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Preface

It gives us great pleasure to present the proceedings of the 9th Asian Conference
on Computer Vision (ACCV 2009), held in Xi’an, China, in September 2009.
This was the first ACCV conference to take place in mainland China.

We received a total of 670 full submissions, which is a new record in the
ACCYV series. Overall, 35 papers were selected for oral presentation and 131
as posters, yielding acceptance rates of 5.2% for oral, 19.6% for poster, and
24.8% in total. In the paper reviewing, we continued the tradition of previous
ACCVs by conducting the process in a double-blind manner. Each of the 33 Area
Chairs received a pool of about 20 papers and nominated a number of potential
reviewers for each paper. Then, Program Committee Chairs allocated at least
three reviewers to each paper, taking into consideration any conflicts of interest
and the balance of loads. Once the reviews were finished, the Area Chairs made
summary reports for the papers in their pools, based on the reviewers’ comments
and on their own assessments of the papers.

The Area Chair meeting was held at Peking University, Beijing during July
6-7, 2009. Thirty-one Area Chairs attended the meeting. They were divided
into eight groups. The reviews and summary reports for the papers were dis-
cussed within the groups, in order to establish the scientific contribution of each
paper. Area Chairs were permitted to confer with pre-approved “consulting”
Area Chairs outside their groups if needed. The final acceptance decisions were
made at a meeting of all the Area Chairs. Finally, the Program Chairs drew up
a single-track technical program which consisted of 12 oral sessions and three
poster sessions for the three-day conference. We are glad to see that all of the
oral speakers presented their papers at the conference.

The program included three plenary sessions in which world-leading
researchers, Roberto Cipolla (University of Cambridge), Larry S. Davis (Uni-
versity of Maryland), and Long Quan (Hong Kong University of Science and
Technology), gave their talks. We would like to thank them for their respec-
tive presentations on 3D shape acquisition, human tracking and image-based
modeling, which were both inspiring and entertaining.

A conference like ACCV 2009 would not be possible without the concerted
effort of many people and the support of various institutions. We would like
to thank the ACCV 2009 Area Chairs and members of the Technical Program
Committee for their time and effort spent in reviewing the submissions. The
local arrangement team, led by Yanning Zhang, did a terrific job in organizing
the conference. We also thank Katsushi Tkeuchi, Tieniu Tan, and Yasushi Yagi,
whose help was critical at many stages of the conference organization. Last but
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not least, we would like to thank all of the attendees of the conference. Due to
their active participation, this was one of the most successful conferences in the
history of the ACCV series.

December 2009 Hongbin Zha
Rin-ichiro Taniguchi
Stephen Maybank
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Abstract. We present a novel algorithm for improving the accuracy of
structure from motion on video sequences. Its goal is to efficiently re-
cover scene structure and camera pose by using dynamic programming
to maximize the lengths of putative keypoint tracks. By efficiently dis-
carding poor correspondences while maintaining the largest possible set
of inliers, it ultimately provides a robust and accurate scene reconstruc-
tion. Traditional outlier detection strategies, such as RANSAC and its
derivatives, cannot handle high dimensional problems such as structure
from motion over long image sequences. We prove that, given an estimate
of the camera pose at a given frame, the outlier detection is optimal and
runs in low order polynomial time. The algorithm is applied on-line, pro-
cessing each frame in sequential order. Results are presented on several
indoor and outdoor video sequences processed both with and without the
proposed optimization. The improvement in average reprojection errors
demonstrates its effectiveness.

1 Introduction

Structure from motion refers to the problem of processing sets of images with
the goal of modeling the underlying scene geometry while simultaneously deter-
mining camera locations. In principle, the task is straightforward, the relevant
computational geometry having been well documented [12]. In practice, how-
ever, the problem is substantially more challenging.

In almost all cases, the computations rely on identifying feature correspon-
dences between images. These typically consist of single points [203l4], but may
include more complex features as well [5]. Difficulties arise in real world applica-
tions because some putative correspondences are inevitably incorrect. The main
contribution of this work is the novel method by which inaccurate correspon-
dences are identified and removed, thus maximizing the accuracy of the final
reconstruction.

The proposed system receives its input as an ordered sequence of video
frames. Because the baseline between consecutive frames is small, two or three

H. Zha, R-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part IT, LNCS 5995, pp. 12010.
© Springer-Verlag Berlin Heidelberg 2010
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frame 5 frame 24 frame 51 frame 59 frame 91

Fig. 1. A point that tracks accurately over some frames, but not over the entire se-
quence. The correspondence between frames 5 and 91 is poor. The correspondence
between Frames 5 through 24 are accurate, however, as is the correspondence between
frames 59 and 91.

consecutive frames will rarely provide an accurate reconstruction on its own,
and in many cases will only capture a small part of the scene. At the same time,
no feature is likely to appear throughout the entire sequence, so looking for
correspondences between, say, the first and last frames is not feasible. Hartley
and Zisserman observed that the problem of structure from motion from video
sequences remains a “black art” [II, p. 452].

The feature correspondences considered here consist of single points tracked
over time using sparse optical flow. That is to say, we detect a set of pixels
in one frame then estimate their locations in subsequent frames by taking ad-
vantage of the relative similarity between consecutive images. Specifically, we
begin by detecting keypoints in the first image using Shi and Tomasi’s method
of identifying trackable point [6]. Then a variation of the Lucas-Kanade Optical
flow algorithm [7] based on image pyramids [§] is used to update their locations
as the sequence progresses. The reliability of the optical flow process is further
improved by using bi-directional filtering, as described in [9].

Using optical flow to generate correspondences has both advantages and draw-
backs. Optical flow is generally reliable, with the correspondences between con-
secutive frames will seldom off by more than one or two pixels.

On the other hand, points tracked by optical flow have a tendency to drift
over long sequences and thus introduce a unique challenge. Figure [ illustrates
an example. Over the course of 91 frames, a point drifts significantly from the
side of the statue to the lawn in the background. Clearly, any reconstruction
that depends on this correspondence will suffer as a result.

One could attempt to identify such points and exclude them from the com-
putation, hoping that enough correspondences remain to reconstruct the scene.
Besides the difficulty of automatically detecting tracking errors, the problem is
that over long sequences, almost all tracked keypoints will experience some drift.
Simply labeling points as inlier or outlier is thus of limited value.

With this in mind, we set out to perform a somewhat more ambitious opti-
mization. Examining Figure[Il the keypoint in question stays fixed to the same
part of the statue between frames 5 and 24. It then drifts to another part of the
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dog’s head and finally onto the lawn in the background. Finally between frames
59 and 91, tracking regains stability, the keypoint remaining fixed to the same
point on the grass. So while the keypoint is not useful over the entire sequence,
it is useful for certain windows of time. Our goal is to determine which sets of
frames contain accurate tracking for each keypoint and use only those.

Section [3] describes an algorithm for performing this optimization. This al-
gorithm, called subtrack optimization, represents the main contribution of this
work. Based on dynamic programming, it is guaranteed to output an optimal
solution, and does so in low order polynomial time.

Section @ discusses how this algorithm can be incorporated into a high level
structure from motion system. It sequentially processes video frames to generate
an accurate sparse scene structure as well as a camera pose at each frame. The
proposed system offers several key advantages. One is that it operates as an
online algorithm, which is to say it produces a solution for the first n frames
before considering frame n + 1. It also does not depend on extra hardware such
as inertial sensors or a calibrated stereo rig; it relies only on a single calibrated
camera. [t assumes that the scene is rigid, but makes no other assumptions about
scene structure or camera motion.

We present results on several real-world video sequences in section bl Each
sequence is processed with and without subtrack optimization. Numerical re-
sults demonstrate that the optimization substantially improves the quality of
the overall reconstruction.

2 Related Work

Over the years, structure from motion has remained amongst the most widely stud-
ied topics in computer vision [2BBITOTTIT2]. The high level of interest is hardly
surprising, as it provides an invaluable tool in numerous application domains.

Snavely, et al., for example use structure from motion as the basis for a vir-
tual tourism application [3]. Zhu, et al., describe a navigation system that uses
structure from motion to build a database of landmarks, which can later be used
to recover the location of an image in a large scale environment[T2].

The present work focuses on sparse structure from motion, which is to say only
a small set of landmark features from the target scene are modeled. In general,
accurate sparse structure is a precondition for computing dense structure, which
builds fully textured surfaces [TOJITIZ].

The goal of the present work is to separate accurate feature correspondences
from inaccurate ones, and can thus be viewed as a kind of outlier detection. When
only two views are available, outliers can be identified using random sampling
methods such as RANSAC [I3] or the more recent MLESAC [14] algorithm.
The video sequences considered here, however, consist of hundreds of frames,
leading to a very high dimensional solution space. RANSAC and its derivatives
are not feasible as a means to optimize over all variable. While some systems use
RANSAC to detect outliers between two or three consecutive frames, [24I[15], it
cannot be applied to an entire sequence at once.
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Structure from motion algorithms often include bundle adjustment as a final
step [1I214]. Traditionally, bundle adjustment is applied to the entire sequence at
once, in which case it consumes most of the processing time and precludes online
processing. More efficient versions can apply bundle adjustment to a few frames
at a time. Still, bundle adjustment assumes that the putative 2D correspondences
are nearly correct, and cannot determine when keypoints begin to drift, as we
do here.

It is also important to draw a distinction between our algorithm and those
that use assumptions about the structure of the scene, such as planar surfaces
[11]. Our only assumption is that the scene is rigid.

Buchanan and Fitzgibbon [16] describe an approach to feature tracking that,
like the method proposed here, is based on dynamic programming. That work,
however, focuses on purely two-dimensional tracking. The algorithm described
here is specifically designed to recover three-dimensional structure.

3 The Subtrack Optimization Algorithm

3.1 Terminology and Problem Definition

In order to describe the details of the optimization algorithm, the following
terminology will be useful.

A keypoint will refer to a single point feature in a single image. Keypoints fall
into two categories. Those that are initially identified by the detection process
are referred to as detected keypoints. Those that have been tracked from the
previous frame will be called tracked keypoints.

Points in 3D space from which keypoints arise are structure points. Conceptu-
ally, each keypoint represents a ray in 3D space, so there are an infinite number of
possible structure points corresponding to a given keypoint. Any structure point
that projects onto a keypoint within some margin of error, will be considered a
valid structure point for that keypoint.

A detected keypoint along with all of the tracked keypoints generated from
it are collectively referred to as a keypoint track. A keypoint track never skips
frames; if the optical flow process fails to track a particular keypoint then the
corresponding keypoint track ends. A keypoint track will also never contain more
than one keypoint in any given frame.

Under ideal circumstances, all keypoints in a given track will share some valid
structure point. Due to tracking errors, however, this will seldom be the case for
long tracks. As illustrated in the examples from section [I however, it will often
be the case that a subset of a track’s keypoints does in fact have a common valid
structure point. Any set of two or more keypoints from consecutive frames of the
same track will be called a subtrack. A subtrack whose keypoints share a valid
structure point will be deemed consistent.

Using this terminology, the goal of the optimization algorithm is as follows:

Given a keypoint track and a camera matriz at each frame, find the par-
titioning that produces the longest possible disjoint consistent subtracks
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Fig. 2. A hypothetical keypoint track with six keypoints. On the left are six locations
of a camera as it moves from the top downward. Each keypoint corresponds to a ray in
space. The six rays do not meet at a single point, so there is no structure point that is
valid for the entire track. However, subtracks k1,23 and k4,56 do have valid structure
points. The goal of the optimization algorithm is to reliably perform this partitioning.

Favoring fewer, longer subtracks is important because it ensures that they
span as wide a baseline as possible. If overly aggressive in partitioning a keypoint
track, we risk losing valuable information and compromising the accuracy of the
resulting structure.

To measure the consistency of a subtrack, we define an error function, E(kq.p),
as the RMS reprojection error generated by the optimal structure point X(kq )
for subtrack kg p. If the subtrack is consistent E(k, ) will be small.

A naive approach might look to simply find subtracks that individually min-
imize E(kqp), which could be achieved by making a large number of short sub-
tracks. This, however, would ignore the ultimate goal of maximizing subtrack
lengths. To account for this constraint, a constant term ¢ is introduced repre-
senting the penalty of adding a new subtrack. For a keypoint track of length

n, a given partitioning, p = {k1,4, kat1,,- -, ke.d, Kat1,n}, thus incurs a total
cost of
Clp) = Y (6+E(kap)) (1)
ka,b€P

The optimal partitioning is the one that minimizes C(p). Clearly, the number
of possible partitionings is exponential in n, so a brute force search would be
intractable. We will show, however, that it is it is possible to find an absolute
minimum in O(n?) time using a dynamic programming algorithm.

3.2 A Dynamic Programming Solution

The insight behind the algorithm is the following lemma:

Lemma 1. if p = {ki,4, ..., kc.a; kat1,n} 15 the optimal partitioning of k, then
q=Aki,a:---,kea} is the optimal partitioning of the subtrack ki 4.

