequences, and identifying the sequences that
resemble the query sequence above a certain threshold. For example, following the
discovery of a previously unknown gene in the mouse, a scientist typically performs a
BLAST search of the human genome to see if humans carry a similar gene; BLAST
identifies sequences in the human genome that resemble the mouse gene based on
similarity of sequence. The output of a BLAST search is a list of similar sequences
ordered by their degree of similarity to the query sequence (Figure 4). It therefore
constitutes a partially ordered set of similar sequences, since two sequences in the set
can have the same degree of similarity to the query sequence.

Fig. 4. Example of ordered BLAST search result for the nucleotide sequence “Human
asparagine synthetase mRNA”

 Search Computing and the Life Sciences 303

In such a comparative genomic context, an important task is to find the genes in
different organisms that are most structurally and functionally similar to a given gene.
To address this aim, it is thus possible to run a BLAST search for that gene and then
to search (e.g. in ArrayExpress) for expression data for that gene and for the gene
sequences obtained by the BLAST search. Integration of the search results by looking
for the gene sequences co-expressed with the given gene in analogous biological
conditions can provide the sought genes. Since gene expression results are
intrinsically ordered (see Figure 1) and constitute a partially ordered set, the order of
the BLAST and the expression data search results to be composed contribute to
identifying the most structurally and functionally similar genes. Requiring multi-
domain search and composition of the obtained ranked search results, this would
therefore be a natural application area for search computing within the life sciences.

6 Conclusions

This chapter has explored the extent to which the proposed search computing
functionalities, which feature multi-domain composition of ranked partial results from
single-domain searches, are able to help answer life science questions that require the
integration of different data types (domains) and forms of ranked data. In particular,
this chapter has investigated ordered data in the life sciences, with a view to
understanding the challenges such data present to information integration platforms,
such as those proposed by search computing. The following observations can be
made:

1. Ordered data, and in particular partially ordered data, are extremely prevalent
in the life sciences, and are poorly served by current data integration
platforms.

2. Ordered data are highly heterogeneous, in that: (i) ordered data may describe
a wide variety of physical, experimental and analytical features; and (ii) the
ordering may represent a range of different notions, such as quantity,
confidence, or location.

As such, providing support for ordering as a first class citizen in integration platforms
in the life sciences seems appropriate. However, it seems likely that no single
mechanism for aggregating ordered data sets will meet the diversity of user
requirements. Nevertheless, supporting multi-domain integration of ordered data
should add value to the results of integration tasks by reducing the need for ad hoc
post processing, and may increase the complexity of life science questions that
integration tools can support directly. For example, questions that seem likely to be
able to be addressed using search computing techniques include: “Which proteins in
different organisms are most structurally and functionally similar to a given protein?”,
“Which genes have the highest sequence similarity in different model organisms and
are highly co-expressed in the same biological conditions?”, “Which proteins are
encoded by co-expressed genes that are likely to interact?”, and “Which drugs threat
diseases that are likely to be associated with a given genetic mutation?”.

Search computing techniques may therefore help in selecting and prioritizing life
science search results according to their collected multi-domain characteristics and

304 M. Masseroli, N.W. Paton, and I. Spasić

the associated confidence values. However, the complex nature of life science data,
the frequency of unavailable or missing values, the diversity of ordering types and the
challenges of combining those orderings present challenges that require further
investigation. Such challenging life science applications may nonetheless represent a
good test bed for advanced search computing applications, with valuable spin-offs for
other scenarios.

References

1. Stead, D., Paton, N.W., Missier, P., Embury, S.M., Hedeler, C., Jin, B., Brown, A.J.P.,
Preece, A.D.: Information quality in proteomics. Brief. Bioinform. 9(2), 174–188 (2008)

2. Parkinson, H., Sarkans, U., Shojatalab, M., Abeygunawardena, N., Contrino, S., Coulson,
R., Farne, A., Lara, G.G., Holloway, E., Kapushesky, M., Lilja, P., Mukherjee, G.,
Oezcimen, A., Rayner, T., Rocca-Serra, P., Sharma, A., Sansone, S., Brazma, A.:
ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic
Acids Res. 33(Database issue), D553-D555 (2005)

3. Galperin, M.Y., Cochrane, G.R.: Nucleic Acids Research annual database issue and the
NAR online molecular biology database collection in 2009. Nucleic Acids
Res. 37(Database issue), D1–D4 (2009)

4. Krallinger, M., Valencia, A., Hirschman, L.: Linking genes to literature: text mining,
information extraction, and retrieval applications for biology. Genome Biol. 9(suppl. 2), S8
(2008)

5. Spasic, I., Ananiadou, S., McNaught, J., Kumar, A.: Text mining and ontologies in
biomedicine: making sense of raw text. Brief. Bioinform. 6(3), 239–251 (2005)

6. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Mashing up search services. IEEE Internet
Comput. 12(5), 16–23 (2008)

7. Hernandez, T., Kambhampati, S.: Integration of biological sources: current systems and
challenges ahead. SIGMOD Record 33(3), 51–60 (2004)

8. Masseroli, M., Ceri, S., Campi, A.: Integration and mining of genomic annotations:
experiences and perspectives in GFINDer data warehousing. In: Paton, N.W., Missier, P.,
Hedeler, C. (eds.) DILS 2009. LNCS (LNBI), vol. 5647, pp. 88–95. Springer, Heidelberg
(2009)

