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Preface

It gives us great pleasure to present the proceedings of the 9th Asian Conference
on Computer Vision (ACCV 2009), held in Xi’an, China, in September 2009.
This was the first ACCV conference to take place in mainland China.

We received a total of 670 full submissions, which is a new record in the
ACCV series. Overall, 35 papers were selected for oral presentation and 131
as posters, yielding acceptance rates of 5.2% for oral, 19.6% for poster, and
24.8% in total. In the paper reviewing, we continued the tradition of previous
ACCVs by conducting the process in a double-blind manner. Each of the 33 Area
Chairs received a pool of about 20 papers and nominated a number of potential
reviewers for each paper. Then, Program Committee Chairs allocated at least
three reviewers to each paper, taking into consideration any conflicts of interest
and the balance of loads. Once the reviews were finished, the Area Chairs made
summary reports for the papers in their pools, based on the reviewers’ comments
and on their own assessments of the papers.

The Area Chair meeting was held at Peking University, Beijing during July
6–7, 2009. Thirty-one Area Chairs attended the meeting. They were divided
into eight groups. The reviews and summary reports for the papers were dis-
cussed within the groups, in order to establish the scientific contribution of each
paper. Area Chairs were permitted to confer with pre-approved “consulting”
Area Chairs outside their groups if needed. The final acceptance decisions were
made at a meeting of all the Area Chairs. Finally, the Program Chairs drew up
a single-track technical program which consisted of 12 oral sessions and three
poster sessions for the three-day conference. We are glad to see that all of the
oral speakers presented their papers at the conference.

The program included three plenary sessions in which world-leading
researchers, Roberto Cipolla (University of Cambridge), Larry S. Davis (Uni-
versity of Maryland), and Long Quan (Hong Kong University of Science and
Technology), gave their talks. We would like to thank them for their respec-
tive presentations on 3D shape acquisition, human tracking and image-based
modeling, which were both inspiring and entertaining.

A conference like ACCV 2009 would not be possible without the concerted
effort of many people and the support of various institutions. We would like
to thank the ACCV 2009 Area Chairs and members of the Technical Program
Committee for their time and effort spent in reviewing the submissions. The
local arrangement team, led by Yanning Zhang, did a terrific job in organizing
the conference. We also thank Katsushi Ikeuchi, Tieniu Tan, and Yasushi Yagi,
whose help was critical at many stages of the conference organization. Last but
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not least, we would like to thank all of the attendees of the conference. Due to
their active participation, this was one of the most successful conferences in the
history of the ACCV series.

December 2009 Hongbin Zha
Rin-ichiro Taniguchi

Stephen Maybank
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Jérôme Courchay, Jean-Philippe Pons, Pascal Monasse, and
Renaud Keriven

Semi-supervised Feature Selection for Gender Classification . . . . . . . . . . . 23
Jing Wu, William A.P. Smith, and Edwin R. Hancock

Planar Scene Modeling from Quasiconvex Subproblems . . . . . . . . . . . . . . . 34
Visesh Chari, Anil Nelakanti, Chetan Jakkoju, and C.V. Jawahar

Fast Depth Map Compression and Meshing with Compressed Tritree . . . 44
Michel Sarkis, Waqar Zia, and Klaus Diepold

A Three-Phase Approach to Photometric Calibration for Multi-
projector Display Using LCD Projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Lei Zhang, Siyu Liang, Bo Qin, and Zhongding Jiang

Twisted Cubic: Degeneracy Degree and Relationship with General
Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Tian Lan, YiHong Wu, and Zhanyi Hu

Two-View Geometry and Reconstruction under Quasi-perspective
Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Guanghui Wang and Q.M. Jonathan Wu

Similarity Scores Based on Background Samples . . . . . . . . . . . . . . . . . . . . . 88
Lior Wolf, Tal Hassner, and Yaniv Taigman

Human Action Recognition Using Spatio-temporal Classification . . . . . . . 98
Chin-Hsien Fang, Ju-Chin Chen, Chien-Chung Tseng, and
Jenn-Jier James Lien

Face Alignment Using Boosting and Evolutionary Search . . . . . . . . . . . . . . 110
Hua Zhang, Duanduan Liu, Mannes Poel, and Anton Nijholt



XVI Table of Contents – Part II

Tracking Eye Gaze under Coordinated Head Rotations with an
Ordinary Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Haibo Wang, Chunhong Pan, and Christophe Chaillou

Orientation and Scale Invariant Kernel-Based Object Tracking with
Probabilistic Emphasizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Kwang Moo Yi, Soo Wan Kim, and Jin Young Choi

Combining Edge and Color Features for Tracking Partially Occluded
Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Mandar Dixit and K.S. Venkatesh

Incremental Multi-view Face Tracking Based on General View
Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Wei Wei and Yanning Zhang

Hierarchical Model for Joint Detection and Tracking of Multi-target . . . . 160
Jianru Xue, Zheng Ma, and Nanning Zheng

Heavy-Tailed Model for Visual Tracking via Robust Subspace
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Daojing Wang, Chao Zhang, and Pengwei Hao

Efficient Scale-Space Spatiotemporal Saliency Tracking for
Distortion-Free Video Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Gang Hua, Cha Zhang, Zicheng Liu, Zhengyou Zhang, and Ying Shan

Visual Saliency Based Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Geng Zhang, Zejian Yuan, Nanning Zheng, Xingdong Sheng, and
Tie Liu

People Tracking and Segmentation Using Efficient Shape Sequences
Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Junqiu Wang, Yasushi Yagi, and Yasushi Makihara

Monocular Template-Based Tracking of Inextensible Deformable
Surfaces under L2-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Shuhan Shen, Wenhuan Shi, and Yuncai Liu

A Graph-Based Feature Combination Approach to Object Tracking . . . . 224
Quang Anh Nguyen, Antonio Robles-Kelly, and Jun Zhou

A Smarter Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Xiaoqin Zhang, Weiming Hu, and Steve Maybank

Robust Real-Time Multiple Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 247
Nicolai von Hoyningen-Huene and Michael Beetz

Dynamic Kernel-Based Progressive Particle Filter for 3D Human
Motion Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Shih-Yao Lin and I-Cheng Chang



Table of Contents – Part II XVII

Bayesian 3D Human Body Pose Tracking from Depth Image
Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Youding Zhu and Kikuo Fujimura

Crowd Flow Characterization with Optimal Control Theory . . . . . . . . . . . 279
Pierre Allain, Nicolas Courty, and Thomas Corpetti

Human Action Recognition Using HDP by Integrating Motion and
Location Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Yasuo Ariki, Takuya Tonaru, and Tetsuya Takiguchi

Detecting Spatiotemporal Structure Boundaries: Beyond Motion
Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Konstantinos G. Derpanis and Richard P. Wildes

An Accelerated Human Motion Tracking System Based on Voxel
Reconstruction under Complex Environments . . . . . . . . . . . . . . . . . . . . . . . . 313

Junchi Yan, Yin Li, Enliang Zheng, and Yuncai Liu

Automated Center of Radial Distortion Estimation, Using Active
Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Hamed Rezazadegan Tavakoli and Hamid Reza Pourreza

Rotation Averaging with Application to Camera-Rig Calibration . . . . . . . 335
Yuchao Dai, Jochen Trumpf, Hongdong Li, Nick Barnes, and
Richard Hartley

Single-Camera Multi-baseline Stereo Using Fish-Eye Lens and
Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Wei Jiang, Masao Shimizu, and Masatoshi Okutomi

Generation of an Omnidirectional Video without Invisible Areas Using
Image Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Norihiko Kawai, Kotaro Machikita, Tomokazu Sato, and
Naokazu Yokoya

Accurate and Efficient Cost Aggregation Strategy for Stereo
Correspondence Based on Approximated Joint Bilateral Filtering . . . . . . 371

Stefano Mattoccia, Simone Giardino, and Andrea Gambini

Detecting Critical Configurations for Dividing Long Image Sequences
for Factorization-Based 3-D Scene Reconstruction . . . . . . . . . . . . . . . . . . . . 381

Ping Li, Rene Klein Gunnewiek, and Peter de With

Scene Gist: A Holistic Generative Model of Natural Image . . . . . . . . . . . . 395
Bolei Zhou and Liqing Zhang

A Robust Algorithm for Color Correction between Two Stereo
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Qi Wang, Xi Sun, and Zengfu Wang



XVIII Table of Contents – Part II

Efficient Human Action Detection Using a Transferable Distance
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Weilong Yang, Yang Wang, and Greg Mori

Crease Detection on Noisy Meshes via Probabilistic Scale Selection . . . . . 427
Tao Luo, Huai-Yu Wu, and Hongbin Zha

Improved Uncalibrated View Synthesis by Extended Positioning of
Virtual Cameras and Image Quality Optimization . . . . . . . . . . . . . . . . . . . . 438

Fabian Gigengack and Xiaoyi Jiang

Region Based Color Image Retrieval Using Curvelet Transform . . . . . . . . 448
Md. Monirul Islam, Dengsheng Zhang, and Guojun Lu

Extracting Spatio-temporal Local Features Considering Consecutiveness
of Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Akitsugu Noguchi and Keiji Yanai

Multi-view Texturing of Imprecise Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Ehsan Aganj, Pascal Monasse, and Renaud Keriven

Poster Session 2: Segmentation, Detection, Color
and Texture

Semantic Classification in Aerial Imagery by Integrating Appearance
and Height Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Stefan Kluckner, Thomas Mauthner, Peter M. Roth, and
Horst Bischof

Real-Time Video Matting Based on Bilayer Segmentation . . . . . . . . . . . . . 489
Viet-Quoc Pham, Keita Takahashi, and Takeshi Naemura

Transductive Segmentation of Textured Meshes . . . . . . . . . . . . . . . . . . . . . . 502
Anne-Laure Chauve, Jean-Philippe Pons, Jean-Yves Audibert, and
Renaud Keriven

Levels of Details for Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 514
Vincent Garcia, Frank Nielsen, and Richard Nock

A Blind Robust Watermarking Scheme Based on ICA and Image
Dividing Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Yuqiang Cao and Weiguo Gong

MIFT: A Mirror Reflection Invariant Feature Descriptor . . . . . . . . . . . . . . 536
Xiaojie Guo, Xiaochun Cao, Jiawan Zhang, and Xuewei Li

Detection of Vehicle Manufacture Logos Using Contextual
Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Wenting Lu, Honggang Zhang, Kunyan Lan, and Jun Guo



Table of Contents – Part II XIX

Part-Based Object Detection Using Cascades of Boosted Classifiers . . . . . 556
Xiaozhen Xia, Wuyi Yang, Heping Li, and Shuwu Zhang

A Novel Self-created Tree Structure Based Multi-view Face Detection . . . 566
Xu Yang, Xin Yang, and Huilin Xiong

Multilinear Nonparametric Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 576
Xu Zhang, Xiangqun Zhang, Jian Cao, and Yushu Liu

A Harris-Like Scale Invariant Feature Detector . . . . . . . . . . . . . . . . . . . . . . 586
Yinan Yu, Kaiqi Huang, and Tieniu Tan

Probabilistic Cascade Random Fields for Man-Made Structure
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Songfeng Zheng

A Novel System for Robust Text Location and Recognition of Book
Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Zhiyuan Zhang, Kaiyue Qi, Kai Chen, Chenxuan Li,
Jianbo Chen, and Haibing Guan

A Multi-scale Bilateral Structure Tensor Based Corner Detector . . . . . . . 618
Lin Zhang, Lei Zhang, and David Zhang

Pedestrian Recognition Using Second-Order HOG Feature . . . . . . . . . . . . . 628
Hui Cao, Koichiro Yamaguchi, Takashi Naito, and Yoshiki Ninomiya

Fabric Defect Detection and Classification Using Gabor Filters and
Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Yu Zhang, Zhaoyang Lu, and Jing Li

Moving Object Segmentation in the H.264 Compressed Domain . . . . . . . . 645
Changfeng Niu and Yushu Liu

Video Segmentation Using Iterated Graph Cuts Based on
Spatio-temporal Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

Tomoyuki Nagahashi, Hironobu Fujiyoshi, and Takeo Kanade

Spectral Graph Partitioning Based on a Random Walk Diffusion
Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Xi Li, Weiming Hu, Zhongfei Zhang, and Yang Liu

Iterated Graph Cuts for Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 677
Bo Peng, Lei Zhang, and Jian Yang

Contour Extraction Based on Surround Inhibition and Contour
Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

Yuan Li, Jianzhou Zhang, and Ping Jiang



XX Table of Contents – Part II

Confidence-Based Color Modeling for Online Video Segmentation . . . . . . 697
Fan Zhong, Xueying Qin, Jiazhou Chen, Wei Hua, and
Qunsheng Peng

Multicue Graph Mincut for Image Segmentation . . . . . . . . . . . . . . . . . . . . . 707
Wei Feng, Lei Xie, and Zhi-Qiang Liu

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719



A Dynamic Programming Approach to
Maximizing Tracks for Structure from Motion

Jonathan Mooser1, Suya You1, Ulrich Neumann1, Raphael Grasset2,
and Mark Billinghurst2

1 CGIT Lab

University of Southern California, Los Angeles, California

{mooser,suyay,uneumann}@graphics.usc.edu
2 HITLabNZ

University of Canterbury, Christchurch, New Zealand

{raphael.grasset,mark.billinghurst}@hitlabnz.org

Abstract. We present a novel algorithm for improving the accuracy of

structure from motion on video sequences. Its goal is to efficiently re-

cover scene structure and camera pose by using dynamic programming

to maximize the lengths of putative keypoint tracks. By efficiently dis-

carding poor correspondences while maintaining the largest possible set

of inliers, it ultimately provides a robust and accurate scene reconstruc-

tion. Traditional outlier detection strategies, such as RANSAC and its

derivatives, cannot handle high dimensional problems such as structure

from motion over long image sequences. We prove that, given an estimate

of the camera pose at a given frame, the outlier detection is optimal and

runs in low order polynomial time. The algorithm is applied on-line, pro-

cessing each frame in sequential order. Results are presented on several

indoor and outdoor video sequences processed both with and without the

proposed optimization. The improvement in average reprojection errors

demonstrates its effectiveness.

1 Introduction

Structure from motion refers to the problem of processing sets of images with
the goal of modeling the underlying scene geometry while simultaneously deter-
mining camera locations. In principle, the task is straightforward, the relevant
computational geometry having been well documented [1,2]. In practice, how-
ever, the problem is substantially more challenging.

In almost all cases, the computations rely on identifying feature correspon-
dences between images. These typically consist of single points [2,3,4], but may
include more complex features as well [5]. Difficulties arise in real world applica-
tions because some putative correspondences are inevitably incorrect. The main
contribution of this work is the novel method by which inaccurate correspon-
dences are identified and removed, thus maximizing the accuracy of the final
reconstruction.

The proposed system receives its input as an ordered sequence of video
frames. Because the baseline between consecutive frames is small, two or three

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 1–10, 2010.
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frame 5 frame 24 frame 51 frame 59 frame 91

Fig. 1. A point that tracks accurately over some frames, but not over the entire se-

quence. The correspondence between frames 5 and 91 is poor. The correspondence

between Frames 5 through 24 are accurate, however, as is the correspondence between

frames 59 and 91.

consecutive frames will rarely provide an accurate reconstruction on its own,
and in many cases will only capture a small part of the scene. At the same time,
no feature is likely to appear throughout the entire sequence, so looking for
correspondences between, say, the first and last frames is not feasible. Hartley
and Zisserman observed that the problem of structure from motion from video
sequences remains a “black art” [1, p. 452].

The feature correspondences considered here consist of single points tracked
over time using sparse optical flow. That is to say, we detect a set of pixels
in one frame then estimate their locations in subsequent frames by taking ad-
vantage of the relative similarity between consecutive images. Specifically, we
begin by detecting keypoints in the first image using Shi and Tomasi’s method
of identifying trackable point [6]. Then a variation of the Lucas-Kanade Optical
flow algorithm [7] based on image pyramids [8] is used to update their locations
as the sequence progresses. The reliability of the optical flow process is further
improved by using bi-directional filtering, as described in [9].

Using optical flow to generate correspondences has both advantages and draw-
backs. Optical flow is generally reliable, with the correspondences between con-
secutive frames will seldom off by more than one or two pixels.

On the other hand, points tracked by optical flow have a tendency to drift
over long sequences and thus introduce a unique challenge. Figure 1 illustrates
an example. Over the course of 91 frames, a point drifts significantly from the
side of the statue to the lawn in the background. Clearly, any reconstruction
that depends on this correspondence will suffer as a result.

One could attempt to identify such points and exclude them from the com-
putation, hoping that enough correspondences remain to reconstruct the scene.
Besides the difficulty of automatically detecting tracking errors, the problem is
that over long sequences, almost all tracked keypoints will experience some drift.
Simply labeling points as inlier or outlier is thus of limited value.

With this in mind, we set out to perform a somewhat more ambitious opti-
mization. Examining Figure 1, the keypoint in question stays fixed to the same
part of the statue between frames 5 and 24. It then drifts to another part of the
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dog’s head and finally onto the lawn in the background. Finally between frames
59 and 91, tracking regains stability, the keypoint remaining fixed to the same
point on the grass. So while the keypoint is not useful over the entire sequence,
it is useful for certain windows of time. Our goal is to determine which sets of
frames contain accurate tracking for each keypoint and use only those.

Section 3 describes an algorithm for performing this optimization. This al-
gorithm, called subtrack optimization, represents the main contribution of this
work. Based on dynamic programming, it is guaranteed to output an optimal
solution, and does so in low order polynomial time.

Section 4 discusses how this algorithm can be incorporated into a high level
structure from motion system. It sequentially processes video frames to generate
an accurate sparse scene structure as well as a camera pose at each frame. The
proposed system offers several key advantages. One is that it operates as an
online algorithm, which is to say it produces a solution for the first n frames
before considering frame n+ 1. It also does not depend on extra hardware such
as inertial sensors or a calibrated stereo rig; it relies only on a single calibrated
camera. It assumes that the scene is rigid, but makes no other assumptions about
scene structure or camera motion.

We present results on several real-world video sequences in section 5. Each
sequence is processed with and without subtrack optimization. Numerical re-
sults demonstrate that the optimization substantially improves the quality of
the overall reconstruction.

2 Related Work

Over the years, structure from motion has remained amongst the mostwidely stud-
ied topics in computer vision [2,3,4,5,10,11,12]. The high level of interest is hardly
surprising, as it provides an invaluable tool in numerous application domains.

Snavely, et al., for example use structure from motion as the basis for a vir-
tual tourism application [3]. Zhu, et al., describe a navigation system that uses
structure from motion to build a database of landmarks, which can later be used
to recover the location of an image in a large scale environment[12].

The present work focuses on sparse structure from motion, which is to say only
a small set of landmark features from the target scene are modeled. In general,
accurate sparse structure is a precondition for computing dense structure, which
builds fully textured surfaces [10,11,2].

The goal of the present work is to separate accurate feature correspondences
from inaccurate ones, and can thus be viewed as a kind of outlier detection. When
only two views are available, outliers can be identified using random sampling
methods such as RANSAC [13] or the more recent MLESAC [14] algorithm.
The video sequences considered here, however, consist of hundreds of frames,
leading to a very high dimensional solution space. RANSAC and its derivatives
are not feasible as a means to optimize over all variable. While some systems use
RANSAC to detect outliers between two or three consecutive frames, [2,4,15], it
cannot be applied to an entire sequence at once.
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Structure from motion algorithms often include bundle adjustment as a final
step [1,2,4]. Traditionally, bundle adjustment is applied to the entire sequence at
once, in which case it consumes most of the processing time and precludes online
processing. More efficient versions can apply bundle adjustment to a few frames
at a time. Still, bundle adjustment assumes that the putative 2D correspondences
are nearly correct, and cannot determine when keypoints begin to drift, as we
do here.

It is also important to draw a distinction between our algorithm and those
that use assumptions about the structure of the scene, such as planar surfaces
[11]. Our only assumption is that the scene is rigid.

Buchanan and Fitzgibbon [16] describe an approach to feature tracking that,
like the method proposed here, is based on dynamic programming. That work,
however, focuses on purely two-dimensional tracking. The algorithm described
here is specifically designed to recover three-dimensional structure.

3 The Subtrack Optimization Algorithm

3.1 Terminology and Problem Definition

In order to describe the details of the optimization algorithm, the following
terminology will be useful.

A keypoint will refer to a single point feature in a single image. Keypoints fall
into two categories. Those that are initially identified by the detection process
are referred to as detected keypoints. Those that have been tracked from the
previous frame will be called tracked keypoints.

Points in 3D space from which keypoints arise are structure points. Conceptu-
ally, each keypoint represents a ray in 3D space, so there are an infinite number of
possible structure points corresponding to a given keypoint. Any structure point
that projects onto a keypoint within some margin of error, will be considered a
valid structure point for that keypoint.

A detected keypoint along with all of the tracked keypoints generated from
it are collectively referred to as a keypoint track. A keypoint track never skips
frames; if the optical flow process fails to track a particular keypoint then the
corresponding keypoint track ends. A keypoint track will also never contain more
than one keypoint in any given frame.

Under ideal circumstances, all keypoints in a given track will share some valid
structure point. Due to tracking errors, however, this will seldom be the case for
long tracks. As illustrated in the examples from section 1, however, it will often
be the case that a subset of a track’s keypoints does in fact have a common valid
structure point. Any set of two or more keypoints from consecutive frames of the
same track will be called a subtrack. A subtrack whose keypoints share a valid
structure point will be deemed consistent.

Using this terminology, the goal of the optimization algorithm is as follows:

Given a keypoint track and a camera matrix at each frame, find the par-
titioning that produces the longest possible disjoint consistent subtracks
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Fig. 2. A hypothetical keypoint track with six keypoints. On the left are six locations

of a camera as it moves from the top downward. Each keypoint corresponds to a ray in

space. The six rays do not meet at a single point, so there is no structure point that is

valid for the entire track. However, subtracks k1,2,3 and k4,5,6 do have valid structure

points. The goal of the optimization algorithm is to reliably perform this partitioning.

Favoring fewer, longer subtracks is important because it ensures that they
span as wide a baseline as possible. If overly aggressive in partitioning a keypoint
track, we risk losing valuable information and compromising the accuracy of the
resulting structure.

To measure the consistency of a subtrack, we define an error function, E(ka,b),
as the RMS reprojection error generated by the optimal structure point X(ka,b)
for subtrack ka,b. If the subtrack is consistent E(ka,b) will be small.

A naive approach might look to simply find subtracks that individually min-
imize E(ka,b), which could be achieved by making a large number of short sub-
tracks. This, however, would ignore the ultimate goal of maximizing subtrack
lengths. To account for this constraint, a constant term δ is introduced repre-
senting the penalty of adding a new subtrack. For a keypoint track of length
n, a given partitioning, p = {k1,a, ka+1,b, . . . , kc,d, kd+1,n}, thus incurs a total
cost of

C(p) =
∑

ka,b∈p

(δ + E(ka,b)) (1)

The optimal partitioning is the one that minimizes C(p). Clearly, the number
of possible partitionings is exponential in n, so a brute force search would be
intractable. We will show, however, that it is it is possible to find an absolute
minimum in O(n3) time using a dynamic programming algorithm.

3.2 A Dynamic Programming Solution

The insight behind the algorithm is the following lemma:

Lemma 1. if p = {k1,a, . . . , kc,d, kd+1,n} is the optimal partitioning of k, then
q = {k1,a, . . . , kc,d} is the optimal partitioning of the subtrack k1,d.

Proof. Assume that q is not the optimal partitioning for k1,d. That is to say
there exists some other partitioning q′ such that C(q′) < C(q). Now let p′ be
the partitioning of k given by p′ = {q′, kd+1,n}. Because
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C(p) = C(q) + δ + E(kd,n)
and

C(p′) = C(q′) + δ + E(kd,n)
(2)

we know that C(p′) < C(p), which implies that p is not optimal. �

Let p̂n be the optimal partitioning of k1,n. Its cost can now be defined recursively
as

C(p̂0) = 0
C(p̂1) = δ

C(p̂n) = min
1≤a<n

[C(p̂a−1) + δ + E(ka,n)]
(3)

Formally, p̂0 and p̂1 are undefined because the corresponding subtracks, k1,0,
and k1,1 do not exist; a subtrack must span at least two keypoints. Their costs
C(p̂0) and C(p̂1) are explicitly defined, however, as a base case for the recursion.

A dynamic programming algorithm can efficiently compute C(p̂n) for any
value of n by evaluating the recursion from the bottom up. First compute
C(p̂2) = E(k1,2) + δ, then C(p̂b) for b = 3, 4, . . . , n. At each iteration C(p̂a) is
known for all a < b, so equation (3) can be directly applied, computing E(ka,b)
for all a. The complexity of computing E(ka−b) is linear in the length of ka−b,
so iteration b requires O(b2) time. Processing an entire keypoint track of length
n thus requires O(n3) time.

The algorithm, as described, finds the cost of the optimal partition. From this,
finding the partition itself is straightforward. The simplest way is to keep track
of the values of a that produce the minimum value of C(p̂b) for each b. Using
these stored values, the algorithm can work backward from n to piece together
the optimal partitioning.

Although the final partition is optimal in that it minimizes (1), it is not neces-
sarily the case that each subtrack is consistent. Recall the ultimate goal of finding
long consistent subtracks. After optimizing each keypoint track, those subtracks
spanning at least three frames and having E(ka,b) < 1.0 are deemed consistent;
all others are deemed inconsistent. Only the structure points corresponding to
consistent subtracks are included in the final reconstruction, as explained in the
next section.

4 The Complete Structure from Motion Process

The previous section addressed the problem of optimally partitioning a single
keypoint track. We will now show how this can be incorporated into a larger
structure form motion system involving many tracks over long video sequences.
The system will function as an online algorithm, computing reconstruction for
the first n frames before frame n+ 1 is considered.

From the first frame, a set of keypoints will be detected, each instantiating a
keypoint track. As subsequent frames are processed, optical flow will be applied
to extend existing tracks. In addition, new keypoint tracks will be periodically
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added to the existing ones by rerunning the detection process. In our implemen-
tation, new keypoints are detected every seven frames, with the total number of
keypoints in any frame never allowed to exceed 300.

Using the first frame and some other suitable frame early in the sequence,
along with the known camera intrinsics, an essential matrix is fit using RANSAC.
This, in turn, is used to estimate camera poses for the first few frames.

This provides enough information to run the subtrack optimization algorithm
on each keypoint track. Because the tracks at this point will be short, most will
consist of a single subtrack. In any case, each subtrack will be deemed consistent
or inconsistent; the consistent subtracks will have a valid structure point which
will be added to the reconstruction.

As each new frame is processed, optical flow is again used to extend all current
tracks. At this point the system assumes that all consistent subtracks that ended
at the previous frame will remain consistent through the current frame. Because
all of those subtracks are associated with known structure points, they provides
enough information to compute the camera pose of the new frame.

Having the new camera pose, the system now runs the subtrack optimization
algorithm again. Structure points are updated, if necessary, for each consistent
subtrack. If a previously inconsistent subtrack is now consistent, its structure
point is added to the reconstruction. Likewise, if a previously consistent subtrack
is now inconsistent, its structure point is removed.

Each frame is processed in this manner, first computing the camera pose then
optimizing the subtracks to incorporate the new pose. The final output is a set
of structure points along with a camera pose associated with every frame.

4.1 Performance Considerations

Computing E(ka,b) and X(ka,b) for a general set of keypoints and cameras re-
quires nonlinear optimization. However, this can be performed quickly because
only the three components of X are allowed to vary; the cameras, in this case,
remain fixed. From a reasonable estimate, the absolute minimum of X can be
approximated very closely by a single iteration of the Levenberg-Marquardt algo-
rithm. In practice, a good estimate is to consider only the subtrack’s endpoints,
ka and kb, and use linear triangulation, as described in [1].

The subtrack optimization runs in O(n3) time assuming that p̂a, is computed
for all a. However, at the time that frame n is being processed p̂a has already
been computed for all a < n. By storing these values throughout the sequence,
the processing time for each individual frame is reduced to O(n2).

Despite this improvement, the time required for each track still increases
quadratically and eventually, over a long sequence, will become unacceptably slow.
To keep the processing time approximately constant, the system imposes a maxi-
mum subtrack length of 30 frames. This effectively places an upper bound on the
running time of the optimization algorithm by limiting the size of the search space
needed to apply equation (3). While the result is no longer strictly optimal, 30
frames is generally long enough to produce an accurate structure point. The ex-
act size of the limit can be adjusted to favor either speed or accuracy.
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5 Results

We tested the complete system on two sequences, each consisting of at least 200
frames. For comparison, they were processed both with and without the subtrack
optimization algorithm. When processing with the optimization, the constant δ
was assigned a value of 2.0 pixels. Without the optimization, a keypoint track is
extended until its reprojection error exceeds a threshold, also set to 2.0 pixels,
and then terminated. In the non-optimized version, each keypoint track contains
exactly one subtrack. In all cases no subtrack is allowed to exceed 30 frames.

Figures 3 and 4 show selected frames from both sequences along with the
resulting reconstructions, including camera poses. For clarity, Only some cameras
are rendered for clarity. Both cases present some inherent challenges. The paper
house sequence in figure 3 is perhaps easier because the target object has a clear
discernable texture. Note, however that the system successfully reconstructs part
of the desktop surface, which has little or no texture. The tree sequence in figure
4 includes irregularly shaped plants and foliage, as well as objects at a wide
range of distances.

Table 1. Average reprojection error in pixels for each of the test sequences

Sequence House Tree
without with without with

subtr. opt. subtr. opt. subtr. opt. subtr. opt.

Total Frames 202 202 262 262

Average Subtrack Length 25.26 28.05 22.13 24.78

RMS Reprojection Error 0.60 0.87 0.61 0.96

Table 1 shows the results of processing the sequences both with and with-
out subtrack optimization. On both test sequences, applying the optimization
substantially reduced the total reprojection error.

One might suspect that the reduction in total error was simply the result of
creating shorter subtracks. If one test tends to generate subtracks that are much
shorter, on average, than another test, then the first test will almost certainly
return a smaller error. However, as shown in Table 1, the average subtrack
length is actually longer when using subtrack optimization. To further emphasize
this point, we plot reprojection error as a function of subtrack length. These
results are shown in the graphs in figures 3 and 4. The graphs demonstrate that
even when comparing subtracks of the same length, the subtrack optimization
algorithm reduces the average reprojection error. It offers the dual advantages of
producing subtracks that are longer (and thus span a wider baseline) yet more
consistent in terms of reprojection error.

The non-optimized version will only stop tracking a keypoint when its error
has already reached 2.0 pixels. At that point, it has likely already been drifting
for several frames. The advantage of the subtrack optimization algorithm is that
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Fig. 3. A video sequence of a paper house and two views of the resulting reconstruction.

The second is a top down view showing that the points on the vertical walls are

coplanar, as expected.

Fig. 4. A tree in the middle of a courtyard with two views of the resulting reconstruc-

tion. In the second view (top down) the square stone bench and square flower bed are

clearly visible, as is a round space representing the volume occupied by the three trunk.

it identifies the precise moment when a keypoint begins drifting and partitions
the track accordingly. The result is a more accurate reconstruction.

6 Conclusion

This paper has presented the subtrack optimization algorithm, which determines
where to partition keypoint tracks so as to eliminate unreliable correspondences
in structure from motion computations. Using dynamic programming, it per-
forms this partitioning optimally. Because it makes few assumptions about the
shape or appearance of the target scene, the optimization algorithm presented
here is both effective and versatile.
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Abstract. In this paper, we propose a novel method to simultaneously

and accurately estimate the 3D shape and 3D motion of a dynamic scene

from multiple-viewpoint calibrated videos. We follow a variational ap-

proach in the vein of previous work on stereo reconstruction and scene

flow estimation. We adopt a representation of a dynamic scene by an

animated mesh, i.e. a polygonal mesh with fixed connectivity whose time-

varying vertex positions sample the trajectories of material points. In-

terestingly, this representation ensures a consistent coding of shape and

motion by construction. Our method accurately recovers 3D shape and

3D motion by optimizing the positions of the vertices of the animated

mesh. This optimization is driven by an energy function which incor-

porates multi-view and inter-frame photo-consistency, smoothness of the

spatio-temporal surface and of the velocity field. Central to our work is an

image-based photo-consistency score which can be efficiently computed

and which fully handles projective distortion and partial occlusions. We

demonstrate the effectiveness of our method on several challenging real-

world dynamic scenes.

Keywords: Spatio-temporal stereovision, Scene flow, Motion capture.

1 Introduction

In recent years, several methods for automatic generation of complete spatio-
temporal models of dynamic scenes from multiple videos have been proposed
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. In particular, the most recent ones have
proven effective for full-body marker-less motion capture, yielding visually im-
pressive results. However, when taking a closer look at the aforementioned tech-
niques, it becomes apparent that very few of them achieve a desirable coupled,
dense and accurate 3D shape and 3D motion estimation.

Accurate 3D shape. Many recent techniques still produce an approximate
geometry: free-form deformation of a template body model [2,11,15], visual hull
[1,3,15], Laplacian deformation of a laser scan of the initial pose [4,5]. These
methods are unable to recover genuine geometric details such as facial expres-
sions and clothing folds and wrinkles.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 11–22, 2010.
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Accurate 3D motion estimation is crucial in some applications like mo-
tion transfer and time interpolation. Also, a coarse motion estimation precludes
the enforcement of temporal consistency constraints during coupled shape and
motion estimation. However, in most existing performance capture techniques,
3D scene flow [16], i.e. the dense 3D motion field of the scene, is not accurately
estimated. Often, it is interpolated from sparse 3D correspondences [3,4,12].
Some methods do not address 3D motion estimation whatsoever: [7] uses a four-
dimensional level set representation which, beyond its very high computational
and memory requirements, does not encode 3D correspondence. [10,15] produce
animated meshes but, despite appearances, the underlying 3D correspondences
are purely artifactual.

Coupled 3D shape and 3D motion estimation allows to exploit their re-
dundancy, and has long been recognized [17] as a desirable way to improve their
performance. However, most marker-less motion capture methods fail to inte-
grate spatio-temporal consistency constraints. In [3,12,13], shape is computed
independently in each time frame, prior to motion estimation. In [9], shape and
motion are estimated sequentially, not simultaneously. In [5], an initial mesh
is propagated by 3D scene flow, under silhouette constraints, but without any
stereo cues; as a result, this method suffers from temporal drift. The latter is cir-
cumvented in [4] by substituting sparse 3D correspondences for dense 3D scene
flow, but neither shape or motion are accurate enough to allow enforcing spatio-
temporal consistency. In [1,7], a certain degree of spatio-temporal coherence is
obtained through four-dimensional representations, but as these representations
do not encode temporal correspondence, they cannot exploit inter-frame match-
ing constraints. In [14], shape and motion are estimated simultaneously using
a plane-sweep carving algorithm in a 6D space, but this approach has a very
high computational and memory cost, is limited to two frames, and is unable to
enforce the smoothness of the recovered shape and motion.

Thus, to our knowledge, two methods [6,8] achieve this highly desirable cou-
pled, dense and accurate 3D shape and 3D motion estimation. In [8], shape and
motion are represented through the detail coefficients of a time-varying subdivi-
sion surface. The latter coefficients are estimated by simultaneously optimizing
multi-view and inter-frame photo-consistency. However, the non-linearity of the
chosen multi-resolution representation makes this optimization intricate. Also,
the required motion initialization relies on the spatio-temporal derivatives of the
input images, thereby making it applicable mainly to slowly-moving Lambertian
scenes under constant illumination.

[6] is the only work to date which can handle complex real-world dynamic
scenes. Despite the effectiveness of this method, we believe that the expansion
framework used does not allow to take into account the full visibility depending
on occluding patch not computed yet.

In this paper, we propose a novel method to simultaneously and accurately es-
timate the 3D shape and 3D motion of a dynamic scene from multiple-viewpoint
videos. First, we follow a variational approach in the vein of previous work
on stereo reconstruction and scene flow estimation [9,17,18,19,20,21]. None of
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these methods fits our applications in their current state: most are limited to a
single time-varying depth map of the scene [17,18,19,20,21], while others do not
enforce spatio-temporal consistency constraints [9,19].

Second, we adopt a representation of a dynamic scenes by an animated
mesh, i.e. a polygonal mesh with fixed connectivity whose time-varying vertex
positions sample the trajectories of material points. Interestingly, this representa-
tion ensures a consistent coding of shape and motion by construction. It is widely
used in computer graphics, especially in computer animation. It is also popular
for performance capture from video [3,4,5,6,10,11,15] or from time-varying point
clouds [22,23] (the latter being obtained from video or from fast 3-D scanning
hardware).

Our method accurately recovers 3D shape and 3D motion by optimizing the
positions of the vertices of the animated mesh. This optimization is driven
by an energy function which incorporates multi-view and inter-frame photo-
consistency, smoothness of the spatio-temporal surface and of the velocity field.
Central to our work is an image-based photo-consistency score which can be
efficiently computed and which fully handles projective distortion and partial
occlusions, in the spirit of [9].

The rest of this article is organized as follows. In Section 2, we describe in
detail the discrete geometric representation, the variational formulation, the en-
ergy function and the associated minimization procedure which constitute our
approach. In Section 3, we discuss implementation aspects and we demonstrate
the effectiveness of our method on several challenging real-world dynamic scenes.

2 Our Approach

2.1 Discretize Then Optimize

An overwhelming majority of variational methods in this area [9,17,18,19,21]
and more generally in computer vision, rely on an optimize then discretize ap-
proach: an energy functional depending on a continuous infinite-dimensional
spatio-temporal representation is considered, the gradient of this energy func-
tional is computed analytically, then the obtained evolution flow is discretized.

In contrast, we adopt a discretize then optimize approach: we define an energy
function depending on a discrete finite-dimensional spatio-temporal representa-
tion, and we use standard non-convex optimization tools. The benefits of this
approach have long been recognized in mesh processing, but have seldom been
demonstrated in computer vision [24,25,26]. Thus, the choice of an adequate
discrete spatio-temporal representation is crucial in our work.

2.2 Animated Mesh Representation

In our context, animated polygonal meshes present many significant advantages.
Compared to unrelated meshes at different time instants, they are more compact,
easier to store and to manipulate. They provide a direct access both to the shape
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of the scene at a given time instant, and to motion trajectories. 3D shape and
3D motion are mutually consistent by construction.

Their fixed topology may be regarded as a limitation, as argued in [12]. We
believe that it is not, since the human body has a constant - spherical, if dis-
regarding pierces - topology. It is questionable to treat a character with hands
on hips as a genus-2 torus. It should rather be regarded as a topological sphere
with some temporary contact regions.

Furthermore, let us mention that our method is not limited to a spherical
topology: while the topology of the animated mesh is constant across time, we
are able to modify it across our optimization process using a spatio-temporal
version of Delaunay deformable models [27].

2.3 Variational Formulation

In the following, we consider a dynamic scene, imaged by N calibrated and
synchronized video sequences composed of T frames, and represented by an
animated polygonal mesh with K vertices. We note:

– Ii,t : Ωi ⊂ R2 → Rd, i ∈ {1..N}, t ∈ {1..T } the input images. In practice
d = 1 for grayscale images and d = 3 for color images.

– X = {xk,t, k ∈ {1..K}, t ∈ {1..T }} the 3D positions of the vertices of the
animated mesh at the different time instants,

– Xt = {xk,t, k ∈ {1..K}} the tth temporal slice of the animated mesh.

In the sequel, by a slight abuse of notation, we indistinctly use X and Xt to
refer to the animated mesh and to the positions of its vertices.

The energy to minimize with respect to X is composed of a data attach-
ment term, of a regularization term for the spatio-temporal surface and of a
regularization term for the velocity field:

E(X) = ED(X) + λSES(X) + λV EV (X) . (1)

ED encourages multi-view and frame-to-frame matching consistency. It is defined
as the sum over camera pairs (i, j) and pairs of time frames (t, u) of a dissimilarity
measure between image Ii,t and the reprojection of Ij,u via the animated mesh.
The detailed description of this term is left to Section 2.4.
ES favors the regularity of the spatio-temporal surface. We use the total area

of the animated mesh. The minimization of this term by gradient descent yields
a discrete version of the well known mean curvature motion, which we implement
as described in [28].
EV penalizes rapid variations of the velocity field along the animated mesh.

It is the total squared L2 norm over the animated mesh of the gradient of the
velocity field. The detailed description of this term is left to Section 2.5.

We minimize the above energy function using a standard gradient descent
on the spatio-temporal positions X. In order to avoid unwanted local minima,
we resort to a multi-resolution and chronological scheme. We first optimize the
first two frames of a low-resolution animated mesh using low-resolution versions
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Fig. 1. Finite element representation over a facet (k, l, m) of the animated mesh

of input images. Then we initialize an additional time frame by extrapolating
3D position from speed and acceleration of previous frames. We iteratively add
time frames, and optimize the sequence using a sliding time window of a few
frames, until we reconstruct the whole temporal sequence at low resolution. We
then refine the obtained spatio-temporal mesh with increased image and mesh
resolutions, until we reach the desired accuracy.

2.4 Data Attachment Term

The formal definition of ED and of its gradient requires some additional no-
tations. The perspective projection performed by camera i is denoted by Πi :
R3 → R2. Our method takes into account the visibility of the surface points. We
refer to Xi,t as the part of the temporal slice Xt visible in image i. The back-
projection of a point of camera i on the animated mesh at frame t is denoted by
Π−1

i,Xt
: Πi(Xt)→Xi,t.

We also define 3D transport functions TXt⇀Xu that map points in Xt to points
in Xu. This can be written formally using the linear finite-element representa-
tion depicted in Figure 1. For each vertex k of the animated mesh at some time
frame t, we define a basis function φk,Xt such that (i) φk,Xt(xk,t) = 1 (ii) ∀l �=
k, φk,Xt(xl,t) = 0 (iii) φk,Xt varies linearly inside the triangular facets adjacent to
the kth vertex, and cancels outside this ring. We then have at pixel pi in image i:

TXt⇀Xu =
∑

k

xk,u φk,Xt . (2)

In a simpler way we can say that the back-projection Yt of pixel pi lies on a
triangular facet f and has barycentric coordinates φl,Xt(Yt) at time t, l being a
vertex of f . So the position of this particle at time u is Yu =

∑
l∈f xl,u φl,Xt(Yt),

that is Yu =
∑

k∈X xk,u φk,Xt(Yt) since φk,Xt(Yt) cancels if vertex k is outside
facet f .

Finally, we define image transport functions T(i,Xt)⇀(j,Xu) which map posi-
tions in Ii,t to positions in Ij,u via the animated mesh:

T(i,Xt)⇀(j,Xu) = Πj ◦ TXt⇀Xu ◦Π−1
i,Xt

. (3)
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ci

Ii,t(pi)

Ii,t Ij,u

Ij,u ◦ T(i,X t)⇀(j,Xu)(pi)

ΠjΠ−1
i,X t

TX t⇀Xu

X t Xu

cj

Fig. 2. Reprojection of image j at time u in image i at time t via the animated mesh

With these notations in hand the reprojection of image j at time u in image i
at time t via the animated mesh writes Ij,u ◦ T(i,Xt)⇀(j,Xu). This is illustrated
in Figure 2.

The data attachment term is the sum over oriented camera pairs (i, j) and
oriented pairs (t, u) of time frames of a dissimilarity measure M between image
Ii,t and the above defined reprojection of Ij,u via the animated mesh. The dis-
similarity is computed only over the region of image plane i where both images
are defined, i.e. after discarding semi-occluded regions. This image region writes
Πi (Xi,t ∩ TXu⇀Xt(Xj,u)). More clearly, pixel pi in image i is visible in both
images, if its back-projection lies on the surface at time t, and this point on the
surface once transported at time u is visible (nore occluded, nore outside the
image frame) in image Ij,u. This visible image region is computed before each
optimization step on graphics hardware. For conciseness, we will omit it in the
equations below:

ED(X) =
∑
i,j

∑
t,u

M
[
Ii,t , Ij,u ◦ T(i,Xt)⇀(j,Xu)

]
. (4)

We now compute the partial derivative of this energy term with respect to the
variation of a single position xk,t of the animated mesh. First, we note that
the only oriented pairs of time frames affected by such a variation are (u, t)
and (t, u), u ∈ {1..T }. Second, when the animated mesh moves, the reprojected
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image changes. Hence the partial derivative of ED involves the derivative of the
similarity measure M with respect to its second argument, denoted by ∂2M .

Using the chain rule, and after some index manipulations, we get:

∂ED

∂xk,t
=

∑
i,j

∑
u∫

Ωi

∂2M
[
Ii,t , Ij,u ◦ T(i,Xt)⇀(j,Xu)

]
DIj,u

∂T(i,Xt)⇀(j,Xu)

∂xk,t
(pi) dpi

+
∫

Ωj

∂2M
[
Ij,u , Ii,t ◦ T(j,Xu)⇀(i,Xt)

]
DIi,t

∂T(j,Xu)⇀(i,Xt)

∂xk,t
(pj) dpj , (5)

where DI.,. denotes the Jacobian matrices of the input images. For conciseness,
we have omitted the points where the latter are evaluated in the above equation.

As regards the quantities ∂T...

∂xk,t
, we can make several observations. First, they

are purely geometric, i.e. independent of image data. Second, they cancel outside
the ring of triangular facets adjacent to the kth vertex. Hence, despite appear-
ances, integration is performed only over the visible projection of this ring in
the different images, not over the full image domains. Third, these quantities
involve the normal of the triangular facet visible at pixel pi, and the barycentric
coordinate of xk,t in this facet. Complete expressions can be obtained using a
non trivial geometric reasoning. We refer the interested reader to [29], where
the detailed numerical computation, but also an additional intuitive solving are
proposed. The numerical solving, mainly consist in computing how barycentric
coordinates change for a small perturbation of the surface.

2.5 Velocity Field Regularization Term

The velocity field is unambiguously encoded by the animated mesh X. Specif-
ically, it is a continuous and piecewise linear vector field Xt → R3 defined by

vX,t(x) = TXt⇀Xt+1(x)− x , (6)

or equivalently by
vX,t =

∑
k

(xk,t+1 − xk,t)φk,Xt . (7)

The velocity field regularization term writes:

EV (X) =
∑

t

∫
Xt

‖∇vX,t(x)‖2dx . (8)

To simplify this expression, we use the fact that ∇φk,Xt is constant in each
triangular facet f of Xt and equals hk,f

‖hk,f‖2 , where hk,f is triangle’s height going
through vertex k. Af being the area of f , the energy term becomes:

EV (X) =
∑

t

∑
f∈Xt

Af

∥∥∥∥∥∥
∑
k∈f

hk,f

‖hk,f‖2
(xk,t+1 − xk,t)

∥∥∥∥∥∥
2

. (9)
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If we neglect the variation of hk,f with respect to vertex displacement, the partial
derivatives ∂EV

∂xk,t
of this energy term can now easily be derived.

3 Numerical Experiments

3.1 Implementation Aspects

The computation of image reprojections via the animated mesh and of the gradi-
ent of the data attachment term are the most expensive parts of our algorithm.
Hence, they are implemented on GPU using the OpenGL API and the Cg shad-
ing language.

In all our experiments, we choose the opposite of normalized cross correlation
as the image dissimilarity measure M , in order to accommodate moving shadows
and time-varying lighting conditions.

The storage of the animated mesh and the computation of spatio-temporal
smoothing terms are based on the C++ Computational Geometry Algorithms
Library (CGAL)1.

The resolution of the mesh is controlled by a lower and an upper edge length
thresholds, that are applied to the whole time sequence: an edge is bisected if it
is longer than the upper threshold in at least one time frame; an edge is collapsed
if it is shorter than the lower threshold in all time frames. The topology of the
mesh is automatically corrected when needed by applying Delaunay deformable
models [27] to the coordinates of the animated mesh at a reference time frame.
The user chooses a reference frame that reflects the actual topology of the scene:
e.g a pose with arms and legs slightly apart for human motion.

3.2 Experimental Results

We have tested our algorithm on two challenging multi-view video sequences of
non-rigid scenes.

The “Pants” dataset is composed of 8 cameras 480× 640 pixels. It is courtesy
of R. White, K. Crane and D.A. Forsyth [30]. We have successfully applied our
algorithm to the first 60 frames of this dataset. Due to the high image resolu-
tion, four multi-resolution scales have been used to obtain the accurate spatio-
temporal reconstruction shown in Figure 3. It has taken 24 hours to teconstruct
the 60 frames spatio-temporal model.

Figure 4 demonstrates the superiority of our spatio-temporal approach com-
pared to a frame-by-frame multi-view stereovision method [9], on the “Pants”
dataset. The improvements are three-fold: (i) our approach exploits speed and
acceleration to make better initial guesses of the subsequent time frames, thus
being less prone to unwanted local minima (ii) thanks to the enforcement of
temporal coherence, our approach is less likely to fail in regions with low photo-
consistency evidence (iii) our approach simultaneously and consistently estimates
3D shape and 3D scene flow.
1 http://www.cgal.org/
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Fig. 3. Our results on the “Pants” dataset. See text for more details.

Fig. 4. Comparison between a frame-by-frame multi-view stereovision approach (top)

and our spatio-temporal approach (bottom) on the “Pants” dataset. See text for details
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Fig. 5. Our results on the “Dancer” dataset. See text for more details.

The “Dancer” dataset was made available to us by the 4Dviews company2.
It was acquired by 14 calibrated and synchronized video cameras 1000 × 1000
pixels. We have applied our algorithm to the first 10 frames of this dataset.
To bootstrap our multi-resolution and chronological optimization procedure, we
have used a standard stereo-vision algorithm at the first time frame. The ob-
tained reconstruction after processing three multi-resolution levels is displayed
in Figure 5. We insist on the fact that we have not used silhouette information
and that stereovision on such a dataset is quite challenging: because it was de-
sign for visual hull based techniques, many parts of the subject are textureless.
It has taken 10 hours to teconstruct the full spatio-temporal model.

4 Conclusion

We have presented a novel variational approach to dense and accurate 3D shape
and motion reconstruction from multi-view video sequences. Our method lever-
ages the benefits of the animated mesh representation, of image-based photo-
consistency, of discrete geometric optimization and of GPU computation. We
have validated our algorithm on two challenging real datasets, and obtained
results that rival state-of-the-art techniques.

2 http://4dviews.com
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Abstract. We apply a semi-supervised learning method to perform gen-

der determination. The aim is to select the most discriminating feature

components from the eigen-feature representation of faces. By making

use of the information provided by both labeled and unlabeled data,

we successfully reduce the size of the labeled data set required for gen-

der feature selection, and improve the classification accuracy. Instead of

using 2D brightness images, we use 2.5D facial needle-maps which re-

veal more directly facial shape information. Principal geodesic analysis

(PGA), which is a generalization of principal component analysis (PCA)

from data residing in a Euclidean space to data residing on a manifold, is

used to obtain the eigen-feature representation of the facial needle-maps.

In our experiments, we achieve 90.50% classification accuracy when 50%

of the data are labeled. This performance demonstrates the effectiveness

of this method for gender classification using a small labeled set, and the

feasibility of gender classification using the facial shape information.

1 Introduction

Gender plays a significant role in both our social interactions and our inter-
actions with machines. The ability to classify a user according to gender has
many practical uses including making Human-Computer Interaction more user-
friendly, access control, collecting demographic data, and improving the perfor-
mance of face identity recognition by using gender specific models. In the last
two decades appearance-based gender classification has attracted considerable
attention in the literature [1], [2], [3], [4], [5], [6], [7], [8], [9] and particularly good
performance has been reported using PCA-based features [10], [11]. However, the
extracted PCA features still contain information that is redundant or even ir-
relevant for gender determination, and this limits gender classification accuracy.
As a result feature selection is an important issue for gender classification. To
select the gender discriminating feature subset, Sun et al. [3] has applied genetic
algorithms to the extracted PCA features, and reported a best gender classi-
fication accuracy of 95.3%. Buchala et al. [4] used linear discriminant analysis
(LDA) to explore which were the most important gender discriminating PCA
feature components, and reported a 86.43% gender classification accuracy. How-
ever, these methods learn the discriminating features in a supervised way, and
therefore require a large set of labeled data. For instance, Sun et al. [3] used

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 23–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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300 images for training and 50 images for testing, while Buchala et al. used a
training set of 2670 images.

In this paper, we apply a semi-supervised learning method to select the op-
timal set of gender discriminating feature components. The raw feature-vectors
are extracted from facial images using shape-from-shading, and represent the
modes of shape variation over a field of surface normals extracted using princi-
pal geodesic analysis [12]. Principal geodesic analysis is a generalization of PCA
from data residing in Euclidean space to data residing on a non-linear Rieman-
nian manifold (a unit hypersphere in the case of surface normals). By making use
of the information provided by both labeled and unlabeled data, we successfully
reduce the size of the labeled data (i.e. the number of facial images labelled as
male or female) required. The semi-supervised learning method is based on a
weighted graph representation of the data and employs harmonic functions over
the graph to locate the optimal feature set. Each face is first represented by its
PGA eigen-features, and is denoted by a vertex in a fully connected weighted
graph. The edge weights are determined by a similarity measure for the corre-
sponding pair of feature-vectors. The similarity measure weights each component
of the PGA feature vector according to its significance for gender discrimination.
By making use of harmonic functions and the entropy minimization strategy de-
scribed by Zhu et. al in [14], we are able to learn the gender significance for
each component of the PGA feature vectors. Experimental results demonstrate
that using our method, the learned gender discriminating feature components
are consistent with human perception. Moreover, we achieve 90.50% gender clas-
sification accuracy when 50% of the data are labeled.

A second noteworthy contribution of this paper is that we make use of fields
of facial surface normals (facial needle-maps) instead of 2D brightness images
for gender classification. There are two advantages of this approach. First, the
2.5D facial needle-maps reveal directly facial shape information. It has been
shown by psychologists that gender classification is more effective using 3D shape
than using 2D brightness [15]. Moreover, 3D facial shape provides more reliable
information for surveillance purposes. The second advantage is that facial needle-
maps can be recovered from single 2D images using the techniques such as shape-
from-shading, and therefore avoid the expense of using a 3D sensor.

The outline of the paper is as follows. Section 2 reviews the statistical
treatment of data residing on a Riemannian manifold using principal geodesic
analysis. Section 3 commences by reviewing the harmonic functions and the
semi-supervised learning method developed in [14], and then describes how to
apply this method to gender discriminating feature selection. Experiments are
presented in Section 4. Finally, Section 5 concludes the paper.

2 PGA on Facial Needle-Maps

A surface normal n may be considered as a point residing on a spherical manifold
n ∈ S2. Facial needle-maps, which are fields of N surface normals, may be
considered as a point on the manifold S2(N) =

∏N
i=1 S

2. Principal geodesic



Semi-supervised Feature Selection for Gender Classification 25

analysis makes use of exponential and log maps, and intrinsic means to analyze
data on this manifold.

If u ∈ TnS
2 is a vector on the tangent plane to S2 at n and u �= 0, the

exponential map, denoted expn(u), of u is the point on S2 along the geodesic in
the direction of u at distance ‖ u ‖ from n. This is illustrated in Fig. 1. The log
map, denoted logn is the inverse of the exponential map. In the S2(N) space,
the exponential and log maps are simply the products of N copies of the maps
for S2 given above.

Fig. 1. The exponential map

The intrinsic mean is defined as μ = argminn∈S2
∑N

i=1 d(n, ni) , where d(n, ni)
is the geodesic distance between n and ni on the manifold. For a spherical man-
ifold, d(n, ni) = arccos(n ·ni). The intrinsic mean of data residing on a spherical
manifold can be iteratively computed using the gradient descent method of Pen-
nec [16]. Accordingly, the estimate μ(t) at iteration t is updated as follows:

μ(t+1) = expμ(t)(
1
N

N∑
i=1

logμ(t)(ni)).

In PGA each principal axis is a geodesic curve. In the spherical case this corre-
sponds to a great circle. To project a point n1 ∈ S2 onto a geodesic G passing
through the intrinsic mean, the projection πG may be approximated linearly in
the tangent plane TμS

2: logμ(πG(n1)) ≈
∑m

i=1 V
i · logμ(n1), where V1, . . . Vm is

an orthonormal basis for TμS
2, which can be obtained using principal component

analysis. Then, the principal geodesics for the S2 space are obtained under the
exponential map expμ(vi), i = 1...m. This approximation enables the principal
geodesics be computed by applying PCA in the tangent plane TμS

2.
To apply PGA to facial needle-maps, we first make use of the log map to

obtain the long vector representation of the faces in the tangent plane passing
through the intrinsic mean. Then, we use the numerically efficient snap-shot
method of Sirovich [17] to compute the eigenvectors and the according eigenval-
ues of the covariance of the long vectors. The leading m eigenvectors form the
projection matrix Φ = (e1|e2| . . . |em). Given a facial needle-map, we first obtain
its long vector representation u = [u1, . . . , uN ]T in the tangent plane, and then
we represent the face using its PGA feature vectors b = ΦTu.
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3 Learning Gender Discriminating Features

After principal geodesic analysis, each face is represented by its m dimensional
PGA feature vector. However, it has been well studied in [4] that not all of
the PCA components are relevant to gender classification. The irrelevant or re-
dundant information limits classification accuracy. We therefore select the most
effective gender discriminating feature components from the PGA feature vec-
tors. We make use of the learning strategy based on harmonic functions proposed
in [14], and apply the method to gender classification.

3.1 Semi-supervised Learning Using Harmonic Functions

In [14], Zhu et. al represent the data x1, . . . , xl, xl+1, . . . , xlu as vertices in a
connected weighted graph G = (V,E). Here the first l data are labeled and the
subsequent u data are unlabeled. The weight of each edge measures the similarity
between the associated pair of data, and is calculated as,

wij = exp
[
−

m∑
d=1

(xid − xjd)2

σ2
d

]
, (1)

where xid is the dth component of the vector xi, and σd is the length-scale of
the dth component.

Each of the l labeled data have binary labels yi ∈ {0, 1}, i = 1, . . . , l. To assign
labels to the unlabeled data, a real-valued function f : V → R is computed on
the graph so as to satisfy two constraints. First, the function takes on the label
as a value, and for the labeled data is f(i) = yi, i = 1, . . . , l. The second is that
f minimizes the quadratic energy function

E(f) =
1
2

∑
i,j

wij(f(i)− f(j))2.

It has been shown that the function f satisfying the above two constraints is
harmonic, which means that the value of f at each unlabeled data point is the
average of f over the neighboring vertices, i.e.

f(j) =
1
dj

∑
i∼j

wijf(i), j = l+ 1, . . . , lu. (2)

Equation (2) can be expressed as f = Pf , where P = D−1W , D = diag(di)
is the diagonal matrix with the degree di =

∑
j wij of each node i along the

leading diagonal. Since the first l data are labeled and the subsequent u data are
unlabeled, the weight matrix W (D and P similarly) can be split into 4 blocks
after l rows and columns,

W =
(
Wll Wlu

Wul Wuu

)
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The solution for f over the unlabeled data is

fu = (Duu −Wuu)−1Wulfl = (I − Puu)−1Pulfl. (3)

Hence from Equation (1) fu is a function of the scale parameters σd. In [14], the
scale parameters σds are learned by minimizing the average label entropy,

H(f) =
1
u

l+u∑
i=l+1

Hi(f(i)) (4)

where Hi(f(i)) = −f(i) log f(i) − (1 − f(i)) log(1 − f(i)). Small values of the
entropy indicate that the function values f for the unlabeled data are close to
either 0 or 1, which means the labeling is relatively unequivocal. The authors
also discussed the effectiveness of using entropy minimization together with the
labeled data, and suggested to replace the transition matrix P in equation (3)
with

P̃ = εU + (1− ε)P, (5)

where Uij = 1/(l+ u), to avoid the complication that H has a minimum at 0 as
σd → 0. Gradient descent is used to learn the σds. The computation is outlined
as follows,

∂H

∂σd
=

1
u

l+u∑
i=l+1

log(
1 − f(i)
f(i)

)
∂f(i)
∂σd

, (6)

where ∂f(i)/∂σd is the ith component of ∂fu/∂σd, which is,

∂fu

∂σd
= (I − P̃uu)−1(

∂P̃uu

∂σd
fu +

∂P̃ul

∂σd
fl), (7)

where ∂P̃uu/∂σd and ∂P̃ul/∂σd are sub-matrices of ∂P̃ /∂σd, and,

∂pij

∂σd
=

∂wij

∂σd
− pij

∑l+u
n=1

∂win

∂σd∑l+u
n=1 win

. (8)

Finally,
∂wij

∂σd
= 2wij(xid − xjd)2/σ3

d. (9)

3.2 Application to Gender Classification

The aims in applying the above semi-supervised learning technique is as follows.
By adjusting the parameters σd of the weight function according to equation (1),
the influence of the gender discriminating feature components is increased, while
that of the non-discriminating ones is decreased. The smaller value of σd, the
greater the influence of component d in determining the similarity measure. As
a result value of σd provides a means of gauging the significance of the different
components of the PGA feature vector for gender classification.
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We set f = 0 for the labeled female data, and f = 1 for the labeled male
data, and then apply the above semi-supervised learning method to learn the σ
values for each component of the PGA feature vector. This strategy differs in two
important ways from the feature selection methods described elsewhere in the
literature ([3], [4]). First, the graph representation of the data and the harmonic
functions enable us to make use of the entire set of available data, including both
the labeled and unlabeled samples. As a result the size of required labeled data-
set is reduced. Secondly, the σ values not only indicate which of the components
of the PGA feature vector are discriminating feature components, but they also
quantify the gender discriminating significance of each component. Incorporating
this quantized significance into classification improves the gender classification
performance.

After learning the σ values, the harmonic function values on the unlabeled
data can be computed using Equation (3). From these values of f(u), the genders
of the unlabeled faces can be determined. When fu(i) < 1

2 , the face i is assigned
to be female, otherwise it is male.

4 Experimental Results

In this section, we evaluate the performance of gender discriminating feature se-
lection using the semi-supervised learning method, and in particular we examine
its performance for gender classification. The data used in our experiments are
from the Max-Planck Face Database [18], [19]. The database comprises 200 laser
scanned (Cyberware TM) heads without hair. There are 100 females and 100
males. The facial needle-maps are obtained by applying the following processing
steps to the laser scans: a) the face is first orthographically projecting onto a
frontal view plane, b) cropping the plane to 142-by-124 pixels so as to retain only
the inner part of the face, and c) computing the surface normal at each pixel
position. Principal geodesic analysis is applied to the 200 facial needle-maps.
Each facial needle-map is then represented by its PGA feature vector.

We first apply the semi-supervised learning method to examine the gender
discriminating feature components from the leading 10 PGA feature vectors. We
examine the performance with 5 different fractions of labeled data (10%, 20%,
30%, 40%, 50%). The results for each fraction of labelled data are estimated with
10-fold cross validation. For learning the weights, we set the step size η = 1.0 for
gradient descent, and set the smoothness parameter ε = 0.01 in Equation (5). We
allow the learning process to run for 9000 iterations. The plot of the average label
entropy (Equation (4)) is shown in the left panels of Figure 2. Irrespective of the
the fraction of labeled data, the entropy decreases with the iteration number and
converges after about 5000 iterations. The learned σ values for the leading 10
PGA eigenmodes are shown in the right panels of Figure 2. From this plot, when
using 10% of the data as labeled, the σ value of the first component is significantly
smaller than those of the remaining components. However, with an increasing
fraction of labelled data, the σ values of the 5th and 6th components decrease
rapidly, followed by those for the 2nd and 9th components. This indicates the
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(a) 10% labelled data (b) 20% labelled data

(c) 30% labelled data (d) 40% labelled data

(e) 50% labelled data

Fig. 2. The performance of using semi-supervised learning for gender feature selection

importance of these components for gender discrimination. When 50% of the
data is labeled, the 1st, 5th, 6th, followed by the 2nd and 9th PGA feature
components are most gender discriminating. This is consistent with the results
reported in [20].

To explore the data in more detail, we visualize the 1st, 5th, and 6th eigen-
modes by showing the mean face together with its deviation along the 1st, 5th
and 6th eigenmodes. The visualization is shown in Figure 3, and by inspection
it seems plausible the three eigenmodes do convey some gender information.
Turning our attention to the 1st eigenmode, the faces from left to right become
more solid in appearance becoming larger and ”squarer”, while the cheeks be-
come thinner. These are all masculine characteristics. In the case of the 5th
component, the faces become more oval and the eyes wider. These are feminine
characteristics. In the case of the 6th component, the faces again have more mas-
culine appearance from left to right. Figure 3 therefore indicates that the gender
discriminating features selected using the semi-supervised learning method are
at least to some degree consistent with human perception.

After the determination of the parameters of the weight function, i.e. the σ
values, we can use the values of f from Equation (3) to determine the gender for
each unlabeled face. Again, the performance is examined with 5 different frac-
tions of labeled data (10%, 20%, 30%, 40% 50%), and the average classification
error rates for each fraction of labelled data are estimated with 10-fold cross val-
idation. The classification results are shown in Table 1. From the table, it is clear
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Fig. 3. Visualization of the 1st, 5th and 6th eigenmodes. From top to bottom are the

1st, 5th, 6th eigenmodes. The columns are according to the deviation from the mean,

from left to right are λ=-30, λ=-20, λ=0 (the mean face), λ=20, and λ=30.

that the gender classification accuracy improves with the increasing fraction of
labelled data. However, when 20% of the data are labeled, we can achieve over
81% gender classification accuracy. When 50% of the data are labeled, the clas-
sification accuracy reaches 90.50%, which is higher than the accuracy reported
in [4] (86.43%), while with a much smaller volume of labeled data. These results
demonstrate the effectiveness of using the semi-supervised learning method for
gender classification, and the feasibility of gender classification using the facial
shape information revealed by 2.5D facial needle-maps.

We also examine the gender classification performance using our method on fa-
cial needle-maps recovered from 2D face images using shape-from-shading (SFS).
In our experiments, there are 140 2D images (70 females and 70 males), which
are from the AR Face Database [21], with neutral expressions and no glasses.
We use the principal geodesic SFS method proposed in [12] for the facial shape
recovery. The statistical model required in this SFS method is constructed using
the above 200 ground-truth needle-maps which are from the Max-Planck Face
Database. Some examples of the recovered facial shapes are shown in Figure 4.
From the figure, we can see that the recovered needle-maps and the surfaces give
realistic shape, overcoming the well-known local convexity-concavity instability
problem in previous SFS methods. Moreover, gender information is conveyed
in the recovered facial needle-maps. This guarantees the feasibility of gender
classification based on the recovered facial needle-maps.

Table 1. Classification accuracy using different fraction of labelled data

10% labelled

data

20% labelled

data

30% labelled

data

40% labelled

data

50% labelled

data

Accuracy 76.53% 81.17% 83.84% 86.15% 90.50%
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(a) A female example (b) A male example

Fig. 4. Two examples of the recovered facial shapes. From left to right are the input

images, the recovered needle-maps, the recovered surfaces.

Table 2. Classification accuracy for recovered facial needle-maps

10% labelled

data

20% labelled

data

30% labelled

data

40% labelled

data

50% labelled

data

Accuracy 74.44% 80.36% 87.35% 88.86% 89.52%

After the facial shape recovery, we first apply PGA to represent the recovered
needle-maps using PGA feature vectors. Then, we apply the semi-supervised
learning method to learn the values of σds for the leading 10 PGA eigenmodes,
and use the values of f to determine the gender. The classification performance
is estimated with 5-fold cross validation for each fraction of labelled data (10%,
20%, 30%, 40%, 50%), and is shown in Table 2. From the table, we can see when
only 30% of the data are labeled, we can achieve over 87% gender classification
accuracy. When 50% of the data are labeled, we achieve the accuracy 89.52%.
These results further confirm the effectiveness of using the semi-supervised learn-
ing method for gender classification, and demonstrate the feasibility of gen-
der classification using the facial needle-maps recovered from 2D images using
SFS.

5 Conclusions

In this paper we perform gender determination using PGA to parameterize 2.5D
facial needle-maps and using a semi-supervised learning method [14] for the pur-
poses of classification. The learning method is based on the graph representation
of the data and harmonic label functions, and can be used to determine the most
gender discriminating components of the PGA feature vectors. There are two
novel contributions. First, we make use of the facial shape information conveyed
by the facial needle-maps for gender classification. Second, by making use of the
semi-supervised learning method, we are able to learn the gender discriminating
features using a relatively small sample of labeled data and without sacrificing
the classification accuracy. Experimental results demonstrate that the learned
gender discriminating feature components are consistent with human percep-
tion. When 50% of data are labelled, the gender classification accuracy reaches
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90.50% for ground-truth needle-maps, and 89.52% for needle-maps recovered
using SFS.

There are a number of ways in which the graph representation can be enhanced
for facial analysis problems including gender and ethnicity determination. Our
immediate plans are to explore how to apply diffusion maps and graph-spectral
probabilistic relaxation labeling to learn the gender discriminating features, and
to determine the genders from facial images.
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Abstract. In this paper, we propose a convex optimization based approach for
piecewise planar reconstruction. We show that the task of reconstructing a piece-
wise planar environment can be set in an L∞ based Homographic framework
that iteratively computes scene plane and camera pose parameters. Instead of
image points, the algorithm optimizes over inter-image homographies. The resul-
tant objective functions are minimized using Second Order Cone Programming
algorithms. Apart from showing the convergence of the algorithm, we also empir-
ically verify its robustness to error in initialization through various experiments
on synthetic and real data. We intend this algorithm to be in between initializa-
tion approaches like decomposition methods and iterative non-linear minimiza-
tion methods like Bundle Adjustment.

1 Introduction and Related Work

In this paper, we describe a convex optimization based approach for piecewise pla-
nar reconstruction by optimizing inter-image homographies. This work is motivated
by both the recent success of convex optimization based methods in various geometric
problems like triangulation, resectioning [1,2], and the available sophistication in robust
estimation of homographies across views [2].

Convex optimization methods have achieved recent success in the estimation of var-
ious geometric quantities like homography, pose, 3D point cloud (triangulation) [1,2]
etc., and are even shown to be reasonably robust to noise [2]. There are even works
on outlier estimation and removal using convex optimization [3] . On the other hand,
there also has been progress on robust estimation of homographies from multiple views
of a scene plane [2]. However, even though homographies can also be expressed as a
function of the camera pose, and can be decomposed using SVD in a similar manner
to fundamental matrices [4,5], piecewise planar reconstruction as a 3D reconstruction
pipeline has not received much attention.

To this extent, we intend to develop an algorithm that can be a useful “bridge” be-
tween SVD based initialization methods mentioned above and non-linear optimization
methods like Bundle Adjustment (BA). We focus on the iterative reconstruction pro-
cess, that alternates between optimizing a six parameter camera pose vector for each
view, and a four element plane parameter vector for each scene plane, by optimizing
over the resulting inter-image homographies.

We make the following contributions in this work. First, we introduce objective func-
tions for producing optimal estimates of pose and plane parameters, along the lines of

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 34–43, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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[2]. Then, we show how a Branch and Bound (BnB) algorithm may be formulated for
the computation of optimal rotation between views [4].

Some of the recently proposed frameworks on L∞ based quasi-convex cost functions
problems form the motivation for our work [1,6], while some closely related works in-
clude projective Bundle Adjustment (pBA) [7] and BA with constraints [8]. However,
we differ from these works in the kinds of objective functions minimized (quasiconvex
as opposed to non-linear) and in the quantities we optimize (homographies as opposed
to 3D points). Recent study of bi-linear problems also has relevance to our work [9]
since plane and pose parameters are combined together in a bi-linear form in the expan-
sion of a homography (Equation 1). However, the formulation proposed in [9] requires
that the entire set of plane and pose parameters need to be optimized together. Also,
estimation of rotation parameters becomes infeasible in such a scenario. Thus we do
not resort to a formulation along the lines of [9].

The rest of this paper is organized in the following manner. Section 2 sets the problem
of pose estimation in a homographic framework and motivates the need for the use
of optimization. Section 3 presents our solution and algorithm details. Experimental
analysis on synthetic and real-world sequences are done in Section 4 and finally, we
conclude with a discussion on future directions and applications in Sections 5.

2 SVD Based Initializations

Let there bemplanes in the world, characterized by the parameters
[
n1, d1, . . . , nm, dm

]
.

The jth plane is characterized by the parameters (nj , dj), wherenj represents the normal
of the plane and dj represents the perpendicular distance from world origin. Let there be
two cameras with external parameters [I | 0] and [R | t]. For simplicity, let us assume that
the internal parameters of the cameras are set to identity (K = I). Thus the homography
induced by the jth plane between the two views [10] is given by

Hj =

[
R − tnjT

dj

]
(1)

Decomposition algorithms for obtaining camera pose and plane normals from homog-
raphy matrix using Equation 1 are well known [11,5]. However, since, the process of
pose computation from correspondences through the homography matrix involves two
SVDs, a theoretical sensitivity analysis of such algorithms is difficult and approximate
[12]. Thus it is more advantageous to do an empirical study of the error in the estimation
of plane and pose parameters, given noise in image correspondences.

Figures(1a-1c), depict the poor performance of one of the SVD based decomposition
algorithms [5]. The experiments consisted of adding increasing amounts of noise to a
previously determined set of normalized image correspondences. Homographies ob-
tained after a standard RANSAC routine were then decomposed to obtain estimates of
the plane and pose parameters. Variances are plotted against error in pixel coordinates,
with a maximum variance of 5 pixels which corresponds to approximately 1% of the
image size. As can be seen, translation and normal estimations are adversely affected
by image noise. The errors for the other algorithm [11], were similar.
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The variances in Figures(1a) plot the error in estimation of rotation parameters when
noise is introduced into the system. As is seen, the maximum variation of rotation
parameters in the Euler angle space is 6 degrees, for as high as one percent image noise.
Comparison with the translation and normal errors, which are as high as 40 degrees in
the polar space Figures(1b-1c), show that the decomposition algorithm produces much
more robust estimates of rotation than either translation or normal parameters. This ex-
plains the greater need for better estimates of translation and normal parameters com-
pared to that of rotation parameters that are much close to the actual values.

Fig. 1. (a,b,c) Plot the L2 and L∞ errors in the rotation angles, translation direction and nor-
mal direction respectively. Also are plotted the maximum error ranges for these quantities. The
translation and normal direction errors are computed as Euclidean distances in polar space.

3 Optimization Framework

In this section, we describe our algorithm. First, we start with the simple case when
rotation is assumed known, and the rest of the parameters are optimized (Section 3.1).
The reason for this is the non-convexity of the orthonormality constraints of the rotation
matrix. Since algorithms for estimating the rotation already exist [4], and since we
have shown rotation parameters to be robustly recovered from SVD decompositions as
compared to other parameters (Figure 1a), we treat rotation separately (Section 3.3).
Finally, in order to bring all the SVD decomposition estimates into a single coordinate
system, we describe a convex function in Section 3.2.

3.1 Formulation of the Objective Function

We wish to find plane and pose parameters that best fits Equation 1 which is non-
linear in terms of quantities (R, t, nj , dj) that need to be computed. However, observe
that when either the plane or the pose parameters are known, Equation 1 is linear in
the remaining unknowns. This simple fact is used to define an objective function that
measures the geometric distance between the homography computed from plane/pose
parameters and the homography estimated from point correspondences. If the homog-
raphy matrix with varying pose parameters and fixed plane parameters is defined as

Hrtj =
[
R− tnj

c
T

dj
c

]
for the jth plane then the corresponding objective function is

F(R,t) =
8∑

i=1

Hj
i

Hj
9

− Hrt
j
i

Hrtj9
(2)
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Similarly, when the plane parameters are allowed to vary fixing pose parameters the

homography function isHndj =
[
djRc − tcnj	

]
and the objective function

F(n,d) =
8∑

i=1

Hj
i

Hj
9

− Hnd
j
i

Hndj
9

(3)

(Rc, tc, n
j
c, d

j
c) are fixed and the optimization runs over free variables denoted by bold

letters. There are two important observations to make at this point. Firstly, equations (2,
3) are both linear fractional: both the numerator and denominator are affine in terms
of the unknowns. Secondly, it is possible to optimize all parameters by alternatively
minimizing Equation 2 and Equation 3 till convergence.

The proposed algorithm is a two step process. An initial estimate of the parameters
is acquired using SVD-based decomposition in the first. However, estimates from SVD
decomposition in the first step do not all have the same scale factor. Such estimates
need to be threaded together and brought down to a common universal scale before car-
rying out the optimization. This is done by minimizing the difference between various
estimates of a single quantity as described in Section 3.2.

Subsequently, in the second step, this estimate is improved in an optimization frame-
work. However, minimizing Equation 2 without enforcing the constraints inherent to
a rotation matrix will not lead to a physically valid rotation matrix. Equation 2 fails
to be a linear fractional with rotation constraints enforced complicating its minimiza-
tion. Hence, rotation is handled separately as explained in Section 3.3 and Equation 2
is minimized by varying only the translation as in Step 7 of Algorithm 1.

The optimization takes advantage of the fact that the objective functions are quasicon-
vex and employs convex optimization techniques at minimizing them. Variables ti and
(nj , dj) are minimized in alternating iterations. Optimization of ti takes into account
information from all visible planes. Similarly, optimization for (nj , dj) is done with in-
formation from all views in which the plane is visible. This two step process ensures
the quasiconvexity of the objective functions. The complete method is summarized in
Algorithm 1.

Algorithm 1. Complete Algorithm Summarized.

1: Input: Homographies kHj for j = 1, . . . , J and k = 1, . . . , K of plane Πj between the
camera views kP and reference view 0P = [I |0].

2: SVD-based decomposition: Decompose kHj to get kRj ,
ktj
kdj

, knj .

3: Initialization: kR = medianj {kRj} and t = medianj{ktj}.
4: Set to universal scale: Assume each actual camera translation to be a unit vector in the direc-

tion of
kt
dj

, i.e., ‖kt‖ = 1. Let kGj = [kR −
ktnT

j
kdj

] and kGs
j = (g1, g2, . . . , g9)

T .

5: Iterative Minimization:
6: ΣkΣj

{
kHs

j − kGs
j

} ≤ δ

7: Update (kt): (kt) = arg minkt maxJ
j=1

√
Σi[

jhi
jh9

− jgi
jg9

]2∀k = 1, . . . , K.

8: Update (nj , dj): (nj , dj) = arg minnj ,dj maxK
k=1

√
Σi[

khi
kh9

− kgi
kg9

]2∀j = 1, . . . , J .
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3.2 Universal Scale

Each decomposition by the algorithms of Faugeras [11] and Zhang [5] produces esti-
mates of {R, t, n} assuming d (perpendicular distance of plane from origin) to be unity.
Thus estimates vary by a scale factor and need to be tied down to a single universal
scale which in the presence of noise has to be computed using optimization.

Let the solutions of translation obtained by decomposing homography Hj
i be tji .

Ideally, the actual translation is ti = tjid
j . Since various estimates of the same quantity

must be consistent, we find an x =
[
t1, t2, . . . , tk, d

1, d2, . . . , dm
]	

for which an error
|f(x)|∞ is minimum. f(x) is a vector with elements of the set {ti−tjidj | i ∈ [1, k] , j ∈
[1,m]} stacked up. Optimal estimates are found by performing the minimization x∗ =
argminx |f(x)|∞.

The considered error function is convex [13], made from the pointwise maximum
of the convex function (ti − tjid

j). An unconstrained optimization in this case could
lead to the trivial solution of all zeros for x which is undesirable. To avoid this we
fix perpendicular distance of anyone of the planes (say, d1) to unity. This also sets the
overall scale of the minimization process.

3.3 Retrieving Rotation

Constraints inherent to rotations and normals like orthonormality constraints of the ro-
tation matrix are non-convex and do fit into a convex framework. Such constraints have
been handled in the literature [4,14] using under estimators and over estimators of the
non-convex function with a Branch and Bound algorithm. We, thus, handle rotation
separately rather than in the above optimization. We use image coordinates of planes
available on the lines of [4] to solve for rotation Ri of the ith view. The objective func-
tion to be minimized is

F(Ri,ti) ≡ Find(Ri, ti) s.t. ∠(Hj
i x

j
1, (Ri − ti

njT

dj
)xj

1) < εmin (4)

which can be alternatively posed as

F(Ri,ti) ≡ Find(Ri, ti) s.t. ∠(Hj
i x

j
1,Ri(I− ti

njT

dj
)xj

1) < εmin (5)

where xj
1 are points from the jth plane in the first view. Arguments of bounds and in

general the branching strategy of [4] can now be incorporated into the current frame-
work. The analysis that estimates of rotation from SVD-based methods are more robust
than that of translations and normals as noted in Section 2 practically helps the idea of
handling rotation separately at a later stage. Figure 3c shows the performance of the
objective function described above in the presence of varying noise. The L2 norm in
angular space (roll-pitch-yaw) is plotted against increasing amounts of noise in image
pixels.
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4 Experimental Analysis

In order to test the proposed algorithm, we have conducted experiments using Se-
DuMi [15] on both synthetic and real-world data. Synthetic data is obtained by gen-
erating points on planes and projecting them onto camera matrices. Real world data
sets tested include the Oxford Model House, Corridor, and UNC datasets. In all these
cases, the real world is assumed to be segmented into planes apriori i.e. interest points
and hence correspondences computed are assumed to be clustered into planes. However,
there are automatic algorithms to achieve such a classification [16].

4.1 Synthetic Data

Generation. Random points are generated on the XY-plane which is then re-positioned
at a random location. Two random camera matrices are generated and the world points
of many such planes are projected using them to generate image points. Gaussian noise
of varying standard deviation is added to these image points to create synthetic corre-
spondence data. Homographies are then computed using the RANSAC after normaliza-
tion [10] which can alternatively be generated by [1]. The generated Homographies are
decomposed using Faugeras’ and Zhang’s algorithms [11,5] to generate data for both
initialization and comparison. Algorithm 1 is then run with this data, to produce our
estimate and is compared with the SVD-based algorithms and Bundle Adjustment in
the 6-parameter pose space by plotting the euclidean distance between estimated and
ground truth values.
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Fig. 2. Plot of L2 and L∞ norms of the distance in pose space between estimated and ground
truth quantities from Algorithm 1 against increase in variance of Gaussian error in point corre-
spondences. Comparison with the two SVD based methods is shown.

Effect of noise. Figures (2a,2b) show the effect of increasing image noise on the ac-
curacy of estimation. Two observations can be made for both translations and normals.
First, the average error in the estimation of both parameters is less than 5 degrees even
for a 1% error in the image coordinates, which is a considerable amount of error. This
justifies the robustness of our algorithm to image noise. The second observation is that
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the mean errors (averaged for 100 trials) in all these cases are located close to the min-
imum errors represented by the lower end of the error bar. We can conclude that most
of the estimations center around the mean, with only a few deviating towards the higher
end. Another interesting observation is that even the resilience to noise is apparent till
about 3 pixel error after which the maximum error in both cases seems to increase. This
can be attributed to the fact that after a point the algorithm possibly settles into a lo-
cal minima because of the inaccurate initialization. However, this is still better than the
results of SVD-based methods in Figures 1b, 1c.

Comparison with Bundle Adjustment. We empirically compare our algorithm with
standard iterative non-linear optimization technique of Bundle Adjustment (BA) [17],
which uses Levenberg-Marquardt internally. BA is initialized by the output of the SVD-
based approaches similar to ours. This initialization is used to minimize the following
error over the normals and the translations

(R, t, nj, dj) = arg min
kR,kt,nj,dj

∑
k

∑
j

∑
i

[
hi

h9
− xTAix

xTA9x
]2 (6)

where, x = (1Rs, . . . ,KRs, 1tT , . . . ,KtT , nT
1 , . . . , n

T
J , d1, . . . , dJ ) and Ai is a matrix

s.t. xTAix = gi and x is x with the initial SVD estimates of kR, kt, nj , dj substituted.
The improvement in translations is shown in Fig (3a) and that of normals in Fig (3b).
They are shown for varying levels of variance each of which has been tested for 100
trials. They clearly show our algorithm performing better than BA.
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Fig. 3. (a-b)Plot of L2 norm of the distance in pose space between estimated and ground truth
quantities from Algorithm 1 and Bundle adjustment against increase in variance of Gaussian error
in point correspondences.(c) Error in recovery of rotation parameters using the objective function
of Section 3.3

Effect of planes and views. Figures (4a,4c,4b,4d) show the effect of the number of
planes and views on the performance of the algorithm. Contrary to intuition, increasing
the number of planes does not seem to have much effect on the accuracy of the estimates
of translation parameters. On the other hand, increasing the number of views increases
the parameter size, and the accuracy of translation estimates dwindles since the number
of planes and hence, measurements is kept constant. In the case of normals, however,
increasing the number of views results in a marked improvement in the accuracy of
their estimates.
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Fig. 4. The above figures plot the effect of planes and views on the accuracy in estimation of the
translation and normal parameters. First two figures plot the effect on translations and last two
plot the effect on normals. For the experiment with increasing planes, the number of views was
kept constant at 10, and that for views, the number of planes was set to be 3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Sample images of scenes reconstructed using our approach. (House(a), Corridor(b),
synthetic(c-d), UNC((e-f))). (g-h) illustrates the accuracy of our reconstruction, the ground truth
and reconstructed models are overlapping. (i-j) Texture mapped UNC reconstructions.
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(a) (b) (c) (d)

Fig. 6. Plots of the L∞ error between plane and pose parameters with respect to the ground truth,
for the House and Corridor sequence. L2 error shows similar plots. Y-axis of plots (a),(b),(c) and
(d) is the angular error in radians, X-axis of (a) and (c) is the number of views, where as X-axis
of (b) and (d) is the number of planes. In the plots (a),(b),(c) and (d), dotted curve represents the
Faugeras initialization and other curve represents our approach.

4.2 Real Data

In order to test on data from the real-world, we chose two Oxford data sets and the
UNC data set. The House, and Corridor data sets (Figures (5a,5b)) are accompanied
by correspondences and estimates of the camera matrices, while the UNC data set only
comprises camera matrices.

Figures 6a-6b show the comparison between our estimation and that of the decompo-
sition of Faugeras for the Oxford data sets. The L2 and L∞ errors between the estimated
and ground truth quantities are plotted. In order to compare normals, we took the best
estimate of normals from the available decompositions. As can be seen from the plots,
estimates of translation from our algorithm are far better than the corresponding algo-
rithm by Faugeras. We found that Zhang’s algorithm produces estimates similar to that
of Faugeras’ algorithm in most cases. The same situation is repeated in the Corridor se-
quence (Figures 6c-6d), where translation is very accurately obtained. An explanation
of why certain plane parameters are “perturbed” by a higher error is that some of the ho-
mographies are erroneous and the error in a particularly bad homography is distributed
across planes. Finally, the UNC data set (Figures 5i,5j) show the visual accuracy of our
reconstruction.

5 Discussion and Conclusion

We proposed a framework that reconstructs piecewise planar scenes in much the same
way as Bundle Adjustment for point sets. The algorithm incorporates both multiple
planes and views and does not constrain all the planes to be visible in any single view.
This makes it a useful bridge between initialization approaches and non-linear mini-
mization methods

The existing framework is not without its drawbacks. Currently, though the objec-
tive functions show robustness to noise, it does not work very well in the presence of
outliers. Existing literature in convex optimization that handles outliers may be used
for this purpose [3]. Similarly, uncertainty of correspondences can also be handled with
techniques like [18]. Secondly, constraints between planes like orthogonality may help
in stabilizing the overall reconstruction [8]. One other issue related to this algorithm
is its practical applicability. Recent results reported in [6,19] are very relevant to our
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work and may be used to improve the run time of our algorithm, making it suitable
for faster computation required by videos. We believe that our current contribution lays
down a useful framework for practically viable optimization over planes, and wish to
investigate further into its use for large scale optimization.
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Abstract. We propose in this paper a new method based on binary space parti-
tions to simultaneously mesh and compress a depth map. The method divides the
map adaptively into a mesh that has the form of a binary triangular tree (tritree).
The nodes of the mesh are the sparse non-uniform samples of the depth map and
are able to interpolate the other pixels with minimal error. We apply differen-
tial coding after that to represent the sparse disparities at the mesh nodes. We
then use entropy coding to compress the encoded disparities. We finally benefit
from the binary tree and compress the mesh via binary tree coding to condense
its representation. The results we obtained on various depth images show that
the proposed scheme leads to lower depth error rate at higher compression ratios
when compared to standard compression techniques like JPEG 2000. Moreover,
using our method, a depth map is represented with a compressed adaptive mesh
that can be directly applied to render the 3D scene.

1 Introduction

Determining the depth of a scene depicted by a stereo image is a well established re-
search area in computer vision. The depth is usually represented by a disparity or a
depth map that reflects the movement of the pixels between the two images. In order to
compute this map, it is necessary to first evaluate some matching costs among the pixels
of the images. Then, an energy function is defined over these costs and optimized. A
disparity map can be used in a variety of applications: 3D scene reconstruction, image
based rendering and 3D-television (3D-TV). In order to use this entity for such pur-
poses, the depth map needs to be as accurate possible so that the visualization errors
are minimal. This is why stereo matching is still an active area of research. For the
interested reader, an excellent survey about this topic is found in [1].

Nowadays, it is possible to find numerous stereo matching algorithms that are able to
result in high quality depth maps. Irrespective of the algorithm used, a disparity map has
to be compressed at a later stage to save the storage requirement or to limit the needed
bandwidth if it has to be transmitted over a network, e.g. telepresence and 3D-TV. A
typical way to compress a depth map is by applying standard image or video compres-
sion techniques like JPEG 2000 or MPEG4 ASP. Such schemes process a depth image

� This research is sponsored by the German Research Foundation (DFG) as a part of the SFB
453 project, High-Fidelity Telepresence and Teleaction.
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while taking only the visual quality into consideration. This is why they result in a high
amount of error in the reconstructed depth values especially at high compression rates,
see [2,3,4] for more details.

Motivated by this limitation, we propose in this work an algorithm for depth map
compression and meshing based binary space partitions. Using this concept, we first
divide the disparity image into a triangular tree (Tritree). This tree has a binary format
and is actually the content adaptive mesh approximation of the depth map. The nodes
of the mesh are the non-uniform samples of the map and can reconstruct the other depth
values with a minimum error. We then apply suitable entropy coding on the samples and
the binary tree in order to further compress the data. The results we obtain on several
disparity images show that our scheme leads to a noticeable improvement in the quality
when compared to other techniques even at high compression ratio. Our scheme is fast
and can be applied in real-time to simultaneously mesh and compress a depth map.

The method we propose is based on binary space partitions (BSP) to subdivide an
image. This concept was described in detail in our previous work [5]. There, we apply
three variants of BSP to approximate normal images with a mesh taking into considera-
tion the visual quality of the results. In this paper, there are two main contributions that
make our work original. Firstly, we adopt the fastest BSP variant and tailor it specifi-
cally for depth images. To do that, we take the depth error rate of the compressed depth
image into account when building the mesh and not its visual quality, i.e. we drop out
Peak Signal to Noise Ratio (PSNR). Secondly, we post-process the mesh with several
lossless coding schemes to achieve a very efficient representation of the disparity map.

The rest of this paper is organized as follows. We present in Section 2 a brief review
on depth map compression techniques. We derive the proposed method for depth map
meshing and compression in Section 3. We evaluate the proposed scheme and compare
it to other methods in Section 4. In the end, we draw some conclusions in Section 5.

2 Related Work

The depth map is an image where the intensity values represent the displacement of the
corresponding pixels between the stereo images. The simplest way to compress this en-
tity is by applying a state of the art image compression method like JPEG, JPEG 2000 or
MPEG4 ASP. While compressing an image, these techniques take into account the vi-
sual quality of the result and not the amount of errors in the intensity values of the com-
pressed image. This is usually represented with the term Mean Squared Error (MSE),
equivalently the PSNR, between the compressed image and its uncompressed version.
The MSE actually can be low even if all the reconstructed pixels are erroneous. For ex-
ample, a compressed disparity image where each pixel is reconstructed with an absolute
difference of 2 has a MSE of 4 while the pixel error rate is 100%. This explains why
JPEG and MPEG4 ASP result in blocking artifacts while JPEG 2000 blurs the edges or
the depth discontinuities if a high compression ratio is desired [2,3,4]. Taking the MSE
as a metric is not recommended for the compression of a depth image since the latter is
a piecewise smooth surface, i.e. it has discontinuities along the edges while it is smooth
otherwise [1]. Applying it might not be harmful when visualizing the depth image but
leads to a lot of artifacts and errors in 3D reconstruction and rendering.
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The limitations of the standard image compression techniques motivated the research
to develop more sophisticated schemes for depth maps. In [2], JPEG 2000 was modified
to accommodate for region of interest coding and reshaping the dynamic range of the
depth map. In [3,6], a disparity image was meshed using height fields meshing schemes.
Then, the mesh was coded at different resolutions to obtain the compressed representa-
tion of the disparity map. In [7], a depth map was hierarchically decomposed into four
regions depending on the locations of the edges. These regions were then merged and
fed to an H264/AVC encoder. In [8], the context of a depth map was classified and then
compressed depending on its class via predictive image coding schemes.

The proposed method is based on adaptive or irregular mesh generation. It is thus
important to state some recent development in this domain since such methods can be
adapted to mesh and compress a depth map. Irregular meshes are usually generated
based on coarse to fine strategies, see [9,10] for some examples. One important algo-
rithm is the quadtree since it has been applied in various image types. Quadtree was
applied to adaptively mesh and code videos in [11]. It was also applied to approximate
and visualize terrains in [12]. More recently, quadtree was used in [4] to compress and
mesh disparity images. Another way to obtain irregular meshes is by applying the con-
cept of non-uniform sampling or content adaptive meshing of images. Content adaptive
meshing is the art of approximating an image with an adaptive mesh. The nodes of the
mesh are called the non-uniform samples of the image. These samples are able to inter-
polate all the other pixels of the image via the mesh up to a predefined error. Some of
the techniques developed in this direction are [5,13,14,11].

3 Proposed Scheme

In this work, we will be applying the concept of content adaptive meshing to generate
an irregular mesh. The advantage of such a scheme is its ability to preserve the depth
discontinuities. The sampling rate will be high near the edges or any kind of depth dis-
continuities, hence, the size of a triangle in such regions will be small. Otherwise, the
sampling rate will be low and the size of the corresponding triangle in this case will be
big. An example is shown in Fig. 1. Applying a mesh as a first step to compress a depth
map has been also used in [3]. There, however, the generated mesh does not deal with
depth discontinuities but on small details within the objects. This is why the algorithm
was later improved in [6] to handle these issues by detecting the discontinuities, mod-
eling them and using a constrained triangulation in such regions. With the proposed
content adaptive meshing strategy, the depth discontinuities will be already taken into
account for the sampling rate will be very high at these locations. This makes edge
modeling or enforcing some constraints on the triangulation not required anymore.

Therefore, the main idea of our proposed scheme is to first approximate a depth map
with an adaptive mesh by detecting its non-uniform samples. This mesh will be able
to approximate the original content of the depth map with a minimal error. To further
reduce the size, the obtained mesh and the corresponding disparity values of the nodes
will be encoded in a lossless fashion to obtain an efficient representation of the map.
The block diagram of our compression/decompression scheme is depicted in Fig. 2 and
will be explained in the remainder of this section.



Fast Depth Map Compression and Meshing with Compressed Tritree 47

(a) (b) (c)

Fig. 1. (a) The original Art disparity map of [15]. (b) The corresponding adaptive mesh using the
proposed tritree in Section 3.1. (c) The recovered disparity map from the mesh.

(a) (b)

Fig. 2. (a) The tritree based meshing/compression scheme of a depth map. (b) The decompression
process and depth map reconstruction.

3.1 Content Adaptive Meshing with Tritree

The pixels of a disparity map form a 3D space represented by the 2D-coordinates of the
pixel in the map and the corresponding disparity value. Each triangle T of the desired
mesh is formed by three vertices. Let vi(xi, yi, di) with i = 1, 2, 3 be the three vertices
of T . The plane Π described by T is defined using the normal equation

−→η · pn + k = 0, (1)

where pn (xn, yn, dn) denotes a pixel with coordinates (xn, yn) and depth value dn

lying on the plane, k is a real constant such that k = −−→η · vi and −→η is the normal
vector to the plane. The vector −→η = (η1, η2, η3) can be computed as the cross product
of any two edges of the triangle. To recover the disparity value d̂n of a pixel lying inside
T , we should write Equation (1) in the form

d̂n = − (η1xn + η2yn + k) /η3. (2)

To determine the content adaptive mesh of a disparity map, it is necessary that we find
all the triangles of the map whose nodes can reconstruct the depth values of the pixels
lying within them using Equation (2). To determine the quality of the reconstructed
values, we will be using the percentage of the disparity errors PERR inside each triangle
as a measure. PERR is defined in a triangle T of the mesh to be

PERR =
1

�T �

��T
−1∑
i=0

f(d (xi, yi) , d̂ (xi, yi))%, (3)
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(a) (b)

Fig. 3. (a) The tritree subdivision principle applied to an example depth image along with the
corresponding binary tree. An upper or right triangle is encoded with 1 if divided, a lower or left
triangle is encoded with 0 if divided. A -1 indicates the end of the branch, i.e. no further divisions
of the triangle. (b): The concept of tritree subdivisions working in parallel on several CPUs. The
depth image is pre-divided into 4 parts and each is processed by a different CPU.

where � is a symbol denoting the area of a triangle, i.e. �T is the area of T , 
·� is
the floor operator, (xi, yi) are the coordinates of a pixel in T , d̂ is the disparity value in
the reconstructed disparity map from the compressed image and d is the corresponding
disparity in the uncompressed depth image. The function f in (3) returns the value 0 if
the difference between d and d̂ is strictly less than 1; otherwise, f returns the value 1.

To obtain the adaptive mesh, we should minimize PERR over each triangle of the
mesh. Using the BSP concept, we first divide the disparity map along one of the diago-
nals into two triangles. We then check each of the triangles if it satisfies the predefined
PERR threshold ε. If it does not, we recursively divide the triangle into two smaller
triangles from the longest edge until ε is satisfied. We then repeat this step until no
further subdivisions are possible. This method leads to a Triangular Tree which is why
we called it tritree. The difference in applying tritree in this work as compared to [5] is
the minimization of PERR instead of PSNR. PERR ensures that the depth error rate is
minimized across each triangle in the mesh. In [5], however, the aim was to compress
texture images. For that, PSNR was used since it is known to reflect the visual quality
of a compressed image. In other words, applying PSNR to depth images does not nec-
essarily reduce the depth error rate but only guarantees that a compressed depth map is
visually close to its uncompressed version.

One advantage of tritree is the fact that the obtained adaptive mesh is nothing but a
binary tree due to the incurred property form BSP. Let us assume that when dividing a
triangle, an upper or right triangle is assigned the code 1 while a lower or left triangle is
given the code 0. With tritree, we first divide an image from the diagonal into two trian-
gles. If the PERR is not satisfied, a 1 is written in the code tree if the upper/left triangle
is divided while a 0 is written in the code tree if a lower/right triangle is divided. If a
triangle satisfies PERR, it is not divided and a -1 is written instead of 0 or 1 to indicate
that the tree does not extend anymore at this node. An example tritree subdivision is
shown in Fig. 3a along with the corresponding binary tree.

As a consequence, a content adaptive mesh with tritree has a corresponding binary
tree that can be directly generated with no extra effort to represent the mesh. This will
allow us to save the mesh as will be seen later in a very compact format. Another
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advantage of tritree is that it can be easily parallelized to operate on multi-core proces-
sors as seen in Fig. 3b. This is because the processing of each child triangle is totally
independent from the other triangles. Hence, we can pre-divide a depth map into several
pieces and let each one operate on a different CPU. The result can be then padded at the
end to obtain the overall mesh (binary tree).

Depth Map Reconstruction: Until now, we have represented a disparity map with a
binary tree and the corresponding sparse disparity values of the mesh nodes. The inverse
process to reconstruct back the depth map is also possible. Using the binary tree and the
image size, we can easily reconstruct back the mesh interconnections in a hierarchical
manner. We first create an image space of the size of the depth map. We then scan
through the binary tree and add a triangle in the image when 0 or 1 is encountered in
the code. From the mesh connectivity in the image, we can get back the coordinates of
the mesh nodes. Using the mesh and the depth values at the nodes, we can recover back
the overall depth map with Equation (2).

3.2 Residual Coding

In order to make the algorithm shown in Fig. 2 complete, we still need to make the
depth map representation more compact. We have to code the residual data, i.e. binary
tree (sometimes referred to as binary trie) and the sparse disparity values, to remove the
remaining redundancies in the data. Therefore, the purpose of this residual coding stage
is to further compress the remaining redundancy in the data, either via lossy or lossless
coding. Lossy encoding is typically based on a constrained rate-distortion minimization.
Since our approach already enables this tradeoff in the content adaptive meshing stage,
we will apply lossless coding techniques (specifically, entropy coding) at this stage.
This ensures that this step is fully reversible.

The most popular entropy coding techniques are the Huffman and the Arithmetic
coding. Arithmetic coding can theoretically achieve the lower bound given by entropy
H(P ), and defined by Shannon’s source coding theorem as

H(P ) =
n∑

k=1

−p{ek} log2 p{ek}, (4)

where P is the probability distributor of the symbols and p{ek} is the probability of
an event ek. Obviously numerical inaccuracies will prevent achieving this limit. Huff-
man coding, which can be considered as a simplified case of Arithmetic coding [16],
stays further away from this limit since its codes have an integral length. As reported
in [16,17], both Huffman and Arithmetic coding have a complexity of O(M log2M),
whereM is the dimension of the symbol set used to represent the data. Still, Arithmetic
coding has been traditionally considered far more complex than Huffman coding for it
uses complex operations like division. With modern hardware, however, this difference
is not significant anymore [17].

Entropy coding is a variable length codeword scheme. We first have to represent the
target data by symbols with a specific probability distribution. We then assign variable
length codewords to the symbols according to their probabilities. The more-peak shaped
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histogram the symbols have, the more compression can be achieved. Hence, histogram
shaping of the data is an important cornerstone of this technique. In order to keep the
complexity as low as possible, we will consider simple and reversible histogram shaping
schemes like differential coding. For the statistical modeling of the data, we will apply
a semi-adaptive scheme [18] since it has an intermediate complexity.

Sparse Disparity Coding: In a depth map, the co-located depth values are highly cor-
related since this entity is a piecewise smooth surface [1]. This is also true for sparse
depth maps which makes differential coding handy to obtain a histogram with a peak
shape. Differential coding is done in this work by predicting the next disparity from the
immediately preceding one. Moreover, the sparse values are scanned from top to bottom
in a raster order. By looking at the first two rows in Fig. 4, we can see that differentially
coded disparities have peak shaped histograms and are much better suited for entropy
coding after this step. Note that the results shown in this figure were obtained by tak-
ing tritree at 50% error threshold, hence the depth maps are very sparse. At a lower
compression ratio, hence error rate, the sparse maps will be denser and will have even
stronger correlation between the neighboring depth values.

Binary tree coding: We first code the binary tree as a pre-ordered bitstream, which
as reported in [19,20] is a very compact representation. To do that, we express each
node by a codeword that has only four possible binary symbols, namely 0 0, 0 1, 1 0,
and 1 1, which correspond to the four possibilities in the binary tree: 0 1, -1 1, 0 -1
and -1 -1. The histogram of some sparse binary trees obtained with tritree is shown
in the last row of Fig. 4. One can notice that the tree histogram is almost flat and no
considerable compression gain can be expected if entropy coding is performed. This is
actually expected since the shape of the binary tree (adaptive mesh) depends only on
the characteristics of the depth map, i.e. some regions might have more discontinuities
than others. This cannot be predicted in coding and leads to little redundancy that can
be exploited. Thus, the pre-ordered bitstream is enough to represent the binary tree.

4 Results

We will perform some tests that consist of evaluating the performance of the proposed
tritree based compression scheme. We will use as a test data set the ground truth depth
maps of the Middlebury test bench [21,15] and the depth maps of the Microsoft Break-
dancer and Ballet sequences which were computed using the stereo matching technique
of [22]. We will compare our method with the JPEG and the JPEG 2000 image com-
pression standards. We will be using three quality measures in the comparisons. The
first one is the PERR of the compressed depth map, see (3). The second one is the mean
squared error (MSE) of the compressed map and the third one is the rate distortion curve
or the average number of bits used to represent each pixel or bits per pixel (BPP). We
will also make these measurements while varying the compression ratio.

In Fig. 5a, we show the outcome of the algorithms on the Teddy and Art ground truth
depth maps. For the proposed scheme, we show the results using the Huffman coding to
compress the sparse disparities. We also show the outcome of the Arithmetic coding to
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(a) Art (b) Cones (c) Dolls

Fig. 4. Histograms of the sparse disparity values in the upper row, the differentially coded dispar-
ity values in the middle row and of the binary trees in the lower row for various depth images

compress the disparities since it is closer to the theoretical bound with which they can
be compressed. As we can see, the proposed scheme leads to the best performance when
compared to the others. The PERR in the compressed disparity map is always lower.
This is because JPEG and JPEG 2000 target the MSE as a measure in the compression.
To visualize that, we also show the results of the MSE versus the compression ratio in
Fig. 5b. We can see that the MSE in the compressed disparity maps with our scheme
is higher. This might seem contradicting at the beginning but our scheme minimizes
the PERR and not the MSE. So although the MSE is higher, it is not the case with
PERR. Moreover, the amount of bad depth values better reflects the quality of a depth
map since MSE can be low even if many depth values are erroneous as we previously
said. Looking at the rate distortion curves, we can also notice that the performance of
our scheme is much better. Using less the 1 BPP on average, we can now represent
a depth map with less than 1% error rate. This was also the case when we tested our
algorithm on the depth maps of the Breakdancer and Ballet sequences obtained with
stereo algorithm of [22]. The outcome is depicted in Fig. 6. By comparing the Huffman
coding to the Arithmetic coding, we can see that they lead to almost the same outcome.
This justifies the employment of the Huffman scheme since it has less complexity.

In all the obtained results, the proposed tritree based compression scheme has shown
a better performance since the optimization takes the PERR into account. In other
words, it does not optimize to only maintain the visual quality of the depth maps with
MSE as the others do. This allows us to obtain a higher compression ratio with an error
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(a) (b) (c)

Fig. 5. Comparison of the compression algorithms on the ground truth Middlebury depth images
of [21,15]. First row: Teddy. Second row: Art. (a): Depth error rate in % versus the compression
ratio. (b): MSE versus the compression ratio. (c): The rate distortion curve.

(a) (b) (c)

Fig. 6. Comparison of the compression algorithms on the depth images computed by the stereo
scheme of [22]. First row: Breakdancer. Second row: Ballet. (a): Depth error in % versus the
compression ratio. (b): MSE versus the compression ratio. (c): The rate distortion curve.

rate less than 1% of the total depth values of the map. In Fig. 7, we show the orig-
inal Teddy depth map of [21] and the output of the stereo scheme of [22] on Ballet
and Breakdancer. We also show the adaptive mesh at less than 1% PERR threshold ob-
tained with tritree and the reconstructed depth maps. As one can see, the adaptive mesh
preserves the content of a depth map by generating small triangles along the discontinu-
ities and big triangles elsewhere. Thus, non-uniform sampling with tritree removes the
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(a) (b) (c)

Fig. 7. Visual outcome of the scheme on the ground truth Teddy depth map of [21] and the re-
sulting depth maps form the stereo scheme of [22] on Ballet and Breakdancer. From up to down:
Teddy, Ballet and Breakdancer. (a): The original depth maps. (b): The adaptive meshes. (c): The
reconstructed depth maps with our scheme. The depth error rate was set to 1%. The compression
ratio is: 13.8, 7.3 and 11.1. The obtained error rate in % is: 0.43, 0.45 and 0.31.

major redundancies in the depth image and then the coding schemes remove the resid-
uals ones. This leads to a more compact representation which can be seen from the
obtained compression ratio at these values in Fig. 5 and Fig. 6. We also present in
Fig. 8 rendered 3D views of some depth images overlayed with the adaptive meshes
obtained with our scheme. This shows that our algorithm can be used not only to com-
press the depth maps but to create a mesh representation that can be applied in 3D
rendering.

Concerning the timing, our method attains real-time operation using the efficient
implementation described in Section 3.1. It requires around 80 ms with the Teddy
and Cones images, 90 ms for the Dolls image, 88 ms for the Art and Moebius im-
ages. It takes 110 ms for the Ballet image at half the resolution and 390 ms at the
full resolution while it requires 100 ms for the Breakdancer at half the resolution and
350 ms at the full resolution. These measurement are made on an AMD Opteron 64 bit
quad core PC of 2.2 GHz speed. The algorithm is written using the C++ programming
language.
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(a) 27154 triangles (b) 32300 triangles

(c) 37001 triangles (d) 32606 triangles

(e) 52481 triangles (f) 35994 triangles

Fig. 8. Rendered 3D views overlayed with the corresponding meshes obtained using the proposed
scheme. (a): Teddy, (b): Cones, (c): Art, (d): Moebius, (e): Ballet and (f): Breakdancer.

5 Conclusion

We derived in this paper a method to simultaneously mesh and compress a depth map.
The technique is based on BSP. It generates a mesh in the form of a binary tree by locat-
ing the non-uniform samples of the depth map. These samples are the nodes of the mesh
and are able to interpolate the other pixels with minimal error. To minimize the repre-
sentation of the sparse pixels, we apply differential coding followed by entropy coding
to compress the sparse disparities. We also code the binary tree as a pre-ordered bit-
stream. The compressed depth map is thus the combination of the compressed mesh and
the compressed disparities. Our algorithm leads to lower depth error rate at higher com-
pression ratios when compared to compression techniques like JPEG and JPEG 2000.
We are now able to represent a depth map using less than 1 BPP on average while hav-
ing less than 1% errors in the depth values. Our method attains real-time and the mesh
can be easily applied to render the 3D scene represented by the depth map.
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Abstract. Photometric calibration plays important role when building

seamless appearance of multi-projector display. In this paper, we address

photometric issues on chrominance variation and luminance nonunifor-

mity in multi-display system constructed using LCD projectors. A three-

phase approach is proposed to construct imaging models, which makes

transformations among them when formulating the whole imaging pro-

cedure. These models are named as single-projector model, normalized-

projector model and display-wall model. Single-projector model describes

the imaging procedure from the projector’s input color to its measured

tristimulus values in CIEXYZ. Normalized-projector model denotes the

common gamut of projectors, which normalizes each single-projector

model, and makes every projector have the same ranges of chrominance

and luminance. The display-wall model treats the whole display as one

projector, which has similar photometric model to single LCD projector.

Weighting light contributions from all projectors using the display wall

model, our method can achieve visually plausible seamlessness.

1 Introduction

Multi-Projector displays become popular in scientific visualization, military sim-
ulation, CAD, multimedia exhibition, and entertainment fields [1]. For achieving
visual seamlessness, geometric alignment and photometric calibration must be
addressed when building such displays [1].

There are many methods [2] for geometry calibration, we focus on photometric
calibration in this paper. Photometric calibration is very important for seamless
and uniform display. Some work [3,4,5,6,7] have been done on this topic, but
it still lacks of one practical method. About photometric problems, there are
chrominance variation and luminance nonuniformity [6,7].

Stone introduced the color and brightness issues of multi-projector display, ex-
plained projector characteristics, and brought forward common standard gamut
method [3,4]. Wallace et al. extended Stone’s work, and presented one non-
parametric full-gamut color matching algorithm [5].

Majumder and Steven gave a more detailed explanation about color nonuni-
formity issues [6]. They pointed out that chrominance and luminance problems
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c© Springer-Verlag Berlin Heidelberg 2010



A Three-Phase Approach to Photometric Calibration 57

exist in multi-projector display system. The luminance problem was more im-
portant, which includes inter-projector and intra-projector luminance variations.
They proposed one Luminance Attenuation Map(LAM) method to equalize the
luminance output across the display wall, which achieved better image quality
than Alpha Blending [8]. Using human contrast sensitivity function, they further
proposed one gradient domain smoothing method to smooth the input image [9].
These two methods mainly focused on the luminance variation across the multi-
projector display, but the chrominance variation problem was overlooked [7]. In
practice, luminance adjustment can generate good result only for projectors with
the same model and brand [6,9]. In practical system, projectors with different
bands and model are common.

Two-phase method[7] and color gamut mapping method[10] considered both
chrominance and luminance problems. These methods employed colorimeter for
light measurement, and HDR[11] technology to capture lots of photos. Without
explicitly modelling black offset of multi-display system, they could not resolve
the dark background with low end input values. In fact, the black offset of LCD
projectors is much larger than black offset of DLP projectors used in [7,10], the
black offset of multi-projector display should be modelled explicitly for achieving
visual seamlessness for low end input values.

Among previous work on photometric calibration, a few of them focused on
the luminance variation[6,9]. For light measurement, some used special hardware
[3,4,5] or HDR technology with tedious work to capture images [7,10]. They did
not explicitly model the black offset of multi-projector display system to solve
the dark background problem. For handing black offset, we proposed a three-
phase approach to photometric calibration, which explicitly models the black
offset of multi-projector display constructed using LCD projectors.

The rest of this paper is organized as follows. Section 2 describes the details of
the three-phase photometric calibration method. Experimental results are given
in Section 3. Finally, we draw the conclusions and point out the future work.

2 Three-Phase Photometric Model

Previous methods usually constructed the common display gamut [3,4,5,7], or
smooth the input image [9] for achieving seamless display. Our three-phase pho-
tometric model is another description of the multi-projector display wall sys-
tem. Using three-phase model, the chrominance and luminance problems can
be described clearly. The model provides a better way for solving photometric
problem, especially solving the black offset and color shift problems of display
wall [6]. Previous work showed camera could be measurement tool for photo-
metric calibration[12][2], so our experiment use it instead of spectroradiometer
or colorimeter.

The whole imaging process of displaying input RGB using multi-projector
display involves three models in different phases. They are namely single-
projector model, normalized-projector model, and display-wall model. Single-
projector model characterizes the photometric characteristic of one projector.



58 L. Zhang et al.

Normalized-projector model describes how to transform each projector to a nor-
malized one. Display-wall model shows how to form a large-scale seamless display
wall system using several normalized projectors.

After transforming single-projector model to normalized-projector one, all
projectors will have the same chrominance and holistic luminance. They should
look like the same one, which can also be called standard projectors. Using stan-
dard projectors, the display wall model is constructed to solve the photometric
problems, especially for handling low end input values. Using standard projec-
tors to project content on screen, the multi-projector display can be regarded as
one projector with the similar photometric properties with standard prjector.

This paper exploits the relationship among these models, and constructs a
seamless multi-projector display. In the following, we first describe the gener-
alized color matching process. Then, how to measure single-projector model is
described. Based on the single-projector model, how to generate normalized-
projector model and display-wall projector model are described step by step.
Since LCD projector has simple parametric representation, we use it for prob-
lem formuation. For DLP projector [3,4], complex non-parametric description
should be be used.

2.1 Generalized Color Matching Process

The color matching process of the projector can be regarded as a mapping be-
tween the RGB input in CIERGB space and the tristimulus values of output
light in CIEXYZ space[3,4,5]. The entire process can be characterized as a Color
Transfer Function F : R3 → R3, (X,Y, Z) = F (r, g, b) [5]. F is the mapping
function, and r,g,b ε {0,1,...,255}.

Due to the channel independence [3,6] and regardless of black offset of LCD
projector, the following equation is obtained [5]:

F (r, g, b) = F (r, 0, 0) + F (0, g, 0) + F (0, 0, b). (1)

The operating system, graphics card, and projector have influences on each pri-
mary channel. Due to those factors, the mapping is nonlinear, and the Intensity
Transfer Functions(ITFs) are commonly used to describe these influences. ITFs
map pixel values to normalized intensity values for each primary color [3,4,6].

Three parameters(Y, x, y) could be used to described the color value, which
could be measured by optical device. Y is the luminance and (x, y) are the chro-
maticity coordinates. The triangle formed by the chromaticity coordinates of
three primaries is called the color gamuts of the display [6]. Each projector has
its color gamut, which defines the color range that could be displayed. Due to
the nonidentical color gamut of each projector, color differences appear when
projecting the same input. The common color gamut of display should be deter-
mined to guarantee that any input from different projectors will have the same
output chrominance response [10].

When the tristimulus values (X,Y, Z) in CIEXYZ are known, the correspond-
ing chrominance values could be computed as:
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x = X/(X + Y + Z) y = Y/(X + Y + Z) z = Z/(X + Y + Z) (2)

The three-phase model described in following subsections will be used to ex-
press this process and solve the photometric problem existing in multi-projector
display.

2.2 Single-Projector Model

The following equation is used to define the imaging procedure from the projec-
tor’s input color values to its measured tristimulus values in CIEXYZ [3,12].

IM + TK = T (3)

where

I =

⎛⎝ ITFR(r)
ITFG(g)
ITFB(b)

⎞⎠′

M =

⎛⎝X ′
R Y ′

R Z ′
R

X ′
G Y ′

G Z ′
G

X ′
B Y ′

B Z ′
B

⎞⎠ TK =

⎛⎝XK

YK

ZK

⎞⎠′

T =

⎛⎝X
Y
Z

⎞⎠′

(4)

Given an input color C = (r, g, b), the vector I = (Ir , Ig, Ib) denotes the color in-
tensity vector computed from the ITFs. The ITFs of projector for each primary
channel are denoted as ITFR, ITFG and ITFB respectively, and I = ITFs(C) =
(ITFR(r), ITFG(g), ITFB(b)). Since the black offset of the projector is consid-
ered independent of the pixel value input into the projector, TK is regarded as
the tristimulus values for black. The matrix M is referred to as the color mixing
matrix; (XR, YR, ZR), (XG, YG, ZG) and (XB , YB, ZB) are the tristimulus values
for the primaries, subtracting black offset to form M. The vector T represents
the final tristimulus values which could be measured. This model is valid at every
point in the projector plane.

Using (X,Y, Z) representation, Eq. (3) could also be described as:

X = IrXR + IgXG + IbXB +XK(1− (Ir + Ig + Ib))
Y = IrYR + IgYG + IbYB + YK(1 − (Ir + Ig + Ib))
Z = IrZR + IgZG + IbZB + ZK(1− (Ir + Ig + Ib))

(5)

As following, we use MPi
instead of M and TK,Pi

instead of TK to describe
single-projector model, and Pi represents the projector’s ID. Combined with
TK, we could also express this transformation as a single 4x4 homogeneous
transformation matrix. So each projector model MPi

could be described as:

MPi =

⎛⎜⎜⎝
XR,Pi −XK,Pi YR,Pi − YK,Pi ZR,Pi − ZK,Pi 0
XG,Pi −XK,Pi YG,Pi − YK,Pi ZG,Pi − ZK,Pi 0
XB,Pi −XK,Pi YB,Pi − YK,Pi ZB,Pi − ZK,Pi 0

XK,Pi YK,Pi ZK,Pi 1

⎞⎟⎟⎠
For constructing single-projector model, the ITFs and color mixing matrix of
each projector is measured. Since the raw image of digital camera records the
scene irradiance, so HDR technique is unnecessary [12]. After sample points are
recorded, curve fitting can be used to restore the ITF curve approximately.
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2.3 Normalized-Projector Model

From the single-projector model, the characteristics of one projector defines its
gamut, or the set of realizable colors for that display. Each projector has its
gamut, common gamut of all projectors should be defined [3]. Tsai et al. [7] use
algorithm to adjust common gamut for chrominance problem. In the same spirit,
we define normalized-projector model, which normalize each projector to make
them have the same photometric characteristics.

To make every projector look like the same one, we should make all projectors
reach the common color gamut. The standard gamut has similar shape and
characteristics as the projector gamut, and must fit completely inside the gamuts
[3] of all projectors. We use Ms and TK,s to describe normalized-projector model.
The normalized projector model Ms could also be described as:

Ms =

⎛⎜⎜⎝
XR,s −XK,s YR,s − YK,s ZR,s − ZK,s 0
XG,s −XK,s YG,s − YK,s ZG,s − ZK,s 0
XB,s −XK,s YB,s − YK,s ZB,s − ZK,s 0

XK,s YK,s ZK,s 1

⎞⎟⎟⎠
Here TK,s uses the maximum value of TK,Pi

, and i ε {1,2,...,n}, so each projector
could reach it. When we compute values from captured images, all values are
the average ones of selected regions. Since camera is our measurement tool, the
average luminance could better describe the characteristics of each projector
than single pixel. Using optical hardware, Stone used values read from device
[3,4]. We specify the chromaticity coordinates of white to avoid color shift.

For obtaining Ms and TK,s, one variant algorithm similar to that in [3] is
design as following:

1. Compute the maximum intersected chromaticity triangle who lies inside of
the chromaticity triangles of all projectors. For each projector, the vertex’s
chromaticity coordinate of its triangle is that of the primary color red, green
and blue, respectively. We select the maximum triangle which allow gamut
to contain more realizable colors, while Stone select an inside one which just
keeps reasonable.

2. Compute the chromaticity coordinates of black by averaging the ones of all
projectors. Set the luminance Y of black as the maximum of all projectors.
TK,s is computed using Y and the chromaticity coordinates of black.

3. For each primary red, green, blue, the Y is selected as the minimum one
of each primary channel of all projectors. Using Y and the chromaticity
coordinates obtained in step 1, compute its (X,Z).

4. (XR,s, YR,s, ZR,s), (XG,s, YG,s, ZG,s) and (XB,s, YB,s, ZB,s) are vectors which
stand for the tristimulus values measured for the primaries. Ms is con-
structed by subtracting TK,s from the above vectors. To make sure that
Ms is the suitable model, the following equation is used to adjust the ma-
trix.

IPi
MPi

= IsMs (6)
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Is is the color intensity of normalized projector, IPi
is the color intensity of

each projector. We use sR, sG and sB to stand for each row scale factors.
After these row scale factors multiply each Ms row, a new Ms is obtained.

5. Specify the white point in the chromaticity coordinate graph as standard
white. The specified white is used to adjust Ms again to reach white balance.

2.4 Display-Wall Model

Gradient domain smoothing algorithm generates good result in most cases after
chrominance issues has been solved [7]. Without explicitly and accurately mod-
elling the black offset of display wall, it is no easy to handle the low end input of
LCD projectors (e.g. the black background in Fig.5(b)). Since the photometric
model of display wall could be treated as one projector [7], any color charac-
teristics could be redefined, including ITFs, chromaticity coordinates of display
gamut and its own color mixing model. Inspired by these work, we construct the
display-wall model using normalized-projector model.

We use Mdw to indicate the color matrix of display wall model, and TK,dw

to represent the black offset of this model. Mdw is expressed as:

Mdw =

⎛⎜⎜⎝
XR,dw −XK,dw YR,dw − YK,dw ZR,dw − ZK,dw 0
XG,dw −XK,dw YG,dw − YK,dw ZG,dw − ZK,dw 0
XB,dw −XK,dw YB,dw − YK,dw ZB,dw − ZK,dw 0

XK,dw YK,dw ZK,dw 1

⎞⎟⎟⎠
Mdw contains the tristimulus values for the primaries like single-projector model/
normalized-projector model. TK,dw = (XK,dw YK,dw ZK,dw) ≥ mTk,s, where
Tk,s = (XK,s YK,s ZK,s) is described in normalized-projector model, which
stands for the tristimulus value for black offset of display-wall model; m is the
maximum number of overlap projectors on screen.

Using Eq. (5) in section 2.2, an expression between normalized-projector
model and display-wall model can be derived. Take X component in the out-
put tristimulus value as an example:

Ir,dwXR,dw+Ig,dwXG,dw+Ib,dwXB,dw+[1−(Ir,dw+Ig,dw+Ib,dw)]mXK,s

= (
n∑

i=1

λPi)(Ir,sXR,s+Ig,sXG,s+Ib,sXB,s)+[n− (
n∑

i=1

λPi)(Ir,s+Ig,s+Ib,s)]XK,s

(7)

The equations of Y and Z components can be derived similarly. These three com-
ponents’ equations establish a relationship between normalized-projector model
and display-wall model. λPi

represent the contribution of each normalized pro-
jector; m stands for the maximum number of normalized projectors overlapped
on one display pixel; n stands for the number of all projectors. Mdw is computed
in the following ways:

1. Specify a new chromaticity triangle whose vertices’ coordinates are inside of
the normalized-projector. The original one could be directly used.
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2. In Ms, select Y in normalized-projector model as Y in display-wall model
for each primary. Compute (X,Z) using Y and chromaticity coordinate to
construct Mdw.

3. (XR,dw, YR,dw, ZR,dw), (XG,dw, YG,dw, ZG,dw) and (XB,dw, YB,dw, ZB,dw) are
are row vectors which stand for the tristimulus values for the primaries. We
set sR, sG and sB are each row scale factor. Use Eq. (7) to get these scale
factor values and recompute Mdw.

4. Use the same algorithm like normalized-projector model to do white balance
to adjust Mdw again.

2.5 Photometric Calibration Algorithm

With three models given above, we could compute re-input pixel color from
given input one to achieve photometric calibration. The equation in the following
explains the whole process.

C′ = ITFs−1
Pi

(M−1
Pi

(λPi
Ms(Gdw2n(ITFsdw(C))))) (8)

C = (r, g, b) is the input pixel value; C′ = (r′Pi
, g′Pi

, b′Pi
) is the re-input pixel

value; ITFsdw is the ITF of the display wall, and we use y = x2; Gdw2n transforms
the color intensity value from display-wall model to normalized-projector model;
Ms simulates the normalized projector photometric process; λPi

is the weight of
each normalized projector radiance, which is set in Eq. (7); M−1

Pi
will transform

CIEXYZ tristimulus values to each projector intensity values. Compared with
two-phase model[7], our algorithm could describe the problems more clearly,
and explicitly model the black offset for handing low end input values. Although
the single-projector models are different for different projectors, the normalized-
projectors could be calibrated to a normalized one to guarantee the chrominance
consistent and luminance uniformity. Based on this, the display-wall model could
achieve visual seamlessness and color consistent display.

3 Experimental Results

3.1 Setup

Two brands of LCD projectors are used. one is SANYO PLC-XT3200, the other
is EPSON EMP-8300. The camera is Cannon EOS 20D. The experiment is
carried out on one cylindrical screen. All experiments are done in a dark room,
and the environment light has slight influence.

To facilitate color balancing on a multi-projector display, the color charac-
teristics of the projectors should be measured. Traditionally, a sophisticated
mechanical device such as colorimeter or spectroradiometer is utilizedc [6,9]. we
use a camera to capture raw images for achieving the same results [12].
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3.2 Result

Fig.1 describes one chromaticity coordinate calibration result using raw images.
Fig.1(a) describes red, green, blue and white chromaticity coordinates of two
projectors before calibration, Fig.1(b) shows the result after calibration.
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Fig. 1. Comparison of two projector chromaticity coordinates before and after correc-

tion

Fig.2, Fig.3 and Fig.4 show the snapshots of one display wall constructed using
the aforementioned two projectors. (a) shows snapshots of using single-projector
model with no photometric calibration. From the captured image in (a), there
are obvious chrominance and luminance problems. (b) shows the results using
blending algorithm [8] after applying ITFs. (c) shows the results with three-phase
approach, which are visually uniform and seamless.

Fig. 2. Experimental result. (a) The result without any calibration. (b) The result with

blending Method. (c) The result with the three-phase approach.

For dark background image with low end input values, the photometric cali-
bration is difficult without explicitly modelling the black offset. Fig.5 shows one
case that has noticeable seam and chrominance difference. Even if chrominance
between two projectors has little difference after calibration [7] and blending op-
eration [8] is used, noticeable beam still exits (Fig.5(b)) due to the black offset of
projectors. Using three-phase approach to refine the black level, dark background
image appears visually seamless (Fig.5(c)).
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Fig. 3. Experimental result. (a) The result without any calibration. (b) The result with

blending Method. (c) The result with the three-phase approach.

Fig. 4. Experimental result. (a) The result without any calibration. (b) The result with

blending Method. (c) The result with the three-phase approach.

Fig. 5. Three photos were captured with a very low exposure to show dark background

situation. (a) The result without any calibration. (b)The result with chrominance cal-

ibration and blending. (c) The result with the three-phase approach.

4 Conclusions and Future Work

In this paper, we proposed a three-phase approach to do photometric calibra-
tion for multi-projector display using LCD projectors. From the experiments,
our approach can handle photometric problems of chrominance variation and
luminance nonuniformity. It models the whole imaging process from pixel input
to projector out clearly. It explicitly models the black offset of multi-projector
display, and can achieve visual seamlessness for low end input values. The lumi-
nance control of display wall is implemented by changing the whole luminance of
one projector, the main reason is that the current commercial projector has good
holistic and uniform luminance. In the future, we will generalize the three-phase
approach to solve photometric problems of DLP projectors.
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Abstract. Fundamental matrix, drawing geometric relationship

between two images, plays an important role in 3-dimensional computer

vision. Degenerate configurations of space points and two camera optical

centers affect stability of computation for fundamental matrix. In order

to robustly estimate fundamental matrix, it is necessary to study these

degenerate configurations. We analyze all possible degenerate configu-

rations caused by twisted cubic and give the corresponding degenerate

rank for each case. Relationships with general degeneracies, the previous

ruled quadric degeneracy and the homography degeneracy, are also re-

ported in theory, where some interesting results are obtained such as a

complete homography relation between two views. Based on the result

of the paper, by applying RANSAC for degenerate data, we could obtain

more robust estimations for fundamental matrix.

1 Introduction

Fundamental matrix describes geometric relation between two 2-dimensional
views. It plays an important role in image matching, epipolar geometry, camera
motion determination, camera self-calibration and 3-dimensional reconstruction.
Robust and accurate estimation for fundamental matrix has been the research
focus of extensive researchers[1,2,3,4,5,6,7,8].

From at least seven pairs of point-point correspondences between two views,
the fundamental matrix can be estimated. Sometimes, a reliable estimation can-
not be obtained, no matter how many correspondences are used. One of the
main reasons is that the cameras and the scene lie on a degenerate or quasi-
degenerate configuration. If a space configuration is degenerate mathematically
but the noise from the measured image makes it non-degenerate, any estima-
tion under such a configuration would be useless [9]. It follows that we should
know what configurations might cause degeneracy for estimating the fundamen-
tal matrix. Moreover in order for a robust RANSAC like [10,7], we still need to
know how great the degenerate degree is, namely, to know the degenerate rank
of the coefficient matrix of the equations for computing fundamental matrix.In
[3], RANSAC loop to estimate relation from quasi-degenerate data is reported,

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 66–77, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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where the degenerate configurations need not be known. This is not equiva-
lent to say the studies on the degenerate configurations are useless. At least,
such studies can give more geometric intuition, which could be as guidance for
placing cameras to avoid degeneracy in practice. Furthermore, if we can judge
the degeneracy by applying geometric knowledge, RANSAC work will be much
easier.

Due to the importance of degeneracy analysis, many of such works have been
reported previously. The planar scene is a trivial degenerate configuration for
computing fundamental matrix, where the images can provide only six indepen-
dent constraints [11,7] but the general fundamental matrix has seven degrees of
freedom. Degeneracy from twisted cubic configuration has also been discussed.
In [12], Buchanan stated that camera calibration from known space points un-
der a single view is not unique if the optical center and the space points lie on
a twisted cubic. The corresponding detection as well as emendations including
other unreliability was given by Wu et al [13]. Then, under two views, Maybank
[14] analyzed the characterizations of horopter curve and the relations between
the curve and the ambiguous case of reconstruction. The horopter curve is re-
garded as a twisted cubic, which intersects the plane at infinity at three particular
points. The ambiguous case of reconstruction implies ambiguity of fundamental
matrix. Luong and Faugeras reported the stability for computing fundamental
matrix caused by quadric critical surface in [15]. Hartley and Zisserman [11]
also gave systematic discussions for degeneracy of camera projection estimation
from twisted cubic under a single view and for degeneracy from ruled quadric
surface under two views. Under three views, critical configurations are provided
in [16], which is an extension of the critical surface under two views. Degeneracy
under a sequence of images is also investigated [17,18]. Maybank and Shashua
[18] pointed out there is a three-way ambiguity for reconstruction from images
of six points when the six points and the camera optical centers lie on a hy-
perboloid of one sheet. In [17], Hartley and Kahl presented a classification of
all possible critical configurations for any number of points from three images
and showed that in most cases, the ambiguity could extend to any number of
cameras.

Relative to the above works on degenerate configurations, there are fewer
deep studies on degeneracy degrees of degenerate configurations. Torr et al [7]
catalogued all two-view non-degenerate and degenerate cases in a logical way by
dimensions of the right null space of equations on fundamental matrix and then
proposed a PLUNDER-DL method to detect degeneracy and outliers. Chum et
al [10] also analyzed those dimensions when the two views or most of the point
correspondences are related by a homography and presented an algorithm to es-
timate fundamental matrix through detecting the homography degeneracy. They
all [7,10] generalized the robust estimator RANSAC [19]. The plane degeneracy
in [7,10] is consistent with the ruled quadric degeneracy proposed by Hartley
and Zisserman [11] because a plane and two camera optical centers always lie on
a degenerate ruled quadric. What are the degeneracy degrees when estimating
the fundamental matrix for other non-trivial degenerate configurations? In this
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paper, we discuss all possible degenerate situations caused by twisted cubic and
give the corresponding degeneracy degrees. Let SO be a set of space points and
the two camera optical centers. We find that if all the points of SO lie on a
twisted cubic, the configuration is degenerate for estimating fundamental ma-
trix and the corresponding rank of coefficient matrix is five; if all the points
other than one lie on a twisted cubic, the corresponding rank is six; if all the
points other than two lie on a twisted cubic, the corresponding rank is seven.
The previous general degeneracies are ruled quadric degeneracy and homography
degeneracy. Few studies are given on relationships of twisted cubic degeneracy
with them. We investigate the relationships in detail and then present our con-
tribution relative to the general degeneracies.

The organization of the paper is as follows. Some preliminaries are listed in
Section 2. The complete and unified degeneracy study from twisted cubic is
elaborated in Section 3. Some experimental results are displayed in Section 4
and Section 5 makes some conclusions.

2 Preliminaries

The camera model used is a perspective camera. A space point or its homoge-
neous coordinates is denoted by M, an image point or its homogeneous coordi-
nates is denoted by m, P denotes the camera projection matrix, and O denotes
the camera optical center. Under two views, P′ denotes the second camera pro-
jection matrix, O′ denotes its optical center, and m′ denotes the corresponding
image point of m. Let F be the fundamental matrix between the two views.
Other vectors or matrices are also denoted in boldface. The symbol ≈ means
equality up to a scale.
Camera Projection Matrix: Mi, i = 1 . . .N are 3-dimensional space points.
And their corresponding image points are mi, i = 1 . . .N . The camera projec-
tion matrix P is a 3 × 4 matrix such that mi ≈ PMi. For the camera optical
center O, we have the equation:

PO = 0 (1)

Fundamental matrix: Let m′
i be the corresponding image points of the space

points Mi under another view. Then, mi and m′
i are related by the fundamental

matrix F through:
m′T

i Fmi = 0, i = 1 . . .N (2)

We denote F as

⎛⎝f1 f2 f3
f4 f5 f6
f7 f8 f9

⎞⎠ If mi ≈
(
ui vi wi

)
and m′

i ≈
(
u′i v

′
i w

′
i

)
, we

expand (2) and have:⎛⎝ . . .
u′iui u

′
ivi u

′
iwi v

′
iui v

′
ivi v

′
iwi w

′
iui w

′
ivi w

′
iwi

. . .

⎞⎠
N×9

f = 0 (3)
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where f =
(
f1 f2 f3 f4 f5 f6 f7 f8 f9

)T is the vector consisting of all elements
in F. The N × 9 coefficient matrix of f is denoted by G .

Twisted cubic: The locus of points X =
(
X Y Z T

)T in a 3-dimensional
projective space satisfying the parametric equation:(

X Y Z T
)T ≈H

(
θ3 θ2 θ 1

)T (4)

is a twisted cubic, where H is a 4×4 matrix and θ is the parameter[20]. Twisted
cubic is an extension of a conic to 3-dimensional space by increasing the degree
of curve parameter from two to three. The properties of twisted cubic underlie
many of the ambiguous cases that arise in 3-dimensional reconstruction.

3 Degeneracies from Twisted Cubic

The previously known degenerate configuration of two views for fundamental
matrix or projective reconstruction is that two camera optical centers and all
space points lie on a ruled quadric. For such a general ruled quadric, the right
null space of G in (3) is of dimension two as given in the section 2 of [7] and in the
paragraph five of the introduction section of [16]. The more critically degenerate
configuration is from a plane, of which the right null space of G in (3) is of
dimension three [10,7]. This is not at the most since the nontrivial degenerate
configuration—-twisted cubic can cause more critically degeneracy than a plane
as shown below.

3.1 Degeneracy Degree from Twisted Cubic

In (3), if the rank of the coefficient matrix G is 8, then F can be determined
uniquely by linear 8-point algorithm. Otherwise, if the rank of G is 7, the solu-
tion of f from (3) has one degree of freedom and the freedom can be removed
by det(F) = 0 to obtain three or one solution. But if we only rely on the linear
equations (3), the freedom cannot be removed. If the rank is 6 or less than 6,
solutions of f has two or more degrees of freedom and so F cannot be deter-
mined finitely. The configuration making the rank of G deficient is degenerate
for computing F. Due to noise of image data, generally we always can calcu-
late a unique solution of f from (3) with 8 corresponding points. However, the
degenerate configurations or the configurations near to degeneracy will terribly
influence stability of the calculation. Therefore, in order for robust estimation
of fundamental matrix, we need to know the degenerate configurations. The de-
generate configurations from twisted cubic and the corresponding degeneracy
degrees are provided in the following theorem.

Theorem 1. Let SO be a set of space points and two camera optical centers for
capturing these points. If all the points of SO are on a twisted cubic, then the
rank of the coefficient matrix G for computing F is five. If all the points other
than one of SO are on a twisted cubic, the rank of G is six. If all the points
other than two of SO are on a twisted cubic, the rank of G is seven.
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Proof: Firstly, we give the proof when SO are all on a twisted cubic.
According to (4), assume the parametric equation of this twisted cubic is
H

(
θ3 θ2 θ 1

)T , where H is a 4 × 4 matrix. Let the parameter of the space
point Mi be θi and the parameters of the two camera optical centers be θ0, θ′0.
Then,Mi = H

(
θ3

i θ
2
i θi 1

)T , O = H
(
θ3
0 θ

2
0 θ0 1

)T , O′ = H
(
θ′30 θ′20 θ′0 1

)T .
By (1), we have:

0 = PO = PH
(
θ3
0 θ

2
0 θ0 1

)T
, 0 = P′O′ = P′H

(
θ′30 θ′20 θ′0 1

)T (5)

where P, P′ are the two camera projection matrices. So we also have:

mi ≈ PMi = PH
(
θ3

i θ
2
i θi 1

)T
, m′

i ≈ P′Mi = P′H
(
θ′3i θ′2i θ′i 1

)T (6)

Do subtraction from both sides for (5) and (6), we obtain:

mi ≈ PH
(
θ3

i θ
2
i θi 1

)T −PH
(
θ3
0 θ

2
0 θ0 1

)T

≈ PH(θi − θ0)
(
θ2

i + θ2
0 + θ0θi θi + θ0 1 0

)T

≈ PH
(
θ2

i + θ2
0 + θ0θi θi + θ0 1 0

)T

(7)

Denote PH as Q =

⎛⎝ q1 q2 q3 q4
q5 q6 q7 q8
q9 q10 q11 q12

⎞⎠, and P′H as Q′ =

⎛⎝ q′1 q′2 q′3 q′4
q′5 q′6 q′7 q′8
q′9 q

′
10 q

′
11 q

′
12

⎞⎠.

Then, (7) is changed into:

mi ≈

⎛⎝ q1
q5
q9

⎞⎠ (θ2
i + θ2

0 + θ0θi) +

⎛⎝ q2
q6
q10

⎞⎠ (θi + θ0) +

⎛⎝ q3
q7
q11

⎞⎠ (8)

Similarly, do subtraction from both sides for (5) and (6), there is:

m′
i ≈

⎛⎝ q′1
q′5
q′9

⎞⎠ (θ2
i + θ′0

2 + θ′0θi) +

⎛⎝ q′2
q′6
q′10

⎞⎠ (θi + θ′0) +

⎛⎝ q′3
q′7
q′11

⎞⎠ (9)

θi varies with
(
mi m′

i

)
, while qk, q′k, θ0, θ′0 are unchanged.

Substitute (8) and (9) into (3), we get the coefficient matrix G with each
element of the i-th row being a four-order polynomial in θi as c1θ4

i + c2θ
3
i +

c3θ
2
i + c4θi + c5. The coefficients cs of θi in these four-order polynomials are

functions on while qk, q′k, θ0, θ′0. Since while qk, q′k, θ0, θ′0 are not varying with
image pair varying, cs are also not varying with the row number varying. It
follows that G is in this form:

G =

⎛⎝ . . .
g1(θi) g2(θi) g3(θi) g4(θi) g5(θi) g6(θi) g7(θi) g8(θi) g9(θi)
. . .

⎞⎠ (10)
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where gj(θ) = c1jθ
4 + c2jθ

3 + c3jθ
2 + c4jθ+ c5j , j = 1 . . .N . We equivalently

change G into: G =

⎛⎜⎜⎝
θ4
1 θ3

1 θ
2
1 θ1 1

. . .
θ4

i θ3
i θ

2
i θi 1

. . .

⎞⎟⎟⎠
N×5

⎛⎜⎜⎜⎜⎝
c11 . . . c1j . . . c19
c21 . . . c2j . . . c29
c31 . . . c3j . . . c39
c41 . . . c4j . . . c49
c51 . . . c5j . . . c59

⎞⎟⎟⎟⎟⎠
5×9

From the expression, we know the rank of G is generally five. By now, we
proved that if all the space points and the optical centers of the two cameras
are on a twisted cubic, the rank of the coefficient matrix G is five.
If a camera optical center does not lie on the twisted cubic determined by
another camera optical center and the space points, assumed to be O, then
the degree of θi for representing mi in (6) can not decrease to two but the
degree for representing m′

i can do, i.e. m′
i is still in the form (9). Thus, the

degrees of θi in the obtained coefficient matrix G of (10) become into 5.
Then by the same reason as above, we have the corresponding rank 6. If the
point not lying on the twisted cubic is one of the space points other than one
of the camera optical center, assumed to be Mi0 , then the row in G from
the image pair mi0 , m′

i0
is not in the polynomial form of some θ. It follows

that this row is not linearly related to other rows in general. Thus, the rank
of G increases from five to six.
Similarly, if all the points other than two of SO are in a twisted cubic, the
rank of G is seven. The theorem is proved.

In the above theorem, we analyze all possible degenerate configurations for com-
puting F caused from twisted cubic. In all the cases, F can not be determined
finitely by linear 8-point algorithm and the dimensions of the right null space of
G in (3) are respectively 4, 3, 2. By 7-point algorithm, F still can not be solved
in rank 5, 6 cases but can be solved in rank 7 case.

3.2 Relationship with Ruled Quadric Degeneracy

The degenerate configuration of two views for reconstruction is well known as a
ruled quadric [11]. The theorem in Section 3.1 is consistent with the ruled quadric
degeneracy. In this subsection, we at first give two lemmas about twisted cubic
and ruled quadric for the consistency. Then, the contribution of our work is
discussed.

In projective space, quadrics are classified into ruled and unruled ones. Quadrics
with positive index of inertia 2 are ruled quadrics and the degenerate quadrics ex-
cept one point case are all ruled ones [11]. Here the positive index of inertia means
the number of positive entries in the canonical form for a quadric.

Lemma 1. In a 3-dimensional projective space, a proper real twisted cubic can
always be embedded on a ruled quadric, conversely, any quadric containing a
proper real twisted cubic is a ruled one.

Due to space limit, the proof is omitted. It is similar for the following lemmas.

Lemma 2. In a 3-dimensional projective space, if seven points of a real proper
twisted cubic lie on a quadric, then the whole twisted cubic lies on the quadric.
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Remark 1. By Lemma 1 and Lemma 2, we conclude that a twisted cubic plus one
or two points can be embedded on a ruled quadric. We take seven points on the
twisted cubic and combine the additional one or two points to generate a quadric.
This is reasonable because generally nine space points uniquely determine a
quadric. Since this quadric contains seven points of the twisted cubic, by Lemma
2, we know it contains the whole twisted cubic. Furthermore by Lemma 1, we
know the generated quadric is ruled. It follows that the theorem in Section 3.1
is consistent with the previous ruled quadric degeneracy.

Remark 2. The contribution of Theorem 1 is that it gives more intuitive de-
generacy and the degeneracy degrees for all possible cases caused by twisted
cubic. For the general ruled quadric degeneracy, there are a finite number of so-
lutions for the fundamental matrix by combining with the additional constraint
of det(F) = 0. This degeneracy degree is the same as the rank 7 case in the
theorem. For rank 5, 6 cases in the theorem, the degeneracy is more critical
which makes the fundamental matrix free in a four- or three-dimensional space.
Even though by the additional constraint det(F) = 0, it cannot be solved. These
details are not discussed in the previous ruled quadric degeneracy. Usually, six
points determine a unique twisted cubic and nine points determine a unique
quadric. A twisted cubic is not a class in the ruled quadrics. Therefore, from
fewer non-incidence points to make F computations, quadric degeneracy may
not come to mind, which also could ignore the twisted cubic degeneracy. How-
ever indeed the twisted cubic can make the F computation degenerate severely
as shown in the theorem in Section 3.1.

3.3 Relationship with H-degeneracy

One previous work closely related to ours is the H-degeneracy studied by Chum et
al. [10], where the H-degeneracy means the degeneracy caused by a 3×3 homog-
raphy between two views. They also discussed the degeneracy degrees for the F
computation and mentioned the twisted cubic degeneracy. There are differences
between our work and theirs. In this subsection, we discuss the contribution of
our work relative to the study [10].

Firstly, we give complete cases that two views are related by a 3× 3 homog-
raphy.

Lemma 3. If the image point correspondences (mi,m′
i) between two views are

related by a homography H , that is m′
i = Hmi, then generally there are the

following complete three situations:
1)The camera performs a pure rotation;
2)The space points are coplanar;
3)The space points and the two camera optical centers lie on a twisted cubic.

The above classification of the three cases are complete. In [10], Chum et al
analyzed degrees of the H-degeneracy on three cases: i) two views are related
by a homography; ii) all image point pairs other than one pair are related by a
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homography; iii) all image point pairs other than two pairs are related by a ho-
mography. Then based on the degrees, they developed a DEGENSAC algorithm
to compute F unaffected by a dominant plane by detecting H-degeneracy.

The relationship and differences between our work and Chum et al’s [10] are as
follows. The cases in the theorem of Section 3.1 related to the H-degeneracy are:
(a1) The two camera optical centers and all the space points lie on a twisted
cubic. (a2) The two camera optical centers and all other than one the space
points lie on a twisted cubic. (a3) The two camera optical centers and all other
than two the space points lie on a twisted cubic.

According to Lemma 3, the two views in (a1) are related by a homography, in
(a2) the image point pairs except for one pair are related by a homography, and
the image point pairs except for two pairs are related by a homography in (a3).
Although these geometric relations between the two views in the three cases
are the same as Chum et al’s, the degeneracy degrees are different. Here in our
work, the degeneracy is more critical. For case (a1), since the coefficient matrix
has rank 5, the linear space of F has dimension 4 while in [10] for two views
related with a homography the dimension is 3. For case (a2), the corresponding
dimension is 3 while that in [10] is 2. For case (a3), the corresponding dimension
is 2 while that in [10] could be 1 if linear 8-point algorithm is applied. It follows
that the twisted cubic cases could cause more critical degeneracy than the plane
cases, though they have the same geometric H-relations between the two views.

The cases in the theorem of Section 3.1 not involved in [10] are: (b1) All the
space points and one of the camera optical centers lie on a twisted cubic. The
other camera optical center is not on this twisted cubic. (b2) All other than one
of the space points and one of the camera optical centers lie on a twisted cubic.
The other camera optical center is not on this twisted cubic. (b3) All the space
points but the two camera optical centers lie on a twisted cubic.

The three cases do not fall into the work of [10]. In the three cases at least
one of the optical centers does not lie on the twisted cubic and the space points
are also not coplanar. Thus according to Lemma 3 all or most of the image point
pairs in each case (b1), (b2), (b3) do not agree to a homography relation.

Therefore, our work not only develops the work in [10] but also makes some
new contribution in theory. The aim of [10] is to stably estimate F unaffected by
a dominant plane. We also will explore a detection method on the degeneracy
caused from twisted cubic and then apply the RANSAC on degenerate data
in [13] to robustly compute fundamental matrix. Detection on the degeneracy
deserves studies also because usually computations of matrix rank or its singular
values are very sensitive to noise and presetting a threshold to discriminate the
degeneracy from the non-degeneracy is not easy, as pointed out in [21].

4 Experiment

We performed both simulations and experiments on real data. The results verify
the established theorem. One group of the experiments is reported below.
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4.1 Simulations

The parametric equation of a space twisted cubic is:

M ≈

⎛⎜⎜⎝
2 5 −3 2.5
1 −1 12 1
6 −15 −2 3
−7 5 3 2

⎞⎟⎟⎠
⎛⎜⎜⎝
θ3

θ2

θ
1

⎞⎟⎟⎠ (11)

Ten points Mi on this twisted cubic are taken, of which the parameters are
respectively −1.1, −0.35, −0.75, −0.22, −0.6, 0.1, −0.1, 0.2, 1.9, −2.

At first, we consider the case of that both the two optical centers and the space
points lie on the same twisted cubic. Let the two points of the twisted cubic with
parameters 1.25, 1.5 be the two optical centers O, O′. The space distribution is
shown as Fig.1. Then, the corresponding camera projection matrices consistent

with the optical centers are set as follows:P =

⎛⎝1000 0 512 43198
0 900 384 95484
0 0 1 −103

⎞⎠ ,

P′ =

⎛⎝−529 648.1 287.4 −4321.3
338.6 −295.4 748.7 −1810.1
−0.7 −0.1 0.7 −3.9

⎞⎠. Projected by P, P′, we generated two

simulated images of the ten space points and established the equations on the
fundamental matrix. Under the noise level of zero, the rank of the coefficient
matrix of these equations could be computed out and the result is as five.

We also tested the case when one of the optical centers does not lie on the
twisted cubic any more. Let Q2 =

(
3 7.3 2 1

)T which is not on this twisted
cubic, the corresponding camera projection matrix is set as:

P2 =

⎛⎝1000 0 512 −4024
0 900 384 −7338
0 0 1 −2

⎞⎠. By this camera projection matrix, another new

image is generated. From this image and that of P′, we established equations on
the fundamental matrix and then computed the rank of the coefficient matrix
under noise level of zero. The result is six that is consistent with the proposed
theorem.

Fig. 1. Space points and two optical centers lie on a twisted cubic, where * denotes

the space points, and o denotes the camera optical centers
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Finally, we give the experimental result of the case when the two optical
centers do not lie on the twisted cubic (11). Another optical center is set as
Q′

2 =
(
0.67 −1.49 −2.8 1

)T which is also far away from the twisted cubic (11).
From the two images generated, we computed rank of the coefficient matrix of
the equations on the fundamental matrix and the result is seven.

If there are one or two of the space points that do not lie on the twisted
cubic determined by other space points and the optical centers, the same results
are obtained. All the experimental results validate the theorem in Section 3.1.
However, we find that the direct computation on the matrix rank or the rank
computation by the singular values is only correct in the absence of noise. When
we add noise to the image, the rank of the coefficient matrix becomes to 8 and
the computation becomes very unstable. Therefore, in order to robustly estimate
the fundamental matrix, it is necessary to develop a method of detection on the
degenerate configuration. We will explore a detection method on the degeneracy
caused from twisted cubic and apply the RANSAC on degenerate data in [19,13]
to robustly compute the fundamental matrix.

4.2 Experiments on Real Data

We tested the degeneracy of six points from real data. The experiments of more
points on real data need to be performed after the detection on degenerate data
and the corresponding RANSAC are proposed.

We took the images of six space points at different viewpoints. Four of them
with a size of 640× 480 pixels are shown in Fig. 2, where the dot points denote
the used image points.

In order to know whether the six space points and the corresponding optical
center lie on a twisted cubic or not, we measured the space coordinates of the six
points and then by the criterion function proposed in [13] detected the situation.
The values of the criterion function on the four images in Fig. 2 are respectively
1.0655, 1.0504, 2.2934, and 2.5091. Then, by the method in [13], we know that
the six points and the two corresponding optical centers of Fig. 2 (a)(b) are on
a same twisted cubic, while the six points and the two corresponding optical
centers of (c)(d) are not. We also computed the singular values of the coefficient
matrix G in (3). The result from the two images in Fig. 2 (a)(b) is: 623427.73,
156095.86, 41657.74, 6772.02, 79.53,9.81. And the result from the two images in
Fig. 2 (c)(d) is:508796.41, 138904.18, 33040.13, 9883.42, 112.31, 37.68. We see
that the condition number of coefficient matrix G from (a) (b)in Fig. 2 is larger
than that from (c)(d). However, usually it is difficult to detect the degeneracy
by using the condition number because the singular values are very sensitive to
noise and presetting a threshold to discriminate the degeneracy from the non-
degeneracy is not easy, as pointed out in [21]. We found sometimes the condition
number of the degeneracy is yet smaller than that of the non-degeneracy. This
is why we would like to pursue a detection method for the degeneracy from two
image data in the future.
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(a) (b)

(c) (d)

Fig. 2. Images of six points, where the space points and the two camera optical centers

(a)(b): are on a same twisted cubic; (c)(d): are not on a same twisted cubic

5 Conclusion

This paper provides all the possible degenerate configurations caused by twisted
cubic and the corresponding degeneracy degrees for estimating fundamental ma-
trix. Relationships with the ruled quadric degeneracy and the homograghy de-
generacy are also given. The result is helpful to improving the accuracy of the
estimations. Indeed, for a robust RANSAC, initial samples with worse estima-
tions should be removed or mended. These initial samples not only are those
including mismatching pairs but also are those that are degenerate. The lat-
ter case usually is ignored by people but really affects stability of the com-
putations. The reason of the ignorance may be that the degeneracy has not
been studied thoroughly. We give some research on the degeneracy in this work
and further robust detection on the twisted cubic configurations will be
developed.

Acknowledgement. This work was supported by the National Natural Science
Foundation of China under grant No. 60633070, 60773039.

References

1. Bartoli, A., Sturm, P.: Non-linear estimation of the fundamental matrix with min-

imal parameters. Pattern Analysis and Machine Intelligence 26, 426–432 (2004)

2. Bober, M., Georgis, N., Kittler, J.: On accurate and robust estimation of funda-

mental matrix. Computer Vision and Image Understanding 72, 39–53 (1998)



Twisted Cubic: Degeneracy Degree and Relationship 77

3. Frahm, J., Pollefeys, M.: Ransac for (quasi-)degenerate data (qdegsac). Computer

Vision and Pattern Recognition 1, 453–456 (2006)

4. Hartley, R.: In defense of the eight-point algorithm. Pattern Analysis and Machine

Intelligence 19, 580–593 (1997)

5. Luong, Q.T., Faugeras, O.: The fundamental matrix: Theory, algorithms, and sta-

bility analysis. International Journal of Computer Vision 17, 43–76 (1996)

6. Torr, P.H.S., Murray, D.W.: The development and comparison of robust meth-

ods for estimating the fundamental matrix. International Journal of Computer

Vision 23, 271–300 (1997)

7. Torr, P.H.S., Zisserman, A., Maybank, S.J.: Robust detection of degenerate con-

figurations while estimating the fundamental matrix. Computer Vision and Image

Understanding 71, 312–333 (1998)

8. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. In-

ternational Journal of Computer Vision 27, 161–195 (1998)

9. Huang, T.S., Ahuja, J.N.: Motion and structure from two perspective views: algo-

rithms, error analysis, and error estimation. Pattern Analysis and Machine Intelli-

gence 11, 451–476 (1989)

10. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a

dominant plane. Computer vision and Pattern recognition, 772–779 (2005)

11. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge

University Press, Cambridge (2000)

12. Buchanan, T.: The twisted cubic and camera calibration. Computer Vision, Graph-

ics and Image 42, 130–132 (1988)

13. Wu, Y., Li, Y., Hu, Z.: Detecting and handling unreliable points for camera pa-

rameter estimation. International Journal of Computer Vision 79, 209–223 (2008)

14. Maybank, S.: Theory of reconstruction from image motion. Springer, Heidelberg

(1992)

15. Luong, Q.T., Faugeras, O.: A stability analysis of the fundamental matrix. In: Ek-

lundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 577–588. Springer, Heidelberg

(1994)

16. Hartley, R.: Ambiguous configurations for 3-view projective reconstruction. In:

Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 922–935. Springer, Heidelberg

(2000)

17. Hartley, R., Kahl, F.: Critical configurations for projective reconstruction from

multiple views. International Journal of Computer Vision 71, 5–47 (2006)

18. Maybank, S., Shashua, A.: Ambiguity in reconstruction from images of six points.

In: International Conference on Computer Vision, pp. 703–708 (1992)

19. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Communications

of the ACM 24, 381–395 (1981)

20. Semple, J.G., Kneebone, G.T.: Algebraic projective geometry. Oxford University,

Oxford (1952)

21. Kahl, F., Henrion, D.: Globally optimal estimates for geometric reconstruction

problems. International Journal of Computer Vision 74, 3–15 (2007)



Two-View Geometry and Reconstruction under
Quasi-perspective Projection

Guanghui Wang and Q.M. Jonathan Wu

Department of Electrical and Computer Engineering, University of Windsor
401 Sunset, Windsor, ON, Canada N9B 3P4

ghwangca@gmail.com, jwu@uwindsor.ca

Abstract. Two-view geometry under quasi-perspective camera model and some
new results are reported in the paper. Firstly, we prove that quasi fundamental
matrix can be simplified to a special form with six degrees of freedom and it is
invariant to any non-singular projective transformation. Secondly, the plane in-
duced homography under quasi-perspective model can be simplified to a special
form defined by six degrees of freedom. Quasi homography may be recovered
from only two pairs of correspondences with known fundamental matrix. Exten-
sive tests on synthetic and real images are performed to validate the results.

1 Introduction

Reconstructing three-dimensional information from stereo views of a scene is a funda-
mental problem in computer vision. Many approaches have been proposed during the
last two decades for different applications. The most typical algorithm is stereo vision
technique from two images [5]. In case of image sequences, we usually adopt factoriza-
tion based algorithm [8] to recover the structure and motion parameters.

All structure from motion algorithms are based on certain assumption of camera
model. The most popular one is pinhole camera model, which is often referred to as
perspective projection. This is an ideal and accurate model for general imaging process.
However, perspective projection is a nonlinear transformation and is complicated due
to the the unknown perspective scalar [7]. To simplify the computation, researchers
proposed orthographic, weak perspective, and paraperspective projection model, which
can be generalized as affine camera [6] [9]. Affine camera is a linear approximation and
is valid when the distance of camera to object is much greater than the size of the object
itself. More recently, Wang et al. [12] proposed a quasi-perspective projection model to
fill the gap between simplicity of affine camera and accuracy of perspective projection.
The model assumes small camera movement.

Fundamental matrix estimation is a central problem in stereo vision as it encapsu-
lates the underlying epipolar geometry. Classical linear estimation technique for fun-
damental matrix is sensitive to noise. Hartley [4] analyzed the problem and proposed
a normalized eight-point algorithm to improve the accuracy. Zhang and Kanade [14]
gave a good review on fundamental matrix estimation and uncertainty analysis. Random
sample consensus (RANSAC) paradigm [3] was originated for robust parameter esti-
mation in present of outliers that the least-squares techniques may be severely affected.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 78–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Torr et al. [10] proposed to adopt RANSAC to estimate fundamental matrix. Dellaert
et al. [1] also proposed a robust method to reject outliers and reconstruct 3D scene
geometry.

The quasi-perspective projection model [12] [13] was originally proposed for factor-
ization based structure recovery from image sequence. In this paper, we will carry out
a further investigation of two-view geometry under the model. Some results are similar
to those under perspective and affine camera model. There seems no such report to the
best of our knowledge.

2 Camera Projection Geometry

Different camera models are proposed to formulate the geometry of imaging process.
The most ideal one is perspective projection model. Under this model, a 3D point Xi is
projected onto an image point xi according to equation

λixi = PXi = K[R,T]Xi (1)

where P is called projection matrix; xi = [ui, vi, 1]T and Xi = [xi, yi, zi, 1]T are
expressed in homogeneous form; R and T are the corresponding rotation matrix and
translation vector of the camera with respect to world coordinate system; K is camera
calibration matrix; λi is a non-zero scale factor, commonly called projective depth.

When the distance of an object from a camera is much greater than the depth varia-
tion of the object, we may assume affine camera model. Under affine assumption, the
last row of the projection matrix is of the form PT

3 � [0, 0, 0, 1], where ’�’ denotes
equality up to scale. Then the projection process (1) can be simplified by removing the
scale factor λi.

x̄i = AX̄i + T̄ (2)

where A ∈ R2×3 is composed by the upper-left 2 × 3 submatrix of P; x̄i = [ui, vi]T

and X̄i = [xi, yi, zi]T are the non-homogeneous form of xi and Xi respectively; T̄ is
the corresponding translation vector.

Assuming the camera is far away from the object and undergoes small rotations and
movement, Wang et al. [12] proposed a quasi-perspective projection model and the
imaging process is approximated as

xi = PqXqi (3)

where Xqi is scale weighted space point in homogeneous form; Pq ∈ R3×4 is called
quasi-perspective projection matrix, whose last row is of the form PT

3 � [0, 0, ∗, ∗],
where ′∗′ stands for nonzero entry. Clearly, the matrix Pq has only 10 nonzero en-
tries and 9 degrees of freedom (DOF) since it is defined up to scale. While the general
perspective projection matrix P has 11 DOFs.

Under quasi-perspective projection, it is easy to verify that ideal points in X and Y
directions of world system are mapped to ideal points in an image. Thus the parallelism
in X and Y are invariant, but the parallel relation along Z axis is not preserved under
the projection model (3).
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3 Two-View Geometry and Reconstruction

3.1 Fundamental Matrix

Epipolar geometry is the intrinsic projective geometry between a pair of stereo images.
Suppose x and x′ are corresponding points in a stereo image pair, then the intrinsic
geometry between the images can be encapsulated as follows.

x′T Fx = 0 (4)

where F ∈ R3×3 is called fundamental matrix. If the camera is calibrated, the two view
geometry can also be expressed by essential matrix which is defined as Eq = K′T FqK.
Both the fundamental matrix and essential matrix are rank 2 homogeneous matrices,
thus they have only 7 DOFs.

Proposition 1. The fundamental matrix and essential matrix under quasi-perspective

projection can be simplified to the form of
[

0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗

]
, which is defined by 6 DOFs.

We will now derive the quasi fundamental matrix Fq . Suppose R is the relative rotation
of the second camera with respect to the first. Let us decompose the rotation as three
angles α, β, γ along the three axes X,Y, Z respectively. Then we have

R=R(γ)R(β)R(α) =
[ Cγ −Sγ 0
Sγ Cγ 0
0 0 1

] [ Cβ 0 Sβ
0 1 0

−Sβ 0 Cβ

] [ 1 0 0
0 Cα −Sα
0 Sα Cα

]
(5)

where ’S’ stands for sine function, and ’C’ stands for cosine function. Given rotation
R and translation t = [tx, ty, tz]T between two views, the essential matrix can be
computed from

Eq = [t]×R =
[

tzSγCβ+tySβ tz(CγCα+SγSβSα)−tyCβSα ∗
−tzCγCβ−txSβ tz(SγCα−CγSβSα)+txCβSα ∗

∗ ∗ ∗

]
(6)

Under quasi-perspective assumption, the camera undergoes small movement and rota-
tions, then we have {Sα,Sβ,Sγ} → 0, {Cα, Cβ, Cγ} → 1, which results to {e11, e22}
→ 0. Therefore the essential matrix is simplified to

Eq =
[ 0 e12 e13

e21 0 e23
e31 e32 e33

]
=

[
0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗

]
(7)

Suppose the camera parameters are fixed as K = K′ =
[ f1 0 u0

0 f2 v0
0 0 1

]
. Then the funda-

mental matrix can be obtained from

Fq = K′−T EK−1 =
[

e11/f2
1 e12/(f1f2) ∗

e21/(f1f2) e22/f2
2 ∗

∗ ∗ ∗

]
=

[
0 f12 f13

f21 0 f23
f31 f32 f33

]
=

[
0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗

]
(8)

Proposition 2. Given two camera matrices Pq and P′
q , the fundamental matrix can be

recovered from Fq = [e′]×P′
qP

+
q , where P+

q denotes the pseudo-inverse of Pq . The
fundamental matrix is invariant to any non-singular projective transformation H ∈
R4×4. i.e. Fq remains the same if we set Pq ← PqH, P′

q ← P′
qH.
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The proof is omitted here. It can be obtained similarly as in the case of perspective
projection [5][14].

Under affine assumption, the optical center of an affine camera locates at infinity,
it follows that all epipolar lines are parallel and both epipoles are at infinity. Thus the
fundamental matrix is simplified to the form of

Fa =
[

0 0 ∗
0 0 ∗
∗ ∗ ∗

]
(9)

We can see that Fa is already of rank 2 with 4 DOFs.