Proof. Assume that ¢ is not the optimal partitioning for k; 4. That is to say
there exists some other partitioning ¢’ such that C(q¢’) < C(q). Now let p’ be
the partitioning of k given by p’ = {¢/, kq+1,, }. Because
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Cp) =C(q) + 6+ E(ka,n)
and (2)
Clp')=C(¢)+ 6+ E(kan)

we know that C(p’) < C(p), which implies that p is not optimal. |

Let p,, be the optimal partitioning of k; ,,. Its cost can now be defined recursively
as

C(po) =0
Cpr) =0 (3)
O(ﬁn) = 1I§I}Iign[0(ﬁa—l) + 0+ E(ka,n)}

Formally, pp and p; are undefined because the corresponding subtracks, ki o,
and ki1 do not exist; a subtrack must span at least two keypoints. Their costs
C(po) and C(p1) are explicitly defined, however, as a base case for the recursion.

A dynamic programming algorithm can efficiently compute C(p,,) for any
value of n by evaluating the recursion from the bottom up. First compute
C(p2) = E(k12) + 0, then C(pp) for b = 3,4,...,n. At each iteration C(p,) is
known for all @ < b, so equation ([B]) can be directly applied, computing E(kq.p)
for all a. The complexity of computing E(k,—_p) is linear in the length of k,_y,
so iteration b requires O(b?) time. Processing an entire keypoint track of length
n thus requires O(n?) time.

The algorithm, as described, finds the cost of the optimal partition. From this,
finding the partition itself is straightforward. The simplest way is to keep track
of the values of a that produce the minimum value of C(p;) for each b. Using
these stored values, the algorithm can work backward from n to piece together
the optimal partitioning.

Although the final partition is optimal in that it minimizes (), it is not neces-
sarily the case that each subtrack is consistent. Recall the ultimate goal of finding
long consistent subtracks. After optimizing each keypoint track, those subtracks
spanning at least three frames and having F(k, ) < 1.0 are deemed consistent;
all others are deemed inconsistent. Only the structure points corresponding to
consistent subtracks are included in the final reconstruction, as explained in the
next section.

4 The Complete Structure from Motion Process

The previous section addressed the problem of optimally partitioning a single
keypoint track. We will now show how this can be incorporated into a larger
structure form motion system involving many tracks over long video sequences.
The system will function as an online algorithm, computing reconstruction for
the first n frames before frame n + 1 is considered.

From the first frame, a set of keypoints will be detected, each instantiating a
keypoint track. As subsequent frames are processed, optical flow will be applied
to extend existing tracks. In addition, new keypoint tracks will be periodically
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added to the existing ones by rerunning the detection process. In our implemen-
tation, new keypoints are detected every seven frames, with the total number of
keypoints in any frame never allowed to exceed 300.

Using the first frame and some other suitable frame early in the sequence,
along with the known camera intrinsics, an essential matrix is fit using RANSAC.
This, in turn, is used to estimate camera poses for the first few frames.

This provides enough information to run the subtrack optimization algorithm
on each keypoint track. Because the tracks at this point will be short, most will
consist of a single subtrack. In any case, each subtrack will be deemed consistent
or inconsistent; the consistent subtracks will have a valid structure point which
will be added to the reconstruction.

As each new frame is processed, optical flow is again used to extend all current
tracks. At this point the system assumes that all consistent subtracks that ended
at the previous frame will remain consistent through the current frame. Because
all of those subtracks are associated with known structure points, they provides
enough information to compute the camera pose of the new frame.

Having the new camera pose, the system now runs the subtrack optimization
algorithm again. Structure points are updated, if necessary, for each consistent
subtrack. If a previously inconsistent subtrack is now consistent, its structure
point is added to the reconstruction. Likewise, if a previously consistent subtrack
is now inconsistent, its structure point is removed.

Each frame is processed in this manner, first computing the camera pose then
optimizing the subtracks to incorporate the new pose. The final output is a set
of structure points along with a camera pose associated with every frame.

4.1 Performance Considerations

Computing E(kqp) and X(kqp) for a general set of keypoints and cameras re-
quires nonlinear optimization. However, this can be performed quickly because
only the three components of X are allowed to vary; the cameras, in this case,
remain fixed. From a reasonable estimate, the absolute minimum of X can be
approximated very closely by a single iteration of the Levenberg-Marquardt algo-
rithm. In practice, a good estimate is to consider only the subtrack’s endpoints,
k, and kp, and use linear triangulation, as described in [IJ.

The subtrack optimization runs in O(n?) time assuming that p,, is computed
for all a. However, at the time that frame n is being processed p, has already
been computed for all a < n. By storing these values throughout the sequence,
the processing time for each individual frame is reduced to O(n?).

Despite this improvement, the time required for each track still increases
quadratically and eventually, over a long sequence, will become unacceptably slow.
To keep the processing time approximately constant, the system imposes a maxi-
mum subtrack length of 30 frames. This effectively places an upper bound on the
running time of the optimization algorithm by limiting the size of the search space
needed to apply equation ([B]). While the result is no longer strictly optimal, 30
frames is generally long enough to produce an accurate structure point. The ex-
act size of the limit can be adjusted to favor either speed or accuracy.
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5 Results

We tested the complete system on two sequences, each consisting of at least 200
frames. For comparison, they were processed both with and without the subtrack
optimization algorithm. When processing with the optimization, the constant §
was assigned a value of 2.0 pixels. Without the optimization, a keypoint track is
extended until its reprojection error exceeds a threshold, also set to 2.0 pixels,
and then terminated. In the non-optimized version, each keypoint track contains
exactly one subtrack. In all cases no subtrack is allowed to exceed 30 frames.

Figures B and [ show selected frames from both sequences along with the
resulting reconstructions, including camera poses. For clarity, Only some cameras
are rendered for clarity. Both cases present some inherent challenges. The paper
house sequence in figure [l is perhaps easier because the target object has a clear
discernable texture. Note, however that the system successfully reconstructs part
of the desktop surface, which has little or no texture. The tree sequence in figure
@ includes irregularly shaped plants and foliage, as well as objects at a wide
range of distances.

Table 1. Average reprojection error in pixels for each of the test sequences

Sequence House Tree
without with without with
subtr. opt.  subtr. opt. subtr. opt.  subtr. opt.
Total Frames 202 202 262 262
Average Subtrack Length 25.26 28.05 22.13 24.78
RMS Reprojection Error 0.60 0.87 0.61 0.96

Table 1 shows the results of processing the sequences both with and with-
out subtrack optimization. On both test sequences, applying the optimization
substantially reduced the total reprojection error.

One might suspect that the reduction in total error was simply the result of
creating shorter subtracks. If one test tends to generate subtracks that are much
shorter, on average, than another test, then the first test will almost certainly
return a smaller error. However, as shown in Table 1, the average subtrack
length is actually longer when using subtrack optimization. To further emphasize
this point, we plot reprojection error as a function of subtrack length. These
results are shown in the graphs in figuresBland @l The graphs demonstrate that
even when comparing subtracks of the same length, the subtrack optimization
algorithm reduces the average reprojection error. It offers the dual advantages of
producing subtracks that are longer (and thus span a wider baseline) yet more
consistent in terms of reprojection error.

The non-optimized version will only stop tracking a keypoint when its error
has already reached 2.0 pixels. At that point, it has likely already been drifting
for several frames. The advantage of the subtrack optimization algorithm is that
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Fig. 3. A video sequence of a paper house and two views of the resulting reconstruction.
The second is a top down view showing that the points on the vertical walls are
coplanar, as expected.
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Fig. 4. A tree in the middle of a courtyard with two views of the resulting reconstruc-
tion. In the second view (top down) the square stone bench and square flower bed are
clearly visible, as is a round space representing the volume occupied by the three trunk.

it identifies the precise moment when a keypoint begins drifting and partitions
the track accordingly. The result is a more accurate reconstruction.

6 Conclusion

This paper has presented the subtrack optimization algorithm, which determines
where to partition keypoint tracks so as to eliminate unreliable correspondences
in structure from motion computations. Using dynamic programming, it per-
forms this partitioning optimally. Because it makes few assumptions about the
shape or appearance of the target scene, the optimization algorithm presented
here is both effective and versatile.
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Abstract. In this paper, we propose a novel method to simultaneously
and accurately estimate the 3D shape and 3D motion of a dynamic scene
from multiple-viewpoint calibrated videos. We follow a variational ap-
proach in the vein of previous work on stereo reconstruction and scene
flow estimation. We adopt a representation of a dynamic scene by an
animated mesh, i.e. a polygonal mesh with fixed connectivity whose time-
varying vertex positions sample the trajectories of material points. In-
terestingly, this representation ensures a consistent coding of shape and
motion by construction. Our method accurately recovers 3D shape and
3D motion by optimizing the positions of the vertices of the animated
mesh. This optimization is driven by an energy function which incor-
porates multi-view and inter-frame photo-consistency, smoothness of the
spatio-temporal surface and of the velocity field. Central to our work is an
image-based photo-consistency score which can be efficiently computed
and which fully handles projective distortion and partial occlusions. We
demonstrate the effectiveness of our method on several challenging real-
world dynamic scenes.

Keywords: Spatio-temporal stereovision, Scene flow, Motion capture.

1 Introduction

In recent years, several methods for automatic generation of complete spatio-
temporal models of dynamic scenes from multiple videos have been proposed
[L21BIABGI7IROTOITTI2MT3TAI5]. In particular, the most recent ones have
proven effective for full-body marker-less motion capture, yielding visually im-
pressive results. However, when taking a closer look at the aforementioned tech-
niques, it becomes apparent that very few of them achieve a desirable coupled,
dense and accurate 3D shape and 3D motion estimation.

Accurate 3D shape. Many recent techniques still produce an approximate
geometry: free-form deformation of a template body model [2ITTIT5], visual hull
[1I3IT5], Laplacian deformation of a laser scan of the initial pose [4I5]. These
methods are unable to recover genuine geometric details such as facial expres-
sions and clothing folds and wrinkles.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part IT, LNCS 5995, pp. 11 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Accurate 3D motion estimation is crucial in some applications like mo-
tion transfer and time interpolation. Also, a coarse motion estimation precludes
the enforcement of temporal consistency constraints during coupled shape and
motion estimation. However, in most existing performance capture techniques,
3D scene flow [I0], i.e. the dense 3D motion field of the scene, is not accurately
estimated. Often, it is interpolated from sparse 3D correspondences [34IT2].
Some methods do not address 3D motion estimation whatsoever: [7] uses a four-
dimensional level set representation which, beyond its very high computational
and memory requirements, does not encode 3D correspondence. [TOJI5] produce
animated meshes but, despite appearances, the underlying 3D correspondences
are purely artifactual.

Coupled 3D shape and 3D motion estimation allows to exploit their re-
dundancy, and has long been recognized [I7] as a desirable way to improve their
performance. However, most marker-less motion capture methods fail to inte-
grate spatio-temporal consistency constraints. In [3[T2[T3], shape is computed
independently in each time frame, prior to motion estimation. In [9], shape and
motion are estimated sequentially, not simultaneously. In [5], an initial mesh
is propagated by 3D scene flow, under silhouette constraints, but without any
stereo cues; as a result, this method suffers from temporal drift. The latter is cir-
cumvented in [4] by substituting sparse 3D correspondences for dense 3D scene
flow, but neither shape or motion are accurate enough to allow enforcing spatio-
temporal consistency. In [II7], a certain degree of spatio-temporal coherence is
obtained through four-dimensional representations, but as these representations
do not encode temporal correspondence, they cannot exploit inter-frame match-
ing constraints. In [I4], shape and motion are estimated simultaneously using
a plane-sweep carving algorithm in a 6D space, but this approach has a very
high computational and memory cost, is limited to two frames, and is unable to
enforce the smoothness of the recovered shape and motion.

Thus, to our knowledge, two methods [6I8] achieve this highly desirable cou-
pled, dense and accurate 3D shape and 3D motion estimation. In [§], shape and
motion are represented through the detail coefficients of a time-varying subdivi-
sion surface. The latter coefficients are estimated by simultaneously optimizing
multi-view and inter-frame photo-consistency. However, the non-linearity of the
chosen multi-resolution representation makes this optimization intricate. Also,
the required motion initialization relies on the spatio-temporal derivatives of the
input images, thereby making it applicable mainly to slowly-moving Lambertian
scenes under constant illumination.

[6] is the only work to date which can handle complex real-world dynamic
scenes. Despite the effectiveness of this method, we believe that the expansion
framework used does not allow to take into account the full visibility depending
on occluding patch not computed yet.