9. Hull, D., Wolstencroft, K., Stevens, R., Goble, C.A., Pocock, M.R., Li, P., Oinn, T.:
Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 34,
729–732 (2006)

10. Goble, C.A., Stevens, R., Ng, G., Bechhofer, S., Paton, N.W., Baker, P.G., Peim, M.,
Brass, A.: Transparent access to multiple bioinformatics information sources. IBM
Systems Journal 40(2), 534–551 (2001)

11. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web.
In: Proceedings of the 10th International World Wide Web Conference, WWW 2001, pp.
613–622. ACM Press, New York (2001)

12. Edgar, R., Domravech, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression
and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

13. Jones, P., Côté, R.G., Martens, L., Quinn, A.F., Taylor, C.F., Derache, W., Hermjakob, H.,
Apweiler, R.: PRIDE: a public repository of protein and peptide identifications for the
proteomics community. Nucleic Acids Res. 34(Database Issue), D659–D663 (2006)

14. Olken, F.: Graph data management for molecular biology. OMICS: A Journal of Integr.
Biol. 7(1), 75–78 (2003)

 Search Computing and the Life Sciences 305

15. Castrillo, J.I., Zeef, L.A., Hoyle, D.C., Zhang, N., Hayes, A., Gardner, D.C., Cornell, M.J.,
Petty, J., Hakes, L., Wardleworth, L., Rash, B., Brown, M., Dunn, W.B., Broadhurst, D.,
O’Donoghue, K., Hester, S.S., Dunkley, T.P., Hart, S.R., Swainston, N., Li, P., Gaskell,
S.J., Paton, N.W., Lilley, K.S., Kell, D.B., Oliver, S.G.: Growth control of the eukaryote
cell: a systems biology study in yeast. J. Biol. 6(2), 4 (2007)

16. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local Alignment
Search Tool. J. Mol. Biol. 215(3), 403–410 (1990)

17. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf.
Process Manag. 24(5), 513–523 (1988)

18. Leitner, F., Krallinger, M., Rodriguez-Penagos, C., Hakenberg, J., Plake, C., Kuo, C.J.,
Hsu, C.N., Tsai, R.T., Hung, H.C., Lau, W.W., Johnson, C.A., Saetre, R., Yoshida, K.,
Chen, Y.H., Kim, S., Shin, S.Y., Zhang, B.T., Baumgartner Jr., W.A., Hunter, L., Haddow,
B., Matthews, M., Wang, X., Ruch, P., Ehrler, F., Ozgür, A., Erkan, G., Radev, D.R.,
Krauthammer, M., Luong, T., Hoffmann, R., Sander, C., Valencia, A.: Introducing meta-
services for biomedical information extraction. Genome Biol. 9(suppl. 2), S6 (2008)

19. Goble, C.A., Belhajjame, K., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R., Pettifer,
S., Nzuobontane, E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: a curated Web
Service registry for the Life Science community. In: ISMB/ECCB 2009. Technology
Track: TT40 (2009)

20. Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A., Tarczy-Hornoch, P.: Data integration
and genomic medicine. J. Biomed. Inform. 40(1), 5–16 (2007)

21. Pihur, V., Datta, S., Datta, S.: Weighted rank aggregation of cluster validation measures: a
Monte Carlo cross-entropy approach. Bioinformatics 23(13), 1607–1615 (2007)

22. DeConde, R., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., Etzioni, R.: Combining
results of microarray experiments: a rank aggregation approach. Stat. Appl. Genet. Mol.
Biol. 5, Article 15 (2006)

23. Pihur, V., Datta, S., Datta, S.: RankAggreg, an R package for weighted rank aggregation.
BMC Bioinformatics 10, 62 (2009)

24. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete
Math. 17(1), 134–160 (2003)

25. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proceedings 17th
International Conference on Data Engineering, ICDE 2001, pp. 421–430. IEEE Press, New
York (2001)

26. Hue, C., Boullé, M.: A new probabilistic approach in rank regression with optimal
bayesian partitioning. J. Mach. Learn. Res. 8, 2727–2754 (2007)

27. Cheung, C.W.: Probabilistic rank aggregation for multiple SVM ranking. MPhil Thesis.
Department of Computer Science and Engineering, The Hong Kong University of Science
and Technology. Hong Kong (2009)

28. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization.
Mathematics in Science and Engineering, vol. 176. Academic Press Inc., Orlando (1985)

29. Steuer, R.E.: Multiple criteria optimization: theory, computations, and application. John
Wiley & Sons, Inc., New York (1986)

30. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons,
Inc., New York (2002)

31. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. KanGAL Report no. 200001
(2000)

32. Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: the
strength Pareto approach. TIK-Report no. 43 (1998)

306 M. Masseroli, N.W. Paton, and I. Spasić

33. Handl, F., Kell, D.B., Knowles, J.D.: Multiobjective optimization in bioinformatics and
computational biology. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(2), 279–292 (2007)

34. Perez-Iratxeta, C., Bork, P., Andrade, M.A.: Association of genes to genetically inherited
diseases using data mining. Nat. Genet. 31(3), 316–319 (2002)