3.2 Plane Induced Homography

When the space points are coplanar, we may assume the plane equation as Z = 0
without loss of generality, then the quasi-perspective projection (3) is simplified to

xi �Hπ

[
Xi

Yi
1

]
=

[
h11 h12 h13
h21 h22 h23
0 0 h33

] [
Xi

Yi
1

]
(10)

where Hπ ∈ R3×3 is called homography or perspectivity. There are 6 DOFs in Hπ

and it can be recovered from 3 non-collinear space points with known positions. For
coplanar space points, their images in two views are related with a planar homography,
we call it plane induced homography.

Proposition 3. Under quasi-perspective projection, the plane induced homography can

be simplified to the form of Hq =
[ ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

]
with 6 DOFs.

Proof. Suppose x and x′ are images of coplanar space point X in the two views, Hπ

and H′
π are the perspectivities of the two views. Then we have

x �HπX, x′ � H′
πX (11)

By eliminating X from (11), we have x′ � H′
πH

−1
π x = Hqx, where Hq is the plane

induced homography and it can be written as

Hq = H′
πH−1

π =
[

h′
11 h′

12 h′
13

h′
21 h′

22 h′
23

0 0 h′
33

] [
h11 h12 h13
h21 h22 h23
0 0 h33

]−1

=
[ ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

]
(12)

The homography Hq is a full rank matrix with 6 DOFs, and at least 3 non-collinear
corresponding points can give an unique solution. ��

It is easy to verify that the homography under affine camera model has the same form
as (12). While general homography under perspective model has 8 DOFs and at least 4
points are required for computation.

Proposition 4. Given fundamental matrix Fq, then the plane induced homography Hq

may be recovered from two pairs of correspondences xi ↔ x′
i, i = 1, 2.

The result is obvious, since an additional correspondence of the epipoles e↔ e′ can be
obtained from the fundamental matrix as Fqe = 0,FT

q e′ = 0. Thus we have 3 pairs of
correspondences and the homography Hq can be uniquely determined if the two image
points are not collinear with the epipole.
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Table 1. The trial number for different models to ensure probability p = 99% under different
minimal subsets and outlier-to-inlier ratios

Minimal Outlier-to-inlier ratioModel
subset 10% 20% 40% 60% 80% 100%

Persp 8/7 8/7 18/15 66/47 196/122 506/280 1177/588
Fundamental Quasi 6/5 6/5 12/9 33/23 75/46 155/85 293/146

Affine 4 5 7 16 28 47 72
Persp 4 5 7 16 28 47 72

Homography Quasi 3 4 6 11 17 25 35
Affine 3 4 6 11 17 25 35

3.3 RANSAC Algorithm with Outliers

In above analysis, we assume all correspondences are inliers without mismatches. The
result may be severely disturbed in present of outliers. In this case, we usually adopt the
RANdom SAmple Consensus (RANSAC) algorithm [3] to eliminate outliers and obtain
a robust estimation. RANSAC algorithm is an iterative method to estimate parameters
of a mathematical model and is computationally intensive. We will give a comparison
on trial number for different projection models.

Suppose the outlier-to-inlier ratio is k = Noutlier

Ninlier
, the number of the minimum subset

to estimate the model is n, and we want to ensure that at least one of the random samples
is free from outliers with a probability of p. Then the trial number N must satisfy

1− p =
(
1− ( 1

k+1 )n
)N

, which leads to

N =
ln(1− p)

ln
(
1− ( 1

k+1 )n
) (13)

Under a given probability p, the number of trials depends on the proportion k of outliers
over inliers and the number of subset n. In practice, we usually select a conservative
probability p = 99%. Table 1 shows the required trial number under different condi-
tions. We can see from the table that the required trial number increases sharply with
the increase of subset n and outlier ratio k. The algorithm under quasi-perspective is
computationally less intensive than that under perspective projection, especial for large
proportion of outliers. For fundamental estimation of general perspective projection,
we may adopt normalized 8-point linear algorithm [4] or 7-point nonlinear algorithm
with rank-2 constraint [14]. Similarly, we have normalized 6-point linear algorithm and
5-point nonlinear algorithm for quasi-perspective fundamental matrix. We can adopt
simple linear algorithm when the ratio k is small. However, it is wise to adopt nonlinear
algorithm for larger outlier ratios.

3.4 3D Structure Reconstruction

Quasi-perspective projection is a special case of perspective projection, thus most the-
ories on 3D reconstruction under perspective model may be applied directly to quasi-
perspective. In case of calibrated cameras, we can recover the camera matrices directly
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Fig. 1. The algebra error distribution of fundamental matrix under different camera models. The
results are obtained with 1- and 2-pixel Gaussian noise.

from singular value decomposition (SVD) of the essential matrix [5]. For uncalibrated
cameras, we can adopt stratified reconstruction [2] to recover the 3D structure. Here we
will give some properties of quasi-perspective reconstruction.

Result 5. Under quasi-perspective assumption, a pair of canonical cameras can be
defined as

Pq = [ I |0 ], P′
q = [Mq | t ] (14)

where Mq is a 3× 3 matrix with its last row in form of [ 0, 0, ∗ ].

Result 6. Suppose
(
Pq1,P′

q1, {X1i}
)

and
(
Pq2,P′

q2, {X2i}
)

are two quasi-
perspective reconstructions of a set of correspondences xi ↔ x′

i between two images.
Then the two reconstructions are defined up to a quasi-perspective transformation as
Pq2 = Pq1Hq , P′

q2 = P′
q1Hq, and X2i = H−1

q X1i, where the transformation Hq is
a 4× 4 non-singular matrix in form of

Hq =
[

A2×2 B2×2
02×2 C2×2

]
(15)

4 Evaluation on Synthetic Data

During simulation, we randomly generated 200 points within a cube of 20× 20× 20 in
space, and simulated two images from these points by perspective projection. The image
size is set at 800 × 800. The camera parameters are set as follows. The focal lengths
are set randomly between 1000 and 1100. The three rotation angles are set randomly
between ±5◦. The X and Y positions of the cameras are set randomly between ±15,
while the Z positions are set randomly between 210 to 220. The synthetic imaging
condition is close to affine and quasi-perspective assumption.

Evaluation on fundamental matrix: We recovered Fq by normalized 6-point algo-
rithm, and calculated the algebra error of the fundamental matrix as ε1i = x′T

i Fqxi.
The distribution of the errors across the 200 correspondences is outlined in Fig. 1. Gaus-
sian image noise was added to each image point during the test. As a comparison, we
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Fig. 3. Results of RANSAC algorithm. (a) one image matches with outliers; (b)&(c) final detected
correspondences in two images after RANSAC.

also recovered the general fundamental matrix F by normalized 8-point algorithm and
the affine fundamental matrix Fa by 4-point linear algorithm. We can see that the error
of quasi-perspective lies in between those under perspective projection and affine.

Evaluation on homography: We set all space points on the plane Z = 10 and re-
generated two images with the same camera parameters. Then we recovered the plane
induced homography Hq and H under quasi-perspective and perspective projection re-
spectively, and evaluated the reprojection error as

ε2i =
1
2

(
d(xi,H−1

q x′
i)

2 + d(x′
i,Hqxi)2

)
(16)

where d(∗, ∗) denotes the Euclidean distance of two feature points. The histogram dis-
tributions of the errors under different noise level are shown in Fig. 2. We can see than
the error given by Hq is higher than that by H. The homography under affine model is
the same as Hq .

Evaluation on RANSAC: We randomly added 50 mismatches to the initial generated
correspondences and adopted RANSAC paradigm to estimate Fq and eliminate out-
liers. The initial matches with disparities and outliers are shown in the first plot of
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Fig. 5. Evaluation on 3D reconstruction. The mean (a) and standard deviation (b) of reconstruc-
tion errors by different models.

Fig. 3. All mismatches were rejected by the algorithm. We then calculated the average
computation time in estimating the fundamental matrix under different model. Only lin-
ear algorithm was adopted and the minimal subsets for F, Fq , Fa are set as 8, 6, and
4 respectively. The program was implemented with Matlab R14 on Dell Inspiron 600m
laptop of Pentium(R) 1.8GHz CPU. In first case, we selected 200 correspondences and
varied the outlier-to-inlier ratio from 0.1 to 1.0. In second case, we set the outlier ratio
at 0.8 and varied the feature number from 200 to 2000. The result is shown in Fig. 4.
We can see that the algorithm under quasi-perspective model is faster than that under
perspective projection, especially for larger data sets and outlier ratios.

Evaluation on reconstruction: We reconstructed the 200 points under different camera
models and registered the result with the ground truth. The reconstruction error was
calculated as pointwise distance between the recovered structure and its ground truth.
In order to obtain a statistical meaningful result, we varied the image noise from 0 to 3
pixels at a step of 0.5, and took 100 independent tests at each noise level. The mean and
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(a) (b)

Fig. 6. Reconstruction result of stone dragon. (a) Two images and the tracked features with rela-
tive disparities; (b) the reconstructed VRML model of the object and the corresponding wireframe
shown from different viewpoints.

standard deviation of the errors are shown in Fig. 5. The reconstruction under quasi-
perspective is more accurate than that with affine assumption.

5 Evaluation on Real Images

We tested and compared different models on many real images, and we will report one
result in the paper due to limited space. The test is on two images of a stone dragon that
were captured by Canon Powershot G3 camera with a resolution of 1024 × 768. The
camera parameters were calibrated offline. The correspondences were established by
the matching system based on SIFT and epipolar constraint [11], and totally 4621 reli-
able features were corrected matched as shown in Fig.6. We recovered the fundamental
matrix under quasi-perspective projection and then reconstructed the 3D structure of
the scene via factorization of the essential matrix [5]. Fig.6 shows the reconstructed
model with texture mapping and the corresponding wireframe viewed from different
viewpoints. The structure of the dragon is correctly recovered and looks realistic. After
reconstruction, we reprojected the 3D structure to the two images and calculated the
reprojection errors. The mean errors by perspective projection, quasi-perspective, and
affine model are 0.72, 0.80, and 0.86 respectively. The quasi-perspective result outper-
forms that under affine camera model.

6 Conclusion

In this paper, we have investigated the two-view geometry of quasi-perspective pro-
jection model and presented some special properties of the fundamental matrix, plane
induced homography, and 3D reconstruction under the model. Both theocratical and
experimental analysis show that quasi-perspective model is a good tradeoff between the
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simplicity of affine and the accuracy of perspective projection. One possible limitation
of quasi-perspective projection is the requirement of small camera rotations and move-
ment. However, the constraint is usually satisfied in practice, since we tend to constrain
camera movement during image taking so as to guarantee large overlapping between
images and facilitate feature matching process.
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Abstract. Evaluating the similarity of images and their descriptors by

employing discriminative learners has proven itself to be an effective face

recognition paradigm. In this paper we show how “background samples”,

that is, examples which do not belong to any of the classes being learned,

may provide a significant performance boost to such face recognition sys-

tems. In particular, we make the following contributions. First, we de-

fine and evaluate the “Two-Shot Similarity” (TSS) score as an extension

to the recently proposed “One-Shot Similarity” (OSS) measure. Both

these measures utilize background samples to facilitate better recogni-

tion rates. Second, we examine the ranking of images most similar to a

query image and employ these as a descriptor for that image. Finally, we

provide results underscoring the importance of proper face alignment in

automatic face recognition systems. These contributions in concert allow

us to obtain a success rate of 86.83% on the Labeled Faces in the Wild

(LFW) benchmark, outperforming current state-of-the-art results.

1 Introduction

In a learning framework, we define background samples as samples that do not
belong to the classes being learned. Collecting such samples is often easy as they
do not require labeling. For example, in a face identification scenario, these sam-
ples could be a face set of individuals not among those which the system is being
trained to recognize. Besides being easy to collect, we believe such examples may
provide valuable information about which images may be considered “the same”
and which may not. In this paper we present similarity measures designed to
exploit such background samples. These measures are then shown to outperform
state-of-the-art techniques on standard image similarity tests.

Why would background samples be useful for defining similarity functions?
The sample vectors are embedded in a vector space in which various metrics can
be employed. In order to know which metric is most suitable for the similarity
task at hand, the underlying structure of the manifold on which the samples
reside needs to be analyzed. Supervised learning can sometimes be used, but
may require extra labeling information. On the other hand, background samples
without additional information directly answer questions such as “is this sample
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closer to that one than to a typical example from the background set?” (One-
Shot); “are these two examples well separated from the background sample set?”
(Two-shot); and “do these two samples have similar sets of neighboring samples
in the background set?” (ranking similarity).

As a benchmark for testing our methods, we use the Labeled Faces in the Wild
(LFW) database [1]. It offers a unique collection of annotated faces captured from
news articles on the web. It can be used to estimate face recognition performance
on faces detected automatically in web images, and may serve as a reasonable
benchmark for photo album applications. The dataset is published with a specific
benchmark, which focuses on the face recognition task of pair matching. In this
task, given two face images, the goal is to decide whether the two pictures are
of the same individual. This is a binary classification problem, with two possible
outcomes: “same” or “not-same”.

The best results currently reported on the LFW benchmark were obtained
by [2] using the One-Shot Similarity measure. Our tests here on the same bench-
mark indicate that exploiting background samples yields improved performance.

The rest of the paper is organized as follows. Section 2 reviews related work.
In Section 3 we describe the novel Two-Shot similarity measure and its efficient
computation. Using image ranking as an additional image descriptor is proposed
in Section 4. Section 5 discusses the importance of accurate face alignment for
recognition. We present our results in Section 6 and finally conclude in Section 7.

2 Related Work

The literature on similarity functions is extensive. Some similarity measures pro-
posed in the past have been hand crafted (e.g., [3,4]). Alternatively, a growing
number of authors have proposed tailoring similarity measures to available train-
ing data by applying learning techniques (e.g., [5,6,7,8,9]). In all these methods
testing is performed using models (or similarity measures) learned beforehand.

Recently [10,11], the One-Shot Similarity (OSS) score was introduced as an
alternative approach which utilizes background samples. The OSS draws its mo-
tivation from the growing number of so called “One-Shot Learning” techniques;
that is, methods which learn from one or few training examples (see for exam-
ple [12,13]). Unlike previous methods for computing similarities, the OSS score
of two signals is computed by training a discriminative model exclusive to the
two signals being compared, by using a set of background samples. It was con-
sequently shown to be instrumental in obtaining state-of-the-art results on the
Labeled Faces in the Wild (LFW) image pair-matching challenge [1].

Employing background samples differs from semi-supervised learning [14] and
from transductive learning [15] since in both cases the unlabeled samples belong
to the set of training classes. It differs from flavors of transfer learning that use
unlabeled samples [16], since they use separate supervised learning tasks in order
to benefit from the unlabeled set.

Although learning with background samples can be seen as belonging to
the group of techniques called “learning with side-information”, it differs from
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existing methods in the literature known to us. In particular, some of the pre-
vious contributions, e.g., [17,18,19], require having training samples with the
same identity. Other side-information contributions, e.g., [20] assume that the
variability in the side information differs from that in the relevant data.

3 The Two-Shot Similarity Score

We begin our description of the TSS measure by reviewing the OSS [10,11].
Given two vectors I and J their OSS score is computed by considering a training
set of background sample vectors A. This set contains examples of items not
belonging in the same class as neither I nor J, but are otherwise unlabeled.
A measure of the similarity of I and J is then obtained as follows. First, a
discriminative model is learned with I as a single positive example, and A as
a set of negative examples. This model is then used to classify the vector, J,
and obtain a confidence score. The nature of this score depends on the classifier
used. Using linear SVM, for example, this score may be the signed distance of J
from the hyperplane separating I and A. A second such score is then obtained
by repeating the same process with the roles of I and J switched. The final OSS
score is the average of these two scores.

The Two-Shot similarity score is obtained in a single step by modifying the
process described above. Again, we consider the same auxiliary set of negative
examples A. This time, however, we train a single discriminative model using
both I and J as positive examples, and the set A as a set of negative examples.
The Two-Shot score is then defined as a measure of how well this model discrim-
inates the two sets. Again, the particular definition of this score depends on the
underlying classifier used. Using the SVM classifier, for example, this can simply
be the width of the margin between the two sets. In the following sections we
provide detailed analysis of this new similarity score.

3.1 Background-Sample Based Similarities with LDA

The OSS and TSS scores are actually meta-similarities which can be fitted to
work with almost any discriminative learning algorithm. In our experiments,
we focused on the Fisher Discriminant Analysis (FDA or LDA) [21,22] as the
underlying classifier. Similarities based on LDA can be efficiently computed by
exploiting the fact that the set A of negative samples is used repeatedly, and that
the positive class, which contains just one or two elements, contributes either
nothing or a rank-one matrix to the within class covariance matrix.

We focus on binary LDA, which is relevant to this work. Let pi ∈ Rd, i =
1, 2, ...,m1 be a set of positive training examples, and let ni ∈ Rd, i = 1, 2, ...,m2
be a set of negative training examples. Let μ be the average of all points and μp

(resp. μn) be the average of the positive (negative) training set. Two matrices are
then considered [23], SB measuring the covariance of the class centers, and SW ,
which is the sum of the covariance matrices of each class. The LDA algorithm
computes a projection v which maximizes the quotient:
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v = arg max
v

v�SBv

v�SW v
(1)

In the two class case, v is easily determined as:

v =
S+

W (μp − μn)

‖S+
W (μp − μn)‖ (2)

Note that we use the pseudo-inverse S+
W instead of the inverse S−1

W in order to
deal with cases where the within-class covariance matrix is not full rank. This is
equivalent to requiring in Eq. 1 that v be spanned by the training vectors.

Once v has been computed, the classification of a new sample x ∈ Rd is given
by the sign of v	x− v0, where v0 is the bias term (see below).

LDA-based One-Shot Similarity. The LDA-based OSS score and its com-
putation was recently analyzed in [11]. By exploiting the fact that the positive
set contains a single sample and the negative set is fixed, it was shown that the
LDA-based OSS between samples I and J given the auxiliary set A becomes:

(I − μA)�S+
W (J − I+μA

2
)

‖S+
W (I − μA)‖ +

(J − μA)�S+
W (I − J+μA

2
)

‖S+
W (J − μA)‖ (3)

The overall complexity for the OSS per pair is thus O(d2) once the (pseudo)
inverse SW has been computed. In addition, if similarities are computed for the
same point repeatedly, one can factor the positive definite S+

W = HH	 and
pre-multiply this point by the factor H .

LDA-based Two-Shot Similarity. In the two-shot case, I and J serve as
the positive class, while the set A of background samples is used repeatedly as
the negative class. In contrast to the One-Shot case, the within class covariance
matrix SW changes from one similarity computation to another.

In order to be robust to the size of the background set and for simplicity,
we balance the positive and the negative classes and define the within-class
convenience matrix as SW = 1

2SA + 1
2SIJ , where SA = 1

|A|
∑

x∈A(x − μA)(x −
μA)	, and SIJ = 1

2 ((I − (I+J)
2 )(I − (I+J)

2 )	 + (J − (I+J)
2 )(J − (I+J)

2 )	) =
1
4 (I − J)(I − J)	

Since SIJ is a rank-one matrix, the inverse of SW can be computed by up-
dating the inverse of SA with accordance to the Sherman-Morrison formula as:

1

2
S−1

W = S−1
A − S−1

A (I − J)(I − J)�S−1
A

4 + (I − J)�S−1
A (I − J)

(4)

If SW is not full rank, a similar formula can be applied to update the pseudoin-
verse, based on rank-one updates [24] of the Cholesky factor or SVD of SA. The
details are omitted. Note that the matrix S−1

W need not be computed explicitly.
Let ν = (I + J)/2− μA. From equation 2, v can be computed up to scale as:

S−1
A ν − S−1

A (I − J)(I − J)	(S−1
A ν)

4 + (I − J)	S−1
A (I − J)
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The TSS itself measures the separability of the two classes, i.e., the distance
between the centers of the two classes in the direction of v. Thus, once the
covariance matrix of the background samples is inverted, computing the TSS
requires O(d2) operations. If points Ii are used repeatedly, S−1

A Ii can be pre-
computed, and future TSS computations become O(d).

4 Ranking Based Background Similarity

The idea of representing an image by a set of similarities to other images or to
prelearned classifiers is well known [25]. Bart and Ullman [26] have proposed to
use it for learning a novel class from one example. We have tried using a vector
of similarities to the background samples as a face descriptor. Specifically, we
generated for image I and for image J vectors of similarities by comparing I or
J to each image in A. The resulting vectors produce much worse classification
results than the original similarity between I and J .

Instead, we consider a retrieval system in which images I or J are used to
retrieve similar images from the set A, and examine the order in which the
images are retrieved. In other words, image I (or J) produces an order on the
elements of A from the most similar to the least similar.

To compare two such orders, we can employ the non-parametric technique
of computing the correlation between the rank vectors. Each image (I or J) is
represented by a vector which contains the ranking of each image in the set A
from 1 (most similar image) to |A| (least similar image). The correlation between
the two rank vectors measures the similarity between the two permutations.

In our experiments, we have found that it is better to focus on the most similar
images. We propose the following statistical test. For each of the two samples
I and J we compute the rank vectors rI and rJ as before. Let πI (πJ ) be the
order of images in A according to their similarity to I (J). We then compute the
similarity s as the sum of the ranking by one image to the first 100 images in
the order of the second image: s(I, J) = −

∑100
k=1 rI(πJ (k)) + rJ (πI(k)). (higher

values mean more similar examples). We are yet to conduct a full test for the
value of the parameter; currently 100 seems to produce good results.

5 Face Alignment

In order to produce an aligned version of the LFW images, we automatically pro-
cessed them using a commercial face alignment system provided by face.com.
The alignment system is based on localization of fiducial points. An affine trans-
formation that brings those feature points to fixed locations is applied to the
image. In order to train the feature detectors face.com have collected a set of
labeled face images with manually marked points. These images do not intersect
the LFW set in images or in identity.

Our experiments, reported in Section 6, show that this alignment method
significantly improves the performance of all tested methods. To illustrate the
importance of this improved alignment, we tested the performance of the system

face.com
face.com
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Fig. 1. Two images aligned using the Funneling technique

of [28] (on the left) and the face.com alignment system.

Misalignments on the left hand pair are visible when com-

paring the positions of the mouth and the eyes to the

markers. These misalignments are all but removed in the

right hand pair.

designed by Nowak and Jurie [27] on our own aligned version of the LFW image
set. Originally, the LFW images were aligned using the “Funneling” technique
of [28]. On this funneled set, Nowak and Jurie obtained a recognition rate of
0.7393. The same method obtains a recognition score of 0.7912 on our aligned
set. Note that this performance boost was gained even tough the method of [27]
has build-in mechanisms to deal with misalignments.

Figure 1 presents an example of one image pair aligned using both the original
Funneling technique of [28] and our own alignment method. The improved align-
ment of both the eyes and the mouth is evident by comparing their positions to
the markers. It is important to note that while the Funneling technique requires
no additional training (it is an unsupervised technique), feature-point based
alignment techniques, including the method employed by the authors of [29],
rely on the existence of a training set of images with marked fiducial points.

6 Experiments

We test the effect of the various contributions on the 10 folds of view 2 of
the LFW dataset [1]. Similarly to previous contributions, we employ “image-
restricted training”. This benchmark consists of 6, 000 pairs, half marked “same”
and half not, and is divided into 10 equally sized sets. The benchmark test is
repeated 10 times, each time using one set for testing and nine others for training.
The goal is to predict which of the test pairs match using only the training data.

We used one of the nine training splits for the background set A and the other
eight for classifier training. The background split contains 1,200 images. The
subjects in these images do not appear in the test set, as the LFW benchmark
is constructed to have subjects in the different splits mutually exclusive [1].

6.1 The Contribution of Alignment

Our first set of experiments repeats the experiments of [10] while introducing
the automatic alignment. Note that we did not make any attempt to verify the
alignment. If the alignment fails for any reason, we still use the resulting image.

The results are described in Table 2. We use the same descriptors of [10] with
the addition of a SIFT descriptor: the LBP descriptor [30], two variants called
Three-patch and Four-patch LBP (TPLBP and FPLBP) [10], the C1 image
descriptor [31], and SIFT [32]. The parameters of all descriptors were copied
from [10]. To compute the SIFT descriptor, we subdivide the image into a grid
of 7x7, and compute a 128D SIFT descriptor for each one of the 49 patches.
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Table 1. Mean (± standard error) scores on the LFW, Image-Restricted Training

benchmark (“view 2”) using Euclidean similarities

Original images Funneled Alignment

Image Descriptor Euclidian SQRT Euclidian SQRT Euclidian SQRT

LBP 0.6649 0.6616 0.6767 0.6782 0.6824 0.6790

Gabor (C1) 0.6665 0.6654 0.6293 0.6287 0.6849 0.6841

TPLBP 0.6713 0.6678 0.6875 0.6890 0.6926 0.6897

FPLBP 0.6627 0.6572 0.6865 0.6820 0.6818 0.6746

Above combined 0.7107 ± 0.0045 0.7062 ± 0.0046 0.7450 ± 0.0068

SIFT 0.6617 0.6672 0.6795 0.6870 0.6912 0.6986

All combined 0.7223 ± 0.0092 0.7193 ± 0.0049 0.7521 ± 0.0055

All descriptors are then concatenated to a single vector. Compared to the LBP
variants, the SIFT descriptor is less sensitive to misalignment, however, it is
easily misled by sharp edges caused by glasses or illumination.

We use either the descriptor vectors or their square roots (i.e., the Hellinger
distance). In the latter case, instead of using the descriptor vector g(I) we use√
g(I). The 10 descriptor/mode scores in the table are obtained by training SVM

on 4, 800 (8 sets) 1D vectors containing the similarity scores. The “Combined”
classification is based on learning and classifying the 8D/10D vectors which are
the concatenations of the eight/ten 1D vectors (including or excluding SIFT).
The results are reported in Table 2. The contributions of adding SIFT and of
performing a proper alignment are clearly seen.

6.2 The Contribution of One-Shot

Next, we examine the performance on the one-shot measure in Table 2. The
descriptors used are the same as above. Here again we use either the original
descriptor vectors, or their square roots. The “Combined” classification is based
on learning and classifying the 8D/10D vectors which are the concatenations
of the eight/ten 1D One-Shot similarites. Results are reported without SIFT
(to allow comparison to [10]) and with SIFT. The “Hybrid” results contain all
direct (Euclidean) similarities above and the One-Shot similarities. Note the gap
in performance compared to the funneled no-sift hybrid previously reported.

6.3 The Contribution of Two-Shot

The two-shot similarity adds another layer of information. By itself, it is not
very discriminative. For the aligned images, all 10 (5 descriptors and using or
not using square root) two-shot similarities provide a combined score of 0.6593±
0.0076, which is lower than the corresponding figure of 0.8207 for the One-Shot
Similarities and the 0.7521 for the baseline similarities.

However, in combination with the baseline similarities and the One-Shot Simi-
larities, the Two-Shot Similarities boost performance considerably. Adding those
similarities to the mix increases the performance in the aligned images from
0.8398± 0.0035 to 0.8513± 0.0037.
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Table 2. Mean (± standard error) scores on the LFW, Image-Restricted Training

benchmark (“view 2”) using OSS

Original images Funneled Alignment

Image Descriptor OSS OSS SQRT OSS OSS SQRT OSS OSS SQRT

LBP 0.7292 0.7390 0.7343 0.7463 0.7663 0.7820

Gabor (C1) 0.7066 0.7097 0.7112 0.7157 0.7396 0.7437

TPLBP 0.7099 0.7164 0.7163 0.7226 0.7453 0.7514

FPLBP 0.7092 0.7112 0.7175 0.7145 0.7466 0.7436

Above OSS Comb. 0.7582± 0.0067 0.7653 ± 0.0054 0.8002 ± 0.0018

Above Hybrid 0.7752 ± 0.0063 0.7847 ± 0.0051 0.8255 ± 0.0031

SIFT 0.7126 0.7199 0.7202 0.7257 0.7576 0.7597

All OSS Combined 0.7673 ± 0.0039 0.7779 ± 0.0072 0.8207 ± 0.0041

All Hybrid 0.7782 ± 0.0036 0.7895 ± 0.0053 0.8398 ± 0.0035

6.4 The Contribution of the Ranking Descriptor

The ranking based similarities obtained by the proposed score, which considers
the ranking by one example of the first 100 images closest to the other example. It
is slightly more effective than Two-Shot Similarity above, and the score obtained
by combining all 10 rank similarities using SVM is 0.6918±0.0062. As mentioned
in Sec. 4, using other forms of representation by similarity are not better.

Similar to the the Two-Shot Similarity above, the contribution of the ranking
descriptor by adding it to the other descriptors. A hybrid descriptor which con-
tains 10 original distances, 10 One-Shot distances, 10 Two-Shot distances, and
10 ranking based distances produces a result of 0.8557± 0.0048, which is much
higher than the current record of 0.7935± 0.0055 [33].

(a) (b)

Fig. 2. ROC curves for View 2 of the LFW data set. Each point on the curve

represents the average over the 10 folds of (false positive rate, true positive

rate) for a fixed threshold. (a) Full ROC curve. (b) A zoom-in onto the low

false positive region. The proposed method is compared to scores reported in

http://vis-www.cs.umass.edu/lfw/results.html. These methods include the combined

nowak+Merl system [29], the Nowak method [27], the hybrid method of [10], and the

recent V1-like/mkl method of [33].
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6.5 Combining Background Similarities beyond LDA

The One-Shot and Two-Shot similarities are frameworks that can be applied
with LDA as above or with other classifiers. Applying it with SVM instead of
LDA gives very similar results. However, a considerable boost in performance
is obtained when adding SVM based OSS and TSS to those of LDA. Adding
those 20 additional dimensions results in a performance of 0.8297 ± 0.0037 for
the funneled images and 0.8683± 0.0034 for the aligned images.

The ROC curves of the final combined result, as well as the results of previous
work is presented in Figure 2. As can be seen, the present result is considerably
better than previous method. This is especially so in the low-false-positive region,
which is the crucial region for most applications.

7 Conclusions

We follow the Detection-Alignment-Recognition pipeline devised in [1] for the
study of face recognition in unconstrained environments. For alignment, we
demonstrate the significance of proper localization by improving upon results
obtained on already aligned images. For representation, we augment the set of
descriptors by adding SIFT. For similarity we study three frameworks for em-
ploying background samples, shifting focus from one-shot to two examples to
many examples. This form of side information has not gained considerable at-
tention previously, and we demonstrate its effectiveness. The obtained leap in
performance is impressive given the law of diminishing returns and the amount
of work invested by various groups on the LFW benchmark.

Acknowledgments
We thankMichal Irani andGregShakhnarovich for discussion that led to thiswork.

References

1. Huang, G., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:

A database for studying face recognition in unconstrained environments. UMASS,

TR 07-49 (2007)

2. Taigman, Y., Wolf, L., Hassner, T.: Multiple one-shots for utilizing class label

information. In: BMVC (2009)

3. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape

matching and object recognition. In: NIPS (2001)

4. Zhang, H., Berg, A., Maire, M., Malik, J.: Svm-knn: Discriminative nearest neigh-

bor classification for visual category recognition. In: CVPR (2006)

5. Bilenko, M., Basu, S., Mooney, R.: Integrating constraints and metric learning in

semi-supervised clustering. In: ICML (2004)

6. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel-target align-

ment. In: NIPS (2002)

7. Shental, N., Hertz, T., Weinshall, D., Pavel, M.: Adjustment learning and relevant

component analysis. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.)

ECCV 2002. LNCS, vol. 2353, pp. 776–790. Springer, Heidelberg (2002)



Similarity Scores Based on Background Samples 97

8. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin

nearest neighbor classification. In: NIPS (2006)

9. Xing, E., Ng, A.Y., Jordan, M., Russell, S.: Distance metric learning, with appli-

cation to clustering with side-information. In: NIPS (2003)

10. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Faces

in Real-Life Images Workshop in ECCV (2008)

11. Wolf, L., Hassner, T., Taigman, Y.: The one-shot similarity kernel. In: ICCV (2009)

12. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories.

PAMI 28(4), 594–611 (2006)

13. Fink, M.: Object classification from a single example utilizing class relevance

pseudo-metrics. In: NIPS (2004)

14. Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cam-

bridge (2006)

15. Joachims, T.: Transductive learning via spectral graph partitioning. In: Interna-

tional Conference on Machine Learning (ICML), pp. 290–297 (2003)

16. Quattoni, A., Collins, M., Darrell, T.: Transfer learning for image classification

with sparse prototype representations. In: CVPR (June 2008)

17. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning with application

to clustering with side-information. In: NIPS, Cambridge, MA (2003)

18. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions

using equivalence relations. In: ICML (2003)

19. Liu, W., Hoi, S., Liu, J.: Output regularized metric learning with side informa-

tion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS,

vol. 5304, pp. 358–371. Springer, Heidelberg (2008)

20. Chechik, G., Tishby, N.: Extracting relevant structures with side information. In:

NIPS, pp. 857–864 (2002)

21. Fisher, R.: The use of multiple measurements in taxonomic problems. Annals Eu-

genics 7, 179–188 (1936)

22. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.

Springer, Heidelberg (2001)

23. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, Chich-

ester (2001)

24. Brand, M.: Fast low-rank modifications of the thin singular value decomposition.

Linear Algebra and its Applications 415(1), 20–30 (2006)

25. Edelman, S.: Representation and recognition in vision. MIT Press, Cambridge

(1999)

26. Bart, E., Ullman, S.: Single-example learning of novel classes using representation

by similarity. In: British Machine Vision Conference (2005)

27. Nowak, E., Jurie, F.: Learning visual similarity measures for comparing never seen

objects. In: CVPR (June 2007)

28. Huang, G., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex

images. In: IEEE International Conference on Computer Vision (2007)

29. Huang, G., Jones, M., Learned-Miller, E.: Lfw results using a combined nowak plus

merl recognizer. In: Faces in Real-Life Images Workshop in ECCV (2008)

30. Ojala, T., Pietikainen, M., Harwood, D.: A comparative-study of texture measures

with classification based on feature distributions. Pattern Recognition 29(1) (1996)

31. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex.

Nature Neuroscience 2(11), 1019–1025 (1999)

32. Lowe, D.: Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision 60(2), 91–110 (2004)

33. Pinto, N., DiCarlo, J., Cox, D.: How far can you get with a modern face recognition

test set using only simple features? In: CVPR (2009)



 

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 98–109, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Human Action Recognition Using Spatio-temporal 
Classification 

Chin-Hsien Fang, Ju-Chin Chen, Chien-Chung Tseng, and Jenn-Jier James Lien 

Department of Computer Science and Information Engineering, National Cheng Kung  
University, Taiwan 70101, R.O.C. 

{func1115,joan,ed,jjlien*}@csie.ncku.edu.tw 

Abstract. In this paper a framework “Temporal-Vector Trajectory Learning” 
(TVTL) for human action recognition is proposed. In this framework, the  
major concept is that we would like to add the temporal information into the ac-
tion recognition process. Base on this purpose, there are three kinds of temporal 
information, LTM, DTM, and TTM, being proposed. With the three kinds of 
proposed temporal information, the k-NN classifier based on the Mahanalobis 
distance metric do have better results than just using spatial information. The 
experimental results demonstrate that the method can recognize the actions 
well. Especially with our TTM and DTM framework, they do have great accu-
racy rates. Even with noisy data, the framework still have good performance. 

1   Introduction 

Human action recognition has been an active issue over the last decades in computer 
vision community, which has created a wide range of applications, such as video 
surveillance, human-computer interaction, analysis of sports events, etc. Several situa-
tions would cause the action recognition process to be challenging, including non-
stationary backgrounds in videos, ambiguity of human body shapes between different 
actions, and intra-class variations of appearance, physical characteristics, motion style 
and motion temple of different human subjects.  

One of the most important questions in human action recognition is how to extract 
features from the video sequences, and in [12] [25], the authors summarized the 
methods had been proposed, including: the computation of optical flow [8], space-
time gradients [19] [29], feature tracking models [3] [5] [22] [27], sparse spatio-
temporal interest points [7] [13] [14] [15]. However, recognition based on space-time 
gradient features or feature tracking models have the limitations in case of low quality 
videos or large variability in the articulation of human body and lighting conditions, 
respectively. On the other hand, the recognition based on the usage of the sparse rep-
resentations of interest points would be limited due to the discard of global structural 
information [27].  

Alternatively, the feature of human silhouettes are becoming popular in recent 
studies for human action recognition [4] [10] [12] [23] [24] [25], which is easier to 
obtain and the silhouettes can still contain the detailed body shape information. More-
over, a sequence of human silhouettes generate space-time shapes which not only 
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encode spatial information of the body shape but also temporal motion information of 
global body and local body parts [25]. A human silhouette of each frame (image) can 
be represented by a vector in high-dimensional space, and thus the human silhouettes 
collected from human action movements are expected intrinsically lie in a low-
dimensional space embedded in the high-dimensional space [12]. Manifold learning 
methods, e.g. isometric feature map (Isomap) [20], locally linear embedding (LLE) 
[18], Laplacian eigenmap [2], can discover the intrinsic geometrical structure of data 
and thus the human action motion can be analyzed in a compact low-dimensional 
space. Accordingly, Elgammal and Lee [9] applied LLE to learn the view-based rep-
resentations for walking manifolds in order to recover intrinsic body configurations. 
Wang [25] found a low-dimensional feature representation for human silhouettes via 
locality preserving projections (LPP) [11] which is a linear approximation to LE [2].  

Recently the supervised manifold learning methods are proposed that they take the 
class label information into consideration, including marginal Fisher analysis (MFA) 
[28], supervised-LPP [25], locality sensitive discriminant analysis (LSDA) [6], etc. 
By regarding the class label information, the local spatial discriminant structure can 
be discovered and thus the images with different action classes can be separated. 
However, not only spatial information, i.e. body shape of silhouette, the temporal 
motion information inhered from the video sequences, i.e. dynamic shape variation of 
human silhouette sequences, can provide important information for recognition. Vari-
ous studies incorporate the temporal information from different aspects. In [12], Jia et. 
al. propose a spatio-temporal subspace learning method (LSTDE) in which temporal 
subspaces associated with data points of consecutive frames are constructed. The 
proposed subspace are constrained by not only maximizing the discriminant structure 
according to class label but also maximizing the principal angles between those tem-
poral subspaces of different classes. On the other hand, in [25], temporal evolution of 
an action motion is viewed as a sequence of projection points with temporal orders, 
and state-space models, i.e. HMM are applied to capture the structural and dynamical 
nature of human movements.  

Motivated by the above studies, we propose a silhouette-based human action rec-
ognition system that not only considers the spatial information in the spatial-motion 
subspace, but also include the motion trajectory in the temporal motion space. In the 
system, the features of human silhouettes, which contain the detailed body shape 
information, are extracted from motion videos. First, the subspace method is applied 
to obtain a spatial-motion subspace that the human body shapes from the collected 
human silhouettes can be analyzed.  However, in order to cope with the ambiguity of 
human body shapes between different action types which caused overlap in the sub-
space, the temporal-vectors are proposed to characterize the trajectory motion infor-
mation in the subspace. Moreover, the Mahalanobis distance metric is based on the 
goal that those k-nearest temporal-vectors belongs to the same action class should 
gather together while the ones with different action class can be separated by a mar-
gin. Benefit from the temporal-vector trajectory learning, our system can be per-
formed on frame-based accuracy measurement. 
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2   Learning for Spatio-temporal Classification 

Fig 1 shows the proposed action recognition system based on temporal-vector trajec-
tory learning. Assume there are m video sequences, each of which has in  training 
frames. The training process commences by extracting human silhouettes m

i

i

1}{ =X  as 
feature representation for each human action video. Human silhouettes can be ob-
tained via the background subtraction method. In order to reduce the intra-class varia-
tions of different subject’s sizes, the normalize process is applied to centralize and 
resize the human silhouettes so that the resized human silhouettes (w×h) can contain 
the body shape information as much as possible. Each silhouette ix  can be repre-
sented by a D-dimensional vector hwD

i R ×=∈x  and thus we have the whole training set 
with all resized silhouettes ]xx,[xX N,...,21= , where mnnnN +++= ...21 . 

As shown in Fig. 1, the proposed system mainly consists of two steps to analyze 
the spatial and temporal motion of human silhouettes, respectively. In Section 2.1, we 
first find a spatial motion subspace in which we can capture the local spatial motion 
information of high-dimensional silhouettes. Then, in order to incorporate the tempo-
ral information from the video sequences to enhance the recognition performance, in 
Section 2.2, three kinds of temporal-vectors are proposed to extract various kinds of  
 

Fig. 1. Flowchart of the proposed human action recognition based on temporal-vector trajec-
tory learning 

(a) Training Process (b) Recognition Process
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temporal information and moreover the Mahalanobis distance metric is learned to 
make those data which with similar local spatial information but different trajectory to 
be well separated.  

2.1   Spatial Subspace Creation Using Locality Preserving Projection 

Human action video sequences represented by the collection of human silhouettes can 
be viewed as the data points on nonlinear manifolds. The first step, we would like to 
obtain a low-dimensional space to discover the intrinsically nonlinear structure of 
spatial-motion information where the local spatial information can be preserved, i.e. 
the points that are close(similar) in high-dimensional space would be also close in the 
low-dimensional motion subspace. Here we choose the well-known method Locality 
Preserving Projection (LPP) [11] because it can provide an optimal linear transforma-
tion as the approximation to nonlinear spectral embedding techniques (i.e. Laplacian 
Eigenmap [2]). Thus, via the linear transformation method, LPP can provide us the 
transformation matrix for new data or test data. 

In LPP, in order to construct the adjacency undirected graph for X, we first apply 
k-nearest neighbors methods to determine neighbors for each data and the adjacency 
matrix NNR ×∈W  is obtained in which stores the pairwise relation of data points. 
Here, we can simply assign 0 or 1 to the adjacency matrix’s component. If ix  is the 
neighbor of jx  or jx  is the neighbor of ix , then we assign 1 to ijW , otherwise we 
assign 0. Note that the heat kernel function can be also applied to assign values to the 
adjacency matrix components. 

According to the locality-preserving criterion, we assume we have the transforma-
tion vector a that it has to minimize the objective function (1). For mapping X to a 
line, that is we would like to project X to a 1-D space, then we get Xay TT = , where 

T

Nyyy )......,( 21=y . 

ij
ij

jiij
ij

ji WWyy ∑∑ −=− 2TT

aa
)xax(aminarg)(minarg 2 . (1)

Thus, we attempt to make sure that in low-dimensional embedding  iy  and jy  should 
be close if ix  and jx  are close in the original high-dimensional space. Via algebraic 
steps [28], the above objective function can be reformulated as: 

aXLXa)xax(a TT2TT =−∑ ij
ij

ji W
2

1
. (2)

L is the Laplacian matrix and L=D-W, where D is a diagonal matrix and 

∑= j ijii WD . The value of the element iiD  is an importance measurement for each 
data point ix . That is the more neighbors ix  has, the more importance it gets, i.e. the 
larger value iiD  has. According to [11], the constraint is further imposed  

1=aXDXa TT . (3)

According to Eq. (2) and (3), the optimization problem becomes 
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aXLXa TT

a
minarg    s.t. 1=aXDXa TT . (4)

Eq. (4) can be solved as the generalized eigenvalue problem. Let ],...,aa,[aA d21=  
be the solution set of Eq. (4).   And the transformation matrix dDR ×∈A corresponds to 
the eigenvectors with the d smallest eigenvalues. Thus, the low-dimensional embed-
ding dN

i R∈=1}{ iy  of the original data can be obtained by 

ii xAy T=  (5)

Hence, the matrix XAY T=  is a Nd ×  matrix, which contains the low-dimensional 
embedding of each data ix  in its columns, i.e. ]y,...,y,[yY N21= . 

2.2   Learning  for Classification in Temporal Subspace 

After obtaining the spatial-motion subspace, all training silhouettes can be represented 
as the low-dimensional embedding. However, ambiguity of human body shapes be-
tween different action types will cause overlap in the motion subspace, as shown in 
Fig. 1. In order to separate these data, we take temporal information into considera-
tion, which is inherent in the video sequences.  

Inspired from the kernel methods that transform the input data which are not line-
arly separable to higher or infinite-dimensional feature space via kernel function )(•φ , 
we design three kinds of temporal matrices i.e. 1

iS , 2
iS , and 3

iS  for each embedding 

iy  in order to incorporate different temporal information, respectively. Each p
iS  

(p=1~3) is defined as a )12( +× tN  matrix. And t  is a parameter that it decide how 
long the temporal information we would like to take into account, i.e. if  2=t  it 
means that base on data iy  we want to use those data that is in the same sequence and 
is the top four closet data temporally(from t = -2 ~ t = 2) to be the additional informa-
tion. Assume iy  is the low-dimensional embedding of the frame xi , which corre-
sponds to the thr  frame of sequence m, here we denote it as m

rY  for convenience. For 
each iy , let },....,,....,{},....,,{ 1221 trrtrfffF ti +−== +  denotes the set of frame number 
of corresponding frame number of each iy .  

The first temporal segment can be defined as 

⎩
⎨
⎧ +=∈=

=
otherwise

tqFffpif
S iqq

pqi ,0

  12,...,1,,1,
)( 1  (6)

Multiply 1
iS  with mY , i.e. i

m
i SYY =′ , where mY  contains the embeddings of all sil-

houettes in video sequence m, and thus iY ′  contains not only the original data but it 
includes his temporal neighbor as part of his information too. 

],...,,...,[' m
tr

m
r

m
tri YYYY +−=  (7)

where 'iY  is a 1× [ )12( +× td ] matrix. Through the temporal matrix 1
iS , the spatial 

embeddings of associated temporal frames can be obtained. 
Different from 1S , in order to incorporate the motion difference as information, 

the second matrix is defined as 
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⎪
⎩

⎪
⎨

⎧
+≠∧+=∈=−

+==
=

+

otherwise

tqtqFffpif

tqfpif

S iqq

t

pqi

,0

112,...,1,,1,

12,...,1,,1

)(
1

2  (8)

Thus, we can obtain the motion difference as  

],...,,,,...,[' 11
m

tr

m

r

m

r

m

r

m

r

m

r

m

r

m

tr

m

ri YYYYYYYYYY ++−− −−−−=  (9)

Note that the spatial information of m
rY  has to be included such that the motion dif-

ference is relative to this point m
rY . That is except the temporal information, still we 

have the original spatial information inside. Different from Eq. (9), the third matrix is 
designed by adding the motion trajectory as the temporal information, i.e.  

otherwise

Fftqfptqfpif

Fftqfptqfpif

S iqqq

iqqq

pqi ∈+<=∨+>−=
∈+>=∨+<+=

⎪
⎩

⎪
⎨

⎧
−= ,111

,111

,0

,1

,1

)( 3  (10)

Similarly, all relatives distance from m
rY  can be obtained  

],...,,,,...,[' )1(11)()1(
m

tr
m

tr
m

r
m

r
m

r
m

r
m

r
m

tr
m

tri YYYYYYYYYY −+++−−−− −−−−=  (11)

As Eq. (9), the motion trajectory temporal information still have the original spatial 
information inside. From Eq. (7), (9), and (11), different temporal information iY ′  can 
be selected by using the corresponding temporal matrix. Finally, by concatenating all 
elements in ′

iY , the vector ])12[(*1 dt

i R ×+∈Y
r

 that contains temporal information can be 
obtained for the corresponding iy  in spatial-motion subspace.  

Although the temporal information has been included in N

ii 1}{ =Y
r

, it is inappropriate 
to compare the similarity between two temporal-vectors with Euclidean distance met-
ric. It is because each temporal-vector N

ii 1}{ =Y
r

 mixtures the information of different 
scales, i.e. the spatial information iy  itself and the vector differences with its relative 
frames as temporal information. Hence, we have to obtain a distance metric to meas-
ure the pairwise similarity between temporal vectors which has different information 
inside. 

Unlike Euclidean distance, the Mahalanobis distance metric can provide us a 
proper way for similarity measurement because it takes the correlations of the data 
and the scale-invariant problem into account, thus it isn’t dependent on the scale of 
data. In addition, motivated by [26], the Mahalanobis distance metric can be designed 
to achieve the goal that separate the temporal vectors in confused area and with dif-
ferent class apart i.e. the data belongs to different action class but have similar body 
shape information should be separated.  

Given the temporal vectors N

ii 1}{ =Y
r

 with the corresponding class label { }cli ,...,2,1∈ . 
The distance between iY

r
and jY

r
 can be computed based on the Mahalanobis distance 

metric. The ])12[(])12[( dtdtR ×+××+∈M  as:   

2

)'()()'()'( jiji

T

jijiD Y'YL'Y'YMY'YY,'Y
rrrrrrrr
−=−−= . (12)
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The distance metric M can be express in terms of the square matrix LLM T= , where 
L  is represents a linear transformation. According the goal that we want to separate 
the temporal-vectors of different class, the Mahalanobis distance metric can be de-
signed as in [26], i.e. the objective function can be defined as Eq. (13).  

definite-semi positive be  tohas   (iii)                 

0 (ii)                 

1)()(  (i)  subject to

 )1()'(   minimize

M

'Y'YM()'Y'Y'Y'YM()'Y'Y

Y'YM()'Y'Y

TT

T

≥

−≥−−−−−

−+−− ∑∑

ijk

ijkjijikiki

ijlil
ij

ijjiji
ij

ij p

δ
δ

δηβη
rrrrrrrr

rrrr

. (13)

where }1,0{∈ijη  indicates whether jY
r

 is a target neighbor of iY
r

 with the same 
class, }1,0{∈ikp  indicates whether iY

r
 and kY

r
 have the same class label. ijkδ  is the 

slack variables. Note that the first term of the object function minimizes the distance 
of input iY

r
 and its target neighbors with same class label. While the second term 

penalizes small distances between each input and all other inputs with different class 
label ( iY

r
 to kY

r
). The scalar β  can tune the importance between two terms.  

3   Recognition Process 

Now after the training process as shown in Section 2, we obtain two transformations 
matrices to analyze the spatial- and temporal-information, i.e. the motion subspace 
transformation A and the distance matrix M for trajectory classification, respectively. 
The recognition process commences by obtaining the human silhouettes for the input 
test sequences as used for the training sequences. Then, via these two transformations 
matrices, the input test sequences can be analyzed and recognized.  

Given silhouettes of the test sequence with n frames Dtest

n

testtesttest R∈= ],......,[ 21
xxxX . 

Note that we assumed the silhouettes have been centralized and resized as the same in 
training process. Firstly, by projecting each silhouette n

i
test
i 1}{ =x  to the motion sub-

space, e.g. test

i

Ttest

i xAy = , the embeddings, dn

i

test

i R∈=1}{y , contained spatial information 
is obtained. Following that, in order to improve the recognition accuracy, different 
temporal information can be further extracted by using the matrix defined in Eq. (6), 
(8), or (10) and thus we can obtain the corresponding temporal-vectors 

dtn

i

test

i R ×+
= ∈

)12(
1}{Y

r
 for each iy .Note that the vector length of test

iY
r

 should be identical 
as in the training process for unanimity.  

According to temporal information, k-nearest neighborhood classifier is applied to 
assign a class label to every test sequence frame, Here, the k=6 is set as in [2]. For 
each test frame, the top six closet neighbors among training data are chosen and the 
label of test frame )( test

il x is assigned by winner-takes-all rule. Note that the distance 
between each training ix and test frame test

jx  is defined as 

)()(),d( test

ji

Ttest

ji

test

ji YYMYYxx
rrrr

−−= . (14)
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where M is the Mahalanobis distance metric learned in Sec 2.2 for trajectory classifi-
cation. Finally, the label of the sequence is determined by the majority of assigned 
labels of test frames.   

4   Experimental Results 

To evaluate the proposed system for action recognition, we here choose the dataset 
from [10] as our experimental data. The performance is evaluated in the cases of the 
usage of only spatial and the further incorporation with the three proposed temporal 
information, respectively. Moreover, the system is also applied to test the perform-
ance of noisy data.   

4.1   Human Action Databases 

We use the action dataset from [10]. And we do the preprocessing base on [12]. It 
consists of 10 action types performed by 9 persons. The 10 actions are bending 
(bend), jumping jack (jack), jumping-forward-on-two-legs (jump), jumping-in-place-
on-two-legs (pjump), galloping-sideways (side), running (run), walking (walk), wav-
ing-one-hand (wave1), and wave-two-hads (wave2) [10]. Here, we use 90 sequences 
in our experiment. Note that we directly use the foreground masks from [10] for sub-
sequence processing and the shadow removing is not in consideration. Then, we cen-
tralize, crop and resize the silhouettes to the 64×48 pixels. In order to compute overall 
unbiased estimate results, nine-fold cross validation are applied for recognition. In 
other words, each time we exclude all sequences from one certain person (e.g. 10 
testing sequences) and then the remaining 80 sequences are used for training process. 
The results are averaged over the nine runs for the reported accuracy.  

4.2   Recognition Results and Comparison 

In order to investigate the role of spatio- and temporal information in our action rec-
ognition framework, the experiments are conducted by using various feature types. 
Type I: The features are extracted in the spatio-motion subspace, i.e. the testing data 
are only projected to the spatio-motion subspace and classified based on Euclidean 
distance metric, and the temporal information is discarded. We designate it as spatial 
motion of Euclidean distance (SE). Type II: The Mahalanobis metric are learned 
from [26] for classification in the motion subspace but the temporal information is 
still not considered, and it is designated as spatial motion of Mahalanobis distance 
[26]. Type III: The temporal information described in Eq. (7) is included and the 
corresponding Mahalanobis metric is applied for classification. It is designated as 
locations’ temporal motion of Mahalanobis distance (LTM). Type IV and Type V 
are difference’ temporal motion of Mahalanobis distance (DTM) and trajectory tem-
poral motion of Mahalanobis distance (TTM), respectively, as defined in Eq. (9) and 
(11). Note that the recognition accuracy reported here is in terms of the percentage of 
the correctly recognized frames among all test frames. 
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Table 1. Frame-based recognition accuracies by using different kinds of motion subspace, LPP, 
supervised LPP, and LSDA with t = 2 

        t=2 SE SM LTM DTM TTM 
Unsupervised LPP 78.67 79.45 84.91 89.45 88.56 
Supervised LPP 74.24 74.11 76.86 79.69 80.54 
LSDA 77.44 79.86 84.41 86.99 87.45 

Table 2. Frame-based recognition accuracies by using different kinds of motion subspace, LPP, 
supervised LPP, and LSDA with t = 3 

        t=3 SE SM LTM DTM TTM 
Unsupervised LPP 78.67 80.00 79.64 90.21 88.76 
Supervised LPP 74.24 74.31 79.77 82.23 81.10 
LSDA 77.44 79.66 73.02 89.62 87.79 

 
In addition, we apply different manifold-learning methods for obtaining the spatio-

motion subspace, including unsupervised LPP, supervised LPP [25] and LSDA [6] for 
further comparison. The recognition rates of using various combinations of motion 
subspace and feature types are summarized in Table 1. Here the parameter  6=k  is 
chosen for the number of nearest neighbors in the graph and the dimensionality are 
31, 9, 34 for LPP, SLPP, and LSDA respectively, which are the same as used in [12]. 

Try to observe the experimental results, the proposed concept with adding temporal 
information do have admired improvement on the recognition results, especially for 
the feature type DTM and TTM. Note that the results of SE by LPP and LSDA are not 
the same as reported in [12], it may because of the difference in the normalization 
process. Thus, the improvement rates of recognition accuracy, as listed in Table 1, are 
applied to make comparison with the results in [12], and the results are better than 
LPP (improved by 2.8 %) and LSDA (improved by 2.8 % ) in [12]. Moreover, the 
improvement rates are various for different spatio-motion subspaces. As observed, the 
supervised ones (SLPP and LSDA), which include the class label information, do not 
provide better results than LPP. It is inferred that if we include the class label infor-
mation at obtaining the motion subspace; it may ruin the data motion structure be-
cause the class label will make the data points with same label close and different 
labels apart. Thus, the second step won’t get any benefit from the structure. Hence, in 
our framework, the motion subspace would not take the class label for necessity.  

In the above experiment, temporal parameter 2=t  is set, i.e. 5-frame segment is 
chosen to be the temporal data.  For further investigation, the influence of the length 
in the temporal segment, we perform experiments with different parameter, here we 
set t=2, 3, i.e. 5-frame segment and 7-frame segment are used. Table 1 and Table 2 
show the average recognition results for different feature types. We can see that with 
longer segment won’t make the result better definitely. We observe the experimental 
results which are bold in Table 1 and 2, we can see that with longer segment don’t 
seem to bring benefit to every method. For DTM and TTM, they do have the  
improvement, but unfortunately for LTM, it gets the worse result. We think it may 
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because the longer segment you choose, you may lose more attention to those more 
important data when you calculate the Mahalanobis distance metric. 

4.3   Performance Evaluation in Noisy Data 

To go deeper in the framework, we construct additional experiments to see if the 
framework has flexibility. Thus we add salt and pepper noise with different variances 
to the data, and see the influence of adding noise. Here simply using Matlab function 
to produce noisy data with different variances 0.1 0.15 and 0.2, the noisy data are just 
like in Fig. 2. We test each noisy data set individually, and we choose LPP with DTM 
and LPP with TTM as the two uniform frameworks. The results are show in Table 3.  

 
 

 
In Table 3, try to observe that for v = 0.1 and v = 0.15, the noise problem seems 

not to have too much influence on the results. But as v = 0.2, it’s easily seen that the 
noise problem become obvious. Just take a look at the results when v = 0.2, the accu-
racy values decrease for 2% to 3%. Although the noise do decrease the performance,  
still the accuracy rates are admired. Thus it can be admired that the proposed frame-
work in this paper does have good improvement here. 

Table 3. Classification accuracies with v = 0.1, 0.15, and 0.2 in our two framework LPP+DTM 
and LPP+TTM 

t=2  v=0 v=0.1 v=0.15 v=0.2 
LPP+DTM 89.45 89.01 89.52 87.23 
LPP+TTM 88.56 88.11 88.58 85.28 

5   Conclusions 

In this paper, we propose a novel framework TVTL for human action recognition. 
The TVTL tries to find a proper way to measure the similarity by taking temporal 
information into consideration. In the frame-by-frame experimental results, it got 
good performance in section 4. So here in this paper, the system do find a good way 
to add the temporal concept into the action recognition process. Thus it’s confirmed 
that the TVTL framework do have positive improvement for action recognition. Es-
pecially our DDM and TTM frameworks, they do have impressive progress in the 
experiment. Moreover, even with the noise’s disturbance, the system still survive and 
have good performance as well. 

(a) (c) (b) 

Fig. 2. The noisy data image with different variances. (a) v = 0.1 (b) v = 0.15 (c) v = 0.2. 
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Abstract. In this paper, we present a face alignment approach using granular fea-
tures, boosting, and an evolutionary search algorithm. Active Appearance Mod-
els (AAM) integrate a shape-texture-combined morphable face model into an ef-
ficient fitting strategy, then Boosting Appearance Models (BAM) consider the
face alignment problem as a process of maximizing the response from a boosting
classifier. Enlightened by AAM and BAM, we present a framework which imple-
ments improved boosting classifiers based on more discriminative features and
exhaustive search strategies. In this paper, we utilize granular features to replace
the conventional rectangular Haar-like features, to improve discriminability, com-
putational efficiency, and a larger search space. At the same time, we adopt the
evolutionary search process to solve the deficiency of searching in the large fea-
ture space. Finally, we test our approach on a series of challenging data sets, to
show the accuracy and efficiency on versatile face images.

Keywords: face alignment, boosting appearance models, granular features, evo-
lutionary search.

1 Introduction

Face alignment is usually regarded as minimizing the distance between a template and
a given face image. Among the various technologies of face alignment, Active Shape
Models (ASM) [1] and Active Appearance Models (AAM) [2] have gradually taken the
stage center. ASM utilized the local texture information in search of a better template,
and AAM constructed appearance models according to shape parameters and global
texture constraints. After ASM and AAM, Zhou et al. [3] introduced Bayesian Tangent
Shape Model (BTSM) with an EM-based method to implement the MAP estimation,
Liang et al. [4] utilized a Constrained Markov Network for accurate face alignment,
and Boosting Appearance Models (BAM) [5] presented a discriminative method with
boosting algorithm and rectangular Haar-like features, which resulted in outstanding
accuracy and robustness. Enlightened by BAM, the speed of face alignment can be im-
proved by more discriminative features and boosting classifiers bring in the benefit of
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computational efficiency. Huang et al. [6] introduced granular features to form a larger
feature space. At the same time, evolutionary search process [7] made great improve-
ments on exploring the better granular features in a large feature space. In this paper,
we improve BAM by introducing granular features and evolutionary search. Firstly, we
generate a large number of positive samples by wrapping the image from the average
shape, and then we harvest negative samples by randomly perturbing parameters from
the current shape. Secondly, we generate a series of granular features from the feature
space. After the evolutionary search, we can find a set of granular features to construct
a strong classifier. Finally, the face alignment process is regarded as finding the warped
image, which has a higher response than the final threshold of a strong classifier.

This paper is organized in the following way: Section 2 introduces Boosting Appear-
ance Models, Section 3 expatiates the process of exploring the better weak classifier
of boosting algorithm, and the fitting process of alignment is presented in Section 4.
Finally, Section 5 compares our method with other methods by experiments.

2 Boosting Appearance Models

Active Appearance Models (AAM) [2] are composed of a shape model, a texture model,
and a fitting method. Boosting Appearance Models (BAM) [5] propose a more discrim-
inative method via rectangular Haar-like features and boosting. Inspired by AAM and
BAM, we propose a framework based on granular features, a Bayesian stump weak
learner, and evolutionary search for features.

2.1 Shape and Texture Models in Active Appearance Models [2]

Inspired by Active Appearance Models (AAM) [2], the morphable face model is gen-
erated from a set of facial images. From a giving face database, we manually label a
series of 2D annotations {xi, yi}, i = 1, 2, . . . , n, which include important facial com-
ponents such as eyes, nose, and mouth. For each face image, we constitute a shape
s = [x1, y1, . . . , xn, yn]T from these annotations. After applying Principle Component
Analysis (PCA) [2], a morphable shape model is constructed as

s = s+ UsP, (1)

where s is the mean shape, P = [p1, .., pn] are the first n principal component vectors,
and Us is the coefficients of s with respect to these first n principal components. In
virtue of shape, texture information of the images is warped into the mean shape s via
piecewise affine transformation T (x, y;Us). If we want to warp an image I, a set of
pints Ij ∈ I, j = 1, . . . , n in the coordinates {xi, yi|i ∈ 1, . . . , n} are mapped to new
positions {x′i, y′i} by defined warping function

T (x, y;P ) = [1, x, y]A(P ), (2)

where A(P ) is a transformation matrix between average shape s and current shape s
[2]. When shape parameters P are given, the A(P ) matrix needs to be computed for
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each triangle. It is a method to normalize all warp images as the same size. Then the
eigen-texture information is presented by

t = t+ UtQ. (3)

Finally the PCA based shape and texture model are combined to form the appearance
model.

Conventionally, the fitting process of AAM is in search of the minimum between
current warped texture and the model texture. Hence, the matching process is

δ(P ) = ‖ts − tm‖2, (4)

where P is the shape parameters of the shape model, ts = I(T (x, y;P ))(I means
cropping the texture from the transformed image T (x, y;P ) is the warped texture of
the current shape, and tm is the current model texture given by Equation 3. By gradient
ascent methods, this minimization can be solved.

2.2 Appearance Modeling

Similar to AAM and BAM, our appearance model is derived from the warped image
I(T (x, y;P )). If we consider face alignment as a two-category classification problem,
the shape instance S(P ) is the manually landmark of a face image I , then P becomes
the positive shape parameters. At the same time, we perturb P to generate the negative
shape parameters. If we can define a function h(•), which outputs positive score when
the given sample is positive, or outputs negative score when the given sample is nega-
tive, then we can collect a set of h(•) to add the responses from h(•). When the added
response is over a given threshold, the current parameters are just the landmark param-
eters. Adaboost is a simple and robust method to learn an accurate classifier from a set
of weak classifiers [8]. After a feature θi = θ(I(T (xi, yi;Pi))) is extracted from the
wrapped image as a weak classifier, we can construct a combined strong classifier by
these features. Therefore, we define a combination of many weak classifiers and local
features as the appearance model

H(I(T (x, y;P )), Θ) =
M∑

m=1

hm(I(T (x, y;P )), θi), θi ∈ Θ, (5)

where h(I(T (x, y;P )), θi) is a function on using feature θi to operate image patch
I(T (x, y;P )). Namely, H(•) and hm(•) are strong and weak classifiers respectively.

2.3 Real Adaboost Learning for Strong Classifier

Boosting [8] algorithm is a method of integration of various ”weak” classifiers into a
powerful ”board”. In this paper, we choose Real AdaBoost [9] algorithm, which returns
the response of weak classifiers as real numbers (Table 1). Given a set of faces with
annotated landmarks, we generate training data for boosting learning. From each shape,
we warp image I(W (x, y;P )) as the positive samples. Then we randomly perturb P to
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get the negative samples. Each sample is normalized to the same size to construct the
training set (Figure 2(a)). The final strong classifier contains a series of weak classifiers,
which preserves a granular feature and a threshold. After the responses of the weak
classifier are accumulated, we can get the response trace shown in Figure 2(b).

Table 1. Real Adaboost for learning strong classifier

• Input and initialize
Training data {xi; i = 1, . . . , K}, and their labels {yi; i = 1, . . . , K}.
Initialize weights ωi = 1

K
, i = 1, . . . , K.

• For m = 1, . . . , M , do
(1)Fit the class probability estimate hm(x) = arg min

∑
h(x) =

∑k
i=1 ωi(yi − h(xi))

2.
(2)Choose this weak classifier h∗

m = 1
2

log
hm(x)

1−hm(x)
∈ R.

(3)Update the weight ωi =
ωi exp[−yihm(xi)]

Zi
, where Zt is a normalization factor.

• Output
The strong classifier sign[H(x)] = sign[

∑
m hm(x)].

3 Learning Sparse Granular Features for Weak Classifier

Since face alignment is time-constrained, BAM constructs the weak classifiers based
on rectangular Haar-like features [10], which lead to great success because of integral
image. However, Haar-like features encounter defects in irregular patterns. In order to
overcome this difficulty, Huang et al. [6] presented a granular space to generate a series
of granular features, which adopts a heuristic search algorithm to search for discrimina-
tive sparse features. In the process of search for better features, Treptow and Zell [11],
Abramson et al. [7] utilized an evolutionary method to find better features. We combine
these ideas, and introduce an evolutionary search algorithm to pursue discriminative
granular features.

3.1 Granular Features

A granular space is established by a pyramid of bitmaps {I0, I1, I2, I3}, and each layer
of the pyramid is denoted from a smooth filtering in a way of averaging 2s×2s patches
of the input image (Figure 1(a)). In space, a sparse feature is represented by a linear
combination of several granules, as

θ =
∑

i

αiI(p(xi, yi, si)), α ∈ {−1,+1}, si ∈ {0, 1, 2, 3}, (6)

where I(•) indicates the pixel data of a granule. Through three parameters: x-offset
xi, y-offset yi, and scale si, a granule p(xi, yi, si) means a square at the coordinate
(xi, yi) with the size of 2si × 2si . From a 24 × 24 reference window, we can totally
extract

∑
s=0,1,2,3 (24− 2s + 1)2 = 1835 different granules. Compared to conven-

tional rectangular Haar-like features [10], sparse granular features are more scalable and
robust [6].
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(a) (b) (c)

Fig. 1. (a)Pyramid of granular space.(b)Example of granular sparse features which black or white
color indicates the coefficient αi in Section 3.1. (c)Examples of rectangular Haar-like features
[10] for initialization in Section 3.3.

3.2 Bayesian Stump Look Up Table Weak Classifier

When we consider the problem of two-category classification, the probability of
Bayesian error is defined as

P (error|x) =

{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1,
(7)

and the expected error is P (error) =
∫∞
−∞ P (error, x)dx =

∫∞
−∞ P (error|x)p(x)dx.

If we follow the Bayes’ decision rule, we decide ω1 if P (ω1|x) > P (ω2|x) and other-
wise decide ω2, then Equation 7 becomes P (error|x) = min[P (ω1)|x, P (ω2|x)], and
the total Bayesian error is

Berror = P (error) =
∫ ∞

−∞
min[P (ω1)|x, P (ω2|x)]dx. (8)

Xiao et al. [12] proposed a method called Bayesian Stump to find P (ωc, x), c ∈ {1, 2}
by using histogram to estimate the probability distribution. We divide all features’ out-
put value {μ(θi)} into k sections δk = (rk−1, rk], and the histogram of P (ωc, x) is

P (k, ωc) =
∫

μ(θi)∈δk

P (μ(θi), ωc)dμ(θi), c ∈ {1, 2}. (9)

Following the method in [12], we can easily build a k-bins Bayesian Stump. Moreover,
we can extend it to a Look Up Table(LUT) weak classifier for RealBoost algorithms by
using log-likelihood output to replace the binary output in every interval. In summary,
we can define the weak classifier as

h(x, θ) =
1
2

ln
K∑

k=1

{
W k

−1 + ε

W k
+1 + ε

}Bk(θ(x)), Bk(u) =

{
1, u ∈ δk
0, otherwise

. (10)
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W j
+1 and W j

−1 are the total weights of positive and negative samples falling into the
jth bin, θ(x) = θ(I(T (x, y; p))) represent the feature under the current wrapped face
patch, and ε is a small constant to avoid that denominator is zero.

3.3 Evolutionary Search for Sparse Feature Selection

Although sparse granular features bring abundance to construct a versatile classifier, the
gigantic number of possible features consume enormous computational resources. To
address this issue, an evolutionary search process is introduced to efficiently constitute a
compact granular feature set. Howard et al. [13] implement Genetic Programming (GP)
to detect ships in satellite images. Treptow and Zell [11] combine an evolutionary al-
gorithm with the Adaboost framework to detect human faces. Abramson et al. [7] use a
hybrid method of Hill Climbing and Evolutionary Search to detect cars. In our method,
firstly we generate a large number of traditional Haar-like features in the granular space
(Figure 1(c)). Through calculating the Fitness as Function 11, we choose l features with
the highest score to construct the initial feature set Θi. After many rounds of evolution-
ary search loop, we can harvest a large set Θi with diversified granular features. The
best feature is drawn out as the current weak classifier from the set.

Fitness evaluation of a sparse granular feature reflects the discriminability of the
feature and dominates the search process. In order to improve the performance of LUT
weak classifier (Section 3.2), we should find the feature with lower Beyesian error.
Meanwhile, since the feature with less granulae give rise to less computational cost
and simpler structural complexities, we prefer finding the features with few granule
and low Bayesian error. The discriminability of a sparse granular feature is defined
as D(θi) = 1 − Berror(θi), where Berror(θi) is the upper bound of Bayesian error.
The sparse feature is more discriminative when D(θi) gets higher. By considering the
complexity of features, we present the Fitness function as

Fitness(θi) = D(θi)− βc, (11)

where c is the granule number of the sparse feature, β is the empirical parameter for the
penalty for more granules. Generally speaking, we can preserve hundreds of granular
features in each loop.

4 Face Fitting with Boosting Classifier

According to (10), the final classifier can be written as

H(Θ, x, y; p) =
M∑

m=1

1
2

ln
K∑

k=1

{
W k

−1 + ε

W k
+1 + ε

}Bk(θm(I(W (x, y;P ))), θm ∈ Θ. (12)

And the derivative by P is

dH
dP

=
1
2

M∑
m=1

1
M

K∑
k=1

{
W k

−1 + ε

W k
+1 + ε

}∇Bk∇I∇θm
∂W

∂P
, (13)

M =
K∑

k=1

{
W k

−1 + ε

W k
+1 + ε

}Bk(θm(I(W (x, y;P ))). (14)
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Table 2. Weak classifier learning based on evolutionary search for sparse granular feature

• Input
Training set {xi},corresponding weight set {ωi}, and Haar-like features set Θ =

{θ1, . . . , θn}in the granular space.
• Initialize

Choose better features with higher Fitness, add them to initial feature set Θi =

{θi|∀θi ∈ Θ, ∀θi ∈ {Θ − Θi}, Fitness(θi) ≥ Fitness(θj)}, constrict the set as
‖Θi‖ = l.

• Evolutionary search loop
(1)To every feature θi in the set Θi, we implement variance in the four ways.
	Add. If this granular feature contains less than eight granula, we add a new
granule. All possible granulae in the granular spaces are separately added into this
feature to generate new features.
	Delete. Delete a granule in the current granular features.
	Move. To each granule, we randomly move the coordinate between -5 and 5 pixels.
	Resize. To each granule, we randomly adjust the scale s to change its size.
(2)After these variations, we can harvest varied granular features θi to form a
set Θg . Then we randomly choose m features from Θg , and combine them with
initial feature set Θi = Θi ∪ {θi|θi ∈ Θg}, ‖{θi}‖ = m.

• Weak classifier learning
(1)To every feature θi ∈ Θi, we construct a weak classifier h(x, θi).
(2)Find the weak classifier h(x, θ) = arg maxh(x,θ)(Fitness(θi)), which has the
highest Fitness.

• Output
The weak classifier h(x, θ) and corresponding granular feature θ.

(a) (b)

Fig. 2. (a)Some positive samples and negative samples. (b)Response trace of different samples.

Face alignment factually is a process to find the best parameters P to get the best
shape. After given a face image I , we firstly compute the warped I(W (x, y;P )) im-
age via a piecewise affine transformation. The face alignment algorithm is presented in
Table 3.
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Table 3. Face alignment algorithm

• Input
Input image I , initial shape parameters P , boosted strong classifier H , initial
responset and final rejection threshold T .

• While t < T
(1)Warp I with piecewise affine transformation to generate I(W (x, y; P )).
(2)Compute the current response t with each classifier in 10.
(3)Compute the current ∇P by Equation 13.
(4)Update P = P + ∇P .

• Output
The shape parameters P .

5 Experiments

In our experiments, we have collected about 2148 images from several databases, in-
cluding the AR database [14], FERET database [15], PIE database [16]. We randomly
select 1208 images for training and reserve the rest for testing. For each image in the
training set, we manually label 87 points on facial components such as eyes, eyebrow,
nose, mouth, etc. In order to train boosting classifiers, we generate 1208 positive sam-
ples. To every positive sample, we perturb parameters to generate 10 negative samples.
After boosting training, we can get a classifier with eighty weak classifiers. In the pro-
cess of model calibration, we choose images from the AR database. In AR database,
the same person is shown in different images under various conditions. We choose 13
different conditions from the same person to calibrate the classifiers.

To test our method, we have implemented benchmark tests among Active Appear-
ance Models (AAM), Boosting Appearance Models (BAM), and our method (Figure
3(a)). In Figure 3(a), Root Mean Square Error (RMSE) indicates the distribution of

(a) (b)

Fig. 3. (a)The RMSE results among AAM, BAM, and our method on test set. (b)Face alignment
results by our method.
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between test results and ground-truth label. Figure 3(b) shows some face alignment
results by our method.

6 Conclusion

In this paper, we have introduced a novel framework of face alignment, which brings
in granular features, an evolutionary search process, and boosting learning process to
find better weak classifiers. Since granular features produce a lot of diversified and dis-
criminative rectangles, the boosting process has better discriminative capabilities with
less weak classifiers. At the same time, we implement an evolutionary search in order
to deal with deficiency of gigantic feature space. Evolutionary search not only gener-
ates versatile granular features, but also guarantees the robustness of classifiers. With
granular features and evolutionary search, we can construct a novel fitting process for
real time face alignment. In the future, there are more improvements that can be imple-
mented on our approach. Firstly, other features can be added into the training system
to achieve better discriminative capabilities. Secondly, calibration methodology can be
used to tune the final strong classifier. Therefore, new explorations still wait for further
consideration.
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Abstract. Previous efforts in eye gaze tracking either did not consider

head motion, or considered the 6 DOF head motions with multiple cam-

eras or light sources. In this paper, we show that it is possible to track

eye gaze under naturally head rotations(Yaw and Pitch) with only an

ordinary webcam. We first carry out a study to examine the occurrence

of eye-head coordination, and then show how to track such coordinated

gaze by deriving a linear coordination equation and developing a track-

ing system based on a single webcam. Besides the theoretical aspect, we

develop a vision-based tracking framework that can achieve an accept-

able tracking accuracy in our experiments for estimating such eye-head

coordinated gaze.

1 Introduction

Eye gaze tracking is one of the most active research topics in computer-human
interaction. Since the last decade, an extensive number of non-intrusive eye gaze
systems have been proposed [7][1][5] [2][12]. Although good performances have
been achieved[11], these earlier systems are limited in keeping head still while
estimating eye gaze.

Recent efforts have attempted to incorporate head motion into eye gaze esti-
mation. These attempts can be broadly clustered to be 3D gaze direction-based
and 2D mapping-based[16]. The former method determines gaze point by re-
covering 3D gaze direction and simply intersecting with the scene. It allows
free head motion, but can only estimate gaze direction rather than giving gaze
targets[13][8]. On the contrary, the latter method encodes a set of eye-related
vectors as inputs for a calibrated mapping function to determine gaze targets.
This method is widely used due to its high tracking accuracy. One typical ex-
ample is the pupil center and corneal reflections technique, a.k.a. PCCR[5][14].
However, the classical PCCR suffers from a calibration-decay problem caused by
head motion[16]. In order to overcome it, multiple stereo cameras or IR lights
must be added in the PCCR systems[5][15]. In this way, they are able to track
eye gaze under fully natural head motion(6 DOF). The main drawbacks are that
the camera sets need to be carefully calibrated and IR lights are expensive and
usually inconvenient to be mounted.
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Our objective is to track eye gaze under natural head motion with only an
ordinary camera. However, Guestrin et al [5] proved that using a single camera
was impossible to track eye gaze under natural head motion. On the other hand,
neurophysiological studies[6][4][3] manifest that the free head motions along gaze
shift are usually the rotations in the same directions. They specify this phe-
nomenon as eye-head coordination of gaze shift. We therefore turn to explore
the possibility of tracking gaze with one camera, while only considering the co-
ordinated head rotations. This is proven feasible by developing a new tracking
approach in this paper. Within this approach, the price we have to pay is two-
time calibrations, although acceptable in practice. In particular, our approach
follows the 2D mapping-based scheme[16] to directly output the targeted points.
In order to compensate the affect of head rotations, we first derive a linear rela-
tionship between gaze vector and head rotations, and then develop a monocular
vision-based framework to track gaze, which needs to detect iris-corner vector,
track head rotations and warp facial images to extract a head-normalized iris-
corner vector.

The paper is organized as follows. Section 2 depicts a user study about
eye-head coordination. Section 3 describes the derivation for tracking head-
coordinated eye gaze and Section 4 presents the gaze tracking framework. Ex-
perimental results are shown in Section 5.

2 Eye-Head Coordination Study

We first describe a study that we conducted to investigate the frequency of
eye-head coordination in gaze behaviors. Based on the theory proposed by E.G.
Freedman et al [4][3] that the total head movement amplitude and gaze ampli-
tude are linearly correlated in a certain range, we examine such linearity as the
quantitative evidence of the occurrence of eye-head coordination.
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Fig. 1. The PMCC values between head and gaze amplitude among 11 participants
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The study was conducted with 11 participants from our laboratory. Each
participant is asked to stare at a visual sphere moving arbitrarily on a 19-in
screen. Meanwhile, the trajectory of the sphere is recorded as gaze amplitude
and the participant’s head amplitude is tracked using the developed head pose
tracker(See Section 4). The correlations between head rotation and gaze am-
plitude is measured in terms of the Pearson Product-Moment Correlation Co-
efficient(PMCC), which is shown in Figure 1. We can see that the PMMC is
significantly different as different person. If PMMC>= 0.6 indicates a possible
linear relationship, we find that there are seven possible linearities in both di-
rections. We also assess the influence of the distance between participant and
screen on eye-head coordination. It turns out that the farther participant stays
away from the screen, the less likely head rotations are to occur. Therefore, we
can conclude that the occurrence of eye-head coordination is very likely to oc-
cur in gaze behaviors, although it is circumstance-dependent and varied among
different persons. This study validates our proposal that it is indispensable to
incorporate head rotations in eye gaze tracking.

3 Tracking Head-Coordinated Eye Gaze

3.1 The Problem Formulation

Let us consider tracking eye gaze in front of a monitor screen. The gaze di-
rections are measured with respect to the horizontal and vertical ones of the
monitor plane. We adopt some notations from Zhu and Ji [16] to describe our
problem. First of all, via an interactive calibration, we are able to obtain a set
of head-stationary gaze vectors {v′

1,v
′
2, ...,v

′
n} and its associated set of fixation

positions{S1, S2, ..., Sn} on the screen. The data are then used to compute the
coefficients in a mapping function � such that given any head-stationary gaze
vector v′, its fixed position S can be yielded: S = �(v′). � is often a first or
second order polynomial function. Then suppose at time t of tracking stage, we
succeed in tracking head motion bh = {βx, βy}(only pitch and yaw rotations)
and gaze vector vt. Since head motion bh results in a change of the eye pose,
the gaze vector vt is no longer a correct input of the mapping function �. In
order to reuse �, we need to compensate vt for the head-caused bias to form an
equivalently head-compensated gaze vector v′

t: v′
t = �(vt,bh), where � stands

for the head compensation function. This also means that v′
t are supposed to

look at the same point St as vt does, which yields:

St = �(v′
t) = �(�(vt,bh)) (1)

The key of our approach is thus to derive an appropriate � function so that the
head rotation bias on iris-corner vector can be compensated. This can be done
by projecting the iris-corner vector on image coordinate via a pinhole camera
model.
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Fig. 2. Illustration of projecting eyes onto visual image plane via the pinhole camera

model(Top view)

3.2 Deriving the Compensation Function �

To derive �, we analyze the kinematics of eye-head coordination using the pic-
torial notations in Figure 2. In the figure, eyeball is modeled as a sphere with
a gray iris inside, and eye direction is denoted as the ray shooting from eye-
ball center to the target point. E1 represents the eyeball center position when
head stays frontal. Initially, in order to look at the target point S, eyeball ro-
tates by a α′ angle. When head shifts by a β angle, moving the eyeball center
from E1 to a new position E2, the eyeball has to re-rotate to a new angle α
to still look at S. The iris center is defined as the intersection point of gaze
ray and iris outer surface, which is denoted by P1 and P2 at the two differ-
ent locations. With some assumptions, we can derive a simple kinematical for-
mula: α′ ≈ α + β, which means the total gaze amplitude is approximately the
sum of eye and head amplitudes, which has also been empirically verified in
neuroscience[4][3].

The next step is to explore the relationship between iris-corner and the con-
current head rotations, based on the derived sum principle. We assume that the
iris-corner vector is generated via a pinhole camera projection. As shown in Fig-
ure 2, we denote C1 as an eye corner point, located in a face plane that is close
to the eyeball surface. We assume that the face plane still remains stationary
when eyeball rotates so that the corner point keeps a gaze-stationary point. As
shown, when the head rotates by β angle, the corner point moves from C1 to a
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new position C2. Based on the geometrical relationship shown in the figure, we
are able to derive a linear formula written in the matrix form as:

bh = C�v (2)

where bh =
[
βx

βy

]
, C =

[
Cx 0
0 Cy

]
and �v =

[
xP ′

1C′
1
− xP ′′

2 C′′
2

yP ′
1C′

1
− yP ′′

2 C′′
2

]
. We name C the

coefficient matrix. In order to determine it, we need a re-calibration procedure,
during which the user is asked to look at the calibrated points with natural eye-
head coordination. Thus, we can acquire a set of pairs of bh and �v. All the
calibrated pairs form a linear system, which can be solved using least squares
solution to estimate the matrix C. Without loss of generality, if we assume the
C is non-singular, the head-compensated gaze vector v′ is simply calculated by

v′ = C−1bh + v′′ (3)

Note, that we introduce a head-normalized gaze vector v′′ that accounts for
normalizing the head rotations with the observable iris-corner vector

−−−→
P ′

2C
′
2. In

the following section, we will give the details about how to extract v′′ and track
3D head rotations bh from grabbed images.

4 Eye Gaze Tracking Framework

This section will present an eye gaze tracking framework under coordinated head
rotations. The framework needs to detect iris-corner vector, track head rotations
and then extract head-normalized gaze vector.

4.1 Extracting Iris-Corner Vector

We follow the technique in [15] to detect iris-corner vector as the eye gaze indi-
cator. In our vector detection, a face detector is first employed to localize face
region and then an eye detector is used to find the potential eye region on the
localized face, both of which are based on the object detection cascade of boosted

Fig. 3. Illustration of iris ellipse fitting. Follow the arrow direction: Original eye image

→ Meanshift Segmentation → Histogram-based binary segmentation → ’Open’ mor-

phology → Canny edge operation → Largest contour finding → Keeping near vertical

edge points → Fitted ellipse.
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classifier [10]. Subsequently, the iris and corner points are accurately found using
the following method.

We combine the SIFT matching-based method and an ellipse fitting method
to detect iris center. The SIFT was proposed by David Lowe[9] to detect fea-
ture points in images. We use the SIFT codes provided by Rob Hess1 in our
system. The reference SIFT features for iris center is manually selected during
calibration. Setting the ratio of Euclidean distances between two nearest neigh-
bor features r = 0.65 performs best in our tests. When the SIFT-based method
fails, an ellipse fitting approach will take it over. This happens when the SIFT
features between successive frames are over the matching threshold. The ellipse
fitting approach, illustrated in Figure 3, is similar to the one proposed in [12].
On the other hand, the ellipse-fitted method may fail when the iris contour
is unclear. In this case, the SIFT-based method will be re-evoked. Therefore,
combining them enables us to acquire more robust iris detection results.

The SIFT-based method is also employed to detect the eye corner. Each single
eye has two corners: inner corner and outer corner, but neither of them can be
reliably detected over all the frames. Our strategy is to detect both of them and
choose the one with smaller matching residual to form iris-corner vector. To gain
robust performance, for both iris and corner points, their reference SIFT features
are updated after each correct match. The SIFT-based detection is illustrated
in Figure 4. Moreover, some distance and geometrical constraints, between the
left and right eye, are added to eliminate the apparently wrong detections.

4.2 3D Head Pose Tracker

In order to estimate head rotations, we develop an online 3D head motion tracker
that is person-independent. The head tracker is based on the 2D/3D registra-
tion of view-free appearances, in which we approximate head as an ellipsoidal.
The appearances are generated from the video images with a piece-wise warping
operation. By modeling the pixel intensity within appearance as a Multivariate
Gaussian Distribution, the cost function to be minimized is defined as the Ma-
halanobis distance weighted by a confidence map. Then a standard first-order
gradient descent approach is employed to optimize the cost function so as to re-
cover head motion. Once the registration is accomplished, we adaptively update
the appearance template using a recursive filter with a forgetting factor.

4.3 Extracting the Head-Normalized Gaze Vector

Extracting the head-normalized gaze vector
−−−→
P ′′

2 C
′′
2 (shown in Figure 2) consists of

two steps: head normalization and iris-corner vector detection. The head normal-
ization refers to normalizing the head rotations with the observable gaze vector−−−→
P ′

2C
′
2, which is implemented by an image warping operation. We define the warp

1 http://web.engr.oregonstate.edu/∼hess/
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Fig. 4. The comparisons of SIFT-based gaze detection before and after head normal-

ization. (a) The reference SIFT features are automatically detected on the eye region

of the image I0(x). Two eye sub-images, extracted from input frame Ix and the nor-

malized image I(W(x;−bh)), serve as the instances to detect SIFT feature points and

match with the reference ones. The correct gaze point matchings are marked in red

color. We can see that (1)(3) outperforms (2)(4) in the number of correct matchings.

(b) Plots (1)-(4) show the matching residuals in (1)-(4) of sub-figure (a) respectively.

X-Label denotes reference feature points and Y-Label means the query feature points.

It is shown that the differences between marked peaks and noisy peaks in (1)(3) are

more distinguished than in (2)(4). The average residuals in (1)(3) are 7.3 × 104 and

3.9 × 104, which are smaller than the ones of (2)(4), i.e. 1.0 × 105 and 6.0 × 104.

operator W : R2 → R3 → R2 as follows: a pixel point vector x = {x, y}T on
the face image plane is projected onto a 3D head surface(ellipsoidal in our case);
then we transform the pose of head surface by �bh and back project the point
from the 3D surface onto the image plane. For any given pixel x, the warping
function can yield its corresponding normalized point W(x;−bh). Denote p′

2 as
the point vector of P ′

2 and c′2 as the point vector of C′
2. Their normalized points

p′′
2 and c′′2 can be given by: p′′

2 = W(p′
2;−bh); c′′2 = W(c′2;−bh).

In practice, we have two alternative options to extract
−−−→
P ′′

2 C
′′
2 . The first solu-

tion is to extract the points p′
2 and c′2 on frame image I(x) and then find the

corresponding points p′′
2 and c′′2. Contrarily, the second one is to first perform

W to construct a head-normalized face image I(W(x;−bh)), and then run iris-
corner extraction to locate p′′

2 and c′′2 on I(W(x;−bh)). The essential difference
between them is that the SIFT-based vector extraction will be applied before or
after the head normalization. Although due to constructing I(W(x;−bh)), the
second solution consumes more computational time, it’s expected that applying
the SIFT-based vector extraction on I(W(x;−bh)) will be superior to applying
it on I(x). Therefore, a comparative experiment is undertaken to evaluate the
SIFT-based vector detection with and without head normalization. As shown in
Figure 4, the results suggest that applying it after head normalization substan-
tially outperforms the one before head normalization. We therefore adopt the
second solution to extract

−−−→
P ′′

2 C
′′
2 .
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Fig. 5. Extracting the iris-corner vectors. The yellow point with green number is the

SIFT-detected point while the one surrounded by an ellipse is the fitted ellipse center.

5 Experimental Results

Performance of the method extracting iris-corner vector was tested on real video
clips containing eye gaze shift. The resolution of each video is 640 × 480 while
the extracted eye region is about 85 × 40. Figure 5 shows some vector extrac-
tion results. We can see most of the iris-corner vectors are accurately extracted.
In our tests, due to the usage of the combined detection methods, the vector
detector is robust to facial variations and illumination changes to a certain de-
gree. A full video demo is shown in http://video.google.com/videoplay?docid=
6450216116737564885.

We have also applied the proposed framework to a gaze tracking system to
test the accuracy of gaze estimation. The system was written in C/C++, using
the renowned OpenCV and OpenGL library. In order to evaluate its accuracy, we
test the system by collecting several image sequences with several testers. The
tests are undertaken in front of a 19-in monitor with a video camera (640× 480
pixels) mounted under it. There are two stages in the data collections. In the
calibration stage, the testers are asked to stare at 12 evenly-distributed mark
points in turn and yet maintain their heads stationary. In the tracking stage, the
testers are allowed to freely rotate eye and head to stare the yellow-colored point
that is randomly selected from the 12 calibrated points. The length of collected
video for each tester is about 2 minutes.

We tested the accuracy of the gaze tracking with three actors. We first apply
the system to extract calibrated iris-corner vectors, track head rotations and
extract head-normalized gaze vectors. The maximum tracked head rotations in
horizontal and vertical directions are 21.2◦ and 9.75◦ respectively. We then use
these data to compute the matrix C and calculate the head-compensated vectors
according to equation (2). The system accuracy is measured in the compensated
errors, the pixel errors between the head-compensated vectors and calibrated
vectors. For comparisons, we also measure the pixel errors between the observable
vectors(such as

−−−→
P ′

2C
′
2 in Figure 2) and calibrated vectors, called non-compensated

errors. Figure 6 displays the statistics of the total accuracy measurements. As
the four plots suggest, the compensated errors are substantially smaller than
the non-compensated ones in horizontal direction while only slightly better in
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Fig. 6. The average pixel errors of eye gaze tracking under coordinated head rotations

vertical direction. Since the right part in equation (2) actually equalizes to the
gaze tracking angle, we use this to compute the gaze tracking error. The average
head-compensated error is about 5.06◦ and the non-compensated one is about
8.30◦. We can see that compensating head rotation improves the gaze tracking
accuracy by about 3.3◦, which is a considerable value for a gaze tracking system.
That is to say, ignoring the head rotations will significantly lower the accuracy
of the gaze tracking system.

6 Conclusion

This paper addresses the problem of tracking eye gaze under coordinated head
rotations. We first derive a linear relationship between gaze vector and head
rotations and then develop a gaze tracking system, which enables us to track eye
gaze under coordinated head rotations. Relying on a single webcam, we have to
calibrate twice so that the linearity can be established properly. This procedure
may be overcome by exploiting the deep correlations between eye and head
motion. In addition, the accuracy of iris-corner detections must be improved, for
example, by using sub-pixel accuracy[15].
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Abstract. Tracking object with complex movements and background

clutter is a challenging problem. The widely used mean-shift algorithm

shows unsatisfactory results in such situations. To solve this problem,

we propose a new mean-shift based tracking algorithm. Our method is

consisted of three parts. First, a new objective function for mean-shift is

proposed to handle background clutter problems. Second, orientation es-

timation method is proposed to extend the dimension of trackable move-

ments. Third, a method using a new scale descriptor is proposed to adapt

to scale changes of the object. To demonstrate the effectiveness of our

method, we tested with several image sequences. Our algorithm is shown

to be robust to background clutter and is able to track complex move-

ments very accurately even in shaky scenarios.

1 Introduction

Tracking of objects using the mean-shift algorithm is a popular method in the
field of object tracking. The algorithm has its advantages in the fact that it is rel-
atively easy to implement, it does not require heavy computation, and it shows
robust results in practical object tracking tasks. However, the original mean-
shift algorithm shows unsatisfactory results when the object shows complicate
movements and there are objects similar to the target in the nearby background
region. This is due to the three major problems of the original mean-shift al-
gorithm. The first problem is the background clutter effect during mean-shift
iterations, which may lead to tracking failures. The second problem is the lack
of ability to track elaborate movements such as in-plane rotation. The third
problem is its inability to adapt to scale changes (i.e. kernel bandwidth is fixed),
which is critical to the tracking performance. These problems greatly affect ob-
ject tracking results, but are not clearly solved.

The first problem was usually approached with the use of anisotropic kernels
such as ellipsoids [1]. This method reduces the amount of background informa-
tion in the object model but still contains background pixels inside the model
which causes background clutter problems. A. Yilmaz proposed a method using
level-set kernels which are in the exact shape of the object [2]. This level-set
kernel does not have any restriction in shape and succeeded in exclusion of the
background information inside the object model. Unfortunately, even when using

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 130–139, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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these kernels, background information is still included inside the target candi-
date. R. Collins et.al. used a way of selecting discriminative features online to
overcome the effect of the background information [3]. Their method succeeded
in obtaining features which make the target object more discriminative to the
background. But as they noted in their paper, the number of features to be se-
lected is not certain. Moreover, the computation time increases proportional to
the number of selected features. The second problem has not been covered much
in the field of mean-shift object tracking since only translational movements can
be estimated through the mean-shift vector. Rather, to track elaborate move-
ments, other famous tracking algorithms such as the “Particle Filter” are used
[4], [5], [6], [7]. However, for very complex movements, tracking using particle
filter is hard to be done in real-time. Other silhouette tracking methods, such as
tracking via direct minimization of contour energy function [8], are also capable
of tracking elaborate movements, but require even more computation. The third
problem was intuitively solved in [1] by the 10% method, but this method does
not work well due to its nature of preferring the smaller kernel. R. Collins pro-
posed a method using difference of Gaussian (DOG) mean-shift kernel in scale
space [10] to solve this problem. However, this method is computationally expen-
sive. C. Yang et.al. [11] succeeded in tracking objects with scale changes using
the joint feature-spatial space concept [12], but their method adapts to scale
changes without consideration of the regional changes of the template. Yi et.al.
seemed to solve all three of these problems [14] but as they noted, estimation
results are somewhat unstable.

In this paper, to overcome the three problems of mean-shift, we propose a
new mean-shift based object tracking method. Our method is consisted of three
parts. First, we propose an altered objective function for mean-shift, which makes
the tracker robust to background clutter. Second, we propose an orientation
estimation method to track objects with in-plane rotation. Third, we propose
a method which utilizes a new scale descriptor to adapt to scale changes of
the object. The test results show that the proposed algorithm is superior to the
original mean-shift algorithm and is also comparable to another popular tracking
algorithm, the particle filter.

The paper is organized as follows. Section 2 briefly describes the original
mean-shift algorithm for reference. Next, the proposed method is explained in
detail in section 3. Experimental results of our proposed algorithm are given in
section 4 and finally, we will conclude our paper on section 5.

2 Mean Shift Tracking: Brief Review

In this section, we give a brief review of the original mean-shift algorithm [1].
The mean-shift method is a fast way of finding the local maxima of a sample
distribution iteratively from a given starting position. In the field of object track-
ing, this sample is the color observed at a pixel x. To this x, the sample weight
w(x) is defined as

w(x) =
√
hm(I(x))/hc(I(x)), (1)
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where I(x) is the color of pixel x, hm and hc are the color histograms generated
from the model and candidate object regions, respectively. If we let the initial
hypothesized position be ŷold, the computed new position be ŷnew, the pixels
inside the candidate region be xi, Δy = ŷnew − ŷold, and K(.) be the radially
symmetric kernel defining the tracking object region respectively, then using the
sample weight (1), the mean shift vector is computed as

Δy =
∑

iK(xi − ŷold)w(xi)(xi − ŷold)∑
i K(xi − ŷold)w(xi)

. (2)

This mean shift vector is an estimate of the gradient of the sample distribution.
Using this mean shift vector, tracking of the object is performed iteratively.
w(xi) in (1) is derived from the Taylor expansion of the Bhattacharyya coef-

ficient used in [1]. Bhattacharyya coefficient is defined as ρ(y) ≡ ρ[pc(y), pm] =∫ √
pcz(y)pmzdz, where pc(y) denotes the probability distribution of the candi-

date when y is the center of the candidate, pm denotes the probability distribu-
tion of the object model, and z denotes that it is of some feature. In the our case,
we use color histograms as features, therefore the estimate for the Bhattacharyya
coefficient can be defined as

ρ̂(y) ≡ ρ[p̂c(y), p̂m] =
∑

ν

√
hc(ν,y)hm(ν), (3)

whereˆdenotes the estimator and hc(ν,y) is the histogram value for color ν of the
candidate when candidate is at position y. Using Taylor expansion around some
point y0 and kernel estimation, this equation can be approximated as follow [1]:

ρ[p̂c(y), p̂m] ≈ 1
2

∑
ν

√
hc(ν,y0)hm(ν)

+
Ch

2

∑
i

w(xi)K (y − xi), (4)

where Ch denotes a normalizing constant.

3 The Proposed Method

3.1 Probabilistic Emphasizing

To solve the background clutter problem, we propose an altered objective func-
tion for mean-shift. Using this objective function emphasizes features that are
more likely to be of the target object rather than the background. Generally, in
mean-shift, color histograms are used as features to describe an object. There-
fore, in our work, we also used the probability distribution of colors, i.e. color
histograms, as features. We first start by obtaining the probability of some color
ν being in the object model. If we denote the probability of being in the object
model as p(Obj), the probability of being in the model for ν can be denoted as
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p(Obj|ν). This p(Obj|ν) can be interpreted as the probability of a pixel with
color ν being in the object model, i.e. 1 − p(Obj|ν) is the probability of that
pixel being in the background. Then, using the Bayesian rule, p(Obj|ν) can be
obtained by p(Obj|ν) = p(ν|Obj)p(Obj)/p(ν). Here, p(ν|Obj) can be estimated
with the color histogram of the object model, p(Obj) with the area ratio of the
object region and the selected background region, and p(ν) with the color his-
togram of the background and object region. Therefore if we denote the color
histogram of the background region as hbg(.), area of the candidate region as
Ac, and the area of the background region as ABG, respectively, Then, we can
write the estimate of p(Obj|ν)

p̂(Obj|ν) =
Achm(ν)

ABGhBG(ν) +Achm(ν)
. (5)

Next, we use some function of (5) as a penalty function [13] for finding the
maxima of ρ̂(y) in (3). If we denote this penalty function as Φ(ν), then, (3) can
be modified as

ρ̃(y) ≡ ρ̃[p̂c(y), p̂m] =
∑

ν

Φ(ν)
√
hc(ν,y)hm(ν). (6)

In our work, we used Φ(ν) =
√
p̂(Obj|ν). Then, if we denote Φ(I(xi))w(xi) as

w̃(xi), the mean-shift equation (2) simply becomes

Δỹ =
∑

iK(xi − ŷold)w̃(xi)(xi − ŷold)∑
i K(xi − ŷold)w̃(xi)

. (7)

This proposed objective function emphasizes the weights from pixels that are
more likely to be in the object model than the background. Therefore the tracker
tends to follow features that are more discriminant from the background, i.e. the
tracker becomes more robust to background clutter problems.

3.2 Orientation Estimation

Our proposed method for orientation estimation uses color histograms con-
structed for each orientation divisions as in [14]. Within this sub-section, this
“orientation division” terminology will be used often. Therefore we will first
start by clearly defining this orientation division concept. If we denote Ω as the
object (or the candidate) region, xc as the center of the object (or the candidate)
region, and Nα as the number of orientation divisions, respectively, we can define
the orientation divisions as

αi � {xi|F1(arg(x− xc)) ∈ [ηi, ηi+1),x ∈ Ω} , (8)

where, F1(.) is a function to restrict the value of arg(xi−xc) to be in [−π/2, π/2)
and ηi is the boundary for each orientation division, respectively.

At the last steps of the mean-shift iteration, when tracking of the translation
of the object is almost finished, most of the object is likely to be inside the
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tracking window, and also since the time difference is very small between frames,
the orientation of the object is likely to change little. This allows the assumption
that color distribution of the the target candidate has not changed much from
the object model in the last steps of the mean shift iteration. If we let pm and
pc be the probability with respect to the object model and the target candidate
respectively, under this assumption we can assume p̂c(αi|ν) ≈ pm(αi|ν) [14],
where pc(αi|ν) and pm(αi|ν) denotes the probability of color ν being in ith
orientation division of the candidate and the model, and ˆ denotes the estimator,
respectively. From this approximation, we can derive

p̂c(αj |αi) =
∑

ν

p̂c(αj |ν)pc(ν|αi) (9)

≈
∑

ν

pm(αj |ν)pc(ν|αi). (10)

This p̂c(αj |αi) is the probability of each orientation division αi being the orien-
tation division αj , i.e. this lets us know what each orientation division is likely
to be. In (10), pm(αj |ν), can be obtained by

pm(αj |ν) =
pm(ν|αj)pm(αj)∑
j pm(ν|αj)pm(αj)

. (11)

The probability of color values for each αj , pm(ν|αj), can be calculated using
color histograms constructed for each orientation division, and pm(αj) is just
the area ratio of αj and the object region with respect to the object model. If
we denote the old estimated orientation of the tracker as θ̂old, newly estimated
orientation as θ̂new, Δθ̂ = θ̂new − θ̂old, and mean of orientation of αi and αj as
θi and θj , respectively, using the results of (10) and (11), we can obtain Δθ̂ by

Δθ̂ =
∑

i

⎡⎣∑
j

p̂c(αj |αi)F2(θj − θi)

⎤⎦ pc(αi), (12)

where, pc(αi) is the area ratio of αi and the object region with respect to the
target candidate, and function F2(.) is to enforce θj−θi to be inside [−π/2, π/2).
Since from our definition of orientation divisions in (8), |θi| < π/2 and |θj | < π/2.
Next, to make our orientation estimation result robust to background clutter,
we use result of (5) to modify pm(.) and pc(.) in (10) and (11). Instead of using
pm(ν|αj) and pc(ν|αi) we use p̃m(ν|αj) and p̃c(ν|αi) which are modified as

p̃k(ν|αj) � pk(ν|αj)p̂(Obj|ν)∑
ν pk(ν|αj)p̂(Obj|ν)

, k ∈ {m, c}. (13)

Substituting (13) in (10), (11), and (12), we obtain the final equation

Δθ̃ =
∑

i

⎡⎣∑
j

p̃c(αj |αi)F2(θj − θi)

⎤⎦ pc(αi) (14)
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3.3 Scale Adaptation

To adapt to scale changes, we need to know what the current status of our tracker
is, i.e. what the target candidate is looking at. If we could figure out which part
of the distribution our target candidate is observing, then the whole problem of
scale adaptation would be easily solved. Roughly speaking, our distribution of
weights must be similar to the shape of the kernel we used for mean-shift: lager
values if closer to the center and smaller values if further from center. This is
due to the nature that when doing mean-shift, we adopt a kernel to estimate
the probabilistic distribution for tracking, and therefore color histograms are
constructed with larger values if closer to the center. We confirmed this by
experimental data for some actual tracking situations (Figure 1).

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.85

0.9

0.95

1

1.05

1.1

~Σ=0.509

Scale (5 divisions)

A
ve

ra
ge

 o
f w

ei
gh

ts

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

~Σ=0.434

Scale (5 divisions)

A
ve

ra
ge

 o
f w

ei
gh

ts

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.85

0.9

0.95

1

1.05

1.1

~Σ=0.515

Scale (5 divisions)

A
ve

ra
ge

 o
f w

ei
gh

ts
(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

~Σ=0.476

Scale (5 divisions)

A
ve

ra
ge

 o
f w

ei
gh

ts

(f)

Fig. 1. Example of scale vs average of weights. Scale divided into 5 scale divisions. (a)

and (d) are the original image, where inner red box denotes the target candidate region

and the outer blue circle denotes the background region. (b) and (e) are the results

using w(xi), and (c) and (f) are the results using w̃(xi).

To use this idea, we first start by defining the scale divisions of a kernel. if we
denote the relative distance as σ(x) (ranging from 0 to 1), following the same
notation for the object (or the candidate) region from sub-section 3.2, we can
define the scale division as ςi � {x|σ(x) ∈ [ζi, ζi+1),x ∈ Ω}, where ζi is given by
ζi � (i− 1)/Nς and Nς is the number of scale divisions. Then, to observe which
part of the original weight distribution respect to scale the target candidate is
looking at, we can define the following descriptor for scale [14]:

Σ =
∑

j

[
wavg,j∑
iwavg,i

σavg,j

]
, (15)

where wavg,j = 1
Nςj

∑
xi∈ςj

w(xi), σavg,j = 1
Nςj

∑
xi∈ςj

σ(xi) , and Nςj is the
number of pixels inside ςj . Since in consecutive frames the change in scale is
little, this descriptor is sufficient for describing how the distribution of weights
has changed. However, this Σ is may be inaccurate due to inclusion of the back-
ground information when obtaining w(xi). To overcome this limitation, we use
w̃(xi) instead of using plane w(xi). This give us the final equation for our newly
proposed scale descriptor

Σ̃ =
∑

j

[
w̃avg,j∑
i w̃avg,i

σavg,j

]
. (16)



136 K.M. Yi, S.W. Kim and J.Y. Choi

Using this descriptor, we adapt scale descriptor of the current target Σ̃candidate

to match the initial scale descriptor of the model Σ̃0. By this adaptation, we can
tracks object with scale without much increase in computation time.

3.4 Algorithm Summary

When tracking objects, mean-shift finds the most probable position of the target
object through iteration. During this iteration, when the target candidate is
moving Thus, our method estimates orientation and adapts to scale only when
the target candidate is moving in small amounts, i.e. when ||Δỹ|| is smaller than
some threshold ε′.

Given the object model q (the kernel, the color histogram of the model, the
color histograms constructed for each orientation divisions, and Σ̃0), the tracking
algorithm can be summarized as follow:

Algorithm 1. Tracking
1: Create the target candidate model p
2: Compute the Δỹ using q (7)

3: ynew ← yold + Δỹ
4: If ||Δỹ|| > ε′ go to 1.

5: σnew ← Σ̃candidate

Σ̃0
σold (16)

6: θnew ← θold + Δθ̃ (12)

7: Repeat steps 1 to 6 until ||Δỹ|| < ε′′,

where ε′ is the threshold for orientation estimation and scale adaptation and ε′′

is the threshold for convergence.

4 Experiments

Our algorithm was implemented using C++ with 16 × 16 × 16 RGB color his-
togram, 5 orientation divisions, 4 scale divisions, 2 for ε′ and 0.9 for ε′′. An
anisotropic kernel in the shape of a rectangle was used for kernel density estima-
tion in mean-shift. For the background region, we used the area inside a circle
little bigger than our target candidate. In actual tracking scenarios, orientation
changes are not large in consecutive frames, therefore, we clipped the orientation
estimation result to -2.5�and 2.5�. This is to prevent erroneous estimation results
for orientation estimation since our assumption in sub-section 3.2 holds only for
small orientation changes. All experiments were held on a 2.0GHz PC and ran
comfortably over 90fps.

Figure 2 is the tracking results for one selected frame of an image sequence
of cars moving on a highway. Using this image sequence, we compared the pro-
posed algorithm with the original mean-shift and mean-shift using 10% scale
adaptation. The trackers were applied to the car on the top right. The original
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(a) (b) (c)

Fig. 2. Result of the original mean shift tracker (a), original mean shift tracker using

the 10% scale adaptation (b), and the proposed method (c)

mean shift algorithm without scale adaptation (a) resulted in tracking failure,
since it could not adapt to scale change and another similar object entered the
target candidate region. Mean-shift with the 10% method (b) failed to adapt
to scale change and the tracker shrank to a small box. Our method (c) on the
bottom shows some minor errors in following the orientation of the object due
to the drastic change in scale and minor change in viewpoint, but succeeded in
following the target object.

(a) #3 (b) #76 (c) #122 (d) #148

(e) #3 (f) #76 (g) #122 (h) #148

Fig. 3. Tracking results for the IVT tracker (without subspace update) with 80 particles

(above) and the proposed method (below)

Figure 3 is the tracking result of the proposed method compared with a par-
ticle filter tracker on an shaky image sequence of a medicine bottle captured by
a hand held webcam. In the image sequence, the medicine bottle shows abrupt
translational, orientational, and random movements, i.e. sudden change in scale
and orientation occur. Sub-figures (a), (b), (c), and (d) are the results of the
IVT tracker [6] with 80 particles without subspace update and (e), (f), (g),
and (h) are the results of the proposed method. Each sub-caption denotes the
frame numbers in the image sequence. The IVT algorithm (a particle filter with
eigen-space method combined) was used for comparison. The reason we used 80
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Fig. 4. Tracking of a person in a shaky scenario

particles is to achieve real-time performance (over 20fps) and compare it with
our proposed method. Also, since with the subspace update, the IVT tracker
was never able to follow no matter how many particles were used, we did not use
the subspace update method. As shown in (b) and (f), frame 76, the IVT tracker
fails to adapt to fast orientation and translation change, whereas the proposed
method succeeds. In (c), frame 122, the IVT tracker fails to track and follows
an object similar to the target. But in (g), since our method is robust to back-
ground clutter problems, we can see that our method succeeds in tracking the
medicine bottle. The IVT tracker without subspace update was able to follow
the medicine bottle using 600 particles, but takes 4 fps whereas our method is
over 90 fps (both implemented using C++).

We also tested our proposed method on a shaky scene recorded with a hand-
held digital camcorder. The tracking results for selected frames are given in
Figure 4. The recorded video image is very shaky, and therefore scenes of some
frames are blurred out. The forth selected frame in Figure 4 is an example of
this situation. In the forth selected frame, it is hard to recognize the legs of
the tracked person even with human eyes. In the tracking results, there are
some frames which our proposed method fails to adapt to scale change. These
frames have abrupt changes in the position of the person due to the shake of the
camcorder. However, our proposed method successfully re-adapts to scale change
and ultimately, does not loose track of the scale change of the object. Orientation
estimation results in (d) show similar behavior as the scale adaptation result in
the fact that it shows some errors when abrupt motion occurs. But this is not a
common case and we can see that our method successfully follows the orientation
change of the person.

5 Conclusion

We proposed a new object tracking method to solve the problems of the orig-
inal mean-shift algorithm. The method is consisted of three parts. To handle
background clutter problems, we proposed a new objective function which em-
phasizes features that are more likely to be of the object model. We also proposed
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an orientation estimation method to track object with orientation changes. Fi-
nally, to adapt to scale changes of the object, we proposed a scale adaptation
method which utilizes a new scale descriptor. Experimental results show that the
proposed method was able to track objects with scale and orientation changes
even in shaky scenarios. In comparison with other tracking algorithms, the pro-
posed method was shown to be superior to the traditional mean-shift and also
comparable to the particle filter.
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Abstract. We propose an efficient approach for tracking humans in presence of 
severe occlusions through a combination of edge and color features. We im-
plement a part based tracking paradigm to localize, accurately, the head, torso 
and the legs of a human target in successive frames. The Non-parametric color 
probability density estimates of these parts of the target are used to track them 
independently using mean shift. A robust edge matching algorithm, then, vali-
dates and refines the mean shift estimate of each part. The part based imple-
mentation of mean shift along with the novel edge matching algorithm ensures 
a reliable tracking of humans in upright pose through severe scene as well as in-
ter-object occlusions. We use the CAVIAR Data Set as well as our own IIT 
Kanpur test cases demonstrating varying levels of occlusion in daily life situa-
tions to evaluate our tracking method. 

1   Introduction 

Detection and Tracking of moving objects is central to many computer vision applica-
tions such as visual surveillance, activity recognition, and human computer interac-
tion. The most commonly used methods for detection record the changes occurring in 
the scene. A statistical model of the scene background is learned and an intruding 
object is detected as a group of connected pixels not well represented by this model. 
[4] uses a single Gaussian, whereas, in [6], a mixture of Gaussians is used to represent 
the background and observe changes against it. Our system for tracking uses the fore-
ground segmentation algorithm proposed in [7] and implemented by OpenCV [14] 
library functions. This method performs segmentation through Bayesian decisions on 
selected features representing static and moving scene elements. 

Once detected, the object must be tracked in different frames using its signature. 
Features such as color, shape and texture may be used to establish correspondence 
between the occurrences of the same object in successive frames. Based on the nature 
of implementation, the tracking algorithms can be divided into feature based, contour 
based and region based categories. A Feature based tracker described in [8] uses cor-
ner points to track vehicles through traffic congestion. Point features, however, may 
not provide reliable means of tracking people through appearance changes. Contour 
based tracking demonstrated in [9] captures the shape information of the object. But 
these methods are generally slower than region based approaches. Among region 
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based tracking systems, the Kernel based mean shift tracker by Comaniciu et al [1] is 
well known. Given the target density estimate, the mean shift algorithm converges at 
the nearest mode of the point sample distribution represented by the test image. Al-
though mean shift tracking provides accurate localization of an isolated object over 
short intervals of time, its performance degrades in the event of occlusion or change 
in the object scale or appearance. The color histogram used by the tracker changes 
substantially when the person being tracked turns about the vertical axis or is partially 
occluded by static or dynamic scene elements. A proposed solution to the problem of 
occlusion is the idea of coordinated tracking of multiple parts of the same target. 
Fragment based tracking (Frag-Track) proposed by Adam et al. [3] uses a template of 
fragments to track an agent through scale changes and partial occlusions. Frag-Track 
performs well in severe occlusions but the method uses a rigid template to describe a 
semi-rigid human body.  

In this paper, we propose an approach to tracking that is a combination of region 
based and feature based paradigms. We use an efficient algorithm of matching local 
edges in conjunction with the Kernel based mean shift algorithm to obtain an accurate 
localization and track of humans in difficult scenarios. In order to use a more spatially 
descriptive appearance model for mean shift, we initialize three independent mean 
shift trackers for the head, torso and legs of the individual to be tracked. The part 
based approach ensures a better confidence through various levels of scene occlusion 
than the overall (single) mean shift. Following the mean shift cycles, the edge match-
ing step validates and refines the mean shift estimates. Efficient tracking of people is 
achieved through coordinated mean shift and robust edge matching even in cases of 
severe occlusion, which is the key contribution of our research. 

The rest of the paper is organized as follows. Section 2 summarizes some related 
research efforts to solve similar problems. Section 3 outlines our approach of edge-
color tracking. Results of tracking in various complex situations are demonstrated in 
Section 4. In Section 5 we discuss the limitations of our method and future scope. 

2   Related Work 

Extensive research is being carried out in order to develop a system for tracking a 
moving target in a complex dynamic environment. One of the most well-known algo-
rithms for object tracking is the kernel based mean shift proposed by Comaniciu et al. 
in [1]. The main advantages of Mean Shift algorithm are its speed of operation and 
accuracy of localizing moving targets. One of the drawbacks of this technique, how-
ever, is the lack of adaptability to scale changes. This problem has been addressed in 
detail in [5] and a scale invariant mean shift tracking procedure has been proposed as 
a possible solution. The author uses mean shift in spatial as well as scale dimensions 
to obtain an accurate localization and scale of the target. Zivkovik et al. propose a 
modifed mean shift procedure in [11] to include both scale and orientation changes by 
defning five degrees of freedom for the kernel. 

Although kernel based mean shift is an effective region based algorithm for track-
ing isolated objects, its localization degrades in presence of occlusions and clutter. It 
is, therefore, not accurate enough for seamlessly following a moving target in compli-
cated environments. Instead of using a single model for the entire object as in mean 
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shift tracking [1], a more descriptive part based or fragment based representation of 
the target is being preferred for better results in crowded scenes with frequent occlu-
sions. Elgammal and Davis [2] propose that a person can be represented as a set of 
color regions located along the vertical axis. A person in upright pose is modeled as a 
collection of parts namely head, torso and legs, each having a separate color density 
representation. Along with color information, the spatial distribution of these parts is 
also included in the appearance model. In [3], the authors have used a fixed rectangu-
lar grid of patches with an intensity histogram of each patch to capture the spatial 
details along with the photometric information. The algorithm proceeds by finding the 
best matches of each fragment from the grid in the local neighborhood. Based on the 
similarity measures of the patches, a voting scheme is implemented to find an accu-
rate estimate of the template center. To handle partial occlusions, Shakunaga et al. 
[10] propose an interesting technique that uses spatial information in a particle filter-
ing framework. Their model represents a human using three ellipses, one each for 
head, torso and legs. Trained model based algorithms have also been developed for 
detection and tracking of humans in presence of persistent occlusions. Zhao and 
Nevatia [12] use a part based human model to solve a multiple hypothesis association 
problem. Efficient optimization in a joint hypothesis space is achieved using Markov 
Chain Monte Carlo method. Wu and Nevatia [13] propose a hierarchical part based 
model for detection and tracking of partially occluded people through trajectory esti-
mation. Edgelet features from different parts of human body are used to train the 
model. The overlapping scores of detected part edges with the overall target segmen-
tation are used to attribute part responses to a human hypothesis.  

The proposed approach in this paper is different from the above mentioned ones in 
various respects. Our method uses the part based approach to track an object in an 
upright pose using a combination of both mean shift and edge tracking. Achieving 
better results by efficiently using a combination of features is the novelty of our  
approach. We implement mean shift tracking for head, torso and legs of the target 
independently. Our part based model is more flexible than in [3] as it does not impose 
a rigidness constraint on a semi-rigid human body. After convergence of each mean 
shift part tracker, an efficient edge matching algorithm validates and refines the esti-
mate. Model based detection methods [12, 13] require extensive on-line learning. 
Instead we use background subtraction method to detect the target and learn mean 
shift kernels for each part. The Canny edge detection algorithm is used to extract 
strong edges of the target. The edge tracker uses information regarding curvatures and 
relative locations of stable object edges to match them over successive frames. 

3   Proposed Approach 

We propose a part based approach to track humans in an upright pose using a combi-
nation of edge and color information. The detected human silhouette is segmented to 
obtain the head, torso and legs and independent mean shift trackers are initialized for 
each part. An iterative edge matching step follows each mean shift cycle. The parts 
with high edge confidence indicate an accurate estimate. The mean shift trackers that 
diverge from their targets are thus separated from the faithful ones. Combined confi-
dence of edge matching and color based mean shift helps in tracking the target 
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through severe occlusions with impressive localization. The steps involved in the 
proposed method are explained in detail in the following sections. 

3.1   Appearance Model 

As mentioned earlier, the lack of spatial information in the appearance model of a 
mean shift tracker can be remedied to some extent by employing a part based tech-
nique. To implement a part based variant of the traditional mean shift tracker, we seg-
ment the incoming background subtracted silhouette for parts namely, head, torso and 
legs. We search for the pronounced valleys in the horizontal projection of the fore-
ground silhouette which mark the junctions between the parts we seek to locate. When 
the sensor optical axis is almost horizontal, the valley corresponding to head and torso 
junction can be located at a height 0.6 to 0.8 times the height of a reasonably good 
foreground blob, whereas the valley corresponding to torso and leg junction can be 
located at a height 0.3 to 0.5 times that of the blob. The blob segmentation method is 
demonstrated on a test image in Fig. 1. The non-parametric color probability densities 
for individual parts are then learned for their individual mean shift trackers. 

 

 

Fig. 1. Segmentation of blob along valleys in vertical projection 

 

Although a part based appearance model ensures that at least one of the trackers 
follows the target accurately, the deviant behavior of a mean shift tracker in clutter or 
due to occlusion necessitates a method to verify the credibility of the individual part 
mean shift estimates. As a result, we supplement the color information of the appear-
ance model with the local edge information which defines both shape and texture of a 
human target. Strong edges in the region of the foreground blob are obtained from the 
image using Canny edge detection algorithm implemented in OpenCV library func-
tions. These learnt edges would then be matched with those extracted in following 
frames using their positions and curvature features. The edges obtained from a human 
image are relatively less stable when compared to those of rigid objects. Nevertheless, 
the change in their curvature and location is gradual enough to enable matching over a 
short interval of frames after which the template has to be reinitialized. 

3.2   Mean Shift Part Tracking 

As mentioned earlier, we use independent mean shift trackers to follow the head, 
torso and legs of a person. We use the Epanechnikov kernel to find the density  
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estimate of RGB color values of the segmented pixels. The probability of a color u as 
expressed by the kernel density function can be written as: 

ΡM(u)  =  C ∑  k( ||xi / h|| )δ[b(xi) - u], 

                                                                                    u = 1, 2, … , M 
(1)

Where M denotes the number of histogram bins, xi denotes the pixel location and k(.) 
denotes the profile function of the kernel. For details of mean shift tracking algorithm 
the readers are referred to [1]. 

The main drawback of mean shift tracking is the drift of the tracker due to occlu-
sion and clutter. Fig. 2 shows the effect of scene occlusions on the mean shift algo-
rithm. Such divergence of the mean shift tracker may cause complete track loss. Our 
methods prevent the degradation in performance due to occlusion through the use of a 
part based model. The trackers corresponding to un-occluded portions of the target 
maintain proper track throughout and thus, prevent incorrect localization as would 
happen in the case of traditional mean shift tracking. 

Scale Handling 
The Mean shift tracking algorithm does not account for scale changes of the target. 
The techniques of updating target scale proposed by [5, 11] are interesting but require 
heavy computations. We, instead, use a simple method to handle scale changes in our 
algorithm. The number of foreground pixels is a useful heuristic indicating change in 
the size of a target. Although, foreground blobs are not always reliable indicators of 
the shape and size of the object, we can identify scale changes since they cause blob 
size to alter gradually. We set thresholds on percentage changes in number of fore-
ground pixels of the blob and reinitialize the mean shift kernel when the change stays 
within this threshold value. A blob change that exceeds the assigned threshold indi-
cates either occlusion or improper segmentation, in the event of which, the mean shift 
kernel is kept unchanged. This simplified method provides satisfactory handling of 
the scale variation problem. 

 
 

 

Fig. 2. The sequence of images demonstrates the divergence of mean shift tracker from the 
target in presence of scene occlusion 

3.3   Edge Matching 

We use a robust edge matching algorithm in conjunction with the part based mean 
shift to improve tracking performance in difficult and crowded situations. An edge 
can be identified by its location on the object and its curvature. We use both these 
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features to match the extracted edges with those in the learnt template. To capture the 
curvatures of an edge along its length, we model it using straight line segments of 
fixed lengths. The orientations of these straight line segments are recorded as an esti-
mate of the edge curvatures. Smaller the length of these segments, greater is the accu-
racy of the estimate.  

Although edges are a reliable feature for tracking, the edges of a moving human 
target change over time as against the edges of a rigid object. As a result, the edge 
template needs to be reinitialized when necessary. We use percentage change in the 
blob size as an indicator of changing scale and orientation (about the vertical axis) to 
reinitialize both the mean shift kernel and the edge template, by setting up an upper as 
well as lower threshold. The former is required to prevent spurious updates possibly 
caused by segmentation failures or occlusions. 

 

Fig. 3. A schematic showing edge approximation with straight line segments (in red). The 
vector {θi} indicates the orientations of these straight line segments (with respect to horizontal). 

3.3.1   Algorithm for Edge Matching 
An Edge e can be represented by a vector θ of orientations of the straight line seg-
ments approximating the edge, as shown in Fig. 3, and a representative point p lo-
cated on it. Suppose we wish to calculate the matching score of an extracted edge em 
with a learnt edge et from the template. We denote their orientation vectors as θm and 
θt of lengths lm and lt respectively. Edges em and et may be same or different or one 
may be a part of the other. To verify a match between the two, we must locate the set 
of points common to the two edges. The straight line segments approximating the two 
edges that lie in this region of match have almost the same orientations. That is, one 
can ascertain a match between two edges by locating matching sections in the two 
orientation vectors. This can be depicted as sliding the orientation vector of one edge 
over another and matching the directions of overlapping sections. If the two edges 
match, the mean absolute orientation difference between the overlapping sections of 
their vectors would be negligible or zero. The problem of curvature matching between 
edges can, thus, be formulated as one of finding the minimum mean absolute orienta-
tion difference between their vectors and comparing it with a threshold. 

Ө(n) = ∑k | θt(k) - θm(n+k) | ⁄ Ω(n) 

                                                              , n = - lm + 1, - lm + 2, … , lt – 1 
(2)
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The term Ω(n) represents the overlap between two vectors θt and θm, corresponding 
to the value of index n, which indicates their relative positional displacements. The 
value of Ω(n) could be calculated as 

Ω(n) = min(lt, lm) – n (3)

When the match between the overlapping sections of the edges is perfect, the value of 
mean absolute orientation difference Ө(n) diminishes. This residual value is denoted 
as Ө m, t, the minimum difference between the curvatures of two edges et and em. The 
corresponding overlap Ωm, t is the overlap of best curvature match between them. 

minnӨ(n) = Ө(r) = Өm, t (4)

Ω(r) = Ωm, t (5)

Since different edges may have the same curvature, taking their location into consid-
eration is of prime importance. After matching the edge curvatures, we find the mid-
points of the overlapping parts of both edges. Suppose p and q denote the midpoints 
of overlapping sections of the edges. (Note: the coordinates of p indicate location of 
the point from the top-left corner of the mean shift window, whereas coordinates of q 
on the learnt edge indicate its location from the top-left corner of the template win-
dow. The proposed idea is that if a mean shift tracker maintains accurate track of an 
object, the relative locations of its edges on the target remain nearly the same over 
successive frames). The proximity of edges is indicated by the Euclidean distance 
between these two points. We modify the minimum difference metric of the edges to 
include this distance information and the value of edge overlap Ωm, t to prevent false 
matches. 

γm, t = minnӨ(n) × d(p, q) / Ωm, t (6)

where d(p, q) is the distance between the midpoints p and q of the overlapping parts 
of the edges. This, then, is the procedure and the metric devised to match two edges. 

In case of a human target, after every mean shift cycle, the local edges present in 
every part mean shift window are matched with the edges of their respective edge 
templates. That is, we need to find pairs of edges em from the current frame and et 
from the learnt template, corresponding to a particular part, that exhibit a match with 
the value of their metric γm, t lying within a predefined threshold T. Every such pair of 
matching edges would lie at a certain Euclidean distance d(p, q) with respect to each 
other. If we reposition the mean shift window such that this distance between the 
query edge and the template edge diminishes, they would show a better match (lower 
value of γm, t). In other words, if the average of Euclidean distances d(p, q) for all the 
pairs of matching edges is used to alter the mean shift window location, an overall 
improvement in the edge matching result would accrue. Such adjustment in the mean 
shift window may also result in newer pairs of matching edges. Hence, the process of 
edge matching (estimate validation) and window repositioning (estimate refinement) 
are carried out iteratively until a convergence is reached. The overall edge matching 
confidence in each match cycle is calculated as follows: 
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C = ∑m, t Ωm, t × log (T⁄ γm, t) (7)

The sum is over all pairs of matching edges (m, t). Fig. 4 shows the results of edge 
matching algorithm on some human test images. 

 
 

 
                            4(a)                        4(b)                                 4(c)                        4(d) 

Fig. 4. (a) and (c) represent the learnt templates of head and torso edges respectively. (b) and 
(d) show the corresponding matched edges. 

3.4   Part Assignment and Target Localization 

Following the part mean shift cycle, the edges present in the mean shift windows are 
matched with the part edges present in their respective learnt edge templates. Parts 
being accurately tracked would exhibit a high Bhattacharya matching as well as edge 
matching confidence. Based on the dimensions and locations of such part trackers, an 
elliptical bound is derived to mark the target. In each frame, its dimensions and posi-
tions are updated based on the part tracking responses. If one of the trackers deviates 
due to clutter in the background or occlusion, it ceases to show a good edge matching 
confidence (C in eq. 7). If the confidence falls below a set threshold, we ignore the 
tracker completely and update the target marker position and dimensions solely based 
on the remaining faithful trackers. If both the torso and the leg trackers of the human 
target diverge, only the position of the ellipse is updated according to that of the head 
tracker and the dimensions are kept unchanged. 

4   Results 

The proposed algorithm was used to track humans through various events of  
occlusions as seen in Fig. 4. We use the standard CAVIAR Dataset (http:// 

homepages.inf.ed.ac.uk/rbf/CAVIAR/) to evaluate our tracking algorithm. The first and sec-
ond sequences shot in a corridor of a mall show the satisfactory performance of our 
algorithm in presence of almost 70-80% occlusion (head and a small part of torso 
visible). We also test our algorithm on our IIT Kanpur dataset demonstrating various 
scene occlusion scenarios. The third and fourth sequences show a person being oc-
cluded by a shrub and parked two-wheelers respectively. Our combined Edge-Color 
tracker (ECT) maintains accurate track throughout the event of occlusion in both 
sequences.  
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  Frame No. 201                 Frame No. 206                  Frame No. 214                 Frame No. 222    

      
 Frame No. 1063               Frame No. 1082                 Frame No. 1109                 Frame No. 1125    

     
Frame No. 51                   Frame No.127                    Frame No. 153                   Frame No. 172       

 
Frame No 47                    Frame No. 64                      Frame No. 102                   Frame No. 222        

Fig. 5. Performance of ECT on CAVIAR test cases and IIT Kanpur Dataset 

 

Fig. 6. Both the plots represent the difference (in pixels) between the tracker localizations and 
manually determined ground truth. Plot in Red indicates edge color tracker localization. Single 
mean shift tracker localization is shown in Green whereas a simple part mean shift performance 
is shown in Blue. The plot on the left shows the performance of both trackers in “parking 
space” sequence while the plot on right shows their performance on “shrub data”. The disconti-
nuity in the green line on the left plot shows that the mean shift tracker was lost and needed to 
be re-initialized while the edge color tracker kept good track. 
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Fig. 6 shows plots of localization errors of trackers with respect to manually 
marked ground truth for shrub and two-wheeler parking sequences of Fig. 5. A pro-
gressive improvement is seen from a single kernel mean shift (shown in green) 
through a simple part based mean shift tracker (blue) to the Edge Color Tracker (red). 
The edge matching algorithm provides means to verify the credibility of part mean 
shift trackers. As a result the localization of an ECT is more reliable than just a part 
mean shift tracker in presence of clutter or occlusion. 

5   Conclusion and Future Work 

In this paper, we have proposed a simple yet highly effective technique for tracking 
partially occluded humans in a standing/walking position using a combination of edge 
and color features. One of the drawbacks of our method is its failure to update scale 
during persistent occlusions. The scale adaptation approach we use requires the com-
plete foreground blob of the object. Hence, scale cannot be updated during the event 
of occlusion.  Incorporating scale invariance in a more reliable manner in the pro-
posed tracking framework would be the focus of our future efforts. 
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Abstract. A novel incremental multi-view face tracking algorithm is

proposed in the graphic model, which includes a general view manifold

and specific incremental face model. We extend a general view manifold

to the state-space model of face tracking to represent the view continuity

and nonlinearity in the video data. Particularly, a global constraint on

the overall appearance of the tracked multi-view faces is defined based on

the point-to-manifold distance to avoid drifting. This novel face tracking

model can successfully track faces under unseen views, and experimental

results proved the new method is superior to two state-of-art algorithms

for multi-view face tracking.

1 Introduction

Face tracking aims to detect faces in the video by utilizing the temporal continu-
ity. It can be widely used in many fields, such as human-computer interaction,
video surveillance, video communication and access control etc. [1]. However,
the robust face tracking is a challenging topic because faces are non-rigid ob-
jects and the imaging condition is often influenced by the complex environment.
Usually, it is not reasonable to request one person to stay still in strictly defined
pose. Rich literature aims to build face models which can represent variations
of the face appearance in videos, such as subspace-based tracking methods [2]-
[6], pixel-based tracking algorithms[7], contour-based algorithms[8], [9], global
statistics of color algorithms [10]. We focus on incremental subspace learning
based multi-view/multi-pose face tracking.

Suppose the face representation model involves all prior information of the face
variations, we can track faces effectively in a complicated environment without
model updating. Unfortunately, the priors are not always available, which lead to
the difficulties in constructing a robust object-specific face model. For example,
Black et. al. proposed a robust eigen-tracking algorithm without updating for
rigid and articulated objects [3]. The unseen information in the test image was
regarded as “outlier“, which are eliminated in face tracking. It is not suitable for
the non-rigid objects tracking especially when the environment is changing. To
build an object-specific face model, the online updating mechanism is involved in
[2] and [4]. Brand proposed an incremental singular value decomposition method

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 150–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Incremental Multi-view Face Tracking Based on General View Manifold 151

for incomplete data. However, the mean face of the feature space was intact [5],
which was actually changed during tracking. So Ross et. al. used a sequential
Karhunen-Loeve (SKL) method to update the eigenbasis as well as the mean
face [4]. They also introduced an empirical forgetting factor to focus on the
recently-acquired images.

In multi-view face tracking, view changing is strongly nonlinear which is
caused by the head rotation and self-occlusion of faces. This nonlinearity is
difficult to be coped with only one view basis. Thus a generic face appearance
model containing the feature spaces of five views was constructed offline in [2].
The views were connected by a probability transition matrix. During tracking,
the generic appearance model was updated into an object-specific one gradually.
However, without the guide of the generic information, once drifting occurs, this
method is prone to lose the tracking target. Therefore a hybrid generic and spe-
cific face model in the dynamic Bayesian network framework was proposed in
[6]. The object-specific model is represented by a mixture of the basis obtained
by online updated probabilistic principal component analysis. The generic face
model is offline trained by AdaBoost algorithm. It contains five pose-based classi-
fiers to verify the accuracy of the tracked faces before updating to avoid drifting.
This model has a proper balance between generality and specificity.

As we all know, head rotation is continuous and has regular patterns. It is not
easy to estimate the intermediate views accurately by discrete view subspaces.
Thus we build a general and continuous view manifold to represent the nonlinear
view variation [11]. And an object-specific model is built based on the feature
space of discrete views. We embed the general view manifold and the object-
specific face model in a probabilistic graphic model. The main contributions of
the presented method include: (1) We extend a recently proposed general view
manifold to the dynamic view estimation; (2) A novel online updating mechanism
for the specific model is defined based on the point-to-manifold distance to avoid
drifting.

The rest of this paper is organized as follows. The next section describes the
multi-view face tracking model. In Section 3, we propose the view estimation
based online updating mechanism. In Section 4, the online updating strategy
is introduced. The experimental results are shown on three video databases in
Section 5. Conclusions and future research lines are drawn in Section 6.

2 Model Description of Incremental Multi-view Face
Tracking

In the tracking task, the face characteristic, such as position, scale, etc., deter-
mines the state of the object, which is denoted as X . The observation at time t is
represented as It. Tracking is to estimate the state of It by maximizing the prob-
ability p(Xt|It). From the Bayesian perspective, it is formulated as a posterior
probability estimation problem as Formula (1). It is a state-space model which
depicts the dynamic characteristic between the adjacent states by p(Xt|Xt−1)
and the relationship between the state and the observation variable by p(It|Xt).
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p(Xt|I1:t) ∝ p(It|Xt)
∫
p(Xt|Xt−1)p(Xt−1|I1:t−1)dXt−1 (1)

In Formula (1), X = {α, β}. α = {x, y, s, θ, r} where (x, y) is the position of
the tracked object, s denotes the scale information, θ represents the in-plane
rotation angle and r is the aspect ratio. Parameters in α obey the Gaussian i.
i. d. β is a view parameter. We separate β from other state parameters because
view is changing along the manifold while others obey the Gaussian distribution.
Since α and β are independent, Formula (1) can be factorized as follows [6].

p(αt, βt|It)∝p(It|αt, βt)
∫ ∫

p(αt|αt−1)p(βt|βt−1)p(αt−1, βt−1|It−1)dαt−1dβt−1

(2)
According to the Bayes’ theorem, p(It|αt, βt) can be written as Eq. (3).

p(It|αt, βt) = p(βt|It, αt)p(It|αt)/p(βt) (3)

Using Eq. (3), p(αt, βt|It) can be further unfolded. p(βt|It, αt) is a general face
model which is used as a view estimator for It at αt. To build such an indepen-
dent general view manifold, we adopt a recently proposed one based on tensor
decomposition and conceptual design [11]. Since this manifold is a general one,
we will not update it.

The observation model p(It|αt) defines the probability of Zt belonging to
an object-specific face, where Zt is the image patch cropped by αt from the
video image. The image patch which has the maximum possibility of p(It|αt)
corresponding to It. To adapt to the face variation during tracking, p(It|αt) has
to be online updated. An object-specific model including the feature spaces of
five discrete views as S = {Ln}5n=1 is built in this paper. In the feature space
Ln = {cn, Φn,∧n, Pn}, cn, Φn, ∧n and Pn records the mean face, eigenbasis,
diagonal matrix of eigenvalues and the number of images used to construct the
n-th view feature space, respectively. For simplicity, we only use the subscript n
when it is necessary.

Given the object-specific model, the probability of p(It|αt) is translated to
the likelihood of p(Zt|S) , which can be further expressed as the function of
two distances: distance-from-feature-space (DFFS) and distance-in-feature-space
(DIFS) as Eq. (4)

p(Zt|L) =

⎡⎣exp (−1/(2ρ)d2(Zt,L)
)

(2πρ)
N−M

2

⎤⎦⎡⎣exp
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)
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2
i

⎤⎦ (4)

where N denotes the dimensionality of the image space. M is the number of
principle components retained in Φ for the calculation of DIFS, and the rest
{Φi}Ni=M+1 is used for the DFFS estimation. d(Zt,L) represents the distance
from Zt to {Φi}Mi=1. y is the projection coefficient from Zt to L. The second



Incremental Multi-view Face Tracking Based on General View Manifold 153

1t−Ι
tΙ 1t+Ι

1tα −

1tS − tS 1tS +

1tα − 1tα −tα 1tα −1tα +

1tβ − tβ 1tβ +

1tX − tX 1tX +

General view manifold

Fig. 1. The graphic model of the state-space model for multi-view face tracking

Gaussian can be interpreted as the likelihood of the distance between y and
subspace center c.

To realize a robust tracking, the object-specific model should be update to
adapt to the environmental changes. We incorporate a forgetting factor to let
the model focus more on the current tracked accurate information. Tracking is
realized by the following steps. A graphical model of it is illustrated as Fig.1.

Initialization: The face object I1 in the first video frame is initialized manually.
Do for t = 1, 2, . . ., T (T is the number of frames in the video):
(1)Estimate the pose of It using the pose estimator p(βt|It, αt);
(2)According to the pose estimation result, we use It to update the feature

space Ln nearest to βt under the supervision of the point-to-manifold distance;
(3) Use the particle filter to estimate the face object It+1, which is determined

by the biggest similarity p(Z|L) between the particles and the specific face model
St. The state of the chosen particle is αt+1.

3 View Estimation Based on the General View Manifold

In [2], pose estimation is realized by finding the best match feature space Ln of
It. If the face model only contains several discrete view feature spaces Ln, the
drifting usually occurs during the view transferring. We use an offline trained
general view manifold to describe the intermediate view more accurately. And
we also use the view estimation result as a general supervision mechanism to the
object-specific model updating. Given the It, pose estimation is determined by
the point-to-manifold distance [12] in this work. We introduce the hybrid view
manifold generation method in brief first. We refer the readers to [11] for more
details.
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3.1 The View Manifold Generation Method

Essentially, when the hybrid view manifold is involved, high order singular value
decomposition (HOSVD) [13][14]is used twice. First, it is used to abstract the
independent view vectors which form the global structure of the view mani-
fold. Then this view manifold is used for nonlinear tensor decomposition where
HOSVD is used again to abstract the identity coefficients for multi-factor face
modeling.

Since only the view information is useful in the first HOSVD, we applied it
on the tensorized multi-view faces I to extract the view information embedded
in the view mode matrix Uview as Eq. (5)

I = C ×1 Uview , (5)

where C is the core tensor. Rows of Uview span the parameter space of vari-
ous views, which is independent with identity or other factors. To model the
continuously and nonlinearly changed face views in the dynamic video, we in-
terpolate the intermediate view information between the view vectors in Uview

by the cubic Spline fitting. The view vector in the manifold is represented as
vβ = g(β).

3.2 View Estimation Based on Point-to-Manifold Distance

The face image Ik
β under identity k and view β is decomposed as Eq. (6) according

to multi-view face model in [11]. pk is the identity vector.

Ik
β = C ×2 pk ×3 ψ(vβ) (6)

C is the core tensor, which governs the interaction between the view and iden-
tity. ψ(vβ) = [φ(dis(vβ , z1)), · · · , φ(dis(vβ , zN )), 1, vT

β ]T represents the ra-
dial basis function mapping between the view manifold and the face image space
[15]. φ(·) are Gaussian kernels. z are centers of these kernels sampled from the
manifold. Given two vectors vβ and z of the same size, we adopt the cosine
distance as dis, viz. dis(vβ , z) = 1−vβ ·z/(||vβ ||||z||) , to measure the similarity
between them in the manifold space. “·“ denotes the dot-product of the two
vectors. || · || is the norm of the vector.

Assuming the identity of the tracked object It is k (k = 1 ,. . ., K), view vector
vk is calculated by solving the linear part of ψ(vk). Since there are K identities
during the manifold training, we combine the corresponding K view vectors by
Eq. (7) to get the single view vector vβ of It.

vβ =
∑

k
pg(vk)vk (7)

pg(vk)is the normalized likelihood of vk belonging to the view manifold g(·). It
can be formulated as a function of the point-to-manifold distance dis(vk, g(·))
as follows.
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pg(vk) ∝ exp{−dis(vk, g(·))/(2σ2)} (8)

In our task, if pg(vk) < th1, the point vk will be regarded as an outlier, whose
pg(vk) = 0. The number of outliers is Noutl. The view estimation of It at αt is
formulated as

p(βt|It, αt) = pg(vβ) (9)

4 Immediately Emphasized Online Updating

The specific model S only contains five feature spaces. To determine which fea-
ture space should be updated, we divided the view manifold into five groups:
left profile, left half-profile, frontal, right half-profile, and right profile, which are
corresponding to the five feature spaces in the specific model. Each feature space
L = {c, Φ,∧, P}. We adopt the SKL [4] to update the feature space incremen-
tally.

Given three data matrixes A, B and C composed by the tracked objects I1:n,
In+1:n+m and I1:n+m, respectively, note that C is the concatenation of A and
B. The feature space of A is denoted as {cA, ΦA,∧A, PA}. When the feature
space of A and the successive data B after A is available, we aim to obtain the
feature space of C as {cC , ΦC ,∧C , PC} by efficiently compute the SVD of the
concatenation of A and B. This effective incremental online updating process is
introduced in brief in Table1.

In Table 1, f is defined by the probability of the tracked view pg(vβ) belonging
to the view manifold g(·). If the outliers are too many in the view estimation
process, say, Noutl > th2, we believe that the tracked view is drifting away from
the training benchmarks, where th2 is an empirical value. We will not update the

Table 1. SKL online algorithm with penalty mechnism

Input: Data matrixes A, B, C. Feature space of A:{cA, ΦA,∧A, PA}
Step1 .Calculate the mean data of B as cB = 1/m

∑n+m
t=n+1 It, thus the mean of C can

be obtained by cC = (fn/(fn + m))cA + (m/(fn + m))cB with the forgetting factor f .

Step2 . Form a data matrix B̂ as follows.

B̂ =

[
(Im+1 − cB) . . . (Im+n − cB)

√
nm/(n + m)(cB − cA)

]
Step 3 . Calculate matrix B̃, which represents the components of B orthogonal to ΦA,

by B̃ = orth(B̂ − ΦAΦT
AB̂). orth performs orthogonalization.

Step 4 . Calculate the R matrix of the QR decomposition on [ΦA ∧A B] as follows,

which is used for further feature space calculation of C.

R =

[
f∧A ΦT

AB̂

0 B̃(B̂ − ΦAΦT
AB̂)

]
Step 5 . Do singular value decomposition on R: R = Ũ ∧̃Ṽ T .

Step 6 . ΦC , ∧C and PC can be obtained by ΦC = [ΦA B̃
]
Ũ , ∧C = ∧̃ and

PC = n + m, respectively.

Output: The feature space of C is {cC , ΦC ,∧C , PC}.
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observation model when the drifting occurs. Otherwise, we define the forgetting
factor as f ∝ pg(vβ).

5 Experimental Results and Analysis

We test the proposed approach on three different video databases including
Honda/UCSD[2], the davidin300 dataset from [4] and the home-brewed dataset,
where faces have complex motions. The proposed algorithm is compared with two
state-of-art algorithms: The online learned probabilistic appearance manifolds
(PAM) based tracking in [2] and the incremental visual tracking (IVT) in [4].
To distinguish the tracking results, faces tracked by our method, PAM and IVT
are included in green, red and magenta rectangles, respectively, in the following.

The generic view manifold is constructed offline by detecting and aligning
faces of 30 identities under 9 views in part of Honda/UCSD video database,
Oriental Face database. The view manifold constructed from manually aligned
faces is slightly sensitive to the state initialization of face tracking. The generic
face model used in PAM is constructed from the same training data of the
generic view manifold. PAM contains 5 piece-wised manifolds according to [2].
In order to reduce the influence of illumination, we normalize the intensity of It
to obey the intensity distribution of the training data before pose estimation in
our method. In these three methods, the tracked target images are normalized
to 32 × 32 pixels, the number and the variance of the particles are the same.
Each testing video is initialized manually with the same location for all the three
tracking methods.

(1) Tracking on Honda/UCSD database
HONDA database has large variations of out-of-plane head rotation. The repre-
sentative frames of tracking results are illustrated in Fig.2, which shows that the
proposed method adapts well to the pose transferring. But the tracking result
in the 63-th frame is not accurate. It is because the out-of plane rotation in tilt
is not included in our view manifold. PAM has good tracking results only when
the pose estimation is correct and the tracked faces are cropped well before up-
dating. However, there is no supervision on the tracked faces before updating.
And the specific discrete feature spaces in PAM have limited ability to cope with
the nonlinearity of view transferring. Once the tracking errors accumulate over
frames, drifting will happen. IVT learns the model of the object from scratch,
whose accuracy depends on the view transfer speed. And there is no supervision
on the accuracy of the tracked object before updating.

In Fig. 3, we illustrate the representative frames of tracking results of the
proposed method with (in green) or without (in white) the surveillance of the
updating mechanism. We can see that the miss-tracking in green in the 49-th
and 50-th frames are corrected soon. However, it takes a longer time to obtain
the proper particles without the updating constrain.

(2) Tracking with davidin300 dataset
The davidin300 dataset includes extreme shadowing changes. Fig.4 exhibits the
representative frames of tracking results with three methods. The object-specific
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Fig. 2. Tracking comparison among our method (in green), PAM (in red) and IVT (in

magenta) on HONDA/UCSD dataset

Fig. 3. Tracking results of the proposed method with (in green) or without (in white)

the surveillance of updating mechanism

model of PAM degenerates from the general model, which cannot adapt to the
different environment very soon. The accumulated inaccuracy causes the drifting.
While, the specific model of our method and the feature space of IVT are built
based on the specific object in the video. Thus, the proposed method and IVT
have better results. Furthermore, our method adapts to the fast head rotation
better compared with IVT method.

(3) Home-brewed video tracking results
To further verify the effectiveness of the proposed tracking algorithm, we apply
it to our home-brewed video dataset, where the illumination is different with the
training data and complex background are involved. The representative frames of
tracking results are given in Fig.5. Though the result of pose estimation is correct
in PAM, but the illumination difference between the training data of PAM and
the testing video data leads to the inaccurate locations during tracking, which
are used to update the general model in PAM for particle filter. Thus drifting
happens in the first several frames of the home-brewed video. IVT and our
method have a better tracking result compared with PAM because the feature
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Fig. 4. Tracking results of IVT (in magenta), PAM (in red) and our method (in green)

on davidin300 dataset

Fig. 5. Tracking results of IVT (in magenta), PAM (in red) and our method (in green)

on the home-brewed dataset

space in both of the methods are built directly on the accurately located faces in
the testing video. Our method has comparative results with IVT in this database
since the head rotates smoothly in this video.

6 Conclusions and Future Work

We proposed an online updating multi-view face tracking method in the graphic
model. A general view manifold is involved to provide a general appearance
constrain for the tracked multi-view faces before updating and determine which
feature space should be updated. The experimental results show great promise of
the proposed method on multi-view face tracking. However, the method cannot
handle the very large out-of-plane rotation in tilt well, which is our further study
focus.
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Abstract. We present a hierarchical and compositional model based on an And-
or graph for joint detecting and tracking of multiple targets in video. In the graph,
an And-node for the joint state of all targets is decomposed into multiple Or-
nodes. Each Or-node represents an individual target’s state that includes position,
appearance, and scale of the target. Leaf nodes are trained detectors. Measure-
ments that supplied by the predictions of the tracker and leaf nodes are shared
among Or-nodes.There are two kinds of production rules respectively designed
for the problems of varying number and occlusions. One is association relations
that distributes measurements to targets, and the other is semantic relations that
represent occlusion between targets. The inference algorithm for the graph con-
sists of three processing channels: (1) a bottom-up channel, which provides infor-
mative measurements by using learned detectors; (2) a top-down channel, which
estimates the individual target state with joint probabilistic data association; (3)
a context sensitive reasoning channel, which finalizes the estimation of the joint
state with belief propagation. Additionally, an interaction mechanism between
detection and tracking is implemented by a hybrid measurement process. The
algorithm is validated widely by tracking peoples in several complex scenarios.
Empirical results show that our tracker can reliably track multi-target without
any prior knowledge about the number of targets and the targets may appear or
disappear anywhere in the image frame and at any time in all these test videos.

1 Introduction

The problem of multi-target tracking in video (MTTV) requires recursive localizing tar-
gets and labeling their identities within each frame of the video clip. Recent research
demonstrates that tracking of isolated targets or a small number of targets having tran-
sient occlusion is no problem. However, automatic tracking of an unknown number of
interacting targets in video is still a challenging problem, especially in situations such as
occlusion between targets passing in front and behind each other and occlusion behind
a part of the scene, targets having little distinction in their appearance, varying number
of targets, and change in pose and in the illumination of the scene.

We believe that the problem of accurate identification of targets in MTTV needs
a hierarchical and probabilistic model to address the aforementioned difficulties, and
should take three observations into consideration: (1) data association techniques con-
sidering occlusion are needed to maintain an unique identifier for each track when visual

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 160–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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measurements are indistinguishable or absent temporarily due to occlusion. (2) target
existence should be treated jointly with the target state in data association process. A
suitable prior process can then be specified for the existence variables, which facilitates
the joint inference with the state and data association processes. This in essence is an
important component of the approach of this paper. (3) the detecting and tracking of
targets should be combined together instead of being separated into two independent
procedures. An interactive mechanism between detection and tracking is essential to an
robust tracker for MTTV. This not only allows the detection to make use of temporal
consistency, but also facilitates robust tracking of multi-target.

Fig. 1. The hierarchial composition model for detection and tracking multi-target. The joint state
of targets is decomposed into individual target states, and share measurements between them.

We address these observations with a hierarchical and compositional model for
MTTV, as shown in Fig 1. There are two contributions in this work: (1) an And-Or
graph which explicitly and jointly models target state, occlusion among targets, varying
number, and data association; (2) an Monte Carlo inference algorithm for the And-or
graph. The proposed model provides a general modeling framework for MTTV, which
is reconfigurable to track many classes (even different classes) of targets.

1.1 Related Work

MTTV is usually formulated within a sequential Monte Carlo filtering framework
(SMCF) [1, 2, 3, 4]. These methods try to explain the foreground or motion blobs by
fitting multi-target hypotheses, and handle data association implicitly. They deal with
occlusions by computing joint image likelihood of multi-target. An efficient optimiza-
tion algorithm, such as MCMC [1], particle filtering [4, 3], or EM [2] is often required
because of the high dimensionality of the multi-target hypothesis space. These methods
have shown experiments with a stationary camera only, where the background subtrac-
tion provides relatively robust target motion blobs.
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Recently some strategies have been proposed to accommodate the data association
within the SMCF framework. The feasibility has been claimed in [5], but the examples
there deal only with a single target. Simply inserting data association into the multi-
target hypothesis space within a SMCF framework makes the complexity of inference
algorithm increase exponentially with the number of targets. More recently, the data as-
sociation technique is used as a complement in [6]. A two-level computing architecture
consists of particle-based JPDAF and belief propagation is proposed in [7], which treats
the varying number problem and occlusion among targets in a post-processing manner.
These works demonstrate an interesting research trend. However, these MCMC-based
MHT methods are iterative and batched-processing in nature. They need an unknown
number of iterations to converge, and are not entirely suitable for the online tracking
applications. Moreover, most of these data association methods typically do not address
the occlusion problem.

2 Hierarchical Composition Model

2.1 And-Or Graph for MTTV

We model the MTT problem with an And-Or graph [8], as shown in Fig 1. The graph
has a recursive structure with two types of nodes: And-node and Or-node. Each And-
nod is a MRF, and each Or-node is a switch node in a Markov tree. The And-Or graph
combines Markov tree and Markov random fields (MRF), which makes it possible to
avoid the connections of all pairs of variables that are conditionally dependent even for
a single choice of values of other variables.

At each time step t, an And-Or graph denoted by a 6-tuple,G=< U, V, T,R, Σ,A >,
is configured for the joint state of all targets. The And-node U represents the joint
state Xt, which decompose into a set of K Or-nodes, V = {xi,t}Ki=1, where K is the
maximum number of targets. Each Or-node represents an individual target’s state, xi,t,
and it also associates with a binary variable ei,t that denote the existence of each target
and its previous state xi,t−1. We denote ei,t = 1 as Ei,t if the ith target exists, and
ei,t = 0 as Ēi, t if the ith target disappears. et = {ei,t}Ki=1 denotes the existence
status of all these K targets. The full joint state space of Xt is the union of spaces
{xi,t : Ei,t}Ki=1. The number of targets present at time t is denoted by kt, which can be
determined by kt =

∑K
i ei,t. In the experiments, we define the state of each target as

its 2D location and scale in image, along with the velocities of these quantities.
The terminal nodes T represent measurements Yt = {yj , j = 1, ...,mt} that com-

prises mt detections. A target may disappear with a probability Pde, and a new target
may appear with a probability Pre. More specifically, we assume that the target state
can be measured with a detection probabilityPd less than unity, and the number of false
alarms follows a Poisson distribution parameterized by λfV , where V is the volume of
a surveillance region in the view of the camera. The measurements are unlabeled and
maybe due to the target or clutter. Measurements from the predictions of the tracker and
detection of the trained classifier are shared by Or-nodes.

Two sets of production rulesR are designed for the graph:R(1) for associating rela-
tions and R(2) for semantic contexts. Each rule ri,t ∈ R(1) associates one measurement
in Yt with the ith target, and each rule γk,l ∈ R(2) represents occlusion between the
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kth and the lth targets. Attributes A = {Aj , j = 1, ...,mt} represent the photometric
attributes of the measurements. In this paper, each Aj denotes the color-histogram of
the jth measurement.

The And-Or graph can generate a large number of configurations, which is denoted
as Sigma. Each configuration G ∈ Σ(G) carries the context and Markov constraints
in the graph, and represent a possible joint state. Specifically, each G has the following
constituents.

1. V (G) = {xi,t|Ei,t} is a set of Or-nodes that are used in configuration G, which is
determined by the value of et.

2. R(G) = {R(1), R(2)} is the set of valid relations. Each relation ri,t ∈ R(1) is a
target to measurement association variable, and is defined as

ri,t =

{
0 if the ith target is undetected,

j if xi,t associates with yj .

where j ∈ {1, ...,mt}. Relations γk,l ∈ R(2),∀l, k ∈ {1, ...,K}, are defined over
each two targets.

3. T (G) = {yri,t
|xi,t ∈ V (G)} is the terminal nodes in configurationG. Each termi-

nal node is a measurement associated with one Or-node in the G. It determines the
track of the target in the temporal-spatial space.

4. S(G) is the photometric attribute of the measurement.

2.2 Inference Algorithm

The goal of MTTV now is to compute the optimal configurationG given measurements
Y1:t = {Y1, ..Yt}, and this is equivalent to optimize a posterior probability,

G∗ = arg max
G∈Σ(G)

p(Y1:t|G)p(G). (1)

where p(Y1:t|G) is the measurement likelihood function, and p(G) is the probabilitic
model for the And-or graph. A configurationG integrates the Markov tree model for the
Or-nodes and the Markov random filed model for the And-nodes, and leads to a mixed
Markov model [9]. Thus the posterior probability for G given measurements Y1:t can
be computed as

p(G|Y1:t) =
1

Z(G)

∏
xi,t∈V (G)

p(xi,t)
∏

ri,t∈R(1)

p(xi,t,Y1:t)
∏

γk,l∈R(2)

p(xk,t, xl,t). (2)

where Z(G) is the partition function which is related to the And-or Graph G, and is
common to all graph configurations in Σ(G). Thus we need not compute Z(G) when
we switch between different configurations in the inference algorithm.

We solve Eq(2) by an SMCF algorithm, which consists of three inference channels:
First, a top-down channel factorizes the posterior of the joint state over individual targets
by Monte Carlo data association, and each individual target’s state is then estimated in-
dependently.Then with the marginal filtering distribution for each target as initialization,
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a context sensitive channel runs a Particle-based Belief propagation [10] to deal with the
occlusions between targets. A hybrid measurement process integrates detected measure-
ments by detectors in the bottom-up channel and predicted measurements by the SMCF
in the top-down channel.

3 Top-Down Channel

Without considering occlusions between targets, the first two terms of Eq(2) represents
a factorization of the joint state Xt over individual targets if we model ri,t and ei,t ex-
plicitly. The top-down channel approximates the factorization by recursively outputting
the posterior probability of existence PEi,t = p(Ei,t|Y1:t), and the filtering distribution
p(xi,t|Ei,t,Y1:t), for each individual target.

p(xi,t|Ei,t,Y1:t) =
∑
ri,t

p(xi,t|ri,t, Ei,t,Y1:t)p(ri,t|Ei,t,Y1:t), (3)

where p(ri,t|Ei,t,Y1:t) is the posterior of the association variable ri,t, and p(xi,t|ri,t,
Ei,t,Y1:t) is the filtering distribution conditional on the association ri,t.

The first term of Eq(3) can be computed as

p(xi,t|ri,t, Ei,t,Y1:t) =
pT (yri,t,t|xi,t)p(xi,t|Ei,t,Y1:t−1)∫

xi,t
pT (yri,t,t|xi,t)p(xi,t|Ei,t,Y1:t−1)

(4)

by using the Bayes’ rule and the fact that the measurements at a time step are in-
dependent conditional on the target state, existence and association variables, where
pT (yri,t

|xi,t) is the likelihood function of the measurement yri,t
conditioned on the

state xi,t.
We substitute Eq(4) into Eq(3), and obtain the filtering distribution for each individ-

ual target

p(xi,t|Ei,t,Y1:t) =
mt∑
j=0

βij

pT (yj |xi,t)p(xi,t|Ei,t,Y1:t−1)
p(yj |Ei,t,Y1:t−1)

. (5)

where βij = p(ri,t = j|Ei,t,Y1:t) denotes the association probability that the jth mea-
surement yj associates with the ith target, i ∈ {1, ...,K}, j ∈ {1, ...,mt}. Similarly,
βi0 means that the ith target goes undetected.

To recursively update the filtering distribution Eq(5), we need to compute three un-
known terms: the state prediction distribution p(xi,t|Ei,t,Y1:t−1), the posterior of the
association variable p(ri,t|Ei,t,Y1:t), and the posterior probability of existence PEi,t .
These are discussed in the subsequent two subsections.

3.1 The State Prediction Distribution

The state prediction can be computed as

p(xi,t|Ei,t,Y1:t−1) =
∑

ei,t−1

p(ei,t−1|Ei,t,Yi:t−1)

×
∫

xi,t−1

p(xi,t|xi,t−1, Ei,t, ei,t−1)p(xi,t−1|ei,t−1,Y1:t−1)
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by introducing the previous state and existence xi,t−1, ei,t−1, and using the total
probability.

With the Bayes’ rule, assumption that p(Ei,t|ei,t−1,Y1:t−1) = p(Ei,t|ei,t−1), and
the defined probability terms Pre and Pde (Section 2.1), the state prediction distribution
finally follows as

p(xi,t|Ei,t,Y1:t−1) =
1
κ

[Pre(1− PEi,t−1 )p0(xi,t) + (1− Pde)PEi,t−1p(xi,t|Y1:t−1)]

where κ = Pre + PEi,t−1(1 − Pre − Pde), p0(xi,t) is the initial state distribution of
the ith target, PEi,t−1 = p(Ei,t−1|Y1:t−1), and p(xi,t|Y1:t−1) is the state prediction
distribution of the ith target which continuously exists from time t− 1 to t.

3.2 Posteriors of Association and Existence

Thus far, we need the marginal posterior of existence variable p(Ei,t|Y1:t), and the
conditional posterior of the association variable βij to update the filtering distribution
p(xi,t|Ei,t,Y1:t). They both can be computed by marginating the joint posterior of ex-
istence and association as follows:

p(Ei,t|Y1:t) =
mt∑
j=o

p(Ei,t, ri,t = j|Y1:t), and βi,j =
p(Ei,t, ri,t = j|Y1:t)

p(Ei,t|Y1:t)
. (6)

Once a pair (et, rt) is given, MC and MT are deterministically calculated. For the time
being, we assume that association vectors take a form that factorizes sequentially over
the individual associations,

q(rt|et) = pc(MC)
kt∏

k=1

q(rk,t|r1:k−1,t), and pc(MC) =
(λfV )MC

MC !
e−λf V , (7)

where pC denotes the clutter likelihood. It should be noted that the sequential factoriza-
tion can be performed over any permutations of the individual targets.

The components of an association vector can be sampled sequentially conditional on
each other, and the proposal for the kth component is conditional on all the components
sampled earlier in the sequence, since Eq(7) depends only on information available at
the current time step. We make use of this property to ensure that the measurements
associated with targets earlier in the sequence are not considered as candidates to be
associated with the current target. In this way, it is guaranteed that only valid association
hypotheses are generated. Thus we have

q(ri,t = j|r1:i−1,t) ∝

⎧⎪⎨⎪⎩
1− Pd if j = 0
0 if j > 0 and j ∈ {r1,t, ..., ri−1,t}
Pd

Mi
otherwise

where Mi = mt − �{l : rl �= 0, l = 1, ..., i− 1} is the number of unassigned measure-
ments, taking into account the assignments of the previous i− 1 associations.
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The joint posterior of the existence and association variables can then be approxi-
mated as

p(et, rt|Y1:t) ∝ p(MC)
K∏

i=1

[q(ri,t|r1:i−1, t)p(ei,t|Y1:t−1)p(yri,t,t|ei,t,Y1:t−1)]. (8)

where the only unknown term p(ei,t|Y1:t−1) can be computed as

p(ei,t|Y1:t−1) =
∑

ei,t−1

p(ei,t|ei,t−1)p(ei,t−1|Y1:t−1)

Then p(Ei,t|Y1:t) and βi,j can be computed by enumerating all the valid existence-
association pairs, and evaluating the probabilities for each of these pairs with Eq(8). We
use a soft-gating procedure to reduce the number of valid data association hypotheses. A
validation region is constructed for each target, and only measurements that fall within
the target validation region are considered as possible candidates to be associate with the
target. The validated set of measurements for the ith target can be defined as Yi = {yj :
d2

i (yj) ≤ ξ}, where d2
i (yj) is the squared distance between the measurement and the

center of the validation region of the ith target, and ξ is a parameter which determines
the size of the validation region. The validation region of a target can be calculated by
first assuming the set of particles as a Gaussian mixture model, then approximating the
Gaussian mixture as a single Gaussian, and finally computing the mean and covariance
matrix of the particle set.