In this paper, we propose a novel method to simultaneously and accurately es-
timate the 3D shape and 3D motion of a dynamic scene from multiple-viewpoint
videos. First, we follow a variational approach in the vein of previous work
on stereo reconstruction and scene flow estimation [QIT7II8ITI20/2T]. None of
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these methods fits our applications in their current state: most are limited to a
single time-varying depth map of the scene [T7UT8TI20ZT], while others do not
enforce spatio-temporal consistency constraints [9/T9].

Second, we adopt a representation of a dynamic scenes by an animated
mesh, i.e. a polygonal mesh with fixed connectivity whose time-varying vertex
positions sample the trajectories of material points. Interestingly, this representa-
tion ensures a consistent coding of shape and motion by construction. It is widely
used in computer graphics, especially in computer animation. It is also popular
for performance capture from video [BJAIBIGITOITTITS] or from time-varying point
clouds [22123] (the latter being obtained from video or from fast 3-D scanning
hardware).

Our method accurately recovers 3D shape and 3D motion by optimizing the
positions of the vertices of the animated mesh. This optimization is driven
by an energy function which incorporates multi-view and inter-frame photo-
consistency, smoothness of the spatio-temporal surface and of the velocity field.
Central to our work is an image-based photo-consistency score which can be
efficiently computed and which fully handles projective distortion and partial
occlusions, in the spirit of [9].

The rest of this article is organized as follows. In Section B, we describe in
detail the discrete geometric representation, the variational formulation, the en-
ergy function and the associated minimization procedure which constitute our
approach. In Section [l we discuss implementation aspects and we demonstrate
the effectiveness of our method on several challenging real-world dynamic scenes.

2  Owur Approach

2.1 Discretize Then Optimize

An overwhelming majority of variational methods in this area [QUI7ITSITOI2T]
and more generally in computer vision, rely on an optimize then discretize ap-
proach: an energy functional depending on a continuous infinite-dimensional
spatio-temporal representation is considered, the gradient of this energy func-
tional is computed analytically, then the obtained evolution flow is discretized.

In contrast, we adopt a discretize then optimize approach: we define an energy
function depending on a discrete finite-dimensional spatio-temporal representa-
tion, and we use standard non-convex optimization tools. The benefits of this
approach have long been recognized in mesh processing, but have seldom been
demonstrated in computer vision [24125]26]. Thus, the choice of an adequate
discrete spatio-temporal representation is crucial in our work.

2.2 Animated Mesh Representation

In our context, animated polygonal meshes present many significant advantages.
Compared to unrelated meshes at different time instants, they are more compact,
easier to store and to manipulate. They provide a direct access both to the shape
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of the scene at a given time instant, and to motion trajectories. 3D shape and
3D motion are mutually consistent by construction.

Their fixed topology may be regarded as a limitation, as argued in [I2]. We
believe that it is not, since the human body has a constant - spherical, if dis-
regarding pierces - topology. It is questionable to treat a character with hands
on hips as a genus-2 torus. It should rather be regarded as a topological sphere
with some temporary contact regions.

Furthermore, let us mention that our method is not limited to a spherical
topology: while the topology of the animated mesh is constant across time, we
are able to modify it across our optimization process using a spatio-temporal
version of Delaunay deformable models [27].

2.3 Variational Formulation

In the following, we consider a dynamic scene, imaged by N calibrated and
synchronized video sequences composed of T frames, and represented by an
animated polygonal mesh with K vertices. We note:

~ Ly 2; CR? - RY i € {1.N}, t € {1.T} the input images. In practice
d =1 for grayscale images and d = 3 for color images.

- X ={wxp,, k€ {1.K},t € {1..T'}} the 3D positions of the vertices of the
animated mesh at the different time instants,

— X ={xs4, k € {1..K}} the t*® temporal slice of the animated mesh.

In the sequel, by a slight abuse of notation, we indistinctly use X and X, to
refer to the animated mesh and to the positions of its vertices.

The energy to minimize with respect to X is composed of a data attach-
ment term, of a regularization term for the spatio-temporal surface and of a
regularization term for the velocity field:

E(X) = Ep(X) + AsEs(X) + v By (X) . (1)

Ep encourages multi-view and frame-to-frame matching consistency. It is defined
as the sum over camera pairs (4, j) and pairs of time frames (¢, u) of a dissimilarity
measure between image I;; and the reprojection of I;,, via the animated mesh.
The detailed description of this term is left to Section 241

FEs favors the regularity of the spatio-temporal surface. We use the total area
of the animated mesh. The minimization of this term by gradient descent yields
a discrete version of the well known mean curvature motion, which we implement
as described in [28].

Ey penalizes rapid variations of the velocity field along the animated mesh.
It is the total squared L? norm over the animated mesh of the gradient of the
velocity field. The detailed description of this term is left to Section

We minimize the above energy function using a standard gradient descent
on the spatio-temporal positions X. In order to avoid unwanted local minima,
we resort to a multi-resolution and chronological scheme. We first optimize the
first two frames of a low-resolution animated mesh using low-resolution versions
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Fig. 1. Finite element representation over a facet (k,l,m) of the animated mesh

of input images. Then we initialize an additional time frame by extrapolating
3D position from speed and acceleration of previous frames. We iteratively add
time frames, and optimize the sequence using a sliding time window of a few
frames, until we reconstruct the whole temporal sequence at low resolution. We
then refine the obtained spatio-temporal mesh with increased image and mesh
resolutions, until we reach the desired accuracy.

2.4 Data Attachment Term

The formal definition of Ep and of its gradient requires some additional no-
tations. The perspective projection performed by camera i is denoted by II; :
R3 — R2. Our method takes into account the visibility of the surface points. We
refer to X, ; as the part of the temporal slice X visible in image i. The back-
projection of a point of camera ¢ on the animated mesh at frame ¢ is denoted by
5, I(Xy) — X

We also define 3D transport functions T'x, . x, that map points in X to points
in X,,. This can be written formally using the linear finite-element representa-
tion depicted in Figure[ll For each vertex k of the animated mesh at some time
frame ¢, we define a basis function ¢y x, such that (i) ¢ x, () = 1 (ii) VI #
k, ¢, x,(x1+) = 0 (iil) ¢x, x, varies linearly inside the triangular facets adjacent to
the k*" vertex, and cancels outside this ring. We then have at pixel p; in image i:

Tx,~x, =Y Thudrx, - (2)
p

In a simpler way we can say that the back-projection Y; of pixel p; lies on a
triangular facet f and has barycentric coordinates ¢; x,(Y;) at time ¢, [ being a
vertex of f. So the position of this particle at time v is Y, = Zlef i d1x, (Ye),
that is Yo, = > c x Tru Ok, x, (Y:) since ¢ x, (Y;) cancels if vertex k is outside
facet f.

Finally, we define image transport functions 7; x,)—(j,x,) which map posi-
tions in I;; to positions in I;, via the animated mesh:

Ta.x0)—(.xw) = o Tx,~x, oI, x, - 3)
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Fig. 2. Reprojection of image j at time u in image ¢ at time ¢ via the animated mesh

With these notations in hand the reprojection of image j at time w in image @
at time ¢ via the animated mesh writes I; ., o T(; x,)-(j,x,)- This is illustrated
in Figure

The data attachment term is the sum over oriented camera pairs (i,7) and
oriented pairs (¢,u) of time frames of a dissimilarity measure M between image
I;; and the above defined reprojection of I;, via the animated mesh. The dis-
similarity is computed only over the region of image plane ¢ where both images
are defined, i.e. after discarding semi-occluded regions. This image region writes
II, (Xt NTx,—x,(X,.)). More clearly, pixel p; in image 7 is visible in both
images, if its back-projection lies on the surface at time ¢, and this point on the
surface once transported at time u is visible (nore occluded, nore outside the
image frame) in image I;,,. This visible image region is computed before each
optimization step on graphics hardware. For conciseness, we will omit it in the
equations below:

Ep(X)=> > MLy, LinoTux)~(.x.) - (4)

ij tu

We now compute the partial derivative of this energy term with respect to the
variation of a single position xj; of the animated mesh. First, we note that
the only oriented pairs of time frames affected by such a variation are (u,t)
and (¢,u), u € {1..T'}. Second, when the animated mesh moves, the reprojected
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image changes. Hence the partial derivative of Ep involves the derivative of the
similarity measure M with respect to its second argument, denoted by do M
Using the chain rule, and after some index manipulations, we get:

8% R

T (i x)(i.x.,
/ 82M [Ii,t7 I],u OT(’LXf,)—\(j,X“)] DI]’U (4, X+)— (7, )(
£2;

i) dp;
P pi) dp
OT(j,x.,)—~(i,X 1)

0xy, ¢

)

+ /Q M (I, Ly o T x.)—(i,x0)] Dl (pj)dp; , (5)
J
where DI denotes the Jacobian matrices of the input images. For conciseness,
we have omitted the points where the latter are evaluated in the above equation.
As regards the quantities j aT , we can make several observations. First, they
are purely geometric, i.e. mdependent of image data. Second, they cancel outside
the ring of triangular facets adjacent to the k*" vertex. Hence, despite appear-
ances, integration is performed only over the visible projection of this ring in
the different images, not over the full image domains. Third, these quantities
involve the normal of the triangular facet visible at pixel p;, and the barycentric
coordinate of xj; in this facet. Complete expressions can be obtained using a
non trivial geometric reasoning. We refer the interested reader to [29], where
the detailed numerical computation, but also an additional intuitive solving are
proposed. The numerical solving, mainly consist in computing how barycentric
coordinates change for a small perturbation of the surface.

2.5 Velocity Field Regularization Term

The velocity field is unambiguously encoded by the animated mesh X. Specif-
ically, it is a continuous and piecewise linear vector field X; — R? defined by

vx (@) = Tx,~xp, (T) — T, (6)
or equivalently by
Ux = Z(mk,t-'ﬂ — Xpt) Ok X, - (7)
k

The velocity field regularization term writes:

=3 [ IVoxi(a) Pl (8)

To simplify this expression, we use the fact that V¢ x, is constant in each
triangular facet f of X; and equals H:kk}f\l’“ where hy, s is triangle’s height going
through vertex k. Ay being the area of f, the energy term becomes:

2

By Z Z Ay Z ||hk ”2 (Tr 41 — Trt)|| - 9)

t feX, kef
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If we neglect the variation of hy s with respect to vertex displacement, the partial

derivatives g fkvt of this energy term can now easily be derived.

3 Numerical Experiments

3.1 Implementation Aspects

The computation of image reprojections via the animated mesh and of the gradi-
ent of the data attachment term are the most expensive parts of our algorithm.
Hence, they are implemented on GPU using the OpenGL API and the Cg shad-
ing language.

In all our experiments, we choose the opposite of normalized cross correlation
as the image dissimilarity measure M, in order to accommodate moving shadows
and time-varying lighting conditions.

The storage of the animated mesh and the computation of spatio-temporal
smoothing terms are based on the C++ Computational Geometry Algorithms
Library (CGAL.

The resolution of the mesh is controlled by a lower and an upper edge length
thresholds, that are applied to the whole time sequence: an edge is bisected if it
is longer than the upper threshold in af least one time frame; an edge is collapsed
if it is shorter than the lower threshold in all time frames. The topology of the
mesh is automatically corrected when needed by applying Delaunay deformable
models [27] to the coordinates of the animated mesh at a reference time frame.
The user chooses a reference frame that reflects the actual topology of the scene:
e.g a pose with arms and legs slightly apart for human motion.

3.2 Experimental Results

We have tested our algorithm on two challenging multi-view video sequences of
non-rigid scenes.

The “Pants” dataset is composed of 8 cameras 480 x 640 pixels. It is courtesy
of R. White, K. Crane and D.A. Forsyth [30]. We have successfully applied our
algorithm to the first 60 frames of this dataset. Due to the high image resolu-
tion, four multi-resolution scales have been used to obtain the accurate spatio-
temporal reconstruction shown in Figure[Bl It has taken 24 hours to teconstruct
the 60 frames spatio-temporal model.

Figure @l demonstrates the superiority of our spatio-temporal approach com-
pared to a frame-by-frame multi-view stereovision method [9], on the “Pants”
dataset. The improvements are three-fold: (i) our approach exploits speed and
acceleration to make better initial guesses of the subsequent time frames, thus
being less prone to unwanted local minima (ii) thanks to the enforcement of
temporal coherence, our approach is less likely to fail in regions with low photo-
consistency evidence (iii) our approach simultaneously and consistently estimates
3D shape and 3D scene flow.

! http://www.cgal.org/
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Fig. 4. Comparison between a frame-by-frame multi-view stereovision approach (top)
and our spatio-temporal approach (bottom) on the “Pants” dataset. See text for details
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Fig. 5. Our results on the “Dancer” dataset. See text for more details.