35. Jelier, R., Jenster, G., Dorssers, L.C., van der Eijk, C.C., van Mulligen, E.M., Mons, B.,
Kors, J.A.: Co-occurrence based meta-analysis of scientific texts: retrieving biological
relationships between genes. Bioinformatics 21(9), 2049–2058 (2005)

36. Kerr, G., Ruskin, H.J., Crane, M., Doolan, P.: Techniques for clustering gene expression
data. Comput. Biol. Med. 38(3), 283–293 (2008)

37. Kearsey, M.J.: The principles of QTL analysis (a minimal mathematics approach). J. Exp.
Bot. 49(327), 1619–1623 (1998)

38. Datta, R., de Schoolmeester, M.L., Hedeler, C., Paton, N.W., Brass, A.M., Else, K.J.:
Identification of novel genes in intestinal tissue that are regulated after infection with an
intestinal nematode parasite. Infect. Immun. 73(7), 4025–4033 (2005)

Appendix A:
Search Computing Dictionary

1 Service Framework

Service Mart
Data abstraction modeling → data sources referring to the same kind of “Web
object” (e.g., hotels, movies, etc.). Service marts are described at three different
levels: a higher level describing the → service mart signature and → connection
patterns, an intermediate level describing all the → service interfaces available for
the → service mart signature, and a lower level describing the → service
implementation of each service interface.

Data Source
A ◊ data repository that can be accessed programmatically, such as a ◊ database, an
◊ application program, a ◊ Web Service, a ◊ wrapper extracting data from a ◊ Web
site, etc.

Service Mart Signature
A characterization of a → service mart in ◊ relational terms. It consists of the name
of the service mart and the set of → attributes of the service mart.

Attributes of a Service Mart
Attributes characterizing the different ◊ fields that are handled by the → service mart
to describe properties of a Web object. Each attribute is associated with a → built-in
type and possibly with a set of → keywords. The set of attributes of a service mart
can be either single-valued or multi-valued. Multi-valued attributes can be put
together to form a → repeating group of attributes.

Repeating Group of Attributes
A set of multi-valued attributes of a → service mart that collectively define one ◊
property of a Web object. Within the same Web object, the attributes of the same
repeating group all have the same number of values.

Built-in Type
Any concrete type of a programming language supporting Search Computing, such as
int, string, float, double, date, …

Keyword
A term characterizing the semantics of an attribute. Keywords are normally taken
from vocabularies, e.g. ◊ WordNet.

Service Interface
A characterization of one of the possible → service implementations of a → service
mart given by one ◊ URI, one set of → Service Parameters, and one → access

308 Search Computing Dictionary

pattern. The same → access pattern is shared by possibly more than one service
interface. Every service interface has exactly one service implementation.

Adornment
A pair consisting of an → access pattern and a → scoring function associated to a
→ service interface. The same adornment is shared by possibly more than one
service interface.

Adorned Service Mart
The association of a → service mart with an → adornment existing in at least one
→ service interface of the service mart.

Service Implementation
A concrete ◊ implementation of one → service interface, thus providing operations
for accessing data available at one or more → data sources according to the →
access pattern of the service interface.

Access Pattern
An labeling of a → service mart signature that determines which attributes of the →
service mart are ◊ output and which ones are ◊ input attributes. Among ◊ output
attributes, some may be labeled as ranked and associated with a → score, and in that
case the service implementation returns its results in an order which depends on them.
There can be several → service interfaces for the same → access pattern.

Scoring Function
Function mapping each tuple output by a → service implementation into a → score.
The mapping can be determined based on the → attributes of the service mart of the
→ service interface associated with the scoring function, or the position of the tuple
in the output, and depends on the → ranking type. Note that if the → ranking type
is unranked, then the scoring function is a fixed constant (e.g., 1).

Connection Pattern
Specification of the join between two → service marts, expressed as a conjunctive
expression of join predicates using the → attributes of the service marts. Every join
predicate is built by a pair of → service mart attributes, orderly taken from the first
and second → service mart, and an arbitrary ◊ comparison operator.

Service Mart Design
Process of defining the signature of a → service mart, then its →access patterns,
then the ◊data sources that can support queries expressed with those →access
patterns, each of which is registered as a →service interface. The process is
completed by defining →connection patterns between pairs of →service marts.

Service Mart Implementation
Production of a → service implementation for a given → service interface. The
process may use components and tools for data materialization, extraction,
conversion, and translation.

308 Service Framework

 Search Computing Dictionary 309

Service Registration
Addition of a → service implementation and its → service interface to a → service
mart. With the service registration, the service implementation is made available at
the ◊ URI specified in the service interface.

Ranking Type:
A set of properties regarding the ranking, i.e., the order in which the results of
consecutive → fetches performed on a → service implementation are returned. The
ranking type defines:

• whether a → service implementation is ◊ ranked or ◊ unranked,
• whether it is opaque or visible (i.e., the → attributes of the service mart include

a → score),
• the set of output attributes the ranking depends on (the set is empty if it does not

depend on output attributes)
• the → scoring function mapping the set of output attributes the ranking depends

on into a → score, and
• whether the ranking is ◊ ascending or ◊ descending.

Search Service
Service implementation that returns → chunks of ranked results that are possibly ◊
unbounded in number. The corresponding ranking type is ◊ ranked.

Exact Service
Service implementation whose corresponding ranking type is ◊ unranked. The results
returned by such a service implementation are ◊ finite and not → chunked, except for
technical reasons.