3.3 Monte Carlo Data Association Filtering

The Monte Carlo data association filtering assumes that a set of particles {w(n)
i,t−1,

x(n)
i,t−1}Nn=1 which approximately distributed according to p(xi,t−1|Ei,t−1,Y1:t−1), and
PEi,t−1 are available. New particles for xi,t could be sampled from a suitably proposal
distribution. Instead of using traditional transition distributions modeled by autoregres-
sive state dynamics, we sample from a mixture proposal (Eq(9)) to integrate information
from both the target dynamics and the bottom-up detections.

p(xi,t|xi,t−1,Yt) = αQada(xi,t|xi,t−1,Yt) + (1− α)p(xi,t|xi,t−1) (9)

where Qada is a multi-modality probability distribution constructed by the output of
a learned detector. Each mode of the distribution centers around one detection, and is
modeled by a Gaussian distribution approximated by a cluster of samples. Other kinds
of detectors can also be adopted. The parameter 0 ≤ α ≤ 1 can be set dynamically. By
decreasing α, one can place more importance on the prediction than on the detector.

With the samples from the Eq(9), the predictive likelihood is approximated straight-
forwardly as

p(yj,t|Ei,t,Y1:t−1) ≈
N∑

n=1

w
(n)
i,t−1pT (yj,t|x(n)

i,t )
p(x(n)

i,t |x
(n)
i,t−1)

p(x(n)
i,t |x

(n)
i,t−1,Yt)

. (10)
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Along with association probabilities βij , we finally obtain the filtering distribution

p(xi,t|Ei,t,Y1:t), which is approximated by the particles {w(n)
i,t ,x

(n)
i,t }Nn=1. The weights

are updated as

w
(n)
i,t ∝ w

(n)
i,t−1

p(x(n)
i,t |x

(n)
i,t−1)

p(x(n)
i,t |x

(n)
i,t−1,Yt)

p(Yt|x(n)
i,t ),

N∑
n=1

w
(n)
i,t = 1.

4 Context Sensitive Reasoning Channel

The filtering distribution of Or-nodes output by the top-down channel are purely local,
since occlusions are not taken into consideration. Initializing Or-nodes with these fil-
tering distributions, we then run a particle-based belief propagation(PBP) [10] in the
context sensitive channel to compute the final configuration G.

In PBP, local evidence function is defined as the matching cost function of state xi

given measurement yi. In the experiment, we use color histogram to represent the target
appearance, and the Bhattacharyya distance as the matching cost. Interactive potential
function for two neighboring Or-nodes is defined as

Ψ(xi,xj) = (1 − ep) exp{−|Ω(xi,xj)|
σp

}+ ep (11)

where Ω(xi, xj) is maximal when two targets coincide and gradually falls off as they
move apart. |Ω(xi, xj)| denotes the number of pixels overlapping between two targets.
Different from the upside-down Gaussian in [11] [12], our Ψ is from the Total Vari-
ance (TV) model [13] with a potential function Ψ(z) = |z| because of its discontinuity
preserving property. By varying parameters ep and σp, one can control the shape of
Ψ(xi, xj), therefore the final posterior probability. This is important in preventing par-
ticles for the occluded targets from a fast depletion.

5 Bottom-Up Channel and Hybrid Measurement Process

In the bottom-up channel, a detector is use to scan each input frame image to supply
measurements. Any detector that can supply measurements can be used here. In the
experiment, we trained an AdaBoost classifier as a detector.

The hybrid measurement process is implemented via a factored sampling procedure,
which enhance the interaction between the detection and tracking. The factored sam-
pling procedure can find nonlocal maxima of multi-modal image likelihoods. It is im-
plemented as follows: it first eliminates low-fitness samples from the mixture proposal
Eq(9), then it refines the remaining samples to obtain a local maxima x

′
i by using mean

shift algorithm [14]. Specifically, starting with the fittest sample xbest, all less fit sam-
ples xi such as |xbest−xi| ≤ δ are eliminated. The purpose of δ is to compensate for any
lack of precision in the mean shift algorithm. The thinning process is repeated for the
next fittest sample and so on. Finally, we yield a set of mt measurements. The amount
mt may vary due to the randomness of the sampling procedure and whether the image
actually has only mt target-like features.
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We deal with the mutual occlusion problem by sequential factorization of the data
association. Each permutation of the individual target association provides an occlusion
relationship hypothesis. Under each permutation, the target in the front of the sequence
is measured first from the measurements, then the target in the second can be matched
from the masked measurements, and so on. In this way, measurement results of non-
overlapping targets are equivalent for different depth ordering permutation.

6 Experiments and Discussion

We test the proposed framework on a challenging people tracking problem using sev-
eral video clips from the public PETS2003 data set and our own captured data. Due
to targets and camera motion in the video sequences, the number of targets in view
varies continuously, and occlusion occurs frequently. For comparison purpose, we also
implemented an MCJPDAF tracker proposed in [5] and an integrated tracker proposed
in [15]. All these three trackers are configured with a same trained detector.

We have trained an AdaBoost classifier for people based on the histograms of ori-
ented gradient [16] in the experiment. We collected 2250 images as the positive set. A
fixed set of 13000 patches sampled randomly from 1350 human-free images are used as
negative set. The resulted detector selected 1000 features from 13572 features, which
is nested in a one-layer structure. Its detection rate and false alarm rate are respectively
set as 90% and 20% when it is trained.

We use a color-histogram model as attribute for a terminal node. Each one is sampled
in the first frame at which the target appears. In tracking, we assign 100 particles to each
target. Parameters are set as α = 0.3( in Eq(9)), λf = 20, ep = 0.1, and σp = 432. It
should be noted this parameter setting is not the optimal one. However, other parameter
settings almost do not affect the tracker’s performance.

6.1 Performance Evaluation

In order to quantitatively analyze performance of our system, we use 2 testing sequences
provided by camera 3 in PETS2003 for outdoor people tracking1. In evaluation, we
represent both the ground truth (GT) information and the tracked objects in terms of the
bounding box in each frame. After building correspondence between the GT’s tracks
and the system’s (when the average discrepancy between system’s box and the GT’s
box is below 100 pixels), we calculated the object-based metric [17] for these three
trackers, and the statistics are presented in Table 1. It shows that our tracker outperform
other two trackers.

6.2 Tracking Football Players and Pedestrians

We also compare our tracker with the MCJPDAF tracker and the integrated tracker in
two complex scenes: (1) tracking football players in video sequences, and (2) tracking
pedestrians in a dynamic scene. Both video sequences are filmed by a handy camera.

1 http://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html
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Table 1. Performance comparison of three tracking systems which is evaluated with PETS20003
data set. Ours outperforms the other two tracking systems. TRDR: tracker detection rate, FAR:
false alarm rate, DR: detection rate, FNR: false negative rate, FPR: false positive rate.

Methods TRDR FAR DR FNR FPR
Our tracker 0.93 0.09 0.93 0.07 0.18

Integrated tracker 0.81 0.15 0.81 0.19 0.22
MCJPDAF tracker 0.75 0.25 0.75 0.25 0.26

The video sequences used are with a resolution of 223× 153, a length of 3000 frames.
The number of people in a frame ranges from 6 to 9, and the pose of player changes. The
camera is shaking sometimes during the video sequence. This makes the performance
of the detector degrade dramatically, as indicated by the ROC curves shown in Fig 2.
The curve Test0 is obtained using the testing set of MIT pedestrian data set [16], and
the curve Test1 is obtained by the testing of 800 images which we collected from two
test video sequences we used here.

Our tracker can track football players and maintain their identifiers through most
of the video clip, while the MCJPDAF tracker failed within the first 20 frames, and
the integrated tracker failed in managing the identifiers of all targets, and can only
maintains two tracks less than 300 frames. In pedestrian tracking, our tracker failed in
tracking some targets in a few frames because the failure of detector in detecting these
targets lasts more than 15 frames. Some tracking results of our tracker and MCJPDAF
are presented in Fig.3, and more are available from the video files ”MTT-Football.avi”.

The number of football players in about 400 frames counted by our tracker,
MCJPDAF tracker, and the integrated tracker are presented in Fig 2. The MCJPDAF
tracker failed when the first occlusion occurs in the video. There are some errors in
the output of the integrated tracker. Furthermore, it always takes at least 5 frames for
the integrated tracker to keep up with the change of the number of the targets. While
our tracker can output the right number of players almost immediately (at most 1 ∼ 2
frames delay) through the whole video sequence.

In tracking pedestrians, the detection rate of the trained detector drops to 67% accord-
ing to our statistics. This makes tracking more difficult, and MCJPDAF fails frequently
during the tracking, while our tracker can. The bottom row of Fig 3 shows tracking re-
sults of our tracker. More results are available from the video ”MTT-pedestrians.avi”.
We found through the experiments that the number of tracks itself does not make the
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Fig. 2. Left: the ROC curves of the detector; Right:the comparison between the ground-truth and
the number of players estimated by our tracker, the MCJPDAF tracker, and the integrated tracker
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Fig. 3. Tracking performance comparison in dealing with an occlusion. Top row:results of
MCJPDAF tracker; Middle row:results of our tracker. Bottom row: pedestrian tracking results
of our algorithm. In each frame, the red box, blue box and green box is for the result of the
detector, the predicted measurement, and the final result of the tracker, respectively.

problem more difficult if they are scattered apart, but the difficulty arises when there
are many targets that are moving closely and crossing each other. Also, solving occlu-
sion problem is the most time-consuming part in our tracker, even the BP can converge
within 4 iterations.

7 Conclusion

We have proposed a hierarchical and compositional model based on an And-or graph
for joint detecting and tracking of multiple targets in video, and an inference algorithm
for the graph. The algorithm consists of three processing channels: (1) a bottom-up
channel to provide informative measurements by detectors; (2) a top-down channel to
estimate each individual target’s state with joint probabilistic data association; (3) a
context sensitive reasoning channel to refine the estimation of the joint state with be-
lief propagation. The algorithm is tested by tracking many people in several real video
sequences. Despite a constantly varying number of targets and frequent occlusion, the
proposed tracker can reliably track many people. Future work will focus on the imple-
mentations for real-time MTT applications.
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Abstract. Video-based target tracking, in essence, deals with nonsta-

tionary image streams, which is a challenging task in computer vision,

because there always appear many abnormal motions and severe occlu-

sions among the objects in the complex real-world environment. In a

statistical perspective, an abnormal motion often exhibits non-Gaussian

heavy-tailed behavior, which may take a long time to simulate. Most ex-

isting algorithms are unable to tackle this issue. In order to address it, we

propose a novel tracking algorithm(HIRPCA) based on a heavy-tailed

framework, which can robustly capture the effect of abnormal motion.

In addition, since the conventional PCA is susceptible to outlying mea-

surements in the sense of the least mean squared error minimisation,

we extend and improve the incremental and robust PCA to learn a bet-

ter representation of object appearance in a low-dimensional subspace,

contributing to improving the performance of tracking in complex en-

vironment, such as light condition, significant pose and scale variation,

temporary complete occlusion and abnormal motion. A series of experi-

mental results show the good performance of the proposed method.

1 Introduction

Target tracking in video is an important task in computer vision, and it has
many practical applications, such as automated surveillance, video indexing,
traffic monitoring and human-computer interaction [1]. In the real-world sce-
narios, there often may occur appearance variations of an object due to light
condition, significant pose and scale variation or complex occlusion. In addition,
abnormal motion of moving objects brings a more complicated heavy-tailed is-
sue, which has long been neglected by researchers. There are mainly two kinds
of this behavior: camera shot change and rapid motion.

In order to overcome those difficulties, robust subspace learning method and
heavy-tailed dynamical model are employed in this paper. First of all, to accu-
rately track object, a good representation of object appearance is rather critical.
David et al [2] adopted an incremental PCA to model the appearance informa-
tion. However, it is susceptible to outliers. In this paper, we extend and improve
the incremental and robust PCA introduced in [3], and then extend it to a ro-
bust version(IRPCA). IRPCA algorithm is capable of describing a much better
appearance. Further more, abnormal motion exhibits a type of non-Gaussian

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 172–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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heavy-tailed behavior. Conventional dynamical model can not capture this is-
sue. Hence, it is necessary to introduce a heavy-tailed dynamical model. Our
approach(HIRPCA) combines the good characteristics of both the heavy-tailed
dynamical model and IRPCA method to improve the performance of tracking.

The rest of this paper is organized as follows. In the succeeding section, we
begin with a review on several conventional tracking algorithms. Section 3 is
devoted to extending and improving both the incremental and the robust PCA
proposed by Li [3]. Then the tracker based on Bayesian inference framework
is proposed to deal with visual tracking of abnormal appearance changes and
abnormal motion. Applications of using the above methods for visual tracking
are shown in Section 5. Finally, there is a conclusion section.

2 Overview of Previous Work

Over the past several decades, a large number of algorithms for visual track-
ing have been addressed. And they can be briefly divided into two categories:
detection based method and stochastic based method.

Among the detection-based approaches, Stauffer and Grimson [4] utilized an
adaptive Gaussian mixture model to model each pixel of the image for distin-
guishing the background and foreground. A kernel-based mean shift is presented
in [5] for visual tracking of nonrigid objects. Normalized cut method is exploited
to segment the graph so as to detect the target in [6].

For the stochastic-based approaches, the particle filter technique has shown its
efficiency in tackling non-linear, non-Gaussian and multi-modality problem [7].
Okuma et al [8] developed a boosted particle filter algorithm for tracking a
varying number of non-rigid objects . In [9], Kwon and Lee proposed a track-
ing algorithm based on Wang-Landau Monte Carlo(WLMC) to deal with the
abrupt motion, which does not fully consider the drastic changes in appearance.
Meanwhile, it is likely to be a search method in the whole image space. A spa-
tial Log-Euclidean appearance model under Log-Euclidean Riemannian metric
is presented to capture both the global and local spatial layout information of
the target appearance [10] for visual tracking. Heavy-tailed models has been
used in [11], however, it is difficult to solve complex optimization by numerical
methods. Also, it is limited to tackle complex appearance variation of object.

3 Subspace Learning Method for Tracking

Subspace learning method has been widely applied for visual tracking [2,12,13].
And Principal Component Analysis(PCA) is one of the most popular sub-
space learning methods due to its powerful ability of dimensionality reduction.
But, the conventional PCA is susceptible to outliers in the sense of the least mean
squared error. In [3], only one new observation is considered in its incremental
and robust PCA, here, we extend and improve the incremental and robust PCA
to be fit for many recently acquired observation images. Also, a forgetting factor
technique is incorporated to update the eigenspace.
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3.1 The Extended and Improved Incremental PCA

The extended and improved incremental PCA is presented in this subsection by
two steps. First, the eigenbasis and the mean are efficiently updated. Second, a
forgetting factor is introduced to determine the weights on the previous observa-
tion and the new observation.

Incremental Update of Eigenbasis and Mean

For object tracking, it is necessary to adjust the appearance model of the object
online, since there are many appearance variations while tracking. Given that
a set of images A = {Y1, . . . , Yn} have been observed up to time n, we com-
pute the eigenbasis U and the sample mean ĪA to model the appearance. When
additional m images B = {Yn+1, . . . , Yn+m} are newly acquired, it is naive to
update the eigenbasis and the sample mean with singular value decomposition
(SVD) performed in batch mode.

We begin to present an incremental update by the following lemma introduced
in [2]:

Lemma 1. Let A = {Y1, . . . , Yn}, B = {Yn+1, . . . , Yn+m} be data matrices
and C = [A,B] be their concatenation. Denote the means and scatter matrices
of A, B, C as ĪA, ĪB , ĪC , and SA, SB, SC respectively. It can be shown that

ĪC =
n

n + m
ĪA +

m

n + m
ĪB , SC = SA + SB +

nm

n + m
(ĪB − ĪA)(ĪB − ĪA)

T . (1)

Denote the eigenbasis and eigenvalue matrix of observed images A as U0 and D0,
the mean-normalized recently acquired observation matrix B − ĪB = [Yn+1 −
ĪB , . . . , Yn+m − ĪB], we form the matrix:

Λ =
[√ n

n+m
U0 ·D

1
2
0 ,

√
1

n+m
(B − ĪB),

√
nm

n+m
(ĪB − ĪA)

]
. (2)

Up to time n , the covariance matrix is Σn = U0D0U
T
0 . With all the new

observations, the new covariance matrix can be expressed by

Σn+m =
1

n+m
SC =

1
n+m

(
SA + SB +

nm

n+m
(ĪB − ĪA)(ĪB − ĪA)T

)
=

n

n+m
Σn +

1
n+m

SB +
nm

(n+m)2
(ĪB − ĪA)(ĪB − ĪA)T = ΛΛT ,

(3)

And then eigen-decompose a smaller matrix Δ instead Σn+m to obtain the
eigenbasis and the eigenvalue,

Δ = ΛT · Λ ≡ UDUT . (4)

Thus, the update of eigenbasis and eigenvalue of Σn+m can be calculated re-
spectively:

Uupdate = Λ · U Dupdate = D. (5)
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Forgetting Factor

For accurate visual tracking, it is reasonable to focus more on recently acquired
images than previous observations. As time progresses, the appearance of object
changes all the time. We have to update the appearance in time by introducing
forgetting factor, which is similar to temporal weights along the observation. It
is quite straightforward to incorporate the forgetting factor f ∈ (0, 1] into the
proposed incremental algorithm to update the mean and eigenbasis as fellows:

ĪC =
fn

fn+m
ĪA +

m

fn+m
ĪB, (6)

Λ =
[
f

√
n

n+m
U0 ·D

1
2
0 ,

√
1

n+m
(B − ĪB),

√
nm

n+m
(ĪB − ĪA)

]
, (7)

where if f < 1, they will down-weight the contribution of previous observations.

3.2 Robust PCA

For the mean-normalized matrix B0 = B − ĪB , we define the reconstruction
error matrix:

γ = UUTB0 −B0, (8)
then the traditional PCA can be computed as a least squares problem:

min ‖γ‖2 = min
∑
i,j

γ2
i,j . (9)

Since the sum of squares is susceptible to outliers, a robust function ρ(γ) is
introduced to replace it:

min
∑
i,j

ρ(γi,j). (10)

Differentiating Eq.(10) by θk, the parameters to be estimated, i.e. the elements
of U , we have ∑

i,j

ω(γi,j)γi,j
∂γi,j

∂θk
= 0. k = 1, 2, · · · , (11)

where ω(t) is a weight function, defined as ω(t) = ∂ρ(t)/∂t
t . Note that, for a

fixed weight function ω(t), Eq.(11) is the solution of the least squares problem:

min
∑
i,j

ω(γi,j)γ2
i,j . (12)

Thus, a new PCA problem can be formulated as:

min
∑
i,j

‖UUT B̂i,j − B̂i,j‖2, (13)

where B̂i,j ≡
√
ω(γi,j)B0

i,j . Here, we use a Cauchy weight function ω(t) for
robust analysis, whereas least squares’s weight is a constant.

ω(t) =
1

1 + (t/c)2
, (14)

where parameter c determines the convexity of the function.
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Combining the robust analysis with the incremental PCA proposed above, the
incremental version of robust PCA (IRPCA)algorithm is presented in
Algorithm 1.

Algorithm 1. The incremental Algorithm of Robust PCA

Input: The SVD of observed images and recently acquired observations.

Output: The SVD of all the observation and the mean update.

1. For all new observations B Do
2. Update the mean vector by Eq.(6);

3. Compute the residual matrix γ by Eq.(8);

4. Compute the weight ω(γi,j) by Eq.(14) for each element of the residual matrix γ;

5. Form matrix Λ by Eq.(7), replacing B − ĪB by B̂ ≡ (B̂i,j) = (
√

ω(γi,j)B
0
i,j);

6. Eigen-decompose matrix Δ by Eq.(4) to obtain eigenbasis U and eigenvalue D;

7. Update the eigenbasis and eigenvalue by Eq.(5).

8. End for

State

Observation

Xt-1 Xt Xt+1

y yt-1 t  yt+1

 
|Xt-1XtP( )

y |XttP( )

Fig. 1. State space model

4 Bayesian Inference for Visual Tracking

The visual tracking problem is usually considered as a temporal Markov progress
(Fig. 1). Given a set of observed images Y1:t = {Y1, . . . , Yt} up to time t, by
Bayes’s formula, the posterior probability can be expressed as:

p(Xt|Y1:t) ∝ p(Yt|Xt)
∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1, (15)

where p(Xt|Xt−1) represents the dynamical model, and p(Yt|Xt) is the obser-
vation model (likelihood function). Both these two models determine the whole
tracking process. We utilize the particle filter technique to obtain the MAP es-
timate over the N samples of the object’s state at each time t

XMAP
t = argmax

Xn
t

p(Xn
t |Y1:t) for n = 1, . . . , N, (16)

where XMAP
t represents the best estimate used to model the current state with

the given observation.

4.1 Heavy-Tailed Dynamical Model

Since the abnormal motion exhibits non-Gaussian behavior, conventional Brow-
nian motion often fails to track. A heavy-tailed dynamical model is exploited to
represent the transition between consecutive frames:
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p(Xt|Xt−1) = MS(Xt;Xt−1, Ω, n). (17)

Where MS(X,μ,Ω, n) denotes a multivariate student distribution with mean μ,
covariance matrix Ω, and degrees of freedom n, which is one of the most impor-
tant heavy-tailed distributions(fall off slowly), having more powerful ability of
describing abnormal issue than Gaussian. Xt = (xt, yt, ηt, st, αt, φt), where the
six parameters respectively denote the x, y translations, the rotation angle, the
scale, the aspect ratio and the skew direction at time t, and they are assumed
to be independent.

4.2 IRPCA-Based Observation Model

Many features of object have been utilized to learn a good representation of the
object’s appearance. In this paper, we employ IRPCA algorithm proposed above
to model the appearance information of the object every several frames. Assume
that the eigenbasis and the mean are Ut and μt at time t, respectively, we can
briefly define the likelihood function p(Yt|Xt) by the reconstruction error norm:

p(Yt|Xt) ∝ exp(−‖UtU
T
t (Yt − μt)− (Yt − μt)‖2/2σ2), (18)

where σ is a parameter. The smaller the reconstruction error norm, the larger
the likelihood function. Up to now, our novel tracking algorithm(HIRPCA) has
been presented.

5 Implementation and Experiments

In order to evaluate the performance of the proposed method, we employ six
videos totally more than 3000 frames in different complex environments. These
videos almost cover all the common difficulties for visual tracking, such as small
target, low-resolution image, large illumination variation, complex noise, tempo-
rary severe occlusion, abrupt motion, camera shot change and significant pose
variation. Implemented in MATLAB, the HIRPCA can efficiently and accurately
track target at almost 2 fps for 320×240 videos on a Pentium 4 3GHz computer.
Note that our code is not optimized.

We begin with the results of HIRPCA tracker, and then compare it with three
state-of-the-art tracking algorithm: IPCA[2], Mean Shift[5] and WSL[14] by 600
samples(N = 600).

5.1 Experimental Results

First, our tracker is applied to a video of a vehicle driving in a complex night
environment(Fig. 2), and the size of the target is only about 30×30, much smaller
than the image. HIRPCA can accurately track the vehicle over the whole low-
resolution video.

The second experiment is conducted to a video, where a vehicle moves under-
neath an overpass and trees. In the whole video, the light condition has largely



178 D. Wang, C. Zhang, and P. Hao

Fig. 2. A small vehicle moving at night with large illumination changes

Fig. 3. A vehicle moving underneath an overpass and trees in a complex noise and

varying illumination condition

changed at times. Besides, while the vehicle goes through the overpass(between
frame #190 and frame #234), there is complex noise as shown in Fig. 3(especially
frame #209). HIRPCA is able to follow the vehicle very well owing to the incre-
mental algorithm of robust PCA.

The third image sequence, shown in Fig. 4, a hockey player runs rapidly
with abnormal motion. At the same time, there are many temporary severe
occlusions between frame #38 and frame #45, and those hockey players are
rather similar to each other. The HIRPCA based on heavy-tailed motion is
capable of capturing the abnormal issue, while the incremental PCA efficiently
describes the appearance of object.

In the forth experimental video, a doll moving in different pose, scale, and
lighting conditions is used to test the validity and robustness of HIRPCA as
shown in Fig. 5. Despite it experiences significant pose variation (#66, #102,
#271, #384, #614, #920, #1091, #1149), scale change(#200, #212, #227) and
varying illumination(#545, #772, #787), HIRPCA performs well.

The results of these four videos also empirically validate that our HIRPCA
has a powerful ability of modeling the appearance of object nearly in arbitrary
environment.
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Fig. 4. A hockey player rapidly moving with temporary severe occlusion among many

similar objects

Fig. 5. An animal doll moving with significant pose, lighting and scale variation

5.2 Qualitative Comparison

Fig. 6 and Fig. 7 show the comparison for tracking objects in the two camera
videos. HIRPCA successfully tracked the target, as robustly as WSL [14], while
IPCA [2] tracker fails after frame #614 and #323, respectively, as a result of a
combination of significant pose and illumination changes. Thus, we can say that
our robust PCA has a more compact low-dimensional representation of objects,
which can efficiently improve the performance of visual tracking. On the other
hand, Mean Shift [5] frequently fails to track(Fig. 6: #75, #274, #358 and Fig. 7:
#160, #309), because appearance model of this tracker does not update in time.

Fig. 8 presents the tracking comparison in the camera shot change case. Video
sequence with camera shot change is a new interested difficulty for visual tracking
[9], where a sampling method has been used. Our tracker based on heavy-tailed
dynamical model can partly solve it (#1 → #2 and #248 → #249) whereas
IPCA [2] can not accurately track(#249). Even it fails to track when motion is
smooth(#325) as a result of error accumulation.
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Fig. 6. Tracking comparison between our tracker (row 1) and IPCA [2] (yellow box),

the WSL [14] (highlighted ellipse) and the Mean Shift [5] (green dashed box) (row 2)

with a doll video sequence

Fig. 7. Tracking comparison between our tracker (row 1) and IPCA [2] (yellow box),

the WSL [14] (highlighted ellipse) and the Mean Shift [5] (green dashed box) (row 2)

with a large illumination change video sequence

Fig. 8. Tracking comparison between our tracker (row 1) and IPCA [2] (row 2) with

a camera shot change video sequence provided by Kwon [9]

6 Conclusions and Future Work

In this paper, we extend and improve the incremental and robust PCA. Based
on the proposed HIRPCA method and heavy-tailed dynamical model, a unified
visual tracking framework is built to overcome several types of tracking difficul-
ties, small target, low-resolution image, significant pose, scale and illumination



Heavy-Tailed Model for Visual Tracking via Robust Subspace Learning 181

variation, complex noise, temporary severe occlusion, abrupt motion, camera
shot change and so on. The experiments have demonstrated that our tracker
performs very well. However, since only local spatial information is considered,
our tracker can not completely solve the tracking problem for video sequences
with camera shot change. In future, we will focus on other techniques using
global spatial information to capture abnormal motion.
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Abstract. Video retargeting aims at transforming an existing video in order to
display it appropriately on a target device, often in a lower resolution, such as
a mobile phone. To preserve a viewer’s experience, it is desired to keep the im-
portant regions in their original aspect ratio, i.e., to maintain them distortion-
free. Most previous methods are susceptible to geometric distortions due to the
anisotropic manipulation of image pixels. In this paper, we propose a novel ap-
proach to distortion-free video retargeting by scale-space spatiotemporal saliency
tracking. An optimal source cropping window with the target aspect ratio is
smoothly tracked over time, and then isotropically resized to the retargeted dis-
play. The problem is cast as the task of finding the most spatiotemporally salient
cropping window with minimal information loss due to resizing. We conduct the
spatiotemporal saliency analysis in scale-space to better account for the effect
of resizing. By leveraging integral images, we develop an efficient coarse-to-fine
solution that combines exhaustive coarse and gradient-based fine search, which
we term scale-space spatiotemporal saliency tracking. Experiments on real-world
videos and our user study demonstrate the efficacy of the proposed approach.

1 Introduction

Video retargeting aims at modifying an existing video in order to display it appropri-
ately on a target display of different size and/or different aspect ratio [1,2,3]. The vast
majority of the videos captured today have 320× 240 pixels or higher resolutions and
standard aspect ratio 4:3 or 16:9. In contrast, many mobile displays have low resolution
and non-standard aspect ratios. Retargeting is hence essential to video display on these
mobile devices. Recently, video retargeting has been applied in a number of emerging
applications such as mobile visual media browsing [3,4,5,6], automated lecture ser-
vices [7], intelligent video editing [8,9], and virtual directors [10,7].

In this work, we focus on video retargeting toward a smaller display, such as that of a
mobile phone. Directly resizing a video to the small display may not be desirable, since
by doing so we may either distort the video scene, which is visually disturbing, or pad
black bars surrounding the resized video, which wastes precious display resources. To
bring the best visual experiences to the users, a good retargeted video should preserve
as much the visual content in the original video as possible, and it should ideally be
distortion-free. To achieve this goal, we need to address two important problems: 1)
how to quantify the importance of visual content? 2) How to preserve the visual content
while ensuring distortion-free retargeting?

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 182–192, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Retargeting system overview: scale-space spatiotemporal saliency map (b) is calculated
from consecutive n video frames (a). A minimal information loss cropping window with the
target aspect ratio is identified via smooth saliency tracking (c), and the cropped image (d) is
isotropically scaled to the target display (e). This example retargets 352×288 images to 100×90.

Previous works [11,12,1,4,2] approach to the first problem above by combining mul-
tiple visual cues such as image gradient, optical flow, face and text detection results
etc. in an ad hoc manner to represent the amount of content information at each pixel
location (a.k.a. the saliency map). It is desirable to have a simple, generic and prin-
cipled approach to accounting for all these different visual information. In this paper,
we improve and extend the spectrum residue method for saliency detection in [13] to
incorporate temporal and scale-space information, and thereby obtain a scale-space
spatiotemporal saliency map to represent the importance of visual content.

Given the saliency map, retargeting should preemptively preserve as many salient
image pixels as possible. Liu and Gleicher [1] achieve this by identifying a cropping
window which contains the most visual salient pixels and then anisotropically scale it
down to fit with the retargeting display (i.e., allowing different scaling in horizontal
and vertical directions). The cropping window is restricted to be of fixed size within
one shot, and the motion of the cropping window can only be one of the three types,
i.e., static, horizontal pan, or a virtual cut. It can not perform online live retargeting
since the optimization must be performed at the shot level. Avidan and Shamir [11]
use dynamical programming to identify the best pixel paths to perform recursive cut
or interpolation for image resizing. Wolf et. al [2] solve for a saliency aware global
warping of the source image to the target display size, and then resample the warped
image to the target size. Nevertheless, it is not uncommon for all the aforementioned
methods to introduce geometry distortions to the video objects due to the anisotropic
manipulation of the image pixels.

In this paper, we propose to smoothly track an optimal cropping window with the tar-
get aspect ratio across time, and then isotropically resize it to fit with the target display.
Our approach is able to perform online retargeting. We propose an efficient coarse-
to-fine search method, which combines coarse exhaustive search and gradient based
fine search, to track an optimal cropping window over time. Moreover, we only allow
isotropic scaling during retargeting, and therefore guarantee that the retargeted video is
distortion-free. An overview of our retargeting system is presented in Fig. 1.

There are two types of information loss in the proposed retargeting process. First,
when some regions are excluded due to cropping, the information that they convey are
lost. We term this the cropping information loss. Second, when the cropped image is
scaled down, details in the high frequency components are thrown away due to the low
pass filtering. This second type of loss is called the resizing information loss. One may
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always choose the largest possible cropping window, which induces the smallest crop-
ping information loss, but may potentially incur huge amount of resizing information
loss. On the other hand, one can also crop with exactly the target display size, which
is free of resizing information loss, but may result in enormous cropping information
loss. Our formulation takes both of them into consideration and seeks for a trade-off
between the two. An important difference between our work and [1] is that the resiz-
ing information loss we introduce is content dependent, which is based on the general
observation that some images may be downsized much more than some other images
without significantly degrading their visual quality. This is superior to the naive content
independent scale penalty (a cubic loss function) adopted in [1].

The main contributions of this paper therefore reside in three-fold: 1) we propose a
distortion-free formulation for video retargeting, which yields to a problem of scale-
space spatiotemporal saliency tracking. 2) By leveraging integral images, we develop
an efficient solution to the optimization problem, which combines a coarse exhaustive
search and a novel gradient-based fine search for scale-space spatiotemporal saliency
tracking. 3) We propose a computational approach to scale-space spatiotemporal saliency
detection by joint frequency, scale space, and spatiotemporal analysis.

2 Distortion-Free Video Retargeting

2.1 Problem Formulation

Consider an original video sequence with T frames V = {It, t = 1, · · · , T }. Each
frame is an image array of pixels It = {It(i, j), 0 ≤ i < W0, 0 ≤ j < H0}, where W0
and H0 are the width and height of the images. For retargeting, the original video has
to be fit into a new display of size Wr ×Hr. We assume Wr ≤W0, Hr ≤ H0.

To ensure that there is no distortion during retargeting, we allow only two operations
on the video – cropping and isotropic scaling. LetW = {(x, y), (W,H)} be a rectangle
region in the image coordinate system, where (x, y) is the top-left corner, and W and
H are the width and the height. The cropping operation on frame It can be defined
as CW(It) � {It(m + x, n + y), 0 ≤ m < W, 0 ≤ n < H}, where m and n are
the pixel index of the output image. The isotropic scaling operation is parameterized
with a single scalar variable s (for scaling down, 1.0 ≤ s ≤ smax), i.e., Ss(It) �
{It(s · m, s · n), s · m < W0, s · n < H0}. Distortion-free video retargeting can be
represented as a composite of these two operations on all the video frames such that
Ît(st, xt, yt) = Sst(CWt(It)), t = 1, · · · , T , whereWt = {(xt, yt), (stWr, stHr)} is
the cropping window at frame It. We further denote V̂ = {Ît, t = 1, · · · , T } to be the
retargeted video, and P � {(st, xt, yt), t = 1, · · · , T } to be the set of unknown scaling
and cropping parameters, where P ∈ R = {st, xt, yt|1.0 ≤ st ≤ smax, 0 ≤ xt <
W0 − stWr, 0 ≤ yt < H0 − stHr}.

Both cropping and scaling will lead to information loss from the original video. We
propose to exploit the information loss with respect to the original video as the cost
function for retargeting, i.e.:

P∗ = arg max
P∈R

L(V , V̂), (1)
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where L(V , V̂) is the information loss function, which shall be detailed in Sec. 2.2.
Since ensuring the smooth transition of the cropping and resizing parameters is essential
to the visual quality of the retargeted video, we also introduce a few motion constraints
that shall be included when optimizing Eq. (1) in Sec. 2.3.

2.2 Video Information Loss

The cropping and resizing information loss are caused by very different reasons, hence
they can be computed independently. We represent the video information loss function
with two terms, i.e.,

L(V , V̂) = Lc(V , V̂) + λLr(V , V̂), (2)

where λ is the control parameter to obtain a tradeoff between the cropping information
loss Lc and the resizing information loss Lr, which are detailed as follows.

Cropping information loss. We compute the cropping information loss based on spa-
tiotemporal saliency maps. We assume in this section such a saliency map is available
(see Sec. 4 for our computation model for the spatiotemporal saliency map).

For frame It, we denote the per-pixel
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Fig. 2. Resizing information loss curve

saliency map as {St(i, j), 0 ≤ i < W0,
0 ≤ j < H0}. Without loss of general-
ity, we assume that the saliency map is
normalized such that

∑
ij St(i, j) = 1.

Given Wt, the cropping information loss
at time instant t is defined as the summa-
tion of the saliency values of those pixels
left outside the cropping window, i.e.,

Lc(Wt) = 1−
∑

(i,j)∈Wt

St(i, j). (3)

The cropping information loss between the original video and the retargeted video is
thereby defined as Lc(V , V̂) =

∑T
t=1 Lc(Wt) = T −

∑T
t=1

∑
(i,j)∈Wt

St(i, j).

Resizing information loss. The resizing information loss Lr(V , V̂) measures the
amount of details lost during scaling, where low-pass filtering is necessary in order to
avoid aliasing in the down-sampled images. For a given frame It, the larger the scaling
factor st, the more aggressive the low-pass filter has to be, and the more details will be
lost due to scaling. In the current framework, the low-pass filtered image is computed as
Ist = Gσ(st)(It), where Gσ(·) is a 2D Gaussian low-pass filter with isotropic covariance
σ, which is a function of the scaling factor st, i.e., σ(st) = log2(st), 1.0 ≤ st ≤ smax.
The resizing information loss is defined as the squared error between the cropped im-
age in the original resolution and its low-pass filtered image before down-sampling, i.e.,

Lr(Wt) =
∑

(i,j)∈Wt

(It(i, j)− Ist(i, j))
2. (4)

The image pixel values are normalized to be in [0, 1] beforehand. For the whole video
sequence, we have Lr(V , V̂)=

∑T
t=1 Lr(Wt) =

∑T
t=1

∑
(i,j)∈Wt

(It(i, j)−Ist(i, j))
2.
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Fig. 2 presents the resizing information loss curve calculated for the cropping window
presented in Fig. 1(c) using Eq. 4. As we expected, the loss function increases mono-
tonically with the increase of the scaling factor.

2.3 Constraints for Video Retargeting

If there is no other additional cross-time constraints, Eq. 1 can indeed be optimized
frame by frame. However, motion smoothness constraints of the cropping window, for
both scaling and translation, is very important to produce visually pleasant retargeted
video. To ease the optimization, we do not model motion constraints directly in our
cost function. Instead we pose additional smoothness constraints on the solution space
ofP at each time instant t, i.e., the optimalWt is constrained by the optimal solutions of
Wt−1 andWt−2. By doing so, an additional benefit is that retargeting can be performed
online. Mathematically, we have∣∣∣∣∂st

∂t

∣∣∣∣ ≤ vz
max,

∥∥∥∥(
∂xt

∂t
,
∂yt

∂t
)
∥∥∥∥ ≤ vmax,

∣∣∣∣∂2st

∂t2

∣∣∣∣ ≤ az
max,

∥∥∥∥(
∂2xt

∂t2
,
∂2yt

∂t2
)
∥∥∥∥ ≤ amax (5)

where vz
max, vmax, az

max and amax are the maximum zooming and motion speed, and the
maximum zooming and motion acceleration during cropping and scaling, respectively.
Such first and second order constraints ensure that the view movement of the retar-
geted video is small, and ensure that there is no abrupt change of motion or zooming
directions. They are both essential to the aesthetics of the retargeted video. Additional
constraints may be derived from rules suggested by professional videographers [7]. It
is our future work to incorporate these professional videography rules.

3 Detecting and Tracking Salient Regions

We develop a two stage coarse-to-fine strategy for detecting and tracking salient regions,
which is composed of an efficient exhaustive coarse search, and a gradient-based fine
search as well. Since this two stage search process is performed at each time instant, to
simplify the notation and without sacrificing clarity, we shall leave out the subscript t
for some equations in the rest of this section.

Both search processes are facilitated by integral images, we employ the follow-
ing notations for the integral image [14] of the saliency image S(x, y) and its partial
derivatives, i.e., T (x, y) =

∫ x

0

∫ y

0 S(x, y)dxdy, Tx(x, y) = ∂T
∂x =

∫ y

0 S(x, y)dy, and
Ty(x, y) = ∂T

∂y =
∫ x

0 S(x, y)dx. All these integral images can be calculated very effi-
ciently by accessing each image pixel only once. We further denote x̂(x, s) = x+sWr,
and ŷ(y, s) = y+ sHr. Using T (x, y), the cropping information loss can be calculated
in constant time, i.e., Lc(s, x, y) = 1− (T (x̂, ŷ) + T (x, y))− (T (x̂, y) + T (x, ŷ)).

The calculation of the resizing information loss can also be speeded up greatly using
integral images. We introduce the squared difference imageDs(x, y) for scaling by s as
Ds(x, y) = (I(x, y) − Is(x, y))2. We then also define the integral images of Ds(x, y)
and its partial derivatives, which are denoted as Ds(x, y), Ds

x(x, y), and Ds
y(x, y). We

immediately have Lr(s, x, y) = (Ds(x̂, ŷ)+Ds(x, y))− (Ds(x̂, y)+Ds(x, ŷ)). In run
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time, we keep a pyramid of the integral images of Ds(x, y) for multiple s. Since both
Lc and Lr can be calculated in constant time, we are able to afford the computation of
an exhaustive coarse search over the solution space for the optimal cropping window.

Once we have coarsely determined the location of a cropping window W , we fur-
ther exploit a gradient-based search to refine the optimal cropping window. By sim-
ple chain rules, it is easy to figure out that ∂L

∂a = Ta(x̂, y) + Ta(x, ŷ) − Ta(x, y) −
Ta(x̂, ŷ) + λ[Ds

a(x̂, y) + Ds
a(x, ŷ) − Ds

a(x, y) − Ds
a(x̂, ŷ)], for a = x or a = y, and

∂L
∂s = A(x, y, s)Wr +B(x, y, s)Hr + λ∂Lr

∂s , where A(x, y, s) = Tx(x̂, y)− Tx(x̂, ŷ),
B(x, y, s) = Ty(x, ŷ)−Ty(x̂, ŷ),

∂Lr(x,y,s)
∂s = Lr(x,y,s+�s)−Lr(x,y,s−�s)

2�s is evaluated
numerically. Then we perform a gradient descent step with backtracking line search to
refine the optimal cropping window. Note that the gradient descent step is also very
efficient because all derivatives can be calculated very efficiently using integral images
and its partial derivatives. This two-step coarse-to-fine search ensures us to obtain the
optimal cropping window very efficiently.

The feasible solutions Ωt = {[xmin
t , xmax

t ], [ymin
t , ymax

t ], [smin
t , smax

t ]} are de-
rived from Eqs. 5 and strictly reenforced in tracking. DenoteW∗

t−1 = (x∗t−1, y
∗
t−1, s

∗
t−1)

be the optimal cropping at the time instant t− 1, and let the optimal cropping window
after these two stage search process at time instant t be Ŵt, we perform an exponential
moving average scheme to further smooth the parameters of the cropping window, i.e.,
W∗

t = αŴt + (1− α)W∗
t−1. We use α = 0.7 ∼ 0.95 in the experiments. It in general

produces visually smooth and pleasant retargeted video, as shown in our experiments.

4 Scale-Space Spatiotemporal Saliency

We propose several extensions of the spectrum residue method for saliency detection
proposed by Hou and Liu [13]. We refer the readers to [13] for the details of their al-
gorithm. Fig. 4(a) presents one result of saliency detection using the spectrum residue
method proposed in [13]. On one hand we extend the spectrum residue method tem-
porally, and on the other hand, we extend it in scale-space. The justification of our
temporal extension may largely be based on the statistics of optical flows in natural im-
ages revealed by Roth and Black [15], which shares some common characteristics with
the natural image statistics. It is also revealed by Hou and Liu [13] that when apply-
ing the spectrum residue method to different scales of the same image, different salient
objects of different scales will pop out. Since for retargeting, we would want to retain
salient object across different scales, we aggregate the saliency results from multiple
scales together to achieve that.

Moreover, we also found that it is the phase spectrum [16] which indeed plays the
key role for saliency detection. In other words, if we replace the magnitude spectrum
residue with constant 1, the resulted saliency map is almost the same as that calculated
from the spectrum residue method. We call such a modified method to be the phase
spectrum method for saliency detection. The difference of the resultant saliency maps is
almost negligible but it saves significant computation to avoid calculating the magnitude
spectrum residue, as we clearly demonstrate in Fig. 4. Fig. 4(a) is the saliency map
obtained from the spectrum residue and Fig. 4(b) is the saliency map produced from the
phase spectrum only. Note the source image from which these two saliency maps are
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Fig. 3. Scale-space spatiotemporal saliency detection

generated is presented as the top image in Fig. 3(a). The difference is indeed tiny. This
is a common phenomenon that has been verified constantly in our experiments.

More formally, let Vn
t (i, j, k) = {It−n+1(i, j), It−n+2(i, j), . . . , It(i, j)} be a set

of n consecutive image frames and k indexes the image. Denote f = (f1, f2, f3) as
the frequencies in the fourier domain, where (f1, f2) represents spatial frequency and
f3 represents temporal frequency. The following steps are performed to obtain the spa-
tiotemporal saliency map for Vn

t :

1. Let Θ(f) = Pha(F[Vn
t ]) be the phase spectrum of the 3D FFT of Vn

t .
2. Perform the inverse FFT and smoothing, i.e.,St(i, j, k)=g(i, j)∗F−1[exp{jΘ(f)}]2.

The smoothing kernel g(i, j) is applied only spatially, since the temporal information
will be aggregated.

3. Combine S(i, j, k) to be one single map, i.e., St(i, j) = 1
n

∑n
k=1 St(i, j, k)

The above steps present how to compute the spatiotemporal saliency map at a single
scale. We aggregate the visual saliency information calculated from multiple scales
together, this leads to the scale-space spatiotemporal saliency. More formally, let Vn

t (s)
be the down-sampled version of Vn

t by a factor of s, i.e., each image in Vn
t is down-

sampled by a factor of s in Vn
t (s). Denote Ss

t (i, j) as the spatiotemporal saliency image
calculated from Vn

t (s) based on the algorithm presented above. We finally aggregate the
saliency map across different scales together, i.e.,St(i, j) = 1

ns

∑
s S

s
t (i, j), where ns

is the total number of levels of the pyramid. Fig. 3 presents the results of using the
proposed approach to scale-space spatiotemporal saliency detection. The current image
frame is the top one showing in Fig 3(a). We highlight the differences between the
scale-space spatiotemporal saliency image (Fig. 3(c)) and the saliency maps (Fig. 4(a)
and (b)) produced by the spectrum residue method [13] and the phase spectrum method,
using color rectangles.

The proposed method successfully identified the right arm (the red rectangle) of the
singer as a salient region, while the saliency map in Fig. 4(a) and (b) failed to achieve
that. The difference comes from the scale-space spatiotemporal integration (the arm
is moving) of saliency information. Moreover, in the original image, the gray level of
the string in the blue rectangle is very close to the background. It is very difficult to
detect its saliency based only on one image (Fig. 4 (b)). Since the string is moving, the
proposed method still successfully identified it as a salient region (Fig. 3 (c)).

5 Experiments

The proposed approach is tested on different videos for various retargeting purpose,
including both standard MPEG-4 testing videos and a variety of videos downloaded
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Fig. 4. Saliency detection using (a) spectrum
residue [13], and (b) phase spectrum. The
source image is shown in Fig. 3(a).

Fig. 5. Left column: the source image and its
saliency map. Right column: the progress of the
gradient search.

Fig. 6. Retargeting from 368 × 240 to 132 × 120 for movie video “300”. The first four columns
present the saliency tracking results and the corresponding saliency map. The fifth column shows
our retargeting results. The sixth column shows the results by directly scaling.

from the Internet. All experiments are running with λ = 0.3 in Eq.2, which is empiri-
cally determined to achieve a good tradeoff. Furthermore, n = 5 video frames and an
ns = 3 level pyramid are used to build the scale-space spatiotemporal saliency map.
We recommend the readers to look into the supplemental video for more details of our
experimental results.

Spatiotemporal saliency tracking. To better understand the proposed approach to scale-
space spatiotemporal saliency detection and tracking, we show a retargeting example
on a video sequence from the battle scene of the movie “300”. The video sequence
has 1695 frames in total, we present some sample results in Fig. 6. As we can clearly
see, the proposed saliency detection and tracking algorithms successfully locked onto
the most salient regions. The fifth column of Fig. 6 presents our retargeting results. For
comparison, the sixth column of Fig. 6 shows the results of directly resizing the original
image frame to the target size. It is clear that in our retargeting results, the objects look
not only larger but also keep their original aspect ratios even though the image aspect
ratio changed from 1.53 to 1.1. To demonstrate the effectiveness of the gradient-based
refinement step, we present the intermediate results of the gradient search at frame
#490 in in Fig. 5.

Content-aware v.s. content independent resizing cost. One fundamental difference be-
tween our approach and Liu and Gleicher [1] is that our resizing cost (Eq. 4) is depen-
dent on the content of the cropped image. In contrast Liu and Gleicher only adopt an
naive cubic loss (s−1.0)3 to penalize large scaling. To better understand the difference,
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Fig. 7. Retargeting MPEG-4 standard test se-
quence “tennis”. From left to right: first
column–our approach, second column– Wolf
et. al[2]’s method (by courtesy), third column–
direct scaling.
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Fig. 8. The scaling factors associated with each
video frame of the retargeting video “300”.
Top: content aware; Bottom: content blind.

Fig. 9. Retargeting MPEG-4 standard test se-
quence “Akiy” to be half of its original size: (a)
direct scaling; (b) proposed approach; (c) Wolf
et. al [2] (by courtesy)

we implemented a different retargeting system by replacing Eq. 4 with the naive cubic
loss. The other steps remain the same. Therefore the differences in results are solely
decided by the two different resizing costs. We call them content aware scheme and
content blind scheme, respectively.

We analyze the behaviors of the two methods based on the retargeting results of
“300” video. Both cost values are normalized to be between 0 and 1 for fair comparison.
For the content blind scheme, the λ is empirically determined on this video to be 0.2 for
the best retargeting result. All other parameters are the same for the two methods. The
curves in the upper and lower part of Fig. 8 present the scaling parameters from content
aware resizing, and content blind resizing across the video, respectively.

It is clear that the content blind loss strongly favors small scaling. This bias may
be very problematic because of the potentially large cropping information loss. In con-
trast, the content aware resizing does not have such a bias and also shows much larger
dynamic range. This indicates that it is more responsive to capture the video content
change. To achieve good results, we find that for the content blind scheme, the λ needs
to be carefully tuned for each video, and its variance is large across different videos. In
contrast, for the content aware scheme, a constant λ = 0.3 usually works well.

Video re-targeting results. We tested the proposed approach in a wide variety of long
range video sequences for different retargeting tasks. Here we only present the retarget-
ing result on the standard MPEG-4 test video sequence “tennis”. (More experiments
are described in [17].) We re-target the source video to 176 × 240. The retargeted
results from our approach on frame #10 and #15 are shown in the first column of
Fig. 7. For comparison, we also present the retargeting results from Wolf et. al[2]1,
and the results by direct scaling, in the second and third columns of Fig. 7, respec-
tively. Due to the nonlinear warping of image pixels in Wolf et. al’s method [2], visually

1 We thank Prof. Lior Wolf and Moshe Guttmann for their result figures.
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disturbing distortion appears, as highlighted by the red circles in Fig. 7. In Fig. 9, we
further compare our results with Wolf et. al [2] on the standard MPEG-4 testing video
“Akiy”. The task is to re-target the original video down to half of its original width
and height. As we can clearly observe, the retargeted result from Wolf et. al [2] (Fig. 9
(c)) induces heavy nonlinear distortion, which makes the head size of the person in the
video to be unnaturally big compared to her body size. In contrast, the result from the
proposed approach keeps the original relative size and distortion free. Moreover, com-
pared with the result from the direct scaling method in Fig. 9 (a), our result shows more
details of the broadcaster’s face when presented in a small display.

More experiments, including the details of a user study with 30 subjects, can be
found in our Tech Report [17].

6 Conclusion and Future Work

We proposed a novel approach to distortion-free video retargeting by scale-space spa-
tiotemporal saliency tracking. Extensive evaluation on a variety of real world videos
demonstrate the good performance of our approach. Our user study also provide strong
evidences that users prefer the retargeting results from the proposed approach. Future
works may include further investigating possible means of integrating more profes-
sional videography rules into the proposed approach.
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Abstract. This paper presents a novel method of on-line object track-

ing with the static and motion saliency features extracted from the video

frames locally, regionally and globally. When detecting the salient object,

the saliency features are effectively combined in Conditional Random

Field (CRF). Then Particle Filter is used when tracking the detected

object. Like the attention shifting mechanism of human vision, when

the object being tracked disappears, our tracking algorithm can change

its target to other object automatically even without re-detection. And

different from many other existing tracking methods, our algorithm has

little dependence on the surface appearance of the object, so it can de-

tect any category of objects as long as they are salient, and the tracking

is robust to the change of global illumination and object shape. Exper-

iments on video clips of various objects show the reliable results of our

algorithm.

1 Introduction

Object detection and tracking is an essential technology used in computer vi-
sion system to actively sense the environment. As the robotic and unmanned
technology develops, automatically detecting and tracking interesting objects
in unknown environment with little prior knowledge becomes more and more
important.

The main challenge of object tracking is the unpredictable of the environment
which always makes it hard to estimate the state of the object. The changing of
illumination, clutter background and the occlusion also badly affects the tracking
robust. In order to overcome these difficulties, a variety of tracking algorithms
have been proposed and implemented. The representative ones include conden-
sation [3], meanshift [4], and probabilistic data association filter [5] and so on.

Generally speaking, most of the tracking algorithm has two major compo-
nents: the representation model of the object and the algorithm framework. The
existing frameworks can be classified into two categories: deterministic meth-
ods and stochastic methods. Deterministic methods iteratively search for the
optimistic solution of a similarity cost function between the template and the
current image. The cost functions widely used are the sum of squared differ-
ences (SSD) between the template and the current image [6] and kernel based

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 193–203, 2010.
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cost functions [4]. In contrast, the stochastic methods use the state space to
model the underlying dynamics of the tracking system and view tracking as a
Bayesian inference problem. Among them, the sequential Monte Carlo method,
also known as particle filter [7] is the most popular approach.

There are many models to represent the target including image patch [6],
color histogram [4] and so on. However, color based models are too sensitive
to the illumination changes and always confused with background colors. The
contour based features [8][9] are more robust to illumination variation but they
are sensitive to the background clutter and are restricted to simple shape models.

When human sense the environment, they mostly pay attention to the objects
which are visually salient. Saliency values the difference between object and
background, they are not depend on the objects intrinsic property and is robust
to illumination and shape changes. One of the representative visual attention
approaches is visual surprising analysis [10] which proves that static and motion
features are both important to video attention detection. Itti [11] has proposed a
set of static features in his saliency model. More static features are proposed these
years [1]. For video series, [2] introduces an method to detect salient object in
video series, which combines static and motion features in Dynamic Conditional
Random Field (DCRF) under the constraint of global topic model. This approach
achieves good results on many challenging videos, but it needs the whole video
series to compute the global topic model, which makes it can only be used off-
time.

In this paper, we elaborate static and motion saliency features into the frame-
work of particle filter to formulate an online salient object tracking method.
When computing the color spatial-distribution feature, we use a graph-based
segmentation algorithm [12] as the color clustering method instead of Gaussian
Mixture Model (GMM) which is used in [1]. Sparse optical flow [13] is used to
get motion field for motion saliency feature computing. All these features are
adaptively selected and combined.

The main contributions of our approach are summarized as follows. First, we
propose a novel method to tracking salient object online, which is robust to the
illumination and shape changes, it can also automatically rebuild attention to
the object being tracked disappears. Second, a segmentation based feature is
proposed as the global static feature which is more effective than the feature
based on GMM.

This paper is organized as follows. We introduce the framework of our algo-
rithm in section 2. The detail of saliency feature computing and combination
appears in section 3. In section 3 we also introduce the spatial and temporal
coherence used. Section 4 is the collaborative particle filter. Experiment results
are shown in section 5.

2 Problem Description and Modeling

Object tracking is an important procedure for human to sense and understand
the environment. For human, this procedure can be roughly divided into three
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Fig. 1. The flow chart of salient object tracking

parts: attention establishing, attention following and attention shifting. To apply
these parts to computer vision, for the input video series I1, · · · , It, · · · , detection
algorithm is used to find the interesting object and build a description model for
it. Usually, when there is no high level knowledge, the objects we are interested
in are those who are visual salient. After the attention is established, the object’s
appearance description X1 is built and the initial object state is gotten in a short
time. The state can be the shape, position or scale of the object. Tracking is to
estimate the state of the object at time t (Xt) given the initial state X1 and the
observation up to time t (It = (I1, · · · , It) ). This process is also called filtering.
The flow chart of our method is shown in Fig.1.

The tracking model is usually built under the probabilistic framework of Hid-
den Markov Model (HMM):{

Xt = G(Xt−1) + vt−1
It = H(Xt) + nt

, (1)

where G(·) and H(·) are the system transition function and observation function
while vt−1 and nt are the system noise and observation noise. When tracking a
single object, we formulate the problem as computing the maximum a posteriori
(MAP) estimation of Xt. We predict the posterior at time t as

P (Xt|It) ∝ P (It|Xt)
∫
P (Xt|Xt−1)P (Xt−1|It−1)dXt−1, (2)

According to (2), we can use the method of statistical filtering to solve the
problem. But the state space is extremely huge, computation of the integration
in (2) is ’NP hard’. So we choose to use the sequential Monte Carlo method [7].

When filtering, the state Xt can be defined in various forms. Some people
try to track the contour of the object [8]. But contour tracking can be easily
disturbed by the background clutters and is time-consuming. So people always
simplify the state to a rectangle surround the object: Xt = (xt, yt, wt, ht) Xt ∈
R4, where xt, yt, wt, ht are the position and size of the rectangle at time t.

In our method, the observation at time t is the image frame It . The observa-
tion model includes the saliency features and the spatial and temporal coherence
constraints. So the observation likelihood P (It|Xt) can be formulated as
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P (It|Xt) ∝ exp
{
−

(
F̄t(Xt, It) + Sct(Xt, It) + Tct(Xt−1,t, It−1,t)

)}
, (3)

where F̄t is the description of the object which comes from the final saliency
feature in our method. Sct and Tct are the spatial and temporal coherence
constraints. The detail of these features and constrains will be described in the
following section.

3 The Saliency Features and Constraints

3.1 Static Saliency Features

Visual saliency can be seen as a binary labeling problem which separates the
object from the background. Each kind of saliency feature provides a normalized
feature map f(p, I) ∈ [0, 1] which indicates the probability that the pixel p
belongs to the salient object. We compute the local and regional features using
the method in [1].

Multi-scale Contrast: Contrast is the most common local feature used for at-
tention detection. Without knowing the size of the object, we compute contrast
feature fsc(p, I) under a Gaussian image pyramid as

fsc(p, I) =
L∑

l=1

∑
p′∈N(p)

∥∥I l(p)− I l(p′)
∥∥

2, (4)

where I l is the image in the l-th level of the pyramid and N(p) is the 8-
neighborhood of pixel p.

Center-Surround Histogram: The salient object can always be distinguished by
the difference of it and its context. Suppose the object is enclosed by a rectangle.
The regional center-surround histogram feature fsh(p, I) is defined as

fsh(p, I) ∝
∑

{p′|p∈R∗(p′),R∗
S(p′)}

wpp′χ2(R∗(p′), R∗
S(p′)), (5)

where R∗ is the most distinct rectangle centered pixel p′ and containing the pixel
p. R∗

S is the surrounding contour of R* and have the same area of it. And the
weight wpp′ = exp(−0.5σ−2

p′ ‖p− p′‖2) is a Gaussian falloff weight with variance
σ2

p′ .

Color Spatial distribution: The salient object usually has distinguishing color
with the background. So the wider a color is distributed in the image, the less
possible a salient object contains this color. The global spatial distribution of a
specific color can be used to describe the saliency of an object. We propose a
novel and more effective method to compute this feature.

The first step of computing this feature is color clustering. We use a fast
image segmentation algorithm instead of Gaussian Mixture Model to improve
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Fig. 2. The left one is the original image. The middle one is the map of segmentation

and the right one is the map of the color spatial distribution feature.

the speed and robustness to noise. This algorithm fuses the pixels with similar
property, for example color, in a graph-based way[12]. Having the segmentation
result, we unify the RGB value in the i-th image segment segi to its average
color. Then we convert the image to index color representation and compute
the distribution variance of every color. So the color spatial distribution feature
fsd(p, I) is defined as

fsd(p, I) =

⎛⎝ ∑
ind(x,y)=ind(p)

xy |x− x̄| |y − ȳ|

⎞⎠−1

, (6)

where ind(x, y) and ind(p) are the indexing color of point (x, y) and point p.
The segmentation result and the feature map are shown in Fig.2.

3.2 Motion Saliency Features

Compared to static object, human’s attention is more sensitive to moving ob-
jects. The static saliency features can be extended to motion field. In this paper,
we use the Lucas/Kanade’s motion estimation under a pyramidal implementa-
tion [14]. The computed motion field is a 2-D map M with the displacement
of every pixel in X and Y directions. In order to compute features from the
motion map using the method of computing static featureswe do the lighting
operation on M to make the moving area connective. The lighting operation
is a Gaussian weighting of the spot areas centered at every sparse points in
M . The motion saliency features are computed on the motion field as
follows.

Multi-scale Motion Contrast: This local feature fMc shows the difference of
motion. It is computed from the Gaussian pyramid of motion field map:

fMc(p,M) =
L∑

l=1

∑
p′∈N(p)

∥∥M l(p)−M l(p′)
∥∥

2, (7)

where M l is the motion map in the l-th level of the pyramid.
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Center-Surround Motion Histogram: This is the regional feature which repre-
sents the motion of a block. fMh is defined as

fMh(p,M) ∝
∑

{x′|x∈R∗(p′),R∗
S(p′)}

wpp′χ2(RM
∗(p′), R∗

MS(p′)), (8)

where the weight wpp′ has the similar definition as that of the regional static
feature.

Motion Spatial Distribution: The global static feature is also extended to the
motion field. Motion is first represented using GMM. Then we compute the
distribution variance VM (m) of each component m. So the spatial distribution
of motion fMd is defined as

fMd(p,M) ∝
∑
m

P (m|Mp)(1− VM (m)), (9)

where P (m|Mp) represents the probability that pixel p belongs to component
m.

See details of the motion saliency features in [2].

3.3 Feature Selection and Combination

During the process of tracking, the feature space that best distinguishes between
object and background is the best feature space to use for tracking [15]. To
achieve best performance using the features mentioned above, we adaptively
select and combine them to get the final saliency map Ft.

We notice that when the background of the video is nearly still and the object
is moving, the motion features are decisive. In contrast, when the object and
background have the similar form of movement, still or moving, we can hardly
verify them in the motion field. At this time, static features are more distinctive.

Frame difference is used to decide whether the object has the similar mo-
tion form as the background. First, we smooth the adjacent frames It−1, It by
Gaussian filtering. Then, the frame difference of margin and the whole image are
computed to judge the movement of background and the whole scene. If both
the background and the whole scene are moving or still, we use static features,
otherwise, motion features are selected.

The final saliency map Ft is defined as a linear combination of the selected
features:

Ft =
∑

k

wtkftk, (10)

where ftk is the k-th selected feature at time t which could be any of the features
mentioned above. The weight wtk represents the distinguishing ability of ftk,
which is measured by the Saliency Ratio (SR) of the feature:

wtk ∝ SRtk =
∑

p∈X∗
t

ftk(p)

/ ∑
p/∈X∗

t

ftk(p), (11)
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where X∗
t is a simple estimation of Xt by extending the area of Xt−1. p ∈ X∗

t

represents that pixel p is in the corresponding rectangle of X∗
t . We normalize

SRtk to get wtk.
Given the final saliency map, the object’s description F̄t(It, Xt) is defined by

the sum square of Ft as

F̄t(Xt, It) =
1

wt · ht
·
∑

p∈Xt

(F(It, p))
2
, (12)

where F(It, p) = Ft(p), represents the process of feature computing.

3.4 Coherence Constraints

For the tracking problem, the rectangle should fit the object. In our method,
that is to say, the border of the rectangle should be close to the edge of the
salient object. So we define the spatial coherence as the sum of edge values near
the border of the rectangle as

Sct(Xt, It) = λS

∑
p∈N(Xt)

E(It, p), (13)

where N(Xt) is the area near the corresponding rectangle of Xt , and E(It, p) is
the edge value of It at pixel p. λS = α/wLhL is the normalizing factor.

Temporal coherence models similarity between two consecutive salient objects.
We use the coherence mentioned in [2]:

Tct(Xt−1,t, It−1,t) = β1 ‖Xt −Xt−1‖+ β2χ
2(h(Xt), h(Xt−1)), (14)

where χ2(h(Xt), h(Xt−1)) is the χ2 distance between the histogram of two ad-
jacent state. β1 and β2 are normalizing factors.

4 Particle Filter Tracking

The particle filter [7] tracker consists of an initialization of the template model
and a sequential Monte Carlo implementation of a Bayesian filtering for the
stochastic tracking system.

We use the method mentioned in [1] to initialize the system. In order to
track moving object, the saliency features we organize in CRF are not only
static but can also be motion. The initial state we get from detection is X1 =
(x1, y1, h1, w1).

In the prediction stage, the samples in the state space are propagated through
a dynamic model. In our algorithm, we use a first-order regressive process model:

Xt = Xt−1 + vt−1, (15)

where vt−1 is a multivariate Gaussian random variable.
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Fig. 3. The results of color spatial distribution feature computed with our approach

and approach mentioned in [1]. The top row are the original images. The middle row

are the results of our approach. The bottom row are the comparing results.

In the update stage, the particles’ importance weight is defined by the object
description and coherence constraints. The weight of the i-th particle at time t
is:

wi
t = F̄t(X i

t , Ft) · Sct(X i
t , It) · Tct(X i

t−1,t, I
i
t−1,t), (16)

where X i
t is the corresponding system state of the i-th particle at time t. During

update, a direct version of Monte Carlo importance sampling technology [7] is
applied to avoid the degeneracy.

5 Experiments

We show here the saliency map of color spatial distribution feature computed
with our method and the results of salient object tracking under a variety of
situations, including multifold objects tracking, tracking with object appearance
changes, and automatically attention rebuilding.

5.1 Color Spatial Distribution

When computing the feature of color spatial distribution. A graph-based seg-
mentation algorithm is used to cluster the adjacent pixels with similar colors.
The segmentation is done to every channel of the RGB image and the results
are merged to get the final segmentation map. In Fig.3, We compare our fea-
ture maps with the maps computed using the approach mentioned in [1]. The
lighter area has higher probability to be saliency. As we can see, the results
of our approach shows the salient area more clearly than the comparing re-
sults. We use images from the Berkeley segmentation dataset [16] for comparing
convenience.
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5.2 Tracking Results

Our approach is implemented and experiments are performed on video series
of various topics. We have collected a video dataset of different object topics,
including people, bicycles, cars, animals and so on. Most of our test videos are
real-life data collected with a hand-held camera while others are downloaded
from the internet.

The objects of interest in our experiments are initiated using the detection
approach mentioned in [1]. Different from the original detection process, we
manually set them to be 0.3, 0.45 and 0.25 for local, regional and global features.
During tracking with sequential Monte Carlo method, we sampled 100 particles
for each filter.

Fig.4 shows some tracking results of multifold objects, including bicycle, car,
people, and bird. Instead of object’s intrinsic property, the saliency based detec-
tion and tracking method depends only on the distinction between object and
background. So we can track any object as long as it is salient.

Fig.5 shows the tracking results of our approach when the appearance color
feature of the object changes. In this experiment, we manually alter the global
illumination. Besides, the red car in the video is occluded by tree leaves in some
frames which also causes the changing of its appearance feature. We track the
red car using our approach and meanshift [4] for comparison. For the meanshift
tracker, we manually set the initial position of object. From Fig.5 we can see, our
approach gives good results inspite of illumination changes and partial occlusion
while meanshift fails when the appearance of the object is changed.

     

Fig. 4. The results of multifold objects tracking

     

     

Fig. 5. The results of tracking under illumination changes and occlusion. The top row

are the results of our approach. The bottom row are the results of meanshift.
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Fig. 6. The results of tracking while the shape of object changes

     

     

Fig. 7. The results of attention rebuilding

Fig.6 shows the results when the shape of the object changes. In this ex-
periment, the girl comes nearer and near to the camera while making different
gestures, which causes obvious changes of the object shape. As we can see, our
approach achieve good results under this condition.

In Fig.7 we show that our tracking method can automatically rebuild attention
when the object being tracked is out of sight. In this experiment, the detection
algorithm set attention on the white car as the initial state. When this car goes
out of the scene, attention is rebuilt on the bicycle. Finally, when the bicycle
disappears and another car comes, this car becomes the salient object and draws
the attention.

6 Conclusion

This paper presents a novel approach of online salient object tracking. In this
method, object’s appearance is described by its difference to the background
which is compute from the static and motion saliency features locally, regionally
and globally. A new segmentation based color spatial distribution feature is pro-
posed which is more distinctive between the object and the background. Features
are adaptively selected and combined and the sequential Monte Carlo technology
is used to track the saliency object. Our approach can track any salient object
and is robust to illumination changes and partially occlusions. Moreover, atten-
tion can be automatically rebuilt without re-detection in our approach. We are
now preparing to extend this approach to multi-object tracking, which involves
the modeling of objects interactions.
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Abstract. We design an effective shape prior embedded human sil-

houettes extraction algorithm. Human silhouette extraction is found

challenging because of articulated structures, pose variations, and back-

ground clutters. Many segmentation algorithms, including the Min-Cut

algorithm, meet difficulties in human silhouette extraction. We aim at im-

proving the performance of the Min-Cut algorithm by embedding shape

prior knowledge. Unfortunately, seeking shape priors automatically is

not trivial especially for human silhouettes. In this work, we present

a shape sequence matching method that searches for the best path in

spatial-temporal domain. The path contains shape priors of human sil-

houettes that can improve the segmentation. Matching shape sequences

in spatial-temporal domain is advantageous over finding shape priors by

matching shape templates with a single likelihood frame because errors

can be avoided by searching for the global optimization in the domain.

However, the matching in spatial-temporal domain is computationally

intensive, which makes many shape matching methods impractical. We

propose a novel shape matching approach that has low computational

complexity independent of the number of shape templates. In addition,

we investigate on how to make use of shape priors in a more adequate way.

Embedding shape priors into the Min-Cut algorithm based on distances

from shape templates is lacking because Euclidean distances cannot rep-

resent shape knowledge in a fully appropriate way. We embed distance

and orientation information of shape priors simultaneously into the Min-

Cut algorithm. Experimental results demonstrate that our algorithm is

efficient and practical. Compared with previous works, our silhouettes

extraction system produces better segmentation results.

1 Introduction

Shape matching has been found useful in object recognition. In specific, shape
matching based on silhouette information has been proved effective in human
gait recognition. Gait recognition overcomes a few problems in an elegant manner
that other people identification methods find difficult to handle. For example, a
gait recognition system can identify a person from a distance. It is possible to
recognize persons using silhouettes extracted from low-resolution images.
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Reliable and accurate silhouettes are crucial for gait recognition. A gait recog-
nition system tends to have poor performance when extracted silhouettes deviate
from the real shapes in image sequences. Most gait recognition algorithms assume
that silhouette information has been extracted precisely. However, silhouette ex-
traction is a very challenging task especially when image sequences are captured
by a moving camera, or the background contains clutters. In fact, silhouette
extraction is not only important for gait recognition, but also can be used in hu-
man pose analysis and other applications. Human tracking and segmentation are
challenging because of articulated structures, pose variations, and background
clutters. Although some human tracking algorithm can provide foreground like-
lihood images [1], it is too difficult to calculate precise human silhouettes based
on these likelihood images using simple image morphing techniques. As other
segmentation methods, the Min-Cut algorithm also meets difficulties in human
silhouette extraction. Markov Random Fields, which are the foundation of the
Min-Cut algorithm, seldom present realistic shape priors. Therefore, the Min-
Cut algorithm gives poor performance in human silhouette extraction, especially
in cluttered backgrounds.

Shape priors play an important role in improving the performance of the Min-
Cut algorithm. We develop a silhouette extraction algorithm based on the stan-
dard Min-Cut algorithm. Although shape priors have been incorporated in the
Min-Cut algorithm in previous works [2], it is not trivial to compute shape priors
automatically especially for human silhouettes. The likelihood images given by
tracking algorithms are helpful in computing shape priors. Unfortunately, these
likelihood images contain many errors. Matching a single likelihood image with
a set of silhouettes templates is not reliable due to these errors. Matching shape
sequences in spatial-temporal domain is advantageous over finding shape priors
by matching shape templates with a single likelihood frame because errors can
be avoided by searching for the global optimization in the domain. However, the
matching in spatial-temporal domain is computationally intensive, which makes
many shape matching methods impractical. We propose a novel shape matching
approach that has low computational complexity independent of the number of
shape templates.

Incorporating shape prior knowledge alleviates the problems in silhouette ex-
traction. The Min-Cut algorithm allows for a straightforward incorporation of
prior knowledge into its formulation. An important problem in employing shape
priors is how to apply shape prior knowledge in an appropriate manner. Embed-
ding shape priors into the Min-Cut algorithm based on distances [2] from shape
templates is lacking because Euclidean distances cannot represent shape knowl-
edge in a fully appropriate way. We embed distance and orientation information
of shape priors simultaneously into the Min-Cut algorithm.

The rest of the paper is arranged as follows. Following the literature review,
We describe a novel shape matching method and its application in optimal path
searching in Section 3. We incorporate shape priors into the Min-Cut algorithm
in Section 4. Both distance and orientation information of shape priors are
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embedded within the Min-Cut algorithm. Experimental results for image se-
quences are presented in Section 5. Section 6 concludes this work.

2 Previous Work

Human silhouette extraction is found challenging because of articulated struc-
tures, pose variations, and background clutters. Segmentation methods based
solely on low-level information often provide poor performance in these difficult
scenarios. Many segmentation algorithms meet difficulties in human silhouette
extraction. The Min-Cut algorithm [3], which has achieved great success in in-
teractive segmentation, faces problem in silhouette extraction.

The evident power of shape priors as an additional cue has been noticed
by many researchers. Freedman and Zhang [2] define the coherence part of the
Min-Cut algorithm by considering the shape distance transform results. In their
work, shape priors are given manually, which is tedious for segmentation in
video sequence. It is desirable to computer shape priors automatically for human
silhouette extraction. Wang et al. [1] proposed a shape prior seeking algorithm
by searching for the best path in spatio-temporal domain. The major drawback
of their work is the heavy computational costs in shape matching, which makes
their algorithm not practical for real applications. Although there is an effort in
accelerating the shape matching process [4], the performance is still not efficient
especially when the number of shape templates is large.

While pedestrian model representations have been employed for refining sil-
houettes in previous works [5,6], they all assume that an foreground likelihood
images can be obtained by background subtraction. In addition, these works do
not address the shape matching problem, which is crucial for the applicability
of silhouette extraction.

In visual tracking literature, temporal coherency was employed in particle fil-
tering. Rathi et al. [7] formulated a particle filtering algorithm in a geometric
active contour framework in which temporal coherency and curve topology are
handled. In addition, shape and appearance information were considered in a
unified metric framework by Toyama and Blake [8]. The use of exemplars allevi-
ates the difficulty of constructing complex motion and shape models. Although
these algorithms do improve the performance of tracking, few of them deal with
silhouette extraction.

3 Computing Shape Priors

We adopt an adaptive mean-shift tracking approach [9,10]. The adaptive tracker
provides bounding boxes and Foreground Likelihood Images (FLI). We match
FLI sequence with silhouette templates in the standard gait models. A Standard
Gait Model (SGM) is constructed for the matching. Tanimoto distance [11] is
taken as the similarity measure between FLIs and silhouette templates. Match-
ing shape sequences in spatial-temporal domain [1] is advantageous over finding
shape priors by matching shape templates with a single likelihood frame because
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errors can be avoided by searching for the global optimization in the domain.
However, the matching in spatial-temporal domain is computationally intensive,
which makes many shape matching methods impractical. We will introduce an
efficient shape matching approach that has low computational complexity inde-
pendent of the number of shape templates.

3.1 Matching Measure

FLIs generated by the tracker should be normalized to have the same size as the
silhouette templates. An FLI in the nth frame is denoted by f(n). The center
and the height of a human region’s bounding box are denoted by (cx, cy) and h,
respectively. Registration and scaling based on the bounding box are processed
in the same way as the SGM, thus producing the normalized FLI fN (n; cx, cy, h)
in the nth frame.

Tanimoto distance [11] is exploited as the measure between the FLI fN and
SGM g :

DT (fN , g) = 1−
∑

(x,y) min{fN(x, y), g(x, y)}∑
(x,y) max{fN(x, y), g(x, y)} , (1)

where fN (x, y) and g(x, y) are the likelihood and silhouette values, respectively,
at (x, y) . The Tanimoto distance between an FLI and SGM is 1 if they have
identical shapes, and 0 if there is no overlap between them.
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Fig. 1. The efficient Tanimoto distance method

3.2 O(1) Tanimoto Distance Computation

The matching between foreground likelihood images and silhouette templates us-
ing Tanimoto distance is computationally expensive because every pixel in every
image has to be calculated individually. It takes more than 120 seconds when 30
silhouette templates are employed in the sequence matching. (The algorithm is
run on a 1.6GHz laptop). This expensive Tanimoto distance computation makes
the proposed approach impractical. The problem is exacerbated if we wish to
include more shape variations by adding silhouette template images.
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We present a novel distance calculation method whose matching complexity
is O(1). The calculation of the minimum and maximum in Eq. 1 is expensive if
they are calculated individually. We noticed, however, that the silhouette tem-
plate and likelihood images can be quantized in a limited range ([0, 255] in this
work) without any negative effect on the matching results. Because the silhou-
ette template images given in the initialization have been aligned, we sort the
values at each position in the template images. The phase information of these
templates is kept in the sorted results. Based on the sorted results, a direct ac-
cess table is built for each position of the silhouette template images. Each table
has two splitting phase IDs corresponding to the calculation of the maximum
and minimum in Eq. 1.

As shown in Figure 1, to calculate the minimum and maximum in Eq. 1,
we do not need to compare the input likelihood value with all the values in the
silhouette template images. To make the illustration clear, we use 30 phases here.
In the initialization, we sort the values at each position in the template images.
Then we build one direct access table for each value in the range [0, 255]. Each
table contains two splitting phase IDs: the maximum phase ID pS

max and the
minimum phase ID pS

min. For a given input likelihood value, the direct access
table is found directly. Then the maximums and minimums can be assigned
based on the splitting phase IDs corresponding to the input likelihood value.
The value in a phase in the sorted results is assigned as the minimum, when its
phase ID is equal to or smaller than the minimum splitting phase ID pS

min, or
as the maximum, when its phase ID is equal to or greater than the maximum
splitting phase ID. For instance, if the input likelihood value is 0, all the values in
the template images are assigned as maximums and the input likelihood value is
always assigned as the minimum. The computational complexity of the matching
process is O(1). In other words, the matching is independent to the number of
silhouette template images. This method is particularly important when many
templates are necessary to cover large variations in shape. The template values
are sorted only once during the initialization.

Tanimoto distance measures the overlapping regions of two input images. Its
computation time is further reduced by reusing the calculated overlapping regions
[12]. Tanimoto distance can be formulated as DT (fN , g) = G+F−C

C , where F =∑
(x,y) fN (x, y), G=

∑
(x,y) g(x, y), and C(fN , g)=

∑
(x,y) min{fN(x, y), g(x, y)}.

Based on this formulation,G (sum of gait template values) is calculated only once
during the initialization. For each input foreground likelihood image sequence,
F is also calculated only once. C(fN , g) is calculated based on the efficient
method.

Using the method described above, it takes around 0.6 seconds to calculate
distances between an input foreground likelihood sequence and all templates
(including shifting and scaling) on the 1.6GHz laptop. Further computational
cost reduction is expected when the number of shape templates becomes larger.
In addition, the proposed distance calculation method can be used in other
applications where silhouette template matching is necessary [12].
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4 Embedding Shape Priors in Min-Cut Segmentation

Let L = {1 . . .K} be a set of labels. Let G = (V , E) be a graph with E ⊆ V ×V .
Segmentation is formulated in terms of energy minimization in the Min-Cut
algorithm [13]. We embed shape priors into the algorithm.

4.1 Embedding Shape Priors

Shape priors can be embedded in the Min-Cut algorithm by adding an energy
term [2] [14]:

E(A) = Esmoothness(A) + Edata(A) + Eshape(A). (2)

The Min-Cut algorithm with shape priors includes shape fitness, smoothness and
initial labeling. The energy function Eshape is penalized if the segmented contour
deviates from the boundary of the silhouette. Shape priors are represented by a
distance transform result.

We found that the method in [2] is deficient: the embedded shape priors
need to be very accurate, otherwise the distance transform can misguide the
segmentation. In contrast, we introduce orientation information in the shape
priors to encourage smoothness of the segmentation. It has been found that
the statistics of steered filters for human limbs are different from those of other
natural scenes [15]. In this work, we learn a vocabulary that includes position and
gradient orientations in human silhouettes. We calculate gradient orientations
and normalized positions (in [0, 1]) in 400 segmented people silhouette images
and detect edges in the silhouette templates using Canny edge detector. Then
we calculate gradient orientations and normalized coordinates on the edges. We
apply K-Means to form an initial vocabulary. An EM algorithm is adopted to
get the final vocabulary. We compute the mean and covariance matrix for each
word. The vocabulary has 10 words finally, allowing edges belonging to a same
word formulate as an oriented template. Thus 10 oriented templates are gotten
for every template image. Then Euclidean distance transform is applied to these
oriented templates.

To improve the first term in Eq. 2, based on the distance transform results of
the oriented templates, we calculate the minimum distance in corresponding to a
pixel in the input image. If the minimum distance is greater than the threshold
dDT

min, the pixel is set as background. This method is effective in dealing with
inaccurate shape priors. In contrast, the shape priors used in [2,1,14] have to be
very accurate, otherwise they can misguide the segmentation.

We also found that probabilities decrease too quickly near a contour. We
decrease the distance values obtained from the distance transform by applying
a local search. We then extract edges in the input images. The distance is kept
as is if there are edges near the shape prior. Otherwise the distance values are
multiplied by a constant factor cedge. (The factor is set to 0.8 in this work).
The cost function of shape priors is well described in the transformed image.
The shape prior energy is written as Eshape =

∑
(pq)∈N :Ap �=Aq

ψmin(p)+ψmin(q)
2 ,

where ψmin is the minimum distance on the transformed image.



210 J. Wang, Y. Yagi, and Y. Makihara

������ ������	 ������
 �������

���

���

���

�����
	

Fig. 2. Tracking and segmentation results for the indoor sequence. (a) Input images.

(b) Initial bounding boxes (in red) generated by the tracker, optimal bounding boxes

(in green) and gait models (phase) obtained using optimal path searching. (c) Segmen-

tation results by embedding the shape priors in the Min-Cut algorithm.

5 Experimental Results

We tested the proposed algorithm on 8 sequences with tracking and segmenta-
tion ground truths. The size of all images in these sequences is 360 × 240 pixels.
We show the results for two sequences in detail. Performance is evaluated with
respect to refinement of bounding boxes and phase estimation and the improve-
ment in segmentation. The Quantitative evaluation of other sequences is given
in 5.3.

5.1 Refinement of Bounding Boxes and Phase Estimation

The results for the two sequences are shown in Figures 2 and 3, respectively.
The initial bounding boxes produced by the tracker are not well aligned with
the people regions and the initial foreground likelihoods are low for some parts.

Based on the optimal path searching results, the tracking bounding boxes are
shifted to better positions. The bounding boxes are not accurately aligned with
the person. The vertical centers in the initial bounding boxes deviate from their
correct positions. The positions are adjusted downwards based on the optimal
path searching results. The horizontal centers of the initial bounding boxes are
relatively more accurate. They need to be shifted less frequently than the vertical
centers.

The selected silhouette templates provided by the searching results are shown
in Figure 2(b). The gait phases corresponding to the walking person are cor-
rect. The shape priors are incorporated in the Min-Cut algorithm giving the
segmentation results shown in Figure 2(c).

Next we evaluate the smoothness of the walking phase transfer in Figure 4.
The phases estimated with and without using shape sequence matching are
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Fig. 3. Tracking and segmentation results for the outdoor sequence. (a) Input images.

(b) Initial bounding boxes (in red) generated by the tracker, optimal bounding boxes

(in green) and gait models (phase) calculated by the optimal path searching using

shape sequence matching. (c) Segmentation results by embedding the shape priors in

the Min-Cut algorithm.
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Fig. 4. Phase transition estimation for the sequence in Figure 3

compared. The estimation results without using shape sequence mathcing are
obtained by matching an input likelihood image with all the silhouette templates.
The phases estimated using shape sequence matching are much more accurate
than those without shape sequence matching. This demonstrates the importance
of shape sequence matching in optimal path searching. The phase estimation also
verifies the necessity of searching in a spatiotemporal space instead of in a single
frame. When the view changes, the phase estimation result is not as accurate as
the side view. However, it is still much better than the estimation obtained from
single image matching.

5.2 Segmentation Results

The segmentation ground truths of these sequences are obtained by labeling the
images manually. Each pixel is labeled as background, foreground, or ambiguous.
The ambiguous label is used to mark mixed pixels along the boundaries between



212 J. Wang, Y. Yagi, and Y. Makihara

Table 1. Segmentation errors for eight of the test sequences

Test seqeunces 3 4 5

No Prior 0.18 0.30 0.32

Using Prior 0.092 0.24 0.23

Test seqeunces 6 7 8

No Prior 0.23 0.36 0.4

Using Prior 0.15 0.22 0.31

foreground and background. We measure the error rate as a percentage of mis-
segmented pixels, ignoring ambiguous pixels.

5.3 Quantitative Evaluation

Segmentation results using shape priors are shown for the indoor sequence (Fig-
ure 2) and the outdoor sequence ( Figure 3). A quantitative evaluation of the
segmentation results with and without shape priors is shown in Figure. The
segmentation results with shape priors embedded are compared with those with-
out shape priors. The incorporation of shape priors improves the performance of
the segmentation. Compared with the indoor sequence, the use of shape priors is
more helpful in the outdoor sequence. Thus shape priors play a more important
role in the challenging outdoor sequence.

Table 1 shows segmentation errors with respect to ground truth for six of our
test sequences. Among them, sequence 3, 4, and 5 are indoor sequences, and 6,
7, 8 are outdoor sequences. The segmentation using shape priors has lower error
rate in these sequences.

6 Conclusions

We find optimal paths for an input likelihood sequence by matching it with
silhouette templates. The novel efficient shape matching method makes the pro-
posed approach practical for real applications. The shape sequence matching
provides shape priors for silhouette extraction. The proposed prior embedding
method is effective. The segmentation performance is also improved based on
shape constraints.
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Abstract. We present a method for recovering the 3D shape of an inextensible
deformable surface from a monocular image sequence. State-of-the-art method
on this problem [1] utilizes L∞-norm of reprojection residual vectors and formu-
late the tracking problem as a Second Order Cone Programming (SOCP) prob-
lem. Instead of using L∞ which is sensitive to outliers, we use L2-norm of
reprojection errors. Generally, using L2 leads a non-convex optimization prob-
lem which is difficult to minimize. Instead of solving the non-convex problem
directly, we design an iterative L2-norm approximation process to approximate
the non-convex objective function, in which only a linear system needs to be
solved at each iteration. Furthermore, we introduce a shape regularization term
into this iterative process in order to keep the inextensibility of the recovered
mesh. Compared with previous methods, ours performs more robust to outliers
and large inter-frame motions with high computational efficiency. The robustness
and accuracy of our approach are evaluated quantitatively on synthetic data and
qualitatively on real data.

1 Introduction

3D shape recovery of objects from 2D monocular image sequences has been studied
for decades. Great successes have been achieved for rigid and articulated-rigid objects.
However, most objects in the real world vary their shapes over time, such as faces,
papers, clothes etc. The problem of reconstructing the shape of such deformable objects
has much interest recently.

Structure-from-motion based methods are widely used for the non-rigid shape and
motion recovery. Bregler et al. [2] are the first to use a factorization-based method for
the recovery of non-rigid structures, in which the 3D shape in each frame is formulated
as a linear combination of a set of basis shapes. Torresani et al. [3] model the time-
varying shape as a rigid transformation combined with a non-rigid deformation. This
model is a form of Probabilistic Principal Components Analysis (PPCA) shape model
whose parameters can be learned in the reconstruction process. In the case of perspec-
tive cameras, Xiao et al. [4] present a closed-form solution for perspective reconstruc-
tion given the assumption that there exists a set of independent deformable basis shapes.

� This work was supported by National Natural Science Foundation of China under Grant
60833009, National 973 Key Basic Research Program of China under Grant 2006CB303103,
and Graduate Innovation Foundation of SJTU.
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Bartoli et al. [5] propose a low-rank structure-from-motion method which handles miss-
ing data, automatically selects the number of deformation modes and makes use of sev-
eral different priors. Structure-from-motion based methods always make very strong
assumptions about the deformations which makes it not suitable for objects undergoing
large deformations. Besides, this kind of method needs the whole image sequence to
compute the solution and thus is not suited for reconstruction on the fly.

Modeling the surface as a 3D triangulated mesh is a popular way to represent the
behavior of general deformations. Gay-Bellile et al. [6] present an 2D intensity-based
non-rigid registration method with self-occlusion reasoning. This method constrains
the 2D warp to shrink in self-occluded regions while detecting them based on this prop-
erty and successfully deals with extreme self-occlusions. However, this method is only
suited for 2D registration and hard to be generalized to 3D cases. Salzmann et al. [1]
represent surfaces as triangulated meshes and disallow large changes of edge orienta-
tion between consecutive frames, and formulate the tracking problem as a Second Order
Cone Programming (SOCP) feasibility problem. This method yields a convex formu-
lation with a unique minimum and enables us to handle highly-deformable surfaces
without adding unwarranted smoothness constraints. Based on [1], Zhu et al. [7] refor-
mulate the problem into an unconstrained quadratic optimization problem which can
be solved more efficiently and robustly than SOCP. However, these methods introduces
strong constraints to bound the vertex displacements from on frame to the next, which
makes it fail to deal with large inter-frame motions. Besides, these methods rely on the
L∞-norm of reprojection residual vectors, which are sensitive to outliers.

In this paper we present a method for tracking inextensible deformable surfaces in 3D
under L2-norm. Generally, using L2 leads a non-convex optimization problem which
is difficult to minimize. Instead of solving the non-convex problem directly, we design
an iterative L2-norm approximation process to approximate the non-convex objective
function, in which only a linear system needs to be solved at each iteration. Further-
more, we introduce a shape regularization term into this iterative process in order to
keep the inextensibility of the recovered mesh. The proposed method does not involve
any smoothness constraint which makes it applicable for surfaces with various kinds
of deformations such as those in Fig. 1. Compared with state-of-the-art approach un-
der L∞-norm [1], our method performs more robust to outliers and large inter-frame
motions with high computational efficiency.

(a) Smooth deformations (b) Sharp folds (c) Cloth

Fig. 1. Reconstructing the structure of a deformable surface from monocular image sequences
using our approach. In all the graphs, we overlay the recovered mesh on the original image.
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The rest of the paper is organized as follows. The proposed deformable surface 3D
tracking method under L2-norm is detailed in section 2. Experimental results on both
synthetic and real data are reported in section 3. Finally, conclusions are presented in
section 4.

2 Deformable Surface 3D Tracking under L2-Norm

2.1 Problem Statement

The deformable surface is represented as a nv-vertex triangulated mesh. We denote the
3D coordinate of each vertex of the mesh by vi = [xi, yi, zi]T , and the 3D structure of
the mesh can be parameterized as a long vector V of dimension 3nv by concatenating
the three coordinates of all vi, as V = [vT

1 , . . . , v
T
nv

]T .
The shape vector V is the variable we want to estimate. Our method relies on 3D-to-

2D correspondences between the surface and the image. Let xi be a 3D surface point
which can be expressed in terms of its barycentric coordinate of the facet where xi lies
on, as:

xi = aivp + bivq + civr

= TiV, (1)

where vp, vq and vr are the vertices of the facet that xi lies on, ai, bi and ci are
the barycentric coordinate of xi, and Ti is a transformation matrix dependent on the
barycentric coordinate.

Assuming xi is in the camera referential, given the internal parameters matrix K, the
projection of xi is: ⎡⎣ui

vi

1

⎤⎦ = KTiV

The reprojection residual vector for xi with respect to image measurement (ûi, v̂i)T

is given by:

δi =
(

K1TiV
K3TiV

− ûi,
K2TiV
K3TiV

− v̂i

)T

(2)

where K1, K2 and K3 are the first, second and third rows of K respectively.
Generally, using different norms of δi leads different optimization problems. In this

paper, we use (Lp,Lq) to represent a combination of two vector norms, where the first
norm Lp corresponds to the image norm used and the second one Lq corresponds to the
norm of residual vector. In this notion the (L2,L∞)-case have been solved using SOCP
[1] or quadratic optimization [7]. However, the problem with residual vector measured
under L2 norm, i.e. the (L2,L2)-case, remains challenging since minimizing the sum-
of-squares objective function is known to be a troublesome non-convex problem with
multiple local minima.

Recently, a few approaches have been successfully used to obtain globally opti-
mal solutions for some geometric vision problems such as triangulation and camera
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resectioning under (L2,L2)-norm [8] [9]. However, these methods are usually com-
putationally expensive and not applicable for high-dimensional variables such as the
triangulated mesh V.

2.2 L2-Norm Approximation

In the (L2,L2)-case, the cost function for 3D-to-2D correspondences can be formulated
as:

f(V) =
n∑

i=1

‖δi‖2

=
n∑

i=1

∥∥∥∥∥∥∥
(K1Ti − ûiK3Ti)V

K3TiV
(K2Ti − v̂iK3Ti)V

K3TiV

∥∥∥∥∥∥∥
2

(3)

where ‖ · ‖ represents the L2 norm, n is the number of 3D-to-2D correspondences.
Minimizing (3) directly is difficult. However, in the tracking context, the tracking result
for previous frame could be used as an reasonable initial guess of current frame, which
gives us an efficient iterative method for minimizing f(V).

At time instance t, we use the tracking result for previous frame Vt−1 as an initial
guess V0, and seek for a better result V1. Point V1 can be expressed as V1 = V0 +
δ0. Consider a scenario where we are in the k-th iteration and try to update Vk to
Vk+1 = Vk + δk. In this case, the denominators in (3), K3TiV, could be approximated
by K3TiVk, which gives an approximation function of f(V), namely g(δk), as:

g(δk) =
n∑

i=1

∥∥∥∥∥∥∥
(K1Ti − ûiK3Ti)(Vk + δk)

K3TiVk
(K2Ti − v̂iK3Ti)(Vk + δk)

K3TiVk

∥∥∥∥∥∥∥
2

=
n∑

i=1

‖hi(Vk + δk)‖2

= (Vk + δk)T H(Vk + δk) (4)

where

H =
n∑

i=1

hT
i hi, hi =

⎡⎢⎣ K1Ti − ûiK3Ti

K3TiVk
K2Ti − v̂iK3Ti

K3TiVk

⎤⎥⎦ (5)

Obviously, letting the derivative of the objective function g(δk) to be zero and solving
the corresponding linear equation can generate the solution that minimize g(δk). Thus
δk could be achieved by solving the following linear equation:

�g(δk) = 2Hδk + 2HVk = 0 (6)
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Or equivalently:
Hδk = −HVk (7)

This L2-norm approximation process can be summarized as: we i) use the tracking
result for previous frame Vt−1 as an initial guess V0 for current frame, and set k = 0;
ii) evaluate H using Eq. (5), and calculate δk by solving (7); iii) set Vk+1 = Vk + δk,
then set k = k+1 and go to step ii). This iteration continues until δk → 0 which means
g(δk) approaches f(Vk).

We should note that H is a symmetric matrix of size 3nv × 3nv, and nv of the
eigenvalues of H are very close to zero no matter how many correspondences are used,
which is similar with the result observed in [10]. This indicates that ambiguities always
arise using only 3D-to-2D correspondences under the monocular perspective projection,
and other constraints should be introduced to regularize the mesh shape.

2.3 Shape Regularization

Since the surface is inextensible, the most general shape constraints should be designed
to retain the original length of each mesh edge, as:

‖vp − vq‖ = lr, (8)

where lr is the original length of the edge linking vertices vp and vq . Since vp − vq is a
linear transformation of V, we denote:

vp − vq = ErV

where Er is a transformation matrix. Then the constraints in Eq. (8) can be expressed
as:

‖ErV‖ = lr, r = 1, . . . ,m, (9)

where m is the number of mesh edges.
Suppose we are in the k-th iteration and try to update point Vk to point Vk+1 =

Vk + δk. The constraints in (9) in this case become:

‖Er(Vk + δk)‖ = lr, r = 1, . . . ,m,

which can be expressed as:

2VT
k ET

r Erδk + δT
k ET

r Erδk = l2r − VT
k ET

r ErVk, r = 1, . . . ,m (10)

Now if we remove the second term on the left-hand side of Eq. (10), we have:

2VT
k ET

r Erδk ≈ l2r − VT
k ET

r ErVk, r = 1, . . . ,m (11)

Note that Eq. (11) is a local linear approximation of the quadratic equations in Eq. (10),
and (10) and (11) are asymptotically equivalent to each other as δk → 0.

The m linear equality constraints in (11) can be put together as:

Fkδk = gk, (12)
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where

Fk =

⎡⎢⎣2VT
k ET

1 E1
...

2VT
k ET

mEm

⎤⎥⎦ , gk =

⎡⎢⎣ l
2
1 − VT

k ET
1 E1Vk

...
l2m − VT

k ET
mEmVk

⎤⎥⎦ (13)

Since (12) is a set of m linear equations with 3nv unknowns (3nv > m), there are
infinitely many solutions for this equation. It is well known that all these solutions can
be linearly parameterized using singular value decomposition (SVD) of the coefficient
matrix Fk. Since the m linear equations in (12) are independent, the rank of matrix Fk

is m and its SVD is given by Fk = UΣS. All the solutions of Fkδk = gk are then given
by:

δk = F+
k gk + Skϕk, (14)

where F+
k denotes the Moore-Penrose pseudo inverse of Fk, which can also be com-

puted using the SVD of Fk, Sk is a matrix of size 3nv × (3nv − m) which consists
of the last (3nv −m) columns of matrix S, and ϕk is an arbitrary vector of dimension
3nv −m.

By substituting Eq. (14) into (4), we have a new objective function t(ϕk), as:

t(ϕk) = g(F+
k gk + Skϕk)

=
n∑

i=1

∥∥∥∥∥∥∥∥
(K1Ti − ûiK3Ti)(Vk + F+

k gk + Skϕk)
K3TiVk

(K2Ti − v̂iK3Ti)(Vk + F+
k gk + Skϕk)

K3TiVk

∥∥∥∥∥∥∥∥
2

=
n∑

i=1

‖hi(Vk + F+
k gk + Skϕk)‖2

= (Vk + F+
k gk + Skϕk)T H(Vk + F+

k gk + Skϕk) (15)

where H is defined in Eq. (5).
Letting the derivative of the objective function t(ϕk) to be zero and solving the

corresponding linear equation can generate the solution that minimize t(ϕk). That is,
ϕk is calculated by solving the following linear equation:

�t(ϕk) = 2ST
k HSkϕk + 2ST

k H(Vk + F+
k gk) = 0 (16)

Or equivalently:
ST

k HSkϕk = −ST
k H(Vk + F+

k gk) (17)

Now, the deformable surface tracking process can be summarized as: we i) use the
tracking result for previous frame Vt−1 as an initial guess V0 for current frame, and set
k = 0; ii) evaluate H using Eq. (5), evaluate Fk and gk using Eq. (13); iii) compute the
SVD of Fk and then F+

k and Sk; iv) calculate ϕk by solving Eq. (17), and then obtain δk
using (14); v) set Vk+1 = Vk + δk, then set k = k + 1 and go to step ii). This iteration
continues until δk → 0. In practice, we stop the iteration when max

i
|δk,i| < ε, where

δk,i is the i-th element of δk, and ε is a prescribed threshold.
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We should note that the sequence of Vk may not converge if large outliers exist.
In this case, we remove the 3D-to-2D correspondence with the maximum reprojection
error every 10 iterations until Vk converges.

3 Experimental Results

The performance of the proposed method was evaluated with both synthetic and real
data. All the experiments are implemented under the Matlab environment on a 3GHz
standard PC. In all the experiments, the threshold ε is set to 2 according to the grid
search result.

3.1 Synthetic Data

We conducted three experiments to evaluate the performance of the proposed method
on the synthetic data with gaussian noise, large inter-frame motions and outliers respec-
tively. For comparison, Salzmann et al.’s SOCP method [1], which is considered to be
a state-of-the-art approach, was also used for the synthetic data.

Experiment I. The first experiment evaluated the robustness of our method to image
noise. We apply forces to a 8cm×11cm triangulated mesh and keep mesh edges to be
their original lengths, which generates a 30-frame synthetic sequence. We randomly
choose four 3D points in each facet of the mesh and project these points on an image
plane using a perspective projection matrix, which gives us a set of 3D-to-2D point cor-
respondences at each frame. Then we add gaussian noise with mean zero and standard
deviations σ = 1 and σ = 2 to all the image point locations at each frame. Fig. 2 shows
the average 3D distance between reconstructed mesh vertices and the ground-truth of
each frame using two different methods.

The results show that our approach gives more stable and accurate results than the
SOCP method. Furthermore, our method takes about 2.8 seconds to process one frame
compared with 5.7 seconds of the SOCP method.

(a) σ = 1 (b) σ = 2

Fig. 2. Average 3D distance between reconstructed mesh vertices and the ground-truth using two
different methods on the synthetic data with gaussian noise. (a) is the result when adding gaussian
noise with mean zero and σ = 1. (b) is the result when adding gaussian noise with mean zero
and σ = 2.



Monocular Template-Based Tracking of Inextensible Deformable Surfaces 221

Experiment II. The second experiment evaluated the robustness of our method to large
inter-frame motions. The synthetic sequence in Experiment I is used here. We remove
10 frames (from frame 6 to frame 15) from this sequence, which represents a large
inter-frame motion. Fig. 3 shows the experimental results. Note that we didn’t draw the
results between frame 6 and frame 15 since they had been removed from the synthetic
data in this experiment.

Fig. 3. Average 3D distance between reconstructed mesh vertices and the ground-truth using two
different methods on the synthetic data with large inter-frame motions

The results show that the SOCP method is unable to track the surface correctly when
large inter-frame motions exist, and the reason is that this method introduces strong
constraints to bound the vertex displacements from on frame to the next. Compared
with the SOCP method, our approach correctly recovered the structure even though the
surface changed dramatically between two frames.

Experiment III. The third experiment evaluated the robustness of our method to out-
liers. The synthetic sequence in Experiment I is used here. Besides the σ = 2 gaussian
noise, at each frame, 30% and 60% of the image locations are corrupted by gaussian
noise with mean zero and σ = 10, which can be regarded as outliers. Fig. 4 shows the
tracking results using two different methods.

The results show that the proposed method performs more robust and stable than the
SOCP method. Furthermore, our method takes about 6.6 seconds to process one frame,
as opposed to 16.5 seconds of the SOCP method. The SOCP method utilizes L∞-norm
of reprojection errors and needs to remove all outliers, no matter large or small, before
getting the final result. In contrast, our method utilizes the L2-norm which is more roust
than L∞-norm in dealing with outliers, that is, only large outliers will be removed. As
a result, the SOCP method spent more time on the outlier removal process compared
with the proposed method.

3.2 Real Data

Our approach is qualitatively evaluated on real images. We use a paper sheet and a
piece of cloth for real data experiments. We capture image sequences using a calibrated
camera. The keypoints on the mesh and their barycentric coordinates are extracted from
a reference image in which the surface is in front of the camera without deformations.
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(a) σ = 10, 30% (b) σ = 10, 60%

Fig. 4. Average 3D distance between reconstructed mesh vertices and the ground-truth using two
different methods on the synthetic data with outliers. (a) is the result when adding σ = 10

gaussian noise to 30% of the the image point locations besides the σ = 2 noise. (b) is the result
when adding σ = 10 gaussian noise to 60% of the the image point locations besides the σ = 2

noise.

Fig. 5. Some tracking results of a paper sheet with smooth deformations and sharp folds. The first
row are the original images with reprojected mesh. The second row are the reconstructed meshes
seen from a different view.

Fig. 6. Some tracking results of a piece of cloth

Then the 3D-to-2D keypoint correspondences are established between the reference
image and the input one using SIFT [11]. Because SIFT is a wide-baseline matching
method, mismatching happens frequently in the real data.

Some tracking results of the real image sequence are shown in Fig. 5 and Fig. 6.
The results show that our approach can correctly recover 3D structures of surfaces with
smooth, sharp and other complex deformations.
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4 Conclusion

In this paper we present a method for the 3D shape recovery of a deformable surface
from monocular image sequences. Different from state-of-the-art methods which utilize
L∞-norm of reprojection errors, our approach uses L2-norm which performs more ro-
bust to outliers than the L∞. Although using L2-norm leads a non-convex optimization
problem which is difficult to minimize, we design an iterative L2-norm approximation
process to approximate the non-convex objective function, in which only a linear sys-
tem needs to be solved at each iteration. Furthermore, we introduce a shape regulariza-
tion term into this iterative process in order to keep the inextensibility of the recovered
mesh. Compared with previous methods, the proposed approach performs more robust
to outliers and large inter-frame motions with high computational efficiency.
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Abstract. In this paper, we present a feature combination approach to object
tracking based upon graph embedding techniques. The method presented here
abstracts the low complexity features used for purposes of tracking to a relational
structure and employs graph-spectral methods to combine them. This gives rise
to a feature combination scheme which minimises the mutual cross-correlation
between features and is devoid of free parameters. It also allows an analytical
solution making use of matrix factorisation techniques. The new target location
is recovered making use of a weighted combination of target-centre shifts corre-
sponding to each of the features under study, where the feature weights arise from
a cost function governed by the embedding process. This treatment permits the
update of the feature weights in an on-line fashion in a straightforward manner.
We illustrate the performance of our method in real-world image sequences and
compare our results to a number of alternatives.

1 Introduction

Object tracking is a classical problem in computer vision and pattern recognition. Ex-
isting approaches often employ low complexity local image descriptors and features
to construct a model that can then be used to track the object. These features can be
based upon the RGB values of the image under study, local texture descriptors and con-
trast operators [1]. The responses of the image brightness to Harr-like [2], Gaussian and
Laplacian filters [3] have also been used for recognition and tracking.

Along these lines, modern appearance-based tracking frameworks such as the kernel-
based methods [4], Kalman filter [5] and particle filter trackers [6] have attracted a great
deal of attention from the computer vision community. The well known kernel-based
algorithm [4] makes use of the mean-shift optimisation scheme [7] to search for a lo-
cal maximum of feature similarity on the image lattice, without prior knowledge of the
tracking environment. The Kalman filter [5] and the particle filter trackers [6] improve
the tracking robustness by introducing probabilistic models for object and camera mo-
tion as well as state-space hypotheses.

However, it is somewhat surprising that the methods above do not combine multiple
cues, but rather employ a fixed set of colour feature spaces such as RGB [4] or HSV [6].
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band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.
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Hence they are prone to error in practical settings where the illumination conditions and
object appearance vary significantly between subsequent frames. Stern and Efros [8]
improve the tracking performance by adaptively swapping the tracking features across
five pre-determined colour-space combinations. Nguyen and Smeulders [9] use a set of
Gabor filters to transform the image intensities into texture information. Collins et al.
[10] deploy the mean-shift tracker [4] on a feature pool of 49 log-likelihood images
comprised by unique combinations of R,G and B values. In a related development, Han
and Davis [11] combined two different colour spaces so as to construct 14 log likelihood
images. Feature extraction is then achieved by performing PCA on the foreground and
the local image background. Machine learning techniques such as Adaboost have also
been employed to enhance multiple-feature trackers [12,13].

In this paper, we aim at presenting a feature combination approach to object tracking.
Here, we make use of graphical model setting so as to abstract the features used in the
tracking process into a graph. This leads to the use of techniques commonly employed
in graph-spectral methods [14] to achieve maximum separation between the target and
the scene background . Thus, here we provide a link between graphical models, graph
embedding methods and tracking feature correlation. This treatment is devoid of free
parameters and windowed sampling, while permitting low complexity features to be
linearly combined analytically.

Moreover, the use of graph embedding techniques also leads to the recovery of a set
of weights so as to evaluate the contribution of each feature to the target shift. This is
reminiscent of boosting techniques [15], where a weak leaner is used for classification.
In this way, our method can be viewed as a weighted linear combination of “weak”
mean-shifts in each feature space which are combined into a “strong” global one. We
also present an on-line updating scheme for the weights governing the tracking task. In
practice, this is done based on the level of “confidence” on the target position and leads
to the updating of the target model. Further, our approach can employ any arbitrary
number of low complexity local image features and is not limited to colour cues.

The paper is organised as follows. Firstly, we introduce the basic concepts that will
be used throughout the paper. We then turn our attention to the recovery of a global
mean-shift from the contributions of each feature space. The on-line weight updating
scheme is presented in Section 4. Finally, we elaborate on the algorithm in Section 5
and, in Section 6, we illustrate the robustness of the algorithm on a number of video
sequences and compare our results to those delivered by alternatives.

2 Kernel-Based Tracking in Arbitrary Feature Spaces

As mentioned earlier, Kernel-based object tracking [4] makes use of the spatially-
weighted histogram of the target region as input to a similarity function which the
tracker aims at maximising via mean-shift iterations [16].

In order to characterise a target, one or more feature spaces must be determined so
that a non-parametric power density function (PDF) such as M -bin histogram can be
estimated. The ideal choice of feature space is the one that is distinctive to the tar-
get with respect to the surrounding background while being robust to noise and image
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corruption. The principle of the kernel-based tracker is, however, not restricted to any
particular feature space and, in a multiple feature setting, can be summarised as follows.

Let Φ = {φ1, φ2, . . . , φ|Φ|} be the set of feature-spaces used for purposes of track-
ing. For the feature space φi, the new target position ηφi can be recovered making use
of the two M -bin histograms Qφi and Pφi corresponding to the target model and the
search window, respectively. In particular,

ηφi =
∑N

n=1 xnwn∑N
i=1 wn

(1)

wherewn is the similarity weight for the nth pixel xn in the search window. For further
detail on the equation above, we direct the reader to [4].

With the |Φ| “weak” shifts {ηφi}φi∈Φ at hand, we can compute the “global” shift η

as the weighted average of these “weak” shifts as η =
∑|Φ|

i=1 γφiηφi where γφi is the
feature weight for the updated target-centre ηφi corresponding to the feature space φi.

3 Feature Combination via Graph Embedding

We now turn our attention to the recovery of the feature weight γφi . To this end, we cast
the problem of feature combination into a graph-theoretic setting. In this manner, we
aim at embedding the set of pairwise correlations between features in a metric space.
To do this, we abstract the pairwise relationships between low complexity features into
a relational structure and make use of graph-spectral methods, i.e. the eigenvalues and
eigenvectors of the Laplacian matrix [17], so as to cast the feature weight γφi in an opti-
misation setting that leads to a Rayleigh Quotient. This can be viewed as the recovering
of a graph embedding such that the correlation between features is minimum.

This embedding process commences by viewing the PDFs for the target foreground
and its surrounding background as nodes on a weighted graph, whose edge-weights are
given by their correlation in its geometric sense, i.e. the inner product of the pairwise
PDFs. Viewed in this way, the Laplacian of the graph can be related to a Gram matrix
of scalar products. This treatment, in turn, allows the use of matrix factorisation tech-
niques to recover the coordinates for the embedding of the graph. Thus, the problem of
finding the feature weight γφi turns into that of recovering the set of variables that max-
imises the pairwise distances between the features under consideration and, therefore,
minimises their cross-correlation via the use of the eigenvalues and eigenvectors of a
purposely-constructed matrix.

3.1 Feature Mapping

To commence, we require some formalism. Let G = (V,E,W ) denote a weighted
graph with index-set V , edge-set E = {(u, v)|(u, v) ∈ V × V } and edge-weights
W : E → [0, 1]. Recall that, as mentioned earlier, the nodes of the graph are the
PDFs for the target model and the scene background, i.e.{Qφi}φi∈Φ and {Pφi}φi∈Φ

respectively. As a result, we let the weightW (u, v) associated with the edge connecting
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the pair of nodes u and v corresponding to the ith and jth features in Φ be given by the
normalised cross-correlation

W (u, v) =

⎧⎨⎩
〈

Qφi

||Qφi
|| ,

Pφi

||Pφi
||

〉
if i = j〈

Qφi

||Qφi
|| ,

Qφj

||Qφj
||

〉
otherwise

(2)

Note that W is a symmetric matrix of scalar products, in which the diagonal elements
are given by the cross-correlation between the PDFs for the foreground and the back-
ground of the same feature, while the off-diagonal elements are the cross-correlation
between the PDFs for the foreground for different features.

To take our analysis further, we proceed to define the squared distance between fea-
tures on the graph. Here, we set the pairwise squared distance between a pair of nodes
as their correlation value. This is akin to the approaches in pairwise grouping such that
in [18]. We define

W (u, v) = ‖ϕ(u)− ϕ(v)‖2 (3)

where ϕ(u) is the embedding vector, i.e. the vector of coordinates for the feature φi

corresponding to the node u in V . The squared distance can also be expressed in terms
of a set of inner products as follows

W (u, v) = 〈ϕ(u), ϕ(u)〉 + 〈ϕ(v), ϕ(v)〉 − 2 〈ϕ(u), ϕ(v)〉 (4)

This permits viewing the correlation between tracking features as pairwise distances in
a metric space making use of the inner products.

3.2 Double Centering

To provide a link between the edge-weights W (u, v) and the coordinate vectors ϕ(u),
we make use of double-centering [19]. In particular, this can be achieved by firstly
relating the edge-weight matrix W to the Laplacian matrix L [14]. With the Laplacian
matrix at hand, a double-centered matrix of scalar products H = JJT can be computed.
This operation introduces a linear dependency over the columns of the matrix H while
preserving the symmetry of W .

This treatment is important because it allows us to view the double centered matrix
H as a matrix of scalar products which can then be interpreted as the sums of squared,
pairwise distances ‖ϕ(u) − ϕ(v)‖2 introduced in Equation 3. Furthermore, it can be
shown that the matrix H is, in fact, the double-centered graph Laplacian [19]. As a
result, the element of the matrix H corresponding to the nodes u, v ∈ V is given by

H(u, v) = −1

2

[
L(u, v)

2 − 1

|V |
∑
u∈V

L(u, v)
2 − 1

|V |
∑
v∈V

L(u, v)
2
+

1

|V |2
∑

u,v∈V

L(u, v)
2

]
(5)

The graph Laplacian L is defined as L = D−1/2(D−W )D−1/2 where D is a diagonal
matrix such that D=diag(deg(1), deg(2), . . . , deg(|V |)) and deg(u)=

∑
v∈V W (u, v)

is the degree of the node u ∈ V .
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Let ξl be the lth eigenvector of H scaled so its sum of squares is equal to the cor-
responding eigenvalue λl. Since Hξl = λlξl and (JJT )ξl = Hξl, it follows that the
squared distance between a pair of nodes in Equation 3 can be now written as

‖ ϕ(u)− ϕ(v) ‖2=
|V |∑
l=1

λl(ξl(u)− ξl(v))2 = H(u, u) + H(v, v)− 2H(u, v) (6)

3.3 Minimising Feature Correlation

With these ingredients, we can introduce the variables π(u) such that the weighted
correlations between low complexity features are minimum. We do this by making use
of the quantity

ε =
∑

u,v∈V

∥∥π(u)ϕ(u) − π(v)ϕ(v)
∥∥2

(7)

which we aim at minimising. The cost function above can also be interpreted as the sum
of squared weighted cross-correlations between the PDFs used for purposes of tracking.
Thus, we can use Equation 6 and, after some algebra, we write

ε =
∑

u,v∈V

(
π(u)2H(u, u) + π(v)2H(v, v) − 2π(u)π(v)H(u, v)) (8)

Note that, Equation 8 can be divided into two sets of terms. The first of these corre-
sponds to the diagonal matrix of H. The other set accounts for the off-diagonal elements
of H. Rearranging terms, we get

ε = 2|V |
∑
u∈V

π(u)2H(u, u)−
∑

u,v∈V
u=v

2π(u)2H(u, u)−
∑

u,v∈V
u�=v

2π(u)π(v)H(u, v) (9)

where we use the following facts∑
u,v∈V

π(u)
2H(u, u)= |V |

∑
u∈V

π(u)
2H(u, u) and

∑
u,v∈V

π(u)
2H(u, u)=

∑
u,v∈V

π(v)
2H(v, v)

Moreover, Equation 9 can be reduced to

ε = −
∑

u,v∈V
u�=v

2π(u)π(v)H(u, v) (10)

which can be written in compact form by defining a matrix Ĥ which comprises the
off-diagonal elements of H as follows

Ĥ(u, v) =

{
H(u, v) if u �= v

0 otherwise
(11)

This yields ε = −2ΠT ĤΠ where Π = [π(1), π(2), · · · , π(|V |)]T is a column vector
of order |V |. Note that the expression above is the numerator of a Rayleigh Quotient
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whereas the omitted denominator, ΠTΠ, is a normalisation constant. Thus, minimising
ε is equivalent to maximising ΠT ĤΠ and, therefore, Π∗ = argmin

Π
{ε} is given by the

leading eigenvector of Ĥ which corresponds to the eigenvalue whose rank is the largest.
The vector Π∗, hence, is the minimiser of the squared distances between the nodes

in the graph, i.e. the correlation between features. As a result, the set of feature weights
{γφi}φi∈Φ corresponding to the “weak” shifts is given by

γφi =
π(u)∑

u∈V π(u)
(12)

where the ith feature φi corresponds to the node u in V .

4 On-Line Feature Weight Updating

As kernel-based trackers [4,10,11] rely on the M -bin histograms of the model to deter-
mine the target location via the mean-shift optimisation scheme, the validity of these
histograms is extremely important for robust tracking. In [10], these M -bin histograms
are modified after every frame by randomly selecting pixels from the target foreground
so as to modify the tracking models across the feature spaces. Despite effective, this
“mixing” method does not discriminate between pixels and, hence, is susceptible to
mislocalisation due to histogram bias.

Here, we present an on-line feature weight updating method based upon the cross-
correlation between the histograms of the current target model and that corresponding
to the recovered target-centre after each mean-shift application. This technique is based
upon the weighted cross correlation between histograms and, thus, is devoid of pixel-
sample selection and injection. Moreover, we calculate the total cross-correlation in a
similar manner to that in Section 3.

To commence, let {Q̂φi}φi∈Φ be the set of the M -bin histograms obtained from
the new target position and "φi be the cross-correlation between the two histograms

Qφi and Q̂φi , i.e. "φi =
〈

Qφi

‖Qφi
‖ ,

Q̂φi

‖Q̂φi
‖

〉
. The total cross-correlation between the

two sets of histograms, {Q̂φi}φi∈Φ for the new target position and {Qφi}φi∈Φ for the
current model, can be computed as a linear combination of the weighted feature cross-
correlation "φi as

Γ =
∑

φi∈Φ

γφi"φi (13)

where {γφi}φi∈Φ is the set of feature weights derived from Section 3. This treatment, in
turn, allows us to set decision bounds for the updating operation. We do this by updating
the model M -bin histograms only when the condition 0 ≤ κ0 < Γ < κ1 ≤ 1 is
satisfied, where κ0 and κ1 are constants. This hinges in the confidence of the tracking
operation by following the notion that, if the total correlation between the new target-
centre histograms and that of the target model is close to unity, there is no need to update
since the two sets are sufficiently “close”. On the contrary, if the total correlation is too
low, then updating would “corrupt” the model. Updating is hence, appropriate when the
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Algorithm 1. Training
Data: Selected region of the target model.
begin

Sample N1 pixels from the foreground, N2 pixels from the background.
Compute the set of M -bin histograms {Qφi}φi∈Φ and {Pφi}φi∈Φ across the
feature spaces Φ.
Compute W as in Equation 2
Compute H as in Equation 5 and Ĥ as in Equation 11
Compute Π∗ as the leading eigenvector ξ1 of Ĥ
Compute the feature weights {γφi}φi∈Φ using Π∗ as in Equation 12
Save {γφi}φi∈Φ and {Qφi}φi∈Φ

end

correlation is not so low so as to introduce noise corruption but not as high as to be a
computational burden without improving tracking accuracy.

When update operations are deemed necessary, the histogram set {Qφi}φi∈Φ for the
target model is updated making use of a mixture model of the form

Q′
φi

= P (Q̂φi |"φi)Q̂φi +
(
1− P (Q̂φi |"φi)

)
Qφi (14)

This can be viewed as a “blending” operation between the two histograms. It is, indeed,
a two-class expectation for the two PDFs Q̂φi and Qφi , whose prior is given by the
probability of the new target position given the feature cross-correlations "φi .

5 Algorithm Description

With the developments presented in the previous sections, the tracking algorithm can
be divided into two stages. The first stage is the training phase, in which the user is re-
quired to select the target to track. The samples inside the selected region are then used
to compute a set of PDFs corresponding to the feature spaces under study. In a similar
manner, the area around the target is also sampled to create a set of background PDFs.
In our implementation, for the sake of efficiency, we perform background sampling in
the area of twice the size of the target. With the two sets of foreground and background
PDFs at hand, we compute the corresponding cross-correlation weight matrix W . Sub-
sequently, the double-centering matrix H is determined, followed by its off-diagonal
matrix Ĥ. The set of feature weights {γφi}φi∈Φ is then recovered from the leading
eigenvector of Ĥ.

In the second stage, the tracking vehicle is the mean-shift tracker presented in [4].
After each new target position, the total cross-correlation Γ is then calculated to deter-
mine if the set of model histograms needs to be updated, i.e. κ0 < Γ < κ1. This implies
that the feature weights and the target-model feature histograms will only be updated if
the tracking operation is reliable, i.e. with a Γ > κ0, while keeping computational cost
low by avoiding updating operations when the candidate and the model are virtually the
same, i.e. with a Γ < κ1.
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Algorithm 2. Tracking
Data: {γφi}φi∈Φ, {Qφi}φi∈Φ and target centre y
begin

for idx=StartFrame to EndFrame do
while true do

Compute the set of M -bin histograms {Pφi
}φi∈Φ for the searching window

Compute the target centre {ηφi}φi∈Φ of each mean-shift as in Equation 1
Compute the new target centre η =

∑
φi∈Φ γφiηφi

if ‖η − y‖ ≤ ε then
idx = idx + 1

break
else

Update the target centre y = η
end

end
Compute {Q̂φi}φi∈Φ at the new target centre

Compute �φi =

〈
Qφi

‖Qφi
‖ ,

Q̂φi

‖Q̂φi
‖

〉
Compute Γ =

∑
φi∈Φ γφi�φi

if κ0 < Γ < κ1 then

Compute P
(
Q̂φi |�φi

)
Update {Qφi}φi∈Φ to {Q′

φi
}φi∈Φ using Equation 14

Compute the new feature weights {γφi}φi∈Φ using the updated
{Qφi}φi∈Φ as in Algorithm 1

end
end

end

6 Experiments

In this section, we illustrate the robustness of our algorithm by presenting results on two
image sequences from the PETS-ECCV 2004 dataset1. Note that further sequences can
be found in the supplemental material accompanying this paper. In the first sequence,
the target moves from a bright area in the scene to a shady region, meets another person
and then walks away. The second sequence shows a group of four people moving across
the scene with some body-overlapping as they approach the camera. For each of these
sequences, the tracking target is manually selected by the user at the initial frame.

We have compared our results to those yielded by two competing algorithms. These
are the on-line Variance Ratio-based (VR-based) method proposed by Collins et al. [10]
and the on-line PCA-based method by Han and Davis [11]. Note that these methods
[10,11] have significant improvement in performance over the random weights. We have
also implemented two sets of features. The first set consists of 49 linear combinations
of R,G,B as described in [10]. We call this set the 49-feature set. The second set is a mix
of gradient, contrast and texture features including brightness, normalised RGB, Local

1 PETS dataset can be accessed from http://www.cvg.rdg.ac.uk/slides/pets.html
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Fig. 1. Results for the “Meet and Walk Together 1” sequence at frames 250 and 380. From top-
to-bottom: results yielded by our algorithm using the 49-feature set (first and second columns)
and the 11-feature set (third and forth columns), the on-line VR-based tracker [10] using the 49-
feature set and the 11-feature set, and the on-line PCA-based tracker [11] using the 49-feature set
and the 11-feature set.

Binary Patterns (LBPs) and six Haar-like features [2], which we call the 11-feature set.
The Harr-like features include vertical and horizontal 2,3 and 4-rectangle features.

In our implementation of the VR-based tracker, we select the set of five log-likelihood
images that yield the highest Variance Ratio as the tracking features for the current
frame. For the PCA-based tracker, the eigenvectors associated with the eigenvalues
whose normalised sum is greater than 0.7 are used so as to reduce the dimensionality of
the log-likelihood images. As suggested in [11], a Gaussian filter is also implemented in
order to reduce the amount of unwanted noise in the likelihood image corresponding to
the leading eigenvalue. For our tracker, we consider the conditional probability for the
update operations to be normally distributed, i.e. P (Q̂φi |"φi) ∼ N(μ, σ). Moreover,
we set μ = (κ0 + κ1)/2 and σ = (κ1 − κ0)/2. This treatment allows the set of M -bin
histograms for the target model to be updated based upon their individual correlations
given the upper and lower bounds set for the update operation as a whole. We set the
constants which govern the model update operations to κ0 = 0.7 and κ1 = 0.9.

In Figure 1, we present the sample results for frames 250 and 380 of the PETS-ECCV
2004 ”Meet and Walk Together 1” sequence. In this sequence, the target appearance
varies remarkably as it moves from the bright area into the shade between frames 290
and 310. As a result, the target model is subjected to significant change. Moreover, the
target remains close to the other person from frame 330 onwards, which serves as a
confounding factor that further complicates the tracking task. Despite these difficulties,
the feature combination approach presented here allows the tracker to follow the target
throughout the scene. This applies to both of the feature sets under consideration. The
VR-based tracker [10], on the other hand, loses the target as the subject approaches the
other person between frames 380 and 420. The PCA-based approach [11], however,



A Graph-Based Feature Combination Approach to Object Tracking 233

(a) (b) (c) (d)

Fig. 2. Target Center Error for our method, the on-line VR-based tracker [10], and the on-line
PCA-based tracker [11]. (a)(b): “Meet and Walk Together 1” sequence using the 49-feature set
and the 11-feature set, respectively; (c)(d): ”Group Walk 1” sequence using the 49-feature set and
the 11-feature set, respectively.

cannot adapt to the significant change in illumination and subsequently fails in tracking
the target from frame 290 until the end of the footage.

We present a more quantitative analysis of the tracker performance in Figure 2(a)
and (b). In these figures, we have plotted the target centre error as a function of frame
index with respect to the ground truth provided with the PETS-ECCV 2004 dataset. For
the sake of clarity, the error in the figure is shown in a logarithmic scale. Note that our
tracker has the lowest mean target centre errors of 5.63 ± 2.77 pixels and 4.40± 3.44
pixels for the 49-feature set and the 11-feature set, respectively. The VR-based tracker
[10], has a mislocalisation mean of 15.40 ± 15.44 pixels and 16.22 ± 13.69 pixels,
respectively. The PCA-based tracker [11], being unable to track the target after frame
290, has a mean centre error of 49.86± 22.34 pixels and 48.27± 24.84 pixels. This is
consistent with the behaviour described above.

We now turn our attention to the contribution of each feature to the global “strong”
shift across the sequence. During the sequence, there are 22 updates during the footage.
The first 20 updates occur between frames 250 and 310, in which the target moves
across the bright area to the shady region in the scene. As a result, the appearance of the
target varies significantly. During this frame range, the features such as the vertical and
horizontal 3-rectangle Harr-like are assigned the highest weights, with an overall contri-
bution of approximately 60%. In contrast, colour-based features such as the brightness
and the normalised RGB channels are given much lower weights, with a contribution of
less than 10%. The last few updates occur after frame 320, corresponding to the frames
where the target moves completely inside the shady area. These adjustments reduce the
weight of the Harr-like features and increase the contribution of the image brightness.

Moving on to the second of our experimental vehicles, Figure 3 shows the results
for frames 250 and 280 of the PETS-ECCV 2004 “Group Walk 1” video sequence.
The sequence records a group of four people moving across the scene, of which we
track the female target. In this footage, there is no significant illumination change as
in the previous sequence. However, as the group approaches the camera, their bodies
overlap one another before exiting the scene. The similarity in their outfit colour further
complicates the tracking task.

In this sequence, the VR-based tracker [10] performs well in the first 100 frames
with both feature sets. However, it quickly loses the target once the target is partially
occluded by another member of the group. This results in target centre errors of up
to 46.47 ± 49.50 pixels and 46.75 ± 47.52 pixels, as shown in Figure 2 (c) and (d).
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Fig. 3. Results for the “Group Walk 1”sequence at frames 250 and 280. From top-to-bottom:
results yielded by our algorithm using the 49-feature set (first and second columns) and the 11-
feature set (third and forth columns), the on-line VR-based tracker [10] using the 49-feature set
and the 11-feature set, and the on-line PCA-based tracker [11] using the 49-feature set and the
11-feature set.

The performance of the PCA-based tracker [11] has high variation across the sequence.
In particular, the PCA-tracker shows a similar performance to that of the VR-based
tracker when the 49-feature set is used. It also loses the target at the frames where the
subject bodies overlap, being unable to recovery afterwards. However, in the 11-feature
set case, the PCA-tracker only manages to track the target in the first 20 frames. As a
result, the error measurements are significant, 38.42± 41.00 pixels and 86.65± 60.16
pixels for the 49-feature set and the 11-feature set, respectively. For our tracker, the
model integrity is preserved as a consequence of the use of the total correlation as a
measure of tracking confidence. Our tracker successfully follows the target throughout
the scene with low target centre-errors, i.e. 6.09 ± 3.03 pixels and 6.25 ± 2.31 pixels
for the 49-feature set and the 11-feature set, respectively.

On the contribution of each feature to the global “strong” shift, there are 37 up-
dates throughout the footage. These mainly occur when the subject bodies occlude one
another. Nonetheless, the vertical 3-rectangle Harr-like feature is dominant across the
sequence. From our experiments we also notice that the normalised RGB colour chan-
nels are not as discriminant as the other features in the set. This can be attributed to
the fact that the clothing colour of the subjects in the scene does not separate the target
from the rest of the crowd.

7 Conclusion

In this paper, we have presented a feature combination approach for object tracking.
We have shown how the target-centre may be recovered from a weighted linear com-
bination of “weak” mean-shifts. This feature combination method is based upon graph
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embedding techniques. Thus, it provides a principled link between feature combination,
graph-spectral methods and graphical models. The method performs on-line updating
based upon the correlation between the target current model and that of the new tar-
get position at the current frame. The updating scheme presented here is governed by
the reliability of the tracking process. As a result, our method can cope with confusing
backgrounds, unexpected fast movements and temporary occlusions by taking advan-
tage of the information drawn from multiple feature spaces corresponding to a number
of visual cues. The approach is quite general in nature and can employ other features
elsewhere in the literature. We have also compared our results to those delivered by
alternative methods.
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Abstract. Particle filtering is an effective sequential Monte Carlo approach to
solve the recursive Bayesian filtering problem in non-linear and non-Gaussian
systems. The algorithm is based on importance sampling. However, in the lit-
erature, the proper choice of the proposal distribution for importance sampling
remains a tough task and has not been resolved yet. Inspired by the animal swarm
intelligence in the evolutionary computing, we propose a swarm intelligence
based particle filter algorithm. Unlike the independent particles in the conven-
tional particle filter, the particles in our algorithm cooperate with each other and
evolve according to the cognitive effect and social effect in analogy with the co-
operative and social aspects of animal populations. Furthermore, the theoreti-
cal analysis shows that our algorithm is essentially a conventional particle filter
with a hierarchial importance sampling process which is guided by the swarm
intelligence extracted from the particle configuration, and thus greatly overcome
the sample impoverishment problem suffered by particle filters. We compare the
proposed approach with several nonlinear filters in the following tasks: state es-
timation, and visual tracking. The experiments demonstrate the effectiveness and
promise of our approach.

1 Introduction

Particle filters have been extensively studied in the computer vision and pattern recog-
nition community due to its crucial value in numerous applications including visual
tracking, robot localization, machine learning, and signal processing.

Essentially, particle filter is a sequential Monte Carlo approach to solve the recur-
sive Bayesian filtering problem, which combines the powerful Monte Carlo sampling
technique with Bayesian inference. It relaxes the linearity and Gaussianity constraints
of the Kalman filter and provides a tractable solution to non-linear and non-Gaussian
problems. The basic idea of particle filtering is to use a number of independent random
variables called particles, sampled from a proposal distribution, to represent the pos-
terior probability, and to update the posterior by involving the new observations. The
particles is properly propagated and weighted recursively according to the Bayesian
rule. Although particle filtering has achieved a considerable success in the analysis of
sequential time series, it is faced with a fatal problem-sample impoverishment due to its
suboptimal sampling mechanism, based on a proposal distribution. When the proposal
distribution is concentrated in the tail of the observation distribution the performance of
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the particle filter is very poor since most particles have low weights, thereby leading to
the well-known sample impoverishment problem.

Recently PSO (particle swarm optimization) [1,2,3,4,5], a new population based
stochastic optimization technique, has received more and more attention because of
its considerable success. Unlike the independent particles in the particle filter, the par-
ticles in PSO interact locally with one another and with their environment in analogy
with the cooperative and social aspects of animal populations, for example as found
in birds flocking. Starting from a diffuse population, now called a swarm, individuals,
now termed particles, tend to move in the state space and eventually cluster in regions
where optimal state is located. The advantages of this mechanism are, on one hand, the
robustness and sophistication of the obtained group behavior and, on the other hand, the
simplicity and low cost of the computation associated with each particle.

Inspired by the forgoing discussions, we propose a swarm intelligence based particle
filter algorithm, in which the particles are viewed as intelligent individuals, e.g. birds,
and evolve through communicating and cooperating with each other. Meanwhile, we
also conduct a theoretical analysis from a ‘Bayesian filtering’ perspective, and find that
the proposed algorithm is essentially a conventional particle filter with a hierarchial im-
portance sampling process. The hierarchial importance sampling process which consists
of two stages: 1) a coarse sampling from the state transition distribution p(xt|xt−1), 2)
a fine sampling carried out by the PSO iterations which are based on the ‘cognitive’ and
‘social’ aspects of particle populations. In this way, the newest observations are grad-
ually taken into consideration to approximate the sampling results from the optimal
proposal distribution p(xt|xt−1, yt) [6], and thereby overcome the sample impoverish-
ment problem suffered by convectional particle filters.

This paper is arranged as follows. The standard particle filter and its limitation are
presented in Section 2. The proposed annealed Gaussian based particle swarm opti-
mization is introduced in Section 3. Section 4 gives a detailed description of the smarter
particle filter and its theoretical analysis. Experimental results are shown in Section 5,
and Section 6 is devoted to conclusion.

2 Particle Filter and Its Limitation

To make this paper self-contained, we first briefly review the conventional particle filter,
which is described in more detail in [7], and then summarize its major limitation.

2.1 Particle Filter

The particle filter is an on-line Bayesian inference process for estimating the unknown
state xt at time t from sequential observations y1:t perturbed by noise. A dynamic state-
space form employed in the Bayesian inference framework is shown as follows [7],

state transition model xt = ft(xt−1, εt)↔ p(xt|xt−1) (1)

observation model yt = ht(xt, νt)↔ p(yt|xt) (2)

where xt, yt represent system state and observation, εt, νt are the system noise and
observation noise. ft(., .) and ht(., .) are the state transition and observation models,
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which are determined by probability distributions p(xt|xt−1) and p(yt|xt) respectively.
The Bayesian inference process is achieved by

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (3)

where the prior p(xt|y1:t−1) is the propagation of the previous posterior along the tem-
poral axis,

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (4)

When the state transition and observation models are nonlinear and non-Gaussian, the
above integration is intractable and one has to resort to numerical approximations such
as particle filters. The basic idea of particle filter is to use a number particles {xi

t}Ni=1,
sampled directly from the state space, to approximate the posterior distribution. Thus
the posterior can be formulated as p(xt|y1:t) = 1

N

∑N
i=1 δ(xt − xi

t), where δ(·) is
the Dirac function. Since it is usually impossible to sample from the true posterior, an
easy-to-implement distribution, the so-called proposal distribution denoted by q(·) is
employed, hence xi

t ∼ q(xt|xi
t−1, y1:t), (i = 1, · · ·, N), then each particle’s weight is

set to

wi
t ∝

p(yt|xi
t)p(x

i
t|xi

t−1)
q(xt|xi

t−1, y1:t)
. (5)

Finally, the posterior probability distribution is approximated as p(xt|y1:t) =
∑N

i=1 w
i
t

δ(xt− xi
t). After the importance sampling step, a re-sampling step is adopted to ensure

the efficiency of the particles’ evolution. To summarize, the detail process of particle
filter is presented in Algorithm 1.

Algorithm 1. Particle Filter

1. Initialization: for n = 1, · · ·, N , sample x
(n)
0 ∼ p(x0), w

(n)
0 = 1/N .

2. For time steps t = 1, 2, · · ·
3. Importance Sampling: for n = 1, · · ·, N , draw samples from the importance proposal
distribution as follows:

x̃
(n)
t ∼ q(xt|x(n)

t−1, y1:t)

4. Weight update: evaluate the importance weights with Equation (5).
5. Normalize the importance weights:

w̃
(n)
t =

w
(n)
t∑N

i=1 w
(i)
t

6. Output the statistics of the particles: MMSE or MAP estimate.
7. Resampling: generate N new particles x

(n)
t from the set {x̃(n)

t }N
n=1 according to the

importance weights {w̃(n)
t }.

8. Repeat Steps 3 to 7.

2.2 Limitation

The proposal distribution q(·) is critically important for a successful particle filter be-
cause it concerns putting the sampling particles in the useful areas where the posterior
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(a) (b)

Fig. 1. An illustration of importance sampling (left: sample from p(xt|xt−1), right: after PSO
iterations )

is significant. In practice, the state transition distribution p(xt|xt−1) is usually taken as
the proposal distribution for its simplicity. However, this proposal distribution contains
little information about the current observations, consequently resulting to a inefficient
sampling.

As shown in Fig.1(a), when the transition model is situated in the tail of the obser-
vation distribution, then the weight of most particles are low, thereby leading to the
sample impoverishment problem.

3 Annealed Gaussian Based PSO

3.1 Traditional PSO

Particle swarm optimization [1], is a population based stochastic optimization tech-
nique, which is inspired by the social behavior of bird flocking. In detail, a PSO al-
gorithm is initialized with a group of random particles {xi,0}Ni=1 (N is the number of
particles). Each particle xi,0 has a corresponding fitness value which is evaluated by a
fitness model f(xi,0), and has a relevant velocity vi,0 which is a function of the best
state found by that particle (pi, for individual best), and of the best state found so far
among all particles (g, for global best). Given these two best values, each particle up-
dates its velocity and state with following equations in the nth iteration,

vi,n+1 = wnvi,n + ϕ1u1(pi − xi,n) + ϕ2u2(g − xi,n) (6)

xi,n+1 = xi,n + vi,n+1 (7)

where wn is the inertial weight, the ϕ1, ϕ2 are acceleration constants, and u1, u2 ∈
(0, 1) are uniformly distributed random numbers. The inertial weight w is usually a
monotonically decreasing function of the iterationn. For example, given a user-specified
maximum weight wmax and a minimum weight wmin, one way to update w is as fol-
lows:

wn+1 = wn − dw, dw = (wmax − wmin)/T (8)

where T is the maximum iteration number. In Eq.(6), the three different parts represent
inertial velocity, cognitive effect and social effect respectively. After the nth iteration,
the fitness value of each particle is evaluated by a predefined fitness model as follows.
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f(xi,n+1) = p(yi,n+1|xi,n+1) (9)

where yi,n+1 is the observation corresponding to the state xi,n+1. Then the individual
best and global best of the particles are updated in the following equations:

pi =
{
xi,n+1, if f(xi,n+1) > f(pi)
pi, else

(10)

g = argmax
pi

f(pi) (11)

In this way, the particles search for the optima through the above iterations until the
fitness value of g reaches a certain threshold or the maximum iteration number is en-
countered.

3.2 Annealed Gaussian Based PSO

In the above version of PSO algorithm, there are several parameters to be tuned: inertial
weights wn, acceleration constants ϕ1, ϕ2. There is a lack of a mechanism for control-
ling of these parameters, which fosters the danger of swarm explosion and divergence
especially in high dimensions. Therefore, we propose an annealed Gaussian based par-
ticle swarm optimization (AGPSO) algorithm, where the particles and their velocities
are updated in the following way,

vi,n+1 = |r1|(pi − xi,n) + |r2|(g − xi,n) + η (12)

xi,n+1 = xi,n + vi,n+1 (13)

where r1, r2 are random numbers sampled from the Gaussian probability distribution
N (0, 1), and η is zero-mean Gaussian perturbation noise to avoid trapping in local
optima whose covariance matrix is changed in an adaptive simulated annealing way
[8]:

Σn
η = Σe−cn (14)

where Σ is the covariance matrix of the predefined transition distribution, c is an an-
nealing constant, and n is the iteration number. Compared with the traditional PSO, it
has two major merits: a) a big reduction in the number of parameters–there is a single
annealing parameter, b) it converges much faster than traditional PSO (see Section 5.1).

4 Swarm Intelligence Based Particle Filter

4.1 Motivation

In [6], it is shown that the ‘optimal’ importance proposal distribution is p(xt|xi
t−1, yt)

in the sense of minimizing the variance of the importance weights. However, in prac-
tice, it is impossible to use p(xt|xi

t−1, yt) as the proposal distribution in the non-linear
and non-Gaussian cases, since it is difficult to sample from p(xt|xi

t−1, yt) and to eval-
uate p(yt|xi

t−1) =
∫
p(yt|xt)p(xt|xi

t−1)dxt. So the question is, how to incorporate the
current observation yt into the transition distribution p(xt|xt−1) to form an effective
proposal distribution at a reasonable computation cost.
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Fig. 2. Overview of the proposed algorithm

4.2 The Smarter Particle Filter

From the description of Section 3, we can see that the PSO iterations can naturally take
the observation into consideration, since the particles cooperate and evolve according to
their fitness values which are updated by their corresponding observations. Inspired by
this property of the PSO, we propose a swarm intelligence based particle filter, in which
the particles are firstly propagated by the state transition model, and then corporately
evolve according to the PSO iterations.

To give a clear view, the flowchart of the swarm intelligence based particle filter
is shown in Fig.2. First, the individual best of particles from the previous time t −
1 are resampled and randomly propagated by state transition model to enhance their
diversities. Then, by moving the particle swarm towards the particle with the best fitness
value, PSO drives all particles towards high likelihood regions. Finally, when the fitness
value of gt reaches a certain threshold or the maximum iteration number is encountered,
the optimized sampling process is stopped. The global best gt or the mean of individual
best pi

t is output as the maximum a posterior (MAP) estimate or minimum mean square
error (MMSE) estimate. The details of the proposed algorithm are as follows.

1. Input: the N individual best particles {pi
t−1}N

i=1 at time t − 1;
2. Resample the above particles according to their fitness value, resulting to a new particle set

{p̃i
t−1}N

i=1;
3. Randomly propagate the particle set to enhance their diversities according to the following

transition model
xi,0

t ∼ p(xt|p̃i
t−1)

4. for n = 0, 1, 2, . . . , T do
5. Carry out the PSO iteration based on Equations (12),(13)

vi,n+1
t = |r1|(pi

t − xi,n
t ) + |r2|(gt − xi,n

t ) + η

xi,n+1
t = xi,n

t + vi,n+1
t

6. Evaluate the fitness values

f(xi,n+1
t ) = p(yi,n+1

t |xi,n+1
t )

where yi,n+1
t is the observation corresponding to xi,n+1

t ;
7. Update the two best particles and the covariance matrix

pi
t =

{
xi,n+1

t , if f(xi,n+1
t ) > f(pi

t)

pi
t, else

, gt = arg max
pi

t

f(pi
t)

Σn+1
η = Σe−c(n+1)

8. Check the convergence criterion;
9. If satisfied, break;

10. end for
11. Output: the global best gt or the mean of {pi

t}N
i=1;
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4.3 Theoretical Analysis from Bayesian Filtering View

In this part, we conduct a theoretical analysis of our algorithm from a Bayesian filtering
view, and show why our algorithm improves on the particle filter.

Hierarchical Importance Sampling In our algorithm as described in Section 4.2, we
take a two-stage sampling strategy to generate samples that approximate to the ‘opti-
mal’ proposal distribution: first, the particles are sampled from the state transition dis-
tribution p(xt|xt−1); second, the sampled particles evolve through the PSO iterations
to obtain the final importance sampling.

From the particle filtering view, we can see that our strategy is essentially a hierar-
chical importance sampling. In the coarse importance sampling stage, the particles are
firstly sampled from the state transition distribution as in conventional particle filters to
enhance their diversity.

xi,0
t ∼ p(xt|p̃i

t−1) (15)

In the fine importance sampling stage, the particles evolve through PSO iterations, and
are updated according to the newest observations. In fact, this is essentially a latent
multi-layer importance sampling process with an implicit proposal distribution. Sup-
pose xt ∈ Rd be d-dimensional state, let’s focus on one PSO iteration in Section 4.2,
suppose xt ∈ Rd is a d-dimensional state, the distribution of the lth element in the
vector |r1|(pi

t − x
i,n
t ) is as follows:

|r1|(pi
t − x

i,n
t )l,∼

{2N (0, (pi
t − x

i,n
t )

2
l ) [0,+∞), if (pi

t − x
i,n
t )l ≥ 0

2N (0, (pi
t − x

i,n
t )

2
l ) (−∞, 0), else

where l = 1, · · ·, d, so the distribution of |r1|(pi
t − x

i,n
t ) is

|r1|(pi
t − x

i,n
t ) ∼ R1 = 2N (0, Σ1), Σ1 =

⎛⎜⎜⎝
(pi

t − x
i,n
t )

2
1 0

. . .

0 (pi
t − x

i,n
t )

2
d

⎞⎟⎟⎠
Similarly available,

|r2|(gt − xi,n
t ) ∼ R2 = 2N (0, Σ2), Σ2 =

⎛⎜⎜⎝
(gt − xi,n

t )
2
1 0

. . .

0 (gt − xi,n
t )

2
d

⎞⎟⎟⎠
Together with η ∼ R3 = N (0, Ση), the implicit proposal distribution behind a PSO
iteration is R = R1 ∗ R2 ∗ R3

1 with a xi,n
t translation. Here ∗ stands for convolution

operator.
In this way, the PSO iterations can naturally take the current observation yt into

consideration, since {pi
t}Ni=1 and gt are updated to their observations. Therefore, with

1 Since the analytical form of R is not available, we called it latent sampling process.
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coarse importance sampling stage from the state transition distribution p(xt|p̃i
t−1), the

hierarchical sampling process can approximate to the optimal sampling from
p(xt|xi

t−1, yt).
As shown in Fig.1, when the transition distribution is situated in the tail of the ob-

servation likelihood, the particles directly drawn from this distribution do not cover a
significant region of the likelihood, and thus the importance weights of most particles
are low, resulting to unfavorable performance. In contrast, through hierarchial sampling
process in our algorithm, the particles are moved towards the region where the likeli-
hood of observation has larger values, and are finally relocated to the dominant modes
of the likelihood, demonstrating the effectiveness of our sampling strategy.

5 Experimental Results

We compare the performance of our algorithm to several non-linear filters on two esti-
mation problems: 1) a synthetic state estimation problem; 2) real world visual tracking
problem. All of the experiments are carried out on a CPU Pentium IV 3.2GHz PC with
512M memory2.

5.1 State Estimation

The algorithm is firstly tested on a non-linear state estimation problem, which is de-
scribed as benchmark in many papers [9]. Consider the following nonlinear state tran-
sition model given by

xt = 1 + sin(wπ(t − 1)) + φ1xt−1 + vt−1, xt ∈ R (16)

where vt−1 is a Gamma Ga(3, 2) random variable modeling the process noise, and
w = 4e− 2 and φ1 = 0.5 are scalar parameters. A non-stationary observation model is
as follows

yt =
{
φ2x

2
t + nt, t ≤ 30

φ3xt − 2 + nt, t > 30
(17)

where φ2 = 0.2, φ3 = 0.5, and the observation noise nt is drawn from a Gaussian dis-
tribution N (0, 0.00001). Given only the noisy observation yt, several filters are used
to estimate the underlying state sequence xt for t = 1 · · · 60. Here, we compare
our algorithm (with AGPSO) with conventional particle filter [7], extended Kalman
based particle filter [10], unscented particle filter [9], auxiliary particle filter [11], and
our algorithm (with traditional PSO)3. For each algorithm, a proposal distribution is
chosen as shown in Table 1. The parameters in APSO and PSOPF are set as follows:
Σ = 0.8, c = 2, ϕ1 = ϕ2 = 1, wmax = 0.8, wmin = 0.1, T = 20. Fig.3 gives an
illustration of the estimates generated from a single run of the different filters. Com-
pared with other nonlinear filters, our algorithm is more robust to the outlier, where the
observation is severely contaminated by the noise. Since the result of a single run is a
random variable, the experiment is repeated 100 times with re-initialization to generate

2 The data and code used in these experiments are available by writing to the authors.
3 We call these filters AGPSOPF, PF, EKPF, UPF, APF, PSOPF respectively for short in the

following parts.
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Table 1. Experimental results of state estimation

Algorithm Proposal MSE mean MSE var Time(s)
Particle filter (PF) p(xt|xt−1) 0.42225 0.045589 3.6939

Extended Kalman particle filter (EKPF) N(x̄t, P̄t) 0.31129 0.015167 13.014
Unscented particle filter (UPF) N(x̄t, P̄t) 0.06977 0.024894 26.2815
Auxiliary particle filter (APF) p(xt|xt−1) 0.55196 0.037047 7.1835

Our algorithm (with PSO) p(xt|xt−1) 0.13019 0.044086 10.2087
Our algorithm (with AGPSO) p(xt|xt−1) 0.060502 0.06852 6.8005

statistical averages. Table 1 summarizes the performance of all the different filters in the
following aspects: the means, variances of the mean-square-error (MSE) of the state es-
timates and the average execute time for one run. It is obvious that the average accuracy
of our algorithm is better than generic PF, EKPF, APF and comparable to that of UPF.
However, the real-time performance of our algorithm is much better than UPF as Table
1 shows. Meanwhile, we can see that AGPSOPF can achieve a much faster convergence
rate than PSOPF. This is because the velocity part employed in Eq.(6) carries little in-
formation, while the annealing part in our PSO iterations enhances the diversity of the
particle set and its adaptive effect enables a fast convergence rate. In summary, the total
performance of our algorithm prevails over that of other nonlinear filters.
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Fig. 3. An illustration of a single run of different filters

5.2 Visual Tracking

In this part, we apply these filters (except EKPF and PSOPF) to a rapid motion tracking
task to further demonstrate the effectiveness of the sampling strategy in our algorithm.
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Fig. 4. Tracking performances of a human face with rapid motion (green: PF, blue: UPF, cyan:
APF, magenta: our algorithm)

This video sequence4 contains a human face with a rapid motion (see Fig.4). In
tracking application, p(xt|xt−1) is used to model the object motion, so when p(xt|xt−1)
is not coincident with the actual motion, the sampling directly from p(xt|xt−1) will not
be efficient. Therefore, although this sequence seems simple, its rapid and arbitrary
motion is a challenge for the different improvements of sampling strategy.

In our implementation, we adopt an incremental learned subspace based appear-
ance model [12] for observation evaluation, and we consider only translational motion
x = (tx, ty) for simplicity, since our goal is to test the sampling efficiency of all the
non-linear filters. Here, p(xt|xt−1) is set to a Gaussian distribution with a covariance
matrix Σ = diag(82, 82), and the annealing const is also set to 0.3, and the particle
number is set to 200. As shown in Fig.4, the PF based tracker and APF based tracker
soon fail to track the object, because the particles directly sampled from the state transi-
tion distributionN (xt−1, Σs) can not catch the rapid motion of the object, and thus the
weights of most particles are low, leading to the tracking failure. More particles and an
enlargement for the diagonal elements of the covariance matrix would improve its per-
formance, but this strategy involves more noises and a heavy computational load, and
it may trap in the curse of dimensionality when the dimension of the state increases.
While the UPF based tracker can follow the object throughout the sequence, the lo-
calization accuracy is unsatisfactory. In comparison, our algorithm, which evolves the
particles by the swarm intelligence based importance sampling, never loses the target
and achieves the most accurate results. Furthermore, we have conducted a quantitative
evaluation of these algorithms, and have a comparison in the following aspects: frames
of successful tracking, RMSE (root mean square error) between the estimated position
and the labeled groundtruth, and average tracking time of each frame. In Table 3, our
algorithm outperforms the other filters based trackers in accuracy with a reasonable
sacrifice of speed, which witnesses the effectiveness our sampling strategy.

Table 2. Quantitative results of the tracking performance

Algorithm Frames Tracked RMSE of Position (by pixels) Average Tracking Time (by seconds)

PF 5/31 33.4580 0.051
UPF 31/31 3.5097 80.785
APF 4/31 38.7260 0.098

AGPSO 31/31 2.0112 0.731

4 The sequence is available at http://vision.stanford.edu/ birch/headtracker/seq/.



246 X. Zhang, W. Hu, and S. Maybank

6 Conclusion

In this paper, we propose a swarm intelligence based particle filter to overcome the
sample impoverishment problem. Unlike the independent particles in the convectional
particle filters, the particles in our algorithm cooperate each other and evolve accord-
ing to the cognitive effect and social effect in analogy with the cooperative and social
aspects of animal populations. We conduct a theoretical analysis in a Bayesian filtering
view, and find that our algorithm is essentially a convectional particle filter with a hierar-
chial importance sampling process which is guided by the swarm intelligence extracted
from particle configuration. The experimental results demonstrate the effectiveness and
promise of our approach.
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Abstract. We propose a novel efficient algorithm for robust tracking of

a fixed number of targets in real-time with low failure rate. The method

is an instance of Sequential Importance Resampling filters approximating

the posterior of complete target configurations as a mixture of Gaussians.

Using predicted target positions by Kalman filters, data associations are

sampled for each measurement sweep according to their likelihood allow-

ing to constrain the number of associations per target. Updated target

configurations are weighted for resampling pursuant to their explanatory

power for former positions and measurements. Fixed-lag of the resulting

positions increases the tracking quality while smart resampling and mem-

oization decrease the computational demand. We present both, qualita-

tive and quantitative experimental results on two demanding real-world

applications with occluded and highly confusable targets, demonstrating

the robustness and real-time performance of our approach outperforming

current state-of-the-art.

1 Introduction

Low cost and high availability of digital cameras offer opportunities in traditional
surveillance tasks and open up new fields like automatic sports analysis or studies
of social insect behavior. While the available video footage grows constantly,
these data need to be examined. Robust automatic tracking of multiple targets in
video is a key feature to assist or avoid expensive and tedious human interactions.

We present a multiple target tracking algorithm that can follow more than
twenty similar targets robustly over long sequences in real-time. The proposed
method constitutes a Rao-Blackwellized Resampling Particle filter with fixed-lag
estimates. The posterior of target positions given the observed measurements is
approximated as a mixture of Gaussians approving the use of Kalman filters. The
data association problem is solved by sampling according to the likelihood of an
assignment for one measurement sweep. Multiple measurements can be assigned
to the same target following a Poisson distribution. While smart resampling and
memoization allows for real-time capability, fixed time delay for the estimates
offers an increase in robustness.

We applied our method to demanding sequences in the soccer and insects
domain as they contain a high volume of similar and confusable targets with

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 247–256, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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natural motion. Our algorithm exhibits higher quality in tracking at less compu-
tational time than the current state-of-the-art multiple target tracking method
by Khan et al. [1]. Lower failure rate can be achieved by disallowing merged
measurements and restricting multiple measurements to a Poisson distribution,
which better matches reality. Performance gain is due to the direct sampling of
associations instead of running a Markov chain, better exploiting recyclability
and avoiding uninformative computations like burn-in steps.

After a survey of related work in the field of multiple target tracking, we detail
our new Rao-Blackwellized Resampling Particle filter in section 3. Section 4
depicts the experimental results for soccer and ant tracking with comparison to
the state-of-the-art. We finish in section 5 with our conclusions.

2 Related Work

The problem of tracking is to recursively estimate an unknown state based on
limited observations. Tracking algorithms follow predominantly a Bayesian ap-
proach approximating the posterior probability density function (pdf) of the
target states given all measurements up to that time, an initial target distribu-
tion and the process of how positions evolve over time (motion model) and how
measurements inform about target states (sensor model).

In single target tracking two approaches are widely used. The Kalman filter [2]
constrains the target state distribution to a Gaussian, consists of a predict and
an update step and has shown to be the optimal estimator for linear motion
and sensor model. Several suboptimal extensions as e.g. the Extended and the
Unscented Kalman filter have been proposed for nonlinear motion and/or sensor
models and additional constraints. The second approach known as Particle filter
or sequential Monte Carlo method (SMC) approximates arbitrary probability
density functions (pdf) on discrete points (particles) only (see [3,4]) yielding a
fast tracking method also for nonlinear motion and sensor models.

Multiple-target tracking algorithms differ from single target tracking by the
problem of associating each measurement with an appropriate target which is
known as data association. Multiple target tracking approaches can be catego-
rized by their handling of the data associations problem.

The Nearest-Neighbor Data Association (NN) assigns each measurement to
the closest target mostly based on the Mahalanobis distance (e.g. [5]). The Joint
Probabilistic Data Association filter (JPDAF) forms a sub optimal Bayesian
algorithm that approximates the posterior distributions of the targets as separate
Gaussians for each target, that is assigned to all measurements with weights
depending on the predicted association probability (see [6,2]).

Multiple hypothesis tracking (MHT) [6] builds a (mostly pruned) tree of all
possible association sequences of each measurement with close targets. The re-
striction to single associations only as well as the use of Kalman filters and
the Hungarian method to find the k best global associations allow computa-
tion in polynomial time, but inhibit to handle multiple or merged associations.
The Probabilistic MHT (PMHT) [7] does not attempt to enumerate all possible
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combinations of feasible data association links, but uses a probabilistic structure
derived using expectation-maximization.

Markov Chain Monte Carlo (MCMC) methods sample the data associations
based on an importance density by starting with an initial association and
proposing local modifications of it (e.g. associate, dissociate or swap) that are ac-
cepted with a special acceptance ratio. The sampling performs a Markov Chain
over associations in a Bayesian graph where the transition probabilities are cho-
sen so that the stationary distribution of the chain converges to the density of
the data associations. The Markov Chain is usually run for a burn-in time for
initialization of real sampling, the relative frequency of the sampled associations
form the desired pdf. Khan et al. proposed in [1,8] a real-time Rao-Blackwellized
MCMC-based particle filter allowing also sampling of split and merged measure-
ment associations. Counterintuitively for a particle filter the MCMC approach
can not easily be parallelized maintaining the correct sampling behavior, al-
though work has been published recently by [9].

The Rao-Blackwellized Monte Carlo data association (RBMCDA) approach
by Särkkä [10,11] sequentially samples one association after another estimating
target positions as a mixture of Gaussians and handling dependencies between
assignments of each single measurement by data association priors. The assump-
tion of independence of the order of data associations in one sweep is made.
RBRPF [12] is an extension of RBMCDA introducing smart resampling and
memoization, that lead to real-time tracking in the first place, and relaxation of
the association independence assumption.

3 Rao-Blackwellized Resampling Particle Filter with
Fixed-Lag

Following the Bayesian approach our tracking method approximates the poste-
rior probability density function (pdf) p (xk|z1:k) of the target positions xk at
time k given all measurements z1:k seen so far. A particle filter for complete
player configurations constitutes the base of our algorithm. The pdf is approx-
imated only at S discrete points xi

k with weights wi
k called weighted particles:

p (xk|z1:k) ≈
S∑

i=1

wi
kδ

(
xk − xi

k

)
. (1)

Each particle consists of Gaussians for all N target states with mean m and
covariance V :

xi
k =

{
N

(
xi

j,k;mi
j,k, Vj,k

)}
j = 1, . . . , N. (2)

The main loop of the algorithm is depicted in fig. 1 following the Sample Im-
portance Resampling (SIR) framework described in [4] with a combined step of
an early resampling and the drawing of new particles. These steps are merged
due to the discrete (but still exponential) number of possible data associations
which change the nature of sampling. To save computational time, every particle
is predicted once with a given motion model f (also called system model)



250 N. von Hoyningen-Huene and M. Beetz

x̂i
k = fk

(
xi

k−1, Γk−1
)

(3)

with i.i.d. process noise Γk−1. Each target state is predicted individually under
the assumption that their motion is independent. The prediction is solved an-
alytically which is known as Rao-Blackwellization, which is possible owing to
the Gaussian nature of the target states. The most probable associations given
predicted positions and measurements are sampled several times according to
the weight of their former particle plus a constant minimum number o. An as-
signment J i

k,r (j, l) of a specific target j to a measurement l is drawn using the
importance density

p
(
J i

k,r (j, l)
)

=
p
(
zl,k|x̂i

j,k

)
p
(
J i

k,r (l,∅)
)

+
∑

j p
(
zl,k|x̂i

j,k

) (4)

with J i
k,r (l,∅) denoting the measurement to be clutter.

Measurements and target states are linked by the sensor model hr
k (also called

measurement model)
zk = hr

k

(
x̂i

k, Rk

)
, (5)

with i.i.d. measurement noise Rk. The function hr
k depends on J i

k,r and relates
assigned target states to the measurements zk. If hr

k is a linear function (written
as a matrix Hr

k) and target state and measurements are Gaussian, individual
assignment probabilities can be evaluated analytically as

p
(
zl,k|x̂i

j,k

)
∼ N

(
zl,k;Hr

j,kx̂
i
j,k, H

r
j,kV

i
j,kH

r
j,k

T +Rl,k

)
(6)

with Rl,k denoting the covariance of the measurement zl,k. The probability for
a measurement to be clutter depends on the application, but can mostly be
approximated to be uniformly distributed over the sensor spaceM

p
(
J i

k,r (l,∅)
)
∼ |M|−1. (7)

The probability for an assignment can also be influenced by additional con-
straints like the matching of untracked properties (e.g. color and appearance) and
the probability for multiple assignments in one sweep. Multiple measurements
for one target are sampled according to a Poisson distribution with λ = psd. If
a target is tossed not to have an additional assignment, the probability for that
assignment is zero and it is therefore not taken into account in the sum of the
denominator in eq. 4 for that iteration. Before each sampling from one specific
particle all measurements are shuffled randomly to prevent an unwanted prior
due to the order of measurements (especially for multiple assignments).

During the sampling, data associations for one particle are checked for identity
to skip unnecessary weight and update computations. Each drawn data associ-
ation J i

k,r for one particle i results in a new particle u with the target states
updated according to a weighted sum of predicted and observed states by their
uncertainties:
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mu
j,k = m̂i

j,k + V u
j,k (hr

k)−1

⎛⎝ ∑
Ji

k,r(l,j)

R−1
l,k

(
zl,k − hr

k

(
m̂i

j,k

))⎞⎠ (8)

and covariances updated as

V u
j,k =

⎛⎝V̂ −1
j,k + (hr

k)−1

⎛⎝ ∑
Ji

k,r(l,j)

R−1
l

⎞⎠⎞⎠−1

. (9)

The inverse of the linear sensor model hr
k is usually not linear for measurements

providing partial information about the state only, but can be solved by copying
the missing information from the target state into the measurement. For mea-
surements providing only positional data but target states containing velocity
information, eq. 5 can be written as

(xz, yz) =
(

1 0 0 0
0 1 0 0

)
(x, y, ẋ, ẏ)T or (xz , yz, ẋ, ẏ) = I (x, y, ẋ, ẏ)T (10)

with the second (augmented) form being invertible.
The weights of the newly sampled particles u are evaluated as the probability

for the former prediction and all assigned measurements given the newly sampled
positions including a detection probability pd for all a assigned targets

wu
k ∝ p

(
x̂i

k|xu
k

)
pa

d (1− pd)
N−a

∏
Ji

k,r(l,j)

p
(
zl,k|xu

j,k

) ∏
Ji

k,r(l,∅)

p
(
J i

k,r (l,∅)
)
. (11)

The weight is multiplied by the number of times this data association was sampled.
This approach differs from [11], where Särkkä et al. set the weights according

to the probability of the associations that were used for sampling, but is simi-
lar to [1] where residuals between updated positions and predictions as well as

program RBRPF

input{
xi

k−1, w
i
k−1

}Nk−1
i=1

particles for time k − 1

zk measurements at time k
output{

xj
k, wj

k

}Nk

j=1
particles for time k

BEGIN

FOR i = 1 : Nk−1

xj
k ∼ DRAW-N-RESAMPLE

[
zk, xi

k−1

]
Calculate wj

k according to 11

END FOR

Normalize weights: wi
k = wi

k

(∑Ns
i=1 wi

k

)−1

END

Fig. 1. Main Loop of the Proposed Rao-Blackwellized Resampling Particle Filter
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measurements are used. It helps to avoid the hospitality problem where multiple
measurements are preferred over only one measurement of high accuracy because
the weight for such an association is higher due to smaller resulting covariances
in the denominator of the Gaussians.

An estimate of the target states xk is found by selecting the particle with
maximum weight. In the case of fixed-lag estimation, target states are evaluated
as particles which descendant is the particle with maximum weight for the fixed
time distance δ in the future resulting in higher robustness due to the exploitation
of more informations by the cost of a delay.

4 Experimental Results

We conducted two experiments on real world tracking problems with a fixed num-
ber of about twenty targets. Target states have been modeled as 2-dimensional
position and velocity mi

j,k = (px, py, ṗx, ṗy)T . The motion model was chosen
as the discretized Wiener velocity model AΔt (see [2]) for time difference Δt
between k − 1 and k as a linear motion model:

m̂i
j,k =

⎛⎜⎜⎝
1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎞⎟⎟⎠mi
j,k, V ′

k = AΔtVk−1A
T
Δt +

⎛⎜⎜⎜⎝
Δt3

3 0 Δt2

2 0
0 Δt3

3 0 Δt2

2
Δt2

2 0 Δt 0
0 Δt2

2 0 Δt

⎞⎟⎟⎟⎠ q̃

(12)
with power spectral density q̃ as a constant factor.