The “Dancer” dataset was made available to us by the 4Dviews companyﬁ.
It was acquired by 14 calibrated and synchronized video cameras 1000 x 1000
pixels. We have applied our algorithm to the first 10 frames of this dataset.
To bootstrap our multi-resolution and chronological optimization procedure, we
have used a standard stereo-vision algorithm at the first time frame. The ob-
tained reconstruction after processing three multi-resolution levels is displayed
in Figure Bl We insist on the fact that we have not used silhouette information
and that stereovision on such a dataset is quite challenging: because it was de-
sign for visual hull based techniques, many parts of the subject are textureless.
It has taken 10 hours to teconstruct the full spatio-temporal model.

4 Conclusion

We have presented a novel variational approach to dense and accurate 3D shape
and motion reconstruction from multi-view video sequences. Our method lever-
ages the benefits of the animated mesh representation, of image-based photo-
consistency, of discrete geometric optimization and of GPU computation. We
have validated our algorithm on two challenging real datasets, and obtained
results that rival state-of-the-art techniques.

% nttp://4dviews.com
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Abstract. We apply a semi-supervised learning method to perform gen-
der determination. The aim is to select the most discriminating feature
components from the eigen-feature representation of faces. By making
use of the information provided by both labeled and unlabeled data,
we successfully reduce the size of the labeled data set required for gen-
der feature selection, and improve the classification accuracy. Instead of
using 2D brightness images, we use 2.5D facial needle-maps which re-
veal more directly facial shape information. Principal geodesic analysis
(PGA), which is a generalization of principal component analysis (PCA)
from data residing in a Euclidean space to data residing on a manifold, is
used to obtain the eigen-feature representation of the facial needle-maps.
In our experiments, we achieve 90.50% classification accuracy when 50%
of the data are labeled. This performance demonstrates the effectiveness
of this method for gender classification using a small labeled set, and the
feasibility of gender classification using the facial shape information.

1 Introduction

Gender plays a significant role in both our social interactions and our inter-
actions with machines. The ability to classify a user according to gender has
many practical uses including making Human-Computer Interaction more user-
friendly, access control, collecting demographic data, and improving the perfor-
mance of face identity recognition by using gender specific models. In the last
two decades appearance-based gender classification has attracted considerable
attention in the literature [1], [2], [3], [, [Bl, [6], [, [8], [9] and particularly good
performance has been reported using PCA-based features [10], [L1]. However, the
extracted PCA features still contain information that is redundant or even ir-
relevant for gender determination, and this limits gender classification accuracy.
As a result feature selection is an important issue for gender classification. To
select the gender discriminating feature subset, Sun et al. [3] has applied genetic
algorithms to the extracted PCA features, and reported a best gender classi-
fication accuracy of 95.3%. Buchala et al. [4] used linear discriminant analysis
(LDA) to explore which were the most important gender discriminating PCA
feature components, and reported a 86.43% gender classification accuracy. How-
ever, these methods learn the discriminating features in a supervised way, and
therefore require a large set of labeled data. For instance, Sun et al. [3] used

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 23 2010.
© Springer-Verlag Berlin Heidelberg 2010
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300 images for training and 50 images for testing, while Buchala et al. used a
training set of 2670 images.

In this paper, we apply a semi-supervised learning method to select the op-
timal set of gender discriminating feature components. The raw feature-vectors
are extracted from facial images using shape-from-shading, and represent the
modes of shape variation over a field of surface normals extracted using princi-
pal geodesic analysis [I2]. Principal geodesic analysis is a generalization of PCA
from data residing in Euclidean space to data residing on a non-linear Rieman-
nian manifold (a unit hypersphere in the case of surface normals). By making use
of the information provided by both labeled and unlabeled data, we successfully
reduce the size of the labeled data (i.e. the number of facial images labelled as
male or female) required. The semi-supervised learning method is based on a
weighted graph representation of the data and employs harmonic functions over
the graph to locate the optimal feature set. Each face is first represented by its
PGA eigen-features, and is denoted by a vertex in a fully connected weighted
graph. The edge weights are determined by a similarity measure for the corre-
sponding pair of feature-vectors. The similarity measure weights each component
of the PGA feature vector according to its significance for gender discrimination.
By making use of harmonic functions and the entropy minimization strategy de-
scribed by Zhu et. al in [I4], we are able to learn the gender significance for
each component of the PGA feature vectors. Experimental results demonstrate
that using our method, the learned gender discriminating feature components
are consistent with human perception. Moreover, we achieve 90.50% gender clas-
sification accuracy when 50% of the data are labeled.

A second noteworthy contribution of this paper is that we make use of fields
of facial surface normals (facial needle-maps) instead of 2D brightness images
for gender classification. There are two advantages of this approach. First, the
2.5D facial needle-maps reveal directly facial shape information. It has been
shown by psychologists that gender classification is more effective using 3D shape
than using 2D brightness [I5]. Moreover, 3D facial shape provides more reliable
information for surveillance purposes. The second advantage is that facial needle-
maps can be recovered from single 2D images using the techniques such as shape-
from-shading, and therefore avoid the expense of using a 3D sensor.

The outline of the paper is as follows. Section 2 reviews the statistical
treatment of data residing on a Riemannian manifold using principal geodesic
analysis. Section 3 commences by reviewing the harmonic functions and the
semi-supervised learning method developed in [14], and then describes how to
apply this method to gender discriminating feature selection. Experiments are
presented in Section 4. Finally, Section 5 concludes the paper.

2 PGA on Facial Needle-Maps

A surface normal n may be considered as a point residing on a spherical manifold
n € S2. Facial needle-maps, which are fields of N surface normals, may be
considered as a point on the manifold S?(N) = Hf\il S2. Principal geodesic
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analysis makes use of exponential and log maps, and intrinsic means to analyze
data on this manifold.

If u € T,,S? is a vector on the tangent plane to S? at n and u # 0, the
exponential map, denoted exp,, (u), of u is the point on S? along the geodesic in
the direction of u at distance || u || from n. This is illustrated in Fig. 1. The log
map, denoted log,, is the inverse of the exponential map. In the S?(INV) space,
the exponential and log maps are simply the products of IV copies of the maps
for 2 given above.

Fig. 1. The exponential map

The intrinsic mean is defined as ;1 = arg min,, ¢ g2 va:l d(n,n;) , where d(n,n;)
is the geodesic distance between n and n; on the manifold. For a spherical man-
ifold, d(n,n;) = arccos(n-n;). The intrinsic mean of data residing on a spherical
manifold can be iteratively computed using the gradient descent method of Pen-
nec [I6]. Accordingly, the estimate 1) at iteration ¢ is updated as follows:

N
1
plty = expuo ( > " 10g,, (14))-
=1

In PGA each principal axis is a geodesic curve. In the spherical case this corre-
sponds to a great circle. To project a point n; € S? onto a geodesic G passing
through the intrinsic mean, the projection g may be approximated linearly in
the tangent plane 7},5%: log,, (7 (n1)) = > 7~ V' -log, (n1), where Vi,...V,, is
an orthonormal basis for 7},5 2 which can be obtained using principal component
analysis. Then, the principal geodesics for the S? space are obtained under the
exponential map exp,,(v;),4 = 1...m. This approximation enables the principal
geodesics be computed by applying PCA in the tangent plane 7,52

To apply PGA to facial needle-maps, we first make use of the log map to
obtain the long vector representation of the faces in the tangent plane passing
through the intrinsic mean. Then, we use the numerically efficient snap-shot
method of Sirovich [I7] to compute the eigenvectors and the according eigenval-
ues of the covariance of the long vectors. The leading m eigenvectors form the
projection matrix @ = (e1]es]...|en). Given a facial needle-map, we first obtain
its long vector representation u = [u1,...,uy]? in the tangent plane, and then
we represent the face using its PGA feature vectors b = &7 u.
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3 Learning Gender Discriminating Features

After principal geodesic analysis, each face is represented by its m dimensional
PGA feature vector. However, it has been well studied in [4] that not all of
the PCA components are relevant to gender classification. The irrelevant or re-
dundant information limits classification accuracy. We therefore select the most
effective gender discriminating feature components from the PGA feature vec-
tors. We make use of the learning strategy based on harmonic functions proposed
in [I4], and apply the method to gender classification.

3.1 Semi-supervised Learning Using Harmonic Functions

In [I4], Zhu et. al represent the data x1,...,x;,2141,...,2;, as vertices in a
connected weighted graph G = (V, E). Here the first [ data are labeled and the
subsequent u data are unlabeled. The weight of each edge measures the similarity
between the associated pair of data, and is calculated as,

wij = exp [— i (i _fjd)z} : (1)

ag
d=1 d

where x;4 is the dth component of the vector x;, and o4 is the length-scale of
the dth component.

Each of the [ labeled data have binary labels y; € {0,1},i =1,...,l. To assign
labels to the unlabeled data, a real-valued function f : V — R is computed on
the graph so as to satisfy two constraints. First, the function takes on the label
as a value, and for the labeled data is f(i) = y;,4 = 1,...,l. The second is that
f minimizes the quadratic energy function

B() = 5 > wil76) = 1)

It has been shown that the function f satisfying the above two constraints is
harmonic, which means that the value of f at each unlabeled data point is the
average of f over the neighboring vertices, i.e.

f4) = ;j D wifli),j=1+1,... L. (2)

inj

Equation (@) can be expressed as f = Pf, where P = D~'W, D = diag(d;)
is the diagonal matrix with the degree d; = Zj w;; of each node 4 along the
leading diagonal. Since the first [ data are labeled and the subsequent u data are
unlabeled, the weight matrix W (D and P similarly) can be split into 4 blocks
after [ rows and columns,

Wu Wi
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The solution for f over the unlabeled data is

fu: (Duu_Wuu)_lwulfl = (I_Puu)_lpulfl- (3)

Hence from Equation () f, is a function of the scale parameters oy4. In [14], the
scale parameters og4s are learned by minimizing the average label entropy,

I+

Z Hi( (4)

1=l+1

where H;(f(i)) = —f(i)log f(i) — (1 — f(4))log(1l — f(i)). Small values of the
entropy indicate that the function values f for the unlabeled data are close to
either 0 or 1, which means the labeling is relatively unequivocal. The authors
also discussed the effectiveness of using entropy minimization together with the
labeled data, and suggested to replace the transition matrix P in equation (B])
with ~

P=ecU+(1-¢)P, (5)
where U;; = 1/(1+ u), to avoid the complication that H has a minimum at 0 as

o4 — 0. Gradient descent is used to learn the o4s. The computation is outlined
as follows,

I+
f(i), 01 (i)
ZZI;FII Z ) 6Ud (6)

where 0f(i)/0oq is the ith component of 0 f,, /004, which is,

0w (1= By (PP g, 4 PP ), (7)

dog O0oq

where 0P, /0oq and OP, /04 are sub-matrices of or /004, and,

Owjj I+u Qw;ip
dog H‘“ ’
d D=1 Win
Finally,
ow; 2, 3
BUZ = 2w;j(Tiq — xja)" /0y 9)

3.2 Application to Gender Classification

The aims in applying the above semi-supervised learning technique is as follows.
By adjusting the parameters o, of the weight function according to equation (),
the influence of the gender discriminating feature components is increased, while
that of the non-discriminating ones is decreased. The smaller value of o4, the
greater the influence of component d in determining the similarity measure. As
a result value of o4 provides a means of gauging the significance of the different
components of the PGA feature vector for gender classification.
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We set f = 0 for the labeled female data, and f = 1 for the labeled male
data, and then apply the above semi-supervised learning method to learn the o
values for each component of the PGA feature vector. This strategy differs in two
important ways from the feature selection methods described elsewhere in the
literature ([3], []). First, the graph representation of the data and the harmonic
functions enable us to make use of the entire set of available data, including both
the labeled and unlabeled samples. As a result the size of required labeled data-
set is reduced. Secondly, the o values not only indicate which of the components
of the PGA feature vector are discriminating feature components, but they also
quantify the gender discriminating significance of each component. Incorporating
this quantized significance into classification improves the gender classification
performance.

After learning the o values, the harmonic function values on the unlabeled
data can be computed using Equation (B]). From these values of f(u), the genders
of the unlabeled faces can be determined. When f, (i) < %, the face i is assigned
to be female, otherwise it is male.

4 Experimental Results

In this section, we evaluate the performance of gender discriminating feature se-
lection using the semi-supervised learning method, and in particular we examine
its performance for gender classification. The data used in our experiments are
from the Max-Planck Face Database [I§], [L9]. The database comprises 200 laser
scanned (Cyberware TM) heads without hair. There are 100 females and 100
males. The facial needle-maps are obtained by applying the following processing
steps to the laser scans: a) the face is first orthographically projecting onto a
frontal view plane, b) cropping the plane to 142-by-124 pixels so as to retain only
the inner part of the face, and c¢) computing the surface normal at each pixel
position. Principal geodesic analysis is applied to the 200 facial needle-maps.
Each facial needle-map is then represented by its PGA feature vector.