Service Parameter:
Meta data describing the → service implementation of a → service mart, being one
of → ranking type, → cacheable, → cache time-to-live, → isChunked, → chunk
size, → ERSPI, → decay factor, → response time, and → cost.

Fetch
Request for the next → chunk of results from a → service implementation.

Chunked
Property of a service implementation whose results are organized in → chunks.

Chunk
Any page of results in the form of ◊ tuples returned by a → service implementation.

Cacheable
Parameter of a → service interface. True if the results returned by a → service
implementation can be stored in a ◊ cache; false otherwise.

310 Search Computing Dictionary

Cache Time-to-Live
Parameter of a → service interface. Duration of the validity of ◊ cached data.

isChunked
Parameter of a → service interface. True if the → service implementation is →
chunked; false otherwise.

Chunk Size
Parameter of a → service interface. The number of ◊ tuples in a → chunk.

ERSPI (Expected Result Size Per Invocation)
Parameter of a → service interface. ◊ Positive real number expressing the expected
size of the result produced by a → service implementation when called with
arbitrary input values; in ◊ relational terms, expresses the ◊ average cardinality of
the result of a query. The ERSPI is not very significant with search services, as the
complete result may consist of a very high number of ◊ tuples, which however are not
completely retrieved by fetch operations.

Selectivity
◊ Positive real number expressing the ratio between → ERSPI of a → service
implementation and the total number of tuples that can be returned by the → service
implementation.

Decay Function
Parameter of a → service interface. A function that models the decay of the →
scores of the results returned by consecutive → fetches.

Response Time
Parameter of a → service interface. Average ◊ response time of a → fetch.

Cost
Parameter of a → service interface. ◊ Monetary cost of a → fetch.

Score
Value in the [0,1] interval indicating the quality (1=highest, 0=lowest) of a ◊ tuple
according to a predefined criterion as specified by a → scoring function.

2 Query Expression and Optimization

Query on Service Marts
A query is a ◊ graph whose nodes are labeled with → service marts and whose
edges are labeled with → connection patterns. Nodes are additionally labeled with ◊
selection predicates over the → service mart attributes and ◊ projected attributes
forming the result. The same → service mart can appear multiple times in the same

310 Query Expression and Optimization

 Search Computing Dictionary 311

query. Every query is interpreted as a ◊ conjunctive query, whose ◊ join predicates
are built from →connection patterns.

Query on Adorned Service Marts
A query is a ◊ graph whose nodes are labeled with → adorned service marts and
whose edges are labeled with → connection patterns. Additional labeling is as for
→queries on service marts. A →query on service marts can be turned into a query
on adorned service marts simply by substituting to every →service mart labeling a
query node one of the corresponding → adorned service marts.

Feasible Query
A →query on adorned service marts is feasible if the →access patterns used in the
query satisfy given well-formedness conditions guaranteeing that it is possible to
compute the results as if access patterns were not present.

Query on Service Interfaces
A →query on adorned service marts can be turned into a query on service
interfaces simply by substituting to every → adorned service mart labeling a query
node one of its →service interfaces. Recall that every → service interface is also
associated with a → service implementation.

Query Formulation
The process of specifying → feasible queries on → service interfaces and possibly a
→ ranking function associated with the query. Suitable interfaces assist users in
formulating only →feasible queries.

Query Processing
The process of executing → feasible queries on → service interfaces, producing a
→ query result. The process consists of (1) query installation (2) query optimization
(3) query execution (4) user interaction for interpreting results, possibly leading to
further steps of query processing.

Query Result
A ◊ list of → combinations.

Combination
A ◊ tuple of the → query result, built by the matching ◊tuples produced during →
query execution, where a query result ◊ tuple includes exactly one ◊ tuple from the
results produced by each → service implementations involved in the query
execution. Combinations in the query result are ordered according to a → ranking
function associated with the query.

Ranking Function
A ◊ weighted sum of the individual → scores of the ◊ tuples forming a →
combination, which returns the ranking of the → combination according to the
users’ preferences.

312 Search Computing Dictionary

Query Optimization
The process of building query plans for → correct queries, and then selecting the →
optimal query plan which is then executed.

Query Plan
A ◊ directed acyclic graph made of → nodes of a query plan and → edges of a
query plan, representing an operational specification of the order in which → service
interfaces are to be invoked in order to retrieve a specified number of → chunks, and
of how → joins are to be performed between → chunks according to specific → join
strategies.

Node of a Query Plan
Any node in a → query plan, representing the → initial node, or the → final node,
or an → invocation node, or a → selection node, or a → join node.

Edge of a Query Plan
A directed edge in a → query plan, representing the data transfer between two →
nodes of a query plan

Initial Node
A → node of a query plan with no incoming → edges and one or more outgoing →
edges, used to denote the user input. It is the only node in the → query plan without
incoming edges, and every → query plan must have exactly one initial node.

Final Node
A → node of a query plan with no outgoing → edges and one or more incoming →
edges, used to denote the production of the query result. It is the only node in the →
query plan without outgoing edges, and every → query plan must have exactly one
final node.

Invocation Node
A → node of a query plan that represents the invocation of a → service interface.

Selection Node
A → node of a query plan associated with a ◊ selection operation.