We used the additional number of samplings o = 10 through all experiments.
Initial positions were given manually.

4.1 Tracking Soccer Players

Identity tracking in sports is an interesting and demanding testing bed for mul-
tiple target tracking algorithms due to frequent occlusions of similar targets.
The tracker was evaluated as part of the Aspogamosystem [13]. We provide a
video sequence of the beginning of the 2006 world championship’s final consist-
ing of 1262 frames shot with 25Hz. We tracked all soccer players and the main
referee (23 targets) captured by a nonstatic pan-tilt-zoom camera used for TV
broadcasting. An example image is depicted in fig. 2(a). Homographies for each
frame have been computed using [14]. Groundtruth was collected by manually
marking each target position in the video image and transforming it to world
coordinates for the whole scene. Mostly all players are visible in the sequence,
but goalkeepers and wing players are sometimes not shown due to zooming. The
sequence constitutes a demanding test for any multiple target tracking method
because of uncertain, missed and occluded targets captured by a moving camera.

The automatic player detection was done following [15] by segmenting possi-
ble player regions via thresholding the local variance of the grayscale video image
while skipping the field lines. These regions were matched by color templates to
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(a) Final of WC2006
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(b) Average Distance of Players to Groundtruth

Fig. 2. The Soccer Groundtruth Sequence with 1262 Frames

suppress outliers and to robustly estimate the players center of gravity. The cen-
ter point was assumed to be at 0.9m above the ground to allow the computation
of real-world coordinates by transforming the projected point with the inverse
homography. One sweep corresponds to measurements at one frame of the video.
The measurement covariances depend on the estimation of the camera parame-
ters and differ also inside one frame depending on the distance to the camera.
They are in the range of [0.17, 12.5] in goal and [0.15, 2.53] in sideline direction.

We used the following parameters for the constant velocity model: Δt = 0.04
(due to 25fps), q̃ = 0.0008 (due to max acceleration of humans) and set psd = 0.3,
pd = 0.3. Covariances were inited with V0 = 0.001I4N . Tracking was done with
S = 50 in real-world coordinates; all positions and covariances are specified in
meters.

Failures were counted when a target deviated from the ground truth position
by more than 5.0 meters. After a failure, only the failed target was reinitialized
to the ground truth position and tracking was resumed. Our method without
delay failed 8 times on the soccer sequence with 1262 frames. A delay could not
reduce the number of failures further. The mean distance to the groundtruth is
depicted in fig. 2(b). The smart resampling resulted in 38.91± 13.92 effectively
used particles. Tracking without player detection needed 15.05ms ± 5.077 per
frame resulting in a mean frame rate of 66.4 fps.

4.2 Tracking Ants

In [1] Khan et al. tested their proposed MCMC tracker on a challenging
ground truth sequence of twenty ants in a small container. The image data
and groundtruth are available online at http://www.kinetrack.org.

The ants that should be tracked to gain insights in social behavior of insects
are about 1cm long and move as quickly as 3cm per second frequently interacting
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(a) 20 Interacting Ants
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(b) Average Distance of Ants to Groundtruth

Fig. 3. Insects Domain with Frequent Interactions and Similar Target Appearance

with up to five or more ants in close proximity. The test sequence presents a
substantial challenge for any multitarget tracking algorithm and was selected
for comparison purpose. An image is depicted in fig. 3(a). The sequence consists
of 10,400 frames recorded at a resolution of 720× 480 pixels at 30 Hz. We used
the same simple thresholding procedure of the blurred and sownsampled video
as [1] to obtain the measurements.

The number of failures detected on the ground truth sequence for the MCMC
tracker with different number of particles and our tracker without and with
smoothing are shown in table 1. Failures were counted when a target deviated
from the ground truth position by more than 60 pixels. After a failure, all of
the targets were reinitialized to the ground truth position and tracking was
resumed. We used the same parameters as given in [1]. Measurements contain
simple 2D positions zl = [x, y]T without velocity. Target motion was modeled
using a constant velocity model as mentioned above with time step Δt = 0.033
and q̃ = 32. The initial covariance was set to V0 = 32I4N and the measurement
noise was R = 32I4N . All positions and covariances are specified in pixels.

We measured the run time as the average frame rate in frames per second
(fps) including image processing time on a 2.2 GHz Dual-core PC and also on a
Pentium 4-M 1.6 GHz for better comparability. With current standard hardware
our method is able to track the twenty ants faster than real-time (40 fps) with
low failure rate. The smoothing reduces the number of failures even further
while keeping the frame rate at 40 fps. Our algorithm exhibits higher quality in
tracking needing about one half of the computational time than the current state-
of-the-art tracker in [1]. Instead of [1] we do not allow merged measurements as
these result mostly from the fore target occluding the back and may mislead the
tracker. Also we restrict the number of detections of one target by a Poisson
distribution with psd, yielding less (possibly wrong) associations. The speed-up
is achieved as we directly sample the associations instead of running a Markov
chain, allowing a better constriction to necessary computations by memoization
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Table 1. Experimental Results for Tracking Ants through 10,400 Frames

Algorithm P4-M 1.6GHz P4-M 3Ghz Dual Core 2.5Ghz Fail

MCMC [1] S = 1 - 23.03 ± 0.87 fps - 24

MCMC [1] S = 6 - 8.75 ± 0.55 fps - 21

RBRPF S = 6 8.38 ± 1.5 fps - 40.68 ± 1.0 fps 19

RBRSPF S = 6, δ = 4 8.39 ± 1.5 fps - 40.76 ± 1.0 fps 13

without the need for uninformative burn-in steps. The average distance over all
ants is depicted in fig. 3(b). Analogous pictures have been published for the
MCMC tracker in [8]. The distance for tracking without smoothing differs only
minor to the ones with delay, which is based on the use of Kalman filters to
predict and update target states in both approaches. The mean for the average
tracking error is with 3.16 pixels low respecting a systematic error caused by the
downsampling to forth of the original resolution only.

We also conducted experiments on a second ant dataset of [1] where ants were
moving on two glass layers. Khan et al. provide 16 video sequences that were
preprocessed in the same way as above to extract measurements from video.
The MCMC approach could track through 12 of the 16 demanding sequences
successfully with parameters Δt = 0.1, V0 = 32I4N , Γ = 4I4N and Σii = 150I4N

but failed on sequences 5, 8, 12 and 14. Our approach could also handle 12
of the 16 sequences using pd = 0.8, psd = 0.14 but failed on 3, 8, 12 and 16.
With psd = 0.4 our method also tracked through sequence 16 successfully. All
sequences include longer partial or full occlusions or sudden changes in direction
and velocity which makes it a hard task for every tracker assuming a constant
velocity model. In average about 40fps could be achieved on the Core 2 Duo
with 2.5 GHz emphasizing the real-time capability of RBRPF.

5 Conclusions

We presented the Rao-Blackwellized Resampling Particle filter with Fixed-Lag
as a novel multiple target tracking algorithm. The method exhibits real-time per-
formance by exploiting the properties of Gaussians through Rao-Blackwellization
and the discreteness together with rareness of probable data associations through
smart resampling. Robustness of tracking is increased by retrieving target esti-
mates after a fixed-lag and therefore utilizing more informations. Demanding
real-world experiments with frequent interactions and highly similar targets
demonstrate the capabilities of our approach, that outperformed the state-of-
the-art MCMC method in robustness as well as computational time.
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Abstract. This paper presents a novel tracking algorithm, the dynamic kernel-
based progressive particle filter (DKPPF), for markless 3D human body track-
ing. An articulated human body contains considerable degrees of freedom to be 
estimated. The proposed algorithm aims to reduce the computational complex-
ity and improve the accuracy. The DKPPF decomposes the high dimensional 
parameter space into three low dimensional spaces and hierarchically searches 
the posture coefficients. Moreover, it applies multiple predictions and a mean 
shift tracker to estimate the human posture iteratively. A dynamic kernel model 
is proposed to automatically adjust the kernel bandwidth of mean shift trackers 
according to the probability distribution of the posture states. The kernel model 
is capable of improving the accuracy of the tracking result. The experimental 
examples show that the proposed approach can effectively improve the accu-
racy and expedite the computation. 

1   Introduction 

Model-based tracking of human bodies has been an active area of research that has 
received a significant amount of attention recently. The applications of the research 
include video surveillance, computer game design, and medical analysis. Unfortu-
nately, it is difficult to track the motion of a full body without applying any sensors or 
devices. The principal difficultly arises from the considerable degrees of freedom of 
the human motion that have to be estimated, leading to a high computational cost. 

A number of methods have been proposed to track the 3D body motion parameters 
using model-based approaches. Particle filtering [1] is one of the most popular algo-
rithms for dealing with the task, because the particle filter contains multiple predic-
tions and recovers the lost tracks. Because of the high dimensionality of the DOFs of 
the human body, however, the bottleneck of the particle filter tracking algorithm is the 
high computational burden. Other research proposed a modified particle filter or used 
a particle filter with a mathematical training model. Deutcher [2] proposed an anneal 
particle filter (APF) that uses a multiple searching layer to improve the accuracy and 
reduce the number of particles. Agarwal [4][5] presented a learning-based approach, 
which calculated two regression models, the Relevance Vector Machine (RVM) re-
gression and Support Vector Machine (SVM) regression, for recovering the human 
motion parameters with monocular image sequences. Lin[3] proposed an effective 
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algorithm for 3D model-based human motion tracking, the progressive particle filter.  
This method 1) decreased the computational cost of the classical particle filter by 
applying hierarchical searching and 2) improved the accuracy by embedding mean 
shift trackers into each particle toward high probability locations. Urtasun[6] recov-
ered 3D human poses by using Gaussian Process Dynamical Models (GPDMs), which 
learn the human pose and motion prior to recovery. Navarantnam[7] employed the 
HMM to train the temporal coherence of body motion for recovering the pose and 
finding the smooth trajectory of articulation. 

This paper employs the progressive particle filter [3] to reduce the computational 
cost and improve the accuracy of 3D human motion tracking. The progressive algo-
rithm is based on a particle filter and integrates the hierarchical searching approach 
and mean shift algorithm. Hierarchical searching is an effective seeking method for 
reducing the computational loading due to the considerable DOFs of full body mo-
tion. Mean shift trackers, which are embedded in each particle, improve the accuracy 
via an iterative mode seeking process. The progressive particle filter needs only a few 
particles to predict the joint angle using the hierarchical searching approach, and the 
mean shift tracker makes each particle shift to its own local maximum to improve the 
accuracy. We further propose a dynamic kernel model to adaptively adjust the kernel 
scale of each mean shift tracker. The dynamic kernel model considers the probability 
in the previous state and dynamically modifies the kernel scale to improve the search-
ing speed of each mean shift procedure. The experimental results show that the pro-
posed approach successfully reduces the iteration time and maintains the accuracy. 

The rest of this paper is organized as follows. Section 2 introduces the 3D human 
model. Section 3 describes the observation likelihood function. Section 4 briefly in-
troduces the classical particle filter and the proposed approach - the dynamic kernel 
progressive particle filter. Section 5 presents the experimental results. Finally, conclu-
sions are drawn in Section 6.  

2   3D Human Model 

The proposed 3D human model is shown in Fig. 1.  It contains 15 components, in-
cluding a head, torso, neck, and pairs of upper arms, lower arms, thighs, legs, and 
feet. Each of these body parts is made of deformable flesh to simulate the target body 
and improve the precision of the tracking procedure.  

head

neck

upper left armupper right arm

lower left armlower right arm

left thigh

left leg

left foot

right thigh

right leg

right foot

 

Fig. 1. 3D articulated human body model with 30 DOFs 
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3   Observation Likelihood Estimation 

A single input feature is usually insufficient for tracking the objects.  Therefore, the 
paper combines above four different kinds of features { , , , }A E C Sf f f f f= to improve 

the tracking accuracy. The notation Af denotes the silhouette map, Ef represents edge 

distance map, Cf is the contour distance map, and Sf  indicates the skin color map. 

Fig. 2 shows the four different features.  

 

Fig. 2. Feature Extraction: (a) original image O , (b) silhouette map Af , (c) edge distance 

map Ef , (c) contour distance map Cf , and (d) skin color map Sf  

The observation likelihood function estimates the similarity between the features of 
the input video f and the predicted pose of the human mod-

el { , , , }M M M M M
A E C Sf f f f f= . The observation likelihood function is estimated as: 

( | ) ( , )

exp( [ ( , ) ( , ) ( , ) ( , )])

M

M M M M
A A A A E E E E C C C C S S S S

p z x L f f

M f f M f f M f f M f fω ω ω ω
∝

= − ⋅ + ⋅ + ⋅ + ⋅
 (1)

where ( , )M
A A AM f f , ( , )M

E E EM f f , ( , )M
C C CM f f , and ( , )M

S S SM f f  are four different 

similarity measure functions and Aω , Eω , Cω , and Sω are the weights of each measure 

function. ( , )M
A A AM f f and ( , )M

S S SM f f  calculate the normalized sum pixels of the 

absolute difference between silhouette/skin map of the input video and silhouette/skin 
map of the predicted human model, respectively. The measure functions are shown as 
follows: 
 

(1) Silhouette similarity measure function 

( ) ( )
1

( , ) ( ) /
AN

M M
A A A A i A i A

i

M f f abs f f N
=

= −∑
 

(2)

where AN is the number of pixels in Af . 
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(2) Skin color similarity measure function 

( ) ( )
1

( , ) ( ) /
EN

M M
E E E E i E i E

i

M f f dist f f N
=

= −∑  (3)

where sN is the number of pixels in Sf . 

( , )M
E E EM f f  and ( , )M

C C CM f f  evaluate the distance between the input edge/contour 

map of the input video and the edge/contour map of the human model. ( , )M
E E EM f f  

and ( , )M
C C CM f f  are shown as follows: 

 

(3) Edge similarity measure function 

( ) ( )
1

( , ) ( ) /
EN

M M
E E E E i E i E

i

M f f dist f f N
=

= −∑  (4)

where EN is the number of pixels in Ef . 
 

(4) Contour similarity measure function 

( ) ( )
1

( , ) ( ) /
CN

M M
C C C C i C i C

i

M f f dist f f N
=

= −∑  (5)

where CN is the number of pixels in Cf . 

4   Tracking Approach 

4.1   Particle Filter 

The tracking of full body motion can be treated as a Bayesian state estimation prob-
lem. Particle filtering [1] is a favorable technique for human motion tracking due to 
the fact that it provides multiple hypotheses for complex human motion. The posterior 
Bayesian formulation of the particle filter is defined as: 

1( | ) ( | ) ( | )t t t t t tp x Z p z x p x Z −∝ ⋅  (6)

where tx denotes the state vector at time t and tz expresses the observation. The history 

of observations from 1 to t is indicated as Zt = {z1,…,zt}. The pdf 1( | )t tp x Z − is the pre-

diction probability distribution, which is available at time t-1 and can be expressed as: 

11 1 1 1( | ) ( | ) ( | )
tt t t t t t xp x Z p x x p x Z d
−− − − −= ⋅∫  (7)

The particle filter provides multiple predictions, which usually apply non-linear and 
non-Gaussian tracking processes. Unfortunately, the performance of the particle filter 
usually depends on the number of particles.  Because 3D human motion has a large 
number of degrees of freedom, the tracking procedure demands a large number of 
particles for estimation. As the number of particles increases, both the accuracy and 
the computational complexity also increase.  
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4.2   Progressive Particle Filter 

The progressive particle filter [3] tailors a standard particle filter to suit the full body 
tracking task. The task integrates the techniques of the hierarchical searching approach 
and iterative mean shift mode seeking. The progressive particle filter decomposes the 
high dimensional space of full body tracking into several spaces with a lower dimension-
ality. The tracking procedure tracks each decomposed space and is thus more effective 
than procedures that require searching the entire high dimensional space. Hierarchical 
searching can reduce the computational cost because it focuses on each sub-process. The 
algorithm embeds mean shift trackers into particles in each lower space procedure, and 
the mean shift trackers apply the iterative mode seeking technique to each particle in 
order to progress toward nearby high probability locations. After the mean shift mode 
seeking procedure is completed, each particle converges into each optimal location. In 
general, most of the particles are gathered in the same target position.  

The task contains three principal processes as shown below: 

(1) Global motion process:  
The system roughly samples the 3D human model’s possible location and orientation 
according to the transition probability 1 1 1( ), , | , , , ,g u l g u l g u

t t t t t t t tp x x x x x x z z− − − .  It applies the 

global mean shift trackers to push each particle until that particle reaches its own 
nearby local maximum with iterative mean shift searching. The mean shift vector 
function ( )M ⋅ can be expressed as: 

( ) ( ) ( )
11

1 ( ) ( )
11

( ) ( )
( )

( ) ( )

t

x

n i i i
t t t ti

t n i i
t t ti

K s x w s s
M x

K s x w s

−=
−

−=

−
=

−
∑
∑

 (8)

where ( )i
ts is the ith particle, t-1x is the mean position at time t, and w(.) is the weighting 

function.  

(2) Upper extremity process: 
Once full body motion state is determined, the upper extremity process keeps search-
ing for the angles of the upper arms and thighs. The upper extremity particle filter 
propagates a few possible upper extremity postures with the transition probabil-
ity 1 1( | , , )u g u l

t t t tp x x x x− − and weights each particle by estimating the similarity between 

the predicted posture and the observed features. The process then applies the upper 
extremity mean shift trackers to move each particle into the most similar posture.  

(3) Lower extremity process: 
The lower extremity particle filter re-samples the particles with probability 

1( | , , )l g u l
t t t tp x x x x − for roughly predicting the potential lower extremity pose and 

weights each particle according to the similarity between the sampled posture and the 
observed lower extremity. The mean shift trackers move the lower extremity to the 
most similar posture.  This process increases tracking accuracy by shifting each parti-
cle to its corresponding mode. Furthermore, it can also reduce the number of particles 
required during motion tracking. The transition density of the progressive particle 
filter is defined as:  

1 1 1 1 1 1 1( )( | , ) | ) ( | , , ( | , ) ( | , , ) ( | , , )g g g g u l u u l u g u l l g u l
t t t t t t t t t t t t t t t t t t t tpp x x z z x p x x x x p z x x p x x x x p x x x x− − − − − − −∝  (9)
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4.3   Dynamic Kernel Model 

Fig. 3 provides general motion statistics describing the relationship between the dis-
tance from the mean state for each particle and the relatively similar probability. The 
study finds that the distribution is similar to a Gaussian density distribution. There-
fore, if the probability of the particle is high, the re-sampling range should be narrow 
because the center of the searching range is already approaching the nearest local 
maximum. On the contrary, if the probability value is low, then the re-sampling range 
should be large because the current location is far from the local maximum.  
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     (a)                              (b)                             (c)                             (d) 

Fig. 3. The distribution between the distance from the local maximum and the probability for 
each particle in the waving hand sequence: (a) frame 15, (b) frame 30, (c) frame 45, (d) frame 
60 

We propose a dynamic kernel model (DKM) KD , which is formulated as: 

( )( )( )
-1 -1 ( )( )

1
, , exp - ,  1 ~

22
i

D t t ii
tt

x
K sgm s x x i N

σπ σ
⎛ ⎞

= =⎜ ⎟
⋅ ⎝ ⎠

 (10)

where i
tσ can be expressed by the sigma function Sgm(.). 

( )
1 1

1 1 ( )
1

ˆ( , ) .
i

i i t t
t t t i

t

s x
Sgm s xσ σ

σ
− −

− −
−

⎛ ⎞−
= = ⎜ ⎟

⎝ ⎠
 (11)

We investigated the training data and applied the dynamic variance function (12) to 
estimate the standard sigma value σ̂ of the training data. 

( ) 2

1

( )
ˆ ,  1 ~

*

iM
t t

m

s x
i N

N M
σ

=

⎛ ⎞−
= =⎜ ⎟⎜ ⎟

⎝ ⎠

∑∑  (12)

where M is the number of training data; M is equal to 100 in our experiment. The 

notation tx  refers to the mean value in state t, and N is the number of particles in 

each state. In this case, the sigma value is between 15 and 25 as shown in Fig. 4. 
Hence, the system employs the average sigma value of 17.3975 as σ̂ in our system. 
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Fig. 4. The relationship between the distance from the local maximum and the state sequence 

4.4   Dynamic Kernel Based Progressive Particle Filter 

The iteration time for the progressive particle filter depends on the kernel bandwidth h 
of the mean shift trackers. Thus, it may require many iterations to shift each particle 
toward each nearby mode when the kernel bandwidth is too narrow and the particle 
far from the highest probability position. In addition, this method expends redundant 
computational load when the kernel bandwidth is too wide and the particle close to 
the mode. The reason for this lies in the fact that the mean shift tracker still needs to 
propagate redundant particles to predict the low probability positions and calculate 
their probabilities. 

The dynamic kernel-based progressive particle filter (DKPF) can embedded the 
DKM into each mean shift tracker of the progressive particle filter to dynamically 
adjust the scale of the mean shift kernel bandwidth by the previous-state probability 
of each particle. 

When the particle is located at a low probability position in the DKFP, the mean 
shift tracker expands the kernel bandwidth with the DKM. Thus, the modified mean 
shift tracker shifts the particle toward the higher probability space quickly. If the 
particle is already located at a high probability position, the particle only needs to 
move a short distance to reach the mode. The algorithm applies the DKM with the 
probability of the particle in the previous iteration time to narrow the bandwidth of 
mean shift tracker and thus accelerate the convergence speed of the mean shift proce-
dure. A diagram of the DKPPF is shown below:  

1P

2P

3P

 

Fig. 5. The mean shift procedure of the DKPPF 
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with the particles P1, P2, and P3 with mean shift kernel bandwidths h1, h2, and h3. The 
kernel bandwidth lengths of these mean shift trackers are distributed as h1>h2 >h3 
because the probability order of these particles follows the rule P1<P2< P3. As shown 
in Fig.5, the mean shift trackers dynamically adjust the kernel bandwidth by the DKM 
with the probability of the particle. Particle P1 is far from the mode, so the kernel 
scale range needs to be enlarged to shift P1 from the low probability space toward a 
high density position using the mean shift procedure. The kernel bandwidth of P3 

should adjust to a lesser degree because P3 is located at a high density position close 
to the mode. The small kernel bandwidth can expedite the searching time necessary in 
the mean shift process as it identifies the relevant ranges. 

The DKPPF is trained in advance using video data to obtain the trained sigma 
value σ̂ . The kernel estimation function of the DKPPF can be rewritten as: 
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where i is the particle number and t denotes each mean shift procedure iteration.  and 
the term ( )sgm ⋅ can be expressed as: 
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The mean shift vector for each particle can be calculated as: 
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The DKPPF not only performs multiple predictions to overcome the non-linear and 
non-Gaussian motion of the complex human action but also uses a hierarchical 
searching strategy to decompose the high-DOF space into a low-DOF space and 
thereby decrease the particle number and reduce the computational cost. The embed-
ded DKM further reduces the iterative time of each tracker to improve searching  
efficiency. 

5   Experimental Results 

Two experiments were performed to evaluate the performance of the proposed algo-
rithm. The first experiment presents the crab step, which demonstrates the horizontal 
motion of the human body. The experiment compares the tracking results between the 
standard particle filter, progressive particle filter, and DKPPF. In this experiment, the 
standard particle filter used the hierarchical searching technique with 100 particles in  
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each body part. The DKPPF also used this number of particles. The results demon-
strate that the DKPPF is more accurate than the standard particle filter. In this ex-
periment, the training sigma was 18.1. 

The experiment uses a different number of particles for each approach and com-
pares the accuracy and performance of the algorithms. Table 1 demonstrates that both 
the DKPPF and PPF obtain better accuracy results than the standard particle filter. 
The DKPPF requires fewer iterations than the PPF.  
 

 

 

 
                                               (a)                  (b)                 (c) 

Fig. 6. Crab step experimental results: (a) original video sequence, (b) tracking result with the 
DKPF, and (c) standard particle filter tracking results 

Table 1. The Comparison between the standard particle filter (PF), progressive particle filter 
(PPF), and dynamic kernel-based particle filter (DKPPF) 

 

 

The second experiment presents the tracking of a front jumping motion (Fig. 7). 
The aim was to track the global vertical motion. The skin color of the face region 
offers one precise method by which to track the vertical motion. This experiment also 
shows that the proposed approach can obtain exact tracking results even when the 
motion of the target occurs very rapidly. 
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Fig. 7. Front jump tracking results 

6   Conclusion 

This paper proposes an effective algorithm, the kernel-based progressive particle 
filter, for 3D human motion tracking. The progressive particle filter integrates the 
hierarchical searching method to reduce the computational cost as well as embedded 
mean shift trackers on each particle to improve the accuracy. The paper improves the 
progressive particle filter with the dynamic kernel model to reduce the number of 
iterations for each mean shift tracker. The dynamic kernel model adjusts the scale of 
the mean shift tracker bandwidth to effectively improve the mode-seeking procedure. 
Experimental results show that the progressive particle filter is more accurate than the 
traditional particle filter despite a reduction in the number of particles used by the 
particle filter. In summary, the kernel-based progressive particle filter improves upon 
the progressive particle filter by reducing number of iterations necessary in the mean 
shift-searching procedure. 
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Abstract. This paper addresses the problem of accurate and robust

tracking of 3D human body pose from depth image sequences. Recover-

ing the large number of degrees of freedom in human body movements

from depth image sequence is challenging due to the need to resolve

depth ambiguity caused by self-occlusions and difficulty to recover from

tracking failure. Human body poses could be estimated with a high ac-

curacy based on local optimization using dense correspondences between

3D depth data and the vertices in an articulated human model. However,

it cannot recover from tracking failure. This paper presents a method to

reconstruct human pose by detecting and tracking human body anatom-

ical landmarks (key-points) from depth images. The proposed method

is robust and recovers from tracking failure when a body part is re-

detected. However, its pose estimation accuracy depends solely on image-

based localization accuracy of key-points. To address these limitations,

we present a flexible Bayesian method for integrating pose estimation

results obtained by methods based on key-points and local optimization.

Experimental results are shown and performance comparison is presented

to demonstrate the effectiveness of the proposed method.

Keywords: Depth image, dense correspondences, key-point detection,

constrained inverse kinematics, robust 3D human pose tracking.

1 Introduction

For the past decades, 3D human body pose tracking from video inputs has
been an active research field motivated by various applications including human
computer interaction. The major challenges of recovering the large number of
degrees of freedom in human body movements from image sequence are the
difficulties to resolve the various ambiguities in the projection of human motion
onto the image plane and the diversity of visual appearance caused by clothing
and varying illumination.

The recent introduced time-of-flight (TOF) based imaging devices have cap-
tured the attention of researchers due to the potential to resolve depth ambigu-
ity [1,2,3,4]. 3D pose tracking usually is difficult to obtain robustly by using a
single optical camera. In particular, methods based on silhouette information of-
ten fail to track 3D poses where there are self-occlusions. Although non-silhouette
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based methods [5,6] have been proposed to track poses with self-occluded limbs,
their robustness depends much on illumination conditions, body texture, and
perhaps extensive training in case of learning based methods. Depth data, as
in Figure 1, provides a valuable cue in resolving the depth ambiguity problem.
Other advantages of TOF cameras include their portability, relatively good depth
resolution comparing with stereo cameras.

(a) (b)

Fig. 1. Depth data (a) Example upper body posture that are to be tracked;(b) Example

whole body posture that are to be tracked

Most existing approaches to track human body pose from depth video se-
quence [1,2,3,4] are related to the Iterative Closest Point (ICP) approach [7].
These approaches are able to track the human body pose with a high accuracy
because dense correspondences are used for pose optimization. However, these
approaches based on local optimization are vulnerable to tracking failure when
body parts get close to each other and cannot recover from tracking failure after-
wards. Knoop et al [2] show that they can achieve more accurate pose tracking by
integrating hand/face tracking. However, it becomes a challenging task to have a
2D hand/face tracker that works well for various complicated motion, and they
do not elaborate on how the robustness of 2D feature tracker could affect their
3D pose estimation. Zhu et al [4] use coarse body identification to reduce the
ambiguity during dense correspondences search. However, it has difficulties to
detect arms when they re-appear.

Recovering from pose tracking failure is indeed an important component for a
robust pose tracking algorithm. Considering example postures shown in Figure 1,
on the one hand, a visible arm could get close to the torso so that depth resolution
is not high enough to detect the arm. Also it is possible that a visible limb could
be occluded temporarily by another limb. On the other hand, a missing limb
can reappear later. A robust tracking algorithm must deal with intermittent
occlusions to prevent tracking failures.

For many existing pose tracking methods, tracking long sequences will result
in tracking failure which cannot be easily recovered. This paper presents a key-
point based method to reconstruct poses from anatomical landmarks detected
and tracked from depth image analysis. Key-point based method is robust and
can recover from tracking failure when a body part is re-detected and tracked.
However, its pose estimation accuracy depends solely on the image-based lo-
calization accuracy of key-points. To address these limitations, we present a
Bayesian method to integrate pose estimation results from methods using local
optimization and key-point detection.
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The rest of the paper is organized as follows. Section 2 depicts the human
model used in this paper, and the background on pose estimation with con-
strained inverse kinematics. Our Bayesian method for accurate and robust pose
tracking is presented in Section 3. Methods using key-points and local optimiza-
tion are described in Section 3.1 and 3.2, respectively. Experimental results are
shown in Section 4; and Section 5 concludes the paper.

2 Human Body Model and Pose Estimation with
Constraint Inverse Kinematics

The human body model is represented as a hierarchy of joint link models with a
skin mesh attached to it as in Lewis et al [8]. The human model in Figure 2(a)
includes 28 dofs for whole body, and 20 dofs for upper body. During pose es-
timation, one of natural constraints is to enforce joint limits. For example, by
enforcing elbow joint limits, we could avoid generating the backward bending
arms as in the Figure 2(b).

(a) (b) 

Fig. 2. Human body model (a) Hierarchical joint link model with 28 dofs; (b) Elbow

joint limit constraints for natural pose tracking

(a) (b) 

Fig. 3. Model marker points (a) from key-point detection; (b) from dense ICP corre-

spondences (each yellow vector represents a correspondence pair)

Let q0 be the initial model pose, V be the set of model marker points, P
be the set of observed points from the sensor. Let q̂ = ConstaintIK(q0, V, P )
denote the constrained inverse kinematics as:

q̂ = q0 + sJ∗(P − V ) (1)

J∗ = W−1
1 JT (JW−1

1 JT +W2)−1 (2)

where s is a scalar to adjust the step size of inverse kinematics, W1 and W2 are
defined as for singularity avoidance and joint limit avoidance. In this study, we
use the joint limit avoidance method described by Zhu et al [9].
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The model marker points include the set of model vertices as shown in Fig-
ure 3. In Figure 3(a), the model marker points are located at the human anatom-
ical landmarks, and observed points are detected through low-level depth image
analysis as in Section 3.1. On the contrary, in Figure 3(b), model marker points
are sampled randomly from the model vertices, and observed points are found
during the ICP correspondence searching as in Section 3.2.

3 Robust 3D Pose Tracking with Bayesian Method

Let qt be the model pose parameters, inlcuding all of degrees of freedom of human
model, at time t, and p(qt|I1, I2, · · · , It) be the probability distribution of pose
parameters given all observed images {I1, I2, · · · , It}, then Bayesian tracking is
formulated as:

p(qt|I1, I2, · · · , It) ∝ p(It|qt)p(qt|I1, I2, · · · , It−1)

= p(It|qt)
∫

qt−1

p(qt|xt−1)p(qt−1|I1, I2, · · · , It−1)dqt−1 (3)

Assuming that we can approximate the observation distribution as:

p(It|qt) =
K∑

k=1

wt
kN(qt;μt

k, Λ
t
k) (4)

Let human dynamics have Gaussian noise N(0,W ), the temporal propagation
is given by:

p(qt|I1, I2, · · · , It−1) =
M∑

j=1

πt−1
j N(qt; f(μt−1

j ), Λt−1
j +W ) (5)

where f(μt−1
j ) is any appropriate pose dynamic process.

Using the above Bayesian tracking equation, we can represent the posterior
as:

p(qt|I1, I2, · · · , It) =
K∑

k=1

wt
kN(qt;μt

k, Λ
t
k)

M∑
j=1

πt−1
j N(qt; f(μt−1

j ), Λt−1
j +W ) (6)

As we can see, this will increase the Gaussian components for the posterior
distribution exponentially along the updating of time. Instead, we approximate
this with M component Gaussian distribution:

p(qt|I1, I2, · · · , It) ≈
M∑

j=1

πt
jN(qt; μ̂t

j, Λ̂
t
j) (7)

Since we represent the posterior distribution as a sum of Gaussian, there are
available methods to perform density approximation. One simple way is that
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we keep the dominant modes in the posterior distribution. Researchers [5,10]
also suggest to pick modes from likelihood function and combine them with
compatible ones from the predicted priors. Some authors [11] also pick the modes
from likelihood function and re-weight with predicted prior.

The detailed illustration of this Bayesian inference method to pose tracking is
shown in Figure 4, where we are able to integrate three sources of information:
key-point detection from low-level image analysis, local pose optimization with
ICP, and temporal prediction information if that is available. We describe these
components in the following sections.

Density Sampling
(Sec 3.2)

2L
tq

Joint position
prediction

Key-point  Detection
(Sec 3.1)

Temporal Prediction
(Sec 3.2)

tq̂

Dense Correspondence 
Searching (Sec 3.2)

1P
Constraint Inverse Kinematics (Sec 2)

1LP

1
tq 1L

tq

)( tt qIp

Bayesian Updating (Sec 3.4)

),,,( 121 tt IIIqp

),,,( 21 tt IIIqp

MAP Selection (Sec 3.4)

1
1tq 2

1
L
tq

Initial
value

Error Evaluation (Sec 3.3)

1
tq

1C 2LC

Fig. 4. Robust pose estimation with Bayesian tracking framework

3.1 Key-Point Detection from Depth Image Sequence for Pose
Tracking

In order to have a robust pose tracker, one of the crucial processing steps is to
localize each visible limb. We present a method to detect, label and track body
parts using depth images as shown in Figure 5. To detect major body parts such
as the head, torso, and waist, we make use of a deformable template which we
refer to as the HNT template which consists of a head, neck, and trunk. The
trunk is further decomposed into a torso and waist. They are represented by a
circle, trapezoid, rectangle, and another trapezoid, respectively as in Figure 5, 6
shown in red. To localize the HNT template, our algorithm takes a background-
subtracted depth image I as input and deform the HNT template to produce
the optimal template configuration by minimizing the discrepancy between the
deformed HNT template and the background-subtracted depth image.

Once the head, neck, and trunk are detected, limbs (two arms and two legs)
are to be detected as shown in Figure 6. For example, we can detect a upper
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Body Part
Detection

Limb
Labeling

Limb
Tracking

Fig. 5. Body part detection, labeling and tracking

(a) (c)

(b) (d)

Fig. 6. HNT template localization (shown in red) and limb detection: (a) Open arm

detection; (b) Looped arm detection; (c) Arm detection that is in front of torso; (d)

Lower limb detection

body limb that is open, or that forms a loop, or that is in front of torso based
on depth image analysis. We can detect lower limbs by finding all pixels that are
lower than the waist.

After the limbs are detected, we perform a labeling step in order to differen-
tiate the left and right limbs as well as to determine the limb occlusion status.
We use the following steps to label detected arms (same steps applied to leg
labeling) based on the arm occlusion status at the last frame. When both arms
are visible from the last frame, let us define HLA and HRA to be the histogram
of depth values for the left and right arms respectively, and we label the current
detected limb pixels as left or right arm based on its geometric and appearance
distance to the tracked arms.

P (Lt
x = LA|Xt

LA, H
t
LA, X

t
RA, H

t
RA) =

e−γdLA(x)HLA(Ix)
e−γdLA(x)HLA(Ix) + e−γdRA(x)HRA(Ix)

(8)
where dLA(x) is the distance from pixel x to the left arm:

dLA(x) =
{

0 if x is inside left arm
d(x,LA) otherwise (9)

where d(x,LA) is the minimal distance from x to edges of the left arm. dRA(x)
is defined similarly. In short, a pixel x has a high probability of belonging to
LA, if x is sufficiently close to where LA was in the previous frame. While two
arms are overlapping in the image, x has a high probability of belonging to LA
if it has a depth value that is close to depth values represented by the left arm
in the previous frame.
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When only one arm is visible from the last frame, we compute the geomretic
distance from the detected arm pixels to the tracked arm, and decide the label
based on the maximal arm movement distance between successive frames. When
both arms are not visible from the last frame, we label the detected arm based
on its spatial distribution relative to the torso center line, where the left arm is
located to the left of torso center line.

Finally, when the observed number of pixels for a limb is less than the thresh-
old, we declare that the limb is occluded. For each visible limb, we preform a
local optimizaiton to align the 2-D scaled prismatic model [12] to the detected
limbs.

The key-points corresponding to the human anatomical landmarks as in Fig-
ure 3(a) are extacted from the deformed HNT template and 2-D scaled prismatic
model. They are further used to generate 3D pose hypotheses based on constraint
inverse kinematics. At any frame, we might only detect a subset of landmarks
because of occlusion. Moreover, it is difficult to accurately localize elbow points
for certain poses, and we can only obtain approximate elbow positions. It is
known that methods based on inverse kinematics depend on starting pose values
as well. Let q̂t−1 be the optimal pose estimation of the last frame and let q0t−1
be the resting pose. We use the constrained inverse kinematics to generate three
sets of joint hypotheses (L1 = 3). q1t generates the pose for both the optimal es-
timation q̂t−1 and all feature points. However, q2t generates pose from the resting
pose q0t−1 and all feature points so that these hypotheses keep our estimation
robust against possibly erroneous estimations from the last frame. q3t generates
pose from the optimal estimation q̂t−1 without using elbow feature points so
that it is robust against errors in elbow detection.

3.2 Temporal Prediction, Density Sampling and Dense
Correspondence Searching for Pose Tracking

Since the motion to be tracked in this study is general and has high uncertainty,
a common approach is to model the human pose temporal dynamics as zero
velocity with a Gaussian noise N(0,W ). Therefore, we can approximate the
temporal prediction prior as:

p(qt|I1, I2, · · · , It−1) =
M∑

j=1

πt−1
j N(qt;μt−1

j , Λt−1
j +W ) (10)

Density sampling can be performed based on this temporal prediction prior
distribution as this is a standard Gaussian mixture distribution.

Let qi
t−1 be one of samples from density sampling, V s denote a set of sampled

model vertices that is visible from camera, Cs denote the set of 3D depth points
that is closest to V s (as shown in Figure 3(b)), and qi

t denote the pose from local
pose optimization:

qi
t = ConstraintIK(qi

t−1, V s, Cs) (11)
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We obtain visible model vertices V s from the depth buffer technique of OpenGL
rendering. Closest point set Cs is obtained through its grid acceleration data
structure.

3.3 Tracking Error Evaluation

To evaluate the tracking quality, we use a tracking error measurement function
that is based on the sum of the distances from sampled depth points to their
corresponding closest model vertices. Without loss of generality, let us use Ps to
denote the set of sampled depth points and V s the set of visible model vertices
that are closest to the Ps. Then, our tracking error measurement function can
be defined as:

d2(Ps, V s(qt)) =
∑

j

‖Psj − V sj(qt)‖2 (12)

With this tracking error measurement function, we can approximate the obser-
vation distribution as:

p(It|qt) ∝ exp{−d2(Ps, V s(qt))} (13)

We can further approximate the observation distribution by keeping only a few
modes from the local optimization and constrained inverse kinematics on key-
points. Let {μt

k, k = 1, · · · , k = K} denote the set of modes, we can approximate
the observation distribution as:

p(It|qt) ≈
K∑

k=1

wt
kN(qt;μt

k, Λ
t
k) (14)

where, wt
k can be estimated as:

w̃t
k ≈ exp{−d2(Ps, V s(μt

k))}

wt
k =

w̃t
k∑K

k=1 w̃
t
k

(15)

Λt
k can be estimated as:

Λt
k ≈ (JT

V sJV s)−1 (16)

3.4 Bayesian Updating and MAP Selection

Given observation distribution p(It|qt) as Equation 14, and temporal prediction
prior p(qt|I1, I2, · · · , It−1) as Equation 10, we obtain the posterior distribution
as:

p(qt|I1, I2, · · · , It) =
K∑

k=1

wt
kN(qt;μt

k, Λ
t
k)

M∑
j=1

πt−1
j N(qt;μt−1

j , Λt−1
j +W ) (17)
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In order to avoid the exponential increase of Gaussian components, without loss
of generality, we first approximate it by the first M dominant observation modes
as:

p(qt|I1, I2, · · · , It) ≈
M∑

k=1

ŵt
kN(qt;μt

k, Λ
t
k)

M∑
j=1

πt−1
j N(qt;μt−1

j , Λt−1
j +W ) (18)

and then re-weight them with temporal prior:

p(qt|I1, I2, · · · , It) ≈
M∑

j=1

πt
jN(qt;μt

j, Λ
t
j) (19)

where weights πt
j can be estimated as:

w̃t
j = ŵt

k

M∑
j=1

πt−1
j N(μt

k;μt−1
j , Λt−1

j +W )

πt
j =

w̃t
j∑M

j=1 w̃
t
j

(20)

At any frame, the optimal pose estimation is exported as the mode in the pos-
terior distribution p(qt|I1, I2, · · · , It).

4 Experiments

The Bayesian pose tracking algorithm is implemented and tested on a set of
depth image sequences captured from a single time-of-flight (TOF) range sen-
sor [13]. The current implementation works well for body twists up to 40 degree
rotation on either side of a front facing posture. Large twists and severe interac-
tion between upper and lower body limbs remain as a challenge in the current
implementation. Upper-body and whole-body tracking results are shown in Fig-
ures 7, 8, 9, and 10.

We summarize and compare its performance with ICP method and key-point
based method as in Table 1. The ICP method utilizes general correspondences
to estimate the pose, which does not require detection and tracking of key-
points. Nevertheless, the ICP method could result in tracking failure for transient
occlusions, and is not be able to recover from it. Furthermore, the ICP method
could not be integrated with other information flexibly. The key-point based
method is able to track through transient occlusion, and recover from track-
ing failures when the body parts are detected again. But, it is not able to take
advantage of other information either. As seen, the Bayesian-based method is
able to take advantage of both ICP and key-point based methods. It is able to
track through transient occlusions, recover from tracking failure whenever body
parts are detected again, and update the pose by performing local optimization
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Fig. 7. Upper body pose tracking for violin playing motion. Rows 1 and 3: depth image

sequence with the detected body parts. Rows 2 and 4: corresponding reconstructed

pose.

Fig. 8. Upper body pose tracking for frisbee throwing motion. Rows 1 and 3: depth im-

age sequence with the detected body parts. Rows 2 and 4: corresponding reconstructed

pose.

Fig. 9. Whole body pose tracking with self occlusions during leg crossing. Rows 1 and

3: depth image sequence with the detected body parts. Rows 2 and 4: corresponding

reconstructed pose.



Bayesian 3D Human Body Pose Tracking from Depth Image Sequences 277

Fig. 10. Whole body pose tracking during a dancing sequence. Rows 1 and 3: depth im-

age sequence with the detected body parts. Rows 2 and 4: corresponding reconstructed

pose.

Table 1. Comparison between various human pose tracking approaches

Methods Tracking through

occlusion

Error-

recovery

Tracking

with missing

key-points

Integration

with other

information

Speed

ICP-based No No Yes No 5∼9Hz

Key-point-based Yes Yes No No 3∼6Hz

Bayesian-based Yes Yes Yes Yes 0.1Hz

Table 2. A comparison of overall trajectory accuracy between key-point based method

and Bayesian-based method

Methods X trajectory accuracy Y trajectory accuracy Z trajectory accuracy

Key-point-based 80mm 84mm 93mm

Bayesian-based 73mm 78mm 87mm

without key-points. The Bayesian-based method has the potential to make use of
other information flexibly whenever available, for example, pose prediction from
machine learning approaches. Furthermore, the Bayesian-based method could
achieve a higher accuracy for joint trajectories than key-point based methods
because it could take advantage of ICP to refine the alignment between 3D
model and point clouds, as shown in Table 2.

5 Conclusion

We have presented a Bayesian method to integrate pose estimation results from
methods using key-points and local optimization. This demonstrates a potential
approach to integrate pose estimation results from different modalities to im-
prove the robustness and accuracy. The computational burden of the Bayesian-
based methods is a major concern for interactive applications with our current
implementation.



278 Y. Zhu and K. Fujimura

References

1. Grest, D., Woetzel, J., Koch, R.: Nonlinear body pose estimation from depth im-

ages. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS,

vol. 3663, pp. 285–292. Springer, Heidelberg (2005)

2. Knoop, S., Vacek, S., Dillmann, R.: Sensor fusion for 3d human body tracking with

an articulated 3d body model. In: ICRA, pp. 1686–1691 (2006)

3. Ziegler, J., Nickel, K., Stiefelhagen, R.: Tracking of the articulated upper body on

multi-view stereo image sequences. CVPR 1, 774–781 (2006)

4. Zhu, Y., Fujimura, K.: Constrained optimization for human pose estimation from

depth sequences. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007,

Part I. LNCS, vol. 4843, pp. 408–418. Springer, Heidelberg (2007)

5. Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3d human

tracking. CVPR 1, 18–20 (2003)

6. Lee, M.W., Cohen, I.: Proposal maps driven mcmc for estimating human body

pose in static images. CVPR 2, 334–341 (2004)

7. Besl, P., McKay, N.: A method for registration of 3-d shapes. PAMI 14(2), 239–256

(1992)

8. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformations: A unified approach to

shape interpolation and skeleton-driven deoformation. In: SIGGRAPH, pp. 165–

172 (2000)

9. Zhu, Y., Dariush, B., Fujimura, K.: Controlled human pose estimation from depth

image streams. In: CVPR time-of-flight workshop (2008)

10. Cham, T.J., Rehg, J.: A multiple hypothesis approach to figure tracking. CVPR 2,

239–245 (1999)

11. Demirdjian, D., Taycher, L., Shakhnarovich, G., Grauman, K., Darrell, T.: Avoid-

ing the ‘streetlight effect’: Tracking by exploring likelihood modes. ICCV 1, 357–364

(2005)

12. Morris, D., Rehg, J.: Singularity analysis for articulated object tracking. In: CVPR,

pp. 189–196 (1998)

13. SwissRanger: online time-of-flight camera information from,

http://www.mesa-imaging.ch/prodviews.php

http://www.mesa-imaging.ch/prodviews.php


Crowd Flow Characterization with Optimal Control
Theory

Pierre Allain1, Nicolas Courty1, and Thomas Corpetti2
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Abstract. Analyzing the crowd dynamics from video sequences is an open
challenge in computer vision. Under a high crowd density assumption, we char-
acterize the dynamics of the crowd flow by two related information: velocity
and a disturbance potential which accounts for several elements likely to disturb
the flow (the density of pedestrians, their interactions with the flow and the en-
vironment). The aim of this paper to simultaneously estimate from a sequence
of crowded images those two quantities. While the velocity of the flow can be
observed directly from the images with traditional techniques, this disturbance
potential is far more trickier to estimate. We propose here to couple, through op-
timal control theory, a dynamical crowd evolution model with observations from
the image sequence in order to estimate at the same time those two quantities
from a video sequence. For this purpose, we derive a new and original continuum
formulation of the crowd dynamics which appears to be well adapted to dense
crowd video sequences. We demonstrate the efficiency of our approach on both
synthetic and real crowd videos.

1 Introduction

Analyzing crowd video sequences has recently revealed to open specific and original
problems in computer vision. Direct applications consider the design of safety systems
for public confined or opened spaces. In this case, the goal of a surveillance system is to
be able to give an information of the flow of persons at a given time in a given situation.
From this information, one can infer useful statistics about dangerous areas such as
bottlenecks or narrow passages. Automatic surveillance system can also trigger alarms
whenever abnormal or dangerous situations are detected. It is also noticeable that such
tools participate to our comprehension of crowd phenomena. As an example, Helbing
and colleagues [1] have recently build a new theory on crowd dynamics based on an
analysis of video recordings of the annual pilgrimage in Makkah. Such a study of the
crowd behavior from real data enables to hold out critical locations (i.e. areas with high
density and pressure) of a scene and can in addition contributes to the elaboration of
accurate simulation models. Another original recent application is related to computer
graphics and the production of digital effects: Courty and Corpetti [2] designed a data-
driven crowd animation system based on the velocity fields acquired with optical flow
techniques from an input crowd video sequence.
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c© Springer-Verlag Berlin Heidelberg 2010
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The coupling of crowd dynamics and real data exhibits very promising results and
has opened a rich area of research. This paper is a contribution in that direction. We
argue that the apparent motion information is intrinsically insufficient to characterize
the dynamics of the flow since the lack of motion in the image can be interpreted as
a null density or a large congestion area where people are likely to be injured. We de-
fine a substantially complete crowd flow analysis as the extraction from the sequence
of i) time-consistent motion fields and ii) an associated disturbance potential. The
motion field is a rich dynamical descriptor of the flow which can be related to the ve-
locity of flow. The disturbance potential accounts for several physical quantities such
as the density or the pressure in the flow. This information is crucial to extract sen-
sible and potentially dangerous areas. Although an important number of approaches
are available to measure the apparent velocity field from images sequences in var-
ious situations, the estimation of the disturbance potential is a critical problem and
is still an open domain of research. This component is indeed tricky to observe di-
rectly from images. It is nevertheless intuitive that this potential influences the mo-
tion field: in a natural way, human beings tend to avoid over-concentrated or high-
pressure areas, and their velocities are directly influenced by the surrounding person
concentration.

The original contribution of this paper is to use recipes from optimal control the-
ory [3] and variational assimilation [4], originally used in the context of meteorology,
to define a new tool for the characterization of the crowd flow. Such techniques en-
able to estimate a (potentially high dimensional) system state driven with a dynamic
model known up to some noise. A key advantage relies on the ability to measure un-
observed parameters that control the dynamic model. As such, it is thoroughly adapted
to the problem we are dealing with. The definition of a system based on variational
assimilation especially requires i) a dynamic model related to the motion field and the
disturbance potential and ii) an observation operator that links our data (images) to
some components of system state (motion fields). Among others, we propose in this
paper a new and crude physical model for crowd dynamics and apply it to estimate
time-consistent informations of image sequences of human crowds.

The remainder of the paper is organized as follows: after the presentation of related
work in the context of crowd flow analysis from video, we give an overview of our
method (Section 3.1). Section 3.2 presents our modeling of the problem and imple-
mentation issues. Before concluding, Section 4 exposes our experimentations on both
synthetic (with the associated ground truth) and real crowd sequences.

2 Related Work

Analysis of crowd video sequences are generally focused toward two distinct problems:
the counting of people in the crowd and the detection of abnormal situations where
accidents are likely to occur. The counting issue generally yields the questions of i)
background subtraction and ii) feature tracking. Concerning the tracking, the choice
of the features to extract is determinant. Typical methods are based on appearance
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models [5,6] that exhibit different sensibilities to inter persons occlusions. The tempo-
ral and spatial consistency of the tracked features can be obtained through clustering
methods [7]. In [8], Brostow and Cipolla successfully argue that only the apparent
motion in image space is relevant to singularize individual in the crowd flow. When
several hundreds of pedestrians are present in the crowd most of the conventional track-
ing methods (like Kalman filters or particle filtering [9,10]) fail, because the degrada-
tion of the visual features related to single individuals disturbs the analysis. Moreover,
the large induced state space yields computationally too expensive problems. In those
cases, the analysis of the crowd sequence may amount to the analysis of a crowd flow
that have global properties and may be treated as a whole. Works related to this class
usually tend to solve the different problems of event detection or changes in the flow
rate [11,12]. The analysis usually takes as input the apparent motion in the image space
(optical flow). In [12], unsupervised feature clustering is used to define normal motion
patterns, and HMMs are used to detect particular situations. The method proposed by
Ali and Shah in [11] allows to segment the crowd flow with regions of substantially dif-
ferent dynamics by examining the Lagrangian coherent structures in the flow. In some
sense, this Eulerian perception of the crowds dynamics (that assumes that the crowd
can have fluid-like properties) opposes to a Lagrangian view of the indivual tracking
problem.

In our method, we propose to use a physical crowd model to guide the analysis
knowledge. This physical model is new and can be related to the continuous formula-
tions of crowd dynamics such as the one of Hughes [13]. In a recent work [14], Ali and
Shah also use an a priori knowledge on the crowd dynamics by using a scene struc-
tured based force model that guides a tracking process. This work differs from ours in
the sense that our goal is not the individual tracking of people in the scene, but rather a
characterization of the entire crowd flow.

Given a dynamic model related to a phenomenon, different filtering processes have
been developed to extract time-consistent parameters. Recently, Papadakis et al. have
exploited the variational assimilation principle to successfully extract time-consistent
and high-dimensional state spaces (dense motion fields, curves, physical parameters
such as vorticity, ...) directly from images [15,16]. The variational assimilation meth-
ods perform in batch and allow to explicitly enforce a (more or less confident) dy-
namic model to the variables to recover. Their framework is expressed by means of
an adjoint formulation: adjoint variables are introduced and enable to compute eas-
ily the gradient of the cost-function. The resulting algorithm consists of iterating a
forward integration of the evolution model and a backward integration of the adjoint
evolution model guided by a discrepancy measurement between the state variable and
the available noisy observations. This efficient procedure authorizes to refine an ini-
tial condition (which can be low confident) as well as the deviations wrt. the dynamic
model.

In this paper, we suggest to define a dynamic model for crowds that couples the
velocity to the disturbance potential. Recalling that the main difficulty of crowd analysis
concerns the estimation of this last potential, this model will be a support to estimate
this quantity using variational assimilation. This is the scope of the next section.
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3 Estimation by Coupling Observations/Model with Variational
Assimilation

3.1 Overview of the Method

We recall here that our objective is to estimate at the same time the apparent motion
of the crowd and its disturbance potential in the image sequence. An overall schema
is given in Figure 1. We take as input the original images and two user-defined infor-
mation: the eventual position of obstacles and some predefined destination areas in the
image. These two information are combined to compute a potential function that con-
veys information on the optimal directions of displacements for the crowd. From the
input images are also derived some initializations for our algorithm as well as the ob-
servations (that mainly consist in the apparent motion between image pairs). These are
used in the assimilation process, that tries to match, through an iterative process, the ob-
servations and the evolution of the dynamical process. As a result, a complete sequence
of velocity and disturbance potential are computed.

We present some background on variational assimilation in the next section (3.2),
while our model, along with implementation issues, is thoroughly described in the end-
ing part of this section (3.3).

Fig. 1. Method overview

3.2 Variational Assimilation

In this section, the key points required for the comprehension of the variational assim-
ilation are introduced. A complete and detailed presentation would be out of the scope
of this paper. For details, we refer the reader to [3,4].
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Our problem consists in recovering, from an initial condition, a system’s state X
partially observed and driven with an approximately known dynamic. This formalizes
as finding X (x, t), for any location x at time t ∈ [t0, tf ], that satisfies the system:

∂X
∂t

(x, t) + M(X (x, t)) = εm(x), (1)

X (x, t0) = X 0(x) + εn(x), (2)

Y(x, t) = H(X (x, t)) + εo(x, t), (3)

where M is the non-linear operator relative to the dynamics, X 0 is the initial vector at
time t0 and (εn, εm) are (unknown) variables relative to noise on the dynamics and the
initial condition respectively. Besides, noisy measurements Y of the unknown state are
available through the non-linear operator H up to εo. To estimate the system’s state a
common methodology consists in defining a cost-function J based on the three previ-
ous relations to minimize. The evaluation of X can be done by canceling the gradient
of this cost function. Unfortunately, the estimation of such gradient is in practice un-
feasible for large system’s state since it requires to compute perturbations along all the
components of X . A way to cope this difficulty, firstly proposed by Lions in [3], is to
write an adjoint formulation of the problem. It can be shown that this yields the follow-
ing algorithm:

1. Starting from X̃ (x, t0) = X 0(x), perform a forward integration: ∂X̃
∂t

+ M(X̃ ) = 0

2. X̃ being available, find the adjoint variables λ(x, t) with the backward equation:

λ(tf ) = 0 ; − ∂λ

∂t
(t) +

(
∂M

∂X
)†

λ(t) =

(
∂H

∂X
)†

R−1
(Y − H(X̃ ))(t) (4)

3. Update the initial condition : dX (t0) = Bλ(t0) + dX (t0);
4. λ being available, find the state space dX (t) from dX (t0) with the forward integration

∂dX
∂t

(t) +

(
∂M

∂X̃

)
dX (t) = Qλ(t) (5)

5. Update : X̃ = X̃ + dX
6. Loop to step 2 until convergence

where the matrices B,Q,R are relative to the covariance of the errors (εm, εn, εo),(
∂M

∂X
)

and
(

∂H

∂X
)

are the linear tangent operators of M and H respectively1 and
(

∂M

∂X
)†

and
(

∂H

∂X
)†

their adjoint operators2. Intuitively, the adjoints variables λ contain infor-
mation about the discrepancy between the observations and the dynamic model. They
are computed from a current solution X̃ with the backward integration (4) that impli-
cates both observations and dynamical operators. This deviation information between
data/model is then used to refine the initial condition (step 3) and to recover the system
state through an imperfect dynamic model where errors are Qλ (step 4). Note that if the
dynamic is supposed to be perfect (like in many physical applications), the associated
covariance Q is null and the algorithm only refines the initial condition.

1 The linear tangent of an operator A is the Gâteaux derivative : limβ→0
A(X+βθ)−A(X)

β
.

2 The adjoint A
† of a linear operator A on a space D is such as ∀x1, x2 ∈ D,

< Ax1, x2 >=< x1, A
†x2 >.
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From the previous algorithm, a complete assimilation system is then defined with i)
a dynamic model M; ii) an observation operator H; iii) an initial condition and iv) the
error covariance matrices B,Q and R. The next section defines all these components
for our problem.

3.3 Dynamic Model, Observations and Covariance

Proposed dynamic model for crowd behavior. The aim of this part is to design a
simple dynamic model for crowds that will be used for the assimilation. The system’s
state X is composed of the two components of interest that are the velocity field v =
(u, v)T and of the disturbance potential of the crowd D (X = (u, v,D)T = (v, D)T ).
Let us define a model for the velocity evolution.

Velocity modeling. In order to get a prior knowledge of the displacement of the crowd,
we assume that all human share the same goal and that the topology (obstacles) of the
analyzed scene is available. In a first place our methodology is thus restricted to im-
age sequences exhibiting one main flow of pedestrians. Reasonably assuming that each
pedestrian aims at minimizing their travel time to their objectives, the optimal direction
at a given location can be modeled as the gradient of a potential functionΦ defined over
the whole domain D. This potential is the solution of the classical Eikonal equation
which has among others been widely used in the context of path planing [17,18]. For
a given scene, we then derive an optimal field V = (U, V )T = ∇Φ of the pedestri-
ans that corresponds to the theoretical normalized direction of a pedestrian without any
constraint. If now the pedestrians evolve in a crowded environment, we assume that if
their velocity differs from the optimal direction, this is due to a disturbance into the
scene (density, pressure, ...). Therefore, we propose the following dynamical model:

v(x, t) = α
(
V (x, t) −β∇D(x, t)︸ ︷︷ ︸

disturbance repulsion

)
(6)

where α and β are two constant coefficients that depend on the global speed of the
scene.

Disturbance potential modeling. As for the disturbance potential modeling, we simply
assume that this scalar quantity is transported by the motion field and is also eventually
diffused along time. This corresponds to a simple physical equation of transport of a
scalar. It then obeys to a classical advection-diffusion relation:

∂D(x, t)

∂t
+ v(x, t) · ∇D(x, t) = δΔD(x, t). (7)

where δ is a small diffusing parameter. Finally, the complete dynamical system of X =
(v, D)T reads (with (•) = (x, t)):

[
v(•)
∂D(•)

∂t

]
+

⎡⎣ 0 αβ∇

0 v(•) · ∇ − βΔ

⎤⎦
︸ ︷︷ ︸

M(X )

[
v(•)
D(•)

]
=

[
αV (•)

0

]
+ εm (8)
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To suppress the obstacle influence in the computation of the gradient∇, we have used
non-symmetric finite-difference in their neighborhood. Concerning the Laplacian oper-
ator Δ related to the diffusion in (7), we have applied an anisotropic operator that do
not diffuse into the obstacles.This dynamic model M is non-linear due to the advection
term v(•) ·∇ that depends on the density. In practice, at a given iteration n, the velocity
v used for the advection is the one obtained at iteration n − 1 so that the operator is
linear. The associated tangent linear

(
∂M

∂X
)

is then itself. The analytical expression of

the adjoint
(

∂M

∂X
)†

is more tricky to obtain but in our implementation, we have used the
fact that its discrete version is the transpose of the discrete version of

(
∂M

∂X
)

[19].
Let us now turn to the observations of the state variables.

Observations: velocity based on optical-flow. As mentioned above, only the motion
fields v can be accurately observed from the images, the disturbance potential being
a tedious quantity to estimate. Starting from the well-known optical flow constraint
equation (ofce), one can assume, to cope with the aperture problem, that the unknown
optic flow vector at a location x is constant within some neighborhood of size n [20].
The motion field respects then:

Kn ∗
(

∂I(x, t)

∂t
+ ∇I(x, t) · v(x, t)

)
︸ ︷︷ ︸

dI/dt

≈ 0, (9)

where I stands for the luminance function andKn is a Gaussian kernel of standard devi-
ation n. From the previous relation, the observation system Y(x, t)=H(x, t)X (x, t)+
εo can be defined with (noting I• = ∂I/∂•):

Y(x, t) = Kn ∗ It(x, t) and H(x, t) =
[−Kn ∗ Ix(x, t), −Kn ∗ Iy(x, t), 0

]
. (10)

This observation operator involves only the motion field. This means that the correction
on the disturbance potential will uniquely be achieved by relying on motion observa-
tions. From a computational point of view, this operator is linear. The associated tangent
linear and adjoints are then derived in the same way than previously.

Covariances and initialisations. For the initialization, we only need to get the dis-
turbance potential since the corresponding initial velocity field is obtain from (6). The
choice of this density depends on the scene to be analyzed. In our experiments, it was
roughly set manually and filtered with a Gaussian kernel. Noting that the assimilation
process refines this initialization, this latter can be only issued from a coarse and manual
estimation.

The covariance matrix of the initial condition B and the covariance matrix of the
dynamic model parameter Q have been fixed to constant diagonal matrices (no spa-
tial prior on the validity of the model and the initial density are available). Concern-
ing the observation covariance R, we have used R = Rmax + (Rmin − Rmax)(1 −
exp(−‖∇I‖/σ2)). This states that when the image brightness does not contain gradi-
ents, the usual ofce is not valid and the covariance is maximal. At the opposite, when
high gradients appears, the ofce is confident and R is low.
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4 Experimentations and Discussion

In this section we present some experimental results obtained with our method. We first
begin by giving some comparison elements in a synthesized case. We then present the
results obtained on a real crowd video. This part is concluded by a discussion on the
proposed method.

For all the following experimentations, the value used the optimal control system
were B = 0.5Id, Q = 0.1Id, Rmin = 0.5, Rmax = 5, σ = 9.

4.1 Validation

Ground truth generation. Our goal here is to compare the obtained results to some
ground truth. In order to get a flexible validation pipeline, we used synthesized crowd
scenes. Designing our simulation framework was done with the following constraints:
i) a totally different crowd simulation model than the one used for assimilation ii) the
video should present realistic details in terms of visual appearance and fine pedestrians
motion (such as arms and legs balancing). It is then possible to confront the virtual
ground truth to the results of the assimilation process.

(a) t = 3s (b) t = 15s (c) t = 23s

Fig. 2. Synthesized crowd scene

The virtual sequence has been generated using an agent-based crowd simulation
model slightly derived from Helbing’s model [21], and virtual characters including
walking motions acquired through motion capture (see Figure 2). The density maps
ρ(x, t) and the velocity fields U(x, t) are computed from the agent model to the grid
using a Gaussian kernel regularisation (we used σ = 0.5), and will be considered as the
truth.

Dynamic model results. The integration of the proposed simulated dynamic model
provides important information. First, one can see (Figure 4) that it is able, through
the disturbance potential, to locate the places where the pedestrians are assumed to be
effectively the most disturbed. But in counterpart, velocities tend to quickly decrease
over the flow, and do not match to the supposed freedom of move once the obstacle
overtaken.

The assimilation, Figure 5, improves the results. As shown on D maps, the values fit
much better the truth density maps, which is an important part of the disturbance po-
tential, in time and space, and particulary after the pedestrians have passed the obstacle.
The velocities norms also fit well to the truth, and the correlation between high dis-
turbance and low speed is clearly effective. Only the back part of the obstacle remains
uncorrectly managed.
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Fig. 3. Ground truth (agent-based model) - Upper line: Density maps (0 - dark blue, to 5 - dark
red) pedestrians/m2- Lower line: Velocity fields and norm (0 to 1 m/s)

Fig. 4. Simulated dynamic model - Upper line: Disturbance (D) maps (0 to 5) with associated
gradient (that informs about potential repulsion) - Lower line: Velocity fields and norm

Fig. 5. Assimilated dynamic model - Upper line: Disturbance (D) maps (0 to 5) with associated
gradient - Lower line: Velocity fields and norm (0 to 1)

RMS comparison. Because of its strong link with pedestrian disturbance, it is rele-
vant to compare the norm of the velocity to the ground truth. In this purpose, we used
the standard RMS function. One can see Figure 6, that the assimilation of D greatly
improved the results as compared to the simple model simulation. The global error is
almost lowered by a factor 2. However, the model, as said before, is not well suited to
the back part of the obstacle.
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Fig. 6. Temporal RMS (a) - Spatial RMS (0 to 100%) at t = 23s on velocity norm (b) and (c)

Let us now turn to experiments on real sequences.

4.2 Experimention on Real Crowd

The real sequence shows a crowd entering a railway station in the Principality of Monaco
(Figure 7). This example is interesting since a variety of phenomena are present: a con-
tinuous flow at the beginning followed by a compression of some peoples in the left part
of the images. In addition, the limit of the door is a barrier that creates an opposite flux
in the crowd flow. In this example, our method has detected two sensible areas where the
disturbance potential is growing larger : the end of the barrier and the wall on the right
of the image. This is very informative for safety engineers, since it allows to highlight
potential risky zones. From an online surveillance system point of view, our method can
detect critical disturbance elevations and thus would allow to trigger alarms. It is also
possible to connect this information in some motion pattern detector such as presented
in [12]. Those aspects have been left as perspectives. Let us remark here that the prob-
lem of validation is difficult since no ground truth is available. Nevertheless, from the
state-of-the-art on crowd behavior, our estimations seem coherent.

4.3 Discussion

One drawback of our method is that it requires an overhead view of the crowd flow,
which is not always available in surveillance system. However, this constraint can be
partially alleviated provided that a camera calibration can be given, allowing to project
back the observations in a correct frame. Secondly, our method is well adapted to dense
crowds, where it is possible to assume that each individual is driven by an underlying
flow. With only a few pedestrians in the video, this assumption does not hold anymore.
The range of validity of our system, in terms of crowd density, has thus to be clearly
established. Also, we have only treated the case where only one type of crowd (one
common goal) is present in the image sequence. We believe that it is possible to handle
with our dynamical model more than one flux of people (distinct goals), thus allowing
to some extent a segmentation of the crowd flow. Finally, the disturbance potential is a



Crowd Flow Characterization with Optimal Control Theory 289

(a) t = 0s (b) t = 15s (c) t = 30s (d) t = 50s

Fig. 7. (a) to (d) Images of the real sequence - (e) to (h) Estimated disturbance potential maps

combination of several physical quantities such as density or pressure. We plan to use a
more sophisticated physical crowd model to estimate each of these quantities separately
in a variational assimilation framework. Those aspects are part of our future works.

5 Conclusion and Future Works

We have presented in this paper a complete framework dedicated to the analysis of
dense crowd video sequences. Our approach relies on the coupling of observed data ex-
tracted from the image sequences and an ad-hoc crowd dynamics model that capture the
intrinsic relation between velocity and a disturbance potential (related to density, pres-
sure, ...) in the crowd flow. This allows to derivate an efficient framework that computes
from a crowd image sequences both the disturbance potential and the velocity fields
over the entire sequence. The estimated disturbance potential has proved to be very in-
teresting in highlighting the main characteristics of a scene. This can serve as inputs for
event detection system or participate to our global comprehension on the underlying dy-
namics of human crowds. Future works will consider a more precise investigation of the
disturbance potential to separate from this latter density, pressure and other quantities.
We will also investigate sequences containing distinct fluxes of persons.
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Abstract. The method based on local features has an advantage that

the important local motion feature is represented as bag-of-features, but

lacks the location information. Additionally, in order to employ an ap-

proach based on bag-of-features, language models represented by pLSA

and LDA (Latent Dirichlet Allocation) have to be applied to. These are

unsupervised learning, but they require the number of latent topics to be

set manually. In this study, in order to perform the LDA without spec-

ifying the number of the latent topics, and also to deal with multiple

words concurrently, we propose unsupervised Multiple Instances Hierar-

chical Dirichlet Process MI-HDP-LDA by employing the local informa-

tion concurrently. The proposed method, unsupervised MI-HDP-LDA,

was evaluated for Weizmann dataset. The average recognition rate by

LDA as conventional method was 61.8% and by the proposed method it

was 73.7%, resulting in 11.9 points improvement.

Keywords: Motion, location, action recognition, LDA, HDP, HDP-

LDA.

1 Introduction

Human action recognition is a challenging problem in computer vision. It can
be applied to many applications such as surveillance, scene understanding, care
monitoring, sport analysis, etc. In fact, for computers to support human works,
they need to understand the human activities, so that human actions, the prim-
itive units of human activities, become important information.

A lot of work has been done in recognizing human actions. Bobick[1] used
motion energy images (MEI) and motion history images (MHI). Those shape de-
scriptors represented information of human motion –“where” and “how”.
Grundmann[2] used 3D shape context extended into a temporal dimension. That
method represented a human action as a histogram of 3D points by sampling
shape of silhouette. Additionally, it increased the sampling density in the domain
of fast moving body parts. Efros[3] used optical flow field for human figures at
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each frame. Their methods presented the human body as a whole to understand
human actions as concatenation of motion and pose.

In contrast to the above methods, local motion approaches represent human
action as a set of distinguished local motion features. Laptev[4] proposed space-
time interest points using Harris operator extended into temporal and adapted
scale. Dollár[5] proposed cuboid with local motion descriptor at interest point
detected using separable linear filters. Scovanner[6] used 3D SIFT descriptor
extended into a temporal dimension for these interest point. These approaches
are effective to characterize distinguished local motion included in the action.
Moreover, since these features can be represented as a histogram, language mod-
els with unsupervised learning can be applied to the features. These approaches
are called bag-of-words and the features obtained as a result are called word.
Niebles[7] classified actions by applying pLSA that is one of the language mod-
els, and Wang[8] used Semi-LDA.

However, local motion approaches do not take the location information into
consideration. Moreover, bag-of-words approach using language model requires
the number of latent topics, corresponding to action classes, to be set manually.
In this study, in order to perform the LDA (Latent Dirichlet Allocation) without
specifying the number, and also to deal with multiple words concurrently in an
unsupervised manner, we propose unsupervised Multiple Instances Hierarchical
Dirichlet Process MI-HDP-LDA. MI-HDP-LDA is the model capable of gener-
ating words from the latent topics. Hence it can provide co-occurrence of words
occurring simultaneously. Moreover, it can estimate the number of latent topics
automatically by using Hierarchical Dirichlet Processes(HDP).

The rest of this paper is organized as follows. In section 2, our basic idea is de-
scribed and in section 3, motion feature and location information are described.
In section 4, Hierarchical Dirichlet Processes - Latent Dirichlet Allocation (HDP-
LDA) is briefly described. In section 5, MI-HDP-LDA is proposed to deal with
features occurring concurrently. In section 6, the experimental result is described
for Weizmann dataset introduced in [9] to evaluate our algorithm. Section 7 is
for conclusion of this paper.

2 Basic Idea

Our study is motivated by the conventional approaches which extract local fea-
tures by detecting interest points. Our basic idea is to extract various types of
information at interest points such as motion feature, location information and
limbs parts, etc for understanding human actions.

This paper regards the motion in terms of information “where” and “how”.
For “where”, the relative position in human region is used as location word
and for “how”, the motion feature is used as motion word at the interest point.
Niebles[7] method is employed as interest point detection algorithm and motion
descriptor.
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3 Features

In this section, we describe briefly the motion feature proposed by Dollár[5] and
location information representing “where”.

3.1 Motion Feature

Assuming a stationary camera or a process that can account for camera motion,
separable linear filters are applied to the video to obtain the response function
as follows,

R(x, y) =
(
I(x, y) ∗ g(x, y;σ) ∗ hev(t; τ, ω)

)2

+
(
I(x, y) ∗ g(x, y;σ) ∗ hod(t; τ, ω)

)2
,

(1)

where g(x, y;σ) is a 2D Gaussian smoothing kernel, applied only along the spatial
dimensions, and hev and hod are a quadrature pair of 1D Gabor filters applied
temporally, which are defined as follows,

hev(t; τ, ω) = − cos(2πtω)e−
t2

τ2 ,

hod(t; τ, ω) = − sin(2πtω)e−
t2

τ2 .
(2)

The two parameters σ and τ correspond to the spatial and temporal scales of
the filters respectively. To make the response function effective, ω = 4/τ was
employed.

This function detects any regions where complex motion is caused spatially.
In fact, a region with complex motion can induce a strong response, but a re-
gion with simple translational motion will not induce a strong response. The
spatial-temporal interest points are extracted around the local maxima of the
response function. At each interest point, a spatial-temporal cube is extracted
that contains the output of the response function. Its size is approximately six
times the spatial and temporal scales along each dimension. To obtain a mo-
tion descriptor, the brightness gradients are computed at all the pixels in the
cube and are concatenated to form a vector. Then PCA is applied to reduce the
dimensionality of the descriptors.

In order to obtain the cluster prototypes, a k-means algorithm is applied to
the descriptors. Then each descriptor is assigned a descriptor type by mapping
it to the prototype. Therefore a collection of descriptors included in a video
is represented as a histogram of the descriptor types. The descriptor types are
called motion words.

3.2 Location Information

As shown in Fig.1, the human rectangle region is divided into N ×M blocks.
Each block indicates a relative position within a human rectangle region. The
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M

N

(a)

A word occurred
in sub-region 1

1 2 3

4 5 6

7 8 9

(b)

Fig. 1. (a)Human rectangle region is split into N × M blocks. (b)A motion word

enclosed in orange circle also has a location word occurred in sub-region 1. This indi-

cates that these words occurred at the interest point have motion feature and location

information concurrently.

extremities of the motion such as arm and foot movement are extracted as the
interest points and therefore they have two kinds of information, namely, mo-
tion feature and location information. The person detection is done manually
in the experiment to exclude the detection errors, but it will be automatically
performed by frame subtraction.

4 Hierarchical Dirichlet Processes - Latent Dirichlet
Allocation

Our model is based on Hierarchical Dirichlet Processes - Latent Dirichlet
Allocation (HDP-LDA) [10]. HDP-LDA is extended from LDA[11] by using mul-
tiple DPs. In contrast to LDA with a finite mixture model, HDP-LDA is an
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Fig. 2. Graphical representation of HDP-LDA model and MI-HDP-LDA modelD
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infinite mixture model sharing topics across multiple DPs given an underlying
base measure H . The graphical model of HDP-LDA is depicted in Fig.2 left.

Suppose we are given a collectionD of video clips {1, · · · , j, · · · , J}. Video clip
j has a collection of words {xj1, · · · , xji, · · · , xjI} as described in the previous
section, where xji is the i-th word in video clip j.

The global measure G0 has a probability distribution decided by Dirichlet
process(DP)[12] with concentration parameter γ and base probability measure
H as follows,

G0 | γ,H ∼ DP(γ,H). (3)

DP is a process that a random probability measure is distributed as a Dirichlet
distribution with concentration parameter and base probability measure. The
random probability measure Gj for designated video clip j has a distribution
decided by a Dirichlet process with concentration parameter α0 and base prob-
ability measure G0 under conditional independence given G0,

Gj | α0, G0 ∼ DP(α0, G0). (4)

Such hierarchical process of distributing a probability measure is Hierarchical
Dirichlet Processes. For each video clip j, let θj1, θj2, · · · be independent and
identically distributed random variables sampled from Gj . Each θji is a topic
corresponding to a single word xji. The likelihood is given by:

θji | Gj ∼ Gj (5)
xji | θji ∼ F (θji), (6)

where F (θji) denotes the probability distribution of the observation xji given θji.
Words are generated independently and distributed identically from the selected
topic.

5 Multiple Instances HDP-LDA

HDP-LDA model generates a single word xji from the corresponding topic θji,
but not the multiple instances of the word concurrently such as motion word
and location word. To solve this problem, we propose Multiple Instances HDP-
LDA(MI-HDP-LDA) that allows multiple concurrent instances of the word.

MI-HDP-LDA can generate multiple instances xji = {x1
ji, · · · , xS

ji} of the
word from latent topic θji. Each instances xs

ji is generated as follows,

xs
ji | θji ∼ Fs(θji), (7)

where Fs(·) is the distribution of xs
ji given the latent topic θji. Here S indicates

the number of instances of the word i such as motion word and location word
in the video clip j.

Next, we describe the Gibbs sampling scheme for MI-HDP-LDA in CRF (Chi-
nese Restaurant Franchise) representation[10]. Basic scheme is exactly similar to
HDP-LDA except it obtains the likelihood of generating xji.
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The variable xji is multiple instances of word i observed concurrently, so that
xji is a vector with the size of S. Each xji is assumed to be generated based on a
distribution F (θji). Let the factor θji be associated with the table tji in CRF, i.e.,
let θji = ψjtji . The random variable ψjt is a topic kjt; i.e., ψjt = φkjt . The prior
over the parameters φk is H . Let zji = kjtji denote the topic associated with the
observation xji. We use the notation njtk to denote the number of customers in
restaurant j at table t eating dish k, while mjk denotes the number of tables in
restaurant j serving dish k. Marginal counts are represented with dots.

Let x = {xji : all j, i}C xjt = {xji : all i with tji = t}C t = {tji : all j, i}C
k = {kjt : all j, t}C z = {zji : all j, i}C m = {mjk : all j, k}C φ = {φ1, · · · , φK}.
When a superscript is attached to a set of variables or a count, e.g., x−ji,k−jt

or n−ji
jt· , this means that the variable corresponding to the superscripted index

is removed from the set or from the calculation of the count.
Sampling t. The probability that tji takes on a previously used value t or

new value tnew is given as follows;

p(xji|t−ji, tji = tnew,k) =
K∑

k=1

m·k
m·· + γ

f
−xji

k (xji) +
γ

m·· + γ
f
−xji

knew (xji) (8)

f
−xji

k (xji) =
∫ S∏

s=1

Fs(xs
ji|φk)h(φk)dφk (9)

f
−xji

knew (xji) =
∫ S∏

s=1

Fs(xs
ji|φknew )h(φknew )dφknew (10)

where h(φknew ) is probability density function of the base probability measure
H . The conditional distribution of tji is then obtained as follows;

p(tji =t|t−ji,k) ∝
{
n−ji

jt· f
−xji

kjt
(xji) if t is previously used,

α0f
−xji

knew (xji) if t = tnew.
(11)

If the sampled value of tji is tnew, we obtain a sample of kjtnew according to the
following probability:

p(kjtnew =k|t,k−jtnew
) ∝

{
m·kf

−xji

k (xji) if k is previously used,
γf

−xji

knew (xji) if k = knew.
(12)

Sampling k. Since kjt actually changes the component membership of all data
items in table t, the likelihood obtained by setting kjt = k is given by f−xjt

k (xjt),
so that the conditional probability of kjt is obtained as follows;
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p(kjt =k|t,k−jt) ∝
{
m−jt

·k f
−xjt

k (xjt) if k is previously used,
γf

−xjt

knew (xjt) if k = knew,
(13)

f
−xjt

k (xjt) =
∏

i:tji=t

∫ S∏
s=1

Fs(xs
ji|φk)h(φk)dφk, (14)

f
−xjt

knew (xjt) =
∏

i:tji=t

∫ S∏
s=1

Fs(xs
ji|φknew )h(φknew )dφknew . (15)

In recognition, topics of each xji are calculated using Gibbs sampling with F (θ)
obtained in learning. Given a test video j′ and words xj′i, the corresponding
topic θj′i is computed and the topic histogram of test video j′ is obtained as
follows,

hist(θ)+ = θj′i, (16)
k = max(hist(θ)). (17)

An action label recognized for test video j′ is the maximization topic k of the
histogram.

6 Experiments

The proposed method was evaluated for Weizmann dataset which includes 10
motion classes such as jump, run, ship and walk. The total number of movies
included in the database was 92. We employed leave-one-out cross validation
as evaluation method. The following four experiments were conducted for the
evaluation.

– Exp. 1: motion + LDA
• LDA was evaluated using only motion word as a baseline method.

– Exp. 2: motion + HDP-LDA
• HDP-LDA was evaluated using only motion word for comparison with

Exp.1.
– Exp. 3: motion + loation + HDP-LDA
• HDP-LDA was evaluated using motion word and location word to com-

pare it with MI-HDP-LDA.
– Exp. 4: motion + loation + MI-HDP-LDA
• The proposed method was evaluated using motion word and location

word.

At first, LDA was evaluated using motion word as a baseline. Though LDA
generates the prior distribution by using the Dirichlet distribution as well as
HDP-LDA, it can not estimate the number of latent topics automatically as
HDP can do.

In the motion word parameters, cuboid size was 15×15×15 and codebook size
was 1000. In the location word, the number of blocks in human region size was
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10×13. The response parameter τ was set to 5 and PCA reduced the dimension
to 779. The number of the latent topics was set to 10 manually for LDA.

As a result of the experiment 1, the recognition rate was 61.8% and the confu-
sion matrix is shown in Fig.4(a). It recognized the motions of bend, jack, pjump
and wave1 excellently, but the motions of jump, side and skip were considerably
confused. The reason of the confusion will be attributed to their similar move-
ments of the body except for the legs. The motions of wave1 and wave2 had
been learned as the same action class by unsupervised LDA without location
information, because the subject waves right hand only in the motion wave1
and waves both hands in the motion wave2. Therefore it classified them into the
same action class in the recognition.

As a result of the experiment 2, the recognition rate was 64.9% and the con-
fusion matrix is shown in Fig.4(b). The average number of classes automatically
estimated was 16.33. It recognized bend and jack, etc. excellently, but the motion
of Jump and wave2 was confused as experiment 1.

As a result of the experiment 3, the recognition rate was 64.0% and the
confusion matrix is shown in Fig.4(c). The average number of classes estimated
was 14.33. This experiment was carried out using both the motion words and
the location words for HDP-LDA. In this experiment, it was assumed that the
both words were not concurrently occurred but were independently generated,
and the word of the location information was simply added. This experiment was
carried out to compare with MI-HDP-LDA in terms of information concurrency.
The same likelihood Fs(θ) was used for the same word in HDP-LDA and MI-
HDP-LDA.

Finally, experiment 4 was carried out for MI-HDP-LDA using both the motion
words and the location words. The recognition rate was improved up to the
highest score 73.7%. The average number of topics estimated was 15.78. The
confusion matrix is shown in Fig.4(d). Especially, in unsupervised MI-HDP-
LDA, wave1 and wave2 were automatically learned as different motion owing to
location information of the motion, therefore they were classified into different
motion classes in the recognition.

Next, the number of latent topics estimated by HDP is described. There were
about 15 latent topics at average with some variation over the experiment 2, 3
and 4. Fig.3 shows the number of topics sampled in experiment 4.
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Fig. 3. Number of topics in experiment 4 (MI-HDP-LDA)D
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Fig. 4. Confusion matrices computed in respective experiment for Weizmann

Dataset(%)

Weizmann Dataset has two kinds of motions in jump, run, side, skip and walk:
motions toward right or left directions. If these actions are separately counted,
the number of actions included in Weizmann Dataset becomes 15.

It can be confirmed that the extended number of actions 15 almost coincides
with the number of latent topics estimated in the experiment. The number of
latent topics is the number of mixtures with the highest likelihood and estimated
through the experiment, depending on the training data.

7 Conclusion

In this paper, a new unsupervised learning method MI-HDP-LDA has been
proposed to deal with motion feature and location information concurrently
in the motion recognition task. This method can also estimate the number of
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latent topics included in the training data automatically owing to the HDP
(Hierarchical Dirichlet Processes).

In the experiments of motion learning and recognition for Weismann Dataset,
LDA showed 61.8% recognition rate using only motion information. The pro-
posed MI-HDP-LDA achieved 73.7% recognition rate, resulting in 11.9 points
improvement.

Future work will be the incorporation of the various information such as
”what” in addition to ”where” and ”how” which this paper pays attention to.
Pose information of the limbs will be also important in learning and recognizing
of the motion.
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Abstract. The detection of motion boundaries has been and remains a long-
standing challenge in computer vision. In this paper, the recovery of motion
boundaries is recast in a broader scope, as focus is placed on the more general
problem of detecting spacetime structure boundaries, where motion boundaries
constitute a special case. This recasting allows uniform consideration of bound-
aries between a wider class of spacetime patterns than previously considered in
the literature, both coherent motion as well as additional dynamic patterns. Ex-
amples of dynamic patterns beyond standard motion that are encompassed by the
proposed approach include, flicker, transparency and various dynamic textures
(e.g., scintillation). Toward this end, a novel representation and method for de-
tecting these boundaries in raw image sequence data are presented. Central to the
representation is the description of oriented spacetime structure in a distributed
manner. Empirical evaluation of the proposed boundary detector on challenging
natural imagery suggests its efficacy.

1 Introduction

The detection of motion boundaries in (temporal) image sequences has been and re-
mains a longstanding challenge in computer vision. The reason for continued interest is
due in part to their providing boundary conditions for any process that requires knowl-
edge of the spacetime support of coherent data for recovery of reliable local estimates
(e.g., optical flow). In addition, these boundaries provide useful information about the
3D structure of the imaged scene.

Although of obvious importance, motion represents a particular instance of the myr-
iad spatiotemporal patterns encountered in image sequences. Examples of non-motion-
related patterns of significance include, unstructured (e.g., “blank wall”), flicker (i.e.,
pure temporal intensity change), and dynamic texture (e.g., as typically associated with
stochastic phenomena, such as windblown vegetation and turbulent water). These types
of dynamic patterns have received far less attention than motion in the literature.

The goal of the present work is the development of a unified approach to detecting
spacetime boundaries that is broadly applicable to the diverse phenomena encountered
in the natural world, including but not limited to motion. It is proposed that the choice of
representation is key to meeting this challenge: If the representation cannot adequately
distinguish the patterns of interest, then the recovery of boundaries, regardless of the
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c© Springer-Verlag Berlin Heidelberg 2010



302 K.G. Derpanis and R.P. Wildes

chosen detector, will fail. For present purposes, local 3D, (x, y, t), spacetime orienta-
tion will be shown to be of appropriate descriptive power. Measures of spatiotemporal
orientation capture the first-order correlation structure of the data irrespective of its
origin (e.g., irrespective of its physical cause), even while distinguishing a wide range
of patterns of interest (e.g., different motions, as well as the various aforementioned
additional dynamic patterns). With visual spacetime represented according to its lo-
cal orientation structure, boundaries will be extracted via detection of spatiotemporal
change in the local orientation structure.

Previous dynamic boundary detection methods can be categorized as either local or
global. Local methods restrict analysis to limited neighbourhoods around each point. In
contrast, global methods generally attempt to simultaneously estimate a consistent flow
field and its discontinuities across the image.

Early efforts focused on the local detection of motion discontinuities in dense optical
flow fields through the use of edge operators (e.g., [1]). Alternatively, regions exhibiting
a high percentage of unmatched features on a frame-to-frame basis are identified as mo-
tion boundaries [2]. Other methods have detected boundaries from the shape of the local
template match surface (e.g., [3]). Boundary detection also has been performed using
a detector over basis flows for simple events (e.g., motion of occluding edge or bar)
[4]. In follow-up work, motion discontinuity regions were captured using a non-linear
generative model [5]. Alternatively, hand-labeled motion boundaries have been used to
train a discriminative classifier [6]. Further, motion boundary detection has been based
on analysis of local distributions of image features (e.g., intensity, colour, flow) [7,8].
Perhaps most closely related to the approach proposed here are methods that detect mo-
tion boundaries from the structure of spatiotemporal brightness patterns as captured by
local estimates of spatiotemporal orientation [9] or, more generally, oriented bandpass
filters [10,11]. Also related are previous efforts using oriented energy measurements for
boundary detection in 2D intensity images, e.g., [12,13].

Typically, the focus of global methods has been the recovery of regional flows, with
inter-region boundaries made explicit to various degrees [14,15]. The particular for-
mulations developed in these cases are limited to motion boundary detection and not
more generally applicable to additional classes of spatiotemporal structure boundaries.
Alternatively, global methods have been developed that indicate regions of dynamic
texture and their boundaries, e.g., [16]; however, it does not appear that such methods
are applicable directly to motion boundaries.

Overall, it appears that no single previous method for spatiotemporal boundary de-
tection is capable of capturing the wide range of juxtaposed spacetime patterns encoun-
tered in the real world. Furthermore, the emphasis of most previous work has been on
the special case of motion boundaries.

In the light of previous research, the following three major contributions are made. (i)
The problem of detecting motion boundaries is recast in terms of the more general prob-
lem of identifying spacetime structural boundaries. This recasting allows for capturing,
in a unified manner, boundaries between a wide range of important spatiotemporal pat-
terns (unstructured, static, motion, flicker, (pseudo-)transparency, translucency, scintil-
lation). (ii) A new representation is proposed for identifying spatiotemporal boundaries
that captures local 3D, (x, y, t), image spacetime orientation structure in a distributed
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manner. The representation converts structure differences to spatiotemporal contrast;
correspondingly, simple contrast detection mechanisms (e.g., local differential opera-
tors) can mark boundaries. (iii) The proposed boundary detector’s ability to identify
boundaries along meaningful structural lines is shown quantitatively and outperforms
several extant approaches on a wide range of challenging natural imagery.

2 Technical Approach

The proposed approach to spacetime representation and boundary analysis consists of
an initial local oriented decomposition of the input video, followed by detecting space-
time structural boundaries across the decomposition. This approach is motivated by the
fact that such a decomposition captures significant, meaningful aspects of its temporal
variation [11]. As examples: A significant response in a single component of the de-
composition is indicative of motion; significant responses in multiple components of
the decomposition are indicative of transparency-based superposition; more uniform,
yet still significant responses across the entire decomposition are indicative of dynamic
texture (e.g., scintillation); lack of response in any component of the decomposition is
indicative of unstructured regions (e.g., uniform intensity). Under this representation,
coherency of spacetime is defined in terms of consistent patterns across the decom-
position, while inconsistencies indicate spacetime structural boundaries. Integration of
purely spatial cues (e.g., colour and texture), although of obvious benefit, is beyond the
scope of this contribution.

2.1 Spatiotemporal Oriented Energy Representation

The spacetime orientation decomposition is realized using broadly tuned 3D Gaussian
second derivative filters, G2θ̂

(x, y, t), and their Hilbert transforms, H2θ̂
(x, y, t), with

the unit vector θ̂ capturing the 3D direction of the filter symmetry axis. The responses
are pointwise rectified (squared) and summed to yield the following energy measure,

Eθ̂(x, y, t) = (G2θ̂
∗ I)2 + (H2θ̂

∗ I)2, (1)

where I ≡ I(x, y, t) denotes the input imagery and ∗ convolution.
Each oriented energy measure, (1), is confounded with spatial orientation. Conse-

quently, in cases where the spatial structure varies widely about an otherwise coherent
dynamic region (e.g., single motion of a surface with varying spatial texture), the re-
sponses of the ensemble of oriented energies will reflect this behaviour and thereby
support spurious region segregation. To ameliorate this difficulty, the spatial orientation
component is discounted by “marginalization” of this attribute, as follows.

In general, a pattern exhibiting a single spacetime orientation (e.g., velocity) mani-
fests itself as a plane through the origin in the frequency domain [17]. Correspondingly,
summation across a set of x-y-t-oriented energy measurements consistent with a single
frequency domain plane through the origin is indicative of energy along the associated
spacetime orientation, independent of purely spatial orientation. Since Gaussian deriva-
tive filters of order N = 2 are used in the oriented filtering, (1), it is appropriate to
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consider N + 1 = 3 equally spaced directions along each frequency domain plane of
interest, as N + 1 directions are needed to span orientation in a plane with Gaussian
derivative filters of order N [13]. Let each plane be parameterized in terms of its unit
normal, n̂; a set of equally spaced N + 1 directions within the plane are given as

θ̂i = cos
(

2πi
N + 1

)
θ̂a(n̂) + sin

(
2πi
N + 1

)
θ̂b(n̂), 0 ≤ i ≤ N, (2)

with
θ̂a(n̂) = n̂× êx/‖n̂× êx‖ and θ̂b(n̂) = n̂× θ̂a(n̂), (3)

where êx denotes the unit vector along the ωx-axis1. In the case where the space-
time orientation is defined by velocity (ux, uy), the normal vector is given by n̂ =
(ux, uy, 1)	/‖(ux, uy, 1)	‖.

Now, energy along a spacetime direction, n̂, with spatial orientation discounted
through marginalization, is given by summation across the set of measurements,Eθ̂i

,

Ẽn̂(x, y, t) =
N∑

i=0

Eθ̂i
(x, y, t), (4)

with θ̂i one of N + 1 = 3 specified directions, (2), and each Eθ̂i
calculated via the ori-

ented energy filtering, (1), (cf. [18] where a similar formulation is developed, but only
applied to image motion analysis and without inclusion of the H2θ , which provides
phase independence). In the present implementation, six different spacetime orienta-
tions are made explicit, namely, leftward, rightward, upward and downward motion,
static (no motion/orientation orthogonal to the image plane) and flicker/infinite motion
(orientation orthogonal to the temporal axis); although, due to the broad tuning of the
filters employed, responses arise to a range of orientations about the peak tunings.

Finally, the resulting energies in (4) are confounded by the local contrast of the sig-
nal and as a result increase monotonically with contrast. This makes it impossible to
determine whether a high response for a particular spacetime orientation is indicative
of its presence or is instead a low match that yields a high response due to significant
contrast in the signal. To arrive at a purer measure of spacetime orientation, the energy
measures are normalized by the sum of consort planar energy responses at each point,

Ên̂i
(x, y, t) = Ẽn̂i

(x, y, t)/
( M∑

j=1

Ẽn̂j
(x, y, t) + ε

)
, (5)

where M denotes the number of spacetime orientations considered, and ε a constant in-
troduced as a noise floor and to avoid instabilities at points where the overall energy is
small. Conceptually, (1) - (5) can be thought of as taking an image sequence, I(x, y, t),
and carving its (local) power spectrum into a set of planes, with each plane correspond-
ing to a particular spacetime orientation, to provide a relative indication of the presence
of structure along each plane.

1 Depending on the spacetime orientation sought, êx can be replaced with another axis to avoid
the case of an undefined normal vector.
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The constructed representation enjoys a number of attributes that are worth empha-
sizing. (i) Owing to the bandpass nature of the Gaussian derivative filters (1), the repre-
sentation is invariant to additive photometric bias. (ii) Owing to the normalization (5),
the representation is invariant to absolute contrast in the input signal. (iii) Owing to the
marginalization (4), the representation is invariant to changes in appearance manifest as
spatial orientation variation. Overall, these three invariances result in robust boundary
detection that is invariant to pattern changes that do not correspond to dynamic pattern
variation, even while making explicit local orientation structure that arises with tem-
poral variation (motion, flicker, scintillation, etc.). (iv) The representation is efficiently
realized via linear (separable convolution, pointwise addition) and pointwise non-linear
(squaring, division) operations [19].

2.2 Anisotropic Smoothing

Prior to attempting to mark loci of significant spatiotemporal boundaries in the oriented
energy decomposition, it is appropriate to smooth the derived representation to suppress
noise. For this purpose, an anisotropic smoothing is performed as it serves to attenuate
noise while enhancing structural boundaries. In the current implementation, mean-shift
is employed as the anisotropic smoothing operation [20]. To promote spatiotemporal
coherence at the smoothing stage, the orientation feature-space is augmented with po-
sitional information in the form of spacetime coordinates, (x, y, t). Putting the above
features together yields a 9D feature vector (six oriented energies plus three for space-
time location), per image point.

Conceptually, mean-shift regards the feature-space as an empirical distribution. Each
feature-point is associated with a mode (local maximum) of the distribution and thereby
all points associated with a particular mode share a common feature value. In its sim-
plest formulation (i.e., based on the Epanechnikov kernel), the mean-shift property can
be written as (see [20], for details)

∇̂f(xc) ∝
(

mean
xi∈Sh,xc

{xi} − xc

)
, (6)

where f(x) denotes the underlying probability density function of a n-dimensional
space, x, {xi} the given set of samples, and Sh,xc a n-dimensional hyper-ball with
radius h (the so-called kernel density bandwidth) centered at xc. Repeated application
of (6) converges to a local mode of the distribution. In the present case, modes arise
as particular values across 9D spatiotemporal feature vectors, x. The final smoothed
energy representation is realized by assigning the converged oriented energy portion of
the feature vectors to their respective initial spacetime positions.

2.3 Spatiotemporal Structure Boundaries

In essence, the oriented energy representation converts spacetime structure differences
to intensity differences across its decomposition. Correspondingly, boundaries simply
correspond to image loci exhibiting significant spatiotemporal contrast in the repre-
sentation. Figure 1 illustrates this point. In the orientation decomposition, it is seen
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that the foreground tree yields relatively large and small intensities in the “static” and
“rightward” components (resp.); whereas, the moving background yields the opposite
behaviour. Therefore, spatiotemporal change (i.e., contrast) in the decomposition is in-
dicative of the boundary between the tree and background. More generally, the orien-
tation decomposition is a multivalued image, with spatiotemporal contrast indicative
of spacetime boundaries in the underlying data. Here, it is interesting to note the dif-
ference in the behaviour of flow estimates and the proposed distributed representation
across boundaries. In the former, the results are unpredictable due to a total failure of its
intrinsic assumptions (e.g., brightness conservation). In the latter, due to the consider-
able overlap in spacetime and orientation tuning of the filters, the representation changes
smoothly across structure boundaries reflecting the shift of energies among channels.

To capture the spatiotemporal contrast in the (smoothed) oriented energy represen-
tation, (5), a generalized gradient formulation is employed, as it captures change in a
uniform manner across the multiple components of the decomposition. Let Êk be the
kth band of the oriented energy representation, (5), and ξi = x, y, t for i = 1, 2, 3, resp.,
define the directions along which partial derivatives are taken, then the generalized gra-
dient is a 3× 3 matrix S where

Sij ≡
n∑

k=1

(∂Ên̂k
/∂ξi)(∂Ên̂k

/∂ξj). (7)

Notice that S amounts to the summation of the more standard structure/gradient tensor
[21] of each energy band2. The eigenvector of (7) associated with the greatest eigen-
value, λ1, denoted e1, points in the direction of greatest change in the feature-space. For
multivalued images (i.e., n > 1), a boundary is not indicated simply by a large value
for λ1; instead, it must be large relative to the other eigenvalues of S [22]. Correspond-
ingly, a normalized measure of spacetime structure boundary salience is employed in
the present context

boundarysalience = (λ1 − λ2)/(λ1 + λ2 + φ), (8)

where λ1 > λ2 denote the two largest eigenvalues of S and φ is a constant introduced
as a noise floor. High values of the boundary salience measure, (8), (i.e, values close
to one), are indicative of the presence of a spacetime structure boundary. Boundary
salience for the example in Fig. 1 is shown in its rightmost panel. Next, similar to
the non-maximum suppression principle used in intensity-based edge detection [24], a
candidate boundary point is defined as a point that achieves a maximum in boundary
salience, (8), in the direction of the eigenvector e1, as follow,⎧⎪⎪⎨⎪⎪⎩

∂boundarysaliency

∂e1
= 0

∂2boundarysaliency

∂e2
1

< 0
. (9)

Finally, candidate loci having a saliency value greater than a certain threshold, τ , are
marked as boundary points.

2 Other adaptations of the generalized gradient to multiband image boundary detection include
application to colour [22] and spatial texture [23].
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Fig. 1. Oriented energy decomposition maps structural differences to intensity differences. (left)
Input image sequence of a foreground tree tracked (stabilized) by a moving camera with back-
ground in relative motion. (middle) Oriented energy decomposition of input shows marked dif-
ferences in intensity corresponding to dynamic pattern differences of foreground vs. background.
(right) Boundaries marked according to spatiotemporal contrast across the energy decomposition.

2.4 Algorithm

To recapitulate, the proposed approach can be given in algorithmic terms as follows.

Input: Greyscale image sequence
Input parameter: Boundary detection threshold, τ
Output: Binary image sequence marking spatiotemporal structure boundaries

Step 1: Compute spacetime oriented energy representation (Section 2.1)
1. Initialize 3D G2/H2 steerable basis.
2. Compute normalized spacetime oriented energy measure, Eqs. (1)-(5).

Step 2: Anisotropic smoothing: Mean-shift (Section 2.2)
1. Augment each normalized spacetime oriented energy measure, (5), with its

spacetime coordinate (x, y, t).
2. Apply mean-shift smoothing iterations, (6).
3. Replace each energy measure in (5) with the final converged energy measure.

Step 3: Compute spatiotemporal structure boundary salience (Section 2.3)
for each spacetime point
1. Construct generalized gradient, (7), from (smoothed) oriented energy represen-

tation, (5).
2. Compute the eigenvector/eigenvalues of the generalized gradient, (7).
3. Compute boundary salience, (8).

Step 4: Non-maximum suppression (Section 2.3)
for each spacetime point
1. Apply non-maximum suppression, (9).
2. Retain candidate boundaries that have a saliency value, (8), greater than τ .

3 Empirical Evaluation

In evaluation, parameter settings for the proposed detector are as follows. The ε bias for
contrast normalization, (5), empirically has been set to≈ 1% of the maximum expected
response. The noise floor, φ, for boundary salience, (8), empirically has been set to φ =
0.01. Mean-shift (anisotropic) smoothing includes three bandwidth parameters, hspace,
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htime and hrange, which determine the resolution of detail along the spatial, temporal
and range (here, spacetime orientation) dimensions, resp. Unless otherwise stated, the
mean-shift bandwidths are set to: hspace = 32, htime = 10, and hrange = 0.12.

Figure 4 shows a set of challenging natural image sequences containing a broad
range of juxtaposed spacetime structures, including but not restricted to motion,
and their boundary detection results (see caption for description of inputs). The
challenging aspects of this data set include, regions that are unstructured, exhibit
significant temporal aliasing due to fast motion, contain superimposed motion (trans-
parency) and non-motion structure (e.g., flicker and scintillation). Coherent mo-
tion boundaries constitute a small fraction of the boundaries present in the data.
Alternative available data sets are limited by their restricted focus on motion bound-
aries at the expense of more general spacetime structural boundaries [8]. The se-
quences presented here, consisting of juxtaposed natural and man-made structures,
were obtained from a variety of sources: a Canon HF10 camcorder, the BBC doc-
umentary “Planet Earth” and the “BBC Motion Gallery” online video repository.
Each sequence spans 10 frames. For each example, frame-by-frame hand-labeled
ground truth was established. The identified boundaries in Fig. 4 provide com-
pelling qualitative evidence that the proposed detector performs well on image se-
quences containing a wide variety of spacetime structures. This data set is available
at www.cse.yorku.ca/vision/research/spacetime-grouping.

To quantify performance, results of the proposed detector are compared with the
hand-labeled ground truth as well as alternative approaches. In particular, mean preci-
sion/recall scores [25] were calculated across all image sequences shown in Fig. 4 and
are shown as tuning curves in Fig. 2 as detection parameters are varied. Here, over-
partitioning is characterized in the curves by high recall but low precision, and the
converse holds for under-partitioned image sequences.

The left panel of Fig. 2 shows several different curves for the proposed method,
with each curve corresponding to a different value of the smoothing parameter, hrange;
all curves are swept as the detection threshold varies from 0 − 1. Matching between
ground truth and identified boundary points was carried out using a distance threshold
of eight, which is reasonable given that the support of the various compared detectors
span approximately eight pixels. The consistently high recall indicates that ground truth
boundaries are accurately marked. At the same time, a relatively high precision is at-
tained, which indicates false boundaries are not prevalent. Further, the approach is seen
to be stable with respect to variation of the smoothing parameter.

The right panel of Fig. 2 compares the best curve of the proposed approach,hrange =
0.14, with two alternative methods: (1) edge detection on dense optical flow fields [1]
(implemented as a 3D Canny edge operator [24] applied to flow recovered using Lucas-
Kanade [26]) and (2) the rank-based method that analyzes the gradient structure tensor
over a neighbourhood [9]. These methods are selected for comparison as they are local
(like the proposed method) and edge-detection in flow fields is a long standing ap-
proach, while the rank-based analysis is a recent proposal that has shown strong results
for certain boundary types. Tuning curves were swept for the flow- and rank-based de-
tectors by varying their detection thresholds from 0− 10 and 0− 1, resp. Curves for all
three methods have the expected shape; however, flow- and rank-based are translated

www.cse.yorku.ca/vision/research/spacetime-grouping
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Fig. 2. Precision/recall curves. (left) Precision/recall of the proposed detector, each curve corre-
sponds to a different setting of the range bandwidth used for smoothing. (right) Comparison of
precision/recall with the proposed (optimal curve in (left)), flow- and rank-based detectors.

along the precision axis, which indicates significant over-partitioning relative to the pro-
posed approach. Along these lines, rank-based outperforms flow, but is still noticeably
worse than the proposed method.

To scrutinize the results in Fig. 2 further, Fig. 3 shows a comparison of the various
boundary detectors on selected examples from Fig. 4 (c), (f) and (i). Also to compare
against global methods, results from a recent level-set-based approach are shown [15].
Note that the global method must be supplied with a priori knowledge of the number
of regions and hand initialization of its boundary3. For the motion parallax example, all
of the alternative methods yield reasonable results. This is to be expected, as they are
designed for motion boundaries. In the other two examples, the flow and rank methods
yield spurious boundaries in the transparency and scintillation regions. This shortcom-
ing arises from the inability of these methods to recover coherent measurements in
non-coherent motion regions, as the assumption that coherency is well characterized by
a single smoothly varying flow is violated. These spurious boundaries are the source
of the low precision yet high recall rates indicated for the flow- and rank-based detec-
tors in Fig. 2. For the transparency case using level-sets, the part of the initial contour
that is outside the moving target evolves correctly; however, the part that started inside
the moving region converges incorrectly, as the target interior does not conform to the
method’s assumption of a single smooth flow. In the scintillation case, the level-set col-
lapses to a single region. Here, the failure is due to the relative lack of spatial structure
in the ship interior, which allows the approach to fit a flow across the ship that is consis-
tent with whatever flow it (erroneously) recovers for the scintillating water. The relative
lack of structure in the ship interior also accounts for the apparent difference in per-
formance of the flow and rank methods in such regions: Flow recovers highly variable
vector fields that are interpreted as boundaries; whereas, unstructured regions are rank
consistent and thus do not yield spurious boundaries. In contrast to the alternatives, the
proposed detector naturally handles all three cases highlighted in Fig. 3.

3 Due to the dependence of the extracted boundaries on hand contour initialization, number of
regions and various scaling parameters in the level-set approach, it is not customary to sweep
precision/recall curves for level-sets; hence, only qualitative comparisons are provided here.
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Fig. 3. Comparison of results for flow, rank, level-set and proposed approaches to boundary detec-
tion applied to Fig. 4 (c), (f) and (i). For level sets, elliptic contour shows hand initialized curve;
other contour points are converged results. For the scintillation example the level set collapses to
yield a single region.

4 Discussion and Summary

Most previous methods for spatiotemporal boundary detection are concerned with bor-
ders between regions of contrasting optical flow. Others are focused on dynamic tex-
tures. Improvements to these various methods might be realized via introduction of
thresholds (e.g., confidence measures), multi-scale analyses (e.g., pyramid schemes for
accommodating rapid motion), contour completion (cf. [9]), a more sophisticated flow
estimator than considered here, etc. These approaches, however, fundamentally are lim-
ited by their underlying assumptions regarding the classes of visual phenomena that are
to be encountered, which in turn limit their applicability to detecting a very circum-
scribed class of boundaries (e.g., motion). In comparison, it has been demonstrated that
the proposed approach can naturally deal with the wide variety of real-world scenarios
presented.

In summary, this paper has presented a unified approach to representing and detect-
ing boundaries between a wide range of juxtaposed spacetime patterns (unstructured,
static, motion, flicker, (pseudo-)transparency, translucency, scintillation). The approach
is based on a distributed characterization of visual spacetime in terms of 3D, (x, y, t),
spatiotemporal orientation, followed by application of a spatiotemporal differential op-
erator (generalized gradient) to mark boundaries. Empirical evaluation on a wide va-
riety of imagery demonstrates the proposed detector’s ability to delineate boundaries
between coherently structured regions.

Acknowledgments. This research was supported in part by NSERC and Precarn. F.
Estrada provided software for computing precision/recall curves and helpful discussion.
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Fig. 4. Boundary detection results on a diverse and challenging set of natural imagery. In each
example, the input sequence, a frame from the human-labeled ground truth and the boundary
detection result, resp. are given. (a) A panning sequence consisting of a clear sky (i.e., unstruc-
tured) and a building (source: HF10). (b) Motion parallax sequence consisting of two mountain
faces, where the foreground surface moves rapidly revealing a slower moving surface (source:
“Planet Earth”). (c) Tree in foreground being coarsely stabilized by moving camera operator with
resulting background motion (source: HF10). The background consisting of the ground plane is
not fronto-parallel with respect to the camera, as a result the motion varies across the surface.
(d) A leopard rapidly moving leftward behind a static tree (source: “Planet Earth”). (e) A flying
bird crudely tracked by the camera operator to yield a slow moving target and a rapidly moving
background (source: “Planet Earth”). (f) A ship moving over a scintillating water surface (source:
“BBC Motion Gallery”). (g) A painting hanging on an unstructured wall with a light flickering in
an adjacent hallway (source: HF10). (h) A translucency sequence realized by projecting (using an
LCD projector) a walking person over a static painting (source: HF10). (i) A pseudo-transparency
sequence consisting of a person walking behind a fence (source: HF10). (j) A juxtaposed motion
and pseudo-transparency sequence consisting of two people moving rightward, one moving in
front of a fence while the second is moving behind it (source: HF10). To view these videos, see
supplemental material.
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Abstract. In this paper, we propose an automated and markless human motion 
tracking system, including voxel acquisition and motion tracking. We first ex-
plore the problem of voxel reconstruction under a complex environment. Spe-
cifically, the procedure of the voxel acquisition is conducted under cluttered 
background, which makes the high quality silhouette unavailable. An acceler-
ated Bayesian sensor fusion framework combining the information of pixel and 
super-pixel is adopted to calculate the probability of voxel occupancy, which is 
achieved by focusing the computation on the image region of interest. The 
evaluation of reconstruction result is given as well. After the acquisition of vox-
els, we adopt a hierarchical optimization strategy to solve the problem of human 
motion tracking in a high-dimensional space. Finally, the performance of our 
human motion tracking system is compared with the ground truth from a com-
mercial marker motion capture. The experimental results show the proposed 
human motion tracking system works well under a complex environment. 

1   Introduction 

Tracking of the human body, also called motion capture or posture estimation, is a 
problem of estimating the parameters of the human body model (such as joint angles) 
from the video data as the position and configuration of the tracked body change over 
time [1].  

In this paper, we present a markerless and automated system for motion capture 
under complex environments that includes both the voxel reconstruction and the mo-
tion tracking. While many reaserchers have taken the approach of working directly 
with the image data, our system reconstruct the 3D voxel for each frame as input to 
the model acquisition and tracking.  

The preprocess of voxel reconstruction gains some merits against its computation 
price. First, the main problem in working with the image plane data is that different 
body parts appear in different sizes and may be occluded depending on the relative 
position of the body to the camera. Our approach leads to simple and robust algo-
rithms that take advantage of the unique qualities of voxel data [1]. Second, our sys-
tem is tested under complex environments, while most present image based methods 
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have not been proven good performance under complex environments. In the tracking 
stage, different from tracking human motion within the Bayesian framework [15-18], 
we adopt a hierarchical optimization approach to accelerate the tracking procedure.  

Great efforts have been made on 3D voxel reconstruction and its use in human pose 
estimation. The first real-time human tracking system was made by Cheung et al [3]. 
Traditional silhouette-based 3D reconstruction [3, 4, etc.] gain advantages in its sim-
plicity and computational efficiency. [5, 6] used graph cuts to minimize formulation 
of the voxel occupancy problem. Recently many works [7, 8, etc.] resort to the photo-
consistency information for 3D models reconstruction.  

Tracking methods based on voxel data are usually classified into two categories. 
One kind is based on model-free [9], which is no prior kinematic model is predefined. 
In most work, model-based approaches are used. There are two kinds of skeletal mod-
el applied. One is to use geometric primitives to represent human body parts [10-12]. 
The other methods use “stick Figure” to represent body parts and the dimension is 
ignored [13, 14].  Model-based tracking leads to the increasing of subparts of the 
human model invariably incur high dimensionality and make tracking a difficult task. 
To solve this problem, many approaches [15-18] have been investigated.  

Our system flowchart is shown in figure 1. The components are 3D voxel recon-
struction, model initialization and motion tracking. Under complex environments, our 
3D voxel reconstruction adopts a Bayesian framework incorporating segmentation on 
pixel and region level. Model initialization works under some particular gesture but 
feasible in practice, e.g. standing, jogging, and walking. Finally, 26 motion parame-
ters are searched in our tracking stage by a hierarchical optimization procedure.  

The contributions of this paper lie in two respects. (1) A markerless and automated 
human motion tracking system is provided, combining both the reconstruction and the 
tracking procedures. (2) Great acceleration and more robustness are achieved in our 
tracking system under complex environments compared to some previous work [2, 
19]. The acceleration is achieved in both reconstruction and tracking procedures. First, 
we get a more robust reconstruction result while speed up the reconstruction. Second, 
an hierarchical searching strategy is designed to solve the tracking problem. 

This paper is organized as follows: Section 2 presents the accelerated Bayesian 
framework for voxel occupancy inference and reconstruction. Section 3 refers to our 
hierarchical optimization algorithm to solve human motion tracking using voxel data. 
Section 4 presents the experimental results and evaluation. Finally, the conclusion and 
future work are presented in Section 5. 

 

Fig. 1. The system flowchart 
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2   Accelerated Robust Reconstruction of Human Voxels 

Our experiments are carried out under a complex environment, a fast while robust 
reconstruction is preferred. This section introduces the way of classifying foreground 
and background by fusing the information at pixel and region levels to calculate the 
occupancy probability of each voxel, the reconstruction comes from a binarization to 
the voxel’s occupancy probability. Some symbols used in this paper are introduced.  

Direct variables: 
 Ir:  denotes the image captured by camera r, r=1, 2…n.  
 Si: denotes one space grid (a voxel) occupancy state, i=1, 2, …m.  
 Br: denotes the image background captured by camera r. 
 Ir

p: denotes the color feature vector of pixel p in image r.  
 br

p: denotes the pixel p in image r belongs to background or not.  
 Threshold: denotes the voxel’s classification occupancy probability threshold.  

Hidden variables: 
 Or

p: denotes whether there exits some objects occluding the voxel i on the 
straight line connecting voxel i and the center of camera r.  

 Dectr: denotes the foreground pixel detection rate from the image r.  
Different from traditional shape-from-silhouette algorithm, in our algorithm, we take 
the voxel reconstruction process as a multi-view information fusion procedure to infer 
the occupancy probability of each voxel.  

2.1   The Fusion Framework Using Multiple Camera Information on the Pixel 
Level  

The volume of interest is subdivided into m voxels with equal size. Since the two 
states of each voxel are exclusive and exhaustive, P(Si =1)+P(Si =0)=1. The purpose 
in this section is to find the posterior probability of occupancy status of each voxel 
from observations of all the n images: P (S
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estimation of the voxel’s occupancy can be updated by Bayesian theory: 
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Then the problem is reduced to solve P({I}r| Si). We adopt the framework first pro-
posed by Franco [20]: 
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As for P(Or
p), for simplicity, we ignore the inherent spatial relationship among the 

foreground voxels. Thus, we assume P(Or
p=1)=P(Or

p
  
=0)=1/2, which is regarded as 

a uniform distribution. See equation 4, the four hidden variable related terms are dis-
cussed as follows. 
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(4)

The term P(Dectr=1|Or
p=0,Si=0) denotes that a false detection is reported while no 

foreground object exists at all. PFAr models the false alarm rate. Other three terms 
indicate that the detection report is correct, no matter whether the object on the line 
connecting camera center and voxel i lies in front of or behind the voxel i. In our 
experiments, we set PFAr=0.95, PDr=0.05(see equation 4). Up till now, our recon-
struction problem is reduced to represent P(Ir

p|Dectr=0). Since this term indicates Ir
p 

probably should be a background pixel, and we notice the fact that the background is 
ambiguous with foreground. Thus if we conduct classification on pixel level, the 
result is vulnerable to the color ambiguity between foreground and background (see 
figure 2 (a)).Section 2.2 will focus on how to model P(Ir

p|Dectr=0) both on the region 
and pixel level.         

 

Fig. 2. (a): The inference result of single-pixel level Bayesian classification (notice there are 
many holes in the body) (b) the inference result of Bayesian classification on region and pixel 
level (the holes have been filled) (c): voxel surface got by Bayesian classification on pixel level 
(d), (e): voxel surface got by Bayesian classification on region and pixel level  

2.2   Combine Pixel and Super-Pixel Classification under Complex Environment 

The posterior probability of Ir
p representing background can be calculated by Bayes-

ian theory : 
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We model P(Ir
p|br

p=1) ~ N(Ir
p|μr

p,σr
p), a Gaussian distribution. Also, we assume the 

foreground pixel’s color feature obeys uniform distribution that P(Ir
p|br

p=0) ~ U(Ir
p). 

If we use equation 5 to represent P(Ir
p|Dectr=0), the result is not desirable as shown in 

figure 2(a). There tends to be some holes on the surface of reconstructed voxels, the 
main problem is that the environment is complex resulting that usually the foreground  
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is misclassified as background. To solve this problem, we propose the method com-
bining single-pixel and super-pixel, which proves to be more robust to image color 
noise and ambiguity.  

To obtain super-pixel, we choose the mean shift out of some excellent image seg-
mentation algorithms [21-23] for two reasons. First, mean shift provides discontinuity 
preserving smoothness, which eliminates the image sensor noise, hence ensuring the 
correct segmentation. Second, it gains much computational efficiency compared to 
normalized cut [21]. This is important because the number of multi-view images at 
one time instant is often large. Once the segmented super-pixel is attained, we model 
the probability for each pixel that belongs to background, and apply it to represent 
P(Ir

p|Dectr=0). 

( | 0) min( ( 1| ), ( , ))p p p
r r r r r bP I Dect P b I dist R R= = =  (6)
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∑
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Rr refers to the segmented area i.e. super-pixel where the single pixel Ir
p belongs in 

image r. Rb denotes the counterpart region in the background image. See equation 7, 
the distance is defined similar to a inner-product formation, which lies within [0,1]. 
Thus it can be used to model probability. There are two reasons for this definition. 
First, Bayesian classification will usually misclassify the foreground as background 
because of color ambiguities in our experiments; however, it does not tend to misclas-
sify the background as foreground. Second, this formula reduces the impact of occa-
sionally false segmentation around the boundary of foreground objects. P(Ir

p|Dectr=0) 
is demonstrated in figure 2 (b)(blue part indicates a low value of P(Ir

p|Dectr=0)). 

2.3   Reconstruction Acceleration by Focusing on Region of Interest 

The computation cost of the aforementioned algorithm mainly comes from the stages 
of segmentation for super-pixels and calculation for the distance between two super-
pixels. Thus, the reconstruction process can be significantly accelerated if the region 
of interest needing computation is downsized from the original size to a bounding 
rectangle that incorporates the region of interest tightly. Inspired by this idea, we 
fulfill the acceleration in this paper. 

Although the foreground area can not be well classified in a single image; how-
ever, once we reconstruct the surface of 3-D human of current frame, whose projec-
tion in the image is a good prediction for the foreground in the next frame. In our 
experiments, we give the bounding rectangle 50 pixels abundance in the projection’s 
each direction (left, right, top, bottom). By this way, a bounding rectangle is formed 
as the region of interest in the next frame. The segmentation and region distance are 
calculated only inside the bounding rectangle. Figure 3 demonstrates our Bayesian 
classification result (min(P(br

p=1|Ir
p),dist(Rr,Rb))).  
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Fig. 3. Classification result in bounding rectangle (region of interest), from 12 views. (Notice 
the image size has been normalized for display, real size is shown in Table 1 in Section 4.1.2). 

3   Human Motion Tracking Using Hierarchical Optimization 

Human motion tracking using voxel data consists of two stages: initialization and 
tracking. In the initialization stage, body part sizes and their locations in the beginning 
frame of the sequence are estimated. In the tracking stage, based on the acquired pa-
rameters from initialization, the tracker updates the model position and configuration 
to reflect the motion of the tracked person for every new frame. 

3.1   Skeleton Model and Automated Tracking Initialization 

Through our method proposed in section 2, we acquire the voxel data. Before starting 
tracking, an automated initialization is preferred, especially considering its practical 
application.  

 

Fig. 4. (a): The articulated human body model and the rotation axes of each joint. (b): the hu-
man model fleshed out by 11 cylinders (c): the skeleton fitting voxels  after initialization (d): 
the initialized skeleton (e): rough skeleton. 

In our skeletal model, there are 11 joints having total 26 degrees of freedom (see 
figure 4 (a), (b)). The Euler angle of open joints, the length of each bone and the outer 
and inner radius for each cylinder can be automatically modulated to fit the human 
body in the initialization. For each joint, we use a presentation based on Euler angles 
and the articulation constraints are encoded.  

At the beginning of tracking, we adopt the method in the previous work [24], which 
performs well under some conditions: standing, walking, jogging, making the initiali-
zation tractable. Once the initialization is finished, bone’s length and cylinder’s radius 
are determined. In the tracking process, they are assumed as constant leaving other 26 
motion parameters to search. See figure 4(c), (d), (e) for the illustration of our auto-
matic initialization. 
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3.2   Tracking by Hierarchical Optimization 

After the process of model initialization, the motion and physical parameters of our 
model are known from the first frame. Considering the physical constraints of joints, 
the 26 motion parameters of the human body model is regarded as 26 variables which 
have certain ranges of allowed values. PEA algorithm proposed in [2] is used in our 
work to track the human body. However, we do not merely use its original form in 
our work. Our strategy is different from that previous work, rendering our algorithm 
more efficient. There are three substantial differences.  

First, in order to make computation more efficient, only the surface voxels are con-
cerned in our tracking process. We flesh out a skeletal model with two coaxial hollow 
cylinders for each bone. The inner cylinder’s radius is a little smaller than the dimen-
sion of body parts, and the outer cylinder’s radius a little bigger. The radius is deter-
mined in the initialization procedure.  

Second, a hierarchical optimization strategy is proposed to decrease the computa-
tion cost to large extent. Intuitively, the optimization sequence is in the following 
order: torso with head, arms, and then legs. The torso with head is firstly optimized 
because the root of our skeletal model belongs to the torso, the father joints should be 
optimized earlier than the son joints.  

Third, we define a new fitness function. Considering our algorithm is based on a 
hierarchical searching strategy, reliability of observation should be more concerned. 
We adopt a more reliable fitness function. For every stage, the fitness function is 
defined as: the number of surface voxels that fall between the pair of two hollow 
cylinders, minus the number of voxels that fall into the inside hollow cylinder. 

1 2 1 1
( , ,..., ) ( ) ( )

N N

k k kn i ii i
fitness pos V neg Vθ θ θ

= =
= −∑ ∑  (8)

Vi denotes the i-th voxel; N is the number of voxels. θk1, θk2 … θkn indicate the n pa-
rameters in the current searching stage k. Pos(Vi) and Neg(Vi) are defined as below: 

{1   if the i-th voxel fall between the pair of two hollow cylinders
0    otherwise( )ipos V =  (9)

{1   if the i-th voxel fall into the inside cylinder
0    otherwise( )ineg V =  (10)

The advantage of this fitness function is to avoid some cases when the arms is too 
near to the torso, and  the observation that only focus on the voxel falling between the 
hollow cylinders would be unreliable. 

4   Experimental Results and Quantitative Evaluation  

Our experiments are conducted to evaluate the voxel reconstruction and tracking 
performance. 
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4.1   Reconstruction Results and Evaluation  

In our experiments, 15 calibrated cameras (704*576, at 25Hz) share the same field of 
view of 2m*3m*3m. The volume of interest is divided into 200*300*200 voxels, 
each with the size of 1cm*1cm*1cm. The reconstructed voxels are generated by the 
probability threshold = 0.9 in our algorithm. 

4.1.1   Reconstruction Results   
Our reconstruction results are demonstrated in figure 5 (b), i.e. the 3D voxel surface. 
Compared with the results in figure 5 (a), whose surface is vulnerable to the holes 
caused by classification ambiguity on single-pixel level. 

 

Fig. 5. Reconstruction results: (a): reconstructed surface on pixel level(Threshold = 0.9) (b): 
reconstructed surface on pixel and region level (Threshold = 0.9)  

4.1.2   Reconstruction Performance Evaluation 
Our evaluation concerns two respects, the reconstruction speed and reconstruction 
results. As for reconstruction speed performance, we test the acceleration perform-
ance in our experiments. 

The original image’s size is 576*704. Our experiments are carried on a 2.4GHz 
CPU, 2G memory PC, by unoptimized matlab code and with 15 views per frame. Our 
method focusing on the local region of interest accelerates the reconstruction to great 
extent. For detailed acceleration experimental comparison results, see table 1. 

Table 1. Average computation time for one frame reconstruction 

Projection  No Acceleration      Acceleration 
Seconds 142.14s 26.59s 

 
As for reconstruction result, we provide an evaluation method as well as the detailed 
results of our evaluation. The accurate ground truth is unavailable in practice. Thus, 
our evaluation is based on the comparison between the foreground segmented by 
manual-labeling as the ground truth and the image projection of 3D voxel surface. 
The evaluation offers us benefits at least in two respects. First, it leads to a quantita-
tive analysis to our reconstructing results. Second, the evaluation result ensures us to 
adopt our acceleration strategy. The bounding rectangle covers the ground truth in 
abundance. See figure 6(a),(b),(c). 
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Fig. 6. (a): The ground truth  (acquired by hand label from 15 views) (b) Bayesian inference 
classification results: min (P (br

p=1|Ir
p), dist(Rr,Rb)) (c) Projection on image plan from recon 

structed voxel surface  (d) Comparison between projection and ground trut 

Table 2 lists the reconstruction evaluation. The 1st column denotes the area of pro-
jection from reconstructed voxel surface to the camera image plane. The 2nd column 
indicates the area of the ground truth silhouette segmented by manual-label. The 3rd 
column means the area of intersection of surface’s projection and ground truth. The 
4th column displays the precision of projection-the rate of voxel whose projection 
falls into the ground truth silhouette. The 5th column shows the rate that the pixel of 
ground truth silhouette is matched by projection. Figure 6(d) illustrates the compari-
son between ground truth and our reconstruction’s projection. Red and yellow indi-
cate the part of projection and ground truth falling out of the intersection respectively. 

 

Fig. 7. Tracking results: some frames from a tracking sequence 

Table 2. Reconstruction evaluation(Average of 15 Camera Views) 

Projection  Ground truth  Intersection Precision Recall 
20566 19626      17419 0.8465 0.8937 

4.2   Tracking Results and Evaluation 

We use our skeletal model to track the acquired voxels. After that, the tracking results 
are compared with the data from commercial marker motion capture device. 
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4.2.1   Tracking Result  
Some tracking results for 3D voxel data are shown in figure 7. The average computa-
tion time for one frame of voxels is shown in table 3. 

Table 3. Tracking algorithm performance. (second/frame) 

Population  PEA  Hierarchical searching PEA  
10 16.62 9.53 
30 43.59 28.81 

4.2.2   Motion Evaluation for Position and Angular Error  
We quantitatively compare the motion parameters with that from commercial optical 
motion capture systems. We define the Motion parameters (Euler Angles) got from 
the multi-view cameras and motion capture systems as Ji, Mi respectively, i=1, 2, 
…m, m is the number of motion parameters. The angle error is computed as follows: 

1

/
m

i i
i

Error J M m
=

= −∑  
(11)

We define the position of joints got from the multi-view cameras as Pi, i=1, 2,…n, n is 
the number of joints. Also we define the positions of reflective markers on the human 
body as Qi. The position error is computed as follows:  

1

/
n

i i
i

Error P Q n
=

= −∑  
(12)

 

Fig. 8. (a): Result of Euler angles errors    (b): Result of position errors 

The final comparison for a jogging video stream between our system and the 
commercial motion capture is shown in figure 8. 

Compared to the work [25], the error in our experiments is not negligible. One rea-
son for the error is that the quality of our acquired voxel data is not so great as some 
previous work whose experiments are carried under well-controlled indoor environ-
ments, where perfect silhouette is available. Another reason is that our current model 
is an approximation to the true human body. In the figure 8(a), the angle error is 
growing as the tracking sequence goes longer while the position error can maintain 
stable over 140 frames. In our analysis, this is due to our observation during tracking 
is not well distinctive in regards of joint angle.  
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Apart from these aforementioned factors, some other factors should not be ignored. 
While we treat the commercial optic motion capture data as the “ground truth” it is 
worth noting that the “true” human motion is somewhat elusive. First, the synchroni-
zation between the motion capture and the video is estimated from data and likely has 
estimation errors that are difficult to quantify. Second, while the marker locations are 
on the body skin rather than on the bone, hence even the highest quality motion cap-
ture data can only provide approximation to the true limb locations. 

5   Conclusions and Future Work 

This paper proposes an automated and markless human motion tracking system which 
is robust to complex environment to some extent, and the whole process is accelerated 
significantly. Also a quantitative evaluation for reconstruction results is given too. Our 
tracking algorithm is based on a hierarchical optimization process with the help of an 
appropriate fitness function. An evaluation shows our tracking system is feasible.  

There are some improvements needing to be done in the future work. First, al-
though our algorithm shows some resistance to the complex indoor environments, 
voxel acquisition under outdoor and dynamic background is still not extensively and 
well investigated. Second, a more robust tracking initialization algorithm need be 
done since the present method can work only in limited conditions. Last but not least, 
based on human motion tracking, the human motion recognition can be studied.     
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Abstract. In this paper an automated center of radial distortion estima-

tion algorithm is explained. The method applied to the development of

an autonomous camera calibration algorithm. The idea of active targets,

which are controlled by calibration algorithm is the key to the autonomy

in this work.

The proposed method decouples the center of radial distortion from

other calibration parameters. It is shown that the proposed method ap-

proximates the center of radial distortion correctly. Also it helps to the

accuracy of calibration framework.

1 Introduction

Lens distortion is part of calibration process. The research on lens distortion
can be traced back to 1919, when decentering distortion was introduced [1].
Decentering distortion consists of radial and tangential components. However,
different distortions can be present, tangential, radial, and thin-prism. Each
distortion is described using a model.

There has been lots of research on different distortion models. In fact, there are
various assumptions about the lens model in calibration process.Tsai[2] assumes
only radial distortion is present. Weng et al.[3] assumes the presence of radial, de-
centering, and thin-prism. There are also methods that assume no distortion[4].
It has been shown that the first coefficient of radial distortion is enough for
most of industrial applications[2]. As a matter of fact, the research has been fo-
cused on radial distortion model, and different models has been proposed for the
case of radial distortion such as polynomial models, rational model [5] and FOV
model[6]. The simple polynomial model[3] is the most popular model. However,
there exist extensions to the polynomial model, such as division model[7], cubic
rational polynomial model[8] and rational polynomial model[9].

A radial distortion model with known center of distortion is equal to decen-
tering model as there is no need for worrying about tangential distortion[10]. In
comparison to decentering model, there are fewer parameters to estimate. Also
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the model is more complete than the radial distortion model because of con-
sidering tangential displacements. In consequence radial distortion with known
distortion center is more accurate than radial and decentering models.

In most of radial distortion models the center of image[11] is considered to
be the center of radial distortion. However, it is possible to estimate the actual
center. In order to estimate the center of radial distortion, it is possible to ini-
tialize center of radial distortion to the center of image and later optimize these
values with other camera parameters obtained in the camera calibration process,
but it can result in non-optimum results. Avoiding non-optimal result, Dever-
nay and Faugeras[6] suggested optimization of radial distortion coefficients first
and then extending the optimization to all of the parameters including center
of distortion. Tardif et al.[12] provided a new constraint optimization criteria
which eliminates the risk of non-optimum result. Hartley and Kang[13] intro-
duced a method that can estimate the center of radial distortion with the use of
fundamental matrix.

In this article a method of center of radial distortion estimation is introduced.
The proposed method decouples the center of distortion from other parameters.
The proposed method is rooted in the active target idealogy. It would be shown
that the method estimates the center of distortion accurately.

In the next section active target is explained. the third section is devoted to
the center of radial distortion estimation algorithm. Section four explains the
experiments followed by the conclusion.

2 Active Target

Active target concept can be confused by active calibration. The key difference
is the interaction style. Active camera calibration mechanisms interact with the
environment by camera movements[14], and have gained attention in the field of
robot vision; such algorithms’ examples could be found in[15,16].

All the methods of calibration, such as Tsai[2], Weng et al.[3], Zhang[17],
and Heikkila[18] where active camera is not present can be categorized as pas-
sive calibration methods. None of them has interaction with the calibration
environment.

It is possible to have an active calibration algorithm while the camera is
not active; and is fixed on a tripod. The idea of such an active calibration
algorithm, is that the information gained from each frame could be used to
signal the calibration target for the next frame. This requires the calibration
target to be active and controllable by the calibration algorithm. The term active
calibration could be used in term of both methods. Meanwhile, the two are totally
different.

The active target approach was implemented using a pattern generator pro-
gram and a LCD monitor which was responsible for screening generated patterns.
These components plus the automatic image acquisition and feature extrac-
tion provided the maximum flexibility and accuracy needed for having an active
target.
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3 Center of Radial Distortion Estimation

In this section the basis of radial distortion center estimation is explained. At
first the method of Hartley and Kang[13] is explained. Afterwards, the proposed
method is introduced. The two methods are similar on the aspect of decoupling
the center of radial distortion.

3.1 Hartley’s Method

This method utilizes fundamental matrix for approximating radial distortion
center. The idea behind fundamental matrix is that a point considered projected
to the image plane using an ideal non-distorted camera becomes distorted by
expansioning away from a center of distortion. The expansion can be compared
with the forward movement of a camera towards a scene. In such a movement
points undergo a radial distortion. In this case the center of expansion, epipole, is
the same with the center of radial distortion. The center of distortion is estimated
by computing the fundamental matrix[19] relating known coordinates of points
in the scene and the corresponding points in the distorted image.

xdFX = 0 . (1)

where, X is the point coordinate in the scene; xd is the distorted corresponding
image point; F is the fundamental matrix. The center of distortion ,the left
epipole, could be computed using (2).

FT e = 0 . (2)

where, e is the left epipole.
The main disadvantage of this technique is that if no distortion is present or

the amount of distortion is small, fundamental matrix computation would not
be stable and the value of epipole is meaningless.

3.2 Active Center of Distortion Estimation

Active estimation of radial distortion center is referred to the estimation of
distortion center using active calibration techniques. Considering the polynomial
radial distortion model, it is inferred that radial distortion is symmetric. It is
also known that distortion center in optical space is the center of lens. However,
because of manufacturing displacement of sensor, mechanical parts, and optical
system of a camera; optical center would hardly lie on the center of sensor. As
a result the imaged center of distortion would not be the center of image. This
makes the search for distortion center vital.

Some properties of lens and radial distortion are self-evident. One of those
properties that could be used to find the distortion center is the relationship of
line’s straightness and center of distortion; stated in Postulate1.

Postulate 1. Under presence of radial distortion a straight line is straight if
and only if it passes through the distortion center.
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Postulate1 originates from radial distortion nature. As the points of a line pass-
ing through the distortion center are in radial alignment on a line, the line
straightness is not affected by radial distortion. This property is the basis of
Theorem 1 which is used to find the distortion center.

Theorem 1. Under radial distortion, two concurrent lines l1, l2 would stay
straight if and only if the intersecting point p is positioned on the distortion
center o.

Proof. If the intersecting point p is positioned on o, then the two lines both are
passing through the distortion center and are straight as stated in Postulate1.
Now consider the situation where l1 and l2 are both straight. From Postulate1
could be inferred the both lines are passing through o, and the only point the
two lines have in common is p; which means p lies on o. ��

Now it would be possible to use two concurrent line segments to find the distor-
tion center, as shown in Fig. 1. If the straight lines aici and bidi intersect point
pi lies on o, the distortion center is found. A simple search algorithm is proposed
for finding distortion center; the aim of search method is minimization of pi and
o deviation by moving the calibration target in front of camera.

The main advantage of this technique is that it can even work under small
amount of distortion. In case of no radial distortion, the deviation would not
change that much trough movements. Such a case could be identified by testing
two different positioning and presence of identical deviations.

Fig. 1. Line segments and straightness property under radial distortion, the image of

p, pi, would lie on o if the imaginary line ppi passes through optical center
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3.3 Active Approach Implementation

An active target could be a Light-emitting Diode (LED) carried by a controlled
robotic arm; or a board of LEDs, which switching them on and off shapes pat-
terns. Approaches that rely on mechanical instruments is not versatile; flexible;
precise and economical. The same is true for a board of LEDs. Another approach
could be use of monitors for screening of patterns. In this case a simple Cathode
Ray Tube (CRT) monitor would not be applicable because of its convex surface
of screening area. However, a Liquid Crystal Display (LCD) is suitable.

A monitor depending on its setting can provide different precisions. As an
example, a monitor with 1024 × 768 resolution; and 317mm×236mm viewable
screen has pixels of approximately 0.31mm tall and 0.31mm wide; which means
the pattern can have movements with precision of 0.31mm. It is obvious the
precision would increase at higher resolutions.

A computer program can be used for generating different patterns and screen-
ing them on a LCD monitor. The main advantage of a monitor and a pattern
generator program, is that patterns can be controlled and changed regarding the
circumstances through the calibration process adaptively; having a fair accuracy.
This approach also makes a fully automatic image acquisition phase possible.

Fig. 2 shows a calibration framework utilizing LCD and pattern generator
program. The camera calibration framework consists of two major independent
programs; one is the pattern generator and the other one is a program that per-
forms all the computation, referred to as computational program. Both programs
are in connection with each other using a communication channel. A commu-
nication center is in charge of transferring information and commands between
these two programs. An interpreter is in charge of coding and decoding messages
from numerical string into meaningful structures and vice versa.

The pattern generator consists of a graphic unit, and a pixel-metric convertor
except the communication center. The graphic unit is in charge of displaying
patterns. Patterns are generated by means of feature points. The type of pat-
tern, and feature point is requested by the computational program. A pattern
is imaged using multiple frames, where only one feature point is displayed on
each frame. Pattern generator is capable of performing relative and absolute
positioning of a pattern (e.g. request for relative movement of a pattern to the
left by one centimeter). Computational program can get metric and pixel based
information of monitor by requesting it from pixel-metric convertor unit.

Computational program consists of five components except the communica-
tion center. These components are image acquisition; feature extraction; geo-
metrical lens distortion handler; camera parameter handler; and decision unit.
Image acquisition is responsible for capturing frames. Geometrical lens distortion
handler is responsible for finding distortion center and radial distortion coeffi-
cients. Camera parameter handler is responsible for approximation of internal
parameters using undistorted images. The decision unit is in charge of these
components. Decision unit decides on the information sent from pattern gener-
ator and decides where the information should be routed. It also handles the
requests from different components and decides on the destination data should
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Fig. 2. Calibration framework using proposed active target implementation

be sent (e.g. it decides which component should receive the extracted features
information).

4 Experiments

In this section the hardware setup and experiments performed is explained.
Because of nature of active target approach the experiments are done using
real data.
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The video camera used in this experiment is a Sony camcorder (DCR-
TRV460E) equipped with a CCD sensor, and a 2.5–50mm Sony lens. The lens
focal length was kept to 2.5mm, which is the widest possible focal length in
all the experiments. The camera is capable of USB streaming, so no digital to
analog converter is needed. The frames are directly grabbed at the resolution
of 640× 480 in RGB color space and later converted to grayscale. A 15” TFT
monitor with native resolution of 1024× 768 (Sony SDM-HS53/H) was used to
screen the patterns generated by pattern generator. A user defined color space
with maximum backlight used meanwhile the experiment. All the frames where
grabbed at daylight setting, where no other external light source is present. It
was tried to have the camera optical axis orthogonal to image plane as shown in
Fig. 3.

Fig. 3. Hardware setup used during the calibration process

Two crossing line segments are used as the calibration target. Their length
grow to the size of image plane. The lines are generated and screened on the
monitor. The hardware setup makes movement of lines by 0.3mm precision pos-
sible. However, as only the start, end and crossing point of these line segments
are needed[20], the pattern generator only screens these interest points. Each
interest point is screened and imaged independently.

The proposed active algorithm and the method of Harley and Kang[13] were
compared. The video camera used has a fairly small distortion. In consequence
the Harley’s method fails to approximate the center and converges to the center
of image as the distortion center. However, the proposed method approximates
the distortion center accurately. The result is summarized in Table 1.

In order to test the accuracy of proposed method. The camera was fully
calibrated under two different assumptions. First using the estimated center of
distortion and again under the assumption of center of image. The result is
summarized in Table 2. The calibration result was used to approximated the
angle between two plane of a holder. Fig. 4 shows the holder. The ground truth
is 90 ◦. As shown in Table 2 the accuracy of the calibration using estimated
center of distortion outperforms the center of image assumption.
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Table 1. Center of distortion estimation

Algorithm Distortion Center

Proposed Method (321.6408, 247.4743)

Harley and Kang [13] failed→(320, 240)

Table 2. Camera calibration and angle estimation results, fi is the focal length in ith
direction, s is skew, u0 and v0 are principal point’s coordinates, c is the center of radial

distortion, k1 and k2 are the first two coefficients of radial distortion

Calibration result
with known without known

center of distortion center of distortion

fx 713.4747 719.5320

fy 732.942 741.2015

s −0.2157 −0.1802
u0 242.4362 241.3101

v0 322.1570 323.4587

c(cx, cy) (321.6408, 247.4743) (320, 240)

k1 −0.01450 −0.01550
k2 −0.00126 −0.00086

Estimated Angle 91.5585 ◦ 93.8413 ◦

Fig. 4. A holder with ground truth 90 ◦, used for angle estimation

5 Conclusion

In this article a new approach to center of radial distortion estimation was intro-
duced. The center of distortion estimation method originates in active calibration
idea. However, the approach used has been based on active targets, which gives
a new synthesis to active calibration.
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The center of radial distortion can help to the increase of calibration precision.
The center of radial distortion could be approximated using parametrization of
distortion center and other camera parameters. Afterwards applying an iterative
optimization technique. However, this require full camera calibration and is also
vulnerable to trivial solutions.

There are also other techniques which require no iterative scheme. These meth-
ods focus on some especial properties of vision systems such as fundamental
matrix. However, they sometimes suffer from some limitations such as amount
of distortion.

The proposed algorithm is capable of approximating center of radial distor-
tion without any prior information. It decouples the distortion parameter. This
increases distortion coefficient approximation precision and calibration accuracy.
As it was shown the proposed method approximates radial distortion center even
in presence of small distortion value.

Camera calibration using the estimated center of radial distortion results in
a more precise angle estimation. The meticulous result of angle estimation is
an exemplar of center of radial distortion importance and accuracy of proposed
algorithm.
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Abstract. We present a method for calibrating the rotation between

two cameras in a camera rig in the case of non-overlapping fields of view

and in a globally consistent manner. First, rotation averaging strate-

gies are discussed and an L1-optimal rotation averaging algorithm is

presented which is more robust than the L2-optimal mean and the di-

rect least squares mean. Second, we alternate between rotation averaging

across several views and conjugate rotation averaging to achieve a global

solution. Various experiments both on synthetic data and a real camera

rig are conducted to evaluate the performance of the proposed algorithm.

Experimental results suggest that the proposed algorithm realizes global

consistency and a high precision estimate.

1 Introduction

Multiple-camera systems have recently received much attention from the com-
puter vision community. Two typical scenarios of applying multi-camera sys-
tems are (1) multi-camera networks for surveillance and (2) multi-camera rigs
for motion recovery and geometry reconstruction. This paper is exclusively con-
cerned with the latter case of multiple individual cameras rigidly mounted on a
rig. Example applications of multi-camera rigs include camera tracking, 3D city
modeling or creation of image panoramas and structure from motion [1,2,3].

Multi-camera systems use a set of cameras which are placed rigidly on a
moving object like a vehicle with possibly non-overlapping or only slightly over-
lapping fields of view. In this case, images captured by different cameras do not
share any or only a few common points. The system moves rigidly and correspon-
dences between subsequent frames taken by the individual cameras are captured
before and after the motion.
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research

Council through the ICT Centre of Excellence program. The first author would like

to thank the Chinese Scholarship Council and Prof. Mingyi He for his immeasurable

support and encouragement.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 335–346, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



336 Y. Dai et al.

This non-overlapping arrangement poses difficulties in calibrating the multi-
camera rig. Recent work done by Pollefeys et al. suggests a simple approach
using a flat planar mirror [4]. Since it requires the use of a mirror, it is less
convenient to use.

Esquivel et al. [5] proposed an approach for rig parameter estimation from
non-overlapping views using sequences of time-synchronous poses of each cam-
era. The presented approach works in three stages: internal camera calibration,
pose estimation and rig calibration. They solve the problem using the relative
motion measurements directly. However, according to our analysis, multiple rela-
tive motions are not consistent in general; using an averaging of motion strategy
we can estimate the relative motion with high precision and in a globally con-
sistent manner.

Ourmain contributions are:L1-optimal rotation averaging strategy;L2-optimal
quaternion mean; global minimum with respect to the quaternion distance metric
for the conjugate rotation problem and iterative rotation averaging for rotation
calibration of multi-camera rig with non-overlapping views.

2 Existing Works on Rotation Averaging

Given several estimates of relative orientation of coordinate frames, a posteriori
enforcement of global consistency has been shown to be an effective method of
achieving improved rotation estimates. Govindu seems to be the first who intro-
duced the idea of motion averaging for structure-from-motion computation in
computer vision. He published a series of papers addressing this problem [6,7,8].
In [6] a simple linear least squares method is proposed where rotations in SO(3)
are parameterized by quaternions and a closed-form linear least squares solution
is derived. Although Govindu made a claim of optimality, the linear solution
is not in fact optimal because the linear solution can not require each quater-
nion in the solution to have unit norm. It also ignores the difficulty that both a
quaternion and its negative represent the same rotation, which can sometimes
cause the method to fail.

The paper [7] further developed the above linear method by following a non-
linear optimization on manifold approach. Because the set of all rotations carries
the structure of a Lie group, it makes more sense to define the distance between
two rotations as the geodesic distance on that Lie group. Based on this, the av-
eraged “mean rotation” should be defined with respect to the geodesic distance.
It will be made clear later that, while our new methods to be presented share
the same spirit in this regard, Govindu’s Lie-averaging algorithm uses a first
order approximation only, whereas our approach makes no such approximation.
Similar Lie-averaging techniques have been applied to the distributed calibration
of a camera network [9], and to generalized mean-shifts on Lie groups [10]. A
generic mathematical exposition of this topic can be found in [11].

Another paper by Govindu [8] basically tackles robustness problems where a
RANSAC-type approach is adopted. In the present paper we demonstrate that
the L1-distance can be directly used for this purpose as the L1-distance is well
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known to be robust. What we really have achieved here is that we give an L1-
based averaging algorithm and prove its global convergence.

Martinec and Pajdla [12] discussed rotation averaging using the “chordal”
metric, defined by dchord(R1, R2) = ‖R1 − R2‖Fro. Averaging using the chordal
metric suffers from similar problems to quaternion averaging. An analysis of
averaging on SO(3) under the chordal metric has recently appeared [13].

When covariance uncertainty information is available for each local measure-
ment, Agrawal shows how to incorporate such information in the Lie-group av-
eraging computation [14]. Alternatively, one could apply the belief propagation
framework to take the covariance information into account [15].

In the above discussions, the problem in question is to find the averaged ro-
tation R̄ from a set of rotations {R1, . . . , Rn} measured in the same coordinate
frame. In this paper, we consider two more challenging rotation averaging prob-
lems: rotation averaging over several views and conjugate rotation averaging. In
the case of conjugate rotations, the distance is defined as d(RiS, SLi) where rota-
tion pairs Ri, Li are given, and the rotation S is to be found. One traditional way
to solve the conjugate-rotation problem is by solving a Sylvester equation treat-
ing each of the rotations as a generic 3 × 3 matrix (e.g. used in robot hand-eye
calibration) [16].

Most of the papers on rotation averaging in the vision literature have omitted
any discussion of optimality or global convergence. In addition, it seems they
all overlooked the ambiguity of the sign problem associated with the quaternion
representation, which invalidates previously known algorithms in some configu-
rations. We have obtained rigorous conditions for convergence for most of our
algorithms, though space does not allow us to include all proofs here.

3 Problem Formulation

We consider a camera rig consisting of two cameras, denoted left and right,
fixed rigidly with respect to each other and individually calibrated. The camera
rig undergoes rigid motion and captures several image pairs. We denote the
coordinate frames of the cameras at time i by ML

i and MR
i , respectively.

ML
i =

[
Li tL

i

0	 1

]
and MR

i =
[
Ri tR

i

0	 1

]
.

The first three rows of these matrices represent the projection matrices of the
corresponding cameras, where image points are represented in coordinates nor-
malized by the calibration matrix.

We denote the relative motion of MR
0 with respect to ML

0 by a transforma-
tion MLR, such that MLR = MR

0 (ML
0 )−1. Since this relative motion remains fixed

throughout the motion, we observe that MLR = MR
i (ML

i )−1 for all i.
Next, the relative motion of ML

j with respect to ML
i is denoted by ML

ij =
ML

j (ML
i )−1. Similarly, MR

ij = MR
j (MR

i )−1. Using the relation MR
i = MLR ML

i , we find

MR
ij = MLR ML

ij (MLR)−1 (1)
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for all i, j. Now, we denote

ML
ij =

[
Lij tL

ij

0	 1

]
and MR

ij =
[
Rij tR

ij

0	 1

]
.

Observe that the relative rotations Rij , Lij and relative translations tR
ij , t

L
ij may

be computed via the essential matrix for the (i, j) image pairs.

Writing the transformation MLR as
[
S s
0	 1

]
, we deduce from (1) the equations

Rij = SLijS
−1 (2)

tR
ij = StL

ij + (I− Lij)s (3)

Calibration strategy. Our prescribed task is to find the relative motion
between the right and left cameras, namely the transformation MLR. Our method
uses the following general framework.

1. Compute the relative rotations and translations (Rij , tR
ij) (Lij , tL

ij) for many
pairs (i, j) using the essential matrix.

2. Compute the relative rotation S from (2).
3. Solve linearly for s using (3).

Both these equations may be solved linearly. The rotation equation may be
written as SLij = RijS, which is linear in the entries of S. In solving for the
translation s, we note that the relative translations tL

ij and tR
ij are known only

up to scale factors λij and μij . Then (3) may be written more exactly as λijtR
ij =

μijStL
ij + (I − Lij)s, where everything is known except for s and the scales λij

and μij . Three image pairs are required to solve these equations and find s.
The strategy outlined here is workable, but relies on accurate measurements

of the rotations Lij and Rij . In the following sections of this paper, we will ex-
plain our strategies for rotation averaging that will lead to significantly improved
results in practice. Although we have implemented the complete calibration al-
gorithm, including estimation of the translation s, for the rest of this paper, we
will consider only rotation estimation.

4 Averaging Rotations

The relative rotation estimates Rij and Lij obtained from individual estimates
using the essential matrix will not be consistent. In particular, ideally, there
should exist rotations Li, Ri and S such that Lij = LjL

−1
i and Rij = RjR

−1
i =

SLijS−1. If these two conditions are satisfied, then the relative rotation estimates
Rij and Lij are consistent. In general they will not be, so we need to adjust them
by a process of rotation averaging.

A distance measure d : SO(3)×SO(3)→ IR is called bi-invariant if d(SR1, SR2)
= d(R1, R2) = d(R1S, R2S) for all S and Ri. Given an exponent p ≥ 1 and a set
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of n ≥ 1 rotations {R1, . . . , Rn} ⊂ SO(3) we define the Lp-mean rotation with
respect to d as

dp-mean({R1, . . . , Rn}) = argmin
R∈SO(3)

n∑
i=1

dp(Ri, R). (4)

4.1 The Geodesic L2-Mean

The geodesic distance function dgeod(R, S) is defined as the rotation angle ∠(RS	).
It is related to the angle-axis representation of a rotation in which a rotation is
represented by the vector θv, where v is a unit 3-vector representing the axis,
and θ is the angle of rotation about that axis. We denote by log(R) the angle-axis
representation of R. Then d(R, S) = ‖ log(RS	)‖. The inverse of this mapping is
the exponential R = exp(θv).

The associated L2-mean is usually called the Karcher mean [17] or the geo-
metric mean [11]. A necessary condition [11, (3.12)] for R to be a d2

geod-mean of
{R1, . . . , Rn} is given by

∑n
i=1 log(R	Ri) = 0.

The mean is unique provided the given rotations R1, . . . , Rn do not lie too
far apart [17, Theorem 3.7], more precisely if {R1, . . . , Rn} lie in an open ball
B(R, π/2) of geodesic radius π/2 about some rotation R. For this case Manton [18]
has provided the following convergent algorithm where the inner loop of the
algorithm is computing the average in the tangent space and then projecting
back.

1: Set R := R1. Choose a tolerance ε > 0.

2: loop
3: Compute r := 1

n

∑n
i=1 log

(
R�Ri

)
.

4: if ‖r‖ < ε then
5: return R

6: end if
7: Update R := R exp(r).
8: end loop

Algorithm 1. computing the Karcher mean on SO(3)

4.2 The Geodesic L1-Mean

Another interesting mean with respect to the geodesic distance dgeod is the
associated L1-mean

dgeod-mean({R1, . . . , Rn}) = argmin
R∈SO(3)

n∑
i=1

dgeod(Ri, R) , (5)

which we might assume to be more robust to errors.
We propose a Riemannian gradient descent algorithm with geodesic line search

to compute the L1-mean. As long as Algorithm 2 avoids arbitrarily small but
fixed δ-neighborhoods of the Ris, convergence to the set of critical points of f



340 Y. Dai et al.

1: Set R := d2
geod-mean({R1, . . . , Rn}). Choose a tolerance ε > 0.

2: loop
3: Compute r :=

∑n
i=1 log(R�Ri)/‖ log(R�Ri)‖.

4: Compute s∗ := argmins≥0 f(R exp(sr)).
5: if ‖sr‖ < ε then
6: return R

7: end if
8: Update R := R exp(sr).
9: end loop

Algorithm 2. computing the geodesic L1-mean on SO(3)

follows from [19, Corollary 4.3.2] applied to a modification of f obtained by
smoothing f within those δ-neighborhoods [20].

Note that possibly the easiest way to implement the line search in Step 4 is a
Fibonacci search on a large enough interval. We have suggested to initialize the
algorithm with the Karcher mean, but other initializations would of course be
possible.

4.3 Quaternion Averaging

A rotation R may be represented by a quaternion r, which is a unit 4-vector,
defined as follows. If v is the axis of the rotation and θ is the angle of the rotation
about that axis, then r is defined as r = (cos(θ/2),v sin(θ/2)). We may think to
define a distance dquat(S, R) between two rotations to be dquat(R, S) = ‖r − s‖.
Unfortunately, this simple equation will not do, since both r and −r represent
the same rotation, and it is not clear which one to choose. However, this is
resolved by defining

dquat(R, S) = min(‖r− s‖, ‖r + s‖) .

Since quaternions satisfy the condition ‖r · t‖ = ‖r‖ ‖t‖, where r · t represents
the quaternion product, it is easily verified that the quaternion distance is bi-
invariant.

The relationship of this to the geodesic distance is as follows. Let dgeod(R, S) =
dgeod(I, R	S) = θ, which is equal to the angle of the rotation RS	. Then sim-
ple trigonometry provides the relationship dquat(I, R	S) = 2 sin(θ/4). For small
rotations, we see that dquat(R, S) ≈ dgeod(R, S)/2.

The following theorem shows how the L2 quaternion mean of a set of rotations
Ri may be computed, it is defined as argminR

∑n
i=1 d

2
quat(R, Ri) [20].

Theorem 1. Let Ri; i = 1, . . . , n be rotations, and suppose that there exists a
rotation S such that dgeod(Ri, S) is less than π/2. Let ri be the quaternion rep-
resentation of Ri chosen with sign such that ‖ri − s‖ is the smaller of the two
choices. Then the L2 quaternion mean of the rotations Ri is represented by the
quaternion r̄/‖r̄‖, where r̄ =

∑n
i=1 ri.
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4.4 The Conjugate Averaging Problem

We now consider the problem of conjugate averaging. This problem is motivated
by the second step of the calibration algorithm outlined in Section 3. The general
form of this problem is as follows. Let (Ri, Li); i = 1, . . . , n be pairs of rotations.
(In Section 3 these rotations have two subscripts, namely Rij , Lij). The conjugate
averaging problem is to find the rotation S that minimizes

n∑
i=1

dp(RiS, SLi) . (6)

This problem has not been explicitly addressed in the context of multi-camera
rigs, as far as we know, though it has been studied as the “hand-eye coordination
problem” in robotics [16]. We give here an optimal solution for the L2 quaternion
distance metric under certain conditions.

We make the observation that if Ri and Li are exactly conjugate, then they
have the same rotation angle. In general, we assume that they do not differ by
too much. One condition we need to give a closed form solution to this problem
is that the rotations Ri and Li should not be too large. In fact, we assume that
the angle θ associated with Ri or Li is less than some angle θmax < π. For the
application we are interested in, where Ri and Li are relative rotations between
two positions of a camera, the rotation angle of Ri can not be very large. If for
instance the rotation R between two positions of a camera approaches π, then
at least for normal cameras, there will be no points visible in both images, and
hence no way to estimate the rotation R. Normally, the rotation Rij between two
positions of the camera will not exceed the field of view of the camera, otherwise
there will not be any matched points for the two cameras (except possibly for
points lying between the two camera positions).

We now state the conditions under which we can guarantee an optimal solution
to the conjugate averaging problem.

1. The rotations Li and Ri satisfy the conditions ∠(Li) < θmax and ∠(Ri) <
θmax.

2. In the optimal solution to problem (6), the errors dgeod(RiS, SLi) < αmax.
3. θmax + αmax/2 < π.

Thus, we are assuming that the errors plus angles are not too large. In particular,
since αmax ≤ π, we see that the last two conditions always hold if θmax < π/2.

Linear solution. We now outline a linear algorithm for estimating the matrix
S, under the L2 quaternion distance. Let ri and li be quaternion representatives
of the rotations Ri and Li, chosen such that ri = (cos(θi/2), sin(θi/2)v) with
θi < π. This means that the first component cos(θi/2) of the quaternion is
positive. This fixes the choice between ri and −ri. We define li similarly.

Now, consider the equation RiS = SLi, and write it in terms of quaternions as
ri·s−s·li = 0. As before, · represents quaternion multiplication. Since quaternion
multiplication is bilinear in terms of the entries of the two quaternions involved,
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this gives a homogeneous linear equation in terms of the entries of s. Stacking all
these equations into one and finding the solution such that ‖s‖ = 1, we may solve
for s. This gives a simple linear way to solve this problem. Under the conditions
stated above, we can prove that this algorithm finds the global minimum with
respect to the quaternion distance metric [20].

4.5 Iterative Rotation Averaging for Camera Rig Calibration

The cost function that we minimize is the residual error in the rotation mea-
surements Rij and Lij , defined by

min
S,Li

∑
(i,j)∈N

dp(Lij , LjL
−1
i ) + dp(Rij , SLjL

−1
i S−1) (7)

There seems to be no direct method of minimizing this cost function under any of
the metrics we consider. Therefore, our strategy is to minimize the cost function
by using rotation averaging to update each Li in turn, then conjugate rotation
averaging to find S. At each step of this algorithm, the total cost decreases, and
hence converges to a limit. We do not at present claim a rigorous proof that the
algorithm converges to even a local minimum, though that seems likely under
most reasonable conditions. In particular, the sequence of estimates must contain
a convergent subsequence, and the limit of this subsequence must be at least a
local minimum with respect to each Li and S individually.

Initial values for each Li are easily found by propagating from a given rotation
L0 assumed to be the identity, and then obtaining the initial S through conjugate
averaging.

The complete rotation estimation procedure follows.

1: Choose a tolerance ε > 0.

2: Estimate initial values of Li through rotation propagation.

3: Estimate S from RijS = SLij solving the quaternion least squares problem.

4: loop
5: Update each Lj in turn by averaging all the rotations LijLi and S−1RijSLi.

6: Recompute and update S from the equation RijS = SLjL
−1
i S using conjugate

rotation averaging.

7: if the RMS error has decreased by less then ε since the last iteration, then
8: return S
9: end if

10: end loop
Algorithm 3. Iterative Rotation Averaging

5 Experiments

To evaluate the performance of the proposed algorithms, we conducted experi-
ments on both synthetic data and real images. A comparison with other methods
is presented to show the improved accuracy of the proposed method.

In the experiments reported below, we used L1 and L2 geodesic rotation
averaging to compute each Li, but used quaternion averaging for the conjugate
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rotation averaging to compute S. Theoretically this is not ideal, but we find it
works well in practice and we will discuss all the possible combinations in future
work.

5.1 Synthetic Rotation Averaging

In the first group of synthetic experiments, we evaluate the performance of L1
rotation averaging and L2 rotation averaging on a bunch of rotation measure-
ments. First we generate a random rotation r and the corresponding rotation
matrix R. A normally distributed angle θ with mean 0 and standard deviation σ
is generated to simulate the effect of random rotation noise. The rotation axis is
generated uniformly in the cube [−1, 1]3 and then normalized to a unit vector r.
Then the rotation noise is expressed as θr and the corresponding rotation matrix
is denoted Rerr. Finally the simulated rotation measurement is taken as RRerr.

All the results are obtained as the mean of 200 trials. The evaluation metric
is the angle between the ground truth rotations and the estimates.
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Fig. 1. Performance comparison of L1-optimal rotation averaging and L2-optimal ro-

tation averaging. (a) Angle difference between the ground truth rotations and the

averaging results for various numbers of rotations, where normally distributed rotation

noise with standard deviation parameter σ = 2 degrees is added and no outliers are

included. (b) Angle difference between the ground truth rotations and the averaging re-

sults on 100 rotations for various levels of outliers, where normally distributed rotation

noise with standard deviation parameter σ = 2 degrees is added, and the outliers are

simulated using normally distributed noise with standard deviation parameter σ = 20

degrees followed by selecting the samples with an angle error larger than 5 degrees.

From both figures in Figure 1 we conclude that the L1-mean is more robust
than the L2-mean, especially in the presence of outliers.

5.2 Synthetic Camera Rig

To simulate a camera rig system, a rig with two cameras is generated with various
numbers of frames. First the relatives rotation S of the camera rig is randomly
generated. Second, the orientation Li of the left camera is generated and the
corresponding orientation Ri of the right camera is obtained. Third, whether a
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pair of frames has an epipolar geometry relationship is determined according
to some probability distribution. If there exists epipolar geometry, the relative
rotation measurement is obtained as Lij = LjLi

−1 and Rij = RjRi
−1. A random

error rotation is applied to simulate noise in the rotation measurements.
To evaluate the performance of L1-mean based rig rotation calibration, L2-

mean based rig rotation calibration and direct least squares rig rotation cali-
bration, we conducted 200 separate experiments on synthetic camera rig data
which contains 20 frames of motion. The possibility of existence of a relative
measurement is 0.5 and 10% outliers are added where the rotation error is larger
than 5 degrees. The histograms of the resulting errors are illustrated as Figure
2 and the histograms imply that our proposed L1 rotation calibration estimates
the rotation better than L2 rotation calibration and direct least squares.
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Fig. 2. (a) Histogram of rotation error using L1 rotation averaging. It shows a mean

of 1.12 degrees and standard deviation of 1.05 degrees. (b) Histogram of rotation error

using L2 rotation averaging. It shows a mean of 2.41 degrees and standard deviation

of 2.75 degrees. (c) Histogram of rotation error using direct least squares. It shows a

mean of 5.14 degrees and standard deviation of 11.65 degrees.