We first apply the semi-supervised learning method to examine the gender
discriminating feature components from the leading 10 PGA feature vectors. We
examine the performance with 5 different fractions of labeled data (10%, 20%,
30%, 40%, 50%). The results for each fraction of labelled data are estimated with
10-fold cross validation. For learning the weights, we set the step size n = 1.0 for
gradient descent, and set the smoothness parameter ¢ = 0.01 in Equation (&l). We
allow the learning process to run for 9000 iterations. The plot of the average label
entropy (Equation (@) is shown in the left panels of Figure 2. Irrespective of the
the fraction of labeled data, the entropy decreases with the iteration number and
converges after about 5000 iterations. The learned o values for the leading 10
PGA eigenmodes are shown in the right panels of Figure 2. From this plot, when
using 10% of the data as labeled, the o value of the first component is significantly
smaller than those of the remaining components. However, with an increasing
fraction of labelled data, the o values of the 5th and 6th components decrease
rapidly, followed by those for the 2nd and 9th components. This indicates the
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Fig. 2. The performance of using semi-supervised learning for gender feature selection

importance of these components for gender discrimination. When 50% of the
data is labeled, the 1st, 5th, 6th, followed by the 2nd and 9th PGA feature
components are most gender discriminating. This is consistent with the results
reported in [20].

To explore the data in more detail, we visualize the 1st, 5th, and 6th eigen-
modes by showing the mean face together with its deviation along the 1st, 5th
and 6th eigenmodes. The visualization is shown in Figure 3, and by inspection
it seems plausible the three eigenmodes do convey some gender information.
Turning our attention to the 1st eigenmode, the faces from left to right become
more solid in appearance becoming larger and ”squarer”, while the cheeks be-
come thinner. These are all masculine characteristics. In the case of the 5th
component, the faces become more oval and the eyes wider. These are feminine
characteristics. In the case of the 6th component, the faces again have more mas-
culine appearance from left to right. Figure 3 therefore indicates that the gender
discriminating features selected using the semi-supervised learning method are
at least to some degree consistent with human perception.

After the determination of the parameters of the weight function, i.e. the o
values, we can use the values of f from Equation (3] to determine the gender for
each unlabeled face. Again, the performance is examined with 5 different frac-
tions of labeled data (10%, 20%, 30%, 40% 50%), and the average classification
error rates for each fraction of labelled data are estimated with 10-fold cross val-
idation. The classification results are shown in Table 1. From the table, it is clear
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Fig. 3. Visualization of the 1st, 5th and 6th eigenmodes. From top to bottom are the
1st, 5th, 6th eigenmodes. The columns are according to the deviation from the mean,
from left to right are A=-30, A=-20, A=0 (the mean face), A=20, and A=30.

1

that the gender classification accuracy improves with the increasing fraction of
labelled data. However, when 20% of the data are labeled, we can achieve over
81% gender classification accuracy. When 50% of the data are labeled, the clas-
sification accuracy reaches 90.50%, which is higher than the accuracy reported
in [ (86.43%), while with a much smaller volume of labeled data. These results
demonstrate the effectiveness of using the semi-supervised learning method for
gender classification, and the feasibility of gender classification using the facial
shape information revealed by 2.5D facial needle-maps.

We also examine the gender classification performance using our method on fa-
cial needle-maps recovered from 2D face images using shape-from-shading (SFS).
In our experiments, there are 140 2D images (70 females and 70 males), which
are from the AR Face Database [21], with neutral expressions and no glasses.
We use the principal geodesic SF'S method proposed in [I2] for the facial shape
recovery. The statistical model required in this SFS method is constructed using
the above 200 ground-truth needle-maps which are from the Max-Planck Face
Database. Some examples of the recovered facial shapes are shown in Figure 4.
From the figure, we can see that the recovered needle-maps and the surfaces give
realistic shape, overcoming the well-known local convexity-concavity instability
problem in previous SFS methods. Moreover, gender information is conveyed
in the recovered facial needle-maps. This guarantees the feasibility of gender
classification based on the recovered facial needle-maps.

Table 1. Classification accuracy using different fraction of labelled data

10% labelled 20% labelled 30% labelled 40% labelled 50% labelled
data data data data data
Accuracy 76.53% 81.17% 83.84% 86.15% 90.50%
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(a) A female example (b) A male example

Fig. 4. Two examples of the recovered facial shapes. From left to right are the input
images, the recovered needle-maps, the recovered surfaces.

Table 2. Classification accuracy for recovered facial needle-maps

10% labelled 20% labelled 30% labelled 40% labelled 50% labelled
data data data data data
Accuracy 74.44% 80.36% 87.35% 88.86% 89.52%

After the facial shape recovery, we first apply PGA to represent the recovered
needle-maps using PGA feature vectors. Then, we apply the semi-supervised
learning method to learn the values of ay4s for the leading 10 PGA eigenmodes,
and use the values of f to determine the gender. The classification performance
is estimated with 5-fold cross validation for each fraction of labelled data (10%,
20%, 30%, 40%, 50%), and is shown in Table 2. From the table, we can see when
only 30% of the data are labeled, we can achieve over 87% gender classification
accuracy. When 50% of the data are labeled, we achieve the accuracy 89.52%.
These results further confirm the effectiveness of using the semi-supervised learn-
ing method for gender classification, and demonstrate the feasibility of gen-
der classification using the facial needle-maps recovered from 2D images using
SES.

5 Conclusions

In this paper we perform gender determination using PGA to parameterize 2.5D
facial needle-maps and using a semi-supervised learning method [I4] for the pur-
poses of classification. The learning method is based on the graph representation
of the data and harmonic label functions, and can be used to determine the most
gender discriminating components of the PGA feature vectors. There are two
novel contributions. First, we make use of the facial shape information conveyed
by the facial needle-maps for gender classification. Second, by making use of the
semi-supervised learning method, we are able to learn the gender discriminating
features using a relatively small sample of labeled data and without sacrificing
the classification accuracy. Experimental results demonstrate that the learned
gender discriminating feature components are consistent with human percep-
tion. When 50% of data are labelled, the gender classification accuracy reaches



32

J. Wu, W.A.P. Smith, and E.R. Hancock

90.50% for ground-truth needle-maps, and 89.52% for needle-maps recovered
using SFS.

There are a number of ways in which the graph representation can be enhanced

for facial analysis problems including gender and ethnicity determination. Our
immediate plans are to explore how to apply diffusion maps and graph-spectral
probabilistic relaxation labeling to learn the gender discriminating features, and
to determine the genders from facial images.
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Abstract. In this paper, we propose a convex optimization based approach for
piecewise planar reconstruction. We show that the task of reconstructing a piece-
wise planar environment can be set in an L, based Homographic framework
that iteratively computes scene plane and camera pose parameters. Instead of
image points, the algorithm optimizes over inter-image homographies. The resul-
tant objective functions are minimized using Second Order Cone Programming
algorithms. Apart from showing the convergence of the algorithm, we also empir-
ically verify its robustness to error in initialization through various experiments
on synthetic and real data. We intend this algorithm to be in between initializa-
tion approaches like decomposition methods and iterative non-linear minimiza-
tion methods like Bundle Adjustment.

1 Introduction and Related Work

In this paper, we describe a convex optimization based approach for piecewise pla-
nar reconstruction by optimizing inter-image homographies. This work is motivated
by both the recent success of convex optimization based methods in various geometric
problems like triangulation, resectioning [112]], and the available sophistication in robust
estimation of homographies across views [2]].

Convex optimization methods have achieved recent success in the estimation of var-
ious geometric quantities like homography, pose, 3D point cloud (triangulation)
etc., and are even shown to be reasonably robust to noise [2]]. There are even works
on outlier estimation and removal using convex optimization . On the other hand,
there also has been progress on robust estimation of homographies from multiple views
of a scene plane [2]. However, even though homographies can also be expressed as a
function of the camera pose, and can be decomposed using SVD in a similar manner
to fundamental matrices [43]], piecewise planar reconstruction as a 3D reconstruction
pipeline has not received much attention.

To this extent, we intend to develop an algorithm that can be a useful “bridge” be-
tween SVD based initialization methods mentioned above and non-linear optimization
methods like Bundle Adjustment (BA). We focus on the iterative reconstruction pro-
cess, that alternates between optimizing a six parameter camera pose vector for each
view, and a four element plane parameter vector for each scene plane, by optimizing
over the resulting inter-image homographies.

We make the following contributions in this work. First, we introduce objective func-
tions for producing optimal estimates of pose and plane parameters, along the lines of

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 34 2010.
(© Springer-Verlag Berlin Heidelberg 2010
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[2]. Then, we show how a Branch and Bound (BnB) algorithm may be formulated for
the computation of optimal rotation between views [4].

Some of the recently proposed frameworks on L, based quasi-convex cost functions
problems form the motivation for our work [[1l6], while some closely related works in-
clude projective Bundle Adjustment (pBA) [[7] and BA with constraints [8]]. However,
we differ from these works in the kinds of objective functions minimized (quasiconvex
as opposed to non-linear) and in the quantities we optimize (homographies as opposed
to 3D points). Recent study of bi-linear problems also has relevance to our work [9]
since plane and pose parameters are combined together in a bi-linear form in the expan-
sion of a homography (Equation[T)). However, the formulation proposed in [9] requires
that the entire set of plane and pose parameters need to be optimized together. Also,
estimation of rotation parameters becomes infeasible in such a scenario. Thus we do
not resort to a formulation along the lines of [9].

The rest of this paper is organized in the following manner. SectionPsets the problem
of pose estimation in a homographic framework and motivates the need for the use
of optimization. Section [3] presents our solution and algorithm details. Experimental
analysis on synthetic and real-world sequences are done in Section [ and finally, we
conclude with a discussion on future directions and applications in Sections[3

2 SVD Based Initializations

Letthere be m planes in the world, characterized by the parameters [nl JdY o n™, dm] .
The j** plane is characterized by the parameters (n’, d’), where n’ represents the normal
of the plane and d” represents the perpendicular distance from world origin. Let there be
two cameras with external parameters [I | 0] and [R | t]. For simplicity, let us assume that
the internal parameters of the cameras are set to identity (K = I). Thus the homography
induced by the j*" plane between the two views [10] is given by

T
wo|mr- 1 (1)

di

Decomposition algorithms for obtaining camera pose and plane normals from homog-
raphy matrix using Equation[I] are well known [11l3]]. However, since, the process of
pose computation from correspondences through the homography matrix involves two
SVDs, a theoretical sensitivity analysis of such algorithms is difficult and approximate
[12]. Thus it is more advantageous to do an empirical study of the error in the estimation
of plane and pose parameters, given noise in image correspondences.

Figures(Talld), depict the poor performance of one of the SVD based decomposition
algorithms [3]. The experiments consisted of adding increasing amounts of noise to a
previously determined set of normalized image correspondences. Homographies ob-
tained after a standard RANSAC routine were then decomposed to obtain estimates of
the plane and pose parameters. Variances are plotted against error in pixel coordinates,
with a maximum variance of 5 pixels which corresponds to approximately 1% of the
image size. As can be seen, translation and normal estimations are adversely affected
by image noise. The errors for the other algorithm [[T1]], were similar.
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The variances in Figures(Ta) plot the error in estimation of rotation parameters when
noise is introduced into the system. As is seen, the maximum variation of rotation
parameters in the Euler angle space is 6 degrees, for as high as one percent image noise.
Comparison with the translation and normal errors, which are as high as 40 degrees in
the polar space Figures(ITB{Id), show that the decomposition algorithm produces much
more robust estimates of rotation than either translation or normal parameters. This ex-
plains the greater need for better estimates of translation and normal parameters com-
pared to that of rotation parameters that are much close to the actual values.
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Fig. 1. (a,b,c) Plot the L2 and L, errors in the rotation angles, translation direction and nor-
mal direction respectively. Also are plotted the maximum error ranges for these quantities. The
translation and normal direction errors are computed as Euclidean distances in polar space.

3 Optimization Framework

In this section, we describe our algorithm. First, we start with the simple case when
rotation is assumed known, and the rest of the parameters are optimized (Section B.1)).
The reason for this is the non-convexity of the orthonormality constraints of the rotation
matrix. Since algorithms for estimating the rotation already exist [4]], and since we
have shown rotation parameters to be robustly recovered from SVD decompositions as
compared to other parameters (Figure 1a), we treat rotation separately (Section 3.3).
Finally, in order to bring all the SVD decomposition estimates into a single coordinate
system, we describe a convex function in Section 3:21

3.1 Formulation of the Objective Function

We wish to find plane and pose parameters that best fits Equation [I] which is non-
linear in terms of quantities (R, t,n, d”) that need to be computed. However, observe
that when either the plane or the pose parameters are known, Equation [l is linear in
the remaining unknowns. This simple fact is used to define an objective function that
measures the geometric distance between the homography computed from plane/pose
parameters and the homography estimated from point correspondences. If the homog-
raphy matrix with varying pose parameters and fixed plane parameters is defined as

i T
Hrt!? = [R — tz% } for the j** plane then the corresponding objective function is

8
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Similarly, when the plane parameters are allowed to vary fixing pose parameters the
homography function is Hnd’ = [dec - tcan] and the objective function

. .
H!  Hnd!
Fma) = Z HI  Hnd? ©)

(Re,tc,ni,d’) are fixed and the optimization runs over free variables denoted by bold
letters. There are two important observations to make at this point. Firstly, equations (2}
[B) are both linear fractional: both the numerator and denominator are affine in terms
of the unknowns. Secondly, it is possible to optimize all parameters by alternatively
minimizing Equation 2l and Equation[3] till convergence.