Join
An operation between two → service interfaces, called join operands, that uses →
connection patterns in order to form → combinations of the ◊ tuples returned as
results of service invocations. Joins are classified as → pipe joins or as → parallel
joins, depending on the relationships between the → access patterns associated with
the join operands.

Pipe Join
A configuration of two → invocation nodes A and B in the → query plan such that
A and B are connected by a directed path from A to B, and one or more output

312 Query Expression and Optimization

 Search Computing Dictionary 313

attributes of A contain values which are used as input in B (i.e., attributes are labeled
as input in the → access pattern of B).

Pipe Node
The destination node in the directed path of a →pipe join configuration.

Parallel Join
A configuration of one → join node and two antecedent nodes A and B in the →
query plan such that A and B correspond to service interfaces and neither the output
attributes of A contain values that are used as input in B nor the output attributes of B
contain values that are used as input in A.

Join Node
A→ node of a query plan with exactly two incoming → edges of a query plan and
one or more outgoing → edges of a query plan, used to denote a → parallel join.

Join Strategy
Defines the order in which → chunks, received at a join or pipe node, are to be
considered in order to produce → combinations (i.e. join results). Different join
strategies correspond to different orders in which the points in the → join search
space are to be considered. Join execution strategies can use the → nested loop or →
merge scan strategies and perform a → rectangular exploration or a → triangular
exploration.

Nested Loop
A → join strategy in which all → chunks from one service are retrieved (and
possibly cached) before proceeding to retrieve the next → chunk from the other
service.

Merge Scan
A → join strategy in which → chunks from the two services being joined are
alternatively retrieved in a fixed alternated order.

Rectangular Exploration
An exploration of join combinations in which all available candidate combinations are
considered as soon as new chunks are made available. The rectangular strategy can be
applied to both → merge scan and → nested loop.

Triangular Exploration
An exploration of join combinations in which only the one half of the available candidate
yielding to better rankings are considered as soon as new chunks are made available. The
triangular strategy can be applied to both → merge scan and → nested loop.

Cost Model
A selection of the relevant → service parameters and mathematical relationships
thereof for assessing the execution cost of a query, representing a specific objective to
guide the optimization process.

314 Search Computing Dictionary

Cost Function
A mathematical function of some chosen → service parameters whose result is a
measure of the → cost of a query plan.

Cost of a Query Plan
The result of applying a specific → cost function with a specific → cost model to a
specific → query plan.

Optimal Query Plan
The → query plan whose → cost is minimal among all possible plans for a given
query.

3 Query Execution

Execution Plan
Directed graph consisting of nodes in the form of → scheduler units and edges in the
form of either → data flow edges and → control flow edges. An execution plan
represents the physical evaluation of a → query plan.

Scheduler Unit
A node of the → execution plan that has a well defined semantics in terms of an
operation that it performs within the execution plan. → producer Unit and →
consumer Unit.

Producer Unit
A scheduler unit that produces output data, i.e. a publisher. → service Invocation
unit, → (parallel) join unit, → ranker unit, → chunker unit, → selection unit,
and → cache unit.

Consumer Unit
A scheduler unit that consumes input data, i.e. a subscriber. → service invocation
unit, → (parallel) join unit, → ranker unit, → chunker unit, → selection unit,
and → cache unit.

Control Flow Edge
An edge of the execution plan that transmits a control signal from one unit to another.
Signals are of three kinds: → pulse signals, → suspend / resume signals.

Data Flow Edge
An edge of the execution plan that transports data, → chunks of tuples, from a →
producer unit to a → consumer unit.

Clock Unit
Controls n > 0 → service invocation units using → pulse signals which are
produced at each → clock cycle. A clock unit is controlled by a → clock function
and adjusted by → clock modifiers.

314 Query Execution

 Search Computing Dictionary 315

Pulse Signal
Pulse signals are emitted by the clock and trigger → service invocation units to fetch
data. They contain the specification of the number of → fetches to be performed in
each → clock cycle. A pulse signal can as well be produced by a data → producer
unit when it first produces a tuple in output.

Clock Frequency
Parameter of the → clock unit that describes how many → clock cycles per time unit
a clock has. Example: 1/50 s means 50 clock cycles per second.

Clock Cycle
The period during which the clock triggers the services according to current n-tuple of
the → clock function. The number of clock cycles per time unit is determined by the
→ clock frequency.

Clock Function
A clock function is a regular expression that describes, for each → service invocation
unit controlled by the clock and for each → clock cycle, the number of → fetches to
be performed by the Service Invocation Unit. A regular expression for a clock
function maps into a sequence of clock values given as n-tuples of ◊ integer
numbers, where n is the number of Service Invocation Units controlled by the →
clock unit. As an example, (1,1)(2,2)* represents a sequence in which two services
are invoked once in the first clock cycle, and twice in any subsequent clock cycle.
Each clock cycle of a clock function is expected to control the → join execution
strategy in terms of → chunks produced.

Clock Modifier
A clock modifier for a → clock unit is an ◊ n-tuple of ◊ positive real numbers,
where n is the number of → service invocation units controlled by that clock unit.
During query execution, clock modifiers are used to adjust the number of → fetches
for each Service Invocation Unit controlled by the clock unit.