5.3 Experiments on Real Images

As a real example of a two-camera rig system, we have used a pair of wide-angle
cameras to capture sequences of images. Images are captured at each camera
illustrated in Figure 3. Feature points on the images are extracted using SIFT
and tracked through image sequences. These tracked features are transformed
to image vectors on the unit sphere given the individual intrinsic calibrations.
Outliers in the tracked features are removed using RANSAC [21] to fit the es-
sential matrix using the normalized 8 point algorithm. Pairwise relative pose is
obtained through decomposition of the essential matrix, and two frames bundle
adjustment is utilized to refine the estimate, thus obtaining the relative rotations
Lij , Rij . Finally, L1 and L2 algorithms are applied to calibrate the camera rig,
obtaining the relative rotation S and relative translation s.

The image sequences captured by the left camera and the right camera contain
200 frames individually. As some pairs of image frames do not supply relative mo-
tion estimates, we ultimately obtained 11199 pairs of relative motion estimates.
Since relative rotation estimates Lij and Rij should have equal angle rotations,
we use this criterion along with a minimum rotation angle requirement to select
the best image pairs for further processing. After rotation selection, we obtained
176 pairs of synchronized motions. The distributions of the rotation angles and
angle differences for these pairs are shown in Figure 4.
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Fig. 3. Images captured by camera rig with non-overlapping views
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Fig. 4. (a) Angle distribution of the left camera. (b) Angle distribution of the right

camera. (c) Distribution of the difference between the angle of the left camera and the

angle of the right camera.
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Fig. 5. Convergence process on real camera rig image sequences. (a) Log of Angle

Residual of L1 rotation averaging. (b) Log of Angle Residual of L2 rotation averaging.

The convergence process is shown in Figure 5 with the L1 rotation averaging
and quaternion conjugate result corresponding to an angle of 143.1◦ and the L2
rotation averaging result corresponding to an angle of 169.4◦. Measured from
the scene, the ground truth is about 140◦.

6 Conclusion and Future Work

Rotation averaging is an important component of our method of camera rig
calibration. Individual rotation estimation is sensitive to outliers and geometri-
cally critical configurations. It was shown that our new L1 rotation averaging
method gives markedly superior results to L2 methods. Global bundle adjust-
ment is recommended for final polishing. Previous computer vision literature has
largely ignored issues such as convergence and optimality of rotation averaging
algorithms. We have addressed this issue. Our complete analysis will be made
available in an extended version of this paper.
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Single-Camera Multi-baseline Stereo
Using Fish-Eye Lens and Mirrors

Wei Jiang�, Masao Shimizu��, and Masatoshi Okutomi
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Abstract. This report proposes a monocular range measurement system

with a fish-eye lens and mirrors placed around the lens. The fish-eye lens

has a wide view-angle; the captured image includes a centered region of di-

rect observation and surrounding regions of mirrored observations. These

regions correspond to observations with multiple cameras at different posi-

tions and orientations. The captured image can be used for direct observa-

tion of a target with the centered region. Simultaneously, it can be used for

multi-baseline stereo to reconstruct three-dimensional information. After

calibration of the projection function of the fish-eye lens, the mirror posi-

tions and orientations are obtainable from the external parameters, which

are used for the multi-baseline stereo measurement. Experimental results

demonstrate the effectiveness of a real working system.

1 Introduction

Range estimation or three-dimensional (3D) shape measurement using a noncon-
tact method is a fundamental technique used for fields of security, intelligent trans-
port systems (ITS) and robotic navigation. This technique has been widely
studied; many commercially available products have been developed through its
adaptation. Nonetheless, the study field remains active. Triangulation, which in-
cludes stereovision, active-stereo and structured light projection, is a basic method
of range estimation. Triangulation requires some observations from different cam-
era positions; multiple synchronized cameras, or a structured light projection de-
vice such as a PC projector and a camera are necessary to realize the method.

On the other hand, strong demands exist for the use of a single camera and
a single image. Image layering and divided field-of-view (FOV) methods are the
two major methods used to satisfy this demand and capture images from different
camera positions in a single image. Both methods bring the range information to
a single image; they can be used for dynamic objects and real-time applications.

As the image layering method, single-lens aperture [1], coded aperture [8]
and reflection stereo [16] have been proposed. Nevertheless, the use efficiency
of the incident light is not good in the single-lens aperture and coded aperture
� His current affiliation is the State Key Lab. of Industrial Control Technology, Zhe-

jiang University, Hangzhou, China.
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methods. The baseline length for stereo measurement is very narrow (around 10
[mm]) in all methods; the results are limited to a low resolution of range.

For the divided FOV method, a mirror [6] or a prism [10] is used to divide
the FOV. Exactly identical brightness, contrast, and color are obtainable from
the mirrored cameras at different positions, enabling simple matching between
camera observations. In the divided FOV method, a multi-baseline stereo system
with a single camera [15] was proposed to detect near objects, by using multiple
specular spheres. Another system using a curved mirror [9] was proposed to re-
construct the 3D information from a large number of view-points. The proposed
system also belongs to this category.

This study proposes a monocular range measurement system with a fish-eye
lens and mirrors that are placed around the lens, as shown in Fig. 1. The fish-
eye lens has a wide view-angle; the captured image includes a centered region of
direct observation and surrounding regions of mirrored observations, as presented
in Fig. 2. The captured image can be used for the direct observation of a targetwith
the centered region. Simultaneously, it can be used for the multi-baseline stereo
to reconstruct 3D information. After calibration of the projection function of the
fish-eye lens, the mirror positions and orientations are obtainable from external
parameters, which are used for the multi-baseline stereo [13] measurement.

The wide view-angle imaging system cannot be modeled by the perspective
projection. The generic camera calibration [7],[14] has been proposed for such
imaging system to describe the relation between ray direction and its corre-
sponding pixel location. Instead of the fully generic calibration, we employ a
parametric expression [5],[11] for many types of wide view-angle imaging sys-
tem. This method is realized as an improvement [12] from the well-known camera
calibration toolbox [3].

The remainder of the paper is structured as follows. Section 2 presents the
proposed system and its equivalent multi-camera system. Section 3 explains
fish-eye lens calibration and system calibration. Then in section 4 we represent a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Prototype of the proposed system

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Circular fish-eye image

captured by the proposed system
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two stereo algorithm for use in range estimation of the proposed system. Section
5 presents a description of the experimental results. We conclude this paper with
some relevant remarks in section 6.

2 Proposed System

2.1 System Configuration

As shown in Fig. 1, four trapezoidal planar mirrors are placed around the fish-
eye lens. The optical axes and FOV of the mirrored cameras, which capture the
reflected light from the object at the mirrors, can be determined by the placement
angle and size of the mirrors (will be described in the following subsections).

Figure 2 presents a circular fish-eye image, as captured by the single camera.
The circular image is divided into five regions: the center and four surrounding
regions. The center region can be considered as a regular (but with a heavy lens
distortion) camera observation. The proposed system views the object directly.
Moreover, the surrounding regions enable measurement of the 3D shape of the
object by the multi-baseline stereo.

Four mirrors are used in the prototype system, but the number of mirrors
(≥ 1) is arbitrary.

2.2 Equivalent Multi-Camera System
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Optical center of 

real camera

 Optical axis
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Fig. 3. Mirror placement and mirrored camera

Figure 3 portrays a sec-
tional side view of the
proposed system. A cam-
era coordinate is set with
its origin at the lens opti-
cal center and the Z axis
equating to the optical
axis.

Consider a mirrored
camera O′, with a reflec-
tion at the upper mirror.
The vertical view-angle
of the center region α,
the vertical view-angle of
the upper mirrored cam-
era β, and the angle be-
tween the axes of the two
cameras θ are functions of mirror position b, mirror size m, and mirror angle γ,
as follows1.

α = π − 2 tan−1 m̂ sin γ
1 + m̂ cos γ

, (1)

1 The horizontal view-angle of the upper mirrored camera is almost the same as that

of the center region in the prototype system.
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β =
1
2
(π − α), (2)

θ = π − 2γ, (3)
O′(y, z) = (b(1− cos 2γ),−b sin2γ) (4)

Therein, m̂ = m/b denotes a normalized mirror size. Furthermore, O′(y, z) de-
notes the position of the mirrored camera.

The other three mirrored cameras can be represented similarly.

2.3 Dimensional Design of Mirrors

As described above, the view angle α and β, and the position of the mirrored
camera can be determined by the normalized mirror size m̂ and mirror angle
γ. This subsection represents a design guideline of the mirror by evaluating
the respective common view angles of two cameras (center and upper) Ω2 and
of three cameras (center, upper, and lower) Ω3. The common view angle Ω2
indicates that at least two of the three cameras can detect a far distant object
in this angle range, whereas the angle Ω3 indicates that all three cameras can
see the object.
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Fig. 4. Common angle for a far

distant object

As presented in Fig. 4, the common angle
Ω2 is obtainable from the following four angles,
which are the functions of the mirror angle γ.{

α1 = tan−1 m̂ sin γ
1+m̂ cos γ

α2 = π − α1

{
β1 = 2γ − α1
β2 = 2γ (5)

The common angle Ω2 has a maximum at a spe-
cific mirror angle because the magnitude relation
of α1 and β1, and that of α2 and β2 change with the mirror angle γ. The common
angle Ω3 is similarly obtainable.

Figures 5 and 6 respectively portray view angles and common angles. Larger
view angles are preferred, but the view angle of the center region α has a priority
over the view angle of the upper camera β. A larger common angleΩ2 is preferred
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because the object in this angle range can be measured. Moreover, a smaller
normalized mirror size m̂ is preferred for a smaller size of the mirror system.

For the prototype system, we chose the mirror angle γ = 65.0 [deg] and the
normalized mirror size m̂ = 3.0. In this case, the view angle of the center region
is α ≈ 80 [deg], the view angle of the upper camera is β ≈ 50 [deg], and the
common angle of the two cameras is Ω2 ≈ 50 [deg].2
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Fig. 7.

The proposed system captures an image of five regions: the center
region with a real camera and the surrounding four regions with mir-
rored cameras. The common angles described above are the angles
in a horizontal or vertical direction. They tell that the available cam-
era number for the multi-baseline stereo differs with respect to the
image position in the center region. Figure 7 portrays the number
of cameras available for stereo measurement in the center region.

3 System Calibration

3.1 Unified Projection Model for a Fish-Eye Lens

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image plane 

Unitary sphere 

Y 

Z 

ξ 

1 

Object 

),,( SSS ZYX
m

Fig. 8. Unified projection model

The unified projection model [5] was
proposed to model the projection of
omnidirectional cameras such as a
camera with a normal lens and hyper-
bolic or parabolic mirror, and a cam-
era with a fish-eye lens. Then a calibra-
tion method [11] with a lens distortion
model [17] was proposed.

This subsection briefly describes the
fish-eye lens calibration method with
the lens distortion model. In the uni-
fied projection model, an object in 3D
space is projected in the image plane
according to the following four steps
(refer Fig. 8):

(1) Projection onto a unitary sphere: An object X = (X,Y, Z) is pro-
jected onto a unitary sphere surface with its center at the coordinate origin. The
projection origin is also the center of the sphere.

(Xs, Ys, Zs) =
X
‖X‖ (6)

(2) Projection onto a normalized plane: The coordinate system origin is
set to (0, 0,−ξ). The projected object on the unitary sphere is then projected to

2 The common angles Ω2 and Ω3 are useful for far distant objects; they vary according

to the object distance. We are seeking a better mirror design for actual measuring

situations.
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a normalized plane that is orthogonal to the Z axis at a unit distance from the
new origin.

m = (x, y, z)	 =
(

Xs

Zs + ξ
,

Ys

Zs + ξ
, 1

)	
(7)

(3) Considering the lens distortion: The following radial and tangential
lens distortions are considered.

ρ→ ρ(1 + k1ρ
2 + k2ρ

4 + k5ρ
6), ρ =

√
x2 + y2 (8)

x→ x+ 2k3xy + k4(3x2 + y2) (9)
y → y + k3(x2 + 3y2) + 2k4xy (10)

(4) Projection onto an image plane: The distorted object is then projected
onto an image plane with the following intrinsic camera parameters.

p = Km =

⎡⎣fu 0 u0
0 fv v0
0 0 1

⎤⎦m (11)

3.2 Lens Calibration

We employ a MATLAB implementation [12] of the calibration method using
the unified projection model [11] described previously. Figure 9 shows an image
example for the calibration. The whole process of calibration is as follows.
(1) Initialize the calibration parameter as {ξ, k1, k2, k3, k4, k5, fu, fv, u0, v0} =
{1, 0, 0, 0, 0, 0, f, f, û0, v̂0}, where (û0, v̂0) is the half size of the image.
(2) An initial focal length f is estimated using at least three user-defined 3

points on a line.
(3) The user specifies four corners of the calibration target in the image.
(4) The fish-eye lens projection function (intrinsic parameter) and the relative
position and orientation of the calibration target are estimated using an opti-
mization method.

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. An image used for cali-

bration

One calibration target (a checkerboard) can
be taken by the proposed system as five targets
with different positions and orientations. These
five targets can be considered as five observa-
tions of a single target; a single image including
five targets is sufficient to estimate all calibra-
tion parameters. However, the target position for
five such observations is limited to a specific re-
gion in the image, as described in subsection 2.3.
The calibration accuracy is insufficient because
biased regions are used in the circular fish-eye
image.
3 Four points are minimum in the MATLAB implementation.
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Fig. 10. Perspective reprojection of Fig. 9

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Another perspective re-

projection of Fig. 9

In our calibration, the target was placed evenly in the image, irrespective
of whether it is a direct or a mirrored observation. The lens calibration was
performed using 23 such observations.

The estimated parameters are {ξ, k1, k2, k3, k4, k5, fu, fv, u0, v0} = {1.6988,
− 0.06093, 0.18404,−0.00015,−0.00017, 0, 871.54278, 868.49105, 791.49429,
595.47177} for an image size of 1600× 1200 [pixel].

Figure 10 shows a perspective reprojection of the image shown in Fig. 9 using
the estimated lens parameters. Figure 11 shows another perspective reprojection
to a different plane from one in Fig. 10. It is readily apparent that the fish-
eye lens distortions are perfectly compensated for a heavily distorted part in
Fig. 9.

3.3 Position and Orientation of the Mirrored Cameras

The proposed system can capture the images of one real camera and four mir-
rored cameras in a single image. This subsection explains the extrinsic parameter
calibration between these cameras.

Calibration Target: In a similar fashion to that of a well known calibra-
tion tool [3] for a perspective camera, the extrinsic parameters are estimated
iteratively with intrinsic parameters by considering that a stationary target is
observed from different camera locations.

Mirrors: The mirror position and orientation can be determined by the ob-
tained extrinsic parameters between a real and mirrored target.

As depicted in Fig. 12, the mirror position and orientation [nm
i , d

m
i ] that reflect

the i-th mirrored target are obtainable as follows.

[nm
i , d

m
i ] =

[
nt

0 − nt
i

|nt
0 − nt

i|
,

(nt
0 − nt

i) · nt
i

|nt
0 − nt

i| (1− nt
0 · nt

i)
(
dt

i − dt
0
)]

(12)
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In that equation, [nt
i, d

t
i] denotes a set of the target normal nt

i and the distance
from the optical center dt

i, as the position and orientation of the i-th target.
As described before, only a single image including the five targets is sufficient

to estimate the four mirror positions and orientations, but they are estimated
by minimizing the sum of the reprojection error of many target positions.

Mirrored Cameras: As depicted in Fig. 13, the optical center O′
i and the

rotation matrix Ri of the i-th mirrored camera is obtainable using the estimated
i-th mirror position and orientation, as follows [6].

O′
i = −2dm

i nm
i (13)

Ri = I− 2nm
i nm

i
	 (14)

4 Single-Camera Multi-baseline Stereo

The five observations from different positions and orientations that have been
estimated by the calibration are acceptable for use with the stereo method,
especially the multi-baseline stereo method [13]. This section presents two range
estimation methods using the proposed system.

4.1 Perspective Reprojection of the Fish-Eye Image

In the first approach, we create five perspective projection images used for the
multi-baseline stereo. The view angle of a fish-eye lens is very wide (180 degree);
it is impossible to convert the whole image taken by a fish-eye lens to a single
perspective projection image. Each view of the real and mirrored cameras should
be converted separately to perspective projection images. The division of the
whole circular fish-eye image to the five observations is done manually; it is done
only once for manual division because the mirror positions and orientations are
stationary to the fish-eye lens.

The conversion has two steps. The first step converts the fish-eye projected
image to incident and azimuthal angles using the estimated projection function
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of the lens. The second step reprojects the angles to a perspective projected
image.

O

O'

Real Camera

Virtual Camera

Mirror

Real camera

Mirrored camera

Mirror

Fig. 14. Projection planes for

the reprojection

The optical axis of the mirrored camera has
an offset angle θ to the axis of real camera, as
described in Eq. (3). Moreover, the central di-
rection of view angle of the mirrored camera dif-
fers from the real camera. In our reprojection,
the perspective projection plane is placed paral-
lel to the projection plane for the real camera,
as shown in Fig. 14. The placement of the five
cameras is therefore a parallel stereo with an an-
teroposterior offset.

The epipolar constraints for the four mirrored
cameras in their reprojection images are derived
from the extrinsic parameters estimated in the calibration. The multi-baseline
stereo method [13] is applicable to the proposed system by evaluating SSSD (sum
of the sum of squared differences) between a small ROI (region of interest) set in
the centered real image and small ROIs on the constraint lines in the converted
mirrored camera images, with respect to the object range.

4.2 Matching in the Fish-Eye Image

The preceding subsection described a method to convert the images. This sub-
section explains a method not to convert the images, but to convert the epipolar
constraint in the fish-eye image for matching directly in the fish-eye image.

Figure 15 depicts a stereo camera pair with a fish-eye lens, which sees a point
P from the optical centers O and O′. The following epipolar plane Πe includes
the three points P , O, and O′ for this situation.

(−−→OP ×−−→OO′) · x = (p× (−2dmnm)) · x = 0 (15)

Therein, x = (x, y, x) and p respectively signify a point on the plane Πe and the
position of P .

Consider that the camera O detects an object P that changes the distance
from the camera O. As the distance changes, the spheral projection of point P
moves along the intersection of the epipolar plane Πe and the unitary sphere
with its center at O′ [2]. A point x = (x, y, z) on the unitary sphere with its
center at O′ is representable as follows.

(x−O′) · (x−O′) = (x + 2dmnm) · (x + 2dmnm) = 1 (16)

Then the epipolar constraint curve is obtainable as the projection by the cali-
brated fish-eye projection function of x, which satisfies both Eqs. (15) and (16).
Figure 16 presents examples of the epipolar curves.

Specifically, the epipolar curve can be determined as follows.
(1) The incident and azimuthal angle of point x = (x, y, x), which satisfies both
Eqs. (15) and (16), is obtainable, as
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Fig. 16. Epipolar curves in mirrored im-
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⎧⎨⎩φ = tan−1 y

x
θ = π

2 − sin−1 z√
x2 + y2 + z2

, (17)

where θ denotes the angle to the Z axis.
(2) Then Eq. (17) is projected to the image using the calibrated projection
function ρ̂(θ) and image center (u0, v0), as{

u = u0 + ρ̂(θ) cosφ
v = v0 + ρ̂(θ) sinφ , (18)

where ρ̂(θ) includes the lens distortion compensation.
An epipolar curve is obtainable for each mirrored camera. As described in

the preceding subsection, the multi-baseline stereo method [13] is applicable to
the proposed system by evaluating the SSSD between a small region of interest
(ROI) set in the centered real image and small ROIs on the constraint lines in
the converted mirrored camera images, with respect to the object range.

5 Experimental Results

Figure 17 shows the perspective reprojected images converted from Fig. 2 using
the method described in 4.1.

Figure 18 (left) shows the perspective reprojected image of the real camera.
Figure 18 (center) and 18 (right) show the range estimation results using the
perspective reprojection method described respectively in 4.1 and the constraint
in the fish-eye image method described in 4.2. The ROI size is 7 × 7 [pixel] for
both methods. Both results are almost the same because the only difference is
the reprojection of the image or the projection of the constraint. In both results,
the detailed 3D shapes are clearly recovered such as the edge of leaves in front
of the bear.
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Fig. 17. Perspective reprojected images from Fig. 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Perspective reprojected image of the real camera (left), and range estimation

results (center and right). The center and right images are results obtained respectively

using the methods described in 4.1 and 4.2.

6 Conclusions

This paper presented our proposed monocular range measurement system
with a fish-eye lens and mirrors that are placed around the lens. The captured
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image can be used for the direct observation of a target with the centered region.
Simultaneously, it can be used for the multi-baseline stereo to reconstruct three-
dimensional information. After calibration of projection function of the fish-eye
lens, the mirror positions and orientations are obtainable from external param-
eters that are used for the multi-baseline stereo measurement. Experimental
results demonstrate the effectiveness of a real working system.

Future studies will address size reduction of the system and the efficiency of
computations.
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Abstract. Omnidirectional cameras usually cannot capture the entire

direction of view due to a blind side. Thus, such an invisible part de-

creases realistic sensation in a telepresence system. In this study, an

omnidirectional video without invisible areas is generated by filling in

the missing region using an image inpainting technique for highly real-

istic sensation in telepresence. This paper proposes a new method that

successfully inpaints a missing region by compensating for the change in

appearance of textures caused by the camera motion and determining a

searching area for similar textures considering the camera motion and

the shape of the scene around the missing region. In experiments, the

effectiveness of the proposed method is demonstrated by inpainting miss-

ing regions in a real image sequence captured with an omnidirectional

camera and generating an omnidirectional video without invisible areas.

1 Introduction

Telepresence systems that enable us to experience a remote site are expected to
be used in various fields such as entertainment and education. In these fields,
omnidirectional videos captured with a moving omnidirectional camera are some-
times used [1,2]. However, an ordinary omnidirectional camera cannot capture
the entire direction of view due to a blind side as shown in Fig. 1. Thus, such
an invisible part decreases realistic sensation in telepresence. In order to achieve
telepresence with highly realistic sensation, this research aims at generating an
omnidirectional video without invisible areas by inpainting the missing region
caused by the blind side. Conventionally, many image inpainting methods for a
still image have been proposed [3,4,5]. Missing regions in not only a still image
but also a video can be filled in by applying these methods to each frame in a
video. However, textures may discontinuously change between successive frames
because the methods use only information in a frame.

On the other hand, methods that fill in missing regions in a video consider-
ing temporal continuity have been proposed [6,7,8,9,10,11]. These methods are
classified into two categories. One uses the motion information of a scene in

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 359–370, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Omnidirectional panorama image with missing region (black region) caused by

the blind side

an image sequence [6,7,8,9] and the other does not [10,11]. The former method
specifies the appropriate textures for missing regions by calculating the motion
of objects in a video or the motion of a camera and fills in the missing regions
using the specified texture. The latter method searches whole the video for the
spatial-temporal volume similar to that around missing regions and fills in the
missing regions using the similar volumes. Both methods can generate a video
with temporally continuous change in texture. However, these methods do not
consider the change in the appearance of textures caused by the camera motion.
Therefore, it is difficult for these methods to successfully inpaint missing regions
in an omnidirectional video caused by the blind side of an omnidirectional cam-
era because the appearance of the texture appropriate for a missing region in a
frame changes in different frames of a moving omnidirectional camera.

To overcome these problems, this paper proposes a new method that success-
fully inpaints a missing region compensating for the change in the appearance
of textures. Concretely, by assuming that the shape of the blind side of the tar-
get scene is planar, the change in the appearance of the texture caused by the
camera motion is compensated by projecting omnidirectional images onto the
planar surface fitted to the 3-D positions of natural feature points on the ground
acquired by structure-from-motion (SFM). In addition, by using the fitted plane
and the camera motion, the data region in which appropriate textures for miss-
ing regions may exist is determined. Finally, good quality images are obtained
by using an image inpainting technique. In this research, we employ an omni-
directional multi-camera system (OMS) that is composed of radially arranged
multiple cameras and we assume that the ground exists in the direction of the
blind side of a moving OMS.

2 Generation of an Omnidirectional Video without
Invisible Areas

The flow of the proposed method is as follows. (a) The position and posture of
an OMS and 3-D positions of natural feature points are estimated using SFM for
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an omnidirectional video. (b) A plane for each frame is fitted to natural feature
points near the ground by using the position and the posture of the OMS and
the 3-D positions of natural feature points. (c) An image sequence projected on
the fitted plane is generated from the omnidirectional video. (d) Data regions
in which appropriate textures for missing regions may exist are specified on
the projected image plane using the position and posture of the OMS and the
fitted planes. (e) A missing region in the projected image plane of each frame is
successively inpainted by minimizing an energy function based on the similarity
between the texture in the missing region and the specified data region. (f) An
omnidirectional video without invisible areas is generated by re-projecting the
inpainted image onto the omnidirectional panoramic video with a missing region.
In the following sections, each process is described in detail.

2.1 Estimation of Extrinsic Camera Parameters and Positions of
Natural Feature Points

The position and posture of an OMS and 3-D positions of natural feature points
are estimated by SFM [12] for an omnidirectional image. In this method, first,
a target scene is captured with a moving OMS. Next, initial extrinsic camera
parameters and 3-D positions of feature points are estimated by tracking the
natural feature points in a video, which are detected by Harris operator. Fi-
nally, the accumulative errors of the camera parameters and the 3-D positions
of feature points are minimized by bundle adjustment for whole the video.

2.2 Generation of Images Projected on Planes by Estimating
Shapes Around Missing Regions

In this research, on the assumption that an omnidirectional video is captured
while moving on the ground and the shape around a missing region is planar,
an image sequence that includes missing regions is generated by projecting the
omnidirectional video to the planes in order to compensate for the change in the
appearance of textures caused by the camera motion.

Concretely, first, natural feature points for plane fitting are selected from the
points obtained by SFM described in Section 2.1. Here, the points that satisfy
the following conditions are selected: (i) a point exists in the spherical area
whose center is a projection center of a representative camera unit of an OMS
and radius is l, and (ii) the height z of a point in the world coordinate system is
(p < z < p+m) (p and m are constants) as shown in Fig 2. Next, the expression
of the plane that represents the ground in the world coordinate system is set as
z = ax+ by + c, and the parameters (a, b, c) are determined by the least-square
method so as to minimize the following cost function L.

L =
n∑

i=1

(axi + byi + c− zi)2, (1)

where (xi, yi, zi) are the coordinates of a feature point and n is the number
of selected feature points. An image sequence is generated by projecting the
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Fig. 3. Generation of an image projected on a plane

omnidirectional video to the estimated plane for each frame as shown in Fig.
3. Here, in order for a missing region to be the center of the projected image,
an intersection point of the plane with the straight line that goes just under an
OMS through the projection center of a representative camera of the OMS is set
as the center of the image. Additionally, in order to prevent the rotation of the
textures in projected image planes, the basis vectors (u,v) of the image in the
world coordinate system are set so as to satisfy the following equation.

u · y = 0, (2)

where y is one of the basis vectors of the world coordinate system.

2.3 Inpainting a Missing Region Based on Energy Minimization

A missing region in each frame is successively inpainted by applying an energy
minimization method to each image projected on a plane with a missing region
generated by the method described in the previous section. In the following,
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Fig. 4. Missing and data regions in projected images for inpainting process

the definition of an energy function, a method determining a data region and a
method minimizing the energy function are described.

Definition of an energy function. As shown in Fig. 4, a missing region in the
projected image of the f -th frame (target frame) is inpainted using an energy
function based on the similarity of textures between region Ω′

f including missing
region Ωf in the f -th frame and data region Φki in the k-th frame (reference
frame) (k �= f). Here, Ω′

f is the expanded area of the missing region Ωf in
which there is a central pixel, xfi, of a square window W overlapping region
Ωf and each data region Φki corresponding to each pixel xfi in the f -th frame
is individually determined. Energy function E is defined as the weighted sum
of SSD (Sum of Squared Differences) between the textures around pixel xfi in
region Ω′

f and t(xfi) in data region Φki.

E =
∑

xfi∈Ω′
f

wxfi
SSD(xfi, t(xfi)), (3)

where wxfi
is the weight for pixel xfi and is set as 1 if xfi is inside of region

Ω′
f ∩ Ωf because pixel values in this region are fixed; otherwise wxfi

= g−d

(d is the distance from the boundary of Ωf and g is a constant) because pixel
values around the boundary have higher confidence than those in the center of
the missing region.
SSD(xfi, t(xfi)), which represents the similarity of textures around pixel xfi

and t(xfi), is defined as follows:

SSD(xfi, t(xfi)) =
∑
q∈W

{I(xfi + q)− αxfit(xfi)I(t(xfi) + q)}2, (4)

where I(x) represents the pixel value of pixel x. αxfit(xfi) is the intensity modi-
fication coefficient. Note that textures around a missing region may change due
to the reflection of the light on the ground and the shadow of the camera and
operator. Therefore, by using this coefficient, the brightness of textures in data
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Fig. 5. Projection to the other frame

regions is adjusted to that in the missing region. In this research, αxfit(xfi) is de-
fined as the ratio of average pixel values around pixels xfi and t(xfi) as follows:

αxfit(xfi) =

√∑
q∈W I(xfi + q)2√∑

q∈W I(t(xfi) + q)2
. (5)

Determination of a data region. A data region in which position t(xfi) of
the most similar texture pattern may exist is determined by using the position
and posture of a moving OMS estimated in Section 2.1 and the planes generated
in Section 2.2. In this research, appropriate textures for the missing region in
the f -th frame are expected to be captured in the frames other than the target
frame by assuming that the omnidirectional video is captured while moving.
Additionally, the parameters of the plane and the position and posture of the
OMS in each frame are known. Therefore, regions in which the most similar
pattern exists can be determined in the frames other than the target frame by
using the geometric relationships of a moving camera system and the ground.
Also, an appropriate frame is determined considering the resolution of the similar
texture pattern. In the following, we describe the way to determine a region and
a frame that are used as a data region for the energy minimization process
described in the following section.

First, the 3-D coordinate of pixel xfi in the target (f -th) projected image is
re-projected on the image plane of a camera unit of the OMS in the k-th frame.
Then, the pixel coordinate pk(xfi) of the intersection of the k-th projected image
with the straight line that goes through the re-projected pixel on the image
plane of the camera unit and pixel xfi on the f -th projected image is calculated
as shown in Fig. 5. In a similar way, pixel coordinate pk(xfi) in each frame k
corresponding to pixel xfi is calculated. Next, a frame is selected considering the
position of pk(xfi) in a projected image and the difference of frames between the
target and the reference frames. In projected images, the resolution of texture
becomes lower the farther a pixel is from the center of the image because textures
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of objects remote from the camera become small in input images of an OMS. In
order to prevent the generation of blurred textures, textures near the center of the
image should be used as samples for inpainting. In addition, it is highly possible
that temporally close frames have similar brightness of textures. Therefore, the
appropriate frame s(xfi) is selected from candidate frames K = (k1, . . . , kn) by
the following equation.

s(xfi) = argmin
k∈K

(‖pk(xfi)− xcenter‖+ λ|k − f |), (6)

where candidate frames K are picked up so that the fixed range of the texture
around pk(xfi) does not include the missing region. xcenter is the central pixel in
the k-th planar projected image and λ is the weight for the difference of frames.
Finally, fixed square area S whose center is pixel ps(xfi)(xfi) is set as a data
region Φs(xfi)i, which is used for the energy minimization process described in
the following section. In a similar way, each data region Φs(xfi)i corresponding
to each pixel xfi in expanded missing region Ω′

f is individually determined.

Energy minimization. Energy function E in Eq. (3) is minimized by using
a framework of greedy algorithm in a similar way to [13]. In our definition of
energy E, the energy for each pixel can be treated independently if pattern pairs
(xfi,t(xfi)) can be fixed and the change of coefficient αxfit(xfi) in the iterative
process of energy minimization is very small. Thus, we repeat the following two
processes until the energy converges: (i) search for the most similar pattern
keeping pixel values fixed, and (ii) perform a parallel update of all pixel values
keeping pattern pairs fixed.

In process (i), data region Φki (k = s(xfi)) is searched for position t(xfi) of
the most similar pattern keeping pixel values I(xfi) fixed. t(xfi) is determined
as follows:

t(xfi) = argmin
x∈Φki

(SSD(xfi,x)). (7)

In process (ii), all pixel values I(xfi) are updated in parallel so as to minimize
the energy keeping the similar pattern pairs fixed. In the following, the method
for calculating pixel values I(xfi) is described. First, energy E is resolved into
element energy E(xfi) for each pixel xfi in missing region Ωf . Element energy
E(xfi) can be expressed in terms of the pixel values of xfi and f(xfi + q)− q,
coefficient α as follows:

E(xfi) =
∑
q∈W

w(xfi+q){I(xfi)− α(xfi+q)t(xfi+q)I(t(xfi + q)− q)}2. (8)

The relationship between energy E and element energy E(xfi) for each pixel
can be written as follows:

E =
∑

xfi∈Ω

E(xfi) + C. (9)

C is the energy of pixels in region Ω′
f ∩Ωf , and is treated as a constant because

pixel values in the region and all pattern pairs are fixed in process (ii). Therefore,
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by minimizing element energy E(xfi) respectively, total energy E can be mini-
mized. Here, if it is assumed that the change of αxfit(xfi) is much smaller than
that of pixel value I(xfi), by differentiating E(xfi) with respect to I(xfi), each
pixel value I(xfi) in missing region Ωf can be calculated in parallel as follows:

I(xfi) =

∑
q∈W w(xfi+q)α(xfi+q)t(xfi+q)I(t(xfi + q)− q)∑

q∈W w(xfi+q)
. (10)

In addition, a coarse-to-fine approach is also employed for energy minimization.
Concretely, an image pyramid is generated and processes (i) and (ii) are repeated
from higher-level to lower-level layers successively. This makes it possible to
decrease computational cost and avoid local minima.

2.4 Generation of an Omnidirectional Video Using Inpainted
Images

An omnidirectional video without invisible areas is generated by re-projecting
the projected images inpainted in the previous section onto spherical panoramic
images with a missing region. Concretely, first, the coordinate of the intersection
of the plane with the straight line that goes through the projection center of a
camera unit and each pixel in the missing region in the spherical panoramic
image is calculated. Next, the pixel value of the calculated coordinate in the
projected image is copied to the panoramic image.

3 Experiments

In this section, the effectiveness of the proposed method is demonstrated by in-
painting a missing region caused by the blind side of an OMS and generating
an omnidirectional video without invisible areas. In the following, the experi-
ment of inpainting for images projected on images is described and a prototype
telepresence system using the omnidirectional video without invisible areas is
presented.

3.1 Inpainting a Missing Region in an Omnidirectional Video

In this experiment, we used Ladybug [14] as an OMS that is composed of 6
camera units and an omnidirectional image sequence (300 frames) is captured.
Figure 6 shows the 1st frame of 6 image sequences captured with Ladybug. The
position and posture of Ladybug and the positions of natural feature points
were obtained by SFM [12] described in Section 2.1. A missing region in each
projected image is determined by manually specifying the region in 6 images of
the first frame. In addition, a blind region in the projected image is also specified
as the missing region.

First, as shown in Fig. 7, images projected on planes were generated by the
method described in Section 2.2. The resolution of a projected image was set
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Fig. 6. 1st frame of input image sequence obtained by 6 camera units

1st frame 51st frame 101st frame

Fig. 7. Images projected on planes

as 1200 × 1200 pixels. Round black regions in the images are missing regions
caused by the blind side of Ladybug. As shown in these figures, textures of tiles
on the ground are uniform regardless of the position of pixels and textures of
the same objects do not rotate in each frame. As a result, appropriate projected
images used for inpainting were generated.

Next, a missing region in each projected image was inpainted. Figure 8 shows
the experiment of inpainting for the projected image of the 11th frame. Figure
8(a) shows the target 11th frame in which the missing region is specified and Fig.
8(b) shows the data region in the close-up of the 63rd frame corresponding to pixel
(600,600) in the target frame. Figure 8(c) shows the result by projecting pixel val-
ues in other frames onto the missing region in the target frame using the position
and posture of Ladybug and the generated plane without the inpainting process.
From this figure, the geometrical and optical disconnect of textures in the bound-
ary of the missing region appears. We consider this is because of the errors of the
estimation of camera parameters by SFM and errors of plane fitting. On the other
hand, in the resultant image by the proposed method as shown in Fig. 8(d), tex-
tures continuously connect on the boundary and plausible textures are generated
in the missing region. Fig. 9 shows the inpainted images corresponding to Fig. 7.
In each frame, the missing region is successfully inpainted.

3.2 Omnidirectional Telepresence without Invisible Areas

In this experiment, the effectiveness of the proposed method is demonstrated by
making the telepresence system using an omnidirectional video in which missing
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(a) Target frame (the 11th frame) (b) Data region in the close-up of

the 63rd frame for pixel (600,600) in

the target frame

(c) Result by projection using the

plane

(d) Result by the proposed method

Fig. 8. Comparison of results by projection using a plane and proposed method

regions are filled in with inpainted images shown in the previous section. Figure
10 shows the omnidirectional panorama image without invisible areas generated
by projecting the inpainted image (Fig. 9) onto the panoramic image (2048×1024
pixels). By using the panoramic image as input, we built an omnidirectional telep-
resence system. Figure 11 shows examples of user’s views in the telepresence sys-
tem. By comparison of the left and right images in Fig. 11, we can confirm that
realistic sensation is drastically increased by the proposed method.

4 Conclusion

In this paper, we have proposed a method that generates an omnidirectional
video without invisible areas by compensating for the change in the appear-
ance of textures caused by the camera motion and determining a data region
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1st frame 51st frame 101st frame

Fig. 9. Inpainted projected images (Corresponding to Fig. 7)

Fig. 10. Filled panoramic image of 1st frame (Corresponding to Fig. 1)

With a missing region. Without a missing region.

Fig. 11. Looking around using omnidirectional video
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considering the camera motion and the shape of the scene around the missing
region. In experiments, missing regions in images projected on planes were suc-
cessfully inpainted and the omnidirectional telepresence without missing regions
was achieved. In future work, we will perform experiments with various scenes. In
addition, the proposed method will be evaluated quantitatively by using virtual
environments.
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Abstract. Recent local state-of-the-art stereo algorithms based on variable cost
aggregation strategies allow for inferring disparity maps comparable to those
yielded by algorithms based on global optimization schemes. Unfortunately,
thought these results are excellent, they are obtained at the expense of high com-
putational requirements that are comparable or even higher than those required
by global approaches. In this paper, we propose a cost aggregation strategy based
on joint bilateral filtering and incremental calculation schemes that allow for ef-
ficient and accurate inference of disparity maps. Experimental comparison with
state-of-the-art techniques shows the effectiveness of our proposal.

1 Introduction and Related Work

Stereo algorithms aim at inferring disparity maps by processing images of the same
scene from two or more cameras.. This topic was exhaustively surveyed in [10,2] and
according to [10] most algorithms consist of four steps: matching cost computation,
cost aggregation, disparity computation and disparity refinement.

Although cost aggregation is mandatory for local approaches in order to increase the
signal to noise ratio this methodology is also frequently adopted by global (or semi-
global) approaches [20,18,17,6]. An ideal (fronto-parallel) cost aggregation strategy, to
deal with depth discontinuities and ambiguous regions (low textured areas, repetitive
patterns, etc), should modify its support at each position according to image content to
include only those points with the same (unknown) disparity. Although this behavior is
far from ideal, state-of-the-art cost aggregation strategies, recently surveyed and eval-
uated [14,4], deploying the simple local Winner Takes All (WTA) disparity selection
approach allow for obtaining disparity maps comparable to those yielded by algorithms
based on schemes that use more complex reasoning. Unfortunately, the execution time
is often comparable. Moreover, the results of state-of-the-art cost aggregation strate-
gies are severely affected by image noise. In this paper we propose a cost aggregation
strategy that combines the effectiveness of recent local approaches based on adaptive
weights with the efficiency and the robustness of conventional local approaches. Al-
though we assume binocular rectified stereo pairs, the proposed method can be extended
in a straightforward manner to three or more rectified cameras.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 371–380, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Bilateral filtering is a non-iterative feature-preserving image smoothing technique
[11] that due to its relevance in computer vision, computer graphics and image process-
ing has recently gained a lot of attention [8,7,19,1]. The idea behind bilateral filtering is
to jointly and independently enforce a geometric (spatial filter) and a color proximity
constraint (range filter). Given an image I , the value assigned to each point p of the
filtered image Î is a weighted convolution with points qi in its neighbor S(p) ⊂ I (a
square support region centered in p) according to weighting functions related to the
spatial distance Ds between p and qi and a distance Dc in the color space between I(p)
and I(qi).

Î (p) =

∑
qi∈S(p)

WS (p, qi) ·WC (I (p) , I (qi)) · I(qi)∑
qi∈S(p)

WS (p, qi) ·WC (I (p) , I (qi))
(1)

The denominator acts as normalization factor and the two weighting functions Ws and
Wc, respectively, assign higher values to points closer to the central point p and to
points with color intensity similar to I(p). Typically, the weights Ws and Wc are as-
signed according to Gaussian functions, respectively, with variance γs and γc. The dis-
tance between the coordinate points and between triplets in the color space are often
computed according to the %2 norm. Although bilateral filtering has proven to be a very
effective technique it is computationally demanding. For this reason, recently, several
approximated techniques aimed at reducing its running time have been proposed [8,7].
According to a recent study [14] specifically focused on evaluating and benchmarking
state-of-the-art cost aggregation strategies for stereo correspondence, algorithms be-
longing to the adaptive weights [19,12] category dramatically outperformed other ap-
proaches in terms of accuracy. In the Adaptive Weight (AW) approach [19] the weight
assigned to each point within the support is obtained by applying two independent bi-
lateral filters in the neighborhood of each potential correspondence. Given a point pr

in the reference image Ir and a potential correspondence point pt in the target image
It: the weights assigned to each point of the support S(pr,pt) are computed by combin-
ing (multiplying) the weights that would be yielded by the two independent bilateral
filters (with the same parameters γs and γc) applied to pr and pt. The cost of the cor-
respondence C (pr, pt) between pr and pt is the weighted sum of the TAD (Truncated
Absolute Differences) scores within the support normalized by the weights (1).

C(pr, pt) =

∑
qri

∈S(pr)
qri

∈S(pt)

WS(pr, qri
) · WC(Ir(pr), Ir(qri

)) · WS(pt, qti
) · WC(It(pt), It(qti

)) · T AD(qri
, qti

)

∑
qri

∈S(pr)
qri

∈S(pt)

WS(pr, qri
) · WC (Ir(pr), Ir(qri

)) · WS(pt, qti
) · WC(It(pt), It(qti

))

(2)
The weighting function is Gaussian and authors use the %2 norm in the CIELAB color
space for the range filters. This cost aggregation strategy provides excellent results
within a WTA framework and has also been successfully adopted within global op-
timization frameworks [18].
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However, it has been shown [12] that under certain circumstances (i.e. along depth
discontinuities, low-textured regions, high-textured regions and repetitive patterns) the
spatial filter embodied in [19] can lead to wrong correspondences and for these reasons
a further segmentation-based constraint was introduced. Therefore, the Segment Sup-
port (SS) [12] approach when it computes the weights associated to the two distinct
bilateral filters assigns weight 1 to those points belonging to the same segment of the
central point and assigns the spatial weight of AW to those points outside the segment
containing the central point. This method improves AW, but at the expense of almost
doubling the execution time.

It is worth observing that supports for AW and SS are computed by means of a sym-
metric strategy that relies on both images. Unfortunately AW and SS are computation-
ally very demanding and their execution time [14] are comparable or even worse than
those required by global approaches (e.g. on Teddy, AW requires more than 18 minutes
while SS requires more than 33 minutes). To reduce the computational complexity of
the AW approach a simplified asymmetrical weight assignment strategy was proposed
[4]. The weights were computed asymmetrically, according to the reference image only,
and approximated by means of a two pass approach (the first pass along the horizontal
scanline and the second pass along the perpendicular direction). These simplifications
allowed for real-time GPU implementation that yields worse but reasonably accurate
[4] disparity maps compared to AW. Another interesting approach based on asymmetri-
cal weight assignment, referred to as SB, was also proposed [3]. This method appears to
be a good trade-off between accuracy and computational efficiency deploying segmen-
tation and assigning weights according to the reference image only. Finally, according
to the evaluation provided in [14], among effective cost aggregation strategies Variable
Windows (VW) [15] deserves particular attention. In fact, although VW is significantly
less accurate than AW and SS its execution time is significantly reduced (it takes 26
seconds on Teddy). The efficient aggregation strategy deployed by VW is completely
different from the adaptive weight approaches described so far since in VW the weights
are always set to 1 while the size of the square support is selected according to three cri-
teria. The best support is selected evaluating for each predefined square region the cost
function and its variance. Moreover, to deal with low-textured regions, a biasing term is
used to favor large windows. Massive deployment of the integral image technique [16]
allows notable computational efficiency.

2 Proposed Cost Aggregation Strategy

As already pointed out by the authors [19], the most ambiguous correspondences are
set by AW when the support becomes too small. Experimental results show that this
behavior mainly occurs in two circumstances: a) when the supports are within regions
that are highly textured b) when the support contains uniform regions with pixel inten-
sity similar to the central pixel (not necessarily completely uniform regions). Although
case a) seems intrinsically related to the method since it is likely that in highly textured
regions several pixels will have different intensity when compared to the central pixel,
in both cases pixels with intensity similar to the central pixel should provide the cue for
setting unambiguous correspondences. In the two cases depicted in Figure 1, an ideal
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Fig. 1. Case a) and b): weights assigned by an ideal range filter

range filter1 would assign higher weights (in white) to points with intensity similar to
the central one and lower weights to the pixels with different intensity.

When higher weights are assigned to the pixels with intensity similar to the central
point (combined with the weights assigned based on the same rationale by the other
range filter applied in the other image), the spatial filters and the matching cost would
then allow for potentially setting unambiguous correspondences. Hence, points with in-
tensity similar to the central one play a major role in the AW approach. Analyzing the
behavior of AW we observed that the origin of the discrepancy with the ideal case could
be ascribed to noise and how weights are computed by means of the two independent
range filters. In fact, when computing the weight for two pixels with similar color in-
tensity (i.e. when the %2 norm ‖ Δ ‖→ 0) the exponential function embodied in the
range filter becomes very sensitive to image noise since derivative is very high. Under
these circumstances (i.e. when the %2 norm ‖ Δ ‖→ 0) image noise severely affects the
weights assigned by means of the range filters.

Fig. 2. Disparity maps yielded by AW: (Left) original Tsukuba stereo pair (Right) Tsukuba stereo
pair corrupted by Gaussian noise (μ = 0, σ = 1.275 pixels) independently applied to the three
color channels

In Figure 2 we report the disparity maps yielded by AW on the original Tsukuba
stereo pair and on the same stereo pair corrupted by Gaussian noise. The figure seems
to confirm our analysis; the effects of noise are particularly prominent in the regions
with similar color intensity. To deal with this problem the proposed cost aggregation
strategy, referred to as Fast Bilateral Stereo (FBS), embodies a simple but effective
noise regularization stage for the range filter. Moreover, as the major aim of this re-
search activity was the development of an effective cost aggregation strategy that could

1 For simplicity we consider greyscale images and a single range filter applied to the support of
a single image.
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fit within an efficient computational framework we combined the efficiency of the tradi-
tional and local approaches for stereo correspondences [14] with a symmetric adaptive
weights strategy based on two independent spatial and range filters applied on a regular
block basis. Given two points pr ∈ Ir and pt ∈ It, for which a correspondence had
to be evaluated, and the associated supports S(pr) ⊂ Ir and S(pt) ⊂ It both of size
W ×W we partitioned the two supports S(pr) and S(pt) in W

w ×
W
w regular blocks

of size w × w as shown in Figure 32. At each block of the two supports Sr, St we
independently assigned two weights according to a spatial filter and a range filter.

Fig. 3. Proposed partitioning scheme of the two supports Sr ⊂ Ir and St ⊂ It

For what concerns the spatial filter, at each point withinw×w block we assigned the
spatial weight of the central point of the block according to the Ws function in (1). For
what concerns the range filter we assigned at eachw×w block a single weight according
to a simple but effective strategy aimed at increasing noise robustness. Assuming that
pixels within each block are spatially correlated, the average values of the intensities
within the block provide a means to decrease the variance by a factor w. Clearly, when
this hypothesis is not verified the averaged value induces a bias that might lead to a
non perfect localization of discontinuities. However, with small w the hypothesis that
pixel within the w × w block are correlated often holds and averaging is a simple, yet
effective, strategy to reduce image noise. To partially deal with this issue we assigned
at each block br(u, v) (with u ∈ W

w , v ∈ W
w ) within the support S(pr) of the reference

image the weight

WC

(
Ir (pr) , Ir (br(u, v))

)
= exp(−

∥∥Ir (pr)− Ir(br(u, v))
∥∥

γc
) (2)

with I(br(u, v)) representing the average value of pixels within block br(u, v). Using
smallw allows for reducing the variance within each block as well as the maintenance of
an accurate localization with respect to the central point pr. Experimentally we found

2 Although not strictly necessary, for simplicity, W mod w is assumed to be 0.
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that w = 3 provides optimal results on the Middlebury dataset. Obviously, the same
strategy is applied to point pt of the target image It.

Once we obtained the block-based weights by means of the two spatial filters and
range filters, we combined the weights to obtain a symmetric block-based weighted
support and computed the matching cost using a TAD cost function on a pixel basis.
That is, at each block a single weight is assigned, but each point within the block is
evaluated according to the pixel-wise matching cost. Similarly to (1), the matching cost
is normalized by the weights. It is worth observing that cost computation and block
averaging can be efficiently computed by means of incremental calculation schemes
[16] typically deployed by conventional local approaches. Moreover, compared to (1),
the number of range and spatial filters is intrinsically reduced by factorw×w. To further
reduce the computational requirements spatial and range weights are stored in look-up
tables. Finally, it is worth observing, that for w = 1 our computational framework is
equivalent to [19].

3 Experimental Results

This section aims at assessing the performance of the proposed approach within a
framework specifically focused on the evaluation of state-of-the-art cost aggregation
strategies [14]. The disparity maps yielded by the considered cost aggregation strategies
on the four images of the Middlebury dataset [9] (Tsukuba, Venus, Teddy and Cones)
were obtained by means of a simple WTA strategy without any post processing filtering
and without enforcing the left-right consistency constraint. Nevertheless, although the
focus here is on the evaluation of the raw cost aggregation strategy and all the consid-
ered approaches do not deal explicitly with occlusions, for completeness, we have also
report the ALL parameter so as to allow a direct comparison with other approaches on
the Middlebury evaluation site. We have reported in Table 1 the results obtained by FBS
(parameters W = 39, w = 3,γs = 14, γc = 23 and TAD threshold 53), by our imple-
mentation of the AW approach (referred to as AW* with optimal parameters W = 35,
γs = 31, γc = 13 and TAD threshold 40) and by the five top performing state-of-the-art
cost aggregation strategies [12,3,19,5,15] according to [14]3.

It is worth noting that these results differ from those published in [14] (concerned
with SAD cost function) because, for fairness, we deployed the original cost functions
originally proposed by the authors of each paper (see [13] section ”Original”). Here
we stress the fact that we were interested in evaluating the performance of the raw cost
aggregation strategies, and the results for AW and SS available on the Middlebury eval-
uation site include post processing steps that are not specified. For all approaches the
execution time is concerned with the Teddy stereo pair and for the proposed approach
also includes initialization of look-up tables. As FBS has two parameters for the sup-
port (W and w) we used W = 39, similar to those deployed for the adaptive weight

3 For [12,3,19,5,15] the optimal parameters found in [14] were deployed, which are available at
www.vision.deis.unibo.it/spe/data/parameters.pdf. The execution time
for SB was obtained by deploying a much faster segmentation approach compared to the re-
sults reported in [14]. For FBS we found the optimal parameters minimizing the NOCC+DISC
error on the whole dataset.

www.vision.deis.unibo.it/spe/data/parameters.pdf


Accurate and Efficient Cost Aggregation Strategy 377

Table 1. Accuracy according to the Middlebury web site [9] and (in boldface) according to [14].
The table reports the accuracy of the proposed FBS approach and the five top performing [14]
state-of-the-art approaches [12,3,19,5,15]. The disparity maps tagged with symbol † are available
in [13] - section ’Original’. Table also reports the execution time (Intel Core Duo 2.14 GHz
processor) concerned with the Teddy stereo pair.

Tsukuba Venus Teddy Cones Time
NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC sec

FBS39(3) 2.95 4.75 8.69 1.29 2.87 7.62 10.71 19.8 20.82 5.23 15.3 11.34 32
SS† [12] 2.15 4.04 7.22 1.38 3.0 6.27 10.5 19.7 21.2 5.83 16.4 11.8 2358
SB† [3] 2.25 2.86 8.87 1.37 2.31 9.4 12.7 20.1 24.8 11.1 19.2 20.1 2
AW*[19] 3.33 5.25 8.87 2.02 3.61 9.32 10.52 19.7 20.84 3.72 14.3 9.37 3226
AW† [19] 4.66 6.68 8.25 4.61 6.18 13.3 12.7 21.6 22.4 5.5 16.0 11.9 1221
Rel† [5] 5.08 6.94 17.9 3.92 5.5 13.9 18.9 27.0 29.9 11.3 20.7 18.3 803
VW† [15] 3.12 4.86 12.4 2.42 3.87 13.3 17.7 25.9 25.5 21.2 29.6 27.3 26

Table 2. Accuracy for FBS and adaptive weights approach (AW*) on stereo pairs corrupted by
Gaussian noise (μ = 0, σ = 0.255, 1.275, 2.55, 12.75 pixels) independently applied to the three
color channels of the original stereo pairs.

Noise Tsukuba Venus Teddy Cones
σ NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC

FBS39(3) 0.255 7.58 9.32 14.83 14.13 15.48 17.83 15.42 24.00 26.13 6.67 16.60 13.48
AW* 0.255 21.34 22.94 25.65 24.61 25.81 27.54 19.98 28.16 30.71 7.30 17.55 14.68
FBS39(3) 1.275 34.26 35.44 36.81 45.15 45.97 41.58 47.85 53.09 54.00 31.11 38.42 38.34
AW* 1.275 52.93 53.81 49.89 56.08 56.73 54.74 51.28 56.23 60.19 35.72 42.80 41.38
FBS39(3) 2.55 53.94 54.70 54.52 68.13 68.57 62.87 68.56 71.62 69.43 56.50 61.03 59.57
AW* 2.55 66.32 66.87 63.07 74.76 75.13 70.26 73.56 76.19 77.73 64.55 68.36 65.21
FBS39(3) 12.75 71.78 72.15 74.82 85.69 85.84 83.30 92.30 93.00 91.31 91.69 92.41 91.20
AW* 12.75 78.61 77.50 78.81 87.95 88.09 85.10 94.65 95.14 94.17 94.07 94.59 93.01

approach, and w = 3. Therefore, our proposal in Table 1 is referred to as FBS39(3).
With respect to the NOCC and DISC errors, we noticed that our proposal has an accu-
racy comparable to the best performing cost aggregation strategies, SS and AW (both
implementations) being close in most cases to the results yielded by the best one (SS).
It is also worth pointing out that SS and AW run is minutes on the Teddy stereo pair
(e.g. SS is almost 40 minutes, AW is about 20 minutes) while FSB takes only 32 sec-
onds. The table also shows that FBS significantly outperforms the accuracy of the VW
and Rel approaches on the whole dataset. For SB, we noticed that, in most cases, it
is outperformed by FBS (in particular, on Cones, NOCC and DISC errors are about
50 %). Nevertheless, SB is significantly faster than FSB (it takes only 2 seconds on
Teddy).

Figure 4 shows the disparity maps for the considered approaches. From the figure, we
noticed that, compared to AW, our approach allows for reducing several errors (region
in front of the camera in Tsukuba, slanted surfaces in Venus, roof in Teddy). Depth maps
yielded by FBS are, in general, less noisy compared to AW. Although not reported here
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Fig. 4. From top to bottom: reference image, groundtruth (GT), disparity map yielded by the pro-
posed FBS approach, SS [12], SB [3], our implementation of AW [19], original implementation
of AW [19], Rel [5] and VW[15].
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for the lack of space4, increasing w decreases accuracy but improves efficiency: in fact
(W = 39) on Teddy FBS takes 14 sec (4 sec on Tsukuba) with w = 5, 9 sec (2 sec
on Tsukuba) with w = 7 and 5 sec (1 sec on Tsukuba) with w = 9. This highlights an
interesting behavior of the proposed approach: by modifying w one can trade accuracy
for speed and vice versa. This might be interesting in certain applications (e.g. robot
picking, face detection and recognition) where accurate disparity maps are required
only when objects are close to the camera.

To prove the effectiveness of the noise reduction technique embodied in our pro-
posal, we report in Table 2 the results obtained by our proposal and by our implemen-
tation of the adaptive weights technique (AW*) on stereo pairs corrupted by Gaussian
noise (mean value μ = 0 and variance (in pixels) σ = 0.255, 1.275, 2.55, 12.75) inde-
pendently applied to the three color channels of the original stereo pairs. Although both
approaches have poor results with higher noise levels, Table 2 reports that for the whole
dataset the noise regularization step embodied in the range filter calculation of our pro-
posal is always notably more effective than adaptive weights. For both approaches we
deployed the optimal parameters described for Table 1.

4 Conclusions

We have proposed a cost aggregation strategy that combines the efficiency of tradi-
tional local algorithms with the accuracy of state-of-the-art approaches. The weight
computation strategy proposed deploys a simple, but effective, noise regularization step
that allows for improving the accuracy of the original AW approaches and, exploiting
efficient incremental calculation schemes, for obtaining a disparity map at a small frac-
tion of the time required by state-of-the-art approaches. Experimental results within
a framework specifically aimed at evaluating the performance of state-of-the-art cost
aggregation strategies for stereo correspondence confirm the effectiveness of our pro-
posal. Future work is aimed at exploiting the block-based framework proposed to deal
with photometric distortions that typically arise in real applications. We are also inter-
ested in deploying the cost aggregation strategy proposed within global or semi-global
optimization frameworks.
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Abstract. The factorization 3-D reconstruction method requires that all feature
points must occur in all images in a sequence. A long sequence has to be di-
vided into multiple subsequences for partial reconstructions. This paper proposes
an algorithm for dividing a long sequence for factorization-based Structure and
Motion (SaM). First, we propose an Algorithm for Detecting a few Critical Con-
figurations (ADCC) where Euclidean reconstruction degenerates. The critical
configurations include: (1) coplanar 3-D points, (2) pure rotation, (3) rotation
around two camera centers, and (4) presence of excessive noise and outliers in
the measurements. The configurations in cases of (1), (2) and (4) will affect the
rank of the scaled measurement matrix (SMM). The number of camera centers
in case of (3) will affect the number of independent rows of the SMM. By ex-
amining the rank and the row space of the SMM, we detect the above-mentioned
critical configurations. With the proposed ADCC algorithm, we are able to divide
a long sequence into subsequences such that a successful 3-D reconstruction can
be obtained on each subsequence with a high confidence. Experimental results on
both synthetic and real sequences demonstrate the effectiveness of the proposed
algorithm for an automatic 3-D reconstruction using the factorization method.

1 Introduction

The factorization-based 3-D reconstruction method [1] requires that all feature points
must occur in all frames of an image sequence. A long sequence has to be divided into
multiple short subsequences in order to track a sufficient of number of feature points in
the subsequence for 3-D reconstruction. However, though short sequences usually have
sufficient feature points, the camera disparity may be insufficient due to the limited
number of images (e.g. the camera may undergo pure rotation), which leads to a fail-
ure of a factorization-based 3-D reconstruction. Long sequences usually have sufficient
disparity. However, the number of feature points that can be tracked is usually limited,
which also leads to a failure. Thus, a tradeoff has to be made between the number of
feature points and the number of images. Besides, Euclidean scene information can
never be recovered by any algorithm under so-called critical motions and critical sur-
faces [1,2]. For example, if all detected feature points are coplanar, or all cameras have

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 381–394, 2010.
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the same center, projective reconstruction using the factorization method will not be
possible. Such critical configurations where Euclidean reconstruction degenerates need
also to be detected while we divide a long sequence. Furthermore, 3-D reconstruction is
sensitive to noise and outliers, especially when the configuration is ‘close’ to a critical
configuration [3]. The presence of one single outlier may deteriorate the whole SaM
process. It is useful that the impact of the noise and outliers on the 3-D reconstruction
process can be measured. This paper proposes an algorithm for dividing long image
sequences while considering critical configurations, noise and outliers, and the tradeoff
on the number of feature points.

Critical motions and surfaces have been rigorously investigated in literature. Assum-
ing that the focal lengths are the only unknown parameters, a complete categorization of
critical motions is given in [2]. Ref. [3] extended this work by relaxing the constraints
on the intrinsic parameters. The critical motions under different calibration constraints
(zero skew, unit aspect ratio, vanishing principal point) are derived. Some particular crit-
ical configurations that frequently occur in practice are discussed. Though the problem
of critical motions and surfaces have been extensively studied in literature, we found
little work on the detection of them. Related work on detection of the degenerate config-
urations for estimating the fundamental matrix is reported in [4]. For breaking the long
sequence for factorization-based projective reconstruction, we found related work [5],
where a quantitative measure is proposed for dividing a long sequence based on mea-
suring the number of the feature points, the homography error, and the distribution of
the feature points. This paper contributes in two ways. First, an algorithm is proposed
to detect the critical configurations resulting from (1) pure rotation, (2) coplanar 3-D
points, and (3) rotation around two camera centers. Second, an algorithm is proposed
to divide a long image sequence, which balances the number of the feature points and
the length of the subsequences for a successful factorization-based 3-D reconstruction.

2 Factorization-Based 3-D Reconstruction

2.1 Notations

Assume a set of n 3-D points projected onto m perspective cameras. Let Xj =
(Xj , Yj , Zj , 1)T with j = (1, · · · , n) be the homogenous coordinates of the 3-D points.
Let Pi = KiRi[I −Ci] with i = (1, · · · ,m) be the camera projection matrices,
where Ki is the intrinsic camera matrix, Ri is the camera orientation matrix and Ci
is the camera center. The 2D projection of 3-D point Xj in image i can be computed
by λijxij = λij(uij , vij , 1)T = (αiPi)(βjXj), where xij = (uij , vij , 1)T is the
homogeneous coordinate of the 2D projection; αi and βj are two arbitrary non-zero
scaling factors; λij is the projective depth, which becomes the true optical depth if
αi = βj = 1. Rewriting above equation in matrix form, we obtain

Ws =

⎛⎜⎜⎝
λ11x11 . . . λ1nx1n

.

.

.
. . .

.

.

.
λm1xm1 . . . λmnxmn

⎞⎟⎟⎠ =

⎛⎜⎜⎝
α1P1

.

.

.
αmPm

⎞⎟⎟⎠ (
β1X1 . . . βnXn

)
= PX, (1)

where Ws is the 3m×n SMM, P is the 3m× 4 Euclidean motion matrix and X is the
4× n Euclidean shape matrix.
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2.2 Matrix Rank-r Factorization

Let UΣVT be the singular value decomposition of a matrix W. The best approxi-
mating matrix Wr to W under the Frobenius norm with a rank ≤ r is computed by
Wr = UΣrVT , where Σr is obtained from the diagonal matrix Σ by keeping the
first r largest singular values [2]. Thus, W can be approximated using the product of
two rank-r matrices as W ≈ Wr = PrXr, where Pr and Xr can be computed as
Pr = UΣ

′
r and Xr = Σ

′′
r VT (Σ

′
r and Σ

′′
r are any two diagonal matrices of a rank

of r that satisfy Σr = Σ
′
rΣ

′′
r ). The above process of approximating W by two rank-r

matrices is referred to as rank-r factorization in this paper. Obviously, if the rank of
W is larger than r, some nonzero singular values are discarded during factorization,
which results in an inaccuracy of the approximation. Thus, the accuracy of the rank-r
factorization can be measured using the ‘rank-r-ness’ κr of W, which is defined as

κr = (1− σr+1/σr)× 100%, (2)

where σr is the r-th largest singular value. A large κr implies that the rank of W is
close to r, since σr+1 is negligible in this case.

In our proposal, κr together with the re-projection error, which will be defined below,
are used to determine the rank of the SMM. Note that κr alone does not give much
confidence on the rank of the SMM. For example, when the rank of W is smaller than
r, κr may have a large value even though both σr+1 and σr are very small.

2.3 Rank-r Iteration: Projective Reconstruction Using Separate Bundle
Adjustment

The task of factorization-based projective reconstruction is to recover the projective
depths λij , so that Ws can be factorized into a 3m × 4 projective motion matrix P̂
and a 4× n projective shape matrix X̂, which can be upgraded afterwards to Euclidean
matrices1. The accuracy of the projective reconstruction can be measured by the re-
projection/residual error that is computed as

E =

√√√√√∑m
i=1

∑n
j=1

{(
uij −

P̂T
i(1)X̂j

P̂T
i(3)X̂j

)2

+

(
vij − P̂T

i(2)X̂j

P̂T
i(3)X̂j

)2}
2 × m × n

. (3)

In the above, P̂T
i(1), P̂T

i(2) and P̂T
i(3) are the row vectors of P̂i. The algorithms using

bundle adjustment for projective reconstruction solve P̂ and X̂ by minimizing the above
re-projection error. When eliminating the scale factors in Eq. (3), we obtain

uij −
P̂T

i(1)X̂j

P̂T
i(3)X̂j

= 0 and vij −
P̂T

i(2)X̂j

P̂T
i(3)X̂j

= 0. (4)

1 P̂ and P are related by an unknown 4 × 4 projective transformation H as P = P̂H, and
X = H−1X̂.
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Given the above two equations, we can formulate linear equations to solve for X̂j and
P̂i by alternatively holding P̂ and X̂ constant, as proposed in the Weighted Iterative
Eigen (WIE) algorithm [6], which is introduced below.

(a) Assuming λij = 1, factorize Ws into two rank-4 matrices P̂(0) and X̂(0) using
rank-4 factorization.

(b) Given P̂(k) and X̂(k) (k denotes the iteration count), update X̂(k+1)
j (∀j=1, . . . , n)

by minimizing the residual error of the 2m number of linear equations derived from
Eq. (4).

(c) Given P̂(k) and X̂(k+1), update P̂(k+1)
i (∀i = 1, . . . ,m) by minimizing the residual

error of the 2n number of linear equations derived from Eq. (4).
(d) Iterate (b) and (c) until the projective depths λ(k+1)

ij converge2 or a maximum num-
ber of iterations have been executed.

Derivation of the linear equations from Eq. (3) in Steps (b) and (c) can be found in [6].
In the above algorithm, Ws is factorized into two rank-4 matrices. However, as dis-

cussed in Section 2.2, we can factorize Ws into two matrices of an arbitrary rank r. In
that case, we will obtain a 3m × r matrix P̂(0) and a r × n matrix X̂(0) in Step (a),
which is refined later in Steps (b), (c) and (d). We refer to such process as rank-r iter-
ation. It is observed that the rank-r iteration converges quickly if Ws is indeed of rank
r, while the iteration may not converge if the rank of Ws differs from r. This property
is exploited in our proposed algorithm to determine the rank of the SMM, as will be
discussed in Section 3.

2.4 Factorization-Based Self-calibration

Given the projective reconstruction (P̂i, X̂j), one has to compute the 4× 4 transforma-
tion H that relates the projective motion and shape with Euclidean motion and shape
by

αiPi = P̂iH and βjXj = H−1X̂j . (5)

In this section, we briefly introduce the factorization-based self-calibration technique
proposed in [1], which is used in this paper. We represent αiPi by

αiPi = [Mi Ti], where (6)

Mi = αiKiRi = [mxi myi mzi]T and Ti = −αiKiRiCi = [Txi Tyi Tzi]T . (7)

Knowing P̂, X̂ and Ws, the task of self-calibration is to determine H by imposing
constraints on Ri and Ki. With the assumption that the principal point is at the origin,
the aspect ratio equals unity and the skew equals zero, it can be easily verified that

|mxi|2 = |myi|2 and mximT
yi = mximT

zi = myimT
zi = 0. (8)

2 The projective depths λ
(k+1)
ij = P̂

T (k+1)
i(3) X̂

(k+1)
j are considered converged if the relative

change of the projective depths between two consecutive iterations is smaller than a threshold.
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Thus, we obtain 4 linear constraints on MiMT
i from each camera, which are referred

to as calibration constraints. We will show below how the calibration constraints are
used to solve for H. Let H = [A B], where A is a 4 × 3 matrix and B is a 4-vector,
from Eqs. (5) and (6), we obtain Mi = P̂iA and Ti = P̂iB. Thus, we have

MiMT
i = P̂iAAT P̂T

i = P̂iQP̂T
i . (9)

Through Eq. (9), the 4 linear constraints (Eq. (8)) on MiMT
i are transferred to 4 linear

constraints on the 10 elements of the 4× 4 symmetric matrix Q. For m cameras, linear
least squares solution of Q can be computed from 4m+ 1 linear equations3. A is then
computed by rank-3 decomposition of Q. Please refer to [1] for details on how B is
solved. Obviously, at least 9 independent linear equations are required for solving the
10 elements of Q (with one element fixed to 1). This implies that we require at least
3 distinct cameras for factorization-based self-calibration under the above-mentioned
calibration assumptions, as will be proven below. The following proof is found by the
author and forms an alternative to existing work [2,3,7].

Proof: From Eqs. (5)(6) and (7), we have P̂i = Mi[I −Ci]H−1. Suppose cameras
Pp and Pq have the same center, i.e., Cp = Cq, it can be verified that

P̂p = MpM−1
q P̂q. (10)

Substitute Eq. (10) into MpMT
p = P̂pQP̂T

p , we obtain MqMT
q = P̂qQP̂T

q . Thus, Pp

and Pq actually provide the same set of calibration constraints. �

In practice, due to the inaccuracy of the calibration constraints (e.g. the principal point is
not exactly located at the origin), errors in the measurements and the degeneracy of the
configurations, more cameras are usually required for self calibration. One contribution
of this paper is that an algorithm is proposed to count the number of distinct camera
centers to ensure sufficient calibration constraints, as will be discussed in Section 3.

3 The Proposed Algorithms

In the following, each of the 4 critical configurations presented in the abstract is inves-
tigated, and referred to as C1-C4. After that, the algorithms for counting the number of
distinct camera centers and detecting the critical configurations are presented.

C1. Coplanar 3-D points: From Eq. (1), we see that Ws is of rank 3, since there are
only 3 independent columns in X, and consequently in Ws.

C2. Pure rotation: Ws is of rank 3, since there are only 3 independent rows in Ws, as
shown from the following proposition. Proposition 1: Letvi=[λi1xi1, . . . , λinxin]
be the partial SMM for camera i, the 3 row vectors of vi are linearly dependent on
the 3 row vectors of vj iff cameras i and j have the same center. Proof : From Eq. (1),
we have:

vi = αiKiRi[β1(X1 −Ci), . . . , βn(Xn −Ci)],
vj = αjKjRj[β1(X1 −Cj), . . . , βn(Xn −Cj)].

3 One extra equation is obtained by requiring that the scale factor of the first camera α1 equals
unity, i.e., mz1m

T
z1 = 1.
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If Ci = Cj , then vj = (KjRjRT
i K−1

i αj/αi)vi = Mvi, where M is a 3×3 non-
singular matrix. If Ci �= Cj , representing vj by Mvi is generally not
possible. �

C3. Rotation around two camera centers: Ws has rank 4 in this case. We have to
ensure at least 3 distinct camera centers for a successful factorization-based self-
calibration.

C4. In the presence of excessive noise or outliers, the rank of the SMM will deviate from
3 or 4. Consequently, large re-projection errors and low rank-r-ness are expected
for both the rank-3 and the rank-4 iterations. In practice, this case rarely occurs,
since most outliers can be rejected using constraints such as the Epipolar constraint.

Counting of the number of distinct camera centers will be discussed in Section 3.1,
while the dection of configurations C1, C2, C3 and C4 will be discussed in Section 3.2.

3.1 Algorithm for Counting Distinct Camera Centers (ACCC)

As discussed in Section 2.4, at least three distinct cameras are required for the
factorization-based self-calibration. To measure the ‘closeness’ between two cameras,
we define it as the normalized distance between the ‘average’ camera and object:

D =
‖Xa − (Ci + Cj)/2‖

‖Ci −Cj‖
, (11)

where Ci and Cj are the two camera centers, Xa is the geometry center of the set
of the 3-D points. Apparently, the smaller the D, the closer the object with respect to
the cameras, and thus the more distinct the cameras are located. Thus, for a successful
factorization-based Euclidean reconstruction, we need to make sure that the closeness
metrics D of at least 3 camera pairs are below certain threshold. However, the prob-
lem is that D cannot be computed prior to the Euclidean reconstruction. As a solution,
Proposition 1 suggests that the closeness between two cameras Ci and Cj can be mea-
sured by the difference between vi and vj , which leads to the following ADCC algo-
rithm. Step1: randomly pick a vi from Ws. Step2: check if the row space of vj(∀j �= i),
denotedRS(vj), can be spanned by RS(vi). This can be done by checking if the max-
imum angle deviation between the individual row vectors of vj and their corresponding
projections in RS(vi) is below a threshold. The maximum deviation d is found by

d = asin(
3

max
k=1

(‖vT
j(k) − JvT

j(k)‖/‖vT
j(k)‖))× 180/π, (12)

where J = [vT
i (vivT

i )−1vi] is the projection matrix that projects a vector into RS(vi),
and vT

j(k) is the kth row vector of vj . Step3: if d is smaller than a given threshold Td,
cameras i and j are considered to have the same center. Repeat the above steps until all
cameras are clustered with distinct camera centers.

3.2 Algorithm for Detecting Critical Configurations (ADCC)

Based on the above discussions, we propose the following ADCC algorithm.
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S1. Perform both the rank-3 and the rank-4 iterations. If both iterations fail to con-
verge4, we conclude that the the rank of the SMM is larger than 4 and the measure-
ments contain either outliers or excessive noise. If both iterations converge, or only
the rank-3 iteration converges, we conclude that either the 3-D points are coplanar
or the camera undergoes pure rotation. If only the rank-4 iteration converges, we
proceed to Step S2.

S2. Count the number of camera centers using the ACCC algorithm. If there are more
than two camera centers, we proceed to further processing.

The essence of the above algorithm is that we require a high rank-4-ness of the SMM
(indicated by κ3, κ4, E3 and E4), and more than two camera centers for factorization-
based 3-D reconstruction. The configurations that do not satisfy these necessary condi-
tions are considered critical and should be omitted for subsequent processing.

3.3 Discussion on Detection of Critical Configurations

We now give an analysis on the possible false detections by the proposed ADCC al-
gorithm. There are mainly two flaws that may lead to a false detection by ADCC.
Reason 1: As pointed out in [8], there is no theoretical justification that the iterative
projective reconstruction methods such as those in [9,10] will converge to sensible re-
sults, even when the data is free of noise. This holds for the WIE algorithm, where the
iteration may not converge to useful results with or without noise. Consequently, rely-
ing on the results of WIE iteration for determining the rank of the SMM is not trustable.
Reason 2: The presence of the noise or outliers may completely mask the degeneracy.
For example, when outliers are present in coplanar 3-D points, the ‘coplanar points’
may become non-coplanar. Due to the above two reasons, ADCC may result in the fol-
lowing two false detections. (a) The SMM is detected as ‘noisy’. However, the actual
rank is 3 or 4, when WIE does not converge (Reason 1). (b) The rank of SMM is de-
tected as 4. However, the actual rank is 3, when the rank of the SMM increases from 3
to 4 due to the presence of noise or outliers (Reason 2).

Though lacking a theoretical justification, we argue that the probability that Case (a)
occurs is low because of the good convergence capability of the WIE algorithm, as
demonstrated by the experimental results in Section 4. As for the probability that the
rank of the SMM increases from 3 to 4 due to the presence of noise or outliers, we do not
have a statistical measurement. However, no existing method is able to completely avoid
such a false detection. After all, the following two grounds give a good justification of
the ADCC algorithm. First, similar to curve fitting where a high-order curve cannot
be well fit by a low-order curve, it is not possible to well approximate a high-rank
SMM using a lower-rank matrix. Thus, as long as the rank-r iteration produces a small
residual, we can safely conclude that the rank of the SMM is maximally r. Second, a
high rank-r-ness κr on top of a small residual error further increases the confidence that
the rank of the SMM is r, since σr+1 is negligible compared with σr . In the cases when

4 The convergence of the rank-r iteration is judged by both the residual error and the rank-r-
ness of the resulting SMM. For example, for the real data, rank-r iteration can be considered
converged when the residual error is below one pixel and the resulting rank-r-ness is above
90%.
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both iterations converge to small residuals, the lower-rank model is selected, as in S1 of
Section 3.2.

As discussed in [11,12], degeneracy detection can be tackled using the model-
checking approach, where the best geometric model is selected using some scoring
criteria considering both the goodness of the fit of the model to the observed data and
the model complexity. A good model should not only produce small residual, but also
should have a low complexity. In the following, the relation between ADCC and the
model-checking approach is discussed.

In our experiments, the G-AIC [11] of Kanatani is computed for performance evalu-
ation, which is computed by

G-AIC = Ĵ + 2(Nd+ p)ε2, with ε2 =
Ĵ

cN − p , (13)

where Ĵ is the residual error,N is the number of data measurements (e.g. the number of
feature points), d is the dimension of the model, p is the number of the parameters of the
parameterized model, c is the number of the constraints provided by one observed data
sample, and ε2 is the estimated noise level. Eq. (13) implies that a good model should
not only produce small residual Ĵ , but also should have a low complexity d and p.

Comparing with ADCC, Ĵ is equivalent to the residual E, which describes how well
the model fits to the data. However, the second term of the right-hand side of Eq. (13),
which describes the model complexity, is simply represented by the rank of the SMM
in ADCC. Furthermore, instead of giving a score of the goodness of the fit and the
model complexity, ADCC employs a hard decision. That is, a low-rank approximation
is preferred as long as the resulting residual is below a statistically meaningful thresh-
old. There are two reasons that the geometric model selection criteria such as G-AIC
cannot be directly used in our problem. (1) The WIE algorithm does not guarantee that
the rank-4 iteration will always produce a smaller residual than the rank-3 iteration.
(2) Though it was demonstrated that G-AIC works well for curve fitting, the weighting
between the residual and the model complexity in G-AIC may not be optimal for our
problem. Experimental results on this can be found in Section 4.

3.4 Algorithm for Dividing Long Image Sequence (ADLS)

The actual number of feature points and images required for reconstruction depends on
compounding factors including the scene shape, the camera positions, the noise levels,
distribution of the feature points and so on, which are referred to as ‘criticalness’ of the
configuration in this paper. The challenges to determine the optimal division of a long
sequence include: (1) we lack metrics to quantitatively measure the above-mentioned
criticalness; (2) the number of the feature points decreases with the length of the sub-
sequence. We can not obtain a large number of feature points and a large number of
images at the same time. From the proposed ADCC algorithm, it is observed that the
criticalness of configuration can be measured by parameters κ3,κ4,E3, E4 and #cc,
where #cc is the number of distinct camera centers. If self-calibration has been done,
the residual error ξ of the 4m+ 1 linear equations in Section 2.4 can also be used as a
metric. Thus, the number of feature points #fp can be determined based on the values
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of κ3,κ4,E3, E4, #cc and ξ. This leads to the proposed ADLS algorithm. The steps
of the ADLS algorithm are based on iteratively computing the next subsequence, as
described below:

S1. Specify a minimum number of feature points and a minimum number of images,
and obtain a few subsequences with varying number of images. Perform ADCC for
each subsequence.

S2. If the subsequence is detected as non-critical, perform the self-calibration proce-
dure.

S3. Among all non-critical subsequences that satisfy the necessary conditions specified
by the ADCC algorithm, choose the subsequence that gives the smallest residual
error ξ.

It is important to note that the proposed ADLS algorithm provides only necessary con-
ditions for Euclidean reconstruction, because the proposed ADCC algorithm is not able
to detect other critical configurations than C1-C4. For example, if the camera undergoes
a pure translation without rotation, Euclidean reconstruction will degenerate. However,
the proposed metrics will not be able to detect it. Furthermore, using algebraic error ξ
as a selection criteria lacks the geometric meaning and is not optimal.

4 Experimental Results

We have tested the ADCC algorithm on both the synthetic and the real sequences shown
in Fig. 1. In the experiments, we assume the principal point is at the origin, the aspect
ratio equals unity and the skew is zero. Only the focal lengths are assigned varying
values.

4.1 Detecting Pure Rotation and Coplanar 3-D Points

Fig. 1(a) shows the synthetic house that is used for our experiments, where we observe
15 points in general positions and 10 cameras pointing towards the house. Knowing the
coordinates of all 15 points, we project them onto the 10 cameras. Afterwards, Gaus-
sian noise5 is added to each coordinate of the 2D projections. Euclidean reconstruction
is then performed on the noisy 2D projections. The accuracy A of the reconstruction
is measured by the relative difference between the recovered focal lengths and the as-
signed focal lengths, and is computed by A = 1/m

∑m
i=1(|f i − s × f i

r|/f i) × 100%,
where f i is the preset focal length for the i-th camera, f i

r is the recovered focal length,
s is the scale factor computed as s = (

∑m
i=1 f

i)/(
∑m

i=1 f
i
r).

Table 1 shows the experimental results of ADCC algorithm on both the synthetic and
real sequences, where the columnA denotes the ‘accuracy’ of the factorization-based 3-
D reconstruction and is assigned one of the following five values. ‘D’ is assigned when

5 Gaussian noise of 4 different magnitudes is added to each coordinate of the 2D projections.
The 4 standard deviations of the Gaussian noise are set to 0.002w, 0.001w, 0.0005w and
0.0002w, respectively, where w = 14 is the width of the synthetic image. To simulate the
influence of the outliers, we assume that 1% of the feature points are outliers, of which the
magnitude is computed as 0.05w.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Test sequences: (a) synthetic house with 10 cameras equally displaced; (b) synthetic house
with 10 cameras displaced with varying distances; (c) medusa with 195 images from [13]; (d)
house1 with 20 images taken from 5 viewpoints (4 images for each viewpoint); (e) castle with 26
images from [13]; (f) house2 with 38 images taken from slightly displaced viewpoints.

the configuration is detected as ‘degenerate’ or ‘N’ is assigned when the configuration
is detected as ‘noisy’. If neither ‘D’ or ‘N’ is detected, it is assigned the value of the ac-
curacyA for synthetic sequence, and Success (S) and Fail (F) of the factorization-based
3-D reconstruction for real sequences (judged by visual inspection of the reconstruction
results). The ‘X’ in the table means that the value is not applicable.

Rows b0-b o and c0-c o of Table 1(a) show the results of the detection of pure ro-
tation and coplanar 3-D points in the presence of nose and outliers. As discussed in
Section 3, if all 3-D points are coplanar, or all cameras have the same center, the SMM
will be of rank 3. From rows b0-b4 and c0-c4 of Table 1(a), we observe that the rank-3
iteration converges with a smallE3 and a largeκ3 in all experiments. Thus, the proposed
ADCC algorithm successfully detects all degenerate configurations resulting from pure
rotation and coplanar 3-D points in the presence of noise of varying levels. Rows b o
and c o represent the cases when outliers are present. In experiment b o, the rank of
SMM remains at 3 despite the presence of outliers, which leads to the convergence of
the rank-3 iteration.

Row c o represents a case of false detection, where the rank of the SMM increases
from 3 to 4 due to the presence of outliers, which leads to the convergence of the rank-4
iteration. Thus, outliers may mask out the degeneracy and lead to the fail of the proposed
algorithm. Fortunately, as discussed in C4 in Section 3, outliers can be easily removed
using, for example, the Eipolar constraint. Thus, such false detection rarely occurs in
practice. Rows h4, m3 and m4 in Table 1(b) correspond to the cases of pure rotation for
real sequences, which are successfully detected by the ADCC algorithm.

Table 1(b) also shows the G-AIC scores that are computed using Eq. (13) with the
following parameters: N = nm (n points tracked along m images), d = r (rank of
the SMM), p = m + n (number of projective depths) and c = 1 (one point provides
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Table 1. Results of detecting critical configurations by ADCC. (a): results on synthetic data.
a0-a o: results on counting the number of camera centers; b0-b o: results on detection of pure
rotation; c0-c o: results on detection of coplanar 3-D points; The ‘0’ in ‘a0’ refers to noise-free
data, ‘1’ in ‘a1’ means that the std. dev. υ of the noise υ = 0.0002w, ‘2’ means υ = 0.0005w,
‘3’ means υ = 0.001w, ‘4’ means υ = 0.002w. The ‘o’ in ‘a o’ means that there are outliers
added to the synthetic data, the same holds for b0-b o, c0-c o. (b): results on real data.

rank-3 ite. rank-4 ite.
exp E3 κ3 E4 κ4 #cc A

(%) (%)

a0 0.1 89.7 3e-5 100 7 0.05
a1 0.1 89.70.00399.5 7 0.5
a2 0.1 89.60.00799.2 9 1.8
a3 20 38.1 0.01 98.9 9 2.6
a4 0.1 85.9 0.03 98.9 10 7.9
a o 70 95.8 4 21.4 X N

b0 3e-7 100 4e-7 70 X D
b1 0.00399.90.00299.7 X D
b2 0.00899.70.00699.1 X D
b3 0.02 99.4 6 23.3 X D
b4 0.03 98.9 8 34.4 X D
b o 0.04 98.2 0.1 89.5 X D

c0 2e-6 100 2e-7 72.2 X D
c1 0.00399.60.00399.6 X D
c2 0.00799.4 5 61.9 X D
c3 0.01 99.1 7 48.3 X D
c4 0.03 98.3 0.06 88.4 X D
c o 0.1 96.2 0.03 97.8 5 24

rank-3 ite. rank-4 ite.
exp#fm E3 κ3 GAIC3 E4 κ4 GAIC4#ccA

(pix) (%) (×103)(pix) (%) (×103)
h1 20 2.8 96.1 350 0.23 96.9 1.9 5 S
h2 12 2.5 95.8 480 0.27 95.4 3.2 3 S
h3 8 3.3 96.4 450 0.24 96.7 2.2 2 D
h4 4 0.25 99.9 4 0.19 65.7 3.2 X D

m1 181 3.8 95.7 580 0.31 96.5 4.2 18 S
m2 16 1.5 98 810 0.26 96.6 12 5 S
m3 11 0.54 99.4 74 0.25 88.7 9.6 X D
m4 8 0.29 99.8 10 0.25 84 8.1 X D

g1 24 6.6 93.4 2400 0.27 98.9 4.6 24 S
g2 12 6.1 91.8 2300 0.26 98.4 4.9 12 S
g3 8 4.9 92.6 1500 0.29 94.1 14 8 S
g4 4 3 95.3 420 0.24 96.1 3.3 4 F

h1-h4: results on house1 (Fig. 1(d))
m1-m4: results on medusa (Fig. 1(c))

g1-g4: results on castle (Fig. 1(e))

(a) Results on synthetic sequence (Fig. 1(b)) (b) Results on three real sequences

only one constraint). As we see from Table 1(b), the G-AIC scores for rank-4 iterations
are consistently smaller than rank-3 iterations, which are not correct for h3, h4, m3 and
m4 in Table 1(b). The weight between the residual and the model complexity in G-AIC
needs to be optimized if it is to be applied. Furthermore, as shown in rows b3-b o and
c1-c4 in Table 1(a), the rank-4 iteration does not always produce smaller residual than
the rank-3 iteration. This prevents a direct use G-AIC in our problem.

4.2 Counting Distinct Camera Centers

The ACCC algorithm proposed in Section 3.1 is based on the Proposition 1, which
suggests that the maximum angle deviation d between vi and vj will be small if the Ci

and Cj is close (with a large closeness D). In this section, we first verify the validity of
this proposition, and then ACCC is used to count the camera centers.

Figs. 2 shows the d-D curves obtained in our experiments on both synthetic and
real data, where we observe that d monotonously decreases with D for all three real
sequences and for the synthetic sequence when υ < 0.0005w. This justifies the use of
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(a) d − D curves for the synthetic sequence
(Fig. 1(b)) with noise of varying levels.

(b) d − D curves for three real sequences.

Fig. 2. d − D curves for synthetic and real sequences

deviation d for inferring the closeness D in the proposed ACCC algorithm. Note that d
and D are computed using Eq. (12) and Eq. (11), respectively.

The threshold Td for grouping the close cameras in the ACCC algorithm is em-
pirically set a value of 0.5 for all experiments. From Figs. 2(a) and 2(b), we note
that D < 40 if d > 0.5, for all real sequences and for the synthetic sequence when
υ < 0.0005w. With the chosen Td, our experimental results show that ACCC is able to
detect the #cc robustly. Column #cc of rows a0-a4 in Table 1(a) shows the detected
#cc for the synthetic sequence depicted in Fig. 1(b), where we see that 10 cameras are
arranged with varying distances between each other. With the rightmost camera taken
as the reference camera, the closeness D between each neighboring camera and the
reference camera is shown in Fig. 2(a) as the x-coordinates of the data samples. From
rows a0-a2 of Table 1(a), we see 7 camera centers are counted for the first 2 experi-
ments where υ < 0.0005w. In these 2 experiments, the 3 rightmost cameras in Fig. 1(c)
are grouped with the same center. This is what we expected, since their corresponding
D is larger than 40, as seen from Fig. 2(a). The detected #cc is not correct under large
noise levels (Exps. a2-a4), because in this case ACCC is no longer able to distinguish
the real cause of the large value of d, i.e., whether it stems from the ‘distinctness’ of the
cameras or from the large noise in the measurements. Fortunately, for the real data, the
noise levels, which to some extent can be measured by the E4, are mostly smaller than
0.0005w (equivalently around 0.5 pixels for 1024 × 768 images), as can be observed
from our experimental results on real sequences as shown in Table 1(b) and Fig. 2(b).

Rows h1-h4 in Table 1(b) show the results on the house1 sequence. In the table, ‘#fm’
denotes the number of images. As we see from the Exp. h1 in Table 1(b), the rank-3
iteration fails to converge while the rank-4 iteration converges, and the #cc is correctly
counted as #cc = 5, as depicted in Fig. 1(b). Exp. h2 corresponds to a case with 3 cam-
era centers. Exp. h3 corresponds to a case of rotation around only 2 camera centers, and
Exp. h4 corresponds to a case of pure rotation. The ADCC correctly counted the num-
ber of camera centers in all experiments. Rows m1-m4 show the experimental results on
the medusa sequence. In contrast with the house1 sequence where the camera centers
are widely displaced (with a closeness D < 30), some adjacent cameras in medusa
are very close. Using the threshold Td = 0.5, some neighboring cameras are grouped
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(a) (b) (c) (d)

Fig. 3. Examples of reconstructed sparse 3-D models: (a) 3-D model reconstructed from sseq s1
in Table 2(b); (b) merged 3-D model for medusa; (c) 3-D model reconstructed from sseq t1 in
Table 2(a); (d) merged 3-D model for castle.

with the same center though they are actually slightly displaced. That explains why the
181 cameras depicted in Fig. 1(c) are counted as only 18 in Exp. m1. In Exp. m2, 16
images are used and 5 camera centers are counted, which lead to a successful Euclidean
reconstruction. Exp. m3 corresponds to a degenerate case of rotation around 2 camera
centers, and Exp. m4 corresponds to a case of pure rotation. ADCC successfully detects
the critical configurations resulting from insufficient camera disparity. Experiments on
the castle sequence (rows g1-g4 in Table 1(b)) show the similar results.

4.3 Dividing Long Image Sequences

Tables 2(a) and 2(b) show the results of the ADLS algorithm on the castle (Fig. 1(e))
and medusa (Fig. 1(b)) sequences for an automatic factorization-based SaM. From the
tables, we observe that the castle sequence is divided into 2 subsequences and the
medusa is divided into 4 subsequences. Euclidean reconstruction is successful for all
subsequences judged by visual inspection. The reconstructed 3-D models of the sub-
sequences t1 and s1 and the merged 3-D models for the complete castle and medusa
sequences are depicted in Fig. 3. Note that direct factorization-based SaM for medusa
is not possible since no feature points can be tracked from frame 0 to frame 193. For
castle, we do track 134 feature points from frame 0 to 25. However, the sequence is de-
tected by the ADCC algorithm as containing outliers. Using ADLS, both sequences are
automatically divided into multiple subsequences for individual partial reconstructions,
which are thereafter merged into a common coordinate system. The Euclidean recon-
struction on long image sequences then becomes possible (the algorithm for merging
the partial reconstructions is not presented in this paper).

Table 2. Results on dividing castle and medusa by the ADLS algorithm

sseq frames E3 κ3 E4 κ4 #cc
t1 0-15 20.8 96.0 0.43 99.0 16
t2 15-25 9.2 96.6 0.30 98.4 11

sseq frames E3 κ3 E4 κ4 #cc
s1 0-60 6.3 97.8 0.39 97.6 6
s2 60-124 3.6 98.2 0.34 98.2 5
s3 124-171 12.6 96.1 0.46 98.2 7
s4 171-193 26.7 96.5 0.36 99.3 8

(a) Results for castle (b) Results for medusa
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5 Conclusion

We have presented an algorithm for dividing a long image sequence into multiple
subsequences for factorization-based 3-D reconstruction, with the consideration of de-
generate configurations, noise and outliers and camera disparities. First, a quantitative
metric is proposed to measure the closeness of two cameras based on the linear de-
pendency between the row spaces of two corresponding partial scaled measurement
matrices (SMMs). Second, an algorithm is proposed to estimate the rank of the SMM
by analyzing both the residual error of the projective reconstruction and the singular
values of the resulting SMM. By analyzing the row space and the rank of the SMM us-
ing a few simple but effective metrics, the critical configurations including coplanar 3-D
points, pure rotation and rotation around two camera centers are successfully detected.
Our experimental results on both synthetic and real sequences demonstrate that the al-
gorithm is able to robustly detect the mentioned critical configurations. The algorithm
provides a practical solution for an automated processing of the factorization-based 3-D
reconstruction from long image sequences.
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Abstract. This paper proposes a novel generative model for natural

image representation and scene classification. Given a natural image, it

is decomposed with learned holistic basis called scene gist components.

This gist representation is a global and adaptive image descriptor, gener-

atively including most essential information related to visual perception.

Meanwhile prior knowledge for scene category is integrated in the gener-

ative model to interpret the newly input image. To validate the efficiency

of the scene gist representation, a simple nonparametric scene classifica-

tion algorithm is developed based on minimizing the scene reconstruc-

tion error. Finally comparison with other scene classification algorithm

is given to show the higher performance of the proposed model.

Keywords: image representation, natural image statistics, scene classi-

fication.

1 Introduction

One of the extraordinary capabilities of the human visual system is its ability
to rapidly group elements from a complex natural scene into the holistic and
semantic percept. The studies of cognitive psychology have shown that human
can recognize the category of natural scene in less than 150ms when a novel
scene image is presented [1,2].

The gist of a novel scene is recognized at a single glance, independent of its
spatial complexity. How is this remarkable feat accomplished? One prominent
view of scene recognition is based on the idea that a scene is organized from
a collection of objects. This notion depicts visual processing as a hierarchical
organization of local modules of increasing complexity(gradually from edge to
shape, object, then to global scene percept)[3]. On the other hand, psychological
results suggest that a scene may be initially represented as a global entity and
segmentation of region or object appears at a later stage after the formation of
scene gist [2,4].
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Motivated by the psychological evidence of scene gist components existed in
the visual percept of natural image, we propose a novel holistic representation
for natural image. The scene gist representation is an global image descrip-
tor, adapted to natural image statistics to realize a most compressive encoding.
Moreover, the marked performance in the scene classification task proves the
superiority of this scene gist representation.

1.1 Related Works

Image representation or descriptor is of fundamental importance to the research
of computer vision. It directly deals with organization of pixels, and plays a key
role for extracting feature for later processing like feature classification and ob-
ject recognition. Standard image descriptors, such as SIFT [5], bank of Gabor
wavelet and image pyramid [6], have been widely used in feature extraction.
In recent years, there have appeared another kind of adapted image descrip-
tors drawing our attention. Early work on natural image statistics reveals that
the natural image signal is highly non-gaussian and contains much informa-
tion redundancy[7]. This leads to the headway in the Independent Component
Analysis [8] or sparse coding [9] for natural image representation. The adapted
basis share the similar response properties to the simple cell in the primary
visual cortex. Summarily, the central concept of efficient coding is straightfor-
ward: if we want to efficiently capture the feature and reduce the redundancy,
the image representation should reflect intrinsic structural properties of natural
image [8].

Recent works on scene image modeling are mainly based on local approach,
such as bag of words model like pLSA [10] and LDA [11], those methods are
mainly through the hierarchical organization of local information to formulate
the percepts of scenes. On the other hand, psychological results indicate that
human visual system is more likely to rely on global approach to recognize the
category of scenes [12]. Oliva et al[4] propose a global representation called Spa-
tial Envelope. However, their holistic modeling of scene is only based on the
amplitude of Fourier component coefficients for gray image, which ignores the
influence of color information on the visual scene perception [13], and their model
is not generative.

Fig. 1. Example images from 8 scene categories in the dataset [4] we work on
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Fig.1 shows the example scene images from the scene dataset[4] our model is
implemented on. The rest of the paper is organized as follows. Section 2 extends
our scene gist model in detail. In Section 3, the scene gist representation is
applied to the scene classification experiment, and comparison is given. Section
4 concludes this holistic generative model, and discusses its subspace property
related to image manifold research.

2 Scene Gist Generative Model

Psychological study [1] has indicated that human visual system integrates enough
information for the category of a scene in about 150ms. What is the underlying
computational mechanism in the visual cortex? We consider this problem from
the view of signal analysis and reconstruction. A discrete-time input signal x can
be holistically viewed as an N×1 column vector in RN (we treat a scene image
data by vectorizing it into a long one-dimensional vector). To sense and extract
the gist of scenes for visual system is like a dynamic filtering and reconstruction
process between input signal x∈ RN and intrinsic signal representation s∈ RM ,
that is:

s = Wx (1)

x̂ = As (2)

where filter basis W is a projection from the image pixel space RN to a represen-
tational space RM , the reconstruction basis A(if W is full-rank square matrix,
A=W−1) recovers the image pixels from a given representational space, and x̂
is the reconstructed image signal.

Our generative model learns nearly-optimized holistic components A and W
to represent the natural image. When the image signal is projected on these basis
to enable M!N, and to minimize ‖x − x̂‖2, then, we term s as the scene gist
representation, A and W as scene gist components. Before further expending
our scene gist representation, two important issues on information redundancy
should be discussed, which constitute a theoretical foundation for our model.

2.1 Information Redundancy Revisited

Efficient coding is a general framework under which many mechanisms of our
visual processing can be interpreted. Barlow [14] first proposed the efficient cod-
ing hypothesis for the purpose of visual processing as to removes information
redundancies in the sensory input. The research of natural image statistics [7]
also indicates that there is a large amount of redundancy in the visual sig-
nal. To sum up, two kinds of information redundancy exist in visual signal
processing:

Perceptual redundancy. Perceptual redundancy relates to the human prior
knowledge about the visual world. In a sense, prior knowledge is the redundant
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Fig. 2. Natural scene images are heavily blurred and noised respectively, we can recog-

nize them because of prior knowledge for street and coast(better view in color edition)

information that should be suppressed by a coding system [14]. However, human
visual system relies heavily on the prior knowledge to interpret the input signal,
especially when the input signal is incomplete or noisy. Fig.2 shows two blurred
and heavily noised natural scene images, we still can easily recognize them as
street and coast because of our prior knowledge on the spatial layout of two
scene categories.

Our scene gist model would integrate the prior knowledge in the learned gist
components A and W, to help encode and interpret newly input signal.

Computational redundancy. The other kind is computational redundancy.
One of the fundamental problems in computer vision is the curse of dimensional-
ity. The high dimensionality of image weakens the performance of algorithms like
object recognition [15]. Hopefully despite of the high dimensionality of image,
there are two regularities of natural image that could be utilized. First, natural
images are usually embedded in a relatively low dimensional subspace of images,
and there are common spatial patterns along the ensemble of the same scene
category [16]. Second, for the specific purpose of visual task such as the scene
classification, the necessary scale of images might be low.

Fig.3 demonstrates those two regularities of natural image. Fig.3a is the chart
of procedure we take: first downsample original 256×256 natural image to 32×32,
then resize it to 256×256, so that information of the resized image is equal to
the 32×32 image. And Fig.3b shows the result for example images from 8 differ-
ent categories, orderly, coast, mountain, forest, open country, street, inside city,
tall building and highway (refer to Fig. 1 for the example images with original
scale). We can see that the low 32×32 scale preserves enough information for
recognition. In Fig. 3d, we average 200 natural scene images from 8 different cat-
egory ensembles separately, arranged in the same order as Fig.3b, we could still
recognize the category of those image even the images are heavily blurred and
averaged. This example illustrates that from image regularity we still could dis-
tinguish the certain semantic information such as the scene category. Moreover,
when we average images from two or more different ensembles of scene category
together, like in Fig.3c, there is no statistical regularities among the random
averaged images, that is to say, the statistical regularities only exist within the
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Fig. 3. (a)downsample procedure. (b)32×32 scale images still preserve enough informa-

tion for scene recognition. (c)average images from different scene category, statistical

regularities is not recognizable. (d)average images from same scene category, there

exists clearly statistical regularities.(better view in color edition)

same scene category. Those statistical regularities are learned in our model as
scene gist components.

2.2 Learning Gist Component

Since we have demonstrated that there are statistical regularities within scene
images sampled from same category ensemble, our assumption is that if those
regularities were learned as prior knowledge, we could construct highly efficient
representation for natural scenes.

Let X=[x1,x2,. . . ] be the matrix of images from the ensemble of one scene
category, W=[w1,w2,. . . ] be the filter basis, WT be the first T rows of W, and
AT be the first T columns of A. Since given the number of T, the optimal Ã
and W̃ should minimizes the reconstruction error,

W̃ = arg min
W

‖X−AT (WTX)‖F , (3)

where ‖·‖F is the Frobenius norm, defined as: ‖Y‖F =
√

Tr(Y	Y). According to
Eckart-Young theorem [17], the optimal solution to Eq .3 is the PCA basis of the
sample matrix, that is, W is ensemble of the eigenvectors for sample covariance
matrix, and A=W−1. Given the threshold T, and a scene image x, then

ŝ = WTx (4)

we can reconstruct the scene image to minimize the reconstruction error by:

x̂ = AT ŝ (5)
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Fig. 4. First 32 Gist components Ai
T from 4 scene categories i

We learn gist components AT and WT respectively from 8 category ensembles
based on PCA components.1 In Fig.4, we show first 32 gist components Ai

from 4 scene categories i. Obviously it reveals that the gist components have
holistic spatial property for corresponding scene categories( refer the example
scene images in Fig.1), we can see that the gist components are the holistic
components for every scene category.

Because of the adaptive property and orthogonality of PCA basis, the energy
of the image signal focuses on the first few principal basis. Fig.5 illustrates that
two coast images are projected to the coast PCA basis, the amplitude of coef-
ficients is focused on first few gist components, and the series of small images
below the horizontal-axle are the reconstructed images by increasing the thresh-
old T, from 5, 10, 20, 50, 100, 200, 500. Empirically with T around 200, the
perceptual loss can be hardly perceived.

Fig. 5. Two coast images are projected to the 3072 PCA basis. The vertical axle is the

coefficient of every PCA basis. The two images above the horizontal axle are the original

image and the downsampled image. The series of scene image below is reconstructed

by tuning threshold T, from 5,10,20,50,100,200 to 500.

1 We learn PCA components respectively on down-sampled 32×32 RGB images from

different category ensembles, so that learned PCA components is 32×32×3=3072

dimensional.
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2.3 Discriminative Property of Gist Components

We have learned the gist component pair (Wi
T ,Ai

T ) for different scene categories
i, then, what is the difference between (Wi

T ,Ai
T ) and (Wj

T ,Aj
T ), while i�= j? It

is found that the gist components have discriminative sparse property between
different categories: When one scene image is projected to the PCA components
from the same scene category, the coefficients of gist components appear to be
sparse(focused on first few components), otherwise are not. Fig. 6 gives two
examples: a coast scene image is projected to gist components of mountain, and
the other one is a mountain scene image projected to gist components of coast,
in both conditions the coefficients of basis are not sparse. Then, threshing the
coefficients would bring on the reconstructed image signals both great energy
and perceptual loss, as shown in Fig. 6.

Fig. 6. a) and b) Threshing the gist component coefficients would lead to great signal

energy and perceptual loss if scene image is projected to gist components of other scene

category

In the following Experiment section, we apply this discriminative property
of gist components to develop a simple nonparametric classification algorithm,
based on minimizing the scene reconstruction loss.

3 Experiment

Scene classification task is to assign each test image to one category of scene,
Fig.1 shows the example scene images from the dataset[4], which includes 8
categories of scenes. The performance is illustrated by a confusion table, and
overall performance is measured by the average value of the diagonal entries of
the confusion table, see Fig. 7 and Table 2.

3.1 Gist Subspace Classification Method

For each scene category i, we have learned gist components Wi
T and Ai

T on
corresponding scene category ensembles. Then given one scene image x∈ RN ,
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si=Wi
Tx, x̂i=Ai

T si. Relying on the discriminative property of gist components
shown in Section 2.3, we can classify x by assigning it to the scene category i
that minimizes the reconstruction error between x and x̂i:

min
i
εi(x) = ‖x− x̂i‖2 = ‖x−Ai

T (Wi
T x)‖2, (6)

Algorithm below summarizes the complete scene classification procedure.

Table 1. Gist Subspace classification algorithm

Algorithm : Scene classification

1:Input: k pair of gist components (W1
T ,A1

T ),(W2
T ,A2

T ),. . . ,(Wk
T ,A1

k) for

k scene categories, where Wi
T ∈ R

T×N ,Ai
T ∈ R

N×T . And a test scene image x∈ R
N .

2:Compute the gist representation si=Wi
T x, for every pair of components i.

3:Compute the reconstruction errors εi(x) = ‖x − Ai
T (Wi

T x)‖2, for every pair

of components i.

4:Output: identity(x)=argmin
i

εi(x)

For the sake of comparison with other methods, we learn our gist components
of each categories from downsampled 48×48 gray images, which ignore the in-
fluence of color information, then the threshold T is set empirically as 150, so
that the learned gist components Wi

150 ∈ R150×2304,Ai
150 ∈ R2304×150. Experi-

ment has been repeated ten times with different 200 (75% of each scene category
ensemble) randomly selected images for learning scene gist components and the
entire ensemble of images for test images for scene classification.

3.2 Result

Fig. 7 shows the confusion table for scene classification. The average performance
is 88.75%. In Table 2, we compare our algorithm with other two methods[4,10],
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Fig. 7. Confusion table of scene classification. The average performance is 88.75%.
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Table 2. Comparison of our algorithm with other scene classification methods

Method Performance

Gist Subspace 88.75%

Spatial Envelope[4] 83.75%

pLSA[10] 86.65%

from which we can see our Gist Subspace classification method achieves the best
performance. This experiment demonstrates the computational efficiency of the
scene gist representation.

4 Discussion and Conclusion

The scene gist components AT and WT include the prior knowledge through the
learning process. We conjecture those adapted components may act like the spe-
cialized neurons responsible for encoding spatial layout of the scene image in the
visual cortex. Our work supports the assumption that there is close relationship
between the natural image statistics and the neural representation[7].

On the other hand, there is in-depth implication beyond the discriminative
property of gist components. The learning procedure for gist components is based
on the Principal Component Analysis. Mathematically, PCA, as the classical lin-
ear technique for dimensionality reduction, is to discover the intrinsic structure of
data lying on or near a linear low-dimensional subspace in the high-dimensional
input space. So that different ensembles of scene category may be different sub-
spaces RM embedded in high dimensional space RN , where M!N, and the dif-
ferent scene gist components approximate the unit basis spanning each subspace.
When a natural image is projected to the subspace of the same scene category,
energy of signal concentrates on first few basis, otherwise it does not(refer to Fig.
6). That is why the Gist Subspace classification algorithm works. Our findings
correspond with previous work on manifold learning [18] that the natural images
are embedded in a low-dimensional manifold. Our further work would focus on
generalizing a perceptual-meaningful manifold structure for natural images.

To conclude, we propose a holistic generative model of natural image. The
scene classification experiment demonstrates its efficiency on representing natu-
ral scene image. Moreover, its inner connection to the more general modeling of
natural image is discussed.
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Abstract. Most multi-camera vision applications assume a single common 
color response for all cameras. However, significant luminance and chromi-
nance discrepancies among different camera views often exist due to the dis-
similar radiometric characteristics of different cameras and the variation of 
lighting conditions. These discrepancies may severely affect the algorithms that 
depend on the color correspondence. To address this problem, this paper pro-
poses a robust color correction algorithm. Instead of handling the image as a 
whole or employing a color calibration object, we compensate for the color dis-
crepancies region by region. The proposed algorithm can avoid the problem that 
the global correction techniques possiblely give bad correction results in local 
areas of an image. Many experiments have been done to prove the effectiveness 
and the robustness of our algorithm. Though we formulate the algorithm in the 
context of stereo vision, it can be extended to other applications in a straight-
forward way. 

Keywords: Color correction, stereo images, OF-SIFT, mean-shift. 

1   Introduction 

Stereo vision has traditionally been, and continues to be, one of the most extensively 
investigated topics in computer vision. Generally, a vision algorithm employs two or 
more images to recover depth information of a specific scene. In the algorithms pre-
sented, some assumptions about the physical world and the image formation process 
are used explicitly or implicitly. For example, surfaces in the scene are assumed to be 
Lambertian ones whose appearance does not vary with viewpoint and the multiple 
cameras employed are assumed to have uniform properties. Based on these assump-
tions, numerous algorithms have emerged and the increased sophistication of newer 
algorithms is producing a commensurate improvement in their performance [1].  

However, these assumptions are not always true in real applications. For example, 
one can obtain stereo images with consistent color appearance in some cases, such as 
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when the Benchmark images in the famous Middlebury dataset [2] are used to be 
stereo images, but it is not appropriate in a real application. In a real environment, 
significant luminance and chrominance discrepancies among different camera views 
often exist due to the dissimilar radiometric characteristics of different cameras — 
even of the same type, and the variation of lighting conditions. These discrepancies 
may severely affect the algorithms that depend on the color correspondence and these 
algorithms abound in stereo vision field [2]. So it is necessary to consider the color 
correction problem in such an application. Our aim in this paper is to present a color 
correction method to ensure the color consistency between multi-camera views. 

Previous work aimed at color correction mainly falls into two categories: calibrat-
ing cameras in order to obtain some desired response and processing images after 
acquisition.  A common approach taken toward the first category is to calibrate each 
camera independently through comparisons with known colors on a color calibration 
object [3, 4]. Though a feasible solution, it is indeed an inconvenient and complex 
procedure. Furthermore, once the system is moved to another environment, the whole 
procedure must be repeated again. The other category involves a large variety of 
techniques, such as histogram matching [5], multispectral imaging technique [6], 
energy minimization in camera view networks [7], dominant basic color mapping [8], 
general color transfer method [9], selective color correction [10], etc. These tech-
niques can compensate for color discrepancies between two images by using the 
global color distribution information of the two images. The advantage of the tech-
niques is that they don’t require a standard reference object for color calibration. 
However, they sometimes give bad correction results in local areas of an image. Be-
sides the two categories mentioned above, color correction has also been studied in 
the fields of printers, scanners and monitors [11, 12]. But few of the corresponding 
techniques developed have been extended to camera systems. 

In this paper, we propose a new color correction method based on image segmenta-
tion and keypoint matching. The general idea of our method is, instead of handling 
the image as a whole or employing a color calibration object, we compensate for the 
color discrepancies region by region. Regions and color discrepancies are acquired by 
segmenting the reference image and by comparing the color information of matched 
keypoints extracted from the images respectively. Here two state-of-the-art techniques 
are employed. One is mean-shift based segmentation technique [13] and the other is 
SIFT keypoint extraction technique [14]. We also present a novel optical flow based 
algorithm for SIFT keypoint matching — OF-SIFT, which can greatly speed up the 
keypoints matching. Though we formulate the problem in the context of stereo vision, 
the proposed method can be easily extended to other applications. 

The rest of this paper is organized as follows. Section 2 introduces our color cor-
rection algorithm. Section 3 gives a detailed description of OF-SIFT. Experimental 
results are shown in Section 4, and conclusions are finally given in Section 5. 

2   Methodology 

Our aim in this paper is to make the color appearances of two stereo images consistent 
with each other.  The two images are respectively named as target image and source 
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image. We use the proposed method to adjust the source image so that it conforms to 
the target image in color appearance. Since our focus is on color correction procedure, 
we assume that the two images used in this paper are geometrically calibrated and the 
epipolar constraint is basically satisfied between them. This is an acceptable and rea-
sonable assumption. For one thing, geometric calibration is a sophisticated technique 
[15] and can be done easily by using a known toolkit. For another, based on this as-
sumption, we can keep our attention on the main problem of color correction. 

In our procedure, we first extract SIFT keypoints from the two images and get 
matched pairs with OF-SIFT. Then the source image is segmented by mean-shift 
segmentation algorithm. The following color correction is performed region by re-
gion. For a given region in the source image, the color discrepancy is calculated by 
averaging the color discrepancies of matched pairs within it. If there are no matched 
pairs within the region, five keypoints will be added to the region and their corre-
sponding matches in the target image will be identified. In the following, we will 
clarify our color correction algorithm step by step.  

(1) Step 1: image acquisition. In the first place, two images, target image and 
source image, are acquired from two stereo cameras and we assume that they are 
geometrically calibrated. The source image is different from target image in color 
appearance for some known or unknown reasons.  

(2) Step 2: color image transformation.  Both of the acquired images, which are 
usually obtained in RGB color components, are transformed into the gray scale im-
ages and the HSI color images. Here, the gray scale images are used for SIFT key-
point extraction and the HSI color images are for the color correction.  

(3) Step 3:  SIFT keypoint extraction and matching. SIFT is one of the most widely 
used feature point detection technique in computer vision. The SIFT features are in-
variant to image scale and rotation, and can provide robust matching across a substan-
tial range of affine distortion, change in 3D viewpoint, addition of noise, and change 
in illumination. Therefore, there can be hundreds of matched pairs, even though the 
source image differs greatly with the target image. However�the original SIFT algo-
rithm searches keypoint pairs in an exhaustive manner and is time-consuming.  In 
order to speed up the process, we use the OF-SIFT algorithm we proposed, which will 
be discussed in Section 3, to find matched pairs.  

(4) Step 4: segmenting source image and calculating color discrepancy. In this step, 
the source image is segmented by using mean-shift based segmentation algorithm. 
Most of the segmented regions have SIFT keypoints, whose counterpart matches are 
in the target image. These regions are called matched regions. But there are other 
regions that do not have any SIFT keypoints within them for the extracted SIFT key-
points are sparse and do not have a uniform distribution. In this case, they are called 
unmatched regions.  

For a given matched region S, we calculate its color discrepancy with the target 
image by averaging the color discrepancies between the SIFT keypoints in this region 
and its corresponding matches in the target image. Note that both of the images are 
transformed into HSI ones. Therefore, the color discrepancies are computed on  three 
channels separately. We use the following color correction function to correct every 
pixel’s color information in the region, 
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where  ),( ji  is a pixel of the region S,  ),( jiCold is the value of the original color com-

ponent of the pixel ( C  can be H , S or I) , and ),( jiCnew is the corresponding new 

color value after correction of ),( jiCold , sx is a SIFT keypoint in region S of the 

source image, tx is its corresponding match in the target image, keyNumInS  is the 

number of keypoints in region S, and )x(CN s  and )( txCN  are the mean values of the 

colors within a  3×3 neighbor of sx and tx  respectively. 

For a given unmatched region, we compute its color discrepancy by using five 
keypoints. Fig. 1(a) shows the detail of this procedure. Suppose the shadow area in 
Fig. 1(a) is an unmatched region to be processed. In the first place, we find the four 
boundary points of the region: Top A, Left B, Bottom C and Right D. Then a rectan-
gle EFGH  is formed based on the four boundary points. After that, perpendicular 
bisector of each edge is drawn and we get two line segments between the two pairs of 
opposite edges. At last, we trisect each line segments with three points and label them 
all in the figure. There are five points (M0, M1, M2, M3 and M4) in together because 
two centre points are coincident in position. Therefore, the unmatched region has five 
added points as keypoints. The added keypoints are located the way that we explained 
above because we want them to sample as much color information of the entire region 
as possible. In addition to what we have done, another existing SIFT keypoint outside 
the unmatched region is also needed as a reference point for the five added keypoints. 
It is identified by finding the nearest SIFT keypoint to the added keypoint M0. In that 
case, we can easily find corresponding points of the five added keypoints according to 
their relative position to the reference keypoint and the corresponding match of the 
reference keypoint in the target image. After that, we can compute the color discrep-
ancy in the same way as matched regions. 

(5) Step5: color correction region by region. For each region in the source image, 
we first calculate the color discrepancy according to the way discussed in Step 4. 
Then all the pixels belonging to this region are corrected according to the region’s 
color discrepancy. This process is repeated until all the regions are processed. 

3   OF-SIFT 

Each SIFT keypoint is described by a 128 high dimensional vector. To get the best 
candidate match for a SIFT keypoint in the source image, the closest neighbor and the 
second-closest neighbor should be identified first.  The closest neighbor is defined as 
the keypoint with minimum Euclidean distance in the target image and the second-
closest is the one with the second closest distance. After that, a ratio of the closest 
distance to the second closest distance is calculated to determine whether to accept the 
closest neighbor as the correct match or discard it as a false match. This is the way 
SIFT algorithm takes to obtain the matched pairs. 
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However, an exhaustive search process is involved to establish each pair of 
matched keypoints. That means, for each keypoint in the source image, that we need 
to calculate the distances of the keypoint and all of the other keypoints in the target 
image to determine the closest and second-closest neighbors. Obviously, it is a time-
consuming process. In order to speed up the processing, we present a new algorithm 
based on optical flow calculation – OF-SIFT. 

      
 (a)                (b)                                        (c) 

Fig. 1. (a) is an illustration of how to add five keypoints for an unmatched region in step 4 of 
our color correction method. (b) and (c) are the keypoint matching performance varied with 
widow width in OF-SIFT. 

The general idea of OF-SIFT is as follows. For each keypoint in the source image, 
we calculate its optical flow by Horn-Schunks algorithm [16]. According to the opti-
cal flow, we can get an estimation of the potential match’s position in the target im-
age. However, this estimation is not accurate enough because of the existence of noise 
and the algorithm itself. Subsequent keypoint matching is proceeded within a rectan-
gle window centered at the estimated point.  When making a decision on the true 
matched pair, a relaxed epipolar constraint should be satisfied. This means that when 
a keypoint in the source image lies in scan line i, its corresponding match in the target 
image should lie in scan line i-1, i or i+1. We check the matched pair this way be-
cause generally speaking, the calibration can not be so precise that the corresponding 
match lies exactly in the same scan line. Besides that, we also set a discrepancy 
threshold T ranged [0, 1] to control the acceptance level of color discrepancy (In our 
process, the HSI channels are all scaled to [0, 1]). If the color discrepancy of the 
matched pair is smaller than T, we accept them as a true matched pair. Otherwise, 
they are discarded as a false matched pair. 

For the selection of the matching window size, we have the following considera-
tions. Since the images in our experiment are geometrically well calibrated and we 
assume they satisfy the relaxed epipolar constraint, the height of the matching win-
dow is set to be 3 pixels. This is able enough to tolerate some errors in actual practice. 
As for the width of the matching window, we have done a lot of experiments to exam-
ine its effect on matching performance. All the 38 pairs of stereo images in our ex-
periments are selected from the Middlebury dataset [2]. They are all well calibrated. 
We vary the window width to see its influence on the numbers of true matches and 
the true matching rates. In order to see the results clearly, graphs of only three pairs of 
images (Tsukuba, Poster and Bar2) are shown in Fig. 1(b, c). Other results that do not 
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appear in the Fig. are nearly the same as those of the three. The graph (b) in Fig. 1 
shows that with the increase of window width, the total matched pairs increase ac-
cordingly. But when the width is larger than forty, the numbers remained unchanged. 
We can also find from graph (c) that the true matching rates vibrate violently when 
the width is small. However, when the width increases larger than forty, the curves 
stay flat. Therefore, a width of forty pixels is an appropriate selection for the match-
ing window, because larger window will not improve the performance. Instead, it will 
cost much more processing time.  

4   Experiments 

Many experiments are done to examine the performance of OF-SIFT and the pre-
sented color correction algorithm.  All the 38 pairs of stereo images mentioned in 
Section 3 are employed in our experiments. Due to space limitation, only results of 
the mostly used four pairs (Venus, Tsukuba, Teddy, Cones) are reported here. All the 
programs are run in a computer with Pentium 4 CPU 2.93GHz and 1G memory. 

4.1   Performance of OF-SIFT 

The original SIFT algorithm was implemented by the author in Matlab environment. 
In order to compare our OF-SIFT with SIFT fairly, all the programs are run in Matlab 
environment. 

Table 1 lists the experimental results. The first column in the Table is the aspects to 
be compared. They are the true matched pairs, the matching operations (One match-
ing operation means to calculate the Euclidean distance between two keypoints one 
time.), time consumed in the whole matching process,  reduced matching operation 
and time compared with SIFT respectively. We can see clearly that our OF-SIFT can 
find more matched pairs than SIFT. That’s because SIFT searches the matched  
keypoints in the entire target image. In order to avoid the false matches, the strict 
judgement is needed. On the contrary, OF-SIFT restricts the searching scope to a 
reasonable smaller window area and the candidates of the matched pairs obtained are 
more likely to be true. The Table also indicates that OF-SIFT costs far less matching 
operations, therefore far less time than SIFT. At least 97% matching operations and 
matching time can be saved. This is a critical advantage for real-time applications and 
it demonstrates the efficiency of OF-SIFT.  

Table 1. Comparison of SIFT and OF-SIFT. For the consideration of limited paper length, 
results of only four images are reported here. 

 Venus Tsukuba Teddy Cones 

SIFT/OF-SIFT True Matched Pairs 397/450 344/416 417/486 641/753 
SIFT/ OF-SIFT Matching Operations 532170/6141 595968/7343  911028/7723 2202175/14046 
SIFT/ OF-SIFT Matching Time (s) 4.697/0.060 5.119/0.111 8.271/0.070 21.368/ 0.120 
Reduced Matching Operations (%) 98.84 98.76 99.15 99.36 
Reduced Matching Time (%) 98.72 97.83 99.15 99.44 
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4.2   Performance of Color Correction Algorithm 

In this part, we will examine the performance of our color correction algorithm. Im-
age pairs for experiments are all from Middlebury dataset. In each pair, one image is 
adjusted to be different from the other in color appearance. The adjusted image is 
treated as source image and the other one as target image. Then we use our proposed 
algorithm to correct the adjusted image to be the same as the original one as possible. 
The reason for employing the Middlebury dataset and adjusting one image as the 
source image is based on the following considerations. Middlebury dataset is a pub-
licly available and widely accepted dataset in stereo vision. All the image pairs are 
well calibrated and there is ground truth depth information for each pair. If we use 
these images to conduct our experiments, the acquired results can be objectively com-
pared with the standard known information from the dataset. That will make our con-
clusion more convincing. 

We adjust the images separately on three channels of H, S and I, using the Photo-
shop software. We select regions of different sizes in the image to adjust their colors.  
Different regions have different adjustments and the largest variation in pixel value 
from the original image is up to 25%. This means we set the threshold T as 0.25. We 
program our algorithm in Microsoft Visual Studio .NET 2003 environment and the 
experimental results are evaluated from the following three aspects. 

 

   
   (a) Original                           (b) Before correction                 (c) After correction 

   
   (d) Original                           (e) Before correction                 (f) After correction 

Fig. 2. Illustration of color correction results for subjective evaluation. The first row lists Venus 
images and the second Tsukuba. Each row from left to right, is respectively the original image, 
adjusted image before correction and result image after correction. 

4.2.1   Subjective Evaluation 
To compare color information qualitatively is a known hard problem. Objective 
evaluation usually gives a qualitative value to represent the goodness of the results. 
But it does not necessarily coincide with the human perception. This was noted by 
Cinque et al. [17]:“Although it would be nice to have a quantitative evaluation of 
performance given by an analytical expression, or more visually by means of a table 
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or graph, we must remember that the final evaluator is man.” Therefore, we should 
assess our color correction results in a subjective manner. Fig. 2 displays the results of 
two pairs of images, Venus and Tsukuba. Each row from left to right, they are respec-
tively the original image, adjusted source image before correction and the result im-
age after correction. We can see clearly that the adjusted image differs greatly with 
the original one. Furthermore, since different regions of one image are adjusted dif-
ferently, their color discrepancies are not the same. But after correction of our algo-
rithm, the result images look nearly the same as the original one. 

4.2.2   Histogram Evaluation 
We also assess our color correction results in the form of histogram comparison. 
Color channels are compared separately. In order to see the difference clearly, we 
draw the histogram envelop curves of the original image, adjusted source image be-
fore correction and the result image after correction, together in one graph. The range 
of the three horizontal axes is scaled to [0, 1] and that of the vertical axes is normal-
ized by the total pixel number of the image. Obviously from Fig. 3 we can see that, 
histograms of the Venus and Tsukuba result images have a greater resemblance with 
the original ones than that of the adjusted images. 

 

   
(a) H channel                   (b) S channel                                      (c)  I channel 

 
(d) H channel                   (e) S channel                                      (f)  I channel 

Fig. 3. Illustration of color correction results for histogram evaluation. The first row lists Venus 
results and the second Tsukuba. Each row from left to right, they are respectively the histo-
grams of H, S and I channels. 

4.2.3   Stereo Vision Evaluation 
We also evaluate our algorithm in the context of stereo matching. One state-of-the-art 
stereo matching algorithm, which is based on cooperative optimization [18] and is the 
best ranked algorithm [2], is employed in our experiment. The adjusted source image 
before correction is first used to calculate the disparity map. Then the result image is 
used the same way. At last, their results are compared with the ground truth disparity 
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map issued by the Middlebury website. Fig. 4 shows our experimental results of Ve-
nus and Tsukuba image pairs. We can find that the disparity maps calculated by the 
adjusted images have much noise and differ greatly with the original ground truth 
maps. But after correction, they are much smoother and show greater resemblance to 
the ground truth disparity maps. Due to the sake of exactly known disparity informa-
tion, we can give a quantitative comparison of the color correction performance. We 
compare our calculated disparity maps with the ground truth ones. Pixels diverting 
from the ground truth values larger than one are treated as bad pixels. Then we com-
pute the percentage of the bad pixels in the entire map. Table 2 shows the results, 
from which we can easily see that the error rates drop sharply after our color correc-
tion process. Besides, the poor performance of stereo algorithm confronting with the 
color discrepancy also reveals an existing problem that, some stereo matching algo-
rithms neglect the color correction procedure. Although Middlebury website provides 
convenient stereo image pairs that are well calibrated as a platform to compare stereo 
matching algorithms, we may encounter the challenging problem in real applications 
that the images captured by different cameras may not coincide with each other in 
color appearance. In this case, even the best existing stereo matching algorithm may 
not work perfectly. This reflects the meaning of our work from another point of view. 

 

 
  (a) Ground truth                         (b) Before correction                      (c) After correction 

 
  (d) Ground truth                         (e) Before correction                      (f) After correction 

Fig. 4. Illustration of color correction results for stereo vision evaluation. The first row lists 
Venus disparity maps and the second Tsukuba. Each row from left to right, is respectively the 
disparity maps of original ground truth, calculated by using the adjusted image before correc-
tion and by the result image after correction. 

4.3   Experiments under Extreme Conditions 

Experiments in Section 4.2 are conducted when the source and original images have a 
discrepancy up to 25% in color value. In this part, we evaluate our algorithm in the 
condition of greater discrepancy. Fig. 5 displays the results of Venus and Tsukuba 
image pairs. Different regions of source image have different adjustments and the  
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Table 2. Error rates comparison of disparity calculation before and after color correction 
process 

Error Rates of Different Images 
 

Venus              Tsukuba              Teddy              Cones 

Before Correction(%) 
After Correction(%) 

44.64              12.37                  35.26                64.90 
4.17                6.46                    15.01                24.85 

 
 
most salient variation in pixel value from the original image is up to 80%. That means 
we set the discrepancy threshold T as 0.8. 

From the results, we can see that the adjusted source images look absolutely differ-
ent from the original one. Fortunately, our algorithm works well enough to correct 
most of the regions to make them resemble to the original ones. But there are still 
some regions not properly corrected because of the inaccurate color discrepancies, 
which are resulted from the false matched pairs. Although the relaxed OF-SIFT can 
reduces false matches compared with SIFT, it can not eradicate mismatches from 
happening. Therefore, when there are regions with false matched pairs, their color 
correction results may not be correct. 

 

     
(a) Original                               (b) Before correction                          (c) After correction 

   
(d) Original                               (e) Before correction                          (f) After correction 

Fig. 5.  Color correction results under extreme conditions. The first row lists Venus images and 
the second Tsukuba. Each row from left to right, is respectively the original image, adjusted 
image before correction and result image after correction. 

4.4   Experiments on Real World Scene 

The images used in the above experiments are all from Middlebury dataset. In this 
part, we present our results on real world scene. The stereo images are taken by two 
cameras, FinePix S5000, with different parameter settings. The original right image  
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(a) Original left image                        (b) Original right image            (c) Right image after correction 

Fig. 6. (a) and (b) are the original image pair taken from stereo cameras. (c) is the right image 
after color correction. 

 

differs greatly in color appearance with the actual scene color. But after our correction 
process, their color consistency is improved a lot. Fig. 6 shows our results.  

5   Conclusions 

In this paper, we present a color correction algorithm to compensate for the color 
discrepancy between two stereo images. Instead of correcting the image in a global 
manner or employing a calibration object, our color correction process is conducted 
region by region. This makes our method more convenient and accurate. Many ex-
periments have also been done to prove the efficiency and robustness of the proposed 
algorithm. But for the consideration of limited paper length, only a few of them are 
reported. The results of other image pairs are consistent with the conclusion. 

We also present an optical flow based algorithm to speed up the SIFT keypoint 
matching process. This is indeed effective. However, SIFT keypoint extraction and 
mean-shift based segmentation are both time-consuming. How to find a more rapid as 
well as more robust keypoint extraction and image segmentation methods is a chal-
lenging work in the future. In addition, how to eradicate mismatches of SIFT key-
points is another problem to be researched. 

Although we formulate the color correction problem in the context of stereo vision, 
the presented algorithm can be extended to other applications in a straightforward 
way. For example, if there are more than two cameras in a vision system, we chose 
one as the reference camera. Images captured by other cameras can be separately 
corrected according to the target image from the reference camera. Another example 
can be found in multi-view video coding. In this field, different coding schemes have 
been proposed which explore not only temporal correlation between subsequent 
frames but also the special correlation between neighboring camera views. Unfortu-
nately, ununiform camera responses often exist. In this case, the presented algorithm 
can be helpful. 
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Abstract. In this paper, we address the problem of efficient human ac-

tion detection with only one template. We choose the standard sliding-

window approach to scan the template video against test videos, and

the template video is represented by patch-based motion features. Us-

ing generic knowledge learnt from previous training sets, we weight the

patches on the template video, by a transferable distance function. Based

on the patch weighting, we propose a cascade structure which can effi-

ciently scan the template video over test videos. Our method is evalu-

ated on a human action dataset with cluttered background, and a ballet

video with complex human actions. The experimental results show that

our cascade structure not only achieves very reliable detection, but also

can significantly improve the efficiency of patch-based human action de-

tection, with an order of magnitude improvement in efficiency.

1 Introduction

This paper considers the problem of human action detection. Given a template
video clip containing an actor performing a particular action, we would like
to localize similar actions in our test videos. A closely related problem is action
recognition, whose primary goal is to classify a video sequence into one of several
pre-defined categories. The goal of action detection is distinct from that of action
recognition – we would like to localize the specific position (in both time and
space) of the target action in a video, rather than getting a single class label. In
particular, we are interested in the scenario where the target action is specified
using a single video clip. This is a natural and realistic scenario in many real-
world applications, e.g., surveillance, video retrieval, etc.

There is a large literature on action recognition and detection. Moeslund et al.
[1] provide a survey of the literature on action recognition. We only give a brief
review of the closely related work here. Niebles et al. [2] run an interest point
detector over video sequences, then apply latent topic models to categorize and
localize human actions. Ke et al. [3] apply the AdaBoost learning framework
to the task of human action detection, and volumetric features are used for
efficient video analysis. Laptev and Pérez [4] use a similar boosted space-time
window classifier to localize human actions in movies. All these learning based
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approaches heavily rely on a large number of training examples. However, in
many real-world applications, it is unrealistic to assume that we have access to
a large amount of training data. For example, in the context of example-based
video retrieval, we typically have only one short video clip submitted by the
user.

One example of action detection with only one template is the work of Shecht-
man and Irani [5]. They compute the distance between two videos by exhaus-
tively comparing patches centered around every space-time point. We use a
similar patch based matching method, but we weight patches by their saliency,
leading to a more efficient algorithm. In [6], Ke et al. propose a template match-
ing scheme combined with a part based pictorial structure model to detect ac-
tions in crowded scenes with only one template. The limitation of this work is
that one has to manually segment the parts (in space/time volumes), which can
be time-consuming.

In our previous work [7], a patch based matching scheme is used for action
recognition with a single clip as the template. We also propose a transferable dis-
tance function in [7] to weight those patches by their saliency. The transferable
distance function is learnt from previously training sets, and can be applied to
videos of new actions without further learning. The work presented here is based
on [7]. However, in this paper, our main goal is to address human action detec-
tion, which does not require the pre-processing human detection and tracking
step on test videos as [8,7]. The main contributions of this paper are two-fold, in
addressing the efficiency issues. First, we propose a variant of the motion feature
in Efros et al. [8] using a histogram representation. This feature representation
can be computed efficiently using integral images. Second, we propose a cas-
cade structure for action detection with only one template, which is based on
the transferable distance learning framework of [7], and significantly boosts the
efficiency of our approach.

2 Human Action Detection

Given a template action, the objective of human action detection is to localize
all similar actions in test videos. In this paper, we choose the standard sliding-
window approach, that is to slide the template action video clip T over all
locations on the test video V . The distance between T and V at location l is
denoted as D(T,L), where L is the video segment of V centered around location
l. An action is detected if the distance falls below a threshold. To compute
the distance D(T,L), we choose the patch-based action comparison approach
proposed in [7]. However, we represent the motion feature using a histogram of
four-channel motion flow, which enhances the efficiency of action detection.

2.1 Motion Feature

Our motion feature is a variant of the descriptor proposed by Efros et al. [8]
which has been widely used in action recognition. First, we compute the optical
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flow at each frame, then split the optical flow vector field F into the horizontal
and vertical components, Fx and Fy. They are further half-wave rectified into
four non-negative channels F+

x , F−
x , F+

y , F−
y . Then, those four channels are

blurred using a Gaussian kernel.
One of the limitations of this four-channel descriptor is its large size. For a

small 20 × 20 patch, the dimensionality of the four-channel descriptor is 4 ×
20× 20 = 1600. The distance between two feature vectors cannot be computed
efficiently with such a high dimensional feature. In this paper, we break the
patch into 4 × 4 cells. Each cell is represented by a four-bin histogram, where
each bin corresponds to one channel in the four-channel motion descriptor [8].
The value of each bin is the accumulation of the weighted votes of all pixels in
the cell. In the end, we will obtain a feature vector with dimensionality only 4×
4×4 = 64. This motion feature is closely related to the histogram of optical flow
used in [4]. The similarity between two feature vectors can be computed using
normalized correlation or Euclidean distance. Moreover, to efficiently compute
feature vectors, the integral image representation [9] is used for each histogram
bin.

2.2 Patch Based Action Comparison

For the task of action detection, when using only one template, generalization
is normally very difficult because of the intra-class variation among actors. In
order to alleviate the effect of this variation, Ke et al. [6] manually break the
template model into several parts over space and time. Instead, we use a simple
patch-based approach that requires no manual interaction.

Following the work of [7], we compute distance D(T,L) by comparing the
patches from two video segments T and L. Each frame is decomposed into a
number of 20× 20 patches automatically, then D(T,L) is computed as follows:

D(T,L) =
M∑
i=1

S∑
s=1

min
r∈Rs

d(tis, qir) (1)

where tis denotes the s-th patch on the template frame i, and qir denotes the r-
th patch on the test frame i. Rs is the corresponding search region of s-th patch.
M is the number of frames in a video segment. S is the total number of patches
on each frame. d(·, ·) refers to the distance between two patches. For simplicity,
we ignore the action speed variation between people, and directly correspond
the frames from T to L in sequence. One could also apply dynamic program-
ming based approaches to find the frame correspondence and thus alleviate the
variation in speed.

3 Cascade Structure

As in most object detection tasks, e.g. face detection and car detection, hu-
man action detection is a rare event detection. Hence, when using a window-
scanning approach, it is important to efficiently reject the majority of negative
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sub-windows. Viola and Jones [9] proposed a cascade structure in the AdaBoost
learning framework. Most of the negative sub-windows are rejected by simpler
detectors efficiently, and then more complex detectors are applied to achieve low
false positive rates. However, the training of boosted detectors requires a large
number of both positive and negative training samples. In the case of human
action detection, it is difficult and even impossible to collect such a large train-
ing set for any given action. In particular, in our scenario, only one template is
available for each action category.

In order to build a cascade structure with only one template, we use the trans-
ferable distance function learning proposed in [7]. We first define the terminology
we will use. The source training set denotes the large dataset we already have
at hand, for example a standard benchmark dataset (e.g. KTH). The template
denotes the video we use to detect an action in test videos. Note that the source
training set does not contain the same action as the template. In this section,
we will review the learning of the transferable distance function, then introduce
the construction of the cascade structure.

3.1 Transferable Distance Function

This idea of knowledge transfer has been exploited in the context of object
recognition and identification [10,11]. In particular, Ferencz et al. [10] propose
to predict a patch’s saliency for object identification by its visual feature called
a hyper-feature. In human action recognition, we conjecture that there also ex-
ists a certain generic relationship between the saliency and the appearance of a
patch [7]. For example, “stretched-arm-like” and “stretched-leg-like” patches are
more likely to be salient than other patches. This generic relationship is “trans-
ferable”, and we can employ this knowledge for patch weighting of unknown
actions. In [7], we proposed the learning of a transferable distance function,
which can extract generic knowledge of patch weighting from previous training
sets, e.g. benchmark action datasets. When it is applied to unknown actions, the
algorithm will look for salient patches and assign them high weights, that are
also the parameters of the distance function for matching based recognition.

Given a patch i, the weight assigned to this patch is wi, and we represent the
hyper-feature of this patch as a |V |-dimensional vector fi based on a codebook
approach, where |V | is the codebook size. The j-th element of fi is set according
to the distance between the feature vector of this patch and the j-th visual
word. The feature vector of each patch consists of histogram of oriented gradient
(HOG) [12] and patch positions. Please refer to [7] for more details. We assume
that fi and wi have a linear relationship via the parameter P:

wi = 〈P · fi〉 (2)

Then we will have w = PT F, where each column of F denotes the hyper-feature
vector of a patch, Each element of w denotes the weight of a patch. The objective
is to learn P from the source training set. After the training, given any new action
video, even if its action does not exist in the source training set, we can compute
the weight of each patch of this video by Eqn. 2.
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The learning of P follows the focal learning framework in [13]. The distance
function obtained by w = PTF will satisfy the constraints that the distance
between dissimilar actions is larger than similar actions by the margin 1, that is
〈wi · (dij − dik)〉 > 1, 〈PTFi · (dij − dik)〉 > 1, where dik is the distance vector
between the similar action i and k, and dij is the distance vector between the
dissimilar action i and j. The weights are enforced to be non-negative, 〈P ·fm〉 ≥
0. For simplicity, we replace dij − dik as xijk. The max-margin optimization
problem can be formulated as

min
P,ξ

1
2
‖P‖2 + C

∑
ijk

ξijk

s.t. : ∀i, j, k : 〈PTFi · xijk〉 ≥ 1− ξijk

∀m : 〈P · fm〉 ≥ 0 ∀i, j, k : ξijk ≥ 0

(3)

where ξijk is the slack variable and C is the trade-off parameter, similar to those
in SVM. See [7] for more details about the solving of this optimization problem.

3.2 Construction of Cascade Structure

A key feature of the cascade structure is to use simpler but efficient detectors
at the early stage to reject most negative sub-windows. The learnt distance
function provides us a useful tool to obtain such a simple detector. After the
learning on the source training set, we are able to compute the weights (i.e.
saliency) of the patches on any given template action through Eqn. 2, and rank
these patches by their saliency. At the early stage of the cascade structure, for
the matching task, we can use only a subset of patches with high weights on the
template video. For example, we can choose only two patches from each template
frame with top-2 high wights at the first stage of the cascade structure. For a
template video with 25 frames, only 50 patches are used at the first stage, so
it could be very efficiently matched with all the sub-windows in test videos.
The majority of negative sub-windows can be discarded after this stage. For the
following stages, we can incrementally increase the number of patches utilized
in the template video, and all patches will be used at the final stage in order
to achieve an accurate matching. At the k-th stage of our cascade structure,
distance Dk(T,L) is computed as:

Dk(T,L) =
M∑
i=1

∑
s∈Ek

i

wis min
r∈Rs

d(tis, qir) (4)

where Ek
i is the set of effective patches on the i-th frame at the k-th stage, and

wis is the weight assigned to the template patch tis.
In the cascade structure of [9], the detection and false positive rates of each

stage can be controlled using training and validation sets. However, in our sce-
nario, only one template video is available for each action category, and there is
no training dataset containing the same action as the template. Here we choose
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a rather simple way to control the performance of each stage. The detection
threshold of a stage is set so that a certain number of sub-windows with high
matching distances will be discarded. The remaining sub-windows will be eval-
uated by the next stage of the cascade structure. An example of the cascade
structure is given in Fig. 1. Note that it is possible that early stages of the
cascade structure may have high false negative rates and thus decrease the per-
formance of whole structure. However, the experimental results in Section 4.2
demonstrate our cascade structure achieves similar results to the direct scanning
method without using a cascade, which implies the early stages of our cascade
structure can reliably keep the true positive sub-windows.

Fig. 1. An example of the cascade structure. The red patches are the effective patches

on template frames. At the C1 stage, the top-2 patches of each frame with high weights

are used to match with the input sub-windows. At the C2 stage, top-5 patches are used

for matching. At the final stage, all patches are used.

4 Experiments

We evaluate our method on the cluttered human action dataset collected by Ke
et al. [6], and a ballet video sequence. We first review the human action datasets,
then present the experimental results.

4.1 Datasets

Weizmann Dataset [14]: The Weizmann human action dataset is a standard
benchmark human action dataset. It contains 93 sequences of nine actors per-
forming ten different actions. There are about 40−120 frames for each sequences.
This dataset is used as the source training set, so we choose the same figure-
centric representation as [7]. After computing the motion feature, we crop each
frame to 90× 60 and put the human figure in the center of the frame.

Cluttered Human Action Dataset [6]: The cluttered human action dataset
contains not only cluttered static backgrounds, but also cluttered dynamic back-
grounds, such as moving cars and walking people. There are 48 videos containing
110 actions of interest. Each video contains approximately 300−800 frames with
resolution 120 × 160. Five types of actions are labeled: one-hand waving, two-
hand waving, picking-up, pushing an elevator button, and jumping-jacks.
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4.2 Experiments on the Cluttered Action Dataset

For human action detection on the cluttered dataset, we first choose one template
video for each labeled action event. Except for the action of pushing an elevator
button, we use the sequences of the actor ido from the Weizmann dataset as
templates. For the action of pushing an elevator button, we choose the template
provided by Ke et al. [6]. Note that this selection of template videos increases
the difficulty of the task since the template and test videos are captured under
different instructions. All template videos contains only 20−25 frames, i.e. 1−1.5
complete action cycles.

The figure-centric representation is applied to template videos and all tem-
plate frames are normalized to 90×60. Representative frames of template videos
are shown in Fig. 2. After computing motion features, each frame is decomposed
into 40 patches. The size of a patch is 20× 20 and the length of the stride is 10.

Fig. 2. Action detection examples on the cluttered action dataset. Representative

frames of the template videos and the visualization of learnt weights are shown on

the left. The left bottom corner shows the color bar for the visualization. Correct

detection examples are shown on the right.

To meet the requirement of the transfer learning scenario, in our experiments,
the source training set does not contain the action of the template video. For ex-
ample, in the experimental step of jumping-jacks action, we remove the action of
jumping-jacks from the Weizmann dataset. Then the remaining sequences form
the source training set. After the training, we first compute hyper-features of
the template video. Then, we can obtain the distance function of the template
video through Eqn. 2. The detection of other actions follows the same experi-
mental setup. Note that for the experiment of each action, the source training
set does not contain the same action as template. The weights of the distance
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function are visualized in Fig. 2. As we can see, the high weights (red patches)
are assigned to the salient parts, such as the stretched-arm, and bent-back.

After training, we can build the cascade structure based on the learnt distance
function. In the experiments, the cascade structure consists of four stages. At the
first stage, there are only two effective patches on each template frame. At this
stage, the template video is scanned across the test video. Subsequent locations
are obtained by shifting the template video either 5 pixels along the x or y axis,
or 5 frames along the time axis. Similar to [6], the template videos are matched
with the test video under a fixed scale. The speed of this stage is 20 times faster
than using all patches on the template video. After the first stage, 90% of the
sub-windows are set to be rejected. The second stage has five effective patches
on each frame, and 80% of the remaining sub-windows from last stage will be
rejected. For the third stage, ten patches on each frame are effective and 80%
of the sub-windows will be kept at this stage. All patches on the template video
are effective at the final stage. These parameters of the cascade structure are all
the same for the experiments of each action.

Fig. 3. Precision-Recall curves of the action detection on the cluttered action dataset

Similar to [6], we project the obtained three-dimensional distance map to a
one-dimensional vector of score. Only the best detection is kept for each test
frame. The Precision-Recall curves are generated by changing the detection
threshold, as shown in Fig. 3. Since we choose a different way to scan the tem-
plate over test videos, our results are not directly comparable with [6]. We admit
this dataset is very difficult because of the cluttered background. However, by
only using the motion cue, our method is still able to achieve very good per-
formance for jumping-jacks, two-hand waving, and pushing an elevator button.
Due to the large intra-class variation of actors performing the picking-up action,
our method achieves very low detection rates on this action. One-hand waving
is often confused with the two-hand waving and jumping-jacks and thus has a
higher false positive rate. Example detections are shown in Fig. 2.

We give an example with more details in Fig. 4 about the detection of jumping-
jacks in a video which contains some confusing actions, such as one-hand waving
and two-hand waving. It is interesting to note that in the projected matching
distance, the confusing actions cause very low matching distances but they are
still much higher than the jumping-jacks action.

We also compare the results of using the distance function with and without
thee cascade structure. As shown in Fig. 3, except for the action of pushing
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Fig. 4. (a) Projected matching distance of the detection of jumping-jacks. (b) Example

detections. The true positives are highlighted in Frame #607, where the left corner is

the matching distance. The rest frames are all true negatives.

an elevator button, our cascade structure achieves better accuracy. Moreover,
the cascade structure is much more efficient. The methods are implemented in
Matlab/MEX. With a 2.40GHz Intel processor, to scan a template video with
25 frames over a test video with 800 frames, the cascade structure only takes
30.3 seconds, but it takes 348.2 seconds without using the cascade. There is an
order of magnitude improvement in efficiency by using the cascade structure.

4.3 Experiment on the Ballet Video

We apply our method to detect “spin” actions in a ballet video. Although this
ballet video is very “clean”, it contains more complex actions and two actors
are performing the same actions in each frame. In addition, the actress wears a
skirt and the appearance is very different to the template, which might cause
difficulty for shape-based methods (e.g. [6]).

The Weizmann dataset serves as the source training set. The learnt weights
on the template video are visualized in Fig. 5(a). Note that the actions in the

Fig. 5. (a) Representative frames of the template videos, and the visualization of learnt

weights. (b) Projected matching distance. (c) Example detections. The true positives

are highlighted in Frame #157, and the rest frames are all true negatives.
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Weizmann dataset are distinctly different from the “spin” action of ballet. Our
transferable distance function is still able to assign high weights onto the salient
parts such as the stretched-arms and legs. After training, we scan the template
over the test video using the cascade structure. The matching distances of correct
detections for the actor and actress are 2.31 and 5.81 respectively. Although the
matching distance for the actress is higher than the actor because of the clothing,
these distances are still much lower than any other portion of the video.

5 Conclusion

In this paper, we have presented an efficient human action detection approach
using only one template video. We have developed a histogram representation of
the four-channel motion descriptors [8], which can be efficiently computed using
integral images. Based on the learning of a transferable distance function [7], a
cascade structure has been proposed. Experimental results show that our cascade
structure achieves reliable detection results and improves the efficiency of the
patch based action detection method significantly.
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Abstract. Motivated by multi-scale edge detection in images, a novel

multi-scale approach is presented to detect creases on 3D meshes. In this

paper, we propose a probabilistic method to select local scales in the

discrete 3D scale space. The likelihood function of local scale at each

vertex is defined based on the minimum description length (MDL) prin-

ciple. By introducing some prior knowledge, the optimal local scales are

selected using Bayes rule. Therefore, the distribution of selected local

scales is piecewise constant and discontinuity adaptive. The discrete 3D

multi-scale representation of a given mesh can be constructed using an

anisotropic diffusion method. With the selected scales, creases are traced

by connecting the curvature extrema points detected on the mesh edges.

Experimental results show that geometrically salient creases are well de-

tected on noisy meshes using our method.

Keywords: minimum description length, Markov Random Field, multi-

scale, crease detection.

1 Introduction

Feature line detection is an essential step in geometry processing, which has nu-
merous applications in shape recognition, mesh simplification, mesh segmenta-
tion, non-photorealistic rendering, etc. Several methods for feature line detection
have been proposed on polygonal and point-sampled surfaces [1][2][3][4][5][6]. In
different applications there exist a variety of feature lines, such as creases [1], con-
tours and suggestive contours [7], apparent ridges [8], demarcating curves [9], etc.
In this paper, we propose a method for detecting creases on triangular meshes.
Creases are defined as the loci of points where the principal curvatures take
extrema along their corresponding principal directions [1]. Specifically, creases
include ridges and valleys, both of which are view-independent feature lines.

The general framework of crease detection in previous methods [1][5][6] in-
cludes estimating curvatures and curvature derivatives, tracing creases on mesh
edges, and post-processing of creases. These methods put emphasis on reliable
estimation of curvatures and curvature derivatives, which is crucial to detect
creases accurately. Therefore, they are well experimented on noiseless meshes
and achieve satisfying results. However, for the triangular meshes reconstructed
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c© Springer-Verlag Berlin Heidelberg 2010



428 T. Luo, H.-Y. Wu, and H. Zha

Input: 

Noisy mesh Discrete scale space Local scales Curvature estimation Creases 

Fig. 1. Flowchart of our method

from raw scanning data, noise is inevitable due to the accuracy of laser scanner,
perturbation and variation of reflectance property of the objects. Thus, previous
methods may detect many redundant lines, which are hard to be distinguished
from real creases.

To address this problem, we propose an approach to combining curvature
information at multiple scales so that the redundant lines are eliminated to a
large extent. The pipeline of our method is shown in Fig. 1. Given a noisy mesh
as input, we first generate its discrete 3D multi-scale representation using an
anisotropic diffusion method, which preserves the geometric features. Then, we
implement a probabilistic method for local scale selection at each vertex to com-
bine information in the discrete scale space. Based on the minimum description
length (MDL) principle, a likelihood is defined at each vertex given a local scale.
By introducing some prior knowledge about the distribution of local scales, we
compute the posterior probabilities using Bayes rule with a prior Markov Ran-
dom Field (MRF) model. The optimal local scale at each vertex is obtained
by finding the scale associated with the maximum posterior probability, which
makes the distribution of local scales piecewise constant and discontinuity adap-
tive. Finally, with the curvatures and curvature derivatives estimated at the
selected local scales, creases are traced by connecting the curvature extrema
points detected on the mesh edges.

Several methods for multi-scale feature extraction have been developed in [3][10]
[11]. In [3], a new technique for extracting line-type features on point-sampled ge-
ometry is presented. The key idea is to estimate the surface variation at multiple
scales using the size of neighborhood as a discrete scale parameter. Feature weights
are calculated to combine information at multiple scales. However, the thresholds
need to be adjusted manually. In [10][11], scale-dependent geometric features on
triangular meshes are detected in the scale space of a 2D representation encoded
by the surface normals. However, the required parametrization is time-consuming
and induces distortion of the surface area. Moreover, the geometric features are
blurred by Gaussian kernel convolution with 2D normal map. In [11], Novatnack et
al. combine the shape features for each point by taking the maximum value across
all scales weighted by the scale level in which the maximum detector response oc-
curs. In [10], analogous to the automatic scale selection method proposed in [12],
the scale is determinedwhere thenormalized feature response ismaximizedacross a
set of discrete scales. Recently, a multi-scale surface representation based on point
samples is presented in [13], where local weighted least squares fitting is applied
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to approximate shapes with different levels of smoothness. However, as the least
squares filter with symmetric Gaussian kernel is isotropic, features can not be pre-
served in the scale space. To preserve the geometric features in the discrete scale
space, a discrete 3D multi-scale representation of a triangular mesh is introduced
in this paper based on the anisotropic diffusion method in Section 2. In Section 3, in
order to combine information at multiple scales, we propose a probabilistic method
for automatic scale selection so that the distribution of local scales is piecewise con-
stant and discontinuity adaptive.

2 Multi-scale Representation of a Triangular Mesh

Motivated by edge detection in images, a multi-scale representation of a mesh
is proposed for crease detection in this section. We introduce an anisotropic
diffusion method in [14] to generate the discrete 3D scale space, which is efficient
and feature-preserving.

2.1 Anisotropic Diffusion

As demonstrated in [15], anisotropic diffusion has good performance to generate
multi-scale representation of images in 2D image processing. We implement an
extension of anisotropic diffusion in images to generate the discrete scale space
of a 3D mesh.

On a 3D mesh, the vertex-based anisotropic diffusion equation is expressed
as,

vt = div(g(||F ||)∇v) , (1)

where F denotes the estimation of normal variations on the mesh, div the di-
vergence operator and ∇ the gradient operator, respectively. The conduction
coefficient g(||F ||) is a function of the estimated normal variations. The value of
the function varies spatially in such a way to encourage smoothing in flat regions
in preference to smoothing around the sharp edges, which leaves the geometric
features preserved much better.

The face normal variation depicted in Fig. 2(b) is the key difference of our
approach from [16]. When the mesh is tessellated irregularly, it is more reliable
than vertex gradient magnitude therein. For each non-boundary vertex vi on a
mesh, ||Fi|| is defined as,

||Fi|| =
1
di

∑
fj,k∈v∗

i

arccos < n(fj), n(fk) > , (2)

where v∗i is the one-ring neighborhood of the vertex vi as shown in Fig. 2(a), fj

and fk are adjacent faces in the one-ring neighborhood, di is the degree of vi,
n(fj) and n(fk) are the face normals.
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(a) (b)

Fig. 2. (a) One-ring neighborhood of a vertex. (b) Illustration of normal variation.

To clamp the conduction coefficient g(||F ||) to the range [0, 1], the following
function is used,

g(x) =
1

1 + x2/c2
, (3)

where c is a constant.
The vertex gradient operator is defined as,

∇vi =
vj√
dj

− vi√
di

, vj ∈ v∗i . (4)

With the vertex gradient (4) approximated by the finite difference of the vertex
positions, the anisotropic diffusion (1) can be explicitly expressed as,

vi ← vi +
∑

vj∈v∗
i

1√
di

(
vj√
dj

− vi√
di

)(g(||Fi||) + g(||Fj ||)) , (5)

where vj is an adjacent vertex of vi, di and dj are the degrees of vi and vj

respectively.
We implement the above anisotropic diffusion (5) on a noisy mesh iteratively.

The discrete 3D scale space representation is constructed by a series of 3D shapes
at different levels of smoothness. The number of iterations is used as the scale
parameter. During this process, the correspondence of the mesh vertices between
different scales is kept, which preserves the topological connectivity of meshes.
Figure 3 shows a 3D model on which the anisotropic diffusion is applied 10
iterations. We can see that the geometric features are well preserved while the
flat regions are smoothed. The discrete 3D multi-representation of the triangular
mesh is illustrated in Fig. 4.

3 Probabilistic Estimation of Local Scale

With the aforementioned anisotropic diffusion method, we can efficiently generate
the discrete 3D multi-scale representation of a triangular mesh. To automatically
select a local scale for each vertex on the mesh, we present a probabilistic method
based on the minimum description length (MDL) principle. By introducing prior
knowledge, the local scales are selected using Bayes rule with a prior MRF model.
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(a) (b) (c) (d)

Fig. 3. (a) A stone Buddha model. (c) The smoothed model after 10 iterations. (b)

and (d) are curvatures estimated on (a) and (c) respectively.

3.1 Minimum Description Length

The basic idea of minimum description length (MDL) principle [17] states that,
given a set of hypotheses H and data set D, we should try to find the hypothesis
or combination of hypotheses in H that compress D most. Thus, the problem of
selecting local scales can be regarded as finding an optimal distribution of local
scales in the discrete 3D scale space that minimizes the description length of a
given triangular mesh.

A discrete 3D multi-scale representation of triangular mesh M0 can be ob-
tained using the anisotropic diffusion in Sec. 2. At each scale t, the original mesh
M0 can be decomposed into a smoothed mesh Mt and a residual εt = M0−Mt.
The description length is expressed as,

L(M0 | t) = L(Mt) + L(εt) , (6)

where L(M0 | t) denotes the description length of the original mesh at scale t,
L(Mt) and L(εt) denote the description lengths of the smoothed mesh and the
residual respectively.

The description length can be obtained by computing the two decomposed
items individually. First, we consider the description length of the smoothed
mesh in Equation (6). The larger the scale is, the more the original mesh is
smoothed. Therefore, the description length L(Mt) is inversely proportional to
the scale t, that is, L(Mt) ∝ 1/t. Then, the description length of the residual is
related to noise on the original mesh. We define the residual at each scale as the
distance between the positions of corresponding vertices, that is, ε2t = ||v0−vt||2.
Thus, the description length is proportional to the residual, that is, L(εt) ∝ ε2t .

Given the local scale t(v) at a vertex v of M0, the description length is defined
as,

L(M0(v) | t(v)) =
λ

t(v)
+ ε2t(v)(v) , (7)

where λ is a constant.
Therefore, the likelihood at each vertex given a local scale tk is defined as,

p̂k(v) = P (M0(v) | t(v) = tk) =
1
Zv

e
−( λ

tk
+ε2

tk
(v))

, (8)

where Zv is a normalizing constant.
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The local scale can be selected at each vertex by maximizing the likelihood
in Equation (8). However, the distribution of selected local scales is incoherent
spatially, as shown in Fig. 5(a).

3.2 Scale Selection with a Prior MRF Model

In order to find the optimal local scales on the triangular mesh, we intro-
duce some prior knowledge about the distribution of local scales to compute
a Bayesian estimator. The local scale field is assumed to be Markovian in the
sense that the probabilistic dependencies are restricted to a neighborhood of
each vertex on the triangular mesh. Thus, a prior Markov Random Field (MRF)
model is used to find a piecewise constant and discontinuity-adaptive distribu-
tion of local scales.

The constraints about prior knowledge are expressed by means of a Gibbs
distribution,

Pt(t) =
1
Zt
e[−β

∑
<v,u> V (t(v),t(u))] , (9)

where < v, u > denotes a pair of adjacent vertices in one-ring neighborhood,
Zt is a normalizing constant, β is a positive parameter, and V (t(v), t(u)) is a
potential function.

To constrain the local scale field to be piecewise constant, the generalized
Ising model [18] is used, whose potentials are given by,

V (t(v), t(u)) =
{
−1, t(v) = t(u)
1, t(v) �= t(u) . (10)

Moreover, the local scale field is discontinuous when the geometric shape changes
abruptly. Therefore, we define a function to describe this property, which is re-
lated to the variation between normals of adjacent vertices. The function α(v, u)
is defined as,

α(v, u) =
1

1 +
θ2
(v,u)

η

, (11)

where η is a constant, θ(v,u) denotes the variation between the normals of vertex
v and vertex u.

With the above prior distribution and the likelihood (8) defined in Sec. 3.1,
the posterior distribution is computed according to Bayes rule,

P (t |M0) =
Pt(t)P (M0 | t)

P (M0)
, (12)

where P (M0) is a normalizing constant, and the likelihood P (M0 | t) is defined
as,

P (M0 | t) =
∏
v

P (M0(v) | t(v)) . (13)
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t = 0 t = 2 t = 4

t = 6 t = 8 t = 10

Fig. 4. The discrete 3D multi-scale representation of the Buddha model

The posterior marginal distribution can be approximated by minimizing an
energy function [19], which is expressed as,

U(p) =
∑

v

|p(v)− p̂(v)|2 +
∑

<v,u>

α(v, u)|p(v)− p(u)|2 , (14)

where p(v) is the posterior marginal probabilities at vertex v, p̂(v) is the like-
lihood, and α(v, u) describes the discontinuity between vertices pair < v, u >
as defined in (11). This energy function indicates that the posterior marginal
distributions should be similar to the likelihood of the observations and should
keep piecewise constant and discontinuity adaptive across the mesh vertices.

The minimization of the energy function U(p) is equivalent to the solution
of decoupled systems of linear equations. The optimal local scale is selected as
the scale associated with the maximum posterior marginal probability at each
vertex, which is given by,

t∗(v) = tkmax ,

kmax = argmax
k

pv(k) . (15)

In this way, the optimal local scale is selected at each vertex on the triangular
mesh. The distribution of local scales is piecewise constant and discontinuity
adaptive due to the introducing of prior knowledge, as shown in Fig. 5(b).

4 Multi-scale Approach to Crease Detection

After generating the discrete 3D multi-scale representation of a noisy mesh in
Sec. 2, we can combine information at different scales selected in Sec. 3 to detect
creases. Creases, including ridges and valleys, are defined as the loci of points
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(a) (b)

Fig. 5. (a) Local scales with maximum likelihood estimator. (b) Local scales with

Maximizer of the Posterior Marginals.

where the principal curvatures take extrema along their corresponding principal
directions [1].

Similar to the general framework of crease detection in [1], our multi-scale ap-
proach also includes estimating curvatures and curvature derivatives, and tracing
creases on mesh edges. Nevertheless, we combine information at multiple scales
when estimating curvatures and curvature derivatives. The method proposed in
[20] is employed to estimate the curvatures and curvature derivatives on the
mesh models across all the scales in the discrete 3D scale space. It is a finite
difference approach which can be seen as an extension of a common method for
estimating per-vertex normals. For more details, we refer to [20]. With the prob-
abilistic selection of local scale in Sec. 3, the curvature information is available
at selected local scales. Finally, creases are traced by connecting crease points
detected at the zero-crossing points of first-order curvature derivatives on mesh
edges. The creases detected using multi-scale approach are shown in Fig. 6(d)and
the creases detected directly (e.g. [20]) in Fig. 6(b).

5 Experiments

We apply our method on a stone Buddha model scanned by VIVID 910, with
36, 503 vertices and 72, 227 triangles. As mentioned above, noise exists on the
model due to the accuracy of the scanner and the reflectance of stone material,
which can be seen in the curvature map shown in Fig. 3(b). Therefore, if the
previous method (e.g. [20]) is directly applied on the Buddha model, redundant
detection occurs due to the inherent noise in the raw scanning data, as shown
in Fig. 6(b).

In contrast to previous methods, we first generate the discrete 3D multi-scale
representation of the given Buddha model using the anisotropic diffusion method
described in Sec. 2. In Fig. 4, a series of 3D models at different levels of smooth-
ness are plotted, where t denotes the number of iterations. The discrete 3D scale
space is formed by these models, where the geometric features are preserved
across the scales as shown in Fig. 3(b) and Fig. 3(d). Then, the probabilistic
method in Sec. 3 is employed to determine the local scale at each vertex. By
introducing some prior knowledge about the distribution of local scales on the
triangular mesh, we estimate the scale at each vertex using Bayes rule with a
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(a) (b) (c) (d)

Fig. 6. (a) A stone Buddha model. (b) Creases detected directly. (c) Creases at a

single scale t = 2. (d) Creases detected using our approach.

prior Markov Random Field model. As demonstrated in Fig. 5(b), the distribu-
tion of local scales is piecewise constant and discontinuity adaptive, compared
with the local scales selected by the maximum likelihood estimator shown in
Fig. 5(a). Finally, with the selected local scales, we combine curvature informa-
tion on all models in the discrete scale space. As described in Sec. 4, creases
are traced by connecting creases points detected at the zero-crossing points of
first-order curvature derivatives on mesh edges. It can be seen that the redun-
dant lines are eliminated evidently by combining multiple scales in Fig. 6(d), in
comparison with the creases (valleys only) detected directly in Fig. 6(b) and the
creases (valleys only) detected at a single scale in Fig. 6(c). Compared with the
method in [14], the scales are selected automatically without interactive adjust-
ment of thresholding parameters therein, while the detected result is comparable
using our method.

(a) (b)

Fig. 7. (a) A stele model. (b) Non-photorealistic rendering.