The proposed algorithm is a two step process. An initial estimate of the parameters
is acquired using SVD-based decomposition in the first. However, estimates from SVD
decomposition in the first step do not all have the same scale factor. Such estimates
need to be threaded together and brought down to a common universal scale before car-
rying out the optimization. This is done by minimizing the difference between various
estimates of a single quantity as described in Section[3.2]

Subsequently, in the second step, this estimate is improved in an optimization frame-
work. However, minimizing Equation [2] without enforcing the constraints inherent to
a rotation matrix will not lead to a physically valid rotation matrix. Equation [2] fails
to be a linear fractional with rotation constraints enforced complicating its minimiza-
tion. Hence, rotation is handled separately as explained in Section and Equation 2]
is minimized by varying only the translation as in Step 7 of Algorithm [Tl

The optimization takes advantage of the fact that the objective functions are quasicon-
vex and employs convex optimization techniques at minimizing them. Variables ¢’ and
(n,d?) are minimized in alternating iterations. Optimization of ¢! takes into account
information from all visible planes. Similarly, optimization for (n?, d’) is done with in-
formation from all views in which the plane is visible. This two step process ensures
the quasiconvexity of the objective functions. The complete method is summarized in
Algorithm[Tl

Algorithm 1. Complete Algorithm Summarized.
1: Input: Homographies “H; for j = 1,...,J and k = 1,..., K of plane II; between the
camera views ¥ P and reference view °P = [I|0].
2: SVD-based decomposition: Decompose * H j to get k R;, ,Q.Zj, , knj.
J
3: Initialization: * R = median; {* R;} and t = median;{"t;}.
4: Set to universal scale: Assume each actual camera translation to be a unit vector in the direc-

. k TLT
tion of Zjle [ = 1. Let *G; = [FR— "7 Jand *G3 = (g1, 92, ..., 90)""

kdj

5: Iterative Minimization:

6: WX {"H; —*G5} <o

7: Update (*1): (*t) = arg minx, max;_, \/EZ[]]Z; - j;’é]ZVk =1,....,K.

8:  Update (n;,d;): (nj,d;) = argmin,, 4, maxj_, \/21-[:;;2 - ,’jgé]zw =1,...,J.
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3.2 Universal Scale

Each decomposition by the algorithms of Faugeras [11]] and Zhang [3] produces esti-
mates of { R, t, n} assuming d (perpendicular distance of plane from origin) to be unity.
Thus estimates vary by a scale factor and need to be tied down to a single universal
scale which in the presence of noise has to be computed using optimization. A

Let the solutions of translation obtained by decomposing homography H/ be ¢/ .
Ideally, the actual translation is ¢; = t{ d’. Since various estimates of the same quantity
must be consistent, we find an x = [t1,ta,...,t,d", d?,..., d"] " for which an error
| f(2)| oo is minimum. f(z) is a vector with elements of the set {t; —t/d’ | i € [1,k],j €
[1,m]} stacked up. Optimal estimates are found by performing the minimization x* =
argming | f(2)]oo-

The considered error function is convex [13], made from the pointwise maximum
of the convex function (¢; — t/d’). An unconstrained optimization in this case could
lead to the trivial solution of all zeros for  which is undesirable. To avoid this we
fix perpendicular distance of anyone of the planes (say, d') to unity. This also sets the
overall scale of the minimization process.

3.3 Retrieving Rotation

Constraints inherent to rotations and normals like orthonormality constraints of the ro-
tation matrix are non-convex and do fit into a convex framework. Such constraints have
been handled in the literature [4/14]] using under estimators and over estimators of the
non-convex function with a Branch and Bound algorithm. We, thus, handle rotation
separately rather than in the above optimization. We use image coordinates of planes
available on the lines of [4] to solve for rotation R; of the i*" view. The objective func-
tion to be minimized is

T

o J A
FRit) = Find(R;, t;) st. Z(H!x], (R; — t; ndj )x7) < €min 4)

which can be alternatively posed as
o wl

‘F(Ri,t;,) = Find(Ri, ti) s.t. Z(HZXJP RZ(I —t; di )le) < €Emin (5)
where x]l are points from the j*” plane in the first view. Arguments of bounds and in
general the branching strategy of [4]] can now be incorporated into the current frame-
work. The analysis that estimates of rotation from SVD-based methods are more robust
than that of translations and normals as noted in Section 2] practically helps the idea of
handling rotation separately at a later stage. Figure 3d shows the performance of the
objective function described above in the presence of varying noise. The Ly norm in
angular space (roll-pitch-yaw) is plotted against increasing amounts of noise in image
pixels.
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4 Experimental Analysis

In order to test the proposed algorithm, we have conducted experiments using Se-
DuMi on both synthetic and real-world data. Synthetic data is obtained by gen-
erating points on planes and projecting them onto camera matrices. Real world data
sets tested include the Oxford Model House, Corridor, and UNC datasets. In all these
cases, the real world is assumed to be segmented into planes apriori i.e. interest points
and hence correspondences computed are assumed to be clustered into planes. However,
there are automatic algorithms to achieve such a classification [[16].

4.1 Synthetic Data

Generation. Random points are generated on the X'Y-plane which is then re-positioned
at a random location. Two random camera matrices are generated and the world points
of many such planes are projected using them to generate image points. Gaussian noise
of varying standard deviation is added to these image points to create synthetic corre-
spondence data. Homographies are then computed using the RANSAC after normaliza-
tion [10] which can alternatively be generated by [[1I]. The generated Homographies are
decomposed using Faugeras’ and Zhang’s algorithms to generate data for both
initialization and comparison. Algorithm [1]is then run with this data, to produce our
estimate and is compared with the SVD-based algorithms and Bundle Adjustment in
the 6-parameter pose space by plotting the euclidean distance between estimated and
ground truth values.

N
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Error in normal direction (degrees)
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00 1 2 3 4 5 0 00 1 2 3 4 5 0
Variance in Pixels (Uniform) Variance in Pixels (Uniform)
(a) Translation (b) Normal

Fig. 2. Plot of L2 and L., norms of the distance in pose space between estimated and ground
truth quantities from Algorithm [T] against increase in variance of Gaussian error in point corre-
spondences. Comparison with the two SVD based methods is shown.

Effect of noise. Figures show the effect of increasing image noise on the ac-
curacy of estimation. Two observations can be made for both translations and normals.
First, the average error in the estimation of both parameters is less than 5 degrees even
for a 1% error in the image coordinates, which is a considerable amount of error. This
justifies the robustness of our algorithm to image noise. The second observation is that
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the mean errors (averaged for 100 trials) in all these cases are located close to the min-
imum errors represented by the lower end of the error bar. We can conclude that most
of the estimations center around the mean, with only a few deviating towards the higher
end. Another interesting observation is that even the resilience to noise is apparent till
about 3 pixel error after which the maximum error in both cases seems to increase. This
can be attributed to the fact that after a point the algorithm possibly settles into a lo-
cal minima because of the inaccurate initialization. However, this is still better than the
results of SVD-based methods in Figures[Ib] [Td

Comparison with Bundle Adjustment. We empirically compare our algorithm with
standard iterative non-linear optimization technique of Bundle Adjustment (BA) [17],
which uses Levenberg-Marquardt internally. BA is initialized by the output of the SVD-
based approaches similar to ours. This initialization is used to minimize the following
error over the normals and the translations

. hi T Az 9
(R,t,n;,d;) = argkR,gtl,lerlj,dj g ; Z[hg — xTAgx] (6)

%

where, z = (RS, ... KR 4T o BT 0T 0T dy, ..., dy) and A; is a matrix
s.t. 2T A;z = g; and z is x with the initial SVD estimates of *R, *t,n;, d; substituted.
The improvement in translations is shown in Fig (3a) and that of normals in Fig (3B).
They are shown for varying levels of variance each of which has been tested for 100
trials. They clearly show our algorithm performing better than BA.
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Fig. 3. (a-b)Plot of L, norm of the distance in pose space between estimated and ground truth
quantities from Algorithm[I]and Bundle adjustment against increase in variance of Gaussian error
in point correspondences.(c) Error in recovery of rotation parameters using the objective function
of Section B3]

Effect of planes and views. Figures @alldcddbldd)) show the effect of the number of
planes and views on the performance of the algorithm. Contrary to intuition, increasing
the number of planes does not seem to have much effect on the accuracy of the estimates
of translation parameters. On the other hand, increasing the number of views increases
the parameter size, and the accuracy of translation estimates dwindles since the number
of planes and hence, measurements is kept constant. In the case of normals, however,
increasing the number of views results in a marked improvement in the accuracy of
their estimates.
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Fig. 4. The above figures plot the effect of planes and views on the accuracy in estimation of the
translation and normal parameters. First two figures plot the effect on translations and last two
plot the effect on normals. For the experiment with increasing planes, the number of views was

kept constant at 10, and that for views, the number of planes was set to be 3.

@

Fig.5. Sample images of scenes reconstructed using our approach. (House(a), Corridor(b),
synthetic(c-d), UNC((e-f))). (g-h) illustrates the accuracy of our reconstruction, the ground truth
and reconstructed models are overlapping. (i-j) Texture mapped UNC reconstructions.
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Fig. 6. Plots of the L, error between plane and pose parameters with respect to the ground truth,
for the House and Corridor sequence. L2 error shows similar plots. Y-axis of plots (a),(b),(c) and
(d) is the angular error in radians, X-axis of (a) and (c) is the number of views, where as X-axis
of (b) and (d) is the number of planes. In the plots (a),(b),(c) and (d), dotted curve represents the
Faugeras initialization and other curve represents our approach.

4.2 Real Data

In order to test on data from the real-world, we chose two Oxford data sets and the
UNC data set. The House, and Corridor data sets (Figures (3a3h)) are accompanied
by correspondences and estimates of the camera matrices, while the UNC data set only
comprises camera matrices.

Figures[6all6blshow the comparison between our estimation and that of the decompo-
sition of Faugeras for the Oxford data sets. The Lo and L, errors between the estimated
and ground truth quantities are plotted. In order to compare normals, we took the best
estimate of normals from the available decompositions. As can be seen from the plots,
estimates of translation from our algorithm are far better than the corresponding algo-
rithm by Faugeras. We found that Zhang’s algorithm produces estimates similar to that
of Faugeras’ algorithm in most cases. The same situation is repeated in the Corridor se-
quence (Figures [6dl6d), where translation is very accurately obtained. An explanation
of why certain plane parameters are “perturbed” by a higher error is that some of the ho-
mographies are erroneous and the error in a particularly bad homography is distributed
across planes. Finally, the UNC data set (Figures[3il[5j) show the visual accuracy of our
reconstruction.

5 Discussion and Conclusion

We proposed a framework that reconstructs piecewise planar scenes in much the same
way as Bundle Adjustment for point sets. The algorithm incorporates both multiple
planes and views and does not constrain all the planes to be visible in any single view.
This makes it a useful bridge between initialization approaches and non-linear mini-
mization methods

The existing framework is not without its drawbacks. Currently, though the objec-
tive functions show robustness to noise, it does not work very well in the presence of
outliers. Existing literature in convex optimization that handles outliers may be used
for this purpose [3]]. Similarly, uncertainty of correspondences can also be handled with
techniques like [[18]]. Secondly, constraints between planes like orthogonality may help
in stabilizing the overall reconstruction [8]. One other issue related to this algorithm
is its practical applicability. Recent results reported in [6/19] are very relevant to our
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work and may be used to improve the run time of our algorithm, making it suitable
for faster computation required by videos. We believe that our current contribution lays
down a useful framework for practically viable optimization over planes, and wish to
investigate further into its use for large scale optimization.
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Abstract. We propose in this paper a new method based on binary space parti-
tions to simultaneously mesh and compress a depth map. The method divides the
map adaptively into a mesh that has the form of a binary triangular tree (tritree).
The nodes of the mesh are the sparse non-uniform samples of the depth map and
are able to interpolate the other pixels with minimal error. We apply differen-
tial coding after that to represent the sparse disparities at the mesh nodes. We
then use entropy coding to compress the encoded disparities. We finally benefit
from the binary tree and compress the mesh via binary tree coding to condense
its representation. The results we obtained on various depth images show that
the proposed scheme leads to lower depth error rate at higher compression ratios
when compared to standard compression techniques like JPEG 2000. Moreover,
using our method, a depth map is represented with a compressed adaptive mesh
that can be directly applied to render the 3D scene.