Suspend/Resume Signals
A suspend signal is sent by the → parallel join unit to the → clock unit once the →
skew factor of the join unit has been reached; it is also sent when a given number k
of results have been produced. On receipt of a suspend signal, the clock suspends
execution only at the end of a clock cycle. As soon as the → join execution strategy
realigns, a resume signal is sent to the clock to continue query execution. Suspend and
resume signals can as well be produced by → end users, the former occur when they
want to suspend the execution of an execution plan, e.g. because they are temporarily
satisfied with the current results, the latter when they want to resume execution of an
→ execution plan.

Chunker Unit
A → scheduler unit that, based on the specification of a → chunking function,
constructs new → chunks with the tuples it gets as input. Internally, the chunker unit
breaks up the chunks in input and produces new chunks in output.

316 Search Computing Dictionary

Chunking Function
A specification, given in the form of a regular expression, of how many tuples of the
input are to be combined into every chunk in output. Example: 4^3, 3* means: first
produce 3 chunks with 4 tuples, then continue with chunks of 3 tuples.

Service Invocation Unit
A service invocation unit fetches data by using a specific → access pattern of a given
→ service mart. Service invocation units can either invoke → search services or →
exact services. Service invocation units are triggered by a → pulse signal or by the
availability of input data. When a service invocation follows one or more service
invocations in the execution plan, it implicitly computes a → pipe join.

Parallel Join Unit
It joins the results of two search service calls; executing a join causes the production
of result tuples, called → combinations, according to a → join execution strategy.
Joins are associated with a → Skew value and can emit → suspend/resume Signals
to the clock that controls the → service invocation units generating the data for the
join unit.

Skew
In the case of runtime service behavior diverging from the expected one, → parallel
join units are allowed to deviate from their predefined → join execution strategy.
The maximum permitted deviation is specified by the skew value. It states how many
→ chunks on the x or y axis can be processed, in addition to the planned ones, before
the join unit sends a → pause signal to its clock. The signal stops the production of
new chunks and permits the join unit to wait for already fetched chunks to propagate
through the → query execution plan.

Cache Unit
Cache units store the output generated by → producer units and make it available to
→ Consumer Units. Therefore they serve as a common point of synchronization in
the producer/consumer (or publish/subscribe) model. Inserts of data that is already
cached have no effect. Caches may trigger their consumers whenever new data is
available.

Ranker Unit
Ranks or re-ranks tuples in → chunks according to a → ranking function. It has a
blocking behavior, which is controlled by the specification of the ranking function.
More precisely, the unit re-ranks tuples up to a certain size or time limit, after which it
outputs the ranked tuples and resets itself. It may therefore work as a synchronization
point when receiving tuples from more than one unit.

Selection Unit
Performs selections (consisting of ◊Boolean expressions of ◊ selection predicates)
over the dataflow ◊ tuples in input; only ◊ tuples satisfying the selection are produced
in output.

316 Query Execution

 Search Computing Dictionary 317

4 Liquid Queries

Resource Graph
Graph showing to → expert users nodes labeled with → service marts or → service
interfaces and arcs labeled with → connection patterns; → expert users build
queries by means of graphic interfaces, with a ◊ mash-up style. Query formulation
tools include facilities for selecting nodes and arcs, selecting result attributes,
describing the rank function, and describing possible query augmentations.

Expert User
Knows about resources and their semantics, assembles queries and defines → query
interfaces for personal use but also for saving them and making them available to →
end users.

End User
Interacts with query by submitting values into query forms, possibly within slots
which are well-defined in terms of semantics and with expected data types (for
matching with given → attributes of service marts).

Liquid Query
Query whose formulation is flexible and fluid, with the purpose of discovering the
user intent while submitting queries and reading results, in a more precise manner,
through a step-by-step approach that allows the user to get closer and closer to the
desired information. A liquid query consists of an initial → query interface, may
support several → query augmentations, and produces a → liquid result.

Query Expansion
Possibility of adding to a query a simple sub-query, consisting of joining one of the
→ service interfaces already in the query to another → service interface, connected
to it though a → connection pattern. The process is recursive and can be applied to
the → result page or to a subset of the → result combinations shown in the →
result page.

Liquid Result
a set of results of a liquid query, which in turn is flexible thanks to a set of → result
interaction primitives that allow the end-user to modify the → result structure and
set of → result instances, possibly shown partitioned in → result pages.

Query Interface
A ◊ user interface that is offered for formulating the initial query. It consists of a set
of → search service forms, which in turn are composed by → search fields.

Result Instance
Result tuple of a → liquid query, that complies with the corresponding → result
structure.

318 Search Computing Dictionary

Result Page
Set of → result instances that are shown together within the → liquid result
interface.

Result Structure
The ◊ schema of the result of a liquid query. It consists of a set of typed attributes.
See also → Attributes of a Service Mart.

Search Fields
Input fields that compose a → search service form.

Search Service Form
Web form that allows user to submit parameters required by a search service in a →
query interface.

Result Interaction Primitive
User command enabled within → liquid results to refine, modify, extend the result
itself (either in terms of → result structure or → result instances). Result
interaction primitives are listed at the end of this dictionary and are marked with the
symbol §.

§ Group
Collecting in a group the results having common values for a specified attribute. The
group assumes as a title the attribute value at hand. By applying this operation, all the
clustering and sorting options possibly defined by the user are applied separately to
each group.

§ Ungroup
Removing the existing grouping.