Our method is also implemented on a stele model shown in Fig. 7(a), which
consists of 19, 991 vertices and 39, 416 triangles. By combining information at
multiple scales, both the ridges and valleys are detected on the mesh. They
are rendered with a non-photorealistic style in Fig. 7(b). Similar to the method
proposed in [9], our method can also be used as assistance for archeologists to
draw “line drawing”. Furthermore, the results demonstrate that our multi-scale
method is robust to noise, which can be applied to raw scanning data directly.
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(a) (b) (c)

Fig. 8. (a) The Max Planck model. (b) and (c) show two different views of creases

detected using our approach.

For comparison with the methods proposed in [10][11], we apply our multi-
scale approach on the Max Plunck model in Fig. 8(a). The detected creases
(ridges only) are shown at two different views in Fig. 8(b) and Fig. 8(c), which
are comparable with the results in [10][11]. Moreover, our method is more effi-
cient in computation without the time-consuming parametrization required in
[10][11].

6 Conclusions

In this paper, we present a probabilistic approach to selecting local scales in a
discrete 3D scale space. First, the discrete 3D multi-scale representation of a
given triangular mesh can be efficiently constructed using an anisotropic diffu-
sion method. Then, a probabilistic method for local scale selection is proposed
based on the minimum description length (MDL) principle. With the local scales
selected using Bayes rule, we detect creases by combining information at multi-
ple scales. Therefore, our method can evidently reduce redundant lines and well
preserve geometric features in comparison with previous methods.

Our method improves the results of crease detection significantly on raw scan-
ning data. Furthermore, our multi-scale strategy with probabilistic scale selec-
tion can also be applied to detect other types of feature lines . In archeology,
the creases detected using our method can be used as assistance for archeolo-
gists to draw “line drawing”. In the future, more post-processing steps may be
considered to make the results visually artistic.
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Abstract. Although there exist numerous view synthesis procedures,

they are all restricted to certain special cases. Some procedures for in-

stance can only handle a calibrated camera set while others are limited to

interpolation between the reference views. In this paper we will present

a fully automated uncalibrated view synthesis procedure. It allows an

arbitrary camera placement in 3-D space on the basis of only two input

images with a natural camera orientation. Natural camera orientation

means that the focus of the virtual camera is intrinsically given by the

geodesic which again is determined by the reference views. The presented

procedure extends an existing view synthesis algorithm that allows only

a camera placement on the 1-D geodesic (in the case of two reference

views). The extensions are an additional camera placement along and

orthogonally to the line of sight. The image quality of the virtual views

will also be enhanced by utilizing the image information of both reference

views.

Keywords: Uncalibrated View Synthesis, Relative Affine Structure.

1 Introduction

The term view synthesis denotes the generation of virtual views of a scene based
on a few reference pictures of this scene. This paper concentrates on the case of
exact two reference pictures. It will be shown that such two reference views are
sufficient for a flexible camera placement in 3-D space by means of an approach
for uncalibrated view synthesis without the need of any user interaction.

Motivation. View synthesis techniques can be applied to various fields. In the
film industry for instance, it is widely used to create the ‘bullet time’ effect which
became famous with the 1999 movie ‘The Matrix’. By using multiple cameras
and view synthesis algorithms, a virtual camera movement around a scene which
seems to be frozen in time is simulated.
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Another field of application is sports. View synthesis techniques were already
used during the European Soccer Championship 2008, where important situa-
tions were analyzed with a computer program called LiberoVision1. Decisions
about offsides for example can be supported by placing a virtual camera on a
level with the affected players.

Another example of use in the range of sports could be goalkeeper practice in
handball. A penalty shot can possibly determine whether a game will be won or
lost. To prepare the goalkeeper for opposing players, the video material of past
penalty shots of these players could be analyzed. A view synthesis algorithm
together with cameras next to the goal allow to simulate the point of view of
the goalkeeper for a realistic training.

Related Work. The roots of view synthesis can be found for example in the
work of S. Seitz and C. Dyer [1] from 1996. They present a method called view
morphing which is a combination of view interpolation and image morphing. Re-
strictions of this technique are that some amount of user interaction is necessary
to mark feature points and only interpolated views can be generated.

A technique reminding of the already mentioned ‘bullet time’ effect was in-
troduced in 2004 by Zitnick et al. [2]. View interpolation is performed between
sparse synchronized cameras arranged along a one dimensional arc. A draw-
back of this technique is the limitation to interpolation only and the need of a
calibrated camera system.

The 2007 paper of Criminisi et al. [3] addresses the issue view synthesis for
teleconferencing and provides satisfying results. It generates new views with the
constraint of a pair of rectified video streams.

Techniques without the need of a calibrated camera system have been pro-
posed for example by S. Avidan and A. Shashua [4] in 1998. They established
the so-called trilinear tensor for three reference images which can be used to
describe the spatial relationships without prior calibration. The technique also
allows an extrapolation of the views but has the general drawback of requiring
some user interaction.

An automated procedure was presented in 2007 by A. Fusiello et al. [5,6] with
focus on a novel positioning method of virtual cameras. The possible new camera
positions for two reference views lie on a curve (1-D manifold) through the two
reference cameras, allowing interpolation as well as extrapolation.

Contribution of the Paper. Based on the algorithm in [6], which will be intro-
duced shortly in Section 2, we have developed methods that extend the camera
placement from a 1-D manifold to arbitrary positions in 3-D space. These ex-
tensions are described in Section 3. Apart from the flexible camera placement
the key benefits are the abandonment of a manual camera calibration and any
kind of user interaction. Further in Section 4 a method for image quality im-
provement will be discussed based on the utilization of the image information of
both reference images. Some experimental results will be discussed in Section 5
followed by a general conclusion in Section 6.
1 http://www.liberovision.com/

http://www.liberovision.com/
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2 Uncalibrated View Synthesis

The view synthesis algorithm as presented by A. Fusiello in [6] has a pipeline
structure [5]. This has the general advantage that every single step of the pipeline
can be realized by a suitable method. The pipeline consists of the following steps:

1. Parameter estimation (keypoint detection, outlier elimination, rectification
of the input images)

2. Stereo analysis (stereo matching, de-rectification of the disparity maps, cal-
culation of the relative affine structure)

3. Warping of the input images

In this work we will only discuss the third part of the pipeline, the warping of
the input images. A detailed disquisition on the other two parts can be found
in [5].

An important part of the warping procedure is represented by the so-called un-
calibrated rigid transformation matrices which control the virtual camera move-
ment between two views as we will see later on.

Definition 1. We define the uncalibrated rigid transformation matrix as a
combination of the homography at infinity H∞12 between image 1 and image
2 and the epipole e2 of the second image

D12 :=
[
H∞12 e2

0 1

]
. (1)

As shown in [6], we can identify the uncalibrated rigid transformation matrices
with the well understood transformation of the special euclidean group SE(3, IR).
Since SE(3, IR) is a Lie group it is possible to compute continuously varying
interpolated and extrapolated virtual camera positions by scaling and combining
transformation matrices.

The handling of the special euclidean group SE(3, IR) is realized through the
following definitions from [6]:

Definition 2. Given G ∈ SE(3, IR), the scalar multiple of G is defined as

Gt := exp(t log(G)), t ∈ IR (2)

As G in the definition is a 4×4 matrix the function identifier exp and log describe
the matrix exponential and matrix logarithm. Matrices of SE(3, IR) can also be
combined by a linear combination.

Definition 3. Let G1, G2 ∈ SE(3, IR). The linear combination of G1 and G2
is defined as

(Gu
1 )⊕ (Gv

2) := exp(u log(G1) + v log(G2)), u, v ∈ IR (3)



Improved Uncalibrated View Synthesis 441

Two linear independent uncalibrated rigid transformation matrices span a two
dimensional manifold in SE(3, IR).

With these tools applied to uncalibrated rigid transformation matrices, a point
m1 from the first image can be transformed to its corresponding point m2 in the
second image with the following formula:

m2 ∼= [I|0]D12

(
m1
γ1

)
. (4)

The symbol ∼= means ‘equal up to a scale factor’ and I denotes the identity
matrix. The term γ1 represents the relative affine structure of m1. The theory of
the relative affine structure was introduced by A. Shashua and N. Navab in [7]
and [8]. It is used to describe the depth information of the scene relative to the
corresponding reference view and is gained in our case from the disparity maps,
which can be computed from the rectified reference views.

In order to perform the coordinate transformation in Equation (4) the relative
affine structure γ1 and the uncalibrated rigid transformation matrix D12 are
needed. We will now briefly introduce the computation of the matrix D12 while
further information on the derivation of the relative affine structure can be found
in [6]. Referring to Definition 1 we need to compute the homography at infinity
H∞12 and the epipole e2 of the second image. The homography at infinity can
be easily obtained from the precomputed homographies of the first (H1) and
second (H2) reference image out of the rectification step (see [9]):

H∞12 = H−1
2 H1. (5)

The next step is to compute the epipole e2. As the fundamental matrix F is
known from the parameter estimation step in the pipeline (see [5] for further
information) and eT

2 F = 0 holds, the epipole e2 is given as the left zero vector
of F .

With this, the matrix D12 is fully defined. For ν ∈ IR and a point m1 in the
first reference image the new position mν of m1 in the virtual image defined by
D1ν := Dν

12 can be calculated according to Equation (4) via

mν
∼= [I|0]D1ν

(
m1
γ1

)
. (6)

3 Extended Positioning of Virtual Cameras

The method described in Section 2 is already a powerful tool for generating
virtual views of a scene. In order to extend the potential of this algorithm we
will present some refinements that augment the variety of camera positioning
from a 1-D curve (geodesic) to an arbitrary point in 3-D space. In Section 3.1
we introduce a procedure that allows additional to the camera positions on the
geodesic a camera movement along the line of sight and in Section 3.2 this will
be extended to a camera movement orthogonally to the geodesic and the line of
sight.
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3.1 Camera Movement along the Line of Sight

Fig. 1. Camera movement along the line

of sight

For the purpose of a more flexible virtual
camera placement we will discuss an ex-
tended camera movement along the line
of sight2 in this section.

The principle can be seen in Figure
1. L and R denote the two real cameras
on the left and on the right. Between
them is a virtual camera V which lies
on the geodesic describing an interpola-
tion. The observed scene is indicated by
the big ball. The dashed line represents
the extended camera positions along the
line of sight for V . Remember that V is
chosen randomly. The two small balls on
the dashed line indicate possible new camera placements.

Analyzing only the camera movement relative to V along the line of sight it
can be observed that the new position and V are singular views. This is due to
the fact that the camera center of the front camera (we will use the intuitive
terms ‘forward and backward’ as a synonym for ‘along the line of sight’) lies in
the field of view of the rear camera. Accordingly, the images cannot be rectified.
The theory described in Section 2 can nevertheless be applied to this case.

The proceeding. Although any camera on the geodesic could be transformed
along the line of sight we treat only the case of the first reference camera for
simplicity and without loss of generality.

The task is to find a transformation matrix D1ϑ that describes the camera
movement to the front or back where ϑ symbolizes the new camera position.
Then we can transform the first reference image according to Equation (6).

We need to determine the homography H∞1ϑ and the epipole e1ϑ. The no-
tation e1ϑ means that we examine the epipole of the new position ϑ related to
the first camera. Accordingly, H∞1ϑ describes the homography between the first
camera and the position ϑ. The homographyH∞1ϑ is the identity matrix because
there is no rotation between the views. An intuitive guess reveals that the epipole
e1ϑ lies in the image center. Thus it is of the form e1ϑ = (centerx, centery, 1)T ,
where centerx and centery describe the coordinates of the image center. The
epipole is scaled to unit length. To control the extent of the displacement the
epipole can be rescaled where applicable.

Let s be a scaling factor and n :=
∥∥(centerx, centery, 1)T

∥∥ the euclidean norm.
We get ê1ϑ = s/n · (centerx, centery, 1)T .

2 The term zoom is wrong at this point, because we do not change the focal length

but move the virtual camera forwards.
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Now we can transform points to the virtual view:

mϑ
∼= H∞1ϑm1 + ê1ϑγ1 = m1 +

s

n
(centerx, centery, 1)Tγ1

= [I|0]D1ϑ

(
m1
γ1

)
= [I|0]

⎡⎢⎢⎣
1 0 0 s

n · centerx
0 1 0 s

n · centery
0 0 1 s

n
0 0 0 1

⎤⎥⎥⎦(
m1
γ1

)
. (7)

In order to combine a camera movement D1ν = Dν
12(ν ∈ IR) along the geodesic

with a movement D1ϑ to the front into a shared transformation D1τ we only
need to combine the transformation matrices in accordance with Equation (3):

D1τ = exp(ν log(D12) + v log(D1ϑ)) with ν, v ∈ IR. (8)

3.2 Camera Movement Orthogonally to the Geodesic and the Line
of Sight

Fig. 2. Camera movement orthogonally

to the viewing direction

We will introduce another virtual cam-
era movement apart from the geodesic.
In contradiction to the preceding sec-
tion, this movement occurs not to the
‘front and back’ but ‘up and down’ rel-
ative to the original camera pose3.

The main idea is illustrated in Fig-
ure 2. L and R again denote the left and
right reference camera, respectively. The
virtual camera on the geodesic is labeled
with V . The movement of V orthogo-
nally to the geodesic and the line of sight
is indicated by a dashed line.

The proceeding. Without loss of generality only the proceeding for the first
reference image is examined. As a result of the fact that the new camera po-
sition μ is coplanar to the initial position we have rectified views. Hence, the
homography at infinity is the identity matrix H∞1μ = I, and the epipoles lie at
infinity according to the y-axis: e1μ = (0, 1, 0)T .

Based on these observations can points in the virtual view μ be calculated
with the following formula according to Equation (6):

mμ
∼= H∞1μm1 + e1μγ1 = m1 + (0, γ1, 0)T

= [I|0]D1μ

(
m1
γ1

)
= [I|0]

⎡⎢⎢⎣
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦(
m1
γ1

)
. (9)

3 Pose: Position and orientation.
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Again it is possible to combine these movements with any other displacement
with Equation (3). Hence, together with the transformation from the preceding
section, we are now able to place the virtual camera anywhere in 3-D space with
a camera orientation given implicitly by the orientation of the two reference
views.

4 Image Quality Optimization (Utilize Information of
Both Reference Images)

In this section a theory will be discussed that allows the usage of the image
information from both reference images. This is contrary to the processing in [6]
where the view syntheses are generated from only one reference image.

Assuming that only the information of the first (w.l.o.g.) reference image is
used by the procedure in [6], we will now concentrate on including the picture
information of the second reference image. Thus the transformation for adjusting
the second image along the geodesic according to D12 is to be found.

Therefore the homography at infinity H∞21 can be calculated analog to Equa-
tion (5). We receive H∞21 = H−1

1 H2 which leads to the coherence H∞21 =
H−1

1 H2 = (H−1
2 H1)−1 = H−1

∞12.
The epipoles of the two images are correlated with each other with respect

to any homography, i.e. it can be used for example the homography at infinity:
e1 = H∞21e2. Using Definition 1 we compute D−1

12 :

D−1
12 =

[
H∞12 e2

0 1

]−1

=
[
H−1

∞12 −H−1
∞12e2

0 1

]
=

[
H∞21 −H∞21e2

0 1

]
=

[
H∞21 −e1

0 1

]
=: D21

(
Note: D21

Def.1
=

[
H∞21 e1

0 1

])
. (10)

If the relative affine structure of the second reference image is computed with
the inverse homography H−1

∞12 = H∞21 (equally scaled) as the relative affine
structure of the first reference image it is the negative equivalent of the relative
affine structure of the first image. Referring to Equation (4) the points of the
second image have to be transformed with the version of D21 adjusted to the
negative relative affine structures. This adjusted matrix is D21 which is neces-
sary to bring the second camera in the pose of the first camera on the same
curve.

A property of the uncalibrated rigid transformation matrix is that the pose of
the interstations t ∈ IR computed for the first image via Dt

12 and for the second
image via D

(1−t)
21 are equal (see [10] together with Equation (10)). The two

resulting images are then combined to the final view synthesis, e.g. by averaging
them. This is illustrated in Figure 3. The left (L) and right (R) reference view
are transformed and yield the same virtual view V .
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Fig. 3. Combination of two views

5 Experimental Results

In this section we show and discuss some results which were achieved with a
MATLAB R© implementation of the proposed methods.4

Given the two reference images5 in Figure 4 we computed a smooth video
sequence. Some frames of this sequence can be seen in Figure 5. The virtual
camera performs a movement from the upper left to the lower right with a
simultaneous motion backwards. This can be observed best while following the
mound from frame to frame in relation to other objects in the scene. Compared
to the results in [6] it can be observed that our 3-D camera placement allows
a more flexible path generation. In addition the quality of the virtual images is
notably improved as will be discussed in detail now.

Fig. 4. Pair of stereo images: Left and right reference view. The white dotted lines are

added to accentuate the perspective differences.

Figure 6 illustrates the quality improvement achieved by using the image
information from both reference images. Two different results of the same scene
with a virtual camera describing the extrapolation D1−(−0,5)

21 = D1,5
21 are shown.

In Figure 6(a) only the image information of one reference image (right camera)
is used while the image in Figure 6(b) is received by using the image information
of both reference images. It can be clearly seen that the image computed from
only one reference image contains much more holes. These holes are parts of the
image for which the reference image does not provide any information. The holes
still remaining in the virtual images can be closed for example by interpolation.
4 For videos visit: http://cvpr.uni-muenster.de/research/viewsynthesis/
5 Source: http://profs.sci.univr.it/~fusiello/demo/synth/

http://cvpr.uni-muenster.de/research/viewsynthesis/
http://profs.sci.univr.it/~fusiello/demo/synth/
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Fig. 5. Some frames of a video sequence computed from the images in Figure 4

(a) One reference image. (b) Both reference images. (c) Interpolation of (b).

Fig. 6. Quality improvement by exploiting the information of both reference images.

The erroneous pixels were reduced about 28% by taking both reference images.

Using interpolation on the synthesis resulting from our method shown in Figure
6(b) yields the image in Figure 6(c), which represents a virtual view of excellent
quality.

Performance. We evaluated our MATLAB R© code on a 64-bit Linux machine
with 2.50 GHz and 7.5 GB RAM. According to the three steps of the pipeline,
the parameter estimation took about 11 seconds, the stereo analysis about 90
seconds, and the warping varied between 0.8 and 3 seconds per frame for an
image size of 640× 480× 3 (RGB). The variability in the warping step is due to
a changing amount of pixels without image information (holes) which were filled
by interpolation.

6 Conclusion

We extended the completely automated view synthesis procedure of A. Fusiello
et al. [5,6] to a considerably more flexible procedure with enhanced quality.
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After a brief introduction into the basic underlying methods, that allow only for
a camera placement on a one-dimensional curve, we developed extensions that
provide an arbitrary camera placement in 3-D space. Further we presented an
approach to access the image information of all reference images, contrary to [6]
where the virtual views are generated based on only one reference image. The
gain of image quality could be demonstrated with an example.

Limitations and Future work. We experienced that the image quality of the
resulting views almost exclusively depends on the results of the stereo matching
procedure. Although the stereo matching step was not subject of this work we
predict the most promising advances concerning image quality for view synthesis
in general and the presented method in special in the field of stereo matching.

Furthermore, as the view synthesis procedure in [6] can handle more than two
reference views, additional reference pictures could be included to provide more
picture information for the virtual views. These additional pictures could also
overcome the problem of occlusions in non-geodesic synthetic images.
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Abstract. Region based image retrieval has received significant attention from 
recent researches because it can provide local description of images, object 
based query, and semantic learning. In this paper, we apply curvelet transform 
to region based retrieval of color images. The curvelet transform has shown 
promising result in image de-noising, character recognition, and texture image 
retrieval. However, curvelet feature extraction for segmented regions is chal-
lenging because it requires regular (e.g., rectangular) shape images or regions, 
while segmented regions are usually irregular. An efficient method is proposed 
to convert irregular regions to regular regions. Discrete curvelet transform can 
then be applied on these regular shape regions. Experimental results and analy-
ses show the effectiveness of the proposed shape transform method. We also 
show the curvelet feature extracted from the transformed regions outperforms 
the widely used Gabor features in retrieving natural color images. 

1   Introduction 

Regions are fundamental blocks for recent region based image retrieval (RBIR) tech-
niques involving regions and semantic learning [1]. Texture feature is an essential 
component in most region based image retrieval (RBIR) techniques because of its 
strong discriminative power. Many texture feature extraction techniques have been 
proposed including spatial and spectral. Spatial techniques are subject to noise and 
difficult to obtain. So far, spectral methods, like Gabor [2, 3] and wavelet [4], have 
shown the best retrieval performance. Recent researches show that curvelet transform 
has significant advantages over Gabor due to curvelet is more effective in capturing 
curvilinear properties, like lines and edges [5]. It shows promising results in image 
de-noising [6], character recognition [7] and texture image retrieval [8]. To date, no 
application has been reported on real world image retrieval using curvelet transform. 
This paper applies curvelet transform in a region based image retrieval technique to 
retrieve color images. The application of curvelet transform in a region based tech-
nique is challenging due to the fact that curvelet transform requires rectangular im-
ages or regions, while segmented regions are usually irregular, as shown in Fig. 1. 

Most of the existing RBIR techniques define a region as a set of small blocks of 
size 4 by 4 pixels and apply spectral transform on those blocks [9]. Then the feature 
of the region is calculated as the average feature of those blocks. This technique has 
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drawbacks because it assumes that texture of a region can be represented by the 
blocks [10]. This assumption is not true, because it significantly loses the edge and 
line information of the region. To solve this problem, this paper proposes a novel 
method to extract regular shape regions from irregular shape regions. The curvelet 
transform is then applied on the regular shape regions to extract texture features. The 
effectiveness of the proposed shape transform is compared with that of the widely 
used zero padding method. Finally, we compare the retrieval performance between 
the curvelet feature and popular Gabor feature. 

 

 

Fig. 1. Regions image segmentations 

The rest of this paper is organized as follows. In section 2, we briefly introduce the 
curvelet transform, while section 3 describes curvelet feature extraction for irregular 
regions. The experimental results and comparison are presented in section 4. Section 
5 concludes the paper. 

2   The Curvelet Transform 

The curvelet transform is a natural extension of the ridgelet transform. The continuous 
ridgelet transform for a given image f(x, y) at scale a, translation b, and orientation θ, 
is defined as, 

∫∫= dxdyyxfyxbaCRT baf ),(),(),,( ,, θψθ  (1)

where, the ridgelet ψa,b,θ(x,y) is a wavelet type function ψ(x) with scale a, translation 
b, and rotation θ, 

)/)sincos((),( 21
,, abyxayxba −+= − θθψψ θ  (2)

Similar to Gabor wavelet, the ridgelet can be tuned at different scales and orientations 
to generate a set of curvelets. However, unlike the Gabor functions which cover only 
a part of the frequency spectrum, the set of curvelets covers the complete spectrum as 
shown in Fig. 2. Fig. 2(a) shows the frequency tiling by curvelet transform with 4 
scale decomposition [11]. The shaded region is the response at scale 4 and orientation 
9 (counting from top left corner for each scale). The figure shows that the entire spec-
trum is covered. Fig. 2(b) shows that there are many holes between the ovals in the 
frequency plan of the Gabor filters [3]. 

Given a digital image f[m, n] of dimension M by N, the digital curvelet transform, 
CTD (a, b, θ) is obtained using Equation (3). 
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Fig. 2. Frequency spectrum coverage by (a) curvelet and (b) Gabor 
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Equation (3) is implemented in frequency domain and can be expressed as, 

])),[(]),[((),,( ,, nmFFTnmfFFTIFFTbaCT D
ba

D
θψθ ∗=  (4)

A detail description for the implementation of Equation (4) can be found in [8]. After 
obtaining the coefficients in CTD (a, b, θ), the mean and standard deviation are calcu-
lated from each set of curvelet coefficients. Therefore, if n curvelets are used, a fea-
ture vector of dimension 2n is used to represent an image or region. 

3   Curvelet Feature Extraction for Irregular Region 

3.1   Irregular to Regular Shape Transform  

As shown in Fig. 1, image-regions from segmentation are irregular. Spectral trans-
forms, like Curvelet, require that the image or region should be rectangular. There-
fore, irregular shape regions must be transformed to regular shape regions before 
applying the curvelet feature extraction process. 

An irregular shape region can be transformed into a regular shape region by find-
ing either the smallest outer rectangle or the largest inner rectangle. Fig. 3 shows 
outer and inner rectangles of few regions in red and blue lines, respectively. Though 
an outer rectangle is easy to find, it always includes non-region pixels. For example, 
the white spaces in the outer rectangles of Fig. 3 are non-region pixels. These non-
region pixels need to be filled in. The features extracted from an outer rectangle heav-
ily depend on the values which fill those non-region pixels. The most commonly used 
technique is ‘zero-padding’ which fills these positions with zeros. Zero padded re-
gions are so different from the original region that the overall texture information of 
the region is significantly changed. In contrast, an inner rectangle consists of only 
valid region-pixels. Thus the features extracted from an inner rectangle are more ac-
curate than the features extracted from an outer rectangle. Finding the largest  
inner rectangle is computationally expensive, while it is cheap to find the largest inner 
square because an efficient dynamic algorithm can be used [12]. However, an inner  
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square itself is useful only when it is large enough to cover a significant portion of a 
region. Unless this condition is met, the extracted texture feature will not truly repre-
sent the complete texture information of the region. Therefore, we propose a method 
to use both the outer rectangle and the largest inner square to extract a square shape 
with reasonable size. Fig. 4 outlines the algorithm for the shape transform. 

 

 

Fig. 4. Algorithm of transforming an irregular region to a square region 

We describe the main idea of the algorithm of Fig. 4 in Fig. 5 using an example. 
The region in the upper left corner of Fig. 5(a) is to be transformed into a square re-
gion. Fig. 5(b) shows the region in grey scale. As segmented regions often include 
boundary pixels, these pixels need to be removed for the regions. Therefore, a pre-
processing is applied to remove these non-image pixels. Fig. 5(c) shows the region 
after applying pre-processing on the region of Fig. 5(b). The red boundary is the outer 
rectangle. The largest inner square is then found and is shown in Fig. 5(d) with the 
white boundary. The inner square is used to fill in the blank space of the outer rectan-
gle of the region of Fig. 5(c). At first, the inner square is enlarged to the size of the 
outer rectangle (Fig. 5(e)). To preserve the natural transition, mirror padding is used 
for this purpose. The region of Fig. 5(c) is then superimposed on the mirror padded 
region of Fig. 5(e). Fig. 5(f) shows the superimposed region. The original region is 
retained in Fig. 5(f). Furthermore, the blank space of the outer rectangle is filled with 
valid pixels from the region. Thus the filled space will carry the same texture informa-
tion of the original region. As segmentation algorithms often segment images into 
quite small regions, superimposed rectangular regions can also be small. Therefore 
the rectangular region of Fig. 5(f) is further enlarged to a reasonable size of 128 by 
128 by using mirror padding. Fig. 5(g) shows the final enlarged region which looks 
very similar to the original region. The texture property is also retained in the trans-
formed region. 

1. Remove boundary pixels using pre-processing. 
2. Find the bounding box of the pre-processed region. 
3. Find the largest internal square of the desired 

region. 
4. Extend the internal square to the size of the 

bounding box using mirror padding. 
5. Super impose the bounding box over the mirror pad-

ded rectangle. 
6. Extend the superimposed rectangle to a square of 

given size using mirror padding. 

Fig. 3. Inner and outer rectangles are in blue and red lines 
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Fig. 5. Conversion from irregular to regular regions. (a) A segmented image. (b) The example 
region. (c) The region pre-processing. (d) The largest inner square. (e) Enlargement of the inner 
square (f) Superimposed region. (g) Final enlarged region. 

3.2   Feature Extraction and Distance Measure 

Curvelet feature extraction process is applied to each region. At first, each segmented 
image is transformed into a grey scale image. Each irregular image-region is then 
transformed to a regular shape region using the method described in section 3.1. Then 
curvelet feature is extracted from the regular shape region using the technique de-
scribed in section 2. 

For curvelet feature extraction, each regular shape region is decomposed into 4 
scales. For decompositions at scale number 1, 2, 3, and 4, there are 1, 16, 32, and 1 
subbands, respectively. However, due to the symmetric nature of curvelet, only half 
of the sub-bands at decomposition scale number 2 and 3 are necessary. Because a 
curvelet oriented at an angle, θ, produces the same coefficients as a curvelet oriented 
at an angle, π+θ. Therefore, 26(=1+8+16+1) subbands are actually used. Mean and 
standard deviation are extracted from the coefficients of each subband. Therefore each 
region is represented and indexed by a curvelet feature vector of 52 dimensions. 

During retrieval, a region of interest is given as a query. The feature vector of the 
query region is compared with the feature vectors of all regions in the database using 
L2 distance measure. The distance, D, between a query region feature vector, Q, and a 
target region feature vector, T, is given by, 

∑ −=
=

n

i
ii TQD

2

1

22 )(  (5)

Database regions are ranked based on the distance measures and displayed to the 
users. 

4   Retrieval Performance 

In this section, we first compare the effectiveness of the proposed shape transformed 
method with that of basic zero padding method using curvelet feature based retrieval. 
Then, the performance of curvelet feature is compared with that of Gabor feature. 
Region based image retrieval (RBIR) is used to test the performance. 

To test the retrieval performance, 5,100 Corel images are segmented into 36,692 
regions using one of the state-of-the-art segmentation algorithms, JSEG [13]. 3,259 

(a) 

(b) 

(e)

(d) 

(c) 

(f)

(g) 



 Region Based Color Image Retrieval Using Curvelet Transform 453 

 

regions are collected out of 36,692 regions. These regions are chosen because they 
significantly represent some concepts. The concepts of these regions are ape, balloon, 
bear, bird, butterfly, car, copter, deer, elephant, fighter plane, fireworks, flower, fox, 
horse, plane, tiger, and tree. For each region, two curvelet feature vectors are ex-
tracted. The first feature vector is extracted using the method described in Section 3.2 
after applying the proposed shape transformed method of Section 3.1. In the second 
case, non region pixels of the outer rectangle of a region are filled with zeros. Then, 
the curvelet feature vector is extracted from the zero padded region. 

The performance of the proposed mirror padded curvelet features is compared with 
that of zero padded curvelet features. As the ground truth of the database regions are 
known, each of the query regions is used as a query. The Euclidean distance measure 
is used to find the distance between the feature vectors of the query and a database 
region. The conventional ‘precision vs. top K retrieval’ curve is used as the perform-
ance measure. From each query, precisions are measured at 10 levels of K (that is, for 
K = 10, 20, 30, …, and 100). The average precisions are calculated from all of 3,259 
queries at each of the 10 K values.The average retrieval performance for both the 
methods is shown in Fig. 6. It should be noted that coloured regions are difficult to 
retrieve using texture feature alone. In actual CBIR systems, texture feature is com-
bined with colour to achieve good retrieval performance. 
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Fig. 6. Performance comparison of the proposed shape transform and the zero padding 

As shown in Fig. 6, the curvelet features calculated from the proposed shape trans-
form method significantly outperforms the curvelet features calculated from zero 
padding method. The reason is that zero padding method fills the outer space of a 
region with a smooth and constant texture pattern which is different from the original 
region. Therefore, the texture characteristics of the entire padded region drastically 
vary with that of the original region. As a result, the effectiveness of extracted 
curvelet feature decreases. On the other hand, the proposed method preserves the 
original pattern in the transformed region and no information is lost. 
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Fig. 7. Retrieval snapshots by different padding methods 

 
Fig. 7 shows a few examples of region retrieval using both types of curvelet fea-

tures. Top left region is the query. Regions are organized from left to right and top to 
bottom in increased distances from the query. In all the cases, the difference between 
the two is significant. For example, in the first case, when the top 18 regions are con-
sidered, transformed shape based curvelet feature retrieves 11 tiger regions, while 
zero padded curvelet only retrieves 5 tigers. When the top 36 regions are considered, 
the precision of the proposed feature is 18 out of 36, while that of zero padding is 8 
out of 36. 
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Next, we compare the performance between curvelet and Gabor features. Gabor 
feature is extracted by using 4 scales and 6 orientations which are found to be the best 
parameters in [14]. This configuration generates 24 filters. Mean and standard devia-
tion are calculated from each filtered output. Thus, each region is represented by a 
Gabor feature vector of 48 dimensions. Fig. 8 shows the comparison between the 
retrieval performance of curvelet and Gabor features  
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Fig. 8. Performance comparison between curvelet and Gabor features 

As shown in Fig. 8, the performance of curvelet feature is significantly higher than 
that of Gabor feature in retrieving natural image-regions. There are several reasons 
behind this high performance of curvelet feature. Some reasons are due to the charac-
teristics of natural images, while some others are due to the characteristics of curvelet 
itself. The textures of most natural images are irregular, even for the images from the 
same category. They cover the entire spectrum - from smooth to rough, fine to coarse, 
non-directional to very directional. Thus the filters together should cover the entire 
frequency spectra, and must be robust enough to capture the different variations of 
textures of natural images-regions. Curvelet has several advantages over Gabor in this 
regard [8]. Firstly, curvelets cover the entire spectra while Gabor filters loses some 
frequency information because of the uncovered holes created in spectra. Secondly, 
curvelet transform accurately captures texture information of natural image-regions at 
different scales because it scales the regions at different levels in addition to using 
scale modifiers for different ridgelets. In contrast, Gabor transform only uses scale 
modifiers for its filters and does not scale down/up the regions. Thirdly, curvelet 
transform has higher number of sub-bands at finer scales than coarser scales while 
Gabor transform has the equal number of subbands at all scales. It is quite natural that 
at finer scales information is more densely distributed than coarser scales. Thus finer 
scales need more sub-band divisions than coarser scales. Curvelet transform realizes 
this and thus each subband in curvelet transform captures frequency information more 
accurately than the subbands in Gabor. 

Fig. 9 shows an example of firework retrieval using both curvelet and Gabor fea-
tures. The firework region in the upper left corner is used as the query which is very 
irregular and difficult to retrieve. However, curvelet feature gives significantly better 
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retrieval results than Gabor feature. For example, when we consider the top 18 re-
gions, curvelet and Gabor features retrieve 13 and 7 firework regions, respectively. 
When the top 36 regions considered, these features retrieved 22 and 9 firework re-
gions. Fig. 9 also shows that curvelet transform captures the curvilinear properties of 
natural image-regions more accurately than Gabor filter. 

 
 

Fig. 9. First 36 retrieved regions by (a) curvelet and (b) Gabor features 

5   Conclusion 

This paper has presented a new region based color image retrieval technique using 
curvelet transform. The paper has two contributions. First, the curvelet transform has 
been applied for retrieving real world color images. A region based methodology has 
been used which facilitates query by object of interest. Second, a method of trans-
forming irregular regions to regular regions is proposed. The shape transformation 
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method not only makes the curvelet feature extraction possible for segmented image-
regions, but also preserves the original texture property of a region in the transformed 
region. Experimental result has shown that curvelet features calculated from the pro-
posed shape transform method significantly outperforms the curvelet features calcu-
lated from zero padding method. Our experiment has also shown that RBIR performance 
based on curvelet feature extracted from transformed regions significantly outper-
forms the widely used Gabor features in retrieving natural color images. Currently, 
we are investigating the application of curvelet feature in semantic learning of image-
regions. Rotation and scale invariance issues are still unsolved problems which will 
be addressed in our future work to further improve curvelet’s retrieval performance. 

References 

1. Liu, Y., et al.: Region-based image retrieval with high-level semantics using decision tree 
learning. Patt. Recog. 41(8), 2554–2570 (2008) 

2. Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Large Image 
Data. IEEE Trans. on PAMI 18(8), 837–842 (1996) 

3. Manjunath, B.S., et al.: Introduction to MPEG-7. John Wiley & Son Ltd., Chichester 
(2002) 

4. Bhagavathy, S., Chhabra, K.: A Wavelet-based Image Retrieval System. Technical Re-
port—ECE278A, Vision Research Laboratory, University of California, Santa Barbara 
(2007) 

5. Do, M.N.: Directional Multiresolution Image Representations. PhD Thesis, EPFL (2001) 
6. Starck, J., et al.: The Curvelet Transform for Image Denoising. IEEE Trans. on Image 

Processing 11(6), 670–684 (2002) 
7. Majumdar, A.: Bangla Basic Character Recognition Using Digital Curvelet Transform. 

Journal of Pattern Recognition Research 1, 17–26 (2007) 
8. Sumana, I.J., et al.: Content based image retrieval using curvelet transform. In: Proc. of Int. 

workshop on MMSP, pp. 11–16 (2008) 
9. Wang, J.Z., et al.: Simplicity: semantics-sensitive integrated matching for picture libraries. 

IEEE Trans. on PAMI 23(9), 947–963 (2001) 
10. Liu, Y.: Region-based image retrieval with high-level semantics. Ph. D. Thesis, Monash 

University (2006) 
11. Candes, E., et al.: Fast Discrete Curvelet Transforms. Multiscale Modeling and Simula-

tion 5(3), 861–899 (2006) 
12. Coreman, T.H., et al.: Introduction to Algorithms. The MIT Press, Cambridge (2001) 
13. Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images 

and video. IEEE Trans. on PAMI 23(8), 800–810 (2001) 
14. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. 

IEEE Trans. on PAMI 18(8), 837–842 (1996) 
 



Extracting Spatio-temporal Local Features
Considering Consecutiveness of Motions

Akitsugu Noguchi and Keiji Yanai

Department of Computer Science,

The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan

noguchi-a@mm.cs.uec.ac.jp, yanai@cs.uec.ac.jp

Abstract. Recently spatio-temporal local features have been proposed

as image features to recognize events or human actions in videos. In this

paper, we propose yet another local spatio-temporal feature based on

the SURF detector, which is a lightweight local feature. Our method

consists of two parts: extracting visual features and extracting motion

features. First, we select candidate points based on the SURF detector.

Next, we calculate motion features at each point with local temporal

units divided in order to consider consecutiveness of motions. Since our

proposed feature is intended to be robust to rotation, we rotate optical

flow vectors to the main direction of extracted SURF features. In the

experiments, we evaluate the proposed spatio-temporal local feature with

the common dataset containing six kinds of simple human actions. As the

result, the accuracy achieves 86%, which is almost equivalent to state-

of-the-art. In addition, we make experiments to classify large amounts of

Web video clips downloaded from Youtube.

1 Introduction

Recently the number of videos people have and on the Web is increasing rapidly,
and content-based video analysis becomes more important. For example, video
summarization and content-based video retrieval help users to find videos which
they want to watch efficiently.

As one of the methods for that, recently spatio-temporal local features have
been proposed as image features to recognize events or human actions in videos.
Local features are commonly used for object recognition because of its robust-
ness about noise, rotation and occlusion. Recently this idea has been imported
to event and action recognition for video. Video analysis with spatio-temporal
features is new, and has not been explored much yet. Then, in this paper, we
propose yet another spatio-temporal feature based on the SURF local feature.
The existing methods of extraction features from videos are classified into two
types. The first one is extracting global features from a whole video. The second
one is extracting many local spatio-temporal features from a video. In this paper,
we focus on the second type of methods based on spatio-temporal features.

To extract spatio-temporal feature, local cuboid is one of the common meth-
ods. However, it is difficult to decide cuboid size and features extracted from

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 458–467, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. KTH dataset

cuboid. Dollar et al.[1] and Laptev et al.[2] proposed extracting Histogram of
Gradient (HoG) and Histogram of Flow (HoF) from a cuboid, respectively. Ex-
tracting such features from a whole cuboid is costly in terms of computation and
is not robust to noise generally.

In this paper, we detect spatio-temporally interest points and extract local
pattern around them as features by extending the SURF method. This proposed
method is more simple, fast and efficient method to extract spatio-temporal
features than the existing ones.

In the experiment, we classify simple human motion. We use KTH dataset
(Figure 1), which is a standard dataset for evaluation of human action recognition
methods. This dataset contains six kinds of simple human primitive actions:
”walking”, ”running”, ”jogging”, ”boxing”, ”hand waving” and ”hand clapping”.
This dataset assumes that ”each video contains only single human and action”,
and ”no camera motion”. As the result of classification experiments, we obtain
the 86% classification rate. As an additional experiment, we classified shots of
Web videos which are 100 soccer videos downloaded from Youtube.

In the rest of this paper, we describe related work in Section 2. Then we
explain the proposed method in Section 3. Section 4 describes the experimental
results. Finally we conclude this paper in Section 5.

2 Related Work

The existing methods of extraction features from videos can be classified into
two types. The first one is tracking major parts of human bodies and extracting
features from their regions. However, this method assumes that tracking and
detection of body parts are almost successful. This assumption is sometimes
difficult.

The other one is sampling many local cubic spatio-temporal regions, which is
called ”cuboid”, from a video, and extracting features from cuboids. In this pa-
per, we focus on this second type of methods based on spatio-temporal features.

Dollar et al. proposed the method to detect local cuboids to apply 2-D Gaus-
sian kernels in the spatial space and 1-D Gabor filters for the temporal direc-
tion [1], and they generated video visual words by vector-quantizing local cuboids
in the same way as bag-of-visual-words for object recognition [3].
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Fig. 2. Detected interest points by the SURF

Laptev et al proposed STIP (Spatio-Time Interest Points) [2] as a method to
detect cuboids. This method can be regarded as an extension of Harris detector.
They extracted Histogram of Gradient (HoG) and Histogram of Flow (HoF)
from detected cuboids as features.

Alireza et al. proposed to extract low-level optical flows from cuboids and select
good features from them with boosting to improve accuracy of classification [4].

However, computational cost of extracting features from cuboids by the meth-
ods described above is relatively high. In addition, it is difficult to decide the
proper size of cuboid. To overcome these problem, in this paper, we propose to
detect interest points using SURF [5] and Lucas-Kanade optical flow detection
methods [6] both of which are very fast detectors and extract features by track-
ing interest points instead of cuboids. Since we do not use cuboids, the proposed
method is more simple, fast and efficient method to extract spatio-temporal
features than the existing ones.

3 Proposed Method

Our proposed method consists of four steps. In the first step, we detect interest
points and extract SURF features for the detected points employing the SURF
(Speeded-Up Robust Feature) [5] from the frame images which are extracted from
a given video every N frames. Extracted SURF descriptors represent local ap-
pearances around interest points. Figure 2 shows that extracted interest points
by the SURF, which are candidate points for tracking. In the second step, we
estimate the degree of motion for each candidate points based on optical flows
computed by the Lucas-Kanade [6], and select points having motion from the
candidate points. This is because interest points without motion are not suitable
for the points from which spatio-temporal features are extracted. In the third
step, we track each tracking point locally in the temporal direction and extract
motion features. In the forth step, we generate spatio-temporal features by com-
bining SURF features and motion features for the points in the third step.

3.1 Extraction of Appearance Features

In the proposed method, we extract both local appearance features and local
motion feature, and combine them into local spatio-temporal features. As local
appearance features, we use the SURF descriptor [5].
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Fig. 3. Selecting frames from which optical flows are extracted (left). Extracting optical

flows from the selected frames (right).

The SURF is a method to extract and describe local features from one still
image. Although its function is the same as SIFT [7], its processing is much
lighter and faster than SIFT. The SURF method consists of two steps: detec-
tor and descriptor. In the part of the SURF detector, it selects interest points
based on the Hessian matrix. In the part of the SURF descriptor, it describes
local patterns around detected points with 64-d vectors per point based on the
Haar-like wavelet. Refer to [5] for the detail. We obtain SURF vectors the num-
ber of which is the same as the number of the interest points. However, the
SURF vectors used as actual descriptor of a video are selected in the next
step.

3.2 Selection of Motion Points

In this step, we select in-motion points from all the points detected by the SURF
detector by optical flow analysis.

As mentioned before, we apply the SURF detector every N frames. Then, we
calculate optical flows between the first frame and the N/2-th frame by Lukas-
Kanade optical flow detector [6] as shown in the left side of Figure 3, and select
the points where optical flows are detected among the points extracted by the
SURF detector. We call such points as “motion points”. In the proposed method,
we extract both spatially local appearance features and temporally local motion
features for each motion point.

3.3 Extraction of Motion Features

In the third step, we extract optical flows to generate motion features fromM−1
intervals among the N frames which is a unit of motion processing, after picking
up M frames out of N frames (M should be a factor of N). As shown in the right
side of Figure 3, we calculate optical flows from M − 1 consecutive intervals at
each motion point in order to consider consecutiveness of motions. In case that
M is 1, we can extract detailed motions. On the other hand, In case that M
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Fig. 4. Normalizing the direction of an optical flow by rotating it based on the dominant

direction detected by the SURF detector

equals to N , motion information becomes condensed. In the experiment, we set
both N and M as 5.

As representation of motion features, we generate a 5-d vector for each interval
of each motion point from the motion matrix estimated by the Lucas-Kanade
method [6]. The 5-d vector consists of x+, x−, y+, y− and no optical flow x0,
where x+ means the degree of the positive elements along x-axis and x− means
the degree of the negative elements along x-axis. The motion feature for each
interval is normalized so that the summation of all the elements equals to 1. We
combine M 5-d vectors extracted from M − 1 intervals into one motion vectors
for each motion points, and totally the dimension of motion feature becomes
(M − 1)× 5.

We hope that this feature is robust about rotation. The same feature should
be extracted from “walk to right” and “walk to left”, since our objective is
proposing spatio-temporal features to categorize actions ignoring the directions
of actions. To this end, in this paper, we propose to rotate optical flows along
the dominant direction of visual features to normalize their direction. Figure 4
shows the rotation of an optical flow.

The rotated optical flow vector (x, y) are represented as follows:[
x
y

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x0
y0

]
(1)

where (x0, y0) is the original optical flow vector for the motion point, and θ is
the dominant direction of the SURF descriptor at the motion point.

3.4 Generation of Local Spatio-temporal Features

In the final step, in the proposed method, we extract both local appearance
features and local motion features, and we combine local appearance features
extracted in the first step and local motion features extracted in the third step
into local spatio-temporal features.

The SURF-based appearance feature is represented by a 64-d vector, and
the motion feature is represented by a (M − 1)× 5-d vector. After weighting the
motion vector with w, we concatenate both vectors into in one (64+(M−1)×5)-d
vector.
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In the experiment, we set 5 to both M and N , and totally the dimension of
the final feature vector becomes 84. In the experiment, we explored the optimal
weight. As the result, we found that 2.5 is optimal for w.

4 Experimental Results

We made experiments to evaluate the proposed feature by classifying Web videos
as well as simple human actions. In this section, we describe classification meth-
ods, datasets and results.

4.1 Action Recognition

Dollar et al.[1] classified human action employing bag-of-video-words. Bag-of-
video-words (BoVW) is an extension of bag-of-feature (BoF) for action recog-
nition. Following this, we generate bag-of-video-words from the proposed local
spatio-temporal features, and classify human action by a support vector ma-
chine (SVM) with a RBF kernel.

First, we extract local spatio-temporal features proposed in this paper from
training video data and generate a codebook by k-means clustering from all of
the extracted features. Then, a BoVW vector is generated based on the codebook
for each training video, and we train a SVM with the generated BoVW vectors.
Next, each test video is also converted into a BoVW vector based on the pre-
computed codebook, and we classify test videos with the trained SVM.

As data set, we use the KTH dataset which is commonly used for benchmark
test of spatio-temporal features. This dataset contains six kinds of primitive
motions such as “walking”, “running”, “jogging”, “boxing”, “hand waving” and
“hand clapping”. This dataset assumes that “there is no camera motion” and
“each video contain only one human and motion”. At each motion, 25 individuals
engaged 4 times, wearing different clothing. So each motion contains 100 videos.
In the experiment, we did a multi-class classification with 5-fold cross validation
employing the 1-vs-rest strategy. Note that the average length of videos in the
KTH dataset is about 20 second long, and we extracted about 4000 features
from each video.

Fig. 5. Results in case of changing the mo-

tion weight w
Fig. 6. Results in case of changing the

codebook size k
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Fig. 7. Results by four types of combina-

tions of features

Fig. 8. Comparison with other results by

the state-of-the-art methods

First, we explored optimal parameters of the motion weight w and the code-
book size k. Figure 5 shows that classification rates of the six actions and their
average in case of changing the motion weight w with 1, 2, 2.5 and 3. Figure 6
shows results in case of changing the codebook size k with 700, 1500 and 2500.
These results indicate that the case of w = 2.5 and k = 1500 performed well.
We used this setting for all the rest of the experiments,

In the next experiments, we evaluate the following four combinations of the
extracted features.

1. visual appearance + motion + rotation (VMR)
2. visual appearance + motion (VM)
3. visual appearance (V)
4. motion (M)

Figure 7 shows the results of the classification rates for the six motions and their
average. The average accuracy of VMR and VM both of which combine visual
appearance and motion features are better than V and R both of which utilize
only a single feature. VMR is better than VM, which indicates that considering
rotation improved the results.

The single motion feature (M) performed well for “walking”, “running” and
“hand waving”, while for “boxing” and “hand clapping” the results are very
bad. This is because both actions of “boxing” and “hand clapping” include only
horizontal motion as shown in Figure 1. Since “hand waving” contains not only
horizontal motion but also small vertical motion, we can classify this action with
only motion features relatively well.

On the other hand, the single visual feature (V) did not performed well for
all the actions, and especially did not for “walking”, “running” and “jogging”
since appearances of these actions are very similar to each other.

Table 1-4 shows the confusion matrix of the classification results by four types
of combinations of the features. Regarding all the combinations, the results for
“walking ” was good. On the other hand, it is difficult to classify “running” and
“jogging” for all the combinations, because these two actions are so similar to
each other that sometimes it is difficult for even human to classify.

Table 2 and Table 3 show the confusion matrices in case of only the visual
appearance feature (V) and only the motion feature (M), respectively. From these
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Table 1. Confusion matrix for VMR Table 2. Confusion matrix for V

Table 3. Confusion matrix for M Table 4. Confusion matrix for VM

tables, we found that it is difficult to classify “walking”, “running” and “jogging”
with only the visual appearance feature, while “’boxing’, “hand waving” and
“hand clapping” tend to be confused with only the motion feature.

Table 4 shows the confusion matrix in case of the visual appearance and
motion feature without rotation. Compared to Table 1 (VMR), the accuracy
of classification for all the action are worse. This means considering rotation
contributes to improve the classification results.

Finally we compared our results to the other results by the state-of-the-art
methods such as Dollar et al. [1], Alireza et al. [4] and Laptev et al. [2] as shown
in Figure 8. The average classification rate by our method was 86%, one by the
Dollar’s method is 82.3%, one by the Alireza’s method is 91.5% and one by the
Laptev’s method is 91.8%. Therefore, the proposed method is almost equivalent
to the state-of-the-art methods.

4.2 Web Video Shot Classification

We classify Web video shots by k-means clustering to confirm efficiency of our
features. Classifying Web video shots helps search video.

This experiment consists of four steps: (1) collect Web video, and divide them
into shots by comparing HSV color histograms of consecutive frames, (2) extract
the proposed feature from each shot, (3) build BoVW vectors and (4) cluster
shots extracted from a single video with k = 8 or all the video with k = 50. In
the experiment, we used 100 soccer videos collected from the Youtube.

Figure 9 shows the result of Web video shot clustering for a single video.
This figure shows only 3 clusters out of 8 clusters. The cluster in the top row
includes only shots taken from far places, the shots in the cluster in the middle
row are taken near the field relatively, and the shots in the bottom are close-up
of players.

Figure 10 shows 3 clusters out of 50 clusters as clustering results for all the
video shots. Most of the shots in the cluster in the top row are taken from far
places, and the shots in the middle are taken mainly for players. On the other
hand, the bottom cluster contains many noisy shots. Overall, shot clustering
performed well, and it shows that the proposed feature is also effective to classify
Web video.
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Fig. 9. Result of web video shot clustering per single video: cluster of far angle(top),

near angle(middle) and closed-up person(bottom)

Fig. 10. Result of all web video shot clustering: cluster of far angle(top), near an-

gle(middle) and noisy(bottom)

However, in this experiment, we extracted ten thousands of features on average
and 200 thousand features at most from one shot. This is because of camera
motion. For shots with camera motion, all extracted interest points are detected
as motion points, so that processing time becomes larger. To solve this, we need
to detect the direction and speed of camera motion and compensate it for motion
features. This is one of our future work.

5 Conclusion

In this paper, we proposed a yet-another spatio-temporal feature. Proposed
method consists of two parts: extracting visual appearance features and ex-
tracting motion features. First, we select candidate points based on the SURF
detector. Next, we calculate several motion features at each point with local
temporal units divided in order to consider consecutiveness of motions. Since
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our proposed feature is intended to be robust to rotation, we rotate optical flow
vectors to the dominant direction of extracted SURF features.

In the experiments, we evaluate the proposed spatio-temporal local feature
with KTH. As the result, the accuracy achieves 86%, which is almost equivalent
to state-of-the-art. In addition, we make experiments to classify large amounts
of Web video clips downloaded from Youtube, and indicate the efficiency of our
feature.

In future work, we can consider two ways. The first one is to improve the
proposed feature to add more features, to improve feature descriptors, and to
consider camera motions. The second one is to apply the proposed feature and
build applications, such as content-based video retrieval, video summarization,
and video surveillance system.
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Marne-la-Vallée, France

Abstract. Reprojection of texture issued from cameras on a mesh es-

timated from multi-view reconstruction is often the last stage of the

pipeline, used for rendering, visualization, or simulation of new views.

Errors or imprecisions in the recovered 3D geometry are particularly no-

ticeable at this stage. Nevertheless, it is sometimes desirable to get a

visually correct rendering in spite of the inaccuracy in the mesh, when

correction of this mesh is not an option, for example if the origin of error

in the stereo pipeline is unknown, or if the mesh is a visual hull. We

propose to apply slight deformations to the data images to fit at best

the fixed mesh. This is done by intersecting rays issued from correspond-

ing interest points in different views, projecting the resulting 3D points

on the mesh and reprojecting these points on the images. This provides

a displacement vector at matched interest points in the images, from

which an approximating full distortion vector field can be estimated by

thin-plate splines. Using the distorted images as input in texturing algo-

rithms can result in noticeably better rendering, as demonstrated here

in several experiments.

1 Introduction

Recovering 3D geometry from multi-view still images or videos is the focus of the
stereo research community in computer vision, robotics, and photogrammetry
[1]. Usage dictates the requirements and priorities about accuracy of the esti-
mated depth information: from rough precision for obstacle avoidance in robot
navigation to highly precise and controlled measurements in telemetry and sur-
veying. Despite years of research and development of computing capacities, and
whereas the mathematical foundations are well understood [2,3,4], the required
precision is not always practically reachable, which may be due to faulty calibra-
tion (uncorrected geometric distortion, imprecise focal position), approximations
(interpolation of disparity in non-textured regions), or plain errors of algorithms
in presence of unexpected conditions (specular surfaces, transparency, etc). Also
several stereo pipelines include a step of global, non-convex energy minimization,
as for example [5,6,7]. As they typically involve a gradient descent scheme, they
are susceptible of stopping at a local minimum and have no way of recovering
a better 3D geometry. Other methods involve a careful succession of heuristics
to refine a visual hull obtained from silhouettes, as for example [8]. The base
hypotheses of such heuristics may also be somewhat in default. In other cases,
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the visual hull is used directly for efficiency reasons. Whereas the resulting in-
formation may be unusable for precise scientific measures, it may still be useful
and sufficient in motion capture for example. In that case, the rendering should
mask as best as possible the incorrect geometry.

While algorithms exist that select the image to use as texture on each part of
the mesh to minimize illumination change artifacts, they assume that the images
are compatible with the mesh. In our case, that assumption does not stand and
we must do correct rendering in spite of these inconsistencies. As the mesh is
already the result of an optimization, it cannot be refined. The only possibility
is to modify the images themselves. This is the approach of Eisemann et al.
in [9]. The authors warp the input images by aligning reprojected images through
optical flow estimation, for which they use a near-real-time GPU implementation.
By contrast, we propose to use feature points as tie points for the registration of
images, and to warp the images following a thin-plate spline approximation of
the displacement field. Computational cost is normally low, as correspondence
of tie points is often already computed and used earlier in the stereo pipeline to
estimate epipolar geometry.

Recent work of Tzur and Tal [10] is an interesting approach to the problem.
The model is assumed to fit imperfectly with the image, and given a set of
projected vertices, a local projection matrix is estimated. The final warp is a
weighted average of these local maps. Notice however that the method requires
manual input of some projected vertices of mesh in the image. An interactive
software specialized to plant modeling is also described in [11].

The rest of this paper is organized as follows. Section 2 describes the details of
our algorithm and the required mathematical foundation. Section 3 shows exper-
imental results of this method on diverse data. Finally we draw some conclusions
in Sect. 4.

2 Morphing Images to Adapt to the Mesh

2.1 Overview of the Algorithm

Instead of correcting the mesh to fit the input images, which we assume we
cannot do as the mesh is already obtained as some optimum, we correct the
input images to fit the output mesh. We suppose that the camera positions,
orientations and internal parameters, so as the mesh, are all correct, and we
look for deformations in each input image to fit them. This is done in 4 steps:

1. Find matching points in different views.
2. Project on the mesh the obtained 3D points and reproject them onto the

views.
3. Approximate the resulting sampled vector field in each image and deform

them accordingly.
4. Use a multi-view texturing algorithm for rendering.

Notice that the match points detection is often already done as a first step in the
stereo pipeline for calibration, therefore this entails no additional computation.
Next sections give details on these different steps.
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2.2 Interest Point Matching

Detection of points that have a non-ambiguous local neighborhood has seen
remarkable progress in the last few years. They are some kind of generalized
extrema or corners. Most of these encode their neighborhood with a similar-
ity invariant signature, although affine invariance can be partly accommodated.
Most popular of those are SIFT [12], which correspond to local extrema in the
Gaussian pyramid, or generalized corners, and MSER [13], which are centroids
of contrasted upper or lower level sets of the image radiometry. Any type of
feature points can be used to match between different views [14]. We use SIFT
points in our experiments, although MSER would also fit.

As noticed above, the interest points are already computed for calibration of
the stereo system, and provide 3D point clouds for the initial mesh. However the
mesh is often subsequently modified by some smoothing procedure, and then the
3D points are not anymore on the mesh. The next step measures this difference
to adapt the images.

2.3 Reprojection of 3D Points through the Mesh

Reprojection is illustrated in Fig. 1. Intersecting rays passing through matching
feature points via the respective focal points yields the 3D point position. Ideally,
these rays would intersect in 3D, but because of imprecise calibration or imprecise
detection they may not1. The least squares error solution is the 3D point that min-
imizes the sum of square distances to the rays and can be computed by a closed
formula. Such a point is expected to be on the mesh, but because of the impreci-
sion of the mesh, it may reside nearby. A natural adjustment is to project the 3D
point P on the mesh, yielding a point PM . We can then assume that PM is the real
3D position and that the images are faulty. We reproject PM on the images where
it has been observed, yielding corrected positions of the feature points.

To ignore outliers, we simply reject the 3D points that are too far from the
mesh. Otherwise, a single large mishap can distort the applied warping and ruin
the correction effect.

2.4 Dense Deformation

Previous step indicates the desired position of matched feature points so that
they correspond to 3D points on the mesh. However we need a dense deformation
of each image to accommodate these displacements. In other words, in each image
we are looking for an interpolation or approximation of a vector field irregularly
sampled. A standard technique for that is using thin-plate splines [15,16]. Given
the n feature points pi and their reprojected positions p′i through the mesh,
thin-plate splines minimize the energy:

E(f) =
∑

i

‖p′i − f(pi)‖2 + λ

∫ (
∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2

dx dy (1)

1 Bundle adjustment would try to enforce these intersections as best as possible.
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P

O1 O2p2

p1

PM

p’1 p’2

Fig. 1. Projection of 3D points through the mesh. Corresponding feature points p1 and

p2 allow to recover a 3D point P . This point in projected on the mesh M to PM , which

would be observed at p′
1 and p′

2.

with a 2-variable function f of the form

f(z) = Az +
∑

i

Φ(‖z − pi‖)wi , (2)

with A a plane affine transform, Φ a kernel function, usually Φ(r) = r2 log r, and
wi a list of 2-vectors representing the non-affine part of the transform.

Defining K as the n×n symmetric matrix with entries Kij = Φ(‖pi−pj‖), P
as the 3×n matrix whose column j is composed of homogeneous coordinates of
pj , P (:, j) = (xj , yj, 1)T , and P ′ the 2 × n matrix whose column j is composed
of Cartesian coordinates of p′j , we minimize:

E(A,W ) = ‖P ′ −AP −WK‖2 + λ trace(WKWT ) ,

with A the 2 × 3 affine transform matrix and W the 2 × n concatenation of
the wj written in columns. The involved norm is the Frobenius norm ‖X‖2 =
trace(XTX) =

∑
i,j X

2
ij , that is the sum of square coefficients of X , associated

to the scalar product < X,Y >= trace(XTY ).
Equating to 0 the gradients of E (relative to this scalar product), with respect

to A and W , yields:

(P ′ −AP −WK)PT = 0 (3)
(P ′ −AP −WK)K + λWK = 0 (4)
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Using the QR decomposition of PT = Q1R (see [17]), let Q2 be any n× (n− 3)
matrix such that

(
Q1 Q2

)
is orthogonal. Right-multiplying (4) by K−1Q2, we

get
P ′Q2 −WKQ2 + λWQ2 = 0 ,

so that
WQ2 = P ′Q2(QT

2 KQ2 − λI)−1

and since WQ1 = 0, obtained by substituting −λW to the left factor of (3),

W
(
Q1 Q2

)
=

(
0 P ′Q2(QT

2 KQ2 − λI)−1
)
,

which, right-multiplied by
(
Q1 Q2

)T , yields:

W = P ′Q2(QT
2 KQ2 − λI)−1QT

2 .

Finally, right-multiplying (4) by K−1Q1 gives

P ′Q1 −ART −WKQ1 = 0 ,

whence the solution for A:

A = (P ′ −WK)Q1R
−T .

In our experiments, we used an open-source C++ implementation of thin-plate
spline, available at http://elonen.iki.fi/code/tpsdemo/.

2.5 Texture Mapping

Mapping textures from several views on the mesh can be achieved by several
methods. Projecting all images on the mesh and doing some weighted averaging,
as for example in [18], leaves some artifacts, such as ghosting. Other methods
extract an atlas of the mesh, where each region of the mesh gets its texture from
one unique view. The challenge is then to reduce seams visibility. The atlas can
be computed by formulating the problem as a Markov Random Field energy
minimization [19] and then masking the contrast changes between the view by
multiband blending at the seams, generalizing work of Burt and Adelson [20].
This is the strategy presented in [21], which we use in our experiments.

3 Experiments

We first demonstrate the proposed algorithm using simulated wrong 3D geome-
try. The image data are courtesy of R. White et al., who used them in [22]. The
3D geometry was estimated by Furukawa and Ponce [23]. To this 3D model, we
apply artificially a translation in space before texturing by the algorithm of [21].
For each point on the mesh, the texture comes from one single view (the most
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Fig. 2. Texturing on simulated imprecise mesh ([23] plus erroneous deformation). Top:

Warping of image to adapt to the mesh. Top left: one original image with displacement

vector of key points superimposed. Top right: the warped image using thin-plate spline

approximation of this sampled vector field. Bottom: Multi-view texturing on imprecise

mesh using [21]. Bottom left: texturing with original images. Bottom right: texturing

with warped images.
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Fig. 3. Texturing on real imprecise mesh (visual hull from [24]). Top: Warping of im-

age to adapt to the mesh. Top left: one original image with displacement vector of

key points superimposed. Top right: the warped image using thin-plate spline approx-

imation of this sampled vector field. Bottom: Multi-view texturing on imprecise mesh

using [21]. Bottom left: texturing with original images. Bottom right: texturing with

warped images.
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frontal one), so that errors can only be seen at transitions from one view to
another. Still the benefits of our mesh reprojection algorithm are visible in Fig. 2.
The warping effect is most visible in the sides of the image.

In the next experiment, we use image data courtesy of J. Starck2. The 3D
geometry was estimated by visual hull from silhouettes (using an implementation
of the algorithm of Franco and Boyer [24]) and refined using Poisson surface
reconstruction [25]. Texturing is done with the algorithm of [21] slightly modified
to enhance errors: instead of selecting one pixel value, issued from the “best”
view, to any point on the mesh, the average of the two best views is used. Only
the 3 front views were used in the texturing process. This produces blur at
misregistered points, otherwise the errors can only be observed at transitions
between different cameras in the atlas, which is still noticeable but less striking.
Notice that the original images produce artifacts on the arms and on the dancer’s
left hand, while the dress exhibits some wrong texture. Most of these problems
are fixed by the warping, except on some part of the left arm.

4 Conclusion

When the multi-view reconstruction pipeline yields an imprecise mesh, we have
shown how the input images themselves can be modified to mask the imprecisions
in the rendering. Mapping these images as texture on the mesh limits the visible
artifacts. Reversing the problem by changing the input (the images) to match
the erroneous output (the mesh) does not allow better measurements, but if
only a visually pleasing rendering is sufficient, as for example in motion capture
for computer generated imagery, this technique provides a simple solution. The
algorithm was demonstrated on simulated and real imprecise meshes. Extension
of this work to dynamic multi-view stereo (3D+time) using similar algorithms
will be investigated.
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Abstract. In this paper we present an efficient technique to obtain ac-

curate semantic classification on the pixel level capable of integrating

various modalities, such as color, edge responses, and height informa-

tion. We propose a novel feature representation based on Sigma Points

computations that enables a simple application of powerful covariance

descriptors to a multi-class randomized forest framework. Additionally,

we include semantic contextual knowledge using a conditional random

field formulation. In order to achieve a fair comparison to state-of-the-art

methods our approach is first evaluated on the MSRC image collection

and is then demonstrated on three challenging aerial image datasets Dal-

las, Graz, and San Francisco. We obtain a full semantic classification on

single aerial images within two minutes. Moreover, the computation time

on large scale imagery including hundreds of images is investigated.

1 Introduction

Internet driven initiatives, like Google Earth and Virtual Earth, collect an enor-
mous amount of aerial and satellite images in order to automatically construct
3D worlds of urban environments because of the demand for fast realistic 3D
modeling, cartography, navigation support, etc. These location-aware applica-
tions on the internet push the development of efficient, accurate, and automatic
technologies. The first step is to acquire high resolution images. In particular, the
Microsoft Ultracam takes multi-spectral images in overlapping strips, resulting
in high redundancy, which adheres every visible spot of urban environments from
many different camera viewpoints. The high redundancy within the data enables
methods for automatic height data generation [1] or full photo-realistic 3D mod-
eling [2]. In contrast to photo-realistic 3D modeling, where the model consists
of millions of triangles with fitted texture extracted from aerial images, we aim
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for synthetic modeling, i.e., based on the information directly derived from the
images to build a virtual model of a city. In addition, a synthetic model reduces
the problem of privacy violations due to modeling the semantic interpretation
instead of the realistic appearance.

Due to high variability in aerial imagery, automatic classification and seman-
tic description still pose an unsolved task in computer vision. We aim to use
appearance cues, such as color, edge responses, and height information for accu-
rate semantic classification into five classes. For instance, using a combination of
color and height data successfully separates the street regions from gray-valued
roof tops or distinguishes between green areas and trees. Figure 1(a) shows cor-
responding color and height images, extracted from the dataset San Francisco.
The classification of aerial images into several classes provides a semantic knowl-
edge of the objects on ground and approves a specified post-processing to build
up a semantic 3D world, where each object is modeled according to its ob-
tained interpretation. A semantic description of a small sub-image is illustrated
in Fig. 1(b).

Fig. 1. A pair of images extracted from the dataset San Francisco consisting of color

and height information, and the corresponding semantic description of the sub-image

(highlighted rectangles).

In [3], the authors proposed an appearance driven approach to exploit color
and infrared data for initial classification. Several methods concentrate on ex-
tracting single object classes, e.g., buildings by integrating only LIDAR data [4]
or height models [5]. The tight integration of 3D data into image classifica-
tion, as additional information source, is still a new and upcoming field of
research. Hoiem [6] extracted 3D information, such as surface orientation or
vanishing lines, from single images to improve 2D object recognition. Recent
approaches [7,8] include SfM to improve the interpretation in street side images.
In this work, we exploit dense matching results [1] together with appearance
features to obtain an accurate semantic interpretation.

Shotton et al. [9] proposed simple color value differences in a small neigh-
borhood for initial semantic classification on the pixel level using a randomized
forest (RF) classifier [10]. Schroff et al. [11] extended this approach by including
multiple feature types for an improved RF classification. Strong low level fea-
ture representations, such as SIFT [12], histograms of oriented gradients [13], or
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various types of filter responses [14,15,16] are widely used in appearance driven
supervised classification. However, a compact combination of different feature
cues is computationally very expensive. In addition, an integration into a com-
mon classification framework requires sophisticated techniques.

Thus, our work has three main contributions: To allow an efficient semantic
classification, we first introduce a novel technique to obtain a powerful feature
representation, derived from compact covariance descriptors [17] which is di-
rectly applicable to RF classifiers. Covariance matrices [17] can be efficiently
computed and provide an intuitive integration of various feature channels. Since
the space of covariance matrices does not form a Euclidean vector space [17], this
representation can not be directly used for most machine learning techniques.
To overcome this drawback, manifolds [18,17,19] are typically utilized, which,
however, is computationally expensive. In contrast to calculating similarity be-
tween covariance matrices on Riemannian manifolds [18], we present a simple
concept for mapping individual covariance descriptors to Euclidean vector space.
The derived representation enables a compact integration of appearance, filter
responses, height information etc. while the RF efficiently performs a multi-class
classification task on the pixel level. Second, we introduce semantic knowledge by
applying an efficient conditional random field (CRF) stage incorporating again
several feature cues and co-occurrence information. To demonstrate the state-of-
the-art performance we present quantitative results on the Microsoft Research
Cambridge dataset MSRC-9 [15] by integrating visual appearance cues, such
as color and edge information. Third, we apply our proposed method to real
world aerial imagery, performing large scale semantic classification. We extend
the novel feature representation with available height data as an additional cue
and investigate the classification accuracy in terms of correctly classified pixels.
Labeled training data, representing five annotated classes (building, tree, water-
body, green area and streetlayer), provides the input for the training process.

The remainder of this paper is structured as follows. Section 2 describes the
derived covariance region descriptor in detail, illustrates the application to the
RF framework, and also addresses the integration of the contextual constraints.
Section 3 highlights the included feature cues and presents results on the MSRC-
9 dataset and various real world aerial images. Finally, Sec. 4 concludes our work
and gives an outlook on future work.

2 Semantic Classification

In this section we highlight the semantic classification pipeline including the
feature representation based on covariance descriptors and Sigma Points, re-
spectively, the straight forward application to a multi-class RF framework, and
the CRF stage to handle the contextual constraints.

2.1 Approximated Covariance Representation

Tucel et al. [17,19] presented a compact feature representation based on covari-
ance matrices for rapid object detection and classification. In fact, covariance
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descriptors [17] provide a low-dimensional feature representation that simply
integrates multiple feature channels, such as color, filter responses, height in-
formation, etc. and also exploits the correlation between them. The diagonal
elements provide the variances of the feature attributes in one channel, whereas
the off diagonal elements capture the correlation values between the different
feature modalities. The statistics up to second order of N independent and iden-
tically distributed feature vectors xi ∈ Rd can be represented by the sample
mean μ = 1

N

∑N
i=1 xi and the sample covariance Σ ∈ Rd×d:

Σ =
1

N − 1

N∑
i=1

(xi − μ) (xi − μ)T
. (1)

As shown by Tuzel et al. [17] the concept of integral images [16] can be applied
to compute covariance descriptors on a rectangular image grid in constant time:
Given a multi-channel feature image I of the dimension w × h × d, any n ×m
rectangular region R ⊆ I can be represented by a d×d covariance matrix Σ. An
extension of common integral images to higher dimensions incorporating addi-
tional tensor integral images, enables the computation of symmetric covariance
matrices using the law of total variance. Implementation details can be found
in [17].

Because of the missing symmetry requirement the space of covariance ma-
trices is non-Euclidean [17]. Hence, standard machine learning methods, which
require similarity computations can not be used directly. Instead of exploiting
computationally costly manifolds [17,19] to obtain a valid covariance similarity
measurement, we propose a technique to represent individual covariance matri-
ces directly on Euclidean vector space. Julier et al. [20] proposed the unscented
transform (UT), which approximates a single distribution by sampling instead
of approximating an arbitrary non-linear function by mapping to manifolds [18].
The UT provides an efficient estimator for the probability distribution and was
successfully applied to unscented Kalman filtering [21], where it overcomes the
drawbacks of truncated (second order) Taylor expansions. In the d-dimensional
case the UT relies on constructing a small set of 2d+ 1 specific vectors si ∈ Rd,
also referred to as Sigma Points [20]. We construct the set of Sigma Points as
follows:

s0 = μ si = μ+ α(
√
Σ)i si+d = μ− α(

√
Σ)i, (2)

where i = 1 . . . d and (
√
Σ)i defines the i-th column of the required matrix

square root
√
Σ. The scalar α defines a constant weighting for the elements in

the covariance matrix and is set to α =
√

2 for Gaussian input signals [20].
In contrast to Monte Carlo methods, where test vectors are selected at ran-

dom, the construction of the Sigma Points can be seen as an efficient map-
ping of a specified set of test vectors ti ∈ Rd that deterministically sample the
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intersections of an unit hypersphere with a d-dimensional Cartesian coordinate
system. Here, the mean vector t0 = μ represents the origin. The computed
statistics of these points si accurately capture the original information about
Σ up to third order for Gaussian and up to second order for non-Gaussian
inputs [21]. Figure 2 illustrates the specified sampling of the test vectors and the
mapping for a simplified 2D case.

Since covariance matrices Σ are positive semi-definite by definition, we first
perform a simple regularization Σ = Σ + εI, where I is the identity matrix and
ε = 1e-6, to obtain symmetric positive definite matrices. Due to symmetry and
positive definiteness of the regularized covariance matrices, the efficient Cholesky
factorization can be applied to compute the matrix square root by decomposing
Σ = LLT . Then, L corresponds to

√
Σ and is a lower triangular matrix. In

principle any method for square root factorization can be used, however, the
Cholesky decomposition requires the lowest mathematical operations yielding a
complexity of O(n3/3).

The resulting feature representation Sk =
(
sk
0 , s

k
1 . . . s

k
2d

)
is obtained by con-

catenation of the Sigma Points and captures both, first and second order statis-
tics, which are given by the mean and covariance information. Each of these
generated vectors sk

i ∈ Rd describe Euclidean space, therefore, element-wise dis-
tance computations between corresponding samples of a given distribution are
feasible. The construction pipeline for the set of Sigma Points is summarized in
Algorithm 1.

Fig. 2. The mapping of a fixed set of test vectors ti to the Sigma Points si given in

a second coordinate system, representing the original characteristics of the covariance

matrix Σ = LLT

The structure of this feature representation Sk perfectly fits the concept of
randomized forest classifiers, where the learning and evaluation strategy is based
on comparing randomly selected attributes of an available representation. Note
that, since a reference representation is missing, similarity measurements, such
as the Foerstner metric [18] are intractable to directly use in decision trees. In
the following section we show how our representation can be applied straight
forward to a RF framework.
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Algorithm 1. Construction of our proposed feature representation based on
Sigma Points.
Require: Mean vector μk and covariance matrix Σk

1: Perform a simple regularization Σk = Σk + εI
2: Compute matrix square root Σk = LLT

3: Compute sk
i according to (2)

4: Construct the set of Sigma Points Sk =
(
sk
0 , sk

1 . . . sk
2d

)

2.2 Randomized Forest Framework

Randomized forests [10] have proven to give robust and accurate classifica-
tion results for multi-class tasks [9,11,22]. An RF consists of an ensemble of
binary decision trees, where the nodes of each tree include split criteria that
give the direction of branching left and right down the tree until a leaf node
is reached. Each leaf node li in a given maximal depth D contains a learned
class distribution P (c|li). By averaging the decisions over all T trees in a for-
est the resulting accumulated probabilities yield an accurate class distribution
P (c|L) = 1

T

∑T
i=1 P (c|li). To rapidly grow each tree of the forest, the split

node criteria are learned using only a subset S′ of the whole training data S.
For training a class label ck is assigned to each feature representation Sk ∈ S.
The learning proceeds from the root node top-down by tiling the available subset
at each split node into left and right sets. Proposed splitting decisions in [9,22]
are achieved by comparing two or multiple randomly chosen elements sk

i and sk
j

of the given feature sample Sk. In our implementation we follow a strategy sim-
ilar to [22], randomly taking into account the correct corresponding dimension
a ∈ {1 . . . d} selecting two weighted elements i and j according to

αsk
i (a) + βsk

j (a) =
{
> γ, split left
≤ γ, split right .

(3)

Here, α, β, and γ denote the greedy-optimized parameters that minimize the
information gain with respect to the training labels [9,22]. We take the numbers
of split node tests as suggested in [22]. Once the forest is trained, we evaluate
the classifier at each pixel location by parsing down the extracted feature rep-
resentation in the forest and accumulating the class distribution to obtain an
overall probability map P (c|L).

2.3 Incorporating Contextual Information

Although our feature representation includes a spatial neighborhood of n ×m
implicitly, each pixel is classified independently. In this work we apply an effi-
cient conditional random field (CRF) stage based on linear programming [23]
to incorporate semantic contextual constraints yielding a smooth labeling of
the final image classification. In addition, we include edge information into the
four-connected graph to exactly capture the real object boundaries.



Semantic Classification in Aerial Imagery 483

In order to obtain the contextual semantic information, we construct a dataset
dependent co-occurrence matrix by counting the frequency of class labels in the
training images within randomly chosen rectangular sub-windows [9]. The fre-
quency counts can be performed quickly on single images using integral struc-
tures [16]. Furthermore, we follow the concept of [24] to compute a normalized
co-occurrence matrix θ(ci, cj) representing the pairwise semantic contextual in-
formation of the grid nodes i and j. The application of the CRF allows us to
include the posterior class distribution P (c|L), the likelihood co-occurrence ma-
trices θ(·) and an edge penalty function to preserve the object boundaries. Given
a four-neighborhood connected image I we define an energy with respect to the
class labels according to

E (c) =
∑

i

D(ci) +
∑
i,j

wijV (ci, cj), (4)

where D(ci) denotes the data term, including the unary potentials according to
D(ci) = − log (P (ci|L)) at grid node i. The pairwise class potentials are com-
puted according to V (ci, cj) = − log(θ(ci, cj))δ(ci �= cj) and include the semantic
knowledge. The weight wij describes an edge penalty term between the nodes
i and j. Following the concept suggested in [11], where the authors used color
distance computations to capture the object boundaries, we exploit the height
information in case of the aerial images. Thus, the weight is constructed with
wij = exp

(
−λ‖hi − hj‖2

)
, where hi, hj are the height values at the neighboring

graph nodes. λ defines a factor and is learned while training. In this work we
apply the strategy of Komodakis et al. [23] to minimize the energy defined in (4).
In the experimental evaluation we present overall results incorporating semantic
contextual information into the classification pipeline.

3 Experimental Evaluation

Due to efficient computation of our region based covariance representation, we
exploit several feature cues incorporating a small spatial neighborhood. First,
we construct the required integral images to compute the covariance descriptors
including the feature cues, such as color channels, first derivatives in x and y
direction, and the height values. Then, the feature instances are constructed
according to our proposed concept (see Sec. 2.1). The collected samples provide
the representation for training and testing. In the following, we first evaluate
our classification pipeline on the standard MSRC-9 [15] evaluation dataset. By
integrating appearance and height information we illustrate the application to
real world aerial imagery and investigate large scale capability.

3.1 Experiments on MSRC-9 Dataset

In our first experiment we use the MSRC-9 dataset with nine on the pixel
level labeled classes to provide results for a comparison to state-of-the-art ap-
proaches [11,25]. For the training and the testing procedure we randomly split
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the dataset including a total number of 240 images, 120 training and 120 test
images. The training samples, consisting of the set of Sigma Points S and a
target label vector c, are regularly collected on a 5 × 5 grid with a small spa-
tial neighborhood of n = m = 21 pixels. The corresponding label is extracted
by considering the available ground truth images. Confirming the observation
in [9], the CIELab color space generalizes better than raw RGB values. The first
derivatives are computed on the L-channel. We apply small synthetic affine dis-
tortions to the training images capturing an invariance to shape deformations [9].
In addition, we extend the test images, according to the spatial neighborhood,
to obtain class probabilities at the image borders. Due to randomness of our ap-
proach, we repeat the experiment 20 times independently to obtain meaningful
averaged classification rates. In this work, we choose a relatively small size of
the forest (T = 15 trees and a maximum depth of D = 10) to provide both,
efficiency in testing and classification accuracy.

Our pixel-wise RF classification returns rates of 64.2% using only color and
71.1% integrating both, color and derivative information. The feature represen-
tation Si at a pixel i integrating only color yields a concatenated vector with a
dimension of 21 attributes, while an extension to include derivatives increases
the size to 55. In [11] rates of 72.2% are given for only incorporating color infor-
mation, however using a forest with 20 trees each with a maximum depth of 20.
Running the full classification cue including the CRF stage achieves an average
classification performance of 84.2%, while in [11] and [25] rates of 87.2% and
84.9% are reported, respectively. Running the full classification cue, consisting
of the feature extraction, the evaluation of the classifier at each pixel and the in-
tegration of semantic knowledge using the CRF stage, on a single image requires
less than 2 seconds on a standard single core PC. Figure 3 depicts a selection of
semantic classification results on the MSRC-9 dataset.

Fig. 3. A selection of results on the MSRC-9 dataset. From left to right: color images,

pure pixel-wise classifications, final result using RF and CRF and ground truth labeling.

Considering the results of our first experiment on the MSRC dataset, we con-
clude that an integration of color and derivatives enhances the classification rates
significantly. Including semantic contextual information, using an efficient CRF
stage further improves the results. The comparison shows that our throughout
simple approach is competitive with existing methods [11,25].
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3.2 Experiments on Aerial Images

The second experiment evaluates the classification pipeline on huge real world
aerial images. We apply separately trained RF classifies to single aerial images
performing a semantic classification into five classes (building, tree, waterbody,
green area and streetlayer) on the level of pixels.

In this work, we perform experiments on three different datasets, generated
by the Microsoft Ultracam: The dataset Dallas includes large building struc-
tures and gray valued areas, Graz shows a colorful characteristic with challeng-
ing building blocks, and the images of San Francisco have mainly suburban
appearance. The color images have a dimension of 11.5K × 7.5K pixels and
provide a ground sampling distance (GSD) of 8 cm (Graz ) and 15 cm (Dallas,
San Francisco). Due to high redundancy a dense matching process [1], taking
into account three adjacent images, yields range images representing the surface
model. Subtracting the surface model from the extracted ground plane using,
e.g., [26] produces the relative height information that is directly applicable to
our classification procedure as an additional feature channel. The dimension of
the resulting feature vector increases to 78, if CIELab color, derivative, and
height information are integrated. Figure 1(a) shows a pixel synchronous pair of
a color and the corresponding height image. For each dataset we independently
label three images providing the training labels on the pixel level. Additionally,
we generate two non-overlapping images as ground truth data for testing. Simi-
lar to the MSRC training process the target labels are then collected taking into
account these training maps.

In case of the aerial images we compute our feature representation integrating
the color, texture, and height information and train an RF classifier with 15
trees and maximum depths of 10 separately for each dataset. The dimension of
the spatial neighborhood is set according to the datasets GSD with n = m =
2(50/GSD + 1). The trained RFs are evaluated at each pixel location using
a fourth of the full image resolution. The obtained classification rates for the
three datasets are summarized as confusion matrices in Fig. 5. A combination
of color, derivatives, and height information results in averaged rates of 92%
(Dallas), 93% (Graz ), and 88% San Francisco. For instance, using only color
and derivative cues yields low classification accuracies of 79% (Dallas), 78%
(Graz ), and 73% San Francisco.

Figure 4 depicts a full semantic classification including the CRF stage of a
single image taken from the Graz dataset. The feature extraction and pixel-wise
classification of a single aerial image of Graz covering an area of approximately
0.5 km2 requires about 35 seconds, the CRF stage increases the computation time
to approximately 80 seconds. This scales to an overall computation of about 1.5
hours on a standard PC given a complete dataset, e.g., Graz with 155 images.
Note that for a full dataset processing the CRF stage can be applied to a fused
classification result instead of using the per-image classification, which speeds
up the computation drastically. Figure 6 illustrates a selection of classified sub-
images extracted from full processing steps.
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Fig. 4. Full semantic classification of a single image taken of the dataset Graz. The

image provides a ground sampling of 8 cm and covers an area of approximately 0.5 km2.

(a) Dallas (b) Graz (c) San Francisco

Fig. 5. Computed confusion matrices on the three aerial image datasets. We obtain

classification rates of approximately 90% on the three challenging datasets. The low

gray-valued buildings in Dallas are sometimes mixed with the streetlayer class which

can be caused by inaccurate terrain models. Due to similar spectral ranges small shadow

regions in the streets are classified as waterbody in Graz. Many small trees inside of

courtyards and the hilly terrain in San Fransisco explain the relatively low classification

rate for trees.
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Fig. 6. Representative sub-images extracted from full semantic classification results.

From left to right: a hotel complex with a pool/trees on the top in Dallas, a church

surrounded with vegetation in Graz, a typical building block of San Fransisco, and a

detail showing a river in Graz.

4 Conclusion

This work has proposed an efficient approach for semantic classification of images
by integrating multiple types of feature modalities, such as appearance, edge
responses, and height information. We presented a novel feature representation
based on covariance matrices and Sigma Points, respectively, that can be directly
applied to multi-class RF classifiers. By including contextual information using
a CRF stage, we achieved an accurate semantic description of test images on the
pixel level. We performed experiments on the MSRC dataset and on huge real
world aerial images and demonstrated accurate classification results with low
computational costs. Further work will investigate the influence of additional
data cues, like infrared and pan-chromatic images, on the classification quality.
In addition, we work on exploiting the redundancy by fusing multiple image
classification results of different viewpoints.
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Abstract. Most current video matting methods perform off-line with

a high calculation cost and require many user inputs for multiple key

frames. In this paper, we present an online video matting method that

runs in real-time based on bilayer segmentation. For the first step of

the method, we introduce an accurate bilayer segmentation method for

extracting the foreground region from the background using color likeli-

hood propagation. For the second step, we perform alpha-matting based

on the segmentation result. To enable real-time processing, we modify

the conventional Bayesian matting method by using down-sampling and

smart initialization, which increase the calculation speed by 5 times while

maintaining the quality. Experimental results on various test sequences

show the effectiveness of our method.

1 Introduction

Video matting is a technique for extracting an alpha matte and foreground from
a video sequence, which has been applied widely in commercial television and
film production. Different from bilayer segmentation which simply divides a video
into two regions (foreground and background), the matting process extracts the
foreground and also produces a fractional opacity at every pixel. Combined with
the foreground color, the matte allows users to modify the background or to com-
posite the foreground onto a new background. Fractional opacities are especially
effective for fuzzy objects like hair, feathers, etc..

This matting problem can be solved easily by using some special assumptions.
The most common method for video matting is the chroma keying, which is
often used in broadcasting. In this method, foreground elements are filmed in
front of a solid color background, which usually requires tightly controlled studio
environments. Another common method is difference matting [1], which produces
the opacity based on the background subtraction result. Its disadvantage is that
the background must be kept fixed during the filming time.

Chuang et al. introduced an effective method for video matting from general
scenes [2]. They applied a method called “Bayesian matting” [3] to each frame
of the sequence. Bayesian matting begins with a user-supplied trimap, i.e., a
segmentation of the scene into three regions: “definitely foreground”, “definitely
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c© Springer-Verlag Berlin Heidelberg 2010
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background”, and “unknown”. By collecting nearby foreground and background
statistics, the opacity, as well as foreground and background colors, can be esti-
mated at each pixel in the unknown region. For processing the whole sequence,
the trimaps are interpolated across the video volume using forward and back-
ward optical flows. This matting process performs off-line with a high calculation
cost, and users must supply correct trimaps for every 10 frames.

In this paper, we address a challenging problem of real-time video matting:
extracting a matte from a general video sequence in a real-time process. As
far as we know, there are no video matting methods that can run in real-time
for general videos with the quality comparable to Bayesian matting. However,
real-time video bilayer segmentation, a technique that segments each frame into
foreground and background, has been developed for the last five years [4,5,6].
These methods require some manual procedures, but they can perform almost
automatically. For example, in [4,5], the first frame is segmented by employ-
ing background subtraction or an interactive segmentation method, then the
remaining frames are processed automatically. In this paper, we describe a video
matting approach that builds upon a real-time bilayer segmentation method and
a real-time alpha matting process. This combination can not only save the need
for user interaction, but also realize real-time processing.

In our approach, we segment each frame of the input video into foreground
and background, then apply matting process to the pixels around the boundary.
The entire procedure can be done in real-time. Our method is based partly on
the segmentation method from our previous work [4] and the Bayesian matting
method [3], but our main contributions lie in the improvements of these methods.
For segmentation, we introduce a novel method for propagating color likelihood
based on motion vectors. We can attain higher segmentation accuracy than [4],
while keeping the processing speed. For matting, we apply down-sampling and
smart initialization, which increase the calculation speed by 5 times compared
to [3] while keeping the quality. Combining the proposed improvements, we can
realize real-time video matting from general scenes with high quality.

The rest of this paper is organized as follows: Section 2 presents the segmen-
tation algorithm. The real-time matting technique is stated in Section 3. Section
4 discusses experimental results. Finally, Section 5 concludes the paper.

2 Segmentation Algorithm

In this section, we describe the first half of our proposed method: the bilayer seg-
mentation step. Our segmentation step supposes that the first frame has already
been segmented into two layers (foreground and background) by using some
methods, then it performs segmentation for the remaining frames automatically.
Here, we employ two methods for segmenting the first frame: interactive segmen-
tation and background subtraction, depending on the type of the target video. In
case of existing videos like “Foreman” (see Fig. 8), we use a user interface, based
on the Interactive GraphCut algorithm [7], to perform segmentation with very
simple user interaction (see Fig. 1). In case of live videos where backgrounds are
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Fig. 1. Interactive seg-

mentation tool

Input Bayesian
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Iprob

GraphCut OutputTrimap
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Fig. 2. Our framework for segmentation is based on [4]

kept fixed before filming, we can apply background subtraction to the first frame,
making the whole segmentation process smoother without any user interactions.

In this paper, we employ the segmentation framework from our previous work
[4], and propose a novel method for propagating color likelihood based on mo-
tion vectors. In [4], thermal vision images were employed in addition to color
images to attain high quality segmentation results. But for the purpose of this
paper, in which only color images are available, the segmentation method of [4]
is insufficient. In this paper, by introducing a novel color likelihood propaga-
tion technique, we can improve the segmentation quality while maintaining the
real-time calculation speed.

Before moving to the next section, it is better to briefly explain the GraphCut
optimization algorithm [7]. Let Seg be a segmentation of an image where Seg(p)
takes F (foreground) or B (background) for each pixel p. We define the energy
function by

E(Seg) = Data(Seg) + λSth(Seg) (1)

where the data term Data(Seg) evaluates the pixel-wise costs, and the smooth-
ness term Sth(Seg) evaluates the inter-pixel costs. λ is a weighting coefficient.
This function can be minimized by the min-cut algorithm [8], and the opti-
mization solution should produce a good segmentation because it considers the
balance between the region property and the boundary property of the segments.

2.1 Framework

Our framework for the segmentation step is based on the segmentation algorithm
of [4]. The detailed algorithm should be referred to from the original paper [4].
A flow-chart is shown in Fig. 2. The original method requires both color and
thermal vision images as the inputs. But in this paper, we employ only color
images, so that the method can be adapted to general videos.

First, for each pixel p, we find the probability Iprob(p) that p is classified to
the foreground, by calculating a conditional probability using Bayes’ formula

Iprob(p) = P (F |Cp) =
P (Cp|F )P (F )

P (Cp|F )P (F ) + P (Cp|B)P (B)
(2)

Cp is the color vector of pixel p, and F and B denote the foreground and
background. P (∗) represents the probability of “∗”. The likelihoods P (Cp|F ) and
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P (Cp|B) are retrieved from the foreground and background color histograms.
The prior P (F ) is calculated from the segmentation result of the previous frame,
using spatio-temporal coherence. We should notice that the prior depends on the
pixel position, while the likelihoods are independent of that.

Next, we create a trimap, Tr(p), which takes one of the three values {F
(foreground), B (background), and U (unknown)}, based on the value of Iprob(p)⎧⎨⎩ if(Iprob(p) < ε) : Tr(p) = B

if(Iprob(p) > 1− ε) : Tr(p) = F
otherwise : Tr(p) = U

where ε is a small real value. GraphCut optimization is then performed on the
unknown region. The energy function for GraphCut optimization is defined as

Data(Seg) =
∑
p∈U

− log(P (Cp|Seg(p))) + μ
∑
p∈U

− log(Iprob(p)) (3)

Sth(Seg) =
∑

(p,q)∈N

[Seg(p) �= Seg(q)]
e−‖Cp−Cq‖2/(2σ2)

‖ dist(p, q) ‖ (4)

where N represents the set of adjacent pixel pairs, and dist(p, q) denotes Eu-
clidean distance between pixels p and q. σ can be estimated as “camera noise”.
The probability map Iprob is employed in Eq. (3), to append the spatial-temporal
coherence information to the data term.

2.2 Color Likelihood Propagation

In this section, we introduce a likelihood propagation method to the segmenta-
tion framework in Section 2.1. By including this new technique, we can attain
more stable segmentation results while maintaining the real-time speed.

In most video segmentation researches [4,5,6], color likelihood is represented
using a global probability model for the whole image. For example, color likeli-
hood of each pixel was estimated from color histograms in [4,6], and probability
density functions in [5]. However, based on many experimental results, we found
that such global color models are the main cause of segmentation errors. Figure
3(a) shows the 173th frame from the sample sequence “Video Chatting”, which
was used in [4]. The segmentation result by directly applying the algorithm in
Section 2.1 is shown in Fig. 3(b). In this frame, the black color appears equally in
both foreground and background regions. The black laptop appearing near the
man (pointed by the arrow) has almost the same color likelihoods for foreground
and background, because these likelihoods are estimated globally. As a result,
this laptop was misclassified to the foreground.

To fix the above problem, we introduce a novel technique which propagates the
local color likelihoods based on motions between two adjacent frames. First, in
the current frame, we detect a set of reliable feature points G to track, employing
the algorithm of [9]. Then, by using a variation of the Lucas-Kanade optical flow
tracker based on image pyramids [10], for each feature point pi ∈ G, we find
an optical flow vector vi which matches pi with a correspondent point qi in the
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(a) (b) (d)(c)

Fig. 3. Color likelihood propagation

previous frame (see Fig. 3(c)). Furthermore, we apply the RANSAC algorithm
to remove error vectors. The purpose of this process is to obtain a local color
likelihood of each pixel pi from the known color distribution of qi based on the
propagation.

We first assume that the foreground/ background in the previous frame are
correctly segmented. Then, for each point qi, we build two color distribution mod-
els, for foreground and background, using the known foreground/ background
colors within this pixel’s neighborhood Ni. For details, the mean color F i and
covariance ΣF i

of the foreground color distribution are calculated as follows:

F i =
1
Wi

∑
q∈Ni,Seg(q)=F

wqCq (5)

ΣF i
=

1
Wi

∑
q∈Ni,Seg(q)=F

wq(Cq − F i)(Cq − F i)T (6)

where Wi is the regularization constant and Cq is the color vector of pixel q. The
contribution of each neighborhood pixel q is weighted with a spatial Gaussian
fall-off wq with σ = 8 to increase the contribution of nearby pixels over those that
are further away. The foreground color likelihood of pixel qi is then estimated
locally from the oriented elliptical Gaussian distribution

L(qi|F ) = (Cqi − F i)TΣ−1
F i

(Cqi − F i)/2 (7)

This foreground color likelihood is then propagated to pixel pi: L(pi|F ) =
L(qi|F ). The background color likelihood L(pi|B) is found in the same way.
The propagated likelihoods are then added to the data term in Eq. (3)

Data(Seg) =
∑
p∈U

− log(P (Cp|Seg(p))) + μ
∑
p∈U

− log(Iprob(p))

+ ν
∑
pi∈G

log(L(pi|Seg(pi))) (8)

The likelihood of each feature point is composed of both global and local color
distributions. The remaining pixels besides the feature points are not affected by
the local color model, but by performing GraphCut optimization, they will be
dragged by the nearby feature points, resulting in correct segmentations. Figure
3(d) shows the segmentation results by including the color likelihood propagation
method. Some errors appearing in Fig. 3(b) are completely corrected.
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sampled pixels

remaining pixels

inherit

Fig. 4. Down-sampling

(a) Trimap (b) Matting result

Fig. 5. A natural matte sample

3 Matting Algorithm

In the second step of our method- the matting step, we perform alpha matting
based on the segmentation result from Section 2. This alpha matting process,
which produces a fractional opacity at every pixel, is performed on a morpho-
logical strip around the object contour with 15 pixel width. In our method, we
improve the famous Bayesian matting [3] by introducing down-sampling and
smart initialization, for the purpose of realizing real-time processing. We can
increase the calculation speed by 5 times while keeping the matting quality.

We first explain the original method, then describe our improvements later.

3.1 Bayesian Matting

Bayesian matting [3] method formulates the matting problem in a well-defined
Bayesian framework, then estimates its parameters using maximum a posteriori
(MAP) method. In this section, we only give a brief explanation of the method.
The detailed algorithm should be referred to from the original paper.

The method assumes that the source image C is a composite of two images
F and B (foreground and background) with opacity channel α. These values
should satisfy the compositing equation in each pixel:

C = αF + (1− α)B (9)

This method takes a user-supplied trimap (see Fig. 5(a)) as the input. A trimap
for matting (which should be distinguished from the trimap for segmentation in
Section 2.1), is a segmentation of the scene into three regions: “foreground”(α =
1), “background”(α = 0), and “unknown”, in which the parameters αCFCB
for “unknown” pixels need to be estimated. The estimation is performed by
maximizing the following posteriori probability, based on the given color C

P (F ,B, α|C) =
P (C|F ,B, α)P (F )P (B)P (α)

P (C)
(10)

where P (C|F ,B, α) is estimated as the distance between C and the mix of
F and B (i.e. by the norm of the difference of the left and right hand sides of
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(a) (b)

Fig. 6. Matting results after 10 loops:

(a)Original method, (b)Our improvement
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Eq. (9)). P (F ) and P (B), which are assumed to follow the Gaussian distribution,
are formulated by estimating their distribution parameters (the means F , B and
covariances ΣF , ΣB). P (α) is ignored and P (C) is constant. To maximize the
posteriori (Eq. (10)), partial derivatives with respect to α and (F ,B) are set to
0, resulting in the following simultaneous equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
Σ−1

F + Iα2/σ2
C Iα(1 − α)/σ2

C

Iα(1− α)/σ2
C Σ−1

B + I(1− α)2/σ2
C

] [
F
B

]
=

[
Σ−1

F F + Cα/σ2
C

Σ−1
B B + C(1− α)/σ2

C

]

α =
(C −B).(F −B)
||F −B||2

(11)

σC is the standard deviation of color C. The above Eq. (11) is solved using an
iterative method, by repeating two procedures: update (F ,B) assuming α is
fixed, and update α assuming (F ,B) are fixed. α is initialized by the mean of
known α values over the neighborhood.

3.2 Proposed Method

The above algorithm produces good results, but its calculation cost is too high.
In this section, we propose two improvements to this algorithm, for the purpose
of realizing real-time processing.

The first improvement is down-sampling, which aims to reduce calculation cost
for estimating color likelihoods. In the original method, parameters of color mod-
els P (F ) and P (B) (the means F , B and covariancesΣF , ΣB) are estimated for
every pixel based on the distributions of known foreground/ background colors
within the neighborhood. Based on the fact that two adjacent pixels have almost
the same neighborhoods, we can omit the process of parameter estimation for a
pixel by inheriting results from the adjacent pixel. In our first improvement, we
estimate parameters for only the sampled pixels where row and column indices
are both multiples of 3, and the parameters for each remaining pixel is inherited
from its nearest sampled pixel (see Fig. 4). Figure 5(b) shows the matting result
of a natural image by including our first improvement. We attain almost the
same quality as the result of [3] with only 1/9 calculation cost for the parameter
estimation.
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Table 1. Calculation time for convergence

Original method[3] Proposed method

Likelihood estimation 278ms 33ms

Iteration process 72ms 38ms

Total 352ms 72ms

In our second proposal, we improve the method for estimating the initial
value of α, with the objective of reducing the required number of iterations of
Eq. (11) for finding the convergent solutions. We found that the convergence
speed depends mostly on the initialized α value. The bad choice of this value
will make the process longer, and even lead to the local-minimum problem. In
the original Bayesian matting, α is initialized by the mean of known α values
over the neighborhood. Meanwhile, in our improvement, we estimate the initial
value of α using the probability model in Eq. (2). Here, likelihoods P (Cp|F ) and
P (Cp|B) are calculated from the given trimap. Prior P (F ) is estimated from
the segmentation result of our previous step, by filtering the segmentation mask
with a Gaussian operation. The posterior P (F |Cp) is then used to initialize α.
This value is clearly better than the mean value because it considers not only
the spatial coherence, but also the color distribution.

Figure 6 shows the matting results after 10 loops of iteration, using the orig-
inal method (a) and our two improvements (b). To this period, our method
has been convergent while the conventional method needs many more loops.
In a different evaluation, we set the convergence point as the period when the
variance |Δα| < 0.001, then measure the required number of iterations for con-
vergence (see Fig. 7). The sequence “Headshake” (see Fig. 13) was employed
here. Compared to the original method, we need only a half number of iter-
ations for convergence. The calculation time for likelihood estimation and the
iteration process is shown in Tab. 1. By introducing the two improvements, we
can speed up the likelihood estimation step by 9 times and the iteration process
by twice. Our entire matting process is 5 times faster than the original method.

4 Experimental Results

We performed experiments with various sample sequences to show the effective-
ness of our method. We first evaluate the effectiveness of each step, segmentation
and matting, individually. Then the combination of the two steps, which can re-
alize real-time video matting, is evaluated in the end of this section.

4.1 Evaluation of Segmentation

We compared our segmentation method with three conventional methods [4,5,6].
For a fair comparison, we reused sample videos from these research papers, as
the test sequences for our experiments. Because the source code of [5] is not
available, we just referred to the experimental results stated in this paper. In
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(a) (b)

Fig. 8. Segmentation results of sequences: (a)“Foreman”, (b)“Mother and Daughter”

Fig. 9. Segmentation results of the sequence“Video Chatting”[4]

case of [4] and [6], the source codes are available, so we performed experiments
using them. Some segmentation results using our method are shown in Fig. 8 and
Fig. 9. In Fig. 8, we present results for two MPEG-4 sequences “Foreman” and
“Mother and Daughter” (352×288 pixels) which were used by [5]. The sequence
in Fig. 9 is “Video Chatting” (320×240 pixels) which was employed by [4].
Our segmentation results have such high quality that the composites of the
foreground regions on different backgrounds look very natural.

For the quantitative evaluation, we obtained ground truth segmentation data
by hand-labeling, then found the error rate for each frame which is defined as

error rate =
number of misclassified pixels

number of all pixels
(12)

The error rates for all frames are shown in Fig. 10. In Fig. 10(a), we show the
comparison between our method and [5], using the sequence “Foreman”. We
obtained a better result with an average error rate = 0.6%. Figure 10(b) shows
the comparisons between our method and two conventional methods [4,6] using
the sequence “Video Chatting”. This sequence is difficult to process, because the
background changes noticably with camera movement. In [4], a thermal vision
camera is employed to provide additional information; in [6], motion features
are learned in advance from the groundtruth data of the first 100 frames. Mean-
while, in our method, the segmentation process is performed online using a single
camera, without requiring any future information. However, in spite of more crit-
ical conditions, our segmentation method attains the highest quality. This result
proved the effectiveness of the proposed likelihood propagation technique.
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Fig. 10. Comparisons of segmentation accuracy between our method and: (a)Ahn et
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Fig. 13. Matting results for the sequence “Headshake”

4.2 Evaluation of Matting

In Section 3.2, we introduced two improvements to the original Bayesian matting
[3], which can increase the calculation speed by 5 times while keeping the quality.
In this section, we perform a detailed quantitative evaluation of the matting
accuracy. We employed the average error as the evaluating function
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average error =

∑
pixel i |resulting αi − true αi|

number of pixels
(13)

True αi was obtained from the convergence result of the iteration process (see
Eq. (11)), using the original Bayesian matting [3]. Figure 11 shows the relation-
ship between the number of iterations and the average error. Here, we employed
one of our captured sequences, named “Headshake”, as the sample sequence.
Similar results were attained for other sequences. There are some conclusions
that can be drawn from this result:

– Our method converges faster than the original one [3].
– Because our method performs approximations using down-sampling, the re-

sult can not reach the true value.

“Amira” sequence

“Kim” sequence

Frame #30

Frame #50

Frame #50

Frame #40

Frame #40

Frame #30

Fig. 14. Matting results for sample videos used by Chuang et al.[2]
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– However, for a small number of iterations, our method produces smaller av-
erage error than the original one [3]. Therefore, our method is more effective
for real-time processing purposes.

Figure 13 shows matting results for the sequence “Headshake”. The difficulty of
this sequence is that the distribution of background color changes due to camera
movement. We also applied our method to the sample videos from Chuang et al.’s
paper [2], which is available from their website1. The results for some frames are
shown in Fig. 14. In [2], the matting process is performed off-line, and requires
user-supplied trimaps for every 9-10 frames. In contrast, our method requires
hand-made foreground and background for only the first frame, and performs
matting automatically for the remaining frames. Even though our method can
save lots of user interactions and runs much faster, its matting quality is com-
parable to Chuang’s method [2]. Matting results for the whole sequence can be
seen from the supplemental file.

4.3 Calculation Time

Our experiments were performed on a PC with Intel Core2 Quad CPU, 2.40GHz
and 4GB memory. For a video sequence with resolution 320×240, the processing
time for each frame is 108ms for the segmentation step, and 72ms for the matting
step. The serial processing, which performs the two steps in sequence, costs
about 180ms. However, by employing parallel processing (see Fig. 12), in which
the segmentation step for the nth frame and the matting step for the n − 1th

frame are performed in parallel, we can decrease the processing time to 120ms
(∼8fps). This processing time is enough for real-time applications.

5 Conclusions

In this paper, we present an online video matting method that runs in real-
time based on bilayer segmentation. We first introduced an accurate bilayer
segmentation method for extracting the foreground region from the background
using color likelihood propagation. For the second step, we performed alpha-
matting based on the segmentation result. To enable real-time processing, we
modified the conventional Bayesian matting method by using down-sampling
and smart initialization, which increase the calculation speed by 5 times while
maintaining the quality. Various experimental results showed the effectiveness
of our method.
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Abstract. This paper addresses the problem of segmenting a textured

mesh into objects or object classes, consistently with user-supplied seeds.

We view this task as transductive learning and use the flexibility of

kernel-based weights to incorporate a various number of diverse features.

Our method combines a Laplacian graph regularizer that enforces spa-

tial coherence in label propagation and an SVM classifier that ensures

dissemination of the seeds characteristics. Our interactive framework al-

lows to easily specify classes seeds with sketches drawn on the mesh and

potentially refine the segmentation. We obtain qualitatively good seg-

mentations on several architectural scenes and show the applicability of

our method to outliers removing.

1 Introduction

The generalization of digital cameras, the increase in computational power
brought by graphical processors and the recent progress in multi-view recon-
struction algorithms allow to create numerous and costless textured 3D models
from digital photographs. In this work, we address the problem of segmenting
a textured mesh into objects or object classes. The segmentation is an essential
step of scene analysis, and can be used for semantic enrichment of architectural
scenes, reverse engineering, subsequent recognition of known rigid objects... A
meaningful mesh decomposition enables to retrieve objects of interest or remove
undesired parts (see Fig.4). This problem raises several interesting challenges: the
variability of scenes and object types to handle; the subjectivity of a meaningful
segmentation, which depends on the application; the simultaneous classification
and segmentation involved by object detection. We took up theses challenges by
designing a flexible and interactive framework that conducts collective classifi-
cation of the mesh.

We propose an easy-to-use, graphical tool to provide labeled training seeds
by drawing sketches on the mesh, select appropriate features among the set
of available ones, compute the segmentation via our transductive learning al-
gorithm based on Support Vector Machine classification and Laplacian graph
regularization, visualize the resulting segmented mesh and refine the training
sketches to rerun the segmentation if necessary.

Our work is related to three main research topics: mesh segmentation, col-
lective point cloud classification and transductive image segmentation. Even if
we consider meshes in this paper, the type of data and the segmentation tech-
nique turn out to be quite different from the ones considered in the literature.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 502–513, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Segmentation of the mesh into four classes: roof, wall, windows edges, cor-

nice. Left: the input textured mesh with user supplied sketches. Right: the resulting

segmentation using our algorithm.

Our issues are actually closer to a series of works on point cloud segmentation,
however these are not directly applicable to our meshes whose connectivity and
texture are of crucial importance. Our algorithm is rather based on a transduc-
tive segmentation method that was developed at first for 2D images.

The problem of mesh segmentation has become an important issue in various
computer graphics applications, like parameterization and texture mapping,
metamorphosis, 3D shape retrieval or modeling by example. Several segmentation
algorithms for mesh partitioning have been compared in [1]. These algorithms deal
with non-textured meshes of a single object, that are usually high-quality meshes
coming from CAD models or dense scans – thus very different from the image-
based meshes of entire scenes we process. These algorithms fall into two main cat-
egories. The first one gathers geometric approaches, where the mesh is segmented
into patches fitted with simple mathematical surfaces. The typical application of
these methods is reverse engineering of CAD models. The second one is rather
semantic-oriented: the aim is to decompose meshes of ”natural” objects (e.g., a
body model) into ”meaningful” pieces (e.g., the head, two arms, two legs and the
torso). However, these semantic approaches do not involve any learning-based or
classificationprocedure, and do not consider the similarities between different, non
connected parts. Mesh decomposition is usually a preprocessing step, and should
thus be able to handle various types of input models and of target applications.
In order to deal with varying application-dependent requirements and with the
subjectivity of a meaningful segmentation, [2] proposed an interactive framework
similar to ours: the user draws sketches on the mesh that provide seeds for the
algorithm. Nevertheless, as mentioned above and unlike [2], we process textured
meshes: this greatly reduces the required amount of user interaction (see for ex-
ample Fig.1).

A series of works [3,4,5,6] has been carried out on the problems of segmenting
scan data into objects or objects classes using Markov networks. This problem
differs from the one we address mainly on the type of data to process: textured
meshes possess supplementary attributes like color or mesh connectivity that
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we exploit, while 3D point clouds are far denser, and more precise, thus target-
ing distinct applications and requiring different processes. However these works
share several characteristics with ours. One is the use of collective classification
through graph-based methods: instead of classifying each point or facet indepen-
dently, the problem is thought of as a global classification task and adjacency
relationships are used to enforce spatial contiguity of the labels on the graph.
Our graph Laplacian transduction performs such a collective classification. Be-
sides, in both problems, the ability to handle various type of scenes as well as
a certain variability inside a given class of objects is crucial: this is achieved by
taking advantage of various kinds of features. Thus, the Markov random field
segmentation algorithm of [3] has been tested successfully on both outdoor and
indoor scenes, for real-world and synthetic scan datasets. In our framework, tex-
tured meshes possess both geometric and photometric attributes that should be
chosen according to the scene type and jointly exploited. We combine these fea-
tures in kernel weights of a graph Laplacian regularizer; the inherent modularity
of kernel methods hence provides the desired flexibility.

Recently, several works have addressed the image segmentation problem in
an interactive framework: a set of seed pixels representative of each region to
be segmented is specified by the user, and the segmentation of the entire im-
age is performed consistently with the seeds. The existing algorithms rely on
computing weighted geodesic distances [7], graph cuts with discontinuity pe-
nalization [8], graph cuts with Gaussian mixture modelling of the segmented
regions [9], random walks on a graph and its relation to electrical resistance in a
circuit [10,11] and transductive learning [12]. Due to its simplicity and its effec-
tive results obtained in the Microsoft GrabCut benchmark, the latter approach
is adopted in our mesh segmentation algorithm. The segmentation results are
visualized in our interactive framework, allowing for subsequent refinement of
the query.

Outline. The rest of the paper is organized as follows. Section 2 presents the
Laplacian regularizer on a graph to perform transduction and introduces the
energy we minimize in the sequel; section 3 details our algorithm for the seg-
mentation of textured meshes, and section 4 presents our experimental results.
We conclude in section 5 with a brief discussion.

2 Graph Laplacian Transduction

2.1 Transductive Inference

The problem we are concerned with is a supervised classification task: given a
set of labeled examples (called training set), we want to infer the labels of new
input points (called test set). More specifically, we consider an input space X
and an output space Y (typically Y = {0, . . . ,K} for a classification problem);
given a set of input-output couples {(x1, y1), . . . , (xn, yn)}, we want to determine
the label y of a new point x.
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There are two different approaches for this problem, the inductive and trans-
ductive settings. Inductive inference is a two-step process: one tries first to learn
a function f : X → Y to map the entire input space to the output space, and
then, for every point x of the test set, predicts y = f(x) as its label. In contrast,
in transductive inference, the test inputs are known beforehand. Thus, no gen-
eral input-output mapping is inferred, but only the labels of the test points are
predicted. This approach follows Vapnik’s principle: ”when solving a problem
of interest, do not solve a more general problem as an intermediate step”, and
takes advantage of the unlabeled data to get an idea of the input space distri-
bution. Indeed, transduction relies on this second principle, referred to as the
smoothness assumption: ”outputs vary a lot only on input regions having low
density”, or, in other words, ”the decision boundary should lie in a low-density
region”.

Transductive inference can be compared to semi-supervised learning (SSL),
where the training set is made up of both labeled and unlabeled data points. Like
transduction, SSL utilizes the unlabeled points to infer the input distribution.
However, in contrast to transduction, the test points are not (necessarily) known
beforehand and semi-supervised algorithms can handle unseen data, thus being
part of an inductive framework.

A large number of algorithms that have been proposed in the last few years for
transductive inference relies on graph-based methods (see [13], [14] and references
within), where nodes represent data points and edges encode similarities between
them. The graph structure is used to propagate information from the known
labels to the unlabeled points. We use the Laplacian graph regularizer of [12]
with an unnormalized kernel (case s = 2, λ = 0): the labeling of the facets is
carried out as the minimization of a quadratic cost function derived from the
graph. The work [15] studies several cost functions for regularization on a graph
and explains the links with label propagation algorithms.

2.2 Graph Laplacian Regularization and Energy Minimization

In the first place, we consider a binary classification problem, where the two
classes have respectively 0 and 1 as labels (see 2.3 for generalization to the
multi-class problem); 0 is the background class and 1 is the object class. Instead
of directly predicting the labels of the test points (y ∈ {0, 1}), we consider a
real-valued output space (y ∈ R) and assign each point to the class 1y≥1/2.

Graph Laplacian. The geometry of the data is represented by a graph G =
(V,E) where the nodes V = {X1, . . . , Xn} correspond to the input points coming
from both the p labeled instances {X1, . . . , Xp} of the training set, and the
n− p unlabeled data {Xp+1, . . . , Xn} of the test set, and the edges E represent
similarities between them, in the form of a weight matrix W (of size n×n). The
coefficients of this matrix (also called affinity or adjacency matrix) must satisfy:

– Wij = 0 if Xi and Xj are not ”neighbours” (i.e. are not connected by an
edge),
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– Wij ≥ 0,
– Wij = Wji.

The meaning of the neighbourhood needs to be specified and depends on the na-
ture of the data (e.g., facet adjacency on a mesh, symmetrized k-nearest neigh-
bour for a point cloud, etc.). We write the weights in the form Wij = k(Xi, Xj)
where k : X × X → R is a symmetric positive function giving the similarity
between two input points. A typical example is the Gaussian kernel k(x, x′) =
exp

(
− d(x,x′)2

2σ2

)
with d a distance on the input space X and σ a positive param-

eter.
Let D be the diagonal matrix Dii =

∑
j Wij . The matrix L = D − W is

called the unnormalized graph Laplacian. It is a discrete analogue of the Laplace-
Beltrami operator on a Riemannian manifold (see (3)).

Energy design. The goal is to find a labeling Y = (y1, . . . , yn) of the graph
that is consistent with both the labeled training points and the geometry of the
entire data (represented by the graph structure).

We partition the vector Y and the matrices W , D and L according to their
labeled and unlabeled parts :

Y =
(
Y�

Yu

)
W =

(
W�� W�u

Wu� Wuu

)
D =

(
D�� 0
0 Duu

)
L =

(
L�� L�u

Lu� Luu

)
.

The initial labels of the training points are denoted Y 0
� = (y0

1 , . . . , y
0
p).

We want to find the optimal labeling Ŷ minimizing the following cost criterion,
built up three different terms :

Ŷ = arg min
Y ∈Rn

c

p∑
i=1

(yi − y0
i )2︸ ︷︷ ︸

(α)

+
1
2

n∑
i,j=1

Wij(yi − yj)2︸ ︷︷ ︸
(β)

+λ

n∑
i=p+1

(yi − si)2︸ ︷︷ ︸
(γ)

, (1)

where the scores si in (γ) are defined hereafter.

(α) Consistency with the initial labeling:
p∑

i=1

(yi − y0
i )2 = ‖Y� − Y 0

l ‖2 .

The parameter c ∈ [0,+∞] expresses the confidence assigned to the training
outputs (it could be different for each point, (ci)i=1,...,p).

(β) Consistency with the geometry of the data: This term penalizes rapid changes
in Ŷ between points that are close on the graph (as given by the similarity matrix
W ). It enforces the smoothness assumption along the graph.

1
2

n∑
i,j=1

Wij(yi − yj)2 =
1
2

(
2

n∑
i=1

y2
i

n∑
j=1

Wij − 2
n∑

i,j=1

Wijyiyj

)
= Y 	(D −W )Y = Y 	LY .
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The latter term can be interpreted as a graph Laplacian regularizer in the follow-
ing sense. Assume that the inputs are real vectors admitting a distribution with
density p (with respect to the Lebesgue measure). Let ϕ be a smooth function
such that yi = ϕ(Xi). From [12], the quantity Y T LY is a discrete approximation,
up to a constant multiplicative factor, of the integral∫

‖(∇ϕ)(x)‖2p2(x)dx , (2)

which is equal to ∫
ϕ(x)(Δϕ)(x)p2(x)dx , (3)

for Δ a (weighted) Laplace-Beltrami operator. From (2), we see that the reg-
ularization term Y T LY will be small only when the labels vary in low density
regions of the input space, thus fulfilling the principle stated in Section 2.1.

(γ) Consistency with some additional knowledge:
n∑

i=p+1

(yi − si)2 = ‖Yu − S0
u‖2 .

This terms allows to incorporate either some prior information or the output
of another algorithm in the form of a score si, measuring for each test point i
the ”likelihood” that it belongs to the object class. This term can be seen as an
initializing score. We note S0

u the (n− p)-vector (sp+1, . . . , sn).
The optimization problem (1) can hence be expressed in the following matrix

form:
Ŷ = argmin

Y ∈Rn

c‖Y� − Y 0
� ‖2 + Y 	LY + λ‖Yu − S0

u‖2 . (4)

Sparse linear system giving the predicted labels. Since we assume that
the user-supplied seeds are trustworthy, we constrain the labels on the labeled
data (Ŷ� = Y 0

� ) and thus consider an infinite regularization coefficient c = +∞.
Hence the minimization is carried over the labeling Yu of the test points, and
the optimization problem rewrites

Ŷu = argmin
Yu∈Rn−p

Y 	LY + λ‖Yu − S0
u‖2

= argmin
Yu∈Rn−p

Y 0
�
	

L��Y
0
� + Yu

	Lu�Y
0
� + Y 0

�
	

L�uYu + Yu
	LuuYu

+ λ
(
Yu

	Yu − Yu
	S0

u − S0
u
	
Yu + S0

u
	
S0

u

)
= argmin

Yu∈Rn−p

2Y 	
u

(
Lu�Y

0
� − λS0

u

)
+ Y 	

u (Luu + λI) Yu .

In order to minimize the cost criterion, we compute its derivative with respect to
Yu. Let A = Lu�Y

0
� −λS0

u and B = Luu+λI. The matrix B is symmetric positive
definite matrix when λ > 0, since Luu is symmetric positive semi-definite:

Yu
	LuuYu =

1
2

n∑
i,j=p+1

Wij(yi − yj)2 ≥ 0 .
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Thus the function f : Yu #→ 2Y 	
u A + Y 	

u BYu is strictly convex and admits a
unique minimum where its derivative equals 0:

∂f(Yu)
∂Yu

= 2A+ 2BYu = 0 ⇐⇒ BYu = −A .

Hence, the optimal labeling Ŷu is the solution of the sparse linear system

(Luu + λI) Ŷu = λS0
u − Lu�Y

0
� . (5)

2.3 Multi-class Segmentation

The extension of the previous algorithm to the multi-class case is straightforward
using a one-versus-all approach. If there are d different classes, we resolve the
linear system (5) for each class k against all other classes as background, thus
having as initial label for a training point i, Y 0,k

� (i) = 1 if i is labeled k and
Y 0,k

� (i) = 0 otherwise. We obtain d output vectors Ŷ k
u , and assign the test point

j to the class argmax
k=1,...,d

Ŷ k
u (j).

3 Segmentation of Textured Meshes

3.1 Our Algorithm

We work on textured meshes of a 3D scene built from a set of calibrated images:
we use the multi-view stereovision algorithm from [16,17,18] to reconstruct a 3D
model of the scene and the multi-band blending algorithm from [19] to compute
a texture atlas with minimal color discontinuities or blurring. The meshes pre-
sented in our experiments have been reconstructed from datasets provided by
C. Strecha et al. [20] (castle-P19, castle-P30 and Herz-Jesu-25).

We want to classify the facets of the mesh given seed facets for each class. The
seeds are provided by the user who draws sketches on the mesh. Thus we consider
a graph G with a node for every facet of the mesh and an edge between any two
adjacent facets. The modularity of our kernel method allows to chose various
edges weights, depending on the scene type. We use a Gaussian kernel with a
distance between facets constructed from one or several features characterizing
the facets (see section 3.2 for more details and examples of such features).

The training points are the user-supplied seeds and we use an SVM classifi-
cation on these training points as additional knowledge on the test points (see
section 3.3). The linear system (5) of the transductive classification is sparse due
to the sparseness of the facet adjacency relationship on the mesh. We solve it
with a conjugate gradient algorithm (we use the IML++ implementation of [21]).
For each facet, we obtain a score for each class: the classification is given by the
argmax of these scores (see section 2.3) but they carry much more information
that can be exploited.

The interactive framework of our method allows to add supplementary seeds
depending on misclassified facets and rerun the algorithm in order to improve
the segmentation result or add new classes (see Fig.4).
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3.2 Features and Kernels

We compare two different facets through a set of attributes extracted from the
mesh. We describe each facet by a feature vector of length m. These features are
chosen according to the scene type and the discriminant characteristics of such
scenes. A major element of this algorithm is the ability to take advantage of sev-
eral different kinds of features, mixing photometric and geometric informations
or any other available attribute (see Fig.2).

Here are some examples of features that we used in the results of Section 4
or that could be used in other experiments. On the one hand, we use photomet-
ric features like the mean color of the facet or components of the mean color
(for instance, without luminance to account for changes in illumination between
cameras). On the other hand, we use geometric features like the normal of the
facet (or solely its vertical component), the position of the center of the facet
(for instance, height of the center), or the discrete curvature of the mesh. We
could also also evaluate less local features that would consequently be smoother
and more robust by averaging the previous features on a neighbourhood of the
facet.

We do not compare globally the descriptor vectors of the facets, but feature
by feature. Then we combine the component-wise distances in the kernel weight
by multiplying the Gaussian kernels associated with each feature: if there are nf

different features (each feature being a vector of variable length) and we note
(f1

i , . . . , f
nf

i ) and (f1
j , . . . , f

nf

j ) the feature vectors of facets Xi and Xj,

Wij = k(Xi, Xj) =
nf∏

k=1

exp

(
−
‖fk

i − fk
j ‖2

2σ2
k

)
= exp

(
−

nf∑
k=1

‖fk
i − fk

j ‖2

2σ2
k

)
.

The kernel weight is thus parameterized by the nf values (σ1, . . . , σnf
) which

determine the trade-off between the various features.

3.3 Additional Knowledge on the Test Points

We train Support Vector Machines with the user-supplied training points in
order to provide initialization information on the test points. We obtain a score
sk

i for each facet i and each class k with a one-versus-all SVM algorithm. We
use the LibSVM implementation of the C-SV Classification (cf. [22]).

The incorporation of external knowledge in addition to the graph Laplacian
regularization is essential in order to detect several objects of the same class
which form several connected components. Indeed, each seed can generate at
most one connected component in the segmentation. Besides, the initialization
with the SVM scores accelerate the label propagation on the mesh and the con-
vergence of the iterative resolution compared to the transductive segmentation
based solely on graph Laplacian.

We can consider either the same kernel as for the graph Laplacian weights
or a different one (different features, kernel type, or parameters), if we want
to exploit distinct properties of the mesh.We learn the parameters of the SVM
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(parameters of the kernel plus parameter C of the SVM) in a cross-validation
process. Hence, the tradeoff between the various features combined in the kernel
is learned automatically. Moreover, we can employ these selected parameters in
the Laplacian kernel for transduction (if we use the same kernel).

The Support Vector Machine approach is a classification method by itself
and provides a comparison basis for our algorithm (just as the transductive
segmentation without the SVM initialization). However it does not enforce any
spatial contiguity on the mesh, and it produces a noisy result (see Fig.3).

Note that we learn this term directly on the scene of interest, but we could
incorporate as well a prior learned from other, previously segmented scenes,
instead or in addition to this one. In this case, however, the algorithm is not
anymore a purely transductive one.

3.4 Computational Complexity and Time

The computational cost of the algorithm can be split up into the cost of the
SVM initialization and the cost of the transductive segmentation on the graph.
Since in our framework the number of training points p is negligible compared
to the total number of points n, we consider the complexity of the algorithm
with respect to n only. In the SVM algorithm, the cost of the test prevails over
the cost of the train (which is between O(p2) and O(p3)), and its complexity
is O(n.p) = O(n). In the energy minimization of the transduction, the main
cost comes from solving the sparse linear system (5); this can be done in O(k.m)
where k is the number of iterations of the conjugate gradient andm is the number
of non-zero entries in the matrix, which is equal to 4n. We bound the number
of iterations to limit the computational time, thus having a total computational
complexity in O(n) (at the expense of precision on the convergence).

In practice, the computational time of the transduction prevails over the one
of SVM. The whole segmentation process takes between fifteen seconds and five
minutes on a Xeon 2.33 GHz, for meshes with 50,000 to 1,500,000 facets.

4 Experimental Results

Figure 1 in the introduction shows a first example of segmentation into four
different classes using the mean color of a facet and the altitude of its center as
features. The results are qualitatively good, and mostly agree with perceptual
boundaries. Note that every window is detected while only few where initially
labeled, illustrating the ability of our algorithm to detect several objects of the
same class forming several connected components, thanks to the initialization of
the transduction with the classification results of the SVM.

Figure 2 illustrates the importance of combining several different features
in order to obtain a relevant segmentation. Indeed the use of mean color or
altitude alone produces erroneous results (even if the latter seems less wrong, it
is even more naive, and performs a simple thresholding on the altitude), while
their combination gives a pertinent result. Hence, the set of features is chosen
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Fig. 2. Combining different features improves the segmentation. 3 classes: roof, wall,

ground. From left to right: input textured mesh with seeds; segmentation using mean

color; segmentation using altitude; segmentation using both mean color and altitude.

according to the scene of interest: in Fig.3, the segmentation of the top row is
performed using color only, while in the bottom row, the color, the curvedness
and the vertical normal of the facet are combined.

Figure 3 compares the classification of the SVM and the final result after
transduction: as mentioned in section 3.3, the results of the SVM alone are
noisy and do not exploit the connectivity of the mesh.

Fig. 3. Comparison of classification results using using SVM alone or SVM plus trans-

ductive segmentation. Left: textured mesh with selected facets. Middle: classification

obtained with SVM; the labels are noisy and do not provide a decomposition of the

mesh. Right: classification obtained with SVM initialization plus transduction.

Our algorithm can be used to remove outliers in a scene. In the original mesh
of the castle of Figure 4, obtained by multi-view reconstruction, a portion of the
sky has been reconstructed running on from the roof. It can be easily remove
in our interactive framework, using only two classes, one for the outliers (sky
facets), one for the inliers (castle facets), and color and altitude as features.
The first segmentation (middle column) is not entirely satisfying (some portions
of sky remain), so we add a few labeled points and rerun the algorithm, then
obtaining a good segmentation (right column).
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Fig. 4. Removing outliers. Left: original textured mesh of the castle with portions of

”sky” mistakenly reconstructed by stereo. Middle: removing sky facets using selected

facets. Right: refinement of the previous segmentation by adding sky facets to the

selection (yellow outline). Top row: selected facets (green: sky outliers, blue: castle
inliers), bottom row: textured meshes.

5 Conclusion

We have presented an efficient procedure for the segmentation of textured meshes:
we designed a sketch-based interactive framework which produces a meaningful
segmentation according to the user’s aims, thanks to a possible refinement of the
training sketches. Our experiments demonstrate that we can take advantage of ge-
ometric and photometric features at the same time, combining a various number
of appropriate features in our kernel. The graph Laplacian regularizer enforces the
spatial contiguity of the labels on the mesh, producing robust decompositions of
the mesh for subsequent applications while the SVM initialization allows to de-
tect non-connected, similar objects. Future work will focus on the development of
supplementary features and kernels, in order to apply this algorithm to a larger
range of scenes as well as to other types of data like point clouds.
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3 Université des Antilles-Guyane, CEREGMIA

Campus de Schoelcher, BP 7209

97275 Schoelcher, Martinique, France

Abstract. Mixtures of Gaussians are a crucial statistical modeling tool

at the heart of many challenging applications in computer vision and

machine learning. In this paper, we first describe a novel and efficient al-

gorithm for simplifying Gaussian mixture models using a generalization

of the celebrated k-means quantization algorithm tailored to relative en-

tropy. Our method is shown to compare experimentally favourably well

with the state-of-the-art both in terms of time and quality performances.

Second, we propose a practical enhanced approach providing a hierarchi-

cal representation of the simplified GMM while automatically computing

the optimal number of Gaussians in the simplified mixture. Application

to clustering-based image segmentation is reported.

1 Introduction and Prior Work

A mixture model is a powerful framework to estimate the probability den-
sity function of a random variable. For instance, the Gaussian mixture models
(GMMs for short) – also known as mixture of Gaussians (MoGs) – have been
widely used in many different area domains such as image processing. For a given
mixture model f , the probability density function evaluated at x ∈ �d is given
by

f(x) =
n∑

i=1

αifi(x) (1)

where 0 ≤ αi ≤ 1 denotes the weight of each mixture component fi such as∑n
i=1 αi = 1. Given a GMM f , each function fi is a multivariate Gaussian

function

fi(x) =
1

(2π)d/2|Σi|1/2 exp
(
− (x− μi)TΣ−1

i (x− μi)
2

)
(2)

parametrized by its mean μi ∈ �d and its covariance symmetric positive-definite
matrixΣi & 0. It is common to estimate model parameters from independent and
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identically-distributed observations using the expectation-maximization (EM)
algorithm [1].

A typical operation on mixture models is the estimation of statistical measures
such as Shannon entropy or the Kullback-Leibler divergence. With large number
of components in the mixture model (e.g. arising from a kernel-based Parzen
density estimation [2]), the estimation of these measures is prohibitive in terms
of computation time. The computational time can be strongly decreased by
reducing the number of components in the mixture model. The simplest method
to obtain a compact representation of f is to re-learn the mixture model directly
from the source dataset. However, this may not be applicable for two reasons.
First, the estimation of a mixture model is computationally expensive if we
consider large datasets. Second, the source dataset can be unavailable. Thus,
the most appropriated solution is to simplify the initial mixture model f .

Given a mixture model f composed of n components (see equation (1)), the
problem of mixture model simplification consists in computing a simpler mixture
model g

g(x) =
m∑

j=1

α′
jgj(x) (3)

with m components (1 ≤ m < n) such as g is the “best” approximation of f
with respect to a similarity measure.

Some GMM simplification methods have been proposed in the last decade.
Zhang and Kwok [3] have proposed to simplify a GMM by first grouping similar
components together and then performing local fitting through function approx-
imation. By using the squared loss to measure the distance between mixture
models, their algorithm naturally combines the two different tasks of component
clustering and model simplification. Goldberger et al. [4] have proposed a fast
GMM simplification algorithm named UTAC (Unscented Transform Approxi-
mation Clustering) based on the Unscented Transform (UT) method [5] [6]. The
UTAC algorithm proceeds by maximizing the UTA (Unscented Transform Ap-
proximation of the negative cross-entropy) criterion computed between the two
GMMs f and g. The authors have shown that the UTA criterion can be maxi-
mized with a standard EM-like algorithm. Davis and Dhillon [7] have proposed a
hard clustering algorithm based on the decomposition of the relative entropy as
the sum of a Burg matrix divergence with a Mahalanobis distance parametrized
by the covariance matrices. Goldberger and Roweis [8] have proposed a GMM
simplification algorithm based on the k-means hard clustering.

These methods have two disadvantages. First, they only consider the prob-
lem of GMM simplification. However, other kind of mixture models have been
successfully used in different applications such as multinomial mixture models
in text classification [9]. Proposing a simplification algorithm working not only
on GMMs but on a generic wider class of mixture models, called exponential
families, is necessary. Second, they require the user to specify the number of
Gaussians (denoted m) used in the simplified model g, the optimal value of m
depending both on the initial GMM and on the application.
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In this paper, we first describe a novel and efficient algorithm for simplifying
GMMs using a generalization of the celebrated k-means quantization algorithm
tailored to relative entropy (see section 2). Our algorithm extends easily to arbi-
trary mixture of exponential families. The proposed method is shown to compare
favourably well with the state-of-the-art UTAC algorithm both in terms of time
and quality performances. Second, we describe an algorithm based on the G-
means algorithm [10] who (1) allows to automatically learn the optimal number
of Gaussians m in the simplified model and (2) provides a progressive represen-
tation of the GMM (see section 3).

2 Entropic Quantization of GMMs

2.1 Relative Entropy and Bregman Divergence

The fundamental measure between statistical distributions is the relative en-
tropy, also called the Kullback-Leibler divergence (denoted by KLD). Given two
distributions fi and fj, the KLD is an oriented distance (asymmetric) and is
defined as

KLD(fi||fj) =
∫
fi(x) log

fi(x)
fj(x)

dx. (4)

This fastidious integral computation yields for multivariate normal distributions

KLD(fi||fj) =
1
2

log
(

detΣj

detΣi

)
+

1
2
tr

(
Σ−1

j Σi

)
+

1
2
(μj − μi)TΣ−1

j (μj − μi)−
d

2
(5)

where tr(Σ) is the matrix trace operator. We can avoid the integral computation
using the canonical form of exponential families [11]

fF (x|Θ̃) = exp
{
〈Θ̃, t(x)〉 − F (Θ̃) + C(x)

}
(6)

where Θ̃ are the natural parameters associated with the sufficient statistics t(x).
The log normalizer F (Θ̃) is a strictly convex and differentiable function that
specifies uniquely the exponential family, and the function C(x) is the carrier
measure. The relative entropy between two distribution members of the same
exponential family is equal to the Bregman divergence defined for the log nor-
malizer F on the natural parameter space:

KLD(fi||fj) = DF (Θ̃j ||Θ̃i) (7)

where
DF (Θ̃j ||Θ̃i) = F (Θ̃j)− F (Θ̃i)− 〈Θ̃j − Θ̃i,∇F (Θ̃i)〉. (8)

The 〈·, ·〉 denotes the inner product and ∇F is the gradient operator. For mul-
tivariate Gaussian distributions, we consider mixed-type vector/matrix param-
eters (μ,Σ). The sufficient statistics is stacked into a two-part d-dimensional
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vector/matrix entity t(x) = (x,− 1
2xx

T ) associated with the natural parame-
ters Θ̃ = (θ,Θ) = (Σ−1μ, 1

2Σ
−1). The log normalizer specifying the exponential

family is [12]

F (Θ̃) =
1
4
tr(Θ−1θθT )− 1

2
log detΘ +

d

2
log π. (9)

The inner product 〈Θ̃p, Θ̃q〉 is then a composite inner product obtained as the
sum of two inner products of vectors and matrices: 〈Θ̃p, Θ̃q〉 = 〈Θp, Θq〉+〈θp, θq〉.
For matrices, the inner product is defined by the trace of the matrix product
ΘpΘ

T
q : 〈Θp, Θq〉 = tr(ΘpΘ

T
q ). The gradient ∇F is given by

∇F (Θ̃) =
(

1
2
Θ−1θ , −1

2
Θ−1 − 1

4
(Θ−1θ)(Θ−1θ)T

)
. (10)

2.2 Bregman k-Means

Banerjee et al. [11] extended Lloyd’s k-means algorithm to the class of Bregman
divergences, generalizing also the former Linde-Buzo-Gray clustering algorithm.
They proved that the simple Lloyd’s iterative algorithm minimizes monotonically
the Bregman (right-sided) loss function:

LossFunctionF ({x1, ..., xn}; k) = min
c1,...,ck

∑
k

∑
i

DF (xi||ck).

where xi are the source point sets and ck the respective cluster centroids. A
right-sided Bregman k-means is a left-sided differential entropic (i.e. KLD) clus-
tering, and vice-versa. Thus, we propose a GMM simplification algorithm based
on Bregman k-means. The k-means algorithm is the repetition until conver-
gence of two steps: First, determine membership in clusters (repartition step);
second, recompute the centroids. The algorithms 1 and 2 respectively present
our right-sided and left-sided Bregman k-means clustering algorithms (denoted
BKMC). For these algorithms, Θ̃ and Θ̃′ denote natural parameters respectively
for GMMs f and g.

2.3 Symmetric Bregman k-Means

The BKMC algorithm can be modified in order to use the symmetric Bregman
divergence instead of a sided one. Indeed, the use of a symmetric similarity mea-
sure is required for common applications such as content-based image retrieval.
Given two Gaussians Θ̃p and Θ̃q (natural parameters), the symmetric Bregman
divergence SDF (used in the repartition step) is defined as the mean of the
right-sided and left-sided Bregman divergences:

SDF (Θ̃p, Θ̃q) =
DF (Θ̃q ||Θ̃p) +DF (Θ̃p||Θ̃q)

2
(15)
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Algorithm 1. BKMC right-sided(f ,m)
1: Initialize the GMM g.

2: repeat
3: Compute the cluster C: the Gaussian fi belongs to cluster Cj if and only if

DF (Θ̃i‖Θ̃′
j) < DF (Θ̃i‖Θ̃′

l), ∀l ∈ [1, m] \ {j} (11)

4: Compute the centroids: the weight and the natural parameters of the j-th cen-

troid (i.e. Gaussian gj) are given by:

α′
j =

∑
i

αi, θ′
j =

∑
i αiθi∑
i αi

, Θ′
j =

∑
i αiΘi∑

i αi
(12)

The sum
∑

i is performed on i ∈ [1, m] such as fi ∈ Cj .

5: until the cluster does not change between two iterations.

Algorithm 2. BKMC left-sided(f ,m)
1: Initialize the GMM g.

2: repeat
3: Compute the cluster C: the Gaussian fi belongs to cluster Cj if and only if

DF (Θ̃′
j‖Θ̃i) < DF (Θ̃′

l‖Θ̃i), ∀l ∈ [1, m] \ {j}

4: Compute the centroids: the weight and the natural parameters of the j-th cen-

troid (i.e. Gaussian gj) are given by:

α′
j =

∑
i

αi, Θ̃′
j = ∇F−1

(∑
i

αi

α′
j

∇F
(
Θ̃i

))
(13)

where

∇F−1
(Θ̃) =

(
−

(
Θ + θθT

)−1

θ , −1

2

(
Θ + θθT

)−1
)

(14)

The sum
∑

i is performed on i ∈ [1, m] such as fi ∈ Cj .

5: until the cluster does not change between two iterations.

Similarly, the symmetric centroid cs is computed from the right-sided and left-
sided centroids (respectively denoted cr and cl). The symmetric centroid cs be-
longs to the geodesic link between cr and cl. A point on this link is given by

cλ = ∇F−1 (λ∇F (cr) + (1− λ)∇F (cl)) (16)

where λ ∈ [0, 1]. The symmetric centroid cs = cλ verifies

SDF (cλ, cr) = SDF (cλ, cl). (17)

A standard dichotomy search on λ allows to quickly find the symmetric centroid
cs for a given precision.
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3 Hierarchical GMM Representation

Hamerly and Elkan [10] proposed to adapt the k-means clustering algorithm
to learn automatically the number of clusters (parameter k) during the process.
Their algorithm, called G-means for Gaussian-means, starts with a small number
of centroids (usually 1) and splits iteratively the centroids. G-means repeatedly
makes decisions based on the statistical Anderson-Darling test [13]: If the data
currently assigned to a centroid follow a normal distribution, then the data are
represented by their centroid; otherwise, the data are split into two subsets. The
G-means algorithm directly provides a hierarchical clustering of the input data.

In this section, we propose a GMM simplification algorithm based on G-means
and BKMC algorithms. This algorithm, named Bregman G-means clustering al-
gorithm (BGMC for short) and described in algorithm 3, first allows to auto-
matically learn the optimal number of Gaussians m in the simplified model, and
second provides a progressive representation of the GMM. The problem here is
to determine if a set of Gaussians (GMM) follows a Gaussian distribution. If so,
the set is represented by one Gaussian: its centroid (right-sided, left-sided, or
symmetric). Otherwise, the Gaussian set is divided in two subsets. We reason-
ably assume that a GMM (Gaussian set) is a Gaussian distribution if a large set
of l points drawn from this GMM verify the Anderson-Darling test. In our ex-
periments, l was set to l = 10000 and the confidence level (here denoted β) used
in the Anderson-Darling test was set to β = 95%. The algorithm 3 starts with
BGMC(N , f , c, α) where N is the root of an empty binary tree, f is a GMM, c
is the centroid (right-sided, left-sided, or symmetric) of f , and α =

∑n
i=1 αi = 1.

Nleft and Nright respectively denote the left-child and the right-child of the
node N .

The hierarchical structure of the simplified GMM g allows us to introduce the
notion of resolution, the successive resolutions given a progressive representation
of g. Each node of the tree contains a weighted Gaussian. The resolution r
corresponds to all the weighted Gaussians contained in nodes of depth r. The
resolution 0 corresponds to a GMM containing only one Gaussian: the tree root.
The maximal resolution (i.e. the tree height) contains all the leafs of the tree.
The optimal value of m is given by the GMM size at the maximal resolution.

4 Experiments

4.1 Bregman k-Means Clustering

In this section, we compare the influence of the Bregman divergence type (right-
sided, left-sided, or symmetric) on the quality of the simplified GMM g. This
quality is evaluated through the standard right-sided Kullback-Leibler diver-
gence (KLD) between f and g estimated with a classical Monte-Carlo algo-
rithm [14] since it does not admit any closed-form solution. For this experiment,
the initial GMM f is composed of 32 Gaussians and is computed from the image
Baboon: First we perform a standard k-means algorithm to gather RGB pixels
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Algorithm 3. Calculate BGMC(N , f , c, α)
1: Store the centroid c and the weight α in the node N .

2: Draw a set of l points X = {x1, · · · , xl} from f .

3: Split the centroid c into two centroids c1 and c2.

4: Perform a Bregman k-means on c1 and c2. Let f1 (resp. f2) be the set containing

the weighted Gaussians of f closer to c1 (resp. c2) than c2 (resp. c1). Let α1 (resp.

α2) be the sum of all the weights of the Gaussians contained in f1 (resp. f2).

5: Compute the projection vector v = μ1 − μ2 where μ1 and μ2 are respectively the

mean of c1 and c2.

6: Given X and v, use the Anderson-Darling statistical test [13] to detect if f is a

normal distribution (at confidence level β = 0.95).
7: if f is a normal distribution then
8: Stop the process; the current node N is a leaf (Nleft and Nright are null).

9: else
10: Compute BGMC(Nleft, f1, c1, α1).

11: Compute BGMC(Nright, f2, c2, α2).

12: end if

in 32 classes, and second we compute each fi with a standard EM algorithm.
The dimension of the Gaussians is 3 (components RGB: red, green, blue).

The figure 1 shows the evolution of the KLD as a function ofm (number of the
Gaussians in the simplified GMM) for the different Bregman divergence types.
First, the KLD decreases with m as expected whatever the Bregman divergence
type used. Indeed, the quality of the approximation of the initial GMM f increases
with the number of Gaussians in the simplified model g. Second, the left-sided
Bregman divergence gives the best results and the right-sided the worst. Indeed,
the measure used to evaluate the quality of the simplification is the right-sided
KLD. The left-sided Bregman clustering on natural parameters amounts to com-
pute a right-sided KLD clustering on corresponding probability measures. The
symmetric BKMC provides better results than right-sided BKMC but worse than
left-sided BKMC. In the paper remainder, we will use the left-sided BKMC.

4.2 Method Comparison

4.3 BKMC versus UTAC

The figure 2 shows the evolution of the KLD as a function of m (number of
components in the simplified GMM) for algorithms UTAC and BKMC (left-
sided). Both algorithms are written in Java. The initial GMM f is computed
as in section 4.1. First, whatever the algorithm used (UTAC and BKMC), the
KLD decreases with m. Second, BKMC provides the best results and is faster
than UTAC: for m = 16, the clustering process is performed in 20 milliseconds
for BKMC and 107 milliseconds for UTAC on a Dell Precision M6400 laptop
(Intel Core 2 duo @ 2.53GHz, 4Go DDR2 memory, Windows Vista 64 bits, Java
1.6). Indeed, BKMC is based on a k-means algorithm which generally quickly
converges. UTAC uses a EM method known to slowly converge (i.e. within a
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Fig. 1. Evolution of the KLD as a function of m for algorithms right-sided, left-sided,

and symmetric BKMC. The left-sided BKMC provides the best approximation of the

initial GMM.

Fig. 2. Evolution of the KLD as a function of m for algorithms BKMC and UTAC

threshold after a large number of iterations). We automatically stop the UTAC
process after 30 iterations if the process has not converged.

4.4 Clustering-Based Image Segmentation

In this section, we apply the GMM simplification methods in the context of
clustering-based image segmentation problem. Given an image, a pixel x can be
considered as a point in �3. Given a GMM g of m Gaussians, the segmentation
is performed by classifying each pixel x to the most probable class Ci:
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gi(x) > gj(x) ∀j ∈ [1,m] \ {i}

This segmentation is illustrated by assigning to the pixel x the value of the
class representative μ′

i (see figure 3). The images used for the experiments are
Baboon, Lena, Colormap, and Shantytown. The first and second rows show re-
spectively the input image and the segmentation computed from the initial GMM
f composed 32 Gaussians. The third and fourth rows show the segmentations
computed after the simplification of f respectively with the algorithms UTAC
and BKMC. With all images tested, the algorithm BKMC provides the best
results (visually and according to the KLD value).

Baboon Lena Colormap Shantytown
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Fig. 3. Application of GMM simplifying algorithms (UTAC and BKMC) to clustering-

based image segmentation. The BKMC algorithm provides the best results (visually

and according to the KLD value).
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Fig. 4. Application of BGMC algorithm to clustering-based image segmentation. The

figure shows (from top to bottom) the simplified GMM from resolution 0 to the maximal

resolution. The GMM simplification quality increases with the resolution.
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4.5 Hierarchical GMM Representation

In this section, we apply the BGMC algorithm (hierarchical GMM) in the context
of clustering-based image segmentation. The figure 4 shows the segmentation
obtained from different resolution of the hierarchical GMM. The segmentation
quality increases with the resolution. A resolution equal to 0 provides a GMM
composed only of one Gaussian: all the pixel of the input image belongs to
the same class. The optimal value of m is given by the GMM at the maximal
resolution. For each image, we give below this optimal value m, the maximum
resolution, and the KLD between the initial GMM f and the optimal simplified
GMM:
- Baboon: m = 14, max. res.=8, KLD=0.18
- Lena: m = 14, max. res.=7, KLD=0.13
- Colormap: m = 14, max. res.=9, KLD=0.59
- Shantytown: m = 13, max. res.=5, KLD=0.28
On average, the construction of the hierarchical GMM is performed in 466 ms.

5 Concluding Remarks

In this paper, we have proposed two algorithms for the simplification of Gaus-
sian mixtures models. The first one, named BKMC, is based on the k-means
algorithm. Experiments corroborate that BKMC yields better results in shorter
computational time in comparison to the state-of-the-art. The second proposed
algorithm, named BGMC, is based on the G-means algorithm. BGMC allows
to automatically learn the optimal number of Gaussians in the simplified model
and provides a progressive representation of the initial GMM. Note that al-
though we have presented our algorithms to simplify GMM, our framework is
generic and applies to any mixture model of an exponential family. The Java
library implementing these algorithms is available at www.lix.polytechnique.
fr/~nielsen/MEF.
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Abstract. We propose a new scheme for the oblivious/blind robust watermark-
ing of digital images based on independent component analysis (ICA). Most 
watermarking schemes based on ICA need additional information in watermark 
extraction process. But it is not encouraged because storing and transferring 
these additional information is not very convenient in some situations. A novel 
dividing image blocks is utilized in the paper that overcomes the shortcoming 
that watermark extraction based on ICA need additional information. The  
watermarking scheme, undergoing a variety of experiments, has shown its ro-
bustness against many attacks, e.g. JPEG, filter, gray scale reduction etc; it also 
exhibits a capability in image authentication. 

1   Introduction 

With the rapid spread of computer networks and the further development of multime-
dia technologies, digital contents can be accessed easily, and the protection of intel-
lectual property becomes more and more important every day. A digital watermark 
embeds an imperceptible signal into data such as audio, video and images, for a vari-
ety of purposes, including copyright control and data authentication. As watermarking 
is increasingly used for a wide variety of applications, various properties of water-
marks, such as how they respond to common signal transformations or deliberate 
attack, have become important considerations. The watermarking techniques can be 
fragile, robust, or semi-fragile [1]. Fragile watermarks do not survive lossy transfor-
mations to the original host signal and their purpose is tamper detection of the original 
signal. Ideally, an effective, robust watermarking scheme provides a mark that can 
only be removed when the original content is destroyed as well. Typically, many of 
the applications for copyright protection involve relatively high quality original con-
tent and the imperceptibility criterion is critical for such applications. Semi-fragile 
watermarking techniques differentiate between common signal transformations and 
deliberate attack. It is robust to common signal transformations attack but is fragile to 
deliberate attack. In order to estimate the watermark, some existing methods require 
the original image at the extraction process. Some others need a priori knowledge of 
the watermark for the extraction. It is not encouraged since original work should be 
restricted from public access, and watermark information is not always fixed in ad-
vance [2]. This is called non-blind watermarking that watermark extraction algorithms 
need use the original unwatermarked data to find the watermark. When the watermark 
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extraction algorithm has access to the original unwatermarked data, this renders the 
watermark extraction more difficult. Watermarking algorithms of this kind are re-
ferred to as public, blind, or oblivious watermarking algorithms. 

In this paper, we develop a simple method for the blind robust watermarking of 
digital images based on independent component analysis (ICA). Independent compo-
nent analysis (ICA) is an important technique in signal processing field for estimating 
unknown signals from their observed mixtures [3]. With its blind separation capabil-
ity, several authors have tried to apply ICA to watermarking. When applied to water-
marking, ICA presumes the watermarked work as a mixture of the original work and 
the watermarks, and therefore, it can do separation to estimate the watermark. In the 
past ICA based framework has been used for multimedia watermarking [4–6]. Thang 
Viet Nguyen et al in [4] have proposed a approach called WMicaT that employs ICA. 
But their detector uses a ‘public image’ during watermark extraction process. The size 
of the public image is as big as the size of the original image, therefore, storing and 
transferring this supporting image is not very convenient in some situations. J.J. 
Murillo-Fuentes in [5] has presented the blind robust watermarking of digital images 
based on ICA. But watermarking capability was too small that 64 bits watermarking 
had only hid in the 512×512 gray-scale images. So it didn’t meet the requirements of 
significative watermarking, e.g. logos image, signature, fingerprint etc. In the paper 
the blind watermarking is not only robust against many attacks included Jpeg com-
press, filtering, gray-scale reduction, tampering attack, but has a large capability so 
that the watermark can be any meaningful image, logo etc. 

The outline of this paper is as follows: In section 2, we review basic ICA theory 
and present a general ICA watermarking scheme. In section 3, the new blind water-
mark embedding scheme based on ICA is proposed. In section 4, we provide water-
mark extraction scheme. In section 5, experimental results are presented. Finally, a 
conclusion is given, and future research direction is proposed. 

2   Watermarking Using ICA 

The ICA technique [3], which consists of recovering a set of unknown sources from 
their instantaneous mixtures, is an important technique in signal processing. An ICA 
model shown in Fig.1 can be divided into two sub-models: mixing model and demix-
ing model. The observations Nxxx L21, are assumed to be linear mixtures of M   

hidden statistically independent signals Msss ,, 21 L . The mixing model can be ex-

pressed as 

Asx = . (1)

Where T

Nxxxx ],,,[ 21 L= , T

Mssss ],,,[ 21 L=  and NMA × is an unknown mixing matrix. 

To estimate the unknown signals is , we have to build a demixing model, i.e., to 

compute a demixing matrix B . ICA carries out this task by maximizing the statistical 
independence criteria among the outputs Myyy L21, . When converged, the outputs 
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Myyy L21, will be a permutation of the unknown sources Msss ,, 21 L . The demixing 

model, therefore, can be formulated as 

Bxy = . (2)

 

Fig. 1. The ICA mixing and demixing model 

To able to acquire optimal estimate y , the identifiably constraints are outlined as, 
(1) Unknown source Msss ,, 21 L  are statistically independent and non-gaussian; 

(2) Number of observed linear mixtures (sensors) N m must be greater or equal to 

the number of independent components (sources) M , i.e. MN ≥ ; 

(3) The rank of the mixing matrix, A , must be full column rank. 
The ICA model and a watermarking model is similar so we can design watermarking 
scheme based ICA. Watermark signal can be significative logo, image or audio etc, 
and media signal protected can be image, audio or video etc. they most are non-
gaussian and statistically independent. It is also easy to construct a full column rank 
A . Watermark embedding is looked as different sources mixing, the number N of 

observations Nxxx L21,  must be greater or equal to the number of independent com-

ponents (sources) M , how to produce Nxxx L21,  in the watermarking scheme be-

come more important.  

3   Watermark Embedding Scheme 

A complete watermark embedding scheme is shown in Fig. 2. Assume matrix I be a 
gray-scale image of size MN ×  . This matrix can be divided into 4 blocks ),( jiS p , 

p =1, 2, 3, 4. Matrix I is divided into 4 blocks ),( jiS p  according to,  

),(1 jiS = )2,2( jiI ×× , 

),(2 jiS = )2,12( jiI ×−× , 

),(3 jiS = )12,2( −×× jiI , 

),(4 jiS = )12,12( −×−× jiI . 

(3)

Where 2/,,2,1 Ni L= , 2/,,2,1 Mj L= . 

…
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Fig. 2. Watermark embedding scheme 

The four sub-images are very similar, so we designed that the sub-images mixed line-
arly with watermark signal. It is the base of detect watermark using ICA. The four 
sub-images are decomposed into non-overlapping 8×8 blocks p

nmB ,  according to, 

)8)1(,8)1((),(, jnimSjiB p

p

nm +×−+×−= . (4)

Where  ;82,1, L=ji  8/2,1 Mm L= , 4,3,2,1=p .  

The DCT is performed independently for every block p

nmB , , and the DCT coeffi-

cients matrixes are denoted by p

nmC , . Four coefficients are selected to embed water-

marks in every p

nmC , , to balance the robustness and transparency, we select intermedi-

ate frequency coefficients (3, 1), (4, 1), (3, 2), (2, 3). Calculate J  according to, 

4/))1,3()1,3(()1,3( 4

,

1

,, nmnmnm CCJ ++= L , 

4/))1,4()1,4(()1,4( 4

,

1

,, nmnmnm CCJ ++= L , 

4/))2,3()2,3(()2,3( 4

,

1

,, nmnmnm CCJ ++= L , 

4/))3,2()3,2(()3,2( 4

,

1

,, nmnmnm CCJ ++= L . 

(5)

The watermark W  values are 0 or 1; it is encrypted or scrambled with secret key k  
to enhance security of watermark. The watermark W  are inserted into the coefficients 
to form the new coefficients given by 

)()( ,,, kWbJsignaJV pnmpnm

p

nm ××+×= . (6)

)(sign is sign function, pp ba , denote embedding strengths factors,  the values of these 

two parameters will determine how strongly the watermarks are embedded. p

nmV ,  Re-

place p

nmC , and IDCT is performed for every block to obtain watermarked image wI . 
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4   Watermark Extraction Scheme 

The goal of the extraction scheme is to extract the watermark W from the water-
marked image wI . Besides the watermarked image, the other information available to 

us is the secret key k , but k  is non-correlative to watermark extraction. So the wa-
termark extraction algorithm is blind. The extraction scheme can be divided into two 
stages. The first stage is to extract the estimated watermark W from the watermarked 
image wI . In the second stage, a post processing scheme is applied to obtain the opti-

mal W from the estimated watermark. 

4.1   Estimate Watermark Based on ICA 

For estimating watermark from watermarked image, the steps for watermarking ex-
traction are as follows: 

(1) like as embedding process, wI  is divided into 4 blocks, and 8×8 block DCT is 

performed independently for every block to obtain coefficient matrixes p

nmC '

, ; 

(2) The ),1,3('

,

p

nmC  ),1,4('

,

p

nmC  ),2,3('

,

p

nmC  )3,2('

,

p

nmC are converted into one dimension 

vectors 1V , 2V , 3V  and 4V  ; 
(3) Applying Fastica[8] technique on 1V , 2V , 3V  and 4V  each other. Equation (7) 

clearly matches the ICA mixing model Bxy = . Though signal sources are only W  

and J  in embedding process. IDCT is performed for every block, integer quantiza-
tion must be applied to save image format. So quantization noise n  is imported, sig-
nal source are not only W  and J . Different V  components are performed Fastica to 
obtain different estimate watermark iw .  
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(7)

4.2   The Post-processing Scheme 

The ICA technique, however, only provides a set of images that contains the water-
mark, but is not able to identify which one is the estimate of the watermark. It means 
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that the output 1Y does not necessarily correspond to the estimate of watermark W . It 

can be the estimate of any one of the four source signals W , J , 1n or 2n . For this 

reason, in the second stage of the extraction scheme, we develop a post-processing 
algorithm to obtain the watermark from the images 1Y , 2Y , 3Y and 4Y . We apply the 

correlation coefficients in post-processing scheme to identify which output, iY , corre-

sponds to which source signal. 
The detail scheme includes two stages, an identifying stage and a refining stage. 

The first stage filters out the watermarks from the four image inputs. The second stage 
uses the estimated watermarks to extract the optimal watermark. To identify the wa-
termarks, we use the correlation coefficients between each output and the water-
marked image. Let us consider two images X and Y , each of size NM × . The abso-

lute correlation coefficient YXr ,  measures the similarity between two images X and 

Y . When two images are totally different YXr , ≈0, and, on the other hand, when 

X and Y are identical to each other YXr , ≈1. Assume the threshold T , when YXr , >T , 

we judge it is the watermark component w .   After successfully estimating the every 
watermark iw , we compute the estimate of the optimal watermark as the average of 

these watermarks, given by 

)(
1

21
'

lwww
l

W +++= L . (8)

5   Experimental Performance Analysis 

5.1   Simulate Setup 

The original images lena are gray-scale images of size 512 × 512 with 256 intensity 
levels. The watermark are binary images: the Chongqing university logo is of size 
64×64. The embedding strengths pa and pb were controlled so that the watermarked 

images have a high quality in term of the peak signal-to-noise ratio (PSNR). The peak 
signal-to-noise ratio between an original image I  and the modified image wI  is com-

puted by 

PSNR = 20 )

)),(),((
1

255
(10log

1 1

2∑∑
= =

−
×

M

i

N

j

w jiIjiI
NM

. 
(9)

Where ),( jiI and ),( jiI w denote the ),( ji th pixel intensity (gray) level of the original 

and watermarked images, respectively. The watermark embedding values used for 
different parameters in the experiments are provided in Table 1. With the chosen 
parameter values, the watermark was generated and embedded into the host images. 
We are able to produce a high quality watermarked images (PSNR > 38 dB). The  
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Table 1. Experimental parameters 

 1=p  2=p  3=p  4=p  PSNR || ',WW
r  

pa  5 7 9 30 

pb  0.9 0.85 0.8 0.2 
 

38.1779 
 

0.995 

 

                 

Fig. 3. The images used in the experiments. From left to right: original image ( I ), watermark 
(W ), watermarked image( wI ),optimal watermark W . 

 

watermarked images are almost identical to the original ones and the embedded marks 
are invisible to normal eyes. 

Next, we evaluated and compared the robustness of embedded watermark. In the 
experiments, we applied various types of attacks at different strengths to the  
watermarked images, i.e. JPEG compression, Gray scale reduction, filtering, bright-
ness & contrast enhancement, and computed the || ',WW

r from the retrieved water-

marks. For further investigation, we compared the proposed scheme with other 
watermarking techniques that work on different processing domains. These tech-
niques include discrete cosine transform algorithms Cox-DCT [9], spatial-domain 
algorithms Thang Viet Nguyen[4], and discrete wavelet transform algorithms Kun-
dur-DWT [10]. 

5.2   JPEG Compression Test 

The watermarked image wI was compressed using JPEG compression tool with dif-

ferent quality factors (from 100% down to 10%). The watermark extraction was done 
on the compressed image. The performance index || ',WW

r was computed for each qual-

ity factor and is shown in Fig. 4. As it is shown, the proposed algorithm provided very 
good performance on all experiments. The qualities of the estimated watermark were 
high even when the JPEG quality factor was lowered drastically. The proposed 
scheme outperforms the blind watermarking scheme Kundur-DWT[10], and inferior 
to on DCT-based method (the Cox-DCT)[9] and WMICA[4], because the last two 
schemes are non-blind. 
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Fig. 4.  Performance comparison for JPEG compression test 

5.3   Gray Scale Reduction Test 

In this test, the intensity (gray) level of the watermarked image wI was reduced from 

original 256 level down to 128, 64, …, 4 level. As it is shown in Fig.5, the algorithm 
offered excellent results in the gray-scale reduction test. The performance in-
dex || ',WW

r  was high, showing a strong correlation between the estimated image and 

the watermark. It can be seen that our scheme was able to extract the watermark suc-
cessfully where the gray level is greater or equal 4, and its performance outperforms 
other schemes.  

 

Fig. 5. Performance comparison for gray-scale reduction test 

5.4   Other Attacks 

Unlike some methods that are only robust against several specific attacks, the pro-
posed method provides a steady performance throughout all the tests. The Table.2 
summarizes the detection results against contrast enhancement, gaussion noise, me-
dian filtering and resize attacks respectively. The results show our scheme is robust.     
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Table 2. The watermark detect result for other attacks 

attack Contrast 50% Gaussion noise Median filtering Scale 50% 

PSNR 19.3 27 32 30 

|| ',WW
r 0.89 0.75 0.76 0.78 

5.5   Authentication Test 

To evaluate the validity of the proposed image authentication scheme, the tampered 
image, shown in Fig. 6, was used. To forge a tampered image of the embedded image, 
the hat in the watermarked image is inserted into a flower. The detection result of the 
tampered image is shown in Fig.6. The Fig denote noise component, it shall distribute 
averagely if the watermarked image didn’t been modified. When watermarked image 
did been modified, the tampered area is clear noticeable, with the pixel values of the 
tampered area are much higher than the others. 

                                       
a. tampered watermarked image          b. noise component      c. estimate watermark 

Fig. 6. Tampering attack test 

6   Conclusion 

In this work, we have proposed a robust watermarking scheme based on ICA tech-
nique. The most advantage is that watermarking scheme blind and don’t need any 
additional signal, and the robustness and capability don’t been reduced. The water-
mark embedding and extraction process is simple the proposed scheme also makes it 
quite a useful tool for authentication. Experimental results have demonstrated that the 
proposed watermarking is robust with respect to some important attacks. The next 
work is that the quality of watermarked images need further improvement, geometri-
cal attack in the watermarking scheme need further research.  
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Abstract. In this paper, we present a mirror reflection invariant de-

scriptor which is inspired from SIFT. While preserving tolerance to scale,

rotation and even affine transformation, the proposed descriptor, MIFT,

is also invariant to mirror reflection. We analyze the structure of MIFT

and show how MIFT outperforms SIFT in the context of mirror reflec-

tion while performs as well as SIFT when there is no mirror reflection.

The performance evaluation is demonstrated on natural images such as

reflection on the water, non-rigid symmetric objects viewed from differ-

ent sides, and reflection in the mirror. Based on MIFT, applications to

image search and symmetry axis detection for planar symmetric objects

are also shown.