1 Introduction

Determining the depth of a scene depicted by a stereo image is a well established re-
search area in computer vision. The depth is usually represented by a disparity or a
depth map that reflects the movement of the pixels between the two images. In order to
compute this map, it is necessary to first evaluate some matching costs among the pixels
of the images. Then, an energy function is defined over these costs and optimized. A
disparity map can be used in a variety of applications: 3D scene reconstruction, image
based rendering and 3D-television (3D-TV). In order to use this entity for such pur-
poses, the depth map needs to be as accurate possible so that the visualization errors
are minimal. This is why stereo matching is still an active area of research. For the
interested reader, an excellent survey about this topic is found in [1I.

Nowadays, it is possible to find numerous stereo matching algorithms that are able to
result in high quality depth maps. Irrespective of the algorithm used, a disparity map has
to be compressed at a later stage to save the storage requirement or to limit the needed
bandwidth if it has to be transmitted over a network, e.g. telepresence and 3D-TV. A
typical way to compress a depth map is by applying standard image or video compres-
sion techniques like JPEG 2000 or MPEG4 ASP. Such schemes process a depth image

* This research is sponsored by the German Research Foundation (DFG) as a part of the SFB
453 project, High-Fidelity Telepresence and Teleaction.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part II, LNCS 5995, pp. 44 2010.
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while taking only the visual quality into consideration. This is why they result in a high
amount of error in the reconstructed depth values especially at high compression rates,
see for more details.

Motivated by this limitation, we propose in this work an algorithm for depth map
compression and meshing based binary space partitions. Using this concept, we first
divide the disparity image into a triangular tree (Tritree). This tree has a binary format
and is actually the content adaptive mesh approximation of the depth map. The nodes
of the mesh are the non-uniform samples of the map and can reconstruct the other depth
values with a minimum error. We then apply suitable entropy coding on the samples and
the binary tree in order to further compress the data. The results we obtain on several
disparity images show that our scheme leads to a noticeable improvement in the quality
when compared to other techniques even at high compression ratio. Our scheme is fast
and can be applied in real-time to simultaneously mesh and compress a depth map.

The method we propose is based on binary space partitions (BSP) to subdivide an
image. This concept was described in detail in our previous work [3]. There, we apply
three variants of BSP to approximate normal images with a mesh taking into considera-
tion the visual quality of the results. In this paper, there are two main contributions that
make our work original. Firstly, we adopt the fastest BSP variant and tailor it specifi-
cally for depth images. To do that, we take the depth error rate of the compressed depth
image into account when building the mesh and not its visual quality, i.e. we drop out
Peak Signal to Noise Ratio (PSNR). Secondly, we post-process the mesh with several
lossless coding schemes to achieve a very efficient representation of the disparity map.

The rest of this paper is organized as follows. We present in SectionP]a brief review
on depth map compression techniques. We derive the proposed method for depth map
meshing and compression in Section[3l We evaluate the proposed scheme and compare
it to other methods in Sectiondl In the end, we draw some conclusions in Section[3

2 Related Work

The depth map is an image where the intensity values represent the displacement of the
corresponding pixels between the stereo images. The simplest way to compress this en-
tity is by applying a state of the art image compression method like JPEG, JPEG 2000 or
MPEG4 ASP. While compressing an image, these techniques take into account the vi-
sual quality of the result and not the amount of errors in the intensity values of the com-
pressed image. This is usually represented with the term Mean Squared Error (MSE),
equivalently the PSNR, between the compressed image and its uncompressed version.
The MSE actually can be low even if all the reconstructed pixels are erroneous. For ex-
ample, a compressed disparity image where each pixel is reconstructed with an absolute
difference of 2 has a MSE of 4 while the pixel error rate is 100%. This explains why
JPEG and MPEG4 ASP result in blocking artifacts while JPEG 2000 blurs the edges or
the depth discontinuities if a high compression ratio is desired [2/3/4]]. Taking the MSE
as a metric is not recommended for the compression of a depth image since the latter is
a piecewise smooth surface, i.e. it has discontinuities along the edges while it is smooth
otherwise [[1]]. Applying it might not be harmful when visualizing the depth image but
leads to a lot of artifacts and errors in 3D reconstruction and rendering.
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The limitations of the standard image compression techniques motivated the research
to develop more sophisticated schemes for depth maps. In [2]], JPEG 2000 was modified
to accommodate for region of interest coding and reshaping the dynamic range of the
depth map. In [3l6], a disparity image was meshed using height fields meshing schemes.
Then, the mesh was coded at different resolutions to obtain the compressed representa-
tion of the disparity map. In [7], a depth map was hierarchically decomposed into four
regions depending on the locations of the edges. These regions were then merged and
fed to an H264/AVC encoder. In [8]], the context of a depth map was classified and then
compressed depending on its class via predictive image coding schemes.

The proposed method is based on adaptive or irregular mesh generation. It is thus
important to state some recent development in this domain since such methods can be
adapted to mesh and compress a depth map. Irregular meshes are usually generated
based on coarse to fine strategies, see for some examples. One important algo-
rithm is the quadtree since it has been applied in various image types. Quadtree was
applied to adaptively mesh and code videos in [L1]]. It was also applied to approximate
and visualize terrains in [12]]. More recently, quadtree was used in [4]] to compress and
mesh disparity images. Another way to obtain irregular meshes is by applying the con-
cept of non-uniform sampling or content adaptive meshing of images. Content adaptive
meshing is the art of approximating an image with an adaptive mesh. The nodes of the
mesh are called the non-uniform samples of the image. These samples are able to inter-
polate all the other pixels of the image via the mesh up to a predefined error. Some of
the techniques developed in this direction are [SIT3IT4UTT].

3 Proposed Scheme

In this work, we will be applying the concept of content adaptive meshing to generate
an irregular mesh. The advantage of such a scheme is its ability to preserve the depth
discontinuities. The sampling rate will be high near the edges or any kind of depth dis-
continuities, hence, the size of a triangle in such regions will be small. Otherwise, the
sampling rate will be low and the size of the corresponding triangle in this case will be
big. An example is shown in Fig.[Tl Applying a mesh as a first step to compress a depth
map has been also used in [3]. There, however, the generated mesh does not deal with
depth discontinuities but on small details within the objects. This is why the algorithm
was later improved in [6] to handle these issues by detecting the discontinuities, mod-
eling them and using a constrained triangulation in such regions. With the proposed
content adaptive meshing strategy, the depth discontinuities will be already taken into
account for the sampling rate will be very high at these locations. This makes edge
modeling or enforcing some constraints on the triangulation not required anymore.

Therefore, the main idea of our proposed scheme is to first approximate a depth map
with an adaptive mesh by detecting its non-uniform samples. This mesh will be able
to approximate the original content of the depth map with a minimal error. To further
reduce the size, the obtained mesh and the corresponding disparity values of the nodes
will be encoded in a lossless fashion to obtain an efficient representation of the map.
The block diagram of our compression/decompression scheme is depicted in Fig.[2Jand
will be explained in the remainder of this section.
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Fig. 1. (a) The original Art disparity map of [T3]]. (b) The corresponding adaptive mesh using the
proposed tritree in Section[3.1} (c) The recovered disparity map from the mesh.
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Fig. 2. (a) The tritree based meshing/compression scheme of a depth map. (b) The decompression
process and depth map reconstruction.

3.1 Content Adaptive Meshing with Tritree

The pixels of a disparity map form a 3D space represented by the 2D-coordinates of the
pixel in the map and the corresponding disparity value. Each triangle T of the desired
mesh is formed by three vertices. Let v;(x;, y;, d;) with ¢ = 1,2, 3 be the three vertices
of T'. The plane 1] described by 7' is defined using the normal equation

T Pnt+ k=0, ey
where p,, (¢, Yn,d,) denotes a pixel with coordinates (z,,,y,) and depth value d,,
lying on the plane, k is a real constant such that k = —7 - v; and 77 is the normal

vector to the plane. The vector 77 = (11, 112, 73) can be computed as the cross product
of any two edges of the triangle. To recover the disparity value d,, of a pixel lying inside
T, we should write Equation (I) in the form

dn = — (M@n + N2yn + k) /1. )

To determine the content adaptive mesh of a disparity map, it is necessary that we find
all the triangles of the map whose nodes can reconstruct the depth values of the pixels
lying within them using Equation (2). To determine the quality of the reconstructed
values, we will be using the percentage of the disparity errors PERR inside each triangle
as a measure. PERR is defined in a triangle T of the mesh to be

AT |—1
PERR—LATJ Z F(d (@i, i), d (@i, )%, 3)
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Fig.3. (a) The tritree subdivision principle applied to an example depth image along with the
corresponding binary tree. An upper or right triangle is encoded with 1 if divided, a lower or left
triangle is encoded with O if divided. A -1 indicates the end of the branch, i.e. no further divisions
of the triangle. (b): The concept of tritree subdivisions working in parallel on several CPUs. The
depth image is pre-divided into 4 parts and each is processed by a different CPU.

where A is a symbol denoting the area of a triangle, i.e. AT is the area of T', |-] is
the floor operator, (z;,y;) are the coordinates of a pixel in 7', d is the disparity value in
the reconstructed disparity map from the compressed image and d is the corresponding
disparity in the uncompressed depth image. The function f in @) returns the value 0 if
the difference between d and d is strictly less than 1; otherwise, f returns the value 1.

To obtain the adaptive mesh, we should minimize PERR over each triangle of the
mesh. Using the BSP concept, we first divide the disparity map along one of the diago-
nals into two triangles. We then check each of the triangles if it satisfies the predefined
PERR threshold e. If it does not, we recursively divide the triangle into two smaller
triangles from the longest edge until € is satisfied. We then repeat this step until no
further subdivisions are possible. This method leads to a Triangular Tree which is why
we called it tritree. The difference in applying tritree in this work as compared to [3] is
the minimization of PERR instead of PSNR. PERR ensures that the depth error rate is
minimized across each triangle in the mesh. In [3]], however, the aim was to compress
texture images. For that, PSNR was used since it is known to reflect the visual quality
of a compressed image. In other words, applying PSNR to depth images does not nec-
essarily reduce the depth error rate but only guarantees that a compressed depth map is
visually close to its uncompressed version.

One advantage of tritree is the fact that the obtained adaptive mesh is nothing but a
binary tree due to the incurred property form BSP. Let us assume that when dividing a
triangle, an upper or right triangle is assigned the code 1 while a lower or left triangle is
given the code 0. With tritree, we first divide an image from the diagonal into two trian-
gles. If the PERR is not satisfied, a 1 is written in the code tree if the upper/left triangle
is divided while a O is written in the code tree if a lower/right triangle is divided. If a
triangle satisfies PERR, it is not divided and a -1 is written instead of 0 or 1 to indicate
that the tree does not extend anymore at this node. An example tritree subdivision is
shown in Fig.[3h along with the corresponding binary tree.

As a consequence, a content adaptive mesh with tritree has a corresponding binary
tree that can be directly generated with no extra effort to represent the mesh. This will
allow us to save the mesh as will be seen later in a very compact format. Another
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advantage of tritree is that it can be easily parallelized to operate on multi-core proces-
sors as seen in Fig. 3b. This is because the processing of each child triangle is totally
independent from the other triangles. Hence, we can pre-divide a depth map into several
pieces and let each one operate on a different CPU. The result can be then padded at the
end to obtain the overall mesh (binary tree).

Depth Map Reconstruction: Until now, we have represented a disparity map with a
binary tree and the corresponding sparse disparity values of the mesh nodes. The inverse
process to reconstruct back the depth map is also possible. Using the binary tree and the
image size, we can easily reconstruct back the mesh interconnections in a hierarchical
manner. We first create an image space of the size of the depth map. We then scan
through the binary tree and add a triangle in the image when O or 1 is encountered in
the code. From the mesh connectivity in the image, we can get back the coordinates of
the mesh nodes. Using the mesh and the depth values at the nodes, we can recover back
the overall depth map with Equation ().

3.2 Residual Coding

In order to make the algorithm shown in Fig. 2] complete, we still need to make the
depth map representation more compact. We have to code the residual data, i.e. binary
tree (sometimes referred to as binary trie) and the sparse disparity values, to remove the
remaining redundancies in the data. Therefore, the purpose of this residual coding stage
is to further compress the remaining redundancy in the data, either via lossy or lossless
coding. Lossy encoding is typically based on a constrained rate-distortion minimization.
Since our approach already enables this tradeoff in the content adaptive meshing stage,
we will apply lossless coding techniques (specifically, entropy coding) at this stage.
This ensures that this step is fully reversible.