§ Cluster
Clustering adjacent tuples on a specific attribute and hiding duplicate valuesDefining
a new grouping on the results.

§ Uncluster
Removing a clustering on the results.

§ Sort
Sorting the results currently being displayed according to one or more different
attributes with respect to the ones initially defined. Sorting can be ascending or
descending.

§ Unsort
Removing a sorting on the results.

318 Liquid Queries

 Search Computing Dictionary 319

§ Drill-Down
Visualization of (already available but currently hidden) additional attributes.

§ Roll-Up
Hiding some attributes that are currently visible (and accordingly removing
duplicates).

§ Filter
Reducing the number of shown results based on a simple condition on one attribute.

§ DeleteInstance
Locally deleting one instance from the currently displayed items. This can be seen as
a particular case of filter operation.

§ RemoveFilter
Canceling a filter currently applied.

§ More (all)
Asking for more results from the same query, by extracting results from every
involved → service mart.

§ More of One Service
Asking for more results on a limited set of → service marts involved in the query.

§ Expand
Asking for additional results (coming from other → service marts, connected
through predefined → connection patterns) on a limited set of items listed in the
current result set of the query.

§ Change Ranking
Ranking the results of the query according to a different ranking function wrt the one
initially defined. This might produce a different set of results than those displayed
before re-ranking.

§ Pivoting
Clustering together all instances with the same multivalue attribute value or repeating
group value, thereby rendering the other attributes as repeating groups.

§ ChangeProvider
Changing the provider of a specific → service interface.

Author Index

Baeza-Yates, Ricardo 11
Baumgartner, Robert 94
Belhajjame, Khalid 114
Bozzon, Alessandro 135, 244, 268
Braga, Daniele 188, 225
Brambilla, Marco 244, 268
Buganza, Tommaso 45

Campi, Alessandro 94, 114, 163
Casati, Fabio 72
Ceri, Stefano 3, 163, 188, 225, 244, 268
Corcoglioniti, Francesco 225, 268

Daniel, Florian 72
Della Valle, Emanuele 45

Embury, Suzanne M. 114

Fernandes, Alvaro A.A. 114
Fraternali, Piero 135, 244

Gatti, Nicola 268
Gottlob, Georg 94, 163
Grossniklaus, Michael 188, 225

Hedeler, Cornelia 114
Herzog, Marcus 94

Ilyas, Ihab F. 211

Maesani, Andrea 163
Manolescu, Ioana 244
Martinenghi, Davide 211
Masseroli, Marco 291

Paton, Norman W. 114, 291

Raghavan, Prabhakar 11
Ronchi, Stefania 163

Soi, Stefano 72
Spasić, Irena 291

Tagliasacchi, Marco 211

Weikum, Gerhard 24

	Title Page
	Preface
	Organization
	Table of Contents
	Part I Visions
	Chapter 1: Search Computing
	Beyond Page Search
	State of the Art
	Building Search Computing Systems
	Building Search Computing Applications

	Chapter 2: Next Generation Web Search
	Introduction
	TheWeb
	Content
	Structure
	Usage

	Web Trends
	User Generated Content
	Social Networks
	Web of Objects

	Search Trends
	Query Intent
	Open Search Ecosystem

	How This Might Work
	Pre-processing
	Query Processing

	Research Challenges
	Crawling
	Extracting and Ranking Entities
	Query Intent
	Exploiting Web Queries
	Results Page Layout
	Social Networks
	Scalability

	FinalRemarks
	References

	Chapter 3: Search for Knowledge
	Trends and Opportunities
	Challenge: Knowledge Harvesting
	Temporal Knowledge
	Multilingual Knowledge
	Multimodal Knowledge
	Active Knowledge
	Diversity and Provenance
	Scalability

	Challenge: Query Processing
	Query Language
	Schema-Free Querying
	Temporal Querying
	Towards SPARQL Full-Text
	Programming and User Interfaces

	Challenge: Ranking Model
	Entity Ranking
	RDF Knowledge Ranking
	Personalization
	Diversity

	Conclusion
	References

	Part II Technology Watch for Search Computing
	Introduction to Part II Technology Watch for Search Computing
	Chapter 4: The Search Engine Industry
	Problem Setting
	A Method to Evaluate Search Engine
	Sampling
	A Search Engine Model Definition
	A Simple Evaluation Method

	Results
	Strategy 1: Bet on Everything
	Strategy 2: Bet on User Interaction (Pre and Post Search)
	Strategy 3: Bet on Preparing for Searching
	Strategy 4: Bet on Searching Power
	Strategy 5: Bet on Searching Excellence

	Discussion
	References

	Chapter 5: From Mashup Technologies to Universal Integration: Search Computing the Imperative Way
	Introduction
	Traditional Composition and Development Approaches
	Service Composition Approaches
	UI Composition Approaches
	Computer-Aided Web Engineering Tools
	Portals and Portlets

	Web Mashups
	Manual Development
	Semi-assisted Development
	Fully-Assisted Development

	Universal Composition: Guiding Principles
	The mashArt Platform
	The mashArt Component Model
	Universal Composition Model
	Implementing and Provisioning Universal Compositions