1 Introduction

Local image feature is a prerequisite in the areas of computer vision such as image
retrieval [1], 3-D reconstruction, object recognition [2], camera calibration, robot
navigation, gesture recognition, image search [3] and building panoramas [4]. To
handle image variability caused by rotations, scale changes, occlusions, vary-
ing illuminations and even perspective distortions, numerous techniques such as
Harris corner detector [5], SIFT [6], SURF [7], GLOH [8] and DAISY [9] are pur-
posed. Harris corner detector can find feature points with invariance of rotation
and illumination. Actually, what it detects are not just corners but also points
that have great gradients in multiple directions at a fixed scale. In other words,
scale changing is not handled. SIFT makes full use of the gradient property and
utilizes a spatial weighting scheme to differentiate pixels in the corresponding
collection, i.e. the histogram of each pixel in the collection is weighted by the gra-
dient magnitude and a Gaussian weighted window. SURF adopts Fast-Hessian
detector to quickly detect features within images which owes much to the inte-
gral images and uses the Harr wavelet response to capture the texture properties
around interest points. Histogram of Oriented Gradients (HOG) [10] uses the dis-
tribution of gradients within a set of pixels nearby the point of being calculated.
DAISY [9] is another fast solution of local image descriptor designed for dense
wide-baseline matching purpose, and is intrinsically tolerant to rotations due to
its circular interest region design.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 536–545, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b)

Fig. 1. Comparison of matching between MIFT and SIFT in the mirror reflection

situation. The left image is the Red Wings logo from movie “Ferris Bueller’s Day Off”,

the right one is the horizontally reflected version of it. (a) Matching result of MIFT.

(b) Matching result of SIFT.

Although so many different schemes of feature extraction have been proposed,
it is far from complete and robust enough to solve all of the problems encoun-
tered in the real life. While those above descriptors are successful in handling
most of distortions and illumination variances, they fail in the situation of mirror
reflection as shown in Fig. 1. Since the invariance of SIFT is remarkably robust,
many works have been carried out based on it, such as the 3D SIFT descriptor
[11] that is proposed to recognize actions and PCA-SIFT [12] which aims at
creating a more robust and shorter descriptor to image deformations than SIFT.
The purposed descriptor MIFT improves the invariance to mirror reflection and
performs as well as SIFT when there is no mirror reflection. Particularly, we re-
organize the structure of SIFT descriptor, and also adjust the matching strategy
accordingly.

2 MIFT

MIFT improves SIFT to advance the invariance of features in mirror reflection
situations. Note that the proposed solution is able to be used in other SIFT-
like descriptors with minor changes. We choose SIFT as basis, because of its
outstanding stability, robustness and distinctiveness.

2.1 Mirror Reflection

In the real world, mirror reflection generally appears in three different ways:
horizontal reflection, vertical reflection, and combined reflection which is hori-
zontally and vertically reflected. However, for rotation invariant descriptors, the
horizontal reflection and the vertical reflection are equivalent by rotating the
coordinate system. The same argument holds true for the original and the com-
bined reflection. Therefore two cases, i.e. the original image and the horizontal
reflected one, need to be handled. The relationship between the same region
after specifying the dominant orientation in the original image and in the hor-
izontally reflected one is that the row order of pixels and cells is identical and
the column order inverse, i.e. the gradients of the same pixel in the interest re-
gion after orientation assignment in different reflection cases are approximate1

bilateral symmetry.
1 The noises and distortions might influence the gradients.
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Fig. 2. Illustration of the descriptor organizations of MIFT and SIFT in the situations

with and without mirror reflection. (a) A keypoint and its interest region in the original

image. (b) (a) in the horizontally reflected image. (c) Distribution of eight orientations

in the 14th cell of (b). (d) Distribution of eight orientations in the 14th cell of (a). (e)

SIFT and MIFT descriptor for (a). (f) SIFT descriptor for (b). (g) MIFT descriptor

for (b).

2.2 Descriptor Reorganization

A vector containing the magnitudes of all the orientation histogram entries in a
region around the keypoint forms a descriptor, and a 4×4 array with 8 orientation
bins in each is proved to be the successful format in [6]. As SIFT, a 128-D, i.e.
4 × 4 × 8, vector is also chosen to support MIFT descriptor, although 128-D is
not compulsory. Figure 2 (a) is a keypoint with its interest region in the original
image, and Figure 2 (b) is (a) in the horizontally reflected image, both of which are
after specifying dominant orientation. Note that there is no limitation about which
direction the mirror reflection axis is alone because of the rotation invariance.

Order of 16 Cells. SIFT uses a fixed order to organize the 16 cells in the interest
region after specifying the dominant orientation out of 36 candidates. Note that
there might be multiple descriptors for the same combination of location and
scale, because it is possible that multiple peaks of 36 orientations are close to the
highest peak. As shown in Fig. 2 (a), SIFT might adopt the column-major-order
encoding strategy. As a result, the 16 cells are ordered as Fig. 2 (e). However,
the column order is reversed after mirror reflecting as shown in Fig. 2 (b). The
original fixed encoding strategy used in SIFT would arrange the 16 cells as
Fig. 2 (f). Although this encoding strategy is invariant to rotation and scale,
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and even tolerant to affine transformation, it does not result in the same order
in the situation of mirror reflection. We introduce an adaptive encoding technique
that is able to preserve the order of the 16 cells in the mirror reflection case.
Fortunately, there are only two directions to choose from, from left to right and
vice versa, as the order of the rows are the same in the column-major-order
encoding strategy. Intuitively, two magnitudes of the directly left- and right-
pointing orientations ( the blue dashed arrows ) can be used to select which
direction goes first. However, this method is sensitive to be relied on due to
noises and distortions. The direction is instead decided based on the summations
of the magnitudes of all left-pointing and right-pointing orientations,

mr =
(Nbin−2)/2∑

k=1

L(nd−k+Nbin)%Nbin
, (1)

ml =
(Nbin−2)/2∑

k=1

L(nd+k+Nbin)%Nbin
, (2)

where Nbin is the number of orientation bins that is 36 for MIFT, nd is the dom-
inant orientation index and Li is the gradient magnitude in the i×2π

Nbin
direction.

According to this measurement, we adaptively change the encoding strategy from
the fixed order to the one indicated by the winner of ml and mr. Theoretically,
this new encoding approach makes the sequence of cells unique in whichever
case as shown in Fig. 2 (g). Nevertheless, ml and mr might be close to each
other due to noises, lighting variations and other factors. To be more robust in
such situations, an extra descriptor is created in opposite order to support the
feature, when min{ml,mr} > τ max{ml,mr}. In our experiments, τ is 70% for
all the evaluations.

Order of 8 Orientations. Reorganization of cells described above is just one of
two essential steps. The other equally significant procedure is to restructure the
order of orientation bins in each cell. As shown in Fig. 2 (c) and (d), all gradients
in each cell are divided into their nearest bins of eight directions. Figure 2 (c)
and (d) present the same cell in the cases with and without mirror reflection.
Main difference between them is order change of bins without serious influence
on their strengths. Therefore, we encode them in anticlockwise order beginning
with ‘A’ in the case of Fig. 2 (a), and in clockwise beginning with ‘A’ in the case
of Fig. 2 (b) based on the comparison of ml and mr.

Finally, for the same keypoint, we obtain a unique descriptor in different
mirror reflection cases by the method described above. For the features in the
situations of Fig. 2 (a) and (b), the descriptors are identical which are shown in
Fig. 2 (e) and (g).

2.3 Matching

Due to the change of the signature strategy described in Section 2.2, every
descriptor from SIFT may map to one or two from MIFT, decided by the
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similarity between ml and mr. Recall the original matching method of SIFT
just compares the closest and the second closest descriptors. Therefore, it may
miss pairs that should be on the list of good matches since MIFT might have
multiple similar descriptors for one keypoint. To reduce the miss rate, we intro-
duce an improved matching method. Algorithm 1, IMM, gives pseduo-code for
the improved matching method.

Algorithm 1. Improved matching method (IMM)
Require: k = 1

Ensure: match(i)=IMM ( des1(i),des2 )

[vals, indices]= Sort ( arccos(des1(i)T des2), ascend )

repeat
k = k + 1

if vals(1) < distRatio × vals(k) then
match(i) = indices(1)
break

else
match(i) = 0

end if
until The location and scale combinations of vals(1) and vals(k) are not identical

In the IMM, distRatio is set the same as SIFT, des1(i) is the ith descriptor
in the set of the comparing image descriptors and des2 is the matrix containing
all of the compared image descriptors. According to the characteristic of the
matching strategy, the IMM aims at preventing potential true matches from ig-
noring due to similar matched descriptors for the same keypoint, we consider
different combinations of location and scale as different keypoints, alternatively
the descriptors at the same location and scale may be probably very close. The-
oretically, the matching strategy needs to constrain the influence from close
matched descriptors of the same keypoint. The improved matching performance
is demonstrated in Section 3.

3 Results

MIFT aims at advancing state-of-the-art descriptors to be invariant to the mirror
reflection. In order to show the benefit of MIFT, we tested the performance on
natural images with and without mirror reflection against SIFT.

To quantify the performance of MIFT compared to SIFT in mirror reflec-
tion situations, we choose some typical scenes including symmetric image pairs,
reflection on the water, non-rigid symmetric objects viewed from different sides
and reflection in the mirror as shown in Fig. 3. The comparison results are shown
in Fig. 4 (a). For the same four pairs of natural images with mirror reflection,
SIFT fails to find reasonable numbers of matches, but MIFT finds (78, 70, 57,
36) matches, with very few mismatches (6, 2, 2, 0).
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Fig. 3. Example images from image data set for the comparison between MIFT and

SIFT. Top two rows: test images with mirror reflection. Bottom two rows: test

images without mirror reflection.
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Fig. 4. Comparisons between true positive matches (TP) and false positive ones (FP).

(a) Comparison between MIFT and SIFT for image pairs with mirror reflection. (b)

Comparison between the improved matching method (IMM) and the original matching

method (OMM). (c) Comparison between MIFT and SIFT for image pairs without

mirror reflection.

As described in Section 2.3, the improved matching method aims at reducing
the miss rate. As shown in Fig. 4 (b), we plot the differences between improved
matching method and the original method referring to the method used in SIFT.
For the same four pairs of images which are randomly selected from the data set
with and without mirror reflection, the true positive matches increase a lot from
(143, 86, 65, 31) to (203, 115, 75, 43). Simultaneously, the mismatches increase
also for the test pair 1, 3, 4. However, the positive numbers are significantly
bigger than the negative ones.

We also test and verify the performance of MIFT compared with SIFT on
natural images without mirror reflection. Some of them are shown in Fig. 3. As
shown in Fig. 4 (c), the numbers of the true positive and false positive matches
of MIFT are similar to those of SIFT. However, for most cases of Fig. 4, MIFT
performs slightly better than SIFT due to the characteristic of the IMM, i.e. the
descriptors obtained at the same location and scale are considered as the same
keypoint and are ignored.
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4 Applications

4.1 Application to Image Search

Image feature is the basis of image understanding for computer, and it is the fun-
dament of many multimedia applications such as image search from mass image
data. No doubt directly comparing query images with the images in database is
the simplest method. In addition, in [3], the authors present two ways to search
images. 1) Hamming embedding (HE) and 2) weak geometric consistency con-
straint (WGC). These two approaches are based on the bag-of-feature method
with k-means algorithm. However, all these methods can’t solve the flip detec-
tion effectively but implement SIFT twice for every query image (SIFT1 for the
original query images, and SIFT2 for the manually flipped ones).

Duplicate computation of SIFT for every query image is rather laborious and
inflexible, we apply MIFT to address this tough problem. Note that we just
implement the directly comparing method, however HE and WGC can be easily
transplanted to MIFT from SIFT.

The image data are from INRIA Holidays dataset2, and we randomly select
300 images from INRIA Holidays dataset as our database, and another 36 images
as query set. The one third of the query images are without mirror reflection
(NM), another one third are with horizontal mirror reflection (HM) and the
remaining one third are with vertical mirror reflection (VM).

We separately use MIFT and SIFT to detect and describe features for every
image from our database and query set. As shown in Table 1, MIFT successfully
searches 35 images out of 36 in which 34 successfully registered images are first-
ranking and 1 image second-ranking. There is only 1 failed to find the related
images. This very image and its corresponding one in the database are shown in
Fig. 5. For SIFT, as shown in Table 1, it only correctly finds 11 non-reflection
images out of 36 for the first process which contains 12 images without mirror
reflection, and for the second process it finds 23 first-ranking images with hori-
zontal or vertical mirror reflection, and 1 third-ranking which is second-ranking
using MIFT. The incorrect registration image pair is the same as MIFT, as
shown in Fig. 5.

The reason why the left image pair in Fig. 5 is not first-ranking is that there
are too many repetitive structures within the images that lead to close arc cosine
values which are rejected by OMM and IMM. To handle this problem caused
by repetitive structures, W. Zhang and J. Kosecka [13] propose an additional
criterion which increases true positive rate while keeps false positive low. For the
right image pair in Fig. 5, MIFT and SIFT can not obtain reasonable matches
since the image pair are changed too much with respect to the scale and occlu-
sion. Some search results are shown in Fig. 7, the images from the database with
top 3 scores are shown for every query image.

2 http://lear.inrialpes.fr/∼jegou/data.php
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Table 1. The results and their ranks of image search using MIFT and SIFT

#Image pairs MIFT SIFT1 SIFT2

12(NM) TP, 11, 1st; FP, 1 TP, 11,1st; FP, 1 FP, 12

12(HM) TP, 12, 1st FP, 12 TP, 12, 1st

12(VM) TP, 11, 1st , 1, 2nd FP, 12 TP, 11, 1st, 1, 3rd

Fig. 5. Left image pair: the image pair with vertical reflection is queried at the

second rank using MIFT, and at the third rank using SIFT. Right image pair: the

image pair failed to be matched by both MIFT and SIFT.

4.2 Application to Detection of Symmetry Axis

In the real life, symmetric objects are ubiquitous, especially in urban area. Sym-
metry detection has been regarded as a useful and important technique in com-
puter vision. Many symmetry detection schemes are proposed including human
gait detection [14] and a focused version of Generalized Symmetry Transform
[15]. As is known, the rules for planar symmetric objects are simple, symmetric
points in the symmetric object lie on a single line perpendicular to the symme-
try axis and their perpendicular distances to the symmetry axis are identical.
However, the symmetric object under perspective projection is an exception of
these rules. Although the ratios of lengths are not preserved under perspective
projection, the following cross ratio constraint [16] is still valid,

{vx, li; ci, ri} =
(vx − li)(ci − ri)
(vx − ri)(li − ci)

= 1 (3)

where vx is the vanishing point calculated by the parallels linking matched
pixels, li and ri are the endpoints of the line and ci is the point on the symmetry
axis.

Fig. 6. Example results of symmetry axis detection. The symmetry axes are marked

with green straight line. Please zoom in the picture to see MIFT matches.
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H
M

V
M

N
M

Query Images
1st 2nd 3rd 1st 2nd 3rd

MIFT SIFT1 +  SIFT 2

TP TP FP

TP TP TP TP TP TP

TP TP TP TP TP TP

TP TP TP TP TP TP

TP TP TP TP TP TP

TP TP FPTP TP FP

TP TP FP

Fig. 7. Example results of image search. SIFT results are obtained by implementing

query procedure twice, while MIFT only once. Top two rows: The query images

with horizontal mirror reflection (HM). Middle two rows: The query images with

vertical mirror reflection (VM). Bottom two rows: The query images without mirror

reflection (NM). The results are labeled as true positive (TP) or false positive (FP)

blow the searched images.

We use MIFT to detect the endpoints li and ri. vx is then estimated from
concurrent lines that link li and ri. Finally we use RANSAC [17] to find the
optimal symmetry axis. Some results are shown in Fig. 6. Light colorful lines link
matched pixel pairs, outliers of matched symmetric points have been eliminated
by RANSAC.

5 Conclusion

In this paper, we have proposed a mirror reflection invariant descriptor, MIFT,
and have verified its improved performance over the state-of-the-art SIFT in
mirror reflection situations. MIFT performs comparably in general cases when
compared with SIFT. We elaborate the new strategy for organizing descriptor,
and describe the matching method used to reduce recall loss. MIFT instead
of SIFT applied to the image search can capably handle the mirror reflection
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images rather than implementing SIFT twice for every query image. And the
symmetry axis of a planar symmetric object can be easily detected using MIFT
with RANSAC.
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Abstract. Besides the decorative purposes, vehicle manufacture logos

can provide rich information for vehicle verification and classification in

many applications such as security and information retrieval. Detection

and recognition of vehicle manufacture logos are, however, very challeng-

ing because they might lack of discriminative features themselves. In this

paper, we propose a method to detect vehicle manufacture logos using

contextual information, i.e., the information of surrounding objects near

vehicle manufacture logos such as license plates, headlights, and grilles.

The experimental results demonstrate that the proposed method is more

effective and robust than other methods.

1 Introduction

The vehicle manufacture logos can contain important information about vehi-
cles besides their decorative purposes. A vehicle logo can provide not only the
identity for the manufacture, but also the information for vehicle verification,
identification, and recognition. For example, a manufacture logo of a certain
type vehicle appears in a fixed location. It could indicate a problem if the logo
appears at a wrong location. Association of a manufacture logo with a license
plate can be used for vehicle verification. Manufacture logos can also be used
for index to search a vehicle, e.g., we can search for “a red Toyota sedan” or
“a black Ford SUV”. Both “Toyota” and “Ford” can be identified from their
manufacture logos. Therefore, detection and recognition of vehicle manufacture
logos have many potential applications. However, unlike the license plate, which
is designed for identification purposes, vehicle manufacture logos are mainly de-
signed for decorative purposes such that they can be embedded into surrounding
objects or have low contrast against background, as shown in Fig.1. From a de-
tection and recognition point of view, the differences between a license plate and
a manufacture logo are as follows:

1. While all license plates are installed in the specified locations (e.g., in the
central part of the front and/or back of a vehicle), locations of vehicle lo-
gos can differ from manufactures. For example, as shown in Fig.1(a), the
Mercedes Benz logo is almost separated from the main body of the car with
the windshield glass as its background, which creates a great challenge for

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 546–555, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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detection and recognition. The vehicle logo in Fig.1(b) is surrounded by the
grille while the vehicle logo in Fig.1(c) is embedded into body.

2. While the shape, text, and color of license plates are standardized by the
authority, a manufacture has freedom in designing appearance of a logo
which makes a great variation in appearances of different logos. Some logos
are even very similar, e.g., a Honda logo vs. a Hyundai logo, as shown in
Fig.1(d) and Fig.1(e).

3. While it is illegal to mask or modify a license plate, the regulations on
manufacture logos are much loser. A vehicle logo can be occluded by other
objects, as shown in Fig.1(f).

4. While the content of a license plate consists of letters and digits within
a rectangular plane, manufacture logo can contain letters, digits and any
symbols on complex surfaces.

(a) Separated from body (b) Surrounded by grille (c) Embedded into body

(d) Honda logo (e) Hyundai logo (f) Partial occlusion

Fig. 1. An illustration of some challenging cases for manufacture logo detection and

recognition

Therefore, it is very difficult, if not impossible, to robustly detect vehicle logos in
real world applications. Fortunately, there is some contextual information, i.e.,
the information of surrounding objects near vehicle manufacture logos such as
license plate, headlights, and grille, that can help to detect vehicle manufacture
logos. In this paper, we propose a new method to localize vehicle manufacture lo-
gos using contextual information. The basic idea is to make full use of the spatial
relationship among license plates, headlights, grilles and the vehicle manufacture
logo. Firstly, we use an Adaboost classifier to detect license plate and use SIFT
(Scale Invariant Feature Transform) algorithm to localize headlights. Secondly,
we analyze the relationship among license plate, headlights and the vehicle man-
ufacture logo by statistical laws to obtain the coarse position of the manufacture
logo. Finally, we use ALBP (Advanced Local Binary Pattern) operator to detect
whether exists grille in the coarse region and if it exists, we eliminate the dis-
turbance to get the accurate position of the logo. The experimental results show
that this method is more effective and robust than other methods.

The rest of this paper is organized as follows. Section 2 presents some related
work. Section 3 illustrates how to use the contextual information among license



548 W. Lu et al.

plate, headlights, and vehicle manufacture logos to detect the vehicle manu-
facture logos. Section 4 discusses experimental results. Finally we conclude the
paper in section 5.

2 Related Work

Vehicle manufacture logo detection and recognition is a relative new research
area, which has little previous existing work. Furthermore, since manufacture
logos might lack of discriminative features themselves, it is very difficult, if not
impossible, to use state-of-art algorithm directly for vehicle logo detection and
recognition. However, the proposed approach is related some previous work in
literature. As one of the most important studies on computer vision and pat-
tern recognition in the application field of Intelligent Transportation Systems
(ITS), License Plate Recognition (LPR) is now a mature technology, and has
been applied in many applications such as intersections monitoring, parking lots
management, over-speed detection on freeway ,vehicle verification [1], [2], [3].

Contextual information has been widely used in solving different AI (Artificial
Intelligence) problems. It is well known that context plays a very important role
in representing knowledge. In general, researchers consider the COIN program
[4], [5] of MIT as the representative for the application of context in the field
of information integration. Combining the existing literatures with our research
emphases, we give the definition of context as follows: context—a set of hypoth-
esis, from which we can make secret semantic information specific. According
to this theory, we consider using the other information except manufacture lo-
gos themselves in the vehicle frontal area to localize manufacture logo, i.e., the
information of surrounding objects near vehicle manufacture logos, such as spa-
tial relationship among plate, headlights, grille, and the logo. And then vehicle
manufacture logo recognition will become a 2D shape recognition problem [6],
[7]. In this way, we decompose manufacture logo detection that is a challenging
problem into several easier problems such as license plate detection, headlight
detection, and grille detection.

Currently available methods for license plate detection can be categorized
based on input source (gray or color images) and type of classifiers. There are
some successful methods based on the gray-scale image. In [8], Mahini et al. in-
troduced a feature-based license plate localization algorithm that coped with the
multi-object detection problem in different image capturing conditions. In [9],
Le et al. presented a hybrid method for extracting license plates from cluttered
images based on an edge density map. Although in some cases, the methods
based on the gray-scale image can get the region of license plate. However, when
the license plate has regional distortion, or when the image is defaced, efficiency
decreases significantly, accompanied by slow speed, a high miss rate and false
alarm rate. Besides the methods that based on gray-scale image, color infor-
mation is also exploited, such as [10], [11]. Color-based detection methods can
obtain more accurate location, lower miss rate, but poor adaptive capability to
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the size of license plate. It can be impacted by abrasion and tilt. In addition, the
license plate can be confused by the regions having similar color, shadows and
illumination changes in environment that has a dramatic effect on the definition
of the color space. Thus, in order to localize manufacture logo accurately, we
need to adopt a method that not only provides fast and precise position of
license plate but also has a strong robustness. In order to achieve this goal, we
adopt the detection method based on Adaboost classifier [12], [13] in this paper,
which will be described in 3.1. Furthermore, we use SIFT features to detect
headlights in this research.

3 Vehicle Logo Detection Based on Contextual
Information

Vehicle manufacture logo localization is prerequisite for logo recognition, whose
accuracy is crucial to follow-up processes and has a direct impact to the speed
and accuracy of logo identification. In this paper, We focus on vehicle manufac-
ture logo localization only. Fig.2 shows the flow chart of the processing.

Fig. 2. The flow chart of vehicle logo localization based on contextual information

3.1 License Plate Localization

Based on the previous analysis, we adopt the detection method based on the
Adaboost classifier. This target detection method was first introduced by Viola
and Jones in 2001 [12] and is improved by Lienhart [14], [15]. They use an
image representation method known as the “integral image”, which can quickly
calculate the features used by the detector. We use the Haar features of samples
to train classifier, resulting in a cascade of the boosted classifier. For the classifier
training, we use 3000 positive sample images and 10000 negative sample images.
The classifier system we choose is similar to the Discrete Adaboost classifier in
the form. Given a set of N weak classifiers, a strong classifier is computed as a
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linear combination of a series of weighted weak classifiers [13], as is shown in
Equation (1) and (2).

Hstrong(x) = sign(conf(x)), (1)

conf(x) =
N∑

n=1

∂n · hweak
n (x), (2)

where, the value conf(·) (which is related to the margin) can be interpreted as a
confidence measure. Moreover, each weak classifier is created by using only one
Haar feature. The results of the license plate localization are shown in Fig.3.

Fig. 3. An illustration of the license plate localization based on the Adaboost classifier

3.2 Headlights Localization

In recent years, the method based on Local Invariant Descriptor makes great
progress on object recognition and image matching in computer vision. In 1999,
Lowe presented a new algorithm called SIFT to extract feature points [16], and
improved in 2004[17], which made good performance in solving image distortion
problem caused by sheltering, scale, rotation, zooming or the focus changing, and
successfully applied in object recognition, image restoration and image mosaic.

Vehicle headlights are usually in complex light-reflecting multi-faceted form.
Thus, regardless of the lights are in the state of operation (at night) or clearance
(daytime), the headlights areas are more complex and frequent changing areas,
with very rich in all orientations of the gradient information. Therefore, we can
use the SIFT features to perform the headlights localization. These features
extracted from headlights are local and robust to rotation, scale, changes in
illumination and addition of noise. Moreover, they are invariant to full Affine
Transformation and viewing angle change. Space lacks for a detailed description
of it, the detail steps of SIFT algorithm please refer to reference [17]. Fig.4 shows
examples of the detected features of frontal vehicles using SIFT algorithm. Each
keypoint has three coordinates: location (x, y), scale and orientation.

As shown in Fig.4, the feature points detected in the area of headlights using
SIFT algorithm are very dense and relatively concentrated. Thus we can set
a detection region (including headlights and vehicle logo), in which we use a
rectangular window and set a reasonable threshold to search, and then confirm
whether this area is headlights or not according to the density of the feature
points in this detection region. Therefore, we can localize headlights accurately.
The density threshold of the feature points can be obtained by the experiment
analysis. The results of headlights localization are shown in Fig.5.
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Fig. 4. Examples of SIFT features in the front of vehicles

Fig. 5. An illustration of the results of headlight localization using SIFT algorithm

3.3 Contextual Information from a License Plate and Headlights

According to 3.1 and 3.2, we have obtained the exact position of license plate
and headlights. In order to make better use of contextual information like li-
cense plate and headlights to localize manufacture logos, we use 200 images of
vehicles as samples, and obtain the center position of manufacture logos using
the statistical rules. At first, it needs to set up a two-dimensional coordinate
system in the vehicle head, and take the center of license plate as the origin of
the coordinate system, marking it as (0, 0). According to the pixel coordinates
of the license plate and headlights in original image, we can calculate the center
coordinates of the headlights in this two-dimensional coordinate system easily,
marking the coordinates of left headlight as (x1, y1) and right as (x2, y2), shown
in Fig. 6. Because of the different scales, we need to map the distances between
the headlights and the origin both vertically and horizontally by normalizing
the distances to unit length for all the sample images, and then calculate the
coordinates (x, y) of the center position of vehicle manufacture logo using the
statistical rules. The result reveals that the center position of logo in these 200
images focus on the some specific area showing as being dense in the center and
sparse in the margin, which can be approximately described by two-dimensional
Gaussian distribution.

By statistical laws, such center positions can be expressed by the mean value
of two-dimensional Gaussian distribution as Equation (3):

z =
1
n

∑
z =

1
n

∑
(−→x ,−→y )T , (3)

where, z represents the two-dimensional random variable of the center point
of vehicle manufacture logos,−→x and −→y respectively represents the vertical or
horizontal coordinates of the center point of the logo.

The covariance matrix of two-dimensional Gaussian distribution is also of
great importance to vehicle manufacture logo localization, which represents dis-
persion of the logo center, expressed as Equation (4):
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Fig. 6. A two-dimensional coordinate system in the vehicle front, the center position of

vehicle manufacture logo can be approximately described by two-dimensional Gaussian

distribution

Cz =
1
n

∑
(z − z)(z − z)T , (4)

When inputting a new image, it utilizes the Adaboost classifier and the SIFT
algorithm to get the center coordinates of license plate and headlights first,
mapping the distance by normalizing the distance to unit length, and then get
the coordinates of manufacture logo center by Equation(3). Finally, it needs to
turn the coordinates of the vehicle logo center in the two-dimensional coordinate
system to the pixel coordinates of the logo in original image according to anti-
mapping distance normalized unit. Then we get the center point of the logo.
Finally, we draw a rectangle of reasonable size centered with this point and this
is the coarse region manufacture logo exists.

3.4 Contextual Information Using Grille

However, it is possible that a grille may link with vehicle manufacture logos in
that coarse region, which brings more difficulties to vehicle manufacture logo
recognition. Considering that grilles of most cars are arrayed regularly in either
horizontal or vertical direction (shown in Fig.7), we can use ALBP operator to
detect whether exists grille in the coarse region and if it exists, we eliminate the
disturbance of grille, so as to get the exact position of vehicle manufacture logos.

The original LBP operator introduced by Timo Ojala proved to be a powerful
texture descriptor [18]. However, it demands a little more time and storage space.
Thus, in this paper, we adopt a more powerful and low-computation ALBP

Fig. 7. An illustration of well-regulated array of grille
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Fig. 8. An example of ALBP operator

Fig. 9. An illustration of the final results of vehicle manufactures logo detection

operator [19] to detect and eliminate the disturbance of grille. As shown in
Fig.8, the operator labels the pixels of an image with the binary thresholding
result of the 3× 3 neighborhood of each pixel with the center value. The ALBP
operator only uses the right and bottom pixels of the original LBP operator and
then the histograms of the labels can be used as texture descriptor. The express
of the ALBP operator is as Equation (5).

ALBP =
4∑

p=0

s(gp − gc)2p, where s(z) =
{

1, z ≥ 0
0, z < 0 (5)

After the image input, we scan the coarse region of the logo with a 3 × 3 sub-
window to get the ALBP map, then divide the map into 6× 6 non-overlapping
sub-regions, and compute the histogram for each block. If the histogram is sym-
metrical, it means that the distribution of the pixels in the block is even, and it
can be identified as grille. For it has obvious distribution features as grille and
can be disregarded. Take the horizontal grille as example. It should be searched
from the left and right rim to the center until the histogram is not symmetrical.
When it stops, the reserved area in the middle is just the final detection result
of vehicle manufacture logo, as is shown in Fig.9. The position of the vertical
grille is similar.

4 Experimental Results

In order to evaluate our method, we use an image database with 1000 color
vehicle head images in various real life applications, and the size of each image
is 720× 288. In our experiments, we consider the correct detection as localizing
the complete vehicle logo in a region without any other disturbance of grille.
Fig.10 shows a comparison on vehicle manufacture logo correct detection rate of
5 different methods: (1) localizing manufacture logos directly in whole images
without any contextual information, mark N; (2) only using the information of
license plate to localize the accurate region of logos, for short P; (3) method
only using the information of headlights, for short L; (4) method only using
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Fig. 10. Comparison on vehicle manufacture logo correct detection rate of 5 different

methods

the information of grille, for short G; (5) the proposed method using contextual
information in this paper, for short P+L+G.

As shown in Fig.10, the correct detection rate of vehicle manufacture logo
without any contextual information or only using one certain contextual infor-
mation is too low to satisfy the requirement of application. While the method
based on contextual information we proposed in this paper performs better and
more effective.

5 Conclusions

The main contribution of this paper is to have successfully proposed a new
method to detect vehicle manufacture logos accurately. This method is based on
contextual information, i.e., the information of surrounding objects near vehicle
manufacture logos such as the spatial relationship among license plate, headlights
and the manufacture logo, and well-regulated array of grille. The experimental
results indicate that the proposed method not only can localize vehicle logo
accurately, but also is robust against environmental changes. Therefore, it can
provide a solid foundation for manufacture logo recognition and can provide rich
information for vehicle verification and classification in many applications such
as security and information retrieval.
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Abstract. We present a new method for object detection that integrates part-
based model with cascades of boosted classifiers. The parts are labeled in a su-
pervised manner. For each part, we construct a boosted cascade by selecting the 
most important features from a large set and combining more complex classifi-
ers. The weak learners used in each level of the cascade are gradient features of 
variable-size blocks. Moreover, we learn a model of the spatial relations  
between those parts. In detection, the cascade of classifiers for each part com-
pute the part values within all sliding windows and then the object is localized 
within the image by integrating the spatial relations model. The experimental 
results demonstrate that training a cascade of boosted classifiers for each part 
and adding spatial constraints among parts improve performance of detection 
and localization. 

Keywords: object detection, part-based model, boosted cascade.  

1   Introduction 

The problem of object detection has drawn considerable attention in computer vision 
and artificial intelligence. The concentrated effort of researchers in the last few years 
resulted in many novel approaches for object detection. But it still remains a challeng-
ing problem because of the large variance of objects in the class. Such variance may 
be due to the view point variation, illumination and occlusion, change in the scale, 
background clutter, and deformable object shape, etc. 

A variety of models and methods exist for representing, learning and recognizing 
objects in images. Recent papers have demonstrated that part-based models can 
achieve good performance in object detection. The pictorial structure models [9, 10] 
represented an object by a collection of parts arranged in a deformable configuration, 
where the spatial relationships between parts are represented by spring-like connec-
tions between pairs of parts. The constellation model [6, 7] represented objects as 
flexible constellations of rigid parts. The variability within a class is represented by a 
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joint probability density function on the shape of the constellation and the output of 
part detectors. In star model [8] and k-fan model [11], the location of the model part is 
conditioned on the location of a reference part. While these models are appealing in 
their generality, it has been complex for learning and difficult to establish their value 
in practice. 

Recent work has also shown that boosted object detectors can be effective at  
detecting object classes. Schneiderman and Kanade [12] train each classifier based on 
the statistics of localized parts to minimize classification error on the training set by 
using AdaBoost. Torralba et al. [5] present a multi-class boosting procedure by  
finding common features that can be shared across the classes. Viola and Jones [2] 
construct a boosted cascade of simple feature classifiers for rapid face detection. Zhu 
et al. [3] integrate the boosted cascade-of-rejectors approach with the HOG features to 
achieve a fast human detection system. The cascade of boosted classifiers has proven 
to be powerful in detection, however, the learning process increases the computational 
cost. 

In this paper, we develop a new object detection framework that combines the  
part-based model and cascades of boosted classifiers. The basic idea is an extension 
of the boosted cascade algorithm [3], which has been shown to be useful for human 
detection. Different from previous works, we train a cascade of boosted classifiers for 
each part of the object and add spatial information for the models. The parts are la-
beled in a supervised manner. For each part, we extract HOG features [1] of the vari-
able-size blocks, and each orientation bin of the HOG features corresponds to one 
feature in our scheme. Then we use AdaBoost to select a small number of important 
features viewed as weak learners and yield a strong classifier for each level of the 
cascade. Finally, a boosted cascade is constructed by combining the strong classifier 
in each stage. The spatial model for the part locations is similar to 1-fan [11] or star 
graph [8] with a reference part that is connected to all other parts. In addition, our part 
structure model are most closely related to [13],  which use latent SVM to train de-
formable part model. 

The rest of this paper is organized as follows. In section 2, we describe the model 
framework. In section 3, we provide a detailed description of learning method. Sec-
tion 4 gives the procedures of detection and localization. The experimental results are 
presented in section 5. Finally, we conclude the paper in section 6. 

2   Model 

Our models are formed by integrating part structure with cascades of boosted classifi-
ers. For each part, gradient features are extracted from all possible blocks that vary in 
sizes, locations and aspect ratio, then AdaBoost is used to select a small number of 
important features from a larger set and yield strong classifier for each stage. Finally, 
we combine the strong classifiers to construct a boosted cascade. The spatial relations 
between parts are tree-structured graph with a root part and other parts conditioned on 
the root part.  
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2.1   Integral Histogram of HOG and Gradient Features 

The “Integral Histogram” [14] developed by Porikli allows for fast computation of 
histograms over arbitrary rectangular image regions. Inspired by his work, Zhu et al. 
[3] exploit a rapid way of calculating the HOG features. The gradient at each pixel is 
discretized into one of 9 orientation bins, and an integral image for each bin of the 
HOG is computed and stored. Then the HOG features for any rectangular regions can 
be computed quickly from those integral images. We follow the way to extract HOG 
features from any rectangular image regions.  

A 48×48 fixed-size patch surrounding the labeled part location is extracted from 
each training image. To encode more information for each patch of part, we consider 
blocks whose size ranges from 8×8 to 48×48. The ratio between block width and 
block height can be any of the following ratios (1 : 1), (1 : 2) and (2 : 1). In total, we 
get 189 blocks in each patch of the part. The 9 dimensional HOG features of the 
blocks can be computed quickly from the integral images. Each feature in our scheme 
corresponds to one orientation bin of the HOG features of the blocks. Thus the total 
number of features in each patch of the part is 9×189. 

2.2   Cascades of Boosted Classifiers 

We use a cascade of boosted classifiers for each part. We choose to base our algo-
rithm on the version of boosting called “gentleboost” [4] because it has been shown 
experimentally [15] to outperform other boosting algorithms. In gentleboost, the op-
timization of the cost function is done using adaptive Newton steps, which corre-
sponds to minimizing a weighted squared error at each step. 

In the boosting process, several critical features from a large set are selected to 
form weak learners. Then the strong classifier for each stage is constructed by those 
weak learners. For each 48×48 pixel region we have 189 blocks and 9×189 features. 
We select the most informative features from these features.  

A boosted cascade is a combination of the strong classifier in each stage which re-
ject many of the negative sub-windows at the earliest stage while detecting almost all 
positive instances. Stages in the cascade are constructed by training classifiers using 
gentleboost and then adjusting the threshold to meet the predefined quality require-
ments. Our cascade of boosted classifiers contains 4 stages for each part in that the 
first few stages of the cascade rejects the majority of detection windows. 

2.3   Spatial Relations 

We use the star-graph model proposed in [8] to model the spatial relations between 

parts. Let ( , )G V E=  be a star graph with central node rv  and other independent 

nodes ( )iv i r≠  conditioned on the value of rv . Let { }1, ..., nS s s=  be parameters of 

spatial relationships. Let { }1, ..., nL l l=  denote the location for each part, among 

which rl is the location of the central part and il  is the location of other part except 
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for the central part. The spatial relations can be written in terms of conditional distri-
butions as, 

( | ) ( | ) ( | , ).
i r

r r i r i
v v

p L S p l s p l l s
≠

= ∏  (1)

We model the conditional distribution of other part location given the central part 

location ( | , )i r ip l l s  as a Gaussian with mean |i rμ  and covariance |i r∑ ,  

| |( | , ) ( , , ).i r i i r i r i rp l l s N l l u= − ∑  (2)

3   Learning 

In learning we are given a set of images annotated with bounding boxes for each part. 
In training the cascade, we need to construct a strong classifier for each level of the 
cascade to meet the predefined quality requirements. For spatial relations model, the 
parameters discussed above should be estimated.  

3.1   Training the Cascade 

We train a boosted cascade of classifiers similar to the one proposed in [2] and [3], 
with the following difference. First, we use 9 dimensional HOG feature to describe a 
block and each feature selected in each round of boosting process corresponds to one 
orientation bin of the HOG features. Second, for each part we select the most infor-
mative features from all the 1701 features in the 189 possible blocks and construct a 
rejection cascade. Finally, since our models are based on part structure, for each part 
we will train a rejection cascade and the levels of the cascade are less than that of [3] 
even it will result in low rejection rate. 

The boosting process for training each stage is a standard Gentle AdaBoost algo-
rithm. For each level of the cascade we construct a strong classifier consisting of 
several weak learners. Each stage is trained by adding weak learners until the target 
detection rate and false positive rate are met. Subsequent stage is trained using those 
samples which pass through all the previous stages. In our system we require the 
minimum detection rate to be 0.9975 and the maximum false positive to be 0.7 in 
each stage.   

3.2   Training Spatial Relations 

We learn the spatial relations model from labeled images using a maximum likelihood 

(ML) criterion. The goal is to find the ML estimate *S  which best explain the data 

from all the training images. We are given a set of images { }1, ..., mI I  and corre-

sponding object configurations { }1, ..., mL L  for each image, { },1 ,, ...,k k k nL l l= , then 

the ML estimate of S  is, 
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*
, , ,

1 1

( | )arg max ( | ) arg max ( | , ).
m m

k k r r k i k r i
S sk k v vri

pS p L S l s p l l s
= = ≠

= =∏ ∏ ∏  (3)

For a fixed set of central part, estimating the ML parameters involves estimating the 
mean and covariance in (2). These can be obtained from the sample mean and covari-
ance of the labeled configurations. 

4   Detection and Localization 

In detection, the boosted cascade detector for each part scan across the image at mul-
tiple scales and compute the boosting score within all sliding windows, and then lo-
calize the object within the image by integrating the spatial relations model. Let 

{ }1, ..., nL l l=  denote the location for each part, ( )i ic l  denote the score of the pres-

ence of the thi  part in the candidate windows given the location il . ( )i ic l  can be 

derived from boosted cascade detector. For getting the location of the object within 

each image, we look for an object configuration *L  with maximum posterior prob-
ability,  

* max ( | ) ( ) ( | , ) ( ).r r r r i r i i i
L v vri

L p l s c l p l l s c l
≠

= ∏  (4)

There is a large number of placements for the parts of the object. We use distance 
transforms technique [10] to compute the best location for the parts of the object as a 
function of the central part location. We score central part locations according to the 
best possible placement of the parts and threshold this score. In this case the running 
time of the localization algorithm is reduced to ( )O nk , where n  is the number of 

parts and k  is the number of detection windows (number of locations) for each part 
within the image. 

5   Experiments 

We carried experiments to investigate how integrating part structure with cascades of 
boosted classifiers affects object detection and localization accuracy. In our first set of 
experiments, we applied our learning method to the INRIA person dataset [1], which 
consists of 2,416 positive training images and 1,126 negative training images. Posi-
tive training images were scaled so that object size was approximately uniform across 
the set of images. For human six parts were labeled by hand, which were the head, left 
and right arm, middle part of the body, left and right leg.  

To learn the boosted cascade of classifiers for a given part, a 48×48 fixed-size 
patch surrounding the labeled part location was extracted from each training image, 
and then HOG features of variable-size blocks in the patch were computed. The  
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cascade of boosted classifiers was trained using the procedure described in Section 
3.1. We trained only four stages for each part, which enabled the detection rate to be 
0.99 and the rejection rate to be 0.76. The training process took 5 to 6 hours using a 
PC with 2.66GHz CPU and 1GB memory. The number of features in the four layers 
of the detector was 5, 13, 17, 25 features respectively. In total, about 240 weak learn-
ers were selected for all the parts. 

We inspected the most informative blocks among which features are selected by 
our system for each part. The first column of figure 1 show the best 6 blocks among 
which features are selected with minimum error rates in each part. We observe that 
the best block size for each part are about 32×32, 16×16, 48×48, 32×32, 24×24, 
32×16 respectively. The last two columns show the blocks selected in our cascade of 
level-1,2 as well. Another observation is that most selected blocks cluster in the cen-
tral area of each part, which demonstrates that gentleboost is very efficient in select-
ing the most informative blocks as opposed to the blocks in background. 

For detection, we found an optimal configuration for the object in each test image. 
Distance transforms technique was used to compute the best location for the parts of 
the object. Figure 2 shows some detection and localization results of our algorithm for 
the person dataset. We compare our method to the way of using boosted cascade 
without part information, with the following details. Each stage is trained in gentle-
boost manner, the weak learner selected in the boosting process corresponds to one 
orientation bin of the HOG features, and the cascade has 20 stages and about 435 
weak learners. We also implemented the Dalal & Triggs [1] algorithm using the same 
training and testing databases they provided.  

Figure 4(a) shows the resulting precision-recall curves for the person dataset. From 
the curves we can see that our method based on part structure and 4 levels of cascade 
for each part performs better than the way based on 20 levels of cascade without parts 
and the Dalal & Triggs method. The result demonstrate that training a cascade of 
boosted classifiers with less stages for each part and adding spatial information into 
the framework are helpful in improving detection accuracy.  

In the next experiment we evaluated our system on the Caltech-101 database [16]. 
Five categories were selected from the database, which were motorbikes, airplanes, 
faces, leopards, and cars. Each dataset was split randomly into two separate sets. We 
used the first for training and the remaining for testing. Six parts were labeled by hand 
in each training images. The patch size of each part is 48×48 for all classes but the 
leopard for which the patch size is 36×36. Figure 3 illustrates some detection and 
localization results on the motorbike, airplane, face, leopard and car dataset, showing 
precise localization of the parts despite substantial variability in their appearances and 
locations. 

We trained a boosted cascade without part structure for each class and compared 
our method to it. Figure 4(b-f) show the resulting precision-recall curves on  
motorbike, airplane, face, leopard and car dataset respectively. Table 1 presents the 
average precision scores for each experiment on the INRIA person dataset and five  
categories of Caltech-101 datasets. The results show that our model provided a sub-
stantial improvement in accuracy for the person, motorbike and airplane dataset, 
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Fig. 1. Visualizing the selected blocks from training set for each part. The first column show 
top 6 blocks among which features are selected with minimum error rates in each part. The 
second and third column show the blocks selected in the cascade of level-1 and level-2 respec-
tively. 

             
 

       

Fig. 2. Some results from INRIA person dataset. The first five show correct detections while 
the last shows false positive.  

little improvement for the face and leopard dataset, no improvement for the car 
dataset. For the person, motorbike and airplane dataset, each part has rich informa-
tion and adding spatial constraints among parts for these classes is helpful for detec-
tion and localization. For the face and leopard dataset, there are little improvement 
for the detection accuracy, the reason for which is that hand-labeling the training 
images may add noise for the part information, and wide variation for the leopard 
dataset affects the spatial relationships between parts. The lack of improvement for 
car may be due to the problem of overfitting. Furthermore, a supervised approach is 
limited by the quality of the parts chosen and the accuracy of the hand-labeled 
ground truth.  
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Fig. 3. Some results from Caltech-101 database. Each row shows detections using a model for a 
specific class (Motorbike, Airplane, Face, Leopard, Car). The first three columns show correct 
detections while the last column shows false positives. 
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Fig. 4. Precision-recall curves for the INRIA person dataset and Caltech-101 motorbikes, air-
planes, faces, leopards, and cars dataset 
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Table 1. Average precision scores for each experiment on the 6 categories of INRIA person 
dataset and Caltech-101 dataset 

 Person Bikes Airplanes Faces Leopards Cars 
Cascade without part 0.7295 0.9162 0.8925 0.9588 0.8981 0.9233 
Ours (parts+cascade) 0.7787 0.9357 0.9151 0.9627 0.9137 0.9172 
Dalal & Triggs [1] 0.7549      

6   Conclusion 

We have proposed a new method for object detection and localization in images. Our 
approach relies on a learning framework that combines the part structure and cascades 
of boosted classifiers. We investigate whether training a cascade of boosted classifiers 
for each part and adding spatial constraints among parts are actually helpful in detec-
tion and localization. Experimental results on a variety of categories demonstrate the 
power of our system in object detection and localization. 

Currently, we use a supervised learning process which is limited by the quality of 
the parts chosen and the accuracy of the hand-labeled ground truth. Moreover, the 
framework do not use the context analysis, where the presence of a certain object 
class in an image probabilistically influences the presence of a second class. We are 
adapting our implementation to weakly supervised procedure and working on inte-
grating scene context to improve detection.  
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Abstract. This paper proposes a self-created multi-layer cascaded architecture 
for multi-view face detection. Instead of using predefined a priori about face 
views, the system automatically divides the face sample space using the kernel-
based branching competitive learning (KBCL) network at different discrimina-
tive resolutions. To improve the detection efficiency, a coarse-to-fine search 
mechanism is involved in the procedure, where the boosted mirror pair of points 
(MPP) classifiers is employed to classify image blocks at different discrimina-
tory levels. The boosted MPP classifiers can approximate the performance of 
the standard support vector machines in a hierarchical way, which allows back-
ground blocks to be excluded quickly by simple classifiers and the ‘face like’ 
parts remained to be judged by more complicate classifiers. Experimental re-
sults show that our system provides a high detection rate with a particularly low 
level of false positives. 

Keywords: Face detection; Support Vector Machines; Competitive learning 
network; Machine learning. 

1   Introduction 

Face detection plays important roles in wide range of practical applications. In recent 
years, the frontal face detection has made remarkable progress with the use of the 
cascade classifiers [1], and the multi-view face detection has attracted a lot of research 
attentions, since more than 75% faces in real images are non-frontal [2]. Compared 
with frontal face detection, detecting multi-view faces is a more challenging task, 
because profile and half profile faces tend to be less informative, more diverse, and 
more sensitive to noise. Moreover, the ubiquitous concomitance of pitch and yaw of 
faces further compounds the diversities of the training face. Some powerful detector 
structures are proposed in the literature to cope with these more diverse patterns with 
large intra-class variation, including Wu et al.’s parallel cascade [3], Fleuret et al.’s 
scalar tree [4], Li et al.’s pyramid [2], Jones et al.’s decision tree [5], and Huang et 
al.’s Width-First-Search tree [6]. The strategies taken by these methods are the same. 
Before the training process to construct the multi-view face detector, the face samples 
with similar view information are first grouped together by hand. Therefore, the 
whole face sample space is partitioned into subspaces manually, and then the view 
dependent specific face classifiers are trained on each of them. The final detection 
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result is obtained by merging the parts passing all the view dependent classifiers. 
However, despite the notable contributions of the schemes outlined above, these 
view-partition approaches need a prior and experience to construct their tree 
architecture, and assign the sub-category labels manually for each face image in the 
training set. This could be time consuming, and furthermore, difficult to generalize 
from one application to another. 

In this paper, we proposed a method that can automatically construct tree-
structured classifiers. Instead of using predefined information for view partition based 
on people’s knowledge, we divide the multi-view face samples by the kernel-based 
branching competitive learning (KBCL) method at different discriminative resolution 
levels. We call this structured detector the KBCL-based multi-resolution tree detector. 
The SVM is adopted to classify the face and non-face patterns for its robustness to 
noise and distortions affecting the face patterns. The clustering feature of our KBCL-
based multi-resolution tree makes the learning task for each SVM more specific and 
simpler. In order to achieve high detection speed further, we simplified the SVM by a 
series of boosted mirror pair of points (MPP) classifiers of different accuracies, which 
was taken as the member classifier for each tree node at different levels. The boosted 
MPP classifiers with different complicate hierarchies allows the background patches 
to be filtered away quickly by the top few layers and the ‘face like’ parts remained to 
be judged by more complicate classifiers at later layers. 

The paper is organized as follows: Section 2 firstly introduces the BCL method, 
and then explains why we run BCL on the kernel induced empirical feature space to 
cluster the multi-view face samples in a multi-resolution manner. In Section 3 the 
SVM and the boosted MPP classifier are formulated. Experimental results are given 
in Section 4 and the conclusions are in the last Section. 

2   Kernel-Based Branching Competitive Learning and Multi-
resolution Clustering Tree 

BCL [7] is a self-creating clustering model of a neural network.  We take it as the 
measure to divide the multi-view face samples automatically for its efficiency in 
capturing the statistical distributions of the data under different resolutions. 

2.1   Branching Competitive Learning Network 

Assume there are N data vectors in d-dimensional space, { }N

nnx 1=
r  and d

n Rx ∈r . Then 

the process of data clustering can be defined as follows: Find { }M

mm 1=ωr in dR , to 

minimize the average distortion or the mean squared error (MSE) given by 

2

1 1

1 ∑ ∑= =
−= M

m

N

n mnmn
d xz

N
MSE ωrr  (1)

where M is the cluster number,  ∑ =
= N

n mnm zN
1

is the number of data belonging to 

cluster Cm and ∑ =
= M

m mNN
1

, where the variable 
mnz  indicates the membership of data 



568 X. Yang, X. Yang, and H. Xiong 

 

nx
r  to cluster Cm , i.e., 1=mnz if 

mn Cx ∈r and 0 otherwise. 
mω
r is the cluster center of Cm, 

and ⋅  is the L2 norm. 

Like other competitive learning models, the BCL network takes a winner-take-all 
iterative scheme to update the cluster centers (also called the synaptic vectors), and 
thus to optimize the MSE measure. The main algorithm can be described as 

( ) ( ) ( )( )txtt cccc ωαωω rrrr −+=+1  

           for      
jj xc ωrr −= minarg  

(2)

where x
r  is a randomly selected input data point, t represents the current step of 

competitive learning, 
cω
r denotes the synaptic vector nearest to x

r , and 
cα is the 

learning rate. If the geometrical measurements of 
cω
r  between the current competition 

step
ct  and the previous activated step

lt surpass the current level’s thresholds, 

( ) ( )( )
( ) ( )( )⎩

⎨
⎧

>−−
>−−

0

0

,min

,

dtxtx

txtxang

clcc

clcc

ωω
ϕωω

rrrr

rrrr

 
(3)

it is usually an appropriate moment to split the synaptic vector. The nodes that are 
seldom activated are judged as the ‘dead unit’, which will be pruned. This heuristic 
mechanism of automatic insertion of new nodes and deletion of superfluous nodes 
assures appropriate cluster number can be used at different hierarchical resolution 
level. For more details about BCL, one can refer to [7]. 

2.2   Kernel-Based BCL in Reduced Empirical Feature Space 

The MSE based criteria employed for clustering implicitly imposes the assumption of 
hyper-spherical or hyper-ellipsoidal enclosed distribution shapes for each cluster [8]. 
If the sub-clusters are not linearly classifiable, the results got by this kind of clustering 
method sometimes don’t make sense. Methods, including the kernel-K-means [9], 
support vector clustering [10], and their variants are proposed to solve this problem 
by adopting the strategy of nonlinearly transforming the data into a high-dimensional 
feature space and then performing the clustering algorithm within this feature space. 
However, the computational complexity for these kinds of kernel-based clustering 
algorithms may become huge for large data sets. The situation may become more 
serious for clustering algorithms based on competitive learning of neural networks, 
where the winner synaptic vector needs to be updated for each randomly selected 
sample

nx
r . If the number of data set is large, the complexity of the expression for the 

synaptic vector could become tremendous as the iteration process goes on. So it’s not 
practical to run the BCL algorithm for clustering the multi-view face samples directly 
in the kernel induced feature space. While for a given data set, the algorithm only 
needs to perform in a subspace of the feature space spanned by the images of the 
training data ( ){ }N

nnx 1=φ . This subspace can be embedded into an Euclidean space with 

all the geometrical measurements between each pair of ( )nxφ  unchanged [11]. From 
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both the theoretical and practical points of view, it is more convenient to access the 
empirical feature space than the feature space.  

We now formulate how to explicitly map samples from data space to the empirical 
feature space in detail. The kernel matrix K can be decomposed as 

[ ] T
NrrrrNNNij PPkK ××××

Λ==  (4)

where ( )jiij xxkk ,= , 
rr×Λ is a diagonal matrix containing only the r positive 

eigenvalues of K in decreasing order and P consists of the eigenvectors corresponding 
to the positive eigenvalues. The map rde RR →:φ from the d-dimensional input data 

space to the r-dimensional empirical feature space can be expressed explicitly as 

( ) ( ) ( )( )TN
T xxkxxkxxkPx ,,,,,, 21

2
1

K
−
Λ→  (5)

The rank r of the kernel matrix may still be very high for data sets where the number 
of examples N is large. For example, for our multi-view face sample clustering task, 
there are more than 10000 examples. So practically we select the first l eigenvectors 
in P, and map the face samples into the l-dimensional reduced empirical feature space 
where the BCL algorithm can be carried out explicitly. Determining the reduced 
dimension of the empirical feature space is a tricky problem. Usually it is a trade-off 
between clustering accuracy and computation efficiency. 

2.3   Kernel BCL Based Multi-resolution Clustering Tree 

Among the parameters of BCL, the distance threshold d0 represents the resolution 
level at which the BCL partitions the face data set. With a large value of d0, the BCL 
model will give a coarse clustering result. On the other hand, a relatively small value 
of d0 means that the BCL model “views” the data set under a fine resolution. 

 

 

Fig. 1. Cascade tree structure of our self-created multi-resolution face detector 
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The construction of multi-resolution clustering tree is an iterative algorithm. At the 
beginning, the tree contains only one node. At later iteration round under a given d0, it 
dynamically splits and prunes its nodes along with the BCL until the network reaches 
a dynamical equilibrium. Thus presents a good clustering result with an appropriate 
number of nodes under the given detection level. Using an appropriately decreasing 
sequence of d0(t) (t = 1, 2,…, m), a multi-resolution hierarchical cluster of the face 
images is created automatically, as shown in Fig. 1, where m is the number of layers, 
i.e., the depth of the multi-resolution tree, D is the whole face training set, at any layer 
t, 0== tjtk

k
tk DDandDD IU , for jk ≠ . 

3   Support Vector Machines and Boosted MPP Classifiers 

Support vector machines maps the data into the high-dimensional feature space F via 
a map FX →:φ , )(xx φ→ . This map is implicitly determined by defining the dot 

products in F by kernel functions ( ) ( ) ( )xxxxk ′⋅=′ φφ, . The SVM algorithm finds a 

linear separating hyperplane ( ) 0, =+ bxH T
b φωω ：  which separates the data in F by the 

largest margin. ω  is the normal vector of 
bH ,ω , which has the following form 

( )ii

N

i
i xy φαω ∑

=
=

1

 (6)

Those training examples 
ix  with 0>iα  are called Support Vectors (SVs). The 

classification rule of the SVM is 

( ) ( )( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ +=+= ∑
=

bxxkybxxf ii

N

i
i

T ,sgnsgn
1

αφω  (7)

Although SVM has shown potential and promising performance in face detection, the 
common drawback of SVM-based methods lies in their detection speed due to the 
relatively complicated computation of kernel functions. Specifically, the time 
complexity of a SVM classification is characterized by the number of SVs. In [12] 
Chen et al. proposed to use the mirror point pairs and a multiple classifiers system to 
reduce the classification time of SVM. Here we employ Chen’s method and modify it 
to fit the case where the two data classes are highly asymmetric. 

For Xv∈ , the distance from its image ( )vφ to the hyperplane
bH ,ω can be denoted by 

( )( ) ( ) ( )

( )( )21
1 1

1

,

,

,
,

∑ ∑

∑

= =

=
+

=
+

=
N

i

N

i jiji

N

i iii
T

b

xxk

bxvkybv
Hvd

αα

α

ω
φω

φ ω
 

(8)

Furthermore, its mirror vector,
vm with respect to the hyperplane

bH ,ω in feature space 

F, can be computed as follows 

( ) ( ) ( )( )
ω
ωφφ ω bv Hvdvfvm ,,2−=  (9)



 A Novel Self-created Tree Structure Based Multi-view Face Detection 571 

 

Given a pair of mirror points ( )( )vmv ,φ  in the feature space, for any Xz∈ , the MPP 

classification rule [12] is defined as follows 

( ) ( ) ( ) ( ) ( )( ) ( )( )
( )⎩

⎨
⎧
−

≤
=

otherwisevf

mzdvzdifvf
zg v

mv v

,,
,

φφφ
φ

 (10) 

Since the map from input space to the feature space is implicit, computation of a 
mirror classifier’s decision result is obtained in terms of the dot product, i.e. the 
kernel function of points in input space. For the given sample Xv∈ , if the pre-image 
of its mirror point

vm in feature space exists (i.e., there’s a point Xq∈ such 

that ( )qmv φ= ), the SVM classifier can be replaced by an equivalent MPP classifier 

with no loss in generality. However, in practice, the pre-image of
vm usually does not 

exist except for trivial cases. So the pre-image of 
vm  can only be approximated by a 

point Xq∈ with ( )qmv φ≈ , which means the SVM can’t be approximated precisely by 

a single MPP classifier. To improve the generalization ability and tolerate the failure 
of single MPP classifier, we take the strategy of integrating the decisions made by 
multiple MPP classifiers to approximate the classification rule of the original SVM.  

Returning to Equation (7), we note that the decision function ( )xf  of a SVM 

classifier is just a linear combination of kernel functions located around the SVs. So 
we take these set of SVs 11 −+ Ω∪Ω=Ω svsvsv

 to construct the approximate MPP classifiers, 

which lie on the position significant to the classification boundary. For any SV 
i
svkv Ω∈ ( 1±=i ), we approximate the mirror, v

km , of its image ( )kvφ  in feature space 

by ( )**
kk qφβ , where j

svkq Ω∈* is another SV belonging to the opposite class. 

The *
kβ and *

kq can be computed as follows 

( ) ( )( )v
k

qR
k mqdq

j
sv

k ,minarg,
,

** βφβ
β Ω∈∈

=  (11)

where j
svΩ ( ij ≠ ) denotes the set of SVs from the opposite class to

kv . If the Gaussian 

kernel is adopted, the MPP classifier’s decision function (10) can be reformulated as 

( ) ( ) ( ) ( )( )kkkkkk bxxkvxkvfxMPP −−= ** ,,sgn β  (12)

where kb  is a bias term. By varying 
kv (

sNk ,,1K= ), 
sN  approximate MPP 

classifiers can be generated, where
sN is the number of SVs. Note some of the support 

vectors may be selected repeatedly, so at last a classifier pool composed 
of )( sNLL ≤  MPP classifiers is remained by removing the repetitions. 

As discussed before, since each MPP classifier is just an approximation of the 
original SVM, they must be assembled together to achieve the comparative 
generalization ability as SVM. Meanwhile, in order to ensure fast classification, we 
must focus on a small set of critical classifiers which satisfies the accuracy needs of 
the current level. The problems of classifier selection and combination can be 
properly solved by the boost learning method [1], which takes into account both 
classification accuracy and efficiency. 
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4   Experimental Results 

4.1   On Single SVM and the Boosted MPP Classifiers 

To show the classification effectiveness and speed improvement of the boosted MPP 
classifiers as a single detector, we do the comparison experiment on a data set 
contains 5000 frontal face and 5000 non-face images, which are divided into a 
training set of 4000 examples and a test set of 1000 examples respectively. We 
measure the classification performance by false positive rate, given that the detection 
rate is fixed at 99% on the training set. Initially SVM was trained on the training set 
images. The kernel used was Gaussian RBF with a standard deviation σ of 3.5 and C 
set to 1. The SVM with 761 SVs misclassifies 1084 and 297 non-face images as faces 
respectively on training set and test set. We take these as the baseline for comparison. 
The approach, introduced in Section 3, is used to generate the boosted MPP classifiers 
to approximate the SVM’s decision rule. The false positive rate curves for the training 
and test sets by the boosted MPP classifiers with different number of MPP classifiers 
are shown in Fig. 2(a). As is shown, when the number of MPP classifiers in use is 19, 
the obtained false positive rates for training and test data sets are respectively 33.9% 
and 36.1%, and at the same time, the speedup ratio is nearly 20. The best correct rates 
achieved by the boosted MPP classifiers for training and test set are 92.6% and 90.3% 
respectively, where the number of vectors involved in classification is 240(i.e., the 
speedup ratio is 3.17). By adjusting the threshold, it achieves the corresponding false 
positives of 1143 and 308 by fixing the detection rate at 99% on training set. 

As a node of the cascaded multi-layer detector, the boosted MPP classifiers needn’t 
achieve a very low false positive rate. For example, for a 20-layer detector, to 
anticipate an overall false positive rate at 10-6, the false positive rate in each single 
layer only needs to be about 50% ( 620 105.0 −≈ ). Fig. 2(b) shows the ROCs, 
computed on the test data set, of the original SVM composed of 761 SVs, MPP-1 (the 
boosted MPP classifiers composed of 38 SVs) and MPP-2 (the boosted MPP 
classifiers composed of 2 SVs). It can be seen that the approximating performances of 
the boosted MPP classifiers at different points on ROCs are steady, and the MPP 
classifier with only two support vectors can be qualified to replace the original SVM 
for the first layer of our multi-resolution tree detector. 

   

Fig. 2. (a) False positive rates of boosted MPP classifiers with different number of SVs. (b) 
ROCs of original SVM classifier and the boosted MPP classifiers composed of 2 and 38 SVs. 
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4.2   On Multi-view Face Detection 

For the training of multi-resolution tree face detector, nearly 15000 face samples of 
size 20x20 are adopted, covering all kinds of views. The non-face samples are 
generated from about 1000 background images. The distinguishing characteristic of 
our face detector is that there’s no need to label each face sample manually by the 
angle of its view. With these data sets, we train the multi-view face detector with the 
multi-resolution face clustering tree structure in Fig. 1. For each layer of the detector, 
training SVM using each of the face sub-clusters with the non-face images, a series of 
SVM classifiers are obtained. We then replace all the SVMs by its corresponding 
boosted MPP classifiers to improve the overall detection speed with no loss in 
accuracy. Note the branching splitting learning strategy of the cascade structure is 
interwoven with the training procedure of MPP classifiers. As more MPP classifiers 
are added, the face and non-face classification boundary becomes more elaborate and 
meanwhile the lower false positive rate can be achieved by fixing the detection rate. 
When the false positive rate meets the anticipate needs, the iteration stops, which 
means the detection resolution level is fine enough to achieve the goal. 

Finally, the detector is constructed in the following way: there are 1, 4 and 10 MPP 
classifiers on the first 3 resolution levels. It rejects about 80% of non-faces, while 
retaining 99% of training faces. The following 5 levels consist of 141 MPP classifiers 
and can reject about 93% of non-faces which passed through the first 3 levels, and 
retain 98% train faces. At the bottom level, the detector reaches a detection rate of 
about 95% and a false positive rate of about 3x10-6.  

Table 1.  Detection rates for various numbers of false positives on the MIT + CMU test set 

False detections Detector 

10 31 65 95 167 
Our(20) 79.4% 88.7% 91.1% 93.2% 94.0% 
AB(24) 76.1% 88.4% 92.0% 92.9% 93.9% 
FB(20) 83.6% 90.2% 92.5% 93.6% 94.2% 

 
The MIT+CMU frontal-view test set [13], which is composed of 125 images 

containing 481 frontal faces, is used to test the frontal face detection performance. 
Our KBCL-based self-created tree detector (OUR (20)) is compared with the cascade 
of AdaBoost classifiers (AB(24)) with training examples of size 24x24 [1] and the 
cascade of FloatBoost classifiers (FB(20)) with training examples of size 20x20 [2]. 
The results are shown in Table 1. From the experimental results, it can be seen that 
our system outperforms the AdaBoost detector constructed by Viola, and is 
competitive to Li’s FloatBoost detector for the task of the frontal face detection, 
although our detector is designed to cover all views. 

The CMU Schneiderman’s profile test set [14] is used to test the performance for 
multi-view face detection. This data set consists of 208 images with 347 profile faces. 
The detector’s complexity in structure of Viola’s decision tree method AB(20) (as 
implemented by ourselves using training examples of size 20x20) and our KBCL-
based self-created tree detector method are compared in Table 2. It can be seen that 
our method achieves better accuracy while with much fewer MPP classifiers, which  
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Table 2.  Comparison results of the structure of the detector for multi-view face detection 

Detector Detection Rate (%) # of False Positives # of Haar-like or MPP Classifiers 
70.4 98 10478 Decision 

tree based 83.1 700 8704 
74.6 15 5978 
80.5 101 4069 

Self-
created 

tree based 91.4 700 2835 

 
 

means that the MPP classifiers in our detector are able to capture the discriminative 
characteristics of faces more accurately than Viola’s weak classifiers composed of 
simple haar-like features, thus allowing the development of simpler and more 
compact structure. The ROCs for both frontal and profile face detection are shown in 
Fig. 3.  

0 20 40 60 80 100 120 140 160 180 200
75

80

85

90

95

# False Positives

D
et

ec
tio

n 
R

at
e(

%
)

 

 

AB(24)

FB(20)

OUR(20)

0 200 400 600 800 1000
70

75

80

85

90

95

# False Positives

D
et

ec
tio

n 
R

at
e(

%
)

 

 

AB(20)

OUR(20)

 

Fig. 3. ROCs for comparison on standard test sets. (a) is on CMU+MIT frontal face test set. (b) 
is on CMU profile test set. 

5   Conclusions 

In this paper, the KBCL-based multi-resolution tree structure was developed to 
address the problem of detecting multi-view faces with high detection rate and low 
false positive rate. Instead of using the predefined view partition of face samples 
based on a priori, our scheme divides the sample space automatically by using the 
branching competitive learning method to cluster the multi-view faces in the reduced 
empirical feature space. The tree node classifier is composed of a series of boosted 
MPP classifiers which have the approximate generalization capability as SVM, but 
need less computational burden. According to the visual selection strategy, which 
allows background regions of the image to be quickly rejected by the first few 
classifiers while spending more computation on the promising ‘face-like’ regions, 
both the clustering of multi-view face samples and the constructing of classifiers for 
each tree node are fulfilled in a coarse-to-fine manner. Since the structure created is 
data dependent and don’t need any priori knowledge, it can be easily generalized to 
other object detection problems. The experimental results show the efficiency of our 
method.  
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Abstract. A novel method with general tensor representation for face

recognition based on multilinear nonparametric discriminant analysis

is proposed. Traditional LDA-based methods suffer some disadvantages

such as small sample size problem (SSS), curse of dimensionality, as well

as a fundamental limitation resulting from the parametric nature of scat-

ter matrices, which are based on the Gaussian distribution assumption.

In addition, traditional LDA-based methods and their variants don’t con-

sider the class boundary of samples and interior structure of each sample

class. To address the problems, a new multilinear nonparametric discrim-

inant analysis is proposed, and new formulations of scatter matrices are

given. Experimental results indicate the robustness and accuracy of the

proposed method.

Keywords: Multilinear nonparametric discriminant analysis, Multilin-

ear algebra, Face recognition.

1 Introduction

Feature extraction is a key issue in the fields of pattern recognition, computer
vision, etc. A lot of methods have been proposed, and linear discriminant analysis
(LDA) [1] is a popular method among them, which has been widely used in
face recognition and image retrieval areas. The aim of LDA is to determine a
set of optimal projection vectors maximizing the between-class scatter matrix
while minimizing the within-class scatter matrix in the projective feature space.
However, when dealing with the high complex dimensional data, LDA often
suffers from the following problems: (1) The small sample size problem (SSS).
When there are not enough training samples, the within-class scatter matrix
may become singular, and it is difficult to compute the LDA vectors. (2) The
traditional LDA and its variants are based on the assumption that all classes
share the Gaussian distribution with the same covariance matrix. It is not always
the case for most of the samples from the real world. So it can not perform well
in most cases. (3) The number of the final LDA features has an upper limit C−1
(C is the number of class in the samples) since the rank of the between class
matrix is at most C − 1. However, it is often insufficient to separate the classes
well with only C−1 features, especially in the high-dimensional space. (4) When
computing between-class scatter matrix, only the centers of classes are taken into

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 576–585, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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account, it can not capture the boundary structure of classes effectively, which
has been shown to be essential in classification. There also exists the similar
problem when computing within-class scatter matrix. (5) The traditional LDA
converts the samples into the large size vectors will create problem to the LDA
implementation for dealing with huge scatter matrices, which also known as “the
curse of dimensionality”.

To deal with the above problems, many schemes have been proposed. Fish-
erfaces [2] and NLDA [3] could be used to solve the SSS problems. Fisherfaces
first projects the samples to their PCA subspace such that within-class scatter
matrix of the projected samples is not singular. Then LDA is applied on the
PCA subspace. NLDA suggest that the null space spanned by the eigenvectors
of within-class scatter matrix with zero eigenvalues contains the most discrim-
inative information, and it select the project vectors maximizing between-class
scatter matrix with the constraint that within-class scatter matrix is zero. Ye
et al. [4] proposed 2DLDA which operated the original samples directly with-
out vectorizing the samples, and avoided the SSS problems and “the curse of
dimensionality” effectively. For a two-class problem, a nonparametric technique
called NDA [5] was proposed to solve the aforementioned (1)(2)(3)(4) prob-
lems. Recently, Z. Li et al. [6] have generalized NDA to multiclass problems
successfully, and two complementary methods that are based on the princi-
pal space and the null space of the within-class scatter matrix are proposed,
respectively.

However, most of the algorithms proposed as above can not solve all the afore-
mentioned problems simultaneously. Even some methods suffer intrinsic limita-
tions [7,8]. In the paper, inspired by the idea of [6,4], we propose a tensor-based
nonparametric discriminant analysis which can deal with the above problems
effectively.

2 Related Work

2.1 Nonparametric Discriminant Analysis

LDA has been widely used in pattern recognition for feature extraction. It con-
structs the scatter matrices based on the Gaussian distribution assumption. Sup-
pose there are C known sample classes. According to LDA, the reduced dimen-
sion by classical LDA is at most C − 1, and it is usually insufficient by using
only C − 1 features to separate the classes very well. Also only the centers of
classes are taken into account when computing between class scatter matrix, so
it fails to capture the boundary structure of classes, which has been proven to be
important in classification [5]. These underlying problems will lead to instability
and low accuracy of classical LDA.

To address the disadvantage of the classical LDA and its variants, Nonpara-
metric Discriminant Analysis (NDA) is proposed. For a two-class problem, NDA
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is similar with LDA, the difference between them lies in the definition of between
class scatter matrix. The between class scatter matrix of NDA is defined as

SNDA
b =

N1∑
i=1

w(1, i)(x1
i −m2(x1

i ))(x
1
i −m2(x1

i ))
T

+
N2∑
i=1

w(2, i)(x2
i −m1(x2

i ))(x
2
i −m1(x2

i ))
T (1)

Where w(t, i) is the value of weight function and mj(xt
i) is the local K-NN mean.

mj(xt
i) is defined by

mj(xt
i) =

1
k

k∑
l=1

n̂nl(xt
i, j) (2)

Where n̂nl(xt
i, j) denote is the lth nearest neighbor from class j to the sample

vector xt
i.

From above, NDA uses local mean to estimate the between-class scatter ma-
trix. Local mean is only the simple generalization of class mean. Also NDA is
only used for two-class problem, fortunately, a new method has been proposed
to overcome the drawback and limitation of NDA as the following section.

2.2 Nonparametric Feature Analysis

Z.Li et al. proposed nonparametric feature analysis method (NFA) which gen-
eralized NDA to multiclass classification problem. In NFA, within class (SNFA

w )
and between class (SNFA

b ) scatter matrices are redefined as following,

SNFA
w =

C∑
i=1

k1∑
l=1

Ni∑
p=1

(xi
p − n̂nl(xi

p, i))(x
i
p − n̂nl(xi

p, i))
T (3)

SNFA
b =

C∑
i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i, j, l, p)(xi
p − n̂nl(xi

p, j))(x
i
p − n̂nl(xi

p, j))
T (4)

Where w(i, j, l, p) is defined by

w(i, j, l, p) =
min{dα(xi

p, n̂nl(xi
p, i)), d

α(xi
p, n̂nl(xi

p, j))}
dα(xi

p, n̂nl(xi
p, i)) + dα(xi

p, n̂nl(xi
p, j))

(5)

where d(x1,x2) denote the Euclidean distance between two vectors x1 and x2, α∈
[0,∞) controls the changing speed ofw(i, j, l, p) with respect to the distance ratio.

From Eq. (3)-(4), NFA makes full use of the contribution of the K-NN points
for the calculation of the scatter matrices. In addition, the within-class scatter
matrix of NFA has the nonparametric form. This will lead to a more flexible and
accurate estimation of the within class and between class scatter matrix.
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However, NFA represents the samples as vectors, thus the size of the vectors
could be very large. NFA will suffer from the problem of the computation of
eigen-decomposition of certain large matrices, which not only degrades the ef-
ficiency but also makes it hard to scale it to large datasets. In order to solve
the problem, inspired by the idea of [6,4], we propose a novel method in the
next section, which is the generalization of NFA and overcomes the drawbacks
of NFA.

3 Multilinear Nonparametric Feature Analysis (MNFA)

Objects of interests in the many applications of computer vision and pattern
recognition, such as two-dimensional images and video sequences are naturally
described as tensors or multilinear arrays. However, LDA, NDA and NFA are
based on vectors, and the samples should be reshaped into vectors when using
the methods, which obviously result in high processing cost in terms of increased
computational and memory demands. Beyond the implementing issues, it is ob-
vious that reshaping breaks the natural structure and correlation in the original
data. Vectorization ignores the fact that tensor objects are naturally multidi-
mensional objects, e.g., 2D images are 2D objects, instead of 1D objects.

In order to address these problems, we further develop a multilinear nonpara-
metric feature analysis algorithm called MNFA as follows.

3.1 Multilinear Algebra and Notations

This section only briefly introduces some useful notations and concepts of multi-
linear algebra [9].The notational conventions in [10] are used in this paper except
some notations have been specified, such as n̂nl(xi

p, i). Indices are denoted by
lowercase letters and span the range from 1 to the uppercase letter of the index,
e.g., m = 1, 2, ...,M . Vectors are denoted by lowercase boldface letters, e.g., x,
and matrices by uppercase boldface, e.g., U; and tensors by calligraphic let-
ters, e.g., A.Tensors are generalizations of scalars which have no indices, vectors
which have exactly one index, and matrices which have exactly two indices to
an arbitrary number of indices. Zeroth order, first order and two order tensors
are called scalars, vectors and matrices, respectively. Those that transform like
first-rank tensors are called vectors, and those that transform like second-rank
tensors are called matrices

An M th order tensor is denoted as A ∈ RI1×I2×...×IM . The m-mode product
of a tensor A by a matrix U ∈ RIm×Jm , denoted by A×mU, is defined by an I1×
...×Im−1×Jm×Im+1×...×IM tensor with entries: (A×mU)i1...im−1jmim+1...iM

def=∑
im
ai1...iMuimjm .

The m-mode product satisfies the following properties.

Property 1. Given the tensor A∈RI1×I2×...×IM and the matrices U ∈ RIn×Jn,
V ∈ RIm×Jm(m �= n), then

(A×n U)×m V = (A×m V)×n U = A×n U×m V.
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Unfolding A along the m-mode is denoted A(m)∈RIm(I1×...×Im−1×Im+1×...×IM ),
and the column vectors of A(m) are the m-mode vectors of A. The scalar product

of two tensors of the same dimensions is defined as: 〈A,B〉 def=
∑

i1

∑
i2
...∑

iM
ai1i2...iM bi1i2...iM . Further more, the Frobenius norm of a tensorA is defined

as ‖A‖F
def=

√
〈A,A〉, the distance between tensor A and B is defined as d(A−

B) def= ‖A− B‖F .

3.2 Optimal Criterion of MNFA

Assume that there are N training samples represented as the M th-order tensors,
i.e., X j

i ∈ RI1×I2×...×IM denotes the ith tensor object sample of class j.
In MNFA, the new nonparametric within-class scatter and between-class scat-

ter are defined as

sw =
C∑

i=1

k1∑
l=1

Ni∑
p=1

‖X i
p − n̂nl(X i

p, i)‖2F (6)

sb =
C∑

i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i, j, p, l)‖X i
p − n̂nl(X i

p, j)‖2F (7)

Where w(i, j, l, p) is defined by

w(i, j, l, p) =
min{dα(X i

p, n̂nl(X i
p, i)), d

α(X i
p, n̂nl(X i

p, j))}
dα(X i

p, n̂nl(X i
p, i)) + dα(X i

p, n̂nl(X i
p, j))

(8)

The aim of MNFA is to pursue multiple interrelated projection matrices, i.e.,
subspaces, which maximize the between class scatter and simultaneously mini-
mize the within class scatter in the low dimensional tensor space in tensor metric
described above. In the low dimensional tensor space, within-class scatter and
between class scatter become

s̃w =
C∑

i=1

k1∑
l=1

Ni∑
p=1

‖X i
p

M∏
o=1

×oUo − n̂nl(X i
p, i)

M∏
o=1

×oUo‖2F (9)

s̃b =
C∑

i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i, j, p, l)‖X i
p

M∏
o=1

×oUo − n̂nl(X i
p, j)

M∏
o=1

×oUo‖2F (10)

The optimal projection matrices would maximize s̃b and minimize s̃w, that is(
U′

k|Mk=1
)

= arg max
Uk|Mk=1

s̃b

s̃w
(11)

Eq. (11) is equivalent to a higher order nonlinear optimization problem with
a higher order nonlinear constraint; thus, it is difficult to find a closed-form
solution. Alternatively, we derive an iterative optimization approach similar with
[11] to solve the interrelated discriminative subspaces.
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3.3 Optimization of k-Mode

This section we consider optimizing the objective function from only one mode
of the tensor, i.e.,

U′
k = arg max

Uk

C∑
i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i, j, p, l)‖X i
p ×k Uk − n̂nl(X i

p, j)×k Uk‖2F

C∑
i=1

k1∑
l=1

Ni∑
p=1
‖X i

p ×k Uk − n̂nl(X i
p, i)×k Uk‖2F

(12)

In the below, we will present the process of solving Eq. (12).
First, we define

s̃k
b =

C∑
i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i, j, p, l)‖X i
p ×k Uk − n̂nl(X i

p, j)×k Uk‖2F

s̃k
w =

C∑
i=1

k1∑
l=1

Ni∑
p=1

‖X i
p ×k Uk − n̂nl(X i

p, i)×k Uk‖2F

With simple algebraic computation, we can easily obtain ‖X i
p ×k Uk‖ =

‖(Xi
p)T

(k)Uk‖, where (Xi
p)T

(k) is the k -mode unfolding of the tensor X i
p ; then,

we have

s̃k
w =

C∑
i=1

k1∑
l=1

Ni∑
p=1
‖X i

p ×k Uk − n̂nl(X i
p, i)×k Uk‖2F

=
C∑

i=1

k1∑
l=1

Ni∑
p=1
‖
(
Xi

p

)T

(k)
Uk −

(
n̂nl(Xi

p, i)
)T

(k)
Uk‖2F

=
C∑

i=1

k1∑
l=1

Ni∑
p=1

tr
{
UT

k

(
(Xi

p)(k)−(n̂nl(Xi
p, i))(k)

) (
(Xi

p)(k)−(n̂nl(Xi
p, i))(k)

)T
Uk

}
=tr

{
UT

k

[
C∑

i=1

k1∑
l=1

Ni∑
p=1

(
(Xi

p)(k)−(n̂nl(Xi
p, i))(k)

)(
(Xi

p)(k)−(n̂nl(Xi
p, i))(k)

)T

]
Uk

}
= tr(UT

k SwUk)

Where Sw =
C∑

i=1

k1∑
l=1

Ni∑
p=1

(
(Xi

p)(k)−(n̂nl(Xi
p, i))(k)

)(
(Xi

p)(k)−(n̂nl(Xi
p, i))(k)

)T .

Similarly,

s̃k
b = tr(UT

k SbUk)

Where

Sb =
C∑

i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i, j, p, l)
(
(Xi

p)(k)−(n̂nl(Xi
p, j))(k)

)(
(Xi

p)(k)−(n̂nl(Xi
p, j))(k)

)T .
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So, Eq. (12) can be reformulated as

U′
k = argmax

Uk

s̃k
b

s̃k
w

= argmax
Uk

tr(UT
k SbUk)

tr(UT
k SwUk)

(13)

Hence, the optimization problem in Eq. (12) derives a special discriminant anal-

ysis problem, which can be solved in the same way for the traditional LDA
algorithm.

3.4 Optimal Solution of MNFA

As described above, Eq. (11) has no closed-form solution. we derive an iterative
algorithm. In each iteration, U1, ...,Uk−1,Uk+1, ...,UM are assumed known,
then we can compute the optimal Uk as the follows:

U′
k=argmax

Uk

s̃b
s̃w

=argmax
Uk

C∑
i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i,j,p,l)‖X i
p

M∏
o=1

×oUo−n̂nl(X i
p, j)

M∏
o=1

×oUo‖2F

C∑
i=1

k1∑
l=1

Ni∑
p=1

‖X i
p

M∏
o=1

×oUo− n̂nl(X i
p, i)

M∏
o=1

×oUo‖2F

Define Yi
p = X i

p

M∏
o=1
o�=k

×oUo, Zj
p = n̂nl(X i

p, j)
M∏

o=1
o�=k

×oUo, Zi
p = n̂nl(X i

p, i)
M∏

o=1
o�=k

×oUo,

then according to property 1, we can get

U′
k =argmax

Uk

C∑
i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i,j,p,l)‖Yi
p×kUk −Zj

p×kUk‖2F

C∑
i=1

k1∑
l=1

Ni∑
p=1

‖Yi
p ×k Uk −Zi

p ×k Uk‖2F

(14)

It has the similar formulation as Eq. (12). Obviously it can be solved using
the above described optimization of k -mode approach. Therefore, the projection
matrices can be iteratively optimized, and the entire procedure to optimize the
projection matrices is listed in Algorithm. 1.

Algorithm 1. Multilinear Nonparametric Feature Analysis

Input: Given N training samples are represented as the M th-order tensors, X j
i ∈

R
I1×I2×...×IM denotes the ith tensor object sample of class j. There are Ni samples

in class i ; T is the iterative times. The final lower dimensions �1 × �2 × ... × �M

Output:Projection matrices Uk, k = 1, ..., M

1. Initialize U0
1 = II1 , U0

2 = II2 , ..., U0
M = IIM

2. For t=1:T do

For k=1:M do

Yi
p = X i

p

M∏
o=1
o�=k

×oUo ⇒ (Yi
p)(k), Zj

p = n̂nl(X i
p, j)

M∏
o=1
o�=k

×oUo ⇒ (Zj
p)(k),
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Zi
p = n̂nl(X i

p, i)
M∏

o=1
o�=k

×oUo ⇒ (Zi
p)(k),

Sb =
C∑

i=1

C∑
j=1
j �=i

k2∑
l=1

Ni∑
p=1

w(i, j, p, l)
(
(Yi

p)(k)−(Zj
p)(k)

)(
(Yi

p)(k)−(Zj
p)(k)

)T
.

Sw =
C∑

i=1

k1∑
l=1

Ni∑
p=1

(
(Yi

p)(k)−(Zi
p)(k)

)(
(Yi

p)(k)−(Zi
p)(k)

)T
.

Set the matrix Ut
k to consist of the �k eigenvectors of the matrix (Sw)−1Sb,

corresponding to the largest �k eigenvalues.

End for

if ‖Ut
k − Ut−1

k ‖ < ε, for k = 1, ..., M , break and goto 3.

End for

3. Output the projection matrices Uk = Ut
k ∈ R

Ik×�k , k = 1, ..., M

3.5 Classification with MNFA

With the learned projection matrices, the low-dimensional representation of the
training samples X j

i , i = 1, ..., Ni; j = 1, ..., C, can be computed as Bj
i = X j

i ×i

U1×2U2×...×MUM . For a new test data X , we can compute its low-dimensional
representation as:

B = X ×1 U1 ×2 U2 × ...×M UM

Then its class label l is predicted to be that of the sample whose low-dimensional
representation is nearest to B, that is

l = arg min
i
‖Bj

i − B‖, j = 1, ..., C

4 Experiments

In the Experiments, ORL face database[12] is used to evaluate the effectiveness of
our proposed algorithm—MNFA. The database contains 400 images, 10 different
images per person for 40 individuals. All images are grey with 256 levels and
of size of 112 × 92 pixels. To simplify the computation of the experiments and
to improve the recognition performance, the facial areas were cropped into the
final images with same size for matching, such that the two eyes were aligned
at the same position. The size of each cropped image in all the experiments is
32× 32 pixels.

We randomly select some images per person for training and the rest for
testing. We extract the 40 Gabor features with five different scales and eight
different directions and each image is encoded as a third-order tensor of size
32× 32× 40.

To demonstrate the efficiency of MNFA, we compare it with some algorithms,
such as popular 2DLDA [4] and MDA [11]. In order to compare with them fairly,
in the algorithms, the projected dimension of the first two modes of MNFA and
MDA are both set 5 × 5, the projected dimension of 2DLDA is set 5 × 5. In
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MNFA, the number of KNN of with class and that of between class are both set
6, and we select several typical experimental results which are listed in table 1
and table 2.

Table 1. Recognition accuracy(%) comparison of MNFA, 2DLDA, MDA

Num of Experiments MNFA 2DLDA MDA

1 90.00 78.75 90.00
2 91.25 80.00 90.00

3 91.25 85.00 88.75

4 92.50 85.00 85.00

5 95.00 87.50 90.00

6 85.00 83.75 90.00
7 92.50 82.50 86.25

8 92.50 77.50 95.00
9 91.25 81.25 81.25

10 86.25 73.75 81.25

The number of training set is 8×40=320.

Table 2. Recognition accuracy(%) comparison of MNFA, 2DLDA, MDA

Num of Experiments MNFA 2DLDA MDA

1 83.33 73.33 83.33
2 89.17 81.67 78.33

3 93.33 80.83 75.00

4 90.00 73.33 74.17

5 83.33 80.00 73.33

6 87.50 74.17 79.17

7 85.83 76.67 71.67

8 89.17 85.83 80.00

9 89.17 77.50 75.83

10 90.83 83.33 71.67

The number of training set is 7×40=280.

From table 1 and tables 2, we can see that MNFA performs the best. It is
more robust and stable than other two methods. The reason is that in MNFA,
the boundary between sample classes and interior structure of each class is con-
sidered by redefining two scatter matrices. So MNFA can acquire the best results
of all the three methods.

5 Conclusions

In the paper, a novel algorithm, called MNFA, has been proposed for supervised
dimensionality reduction with the tensor representation. In the algorithm, the



Multilinear Nonparametric Feature Analysis 585

sample objects are encoded as an mth-order tensor. To obtain the optimal so-
lution of MNFA, we introduce a k -mode optimization method which iteratively
learn multiple interrelated discriminative subspaces for dimensionality reduc-
tion of the higher order tensor. Compared with traditional algorithms, such as
2DLDA and MDA, MNFA effectively avoids the drawbacks, such as Gaussian
distribution assumptions of the samples, and “the curses of dimensionality”, also
it redefines two scatter matrices which consider the class boundary of samples
and interior structure of samples. Experimental results show that MNFA is more
robust and can acquire the high performance in classification problem.
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A Harris-Like Scale Invariant Feature Detector
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Abstract. Image feature detection is a fundamental issue in computer

vision. SIFT[1] and SURF[2] are very effective in scale-space feature de-

tection, but their stabilities are not good enough because unstable fea-

tures such as edges are often detected even if they use edge suppression

as a post-treatment. Inspired by Harris function[3], we extend Harris to

scale-space and propose a novel method - Harris-like Scale Invariant Fea-

ture Detector (HLSIFD). Different to Harris-Laplace which is a hybrid

method of Harris and Laplace, HLSIFD uses Hessian Matrix which is

proved to be more stable in scale-space than Harris matrix. Unlike other

methods suppressing edges in a sudden way(SIFT) or ignoring it(SURF),

HLSIFD suppresses edges smoothly and uniformly, so fewer fake points

are detected by HLSIFD. The approach is evaluated on public databases

and in real scenes. Compared to the state of arts feature detectors: SIFT

and SURF, HLSIFD shows high performance of HLSIFD.

Keywords: Feature detector, image matching, scale invariant, harris.

1 Introduction

Feature detection is a hot topic in computer vision which is widely used in
many areas, such as tracking[4], image stitching[5], 3D reconstruction[6,7], cam-
era calibration[8], SLAM system[9], object classification and recognition[10].
In recent years, a lot of work has been done on effective feature detection
[1,2,3,4,11,12,13,14,15,16,17]. CSS[11], proposed by Mokhtarian, considers edge
with high curvature as corner; Susan[12] and Fast[13] compare the intensity of
each pixel with others in its neighborhood to find the corner-like points. Harris[3]
constructes a corner model and proposes the Harris Cornerness Function. Sim-
ilar to Harris, a method proposed by Shi & Tomasis[4] considers the minimum
eigenvalue of the Harris Matrix as the cornerness. Apart from the corner de-
tectors mentioned above, SIFT[1], as a region detector, is an approximation of
Laplace of Gaussian(LoG), which is proved to be stable and effective in scale-
space[14]. From another point of view, LoG is the sum of the eigenvalues of the
� This work is supported by National Basic Research Program of China (Grant
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image second derivation matrix(Hessian Matrix). Another region detector which
is also based on Hessian Matrix is Determinant of Hessian(DoH). This method
calculates the product of the two eigenvalues of the Hessian Matrix, and also
performs well in scale feature detection. SURF[2], which is proposed by Herbert
Bay et al. and proven to be efficient, is an approximation of DoH.

It can be seen from above that SIFT(DoG/LoG) and SURF(DoH) are both
trying to describe the Hessian Matrix with its eigenvalues. These two methods
are good at representation of Hessian Matrix, but neither of them describes the
matrix very well, for both of them lose much important information about the
ratio of the eigenvalues. This value reflects the edge-likelihood of areas. Exper-
iments show that edge areas are unstable in localization and not discriminative
in feature description. Edges increase false matches and reduce the accuracy. To
cope with this problem, SIFT uses an edge suppression step with a threshold
to get rid of edge-like features. The sudden cut process degrades the stability
of performance and can not drive out edge-like areas uniformly. SURF, which
is calculated very fast, detects a lot of key points full of edges and meaningless
features, for it ignores this problem. In order to solve this problem, we propose a
new algorithm for feature detection(HLSIFD). To prove the effectiveness of the
proposed method, we compare it to the state of arts feature detectors: SIFT and
SURF. Experimental results show that HLSIFD outperforms these two methods.

The rest of this paper is organized as follows. Section 2 presents a detailed
analysis of feature model and eigenvalue description for feature detection. We
then show the proposed detector in Section 3. Finally, experimental results are
shown in Section 4 and Section 5 concludes this paper.

2 Feature Model and Eigenvalue Description

Generally, image smoothedby Gaussianfilter can be modeled as a Multi-Gaussian-
Mix matrix. So feature can also be modeled as Local Gaussian ellipse hill, and the
key point is the hilltop, as shown in Fig 1 for an intuitive illustration. The function
of this model can be described as follows:

M = κ exp
(
−1

2
(x, y)Σ−1 (x, y)T

)
+ T (1)

where κ ,T are parameters and Σ is the Gaussian Covariance Matrix. Note that
the second derivative matrix(Hessian Matrix) of the model at point (0, 0) is:

H =
[
Mxx (0, 0) Mxy (0, 0)
Mxy (0, 0) Myy (0, 0)

]
= −κΣ−1 (2)

The Hessian Matrix is composed of the amplitude and the Covariance Matrix
which contain most of the model information. The ratio of the eigenvalues of the
Hessian Matrix indicates the eccentricity of the Gaussian model, and the eigen-
vectors depict the orientation. It is important to point out that, the eigenvalues
of the Hessian Matrix also have high response in corner areas and edge areas.
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Fig. 1. An intuitive illustration for Gaussian Feature Model in 2D and 3D views.

Models with positive κ are shown in the left block, while models with negative κ are

shown in the right block.

So one of the advantages of Gaussian model based method is that it can detect
both Gaussian-like areas and corner-like areas in scale-space. This property en-
riches the feature abundance of Hessian based methods. The Hessian Matrix of
smoothed image L = g ∗ I is:

H =
[

Lxx Lxy

Lxy Lyy

]
⇒

{
det (H) = λ1λ2 = LxxLyy − L2

xy = DoH(I)
tr(H) = λ1 + λ2 = Lxx + Lyy = LoG(I) ≈ DoG(I) (3)

where λ1 and λ2 are the eigenvalues of Matrix H . In SIFT, the response of the
function(DoG) increases linearly according to the eigenvalues, as shown in Fig
2-(a). We can find that the function has high response even in the edge area
where max(λ1/λ2, λ2/λ1) is large. So in SIFT, an edge suppression[1] is added
to get rid of edges, leading to unstableness of features on the boundary of the
edges area.

SURF uses the multiplication of the eigenvalues, as shown in Fig 2-(b). The
response is similar with SIFT(LoG/DoG) in the Salient Feature Area where both
λ1 and λ2 are high. The problem of SURF is almost the same with SIFT. The
product will be large when either of the λ1 or λ2 is high. However, SURF does
not tackle this problem, resulting in a lot of edges detected, even with a high
threshold. This property reduces directly the Repeatability Score. Experiments
show that using a step like edge suppression can not tackle this problem well,
which has been explained in the last paragraph. Some examples are shown in
Fig 3-(a,b).

(a) DoG/LoG(λ1+λ2) (b) DoH(λ1λ2)

hyperbola

edge line

ed
ge

 li
ne

T=(th,th)

(d) Feature distribution

Edge

Edge

Flat

Salient 
feature 
area

Feature area

Threshold point

(e) Hyperbola curve(c) Proposed

Fig. 2. From left to right: (a)response of λ1 + λ2,(b)response of λ1λ2, (c)Proposed

method, (d)Feature distribution in eigenvalues plane,(e)Hyperbola curve. The angle

from edge line to coordinate is α and from edge line to 450 line is θ. T is the threshold

point. The hyperbola is decided by θ(or α) and T .
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(b)Detected by SURF
11  Key points totally

(a)Detected by SIFT
10 key points totally

(c)Detected by HLSIFD
11 key points totally

Fig. 3. Key points detected by SIFT, SURF and our method. Our method is proposed

in Section 3. Green circles are good feature areas; Yellow circles are edge areas which

are not stable.

Actually, two small eigenvalues represent the flat area in image, while a small
value and a large one represent edges. The area is stable key point when the two
eigenvalues are large, as shown in Fig 2-(d). Thus, using a function to describe
the three point mentioned above is the standard mission of feature detectors.
Supposing the feature-like point has high response, the detector function should
have these four properties:

1. Low response in flat area.
2. Low response in edge-like area.
3. High response in feature-like areas.
4. Smooth function surface.

Our extensive experimental results show that the last property is very important
for the stability of detector. In the following section, a novel algorithm for feature
detection is described in detail based on the four properties.

3 Our Method: HLSIFD

3.1 Detector Procedure

Denote an image as I. Since the image is usually noisy, a Gaussianfilter is used with
σ = σs to smooth the original image: Iσs = g(σs) ∗ I. In order to detect points in
scale-space, image pyramid is constructed by smoothing the image with a group of
Gaussian Filters. To be more efficient, we down sample the pyramid every s layers,
and form several octaves, which are shown in the left of Fig 4. The scale interval of
two consecutive octaves is 2. Different from SIFT, we must construct s+2 layers
per octave and the Gaussian Filters are sampled uniformly in scale-space with a
factor of k, where k = 21/s. For each octave, The Gaussian Filters are: gi = g(σi),
and σi = kiσ0, i ≤ s and the Hessian Matrix of the image is:

H (σi) =
[

Lxx(σi, σs) Lxy(σi, σs)
Lxy(σi, σs) Lyy(σi, σs)

]
(4)

To satisfy the four properties mentioned in last section, we construct a hyperbola
function with a rotation of 45o anticlockwise. The vertex point of the function
stands on the threshold line to filter noises, and the asymptotes are set to filter
edges uniformly, as shown in Fig 2-(e). Therefore, the cornerness function is:
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Fig. 4. Gaussian pyramid is shown in left and HLSIFD pyramid is shown in right.

Number of octave is decided by the image size, here we only draw up 2 bottom octaves

and each octave 5 layers. For each layer, calculate the corner response using Equation

(9) from Gaussian pyramid to HLSIFD pyramid.

(λ1 + λ2)
2

2
− (λ1 − λ2)

2

2tg2(θ)
− (2th)2

2
(5)

where λ1 and λ2 are the two eigenvalues of the Hessian Matrix. Note that α+θ =
π/4, and the function can be rewritten as:

4
(

1+tg(α)
1−tg(α)

)2
(
λ1λ2 − 1

4

(
1−

(
1−tg(α)
1+tg(α)

)2
)

(λ1 + λ2)
2
)
− 2th2 (6)

Let γ represents 4
(

1+tg(α)
1−tg(α)

)2
, κ represents 1

4

(
1−

(
1−tg(α)
1+tg(α)

)2
)

, the function

can be written briefly as:

γ
(
λ1λ2 − κ (λ1 + λ2)

2
)
− 2th2 (7)

After normalizing the coefficient of λ1λ2 and letting th′ equals 2th2

γ , the final
cornerness is:

λ1λ2 − κ (λ1 + λ2)
2 − th′ (8)

Function (8) has the same form as Harris Cornerness Function. The difference is
Harris corner is based on Harris Matrix which represents image edge curvature,
while Function (8) is based on Hessian Matrix which represents the Gaussian El-
lipse Model. In order to detect feature in scale-space, we use the scale normalized
Hessian Matrix to express cornerness:

D(x, y, σ) = σ4(λ1λ2 − κ (λ1 + λ2)
2 − th′) (9)

where σ4 is a normalization coefficient in scale-space. We call this method the
Harris-like Scale Invariant Feature Detector(HLSIFD). The Gaussian pyramid
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is filtered by Equation (9) to get the HLSIFD pyramid, as shown in the right
part of Fig 4. Our HLSIFD is:

D (σl) = σ4
l (λ1λ2 − κ(λ1 + λ2)2 − th′)

= σ4
l (det(H(σl))− κtrace2(H(σl))− th′)

= σ4
l (Lxx(σl, σi)Lyy(σl, σi)− Lxy(σl, σi)2

−κ (Lxx(σl, σi) + Lyy(σl, σi))
2 − th′)

(10)

κ = 1
4

(
1−

(
1−tg(α)
1+tg(α)

)2
)
⇔ tg (α) =

1−
√

1− 4κ
1 +
√

1− 4κ
(11)

where κ ∈ [0, 0.25]. On one hand Function (10) degenerates into the Determinant
of Hessian(DoH) when κ = 0. On the other hand, when κ → 0.25 ⇒ α → 450,
only the areas with approximately equivalent Hessian eigenvalues would be se-
lected. An un-max-suppression step is used to get the local peak which is con-
sidered as a key-point in 3×3×3 neighborhood in the HLSIFD pyramid. Exper-
imentally, a larger neighborhood is not helpful for increasing the performance.
Negative minimums should also be discarded, since they may be edges, noise or
even worse saddle points with opposite eigenvalues.

3.2 Matching and Description Procedure

We use Repeatability Score(RS)[18] to evaluate the performance of detector.
This score is the ratio of the number of correct matches and key points totally
detected on reference image. In order to get this score, we detect key points in
reference image and test image first. Then all key points are described by SIFT
descriptor for easy comparison. For each key point A in the reference image, we
calculate the feature distance(Euclid Distance) from every point detected in the
test image to A. Next, the first and second nearest point B and C are found in
the test image. Supposing the feature distance between A and B is d1, and that
between A and C is d2, if d1/d2 < t, A matchs B. Otherwise A does not match
any point in the test image. Finally, RANSAC [19] algorithm is used to eliminate
fake matchings and selects the correct matching pairs from all matching pairs.

4 Experimental Results

To evaluate the performance of the proposed detector, we do experiments on
the database provided by Mikolajczyk 1 in comparison to the state of arts:
SIFT2 and SURF3. This database contains 8 groups images with challenging
transformations. Parts of them are shown in Fig 5.

We test our method with the first two lightly transformed images at each group
first. The total number of features detected, true positive(Repeatability/correct

1 http://www.robots.ox.ac.uk/ṽgg/research/affine/index.html
2 Provided by Rob Hess:http://web.engr.oregonstate.edu/ hess/index.html
3 Provided by OpenCV 1.1:http://sourceforge.net/projects/opencvlibrary/
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(g)Ubc(Jpeg compression)

(b)Bikes(Blur)(a)Bark(Scale + rotation) (c)Boats(Scale + rotation)

(d)Graf(Scale + view) (f)Trees(Blur)

(h)Walls(Scale + view)

(e) Leuven(illumination)

Fig. 5. Database with 8 groups images provided by Mikolajczyk. Each group contains

one or two transformations with 6 images and parts of them are shown.

Table 1. Experimental result on the low transformed images

Detector SIFT SURF Ours(HLSIFD)

type total tpa(%) pb(%) total tp(%) p(%) total tp(%) p(%)

Bark(sc+r) 4162 14.4 20.5 3481 6.29 11.8 3588 24.6 31.0

Bikes(b) 3202 23.7 30.3 4019 33.5 44.0 4363 43.8 50.9

Boats(s+r) 7986 20.0 27.1 5056 12.2 18.1 4677 31.5 38.2

Graf(s+a) 2837 33.1 41.3 3342 14.8 22.1 2493 35.4 40.9

Leuven(i) 2131 40.5 49.5 3245 39.4 49.0 2841 55.0 61.8

Trees(b) 11279 9.19 14.0 7684 11.1 19.4 7442 17.2 22.5

Ubc(j) 4511 47.3 58.3 4286 68.8 77.3 4025 74.8 80.3

Walls(s+a) 8218 36.2 47.5 6792 8.84 15.7 8107 42.9 51.2

a ”tp” denotes true positive rate.
b ”p” denotes precision rate.
c ”s”,”r”,”b”,”i”,”a”,”j” respectively denote scale, rotation, blur, illumi-

nation change, affine transformation, and Jepg compression.

match) and precision(ratio between number of correct match and total match)
were calculated for comparison, as shown in Table 1. Our method is better in the
true positive, not that our method increases the total matching rate, but our
method increases the precision. The precision of our method is always higher
than others. Experimentally, detector with a higher precision denotes that the
key points detected are more accurate and stable, and there are fewer fake, invalid
or meaningless key points. t and κ are set to 0.95 and 0.1 in this experiment. For
more experiments about our method, we tested HLSIFD in all the images of the
database we mentioned above. The results are shown in Fig 6 (a)-(h). The RS of
HLSIFD outperforms others in scale, rotation, and affine transformation, since
Harris-like function is smooth in eigenvalues space and intensities of edges can
be restricted by κ. HLSIFD is better than SIFT and SURF in most groups, but
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(a) Bark (b) Bikes (c) Boats

(d) Graf (e) Leuven (f) Trees

(g) Ubc (h) Walls

Fig. 6. 8 groups experimental results are shown. Use the first image of each group as

reference image and others as test image. From left wo right, top to down:(a) Bark:

scale and rotation change. (b)Bikes: blur. (c)Boats: scale and rotation change. (d)Graf:

scale and view change image. (e)Leuven: illumination change. (f)Trees: blur. (g)Ubc:

Jpeg compression. (h)Walls: scale and view change.

Fig. 7. This figure is one test of influence from κ to the repeatability. The repeatability

is increasing with κ from 0 to 0.16, and suddenly drops after 0.16

a little weaker than SURF in seriously blurred image, shown in Fig 6 (b). The
computation of our method is nearly same with SIFT, because the most time
consuming step is pyramid constructing.
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Fig. 8. Experiments on video with scale and view transformation. The reference image

was captured from a camera. The results of frame 1, 87 and 188 are shown with SIFT

in the left and HLSIFD in the right.

κ is an important parameter in our method. When κ = 0, it degenerates into
Determinant of Hessian(DoH) [17]. We have done many experiments to test the
influence of κ to the performance, one of them is shown in Fig 7. We choose
κ between 0.04 and 0.15 experimentally and the performance of repeatability
would be increased by 10% approximately.

Using feature detection and image matching in video processing is an impor-
tant application. We compare our method with SIFT in video sequences match-
ing. We study the reference image and matched all the video frames with it.
Then the Affine Transform Matrix is calculated by matching points. The video
we used contains a large scale change and a gradual view change from 00 to
450. These transformations are common and have certain representativeness in
real scene. Experimental results are shown in Fig 8. The Repeatability Scores of
SIFT and HLSIFD reduce continuously with scale and view change. Some mo-
tion blurs are presented because of the shaking of our hand-hold camera, and the
performance suddenly drops in this frames. The Repeatability Score of HLSIFD
is better in most of the time, since it is more stable and detects less fake points
by the smooth edge suppression of HLSIFD function.

5 Conclusions

In this paper, we propose a novel scale invariant feature detector: Harris-like
Scale Invariant Feature Detector(HLSIFD). The advantage of this detector is
the high precision, since fewer fake points could be detected by the proposed
method. Unlike SIFT, our method does not need a post-treatment step to cut
edge-like points suddenly which would affect the stability. The proposed method
can suppress the unstable fake feature points in a uniform way and increase the
feature repeatability. Thus, with fewer meaningless key points, features are more
significant. Experimental results show the effectiveness of our method.

In the future, we will use our method in real-time image stitching and SLAM
system, so a fast algorithm of the proposed detector will be investigated.
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Abstract. This paper develops the probabilistic version of cascade al-

gorithm, specifically, Probabilistic AdaBoost Cascade (PABC). The pro-

posed PABC algorithm is further employed to learn the association po-

tential in the Discriminative Random Fields (DRF) model, resulting the

Probabilistic Cascade Random Fields (PCRF) model. PCRF model en-

joys the advantage of incorporating far more informative features than

the conventional DRF model. Moreover, compared to the original DRF

model, PCRF is less sensitive to the class imbalance problem. The pro-

posed PABC and PCRF were applied to the task of man-made structure

detection. We compared the performance of PABC with different set-

tings, the performance of the original DRF model and that of PCRF.

Detailed numerical analysis demonstrated that PABC improves the per-

formance with more AdaBoost nodes, and the interaction potential in

PCRF further improves the performance significantly.

1 Introduction

Traditional pattern classification methods assume that the class labels are inde-
pendent to each other. However, in real life data (e.g. sequences, images, videos),
the labels of the adjacent data points are correlated. This suggests us take ac-
count of the label dependencies in designing classifiers for real life data. For
example, Markov Random Fields (MRF) [6], Conditional Random Fields (CRF)
[4], and Discriminative Random Fields (DRF) [9], improve the performance of
an i.i.d. classification technique by taking into account the spatial dependencies.

In this paper, we are primarily interested in classifying elements (pixels or
regions) of a two-dimensional image. Let X be the observed data from an input
image, where X = {xi}i∈S with xi being the data from the ith image site, and
S is the set of all the image sites. Let the corresponding labels for the image be
Y = {yi}i∈S , where yi is the label for image site i.

MRF is usually used in the generative model framework which models the
joint distribution of the observed data and the labels. The posterior of the labels
given the data can be expressed by Bayes’ rule as

P (Y|X) ∝ P (X,Y) = P (X|Y)P (Y). (1)

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 596–607, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The prior distribution of the labels, P (Y), is modelled as MRF. However, the
likelihood term, P (X|Y), is usually very complicated, and it is a distribution in
a high-dimensional space (since the image data X is of high dimension). Thus,
it is usually very difficult, if not impossible, to find a good model for P (X|Y).

On the other hand, CRF and DRF are employed in the discriminative model
framework, in which we directly model the posterior distribution of the labels
given the data, P (Y|X). CRF was proposed in the context of segmentation and
labelling of 1D sequences, and DRF is generalized version of CRF for 2D image
data.

There are two components in DRF model, namely, the association potential
and the interaction potential (see Section 2 for details about DRF model). The
association potential models the local evidence which ignores the neighborhood
information. In [9], the association potential was modelled by a logistic regression
classifier, which can only incorporate a limited number of features, leading to
restricted classification capability.

AdaBoost [2] is a classification framework which has appealing theoretical
properties, and has shown impressive empirical results in a wide variety of tasks,
for example, face detection [15,16,17]. This paper takes the advantage of the
power of AdaBoost to incorporate more informative features for learning the as-
sociation potential in DRF, thus overcoming the limitations of logistic regression
model in [9]. In the learning stage, we face the problem of unbalanced training
set, i.e. far less positive examples than negative examples. AdaBoost cascade
[15,16,17] and WaldBoost [13] are usually used to solve this problem. However,
the aforementioned methods give a results in {−1, 1}, while we need a real num-
ber for the association potential, which is the logarithm of a probability value
as in [9]. To achieve this purpose, we develop Probabilistic version of AdaBoost
Cascade (PABC), which calculates the posterior probability of class label when
a testing example is presented. PABC is employed to learn the association po-
tential in DRF model, and the interaction potential is learned in the same way
as in the original DRF model [9]. The resulting model, Probabilistic Cascade
Random Fields (PCRF), enjoys the capability of incorporating far more infor-
mative features and a more powerful association potential than the conventional
DRF model.

The proposed PCRF was applied to man-made structure detection problem.
We compared the performance of PABC with different settings, the performance
of the original DRF model and the performance of PCRF. Detailed quantitative
measures demonstrate that with more AdaBoost nodes, the overall performance
of PABC improves, and with the information from interaction potential, PCRF
further removes some false positives and fills in some missing parts of the object.

2 Review of Discriminative Random Fields

Discriminative Random Fields (DRF) model [9] avoids the independence as-
sumption and seek to model the conditional joint distribution of the labels if the
data is given, i.e., P (Y|X). DRF model defines the conditional probability of
the labels Y as:
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P (Y|X) =
1
Z

exp

⎛⎝∑
i∈S

Ai(yi,X) +
∑
i∈S

∑
j∈Ni

Iij(yi, yj ,X))

⎞⎠ , (2)

where Ai is the association potential that models the dependencies between
the observations and the class labels, and Iij is the interaction potential which
models the dependencies between the labels of the adjacent elements (and the
observations), and Ni is a neighborhood of image site i. In this paper, we assume
the random field is homogeneous and isotropic, i.e., the functional forms of Ai

and Iij are independent of the locations i and j, hence we can simplify the
notations as A and I, respectively. This model alleviates the need to model
the observation data P (X|Y) (a necessary step in Bayesian statistics), and it
also allows the use of arbitrary attributes of the observations without explicitly
modelling them.

The association potential A(yi,X) reflects the local evidence of the label for
image site i. For two-class classification, yi ∈ {1,−1}, the association potential
is modelled as [9]:

A(yi,X) = log
(
σ(yiwThi(X))

)
, (3)

where σ(·) is logistic regression function:

σ(yiwThi(X)) = P (yi|X) =
1

1 + exp (−yiwT hi(X))
. (4)

In Eqn. (3) and (4), hi(X) is the feature vector extracted from the image data
for site i, and w is the weight vector. In principle, the feature vector hi(X) can
be any transformation of the image data. The association potential defined in
Eqn. (3) makes DRF equivalent to a logistic regression classifier if the interaction
potential is set to zero.

To model the interaction potential, let μij(X) be the pairwise feature vector
extracted from the image data X which reflects the property of the image site
pair (i, j). Similar to Eqn. (3), the pairwise discriminative term (a probability)
is defined as

P (yi, yj |X) = σ
(
yiyjvT μij(X)

)
, (5)

where v is the parameter vector. The interaction potential is modelled as a
convex combination of two terms, i.e.:

I(yi, yj,X) = β
{
Kyiyj + (1−K)

[
2σ

(
yiyjvT μij(X)

)
− 1

]}
, (6)

where 0 ≤ K ≤ 1. When K = 1, the interaction potential boils down to the Ising
model, therefore the interaction potential can be thought of as a generalization
of the Ising model.

Note that both the association potential A(yi,X) and the interaction potential
I(yi, yj,X) depend on the whole image X, not only on the image data at site i
or site j. This is different from the traditional classification setting.
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The parameters θ = {w,v, β,K} can be obtained by maximizing the pseudo-
likelihood function:

θ̂ ≈ arg max
θ

M∏
m=1

∏
i∈S

P (ym
i |ym

Ni
,X,θ), (7)

where m indexes the training images and M is the total number of training
images, and

P (yi|yNi ,X,θ) =
1
Zi

exp

⎧⎨⎩A(yi,X) +
∑
j∈Ni

I(yi, yj,X)

⎫⎬⎭ , (8)

with Zi as the normalization factor. The pseudo-likelihood function given in
Eqn. (7) can be maximized by linear search method [9], Newton’s method, or
stochastic gradient method.

3 Probabilistic AdaBoost Cascade

As a classification algorithm, AdaBoost [2] combines a set of weak classifiers
(features) to form a strong classifier, and the obtained strong classifier is

H(x) = sign

{
T∑

t=1

αtht(x)

}
∈ {−1, 1}, (9)

where x is the input example, ht(x) ∈ {−1, 1} is the weak classifier (feature)
selected at the tth iteration with weight αt, and T is the total number of itera-
tions. It is well-known that there is a deep relation between AdaBoost and the
additive logistic regression model [3], i.e.,

p(y|x) =
exp

{
y
∑T

t=1 αtht(x)
}

exp
{∑T

t=1 αtht(x)
}

+ exp
{
−

∑T
t=1 αtht(x)

} , with y ∈ {−1, 1}.

(10)

In applications, we usually have a limited number of positive examples, but abun-
dant negative examples, that is, the training set is highly unbalanced. AdaBoost
cascade [15,16], and its variant, Boosting Chain [17], are successfully used for
object detection with unbalanced training set. WaldBoost [13], using sequential
likelihood ratio test in decision making, implicitly builds cascade structure after
every weak classifier is added. In AdaBoost cascade, before training each Ad-
aBoost node, we can bootstrap negative examples in case there are not enough
negative examples, as shown in Fig. 1. A testing example will be classified as
positive if it can pass all the AdaBoost nodes; otherwise, it will be classified as
a negative example.
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Fig. 1. AdaBoost Cascade which can bootstrap negative examples at each stage

AdaBoost cascade, Boosting chain, and WaldBoost output a value in {−1, 1},
while in certain application scenarios, we prefer a probability value P (y = 1|x).
As such, we develop Probabilistic AdaBoost Cascade (PABC) which has the
same structure as the non-probabilistic version, see Fig. 1. The difference is that
for each testing example x, PABC outputs the probability P (y = 1|x) instead
of ±1.

The training process of PABC is very similar to that of AdaBoost cascade as
shown in Fig. 1, except that we use Eqn. (10) to calculate the probability value
when we split the training set. Ideally, we would like to keep all the positive exam-
ples in training the AdaBoost nodes, but inevitably we will make some mistakes
when splitting the training set. To keep as many positive examples as possible,
we put restriction on the false negative rate for each split by the AdaBoost nodes.
For each split, we also calculate the proportion of the positive examples among the
rejected examples. The detailed training process is given in Fig. 2.

Let x be a testing example, and y be the corresponding label. We regard each
of the subset rejected by the AdaBoost node SRJ as a classifier as well, and it
outputs the probability

P (y = 1|x) = P (y = 1|SRJ,x) = pn, (11)

that is, the proportion of positive examples in the subset SRJ. From Fig. 3, it is
easy to write out the posterior probability of y given the testing example x as:

P (y = 1|x) =
∑

y1∈{−1,1}
P (y = 1|y1,x)P (y1|x), (12)

and similarly, we have the following recursive formula:

P (y = 1|yn−1 = · · · = y1 = 1,x) =
∑

yn∈{−1,1}
P (y = 1|yn, yn−1 = · · · = y1 = 1,x)

×P (yn|yn−1 = · · · = y1 = 1,x),
(13)

where yi ∈ {−1, 1}, P (yn|yn−1 = · · · = y1 = 1,x) is the probability calculated by
the nth AdaBoost node using Eqn. (10); at a terminal node, P (y = 1|yn, yn−1 =
· · · = y1 = 1,x) is the output by the terminal node using Eqn. (11); if the
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– Input: An initial training set S = {(xi, yi) : i ∈ Λ}, where xi’s are feature

vectors, yi ∈ {−1, 1} is the label, and Λ indexes all the training examples. We

also have a set Sneg which contains a large number of negative examples. The

desired false negative rate for each cascade split fn is also given.

– For n = 1, · · · , N
1. Train a strong classifier by AdaBoost for node n using the current training

set S .

2. For each xi ∈ S , calculate the probability P (yi = 1|xi) using Eqn. (10).

3. Split the training set S into SRJ and Sgo, where SRJ and Sgo are the

subset classified by the current AdaBoost node as negative and positive

examples, respectively; when making this split, we adjust the threshold

such that the false negative rate is at least as small as the given value fn;

for SRJ, calculate the proportion of positive examples pn.

4. If there are not enough negative examples in Sgo, bootstrap negative ex-

amples from the given set Sneg; let S = Sgo.

– End For

Fig. 2. Training process of PABC with N AdaBoost nodes

current node is not a terminal node, then P (y = 1|yn, yn−1 = · · · = y1 = 1,x) is
calculated recursively by Eqn. (13). Using Eqn. (12) and the recursive relation
(13), we can calculate the output probability by PABC. Thus in the testing
stage, PABC integrates information from every node to make decision.

Fig. 3. Testing procedure of PABC. The boxes are the classifiers learned by AdaBoost,

and the circles are the terminal nodes of the cascade. yi is the decision result of the ith

AdaBoost node, and y is the output result. The probabilities are calculated according

to each AdaBoost node (Eqn. 10) or from the proportions at the terminal nodes (Eqn.

11).

Tu [14] proposed a Probabilistic Boosting Tree (PBT) algorithm, of which
PABC is a special case, since the chain structure in PABC is a special case
of the tree structure in PBT. However, as the depth of the tree increases, the
number of nodes in PBT increases exponentially, which will need much more time
in the training stage than PABC. Furthermore, a tree is much more complicated
than a chain, thus PBT is more likely to over-fit the data than PABC. In [18],
a learning procedure called Probabilistic Boosting Network (PBN) is presented,
which is implemented by means of an efficient graph structure. In [18], PBN
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was used to classify object and estimate pose parameters at the same time,
while in this paper, we are only focus on classification. In PBN, if there is no
pose parameter, the graph structure of PBN will boils down to the structure of
AdaBoost cascade.

4 Probabilistic Cascade Random Fields

The original DRF model [9] learns the association potential by a logistic regres-
sion model. However, the logistic regression model can only incorporate a small
number of features, and the classification capability of logistic regression model
is not strong. Moreover, logistic regression often does not estimate appropri-
ate parameters, and this is especially true for image data where feature vectors
may have a high number of dimensions and possibly there are high degree of
correlations among features.

Fortunately, the DRF framework allows a flexible choice of the association
potential. By making use of the strong classification ability of Support Vector
Machines (SVM), Lee et al. [5] proposed to use probabilistic version of SVM [11]
for learning the association potential. Although SVM has good classification
performance, it needs a large amount of training time when the feature number
and training set are large. More over, SVM does not have an explicit solution to
the problem of imbalanced training set which is common in applications.

This motivates us to apply the introduced PABC algorithm to learn the asso-
ciation potential since PABC can deal with a large number of features and a large
number of training examples. Due to the powerful feature selection mechanism
of AdaBoost, PABC will not select correlated features. Furthermore, PABC is
designed for imbalanced data, thus it is less sensitive to imbalanced training set
compared to SVM and AdaBoost.

The learned association potential by PABC algorithm is expressed as

A(yi,X) = logP (yi = 1|X), (14)

where P (yi = 1|X) is fitted by the procedure described in Fig. 2, and calculated
for a given sample by Eqn. (12) and Eqn. (13).

This work still adopts the interaction potential as in Eqn. (6), also see [9].
We maximize the pseudo-likelihood function to estimate the parameters θ =
(v, β,K) in the interaction potential, i.e.

(v̂, β̂, K̂) ≈ argmax
(v,β,K)

M∏
m=1

∏
i∈S

P (ym
i |ym

Ni
,X,θ). (15)

To ensure that the log-likelihood is convex and prevent over-smoothing due to
the pseudo-likelihood approximation, we assume a Gaussian prior on v and use
the penalized log pseudo-likelihood function [10]

l(v, β,K) =
M∑

m=1

∑
i∈S

⎧⎨⎩A(yi,X) +
∑
j∈Ni

I(yi, yj ,X)− logZi

⎫⎬⎭− 1
2
vT v, (16)
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where I(yi, yj ,X) depends on the parameters (v, β,K) as defined in Eqn. (6), and
Zi is a normalization constant which also depends on the parameters (v, β,K).
Note that A(yi,X) is learned by PABC and calculated according to Eqn. (14),
therefore in the optimization procedure A(yi,X) can be ignored since they are
constants to (v, β,K). We use gradient ascent to maximize the penalized log
pseudo-likelihood function in Eqn. (16).

Given a testing image X, our goal is to find the most probable label configu-
ration Y∗ for X, i.e., solve a Maximum A Posteriori (MAP) problem:

Y∗ = argmax
Y

P (Y|X), (17)

where the probability P (Y|X) is evaluated according to Eqn. (2) with the learned
parameters. Since the probability distribution only contains unary and binary
terms, the MAP can be solved by max-flow/min-cut type of algorithms [7]. As
in [9], we choose to use iterated conditional modes (ICM) [1] for inference due to
its simplicity, and it yields a local maximum of the posterior probability. Given
an initial labelling, ICM iteratively maximizes the local conditional probability,
that is, for each image site, we update the label by

yi ← arg max
yi∈{−1,1}

P (yi|YNi ,X). (18)

5 Experiment

We test the proposed model on the task of man-made structure detection from
natural images. The training and testing sets contain 108 and 129 images, respec-
tively, each of size 256× 384 pixels. Each image is divided into non-overlapping
16× 16 image blocks, and each image block is an image site in our model. The
ground truth was generated by manually labelling every image site as building
and non-building. There are 5,203 building blocks and 36,269 non-building blocks
in the training set, and 6,372 building blocks and 43,164 non-building blocks in
the testing set1.

5.1 Features

For the man-made structure detection problem, we use the features described in
[8,9] as our first set of features, which are based on the weighted histogram of
the gradient orientation. Please refer to [8] for more details. We also use different
combinations (sum, difference, etc.) of features from [8].

We apply different filters (e.g. Gabor filters, Gaussian filters, Canny Edge de-
tectors) to the original image, and other features are extracted from the filter
responses. We notice that most building regions are relatively smooth with small
variance while most background regions have cluttered pattern with large vari-
ation. This observation inspires us to use mean and variance values of different
filter responses (include the original image) inside sub-windows as features.
1 The original image data and the labels are provided by [9].
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For each sub-window, we can also calculate the histograms from each filter
response, and use each bin of the histogram as a feature, and the entropy of the
histogram can be used as a feature as well to evaluate the regularity of the sub-
window. We also notice that man-made structures are primarily characterized
by straight lines with horizontal or vertical direction, and this motivates us to
extract features from the edge map. In canny edge map, we count the numbers
of horizontal and vertical edge points inside each sub-window, and use these
numbers as features. The regularity of the building region and the irregularity of
the background also make the orientation of the gradient a good discriminator,
therefore, we calculate the mean value of the orientation of the gradient inside
a sub-window and use it as a feature.

The largest sub-window has size 48× 48, and the smallest is of size 6× 6. We
design the sub-windows such that they must have at least 6×6 intersection with
the current image site (a 16× 16 window). By doing this, each feature contains
neighborhood information to classify the current image site. This feature design
strategy is consistent with our notation P (yi|X), i.e. the class label for image
site i depends on the whole image, not only xi itself. For each sub-window
in the image, the mean, variance, and histogram can be calculated efficiently
using integral image [15] and integral histogram [12]. Altogether, we have around
10,000 features for learning the association potential.

In learning the association potential by PABC, the first 4 features selected
by the first AdaBoost node are: Variance of the Gabor filter response inside the
sub-window at the relative location (-9, -16, 26, 26) to the top-left corner of the
current image site, with error rate 0.189; the sum of the first and 21st features
from [8], with error rate 0.298; the difference of the second and 17th features
from [8], with error rate 0.349; the average number of vertical edge points in the
sub-window at the relative location (-16, -9, 19, 26) to the top-left corner of the
current image site, with error rate 0.386.

To learn the interaction potential, we use features μij(X) as those used in [9],
that is, the difference of two vectors from [8] at image sites i and j, such that
the feature vector μij(X) encodes the difference between image sites i and j.

5.2 Results

When applying PABC2 to learn the association potential for PCRF, we use 5
AdaBoost nodes, and for each of them, we select 120 features. We feed all the
positive examples to the first AdaBoost node, and each AdaBoost is learned
with 10,000 negative examples. When splitting the training set, the false neg-
ative rate is set to be 0.015, and we bootstrap negative examples if necessary.
Learning the association potential by PABC needs about 2 hours, and learning
the interaction potential by maximizing pseudo-likelihood needs about 5 minutes
with 40 iterations to converge. In the testing stage, for each input image, the
computer needs about 20 seconds to output the detection result. The computer
has a 2GHz CPU and 3.25G Bytes memory.

2 The PABC is implemented based on the source code provided by [16].
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From Eqn. (2), when the interaction potential is set to zero, the PCRF model
is reduced to a classification model learned by PABC. In this case, given the ob-
served image data X, the optimal label configuration Y∗ is found by maximizing
the class posterior. In another word, the optimal label for the ith site is

y∗i = argmax
yi∈{−1,1}

P (yi|X). (19)

(a) (b) (c)

(d) (e) (f)

Fig. 4. The experimental result on man-made structure detection, the detected building

blocks are marked in red boundary: (a) shows the input image in gray scale; (b) and

(c) are the detection results from PABC with 1 and 5 AdaBoost nodes, respectively;

(d) and (e) are the detection results from PCRF and the original DRF, respectively;

(f) is the the manually labelled result. Please view in color for better visual effect.

Fig. 4 shows the detection result on a testing image. As can be seen from
(b), initially, with one AdaBoost node, PABC can detect almost all the building
blocks, i.e., it has high detection rate, but it also has high false positive rate.
With more AdaBoost nodes, PABC can remove some false positives, as seen from
(c). (d) is the result obtained by PCRF, which shows that the interaction po-
tential further removes the false positives, although there are still false positives
compared to the manually labelled result in (f). (e) shows the result obtained by
the original DRF model3, from which we can see that the original DRF model
has fewer false positives, but it has more false negatives.

Table 1 presents the performance measures of the model with different set-
tings. As we can see, with more AdaBoost nodes, the detection rate decreases,
but the false positive rate also decreases, as a result, the site-wise classifica-
tion error rate decreases monotonically. This is expected because PABC aims
3 The MATLAB toolbox of DRF model for man-made structure detection was down-

loaded from http://www.cs.ubc.ca/∼murphyk/Software/CRF/crf.html
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at minimizing the error rate. The table shows that with the information from
the interaction potential, the PCRF improves the detection rate slightly, but the
false positive rate drops significantly.

Table 1. The numerical evaluation result on 129 testing images: PABC n stands for

PABC with n AdaBoost nodes

Performance Measures PABC 1 PABC 2 PABC 3 PABC 4 PABC 5 PCRF

Detection Rate 94.27% 89.01% 83.33% 77.56% 72.18% 72.64%

False Positive Rate 25.37% 16.18% 11.58% 8.37% 6.23% 3.94%

Site-wise Error Rate 22.84% 15.52% 12.24% 10.18% 9.01% 6.95%

Our final result has better detection rate than that reported in [9], but slightly
worse false positive rate. The reason is that in [9], the parameters for the asso-
ciation potential and for the interaction potential are estimated simultaneously,
while the PCRF model learns the model parameters separately, which might
be a suboptimal strategy. Pursuing learning methods which can estimate the
parameters simultaneously needs more investigation.

6 Conclusions and Future Works

This paper develops the probabilistic version of AdaBoost cascade (PABC),
which outputs a probability value instead of -1/1 value. We use PABC to learn
the association potential in the DRF model, resulting the Probabilistic Cascade
Random Fields (PCRF) model. We applied the proposed model to the task of
man-made structure detection, and compared the performance of PABC with
different settings, the performance of the original DRF model, and the per-
formance of PCRF. Detailed qualitative and quantitative analysis showed that
PABC improves the overall performance with more AdaBoost nodes. With the
information from interaction potential, PCRF further removes some false posi-
tives and fills in some missing parts of the object of interest. Our final result is
comparable to that reported literature.

In this paper, only the association potential is learned by PABC, while the
interaction potential is learned by a simple logistic regression model. Therefore,
the current PCRF model still has limited ability to combine more informative
features in the interaction potential. Our next step is using PABC to learn the
interaction potential. Also, it is desirable to test the proposed approach to other
applications and compare to state-of-the-art results, e.g. face detection [15].
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Abstract.  Text location and recognition is a vital and fundamental problem of 
processing images. In this paper we propose a novel system for text location 
and recognition focused on book covers. Our work consists of two main parts, 
learning-based text location and adaptive binarization guided recognition. First 
we extract three types of robust features from the training data provided on 
ICDAR2005 and utilize Ada-boost to combine these features into a powerful 
classifier for text regions detection and location. Second we apply the proposed 
adaptive binarization to process the located regions for recognition. Compared 
with previous works, our algorithm is robust in size, font and color of text, and 
insensitive for languages. In experiments, our system proved to have attractive 
performance.  

1   Introduction 

Applications of image text location and recognition are useful and capital in many 
situations, including identifying products by reading text (such as books, movie post-
ers, CD covers), indexing images in digital databases for retrieval and so on. However, 
Optical Character Recognizer (OCR) can only recognize texts with simple background. 
Text areas in images must be located and binarized in advance. Usually, systems for 
text location and recognition include three parts, text location, binarization and OCR. 

Approaches for text location can be divided into two categories based on feature 
utilized: region-based and texture-based methods. [1] 

Region-based methods consider that text areas have distinct intensity or color 
compared with its background. Jain and Yu [2] used a set of geometry features to 
classify generated connected-components. Hasan and Karam [3] utilized morphologi-
cal operations to extract text regions. S. Messelodi and C.M. Modena [4] proposed a 
cover oriented method which can estimate the skew of text lines. However, these 
methods need a lot of experimental thresholds and parameters, so they cannot support 
robust location. 

Texture-based methods assume that text areas have distinct texture apart from 
background. These methods often involve techniques like Gabor filter, wavelet, FFT, 
spatial variance and so on. For example, Wu [5] used a multi-scale texture segmenta-
tion scheme which includes 9 second-order Gaussian derivatives. As this kind of 
methods is very sensitive to text font and size, it is hard to select a threshold  
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manually. Accordingly, many approaches manipulate machine learning algorithm to 
do this. Kim [6] used SVM to learn texture feature of text. They all achieved a much 
better result by using machine learning algorithm. 

Binarization methods can also be classified into two types: global methods and lo-
cal adaptive methods. The simplest binarization technique is to use a global fixed 
threshold. These techniques are generally based on histogram analysis. The most 
famous global binarization is Otsu’s method [7]. However, global method only works 
well for images with well separated foreground and background intensities. In prac-
tice, most images do not meet this condition. On the contrary, local methods use a 
dynamic threshold to binary every pixel. For example, Niblack’s method [8] com-
puted threshold for each pixel according to mean and standard deviation value in a 
local window. But the method caused a lot of noise in background area. Sauvola’s 
method [9], an improved version of Niblack’s method, minimized the background 
noise. However, this method was based on the hypothesis that the gray values of the 
text are close to 0. Chang’s method [10] made an adaptive decision between thresh-
olds calculated at different spatial scales. This method works well at most situations. 
But it can’t solve the color opposite problem. 

This paper puts forward a novel system of image text location and recognition fo-
cused on book covers. See Fig. 1. The text location part combines both region-based 
feature and texture-based feature. Ada-boost is used to select and combine these fea-
tures into a powerful classifier and locate text regions in images by classifying sub-
regions of images as text or non-text. The followed binarization part, which improves 
Karsar’s method [16] greatly, not only minimizes the noise, but also adapts to differ-
ent font, color and language.  

In our experiments, two data sets are used. The training data set is downloaded 
from ICDAR2005 text location competition with labeled samples. The testing data set 
is constructed by book covers, which includes scanned covers and camera-shot cov-
ers. See Fig. 2. 

 

Fig. 1. Structure of proposed system 

 

Fig. 2. Example images of testing data sets. As these images are taken by phone cameras, their 
qualities are rather low 
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The rest of the paper is organized as followed. In section 2, three sets of robust fea-
tures will be introduced. In section 3, the location method will be described. Adaptive 
binarization is mentioned in section 4. Experiment results are shown in section 5. 
Section 6 is the conclusion of the paper. 

2   Robust Feature Extraction 

In fact, image text location is a binary classification problem, classifying windows or 
areas as text or non-text. In classification problems, features are of vital importance 
for accuracy of results. So we specified three sets of robust features based on statisti-
cal analysis of datasets.  

Histogram Features. Histogram features are based on this observation. In an image 
which contains text, there must be a large number of horizontal, vertical or diagonal 
lines. And in those don’t, number of these lines is usually small. [12] 

So, we can define patterns like these, which represent vertical, horizontal, vertical, 
horizontal, and diagonal lines respectively. See Fig. 3. 

                     

                                    Fig. 3. Five patterns                                  Fig. 4. Feature used in test 

A histogram feature contains these parameters:  
First: Type. Which type of pattern this feature belongs to. Second: Height and 

width. Third: Value interval. An interval includes an upper threshold and a lower 
threshold. These thresholds refer to pixel value threshold of filtered image.  

Given an input image or an image window {xij} and a predefined feature fk, a fea-
ture value is generated after the following steps:  

1. Filter image {xij} with pattern defined in fk and get another image {yij}. 
2. Get percentage of pixels of {yij} whose values are between certain intervals. 

These intervals are also defined in fk. See Fig. 5.  

Edge Features. The second class of features is based on the following observation. 
It's certain that long edge lines mostly appear in a small window containing text. So, 
based on edge detection, using CANNY, we can get edge image from original image. 
And this type of feature is to count the number of long edges. 

Block-based Features. The third feature set is from Chen [13], but has been im-
proved. Tested on training dataset, the average response of x and y derivatives have 
obvious patterns shown in Fig. 6. The x derivatives tend to be large in central of text 
area while y derivatives are large at the top and bottom. And the variance of x deriva-
tives is large while y derivatives are small.  
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Fig. 5. Test results. For non-text images, their responses to this feature are mostly around zero 
and have low entropy. For text images, their responses are much more scattered. 

Different from Chen [13], who designed symmetric block patterns suitable for 
English words, we designed block patterns regardless of number of words in a win-
dow. See Fig. 7. Without this limitation, training samples are much easier to get. 

In summary, there are: (1)5200 first class features based on histogram, (2)30 sec-
ond class features based on long edge counting, and (3)384 third class features based 
on x and y derivatives. Therefore, a large amount of features have been specified and 
Ada-boost can be utilized to generate a powerful classifier. 

   

 
 

Fig. 6. Response of x and y derivatives. X 
derivatives are small at top and bottom while 
y derivatives are large at the top and bottom. 

Fig. 7. Block pattern. In this block pattern, the 
height of each sub-line varies from 1/6 to 1/2 
of window height. 

3   Text Location 

Given a training set of positive and negative samples and a set of features, any ma-
chine learning algorithm could be used to train a strong classifier. But Ada-boost’s 
performance on detecting faces [14] has proved that it’s the most effective algorithm 
for detecting target object in images. 

First, Ada-boost learning requires a set of training data labeled manually as text or 
non-text. We use the data set provided on ICDAR2005 text locating competition. 
From this data set, we divide each text window into several overlapping samples with 
fixed aspect ratio of 2:1 and get 2522 positive samples. The negative samples are 
extracted randomly from the non-text area of this data set and we get 8846 negative 
samples. See Fig. 8. 
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Second, we transform features described in previous section into weak classifiers. 
A weak classifier wi(x) usually consists of a feature fi(x), a threshold ti and a parity pi 
which indicates the direction of the inequality sign: 

wi(x) = 1, ( )

0,
i i ip f x t

otherwise

<⎧
⎨
⎩

 . (1)

Here x is a 40×20 pixel sub-window of an image. We selected these weak classifiers 
with standard Ada-boost learning procedure combined with an attentional cascade 
[14]. A cascade could drop those sub-windows which are apparently non-text in early 
stages. This brings a significant boost in processing speed compared with standard 
Ada-boost algorithm [15]. Our algorithm had 3 cascade layers. The first layer consists 
of only 1 block-based weak classifier. The second and third layer includes histogram 
and edge based classifiers, which are much more computational exhausted. By apply-
ing generated powerful classifier on image, we can get its text area. 

 

Fig. 8. Positive samples used in Ada-boost training. These samples include various type of text 
which appear in book covers. 

4   Adaptive Binarization 

Binarization is a necessary part in recognition system. When using OCR module to 
process a book cover directly, lots of messy codes would appear. Our binary module 
adaptively exports the foreground text as black and background as white. 

4.1   Kasar’s Method [16] 

The Kasar’s Method can be described briefly as following. 
Firstly, canny edge detection is performed individually on each channel of the im-

age and an edge map E can be obtained: E =ER | EG | EB. Where ER EG EB separately 
represents the edges detected in the RGB channel. Here E stands for all possible 
boundaries detected by canny operator. 

Secondly, an eight-connected component labeling follows. In Kasar’s method, each 
component obtained is called an edge-box (EB).  

Thirdly, as every EB may have its own inner and outer boundary, so an EB may 
enclose several EBs inside. For English character, study shows that every EB has no 
more than two EBs inside. The rule is that, if Nint is less than 3, reject EBint and accept 
EBout. If Nint is more than 3, reject EBout and accept EBint. Where EBint means EB that 
completely lies inside another EB and Nint means the number of EBint. 
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Fourthly, get a threshold by judging the foreground and background intensities.  

( , )

1
( , )EB

x y EE

F I x y
N ∈

= ∑  . (2)

Where E represents the pixels in the edge, NE means the number and I(x,y) means the 
grayscale intensity. FEB represents the foreground, which is the average grayscale of 
all the pixels in the boundary. BEB which stands for background is computed by the 
grayscale intensities of twelve points, which are located around the four corners of the 
bounding box. See Fig. 10. BWEB(x,y) represents for the finally processed binary 
value. According to these two arguments, we can binary every pixel according to 
criteria as below:  

If FEB < BEB: 
1, ( , )

( , )
0, ( , )

EB
EB

EB

I x y F
BW x y

I x y F

≥⎧
= ⎨ <⎩

. 

If FEB > BEB: 
0, ( , )

( , )
1, ( , )

EB
EB

EB

I x y F
BW x y

I x y F

≥⎧
= ⎨ <⎩

. 

(3)

4.2   Evaluation of the Original Algorithm 

In actual applications, Kasar’s Method has some drawbacks. First of all, edge detec-
tion in the passage utilized canny operator. As a fact of the canny detection, Gaussian 
filter must go first. The variance of the associated is fixed to 1. Its disadvantage is that 
one solid parameter can not adapt to every situation.  

Second, the former algorithm meets some problem when dealing with the diago-
nally aligned text. These EBs detected may interfere with other adjacent EBs. Though 
using median value can solve the problem to some extent, there are still lots of color-
opposite phenomena during our experiments. 

Last and most important, the algorithm can’t deal with Chinese character. For Eng-
lish text, it’s true that every EB has no more than two inner EBs. But if the algorithm 
is used directly to process the Chinese characters, many texts will be wiped off.  

4.3   Improved Kasar’s Method 

To solve these problems, we contrapuntally proposed three new techniques. They are 
multi-scale filtering, precise background computation, and EB selecting amendment. 
Particularly, the new EB selecting method immediately widens the scope of the algo-
rithm, making it adaptive to characters in various languages. 

Multi-scale filtering. The purpose of using in multi-scale is to find the detail charac-
teristics in different scales. Based on the particularity of canny detection, the edges 
detected at different Gaussian variance vary a lot. Single scale filtering has two main 
shortcomings. One is that it’s hard to decide the appropriate parameter to supply the 
edge information. The other one is that edges detected by a single scale are frag-
mented with each other.  

We have used the thresholds 0.2 and 0.3 for the hysteresis threshold step of canny 
edge detection. The variance of the Gaussian function steps from 0.2 to 1.8 by 0.2 per 
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operation. The final edge map E is obtained by combining all the edge images at dif-
ferent scales. E =E1 | E2 | … | En. Ei stands for the edge image detected by the ith 
scale. Edge map E obtained in this way can effectively solve the two problems men-
tioned above. 

Improved Background Intensity Computation. The original Kasar’s method uses 
twelve points’ intensities, which are located around the four corners of the bounding 
box, to compute the background intensity. The method works well when the text lies 
horizontally. If not, the adjacent bounding boxes would have some overlaps with each 
other, especially the points around two of four corners, when the text lies diagonally. 
The intensity of the point picked up around the corner would not represent the real 
background intensity. As displayed in Fig. 9. Therefore, besides these points, we 
expand the scope of the points choosing. As it is observed in Fig. 10, these twenty 
four points not only increase the sample set, but also reduce the interfere rate. In the 
end, the local background intensity can be estimated by considering the median inten-
sity of the 24 pixels. 

  

Fig. 9. (a) The original image which text lies 
diagonally (b) Output of EB-box (c) Partial 
enlargement. The c drawing shows that the 
intensities of the points which are located 
around the two corners cannot represent the 
background intensity. 

Fig. 10. Former ones are the twelve pixels 
around the four corners. New added twelve 
pixels are the located in the middle of each 
line of the bounding box. 

 

EB layer is a label for every EB. Refer to Fig. 11. An EB which doesn’t completely 
enclose other EBs is called layer-1 EB. While an EB completely encloses layer-1 EB 
is called layer-2 EB. Similarly, in an image, there may be layer-3, layer-4 EB… And 
for the convenience of the study, those EBs whose layer number is more than 2 are all 
called layer-3 EBs. 

Characters always obey the rule that there are only layer-1 and layer-2 EBs. Layer 
3 EB often appears at the complex frame and the texture region which are all non-text 
regions. So, we can reject all these layer-3 EBs. After the process, there are only 
layer-2 and layer-1 EBs left. And, layer-1 EBs which are located completely inside a 
layer-2 EB are also rejected. The purpose of the step is that the outer EB can already 
represent the text information. There is no need to keep too many details inside. The 
final EBs left are all used to binary and give a very good effect.  
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At last, compute foreground and background intensity for every EB left. Use the 
criteria to binary every EB. Though a Chinese character may have some bounding 
boxes overlapped with each other, it’s not a big problem anyway. Merging these bi-
nary results by using or operation can show all the text information. 

(b)

 (a)

(d)

Layer-3 EB

Layer-1 EB

Layer-2 EB

Layer-3 EB

(c)

Layer-1 EB

Layer-2 EB

 

Fig. 11. (a) Original image (b) output of EB-box (c) the upper one is B drawing’s partial 
enlargement; the below one is the EB left (d) the binary result of original image. As can be seen 
from the figure, the circular frame and the line are all wiped out in the final image. 

 

Fig. 12. Results of text location on test images. You can notice that the texts are bounded with a 
relative big rectangle for robustness of location. But these big rectangles would be reduced at 
adaptive binarization process. 

 

Fig. 13. (a) Original image (b) Niblack’s Method (c) Sauvola’s Method (d) Chang’s Method (e) 
Kasar’s Method (f) Proposed Method 
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Fig. 14. Examples of binarization results using the proposed method. Every character is in-
verted to black and background to white. 

5   Experiments 

In text location stage, we applied trained powerful classifier on sub-windows of input 
images. The window size scales from 40×20 to 303×152, with scaling factor 1.5 and 
shifting factor 0.2. We get a binary image indicating text areas. By finding connected 
components of this image, text area could be retained. See Fig. 12. 

While in binarization stage, In Fig. 13, we can see great differences between bi-
narization methods clearly. Niblack’s method causes lots of noise in the background. 
Sauvola’s method only solves the problem to some extent. Chang’s method changes 
the background to black which may create lots of messy code in the OCR module. 
Kasar’s method can’t deal with every Chinese character. On the other hand, our 
method can deal with characters of any size, color and language. 

We have performed the experiments on more than 100 pictures. All the pictures are 
all camera shooting ones. About 1200 characters are detected. Statistically, our loca-
tion rate is more than 90% and the recognition rate is more than 80%. Other four 
methods’ recognition rates are all lower than the proposed one’s. While the recogni-
tion rate by sauvola’s method, is better than the Niblack’s and Chang’s. Kasar’s 
method is more suitable for the English characters. Its recognition rate decrease when 
pictures are integrated with the Chinese characters. So, our result is able to withstand 
the test. Some results of binarization are shown in Fig. 14. 

6   Conclusion 

This paper presents a novel system of image text location and recognition in book 
covers. This system is robust for various text font, size, color, and image skew, rota-
tion, view point change, and noise. Compared with other researchers’ work, such as 
Chen[4], this system can locate and recognize text with different language rather than 
only English. 

Our future work is to find out other useful statistical feature of text, which could be 
very helpful in locating text. Since the system presented only acts well for book cov-
ers, we shall also improve its performance in other circumstances, such as natural 
scenes, movie poster and so on. 



 A Novel System for Robust Text Location and Recognition of Book Covers 617 

 

Acknowledgment 

This work was supported by the National Natural Science Foundation of China (Grant 
No.60773093) and the Key Program for Basic Research of Shanghai (Grant 
No.08JC1411800), the Ministry of Education, and Intel joint research foundation 
(Grant No.MOE-INTEL-08-11). 

References 

[1] Jung, K., Kim, K.I., Jain, A.K.: Text information extraction in images and videos: A sur-
vey. Pattern Recognition 37, 977–997 (2004) 

[2] Jain, A.K., Yu, B.: Automatic Text Location in Images and Video Frames. Pattern Rec-
ognition 31(12), 2055–2076 (1998) 

[3] Hasan, Y.M.Y., Karam, L.J.: Morphological text extraction from images. IEEE Trans. 
Image Process. 9(11), 1978–1983 (2000) 

[4] Messelodi, S., Modena, C.M.: Automatic identification and skew estimation of text lines 
in real scene images. Pattern Recognition 32, 791–810 (1999) 

[5] Wu, V., Manmatha, R., Riseman, E.M.: TextFinder: an automatic system to detect and 
recognize text in images. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1224–1229 
(1999) 

[6] Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machine-based text detection in 
digital video. Pattern Recognition 34(2), 527–529 (2001) 

[7] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Systems 
Man Cybernetics 9(1), 62–66 (1979) 

[8] Niblack, W.: An introduction to digital image processing, pp. 115–116. Prentice Hall, 
Englewood Cliffs (1986) 

[9] Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogni-
tion 33, 225–236 (2000) 

[10] Chang, F.: Retrieving information from document images: problems and solutions. Int. J. 
Doc. Anal. Recognition 4, 46–55 (2001) 

[11] Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic Regression: a statistical view of 
boosting. The Annals of Statistics 28(2), 337–374 (2000) 

[12] Li, C., Ding, X.G., Wu, Y.S.: An Algorithm for Text Location in Images Based on Histo-
gram Features and Ada-boost. Journal of Image and Graphics (2006) 

[13] Chen, X.R., Yuille, A.L.: Detecting and reading text in natural scene. In: Proceeding of 
CVPR 2004 (2004) 

[14] Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Fea-
tures. In: CVPR 2001 (2001) 

[15] Viola, P., Jones, M.: Fast and Robust Classification using Asymmetric Ada-boost and a 
detector cascade. In: Advances in Neural Information Processing Systems (2002) 

[16] Kasar, T.: Font and Background Color Independent Text Binarization. In: ICDAR 2005 
(2005) 

 



H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 618–627, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

A Multi-scale Bilateral Structure Tensor  
Based Corner Detector 

Lin Zhang, Lei Zhang∗, and David Zhang 

Biometrics Research Center, Department of Computing 
The Hong Kong Polytechnic University 

Hong Kong, China 
Tel.: 852-27667355 

{cslinzhang,cslzhang,csdzhang}@comp.polyu.edu.hk 

Abstract. In this paper, a novel multi-scale nonlinear structure tensor based 
corner detection algorithm is proposed to improve effectively the classical Har-
ris corner detector. By considering both the spatial and gradient distances of 
neighboring pixels, a nonlinear bilateral structure tensor is constructed to exam-
ine the image local pattern. It can be seen that the linear structure tensor used in 
the original Harris corner detector is a special case of the proposed bilateral one 
by considering only the spatial distance. Moreover, a multi-scale filtering 
scheme is developed to tell the trivial structures from true corners based on their 
different characteristics in multiple scales. The comparison between the pro-
posed approach and four representative and state-of-the-art corner detectors 
shows that our method has much better performance in terms of both detection 
rate and localization accuracy. 

Keywords: Harris, corner detector, bilateral structure tensor. 

1   Introduction 

Corner detection is a critical task in various machine vision and image processing 
systems because corners play an important role in describing object unique features 
for recognition and identification. Applications that rely on corners include motion 
tracking, object recognition, 3D object modeling, and stereo matching, etc. 

Considerable research has been carried out on corner detection. One of the earliest 
successful corner detectors can be Harris corner detector [1]. Harris et al. [1] calcu-
lated the first-order derivatives of the image along horizontal and vertical directions, 
with which a 2×2 structure tensor was formed. The corner detection was accom-
plished by analyzing the eigenvalues of the structure tensor at each pixel. However, 
computing derivatives is sensitive to noise, and the Harris corner detector has poor 
localization performance because it needs to smooth the derivatives for noise reduc-
tion. Thus, several methods [2-3] have been proposed to improve its performance.  

Apart from Harris corner detector and its variants, many other corner detectors 
have also been proposed by researchers. Kitchen and Rosenfeld [4] proposed a  
cornerness measure based on the change of gradient direction along an edge contour 
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multiplied by the local gradient magnitude. Smith and Brady [5] proposed the 
SUSAN scheme. In SUSAN, a circular mask is taken around the examined pixel and 
this pixel is considered as the nucleus of the mask. Then “USAN” (Univalue Segment 
Assimilating Nucleus) is defined as an area of the mask which has the similar bright-
ness as the nucleus. Smith et al. [5] assumed that the USAN would reach a minimum 
when the nucleus lies on a corner point. Wang and Brady [6] proposed a corner detec-
tion algorithm based on the measurement of surface curvature. In [7] and [8], Mok-
htarian et al. proposed two CSS (Curvature Scale Space) based corner detectors. In 
these two algorithms, edge contours are first extracted and then corners are detected 
as the positions with high curvatures on edge contours. Zheng et al.’s [9] cornerness 
measure was simply the gradient module of the image gradient direction.  

This paper presents a novel effective evolution of the classical Harris corner detec-
tor. In the original Harris corner detector, an isotropic Gaussian kernel is used to 
smooth each of the four elements in the 2×2 structure tensor over a local window 
before calculating the eigenvalues. Such a smoothing operation will have two disad-
vantages. First, some weak corners will be smoothed out. Second, the localization 
accuracy is much degraded. Inspired by the success of bilateral filters [10] in image 
denoising, which consider both the spatial and the intensity similarities in averaging 
neighboring pixels for noise removal, in this paper we construct a nonlinear bilateral 
structure tensor and use it to detect corner points. 

The basic idea of the proposed method lies in that both the spatial and gradient dis-
tances should be involved in smoothing the structure tensor elements. The neighbor-
ing pixels that have shorter spatial and gradient distances to the given one should have 
higher weights in the averaging. In this way, a nonlinear structure tensor, which is 
adaptive to image local structures, could be constructed and hence the image local 
pattern could be better distinguished. It can be seen that the classical Harris corner 
detector is a special case of the proposed method by exploiting only the spatial dis-
tance in the structure tensor smoothing. However, the proposed nonlinear structure 
tensor has much higher sensitivity to corner-like fine structures than the linear struc-
ture tensor. Therefore, it may respond strongly to some trivial feature points in the 
image. In order to get rid of the possible false corners detected at fine image scales, 
we propose a multi-scale filtering scheme based on the different characteristics of true 
corners and trivial structures in multiple scales.  

The rest of the paper is organized as follows. Section 2 briefly reviews the Harris 
corner detector. Section 3 presents the new corner detector in detail. Experimental 
results are presented in section 4 and the conclusion is made in section 5. 

2   Harris Corner Detector 

Harris corner detector [1] has been very widely used in machine vision applications. 
Consider a 2D gray-scale image I. Denote by W∈I an image patch centered on (x0, 
y0). The sum of square differences between W and a shifted window W(Δx, Δy) is calcu-
lated as 

2

( , )

( ( , ) ( , ))
i i

i i i i
x y W

S I x y I x x y y
∈

= − − Δ − Δ∑  (1)
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By approximating the shifted patch using a Taylor expansion truncated to the first 
order terms, we have: 

[ ],
x

S x y A
y

Δ⎡ ⎤
= Δ Δ ⎢ ⎥Δ⎣ ⎦

 (2)
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i∇  and v
i∇  represent the first order partial 

derivatives of image I along horizontal and vertical directions at pixel (xi, yi). 
In practice matrix A is computed by averaging the tensor product I I Τ∇ ⋅∇  ( I∇  de-

notes the gradient image of I) over the window W with a weighting function Kρ , i.e.  
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Usually Kρ  is set as a Gaussian function 
2

2

1
( ) exp

22
id

K iρ ρπ ρ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, where 

2 2 2
0 0( ) ( )i i id x x y y= − + −  and ρ is the standard deviation of the Gaussian kernel. 

Aρ is symmetric and positive semi-definite. Its main modes of variation correspond 
to the partial derivatives in orthogonal directions and they are reflected by the eigen-
values λ1 and λ2 of Aρ. The two eigenvalues can form a rotation-invariant description 
of the local pattern. Under the situation of corner detection, three distinct cases are 
considered. 1) Both the eigenvalues are small. This means that the local area is flat 
around the examined pixel. 2) One eigenvalue is large and the other one is small. The 
local neighborhood is ridge-shaped. 3) Both the eigenvalues are rather large. This 
indicates that a small shift in any direction can cause significant change of the image 
at the examined pixel. Thus a corner is detected at this pixel.  

Harris suggested that the exact eigenvalue computation can be avoided by calcu-
lating the response function  

2( ) ( ) ( )R A det A k trace Aρ ρ ρ= − ⋅  (4)

where det(Aρ) is the determinant of Aρ, trace(Aρ) is the trace of Aρ, and k is a tunable 
parameter. 

3   Bilateral Structure Tensor Based Corner Detection 

This section presents the proposed multi-scale nonlinear bilateral structure tensor 
based corner detector in detail. Our algorithm differs from the original Harris corner 
detector mainly in two aspects. First, a nonlinear structure tensor is constructed to 
substitute for the linear one used in the Harris corner detector; second, a multi-scale 
filtering scheme is proposed to filter out the false and trivial corners detected at small 
scales.  
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3.1   Construction of the Bilateral Structure Tensor 

The structure tensor for a gray level image I is a 2×2 symmetric matrix that contains 
in each element the orientation and intensity information in a local area. Denote by 

I∇   the gradient image of I. The initial matrix field can be computed as the tensor 
product 0J I I Τ= ∇ ⋅∇ . To incorporate the neighboring structural information into the 

given position, an averaging kernel could be used to smooth each element of J0. Usu-
ally a Gaussian kernel Kρ with standard deviation ρ is employed for this purpose: 

 0*J K Jρ ρ=  (5)

where symbol “*” means convolution. Since convolution is a linear operator, the 
structure tensor Jρ is referred to as linear structure tensor [11]. It is a symmetric, posi-
tive semi-definite matrix. Comparing Eq. (3) with Eq. (5), we see that the matrix Aρ in 
Harris corner detector is actually the linear structure tensor Jρ at pixel (x0, y0). 

In Harris corner detector [1], the “cornerness” of a pixel (x,y) is totally determined 
by its local structure tensor Jρ(x,y). However, the smoothing kernel Kρ has two prob-
lems. First, the isotropic smoothing operation will smooth some weak corner features 
out so that the detection capability is decreased. Second, the localization accuracy of 
detected corner points will be reduced, which is a well-known problem of the Harris 
corner detector. Intuitively, if the local structure tensor can better preserve the local 
structural information at (x,y), the cornerness measured from it should be more reli-
able and accurate.  

 

Fig. 1. Weight distributions in a neighborhood of a corner pixel. (a) An artificial image with an 
ideal corner (red circle); (b) weights distribution by using the Gaussian kernel Kρ; (c) weights 
distribution by using the proposed bilateral weighting function Nρ,σ. 

As an early denoising technique, Gaussian smoothing is simple but it will over-
blur the image details. The Gaussian weighting kernel only uses the notation of spatial 
location in the weights assignment. The greater the spatial distance from a neighbor-
ing pixel to the central pixel, the smaller the averaging weight will be assigned. The 
intensity similarity between the pixels is not exploited in Gaussian smoothing. In [10], 
the bilateral filter was proposed, which employs both the spatial and intensity simi-
larities between pixels in averaging weight design. It has been shown that bilateral 
filtering could significantly improve the edge structure preservation while removing 
noise [10]. 
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Inspired by the success of bilateral filters in image denoising, in this paper we con-
struct a bilateral structure tensor for better corner detection performance. There are 
two basic factors in the formation of a local pattern: the relative positions between 
neighboring pixels and the intensity variations between them. Therefore, in the 
smoothing of J0, we should consider both the spatial distance and the gradient dis-
tance in the averaging weight assignment. In the original Harris corner detector, only 
the spatial distance is considered by applying a Gaussian smoothing kernel Kρ to 

I I Τ∇ ∇ . In this paper, we will also involve the gradient distance in the smoothing of 
I I Τ∇ ∇ . 

Here, the gradient distance from the position (xi, yi) to the central position (x0, y0) 
is defined as: 

( ) ( )2 2

0 0
g h h v v
i i id = ∇ −∇ + ∇ −∇  (6)

The spatial distance from (xi, yi) to (x0, y0) is the same as in the original Harris corner 
detector: 

( ) ( )2 2

0 0
s
i i id x x y y= − + −  (7)

By considering both the spatial and gradient distances into the assignment of averag-
ing weight, we define the following bilateral weighting function for each pixel  
(xi, yi)∈W: 
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where ρ and σ are the parameters to control the decaying speeds over spatial and 
gradient distances, and 
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is the normalization factor.   
Fig. 1 shows an example to illustrate the weight distributions by using the Gaus-

sian kernel Kρ and the proposed function Nρ,σ. Fig. 1-a is an artificial image with an 
ideal corner in the center, which is marked by a red circle. The size of local window 
W for smoothing is set as 21×21. Figs. 1-b and 1-c illustrate the weight distributions 
for the pixels within W by using the Gaussian kernel Kρ and the proposed bilateral 
weighting function Nρ,σ, respectively. It is clearly seen that Kρ is isotropic and is inde-
pendent of the image local structure, while Nρ,σ is anisotropic and is adaptive to the 
image local pattern. In this example, the edge pixels have higher weights than the 
non-edge pixels because they are more similar to the examined corner pixel in terms 
of gradient. Meanwhile, for the pixels lying on the same edge, the ones near to the 
corner pixel have higher weights than the others because they have shorter spatial 
distances to the corner point. 

With the nonlinear bilateral weighting function Nρ,σ, the nonlinear bilateral struc-
ture tensor is defined as: 
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The corner detection is based on the analysis of the above defined nonlinear bilateral 
structure tensor Aρ,σ. Similar to the original Harris corner detector, we calculate the 
response function R(Aρ,σ) = det(Aρ,σ)−k·trace2(Aρ,σ) to determine if a corner point exists 
in the current position. 

3.2   Multi-scale Filtering 

Because the proposed nonlinear bilateral structure tensor Aρ,σ incorporates the local 
gradient information in the structure tensor construction, it could achieve much higher 
true detection and localization accuracies than the linear structure tensor used in the 
original Harris corner detector. However, it is also sensitive to some trivial structures. 
Due to digitization in the square grid, in discrete images often the ramp edges will 
show corner-like trivial structures in a fine scale. Those trivial structures will be en-
hanced by the proposed nonlinear structure tensor Aρ,σ and they may be falsely de-
tected as true corners. Fig. 2-a shows an example. We can see many false detections 
along the ramp edge by using Aρ,σ. To solve this problem, we propose a multi-scale 
filtering scheme to filter out those small scale trivial structures.  

 
                      (a)                                   (b)   (c) 

Fig. 2. (a) Corner candidates before multi-scale filtering; (b) final corner detection result after 
multi-scale filtering; (c) Relative cornerness ratio (RCR) curves of two true corners (blue 
curves) and two trivial corners (red curves); 

Suppose that we have obtained some corner candidates with the proposed nonlin-
ear structure tensor. We will distinguish the trivial corner-like structures from the true 
corners by their different cornerness characteristics at multiple image scales. The 
images at different scales can be obtained by smoothing the original image I with a 
series of Gaussian kernels Kς with different standard deviations ς. By increasing the 
values of ς, a fine to coarse scale space can be formed. The underlying principle for 
our multi-scale filtering scheme is as follows. If a trivial structure is detected as a 
corner at a fine scale, the cornerness of this point should decrease rapidly with the 
increase of scale ς because it will be smoothed out by Kς. On the contrary, if a true 
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corner point is detected at a fine scale, the cornerness of it will decrease smoothly 
with the increase of ς because it will appear in a wide range of scales.  

Denote by R0 the cornerness of a corner candidate measured by Eq. (4) at the fin-
est scale 0, and by Rς its cornerness measured at scale ς. We define the relative cor-
nerness ratio (RCR) as 

0/r R Rς ς=  (11)

Fig. 2-c shows the RCR curves of two true corner points (blue curves) and two trivial 
corner points (red curves). From this figure we can clearly see that the RCR of false 
corners will decay much faster than the RCR of true corners. 

Based on the different behaviors of true corners and trivial corners in the scale 
space, we are able to tell them to remove false and trivial corners. Suppose we use L 
scales in the multi-scale filtering. A candidate corner point is recognized as a true 
corner point if  

1

( )
L

l

r l Tς
=

≥∑  (12)

where T is a threshold. Fig. 2-b shows the final corner detection result after multi-
scale filtering (L=3). We see that many false corners detected in Fig. 2-a are removed 
in Fig. 2-b without affecting the true corners. 

4   Experimental Results 

Experiments were performed on 3 standard test images. The ground truth corner 
points were manually labeled. For the artificial test image (refer to Fig. 3-a3), it is 
easy to identify these reference corners and the locations of corners can be accurately 
located. However, for real test images blocks (refer to Fig. 3-a1) and house (refer to 
Fig. 3-a2), it is nearly impossible to give absolutely accurate corner locations. There-
fore, we only computed the localization accuracy for the artificial test image, while 
computed the detection accuracy for all the three test images. The code can be found 
at http://www.comp.polyu.edu.hk/~cslzhang/MBST_CD/.  

The proposed corner detector was compared with four representative algorithms: 
Harris [1], SUSAN [5], Enhanced CSS [8] and the nonlinear structure tensor based 
method [11]. In [11], the authors proposed two different ways to construct a nonlinear 
structure tensor: one is by isotropic diffusion and the other is by anisotropic diffusion. 
In this paper, we compared the result given by the isotropic diffusion because it 
achieves similar result to that by anisotropic diffusion but has much less computa-
tional cost. We refer to it as INLST for short in the following. For the four methods 
used in comparison, we tuned the parameters so that the best corner detection results 
were obtained.  