The most popular entropy coding techniques are the Huffman and the Arithmetic
coding. Arithmetic coding can theoretically achieve the lower bound given by entropy
H(P), and defined by Shannon’s source coding theorem as

n

H(P) =Y —p{er}log, p{ex}, )

k=1

where P is the probability distributor of the symbols and p{e;} is the probability of
an event ey. Obviously numerical inaccuracies will prevent achieving this limit. Huff-
man coding, which can be considered as a simplified case of Arithmetic coding [16],
stays further away from this limit since its codes have an integral length. As reported
in [I6/17]], both Huffman and Arithmetic coding have a complexity of O(M log, M),
where M is the dimension of the symbol set used to represent the data. Still, Arithmetic
coding has been traditionally considered far more complex than Huffman coding for it
uses complex operations like division. With modern hardware, however, this difference
is not significant anymore [[17].

Entropy coding is a variable length codeword scheme. We first have to represent the
target data by symbols with a specific probability distribution. We then assign variable
length codewords to the symbols according to their probabilities. The more-peak shaped
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histogram the symbols have, the more compression can be achieved. Hence, histogram
shaping of the data is an important cornerstone of this technique. In order to keep the
complexity as low as possible, we will consider simple and reversible histogram shaping
schemes like differential coding. For the statistical modeling of the data, we will apply
a semi-adaptive scheme since it has an intermediate complexity.

Sparse Disparity Coding: In a depth map, the co-located depth values are highly cor-
related since this entity is a piecewise smooth surface [[]. This is also true for sparse
depth maps which makes differential coding handy to obtain a histogram with a peak
shape. Differential coding is done in this work by predicting the next disparity from the
immediately preceding one. Moreover, the sparse values are scanned from top to bottom
in a raster order. By looking at the first two rows in Fig.[d] we can see that differentially
coded disparities have peak shaped histograms and are much better suited for entropy
coding after this step. Note that the results shown in this figure were obtained by tak-
ing tritree at 50% error threshold, hence the depth maps are very sparse. At a lower
compression ratio, hence error rate, the sparse maps will be denser and will have even
stronger correlation between the neighboring depth values.

Binary tree coding: We first code the binary tree as a pre-ordered bitstream, which
as reported in is a very compact representation. To do that, we express each
node by a codeword that has only four possible binary symbols, namely 0 0,0 1, 1 0,
and 1 1, which correspond to the four possibilities in the binary tree: 0 1, -1 1, 0 -1
and -1 -1. The histogram of some sparse binary trees obtained with tritree is shown
in the last row of Fig. @l One can notice that the tree histogram is almost flat and no
considerable compression gain can be expected if entropy coding is performed. This is
actually expected since the shape of the binary tree (adaptive mesh) depends only on
the characteristics of the depth map, i.e. some regions might have more discontinuities
than others. This cannot be predicted in coding and leads to little redundancy that can
be exploited. Thus, the pre-ordered bitstream is enough to represent the binary tree.

4 Results

We will perform some tests that consist of evaluating the performance of the proposed
tritree based compression scheme. We will use as a test data set the ground truth depth
maps of the Middlebury test bench [21IT5]] and the depth maps of the Microsoft Break-
dancer and Ballet sequences which were computed using the stereo matching technique
of [22]]. We will compare our method with the JPEG and the JPEG 2000 image com-
pression standards. We will be using three quality measures in the comparisons. The
first one is the PERR of the compressed depth map, see (B)). The second one is the mean
squared error (MSE) of the compressed map and the third one is the rate distortion curve
or the average number of bits used to represent each pixel or bits per pixel (BPP). We
will also make these measurements while varying the compression ratio.

In Fig.[3h, we show the outcome of the algorithms on the Teddy and Art ground truth
depth maps. For the proposed scheme, we show the results using the Huffman coding to
compress the sparse disparities. We also show the outcome of the Arithmetic coding to
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Fig. 4. Histograms of the sparse disparity values in the upper row, the differentially coded dispar-
ity values in the middle row and of the binary trees in the lower row for various depth images

compress the disparities since it is closer to the theoretical bound with which they can
be compressed. As we can see, the proposed scheme leads to the best performance when
compared to the others. The PERR in the compressed disparity map is always lower.
This is because JPEG and JPEG 2000 target the MSE as a measure in the compression.
To visualize that, we also show the results of the MSE versus the compression ratio in
Fig. Bb. We can see that the MSE in the compressed disparity maps with our scheme
is higher. This might seem contradicting at the beginning but our scheme minimizes
the PERR and not the MSE. So although the MSE is higher, it is not the case with
PERR. Moreover, the amount of bad depth values better reflects the quality of a depth
map since MSE can be low even if many depth values are erroneous as we previously
said. Looking at the rate distortion curves, we can also notice that the performance of
our scheme is much better. Using less the 1 BPP on average, we can now represent
a depth map with less than 1% error rate. This was also the case when we tested our
algorithm on the depth maps of the Breakdancer and Ballet sequences obtained with
stereo algorithm of [22]. The outcome is depicted in Fig.[6l By comparing the Huffman
coding to the Arithmetic coding, we can see that they lead to almost the same outcome.
This justifies the employment of the Huffman scheme since it has less complexity.

In all the obtained results, the proposed tritree based compression scheme has shown
a better performance since the optimization takes the PERR into account. In other
words, it does not optimize to only maintain the visual quality of the depth maps with
MSE as the others do. This allows us to obtain a higher compression ratio with an error
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Fig. 5. Comparison of the compression algorithms on the ground truth Middlebury depth images
of [21I13]]. First row: Teddy. Second row: Art. (a): Depth error rate in % versus the compression
ratio. (b): MSE versus the compression ratio. (c): The rate distortion curve.
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Fig. 6. Comparison of the compression algorithms on the depth images computed by the stereo
scheme of [22]). First row: Breakdancer. Second row: Ballet. (a): Depth error in % versus the
compression ratio. (b): MSE versus the compression ratio. (c): The rate distortion curve.

rate less than 1% of the total depth values of the map. In Fig.[7l we show the orig-
inal Teddy depth map of [21]] and the output of the stereo scheme of [22] on Ballet
and Breakdancer. We also show the adaptive mesh at less than 1% PERR threshold ob-
tained with tritree and the reconstructed depth maps. As one can see, the adaptive mesh
preserves the content of a depth map by generating small triangles along the discontinu-
ities and big triangles elsewhere. Thus, non-uniform sampling with tritree removes the
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(@) | (b) ©

Fig. 7. Visual outcome of the scheme on the ground truth Teddy depth map of [21]] and the re-
sulting depth maps form the stereo scheme of [22]] on Ballet and Breakdancer. From up to down:
Teddy, Ballet and Breakdancer. (a): The original depth maps. (b): The adaptive meshes. (c): The
reconstructed depth maps with our scheme. The depth error rate was set to 1%. The compression
ratio is: 13.8, 7.3 and 11.1. The obtained error rate in % is: 0.43, 0.45 and 0.31.

major redundancies in the depth image and then the coding schemes remove the resid-
uals ones. This leads to a more compact representation which can be seen from the
obtained compression ratio at these values in Fig. [3] and Fig. [6l We also present in
Fig. [8] rendered 3D views of some depth images overlayed with the adaptive meshes
obtained with our scheme. This shows that our algorithm can be used not only to com-
press the depth maps but to create a mesh representation that can be applied in 3D
rendering.

Concerning the timing, our method attains real-time operation using the efficient
implementation described in Section Bl It requires around 80 ms with the Teddy
and Cones images, 90 ms for the Dolls image, 88 ms for the Art and Moebius im-
ages. It takes 110 ms for the Ballet image at half the resolution and 390 ms at the
full resolution while it requires 100 ms for the Breakdancer at half the resolution and
350 ms at the full resolution. These measurement are made on an AMD Opteron 64 bit
quad core PC of 2.2 GHz speed. The algorithm is written using the C++ programming
language.
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Fig. 8. Rendered 3D views overlayed with the corresponding meshes obtained using the proposed
scheme. (a): Teddy, (b): Cones, (c): Art, (d): Moebius, (e): Ballet and (f): Breakdancer.

5 Conclusion

We derived in this paper a method to simultaneously mesh and compress a depth map.
The technique is based on BSP. It generates a mesh in the form of a binary tree by locat-
ing the non-uniform samples of the depth map. These samples are the nodes of the mesh
and are able to interpolate the other pixels with minimal error. To minimize the repre-
sentation of the sparse pixels, we apply differential coding followed by entropy coding
to compress the sparse disparities. We also code the binary tree as a pre-ordered bit-
stream. The compressed depth map is thus the combination of the compressed mesh and
the compressed disparities. Our algorithm leads to lower depth error rate at higher com-
pression ratios when compared to compression techniques like JPEG and JPEG 2000.
We are now able to represent a depth map using less than 1 BPP on average while hav-
ing less than 1% errors in the depth values. Our method attains real-time and the mesh
can be easily applied to render the 3D scene represented by the depth map.
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Abstract. Photometric calibration plays important role when building
seamless appearance of multi-projector display. In this paper, we address
photometric issues on chrominance variation and luminance nonunifor-
mity in multi-display system constructed using LCD projectors. A three-
phase approach is proposed to construct imaging models, which makes
transformations among them when formulating the whole imaging pro-
cedure. These models are named as single-projector model, normalized-
projector model and display-wall model. Single-projector model describes
the imaging procedure from the projector’s input color to its measured
tristimulus values in CIEXYZ. Normalized-projector model denotes the
common gamut of projectors, which normalizes each single-projector
model, and makes every projector have the same ranges of chrominance
and luminance. The display-wall model treats the whole display as one
projector, which has similar photometric model to single LCD projector.
Weighting light contributions from all projectors using the display wall
model, our method can achieve visually plausible seamlessness.

1 Introduction

Multi-Projector displays become popular in scientific visualization, military sim-
ulation, CAD, multimedia exhibition, and entertainment fields [I]. For achieving
visual seamlessness, geometric alignment and photometric calibration must be
addressed when building such displays [I].

There are many methods [2] for geometry calibration, we focus on photometric
calibration in this paper. Photometric calibration is very important for seamless
and uniform display. Some work [BIJ5IG[7] have been done on this topic, but
it still lacks of one practical method. About photometric problems, there are
chrominance variation and luminance nonuniformity [6l7].

Stone introduced the color and brightness issues of multi-projector display, ex-
plained projector characteristics, and brought forward common standard gamut
method [3l4]. Wallace et al. extended Stone’s work, and presented one non-
parametric full-gamut color matching algorithm [5].

Majumder and Steven gave a more detailed explanation about color nonuni-
formity issues [6]. They pointed out that chrominance and luminance problems
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exist in multi-projector display system. The luminance problem was more im-
portant, which includes inter-projector and intra-projector luminance variations.
They proposed one Luminance Attenuation Map(LAM) method to equalize the
luminance output across the display wall, which achieved better image quality
than Alpha Blending [§]. Using human contrast sensitivity function, they further
proposed one gradient domain smoothing method to smooth the input image [9].
These two methods mainly focused on the luminance variation across the multi-
projector display, but the chrominance variation problem was overlooked [7]. In
practice, luminance adjustment can generate good result only for projectors with
the same model and brand [6/9]. In practical system, projectors with different
bands and model are common.

Two-phase method[7] and color gamut mapping method[I0] considered both
chrominance and luminance problems. These methods employed colorimeter for
light measurement, and HDR[IT] technology to capture lots of photos. Without
explicitly modelling black offset of multi-display system, they could not resolve
the dark background with low end input values. In fact, the black offset of LCD
projectors is much larger than black offset of DLP projectors used in [7[T0], the
black offset of multi-projector display should be modelled explicitly for achieving
visual seamlessness for low end input values.

Among previous work on photometric calibration, a few of them focused on
the luminance variation[6/9]. For light measurement, some used special hardware
[3/ 5] or HDR. technology with tedious work to capture images [7I10]. They did
not explicitly model the black offset of multi-projector display system to solve
the dark background problem. For handing black offset, we proposed a three-
phase approach to photometric calibration, which explicitly models the black
offset of multi-projector display constructed using LCD projectors.

The rest of this paper is organized as follows. Section 2 describes the details of
the three-phase photometric calibration method. Experimental results are given
in Section Bl Finally, we draw the conclusions and point out the future work.

2 Three-Phase Photometric Model

Previous methods usually constructed the common display gamut [34I5[7], or
smooth the input image [9] for achieving seamless display. Our three-phase pho-
tometric model is another description of the multi-projector display wall sys-
tem. Using three-phase model, the chrominance and luminance problems can
be described clearly. The model provides a better way for solving photometric
problem, especially solving the black offset and color shift problems of display
wall [6]. Previous work showed camera could be measurement tool for photo-
metric calibration[I2][2], so our experiment use it instead of spectroradiometer
or colorimeter.

The whole imaging process of displaying input RGB using multi-projector
display involves three models in different phases. They are namely single-
projector model, normalized-projector model, and display-wall model. Single-
projector model characterizes the photometric characteristic of one