	Conclusion
	References

	Chapter 6: Web Data Extraction for Service Creation
	Introduction
	Web Data Extraction
	The Lixto Approach
	Transforming Web Pages and Deep Web Sources into Web Services
	Wrapper Generation with Lixto Visual Developer
	Lixto WPI Server
	Web Service Delivery

	Application Areas and Future Research Issues
	Sample Application Areas
	Future Challenges

	Conclusions
	References

	Chapter 7: Dataspaces
	Introduction
	The Classification Framework
	Initialisation Phase
	Usage Phase: Search/Query and Their Evaluation
	Maintenance and Improvement Phase
	Uncertainty
	Human-Computer Interface

	Data Integration Proposals
	The Interplay between Dataspaces and Search Tasks
	Performing Search Tasks in Dataspaces
	Using Dataspaces for Mult-domain Search Tasks

	Conclusions
	References

	Chapter 8: Multimedia and Multimodal Information Retrieval
	Introduction
	Motivations, Requirements and Applications of Multimedia Search

	Challenges of Multimedia Information Retrieval
	Challenge 1: Content Acquisition
	Challenge 2: Content Normalization
	Challenge 3: Content Analysis and Indexing
	Challenge 4: Content Querying
	Challenge 5: Content Browsing

	The MIR Architecture
	The Content Process
	The Query Process

	Metadata
	Techniques for Content Processing
	Examples of MIR Query Languages
	Examples of Research and Commercial MIR Solutions
	European and Regional Research Projects
	Examples of Commercial MIR Systems

	Conclusion and Perspectives
	References

	Part III Issues in Search Computing
	Introduction to Part III: Search Computing in a Nutshell
	Chapter 9: Service Marts
	Introduction
	Service-Oriented Architectures for Data Publishing
	Service Description
	Service Registration
	Service Discovery

	Service Marts
	Conceptual Level
	Logical Level
	Physical Level
	Connection Patterns

	Service Implementation
	Web Service Registration
	Web Page Wrapping
	Data Materialization

	Running Example
	Service Mart: “Movie”
	Service Mart: “Theatre”
	Service Mart: “Restaurant”

	Conclusions
	References

	Chapter 10: Join Methods and Query Optimization
	Introduction
	State of the Art
	Query Processing Foundations
	Answering Queries over Web Services
	Answering Queries under Access Limitations
	Web Service Management Systems

	Query Formulation and Translation into an Executable Plan
	Query Formulation
	Query Plans

	Join Methods for Search Computing
	Problem Statement
	Topology
	Invocation Strategy
	Completion Strategy
	Join Methods

	Query Optimization for Search Computing
	Cost Metrics
	Branch and Bound Approach to Query Optimization
	Phase 1: Access Pattern Selection
	Phase 2: Selection of a Query Topology
	Phase 3: Choice of the Number of Fetches
	Optimization Applied to the Running Example

	Conclusions
	References

	Chapter 11: Rank-Join Algorithms for Search Computing
	Introduction
	New Rank-Join Challenges in Search Computing
	Rank-Join Algorithms: State of the Art
	Data Access
	Implementation Level

	Optimization of Rank-Join Algorithms
	The Need for Query Optimization in Search Computing
	Cost Models for Query Optimization
	Need for Adaptive Algorithms

	Conclusion
	References

	Chapter 12: Panta Rhei: Flexible Execution Engine for Search Computing Queries
	Introduction
	State of the Art
	Query Processing Paradigms
	Adaptation

	Panta Rhei Specifications
	Structure of Execution Plans
	Scheduling Units in Panta Rhei

	Examples
	Conclusion
	References

	Chapter 13: Liquid Queries and Liquid Results in Search Computing
	Introduction
	State of the Art
	Behavioral Studies of Information Seeking and Exploratory Search
	Topic Exploration Systems
	Tabular Search Systems
	Summary and Discussion

	Liquid Query Paradigm
	Liquid Query Concepts
	Liquid Query Interaction Process
	Remote Query Interaction Primitives
	Local Query Interaction Primitives
	Local Manipulation Primitives
	Data Visualization Primitives
	Query Management Primitives
	Result Quality Primitives

	Running Example
	Initial Query Submission and Result Visualization
	Application of Local Filters
	Query Expansion
	Adding Calculated Attributes
	Visualization of the Results on a Map and on Parallel Coordinates
	Query Management Operations

	Conclusions and Future Work
	References

	Chapter 14: Building Search Computing Applications
	Introduction
	Development of Search Computing Applications
	User Roles
	Development Process

	Development Tools
	Web Design Tools and Environments
	SeCo Development Tools

	Software Architecture
	High-Performance Architectures for Web Applications
	SeCo Architecture
	Deployment

	Business Models in Search Applications
	Principles of Advertising in Search Engines
	Advertising Tools in Search Engines
	Business Models for Search Computing

	Conclusions
	References

	Chapter 15: Search Computing and the Life Sciences
	Introduction and Motivation
	Ordered Data in the Life Sciences
	Combining Multi-domain Ordered Data in the Life Sciences
	Managing Domain Ranking in Integrated Data
	Data Integration Case Studies in Which Order Matters
	Identifying Genes Relevant to a Disease
	Identifying Genes Associated with Traits in Quantitative Trait Loci
	Comparative Genomic Analysis

	Conclusions
	References

	Appendix A: Search Computing Dictionary
	Service Framework
	Query Expression and Optimization
	Query Execution
	Liquid Queries

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