The proposed method has several parameters. The parameter ρ (referring to Eq. 
(8)) is adaptively determined based on the size of window W, i.e. the spatial range, 
according to the 3-sigma principle of Gaussian function. Similarly, the parameter σ 
(referring to Eq. (8)) is fixed by the range of dg 

i  (referring to Eq. (6)), i.e. the gradient 
range, according to the 3-sigma principle. In the multi-scale filtering, we empirically 
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find that it is insensitive to the scale selection and usually 3~5 scales are enough. 
Thus, in our experiments we used 3 scales and the same threshold for all the test im-
ages: ς1=0.6, ς2=1.0, ς3=1.4 and T=1.0 (referring to Eq. (11) and Eq. (12)). Finally, the 
parameters left to set are the window size W and coefficient k (referring to Eq. (4)). In 
this paper they were set as follows: for the artificial test image, W=5×5 and k=0.04; 
for the blocks test image, W=21×21 and k=0.02; and for the house test image, 
W=13×13 and k=0.02. 

Denote by Cref the set of reference (ground truth) corners and by Cdet the set of de-
tected corners by a particular detector. Denote by dmax the maximal acceptable dis-
tance between the reference corner and the detected corner. In this paper, we set  
dmax=4(pixels). For a pair of corner points i refC C∈  and j detC C∈ , if the distance di,j  

between Ci and Cj is minimum for ,i j∀  and ,i j maxd d≤ , then Cj is labeled as a “cor-

rect” detection of Ci. Otherwise, Ci is labeled as “missed”. The corners labeled as 
“missed” in Cref are considered as true corners but not detected, and the remaining 
corners in Cdet are considered to be the “false” detections. The localization error is the 
average of all the distances di,j for the corners detected correctly. 

The experimental results are summarized in Table 1 and Fig. 3. The classical Har-
ris corner detector performs moderately well with respect to the true detection rate. 
However, it loses some weak corners, which can be clearly seen in Fig. 3-b1 and Fig. 
3-b2. SUSAN performs very well on the artificial test image whereas its performance 
on the natural images is not so good. For the enhanced CSS method, its detection rate 
and localization accuracy heavily depend on the output of the contour extraction. If an 
actual connected contour is broken up by the contour extraction step, more false cor-
ner points would be detected since the algorithm regards the line endings as corner 
points. Table 1 shows that INLST has better localization performance than Harris, 
SUSAN and Enhanced CSS. However, it is sensitive to noise and trivial structures 
and has much false detection. The proposed method performs the best in terms of both 
detection rate and localization accuracy.  

Table 1. Evaluation results on test images 

artificial blocks house 
Method cor-

rect 
miss
-ed 

false 
location 

error 
cor-
rect 

missed false 
cor-
rect 

missed false 

Harris 78 0 0 1.1347 52 8 3 57 20 46 
SUSAN 78 0 0 1.0982 48 12 15 62 15 27 

Enhanced CSS 76 2 3 1.6992 55 5 8 50 27 11 
INLST 78 1 52 0.6235 55 5 5 57 20 12 

Proposed 78 0 0 0.4187 57 3 0 64 13 4 

 
Among the tested detectors, SUSAN is the fastest one. The proposed method is 

slower than the other ones because it needs to compute the weight function Nρ,σ for 
each pixel. In the future we will investigate how to reduce the computational cost 
without sacrificing much the accuracy.  
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                       a1                                               b1                                             c1  

 
                       d1                                               e1                                             f1 

 
                       a2                                              b2                                             c2 

 
                       d2                                               e2                                             f2 

 
                       a3                                                b3                                              c3 

 
                       d3                                               e3                                               f3 

Fig. 3. Experimental results on 3 test images. (ai) ground truth; (bi) Harris; (ci) SUSAN; (di) 
enhanced CSS; (ei) INLST; (fi) the proposed method. 
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5   Conclusions 

In this paper, we proposed a corner detection algorithm by constructing a nonlinear 
bilateral structure tensor, which exploits both the spatial distances and the gradient 
distances from the neighboring pixels to the central pixel to be examined. Moreover, 
in order to remove the trivial corner-like structures, a multi-scale filtering scheme was 
developed. Experimental results on some standard test images show the effectiveness 
of the proposed corner detector in terms of both detection rate and localization accu-
racy. However, it should be noted that the computational cost of the proposed algo-
rithm is higher than the other detectors. It can be a choice when the speed of corner 
detection is not a great concern but the accuracy is of the most importance.  
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Abstract. Histogram of Oriented Gradients (HOG) is a well-known fea-

ture for pedestrian recognition which describes object appearance as local

histograms of gradient orientation. However, it is incapable of describing

higher-order properties of object appearance. In this paper we present

a second-order HOG feature which attempts to capture second-order

properties of object appearance by estimating the pairwise relationships

among spatially neighbor components of HOG feature. In our prelimi-

nary experiments, we found that using harmonic-mean or min function to

measure pairwise relationship gives satisfactory results. We demonstrate

that the proposed second-order HOG feature can significantly improve

the HOG feature on several pedestrian datasets, and it is also competitive

to other second-order features including GLAC and CoHOG.

1 Introduction

Pedestrian detection receives a growing interest in the field of computer vision.
While it is effortless to implement a real-time pedestrian detection system since
Viola and Jones’s seminal work on Haar wavelet features and cascading Adaboost
[1]. However, using Haar-like features will inevitably result in a significant num-
ber of wrong detections. In order to eliminate these wrong detections, the latter
stage of classification needs to adopt stronger image features which are more
discriminative for recognition, such as HOG feature.

Histograms of Oriented Gradients (HOG) proposed by Dalal and Triggs is
one of the most popular features for pedestrian detection [2] which describes
object appearance by a combination of local histograms of gradient orientation.
The HOG feature enjoys many advantages such as its invariance to photometric
transformation and small individual body movement. However, because HOG
feature only extracts first-order histogram statistics of local object appearance,
images with non-pedestrian content may be wrongly classified when they gener-
ate pedestrian-like first-order statistics. In this paper we propose a second-order
HOG feature which describes object appearance by a combination of local pair-
wise relationships among components of HOG feature. We demonstrate that the
proposed second-order HOG feature can significantly outperform the original
HOG feature on several pedestrian datasets.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 628–634, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper is organized as follows: section 2 reviews some related works on
pedestrian detection; section 3 presents the detail of the proposed second-order
HOG feature; experimental results are shown in section 4 and finally, section 5
concludes the paper with some final remarks.

2 Related Works

There is an extensive literature on human detection, here we just mention some
of the representative works and also some works related to our method.

Viola and Jones proposed a rapid object detection framework based on Haar
wavelet features and an Adaboost classification cascade [1]. Later, Edgelet [3],
HOG [4], Covariance [5] and mixing of above features [6,7] have been integrated
into the Viola-Jones’ framework, obtaining better detection rates. Besides, incor-
porating auxiliary information like spatial context and depth cues has recently
shown benefits in reducing false detections [8,9].

Since human body is a combination of parts, many part-based methods have
been presented. Papageorgiou and Poggio learned a polynomial SVM classifier
using Haar wavelets per part and integrated classification scores using a second-
stage SVM [10]. Shashua et al. learned multiple linear classifiers using HOG-like
gradient features per part and integrated classification scores using a second-
stage Adaboost [11]. More recently, Felzenszwalb et al. proposed a multi-scale
and deformable SVM-based part model using HOG features [12].

Gradient Local Auto-Correlations (GLAC) [13] and Co-occurrence Histograms
of Oriented Gradients (CoHOG) [14] are two methods related to our work which
represent object appearance by a combination of local second-order histograms
of gradient orientation. They divide image into small regions, and for each region
they calculate joint histograms for various patterns of neighbor pixels, like up-
down,left-right, etc.. Our method presented in this paper differs from them as ours
extracts second-order statistics at region level rather than at pixel level done by
them.

3 Second-Order Histograms of Oriented Gradients

In HOG feature, each component represents the accumulated gradient magnitude
in each orientation within a region. Instead of using these components directly,
we attempt to estimate pairwise relationships among them.

Figure 1 shows the comparison between the proposed second-order HOG and
HOG features. The process of computing second-order HOG feature is as follow:
(1) divide the input image into dense grids, called cells; (2) create histogram
of gradient orientations for each cell; (3) compute pairwise relationships among
histogram components in a (non-)overlapping block1, (a block means a larger
region containing spatially-connected cells); (4) apply block normalization to
pairwise relationship vector. The combination of all pairwise relationship vectors

1 In case of overlapping block, each cell contributes more than once to the final feature.
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Fig. 1. Comparison between second-order HOG feature and original HOG feature

Fig. 2. Pairwise relationships among histogram components

across the image represents the second-order HOG feature. In the following two
subsections, we explain the two key steps, step2 and step3, in detail.

3.1 Histogram of Gradient Orientations

Each pixel within the cell casts a weighted vote for corresponding histogram bin
based on its gradient magnitude and orientation. The orientation bins of each
cell histogram are evenly spaced over 0◦ ∼ 180◦ or 0◦ ∼ 360◦ depending on
whether the signs of gradient are informative or not. The gradient is computed
by 1-D derivatives([−1; 1], [−1; 0; 1] ) or 2-D derivatives like sobel masks.

3.2 Pairwise Relationships among Histogram Components

In the previous step, the corresponding histogram of gradient orientations for
each cell is calculated. For a given cell i, we denote its cell histogram by hi =
[hi1, . . . , hin], in which n indicates the number of orientation bins. Then, the
spatially-connected m cells are grouped into a block, so the block histogram is
the combination of relevant cell histograms, H = [h1,h2, . . . ,hm]. We enumerate
all pairwise combinations of components in block histogram H (see a illustration
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Table 1. The specification of experiment datasets

Dataset Type Daimler-Chrysler Near-infrared (day) Near-infrared (night)

Training data 4800 × 3 pedestrian 5000 pedestrian 5000 pedestrian

5000 × 3 non-pedestrian 5000 non-pedestrian 5000 non-pedestrian

Test data 4800 × 2 pedestrian 5000 pedestrian 5000 non-pedestrian

5000 × 2 non-pedestrian 5000 non-pedestrian 5000 non-pedestrian

Image size 18 × 36 pixels 30 × 60 pixels 30 × 60 pixels

in Fig.2). The pairwise relationships between these combinations are measured
in terms of a predefined function f(·, ·). This results in a pairwise relationship
vector like

[f(h11, h11), . . . , f(h11, hmn), f(h12, h12), . . . , f(h12, hmn), . . . , f(hmn, hmn)] .(1)

The function f(·, ·) to measure the degree of relationship could be any metric
function. Here, three functions including (1) harmonic mean ( 2h1h2

h1+h2
), (2) min

(min(h1, h2)) and (3) product (h1h2) are considered.

4 Experimental Results

We conduct experiments on three datasets: Daimler-Chrysler dataset[15] and two
near-infrared datasets. The Daimler-Chrysler dataset has been widely used as a
benchmark dataset in performance comparison. The two near-infrared datasets
are collected by us in the daytime and at nighttime respectively. The specification
of the three datasets are listed in Fig. 1.

In the experiments, apart from the proposed second-order HOG feature, we
also implement and evaluated three image features: HOG, GLAC and CoHOG.
The latter two features are two implementations of pixel-based joint gradient
histograms that are recently reported state-of-the-art performances on Daimler-
Chrysler dataset. In order to make fair comparisons for four classes of features,
we use the same parameter setting: (1) roberts gradient filter; (2) 8 orientation
bins in 0 ∼ 360 degrees; (3) image division in 3×6 non-overlapping for CoHOG2

and 5× 11 overlapping blocks for others; (4) block-wise normalization based on
L2-norm scheme; (5) each block consisting of 2 × 2 cells for HOG and second-
order HOG. We used linear SVM as classification tool for training and testing
of these features.

The Daimler-Chrysler Benchmark dataset is divided into five disjoint sets,
three for training and two for testing. Each set consists of 4, 800 pedestrian ex-
amples and 5, 000 non-pedestrian examples. Two out of the three training sets
are used for training and the third training set is used for cross validation. Thus
we obtain three SVM classifiers. Applying three classifiers to two test sets yields

2 In case of overlapping block, the feature dimensions of CoHOG are too huge to be

handled by our computer.
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(b) Function comparison (DC)
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(c) Feature comparison (Daytime)
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(d) Function comparison (Daytime)
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(e) Feature comparison (Nighttime)
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(f) Function comparison (Nighttime)

Fig. 3. The ROC curves on the left columns show the performances achieved by the

second-order HOG and other features. The ROC curves on the right columns show per-

formance change over different functions used for measuring pairwise relationship. From

top to down, Daimler-Chrysler dataset (DC), daytime near-infrared dataset (Daytime)

and nighttime near-infrared dataset (Nighttime).
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Table 2. The comparison of features dimensions

Feature Type HOG Second-order HOG GLAC CoHOG

Dimensions 1,760 29,040 14,080 34,704

6 ROC curves from which we calculate the mean ROC curve. The mean ROC
curves by four classes of features are plotted in the Fig.3(a). Our second-order
HOG (using harmonic mean function) significantly improve HOG about 6 ∼ 15%
at different false positive rates, outperforming GLAC and CoHOG. To the best
of our knowledge, the performance achieved by second-order HOG is also the
best results that have ever been published to date.

The daytime/nighttime near-infrared dataset consists of one training set and
one test set. Each set consists of 5000 pedestrian and 5000 non-pedestrian ex-
amples. Linear SVM Classifier is learned on daytime/nighttime training set by
cross validation. Applying the learned SVM classifier to daytime/nighttime test
set generates the classification results and the ROC curves are summarized in
Fig.3(c) (for daytime dataset) and Fig.3(e) (for nighttime dataset). The clas-
sification performance achieved on the nighttime dataset is similar to that ob-
tained on the Daimler-Chrysler dataset. However, the classification performance
achieved on the daytime dataset is not that desirable, probably due to a lot
of indistinguishable samples being contained in the test set. For both cases of
the daytime and the nighttime near-infrared datasets, the proposed second-order
HOG significantly improves HOG and is slightly better than GLAC and CoHOG.

We also investigate the performance difference of different functions for es-
timating pairwise relationship in the second-order HOG. The ROC curves on
three datasets are plotted on Fig.3(b), Fig.3(d) and Fig.3(f), respectively. Over-
all, the harmonic-mean and min functions achieve similar performances, better
than the one by product function. The performance gains by harmonic-mean
and min functions are probably due to that: (1) they are nonlinear functions
and (2) they are appropriate for histogram comparison.

Table 2 lists the dimensions of four classes of features. The second-order HOG
is about 16 times larger than HOG, about twice larger than GLAC and smaller
than CoHOG. The region-based second-order HOG feature is supposed to be
computationally efficient than other GLAC and CoHOG because they need to
compute joint histograms for different arrangements of neighbor pixels.

5 Conclusion

The higher-order properties of object appearance are important cues for object
detection. In this paper we present a second-order HOG feature which extends
the well-known HOG feature to be able to describe second-order properties of
local object appearance. The second-order HOG feature is implemented by esti-
mating the pairwise relationships among spatially neighbor components in HOG
feature. Experimental results on several pedestrian datasets show that the new
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feature significantly improves the HOG feature and slightly outperforms other
second-order features.

Our current work is to do detailed investigation of the performance with regard
to different metrics. In addition, we are planing to develop a second-order SIFT.
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Abstract. This work investigates the problem of automatic and robust

fabric defect detection and classification which are more essential and

important in assuring the fabric quality. Two characteristics of this work

are: first, a new scheme combining Gabor filters and Gaussian mixture

model (GMM) is proposed for fabric defect detection and classification.

In detection, the foreground mask and texture features are extracted us-

ing Gabor filters. In classification, a GMM based classifier is trained and

assigns each foreground pixel to known classes. The second characteris-

tic of this work is the test data is actually collected from Qinfeng textile

factory, China, including nine different fabric defects with more than

1000 samples. All the evaluation of our method is based on these actual

fabric images and the experimental results show the proposed algorithm

achieved satisfied performance.

1 Introduction

Automatic visual inspection (AVI) [1] plays an important role in modern textile
industry. It is reported that a sophisticated worker at most could detect 60-70
percent of all defects at a very low speed. Thus, it is desirable for a system to
achieve an accuracy up to 90 percent with much faster speed. In AVI, fabric
texture analysis has attracted much attention.

A great many methods of texture analysis have been investigated during the
past several decades. Generally, defect detection techniques have been classi-
fied into statistical, spectral and model-based categories [1, 4, 5]. Among them,
spectral methods are the most widely adopted in application. There are Fourier
transform, wavelets and Gabor filters [4]. Studies on human vision supported
the multi-resolution analysis, which motivated the prevalence of Gabor filters.
In addition, Gabor filters have tunable angular and axial frequency bandwidths,
tunable center frequencies, and can achieve optimal joint resolution in spatial
and frequency domain.

In texture classification, according to Randen [6], Bayes classifiers, nearest
neighbor and neural networks are commonly used as effective classifiers for
texture classification. When texture image is decomposed through wavelets,
Gaussian distribution is found in sub-band statistics, which are related to the
structure of texture. Besides, the linear combination of several Gaussian
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distributions can approximate any distribution very well. Consequently, we pre-
fer Gaussian Mixture model (GMM) [3] to model the defect texture.

In ref. [3], wavelet packet frame and Gaussian mixture model are used for
texture classification. Features of texture are extracted by wavelet packet frame
and then sent into the GMM based classifier for classification. However, this
feature extraction method is not suitable for fabric image with local defect.
In contrast, Gabor filters have an excellent ability to locate the local fabric
defect precisely. Meanwhile, it can describe the defect in any orientation and
scale from spatial or frequency domain, which is more flexible than the wavelet
packet frame. In this paper, we propose a new method for fabric defect detection
and classification using Gabor filters and Gaussian mixture models. To our best
knowledge, it is the first time that GMM is applied in the classification of fabric
defects.

The rest of the paper is organized as follows. Section 2 introduces the fabric
defect detection using Gabor filters. Section 3 introduces the defect classification
based on GMM. Section 4 gives the experiment and analysis. Section 5 presents
the conclusion.

2 Defect Detection Using Gabor Filters

2.1 Improved Gabor Filters

A 2-D Gabor function (1) is a complex exponential modulated by a Gaussian
function [4], which can form a complete but non-orthogonal basis set.

f(x, y) =
1

2πσxσy
exp[−1

2
(
x2

σ2
x

+
y2

σ2
y

)] exp(j2πfx) (1)

where σx and σy are the envelops along the x and y axes, f is the central
frequency of this Gabor function, j =

√
−1.

In most cases, a reasonable design is to select a set of circularly symmetric
Gabor filters, i.e., σx = σy = σ. Here we adopt a relation between spatial envelop
and central frequency f = 1/(α∗σ), where α is a constant that controls the ratio
between central frequency and bandwidth.

A bank of Gabor filters gi(x′, y′), i = 1, 2, . . . , S × L, can be obtained by
dilation (scale) and rotation (orientation) of g(x, y), where (x′, y′) are the co-
ordinates rotated by θ. To make the algorithm more robust against brightness,
a discrete Gabor filter gi(x′, y′) is turned to zero DC [7] using the following
formula:

gi(x
′, y′) = gi(x′, y′)−mean[gi(x′, y′)] (2)

For a given image I(x, y), its magnitude response is its convolution with gi(x
′, y′).

2.2 Optimal Output Selection

Fabric defect is of strong orientation and different scale so it can react remarkably
to certain appropriate Gabor filters. Here, we use an easy and effective method
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proposed by Kumar [4] to choose an optimal output to best describe the defect.
(1) The initial image I(x, y) is divided into K non-overlapping square regions
with the same size; (2) To calculate the mean value of each square region in the
ith output and acquire its maximum value Di

max and the minimum value Di
min;

(3) A cost function as equation (3) is applied to evaluating the output of each
filter:

J(i) = (
Di

max −Di
min

Di
min

) (3)

Finally, the channel which gives the maximum output of the cost function is
chosen as the optimal one and denoted as Iopt(x, y).

2.3 Binarization

The optimal result which is a gray image is to be converted into a binary image.
Following ref. [5], we use a Gaussian lowpass filter which is related to the central
frequency of the Gabor filter to reduce speckle-like noise. The threshold limits
can be determined by filtering a defect-free (reference) image with the optimal
Gabor filter and a smoothing filter to obtain a new imageBref :⎧⎨⎩λmax = max

x,y∈W
Bref (x, y)

λmin = min
x,y∈W

Bref (x, y) (4)

where W is a window centered in the image to avoid the distortion of convolution
caused in the edge. The binary process of Iopt(x, y)can be conducted as the
following step:

mask(x, y) =
{

1, Iopt(x, y) > λmaxorIopt(x, y) < λmin

0, λmin ≤ Iopt(x, y) ≤ λmax
(5)

In this binary mask, the region of defect is white and the rest is black, which
give us the accurate information of defect’s location.

Fig. 1. Approximation of gray-level histogram of fabric defect in one Gabor channel
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Fig. 2. The configuration of the neighborhood for each pixel [2]

3 Defect Classification Using GMM

In the detection phase, we choose an optimal output from the Gabor filtered
results and convert it into a binary mask to acquire its precise location. In
classification, we use GMM to describe the gray-level distribution of each pixel
in the defect region. Generally, GMM can approximate any distribution using
weighed sum of three or more Gaussian distributions. The histogram of the
fabric defect in sub-channel shows good conformity by the approximation of
GMM in fig.1. In this phase, we first extract a set of features and these features
will provide unique characteristic to each defect pattern. Second, these features
are used for the training of corresponding GMM of each defect, which is the
composition of the classifier for the classification of unknown defects.

3.1 Feature Extraction

In this paper, we employ 5 features: mean, variance, 1-norm, 2-norm and entropy
to characterize the neighborhood information of texture pattern.

F i
mean =

1
25

∑
x,y∈neighbor

Ii(x, y) (6)

F i
var =

1
25

∑
x,y∈neighbor

(Ii(x, y)− F i
mean)2 (7)

F i
norm1 =

1
25

∑
x,y∈neighbor

|Ii(x, y)| (8)

F i
norm2 =

1
25

∑
x,y∈neighbor

|Ii(x, y)|2 (9)

F i
entropy =

1
25

∑
x,y∈neighbor

|Ii(x, y)|2log|Ii(x, y)|2 (10)

Generally, the larger the size of the neighborhood, the more precise the texture
feature is. The configuration of an appropriate neighborhood is suggested using
7× 7 pixels with 25 effective elements [2] shown in fig.2. The above features are
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Fig. 3. Samples of nine defects

computed from the Gabor filtered outputs of all channels and the dimension is
significant. Thus, PCA is required to reduce the dimension of the feature vector
for the input and the training of GMM based classifier. It’s efficient to keep the
important information such as the dominant orientation of fabric defects. More
important is that the transformed feature vector is uncorrelated with each other.
We only keep those principle components which contribute dominantly to the
total variance.

3.2 GMM Based Classification

In this modeling method, it is supposed that any distribution p can be described
through the linear combination of several Gaussian distributions with varying
mean μ and covariance matrix Σ .

p(x) =
N∑

i=1

βigi(x;μi, Σi) (11)

N∑
i=1

βi = 1 (12)

whereN is the number of models, β is the weight to each Gaussian distribution g.
The detailed description for training GMM can be found in ref. [3], the most

important of which is the expectation maximum (EM) criterion. Here, we care
more about a way proposed by A.Bouman [8] to determine the precise number
of the GMM needed for a distribution. First, an initial number of clusters is set,
which is big enough to cover the possible situations. Then we follow the EM cri-
terion to train the Gaussian mixture model. Based on the minimum description
length (MDL) estimator suggested by Rissanen, some clusters will be combined
and an appropriate number can be finally determined.

To each kind of fabric defect, a set of sample images are used to train its
corresponding Gaussian mixture model GMMi, i = 1, 2, . . . ,L, where L is the
number of the defect class. All these GMMs compose of a classifier. The proba-
bility of newly extracted feature vector is estimated to each GMM. The outputs
of all feature vectors are summed up to each model. In the decision unit, the
model which produces the maximum sum is determined as the class which the
defect belongs to.
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Fig. 4. (a) Fabric sample with defect D1, D2 and D3 in the first row respectively;

corresponding optimal result using Gabor filters in the second row; binary masks in

the third row; (b) the cost function corresponding to defects in (a)

4 Experiment and Analysis

Our experimental images are acquired using industrial monitors from Qinfeng
textile factory, China. These images are in the size of 256 × 256 pixels with
8 bit resolution. Our database includes 300 normal images and 720 defective
images. Normal images are those which contain no defect or defect smaller in
size than the requirement. Nine different kinds of defects are D1 (coarse pick),
D2 (bamboo), D3 (cotton), D4 (junk), D5 (end missing), D6 (weft missing),
D7 (double weft), D8 (slime spots) and D9 (wrinkle) respectively shown in
fig.3.

4.1 Defect Detection

Each of the filters in the Gabor filter bank is implemented as an 11×11 convolu-
tion mask for each of its real and imaginary components. The central frequencies
are chosen as 1/2, 1/4, 1/8 and 1/16. The number of orientation is 6, which is
equally divided between 0 and 180. α = 2. Each of these images is divided into
64 non-overlapping regions. Segmentation results of 3 classes D1, D2 and D3 are
shown in fig.4 (a) and the cost function of each image in (b).

In fig.4 (b), the numbering scheme for each Gabor filter on the horizontal
axis is (p − 1) × 6 + q, p = 1, 2, 3, 4; q = 1, 2, . . . , 6. Samples D1, D2 and D3
achieve their peaks in the number 16, 19 and 19 filter respectively. Taken D1 as
an example, the order of the maximum output is 16, which means this optimal
filter is in the 3rd scale and 4th orientation. More segmentation results for defect
D4-D9 are shown in fig.5.
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Fig. 5. More samples and their segmentation results, from left to right, they are D4-D9

In this part, several factors may influence the performance of segmentation.
The frequency range of the Gabor filter bank is required to cover defects as much
as possible. We always have the dilemma between the accuracy and computa-
tion. One measure is to choose several frequencies of interest from some prior
knowledge. Another issue is the block size for optimal Gabor output selection.
Its size must be able to cover defect and defect-free regions separately, so that
the discrimination between the two cases can be maximized.

4.2 Defect Classification

We train the Gaussian mixture based classifier using half of the images in each
class and the other half are for test. To each defect image, we think that the
pixels in the mask belong to some unknown defect. In the outputs from 24
Gabor filter channels, we extract the feature of unknown defect pixel-wisely.
We experiment on three combinations of features (6-10): (1) mean, variance;
(2) mean, variance, entropy; (3) all features: mean, variance, entropy, 1-norm,
2-norm. So that the dimension of each feature vector in the three situations are
48, 72 and 120 respectively. PCA is applied to them and 98 percent is set to
determine the variance of required principal components to the whole variance.

To evaluate the performance of the classifier, first we apply 3 Gaussian mixture
models to describe the distribution of each class. The k-means algorithm is used
to determine the initial positions of the cluster centers. The diagonal covariance
matrixes are initialized by means of sample covariance. In our experiment, we
build a classifier with 9 Gaussian mixture models that represent different classes
of defects. Defects of each class are tested by this classifier separately and the rate
of correct classification is shown in fig.6. (a). Second, we use Bouman’ method
as a comparison to evaluate the accurate number of the GMM each class needs.
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Fig. 6. (a) Comparison of performance using 3 different combinations of features. (b)

Comparison of performance using 3 models and full models.

The initial number of GMM is set 20. The comparison of 3 models and Bouman’
method (full models) using features mean and variation is shown in fig.6 (b).

From fig.6 (a), we could see the rate doesn’t improve much due to the increase
of features. With 2 features mean and variance to characterize the defect texture,
the rate has reached an average level more than 85 percent. Three features can
increase the rate about 5 percent more than 2 features to some defects, because
they can give more information than the latter case. While more features will
surely bring more computation load. To certain defect, more important is to
choose an appropriate feature rather than to increase the unrelated features’
number. Fig.6 (b) reveals us some information about the number of GMM.
Under the case with the same features, the classifier with accurate model number
estimation performs better than the classifier with predetermined model number.
It is precise to use Bouman’s method to evaluate an appropriate model number
but time consuming, which is its greatest weakness.

4.3 Comparison with Other Techniques for Fabric Defect
Classification

As we know, AR feature is a very simple and effective operator to capture enough
texture information and has been widely and successfully used in fabric defect
detection and pattern classification [2, 9, 10]. It only uses the gray-level values
of the pixels which can be directly acquired from mask matching technique.
Compared to the feature used in this paper, it can be seen as a raw feature
somewhat without any process. We apply the AR feature according to the binary
mask and use a window the same as fig.2 to move over every pixel in the initial
gray-level image. Every pixel in the defective region is represented by a 25-
dimensional vector corresponding to the gray-level values of the 25 effective
neighborhood pixels. Then it is subject to PCA and fed into GMM for training.
The classification result is shown in fig.7 (a). Although AR feature can cover
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Fig. 7. Classification results using other techniques (a) using AR feature and GMM;

(b) using Gabor feature and SVM

enough texture variance, it shows less regularity and contrast of the texture
than Gabor feature used in this paper. However, it includes some unrelated
information which eliminates the class discrimination. So it only achieves an
average rate of 85 percent and no one surpasses 90 percent.

We also compare the classification ability of GMM with SVM [10]. SVM is
considered for its linear discrimination ability and its superior performance on
small samples. The structure of the classifier using GMM and SVM is imple-
mented almost the same. To the multi-classification problem, for each class, we
train a corresponding SVM. The final result is determined by the SVM which
produces the maximum output. Gaussian function is selected as the kernel func-
tion here and the parameter σ is chosen 0.5 empirically. SVM automatically fix
the support vectors of the training data and its number is always great. In this
experiment, the average number of support vectors for each class is about 2800,
which is much more than the number of GMM for each class. This means in the
SVM based classifier, every feature to be estimated will be subject to more than
2800 × 9 nonlinear transforms, which is much more computationally intensive
than GMM. The comparison of the two classifiers using mean and variance is
shown in fig.7 (b). 3-model GMM is employed for each class. In this figure, the
average rate using SVM is 88 percent, which is a bit higher than 87 percent
using GMM. However, the time cost for GMM and SVM is average 45 and 2.5
seconds respectively. On balance, GMM is more suitable for online classification
than SVM.

5 Conclusions

In this paper, an algorithm of defect detection and classification using Gabor fil-
ters and Gaussian mixture models has been demonstrated. A bank of improved
Gabor filters shows its good performance in fabric defect detection. Then we use
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a simple but effective cost function to determine the optimal output which is
binarized using two thresholds acquired from a normal image. The binary mask
of each defect proves the accuracy of our method. In defect classification, with
the features based on Gabor filters, we train a GMM based classifier considering
different feature combinations. We also find the accurate determination of model
number can improve the performance of classification evidently. Our work is still
needed to be further developed, for example, the database need to be expanded
with more samples of new defects. In order to achieve more accurate classifi-
cation, other forms of defect feature can be considered such as the geological
information of defect. After all, our proposed algorithm can reach an average
accuracy of more than 85 percent in classification of 9 different classes, which
proves its utility in practice.
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Abstract. A novel method for moving object segmentation in the H.264  
compressed domain is proposed. In contrast to all known methods in which 
only motion information is used, the proposed method utilizes some characters 
of H.264 besides motion information with no more decoding required. In the 
proposed method, motion vector is refined firstly by spatial and temporal corre-
lation of motion and initial segmentation is produced by using the motion  
vector difference after global motion estimation. Then, the result of segment-
ation is refined by using intra prediction information in intra-frame. The refined 
result of segmentation is projected to subsequent frame and expansion and  
contraction operation is followed. Experimental results for several H.264 com-
pressed video sequences demonstrate the good segmentation quality of the  
proposed approach. 

Keywords:  Moving Object Segmentation, Compressed Domain, H.264. 

1   Introduction 

Moving object segmentation is an interesting and challenging research topic. It has 
been widely exploited in the various applications such as video surveillance, retrieval 
tasks and scene analysis. In general, object tracking in the pixel domain is more ro-
bust and performs better than compressed domain methods, since more precise infor-
mation is available. Nevertheless, the motivation for compressed domain analysis 
remains and is driven by fast processing speed and the fact that videos are primarily 
stored in compressed form.  

For MPEG compressed domain, moving object segmentation algorithms usually 
rely either on motion vectors (MVs), residual information (DCT coefficients), or both. 
However, for h.264 video stream, full decoding is necessary to get residual informa-
tion, so nothing but MVs is used to segment moving object in all known algorithms.  

In the paper, we propose a novel moving object segmentation algorithm in which 
more coding information besides MV in H.264 compressed domain are used with no 
more decoding required. The main contribution of this paper is twofold. One is that 
spatial and temporal correlation is used to eliminate MVs noise with an improved 
MVs similarity measure formula, especially, a spatial filter based on the partition of 
macroblock is employed. The other one is intra prediction model used to refine object 
segmentation. 
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The paper is organized as follows. First, section 2 reviews some known moving 
object segmentation method in compressed domain. Section 3 describes our approach 
to moving object segmentation in H.264 compressed domain. Experimental results are 
presented in Section 4, and conclusions are given in Section 5. 

2   Related Works 

A large number of compressed domain object segmentation algorithms appeared over 
the years. The most of these algorithms are focus on MPEG compression domain. In 
MPEG compressed video, pictures are encoded in terms of I-frame, P-frame and  
B-frame. P-frames and B-frames store the motion information and residues of the 
motion compensation; I-frame has no motion information but stores the DCT trans-
formed signals of the original image. Thus, I-frame can provide texture or color  
information without decoding. Most of the object segmentation algorithms in com-
pressed domain employ MVs and DCT coefficients to extract moving objects. 

Babu et al. [5] proposed an accumulation of motion vectors (MVs) over time, fol-
lowed by a K-Means clustering to determine the number of objects in the scene and 
the EM algorithm for object segmentation. Wang et al.[8] transformed Gaussian Mix-
ture background model to compressed domain and used the way similar to pixel  
domain to segment moving object. Porikli [6] derived some frequency-temporal fea-
tures from MVs and DCT coefficients for each block, and exploits these features for 
volume growing from homogenous blocks. MVs are then used to estimate an affine 
motion model for each volume, and hierarchical clustering is employed to iteratively 
merge volumes with similar motion into different video objects. Manerba et al. [7] 
proposed to combine both motion information and region-based color segmentation to 
extract moving object from MPEG-2 compressed video stream. 

A few algorithms which concentrated on the H.264 compressed domain have pro-
posed recently. Zeng et al. [1] employ a block-based Markov Random Field (MRF) 
model to segment moving objects from the sparse MV field, which is extracted from 
H.264 compressed streams. The proposed method is limited to static cameras. Liu et 
al. [2] use accumulated MVs by iteratively backward projection to enhance the salient 
motion, the residual between the accumulated MVs and global motion vector is used 
to detect foreground object, and a region growing method is employed to segment 
foreground object into different moving object. In [3], those blocks whose MVs is not 
fitted to global motion model are regarded as outlier, and a temporal filter is used to 
remove the noise in outlier.  Then, motion history images are employed to detect 
moving object from the outlier mask. 

3   Moving Object Segmentation in H.264 Compressed Domain 

The flowchart of the proposed moving object segmentation in H.264 compressed 
domain is illustrated in Fig.1. The details are described in the following section. 
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Fig. 1. The flowchart of the proposed moving object segmentation 

3.1   Global Motion Estimation 

Global motion estimation is performed on the MV field. In order to obtain the MV 
values in quarter-pel precision, the entropy coding of H.264 has to be reversed. MBs 
in skip-mode and intra-mode are excluded from the estimation process. We estimate 
the global motion for each video frame. 

A six parameters affine model is adapted as global motion model and is defined as 

0 1 2

3 4 5

x i i

y i i

d a x a y a

d a x a y a

= + +
= + +

 (1)

where Taaaaaa ],,,,,[ 543210 is the affine parameter vector which character the global 

motion, ( )Tii yx , denotes the MB center in pixel coordinate. We estimate the model in 

least squares method. The process is repeated iteratively and outliers that are 4x4 
blocks with large estimation error are discarded after each iteration. It shows that 
convergence is reached after approximately 3 iterations.  

Given the global motion parameter, we can detect the foreground from video by 
the difference between MVs and the global motion. More details are described in the 
following section. 

3.2   Motion Vector Similarity Measure 

To judge the similarity between two motion vectors, an immediate and simplest 
measure is Euclidean distance, however, the differences in only magnitudes and non 
direction is considered. An alternate measure is the cosines of angel between motion 
vectors however, difference in magnitudes is ignored. 

In the paper, it is the same as [10] that each component of MV is half-wave recti-
fied into four non-negative channels. By this way, the angle between two MV has 
been mapped to [0°,90°]. Then, the similarity measure between two MVs is defined as 

[9] (equation (2)). In equation (2), MV + is the rectified motion vector. Equation (2) 
takes into account the differences in both direction and magnitudes between two mo-
tion vectors, and the range of dist  is [0, 1] (1, if two MVs is same; 0, if the  
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direction of two MVs is opposite). Nevertheless, equation (2) is noise sensitive, espe-
cially when motion vector have a small value. 
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(2)

To improve the effectiveness of the equation, we add some addition judge condition 
to the equation. The improved equation is described in equation (3). The effective of 
equation (3) is illustrated in Fig. 2(b) .  
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(3)

Equation (3) is used as similarity measure between two MVs and regard two MVs as 
similar if dist is not less than the predefined threshold (τ ), otherwise, no similar. In 
the paper, τ is set to 0.8. 

       

       

Fig. 2.  The difference motion vector field for the 274th of Coastguard sequence 

Given the similarity measure, the difference MV field is formed as follows: those 
MVs in the current frame similar to global motions are set to 0 and the others are 
subtracted by corresponding global motion vector. Then, the initial segmentation is 
produced by the difference MV field. In Fig.2, the different similarity measure  
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equations (equation (2) and (3)) are used and the results are shown in Fig.2 (a) and 
Fig.2 (b) respectively. 

3.3   MV Field Spatio-temporal Refinement 

In H.264, a macroblock in inter frame can be partitioned into several partitions with 
different block sizes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4). The raw MV field in 
H.264 stream is of variant block size. In order to obtain a uniform sampled MV field, 
the raw MV field is converted into a sparse MV field uniformly sampled at each 4x4 
block.  

Since MVs are issued from a coding-oriented criterion, the MV field is quantized 
and noisy. In order to minimize the singularities, some refinement processes are im-
plemented in space and time.  

Due to motion continuous in temporal domain, these MVs in the current frame 
which are similar to the corresponding MVs in the immediately next frame shall be 
more reliable, especially, for background region, otherwise, the MV is unreliable and 
likely to be a noise MV. Here, a temporal filter is employed to remove these unreli-
able MV in background region. The filter is described as follows. 

( ) ( ),

,

if , ,

otherwise

c
i j ij ij ij ij

ij

i j

GMV dist MV GMV and dist MV GMV
MV

MV

τ τ⎧ < ≥⎪= ⎨
⎪⎩

 (4)

Where ijMV denotes the motion vector of the 4x4 block whose center coordinates is 

ji, . c
ijMV is the corresponding MV of  the ijMV in the immediately next frame, the 

way to compute corresponding MV will be described in the last of  the section. The 
definition of dist  and τ are the same as section 3.2. ( ) τ<ijij GMVMVdist , means 

the ijMV  is not fitted to global motion and the block owning ijMV  doesn’t belongs to 

background. The effective of the filter is illustrated in Fig.2 (c). 
For the spatial refinement, we make use of the conclusion about the reliability of 

MV from [11]. In [11], these MVs which significantly different from all of its 
neighboring motion vectors had been proved to be not reliably. As known that each 
4x4 block in one partition has the same motion vector in H.264 stream, we judge if 
the motion vector in one partition is similar to those of neighboring partitions and 
refine the motion vector according to the judgment. The refinement process is  de-
scribed as: if no similar, the MV in the partition is replaced with the weighted mean of 
the neighboring motion vectors, otherwise, it keeps unchanged. The effective of the 
spatial refinement is illustrated in Fig.2 (d). 

The corresponding MV of the MV in the current frame is calculated as illustrated in 
Fig. 3. After backward projecting the 4x4 block in current frame using the minus MV, 
we compute the overlapping areas between original and projected block. Then, we 
can get MV of corresponding block from these original blocks with respect to the 
ratio of the overlapping area to these block size of these original blocks.   In the paper, 
the MV of corresponding block is called the corresponding MV for short.     
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Fig. 3. The method to calculate corresponding motion vector 

3.4   Object Detection in Intra Frame 

In H.264, Intra frame coding employs spatial prediction to deduce spatial residues, and 
encoder determines a prediction for each block from neighboring pixels in Intra frame. 
Block size for luminance component is 4x4 or 16x16. There are nine prediction models 
for 4x4 blocks and 4 models for 16x16 blocks. Prediction model for each block can be 
easily gotten with only partial decoding required. The nine prediction modes for each 
4x4 luma block are shown in Fig. 4. It can be seen that I4MB prediction is conducted 
for samples a-p of a block using samples A-Q. There are in total eight “prediction 
directions” and one DC prediction mode for I4MB prediction, The name of prediction 
modes and the assigned directions are as follows [4]: Vertical (0), Horizontal (1), DC 
(Mean of neighboring pixels), Diagonal down left (3), Diagonal down right (4), Verti-
cal right (5), Horizontal down(6),Vertical left (7), Horizontal up (8). 

 

 

Fig. 4. (a) I4MB prediction coding is conducted for samples a-p of a block using samples A-Q. 
(b) Eight “prediction directions” for I4MB prediction 

The selected prediction model for a block in intra frame implies the way that pixels 
in the block are related to neighboring pixels of the block. So, we propose to detect 
object with combining prediction model and motion information in intra frame.   

Since the motion vectors for an I-frame block don’t exist, a forward projection is 
used to project the motion vectors of immediate adjoint P-frame to I-frame. After the 
motion vectors projected, a method same as the section 3.2 is used to find the moving 
object and some examples of segmentation results are shown in fig.7. Since not all 
4x4 block contain real motion information (the aperture problem and the limitation of 
codec), the moving objects are not detected completely.   

After segmenting motion object initially using only motion information, a refine-
ment process is implemented depending on the intra prediction model. In the process, 
we regard those blocks which have been previously detected as ‘seed blocks’ and 
check the immediate neighboring blocks of these seed blocks to judge whether some 
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blocks should be add to motion object by the rules described as follows, where Mask , 
MV and GMV are M*N matrix, where M and N denote the width and height of video 
frame in 4x4 block. Mask represents the initial segmentation result. The element of 
Mask  which is equal to zero implies that a block belongs to background, otherwise, 
foreground. Both MV and GMV are used to store MV and global MV for every 4x4 
block respectively. 

The refinement process of segmentation result by using the intra prediction  

If 0=ijMask  and ijij GMVMV ≠  

If( 1=ijMode and 11 =− jiMask )or( 11 =+ jiMode and 1,1 =+ jiMask ) 

    1=ijMask  

End if 
if( 0=ijMode and 11 =−ijMask )or( 01 =+ijMode and 11 =+ijMask )  

  1=ijMask  

End if 
If( 3=ijMode or 7=ijMode )and( 11 =−ijMask and 111 =−+ jiMask ) 

   1=ijMask  

End if 
If ( 4=ijMode or 5=ijMode or 6=ijMode or 2=ijMode ) 

    and( 11 =−ijMask and 11 =− jiMask ) 

1=ijMask  

End if 

End if 

In the rules above, the refinement process using only 4x4 prediction mode is de-
scribed, and the 16x16 prediction mode can be utilized by the similar rules. In addi-
tion, we ignore the planar prediction in 16x16 prediction mode because it shows poor 
directivity and occurs scarcely.  

3.5   Refinement in Non-intra Frame 

When we have gotten the independent moving object in previous frame, the goal to 
the section is to refine the object mask in current frame(non-intra frame). We treat the 
problem as follows. 

These 4x4 blocks in object mask are backward projected to current frame by the 
minus MVs. However, due to the object possibly deform, the previous object mask is 
not always coincident with current moving object. So, a calibration process is neces-
sary to fit object mask to moving object. The process is composed of two steps and is 
described as follows. 
1) Expansion 

The object mask is expanded when some blocks are not covered by the object mask 
but have motion vector similar to the one in the object mask.   
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2) Contraction 
When some blocks are covered by the object mask and have MVs similar to global 

motion, these blocks are eliminated from the moving object.  
It must be mentioned that the MVs used in expansion and contraction have been 

filtered in the space and time as described in section 3.3.   

4   Experiment and Result 

The proposed method has been evaluated on several video sequences compressed 
using the H.264 encoder of JM9. The encoder configuration set as follows: baseline 
profile (including non B frame), the interval of I-frames is 12, quantization parameter 
(QP) is 30, and the MV search range is [-32, 32].  

In Fig.5, the segmentation result is shown from Coastguard sequence. The first 
column illustrates the original frames and the last two columns are the object mask 
and the final result using the proposed method. In addition, the second column is the 
object mask using the method in [2].  It can be seen that the proposed method extracts 
object with more precise edge from two object masks in two middle columns. The 
approach from [2] extracts object correctly, however, with a high false positive. It is 
reason that the motion vectors on the object edge rarely present the real motion.  On 
the other hand, in the proposed method, spatio-temporal filter can exclude these unre-
liable MV and the refinement processes as described in section 3.4 and 3.5 ensure the 
precision of segmentation.   

 

Fig. 5. The result of segmentation in [2]’s approach and the proposed approach. The first row is 
the 1st  frame in  Coastguard and encoded as I-frame. The second row is the 37st frame and 
encoded as P-Frame.  

Furthermore, for the purpose of objective evaluation, two commonly used meas-
urements, i.e. precision and recall, are calculated. The high precision means less over-
segmentation, while high recall means less miss-segmentation. In Fig.6, the precision 
and recall curves of Coastguard sequence for both the proposed approach and the 
approach in [2] are shown. From these curves, it can be clearly seen that the proposed 
approach improves the precision and maintains the recall at the same time. 
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Fig. 6. Precision and recall curves for the two video segmentation approaches. The left figure is 
precision curve, and the right figure is recall curve. 

In Fig. 7, we show the final results of segmentation and intermediate results for 
other sequences. The two frames in the first and third column are intra-fame. For the 
intra frames, the intermediate results are produced by only these projected MVs. The 
final results come from the refinement process using intra prediction information as 
described in section 3.4. For the inter frame, the intermediate results are obtained by 
projecting the object mask from the previous frame. From Fig.7, we can see the pro-
jected object mask is not fitted to the real object completely. By the refinement proc-
ess in non-intra frame, we obtain a precise segmentation result in the end. 

 

Fig. 7.  The results of moving object segmentation for tennis and forman sequence. The first 
row is origin picture, the second is intermediate result, the last is final result. The fist and sec-
ond column is 12st and 17stframe in tennis sequence respectively. The third and fourth column 
is 12st and 17st in foreman sequence respectively.  
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5   Conclusions 

In this paper, we present a novel moving object segmentation algorithm in the H.264 
compressed domain. Partition and intra prediction mode besides motion is used to 
refine the segmentation and no more decoding required. A spatio-temporal filter is 
employed to reduce the MVs noise. The proposed approach is demonstrated to relia-
bly segment moving objects with good quality from the H.264 compressed video. 
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Abstract. We present a novel approach to segmenting video using iter-

ated graph cuts based on spatio-temporal volumes. We use the mean shift

clustering algorithm to build the spatio-temporal volumes with different

bandwidths from the input video. We compute the prior probability ob-

tained by the likelihood from a color histogram and a distance transform

using the segmentation results from graph cuts in the previous process,

and set the probability as the t-link of the graph for the next process.

The proposed method can segment regions of an object with a stepwise

process from global to local segmentation by iterating the graph-cuts

process with mean shift clustering using a different bandwidth. It is pos-

sible to reduce the number of nodes and edges to about 1/25 compared

to the conventional method with the same segmentation rate.

1 Introduction

The video segmentation that extracts object’s region in a video sequence cap-
tured by a hand-held camera is a difficult problem. This technique is extremely
important because it is often used in preprocessing for object recognition, and
gesture recognition.

The interactive graph cuts proposed by Boykov et al. [1][2] haves been used in
recent years for segmenting images. The energy function in interactive graph cuts
is minimized by creating the graph from the correct-answer label and the input
image that the user gave, and using a minimum cut/maximum flow algorithm.
Nagahashi et al proposed image segmentation using iterated graph cuts based
on multi-scale smoothing[3].

This segmentation of image based on graph cuts can be applied to video
segmentation using the same framework. However, the size of the graph for a
video sequence increases because we have to create the graph by making all
pixels in the video. This causes, two main problems, i.e., we need large amounts
of memory and it increases the computation cost. To overcome these problems,
a graph constructed from spatio-temporal volumes has been used to reduce the

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 655–666, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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size of the graph[4][5]. However, it is difficult to precisely video segment video
due to its low resolution.

We propose a method that represents spatio-temporal space as video that
extends the technique of iterated graph cuts based on multi-scale smoothing[3]
to spatio-temporal volumes obtain a stepwise process from global to local seg-
mentation by iteration. Our approach uses mean shift clustering to build the
spatio-temporal volumes with different bandwidths from the input video. We
compute the prior probability obtained by the likelihood from a color histogram
and a distance transform using the segmentation results from graph cuts in the
previous process, and set the probability as the t-link of the graph for the next
process. The proposed method can segment the regions of an object with a
stepwise process from global to local segmentation by iterating the graph-cuts
process with mean shift clustering using different bandwidth.

2 Graph Cuts for Video Segmentation

This section describes the graph-cuts-based segmentation proposed by Boykov
and Jolly[1].

2.1 Graph Cuts for Image Segmentation

An image-segmentation problem can be posed as a binary-labeling problem. Let
us assum that the image is a graph G = (V,E), where V is the set of all nodes
and E is the set of all arcs connecting adjacent nodes. The nodes are usually
pixels p on the image P and the arcs have adjacency relationships with four
or eight connections between neighboring pixels q ∈ N . The labeling problem
is to assign a unique label Li to each node i ∈ V , i.e., Li ∈ {“obj”, “bkg”}.
The solution L = {L1,L2, . . . ,Lp, . . . ,L|P |} can be obtained by minimizing the
Gibbs energy E(L):

E(L) = λ ·
∑
p∈P

Rp(Lp) +
∑

{p,q}∈N

B{p,q} · δ(Lp,Lq) (1)

where

δ(Lp,Lq) =
{

1 if Lp �= Lq

0 otherwise. (2)

The coefficient, λ ≥ 0, in Eq. (1) specifies the relative importance of the region
properties term Rp(Lp) versus the boundary properties term B{p,q}. Regional
term assumes that the individual penalties for assigning pixel p to “obj” and
“bkg”, corresponding to Rp(“obj”) and Rp(“bkg”) are given. For example, Rp(·)
may reflect how the intensity of pixel p fits into a known intensity model (e.g., a
histogram) of the object and background. Term B{p,q} comprises the “boundary”
properties of segmentation L. Coefficient B{p,q} ≥ 0 should be interpreted as a
penalty for the discontinuity between p and q. B{p,q} is normally large when
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pixels p and q are similar (e.g., in intensity) and B{p,q} is close to zero when
these two differ greatly. The penalty B{p,q} can also decrease as a function of
distance between p and q. Costs B{p,q} may be based on the local intensity
gradient, Laplacian zero-crossing, gradient direction, or other criteria.

Table 1 lists the edge cost of the graph. The regional and boundary terms in

Table 1. Edge cost

Edge Cost For

n-link {p, q} B{p,q} {p, q} ∈ N

t-link

λ · Rp(”bkg”) p ∈ P, p ∈/O ∪ B
{p, S} K p ∈ O

0 p ∈ B
λ · Rp(”obj”) p ∈ P, p ∈/O ∪ B

{p, T} 0 p ∈ O
K p ∈ B

Table 1 are calculated by

Rp(“obj”) = − lnPr(Ip|O) (3)
Rp(“bkg”) = − lnPr(Ip|B) (4)

B{p,q} ∝ exp
(
− (Ip − Iq)2

2σ2

)
· 1
dist(p, q)

(5)

K = 1 + max
p∈P

∑
q:{p,q}∈N

B{p,q}. (6)

Let O and B define the “object” and “background” seeds. The seeds are given
by the user. The boundary between the object and the background is segmented
by finding the minimum cost cut [6] on the graph, G.

2.2 Problems with Conventional Method

Interactive Graph Cuts [2] create a graph from video.Thus, the size of the graph
from video increases when placing individual pixels into a node. For example, the
total number of the edges will be 25 million, when the input video is 360× 240
with 100 frames. Therefore, we need copious amounts of memory and it takes a
long time for processing with the minimum cut/maximum flow algorithm. One
common technique of solving such this problem is to reduce the size of the graph
by using a spatio-temporal volume. However, it is difficult to precisely segment
regions and boundaries because segmentation using spatio-temporal volumes has
low resolution. To overcome this problem, we propose a method that represents
spatio-temporal space as video that extends the technique of iterated graph
cuts based on multi-scale smoothing[3] to spatio-temporal volumes to obtain a
stepwise process from global to local segmentation by iteration.
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3 Iterated Graph Cuts Using Spatio-temporal Volumes

3.1 Proposed Method

We extend the technique of iterated graph cuts based on multi-scale smoothing[3]
to spatio-temporal volumes.

Objects that move fast may be divided into different volumes between frames
in a row when using spatio-temporal volumes. Therefore, it is difficult to create
an optimal graph by only using adjoining volumes. To solve these problems, we
introduced two kinds of edges, i.e., a volume that adjoins as an n-link, and a
volume obtained from a search for corresponding points between frames.

Energy Function. A volume pair that adjoins as the n-link, and a volume pair
obtained by searching for the corresponding points between frames are used in
the proposed method. Therefore, we extend the energy function using the graph
cuts discussed Section 2.1 as follows:

E(L) = λ ·
∑
p∈P

Rp(Lp) +
∑

{p,q}∈N

BN{p,q} · δ(Lp,Lq) +
∑

{p,q}∈C

BC{p,q} · δ(Lp,Lq)(7)

where p, q ∈ P is a spatio-temporal volume,N is a neighboring volume of p and C
represents corresponding points between frames. By using BC{p,q} in the energy
function, we obtain robust segmentation results even if divided into different
volume between frames.

Flow of Proposed Method. Figure 1 shows the flow for of the new approach.
First, the seeds, “foreground” and “background”, are given by the user. Next, we
obtain the spatio-temporal volume using mean shift clustering using bandwidth
h. Graph cuts are done to segment the video into an object or a background.
The Gaussian Mixture Model (GMM) is then used to make a color distribution
model for the object and background classes from the segmentation results ob-
tained from the graph cuts. The prior probability is updated from the distance
transform by the object and background classes of GMM. The t-links for the

Fig. 1. Overview of proposed method
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next graph-cuts process are calculated as a posterior probability which is com-
puted a prior probability and GMMs, and h is updated as, h = α · h. These
processes are repeated until h < th.

The processes are as follows.

Step 1 Input seeds
Step 2 Create spatio-temporal volume
Step 3 Search corresponding points
Step 4 Do graph cuts
Step 5 Calculate the posterior probability from the segmentation results and

set as the t-link
Step 6 Update h = α · h, and Steps 1-5 are repeated until h < th.

The details of each process are given in what follows.

3.2 Spatio-temporal Volume

We employ mean shift clustering[7] to obtain the spatio-temporal volume. Let the
space, time, and color information vector denote xi = {xs

i ,x
t
i,x

r
i }, the filtering

result denote zi, and each label denote Li. {yj}j=1,2,... is defined as

yj+1 =

∑n
i=1 xig

(∥∥∥yj−xi

h

∥∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) (8)

g(x) =
C

h2
shth

p
r
k

(∥∥∥∥xs

hs

∥∥∥∥2
)
k

(∥∥∥∥xt

ht

∥∥∥∥2
)
k

(∥∥∥∥xr

hr

∥∥∥∥2
)
, (9)

where hs, ht, hr is the bandwidth by space, time, and color, C is the normalizing
constant, k(x) is the kernel function (e.g., Gaussian distribution). Mean shift
clustering involves main four steps and an optional one.

1. Initialize yi,j = xi

2. Compute yi,j+1Ck ← k + 1 until convergence zi = yi,c is reached.
3. Identify clusters {Cp}p=1,...,m of convergence points by linking together all

zi that are closer than 0: 5 from one an other in the joint domain.
4. Li = {p|zi ∈ Cp}
5. Optional: Eliminate spatial regions smaller than M pixels.

Figure 2 shows examples of spatio-temporal volumes with different bandwidths.
In Fig. 2, we can see that each volume is decreased by decreasing the band-
width. We represent global and local information using a spatio-temporal vol-
ume with different bandwidths in the proposed method. Then, a graph is created
from nodes that correspond to spatio-temporal volumes segmented by mean shift
clustering.
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Fig. 2. Examples of Spatio-temporal volumes

3.3 Add Edges Using Corresponding Points

Objects that move fast may be divided into different volumes between frames
when using spatio-temporal volumes. Figure 3 shows an example of adding an
edge using corresponding points. The edge has not been calculated because two
the volumes are not neighbors. In our approach, we add an edge from the corre-
sponding points. The corresponding points are computed by matching keypoints
using SIFT [8] in two frames. This helps to correct two volumes, that are not
in the neighborhood, corresponding to the same object. Consequently, volumes
that are not in the neighborhood are represented as the same object.

Fig. 3. Example of adding edge using corresponding point

3.4 Iterated Graph Cuts

We have discussed segmenting of video using graph cuts using a spatio-temporal
volume that is created from video using mean shift clustering and employing
iteration from large to small bandwidths. We will not describe the method of
updating the n- and t-links, and the effect of iterated processing.

Update n-link. The n-link represents information between neighboring nodes.
The volume pair that adjoins n-link BN (L), and the volume pair obtained by
searching for corresponding points between frames BC(L) are used in the new
method. BN (L), BC(L) is given by

B{p,q} = exp

(
−‖Ip − Iq‖2

2σ2

)
, (10)

where Ip is the color in volume p.
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Update t-link. We compute the prior probability obtained by the likelihood
from a color histogram and a distance transform using the segmentation results
from the graph cuts in the previous process, and set the probability as the t-link
using

R′
p(“obj”) = − ln Pr(O|Ip) (11)

R′
p(“bkg”) = − ln Pr(B|Ip) (12)

where Pr(O|Ip) and Pr(B|Ip) are given by

Pr(O|Ip) =
Pr(O)Pr(Ip|O)

Pr(Ip)
(13)

Pr(B|Ip) =
Pr(B)Pr(Ip|B)

Pr(Ip)
. (14)

Pr(Ip|O) and Pr(Ip|B) are the computed color probabilities and Pr(O) and Pr(B)
are computed spatial probabilities from the segmentation results using graph
cuts in the previous process.

Updating color probability. The color probabilities Pr(Ip|O) and Pr(Ip|B) are
computed by using GMM [9]. The GMM for the RGB color space is obtained by

Pr(Ip|·) =
K∑

i=1

αipi(Ip|μi,Σi) (15)

where pi(Ip|μi,Σi) is gaussian distribution. We used the EM algorithm to fit
the GMM [10].

Updating spatial probability. The spatial probabilities Pr(O) and Pr(B) are up-
dated by spatial information from the graph cuts in the previous process. The
next segmentation label is uncertain in the vicinity of the boundary. Therefore,
the spatial probability is updated by using the results of a distance transform[11].
The distance from the boundary is normalized from 0.5 to 1. Let dobj denote the
distance transform of the object, and dbkg denote the distance transform of the
background. The prior probability is given by

Pr(O) =
{
dobj if dobj ≥ dbkg

1− dbkg if dobj < dbkg
(16)

Pr(B) = 1− Pr(O). (17)

Color probability can be spatially controled using spatial probability. Conse-
quently, the segmentation that is observed in the boundary possible in the next
graph cuts. Therefore, we can obtain more robust segmentation even if the video
contaions the same objects.
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Iteration. Finally, using Pr(Ip|O) and Pr(Ip|B) from GMM, and Pr(O) and
Pr(B) from the distance transform, posterior probability can be computed by
means of Eqs. (11) and (12). We compute the prior probability obtained by
the likelihood from a color histogram and the distance transform, and set the
probability as the t-link of the graph for the next process using the segmentation
results obtained by using the graph cuts in the previous process.

4 Experimental Results

4.1 Experiment Outline

We used 13 videos including those of a vehicle moving, a human walking, a
flower, and a leaf captured with a hand-held camera outdoors. A seed was only
given to the first frame. We evaluated the segmentation results for the 10th
frame comparing them with those from a manually correct mask. We defined a
true positive (TP ) as the number of objects of correct detection pixels, a false
positive (FP ) as the number of backgrounds of missed detection pixels, and a
false negative (FN) as the number of objects of missed detection pixels. We
evaluated the recall , precision, and F-measure as

Recall =
TP

TP + FN
(18)

Precision =
TP

TP + FP
(19)

F−measure =
2× Recall× Precision

Recall + Precision
. (20)

We compared three conventional methods and two methods we propose.

Conventional method 1. This involves Boykov’s graph cuts approach [2].
Each pixel is a node obtained by using a graph.

Conventional method 2. This uses the spatio-temporal volume.
Conventional method 3. This involves iterating segmentation such as Grab-

Cut [12] with a spatio-temporal volume .
Proposed method 1. Our approach involves iterating segmentation with a

spatio-temporal volume using different bandwidths. However, we did not
use spatial probability.

Proposed method 2. Our approach involves iterating segmentation with a
spatio-temporal volume using different bandwidths with spatial probability.

4.2 Comparison with Conventional Method

Figure 4 is a bar chart with the segmentation rate and Fig. 5 shows example
segmentation results with three of the methods.

Effect Using Spatio-temporal Volume. Conventional method 1 in FIg.4
can obtain better segmentation than Conventional method 2 whose using spatio-
temporal volume has lower resolution than that of the formaer. Therefore, poor
segmentation is obtained with Conventional method 2.
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Fig. 4. Segmentation rate

Effect Iterating Process. We compared Conventional method 2 with Con-
ventional method 3, which had repetition processing added. The recall was same
rate, but precision with Conventional method 3 was lower than with Conven-
tional method 2. It was difficult to detect the background when a spatio-temporal
volume was used (see Fig. 4, Conventionals method 1 and 2). Therefore, the
background color was learned as an object color in the iterating process. Figure
5(c)(d) shows the segmentation results for Conventional methods 2 and 3. We
can see that the false detection of the background has gradually been extended
by the iterating process.

Effect of Iterating Process by Changing Bandwidth. Proposed method
1 is better at segmentation, its recall is better at 0.09Cits precision is better at
0.18Cand its f-measure is better at 0.19, than those of Conventional method 3.

Fig. 5. Example segmentation results
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Figure 5(e) shows the segmentation results for the iterating process obtained by
changing the bandwidth. We can see that Proposed method 1 can reduce missed
detection in the background. Figure 5(d) shows Conventional method 3 detects
many incorrect small volumes in the background because the color looks like the
object. When the bandwidth in mean shift clustering is large, the spatio-temporal
volume is large as shown in Fig. 5(b). Although we obtained coarse segmentation
results, these were not incorrect volumes. By changing the bandwidth, we could
obtain more precise segmentation like that in coarse-to-fine approach.

Effect of Spatial Probability by Distance Transform. Proposed method
2 using spatial probability has better Precision at 0.12 than Proposed method 1.
Figure 6 shows the segmentation results in a sequence that has the same object.
Proposed method 1 that only uses color probability cannot segment correctly,
e.g., it detects the leaf, which has not been specified. However, we can see that
Proposed method 2 can detect the leaf, which has been specified.

Fig. 6. Example segmentation results using distance transform

Overall, Proposed method 2 using spatio-temporal volumes could obtain a
segmentation rate comparable to that of Conventional method 1.

4.3 Comparison of Graph Size

Table 2 lists the graph size with each method. The bandwidth of Conventional
methods is h = 2, and the results by using Proposed method were obtained by
changing bandwidth h from 20 to 2. Compared with Conventional method 1, the
proposal technique was able to reduce the number of edges about 6.1% and the
number of nodes to about 3.3%. It was possible to reduce the number of nodes
and edges to about 1/25 compared to the conventional method with the same
segmentation rate.

Table 2. Graph size

Conventional Conventional Proposed

method 1[2] method 2, 3 method 1, 2

Node 864,000 52,993 43,140 - 52,993

Edge 2,505,600 81,239 17,477 - 81,549
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4.4 Effect of Adding Edge Using Corresponding Points

We evaluated how effective it was to add edges using corresponding points. It
is difficult to segment objects with Conventional method when they moves fast.
We used video at 6 fps in this experiment. We compared Proposed method
where edges were added using corresponding points and Conventional method
where edges were not added using corresponding points. The proposed method
could obtain better segmentation than the conventional method. Fewer errors
were detected because corresponding points were matched between volumes that
were not neighbors by frame.

Fig. 7. Segmentation results

5 Conclusion

We presented a novel approach to video segmentation using iterated graph cuts
based on spatio-temporal volumes. We used the mean shift clustering algorithm
to build the spatio-temporal volumes with different bandwidths from the input
video. We computed the prior probability obtained by the likelihood from the color
probability and the spatial probability using the segmentation results from graph
cuts in the previous process, and set the probability as the t-link of the graph for
the next process. It is possible to reduce the number of nodes and edges to about
1/25 comparing to the conventional method with the same segmentation rate.

We would like to investigate features other than color in the future. In addi-
tion, we would like to accelerate segmentation processing.
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Abstract. Spectral graph partitioning is a powerful tool for unsupervised data
learning. Most existing algorithms for spectral graph partitioning directly utilize
the pairwise similarity matrix of the data to perform graph partitioning. Conse-
quently, they are incapable of fully capturing the intrinsic structural information
of graphs. To address this problem, we propose a novel random walk diffusion
similarity measure (RWDSM) for capturing the intrinsic structural information of
graphs. The RWDSM is composed of three key components—emission, absorb-
ing, and transmission. It is proven that graph partitioning on the RWDSM matrix
performs better than on the pairwise similarity matrix of the data. Moreover, a
spectral graph partitioning objective function (referred to as DGPC) is used for
capturing the discriminant information of graphs. The DGPC is designed to ef-
fectively characterize the intra-class compactness and the inter-class separability.
Based on the RWDSM and DGPC, we further develop a novel spectral graph par-
titioning algorithm (referred to as DGPCA). Theoretic analysis and experimental
evaluations demonstrate the promise and effectiveness of the developed DGPCA.

1 Introduction

In recent years, spectral graph partitioning has been successfully applied to many do-
mains such as circuit layout[1][2], load balancing [3] and image segmentation [4][5][6]
[7]. Based on local evidence from similarities among data points, spectral graph par-
titioning finds out the best graph cuts by optimizing a particular partitioning objective
function through eigendecomposition. With effectiveness in clustering data of complex
structure, spectral graph partitioning is promising for multiclass data learning.

Much work has been done in spectral graph partitioning. Shi and Malik [4] propose a
normalized cut criterion for segmenting the similarity graph. Gdalyahu et al. [8] present
a “typical cut” algorithm for graph partitioning. Ding et al. [9] present a min-max cut
algorithm for graph partitioning and data clustering. Balanced partitions are obtained
by the min-max cut algorithm. Ng et al. [10] present a clustering algorithm based on
K-Means after the spectral relaxation. The aforementioned spectral graph partitioning
methods have a common problem that they only considers the pairwise relations of
nodes on the graph without characterizing the interaction information among differ-
ent nodes. Based on [10], Zelnik-Manor and Perona [11] propose an improved spectral

� The author has moved to CNRS, TELECOM ParisTech. Email: xi-li@telecom-paristech.fr

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 667–676, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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clustering algorithm, which computes the affinity matrix via a local scale scheme. The
number of clusters is determined by exploiting the structure of the eigenvectors of the
normalized graph Laplacian. The disadvantage of this algorithm is the sensitivity to
significant noise. Yu and Shi [12] propose a multiclass spectral clustering algorithm,
which gives a nearly global-optimal discrete clustering solution by using singular value
decomposition and non-maximum suppression in an iterative procedure. But this algo-
rithm performs poorly in capturing the intrinsic structural information of data samples
on the graph. In [13], Verma and Meila make a comparison of popular spectral cluster-
ing algorithms. Nadler et al. [14] give a diffusion based probabilistic interpretation of
spectral clustering algorithms based on the eigenvectors of the normalized graph Lapla-
cian. Nadler and Galun [15] discuss the fundamental limitations of spectral clustering
and propose a novel diffusion based measure for evaluating the coherence of individ-
ual clusters. Further, Li et al. [16] propose a noise robust spectral clustering algorithm.
But this algorithm is poor in characterizing the discriminant information of graphs.
Moreover, Li et al. [17] present a discriminant analysis based spectral clustering algo-
rithm for effectively capturing the graph’s local marginal information characterized by
the intra-class compactness and the inter-class separability. However, the limitation of
this algorithm is the ignorance of the intrinsic structural information of graphs. Con-
sequently, it is very important for spectral graph partitioning algorithms to capture the
intrinsic structural and discriminant information of graphs simultaneously.

In this paper, we propose a novel random walk diffusion similarity measure (RWDSM),
which characterizes the potential interactions among the nodes of a graph by using ran-
dom walk on the graph. Specifically, the RWDSM is composed of three components—
emission, absorbing, and transmission. We perform graph partitioning on the RWDSM
matrix instead of the pairwise similarity matrix of the data. Moreover, a spectral graph
partitioning objective function (referred to as DGPC) is used to fully capture the discrim-
inant information of graphs. The DGPC effectively characterizes the intra-class com-
pactness and the inter-class separability. By maximizing the inter-class separability and
intra-class compactness, the DGPC obtains an optimal graph partitioning solution.

2 Spectral Graph Partitioning

An N -node weighted graph G = (V,E,W ) is used to represent the intrinsic rela-
tionships among N data points, where V = {1, . . . , N} is the node set, E ⊆ V × V

is the edge set, and W = (wij)N×N is a similarity matrix with the element wij be-
ing the edge weight between nodes i and j. Clustering N data points into K classes
is equivalent to partitioning V into K disjoint subsets, namely, V =

⋃K
l=1 Vl s.t.

Vm

⋂
Vn = ∅, ∀m �= n. For convenience, let ΓK

V
= {V1,V2, . . . ,VK}. Given

Va,Vb ⊂ V, links(Va,Vb) is defined as the sum of the total weighted connections
between Va and Vb: links(Va,Vb) =

∑
i∈Va

∑
j∈Vb

wij Moreover, the degree of Va

is defined as the total links of nodes in Va to all the nodes in V, i.e., degree(Va) =
links(Va, V). Subsequently, one classic objective function (i.e., K-way normalized cuts)
for spectral graph partitioning is defined as:

Γcut = argmin
Γ K

V

kncut(ΓK
V

) = argmin
Γ K

V

1
K

∑K
k=1

links(Vk,V\Vk)
degree(Vk) (1)
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2.1 Solving K-Way Normalized Cuts

In [12], it has been proven that solving the K-way normalized cuts is equivalent to
finding the optima of an optimization program:

max f(X) = 1
K

∑K
n=1

XT
n WXn

XT
n DXn

s.t. X ∈ {0, 1}N×K, X�K = �N

(2)

where X is an N × K partition matrix, �d denotes a d × 1 vector with each element
being 1, D is an N ×N diagonal matrix with the m-th diagonal element being the sum
of the elements belonging to the m-th row of W for 1 ≤ m ≤ N , and Xn is the n-th
column of X for 1 ≤ n ≤ K . In [12], an iterative procedure is adopted to obtain the
optimal solution to Eq. (2). Please see [12] for details.

3 Random Walk Diffusion Similarity Measure

3.1 Our Defined One-Step Random Walk on a Graph

Starting from node i, we directly move to node j after one step. Let ps1
ij = pi→j be the

one-step probability that the random walk starts from node i and stops on node j. ps1
ij

consists of three components. One is the emission probability es1
ij = pe,i→j , another is

the absorbing probability as1
ij = pa,i→j , and the other is the transmission probability

rs1
ij = pr,i→j containing both emission and absorbing information. Fig. 1 illustrates the

aforementioned three components. In this way, we have ps1
ij = (es1

ij +as1
ij + rs1

ij )/3 with
es1

ij = wij∑
k wik

, as1
ij = wij∑

k wkj
, and rs1

ij = (es1
ij +as1

ij )/2. Please see [14] for fundamental
properties of random walk on a graph.

In what follows, we give a brief description of notations used hereinafter. Let Dr =
Diag(dr

11, d
r
22, . . . , d

r
NN ) be the diagonal matrix with the i-th diagonal element being

dr
ii =

∑
k wik , Dc = Diag(dc

11, d
c
22, . . . , d

c
NN) be the diagonal matrix with the j-th di-

agonal element being dc
jj =

∑
k wkj , Es1 = (es1

ij )N×N be the one-step emission prob-
ability matrix, As1 = (as1

ij )N×N be the one-step absorbing probability matrix, Rs1 =
(rs1

ij )N×N be the one-step transmission probability matrix, and P s1 = (ps1
ij )N×N be

the one-step random walk probability matrix. Apparently, we have Es1 = D−1
r W ,

As1 = WD−1
c , and Rs1 = (D−1

r W + WD−1
c )/2. Thus, the one-step random walk

probability matrix P s1 = (ps1
ij )N×N can be formulated as:

P s1 = (Es1 +As1 +Rs1)/3. (3)

3.2 Our Generalized m-Step Random Walk on a Graph

Starting from node i, we indirectly move to node j after m steps (s.t. m > 1). Without
loss of generality, we denote any m-step random walk path as i → k1 → · · · →
km−1 → j with kl being a hidden random variable for kl ∈ {1, . . . , N} and l ∈
{1, . . . ,m − 1}. For simplicity, i → k1 → · · · → km−1 → j is referred to as Pm.
Thus, the random walk probability along Pm is defined as:

pPm = (pe,Pm + pa,Pm + pr,Pm)/3, (4)
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Fig. 1. Illustration of random walk on a graph. (a) shows the emission random walk from node
i to node j; (b) displays the absorbing random walk from node i to node j; (c) exhibits the
transmission random walk (containing both emission and absorbing information) from node i to
node j.

where
pe,Pm = es1

ik1

(∏m−2
l=1 es1

klkl+1

)
es1

km−1j ,

pa,Pm = as1
ik1

(∏m−2
l=1 as1

klkl+1

)
as1

km−1j ,

pr,Pm = rs1
ik1

(∏m−2
l=1 rs1

klkl+1

)
rs1
km−1j .

(5)

Moreover, the terms es1
ik1

(∏m−2
l=1 es1

klkl+1

)
, as1

ik1

(∏m−2
l=1 as1

klkl+1

)
, and

rs1
ik1

(∏m−2
l=1 rs1

klkl+1

)
are just the (m − 1)-step emission, absorbing, and transmis-

sion probabilities along the path i → k1 → · · · → km−1, respectively. Therefore,

es1
ik1

(∏m−2
l=1 es1

klkl+1

)
= e

sm−1
ikm−1

. Similarly, as1
ik1

(∏m−2
l=1 as1

klkl+1

)
= a

sm−1
ikm−1

and

rs1
ik1

(∏m−2
l=1 rs1

klkl+1

)
= r

sm−1
ikm−1

. In this way, Eq. (5) can be further simplified as:

pe,Pm = e
sm−1
ikm−1

es1
km−1j , pa,Pm = a

sm−1
ikm−1

as1
km−1j , pr,Pm = r

sm−1
ikm−1

rs1
km−1j . (6)

In addition, we let esm

ij , asm

ij , and rsm

ij be the m-step emission, absorbing, and transmis-
sion probabilities from node i to node j, respectively. Then, we have:

esm

ij =
∑

km−1
pe,Pm =

∑
km−1

e
sm−1
ikm−1

es1
km−1j ,

asm

ij =
∑

km−1
pa,Pm =

∑
km−1

a
sm−1
ikm−1

as1
km−1j ,

rsm

ij =
∑

km−1
pr,Pm =

∑
km−1

r
sm−1
ikm−1

rs1
km−1j .

(7)

Further, we let Esm = (esm

ij )N×N , Asm = (asm

ij )N×N , and Rsm = (rsm

ij )N×N be the
m-step emission, absorbing, and transmission probability matrices, respectively. Hence,
psm

ij can be further simplified as:

psm

ij = 1
3 [Esm−1(i, :)Es1(:, j) +Asm−1(i, :)As1(:, j) +Rsm−1(i, :)Rs1(:, j)]. (8)

According to Eq. (8), we have:

Esm = Esm−1Es1 , Asm = Asm−1As1 , Rsm = Rsm−1Rs1 . (9)

After solving the above recursive equation, we have:

Esm = (Es1)m
, Asm = (As1)m

, Rsm = (Rs1)m
. (10)

Consequently, the final m-step random walk probability matrix P sm = (psm

ij )N×N is
formulated as:

P sm = 1
3 [Esm +Asm +Rsm ] = 1

3 [(Es1)m + (As1 )m+ (Rs1)m] . (11)
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Given: A data set Z = {z1, z2, . . . , zN} and the number of classes K:

1. Create a weighted graph with no self-loops G = (V, E, W ), where V = {1, . . . , N}
is the node set, E ⊆ V × V represents the edge set, and W = (wij)N×N is a similarity
matrix with the element wij being the edge weight between nodes i and j:

wij =

{
exp(−dist(zi, zj)/2σ2) if i �= j
0 otherwise

in which σ is a scaling factor, and dist(·) denotes a distance function. In the experiments,
dist(zi, zj) = ‖zi − zj‖2

F .

2. Compute the RWDSM matrix Φ by Eq. (13).

3. Obtain Q = D−Φ where D is the diagonal matrix with �ii =
∑

j φij for 1 ≤ i ≤ N .
If Q is a singular matrix, it should be replaced with Q + εIN , where ε is a small positive
constant and IN is an N × N identity matrix.

4. Form P̃ by the normalized K largest eigenvectors of Q−1Φ.

5. Obtain a candidate graph partitioning solution X̃ by: X̃ = Diag(diag− 1
2 (P̃ P̃ T ))P̃ .

6. Perform the iterative refining procedure [12] on X̃ to find an optimal solution X
to Eq. (14). The refining procedure is discussed in detail in steps four to eight of the
algorithm in [12].

Fig. 2. The specific procedure of DGPCA

3.3 Random Walk Diffusion Similarity Measure

In order to capture the topological structural information of graphs, we propose a novel
random walk diffusion similarity measure (RWDSM), which is the sum of the afore-
mentioned random walk probability matrices after different steps. For convenience, we
denote the RWDSM matrix corresponding to the graph G as Φ = (φij)N×N , which is
formulated as:

Φ =
∑M

m=1 P
sm = 1

3

∑M
m=1 [Esm +Asm +Rsm ]

= 1
3

∑M
m=1 [(Es1)m + (As1)m + (Rs1)m]

= 1
3

∑M
m=1

[
(D−1

r W )m + (WD−1
c )m +

(
D−1

r W+WD−1
c

2

)m] (12)

where IN is an N × N identity matrix, and M is a controlling factor (M = 6 in the
experiments). Consequently, any element φij of Φ captures the random walk diffusion
information between nodes i and j on the graph G. When G is an undirected graph,Dr

is equal to Dc. In this case, the RWDSM matrix Φ = (φij)N×N is a symmetric matrix.
Let Dr = Dc = D. After substituting D into Eq. (12), we have:

Φ = 1
3

∑M
m=1

[
(D−1W )m + (WD−1)m +

(
D−1W+WD−1

2

)m]
(13)

4 Our Spectral Graph Partitioning Objective Function

Before discussing our spectral graph partitioning objective function (referred to as
DGPC), we first give a brief introduction to the notations used hereinafter. Let D be
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the diagonal matrix with the i-th diagonal element being �ii =
∑

j φij for 1 ≤ i ≤ N
and Q = D− Φ. Consequently, the DGPC is written as:

max g(X) = 1
K

∑K
n=1

XT
n ΦXn

XT
n QXn

= 1
K

∑K
n=1

[Xn(XT
n Xn)−

1
2 ]T Φ[Xn(XT

n Xn)−
1
2 ]

[Xn(XT
n Xn)−

1
2 ]T Q[Xn(XT

n Xn)−
1
2 ]

s.t. X ∈ {0, 1}N×K, X�K = �N

(14)

where Xn represents an N × 1 vector formed by the n-th column of X . The analytical
proof of the above objective function is given as follows.

The intra-class compactness and the inter-class separability are respectively captured
by XT

n ΦXn =
∑

i∈Vn

∑
j∈Vn

φij and XT
nQXn =

∑
i∈Vn

∑
j /∈Vn

φij , where Vn de-
notes the node set belonging to the n-th class. The larger the value ofXT

n ΦXn, the more
compact the intra-class samples. The smaller the value of XT

nQXn, the more separable
the inter-class samples. As a result, an optimal graph partitioning solution is obtained
by maximizing the g(X) in (14).

4.1 Finding Optimal Solutions

After a sequence of simplification operations, the graph partitioning objective function
(14) becomes: g(X) = 1

K tr{(PTQP )−1(PTΦP )}, where tr denotes the trace of a

matrix, and P = X(XTX)−
1
2 which is constrained by: PTP = [X(XTX)−

1
2 ]T ·

[X(XTX)−
1
2 ] = IK where IK is a K × K identity matrix, and XTX is a diagonal

matrix. Thus, the objective function (14) can be rewritten as:

max h(P ) = 1
K tr{(PTQP )−1(PTΦP )}

s.t. PTP = IK .
(15)

The optimization problem (15) has been addressed in multiclass LDA (linear discrim-
inant analysis) learning [18]. A solution P̃ to (15) consists of the K principal eigen-
vectors (i.e., corresponding to the K largest eigenvalues) of the matrix Q−1Φ. If Q is a
singular matrix, Q−1Φ should be replaced with the matrix (Q+ εIN )−1Φ, where IN is
anN×N identity matrix and ε is a small positive constant (ε = 1e−6 in the paper). As
a result, a candidate solution X̃ to (14) is obtained by: X̃ = Diag(diag−

1
2 (P̃ P̃T ))P̃ ,

where Diag(·) denotes a diagonal matrix formed from its vector argument, and diag(·)
represents a vector formed from the diagonal elements of its matrix argument. Sub-
sequently, the iterative refining procedure [12] may be used to find the optimal graph
partitioning solution X to (14). Finally, we have the spectral graph partitioning algo-
rithm (referred to as DGPCA) with its specific procedure listed in Fig. 2.

5 Experiments

In order to evaluate the performance of the DGPCA, nine datasets are used in the ex-
periments. The first seven datasets are synthetic toy datasets, as shown in Figs. 3 and 4.
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Fig. 3. Clustering performances of MSC and DGPCA over the first dataset in outlier removal.
(a) shows the original data samples. (b) and (c) display the clustering results of MSC and DG-
PCA, respectively. It is clear that DGPCA succeeds in removing outliers (i.e., uppermost isolated
samples in (a)) while MSC fails.

The eighth dataset is the Yale face dataset.2 It contains 165 images of 15 persons. Each
person has 11 images. The last dataset is a subset of the US Postal Service handwritten
digits recognition corpus (USPS) dataset. It consists of four hundred 16× 16 images of
four-class handwritten digits (i.e., digits 1, 2, 3, and 4). Each class has 100 images.

Three experiments are conducted to demonstrate the claimed contributions of our
spectral graph partitioning algorithm (referred to as DGPCA). In these three experi-
ments, we compare clustering results of DGPCA with those of a spectral clustering
algorithm [4], referred to here as MSC. MSC is a representative spectral clustering al-
gorithm, which can efficiently obtain the nearly global-optimal graph partitioning solu-
tion by solving a discrete optimization problem. In contrast to MSC, DGPCA is based
on the RWDSM which captures the intrinsic properties of graphs. Besides, it uses a
spectral graph partitioning objective function (referred to as DGPC) to fully capture
the discriminant information of graphs. Consequently, it is interesting and desirable to
make a comparison between MSC and DGPCA. More details of MSC are given in [4].
In addition, we introduce the learning accuracy to make quantitative evaluations of MSC
and DGPCA. The learning accuracy L is defined as: L = 1

N

∑N
i=1

ni

Ni
, where N de-

notes the learned number of classes, Ni represents the number of the samples belonging
to the i-th learned class and ni is the number of the samples whose true class labels have
the highest proportion in the i-th learned class.

The first experiment is to compare the clustering performances of MSC and DGPCA
using the first seven datasets. During the process of constructing the corresponding
graphs of MSC and DGPCA, the scaling factor σ is chosen as 0.6. The final cluster-
ing results are shown in Figs. 3 and 4. More specifically, Fig. 3(a) plots the original
data samples from the first dataset. The partitioning results of MSC and DGPCA are
respectively exhibited in Figs. 3(b) and (c), where the two dashed curves denote the
corresponding partitioning boundaries. From Figs. 3(b) and (c), it is seen that DGPCA
succeeds in removing outliers (i.e., uppermost isolated samples in Fig. 3(a)) while MSC
fails. For a better demonstration of the effectiveness of DGPCA in capturing the intrinsic
structural information of graphs, we make experimental evaluations over the remaining
six datasets consisting of data samples of complex geometric shapes. The final experi-
mental results are shown in Fig. 4, where Figs. 4(a)-(f) are associated with Datasets 2-7,

2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Fig. 4. Clustering results of DGPCA over Datasets 2-7 corresponding to (b)-(f), respectively

respectively. From Fig. 4, we see that DGPCA performs well in capturing the intrinsic
structural information of data samples.

The second experiment is performed to make a quantitative comparison between
MSC and DGPCA in learning accuracy using the eighth dataset. The scaling factor
σ is set as 100. Similar to the second experiment, five subsets of the eighth dataset are
used for experimental evaluations. They are obtained by independently sampling 3-class
samples from the eighth dataset for five times. For these subsets, the ratios of 3-class
samples are different. Specifically, their ratios are 100:100:100, 100:60:60, 80:50:30,
30:50:30, and 60:10:60, respectively. Some exemplar samples from the eighth dataset

Fig. 5. Clustering results of MSC and DGPCA over the eighth dataset. (a) shows some exemplar
samples while (b) reports the learning accuracies of MSC and DGPCA in different cases.
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Fig. 6. Clustering results of MSC and DGPCA over the ninth dataset. Some samples are shown in
the right-most side of this figure. (a) shows some exemplar samples while (b) reports the learning
accuracies of MSC and DGPCA in different cases.

are displayed in Fig. 5(a). The final clustering results are reported in Fig. 5(b), where
x-axis corresponds to the five different sampling cases while y-axis is associated with
the learning accuracy. From Fig. 5(b), we see that DGPCA performs better in multiclass
data learning than MSC.

The last experiment is conducted for a comparison between MSC and DGPCA in learn-
ing accuracy using the ninth dataset. The scaling factor σ is assigned as 6. Similar to the
third experiment, five subsets of the ninth dataset are used for experimental evaluations.
They are obtained by independently sampling 4-class samples from the ninth dataset for
five times. For these subsets, the ratios of 4-class samples are different. Specifically, their
ratios are 60:60:60:30, 80:60:60:30, 60:60:60:60, 60:30:60:20, and 50:50:30:20, respec-
tively. Some exemplar samples from the ninth dataset are displayed in Fig. 6(a). The final
clustering results are reported in Fig. 6(b), where x-axis corresponds to the five different
sampling cases while y-axis is associated with the learning accuracy. From Fig. 6(b), we
see that DGPCA achieves better learning performances than MSC.

In summary, we observe that DGPCA outperforms MSC in multiclass data learn-
ing. DGPCA makes a full use of the intrinsic structural information of data samples by
constructing the RWDSM matrix. Especially for imbalanced multiclass samples, DG-
PCA achieves much better performances than MSC, as demonstrated in the last two
experiments. In comparison, MSC directly uses the similarity matrix for data learning,
leading to the weakness in characterizing the intrinsic structural information of graphs.
Consequently, DGPCA is a promising method for multiclass data learning.

6 Conclusion

In this paper, a novel RWDSM (random walk diffusion similarity measure) has been
presented to capture the intrinsic properties of graphs. The RWDSM is composed of
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three components—emission, absorbing, and transmission. Instead of the pairwise sim-
ilarity matrix of the data, the RWDSM matrix is used for graph partitioning. In addition,
the DGPC (spectral graph partitioning objective function) has been used to fully cap-
ture the discriminant information of graphs. The DGPC is capable of effectively char-
acterizing the intra-class compactness and the inter-class separability. By maximizing
the inter-class separability and intra-class compactness, the DGPC obtains an optimal
graph partitioning solution. Further, we have developed a spectral graph partitioning al-
gorithm (referred to as DGPCA) for multiclass data learning. Experimental results have
demonstrated the robustness and promise of the developed DGPCA.
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Abstract. Graph cuts based interactive segmentation has become very

popular over the last decade. In standard graph cuts, the extraction of

foreground object in a complex background often leads to many seg-

mentation errors and the parameter λ in the energy function is hard

to select. In this paper, we propose an iterated graph cuts algorithm,

which starts from the sub-graph that comprises the user labeled fore-

ground/background regions and works iteratively to label the surround-

ing un-segmented regions. In each iteration, only the local neighboring

regions to the labeled regions are involved in the optimization so that

much interference from the far unknown regions can be significantly re-

duced. To improve the segmentation efficiency and robustness, we use

the mean shift method to partition the image into homogenous regions,

and then implement the proposed iterated graph cuts algorithm by tak-

ing each region, instead of each pixel, as the graph node for segmenta-

tion. Extensive experiments on benchmark datasets demonstrated that

our method gives much better segmentation results than the standard

graph cuts and the GrabCut methods in both qualitative and quantita-

tive evaluation. Another important advantage is that it is insensitive to

the parameter λ in optimization.

Keywords: Image segmentation, graph cuts, regions merging.

1 Introduction

Interactive foreground/background segmentation is a practical and important
problem in computer vision. Over the last decade, a number of interactive seg-
mentation techniques have been proposed, such as snakes [1], livewire [2], level
sets [3],watershed cuts [4] and random walkers [5]. Another preferable method
which becomes very popular in recently years is graph cuts [6,7]. Graph cuts
addresses segmentation in a global optimization framework and guarantees a
globally optimal solution for a wide class of energy functions.

A number of recent publications further extend the pioneer work of Boykov
and Jolly [6] and develop the use of regional cues [8,13] or various object
� Corresponding author.
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segmentation cues [14,15]. Lombaert et al. [9] studied the use of graph cuts
for high-resolution data. They proposed a multilevel banded heuristic for the
computation of graph cuts. The use of a smaller graph in all resolutions reduces
the running time and memory consumption compared with the original graph
cuts algorithm. Because the graph cuts technique can involve a wide range of
visual cues, some researchers used the shape prior as an effective cue in the graph
cuts framework. Freedman and Zhang [10] defined the shape prior as a single
fixed template, which was specified as a distance function inspired by the idea
of level sets. Das and Veksler [11] developed a graph cuts based segmentation
algorithm by assuming the object is of compact shape. Further more, Veksler [12]
exploited the star shape prior, which is a kind of generic shape prior, into graph
cuts segmentation.

Although the user input is valuable in steering the segmentation process to
reduce the ambiguities, too much interaction would lead to a tedious and time-
consuming work. Usually, the extraction of foreground objects in a complex
environment, from which the background can not be trivially subtracted, often
requires a lot of user interaction. Moreover, the complex content of an image
also makes it hard to give user guide for accurate segmentation while keeping
the interaction as less as possible. Thus some algorithms allow the further user
edit based on the previous segmentation result [8,22], yet this requires additional
user interaction.

In this paper, we explore the graph cuts algorithm by extending it to a re-
gion merging scheme. Specifically, we perform mean shift [16] algorithm on the
original image for an initial segmentation, which partitions the image into many
homogenous regions. Starting from seeds regions given by the user, we run graph
cuts on a propagated sub-graph where the segmented regions by mean shift al-
gorithm, instead of the pixels in the original image, are regarded as the nodes
of the graph. An iterated conditional mode (ICM) on graph cuts is studied and,
whereas it does not provide a global solution in the whole graph, global optima
can be obtained on the growing subgraphs.

Our method is a novel extension of the standard graph cuts algorithm. It has
many advantages and merits. First, using sub-graph can reduce significantly the
complexity of background content in the image. The many unlabeled background
regions in the image may have unpredictable negative effect on graph cuts opti-
mization. This is why the global optimum obtained by graph cuts often does not
lead to the most desirable result. However, by using a sub-graph and blocking
those unknown regions far from the labeled regions, the background interference
can be much reduced, and hence better results can be obtained under the same
amount of user interaction. Second, the algorithm is run on the sub-graph that
comprises foreground/background regions and their surrounding un-segmented
regions, thus the computational cost is significantly less than running graph cuts
on the whole graph which is based on image pixels. Third, as a graph cuts based
region merging algorithm, our method obtains the optimal segmentation on each
sub-graph in the iteration. Forth, the object and background color models are
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updated after the segmentation on each sub-graph. Thus they can provide more
informative guide for the next round of segmentation.

The paper is organized as follows. A brief review of standard graph cuts
algorithm is in Section 2. An iterated conditional mode on graph cuts is pro-
posed in Section 3, followed by the iterated graph cuts algorithm. Section 4
presents experimental results of our method on 50 benchmark images in com-
parison with standard graph cuts and Grabcut. Finally the conclusion is made in
Section 5.

2 Image Segmentation by Graph Cuts

Segmentation of an object from the background can be formulated as a binary
labeling problem. Given a set of labels L and a set of sites S, the labeling
problem is to assign a label fp ∈ L to each of the sites p ∈ S. The graph cuts
framework proposed by Boykov and Jolly [6] addresses the segmentation of a
monochrome image, which solves a labeling problem with two labels. The label
set is L = {0, 1}, where 0 corresponds to the background and 1 corresponds to
the object.

Let f = {fp|fp ∈ L} stand for a labeling, i.e. label assignments to all pixels.
An energy function is formulated as:

E(f) =
∑
p∈S

Dp(fp) + λ
∑

{p,q}∈N
ωpq · T (fp �= fq) (1)

On the right hand side of (1), the first term is called data term, which consists
of constraints from the observed data and measures how sites like the labels
that f assigns to them. where Dp measures how well label fp fits site p. A com-
mon approach, and the one we use in our work, is to build the foreground and
background histograms models from the user input seeds, respectively. Then
the Dp(fp) are defined as the negative log likelihoods of the constructed fore-
ground/background models.

The second term is called the smoothness term and measures the extent to
which f is not piecewise smooth. where N is a neighborhood system, such as a
4-connected neighborhood system or an 8-connected neighborhood system. The
smoothness term typically used for image segmentation is the Potts Model [20].
Here T (fp �= fq) is 0 if fp = fq and 1 otherwise. This model is a piecewise con-
stant model because it encourages labelings consisting of several regions where
sites in the same region have the same labels.

In image segmentation, we want the boundary to lie on the edges in the image.

A typical choice for ωp,q is : ωpq = e−
(Ip−Iq)2

2δ2 · 1
dist(p,q) , where Ip and Iq are the

color values of sites p and q, and dist(p, q) is the distance between sites p and q.
Parameter δ is related to the level of variation between neighboring sites within
the same object. The parameter λ is used to control the relative importance of
the data term versus the smoothness term. Minimization of the energy function
can be done using the min-cut/max-flow algorithm as described in [6].
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3 The Iterated Graph Cuts

3.1 Iterated Conditional Mode

Graph cuts technique provides a globally optimal solution to image segmenta-
tion; however the complex content of an image makes it hard to precisely segment
the whole image all at once. The iterated conditional mode (ICM) proposed by
Besag [21] is a deterministic algorithm which maximizes local conditional prob-
abilities sequentially. It uses the “greedy” strategy in the iterative local max-
imization to approximate the maximal joint probability of a Markov Random
Field (MRF). Inspired by ICM, we consider the graph cuts algorithm in a “di-
vide and conquer” style: finding the minima on the sub-graph and extending the
sub-graph successively until reach the whole graph. The proposed method works
iteratively, in place of the previous one-shot graph cuts algorithm [6].

Let di be the observed data of site i, fi be the label of site i and fS−{i}
be the set of labels which is at the sites in S − {i}, where S − {i} is the set
difference. We sequentially assign each fi by maximizing conditional probability
P (fi|di, fS−{i}) under the MAP-MRF framework. Here we have two assump-
tions in calculating P (fi|di, fS−{i}). First, the observed data d1, . . . , dm are
conditionally independent given f and that each di depends only on fi. Sec-
ond, f depends on labels in the local neighborhood, which is Markovianity, i.e.
P (fi|fS−{i}) = P (fi|fNi), where Ni is a neighborhood system of site i. Marko-
vianity depicts the local characteristics of labeling.

With the two assumptions we have:

P (fi|di, fS−{i}) =
P (di|fi) · P (fi|fNi)

P (d)
(2)

where P (d) is a normalizing constant when d is given. There is:

P (fi|di, fS−{i}) ∝ P (di|fi) · P (fi|fNi) (3)

where ∝ denotes the relation of direct proportion. The posterior probability
satisfies:

P (fi|di, fS−{i}) ∝ e−U(fi|di,fNi
) (4)

where U(fi|di, fNi) is the posterior energy and satisfies:

U(fi|di, fNi) = U(di|fi) + U(fi|fNi)

= U(di|fi) +
∑

i′∈Ni

U(fi|fi′) (5)

U(di|fi) is the data term corresponding to function (1), and
∑

i′∈Ni
U(fi|fi′)

is the smoothness term which relates to the number of neighboring sites whose
labels fi′ differ from fi. The MAP estimate is equivalently found by minimizing
the posterior energy:

fk+1 = argmin
f
U(f |d, fk

N ) (6)

where fk
N is the optimal labeling of graph nodes obtained in previous k iterations.

The labeling result in each iteration is reserved for later segmentation. This
process is done until the whole image is labeled.
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3.2 The Iterated Graph Cuts Algorithm

In the original graph cuts algorithm, the segmentation is directly performed on
the image pixels. There are two problems for such a processing. First, each pixel
will be a node in the graph so that the computational cost will be very high;
second, the segmentation result may not be smooth, especially along the edges.
These problems can be solved by introducing some low level image segmentation
techniques, such as watershed [17] and mean shift [16], to graph cuts. In [22],
Li et al. used watershed for initial segmentation to speed up the graph cuts
optimization process in video segmentation. In this paper, we choose to use
mean shift for initial segmentation because it produces less over-segmentation
and has better edge preservation than watershed. Fig.1(b) shows the mean shift
initial segmentation of the image in Fig.1(a).

The initial labeling f0 of graph cuts is given by a group of foreground/
background seeds from the user. Regions which have pixels marked as foreground
are called foreground seed regions, while the regions with background seeds are
thus called background seed regions. The initial sub-graph contains only seed re-
gions. Start from the initial sub-graph, in the iteration only the adjacent regions
to the previously labeled regions are added into the updated sub-graph. Running
graph cuts algorithm on the updated sub-graph, an updated optimal segmen-
tation is obtained. The iteration stops when all the region nodes are labeled as
either foreground (i.e. object) or background.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. The iterated segmentation process. (a) Original image with user input seeds.

(b) Initial mean shift segmentation. (c) The user input seed regions. The background is

shown in blue color. (d)-(i) show the intermediate segmentation results in the iteration.

The newly added regions in the sub-graphs are shown in red color and the background

is shown in blue color. In (j), the target objects are well segmented from the background

within 6 iterations.

Fig.1 illustrates the iterated segmentation process. In the first iteration, re-
gions chosen to be labeled are those which are only adjacent to the foreground
regions, as shown in Fig.1(d). In the following iterations (Figs.2c-2h), new re-
gions which are only in the neighborhood of previous foreground regions are
added into the sub-graph for further labeling. In practice we have found that
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adding regions which are adjacent to either the foreground or the background
or both of them does not make much difference for the segmentation results.
The desired objects are extracted as shown in Fig.1(j). The iterated graph cuts
algorithm is summarized in Algorithm 1. We assume that the foreground regions
are connected unless separated parts of the foreground are initially marked by
the user. Therefore, the regions which can not be involved in the iterations will
be labeled as the background regions.

Algorithm 1. Iterated GraphCuts.
The input are mean shift initial segmentation of the given image and a graph
G whose nodes consist of the user input foreground/background seed regions R.
The output is the segmentation result.

1. Add adjacent regions of foreground regions into G.
2. Construct foreground and background data models from seed regions R.
3. Use graph cuts algorithm to solve arg minf U(f |d, fk

N).
4. Add foreground and background regions resulting from step 3 into R.
5. Add adjacent regions of the foreground seeds into G.
6. Go back to step 2, until no adjacent regions can be found.
7. Set labels of the remaining regions to be the background.
8. Return the segmentation result.

4 Experimental Results

In this section, we validate the segmentation performance of our method in com-
parison with the standard graph cuts algorithm [6] and GrabCut [8]. Since the
proposed iterated graph cuts algorithm uses mean shift for initial segmentation,
for a fair comparison we also extended the standard graph cut to a region based
scheme, i.e. use the mean shift segmented small regions, instead of the pixels, as
the nodes in the graph. Usually this yields better results than the original graph
cuts. The GrabCut algorithm is an interactive segmentation technique based
on graph cuts and has the advantage of reducing user’s interaction under com-
plex background. It allows the user to drag a rectangle around the desired object.
Then the color models of the background and foreground are constructed accord-
ing to this rectangle. Similarly to our method, an iterative estimation scheme of
color models is used in GrabCut to segment the object.

We use the mean shift segmentation software- the EDISON System1 -to ob-
tain the initial segmentation. Experiments are performed on a database which
contains 50 benchmark test images selected from online resources 2,3, where 10
of them contain objects with simple background and 40 are natural images with
relatively complex background. Every image in our database has a figure-ground
assignment labeled by human subjects.

1 http://www.caip.rutgers.edu/ riul/research/code/EDISON/doc/segm.html
2 http://www.research.microsoft.com/vision/cambridge/segmentation/
3 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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4.1 Comparison with Standard Graph Cuts

We first compare the proposed iterated graph cuts with the standard graph
cuts. In this subsection we use several example images to evaluate them qualita-
tively. The quantitative evaluation will be given in subsection 4.3. Fig.2 includes
some images with simple background (Fig.2(a)-2(b)) and some with complex
background (Fig.2(c)-2(e)). In the later ones, camouflage makes the objects con-
taining weak boundaries due to poor contrast and noise, and the colors of some
background regions are very close to those of the objects. Given the same amount
of user input, the iterated graph cuts method achieves much better segmentation
than standard graph cuts.

(a) (b) (c) (d) (e)

Fig. 2. Segmentation results of images with simple or complex background. The first

row shows the original images with seeds. The second row shows the segmentation

obtained by standard graph cuts. The third row shows the segmentation of iterated

graph cuts.

4.2 Comparison with GrabCut

The ways of user input are different for GrabCut and Graph cuts. Graph cuts
requires user to indicate some background and foreground regions, while Grab-
Cut only needs the user to drag a rectangle around the object. In experiments,
we choose the user inputs that lead to the best results for GrabCut.

An comparison with GrabCut is shown in Fig. 3. The first row shows the
original images with the user inputs. The red and green seeds are for the proposed
iterated graph cuts, while the blue rectangles are for the GrabCut. The second
row shows the segmentation results of GrabCut. Implementation of GrabCut uses
5 GMMs to the model RGB color data and parameter λ is fixed to be 50. The
third rows are results of iterated graph cuts. When the objects to be segmented
contain similar colors with the background, GrabCut might fail to correctly
segment them. Although overall graph cuts may use more user interaction than
GrabCut, it can produce more precise segmentation results.
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Fig. 3. Segmentation results of GrabCut and proposed iterated graph cuts. The first

row shows the original images with seeds. Red and green strokes represent the object

and background seeds for graph cuts. User inputs for GrabCut are denoted by blue

rectangles. The second row shows the results of GrabCut . The third row shows the

results of iterated graph cuts. The proposed method can segment more accurately the

desired objects than GrabCut.

4.3 Quantitative Evaluation

Quantitative evaluation of the segmentations is given by comparing with ground
truth labelings. The qualities of segmentation are calculated by using four mea-
sures: the true-positive fraction (TPF), false-positive fraction (FPF), true-negative
fraction (TNF) and false-negative fraction (FNF), which are defined as follows:

TPF =
|AA ∩AG|
|AG|

, FPF =
|AA −AG|
|AG|

, TNF =
|AA ∪AG|
|AG|

, FNF =
|AG −AA|
|AG|

where AG represents the area of the ground truth of foreground and its com-
plement is AG; AA represents the area of segmented foreground by the tested
segmentation method.

Table 1 lists the results of TPF, FPF, FNF and TNF by the three methods
over the 50 test images. We see the iterated graph cuts method achieves the
best FPF, TNF and FNF results. The GrabCut method has higher TPF index
than iterated graph cuts because it usually leads to a bigger segmentation area,
which includes both foreground and background. Thus it also has much higher
FPF rate.

Table 1. The TNF, TPF, FNF and FPF results by different methods

Algorithms TPF(%) FPF(%) TNF(%) FNF(%)

GrabCut 93.88 16.35 96.59 16.35

Graph cuts 84.23 4.65 95.87 9.26

Ours 90.90 2.97 97.59 6.42
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4.4 Discussion

In graph cuts based segmentation, parameter λ has great effect on segmentation
results. It is used to tune the balance between different terms in the energy
function. When given different images, a fixed value of λ can not give satisfactory
segmentation. Since the appropriate λ values would vary largely among different
images, the user may have to spend a significant amount of time searching for
it. In the recent works [18,19], much effort has been made to study the selection
of λ. From our experiments, parameter λ was easier to set up for our method
and thus brings much benefit for users in real applications.

5 Conclusion and Future Work

An iterated graph cuts algorithm was developed in this paper. It performs seg-
mentation on the sub-graph which is updated in each iteration. The proposed
iterated graph cuts can reduce the interference of unknown background regions
far from the labeled regions so that more robust segmentation can be obtained.
Qualitative and quantitative comparisons with standard graph cuts and Grab-
Cut show the efficiency of the proposed method. With the same amount of user
input, the proposed method can achieve better segmentation results than the
standard graph cuts, especially when extracting the foreground from complex
background. Moreover, the search space of parameter λ can also be reduced by
our method.

Standard graph cuts can be viewed as a special case of the proposed iterated
graph cuts when there is only one iteration in segmentation and all regions are
involved in the optimization. Future work will be focused on how to reduce
its dependency on the initial segmentation result and how to reduce the user
interaction while preserving the segmentation accuracy.
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Contour Extraction Based on Surround Inhibition and 
Contour Grouping 

Yuan Li, Jianzhou Zhang, and Ping Jiang 

College of Computer Science 
Sichuan University, Chengdu, 610065, P.R. China  

Abstract. Extraction of object contours from the natural scene is a difficult task 
because it is hard to distinguish between object contour and texture edge. To 
overcome this problem, this paper presents a contour extraction method inspired 
by visual mechanism. Firstly, a biologically motivated surround inhibition 
process, improved by us, is applied to detect contour elements. Then we utilize 
visual cortical mechanisms of perceptual grouping to propose a contour group-
ing model. This model consists of two levels. At low level, a method is pre-
sented to compute local interaction between contour elements; at high level, a 
global energy function is suggested to perceive salient object contours. Finally, 
contours having high energy are retained while the others, such as texture edge, 
are removed. Experimental results show our method works well. 

1   Introduction 

Edge detection, an important task in computer vision, is a fertile field of ongoing 
research. In the last two decades, many edge detection algorithms have been proposed 
including linear filtering [1], nonlinear diffusion [2], optimal edge detector [3], etc. 
Nearly most the detectors react to all local change of intensity, and don’t distinguish 
between object contour and edge originating from textured region. Thus, for these 
edge detection models, it is extremely difficult to isolate objects in a cluttered scene. 
However, human visual system can rapidly and effectively perceive object contours. 

Neurophysiological researches [4] [5] show that in early stages of visual informa-
tion processing, the human visual system deploys a visual mechanism to discriminate 
between texture edge and object contour elements so that it can suppress texture edge 
and then relatively enhance saliency of object contour elements. Furthermore, effects 
produced by object contour elements are not independent in primary visual cortex. 
According to [6] [7], visual neurons in area V1 are interrelated and compose a whole 
functional network by lateral and vertical linkage, hence it can invoke interactions 
between these effects, and  then based on information of the interaction form integra-
tive perception for salient contour. 

In this paper, we propose a computational method, inspired by the above-
mentioned visual mechanisms, to extract contour from nature scenes. The paper is 
organized as follows. In Sect. 2, we utilize a method referred as surround suppression 
to detect elements of object contour. Then these local elements are grouped into some 
object contours in Sect. 3. In Sect. 4, experimental results are given. 



688 Y. Li, J. Zhang, and P. Jiang 

2   Surround Inhibition Process 

Receptive field is area in which stimulation leads to response of a particular sensory 
neuron, and the response of neuron cell to stimulus in receptive field can be sup-
pressed by stimuli presented in surrounding regions. Neuroscientists refer to the visu-
al effect as nonclassical receptive field inhibition. Further proof [8] shows that degree 
of surround suppression depends on the similarity of orientations and distance of 
stimuli inside and outside the RF. 

2.1   Original Computational Method 

We firstly introduce an original computational model of surround inhibition based on 
Grigorescu’s model [9]. Some psychophysical findings show that inhibitory intensity 
declines with increasing distance to the center of the RF. The distance between stimu-
li inside and outside the RF is taken into account by a weighting function, and the 
difference of two Gaussian functions model is adopted to define the weigh 
tion wσሺx, yሻ as follows: DoG஢ሺx, yሻ ൌ ଵଶ஠ሺସ஢ሻమ exp ቀെ ୶మା୷మଶሺସ஢ሻమቁ  െ ଵଶ஠஢మ exp ቀെ ୶మା୷మଶ஢మ ቁ .                 (1)                          w஢ሺx, yሻ ൌ ଵԡୌሺୈ୭ୋಚሻԡభ H൫DoG஢ሺx, yሻ൯ .                                     (2)     Hሺzሻ ൌ ቄ0, z ൏ 0z, z ൒ 0 .                                                         (3) 

where ||. ||ଵdenote the Lଵnorm.  w஢ሺx, yሻ is illustrate as Fig. 1. 

              

Fig. 1. The left is three-dimensional graph of weigh function w஢ሺx, yሻ, and the right represents 
top view of  w஢ሺx, yሻ and its profile 

Kinerim and Van Essen’s research [10] manifested that relative orientation of the 
centre and surround stimuli is also an important factor in determining inhibitory  
degree. The response to stimulus is suppressed significantly by similarly oriented 
stimuli in the surround. The inhibitory intensity is reduced when the orientation of the 
surround stimuli is different from that of the stimulus in the RF; the suppression is the 
strongest when they are same and is the weakest when they are orthogonal. To  
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describe the degree of suppression varying with the orientation similarity, an orienta-
tion contrast-based weighting function is given by: w஘ሺθ∆ሻ ൌ 1 െ ஘∆஠/ଶ .                                                      (4) 

Where θ∆denote orientation contrast. 
The total inhibitory intensity of image point ሺx, yሻ is computed by weighted sum-

mation of the inhibitory effects in the inhibition surround, we use following equation 
to define it: S஢ሺx, yሻ ൌ ∑ w஢ሺxᇱ െ x, yᇱ െ yሻሺ୶ᇱ,୷ᇱሻאΩ ൈ w஘ሺθ∆ሻ ൈ mሺxԢ, yԢሻ .       (5) 

Where m(x, y) is the gradient magnitude value of image, Ω  is the domain that w஢ሺxᇱ െ x, yᇱ െ yሻ>0 and represents inhibition surround of point ሺx, yሻ. S஢ሺx, yሻ is supposed to be large in textured areas and low on object contours thus 
leading to the suppression of texture while retaining contour elements. 

Response of an image(x, y), after surround inhibition, is denoted as:  R஢ሺx, yሻ ൌ Hሺmሺx, yሻ െ α ൈ S஢ሺx, yሻሻ .                                (6) 

 

Fig. 2. Inhibition surrounds of different model are on a gradient image of square. These sur-
rounds are represented by semitransparent shadow. A is surround in [9] and have self-inhibition 
on contour. B is surround improved by [11] and have self-inhibition on corner. C is surround in 
this paper and always avoids self-inhibition. 

2.2   Improved Scheme 

The above-mentioned method that calculates effect of surround inhibition derives 
from model proposed by [9], is considered as a conventional surround suppression 
model. However, the method has a drawback: according to (5), S஢ሺx, yሻ can’t be zero 
on an isolated object contour, even is large: the point ሺx, yሻ is a point of a contour 
element while other parts of the same contour element shall fall in inhibition surround 
of the point, see surround A in Fig. 2. Consequently, it can bring about no small effect 
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of surround suppression, and then some contour elements with low gradient magni-
tude may be eliminated. The result isn’t what we desire. This drawback is referred to 
as self-inhibition.  

Afterwards, an improvement of the model is presented by [11] to aim to eliminate 
the drawback. Their idea is to exclude from the annular inhibition surround Ω of a 
point a band region of given width oriented along the contour, see surround B in Fig. 2. 
However, there still exist two disadvantages in the improvement: 1. the model expects 
that all local parts of contour should be inserted into the band region, such as surround 
B on a side of square in Fig. 2, thus the contour element is sure to be approximately 
straight, or it is still unable to avoid self-inhibition, such as surround B on a corner of 
square in Fig. 2; 2. the width of band region can’t change dynamically, and choice of 
width is difficult: if it’s not enough wide and the contour is thick, the band region can’t 
contain the all local parts of contour and then self-inhibition exists yet; if too wide, 
inhibition surround become deformed seriously and the work loses original intention. 

So we propose a scheme that improves the model [9]. The model modified by us 
isn’t subjected to the self-inhibition drawback in all case. The notion is to extract from 
the annular inhibition surround Ω of the current responding point a local edge which 
the current responding point belong to, and make the points on the extracted local 
edge  don’t bring about inhibition effect to response of the current responding point:  

  S஢ᇱ ሺx, yሻ ൌ ∑ w஢ሺm, nሻሺ୫,୬ሻאሺΩି୉ሻ ൈ w஘ሺθ∆ሻ ൈ mሺx ൅ m, y ൅ nሻ .            (7) 

E indicates a set of coordinate of the local edge points, these points with the respond-
ing point belong to the same local edge. In order to find the corresponding set E of the 
current responding point, we adopt region growing method to extract the local edge 
including the current responding point. Coordinate of points on the local edge form 
set E. The procedure base on gradient magnitude m(x, y): 

1. Firstly observe the current responding point, if its gradient magnitude value lager 
than a specific Threshold q, we consider this point lie in an edge and then continue 
next step, or E is ׎ and the procedure is over. 

2. Take current responding point as seed point, start with it and grow region by a 
given criterion. The Growing process is confined in outer circular of inhibition sur-
round Ω of the responding point. 

3. The procedure will stop when no more point satisfy the criterion.  Finally, take set 
of coordinate of points on the region as set of E. 

Become the processes base on gradient magnitude m(x, y), the region extracted is just 
the local edge that the current responding point belong to. Our computational method 
of surround inhibition is adaptive on the local edge. For instance, in Fig. 2, inhibition 
surround Ω of C on the corner automatically excludes the region of the local edge so 
that self-inhibition is eliminated absolutely. 

Computation complexity of the model is not as high as it appears to be, because 
that the growing process merely occurs on the point considered as a point on an edge, 
and is confined in outer circular of inhibition surround. In addition, above all, there is 
a skill used in implementation of an algorithm: each time growing process can utilize 
the information of result of the last growing process if on same edge, set E of this 
process is almost identical with set E of last process, the only thing that needs to do in 
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process is to update the set E slightly. The skill is inspired by Huang’s algorithm for 
median filter [12]. Thus computation complexity of the model can’t be very high. 

2.3   Thinning and Binarization 

For the sake of necessity of following task, an additional step is to thin edge and gen-
erate binary representation. Through thinning by non-maxima suppression applied to S஢ᇱ ሺx, yሻ and binarization by hysteresis thresholding respectively, a binary map is ob-
tained. Non-maxima suppression and hysteresis thresholding are introduced in canny 
operator (see [3] for details). In our paper, the two approaches aren’t stated. 

3   Contour Group 

In this task, we aim at extracting contours of object. Although the above task has 
suppressed quite a few texture edges by surround suppression, it is inevitable that 
there exist a great deal of non-contour elements. These undesired non-contour ele-
ments have devastating effect on quality of our whole work, and many further tasks 
based on contour of object, such as shape-based object recognition, hardly carry on. 
So in this step, disorganized and unrelated local contour elements are grouped to form 
the organized global contours, which are retained as the final result. The contour-
grouping model that we propose comprises two levels. At low level, we concentrate 
our attention on context interaction between contour elements in local. At high level, 
we suggest global contour perception method to perceive salient contours [13]. These 
ideas arise from early visual perception mechanisms [14]. The entire behavior of 
perceptual grouping is primarily bottom-up process. 

 

Fig. 3. Above two lines represent a pair of contour causing local interaction of proximity. Be-
low two lines are the other pair, their local interaction of proximity is obviously weaker than 
the above. 

3.1   Local Interactions of Contour Elements 

Let’s consider first the local interaction for contour elements. Through thinning and 
binarization, a contour element appears as line. We take two factors into account in 
this respect. The two factors are suggested according to parts of gestalt laws of per-
ceptual organization (see work of C. Kanizsa [15] for details about gestalt theory).  

Proximity. Law of proximity is one of gestalt laws, which plays an important role in 
contour grouping. It states that elements near each other tend to be grouped together. 
Interaction of proximity of a pair of contour elements is proposed as follow: 

p଴ଵ p଴ଶ
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E୮ ൌ ୪ୣ୬୥୲୦భା୪ୣ୬୥୲୦మ หp01ିp02ห  .                                                  (8) 

Where p଴ଵ , p଴ଶ represent two endpoints that are the closest each other for the pair of 
contour elements, as shown in Fig. 3, and |p଴ଵ െ p଴ଶ| is the distance of the two points. lengthଵ, lengthଶ are each length of the two contour elements.  

In equation (8), the E୮ that indicates interaction of proximity is defined by distance 
factor and length factor of contour element. It stands to reason that the distance is 
regarded as one of the factors because distance factor embodies proximity, while the 
length factor of contour element actually implies the scale factor. As illustrated in Fig. 
3, the proximity of the above pair of contour elements superior to the below pair’s 
obviously although their distance factors are identical. 

Continuity. Law of continuity has also great influence for grouping contour. Continu-
ity interaction of a pair of contour elements is suggested in the following way: Eେ ൌ ∑ ሺ|p୧ଵ െ p଴ଶ୧ୀଵ |െ|p଴ଵ െ p଴ଶ|ሻwσభሺiሻ ൅ ∑ ሺ|p୨ଶ െ p଴ଵ୨ୀଵ |െ|p଴ଶ െ p଴ଵ|ሻwσమሺjሻ .  (9) 

Where p୧ଵ represent the i.th nearest point to the endpoint p଴ଵ  in the one contour ele-
ment and   p୨ଶ denotes the j.th nearest point to the endpoint p଴ଶ in the other. The wσሺiሻ 
indicates a weighting function. Next, let’s describe how continuity of two contour 
elements is represented by Eେ in equation (9). 

 

Fig. 4. Four lines (a, b, c, d) represent four contour elements. A଴, B଴, C଴, D଴ represent end-
points that are the closest each other for the four contour elements. 

What model can represent continuity of a pair of contour elements has always been 
a noticeable problem in contour grouping. There are lots of algorithms in literature to 
deal with this problem. However, all these algorithms [16] [17] [18] that we have read 
are based on relationship of orientation of lines and just can be applied to calculate the 
continuity between straight lines. The reason is obvious: it is extremely difficult to 
define orientation of a curve line. As a matter of fact, contour elements of object can 
hardly appear as a straight line but a curve line. Therefore, these algorithms can’t 
work practically, but our method isn’t subjected to the limitation. 

We use Fig .4 to illustrate relationship of Eେ  and continuity of two lines. In the  
Fig .4 (a, b, c, d indicate four contour elements in figure), it’s so apparent for percep-
tual organization that the a and d are most likely to be perceived together, and the 
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continuity of the a and c is worse than of a and d but better than that of a and b. 
Through elaborate comparison and study, we find a law that these points subsequent 
to endpoint are the farther away from the endpoint of the other contour element, the 
better the continuity is. From Fig .4, a relation inequality can be drawn:    |Aଵ െ B଴| െ |A଴ െ B଴| ൏ |Aଵ െ C଴| െ |A଴ െ C଴| ൏ |Aଵ െ D଴| െ |A଴ െ D଴| .            (10) 

Each term, such as |Aଵ െ B଴| െ |A଴ െ B଴| , actually correspond to the term ሺ|pi1 െp02หെหp01 െ p02ห൯ of (9). The above description merely shows that relationship of Eେ  
and continuity of a pair of contour elements, but doesn’t deduce it. For subsequent 
points, their influence is different: the nearer point from its own side endpoint, the 
higher its weight is.  So it’s necessary to have weight function wσሺiሻ as coefficients. 

Effect of local interaction. According to principle of local interaction, any two con-
tour elements have their E୮ and Eୡ even though their proximity and continuity are so 
bad that these two contour elements can’t be grouped together. Thus we make an 
assumption that a pair of contour elements have effect of local interaction only when E୮, Eୡ are greater than their threshold values respectively. 

3.2   Global Contour Perceptions 

Contour perception is a global process that based on the information of local interac-
tion [19]. In the process, local contour elements are grouped to form perception for 
salient contour. We suggest an energy function of global contour perception as follow: E ൌ α∑ E୔ ൅ β∑ Eେ െ γ · N ൅ ∑ Rሺx, yሻሺ୶,୷ሻאେ  .                      (11) 

Any two adjoining contour elements on a perceptual contour must have effect of local 
interaction. ∑ E୔, ∑ Eେ represent proximity and continuity between contour elements 
on a contour. Each term in ∑ E୔ corresponds to E୔  of each two adjoining contour 
elements on a perceptual contour, as well as ∑ Eେ. N in equation (11) is the number of 
contour elements on a perceptual contour. Rሺx, yሻ denotes response of an image(x, y) 
and C represents the contour. α, β and γ are factors that control influence, (α∑ E୔ ൅
β∑ Eେ െ γ · N) in (11) is ensured to not larger than zero. 

E represents the global saliency of the contour. Each contour’s E can be obtained 
by backtracking traversal search method. The larger E a contour has, the more salient 
perceptually the contour is. Thus we retain a certain number of contours with great E 
as salient object contours, while plenty of unwanted textures are eliminated. 

4   Experiment 

Some experimental results are presented and discussed in this section. For choice of 
parameters of the model, σ is set to 1.6, and  α is set to 2 in surround inhibition model, 
p in hysteresis thresholding is chosen to be 0.2. In Sect. 3,  α , β  and γ  are set to 
5,100,500.  If (α∑ E୔ ൅ β∑ Eେ െ γ · N) is larger than zero, we set it to be zero. wσሺiሻ  
in equation (9) is chosen to be standard normal function. 
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4.1   Experimental Results
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(It is natural that the output also includes texture edge), and then group the local ele-
ments into global contours. Lastly, all candidate contours are ranked on energy value 
of global contour perception, and then select contours whose energy larger than a 
given threshold as final result. The choice of the threshold is a trade-off between the 
completeness of contours and the removal of texture edge.   

We take some natural images from Berkeley images dataset to verify the capability 
of our model for contour extraction and compare the proposal with the surround inhi-
bition operator by [9] and canny operator [3]. From experimental results of over twen-
ty images, we select some typical cases are presented in Fig. 5, we can observe that 
our model can not just obtain nearly complete object contour, but can also eliminate 
almost all texture edge. Surround inhibition by [9] can remove more texture edge than 
canny operator, but still many texture edges remain in results due to lack of processes 
of Sect. 3. It is worth noting to the left case, the neck contour of horse in fourth row is 
inhibited by self and can’t be retained in final result, while such failure never happen 
on our model. 

Finally, we adopt the performance measure method proposed by [9] to evaluate the 
performance of experimental results. The method is introduced for detail in [9]. Table 
1 shows the performance measures of experimental results shown in Fig. 5 and argues 
that our model are indeed better than the others on the application of extracting con-
tours from natural image. 

5   Conclusion 

In this paper, we refer to some recent findings of neuroscience and psychophysics on 
visual perception to propose a bottom-up model of contour extraction. The model 
incorporates the two submodels: surround inhibition and contour group. As for sur-
round inhibition, our method has property of self-adaptation, and can completely 
eliminate self-inhibition at the cost of a little additional computing time. For contour 
grouping, in local context, we suggest a computational method that is used to calcu-
late interaction of a pair of contour elements with respect to proximity and continuity; 
in terms of global perception, we propose an energy function to perceive salient ob-
ject contours. Our contour grouping model can be applicable to nature image, whereas 
the great majority models for contour grouping can only be used to synthetic image. 
Finally, experiment results show that our approach is feasible to extract contour from 
nature scene. 

The present model still has plenty of scope for improvement. At further work, we 
adopt more image local and global feature and consider more psychophysical factors. 
Besides, human visual attention mechanism is also our further research work.  
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Abstract. High quality online video segmentation is a very challenging

task. Among various cues to infer the segmentation, the foreground and

background color distributions are the most important. However, previ-

ous color modeling methods are error-prone when some parts of the fore-

ground and background have similar colors, to address this problem, we

propose a novel approach of Confidence-based Color Modeling (CCM).

Our approach can adaptively tune the effects of global and per-pixel

color models according to the confidence of their predictions, methods

of measuring the confidence of both type of models are developed. We

also propose an adaptive threshold method for background subtraction

that is robust against ambiguous colors. Experiments demonstrate the

effectiveness and efficiency of our method in reducing the segmentation

errors incurred by ambiguous colors.

1 Introduction

Extracting foreground object from image and video has been an active research
topic for a long time[1,2,3,4,5,6]. In recent years, high quality online video seg-
mentation has attracted more and more attention because of its potential appli-
cations in teleconferencing and augmented reality, etc. In these applications high
quality segmentation that can be used for background substitution is desired.

In [3] the authors introduces an effective binocular segmentation method, but
its application is limited due to the requirement of binocular inputs. The suc-
ceeding works are all for monocular segmentation with stationary background
[4,5,6], which adopt color, motion and contrast as the main cues to infer seg-
mentation. These cues are combined into an optimization framework that can
be solved efficiently with max-flow/min-cut [7].

Color distribution of the foreground and background is the most important
cue, which can be represented with global and per-pixel color models. The global
model describes the global color distribution of foreground and background, and
per-pixel model represents the background color distribution at the location of
each pixel, which is in fact the background model be used for background sub-
traction [8]. As is well known, segmentation methods easy to produce inaccurate
� These two authors are corresponding authors.
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(a) (b) (c) (d)

Fig. 1. The error caused by ambiguous colors. (a) input image; (b) probability map

produced by the global color model (a pair of GMMs learned according to the ground

truth of (a)), the pixels with greater intensity are more likely to be foreground; (c)

the background image. Note that the background image is incomplete (in the large

white region), and the reason is explained in section 4; (d) the result of background

subtraction. From (b)(d) one can find a lot of misclassified pixels due to ambiguous

colors (in the red rectangles).

segmentation when foreground and background have similar colors. However,
this problem gained little attention in previous works, in which it seems that
the color modeling process is always safe. Fig.1 demonstrates that both global
and per-pixel color models may introduce notable errors when ambiguous colors
present.

In previous methods, the most often adopted global color model is the Gaus-
sian Mixture Model (GMM). Generally, the global color model can be any clas-
sifier that can output probability, so besides GMM, other learning algorithms,
including k-NN and SVM, can also be used to build the global color model (if
speed is not considered). However, because there is no learning algorithm can
avoid introducing errors, the output of global color model is not always trustwor-
thy (Fig.1(b)). The same for the per-pixel color model, although many adaptive
threshold methods were proposed for background subtraction, none of them is
capable of dealing with ambiguous colors. Consequently, when the overlapped
parts of foreground and background have similar colors, foreground may be mis-
classified as background (Fig.1(d)).

When multiple types of cues are jointly considered, the impact of different
cues can be adjusted through their weights. In previous methods, however, the
weights of each type of cues are uniform for all pixels, which implies that the
predictions of color models are treated equally regardless their correctness. Since
the case of every pixel may be different, with uniform weights it would be difficult
to achieve the optimal combination of cues at every pixel. We therefore propose
to assign each pixel an individual weight based on the confidence of color models
at each pixel. In this way we can reduce the impact of incorrect predictions of
color models by assigning them lower weights.

Notice that the confidence of prediction is in general not the probability of
the predicted class because the latter can be seriously biased due to imperfect
inductive biases [9]. A common misunderstanding about the probability is that
if a color is ambiguous, a classifier would automatically assign it nearly equal
probabilities of belonging foreground and background. This is not true for most
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classifiers. Fig.1(b) shows the case of GMM. In fact, in this case most classifiers
would classify input feature to be the class whose samples occur more often,
which would definitely cause features of the other class be misclassified. In the
domain of machine learning there are already some attempts to measure the con-
fidence (or reliability) [9,10] and to design classifiers with controlled confidence
[11]. Despite their solid theoretical foundation, they are yet not practical for our
problem due to their large computational cost.

The main contribution of this paper can be summarized in three aspects.
First, we demonstrate that traditional segmentation model based on uniform
weights is error-pone in dealing with ambiguous colors, and then present an
confidence-based segmentation model. Second, we propose efficient methods to
measure the confidence of both global and per-pixels color models. Third, we
introduce an adaptive threshold approach for background subtraction which is
shown to be robust against ambiguous colors. Our work focuses on the problems
caused by ambiguous colors, which have been noted for a long time but have not
been solved yet.

The restof this paper isorganizedas follows. Section2 introducesour confidence-
based segmentationmodel. Section 3presents the proposed global (section 3.1) and
per-pixel (section 3.2) color models capable of measuring confidence and estimat-
ing adaptive thresholds, as well as the method to determine the weights of each
pixel (section 3.3). Section 4 presents our experimental results, and compares the
proposed method with previous video segmentation methods. Finally, we conclude
our method in section 5.

2 Confidence-Based Segmentation Model

Let z = (z1, · · · , zi, · · · , zN) be an array of pixel color that represents the in-
put image, α = (α1, · · · , αi, · · · , αN ) be the corresponding segmentation result,
where αi ∈ {0, 1} is the state of the i-th pixel. The segmentation α then can be
obtained by minimizing the following energy function:

E(α) =
∑

i

ω̇iE1(αi) + λ
∑

(i,j)∈E
E2(αi, αj) (1)

where E1 is the data term measuring the cost under the assumption that the
state of the i-th pixel is αi, E2 is the smooth term encoding our prior knowledge
about the segmentation, and λ is a free parameter used to trade-off between the
data and smooth terms. ω̇i is a weighting function encoding the confidence of
data terms (in previous methods ω̇i ≡ 1).

The smooth terms E2 are not dependent on the color distributions, and we
will focus on the data terms E1 and the weighting function ω̇i. E1 is typically
computed as the negative log of the foreground color model p(zi|F ) and the
background color model p(zi|B):

E1(αi) =
{
− log p(zi|F ) if αi = 1
− log p(zi|B) if αi = 0 (2)
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Without loss of generality, p(zi|F ) and p(zi|B) can be assumed to be normalized,
that is, p(zi|F ) + p(zi|B) = 1, by giving either of them we can determine both.
For clarity we use p(zi) to denote the normalized (foreground) color model:

p(zi) =
p(zi|F )

p(zi|F ) + p(zi|B)
(3)

The color model can be used to describe the global color distribution of the
foreground and background. Since the background is stationary, the background
color at the location of each pixel can also be described with a distribution
function. Therefore, we define p(zi) as the combination of the global and per-
pixel color models:

p(zi) = ω̈ip∗(zi) + (1− ω̈i)pi(zi) (4)

where p∗(zi) is the normalized global color model, and pi(zi) is the normalized
per-pixel color model regarding the i-th pixel. ω̈i is a weighting function to
balance their effects.

The above model is an extension of the segmentation model used in [4]. The
main difference is that in [4], ω̇i ≡ 1 and ω̈i ≡ c are uniform to all pixels, while
in our model they may take different value at different pixels. By computing ω̇i

and ω̈i according to the confidence of corresponding terms, we can emphasize
the impact of reliable cues while suppressing the impact of unreliable cues which
may lead to incorrect segmentation, in this way the errors introduced by color
modeling process can be greatly reduced.

3 Confidence-Based Color Modeling (CCM)

3.1 Global Color Model

We adopt Gaussian Mixture Model (GMM) to represent the global color distri-
bution:

p∗(zi|F ) =
KF∑
k=1

πF
k N(zi|μF

k , Σ
F
k ) (5)

where (πF
k , μ

F
k , Σ

F
k ) are the parameters of the k-th component, and KF is the

number of Gaussian components. p∗(zi|F ) is the global foreground color model.
The global background color model p∗(zi|B) is defined similarly. p∗(zi|F ) and
p∗(zi|B) can be trained from the foreground and background training color set
SF and SB , respectively. After that the normalized global color model p∗(zi)
can be computed easily by equation (3). The probability map in Fig.1(b) is in
fact the visualization of p∗(zi) acquired in this way.

Nevertheless, the global color model obtained in the above way provides bare
probability without confidence measurement. The confidence of p∗(zi) depends
on both the quantity of ambiguous colors around zi and the accuracy of GMM.
Specifically, if in color space, zi falls in the region of many ambiguous colors , or
the color distribution in the neighborhood of zi cannot be accurately described
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(a) (b) (c) (d)

Fig. 2. Probability and confidence map. The input image is the same as in Fig.1.

(a) detected misclassified pixels (the gray pixels); (b) confidence map of the global

color model (visualized in Fig.1(b)), greater intensity implies higher confidence; (c)

probability map produced with our per-pixel color model; (d) confidence map of (c).

with GMM, p∗(zi) should be of low confidence. However, these two conditions
are hard to be evaluated in practice, here we propose a simple, yet effective
method to measure the confidence.

Note that the training data sets SF and SB can be used to validate the
learned global color model. A color s is misclassified by the learned model if
s is a foreground sample (s ∈ SF ) but p(s|B) > p(s|F ), or s is a background
sample (s ∈ SB) but p(s|F ) > p(s|B). Let SU denote the set of all misclassified
colors in SF and SB , then we can train an additional GMM p∗(zi|U) from SU .
p∗(zi|U) is the probability of zi be misclassified, larger p∗(zi|U) implies lower
confidence of p∗(zi). If p∗(zi|U) is larger than both p∗(zi|F ) and p∗(zi|B), zi

can be considered to be misclassified. Fig.2(a) illustrates the misclassified pixels
detected in this way, which shows that our method successfully found out most
misclassified pixels. Now we can compute the confidence of p∗(zi) as:

C( p∗(zi) ) = 1− p∗(zi|U)
p∗(zi|F ) + p∗(zi|B) + p∗(zi|U)

(6)

where C( · ) is the confidence function. Fig.2(b) visualizes the confidence of p∗(zi).
One can find that the confidence of pixels vary a lot, and the pixels of ambiguous
colors are assigned much lower confidence.

3.2 Per-pixel Color Model

Per-pixel color model is in fact the background model, the maintenance of which
has been studied much [8,12,13]. We don’t plan to survey all of these methods
due to space limitation; instead, we suppose that the background model at each
pixel has available as a Gaussian distribution N(zi|μi, Σi). The mean μi can be
regarded as the background color at the location of the i-th pixel.

Given the background model, background subtraction can be accomplished by
thresholding thedifferenceof the currentpixel color andcorrespondingbackground
color. Specifically, the i-th pixel is regarded as background if ‖ zi − μi ‖< Ti;
otherwise it is regarded as foreground, whereTi is the threshold function.Apopular
way of computing Ti is to make it vary according to the covariance matrix:

Ti = ρ
√

tr(Σi) (7)
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where ρ is a scale factor, and tr(Σi) is the trace of the covariance matrix Σi.
This method can make Ti adaptive to system noise, but it does not consider am-
biguous colors. When the overlapped parts of foreground and background have
similar colors, the thresholds computed in this way may cause foreground pixels
misclassified, as demonstrated in Fig.1(d). In order to solve this problem, the
threshold function must take both noise and ambiguous colors into consideration.

Since the foreground object may move to anywhere, a background pixel can
be occluded by any part of the foreground. To find out the safe threshold for
background subtraction, we need to know the minimum distance di from the
background color mean μi to all the foreground colors:

di = min{‖ μi − μF
k ‖ |k = 1, · · · ,KF } (8)

where μF
k is the mean of the k-th Gaussian component of the global foreground

color model. We need not to check every foreground color samples to find out
the minimum distance, which is not only costly but also sensitive to noise. After
getting di we can define two threshold functions TB

i and TF
i :

TB
i = min(di/2, Ti) TF

i = max(di, Ti) (9)

and then the normalized per-pixel color model can be computed as:

pi(zi) =

⎧⎪⎨⎪⎩
0 if ‖ zi − μi ‖< TB

i

1 if ‖ zi − μi ‖> TF
i

‖zi−μi‖−T B
i

T F
i −T B

i

otherwise
(10)

if μi is close to some foreground colors, di and TB
i would be small, which prevents

foreground pixels from being misclassified as background; on the contrary, if μi

is far from all foreground colors, di and TF
i would be large, which can suppress

noise better than Ti. Fig.2(c) is the probability map produced by this method.
Although it still contains some errors, it looks much better than that shown in
Fig.1(d), which is produced with the threshold function Ti as in (7).

The confidence of the probability pi(zi) is dependent on both its magnitude
and the reliability of the background model N(zi|μi, Σi) , so we compute it as:

C( pi(zi) ) =
√
e−βtr(Σi) ∗ |2pi(zi)− 1| (11)

where β is chosen to be (2 < tr(Σi) >)−1, in which < · > denotes the expectation
over all pixels. The background model becomes unreliable if it is polluted by
foreground colors, in which case tr(Σi) is large and pi(zi) would be assigned lower
confidence. |2pi(zi) − 1| would be 0 if pi(zi) = 0.5, which implies zi has equal
probability to be both foreground and background. Fig.2(d) is the confidence
map computed in this way.

3.3 Optimal Combination

Once the confidence of the global and per-pixel color models is known, we can
combine them according to the confidence so that the color model with higher
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(a) (b) (c) (d)

Fig. 3. Segmentation results. (a) the combined probability map of global and per-pixel

color models; (b) foreground obtained with both confidence and adaptive thresholds;

(c) foreground obtained without using confidence (ω̇ ≡ 1, ω̈ ≡ 0.5); (d) foreground

obtained without using adaptive thresholds (T F
i = T B

i = Ti).

confidence can take greater effect. Since the two confidence functions C( p∗(zi) )
and C( pi(zi) ) are both in the range of [0, 1], they do not need to be re-scaled,
and the weighting functions ω̇i and ω̈i can be simply computed as:

ω̇i =
1
2
(C( p∗(zi) ) + C( pi(zi) )) (12)

ω̈i =
C( p∗(zi) )

C( p∗(zi) ) + C( pi(zi) )
(13)

ω̇i can be regarded as the confidence of the combined color model p(zi). If both
global and per-pixel color models at pixel zi are of low confidence, ω̇i would be
small, and the corresponding data term is assigned low weights, then smooth
term would dominate the state of the corresponding pixel. Fig.3(a) shows the
combined probability map.

4 Experimental Results

In experiments we adopt the video segmentation data set from Microsoft I2I
project1. The test environment is a computer with 2.2GHz CPU and 4G RAM.
The algorithm is implemented in C++.

Implementation details: The data terms E1 are computed with the proposed
method, and the smooth terms E2 are computed in the same way of [4]. Since
the background image is not provided in the data set, we have to accumulate
it in online phase. At the start the background model of all pixels are invalid,
after segmenting a frame, the acquired background pixels are used to fill the
hole of the background image, and other parts of the background image are also
updated as in [4]. Henceforth, the background image we use is incomplete, as
shown in Fig.1(c).

The global color model is trained in the initialization phase. In [4] the program
is initialized with the background image. [5] proposes an automatic initialization

1 http://research.microsoft.com/vision/cambridge/i2i/DSWeb.htm
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VK 56 JM MS

Fig. 4. Visual comparison with BC [4]. Top: input frames; Middle: foreground obtained

with BC; Bottom: foreground obtained with our method.

method, but it needs labeled videos to train the motion model. Since the back-
ground image is not available in our case, we simply initialize our program with
the ground truth of the first frame. In practice the initialization method can be
chosen freely according to the available information.

The segmentation result is finally obtained by minimizing equation (1) with
min-cut [7], then the object boundary is smoothed to suppress flicking.

Computational cost: Our system can achieve a speed of 10 ∼ 12 fps for
input image sequence of size 320 × 240. Most computational cost is spent on
minimizing the energy equation. To measure the confidence and to compute the
adaptive thresholds bring only a little more cost, which is about 12ms in the
case of KU = KF = 10 (lookup table is used to accelerate the computation of
the exponential function in GMM).

Effect of CCM: Fig.3 demonstrates the effectiveness of the proposed color mod-
eling method. The input image is hard to be precisely segmented due to the large
area of ambiguous colors. Fig.3(c) is the foreground obtained with uniform weights,
in which the desktop is mis-segmented as foregrounddue to the error introduced by
the global color model (Fig.1(b)). Fig.3(d) is the foreground obtained without us-
ing adaptive threshold. Since the shoulder of the person appears nearly the same
as the desktop, it is misclassified as a part of background by the per-pixel color
model (Fig.1(c)). By using both nonuniform weights and adaptive thresholds, our
method can generate much better segmentation result (Fig.3(b)).

Comparison with other methods: Fig.4 provides some visual comparisons
of our method with “Background Cut” (BC, [4]). Since the background image
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input&GT #130 #140 #150 #160

Fig. 5. Visual comparison with TM [5]. The first column is the input image and the

ground truth of the frame #130.

Table 1. The error rates (%) of CCM, BC [4] and TM [5]

JM MS AC VK 50 54 56

CCM 0.13 1.40 0.47 0.68 1.12 0.39 0.33

BC 0.16 2.44 0.56 1.12 1.43 0.52 0.68

TM 0.12 2.59 0.52 - - - -

is not available, our implementation of BC is not exactly the same as described
in [4]. The only difference between our implementation of BC and our method
exists in the modeling of color distributions, i.e. the computation of E1 and its
weights, so the comparison between them is fair.

Fig.5 is the comparison with [5] (TM), which involves Temporal and Motion
priors as its cues. The results of TM are extracted from the published video, so
fair comparison is not guaranteed. Tab.1 lists the error rates of CCM, BC and
TM. Notice that the ground truth is available only every 5 or 10 frames, so not
every frame are evaluated and the error rates may not capture all errors.

In fact, the implementation of our method in this experiment is a version of
BC boosted with the proposed color modeling method. Since our color modeling
method is independent of how the program is initialized and how other energy
terms are computed, it can also be used to boost the performance of any other
video segmentation methods that adopt color distribution as segmentation cues.

5 Conclusions

In this paper we propose a confidence-based color modeling method to improve
the robustness of online video segmentation against ambiguous colors. A new
confidence-based segmentation model is presented, which assigns energy terms
nonuniform weights based on their confidence. We developed methods for mea-
suring the confidence of both global and per-pixel color models, and for com-
puting adaptive thresholds for background subtraction. The confidence is then
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used to determine the weights of color models and energy terms at each pixel in
order for the optimal combination of cues.

Experiments show that the proposed method can greatly enhance the seg-
mentation result, especially for frames with large amount of ambiguous colors
present. Our method to measure the confidence is very fast, and brings only a
little more computational cost.

The limitation of our work is that it accounts for only ambiguous colors.
Besides this, the change of lighting conditions, shadowing and camera shaking,
etc. can also lead to errors in the color modeling process. Our future work is to
address these problems in the confidence-based framework.

Acknowledgments. This paper is supported by 973 program of china (No.
2009CB320802) and NSF of China (No. 60870003).
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Abstract. We propose a general framework to encode various group-

ing cues for natural image segmentation. We extend the classical Gibbs

energy of an MRF to three terms: likelihood energy, coherence energy
and separating energy. We encode generative cues in the likelihood and

coherence energy to ensure the goodness and feasibility of segmentation,

and embed discriminative cues in the separating energy to encourage as-

signing two pixels with strong separability with different labels. We use

a self-validated process to iteratively minimize the global Gibbs energy.

Our approach is able to automatically determine the number of seg-

ments, and produce a natural hierarchy of coarse-to-fine segmentation.

Experiments show that our approach works well for various segmenta-

tion problems, and outperforms existing methods in terms of robustness

to noise and preservation of soft edges.

1 Introduction

Image segmentation is a classical problem in low-level vision and plays an im-
portant role in many high-level applications [1,2]. Although many thoughtful
ideas have been attempted, it is still challenging to find a unified solution that
produces satisfactory segmentations for various natural images. The difficulty
mainly results from the complexity of natural images. As shown in Figure 1, (1)
natural images often contain both textured and untextured regions, which may
cause massive false alarmed edges in textured regions; (2) natural images may
have significant clutter and camouflage between foreground and background,
where some perceptually important weak boundaries are easy to be missed.

To handle these problems, integrating multiple cues is a must choice. Several
recent works have demonstrated the potentials of multicue image segmentation
under these difficult situations. One success line of effort is the multiscale segmen-
tation. For example, Sharon et al. proposed a recursive graph coarsening method
to produce irregular image pyramid and used region-based cues at multiple scales
to conduct the image graph partition [4]. Yu discussed the application of comple-
mentary multiscale edges in natural image segmentation, and embedded the mul-
tiscale cues within the average cuts scheme [5]. Benezit et al. presented a multiscale

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 707–717, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Original HumanSeg SingleCue MultiCue

Fig. 1. Segmentation using single-cue vs. multicue graph mincut. The 1st row lists

original images. Human labeled segment boundaries [3] are shown in the 2nd row. The

3rd row is segmentations using only color cue; and the 4th row shows the results of

our approach using color, texture and multiscale edge cues. Note that multicue graph

mincut groups the large torso and thin tail together, and separates both textured and

untextured regions satisfactorily.

spectral decomposition algorithm to improve the efficiency of large image graph
partition with long-range edges [6]. To cope with both texture and weak edges, Ma-
lik et al. modeled texture with textons [7] and then learned a probability model to
combine local brightness, color and textures to detect image boundaries [8].

The necessity and potentials of multicues in solving difficult image segmen-
tation problems is well recognized. The major differences are what cues should
be used and how to combine multiple grouping cues that is computationally
efficient and guarantees satisfactory segmentation for a wide range of natural
images. Most previous methods focus on some particular cues and mainly use
the normalized cut criterion [9] that forms a discriminative model. We would
like to show in this paper that, various grouping cues, which can be divided to
either generative cues (such as color, texture etc.) or discriminative cues (such
as edge and color gradient etc.), can be encoded within a unified framework.

Our approach can be viewed as a combination of global generative model and
local discriminative model. The segmentation is formulated as a graduated graph
mincut process, each iteration of which is computationally fast and guarantees
global optimum. Moreover, unlike most existing methods, our approach is able
to automatically determine the number of segments and naturally corresponds
to a coarse-to-fine segmentation. In the following, we first elaborate the details of
multicue graph mincut framework, then demonstrate experimental results using
color, texture and multiscale edge cues and compare with the state of the art.

2 Multicue Graph Mincut Framework

Image segmentation is more than just grouping pixels with homogeneous
appearance, the spatial coherence is another important factor that should be
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considered. This makes the Gibbs energy minimization, which takes care of the
balance between segmentation goodness and spatial coherence, a natural formu-
lation of segmentation problems [10]. Moreover, it has been shown that, given
a fixed number of segments, the Gibbs energy minimization is equivalent to the
maximum a posteriori (MAP) estimation of Markov random field (MRF) [11].

Final Segmentation

Original Image

+

color texture

salient edge

Generative Cues

Discriminative Cues

Self-Validated
Labeling

Multiple Grouping Cues Extraction

Hand-drawn sketch

Fig. 2. General working flow of the MCGC framework

In practice, one successful model is the relational graph formulation [12]. Par-
ticularly, let G(I) = 〈V , E〉 denote the graph of image I. Each vertex in V cor-
responds to a pixel in I and the arc set E connecting adjacent pixels represents
the pairwise coherence. Let Y = {Ys} be the feature space of I with s denoting a
pixel. The MRF X = {xs} depicts the segmentation results that considers both
accuracy and contextual constraints, where xs ∈ L and L is the label space.
The goal of segmentation is to estimate the optimal label for each pixel with the
minimum overall Gibbs energy [10].

Under the graph formulation, we may consider image segmentation as a
weighted graph multiway mincut problem. Specifically, graph mincut is a nat-
ural way for binary Gibbs energy minimization. Unlike the discriminative model
such as normalized cut [9] considering only partitioning likelihood, graph min-
cut encodes both likelihood and feasibility of a segmentation. For binary label-
ing problems, graph mincut guarantees global optimum with polynomial com-
plexity [10]. In the following, we will generalize binary graph mincut to solve
self-validated labeling problems, i.e., the multiclass labeling problem when the
number of labels is unknown.1

Since choosing optimal features is task-dependent and remains a crucial prob-
lem for different vision and recognition tasks, in this paper, we attempt at finding

1 Self-validated labeling problem refers to multi-class labeling of an image where the

number of labels is unknown.
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F
B

(a) (b) (c)

Fig. 3. Image graph formulation: (a) binary graph mincut model, where F and B
represents the two cluster models (either parametric or nonparametric) and the curves

linking cluster models to image grid encode the likelihood energy, and the pairwise

edges between image pixels represent the spatial coherence energy; (b) is the classical

pairwise linkage configuration of graph mincut [12], while (c) is the long-range edge

embedded pixel linkage configuration (see the dot-line curves).

a general way to encode various grouping cues for segmentation. In particular,
we will solve the following two problems:

1. How to encode various cues in the graph formulation?
2. How to efficiently solve the multiway graph mincut problem when the num-

ber of segments is unknown?

For complex natural images, different image features may provide complemen-
tary grouping cues (see Fig. 1). In general, a large variety of features in both
spatial and frequency domain can be considered for image segmentation, but
according to the their functionality in segmentation, all low-level features fall
into the following two categories:

1. Generative feature G that represents some properties of single pixels, such
as brightness, color and texture etc.,

2. Discriminative feature D that indicates the interrelationship between two or
more pixels, such as edges and gradients etc.

A unified multicue segmentation should be able to encode both generative and
discriminative features. Thus, for the feature space Y of image I, we have Y =
{Gs, Ds}. That is, for each pixel s, the feature vector Ys is composed of m
generative features {G1

s, . . . , G
m
s } and n discriminative features {D1

s, . . . , D
n
s }.

Although we cannot enumerate all possible low-level features, we may propose a
unified multicue segmentation framework that is able to encode both generative
and discriminative features.

2.1 Multicue Embedded Gibbs Energy

We first consider the problem of binary segmentation problem that wants to
label all pixels with a binary MRF Xb ={xp} (xp ∈ {0, 1}) based on the feature
space Y . The optimal labeling corresponds to the minimum of the following
energy function:
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EbMRF (Xb) =
∑
p∈V

Elik(xp) +
∑

(p,q)∈E
Ecoh(xp, xq), (1)

where Elik(xp) is the likelihood energy representing the goodness of labeling
pixel p by xp, and Ecoh(xp, xq) is the coherence energy denoting the prior of
spatial coherence and feasibility of labeling. Note that (1) is the general form
of Gibbs energy for binary MRF based image labeling [11] and can be exactly
solved by graph mincut with polynomial complexity [12].

To embed both generative and discriminative features, we extend the image
graph to G(I) = 〈V , E ∪ Eedge〉, where Eedge represents the arcs that embeds a
discriminative cue. For simplicity, we discuss embed only one discriminative cue,
i.e., n = 1, but the proposed model is readily extended for multiple discriminative
cues. Accordingly, the Gibbs energy (1) is extended to three terms

EbMRF (Xb) =
∑
p∈V

Elik(xp) +
∑

(p,q)∈E
Ecoh(xp, xq) +

∑
(u,v)∈Eedge

Esep(xu, xv), (2)

where Esep(·) is the separating energy defined by

Esep(xu, xv) = − |xu − xv|
‖u− v‖ exp

(
− 1
γ
Ed(u, v)

)
, (3)

where ‖u−v‖ is the distance between pixel u and v, Ed is the concrete separating
energy for the discriminative cue. Note that Esep is a negative energy and larger
|Esep| encourages separating u from v. γ control the influence of Esep, the larger γ
is, the more important is Esep in EbMRF . Through Esep, we repel the pixels with
large separability to have different labels, which can be viewed as a complement
to the classical coherence energy. Ecoh +Esep consists the pairwise terms of the
classical Gibbs energy [11]. It is easy to show that Esep satisfies the regular
condition defined in [10], thus it can be solved by graph mincut.

To solve binary segmentation defined in (2), we need also define the concrete
form of Elik and Ecoh. To realize this, we first derive a nonparametric two-level
characterization of generative features:

Level 1. Dividing all feature samples into two components C0 and C1.
Level 2. Further dividing C0 and C1 into H subcomponents M0

k andM1
k.

This is a nonparametric representation of the generative feature space, i.e.,
G = {C0, C1} = {{M0

k}Hk=1, {M1
k}Hk=1}, based on which the feature distance

can be measured using the nearest neighbor criterion. In our experiments, H
was empirically set as 2. Both the components and subcomponents are obtained
by the K-means algorithm. Then, we can define both Elik and Ecoh in a nonpara-
metric form. Since the discriminative features only appear in Esep, for simplicity,
in the definitions of Elik and Ecoh, the feature vector yp denotes only generative
features.

Elik(xp) =
(d1

pxp + d0
p(1− xp)

d1
p + d0

p

)α

, (4)
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where d0
p = D(yp, C0) and d1

p = D(yp, C1) represent the distance between yp and
the components C0 and C1 respectively. Specifically,D(yp, Cc) = mink D(yp,Mc

k),
whereMc

k the k-th subcomponent of Cc. The distanceD(yp,Mc
k) between yp and

subcomponent Mc
k) is defined as the minimal difference measured by color or

texture:2

D(yp,Mc
k) = min

(
‖Cp − C(Mc

k)‖, ‖Tp − T (Mc
k)‖

)
. (5)

In (4), α controls the influence of likelihood energy Elik on the Gibbs energy
EbMRF . The larger α is, the more important is the likelihood energy Elik in
EbMRF . Ecoh is defined as the modified Potts model:

Ecoh(xp, xq) =
|xp − xq|
‖p− q‖ exp

(
− 1
β
‖yp − yq‖

)
. (6)

Our definition of Ecoh encourages close sites or sites with similar features to have
the same label. In (6), β controls the influence of the coherence energy Ecoh on
the Gibbs energy EbMRF . The larger β is, the more role the coherence energy
Ecoh plays in EbMRF .

Proposition 1 (Regularity). With the definition of Ecoh (6) and Esep, the
general Gibbs energy (2) embedding multiple cues satisfies the regularity condi-
tion [10], thus can be exactly solved by graph mincut (see Fig. 3(a)) with poly-
nomial time.

Proof: It is easy to check that the general Gibbs energy (2) still belong to the en-

ergy class F2 [10]. We can write its second-order term as Ep,q(xp, xq) = (
|xp−xq|
‖p−q‖ )ρ ·

exp(− ρ
β
‖yp − yq‖), where ρ = γEd(p, q) + 1. Note that the second part of Ep,q(xp, xq)

lies in (0, 1] because 1≤ ρ≤ γ + 1. Thus, Ep,q(0, 0) = Ep,q(1, 1) = 0 and Ep,q(0, 1) =

Ep,q(1, 0) ≥ 0. Therefore, Ep,q(0, 0)+Ep,q(1, 1) ≤ Ep,q(0, 1)+Ep,q(1, 0) and the general

Gibbs energy (2) satisfies the regularity criterion [10]. �

With (2)-(6) and Proposition 1, we can exactly solve multicue binary segmenta-
tion using the graph mincut algorithm approach.

2.2 Self-validated Segmentation

Graph mincut has been successfully used in binary labeling problems, such as
interactive cutout [12]. We show here how to use the split-and-merge strategy
to gradually approach a self-validated segmentation [13].

The major difficulty of MRF/MAP based methods is that it cannot simultane-
ously achieve global optimization and computational efficiency. Moreover, when
the number of labels is also unknown, the problem becomes more difficult. Our
method is based on the observation that there is no way to produce a “perfect”
segmentation solely based on low-level cues. Therefore, the generic global opti-
mal segmentation is neither possible nor necessary. Rather than finding a single
2 This is because the color and texture features are usually complementary to each

other. In textured regions, the color distance may be quite large; and vice versa. Think,

for instance, the texture of zebra and its color.
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“perfect” segmentation, we prefer a hierarchical coarse-to-fine segmentation. We
formulate these ideas by converting a K class segmentation problem to a series
of binary segmentation problems, which are much simpler and can be exactly
solved by graph mincut algorithm. Hence, we call our approach graduated graph
mincut.

We start with the whole feature space Y and model it with a binary MRF
Xb

0 . The solution of Xb
0 with minimal energy results in two tentative segments,

Xb
1 and Xb

2. We continue this process iteratively until the whole energy stops
decreasing. For each iteration, a tentative segment Xb

i evolves itself from three
hypotheses: remaining, merging or splitting. The evolution criterion is Gibbs en-
ergy minimization (2). We can see that the iterative segment evolving process is
terminated when all tentative segments remain unchanged. We need not specify
the number of segments that can be implicitly determined by the segment evolu-
tion process, thus this approach is self-validated. Furthermore, since optimizing
a binary MRF is much easier than the flat K-class MRF, this approach is much
faster than the classical MRF methods.

For each tentative segmentXb
i , we first extract the two-level feature space rep-

resentation 〈C0,i|M0,i
k 〉 and 〈C1,i|M1,i

k 〉. Then we choose the optimal hypothesis
based on the energy of remaining, merging and splitting.

1. Remaining energy. The likelihood energy (i.e., intra-class distance) of Xb
i

is measured as the average likelihood energy of all samples in Xb
i :

Eremain(Xb
i ) =

∑
s∈V(Xb

i )Elik(cs)

|V(Xb
i )|

, (7)

where V(Xb
i ) is the pixel set of Xb

i , |V(Xb
i )| is its size, and cs is the component

label of site s in Xb
i : cs = 0 if d0

s ≤ d1
s, otherwise cs = 1.

2. Merging energy. For a segment Xb
i , its remaining energy denotes its like-

lihood of remaining unchanged. Similarly, the merge energy between segments
Xb

i and Xb
j can be defined as the remaining energy of Xb

i ∪Xb
j (i.e., the union

of Xb
i and Xb

j ):
Emerge(Xb

i ∪Xb
j ) = Eremain(Xb

i ∪Xb
j ), (8)

where Xb
i ∪Xb

j is also a binary MRF with corresponding components (C0,i∪j and
C1,i∪j) and subcomponents (M0,i∪j

k andM1,i∪j
k ).

3. Inter-segment energy. To make the remaining energy and merging energy
comparable, we also need the inter-segment energy:

Eint(Xb
i , X

b
j ) =

∑
(p,q)∈E(Xb

i ∪Xb
j )

Ecoh(cp, cq) +
∑

(u,v)∈Eedge(Xb
i ∪Xb

j )

Esep(cu, cv). (9)

4. Splitting energy. For each segment Xb
i , we will obtain its optimal binary

splitting {Xb,0
i , Xb,1

i }. We define the splitting energy of Xb
i as the sum of the

remaining and inter-segment energies of Xb,0
i and Xb,1

i :

Esplit(Xb
i ) = Eremain(Xb,0

i ) + Eremain(Xb,1
i ) + Eint(X

b,0
i , Xb,1

i ). (10)
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5. The algorithm. Guided by Eremain, Emerge, Esplit and Eint, all tentative
segments evolve themselves according to the energy minimizing rules. To simplify
the problem, for each tentative segment Xb

i , we only test the merging hypothesis
with its nearest segment Xb

P (i). The distance between two segments is defined
as the minimal distance between their subcomponents:

D(Xb
i , X

b
j ) = min

fi∈Mi,fj∈Mj
D(fi, fj), (11)

where D(fi, fj) is the distance between feature vectors fi and fj .

Fig. 4. MCGC segmentation using different cues: (a) color image segmentation us-

ing only color and color+edge; (b) comparative segmentation results using color,

color+edge, color+texture and color+texture+edge, respectively.

3 Experimental Results

To evaluate the proposed framework, we tested three commonly used features in
our experiments: two generative features (color and texture), and one discrimi-
native feature (i.e., salient edge). We show that even these three simple features
work well in most cases for both textured and untextured regions and other
difficult situations.

As shown in Fig. 1, integrating multicues can significantly improve the per-
formance than single cue segmentation. Fig. 4 shows comparative results using
different cues. We can clearly see the improvement when more cues are properly
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Fig. 5. Comparative segmentation results of GBS, NCut, IsoCut, DDMCMC and the

MCGC approach (using color only) for soft boundary preservation

Fig. 6. Comparative segmentation results of GBS, IsoCut, NCut, DDMCMC and the

MCGC approach (using color, texture and salient edge) with the ground truth

used. The untextured regions (e.g., the ground) and textured regions (e.g. the
torso) in Fig. 4(b) were properly separated by integrating color, texture and
salient edge cues. We can also see the role of salient edge in preserving soft
boundaries from Fig. 4(a).

We have compared our MCGC approach to several state of art methods: (1)
normalized cut (NCut) [9]; (2) isoperimetric cut (IsoCut) [14]; (3) efficient graph
based segmentation (GBS) [15]; and (4) the DDMCMC [16]. Compared to these
works that either focus on some particular cues or use discriminative models, our
approach can be viewed as a kind of combination of global generativemodel and lo-
cal discriminative model, which makes our approach good at preserving soft edges
than discriminative methods. Fig. 5 shows the comparative results in the preserva-
tion of soft boundaries (see the cloud regions). As shown in Fig. 6, among all tested
methods, GBS [15] efficiently generates segments according to local similarity. But
the bottom-up nature makes GBS tend to oversegment the image and results in
many spurious segments. In contrast, IsoCut [14], NCut [9], DDMCMC [16] and
the proposed MCGC have different energy functions to guarantee global or near
global optimum, which results in a fine balance between segmentation accuracy
and spatial coherence. Among all the tested methods, GBS, IsoCut, DDMCMC
and the our MCGC approach are self-validated, while the NCut algorithm need
to indicate the number of segments. We can also see that compared to other self-
validated methods, our approach has general consistent segmentations that are
qualitatively similar to human labeled ground truth.
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Fig. 7. Comparison to the ground truth. The first row shows the original images.

The second row shows the segmentations labeled by human. The third row shows

segmentation results of the proposed MCGC approach.

In Fig. 7, we compare the results of our approach with the human labeled
object boundaries, which can be viewed as the ground truth of segmentation.
The results are generally encouraging. But the last example (the horse) show
that perceptually important boundaries may be of weak strength of low-level
features. These faint edges are very difficult to detect using only low-level cues
no matter how to adjust the influence of likelihood energy Elik, coherence energy
Ecoh and separate energy Esep. To cope with this problem, some high-level cues
such as shape or user interaction should be considered.

Numerical efficiency. For an image graph with n vertices and m arcs, the
worst-case complexity of binary graph mincut is O(mn2). Since our method
is composed of a series of binary graph mincut and in most cases converges
within less than 10 iterations, thus our method is also of polynomial complexity.
Particularly, for a image of size 480×320, the average running time is about 80s
on a PC with 3.2GHz CPU and 1GB memory. Furthermore, for a large image,
we can run our method on the image pyramid. For example, we could conduct
the segment evolving process only at a large scale, and conduct only refinement
at finer scales.

4 Conclusions

In this paper, we have proposed a unified framework to utilize multiple cues
in image segmentation. Unlike most previous works, we consider both gener-
ative features and discriminative features. Using graduated graph mincut, our
approach produces a natural hierarchical coarse-to-fine segmentation and can
implicitly determine the number of segments. Using color, texture and multi-
scale edge cues as an example, we applied the proposed method to a wide range
of image segmentation problems, and found encouraging results.

The stepwise optimization structure of the proposed framework also exhibits
the possibility of combining user interaction in the segmentation process. This



Multicue Graph Mincut for Image Segmentation 717

may be helpful to break the limitation of automatic segmentation using only
low-level cues. We will continue our work along this interesting direction.
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Courty, Nicolas II-279

Da, Bangyou III-570

Da, Feipeng III-581

Dai, Yuchao II-335

Dai, Yuguo III-130

Dai, Zhenwen III-96

Derpanis, Konstantinos G. II-301

Diepold, Klaus II-44

Di, Huijun III-548

Ding, Jundi III-1

Dixit, Mandar II-140

Do, Ellen Yi-Luen I-313

Dong, Ligeng III-548

Donoser, Michael I-281, III-655

Emmanuel, Sabu III-538

Fang, Chih-Wei III-85

Fang, Chin-Hsien II-98

Fan, Ping III-118

Fan, Shufei III-436

Feng, Jufu III-591

Feng, Wei II-707

Ferrie, Frank P. III-436

Frahm, Jan-Michael I-157

Fujimura, Kikuo II-267

Fujiyoshi, Hironobu II-655

Fukui, Kazuhiro I-323

Funatomi, Takuya III-140

Furukawa, Ryo III-516

Fu, Yun I-364, III-236

Gambini, Andrea II-371

Gao, Jizhou I-37



720 Author Index

Garcia, Vincent II-514

Geng, Yanlin III-33

Giardino, Simone II-371

Gigengack, Fabian II-438

Gong, Weiguo II-526

Grasset, Raphael II-1

Guan, Haibing II-608

Guénard, Jérôme I-1
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